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Crop Insurance Reserving 

Carl X. Ashenbrenner 

 
_____________________________________________________________________________________________ 

Abstract: The crop insurance industry is a private-public partnership, whereby the private companies issue 
policies and handle claims for multi-peril crop insurance policies, which are administered by the U.S. 
Department of Agriculture-Risk Management Agency.  The private companies are reinsured by the Federal 
Crop Insurance Corporation under the terms of the Standard Reinsurance Agreement.  Private companies 
also issue insurance policies not administered by RMA, which provide additional cover, typically referred to 
as “Crop-Hail.” 
 
Crop insurance is a short-tailed line of business; however, significant variation to the ultimate loss ratio 
exists on an annual basis.  Reserving for crop insurance is unique due to the characteristics of the crop 
insurance policy and catastrophic nature of the risks: weather and price changes.  This catastrophic risk is 
mitigated due to reinsurance from the Federal Crop Insurance Corporation.  This paper presents 
methodology to estimate ultimate losses and reserves for crop insurance. 
 
Keywords: Crop Insurance, Short-Tail, Catastrophe Reserves, Crop Hail 

              

1. INTRODUCTION 

Crop insurance is typically viewed as a short-tailed line of business as regards to reserving for 

ultimate liabilities.  Since crop insurance provides coverage for both yield and price risks for a 

growing season, the annual results will exhibit significant volatility due to the catastrophic nature of 

weather, as well as price changes.  The process for insuring farmers for the revenue risks associated 

with crops and livestock has been evolving, and the introduction of new policies has changed the 

calculation of the indemnities to the farmers in the event of loss.  This paper addresses the 

exposures associated with crop insurance and discusses methodologies to estimate ultimate loss 

ratios and unpaid claim liabilities for these exposures. 

The remainder of the paper proceeds as follows.  Section 2 will discuss the background of crop 

insurance from a historic point of view.  The underlying exposures such as crops, prices and 

insurance plans will then be discussed with the implications to forecasting ultimate losses.  This will 

be followed by a discussion of the public-private partnership and the Standard Reinsurance 

Agreement (SRA).  Finally, the accounting treatment of crop insurance is presented.  Section 3 will 

discuss the methodologies and issues of forecasting losses associated with crop insurance.  This 

section will include various pitfalls with traditional loss reserving methods that would apply to crop 

insurance. 

Section 4 will discuss the conclusions of this paper and future areas of additional research. 
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2. BACKGROUND AND DISCUSSION OF INSURANCE PLANS 

2.1 History 

Prior to 1938, attempts by commercial insurers to write crop insurance were not successful 

due to low participation and lack of credible data, as well as the catastrophic nature of the risk.  

The federal crop insurance program was established in 1938 with the passage of the Federal Crop 

Insurance Act.  The Federal Crop Insurance Corporation (FCIC) was created in 1938 to carry out 

the program.  Initially, the program was limited to major crops in the primary producing areas 

and was considered mostly experimental.  The Federal Crop Insurance Act of 1980 expanded the 

crop insurance program to many more regions of the country and encouraged more participation 

by offering a 30% premium subsidy. 

While the participation increased during the 1980s, a major drought in 1988 led to an ad hoc 

disaster assisstance program that was authorized to provide relief to farmers.  Additional disaster 

bills were passed in 1989, 1992, and 1993.  The concern that the availability of federal relief in the 

event of a disaster served to reduce participation in Federal Crop Insurance led to the enactment 

of  the Federal Crop Insurance Reform Act of 1994.  This Act made participation in Federal 

Crop Insurance mandatory for farmers in order to be eligible for deficiency payments under price 

support programs, certain loans and other federal farm assisstance programs.  A policy providing 

limited coverage was introduced called catastrophic (CAT) coverage, which was available for a 

nominal charge.  Subsidies for additional coverage were increased.  The Risk Management 

Agency (RMA) was created to administer FCIC programs and other non-insurance risk 

management and educational programs to support agriculture.  Policies were introduced that 

incorporated price risk in addition to yield risk. 

The Agricultural Risk Protection Act was passed in 2000, which increased insurance options 

and subsidies.  Participation in revenue policies substantially increased.  Partnerships between 

RMA and private entities were encouraged to develop new, innovative insurance products that 

covered additional crops, as well as livestock. 
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2.2 Crop Insurance Plans 
A crop insurance plan provides protection to farmers due to loss of yield or revenue from 

insured perils.  The majority of crop insurance plans is administered by RMA and is referred to as 

multi-peril crop insurance or MPCI.  Private insurance plans are typically referred to as “Crop-Hail” 

and provide additional or gap coverage to MPCI.  The following is a brief overview of many of the 

crop insurance plans.  There are significant additional details and regulations for each plan that are 

beyond the scope of this paper. 

2.2.1 Actual Production History 

Actual production history (APH) plans were the primary policies issued prior to 2000.  APH 

plans are the basis for most of the other policies so a detailed description of the APH plan will be 

discussed here and the differences of the other policies will be described later.  RMA publishes 

bulletins and handbooks that should be referred to for any detailed issue regarding MPCI. 

APH policies insure farmers against yield losses due to natural causes such as drought, excessive 

moisture, hail, wind, frost, insects, and disease.  The liability of the policy is calculated as: 

Acres Insured x Expected Yield x Coverage Level x Price x Share 

 

Expected yield1 is typically the latest ten-year average of yields.  Coverage level (or deductible) is 

selected by the farmer and can be between 50% and 75% in increments of 5%.2  Price is established 

by RMA before the beginning date of the policy based on expected harvest prices.  The farmer can 

also select between 55% and 100% of the price – usually 100% is selected.  Share is defined as the 

percentage of interest in the insured crop as an owner, operator or tenant at the time insurance 

attaches.3  An example follows: 

The following table displays a farmer’s historical yield per acre for a hypothetical crop for an 

insured unit:4 

Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7 Year 8 Year 9 Year 10 

60 55 64 68 25 72 71 15 78 72 

 

                                                           
1 The actual methodology to calculate the expected yield (or APH) is very detailed and is beyond the scope of this paper. 
2 The maximum coverage level can be greater than 75% in various states for various crops. 
3 USDA – RMA Final Agency Determinations “The Definition of ‘share’” under 7 C.F.R. &457.8-Definitions. 
4 RMA has established regulations how farmers can separate their crop fields into various units of insurance.  The details are 

beyond the scope of this paper. 
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The average yield (or approved yield) is 58.  Assuming the farmer selects a 75% coverage level, 

insures 100 acres5 with a 100% share and the price is $4.00, then the liability equals $17,400 or: 

Liability = Approved Yield x Price x Coverage Level x Acres x Share 

or 

$17,400 = 58 x $4.00 x 75% x 100 x 100% 

 

For an APH policy, the trigger of a claim is whether the actual yield6 is lower than the APH times 

the coverage level times the acres, or $4,350: 

Guaranteed Yield = Approved Yield x Acres x Coverage Level x Share 

or 

$4,350 = 58 x 100 x 75% x 100% 

 

Let’s assume the farmer’s yield is 2,250, then the indemnity would be calculated as: 

Indemnity = (Guaranteed Yield - Actual Yield) x Price 

or 

$8,400 = (4,350 – 2,250) x $4.00 

MPCI may provide for additional coverage such as replanting or prevented planting as well.  

Replant provisions cover the anticipated cost of replanting after an initial planting that doesn’t 

produce a stand due to excessive rain or drought.  Prevented planting allows coverage in an area 

where planting is not possible, typically due to wet fields.  The farmer could collect an indemnity 

much smaller than the overall liability and plant a new crop with a lower coverage amount. 

2.2.2 Revenue Plans 

Participation in revenue plans significantly increased after the passage of the Agricultural Risk 

Protection Act of 2000.  There are currently three plans that are similar to an APH plan, but include 

a provision for price risk as well.  These plans are Crop Revenue Coverage (CRC), Revenue 

Assurance (RA), and Income Protection (IP).  Unlike APH plans, where the same price that is used 

in determining liability is used in determining indemnity as well, the revenue plans use separate 

prices.  Thus, in addition to yield risk, the revenue product includes an element of price risk.  The 

spring price is established before planting and the fall  price is established near harvest time.  The 

basis for the prices is usually a monthly average of the crop’s daily settlement value traded on a 

                                                           
5 To avoid adverse selection, a farmer must insure all insurable acreage of a crop within a county. 
6 This is referred as “production to count.”  In the event the insured acreage is not harvested, there are loss adjustment standards 

published by RMA to measure the yield. 
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exchange.  For example, the December corn futures are traded on the Chicago Board of Trade 

(CBOT).  The following table displays some of these futures and dates for the fall  price7: 

 

Crop Insurance Plan Future Monthly Average 

Corn – 3/15 Close RA December November 

Corn – 3/15 Close CRC December October 

Soybeans – 3/15 Close CRC and RA November October 

Soybeans – 2/28 Close CRC September August 

 

Using the APH example from above, assume that the spring price is also $4.00, but the fall  price 

increases to $5.00.  The liability is the same as in the APH example, i.e., $17,400. 

Therefore the calculated revenue is the fall  price times the production to count or: 

$11,250 = 2,250 x $5.00 

and the indemnity is 

$6,150 = $17,400 - $11,250 

Beginning with crop year 2011, RMA has combined the APH, RA, CRC and IP policies into a 

“Combo” policy.  The insured would still have the option to exclude the price risk as the original 

APH plans do.  RMA combined these programs to eliminate overlapping policies and reduce 

administration costs.  The RA policy and the Combo policy include an option (for additional 

premium) where the guarantee (liability) uses the greater of the spring price or the fall  price. 

Using this option, in the example above, the guarantee (liability) would increase to $21,750, or: 

$21,750 = 58 x $5.00 x 75% x 100 x 100%. 

The calculated revenue would remain the same at $11,250, and the indemnity would increase to: 

$10,500 = $21,750 - $11,250. 

These options have been very popular, so special attention should be paid to years where the fall  

price exceeds the spring price. 

                                                           
7 Please note these dates can change.  Refer to RMA for the actual method to establish Spring and fall  prices. 
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2.2.3 Group Risk Plans 

There are currently two insurance plans that use a county index as the basis for determining 

indemnity: Group Risk Plan (GRP) and Group Risk Income Plan (GRIP).  Both plans use the 

county yield as determined by National Agricultural Statistics Service (NASS).  GRP payments are 

made when the county yield in the crop year falls below the expected county yield for that year.  The 

individual yield for the farmer is not a factor in this plan – other than any impact to the overall 

county yield.  The farmer can only insure as many acres as they plant in the county of the same crop.  

The coverage for GRP is similar to APH, where the farmer selects a coverage level (up to 90%) of 

the county average and payments are made when the county yield is lower than the coverage 

amount. 

GRIP includes price in this calculation, as well as yield, and bases indemnity on the expected 

county revenue versus the actual county revenue.  The prices are currently established similar to the 

CRC plans.  The insured can select, for additional premium, the Harvest Revenue Option, where the 

guarantee is the greater of the spring price or the fall  price.  The following table displays an example 

for these policies: 
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Insurance 

Plan 

(A) 

Expected 

Yield 

(B) 

Spring 

Price 

(C) 

Expected County 

Revenue = (A)x(B) 

HRO Max (B) (D) 

(D) 

Fall 

Price 

(E) 

Actual 

Yield 

(F) 

Actual Revenue = 

GRP = (B)x(E) 

GRIP = (D)x(E) 

(G) 

Indemnity at 90% 

CL = Max  

{(C ) x 90% - F,0} 

GRP 100 $4.00 $400 N/A 75 300 60 

GRIP 100 $4.00 $400 $3.00 75 225 135 

GRIP-HRO 100 $4.00 $500 $5.00 75 375 75 

 

Currently, the county yields and revenue are not released by RMA until April of the following 

year for corn and soybeans.  Since payments are not made until mid-April, establishing a reserve for 

this exposure is necessary for year-end reserve analyses.  A detailed methodology to establish these 

reserves is presented in a later section of this paper. 

2.2.4 Dollar Plans 

Dollar plans were introduced for crops that do not typically have an historical actual yield.  There 

are essentially three different dollar plans currently administered by RMA.  The first one is for some 

vegetable crops.  The second plan covers nurseries.  The third plan is a dollar tree plan, which 

insures perennial trees primarily in catastrophic prone areas. 

The vegetable dollar plans differ from APH plans in the following ways: 

 The historical farmer’s yield has no bearing on the guarantee.  The guarantee is set by 

county and is referred to as the maximum reference dollar amount. 

 There are a lot of input costs during the season to produce a mature crop.  Therefore, 

stage guarantees limit the amount of insurance coverage from planting to harvest.  For 

example, after 30 days, only 50% of coverage is available. 

 There is a significant cost of harvesting the crop, which is deducted from the overall acre 

guarantee.  This is called the allowable cost. 

 Causes of loss exclude disease or insect manifestation. 

Nursery insurance is a unique coverage that insures the inventory of plants at the nursery.  The 

plant inventory value is a measure of all insurable plants in the nursery.  A farmer can insure a 

percentage of this value.  Insured causes of loss include adverse weather conditions, fire, and 

wildlife. 

Fruit tree insurance places a certain dollar amount of insurance on each tree depending on the 

type and age of the tree.  Since many fruit trees are planted in hurricane-prone areas, wind is a major 
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risk for this coverage.  The insurance also covers excess moisture and freeze—but not insects, 

disease, or wildlife. 

2.2.5 Rainfall and Vegetation Index 

Rainfall Index (RI) and Vegetation Index (VI) are insurance plans introduced in 2007.  These 

plans insure pasture, rangeland, and forage, and are based on rainfall and vegetation indices.  A 

similar plan called Apiculture, subsequently introduced, insures honeybee colonies based on these 

indices.  A farmer can choose to insure acreage used for pasture, rangeland and forage, or honeybee 

colonies for two or three monthly intervals throughout a year. 

An indemnity is paid when the RI or VI is less than the coverage level selected.  RI uses data 

from the National Oceanic and Atmospheric Administration Climate Prediction Center (NOAA 

CPC).  The multiple data sets include weather, satellite, and radar data, and are interpolated and 

smoothed to 12 by 12 mile grids.  The insurance is based off the index within each grid and not 

individual farms or ranches actual rainfall. 

VI uses data from the U.S. Geological Survey Earth Resources Observation and Science data 

center called the Normalized Difference Vegetation Index (NDVI).  The NDVI measures 

vegetation greenness to estimate plant conditions in approximately 4.8 by 4.8 mile grids.  The 

healthier the plants in the grid, the higher the NDVI will be.  Similar to the RI, farmers’ own 

conditions are not considered in the indemnity calculation; only the index is considered. 

2.2.6 Livestock Insurance 

There are currently two livestock programs currently administered by RMA.  Livestock Gross 

Margin (LGM) provides protection against the gross margin, which is defined as the market value of 

livestock (or dairy) minus feed costs.  Livestock Risk Protection (LRP) provides protection against 

livestock price declines. 
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There are three coverages for LGM: Cattle, Dairy and Swine.  The gross margin is calculated as 

the difference between the market price of the livestock (or dairy) and the cost of producing the 

livestock (or dairy).  The insurance period is based on the time it takes to raise the livestock for 

market and the anticipated cost of feed during this time.  Famers can insurer all livestock on a 

monthly rolling basis.  For cattle and dairy, the insurance period is eleven months and for swine, it is 

six months.  This represents the expected time from the beginning of the insurance to the time of 

selling the livestock.  The prices are based on futures and adjusted for state and monthly specific 

basis.  The actual cost of feed or livestock price to the famer is not considered in the indemnity 

calculation. 

LRP is similar to LGM, but it excludes the price of feed in the indemnity calculation.  LRP 

includes lambs, but does not include dairy. 

These coverages are similar to GRIP in the sense that indemnity is based off price indices, rather 

than a farmer’s actual revenue loss.  However, private insurance can be used to insure the property 

(the actual livestock) and potential liability caused by their livestock. 

2.2.7 Adjusted Gross Revenue 

Adjusted Gross Revenue (AGR) insures farmers’ overall net income from operations based on 

filed tax returns.  The liability is calculated from previous years’ tax returns and is adjusted for any 

changes in the current operations compared to previous years.  Offsets are made for crops that are 

insured, since any indemnity would be considered revenue to the farmer.  These plans are more 

popular with famers with a variety of operations of which some crops are insurable under MPCI and 

other crops are not.  Examples include vegetable farmers in California or fruit growers in 

Washington.  These plans are generally complicated and can vary significantly by farmer.  The plans 

also pay out later in the following year so this exposure needs to be estimated at year-end for 

reserving purposes. 

2.2.8 Private Crop-Hail 

Private crop-hail insurance has been available in various forms since the early twentieth century.  

This coverage differs from a standard MPCI plan, in that it provides coverage on an acreage basis, 

rather than a unit basis.  In other words, a hail storm could damage part of a field and the crop-hail 

would provide a payment for the acres that are damaged, whereby MPCI would only pay out if the 

total unit was damaged enough to lower the yield below the coverage level.  Private crop-hail also 

pays out soon after the occurrence, whereas MPCI will wait until after harvest (unless there is a 

complete loss). 

Private plans also cover wind, transport, and fire damage, both when the crop is in the field and 
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after harvest.  MPCI only covers the crop while it is in the field.  A farmer can select to exclude hail 

coverage for the MPCI and receive a reduction in MPCI premium. Crop-hail may also provide 

replant coverage especially for crops that do not include this coverage in the MPCI policy. 

2.3 Crops and Insurance Dates 

This section discusses the important dates for MPCI and the implications of these dates.  Since 

the payout of indemnity is typically made quickly after harvest or a major loss that destroys the crop, 

an understanding of these dates is critical in estimating unpaid claim liabilities.  These dates should 

also be understood in conjunction with the SRA, since additional losses or gains may be primarily 

ceded to FCIC. 

An example of insurance dates is shown for corn in Iowa.8  These dates are similar for corn-belt 

crops other than wheat and other specialty crops.  In the southern states, the dates are typically a 

month or so earlier. 

Sales Closing Date – March 15: This is the final date that a farmer can sign up to insure crops. 

Earliest Planting Date – April 11: This is the first date that a farmer can plant and the crop will be 

insurable.  These dates are based on the climate and may vary by crop. 

Final Planting Date – May 31: This is the latest a farmer can plant and still receive all of the 

coverage.  The coverage decreases each day past the final planting date up to a certain date, when no 

insurance is provided.  This is based on the climate and the days to maturity the crop needs before 

harvest. 

Acreage Reporting Date – June 30: At the time of the Sales Closing Date, the farmer may not 

know what crops will actually be planted and on which fields when they initially sign up to insure 

crops.  This can be based on many issues, including current weather and prices, the availability of 

land, the cost of seed/fuel/etc.  Thus, the acreage reporting date is somewhat later in the year, when 

all crops have likely been planted.  The famer must report what they actually planted (acres and 

crops) by this date. 

Premium Billing Date – October 1: This is the date the farmer is billed for the unsubsidized 

MPCI premium.  While outside the scope of this paper, the cash flows for MPCI differ from 

traditional property and casualty insurance.  An escrow fund is established between the Approved 

Insurance Provider (AIP) and FCIC, which is used to pay premium, losses, A&O subsidy and the 

net underwriting gain determined by the SRA.9 

                                                           
8 2009 Commodity Insurance Fact Sheet – USDA RMA 
9 Historical Rate of Return Analysis – Milliman, Inc. for USDA - RMA. 
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End of Insurance – December 10: According to the Iowa Fact Sheet: “Insurance coverage will 

end at the earliest of: (1) Total destruction of crop, (2) harvest of the unit, (3) final adjustment of a 

loss, (4) December 10, 2009 or, (5) abandonment of the crop.”10 

These dates are important when establishing ultimate loss ratios for each state/crop.  It is also 

important to note that RMA may issue directives that modify these dates due to unusual 

circumstances. 

2.4 Standard Reinsurance Agreement 

The SRA is an agreement between the AIP and FCIC, whereby the AIP provides insurance to 

farmers and the FCIC reinsures the AIP.  The FCIC also pays the AIP a percentage of premiums 

called A&O subsidy to pay for the administrative and operating expenses of the company.  The 

reinsurance terms of the SRA are calculated on an annual basis for all crops and states.  Within thirty 

days of writing the policy, the AIP assigns each policy to one of the SRA funds11 for each state.  

Each fund has a different reinsurance structure in place, where some funds have little risk/reward 

and other funds have significant risk and reward.  This is critical when estimating loss ratios (or 

underwriting returns) net of the SRA.  There is a separate SRA for livestock insurance.  The 

discussions that follow are regarding the MPCI SRA.  

The SRA defines the net underwriting gain/loss as the difference between the retained net book 

premium and the retained ultimate losses.  The net book premium excludes A&O subsidy, 

cancellations, adjustments and administrative fees.  The net ultimate loss is defined as any claim paid 

by the AIP less any recovery or salvage. 

                                                           
10 Iowa Fact Sheet. 
11 There is a limit to the amount an AIP can place in the Assigned Risk fund by state.  The excess amount automatically gets “spilled 

over” to the Developmental Fund.  The AIP may also cede quota share an amount for each fund/state. 
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The following table displays each fund and the various retentions of underwriting loss/gain from the 

AIP’s perspective for the 2010 SRA: 

 
DEVELOPMENTAL COMMERCIAL Gross Loss 

Ratio 

Assigned 

Risk CAT Revenue Other CAT Revenue Other 

0% 2.0% 4.0% 6.0% 6.0% 8.0% 11.0% 11.0% 

50% 9.0% 30.0% 50.0% 50.0% 50.0% 70.0% 70.0% 

65% 15.0% 45.0% 60.0% 60.0% 75.0% 94.0% 94.0% 

100% 5.0% 25.0% 30.0% 25.0% 50.0% 57.0% 50.0% 

160% 4.0% 20.0% 22.5% 20.0% 40.0% 43.0% 40.0% 

220% 2.0% 11.0% 11.0% 11.0% 17.0% 17.0% 17.0% 

500% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

 

Since the retention of underwriting gain/loss is calculated on an individual state/fund basis, there 

may be a significant difference between the gross loss ratio and net loss ratio.  Due to the sharing of 

loss/profit by state and fund, it is important to model ultimate losses by state and fund.  The 

following scenarios are shown to highlight the possible differences from the gross loss ratio to the 

net loss ratio.  The following scenarios are provided where the gross loss ratio is the same overall, 

but differences in state/fund can significantly change the net loss ratio. 

 
SCENARIO 1 SCENARIO 2 SCENARIO 3  

State 

 

Gross 

Premium 

Commercial 

Fund 

Allocation 

Percentage 

Gross Loss 

Ratio 

Net Loss 

Ratio 

Gross Loss 

Ratio 

Net Loss 

Ratio 

Gross Loss 

Ratio 

Net Loss 

Ratio 

IL 150 75% 100.0% 100.0% 13.3% 55.7% 200.0% 147.8% 

ND 100 25% 100.0% 100.0% 20.0% 65.6% 20.0% 65.6% 

TX 100 25% 100.0% 100.0% 340.0% 157.9% 10.0% 64.7% 

WI 50 50% 100.0% 100.0% 40.0% 61.8% 140.0% 119.3% 

Total 400 47% 100.0% 100.0% 100.0% 74.6% 100.0% 117.3% 
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These examples display why it is important to estimate loss ratios on a state/fund basis, rather 

than an overall gross and net loss ratio basis. 

Beginning for the  2011 crop year, a new SRA was being negotiated between the FCIC and the 

AIPs.  The major changes are: 

 The number of funds would be collapsed into two funds: Assigned Risk Fund and 

Commercial Fund. 

 The Commercial Fund would have three different groups (Group 1, 2, and 3) with 

different retention percentages based on the historical loss experience of the state. 

 AIPs would be encouraged to write business in underserved states (Group 3). 

 Similar to the prior SRA, there is a limit to the amount an AIP can place in the Assigned 

Risk Fund. 

The current parameters of the SRA for the applicable crop year should always be reviewed when 

performing an analysis. 

2.5 Accounting Issues  

Historically, the accounting for MPCI has been treated differently than most property and 

casualty lines of business.  When the NAIC moved towards consistent reporting requirements 

during codification, they attempted to make MPCI act more like a typical property line of business.  

As discussed previously, there is an escrow between the AIP and FCIC where premium and losses 

are placed.  While accounting issues are fluid, MPCI is now treated more like typical property and 

casualty business in reporting to NAIC.  There are several considerations that are unique to MPCI: 

 The premium is typically earned from sales closing date to the end of the insurance 

period (or December 31).  This allows for little unearned premium reserves at year-end.  

The unearned premium at year-end is associated with winter wheat and other crops12 

that extend past the end of the year.  The winter wheat coverage is placed in the 

forthcoming SRA year, so the losses associated with this are not in the current year’s 

SRA. 

 The NAIC instructions ask that a company describe its method to earn premium throughout 

the year on the Notes to the Financial Statement.  This is asked since the exposure to loss is 

not uniform throughout the policy period.  A review of major companies’ Notes indicate 

that most companies use a uniform earning pattern due to the difficulty in assessing the 

exposures over the course of a year. 
                                                           
12 Usually associated with citrus fruit, trees, nursery, etc. 
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 The NAIC Statement of Statutory Accounting Principles (SSAP) discusses how to book the 

amounts associated with MPCI.  If the company is at an underwriting gain position, the 

appropriate amount should be recognized as a write-in asset for a receivable from FCIC.  On 

the other hand, if the company is at a loss position, the company should recognize a write-in 

liability. 

 The SSAP states that the A&O subsidy associated with catastrophic coverage should be 

recorded as a reduction on loss expenses, whereas the A&O subsidy for other coverages 

should be recorded as a reduction of underwriting expenses.13 

 

The SSAP provides an example of how to calculate the ceded premium and losses after 

application of the SRA, which is shown below.14 

                                                           
13 The author is unclear as to the basis for the difference in recording A&O subsidy, since the subsidy should be used to pay 

commissions, general expenses and loss adjusting expenses for all types of policies. 
14 For the 2010 SRA, there is an overall 5% quota-share of net underwriting gain (or loss) in addition to the amounts in the table. 
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FCIC  

Fund 

(1) 

Retention 

% 

(2) 

Gross 

Written  

Premium 

(3) 

= (1) x (2) 

Net 

Retained 

Premium 

(4) 

Gross  

Ultimate 

Losses 

(5) 

= (1) x (4) 

Net Retained 

Losses 

(6) 

= (5) / (3) 

Retained Loss 

Ratio 

 

Assigned Risk 20% $20,000 $4,000 $40,000 $8,000 200.0% 

Dev-Other 35% 10,000 3,500 16,000 5,600 160.0 

Dev-Revenue 35% 5,000 1,750 7,000 2,450 140.0 

Dev-CAT 35% 5,000 1,750 4,000 1,400 80.0 

Com-Other 100% 100,000 100,000 80,000 80,000 80.0 

Com-Revenue 100% 20,000 20,000 18,000 18,000 90.0 

Com-CAT 100% 40,000 40,000 22,000 22,000 55.0 

Total  $200,000 $171,000 $187,000 $137,450 80.4% 

 

 
 

FCIC  

Fund 

(7) 

SRA 

Provisions 

Underwriting

Gain/(Loss) 

(8) 

= (3) - (5) - (7) 

Stop-Loss 

Ceded 

Premium 

(9) 

= (3) - (5) - (7) 

Stop-Loss 

Ceded 

Loss 

(10) 

= (3) - (8) 

Retained 

Premium 

(11) 

= (5) - (9) 

Retained 

Loss 

(12) 

= (11) / (10) 

Retained Loss 

Ratio 

 

Assigned Risk $(184) --- $3,816 $4,000 $4,184 104.6% 

Dev-Other (525) --- 1,575 3,500 4,025 115.0 

Dev-Revenue (210) --- 490 1,750 1,960 112.0 

Dev-CAT 158 193 --- 1,558 1,400 89.9 

Com-Other 18,000 1,200 --- 98,000 80,000 81.0 

Com-Revenue 1,880 120 --- 19,800 18,000 90.5 

Com-CAT 12,500 5,500 --- 34,500 22,000 63.8 

Total $32,419 $7,013 $5,881 $163,988 $131,569 80.2% 

 

These unique characteristics regarding statutory accounting should be noted when providing 

unpaid claim liability estimates – especially to make sure the entire earned premium is accounted for 

in the unpaid claim liability estimates. 
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3. FORECASTING ULTIMATE LOSSES 

Forecasting loss ratios for crop insurance are dependent on the available information at the time 

of the forecast.  During the year, more information is available about the success of the current 

year’s crops, as well as the associated prices.  Using this information in conjunction with prior year’s 

loss ratios can assist in forecasting loss ratios during the year.  Once harvest is completed and claims 

have been filed, more traditional actuarial methods can be used. 

Due to the characteristics of the SRA, one should estimate the loss ratios on a reinsurance year 

basis so the effect of the SRA can be used to calculate ceded losses.  The loss ratios should be 

projected on a state/fund basis, as well.  The following describes various methods to establish 

estimated ultimate loss ratios for MPCI. 

The loss ratio that is being estimated should be consistent with the definition of premium and 

indemnity provided by the SRA.  The target loss ratio currently mandated by RMA is 100%, since 

expenses are covered by the A&O subsidy.  Therefore, the overall rates are set to the expected long-

term losses.  Defense and Cost and Containment Expenses (DCCE) are minimal or zero for crop 

insurance.  Adjusting and Other Expenses (AOE) is the cost to handle crop insurance claims and is 

discussed later. 

3.1 MPCI Portfolio Review 

The first step in the process should be determining the exposures (liabilities and premiums) by 

state, crop, insurance plan, and SRA fund.  The following table and Exhibit 1 display an example 

portfolio of MPCI premium: 

 
 

State 

 

Crop 

Insurance  

Plan 

Assigned  

Risk 

Commercial  

Fund 

Developmental 

Fund 

IA Corn CRC 50 200 0 

IL Corn GRIP 50 50 50 

IA Corn APH 20 100 0 

IA Hybrid Corn Seed APH 10 0 0 

TX Cotton SE APH 150 50 0 

TX Cotton AO APH 50 150 0 

TX Peanuts APH 25 0 25 

This MPCI portfolio will be used in the remainder of this paper to determine the overall gross 

and net loss ratios for a reinsurance year.  In practice, a MPCI portfolio will include many more 
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states and crops.  Ultimate loss ratios will be estimated for each significant state/crop/insurance 

plan so that it can be fed through the SRA terms and a net underwriting gain (or loss) can be 

calculated. 

3.2.1 Using Forecasted Yields to Estimate APH Loss Ratios 

Because losses will be based on lower than expected yields, an estimate of the ultimate loss ratio 

can be made by comparing the forecasted yields for the current year to the actual loss ratios and 

yields of previous years.  Forecasted yields for major crops are made available during the year by 

several institutions.  This paper will discuss the yield forecasting performed by NASS, but other 

forecasted yields could be used as well. 

NASS provides crop production estimates for two components: acres to be harvested and yield 

per acre.  Corn and soybean farmers are surveyed in June regarding the planted acres, and crop 

production estimates are made each month from August through November.  NASS uses two 

survey methods to estimate yields.15 Agricultural Yield Survey and Objective Yield Survey.  

Estimates are made for all major crops in major states.  Several of the major producing states are 

further split into about 10 districts each. 

An example of this method will be shown using corn data for the State of Iowa.  In practice, 

Iowa may be split into the NASS districts, since different regions may experience better/worse 

weather during the year.  The first step is to obtain the historical Iowa yields from NASS and the 

historical loss ratios from RMA.  A company with credible data may wish to use their own 

experience, rather than industry data from RMA.  Exhibit 2 displays these values for the APH plan. 

The first step is to define a relationship of yield and loss ratio using the historical values.  The 

relationship may not be linear, since lower yields will tend to exceed the deductible and increase the 

losses at a faster rate.  Therefore, quadratic or exponential formulas may be used, a formula that fit 

well was: 

Expected loss ratio = a*1/(y^b) + If (y<1, c(1-y), 0) 

 

Where: 

a,b,c = regression coefficients – solved by minimizing the squared error 

y = yield ratio = current yield / (previous 10-year yield average) 

 

                                                           
15 The detail of NASS methodology can be found in “The Yield Forecasting Program of NASS” issued by the Statistical Methods 
Branch of NASS. 
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It should be noted that a 10-year historical average is used as the “expected” yield in the current 

year.  Due to improvements in agricultural practices, as well as the development of crops that are 

more resistant to adverse weather (particularly drought), crop yields have been increasing.  Due to 

these increasing yield trends, the expected yield in the current year is typically higher than the ten-

year average.  We can adjust historical yields to “on-level” yields by dividing the current year’s yield 

ratio by the historical yield trend.  These results are displayed on Exhibit 3.  As shown (by the 

squared error), the adjustment provides a better fit of the data for this example. 

An additional factor was added when yields are significantly low (and loss ratios high) to increase 

the loss ratios.  This is due to both the fact that more policies have claims when yields are lower and 

the distribution of yields are more diverse in a poor yield year than in a good year.  For example, 

assume that the distribution around the average yield for all corn crops in a county is normally 

distributed16 with a mean of one and standard deviation of 0.50.  The loss cost for a 65% coverage 

level APH policy would be 0.0968 per dollar of liability.17 

The loss cost is calculated using data from many years which have both high yields and low 

yields.  There may also be a difference in the distribution around the mean in a given year; so when 

yields are high, the distribution around the mean in a given year is low, and when the yields are low, 

the distribution around the mean in that year is higher.  Using the example above, we can compare 

different scenarios of yields and the deviation around the mean for a 65% coverage level: 
 

Scenario 
Average 

Yield 

Variation 

Around Average 

Loss Cost 

Using Scenario Mean 
and Variation 

Loss Ratio = 

Loss Cost / 0.0968 

A 105% 50% 0.0808 83.4% 

B 105% 30% 0.0147 15.2% 

C 80% 50% 0.1817 187.6% 

D 80% 80% 0.2270 286.0% 

 

A review of loss ratios and yield departures indicate that Scenarios B and D are more prevalent 

than A and C, and this indicates that the yields are more dispersed when yields are low than when 

they are high. 

In the yield and loss ratio regression, a weight is also used in calculating the squared error, which 

is minimized.  This may be used on outlier years or if major changes have been made to the program 

over the historical experience. 

                                                           
16 Several studies have been performed to test which statistical distribution best resembles yields.  Most conclude that a single 

distribution does not work well for all crops or for some crops in general.  Therefore, most analyses use an empirical fitted 
formula to calculate rates and coverage level relativities. 

17 For ease of example, the yield was set to zero where it is negative. 
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Using the model described above, we project a 2009 loss ratio of 18%. 

A similar approach is used on Exhibit 4 and 5 for Texas cotton.  Texas is split into two 

territories, since there are two distinct growing areas for cotton in Texas: the southeastern coastal 

bend and the panhandle (or All Other).  The model produces loss ratios of: 

Southeast  889% 

All Other  71% 

It should be noted that in years of abnormally low yields, the resulting loss ratio should be 

compared to the overall liability so that losses do not exceed the liability. 

3.2.2 Using Forecasted Yields and Prices to Estimate Revenue Plan Loss Ratios 

Revenue plans add an additional parameter in the indemnity calculation; namely, the difference 

between the spring price and the Harvest Price.  There may be several different formulas that can 

estimate the loss ratio using both the yield and the price component.  One method can be to 

estimate the APH loss ratio and then add a parameter for the revenue risk.  However, the popularity 

of APH plans for corn and soybeans has decreased substantially with the introduction of revenue 

plans, which reduces the credibility of APH plans loss ratios in recent years.  Therefore, in this 

paper, we show a formula with the combination of yield and price changes. 

We can use the same yield departures as in the APH and add the percentage change from the 

spring price to the fall price, as shown in the following table: 

Expected loss ratio = a*1/((y*p)^b) + If (y<1, c*(1-y), 0) 

 

Where: 

a,b,c = regression coefficients – solved by minimizing the squared error 

y = yield ratio = current yield / (previous ten-year yield average) 

p = price change = (fall price - spring price) / spring price 

 

For most crops, the fall price is the average daily settlement value during October.  Prior to 

October, these prices can be estimated using the current futures price or other methods. 

An example of a loss ratio estimate for revenue coverage for Iowa corn is shown on Exhibit 6.  

The price changes are displayed on Exhibit 7.  The method results in projected loss ratios of 17% 

for CRC and 13% for RA/IP. 

The major difference in the revenue plans is that the price change affects all policies equally, 

while, as discussed before, the yield distributions vary by whether it was a high- or low-yield year.  A 

low-price and low-yield year would have a multiplicative effect on the losses, and the opposite is also 
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true.  The model may need to reflect the harvest price revenue option where the guarantee is the 

higher of the spring and fall price. 

In summary, the loss ratios can be estimated during the year as the forecasted yields and prices 

become available.  Once the harvest is completed and claims are reported, more traditional methods 

may be added as well. 

3.3 Paid to Case Ratios 

At the end of the year, when most crops have been harvested and claims have been reported, a 

more traditional actuarial method may be used.  Using the relationship of prior years’ ultimate paid 

losses compared to the case reserves can be used as an indication.  Crops or states can be grouped 

or separated to gain homogeneous groups of claims. 

Attention should be paid to the causes of loss from the current year compared to the prior years.  

For example, are the remaining open claims at a similar point in closing as they were at the same 

point in time in prior years?  If fall weather was poor and harvest was delayed, there may be a delay 

in the payout process.  Agents may report claims differently; some may report a claim for all 

policyholders in the case of poor weather or prices.  Discussions with claims personnel are also 

important to understand how case reserves are originally set and how they are handled.  Claims 

management may also know certain intricacies about states or crops that are not obvious by looking 

at the bulk case reserves. 

3.4 Estimating GRIP and GRP Liabilities 

GRIP and GRP policies are unique in that they do not use the farmer’s actual yield, but rather, a 

county yield index as the basis for payment.  GRIP also includes price changes.  Losses will occur 

when county revenue per acre is less than the trigger revenue.  Because county revenue is based on 

both the county average yield and the harvest price, the year-end loss ratio estimate will require 

estimates of the county average yield.  The harvest price should be known at the end of October or 

November for most crops with GRIP. 

The difficulty in estimating loss ratios for GRIP policies at year-end results from the difficulty in 

estimating the county yield.  Publicly available data from NASS estimates yields by state and by 

districts for the major agricultural states.  These crop-production reports are released for each crop 

year beginning in August for corn and soybeans. 

Because yields do not increase or decrease by uniform amounts by county within a district, an 

additional review is necessary to determine the difference between expected county yields and actual 

yields within a district for each available year.  The table below presents the data for the 2005 year in 

Illinois District 10: 
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District 10 

County 

 
Acres 

GRIP Expected 
Yield  

(bushels  
per acre) 

GRIP Final 
Yield  

(bushels  
Per acre) 

Final  
Yield 

Deviation 
(%) 

GRIP 
Expected 
Revenue  

($) 

GRIP 
Final 

Revenue 
($) 

Final 
Revenue 
Deviation 

(%) 

Bureau 288,000 158.6 134.9 (14.9) 377 260 (31.0) 

Carroll 139,000 161.9 160.1 (1.1) 385 309 (19.8) 
Henry 236,000 152.8 125.0 (18.2) 364 241 (33.7) 

Jo Daviess 85,000 142.8 152.0 6.4 340 293 (13.7) 
Lee 259,000 158.4 140.7 (11.2) 357 272 (28.0) 

Mercer 138,000 150.1 153.9 2.5 369 297 (16.9) 

Ogle 221,000 155.2 135.7 (12.6) 385 262 (29.1) 
Putnam 42,000 161.8 136.0 (15.9) 373 262 (31.8) 

Rock Island 74,000 156.7 138.9 (11.4) 346 268 (28.1) 
Stephenson 158,000 145.4 139.4 (4.1) 360 269 (22.3) 
Whiteside 229,000 151.3 124.5 (17.7) 322 240 (33.3) 

Winnebago 94,000 135.2 125.7 (7.0) 365 243 (24.6) 
Total 1,963,000 153.4 137.3 (10.5) 365 265 (27.4) 

 

The estimated Illinois farm yield for District 10 was 140 bushels per acre, which was released in 

November 14, 2005, in the Illinois Farm Report.  It should be noted that the published estimated 

yield is based on harvested acres, whereas the final NASS yield used in calculating the county 

revenue uses planted acres.  NASS does publish forecasted planted and harvest acres so an 

adjustment can be made.18  According to the 2005 Farm Report, there were 1,931,000 acres planted 

and 1,903,000 acres harvested for grain in Illinois District 10; therefore, the yield per planted acre 

(comparable with the GRP/GRIP yields) would be 137.3.  Larger variations between the planted 

and harvested yields will occur when yields are low, due to total losses caused by floods or droughts.  

The spring price declined from $2.38 (expected) to $1.93 (final - harvest), or by 18.9%.  Therefore, 

the combination of yield and price decline led to significant indemnities in 2005. 

The loss ratios for GRIP policies would be underestimated if one only considered the difference 

in district or statewide yields, because the variability in county yields is greater due to a smaller 

sample and local weather events.  In the example above, on a district-wide basis, a 70% coverage-

level policy would not incur an indemnity since the loss is 27.4%.  Due to variability within county 

yields, however, indemnities would incur at a 70% coverage level for four of the counties in the 

district. 

The following are two methods for calculating potential losses at year-end.  The first is to 

calculate the difference between the expected district yield and the predicted district yield.  This 

amount can be used as the difference in the county yields and includes a provision for variability by 

                                                           
18 There are also several counties which the farmer can choose planted or harvested yields.  These counties have a lot of corn which 

is harvested for silage. 
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county—for example, reduce all yields by 5% and estimate the losses.  If more information is 

available by county from field adjustors or from the other insurance plans, these could also be used. 

The following example shows this methodology for Illinois District 10 during 2007.  The price 

fell from $4.06 per bushel to $3.58, or 11.8%, but the yields were much higher than expected.  The 

Illinois Farm Report, released November 13, 2007, estimated a planted yield of 182 bushels per acre 

for the district.  The table below shows the calculation without any variation in the county yield 

compared to the district’s difference. 
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District 10 
County 

 
Planted 
Acres 

(A) 
GRIP Expected 

Yield  
(bushels  
per acre) 

(B) 
GRIP 

Forecasted 
 Yield (bushels 

per acre) 

(C) = 
(B)/(A)-1 

Final  
Yield 

Deviation 
(%) 

(D) = 
(A)*$4.06 

GRIP 
Expected 
Revenue  

($) 

(E) =  
(B)*$3.58 

GRIP  
Final 

Revenue  
($) 

(F)= 
(E)/(D)-1 

Final 
Revenue 
Deviation  

(%) 

Bureau 311,000 166 191 14.8% $674 $682 1.2% 

Carroll 155,000 170 195 14.8 689 698 1.2 

Henry 257,000 161 185 14.8 654 662 1.2 

Jo Daviess 98,000 148 170 14.8 603 610 1.2 

Lee 282,000 162 185 14.8 656 664 1.2 

Mercer 156,000 164 188 14.8 667 675 1.2 

Ogle 244,000 154 177 14.8 626 634 1.2 

Putnam 46,000 166 191 14.8 674 683 1.2 

Rock Island 79,000 166 191 14.8 674 683 1.2 

Stephenson 180,000 152 174 14.8 616 624 1.2 

Whiteside 253,000 151 173 14.8 611 619 1.2 

Winnebago 102,000 141 162 14.8 572 579 1.2 

Total 2,163,000 159 182 14.8% $644 $652 1.2% 

 

The table above assumed that the deviation from expected yields was uniform for each 

county.  The table below shows what estimated final revenues would be for each county based on 

the yield deviation each county experienced for the 2005 year and applied to 2007: 

 
 

District 10 
County 

 
Planted 
Acres 

(A) 
GRIP Expected 

Yield  
(bushels  
per acre) 

(B) 
GRIP 

Forecasted 
 Yield (bushels 

per acre) 

(C) = 
(B)/(A)-1 

Final  
Yield 

Deviation 
(%) 

(D) = 
(A)*$4.06 

GRIP 
Expected 
Revenue  

($) 

(E) =  
(B)*$3.58 

GRIP  
Final 

Revenue  
($) 

(F)= 
(E)/(D)-1 

Final 
Revenue 
Deviation 

(%) 

Bureau 311,000 166 181 9.1% $674 $648 (3.8)% 
Carroll 155,000 170 215 26.8 689 771 11.8 

Henry 257,000 161 169 4.9 654 605 (7.5) 

Jo Daviess 98,000 148 203 36.5 603 725 20.4 

Lee 282,000 162 184 13.9 656 659 0.5 

Mercer 156,000 164 216 31.5 667 773 15.9 

Ogle 244,000 154 173 12.1 626 619 (1.1) 

Putnam 46,000 166 179 7.8 674 641 (4.9) 

Rock Island 79,000 166 189 13.7 674 676 0.2 

Stephenson 180,000 152 187 23.0 616 668 8.4 

Whiteside 253,000 151 159 5.5 611 569 (6.9) 

Winnebago 102,000 141 168 19.2 572 602 5.1 

Total 2,163,000 159 182 14.8% $644 $652 1.2% 

The second method is to set up a Monte Carlo simulation for actual county yields based on the 

difference between the expected district yields and the predicted district yields. 

A simulation model could vary the GRIP forecasted yields by county based on the historical 

difference between the yields by county.  The following graph shows the results of 100,000 trials for 
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the district based on the 2007 estimated yields for a hypothetical portfolio of GRIP policies.  A 

normal distribution with a standard deviation of 12.5% was used to model the difference from the 

forecasted yield as a district as a whole compared to each individual county yield. 

 

 

 

While the graph above displays the results for only Illinois District 10, the simulation could 

capture losses for each state or crop with significant GRIP (and GRP) liabilities.  The results of this 

model could then be fed into the overall SRA model to estimate the net underwriting gain (or loss) 

for the reinsurance year.  
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3.5 Minor State, Crops, and Plans 

Because of credibility considerations, the methods described above are only suitable for the 

largest states and crops in the MPCI portfolio.  The remaining liabilities need to be accounted for in 

estimating the overall loss ratios by state and SRA fund.  There are several methods to estimate the 

losses for minor states and crops.  These crops are typically minor field crops, fruits and vegetables 

for which NASS does not provide a forecasted yield. 

As a first step, we can calculate the historical loss ratios for these crops and a comparative crop 

using the RMA data.  Using the comparative crop’s loss ratio for the current year, we can adjust the 

historical loss ratio to the current year.  This is shown in the table below: 

 
(1) 

State /Crop / Plan 

(2) 

Historical  

Loss Ratio 

(3) 

Comparative Historical 

Loss Ratio1 

(4)  

2009 

Comparative Loss Ratio2 

(5) 

2009 Estimated 

Loss Ratio3 

IA, Hybrid Corn Seed, APH 51% 54% 18% 17% 

TX, Peanuts 50% 93% 71% 38% 

1  Iowa Corn APH and Texas Cotton All Other Counties APH 

2  From previous analysis. 

3  = (2)/(3) x (4) 

 

For hurricane-prone areas, we may adjust the historical loss ratios, based on the time of the year 

and whether a hurricane occurred or not, using a Bornhuetter-Ferguson approach.  At year-end, it 

may be possible to use a paid to case method to estimate these losses. 

3.6 Timeline of Indications 

The process for estimating ultimate loss ratios for crop insurance is similar to other property lines 

of business where one starts with an expected loss ratio and changes the expectation due to events 

during the year. 

The following table displays a possible timeline for various crops and the different actuarial 

methods that may be used.  The timelines are shown for a given reinsurance year (consistent with 

the SRA). 
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 Oct - April May - July Aug - Nov Dec - March April - June 

Winter Wheat 
Expected 

Loss Ratio 
Paid-to-Case Paid-to-Case Paid-to-Case Paid-to-Case 

Traditional 

Row Crops 
N/A 

Expected  

Loss Ratio 

Forecasted  

Loss Ratio 

Forecasted LR 

Paid-to-Case 

Expected 

Paid Method 

Paid-to-Case 

Citrus N/A 
Expected  

Loss Ratio 

Expected 

Paid Method 

Expected 

Paid Method 
Paid-to-Case 

GRP/GRIP N/A 
Expected  

Loss Ratio 

Forecasted  

Loss Ratio 

Forecasted Loss 

Ratio 
Actual Results 

 

3.7 Summarizing data into the SRA 

After the ultimate loss ratios are estimated, they can be summarized into state/fund to apply the 

reinsurance of the SRA.  As shown on Exhibit 8, the overall gross loss ratio is 207%.  This gross loss 

ratio needs to be applied to the SRA to produce a net underwriting gain.  In this example, the gross 

loss ratio of 207% equates to a 9.2% gain after the SRA parameters are applied.  This is because 

most of the losses occurred in one state (Texas) and the majority of these policies were placed in the 

assigned risk fund. 

3.8 Crop-Hail 

The major difference in most crop-hail plans compared to MPCI is the occurrence of a claim is 

on a certain date and payment is made shortly afterwards.  Therefore, more traditional actuarial 

methods may be appropriate.  At the end of the year, most crop-hail claims should be reported and 

many of these are settled.  Therefore, more traditional actuarial methods may be appropriate.  

During the year, an expected paid (or reported) method may be used with an expected loss ratio and 

a payment (or reported) pattern.  States could be grouped where the hail exposure is similar.  For 

example, more hail storms occur earlier in the year the further south the area is. 

3.9 Reserve Ranges 

There are many ways to measure reasonable reserve ranges in property and casualty insurance.  A 

key issue with MPCI is the SRA, which limits the net underwriting gain or loss by state and SRA 

fund.  For example, a state with a very high or low loss ratio may not significantly change the overall 

underwriting gain or loss by using an even higher or lower loss ratio. 
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A few examples to produce reserve ranges are discussed here.  The regression methods using 

forecasted yields would produce a standard error for each regression which can be used in selecting 

the ranges.  The loss ratios for nearby states are most likely not independent and this should be 

considered in the range.  The GRIP/GRP simulation can create distributions, but the overall range 

would need to account for the dependency between these policies and other policies.  It would also 

depend on the time of year the range is calculated. 

3.10 Issues with Traditional Actuarial Methods 

There are several reasons why traditional actuarial methods may not be appropriate for crop 

insurance.  The structure of the SRA, which limits underwriting gain or loss by state and fund, 

requires the projection of losses by state/fund.  As shown previously, net losses can be significantly 

different than gross losses due to the distribution of losses (and placement of policies) between 

funds.  Unique characteristics of some policies such as GRIP make loss development type methods 

inappropriate.  The payout of claims throughout the year is not consistent between years.  For 

example, a flood in the spring may bring many early payments, but the harvest may turn out well and 

have few losses.  The change in price, which is a significant function of many policies, is not known 

until the end of October for most crops.  The harvesting of crops may be delayed in the fall, which 

may delay the reporting of claims and the settlement of these claims. 

These and other reasons should be accounted for when making actuarial projections.  The time 

of the year when the evaluation is taking place should be a key consideration in the appropriate 

actuarial methods to use. 

3.11 Adjusting and Other Expenses 

Adjusting and Other Expense (AOE) liabilities may also need to be estimated for crop insurance.  

Both MPCI and crop-hail are similar to property insurance, where the more claims there are, the 

more adjusting costs will be.  Therefore, traditional actuarial methods may be used to estimate AOE 

liabilities.  Since some of the policies are based on indices (GRIP, RI, VI, livestock, etc.) where 

considerable less claim handling involved, an adjustment to an overall paid-to-paid type approach 

may be warranted for these policies. 
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3.12 Areas for Further Research 

While this paper presents several methodologies to estimate ultimate loss ratios, there are other 

methods that could be used.  A “ground-up” method where the indemnity of all policies would be 

calculated with an expected yield compared to approved yields.  These yields could vary based on 

yield distributions.  In other words, instead of all yields being 10% below approved yields, one could 

make a distribution of yield deviations from the approved yield.  As discussed previously, when 

yields are low, the distribution tends to be greater.  Prices would also have to be estimated as well. 

4. CONCLUSIONS 

Crop insurance is unique to the property/casualty insurance industry.  The short-tailed 

catastrophic exposure and the terms of the SRA need to be recognized when estimating ultimate 

loss ratios and unpaid claim liabilities.  This paper outlines several methods of estimating the 

ultimate loss ratios for different policy types.  New and unique insurance products are being 

introduced and will be introduced over time.  Changes in farming practices will impact future yields 

and which crops are grown.  The process for estimating ultimate loss ratios should be adaptable to 

the current policies and conditions. 

 



Crop Insurance Reserving 

Casualty Actuarial Society E-Forum, Fall 2010 29 

Acknowledgment 
 
The author acknowledges Gary Josephson and Richard Lord for their assistance with the paper.  Any errors are the 
responsibility of the author. 

5. REFERENCES 

Appel, D., and P. Borba, “Historical Rate of Return Analysis”, 2009, United States Department of Agriculture, Risk 
Management Agency. 

National Association of Insurance Commissioners, Accounting Practices and Procedures Manual, As of March 2008. 
The Statistical Methods Branch, United States Department of Agriculture, National Agricultural Statistics Service, “The 

Yield Forecasting Program of NASS,” SMB Staff Report Number SMB06-01, May 2006. 
United States Department of Agriculture, Risk Management Agency; http://www.rma.usda.gov/ 
 
 
Abbreviations and Notations 
 
A&O Subsidy - Administrative and Operational Expenses  LGM - Livestock Gross Margin 
AGR - Adjusted Gross Revenue LRP - Livestock Risk Protection 
AIP - Approved Insurance Provider MPCI - Multi-peril Crop Insurance 
AOE - Adjusting and Other Expenses NAIC - National Association of Insurance Commissioners 
APH - Actual Production History NASS - United States Department of Agriculture -  

National Agricultural Statistics Service 
CAT - Catastrophic Coverage NDVI - Normalized Difference Vegetation Index 
CBOT - Chicago Board of Trade NOAA-CPC - National Oceanic and Atmospheric Administration - 

Climate Prediction Center 
CRC - Crop Revenue Coverage RA - Revenue Assurance 
DCCE - Defense and Cost Containment Expenses RI - Rainfall Index 
FCIC - Federal Crop Insurance Corporation RMA - Risk Management Agency of the United States Department of 

Agriculture 
GRIP - Group Risk Income Plan SRA - Standard Reinsurance Agreement 
GRP - Group Risk Plan USDA - United States Department of Agriculture 
IP - Income Protection VI - Vegetation Index 

 
 
 



Crop Insurance Reserving 

Casualty Actuarial Society E-Forum, Fall 2010 30 

Biography of the Author 
 

Carl Xavier Ashenbrenner is a Principal and Consulting Actuary at Milliman, Inc. in Brookfield, 
Wisconsin.  He specializes in reserving and ratemaking for property/casualty insurance with an 
emphasis on non-traditional lines of business.  He holds a bachelor of Business Administration in 
Actuarial Science and Risk Management and Insurance from the University of Wisconsin–Madison.  
He is a Fellow of the CAS and a Member of the American Academy of Actuaries.  He is a volunteer 
of the CAS Program Planning Committee, and is a frequent speaker and moderator at CAS meetings 
and other industry events. 

 
Carl can be reached at carl.ashenbrenner@milliman.com. 

 



Crop Insurance Reserving 

Casualty Actuarial Society E-Forum, Fall 2010 1 

Exhibit 1 

Hypothetical MPCI Portfolio

Premium

State Crop
Insurance 

Plan
Assigned 

Risk C-Fund D-Fund Total

IA Corn CRC 50 200 0 250
IL Corn GRIP 50 50 50 150
IA Corn APH 20 100 0 120

IA Hybrid Corn Seed APH 10 0 0 10

TX Cotton SE APH 150 50 0 200
TX Cotton AO APH 50 150 0 200
TX Peanuts APH 25 0 25 50

Total 355 550 75 980  
 
 



Crop Insurance Reserving 

Casualty Actuarial Society E-Forum, Fall 2010 2 

Exhibit 2 
Iowa Corn

Crop Year 2009
Loss Ratio Projection

APH Plan
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Low Actual Fitted
Nass 10yr Yield Yield Loss Loss Squared

Year Yield Average Ratio Indicator Ratio Ratio Error Weight

1980 105       
1981 120       
1982 115       
1983 82         
1984 108       
1985 123       
1986 132       
1987 127       
1988 80         
1989 115       
1990 122       111       110% 0.00 30% 35% 0.00        1
1991 114       112       102% 0.00 72% 52% 0.04        1
1992 144       112       129% 0.00 17% 16% 0.00        1
1993 73         115       64% 0.36 496% 498% 0.00        1
1994 148       114       130% 0.00 5% 15% 0.01        1
1995 120       118       102% 0.00 98% 52% 0.21        1
1996 135       118       115% 0.00 24% 29% 0.00        1
1997 135       118       114% 0.00 7% 30% 0.05        1
1998 142       119       119% 0.00 41% 24% 0.03        1
1999 145       125       116% 0.00 20% 27% 0.00        1
2000 140       128       110% 0.00 11% 36% 0.06        1
2001 142       130       110% 0.00 43% 36% 0.00        1
2002 158       132       120% 0.00 11% 24% 0.02        1
2003 152       134       113% 0.00 15% 31% 0.03        1
2004 177       142       125% 0.00 9% 19% 0.01        1
2005 169       145       117% 0.00 22% 26% 0.00        1
2006 163       149       109% 0.00 20% 37% 0.03        1
2007 167       152       110% 0.00 13% 36% 0.05        1
2008 165       156       106% 0.00 76% 43% 0.11        1

54% 56%

A B C D
0.565    4.873    -          1.000    66           <-Minimize

2009 178 158 113% 0.00 31%

Fitted Loss Ratio = A * [ 1 / (Yield Ratio^B) ] + Low Yield Indicator * C

(2) NASS: Production / Planted Acres (6) From RMA
(3) Previous 10-year average of (2) (7) Fitted Loss Ratio
(4) = (2) / (3) (8) =[ (6) - (7) ] ^2
(5) If (4) < 1.00 then [1-(4)] (9) Judgment  
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Exhibit 3 
Iowa Corn

Crop Year 2009
Loss Ratio Projection

APH Plan
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Adjusted Low Actual Fitted
Nass 10yr Yield Yield Yield Loss Loss Squared

Year Yield Average Ratio Ratio Indicator Ratio Ratio Error Weight

1980 105       
1981 120       
1982 115       
1983 82         
1984 108       
1985 123       
1986 132       
1987 127       
1988 80         
1989 115       
1990 122       111       110% 99% 0.01 30% 27% 0.00        1
1991 114       112       102% 91% 0.09 72% 87% 0.02        1
1992 144       112       129% 116% 0.00 17% 10% 0.01        1
1993 73         115       64% 57% 0.43 496% 496% 0.00        1
1994 148       114       130% 117% 0.00 5% 9% 0.00        1
1995 120       118       102% 91% 0.09 98% 87% 0.01        1
1996 135       118       115% 103% 0.00 24% 17% 0.00        1
1997 135       118       114% 102% 0.00 7% 17% 0.01        1
1998 142       119       119% 107% 0.00 41% 14% 0.07        1
1999 145       125       116% 104% 0.00 20% 16% 0.00        1
2000 140       128       110% 98% 0.02 11% 30% 0.04        1
2001 142       130       110% 98% 0.02 43% 32% 0.01        1
2002 158       132       120% 107% 0.00 11% 14% 0.00        1
2003 152       134       113% 102% 0.00 15% 17% 0.00        1
2004 177       142       125% 112% 0.00 9% 12% 0.00        1
2005 169       145       117% 105% 0.00 22% 15% 0.00        1
2006 163       149       109% 98% 0.02 20% 37% 0.03        1
2007 167       152       110% 98% 0.02 13% 30% 0.03        1
2008 165       156       106% 95% 0.05 76% 58% 0.03        1

Average Yield Trend: 112% 54% 54%

A B C D
0.188    4.374       6.605     1.000    28           <-Minimize

2009 178 158 113% 101% 0.00 18%

Fitted Loss Ratio = A * [ 1 / (Adjusted Yield Ratio^B) ] + Low Yield Indicator * C

(2) NASS: Production / Planted Acres (7) From RMA
(3) Previous 10-year average of (2) (8) Fitted Loss Ratio
(4) = (2) / (3) (9) =[ (6) - (7) ] ^2
(5) = (4) / Average Yield Trend (10) Judgment
(6) If (4) < 1.00 then [1-(4)]  
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Exhibit 4 
Texas Cotton Southeast

Crop Year 2009
Loss Ratio Projection

APH Plan
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Adjusted Low Actual Fitted
Nass 10yr Yield Yield Yield Loss Loss Squared

Year Yield Average Ratio Ratio Indicator Ratio Ratio Error Weight

1980 338       
1981 482       
1982 524       
1983 576       
1984 635       
1985 751       
1986 649       
1987 663       
1988 622       
1989 510       
1990 541       575       94% 94% 0.06 246% 130% 1.34        1
1991 663       595       111% 112% 0.00 104% 94% 0.01        1
1992 506       614       82% 83% 0.17 244% 175% 0.47        1
1993 520       612       85% 85% 0.15 140% 164% 0.06        1
1994 638       606       105% 106% 0.00 58% 102% 0.20        1
1995 433       606       71% 72% 0.28 245% 229% 0.02        1
1996 345       575       60% 60% 0.40 249% 303% 0.30        1
1997 512       544       94% 94% 0.06 95% 130% 0.13        1
1998 385       529       73% 73% 0.27 164% 222% 0.33        1
1999 659       505       130% 131% 0.00 75% 74% 0.00        1
2000 627       520       121% 121% 0.00 73% 83% 0.01        1
2001 503       529       95% 96% 0.04 143% 127% 0.03        1
2002 493       513       96% 97% 0.03 172% 123% 0.24        1
2003 665       512       130% 131% 0.00 53% 74% 0.04        1
2004 750       526       143% 143% 0.00 22% 64% 0.18        1
2005 594       537       111% 111% 0.00 51% 95% 0.19        1
2006 400       553       72% 73% 0.27 291% 224% 0.45        1
2007 798       559       143% 143% 0.00 26% 64% 0.14        1
2008 442       588       75% 76% 0.24 205% 209% 0.00        1

Average Yield Trend: 100% 140% 141%

A B C D
1.116    1.539       1.508     1.000    415         <-Minimize

2009 167 593 28% 28% 0.72 889%

Fitted Loss Ratio = A * [ 1 / (Adjusted Yield Ratio^B) ] + Low Yield Indicator * C

(2) NASS: Production / Planted Acres (7) From RMA
(3) Previous 10-year average of (2) (8) Fitted Loss Ratio
(4) = (2) / (3) (9) =[ (6) - (7) ] ^2
(5) = (4) / Average Yield Trend (10) Judgment
(6) If (4) < 1.00 then [1-(4)]  
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Exhibit 5 
Texas Cotton All Other

Crop Year 2009
Loss Ratio Projection

APH Plan
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Adjusted Low Actual Fitted
Nass 10yr Yield Yield Yield Loss Loss Squared

Year Yield Average Ratio Ratio Indicator Ratio Ratio Error Weight

1980 192       
1981 358       
1982 203       
1983 269       
1984 307       
1985 338       
1986 215       
1987 461       
1988 462       
1989 610       
1990 475       341       139% 126% 0.00 89% 62% 0.07        1
1991 332       370       90% 81% 0.19 238% 158% 0.65        1
1992 276       367       75% 68% 0.32 408% 220% 3.55        1
1993 459       374       122% 111% 0.00 77% 69% 0.01        1
1994 418       393       106% 96% 0.04 65% 92% 0.07        1
1995 324       405       80% 73% 0.27 103% 199% 0.92        1
1996 381       403       95% 86% 0.14 145% 138% 0.01        1
1997 452       420       108% 98% 0.02 46% 86% 0.16        1
1998 377       419       90% 82% 0.18 197% 156% 0.17        1
1999 370       410       90% 82% 0.18 120% 156% 0.13        1
2000 249       386       64% 58% 0.42 168% 271% 1.05        1
2001 321       364       88% 80% 0.20 151% 164% 0.02        1
2002 433       363       119% 108% 0.00 78% 71% 0.01        1
2003 327       378       86% 78% 0.22 161% 171% 0.01        1
2004 621       365       170% 154% 0.00 26% 52% 0.07        1
2005 707       385       184% 166% 0.00 34% 49% 0.02        1
2006 451       424       106% 96% 0.04 130% 91% 0.15        1
2007 821       431       191% 173% 0.00 20% 48% 0.08        1
2008 433       468       93% 84% 0.16 133% 146% 0.02        1

Average Yield Trend: 110% 126% 126%

A B C D
0.755    0.847       3.630     1.000    715         <-Minimize

2009 566 473 120% 108% 0.00 71%

Fitted Loss Ratio = A * [ 1 / (Adjusted Yield Ratio^B) ] + Low Yield Indicator * C

(2) NASS: Production / Planted Acres (7) From RMA
(3) Previous 10-year average of (2) (8) Fitted Loss Ratio
(4) = (2) / (3) (9) =[ (6) - (7) ] ^2
(5) = (4) / Average Yield Trend (10) Judgment
(6) If (4) < 1.00 then [1-(4)]  
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Exhibit 6 
Iowa Corn

Crop Year 2009
Loss Ratio Projection

Revenue Plans
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

Adjusted Low Price Actual Fitted
Ins Nass 10yr Yield Yield Yield Price Times Loss Loss Squared

Year Plan Yield Average Ratio Ratio Indicator Change Yield Ratio Ratio Error Wght

2000 CRC 140    128       110% 97% 0.03 -0.16 0.82 41% 45% 0.00      1
2001 CRC 142    130       110% 97% 0.03 -0.17 0.81 70% 48% 0.05      1
2002 CRC 158    132       120% 106% 0.00 0.09 1.15 17% 5% 0.01      1
2003 CRC 152    134       113% 100% 0.00 -0.07 0.94 19% 15% 0.00      1
2004 CRC 177    142       125% 110% 0.00 -0.28 0.80 18% 31% 0.02      1
2005 CRC 169    145       117% 103% 0.00 -0.13 0.90 23% 18% 0.00      1
2006 CRC 163    149       109% 96% 0.04 0.17 1.13 24% 28% 0.00      1
2007 CRC 167    152       110% 97% 0.03 -0.12 0.86 21% 39% 0.03      1
2008 CRC 165    156       106% 93% 0.07 -0.24 0.71 93% 91% 0.00      1
2000 RA/IP 140    128       110% 97% 0.03 -0.16 0.82 32% 45% 0.02      1
2001 RA/IP 142    130       110% 97% 0.03 -0.17 0.81 88% 48% 0.16      1
2002 RA/IP 158    132       120% 106% 0.00 0.05 1.11 24% 7% 0.03      1
2003 RA/IP 152    134       113% 100% 0.00 -0.02 0.98 18% 12% 0.00      1
2004 RA/IP 177    142       125% 110% 0.00 -0.30 0.77 23% 36% 0.02      1
2005 RA/IP 169    145       117% 103% 0.00 -0.17 0.86 34% 22% 0.01      1
2006 RA/IP 163    149       109% 96% 0.04 0.37 1.32 23% 25% 0.00      1
2007 RA/IP 167    152       110% 97% 0.03 -0.06 0.91 15% 33% 0.03      1
2008 RA/IP 165    156       106% 93% 0.07 -0.31 0.65 118% 124% 0.00      1

Average Yield Trend: 113% 39% 37%

A B C D
0.106     4.800     5.840    1.000   12         <-Min

2009 CRC 178 158 113% 100% 0.00 -0.08 0.92 16%
2009 RA/IP 178 158 113% 100% 0.00 -0.03 0.96 13%

Fitted Loss Ratio = A * [ 1 / ([Adjusted Yield Ratio*(1-Price Change)]^B) ] + Low Yield Indicator * C 

(3) NASS: Production / Planted Acres (8) From RMA
(4) Previous 10-year average of (2) (9) = (6) X [1 + (8)]
(5) = (3) / (4) (10) From RMA
(6) = (5) / Average Yield Trend (11) Fitted Loss Ratio
(7) If (6) < 1.00 then [1-(6)] (12) =[ (10) - (11) ] ^2

(13) Judgment  
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Exhibit 7 
Corn

Price Changes
March 15th Sales Closing

Crop RA and IP
Year Base Harvest Change Base Harvest Change
2000 2.51$      2.11$     -16% 2.51$    2.11$    -16%
2001 2.46$      2.05$     -17% 2.46$    2.05$    -17%
2002 2.32$      2.43$     5% 2.32$    2.52$    9%
2003 2.42$      2.37$     -2% 2.42$    2.26$    -7%
2004 2.83$      1.99$     -30% 2.83$    2.05$    -28%
2005 2.32$      1.93$     -17% 2.32$    2.02$    -13%
2006 2.59$      3.56$     37% 2.59$    3.03$    17%
2007 4.06$      3.82$     -6% 4.06$    3.58$    -12%
2008 5.40$      3.74$     -31% 5.40$    4.13$    -24%
2009 4.04$      3.90$     -3% 4.04$    3.72$    -8%

CRC - HRO
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Exhibit 8 
Hypothetical MPCI Portfolio

Premium

State Crop
Insurance 

Plan
Assigned 

Risk C-Fund D-Fund Total

IA Corn CRC 50 200 250
IL Corn GRIP 50 50 50 150
IA Corn APH 20 100 120

IA Hybrid Corn Seed APH 10 10

TX Cotton SE APH 150 50 200
TX Cotton AO APH 50 150 200
TX Peanuts APH 25 25 50

Total 355 550 75 980

Gross Loss Ratio

State Crop
Insurance 

Plan
Assigned 

Risk C-Fund D-Fund Total

IA Corn CRC 16% 16% 16% 16%
IL Corn GRIP 17% 17% 17% 17%
IA Corn APH 18% 18% 18%
IA Hybrid Corn Seed APH 17% 17% 17%

TX Cotton SE APH 889% 889% 889%
TX Cotton AO APH 71% 71% 71%
TX Peanuts APH 38% 38% 38%

Total 394% 111% 24% 207%

Gross Losses

State Crop
Insurance 

Plan
Assigned 

Risk C-Fund D-Fund Total

IA Corn CRC            8        32         -         40 
IL Corn GRIP            9          9           9       26 
IA Corn APH            4        18         -         21 
IA Hybrid Corn Seed APH            2         -           -           2 

TX Cotton SE APH     1,333      444         -    1,777 
TX Cotton AO APH          35      106         -       141 
TX Peanuts APH            9         -             9       19 

Total 1,399     608      18        2,026   
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On the Accuracy of  Loss Reserving Methodology 

Tapio Boles and Andy Staudt 

 
________________________________________________________________________ 
Abstract 

We evaluate the performance of various loss reserving methods and their associated parameterizations under a 
number of environments (e.g., changes in case reserve adequacy). We simulate proxy loss development data for 
each environment, which enables us to measure the accuracy of various actuarial projection methods. Then, 
based on our results, we offer a roadmap the reserving actuary may use in order to select appropriate 
methodologies and parameterizations given the current, past, and expected future environmental conditions 
affecting the reserving process. 
 
Keywords: suitability testing; loss reserving; reserving methods; loss development; management best estimate; 
simulation. 

             

1. INTRODUCTION 

We evaluate the accuracy of various loss reserving methods and their associated 

parameterizations for several lines of business under a variety of common environmental 

conditions.1 Based on our results, we offer a roadmap to guide the actuary in evaluating the 

appropriateness of these methodologies under different circumstances, understanding the 

differences in projections between various methods and supporting the choices an actuary makes 

given the past, present, and expected future conditions.  

1.1 Use of Simulated Data 

Most similar research falls into one of three categories:  hindsight testing,2 mathematical proof, or 

simulation.3 In theory, all are viable options, but limitations in the former two make them unsuitable 

for our current purposes. Essentially, we are interested in how various loss reserving methods will 

perform given our reasonable expectations as to the future in a real-world setting. With hindsight 

testing, we are only able to evaluate the performance of methods under one set of environmental 

conditions—namely the past; and even then, we are only able to make these evaluations many years 

after the fact. Furthermore, as the future presents entirely new, unknown environmental conditions 

that reasonably can be expected to differ from the past, we cannot extrapolate results from hindsight 

                                               
1 By environmental conditions we refer to characteristics such as inflation, changes in case reserve adequacy, changes in 
rate adequacy, changes in claim settlement practices, and changes in the mix-of-business.  
2 Hindsight testing is the process by which past predictions are compared with current results; this occurs some years 
after the predictions are made and gauges the effectiveness of the methods (and/or actuary) that produced those 
predictions. See Mahon [12] and Jing, Lebens, and Lowe [10].  
3 Stanard [22], Pentikäinen and Rantala [17], Rollins [19] and Narayan and Warthen [15]. 
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history. And most mathematical proofs, while elegant, can be complex and difficult to apply to a 

diverse array of methods and environments. 

For these reasons, we chose to simulate proxy loss development data. We simulate the historical 

triangle (what the actuary sees) as well as future periods, thus enabling us to evaluate the accuracy of 

various methods at ultimate. We are also able to isolate environmental conditions, in order to 

determine how the accuracy of methods is affected by various environmental changes. Finally, by 

adding noise to the simulated data, we are able to evaluate how susceptible the accuracy of each 

method is to random volatility. 

1.2 Outline 

Section 2 describes the various aspects of our approach. Section 3 discusses possible biases in our 

approach. Section 4 presents the application of our approach to specific examples.  

We have included several appendices to help the reader understand the specifics underlying many 

of the concepts. In Appendix A, we describe numerous loss reserving methodologies and our 

implementation of them. In Appendix B, we classify these methods into families based on various 

common characteristics. In Appendix C, we provide more detailed descriptions of the 

environmental scenarios evaluated. In Appendix D, we describe how to read the graph that we use 

to present many of the results. In Appendix E, we rank the methods by their accuracy in various 

environments. In Appendix F, we show in what direction, if any, the methods were biased in various 

environments. In Appendix G, we give a complete list of the abbreviations and notations used 

throughout this paper.  

2. BACKGROUND AND METHODS 

The following briefly introduces the various dimensions of our work including how we 

simulated data, how we programmed various loss reserving methodologies and how we evaluated 

their performance.  

2.1 Simulation Method 

To create proxy data, we used the following general process. When reviewing this section, it may 

be helpful to refer to Appendix C, to learn basic properties of the proxy data and how the 

environments were constructed, and Appendix D, to understand how the tests were applied. Each 
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of the data components that we created are italicized in the section below. 

First, we deconstructed the loss process into basic component parts and a system of 

mathematical functions to describe the relationships between the parts. Essentially, we used exposure 

and frequency vectors as a starting point to produce ultimate claim counts. We then applied incremental-

reported-on-unreported claim count patterns to derive reported claim counts at various evaluations. We then 

applied incremental-closed-on-incremental-reported claim count patterns and incremental-closed-on-open claim count 

patterns to get closed and open claim counts at various evaluations. To estimate incremental loss 

payments, we applied incremental-paid-on-closed severities and incremental-paid-on-open severities to the 

incremental closed and open claim counts, respectively. To estimate case reserves, we applied case-

reserve-per-open severities to the open claim counts.4 Both the paid severities and reserve severities differ 

by evaluation period. 

We parameterized each proxy data component mentioned above with real world data to produce 

a deterministic data set with a stable environment. At this stage, the development patterns for each 

accident period are identical. To assure that the result was realistic, we evaluated various aggregate 

diagnostics of the proxy data, such as cumulative loss development patterns and loss severities by 

age of development and compared the results to diagnostics of the underlying data.  

To build each of the environments, we adjusted the basic deterministic components based on the 

unique characteristics of the environment (as described in Appendix C). For example, in 

environment 4, the change in case reserve adequacy affects reserved severities but often has no 

impact on claim counts or paid severities. Each of the environments contains an identical stable 

history of loss development data (i.e., the upper left portion of the triangle), prior to the first testing 

period (as defined in Appendix D). The first environmental change (whether applied on an accident-

year or calendar-year basis) coincides with the first testing period. We do not apply any tests to 

accident years prior to the start of the first environmental change (although we can reasonably 

assume that some of the environmental changes affect the ultimate losses of these older accident 

years). 

The process above results in deterministic data sets for each environment. In our last step, we 

produced stochastic data sets by applying noise multipliers (by accident year and evaluation period) 

to each of the basic deterministic components mentioned above (except for exposure and frequency). 

                                               
4 Because simulated paid losses are not directly based on simulated case reserves, a change in case reserve adequacy does 
not affect paid losses. However, as mentioned later, the simulated noise multipliers are correlated between data 
components, so that random changes in paid losses are not independent from random changes in case reserves. 
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Each of the noise multipliers is a normal random variable with a mean of 1.0. We estimated 

coefficients of variation based on the underlying real world data that we used to parameterize the 

proxy data. We also correlated the noise multipliers applied to each data components based on 

correlations that we observed in the real-world data (i.e., higher incremental paid loss on open claims 

is correlated with higher incremental paid loss on closed claims). 

2.2 Loss Reserving Methods 

Previous work regarding suitability testing of loss reserving methods focuses on a few methods. 

To provide a more complete picture, we included techniques beyond the traditional actuarial 

methods. We focused on methods that can be automated and that do not require optimization 

routines or knowledge of advanced mathematics or computer science to implement. Where possible, 

we contacted the authors for exact implementations of their methods to ensure accuracy; we are 

grateful to those who responded. While our paper is not a complete survey of loss reserving 

methods, we have included many of the methods that are commonly used by practicing actuaries 

when developing losses to ultimate. See Schmidt [20] for an excellent bibliography of more recent 

literature, and Skurnick [21] for descriptions of earlier methods. 

2.3 Tests, Criteria, and Statistics 

Estimating ultimate loss is vital for major actuarial functions, including loss reserving and 

ratemaking. While the reserving actuary is interested in projecting ultimate loss for all immature 

years, the ratemaking actuary may be interested only in projecting ultimate loss for the latest few 

years. To simplify the presentation of results, we focused on evaluating methods on how well they 

project loss from earliest evaluation (i.e., 12 months) to ultimate.  

There are a variety of criteria that an actuary can use to evaluate the performance of a loss 

reserving method: accuracy, bias, stability, responsiveness, robustness, consistency, independence, 

etc. However, we focused on those we believe most important for the practicing actuary—accuracy 

and bias. We chose accuracy for the obvious reason and bias because it is often helpful to know 

which methods err in opposite directions, in order to provide upper and lower bounds around the 

actuary’s estimate.  

To measure the accuracy of a method, we used the mean absolute percentage error statistic.5 We 

                                               
5 We use the mean absolute percentage error for three reasons. First, accuracy is not dependent on whether a method 
misses high or low, but rather how close the method is to the true value. Second, we chose the absolute value, rather 
than the commonly used squared error, as the latter implicitly is a function of the standard deviation and as such does 
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defined error as the projected ultimate loss minus the actual ultimate loss and the percentage error as 

the ratio of the error to the actual ultimate loss. We also used the mean percentage error statistic, 

which represents a combination of accuracy (magnitude of error) and bias (direction of error). 

We did not attempt to measure stability or responsiveness, but we use these terms qualitatively. If 

we describe a method as stable, we mean that its estimates are “sticky” or relatively unaffected by 

noise or environmental changes. If we describe a method as responsive, we mean that this method 

corrects itself to produce accurate results shortly after an environmental change. Responsive 

methods, however, often suffer from a temporary period of inaccuracy during a period of change. 

Throughout this paper, we generally refer to results within the context of accuracy. If we say that 

a method is distorted by or susceptible to a change, we mean that the accuracy is reduced.  

3.  CAVEATS 

Prior to discussing results, we should highlight some of the possible biases in our simulation 

model and caution the actuary against blindly applying the results, without serious consideration of 

the differences in situation. 

3.1 Specific Books of Business 

The most obvious bias in our work is that it necessarily reflects the data we used to parameterize 

the simulations. The underlying line of business is the medical component of workers compensation. 

To parameterize the proxy data, we relied on publicly available California industry data, as 

summarized by the Workers’ Compensation Insurance Rating Bureau of California (WCIRB). If we 

had chosen data from a different region, for example, the errors would be different but the main 

conclusions would likely be similar. Also, workers compensation is characterized by partial payments 

on open claims. If we substitute workers compensation with a long-tailed liability line of business, in 

which there are very few payments prior to claim settlement, there may be differences in some of 

the conclusions, particularly with methods that separate loss between frequency and severity 

components. Application of similar testing to other sets of data and other lines of business 

represents an opportunity for future research.  

                                                                                                                                                     
not purely assess accuracy. Finally, we use “percentage” error so as not to give disproportionate weight to tests with 
large dollar values.   
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3.2 Number of Evaluation Periods 

For presentation purposes, we used 11 evaluation periods for each accident period, where the 

first 10 evaluation periods represent normal development and the eleventh evaluation period is the 

tail period (i.e., 120 months to ultimate). However, we also tested results using loss triangles with 30 

evaluation periods (i.e., with a tail from 348 months to ultimate) and found that the results were 

more or less invariant to the number of evaluation periods as long as there was a sufficient volume 

of data at later evaluation ages. The accuracy of methods based on cumulative data (such as the 

chain ladder method) was relatively unaffected when switching between 30 evaluation periods and 

11 periods. However, a method that is dependent on open claim counts or incremental payments 

may break down if there are no open claim counts or incremental payments in later evaluations. The 

practicing actuary should consider the credibility of data in the tail before applying the observations 

in this paper. Alternatively, an actuary may want to combine different methods for different 

evaluation periods based on the volume of data available as well as the relevant environmental 

effects by maturity level. 

3.3 Structure of Simulated Data 

When designing the building blocks of the proxy data, we chose a structure that we believe is 

realistic (i.e., it maintains appropriate relationships between data types) without being overly 

complex. If we had chosen a different underlying structure, it likely would have impacted our testing 

results somewhat. As mentioned previously, our simulated losses are based on the product of 

simulated claim counts and simulated severities. If instead we had simulated claim count data 

independently of loss data, then it is likely that methods that exploit the relationship between claim 

counts and loss severities (such as the Adler-Kline method) would perform poorly. 

3.4 Distribution of Noise 

As mentioned previously, in order to produce stochastic data, we simulated noise multipliers 

based on normal6 random variables. We then multiplied these random variables by the basic 

components of our deterministic data, such as paid loss severities. Without knowing the underlying 

frequency and severity distributions, we used the simplifying assumption that a normal distribution 

would adequately approximate the shape of aggregate noise affecting the development triangles. To 

test this assumption, we also considered gamma and lognormal noise multipliers. The results were 

                                               
6 Although in theory it is possible for normal random variables to produce negative values, this was not an issue in our 
simulation, because the standard deviation was small enough so that the probability of a negative value was infinitesimal. 
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approximately the same. 

3.5 Amount of Noise 

The results of our testing are based on levels of noise consistent with that observed in the data 

used to parameterize the proxy data. Our aim was to reproduce the level of noise that would be 

typical for a large insurance carrier, with a fairly consistent history of homogeneous exposures. In 

order to assess the sensitivity of our results to various levels of noise, we increased and decreased 

the coefficient of variation of the noise multipliers. We found that if we had chosen a higher level of 

noise consistent with a smaller, less credible set of exposures, it is likely that methods based on more 

granular data (e.g., incremental payments, claim counts, incremental paid severities) would suffer due 

to the leveraged effect of noise on the basic components of such methods. 

3.6 Methods 

The results of any loss reserving method are influenced by the way in which the method is 

parameterized. As noted in a Section 4.2.6, methods whose parameters are based on short-term 

observations are more responsive and less stable than those based on long-term observations. 

Similarly, methods that rely on estimates of loss trend, such as the incremental additive method, can 

be significantly affected by choosing a short-term or long-term trend rate. More complicated 

methods, such as the Berquist-Sherman adjustments, are dependent on how the methods are 

constructed. 

As much as possible, we have attempted to construct our methods using the same rules as 

described in the original literature referenced in Appendix A. The actuary should consider how the 

structure or parameterization of a method may impact its accuracy in various situations. 

3.7 Environments 

Our results are very much tied to the specific environments we tested and to the 

parameterizations we chose to describe and define those environments. These are described in detail 

in Appendix C. For each of the environments, our aim was to model a significant change in the 

development data, large enough to show a measurable distortion in projection methods, while being 

reasonably likely to occur. If we had chosen environments with smaller or larger changes, our testing 

results would have been muted or exaggerated, respectively. 

Another element to consider is time. For environment 2, for example, we modeled three years of 
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elevated inflation. If we had increased the number of years of elevated inflation, responsive methods 

(such as the incremental multiplicative) would have been more accurate and unresponsive methods 

(such as exposure-based methods) would have been less accurate. The inverse is also true. 

Conclusions about which methods perform well or poorly under various conditions (such as “the 

Berquist-Sherman adjustment for case reserve adequacy is accurate during a period of changing case 

reserves”) would not change if we had chosen different values for the environmental parameters: 

only the relative difference in accuracy between the methods would change. 

3.8 Test Statistics 

In some respects, our results directly depend on the tests we used to evaluate the various 

methods: the mean percentage error and the mean absolute percentage error for the 12-month to 

ultimate projection. However, we also considered various other statistics such as the mean squared 

error to measure the volatility and responsiveness with regard to overall accuracy of these methods. 

We found that using these other statistics did not noticeably change our conclusions regarding the 

relative accuracy of the methods. 

3.9 Limitations of Our Recommendations 

The recommendations in this paper should not be used in place of the actuary’s due diligence and 

appropriate judgment. Our findings presuppose that the actuary is able to review relevant 

diagnostics or leading indicators to evaluate the characteristics of the current environment and make 

assumptions about future conditions. It is outside the scope of this paper to provide a list of 

diagnostics or to determine how easy or difficult it may be to determine the current environment 

based on these diagnostics. In some instances, it may be difficult for an actuary to ascertain the 

precise nature of the underlying environment affecting the loss development data. However, we 

believe the environments reviewed in this paper are broad enough so that they could be identified 

with diagnostics or other available information, such as a law change or economic data. 

4. RESULTS AND DISCUSSION 

The following is our roadmap to help the actuary in evaluating various loss reserving 

methodologies. In Section 4.1 we present several of our high-level findings and general 

recommendations. In Section 4.2, we comment on several basic components of loss reserving 

methods that are not unique to any one method. In Section 4.3, we present findings as they relate to 
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families of projection methods, where the families are defined in Appendix B. In Section 4.4, we 

present findings by environment. 

4.1 General Findings and Recommendations 

4.1.1 Stable versus responsive methods in periods of consistent conditions 

We found that stable methods outperform methods that are more responsive in environments 

where, although there is still random noise, conditions are consistent over time (or more generally, 

when the actuary cannot discern the cause of variability). Stable methods tend to rely on a longer 

history by design or through selection of parameters, and therefore are better at avoiding distortions 

due to variability that does not reflect environmental changes. In environments that remain 

consistent over time, methods using parameters based on longer-term averages outperform those 

whose parameters reflect shorter histories; exposure-based methods (like the Bornhuetter-Ferguson) 

beat methods that rely on loss only; and cumulative methods outperform incremental methods. 

Other methods that incorporate a longer history by construction are the Berquist-Sherman adjusted 

methods (which perform better than the corresponding unadjusted methods), as well as several 

more complex methods that rely on the entire triangle to project ultimate loss. 

4.1.2 The importance of environmental changes 

In practice, it is unlikely that conditions would be consistent over a long period.                  Loss 

triangles are constantly subject to forces that can distort loss reserving methodologies. The workers 

compensation system is subject to forces that cause shifts in loss development data, whether slow 

and subtle (e.g., a change in the mix of claim types due to a shift away from manufacturing) or 

sudden and dramatic (such as legislative benefit reform). Therefore, while we found that stable 

methods would theoretically outperform responsive methods in environments where conditions are 

consistent, in practice the actuary may not often encounter such environments. More likely, there 

will be subtle shifts in a manner that is either unknown or at least not yet quantifiable. 

4.1.3 Adjusting the data during periods of significant upheaval 

During periods of significant upheaval, the mechanical application of any loss reserving method 

to raw data is unlikely to yield reasonably accurate projections. In fact, we found that all methods 

tested perform quite poorly under such circumstances. This result highlights the importance of not 

relying blindly on loss reserving methods when the underlying data has been significantly distorted 

by environmental changes. In these situations, alternatives include making data adjustments (e.g., 
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restating history to current cost level or current claim mix) or otherwise correcting for 

environmental changes before applying loss reserving methodologies. If the nature of the distortion 

is understood, it is also useful for the actuary to identify which method’s performance will be most 

affected. 

4.1.4 Responding after periods of severe environmental change 

If the assumption is that the system has reached a plateau after major disruptions, our findings 

would point the actuary toward more responsive methods. Our work confirms that methods with 

short or no memory (such as methods where parameters are selected based on recent observations 

only or incremental methods) fare better than those that use a longer history (e.g., longer-term 

averages or cumulative methods) under these circumstances. 

4.1.5 Type of change versus direction of change 

In general, how a method performs under each environment is defined by elements of the 

environment that change, rather than by the direction of the change. For example, we found that 

methods that work well when claim settlements slow down prove to also work well when those 

settlements accelerate. 

4.1.6 Accident year vs. calendar year effects 

We tested the impact of various environmental changes, including accident year shifts (such as an 

increase in frequency from one accident year to the next) and calendar year shifts (such as a change 

in inflation, which affects all accident years simultaneously). Our analysis showed that:  

(i) Calendar year changes (e.g., inflation that simultaneously impacts all accident years) 

always affect the accuracy of loss reserving methodologies, since they always distort 

development patterns.7 As a result, consideration should be given to adjusting the data 

underlying the development projection. 

(ii) Accident year changes (e.g., change in frequency) do not affect accuracy of methods 

based on loss unless the shift also causes a change in loss development patterns (e.g., a 

change in the mix of claim types).  

(iii) While an accident or calendar year shift will distort most methods for many years after 

                                               
7 Even methods that do not rely on development patterns are affected, because calendar year changes like those 
described in this paper affect actual unpaid losses, resulting in prediction errors. 
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the change, incremental methods, by their nature, are able to respond immediately after 

the change to calendar year shifts.   

(iv) Accident year shifts may distort even incremental methods for many years after the 

change, as the projection for the latest accident year is dependent upon observations 

from older accident years.  

The following figures compare the incremental multiplicative (IM) method with the chain ladder 

(CL) method as an illustration. Both methods are parameterized equivalently save that the former is 

applied to incremental paid loss, and the latter is applied to cumulative paid loss.  

Figure 18 compares the mean error of the IM and CL methods9 in an environment affected by a 

calendar year shift in medical inflation.10 In the first three testing periods, inflation is higher than 

normal (15%) and in the fourth and subsequent periods, inflation is consistently at its historical 

average rate (5%). Both methods are distorted; however, the incremental method immediately 

corrects itself after the change. The cumulative CL method does not—and it will not produce 

unbiased estimates until the distortion disappears from the data the actuary is using. 
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Figure 1: Comparison of incremental and cumulative methods during a calendar year shift. 

 

                                               
8 Please refer to Appendix D, which describes in detail how to interpret the graphs in the paper.  
9 Appendix A provides information about each of the methods and how they were programmed.  
10 Appendix C describes each of the environments in detail and may be useful in understanding logic underlying the 
conclusions presented.  
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Figure 2 compares the IM and CL methods during a permanent accident year shift in the 

frequency of serious injuries, which distorts the development patterns. Both methods are affected, 

but the IM method corrects itself more quickly after the change.  
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Figure 2: Comparison of incremental and cumulative methods during an accident year shift that 
distorts development. 
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Finally, Figure 3 illustrates that in the event of an accident year shift that does not distort 

development patterns (such as exposure growth), both incremental and cumulative methods are 

unaffected. 
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Figure 3: Comparison of incremental and cumulative methods during an accident year shift that does 
not distort development. 

4.1.7 Deterministic versus stochastic analysis 

The results of tests that do not take into account residual noise (e.g., tests based on well-behaved, 

deterministic data) may lead to conclusions that are not appropriate for application in the real 

world.11 While enlightening and useful for assessing the reasonability of an approach, we believe that 

tests performed on deterministic data tend to over-recommend responsive methods, which are 

susceptible to noise, and under-recommend less responsive methods. When reasonable levels of 

noise are added, the accuracy of responsive methods is more adversely affected than that of stable 

methods. This conclusion may caution actuaries against evaluating methods using simplistic 

examples, which ignore the real-world noise dimension. 

                                               
11 Note that this is the only section in the paper where we show test results based on deterministic data. All other tests, 
shown before and after, are applied to stochastic data. 
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Figure 4: Comparison of the cumulative and incremental methods during both the stochastic and 
deterministic variants during an increase to a new plateau in the frequency of serious injuries. 

Figure 4 shows an example of this phenomenon. Without any residual noise, the incremental 

method is more accurate and responds more quickly to the change than the cumulative method. 

However, after we add residual noise to the simulated data, the incremental method is more affected 

than the cumulative method. Furthermore, the noise in this particular situation is more important to 

the accuracy of the methods than the environmental change. This analysis invariably depends on the 

level of noise inherent in the data. When the data is noisy, such as in lines of business characterized 

by low frequency and high severity, approaches involving more stable methodologies and parameter 

selection are preferable. 

4.1.8 Independence and bias 

In cases where two independent methods are biased in opposite directions and produce similar 

magnitudes of error, a combined method based on the average of those two methods often 

outperforms either method individually, as the positive and negative errors offset. Additionally, it is 

helpful to know which methods are biased in opposite directions (and in which environments), as 

the best estimate is likely to fall between such methods.  

4.1.9 Limitations of hindsight testing  

Our tests of accuracy are designed to measure errors in the projected ultimate value that, for 

long-tailed lines, are not capable of being observed in practice. In practice, actuaries typically 
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evaluate success by reviewing changes in estimates of ultimate loss over a shorter period (e.g., less 

than five years). Our analysis showed that such commonly used tests may lead the actuary to discard 

a good method, which, while it may appear to significantly over- or under-predict in the short term, 

in actuality performs quite well in predicting the ultimate value. 

4.2 The Components of a Loss Reserving Function 

Most loss reserving methods are built from the same basic component parts. For example, 

methods that rely on loss development factors (LDFs) use some type of average of recently 

observed factors. However, each loss reserving method has some unique aspects that makes it 

different from other loss reserving methodologies. Since we intend to study these unique aspects, we 

made sure to implement all methods as consistently as possible, so that the difference in test results 

directly represents the difference in the unique aspects of the method (e.g., when comparing the 

chain ladder method with the incremental multiplicative method, we parameterized the loss 

development factors the same way so that the comparison would only differentiate between 

structure of the methods). 

However, during this process, we noticed that many seemingly different methods are, in practice, 

identical. The following sections present these results as well as results about characteristics of the 

various shared components. 

4.2.1 The equivalence of Fisher-Lange and Adler-Kline 

An excellent example of two distinct methods generating essentially identical results is that 

offered by the Fisher-Lange (FL) and Adler-Kline (AK) claims closure models. Although the 

authors describe different methods of computing future severities, the claims component is 

identical. 

The FL method, as described in Fisher and Lange [6], is a frequency-severity approach that 

operates on report-year data. A key advantage of using report-year data is that the ultimate number 

of claims is fixed at the end of each report year. The only development is on loss amounts and 

future claims closure. However, in the absence of report year data, ultimate claim counts can be 

projected, and the FL method is equally applicable. This is the approach we took in our analysis. 

After making this modification, however, Fisher and Lange’s closure ratios produce identical 
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incremental closed claim counts as Adler and Kline’s disposal ratios.12 This can be shown 

algebraically, but Figure 13 and Figure 14 provide illustrations of this phenomenon. 

4.2.2 The equivalence of the cumulative frequency-severity method with the chain ladder 
method 

The cumulative frequency-severity approach (FS), as described by Friedland [7], projects ultimate 

loss by applying the chain ladder method separately to claim counts and claim severities. If this 

approach is parameterized using the latest set of development factors, it is algebraically equivalent to 

the chain ladder approach on cumulative loss. This relationship holds true whether or not the 

definition of claim counts is internally consistent and homogeneous. Furthermore, any other 

parameterization, if applied consistently to both the cumulative frequency-severity approach and the 

chain ladder approach, will produce results that are virtually identical.  

This is not to say that the cumulative frequency-severity method is without purpose. Frequency, 

in particular, is often impacted by external factors that may not be reflected in the underlying data 

(e.g., changes in economic conditions and legislative changes). Often there is an advantage to 

incorporating information exogenous to triangle data when selecting future severities and closure 

ratios, especially if future frequency and severity are expected to differ from historical frequency and 

severity. Friedland [7] notes that “[frequency-severity methods] can be particularly valuable when an 

organization is undergoing changes in operations, philosophy or management.” 

4.2.3 The equivalence of the incremental additive method, Bühlmann’s complementary loss 
ratio method and the chain ladder method 

Both the incremental additive (IA) method and Bühlmann’s complementary loss ratio (CLR) 

method project future incremental loss as a means of estimating the outstanding liability. The IA 

method computes these amounts based on the relationship of historical incremental loss to on-level 

exposure, and the CLR method trends forward historical incremental loss. These methods are 

algebraically equivalent to the chain ladder if parameters are based on the latest observation and loss 

trend is estimated using a link-ratio approach. By this, we mean that one trend factor is computed 

for each set of accident years and that these trend factors are calculated as the ratio of the 

cumulative loss at the latest period to the ratio of the cumulative loss at the earlier period. While this 

is not the only way (or the best way) to compute trend, it does indicate that both the incremental 

                                               
12 This equality only holds when parameterizing the methods using simple averages of one year. Longer-term averages 
and other types of averages will produce results that are slightly different. 
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additive method and Bühlmann’s complementary loss ratio approach are to some extent intrinsically 

linked to the chain ladder methodology, and thus it may not offer an independent estimate of loss. 

4.2.4 Selecting a projection base (paid loss, reported loss, case reserves, or exposure) 

Each loss reserving method reviewed is based on one or more projection bases: paid loss, 

reported loss, case reserves, or exposures. Each of these projection bases has its own unique 

advantages and disadvantages that can be good predictors of a method’s performance in various 

environments. For example, methods based on paid loss are immune to changes in case reserve 

adequacy. However, paid methods appear to be more susceptible to residual noise than methods 

based on reported loss, because paid methods lack the useful information provided by case reserves, 

and there is greater prediction error in the paid LDFs due to the larger magnitude of the factors.13 

Methods based on reported loss are quite susceptible to distortions in the reporting pattern caused 

by changes in case reserve adequacy or claim settlement rates. Methods based on case reserves can 

be even more distorted than reported methods during changing conditions, as they lack the stability 

provided by adding paid loss. However, methods based on case reserves are often the most 

responsive after a period of changing conditions, as they contain information about future loss 

amounts that is not distorted by volatility in historical amounts. Unlike loss-based methods, methods 

that rely solely on exposures (such as the budgeted loss method) are completely unresponsive to 

movements in loss amounts as they represent an a priori estimate of ultimate loss rather than a 

current estimate of future remaining payments. Generally, exposure-based methods produce stable 

estimates during changing conditions, but they can err wildly when there are significant changes in 

loss costs that are not reflected in the underlying exposures. However, as exposure-based methods 

are often independent of the other loss reserving methods, they are good candidates for establishing 

bounds within which ultimate loss is likely to be.  

4.2.5 Incorporating loss trend 

Most of the methods reviewed in this paper incorporate the concept of loss development (i.e., 

measuring changes in an accident year’s losses from one evaluation period to the next). Some of the 

methods reviewed also incorporate the concept of loss trend (i.e., measuring changes in losses from 

one accident period to the next). 

                                               
13 This observation may depend on the evaluation age and the line of business. Also, in the real world, reported losses 
may be distorted by small undetected changes in case reserve adequacy, which may increase error in projections based on 
reported loss. 
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Several of the methods, including Bühlmann’s complementary loss ratio method, Adler-Kline, 

Fisher-Lange, and the two Ghezzi methods, rely on trending forward historical loss severities from 

the loss triangle. For these methods, a trend rate is calculated for each evaluation age separately, by 

fitting a line to the log of the severity amounts. This has the advantage of capturing different trend 

rates by evaluation age, to the extent that they exist. However, separate trend rates are more 

susceptible to residual noise than a single trend rate for the entire triangle, especially when the 

trending period is limited to relatively few data points. 

To parameterize the modified Bornhuetter-Ferguson method, which has a self-correcting loss 

ratio, we employed a three-year trend (i.e., four data points) on an accident year basis. For the 

incremental additive method, we chose a three-year trend measured on a calendar year basis (i.e., the 

trend observed based on calendar-year payments). The incremental additive method with a three-

year trend often produces very similar results to the incremental multiplicative method based on the 

latest three years of observations. By contrast, using a long-term trend produces more stable results. 

A short-term trend benefits from responsiveness following the end of an environmental change 

(i.e., when a new period of normalcy is reached), but it may result in wildly inaccurate results during 

a period of upheaval. A long-term trend, similar to long-term averages of development factors, 

produces more stable results but is slow to react to emerging conditions. 

4.2.6 Comparison of short-term vs. long-term parameterizations 

Short-term averages are more responsive than longer-term averages, which are more stable. 

Figure 5 shows Marker and Mohl’s method parameterized using a one-year simple average and a 

three-year simple average during a three-year bubble in medical inflation.14 Henceforth, we will 

generally show only one type of parameterization and work under the assumption that the observed 

errors will either be muted (and delayed) or intensified depending on whether a longer-term or 

shorter-term average is used, respectively. 

                                               
14 As mentioned previously, all environmental changes begin in the first testing period. Each environment is described in 
greater detail in Appendix C. 
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Figure 5: Comparison of a long-term parameterization to a short-term parameterization during a 
bubble in medical inflation. 

4.2.7 Comparison of simple and volume-weighted averages 

In our proxy data set, the volume of exposures is stable over time; because of this, there is little 

difference in accuracy by choosing development factors based on simple averages or volume-

weighted averages. See Figure 6 for a comparison of methods based on simple and volume-weighted 

averages. For simplicity, for the remainder of the paper, we focus on methods that rely on simple 

averages (or more complex parameterization methods such as regression). However, in the real 

world, the actuary should be aware that simple averages can be distorted by individual accident years 

with a small volume of exposures, which are more volatile as a result.  
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Figure 6: Comparison of volume-weighted and simple averages for the chain ladder method on paid 
loss, the chain ladder method on reported loss and the incremental multiplicative paid loss. This 
environment consists of a bubble in the rate of medical inflation coupled with an increase in the 
frequency of serious injuries. 

4.3 Findings by Family of Methods 

We grouped the various methods into several families based on certain characteristics (e.g., 

exposure-based methods, frequency-severity methods, incremental methods, regression methods, 

etc.). These classifications can be found in Appendix B. The following conclusions all pertain to one 

family or another and are meant to identify differences between methods within a family. By 

reviewing these results, we can draw conclusions that tie our understanding of how the methods are 

constructed to how accurately they perform in various environments.  

4.3.1 Exposure-based methods 

Figure 7 shows the mean error of methods based on exposures and/or paid loss in 

environment 2, a temporary three-year period of high calendar-year inflation. In the first year after 

the onset of inflation, all methods underestimate because they are unaware of the higher-than-

expected inflation. Soon after the start of high inflation, the paid method overestimates the ultimate 

loss because it expects the higher inflation to continue indefinitely. The budgeted loss method (BL) 

never recognizes the change and therefore always underestimates. The Bornhuetter-Ferguson (BF) 

and Benktander (BT) methods, meanwhile, lie between the extremes. They still underestimate, but 

not to the same degree as the budgeted loss method. The modified Bornhuetter-Ferguson (MBF) 

closely follows the chain ladder method, because the trend underlying the MBFs expected loss ratio 
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is based on projections of ultimate loss produced by the chain ladder method. The incremental 

additive method has a self-correcting trend rate, so that after inflation reverts to historical norms, 

the IA produces unbiased estimates. 
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Figure 7: Comparison of various exposure-based methods on paid loss during a bubble in medical 
inflation.  
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Figure 8 shows the same methods based on reported loss instead of paid loss. Because the 

expected percentage reported at 12 months is higher than the expected percentage paid, the BF and 

BT on reported loss methods are relatively more responsive. 
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Figure 8: Comparison of various exposure-based methods during a bubble in medical inflation. 
Where Figure 7 shows the exposure-based methods on paid loss, this figure shows the exposure-
based methods on reported loss. 
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Figure 9 shows the exposure-based methods when subject to an acceleration in claim settlement 

rates. All methods initially overestimate the ultimate loss, because in this environment, the faster 

claim closures result in lower ultimate losses. The BF and BT methods, by their nature, fall 

somewhere between the results of the BL and CL methods. Similar to the previous example, the IA 

method is the most responsive after the change. 
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Figure 9: Comparison of various exposure-based methods during a permanent acceleration in claim 
settlement rates.  

4.3.2 Regression-based methods 

Regression-based loss reserving methods appear frequently in actuarial literature. The following 

are some general considerations regarding members of the regression family.  

First, consider Brosius’s least squares development (LS) method since it serves to highlight some 

advantages and disadvantages of regression methods. Figure 10 and Figure 11 make it obvious that 

LS is by far the worst method during the period of change, but that it responds much faster than any 

other method after the change, quickly becoming one of the most accurate methods. To understand 

this, consider how LS works. The LS method begins with the oldest accident years and uses data at 

the 1n  evaluation period to project data at the thn  evaluation period (or ultimate) by fitting a line 

through least squares. Subsequently, this projection is added to the vector of thn  evaluation (or 

ultimate) values and with the addition of another accident year, data at the 2n  evaluation period is 

used to project ultimate loss at the thn  evaluation period, and so forth. This approach is reasonably 

accurate as long as future actual observations are within the range of historical observations. But 
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when future values fall outside of the range of history, the model must extrapolate and errors are 

increased. This is true of most regression methods; however, the problem is exacerbated by the LS 

method as the predictions are iteratively fed back into the model in such a way that the error 

propagates itself.  

However, immediately after the change, when conditions stabilize, the LS and other regression 

methods correct themselves with varying degrees of responsiveness. This is an example of the 

stability/responsiveness trade-off as determined by the number of parameters in the model. In 

general (but not always), methods with more parameters are unstable during changing conditions 

(i.e., they are greatly affected by the changing conditions and produce inaccurate results), but very 

responsive after the conditions stabilize. As the number of parameters increases, the amount of 

variability in the dependent variable understood and explained increases as each successive 

parameter can mine for the residual relationship. However, when conditions are changing, these 

types of regression models overfit to the historical data (as described above) and produce more 

inaccurate results. Figure 10, in particular, provides an example of this. The LS method (2 

parameters) and Murphy’s least squares linear (Mur-LSL) parameterization (3 parameters) are less 

stable during the changing conditions and more responsive after than Murphy’s least squares 

multiplicative (Mur-LSM) parameterization (1 parameter), and the chain ladder method based on a 

simple average of all observations (CL SA-All).  

Consider now the multivariate (MV) method. This method actually performs very well during an 

increase in case reserve adequacy coupled with an acceleration in claim settlement rates as shown in 

Figure 10. However, the MV method performs rather poorly during a bubble in medical inflation as 

shown in Figure 11. In the simpler environment, the MV method overfits, however, in the more 

complex environment, the MV is able to combine disjoint pieces of information and perform 

relatively well.  



On the Accuracy of Loss Reserving Methodology 
 

Casualty Actuarial Society E-Forum, Fall 2010  25 

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

1 2 3 4 5 6 7 8 9 10

Testing Period

M
e

a
n

 A
b

s
o

lu
te

 E
rr

o
r

CL Paid SA-All

Mur Paid LSM

Mur Paid LSL

MV Paid 

LS Paid 

Workers' Compensation
Medical Benefits

Environment 6

 
Figure 10: Comparison of various regression methods during a permanent acceleration in claim 
settlement rates coupled with a permanent increase in case reserve adequacy.  
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Figure 11: Comparison of several regression-based methods during a bubble in medical inflation.  

If the actuary is able to find a regression method that does a good job of describing the loss 

process, then it may produce accurate results. However, regression methods just as often “overfit” 

historical data without providing a good prediction of future observations. As a cautionary note, 

Figure 12 compares each of Verrall’s three log-linear models, as described in Narayan and Warthen 

[15], with the CL method in environment 7 (bubble in the rate of medical inflation coupled with an 

increase in the frequency of serious injuries). The first model (LL1) has parameters that vary freely 
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by accident year and evaluation period. The second model (LL2) is restricted so that parameters vary 

only by evaluation period. The third model (LL3) is restricted further so that its parameters do not 

vary by accident period or evaluation period. 
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Figure 12: Comparison of Verrall’s log-linear models during a bubble in medical inflation coupled 
with a permanent increase in the frequency of serious injuries. 

What is immediately obvious about Figure 12 is the wide variation in results. This highlights the 

idea that while there are an infinite number of elegant regression models that adhere to theoretically 

desirable loss development properties, when these models are applied in practice to data that does 

not mimic those properties the results will be less than desirable. LL3, the simplest of these models, 

is unable to capture the complex interactions of the calendar year inflation with accident year 

increase in the frequency of serious claims and errs significantly until these changes work themselves 

out of the data. LL2 produces large and seemingly unpredictable errors, first underestimating the 

ultimate loss and then overestimating in later periods. LL1, the most complex of these models, is 

actually the most accurate during the change, however, it overestimates after the data have stabilized. 

At the end of the day, the actuary would have been better off using the CL method. 

This section further highlights how important it is that the actuary gather both qualitative and 

quantitative insights from underwriters, claims administrators, and other data sources to improve 

understanding as to what disturbances underlie the data and, consequently, which methods and 

parameterizations are likely to over-, under- or correctly estimate future unpaid loss amounts. 
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4.3.3 Frequency-severity methods 

In environment 2, a three-year bubble in medical inflation (see Figure 13), the FS method is 

distorted in a similar manner as the chain ladder method (not shown). The FL and AK methods 

start off well, but produce less accurate results a few years after the onset of higher inflation. This is 

mainly because these methods project future severities using exponential growth curves fit at each 

evaluation age, which are distorted by the kink in growth caused by a bubble in medical inflation. 
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Figure 13: Comparison of various frequency-severity methods during a bubble in medical inflation. 

In environment 6, a permanent change in case reserve adequacy combined with a permanent 

acceleration of claim settlement rates (see Figure 14), each of Ghezzi’s methods (GH1 and GH2) 

shows its merit. This is because these methods are especially effective when data undergo a change 

that has little or no effect on actual ultimate loss, but the change serves to confuse and distort more 

traditional loss reserving methodologies. As mentioned previously, the FS method performs 

similarly to the chain ladder and does not offer any advantage over the AK and FL methods. 
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Figure 14: Comparison of various frequency-severities methodologies during a permanent increase in 
case reserve adequacy coupled with a permanent acceleration in claim settlement rates. 

4.3.4 Berquist-Sherman adjustments 

We use the phrase “Berquist-Sherman adjustments” to refer to the family of methods that adjust 

historical triangles prior to projecting. These methods are particularly accurate in environments 

where the historical change is similar to the one for which the adjustment corrects. Of course, if the 

emerging environmental change is different from the historical adjustment, then the accuracy of 

these methods may suffer. 

The Berquist-Sherman adjustment for changes in case reserve adequacy (BSRA) method adjusts 

very well for changes in case reserve adequacy (see Figure 15). Furthermore, this method will also 

perform reasonably well during an acceleration in claim settlement rates (see Figure 16), where 

although there is no change in case reserve adequacy per se, there is a change in average outstanding 

case reserves. This may happen because the BSRA is a more stable (by construction) method and 

the adjustment for reserve adequacy somewhat dampens the high development factors that distort 

the chain ladder method on reported loss.  
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Figure 15: Comparison of the CL and BSRA method during a permanent change in case reserve 
adequacy. 

The Berquist-Sherman adjustment for changes in claim settlement rates (BSCS) and the Fleming-

Mayer adjustment for changes in claim settlement rates (FMCS) perform better than the chain ladder 

on paid loss when there are changes in settlement rates (see Figure 16). The BSCS and FMCS 

somewhat overreact to the change and underestimate the ultimate loss after the first testing period; 

neither method perfectly corrects for the change. This is perhaps evidence that in the presence of a 

change in the rate of claim settlement, the best estimate of ultimate loss lies somewhere between the 

BSCS and FMCS methods and the traditional CL method, which often in these situations are biased 

in opposite directions. Also shown is the BSRA, which beats the chain ladder but still overestimates 

the ultimate loss. 
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Figure 16: Comparison of the CL method with the Berquist-Sherman adjustments during a 
permanent acceleration in claim settlement rates to a higher plateau. 

Figure 17 compares these methods during an increase in the frequency of serious injuries 

(environment 3). This change in the mix of claim types results in a change in claim settlement rates 

as well as a change in case reserve adequacy, although these changes manifest from one accident year 

to the next, and do not affect historical accident years. Similar to the previous example, the adjusted 

methods perform better than the chain ladder as they are able to correct somewhat for the 

environmental change. This is an interesting result, because it suggests that it may be worthwhile to 

incorporate methods that use Berquist-Sherman adjustments even if the actuary does not have a 

strong reason to believe that there has been a significant change in case reserve adequacy or claim 

settlement rates.15 

                                               
15 This conclusion warrants further investigation, because it is also possible that these methods may overreact to noise in 
the data that is not indicative of changing case reserve adequacy of claim settlement rates. 
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Figure 17: Comparison of the CL method with the Berquist-Sherman adjustments during a 
permanent increase in the frequency of serious injuries. 

4.3.5 Case reserve methods 

As would be expected, case reserve methods are adversely affected during a change in case 

reserve adequacy. Figure 18 compares Atkinson’s case development (CD) method with the modified 

case development (MCD) method and Marker and Mohl’s backwards recursive case development 

(MM) method during a permanent increase in case reserve adequacy. Methods that use case reserves 

as the projection basis are more adversely affected than the CL method on reported loss because 

they lack the ballast provided by paid amounts, which are unaffected by changes in case reserves. 

The MM method is the most adversely affected because the distortion in case reserves not only 

distorts future predictions of case reserves, but it also distorts future predictions of payments based 

on projected case reserves (i.e., the error is compounded in the iterative projections of paid and case 

loss).  
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Figure 18:  Comparison of case reserve methods during a permanent increase in case reserve adequacy. 

What is not as obvious is that case reserve methods perform exceptionally well when there are 

similar distortions in both paid and reported triangles. Consider Figure 19, which compares the case 

reserve methods during a permanent increase in the frequency of serious injuries (environment 3). 

The CD and MCD methods project case reserves (which are unaffected in this environment) based 

on a function of the reported loss pattern and paid loss pattern. Both these patterns are lengthened 

due to the increase in frequency of serious injuries. However, the case development method is really 

only interested in the relative difference between the paid and reported pattern, not the nominal 

patterns. And since this difference is relatively unchanged in this environment, the CD and MCD 

methods are relatively unaffected.  
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Figure 19: Comparison of case reserve methods during a permanent increase in the frequency of 
serious injuries. 

The MM method is also relatively unaffected because an increase in the frequency of serious 

injuries drives up both the paid and case incremental severities as serious claims are more costly than 

average. However, because MM successively applies paid-on-prior case and case-on-prior case ratios, 

it is not as distorted since both numerator and denominator decrease at reasonably similar rates.16 

And the projection base, case reserves, adjusts to post-change levels more quickly than paid loss. 

However, if reported loss patterns are significantly more distorted than paid loss patterns (or 

vice versa), then the case reserve methods will be distorted. Figure 20 illustrates this phenomenon by 

comparing the case reserve methods during an acceleration in claim settlement rates. Coupled with 

this acceleration in claim settlement rates is an increase in the average case reserve as the claims that 

remain open are the larger, more complex cases.    

                                               
16 This is an aspect of this environment, and may not apply in all situations with an increase in the frequency of large 
claims. 
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Figure 20: Comparison of case reserve methods during a permanent acceleration in claim settlement rates. 

Finally, note that in Figure 18, Figure 19, and Figure 20 the MCD method performs marginally 

better than the CD method over all testing periods. This is because the MCD method incorporates 

information about the amount of loss paid to date, which the CD method ignores.   

4.3.6 Joint paid-reported methods 

The Munich chain ladder (MCL) method produces indications of ultimate loss that are nearly 

identical whether they are based on reported or paid loss amounts (see Figure 21, Figure 22, and 

Figure 23). However, those indications are often significantly less accurate than either the CL on 

paid loss or the CL on reported loss. There are several reasons for this phenomenon. The most 

obvious reason is that any distortion in loss development, whether it affects paid development (i.e., 

change in claim settlement rates) or reported development (i.e., change in case reserve adequacy) will 

always be captured as the MCL models paid and reported amounts simultaneously. For example, 

consider Figure 21, which compares the MCL and CL methods during a permanent increase in case 

reserve adequacy. 
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Figure 21: Comparison of the MCL and CL methods during a permanent increase in case reserve 
adequacy.  

Furthermore, the Munich chain ladder appears to magnify distortions to paid development, as 

any distortion in paid development is implicitly reflected in reported development. To see this, 

consider Figure 22 where the error in the MCL is close to the combined error of the individual CL 

methods. 
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Figure 22: Comparison of the MCL and CL methods during a bubble in the rate of medical inflation.  

Finally, note that in situations where there are no severe environmental distortions, although 
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there is still residual noise, the MCL will produce more accurate paid and reported projections. 

Generally speaking, the MCL is useful to smooth out small distortions in paid and/or reported 

development that are not expected to be indicative of a larger shift in development. Figure 23 

illustrates this phenomenon during a permanent acceleration in claim settlement rates. After the 

initial shock, the MCL responds much quicker than the CL on paid loss and is the most accurate 

method for testing periods 4 and subsequent (i.e., periods where there is no significant 

environmental distortion).      
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Figure 23: Comparison of the MCL and CL methods during a permanent acceleration in claim 
settlement rates. 

4.4 Findings by Environment 

4.4.1 Base environment (environment 1) 

In the base environment, both the historical and future loss development patterns are stable, and 

the only source of error is residual noise. All methods perform similarly well (i.e., minimal mean 

errors), but no method is completely accurate, because of noise. The extent to which they differ 

shows their susceptibility to noise. For example, the chain ladder applied to paid loss is generally less 

accurate than the chain ladder applied to reported loss. This is not surprising, because paid loss 

development factors from age 12 to ultimate are significantly greater than reported LDFs, and larger 

factors leave more room for residual noise to distort development patterns. Not shown here are the 

exposure-based BL and BF methods. These, not surprisingly, are among the most accurate (close to 
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5% mean absolute error) because they are stabilized by giving weight to an unbiased a priori estimate 

of ultimate loss. Figure 24 shows these results. 

The test results from the base environment illustrate the lowest potential level of mean absolute 

error possible for these methods under the residual noise levels assumed by our proxy data. Thus, 

for the rest of the environments, we should not expect to see levels of mean absolute error lower 

than we see here.  
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Figure 24: Comparison of various methods in the base environment.  

4.4.2 Bubble in the rate of medical inflation (environment 2) 

Figure 25 shows a comparison of various methods during a three-year bubble in medical 

inflation. Here paid severities are immediately affected; however, case severities respond more slowly 

as claims adjusters account for this new information. What is apparent is that methods based on case 

reserves or reported loss, such as the CL, MM, and MCD methods, show a significant delayed 

distortion, due to the lagged effect of higher inflation on case reserves that was assumed in the proxy 

data. Methods that perform well during the bubble include Murphy’s least squares multiplicative 

(Mur-LSM) and Taylor’s separation method (TS), possibly because these methods rely on more data 

points and are therefore more stable. The IA method performs poorly during the bubble, but it 

responds quickly after the rate of inflation reverts to its historical level, because the method relies on 

incremental payments and a short-term trend rate. If the actuary believes that recent inflation rates 

are likely to continue, then the IA with a short-term trend may be a good method. If the actuary 
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believes that future inflation will be similar to historical long-term inflation, then the IA with a long-

term trend may be preferable. Note that this environment is one of many where the data do not 

reveal the true nature of the change (i.e., specifically that it is only temporary rather than permanent) 

and other sources should be used to make an informed actuarial judgment. 
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Figure 25: Comparison of various methods during a bubble in medical inflation.  

4.4.3 Increase in the frequency of serious injuries (environment 3) 

Environment 3 consists of a permanent increase in the frequency of serious injuries. Although 

claim severities are unchanged within each injury type, there are increases in ultimate claim counts, 

ultimate average severities, and ultimate losses. 

Figure 26 isolates the mean error of the Adler-Kline claims closure model (AK) and the chain 

ladder method (CL). Both methods underestimate ultimate loss with the error gradually shrinking 

back to 0% error in the years after the change is complete. The CL underestimates because the 

increase in the frequency of serious injuries distorts the payment pattern, as serious claims report 

and close much slower than typical claims in our simulated data. 



On the Accuracy of Loss Reserving Methodology 
 

Casualty Actuarial Society E-Forum, Fall 2010  39 

-30.0%

-20.0%

-10.0%

0.0%

10.0%

20.0%

30.0%

1 2 3 4 5 6 7 8 9 10

Testing Period

M
e

a
n

 E
rr

o
r

CL Paid SA-3

AK Paid SA-3

Workers' Compensation
Medical Benefits

Environment 3

 
Figure 26: Comparison using the mean error statistic of the Adler-Kline claims closure model with 
the chain ladder method during and after an increase in the frequency of serious injuries.  

To understand the additional error in the Adler-Kline method, note first that it relies on 

projecting incremental closed claim counts based on estimates of ultimate claim counts. Therefore, 

the underestimation in ultimate claim counts leads to an underestimation of future incremental 

closed claim counts. This problem is further exacerbated by applying the slowdown in claims closure 

pattern. The AK method interprets this slowdown in claims closure incorrectly, and allocates too 

many of the projected ultimate claims to earlier evaluation periods and too few to mature evaluation 

ages. And since loss severities are generally smaller at earlier periods and larger at later evaluation 

periods, the AK method further underestimates ultimate loss.  
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Figure 27: Comparison of various methods during a permanent increase in the frequency of serious 
injuries.  

In Figure 27, we can see that the best performers in this scenario are the MM method, the MCD 

method, the BSCS and the BSRA method. As mentioned previously, the methods based on case 

reserves (MM and MCD) perform well in this environment, because although the loss payment and 

loss reporting patterns are distorted, there is less of a distortion in case reserve development.  

It is interesting that both Berquist-Sherman adjustments, although intended to adjust for calendar 

year effects, perform well in this environment, in which there is a change in the mix of claim types 

from one accident year to the next. The BSRA method performs well as the increase in the 

frequency of serious injuries effectively mimics a change in case reserve adequacy, at least for the 

most recent accident years, and the BSRA method is able to immediately adjust to this new level of 

reserving. The BSCS method also performs well as the increase in the frequency of serious injuries 

effectively mimics a change in claim settlement rate that the BSCS method is able to model. 

4.4.4 Increase in case reserve adequacy (environment 4) 

Figure 28 shows the results for environment 4, in which case reserve adequacy permanently 

increases to a higher plateau, although paid and ultimate losses remain unchanged. Because only case 

reserves are affected in this environment, methods that do not incorporate case reserves are 

unaffected, and so we have excluded most of them from the graph. However, the best-performing 

method is the BSRA method, which, although it relies on case reserves, is able to correct for this 

misleading change by restating the historical triangle at the latest year of case reserve adequacy. 
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Furthermore, as the BSRA method smoothes the historical data, it adds an additional layer of 

stability minimizing the long-run error relative to other methods such as the chain-ladder approach.  

Here the worst-performing method is the MM method since the distortion in case reserves not 

only distorts future predictions of case reserves, but it distorts future predictions of payments based 

on projected case reserves (i.e., the error is compounded in the iterative projections of paid and case 

loss). 

The CL method on reported loss and the MCD method are also affected. The MCD method is 

more adversely affected since it applies the computed development factors to case reserves in 

isolation rather than to reported loss, which is somewhat stabilized by the paid component of 

reported loss. 
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Figure 28: Comparison of various methods based on reported loss and/or case reserves during an 
environment of permanent increasing case reserve adequacy without an associated change in loss 
payments. The chain ladder on paid loss method is included as a base.   

4.4.5 Acceleration in claim settlement rates (environment 5) 

In this environment (see Figure 29), although there is a permanent acceleration in claim 

settlement rates, there is no change in the ultimate frequency or severity of claims. The FS method, 

which does not recognize this acceleration, overestimates the ultimate claim severity. In contrast, the 

AK method actually does quite well in this environment: since it models future incremental closed 

claims as a function of both ultimate counts and prior closed claims, it adequately responds to the 

acceleration in claim settlement rates.  
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In addition to the permanent acceleration in claim settlement rates, there is also a permanent 

increase in the average outstanding amounts (i.e., the claims that remain open are the more costly 

cases). This somewhat distorts those methods based on case reserve including the MM method and 

the CL method on reported loss. The MM method is more seriously distorted as it iteratively 

projects both case and paid amounts with paid amounts being very much affected in this 

environment (the case reserve development pattern is expected to change in this scenario). 

However, the MCD method is actually more accurate than the CL method on reported loss as it is 

able to adjust to the changing levels of case reserves. In addition to the MCD method, among the 

most accurate methods are the two Berquist-Sherman methods that are able to adjust for the several 

distortions in this environment.  
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Figure 29: Comparison of various methods during a permanent acceleration in claim settlement rates.  

4.4.6 Increase in case reserve adequacy with an acceleration in claim settlement rates 
(environment 6) 

This environment is a combination of environment 4, an increase in case reserve adequacy, and 

environment 5, an acceleration in claim settlement rates. 



On the Accuracy of Loss Reserving Methodology 
 

Casualty Actuarial Society E-Forum, Fall 2010  43 

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

1 2 3 4 5 6 7 8 9 10

Testing Period

M
e

a
n

 A
b

s
o

lu
te

 E
rr

o
r

CL Paid SA-3

CL Rept SA-3

IA Paid SA-3

BSCS Paid SA-3

BSRA Rept SA-3

Mur Paid LSM

MM Case SA-3

AK Paid SA-3

TS Paid 

MCD Case SA-3

Workers' Compensation
Medical Benefits

Environment 6

 
Figure 30: Comparison of various methods during a period of increasing case reserve adequacy, 
which plateaus at a permanently higher level coupled with a permanent acceleration in claim 
settlement rates.  

As Figure 30 shows, the permanent change in claim settlement rates is the more significant of the 

two distortions, and so the results of environment 6 are similar to those of environment 5. As a 

result, the least accurate methods are those based on unadjusted paid loss. The Berquist-Sherman 

adjustments and the AK method are among the most accurate methods. Interestingly, the MM 

method is more accurate here than in either environment 4 or 5, because the biases created by the 

two environments offset each other. As shown in Figure 31, the higher average case reserves of 

environment 4 cause MM to overestimate, and the faster claim settlement rate of environment 5 

cause MM to underestimate. 
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Figure 31: Comparison of various methods during a period of increasing case reserve adequacy, 
which plateaus at a permanent higher level coupled with a permanent acceleration in claim settlement 
rates.  

4.4.7 Bubble in the rate of medical inflation with an increase in the frequency of serious 
injuries (environment 7) 

This environment is a combination of environments 2 and 3. Here the IA and AK methods are 

distorted by the change in mix of claim types, and most other methods are distorted by the inflation 

bubble. One method that performs well during the period of change is Murphy’s least squares 

multiplicative model. The BSCS and BSRA methods perform well in the first two testing periods, 

prior to being distorted by the inflation bubble. 
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Figure 32: Comparison of various methods during a bubble in the rate of medical inflation coupled 
with an increase in the frequency of serious injuries.  

4.4.8 Change in loss ratio (environment 8) 

Figure 33 shows the mean error of various methods during and following a sharp, permanent 

change in the accident year loss ratio with no change in the mix of claims or the claims reporting, 

closing, payment, or reporting patterns. This simple environment, where loss doubles relative to 

exposures/premiums, provides insight into many of the traditional actuarial techniques. Note that 

the CL method is unaffected as this accident year shift has no effect on loss development patterns. 

The BL method is the worst-performing as it completely ignores loss information and relies entirely 

on the a priori estimate. The BF method performs slightly better than the BL method as it 

incorporates current loss amounts that reflect the higher level of loss. The BT method does slightly 

better as it gives twice as much weight to current loss amounts.  
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Figure 33: Comparison of various methods following a permanent shift in loss ratio.  

The Cape Cod (CC) method is also based on exposures, and as a result it underestimates ultimate 

loss. Unlike the BL, BF, and BT methods, it does respond to changing conditions by re-evaluating 

the expected loss ratio. The response rate is gradual, because the expected loss ratio has been 

parameterized based on a long-term average. 

The other methods shown (CLR, IA, TS, and MBF) incorporate loss trend, but in different ways. 

The modified Bornhuetter-Ferguson method initially matches the BF method, but in subsequent 

periods the expected loss ratio in the MBF is adjusted based on the observed loss trend in the latest 

four accident years. Once the accident year loss trend stabilizes, the MBF uses an accurate expected 

loss ratio and produces unbiased results. In this environment, a shorter-term trend rate would 

respond even more quickly. The incremental additive method relies on the loss trend observed 

based on payments in the latest four calendar years, and so the results are a bit worse than the MBF, 

because this environment is characterized by an accident year change. The CLR projects losses 

forward by fitting a trend line to columns of historical incremental paid losses, with trend rates 

calculated separately by evaluation age. Because the CLR uses long-term trend rates, it responds 

more gradually than the MBF or IA. Finally, Taylor’s separation (TS) method uses a blended trend 

(based on both calendar year and accident year components), and as a result it responds more 

quickly than the CLR but more slowly than the MBF or IA.  
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5. CONCLUSION 

Our observations and recommendations are intended to guide the actuary in evaluating the 

strengths and weaknesses of available loss reserving methods. While it is impossible to produce a 

fool-proof instruction guide for selecting actuarial methodologies, we envision that the practicing 

actuary will consider our recommendations within the context of the actuarial control cycle.  

At the start of this control cycle, the actuary reviews a carefully selected set of diagnostics and 

leading indicators compiled to assist with detection and interpretation of trends in the system. The 

review of diagnostics and leading indicators should be accompanied by insights from other sources 

such as claims administrators, underwriters, and advisory organizations, in order to guide the 

identification of characteristics of the current and expected future environment. Although it may not 

be possible to pinpoint the environment, the actuary may be able to narrow down the possibilities 

and assess the volatility or level of noise in the underlying data.  

After identifying characteristics of the environment and volatility of the data, the actuary can use 

general or specific observations from our analysis or similar work—either directly or by 

extrapolation of the conclusions contained within these sources—to identify suitable loss reserving 

methodologies. While we expect that the actuary’s focus will first be on the expected accuracy of the 

various methods in the environment at the time (the priority of this paper), it is also important the 

actuary consider the relative importance of other criteria, such as bias, stability, and responsiveness. 

Finally, the actuary should review the projections both in the short term using actual versus 

expected comparisons and in the longer term using hindsight testing. Actual versus expected 

analyses will allow the actuary to make minor corrections to optimize performance of the selected 

method (or methods). Hindsight testing allows the actuary to identify and subsequently correct for 

any systematic biases present in the data, the loss reserving methods considered, or the actuary’s 

assumptions. 

We hope that using the results of this paper, in the greater framework of the actuarial control 

cycle, will lead not only to more accurate projections of ultimate loss, but also help increase 

credibility of the actuarial profession by increasing documentation and arguments for selection of 

one methodology over another.  
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Appendix A – Loss Reserving Methods 
The following contains descriptions of various loss reserving methodologies considered and 

comments about their overall performance. The two-to-three letter parenthetical abbreviations are 
identifiers used to reference that specific method in our analysis. 
 
A.1 Adler-Kline Claims Closure Method (AK) 
The Adler-Kline claims closure method is a frequency-and-severity model where projected incremental 
closed claim counts are multiplied by projected incremental paid on incremental closed claim count 
severities. First, incremental closed claim counts are computed using disposal ratios; the disposal ratio is 
defined as the ratio of incremental closed claims to open claim counts. Open claim counts are developed 
by projecting reported claim counts to ultimate using the chain ladder method and then subtracting 
cumulative closed claim counts. Incremental closed claim counts are then projected by iteratively 
multiplying open claims by the disposal ratio and then updating the number of claims still open. 
Incremental paid on closed claim count severities are trended forward at each evaluation period. See 
Adler & Kline [1]. This method is typically applied in lines of business for which claims are reported 
rather quickly, such as coverages written on a claims-made basis.  
 

A.2 Bornhuetter-Ferguson Method (BF) 
The Bornhuetter-Ferguson method computes the outstanding loss as the product of the percentage of 
loss outstanding and an initial expected loss estimate. It sums this amount with the current cumulative 
loss amount to produce an estimate of ultimate loss. The initial expected loss estimate is the product of 
the a priori loss ratio with exposures. In our parameterization, the a priori loss ratio is equal to the loss 
ratio observed prior to the start of first environmental change. See Bornhuetter and Ferguson [4].  
 

A.3 Budgeted Loss Method (BL) 
The budgeted loss method computes ultimate loss as the product of an a priori loss ratio with exposures. 
In our parameterization, the a priori loss ratio is equal to the loss ratio observed prior to the start of first 
environmental change. See Brosius [5]. 
 

A.4 Berquist-Sherman Adjustment for Change in Claim Settlement Rate (BSCS) 
This method adjusts actual experience to a common level of claim settlement speed first by computing 
claims closure ratios, i.e., the ratios of closed claims to ultimate claims (computed by developing reported 
claim counts to ultimate). Then, the latest diagonal of claims closure ratios is assumed for all historical 
diagonals. Adjusted paid loss on closed claim count severities are computed using log-linear interpolation 
between the actual paid loss on closed claim count severities and the actual claims closure ratio. This is 
to find the implied paid loss severity on closed claims associated with the new claims closure ratio. See 
Berquist and Sherman [3]. 
 
A.5 Berquist-Sherman Adjustment for Change in Case Reserve Adequacy (BSRA) 
This method adjusts actual historical case reserves to a common level of reserve adequacy by de-trending 
the latest diagonal of the triangle of average case reserves per open claim by the trend in the average 
severity of paid loss on closed claims. See Berquist and Sherman [3]. 
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A.6 Benktander Method (BT) 
The Benktander method is a variant of the Bornhuetter-Ferguson method where instead of using the 
budgeted loss method as a prior, a credibility-weighted sum of the budgeted loss method with the chain 
ladder method is used. See Mack [11]. 
 

A.7 Stanard-Bühlmann or Cape-Cod Method (CC) 
The Cape-Cod method is a variant of the Bornhuetter-Ferguson method where the a priori loss ratio is 
computed as the simple average of the historical loss ratios. The historical loss ratios are computed as the 
ratio of the latest diagonal of loss to used-up exposure. Used-up exposure is the product of exposure and 
the percent of loss developed for the year. See Friedland [7]. 
 
A.8 Atkinson Case Reserve Development (CD) 
The chain ladder on case reserves method, as described by Atkinson [2], works by first selecting reported 
and paid loss development factors. Then, using the relationship between case reserves and paid and 
reported loss, the actuary derives case development factors from the paid and reported development 
factors. These case development factors are then applied to case reserves to project ultimate loss.  
 
A.9 Chain Ladder Method (CL) 
The chain ladder method we used is the traditional loss development method, whereby the change in 
cumulative loss from age to age is used to project the latest diagonal of the cumulative loss triangle. 
 
A.10 Bühlmann’s Complementary Loss Ratio Method (CLR) 
Bühlmann’s complementary loss ratio method computes incremental payments at each evaluation period 
by trending forward historical incremental payments at similar evaluation periods. These are then 
summed to provide an estimate of cumulative ultimate loss. See Pentikäinen and Rantala [17]. 
 
A.11 Fisher-Lange Claims Closure Method (FL) 
Fisher and Lange’s claims closure model is very similar to the Adler-Kline claims closure model. 
However, Fisher and Lange project incremental closed claims by using closure ratios that are the ratio of 
incremental closed claims to ultimate claims, where ultimate claims are computed by applying the chain 
ladder method to reported claim counts (as opposed to Adler and Kline who use disposal ratios that are 
the ratio of incremental closed claims to open claims). Incremental paid on incremental closed severities 
are trended forward at each exposure period. The product of the projected incremental closed claim 
counts with the projected incremental paid on incremental closed claim count severities then produces 
the reserve estimate. See Fisher and Lange [6]. Fisher and Lange advocate using report-year data because 
there is no development on reported claim counts in this situation, obviating the need to project ultimate 
claim counts. However, the method can equally apply to accident-year data by developing reported claim 
counts to ultimate.  
 

A.12 Fleming-Mayer Adjustment for Change in Claim Settlement Rate (FMCS) 
The Fleming-Mayer Adjustment for change in claim settlement rates (FMCS) is similar to the Berquist-
Sherman adjustment for claim settlement rate (BSCS) in that it adjusts for changes in claim settlement 
rate. However, the FMCS applies to reported loss rather than paid loss. The paid component in the 
reported loss amounts are adjusted as they are in the BSCS; however, the case component is also 
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adjusted, in a similar way as the paid component, to reflect the fact that changes in claim settlement 
often have a ripple effect onto outstanding case amounts. See Fleming and Mayer [7]. 
 
A.13 Cumulative Frequency-Severity Method (FS) 
The basic frequency-severity approach included here works by projecting claim counts (frequency) to 
ultimate and projecting loss on claim count (severity) to ultimate using the chain ladder method. The 
product of these two then produces an estimate of ultimate loss. We have included both the “reported 
claim count/reported loss on reported claim count” variant as well as the “closed claim count/paid loss 
on closed claim count” variant. We choose this cumulative frequency-and-severity approach to contrast 
it with the various other incremental approaches included in our analysis including Fisher-Lange and 
Adler-Kline. 
 

A.14 Ghezzi’s Incremental Closed Claim Severity Method (GH1) 
Future incremental closed claim counts are projected by applying the percentage of claims closed pattern 
to open claims. To compute open claims, ultimate claim counts are projected by applying the chain 
ladder method to reported claim counts. Future incremental paid loss on incremental closed claim count 
severities are computed by trending forward historical incremental paid on incremental closed claim 
count severities using exponential growth. To produce an estimate of outstanding loss, the actuary 
multiplies the vector of projected incremental paid on incremental closed claim count severities with the 
vector of projected incremental closed claims. The dot-product of these amounts produces an estimate 
of reserves. The key to this method (as well as Ghezzi’s Ultimate Unclosed Claim Severity Method) is 
that only ratios prior to the significant environmental change are considered. See Ghezzi [9]. 
 
A.15 Ghezzi’s Ultimate Unclosed Claim Severity Method (GH2) 
Unpaid loss amounts are computed by estimating preliminary ultimate loss amounts using the chain 
ladder method on either paid or reported loss amounts (we used reported loss); and subtracting paid 
amounts. Similarly, unclosed claims are computed by estimating ultimate claim counts using the chain 
ladder method on either closed or reported claim counts (we used reported claim counts). Ghezzi’s 
ultimate unclosed claim severity method then works by trending the ratios of unpaid loss to unclosed 
claims using exponential growth. The loss reserve is then computed by multiplying these trended ratios 
by current unclosed claim counts. The key to this method (as well as Ghezzi’s incremental closed claim 
severity method above) is that only ratios prior to the significant environmental change are considered. 
See Ghezzi [9]. 
 
A.16 Incremental Additive Method (IA) 
The incremental additive method uses both the triangle of incremental losses and the exposure vector 
for each accident year as a base. Incremental additive ratios are computed by taking the ratio of 
incremental loss to the exposure (which has been adjusted for the measurable effect of inflation), for 
each accident year. This gives the amount of incremental loss in each year and at each age expressed as a 
percentage of exposure, which we then use to square the triangle. 
 

A.17 Incremental Multiplicative Method (IM) 
The incremental multiplicative method uses incremental loss to compute incremental loss development 
factors, sometimes referred to as “decay ratios,” which are defined to be the ratio of incremental loss at a 
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later age to the incremental loss at an earlier age. With these loss development factors it is possible to 
extrapolate future incremental payments as means of squaring the triangle. 
 
A.18 Verrall’s Log-Linear Methods (LL1, LL2, LL3) 
Pentikäinen and Rantala [17] include three log-linear regression models with varying numbers of 
parameters in their analysis. For comparison purposes, we have chosen to include these models, as 
described on page 184 of the above. For greater detail, we refer the reader to Verrall [25]. We refer to 
these three models as LL1, LL2 and LL3, respectively, based on the order of presentation in Pentikäinen 
and Rantala [17]. 
 

A.19 Brosius’s Least Squares Development (LS) 
Least squares development as described by Brosius iteratively regressed ultimate loss on cumulative loss 
at successive maturity starting with the maturity one evaluation period prior to ultimate. Each successive 
regression produces one more estimate of ultimate loss that is used in the next regression. See Brosius 
[5].  
 
A.20 Modified Bornhuetter-Ferguson (MBF) 
The modified Bornhuetter-Ferguson method is identical to the Bornhuetter-Ferguson method except 
that the initial expected loss estimate is the average of the prior years’ ultimates (rather than the product 
of an a priori loss ratio with exposures). We have trended the initial expected loss estimate to adjust for 
growth in exposures. See Pentikäinen and Rantala [17]. 
 
A.21 Munich Chain Ladder (MCL) 
The Munich chain ladder method we implemented is identical to the basic method described in Quarg 
and Mack [18]. However, we allowed the initial selection of parameters to be based on simple and 
volume-weighted averages of less than all years (e.g., volume-weighted average of latest 3 sets of 
observed data points).  
 

A.22 Marker-Mohl Backwards Recursive Case Development Method (MM) 
The backwards recursive case development method works by first computing the percentage of loss paid 
(to case reserves in the previous period) and the percentage of case reserves (to case reserves in the 
previous period) at each age. These are then iteratively applied to case reserves so as to produce case 
reserves and paid losses at each age. See Marker and Mohl [13]. This method is typically applied in lines 
of business for which claims are reported rather quickly, such as coverages written on a claims-made 
basis.  
 
A.23 Murphy’s Family of Chain Ladder Parameterizations (Mur) 
As part of his 1994 work, Daniel Murphy outlines five possible parameterizations of the chain ladder 
method. We abbreviate them as follows: (1) LSL  least squares linear, (2) LSM  least squares 
multiplicative, (3) SA  simple-average development, (4) VW  weighted-average development, and (5) 
GA  geometric-average development. See Murphy [14] for exact solutions of each parameterization. 
The last three of these are equivalent to a chain ladder method using various types of averages of all 
historical observations. 
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A.24 Multivariate Regression Development Method (MV) 
A great variety of multivariate regression models is suggested in the literature. While it would be 
extremely difficult to include all varying combinations of dependent and independent variables, we have, 
as a proxy, included the multivariate regression model. In this model, cumulative loss is regressed on case 
reserves and cumulative payments in the prior period to develop an estimate of loss development 
factors. These are then applied successively to the latest diagonal of loss (a la the chain ladder method) in 
order to project ultimate loss.  
 
A.25 Taylor’s Separation Method (TS) 
Taylor’s separation method (TS) attempts to “separate” the calendar year inflation effect from the 
evaluation period development effect. Our implementation is similar to that in Taylor [23]. 
 
A.26 Weller’s Algebraic Method (WA) 
Weller’s algebraic method (WA) describes the claims reserve triangle as a system of linear equations 
involving various unknown parameters represented the percentage paid or reported at various 
evaluations. These linear equations can be iteratively solved to establish development factors that can be 
used to project ultimate losses. See Weller [26]. 
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Appendix B – Loss Reserving Method Families 

LOSS RESERVING METHODS CLASSIFIED BY FAMILY 

 

Family Methods 

Exposure-Based Methods (1) Budgeted Loss Method (BL) 
(2) Bornhuetter-Ferguson Method (BF) 
(3) Modified Bornhuetter-Ferguson Method (MBF) 
(4) Benktander Method (BT) 
(5) Cape-Cod Method (CC) 

Regression Methods (1) Least Squares Development (LS) 
(2) Murphy’s Least Squares Linear Parameterization (Mur-LSL)  
(3) Murphy’s Least Squares Multiplicative Parameterization (Mur-LSM) 
(4) Multivariate Regression (MV) 
(5) Verrall’s Log-Linear Models (LL1, LL2, LL3) 

Frequency-Severity Methods (1) Adler-Kline Claims Closure Model (AK) 
(2) Fisher-Lange Claims Closure Model (FL) 
(3) Ghezzi’s Incremental Closed Claim Severity Method (GH1) 
(4) Ghezzi’s Ultimate Unclosed Claim Severity Method (GH2) 
(5) Cumulative Frequency-Severity Method (FS) 

Case-Reserve Methods (1) Marker-Mohl Backwards Recursive Case Development (MM) 
(2) Atkinson Case Development (CD) 
(3) Modified Atkinson Case Development (MCD) 

Incremental Methods (1) Incremental Multiplicative Method (IM) 
(2) Incremental Additive Method (IA) 
(3) Bühlmann’s Complementary Loss Ratio Method (CLR) 

Joint Paid-Reported Models (1) Munich Chain Ladder (MCL) 
Berquist-Sherman Adjustments (1) Berquist-Sherman adjustment for case reserve adequacy (BSRA) 

(2) Berquist-Sherman adjustment for claim settlement rate (BSCS) 
(3) Fleming-Mayer adjustment for claim settlement rate (FMCS) 

Miscellaneous (1) Taylor’s Separation Method (TS) 
(2) Weller’s Algebraic Method (WA) 
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Appendix C – Environments 

The following appendix contains descriptions of the various environments we considered. Each 
of these environments describes one or two changes which are common to the workers 
compensation line of business (as well as many other lines). However, the reader should note that 
these constructed environments are to some degree simplifications of the real world, which would 
include a combination of many of these changes in tandem.  
 
C.1 Base environment (environment 1) 

In the base scenario, exposures grow gradually at 1% from one accident year to the next, and claim 
frequency is constant. Claim reporting speed, claim payment speed, and claim closure speed are each 
consistent over time. Claim payments increase gradually with inflation, with case reserves moving in 
tandem (cost inflation is assumed at 5% per annum for medical on a calendar-year basis). The 
resulting claims and loss development patterns generally align with recent workers’ compensation 
medical loss development patterns in California. 
 
C.2 Bubble in the rate of medical inflation (environment 2) 

In this environment, calendar-year medical inflation is 15% in the first three testing periods (as 
compared to 5% historically). For the fourth and subsequent testing periods, calendar-year medical 
inflation returns to the original 5% level. The changes apply consistently to all medical costs, 
independent of injury type. A practical example of this scenario would be that of runaway medical 
costs that are subsequently tamed by the implementation of treatment guidelines. Paid losses 
immediately reflect the increase and subsequent drop in medical inflation rates, whereas case 
reserves respond more gradually, lagging by three periods. Claim reporting speed and claim closure 
speed are unchanged from the base environment. 
 
C.3 Increase in the frequency of serious injuries (environment 3) 

In relation to the base environment, this environment features an approximate 75% increase in the 
frequency of serious claims, which occurs evenly over the course of three accident years 
(corresponding with the first three testing periods). Thereafter, the claim frequency remains at this 
elevated level. Severities for each injury type, patterns by injury type and the frequency of other 
injury types are unaffected. 
 
C.4 Increase in case reserve adequacy (environment 4) 

In this scenario, case reserve adequacy increases relative to the base scenario. The change occurs 
over the course of two calendar years (corresponding with the first two testing periods), after which 
case reserve adequacy remains at the higher level. This change applies consistently to all injury types. 
It does not affect any ultimate levels or the rate of payments or claim closures. 
 
C.5 Acceleration in claim settlement rate (environment 5) 

In this environment, the speed at which claims are settled increases. This change causes claims to be 
paid and closed earlier than in the base environment. The earlier closure of claims results in fewer 
payments at later ages, resulting in reduced ultimate losses compared to the base environment. The 
change applies to all injury types. In addition to speedier claim settlements, there is an increase in the 
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incremental paid amounts per claim at each stage of development. Also, as the claims being settled 
are likely to be the less serious of the open claims, there are also small increases in the observed 
average case reserve per open claim (without any change in case reserving adequacy). The 
acceleration in claim settlement rates and the corresponding changes in severities take place over 
three years (corresponding with the first three testing periods). In the fourth year, claim settlement 
rates stabilize at rates observed in the third year (but still higher than historical norms). Similarly, 
paid severities and average case reserves on open severities stabilize at levels observed in the third 
year. 
 
C.6 Increase in case reserve adequacy with an acceleration in claim settlement rates 
(environment 6) 

This environment is a combination of the above fourth environment (permanent increase in case 
reserve adequacy) with the fifth environment (permanent acceleration in claim settlement rates). In 
addition to more claims being settled sooner with a higher average outstanding case severities (i.e., 
environment 5), case adjusters overreact to this shift and permanently over-reserve on the few large 
claims that remain open. 
 
C.7 Bubble in the rate of medical inflation with an increase in the frequency of serious 
injuries (environment 7) 

This environment is a combination of the above second environment (bubble in the rate of medical 
inflation) with the third environment (permanent increase in the frequency of serious injuries). 
 
C.8 Change in loss ratio (environment 8) 

In this environment, claim counts and losses increase relative to premium/exposures yet severities 
remain unchanged. This change occurs suddenly in the first testing period, and losses remain at the 
elevated level in subsequent testing periods. This simple environment models a change in loss ratio 
(i.e., as is present in loss ratio cycles) and is used to highlight (i) the effect of accident year changes 
that do not affect loss development patterns and (ii) the how exposure-based methods are adversely 
affected in the absence of correct a priori loss estimates.   
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Appendix D – Results graph interpretation 
For the most part, we have used the same graph to present results. The following describes the 
various components of this graph and how it should be read.   
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(1) Y-axis:  this will reflect either the “Mean Error” (i.e., measuring bias and accuracy) or "Mean Absolute 
Error" (i.e., measuring accuracy). Error is defined as the projected ultimate loss for the latest accident year 
(i.e., from age 12 to ultimate) minus the actual ultimate loss, expressed as a percentage of the actual ultimate 
loss. If a method overestimates an ultimate loss of 100 by 10, then the error would be 10%. Values close to 0 
are optimal; values far from 0 indicate distortions.  
(2) X-axis:  testing period 1 represents the latest accident year one year after the start of the environmental 
change; testing period 2 represents the latest accident year two years after the start of the environmental 
change, and so on. So, if testing period 1 is accident year XX at 12/31/XX (at which point it is 12-months-
old), then testing period 2 is accident year XX+1 at 12/31/XX+1 (at which point it is also 12-months-old). 
Most environmental changes take place over the first four testing periods with the data stabilizing in the fifth 
and subsequent periods. Each testing period measures the same test statistic, which is the error from age 12 
to ultimate (i.e., the latest accident year).  
(3) Right header:  the right header provides three pieces of information. The first line indicates the line of 
business (i.e., workers compensation). The second line indicates the type of data (i.e., medical benefits). The 
third line indicates the environment being tested.  
(4) Legend:  the legend maps the lines with each method. Each method is described by four pieces of 
information. The first two-to-four letters indicate the loss reserving method (i.e., CL indicates the Chain 
Ladder method and IM is the incremental multiplicative method). The next word indicates to what data the 
method applies (i.e., paid, reported, case reserves, or exposure data). The next few letters describe the 
parameterization (i.e., SA indicates a simple average, VW indicates a volume-weighted average, and the 
number identifies the number of calendar years of loss development factors used to parameterize the loss 
reserving model.   
(5) Reading the graph:  ideally, we are looking for methods that perform well during the change (i.e., small 
errors in testing periods 1-3), but also important are responsive methods that quickly self-correct after the 
change (i.e., sharply sloped lines in testing periods 4-7), methods that are relatively stable throughout the 
testing period (i.e., flat lines in testing periods 1-10), and methods that are biased in opposite directions (i.e., 
lines that show mirror image mean errors above and below 0).  
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Appendix E – Accuracy Report Card 

Grading of the methods’ average accuracy over the second, third, and fourth testing periods in 
various environments based on a bell curve, with grade thresholds selected judgmentally (A is best; F 
is worst). 
 

    Environment 
Family Abbr. Data Param. 1 2 3 4 5 6 7 8 

Chain-Ladder CL Paid SA-3 D C C C F F B B 
Chain-Ladder CL Reported SA-3 C C B C C C B A 
Exposure BL Exposure N/A A C F A C C F F 
Exposure BF Paid SA-3 A C F A C C D F 
Exposure BT Paid SA-3 A B D A C C D F 
Exposure CC Paid SA-3 A A D A C C D F 
Exposure MBF Paid SA-3 C C C B F F C D 
Exposure BF Reported SA-3 A B D A C C D F 
Exposure BT Reported SA-3 A A D B C C C D 
Exposure CC Reported SA-3 A A D B C C C D 
Exposure MBF Reported SA-3 B C C C C C C D 
Frequency-Severity AK Paid SA-3 C B D B B B B A 
Frequency-Severity FL Paid SA-3 C B D B B B B A 
Frequency-Severity GH1 Paid SA-3 F C D D C C D C 
Frequency-Severity GH2 Paid SA-3 B A D B A A C A 
Frequency-Severity FS Paid SA-3 D C C C F F B B 
Frequency-Severity FS Reported SA-3 C C B C C C B A 
Berquist-Sherman BSCS Paid SA-3 B C A A B B C A 
Berquist-Sherman BSRA Reported SA-3 B C A A B A C A 
Berquist-Sherman FMCS Reported SA-3 B C A C C B C A 
Case CD Case SA-3 B C A F B A C A 
Case MCD Case SA-3 B C A F A B C A 
Case MM Case SA-3 C C A F C B C A 
Incremental CLR Paid N/A F C D C D D C F 
Incremental IA Paid SA-3 C F C C D D F F 
Incremental IM Paid SA-3 D F C C D D D B 
Incremental CLR Reported N/A F D D C C C B D 
Incremental IA Reported SA-3 C F C D B B F F 
Incremental IM Reported SA-3 C F B D B B F B 
Joint Paid-Reported MCL Paid SA-3 C D B D C F C A 
Joint Paid-Reported MCL Reported SA-3 C D B D D F C A 
Regression LL1 Paid LS-All D B C C F F A B 
Regression LL2 Paid LS-All C B D B D D B D 
Regression LL3 Paid LS-All F C F F A A D F 
Regression LS Paid LS-All D F C C F F F C 
Regression Mur Paid LSL-All D D C C F F C B 
Regression Mur Paid LSM-All C B C C F F A B 
Regression MV Paid LS-All C D B C C C C B 
Regression LL1 Reported LS-All C B B C B C A A 
Regression LL2 Reported LS-All B C C C B B B C 
Regression LL3 Reported LS-All F B F D C B C D 
Regression LS Reported LS-All D F C D C C F C 
Regression Mur Reported LSL-All C D B C C C C B 
Regression Mur Reported LSM-All C A B C C C A A 
Regression MV Reported LS-All C D A D B B C A 
Miscellaneous WA Paid All D C C C D D D D 
Miscellaneous TS Paid All C B C B D D B C 
Miscellaneous WA Reported All D D D F C D F F 
Miscellaneous TS Reported All B B C C C C A C 
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Appendix F – Bias Report Card 

Methods’ average bias categorized based on mean error over the second, third, and fourth testing 
periods (H+: 15% or greater, H: between 5% and 15%, U: between -5% and 5%, L: between -15% 
and -5%, L-: below -15%).  
 

    Environment 
Family Abbr. Data Param. 1 2 3 4 5 6 7 8 

Chain-Ladder CL Paid SA-3 U H+ L U H+ H+ H U 
Chain-Ladder CL Reported SA-3 U H+ U H H H+ H U 
Exposure BL Exposure N/A U L- L- U H+ H+ L- L- 
Exposure BF Paid SA-3 U L- L- U H+ H+ L- L- 
Exposure BT Paid SA-3 U L- L- U H+ H+ L- L- 
Exposure CC Paid SA-3 U L L- U H+ H+ L- L- 
Exposure MBF Paid SA-3 U H+ L U H+ H+ H H+ 
Exposure BF Reported SA-3 U L- L- U H+ H+ L- L- 
Exposure BT Reported SA-3 U L L- U H H+ L- L- 
Exposure CC Reported SA-3 U L L- U H H+ L- L- 
Exposure MBF Reported SA-3 U H+ U H H H+ H H+ 
Frequency-Severity AK Paid SA-3 U H L- U L L L- U 
Frequency-Severity FL Paid SA-3 U H+ L- U U U L U 
Frequency-Severity GH1 Paid SA-3 U L- L- U H H L- U 
Frequency-Severity GH2 Paid SA-3 U U L- U U H L- U 
Frequency-Severity FS Paid SA-3 U H+ L U H+ H+ H U 
Frequency-Severity FS Reported SA-3 U H+ U H H H+ H U 
Berquist-Sherman BSCS Paid SA-3 U H+ U U L L H+ U 
Berquist-Sherman BSRA Reported SA-3 U H+ U U H H H+ U 
Berquist-Sherman FMCS Reported SA-3 U H+ U H L L H+ U 
Case CD Case SA-3 U H U H+ L U H U 
Case MCD Case SA-3 U H+ U H U H H U 
Case MM Case SA-3 U H+ U H+ L- L H U 
Incremental CLR Paid N/A U H+ L- U H+ H+ L- L- 
Incremental IA Paid SA-3 U H+ U U H+ H+ H+ H+ 
Incremental IM Paid SA-3 U H+ L U H+ H+ H+ U 
Incremental CLR Reported N/A U H+ L- H H+ H+ L L- 
Incremental IA Reported SA-3 U H+ H H H H H+ H+ 
Incremental IM Reported SA-3 U H+ U U U U H+ U 
Joint Paid-Reported MCL Paid SA-3 U H+ U H L L- H U 
Joint Paid-Reported MCL Reported SA-3 U H+ U H L- L- H U 
Regression LL1 Paid LS-All U H L U H+ H+ H U 
Regression LL2 Paid LS-All U H L- U H+ H+ L- L- 
Regression LL3 Paid LS-All L- L- L- L- U U L- L- 
Regression LS Paid LS-All U H+ L U H+ H+ H+ U 
Regression Mur Paid LSL-All U H+ L U H+ H+ H+ U 
Regression Mur Paid LSM-All U H L U H+ H+ U U 
Regression MV Paid LS-All U H+ U H H+ H+ H+ U 
Regression LL1 Reported LS-All U H L H H H+ U U 
Regression LL2 Reported LS-All U H+ L- H H H L L- 
Regression LL3 Reported LS-All L- L L- L L- L L- L- 
Regression LS Reported LS-All U H+ U H H H+ H+ U 
Regression Mur Reported LSL-All U H+ U H H H+ H+ U 
Regression Mur Reported LSM-All U U U H H H+ U U 
Regression MV Reported LS-All U H+ U H U U H+ U 
Miscellaneous WA Paid All U L- L- U H+ H+ L- L- 
Miscellaneous TS Paid All U H L- U H+ H+ L L 
Miscellaneous WA Reported All U L- L- H H H+ L- L- 
Miscellaneous TS Reported All U H L H H H+ L L 
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Appendix G – Abbreviations and notation 

 
Miscellanea: 
LDF, Loss development factor 
SA, Simple average 
SA-3, Simple average of the latest three observations 
SA-All, Simple average of all historical observations 
VW, Volume-weighted average 
VW-3, Volume-weighted average of the latest three observations 
WCIRB, Workers’ Compensation Insurance Rating Bureau of California 
 
Loss Reserving Methods: 
AK, Adler-Kline claims closure method 
AM, Weller’s algebraic reserving method 
BF, Bornhuetter-Ferguson method 
BLM, budgeted loss method 
BT, Benktander method 
CC, Stanard-Bühlmann or Cape Cod method 
CD, Atkinson chain ladder on case reserves method 
CL, chain ladder method 
CLR, Bühlmann’s complementary loss ratio method 
BSCS, Berquist-Sherman adjustment for the change in claim settlement rate method 
BSRA, Berquist-Sherman’s adjustment for reserve adequacy method 
FL, Fisher-Lange claims closure method 
FMCS, Fleming-Mayer adjustment for change in claim settlement rate 
FS, cumulative frequency-severity method 
GH1, Ghezzi’s incremental closed claim severity method 
GH2, Ghezzi’s ultimate unclosed claim severity method 
IA, incremental additive method 
IM, incremental multiplicative method 
LL1, Verrall’s log-linear method #1 
LL2, Verrall’s log-linear method #2 
LL3, Verrall’s log-linear method #3 
LS, Brosius’s least squares development method 
MBF, modified Bornhuetter-Ferguson method 
MCD, modified Atkinson chain ladder on case reserves method 
MCL, Munich chain ladder 
MM, Marker & Mohl’s backwards recursive case development method 
MV, multivariate regression method 
Mur-LSL, Murphy’s family of parameterizations (least squares linear) method 
Mur-LSM, Murphy’s family of parameterizations (least squares multiplicative) method 
TS, Taylor’s separation method 
WA, Weller’s algebraic reserving method 
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Including the Death, Disability, and Retirement Policy 

Provision 
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______________________________________________________________________________ 

Abstract. Writers of physicians professional liability (PPL) claims-made coverage typically offer a death, 
disability and retirement (DDR) provision within their policy language, stating that, in the event of one of these 
three described events, an extended reporting endorsement (ERE) will be provided to the insured without 
additional premium charge.  The current methodology for deriving an indicated DDR reserve is time-
consuming, leveraged, and uncertain as a result of its reliance on calendar period projections up to 50 years 
beyond the evaluation date.  This monograph proposes a fundamentally different methodology for developing 
an indicated DDR reserve that addresses these concerns. 
 
A related methodology for pricing the DDR policy provision will also be presented. 
 
In addition, two methodologies that may be used to develop an indicated loss and loss adjustment expense 
(LAE) reserve associated with issued EREs are presented. 
 
Keywords. Medical Malpractice—Claims-Made; reserving; reserving methods; Statutory Accounting Principles; 
unearned premium reserves. 

              

1. INTRODUCTION 

Medical professional liability (MPL) insurers and other carriers that write claims-made coverage 

typically also provide ERE coverage upon termination of an insured’s claims-made policy.  The 

ERE (commonly referred to as a “tail policy”) provides coverage for a claim reported after the 

expiration date of the insured’s last claims-made policy provided that the event giving rise to the 

claim occurred subsequent to the retroactive date of the insured’s claims-made coverage and prior to 

the non-renewal of that coverage. 

The cost of an ERE can be several times that of a mature claims-made policy, and consequently a 

significant expense.  For this reason, most insurers also offer DDR coverage for their physician 

insureds.  DDR coverage provides that the insured will receive an ERE without additional premium 

charge if the claims-made policy is terminated due to the insured’s death, disability, or retirement.1 

Statutory accounting provides that a loss and loss adjustment expense (LAE) reserve be held for 

any ERE of unlimited duration (EREs of fixed duration require an unearned premium reserve prior 

to expiration of the endorsement, and a loss and LAE reserve for these EREs is held only for 

                                                           
1 Certain restrictions are often in place in the event of retirement, such as a minimum age and a minimum number of 

years that the physician must be continuously insured prior to qualification. 
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reported claims).2  In addition, the National Association of Insurance Commissioners (NAIC) 

requires insurers that offer DDR coverage to carry a reserve for yet-to-be-issued DDR EREs on 

in-force claims-made policies (referred to here as the “DDR reserve”).  The NAIC has entitled this 

the “extended reporting endorsement policy reserve” and requires that this reserve be “classified as a 

component part of the unearned premium reserve.”3 

Although included in the unearned premium reserve, the DDR reserve is within the scope of the 

Statement of Actuarial Opinion.4  Consequently, derivation of an indicated DDR reserve5 is of 

particular importance for appointed actuaries of insurers with this reserve component. 

To the best of the author’s knowledge, there has been no actuarial literature to date documenting 

a methodology for reserving for EREs.  There is limited actuarial literature discussing the DDR 

reserve, and what does exist provides an unnecessarily leveraged and complex methodology.  This 

monograph will address these two deficiencies in the current actuarial research. 

The remainder of the paper proceeds as follows.  Section 2 outlines two methodologies that can 

be used to develop an indicated loss and LAE reserve for issued EREs.  Section 3 discusses the 

source of the liability for the DDR policy provision and ways in which this liability can be viewed 

and consequently evaluated.  Section 4 outlines a proposed methodology for developing an indicated 

DDR reserve.  Section 5 compares the proposed methodology from Section 4 to the methodology 

commonly in place today for developing an indicated DDR reserve.  Section 6 provides an 

application of the idea underlying the proposed DDR reserving methodology to pricing the DDR 

policy provision.  Lastly, Section 7 summarizes the key points of the monograph. 

2. INDICATED LOSS AND LAE RESERVE FOR ISSUED ERES  

Two methods that may be used to develop an indicated loss and LAE reserve for issued EREs 

are described briefly as follows: 

                                                           
2 Statement of Statutory Accounting Principles 65-7. 
3 Statement of Statutory Accounting Principles 65-8. 
4 See the American Academy of Actuaries’ Committee on Property and Liability Financial Reporting’s Practice Note 

on Statements of Actuarial Opinion on Property and Casualty Loss Reserves as of December 31, 2009 (in particular, 
pages 38, 53 and 54). 

5 As is common in actuarial literature, the term “indicated reserve” will be used throughout this monograph to refer to 
indicated unpaid loss and LAE or to indicated unearned premium.  The term “reserve” should not be understood to 
refer to the reserve carried on the financial statements unless explicitly identified as such. 
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(1) Pure Premium Methodology – Develop an ERE pure premium to which a claim 

reporting pattern can be applied to allocate the yet-to-be-reported portion of this pure 

premium for each issued ERE.  Claims reported to date would need to be reserved for 

separately, typically by inclusion within the claims-made portion of the actuarial analysis; 

and 

(2) Triangular Methodology – Include the ERE claims within the occurrence analysis (i.e., 

within the occurrence triangle) on a policy year basis (i.e., the year in which the 

endorsement is issued).  If the company writes no occurrence business, or if the EREs on 

their own are of sufficient volume, ERE claims could be aggregated within their own 

triangle, again on a policy-year basis. 

The above two methodologies will be discussed further in the following two sections, 

respectively. 

2.1 Pure Premium Methodology 

Exhibit 1 outlines the pure premium methodology that may be used to derive an indicated loss 

and LAE6 reserve for unreported claims on EREs.  The fundamental idea of this methodology is to 

derive an a priori ultimate loss and LAE associated with each policy year (for EREs only), and from 

this, allocate a portion estimated to be unreported as of the evaluation date.  The details of Exhibit 1 

by column are as follows: 

(1) These are the number of issued EREs by policy year, adjusted by the classification of 

each physician insured to be base-class equivalent (i.e., each physician is counted 

according to the pricing relativity of his or her classification relative to the base class).  

The adjustment to a base-class equivalent basis is necessary, as this is the basis on which 

the pure premiums shown in Column (2) are developed.  Note that they are not 

adjusted to be mature claims-made (MCM) equivalent, another standard adjustment 

typically included in measuring exposure in MPL reserving.  This is because each ERE 

is assumed to have the same level of exposure regardless of the retroactive date of the 

claims-made policy to which it attaches (this assumption, and possible deviation from it, 

                                                           
6 If the actuary intends to develop a provision for unallocated loss adjustment expense (ULAE) costs associated with 

issued ERE policies elsewhere, the methodology can easily be modified to exclude ULAE from the pure premium 
and develop solely an indicated loss and allocated loss adjustment expense (ALAE) reserve. 
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is discussed further toward the end of this section).  It would also be appropriate to 

adjust each issued DDR ERE count by a factor intended to account for the reduction in 

exposure (due to reduced practice hours, lessened acuity of patients, etc.) that typically 

occurs prior to a physician’s retirement (80% is a commonly used adjustment factor for 

the exposure associated with DDR EREs relative to purchased EREs). 

(2) The indicated loss and LAE base-class ERE pure premium, developed for the most 

recent policy year on Exhibit 3, is typically based on the insurer’s claims-made book of 

business, along with its indicated or filed ERE factors.  To avoid overstating the pure 

premium, the actuary should take care to exclude claims reported on EREs from the 

indications.  Note that the pure premium for each of the older policy years is developed 

by de-trending the indication for the most recent year at an assumed trend rate of 5.0% 

per annum. 

(3) The multiplication of Columns (1) and (2) produces an a priori ultimate loss and LAE 

for each policy year.  Note that this ultimate loss and LAE is likely to be different from 

the ultimate loss and LAE that would be derived based on an analysis of ERE claims 

reported to date.  However, in this context, the liability associated with reported claims 

is unimportant, as we intend to use this indication of ultimate loss and LAE solely to 

derive a subsequent indication of loss and LAE on unreported claims alone. 

(4) The portion of ultimate loss and LAE estimated to stem from claims unreported at the 

current evaluation date is based on the trended claim reporting pattern given on 

Exhibit 5, which is itself based on the untrended reporting pattern on Exhibit 4.  Note 

that it is important to rely on a claim reporting pattern rather than a loss reporting pattern 

for these indications, as it is not the incurred but not reported (IBNR) reserve itself that 

we are deriving through this methodology, but solely the reserve associated with IBNR 

claims.  In other words, this provision should exclude the bulk reserve for any indicated 

deficiency in currently held case reserves.  The IBNR reserve itself could be either less 

than or greater than the reserve associated with IBNR claims, depending on the 

magnitude of the bulk reserve indicated for claims reported to date. 

The use of a trended reporting pattern reflects the assumption that the calendar year of 

claim payment will determine the cost level of the claim.  This is discussed further in [1].  

However, these calculations otherwise assume that no severity differential exists by report 
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lag.  The actuary should consider whether this assumption is reasonable for the book of 

business under review, as in many cases, larger claims may take longer to reach a verdict 

or settlement. 

(5) The multiplication of Columns (3) and (4) derives, by policy year, an indicated loss and 

LAE reserve for unreported claims on EREs on a gross of reinsurance basis. 

The above methodology could be adjusted to a net of reinsurance basis by use of an indicated 

pure premium net of reinsurance or by adjusting the indicated unpaid loss and LAE by a net-to-

gross ratio.  One would expect in most cases that these ratios would vary by accident year, 

depending on the reinsurance in effect at the given time. 

Note that the ERE pure premium used within this methodology is essentially an “average” ERE 

pure premium.  If the book of business being reviewed is in a steady state, this is likely a reasonable 

assumption.  However, if the book of business is expanding or undergoing other changes, it is 

possible that the expected pure premium associated with each policy year may be changing 

significantly as well. 

This could be the case, for example, for an insurer that only began writing PPL policies several 

years ago.  If the retroactive date for each of the issued policies was coincident with the initial 

effective date, the exposure associated with each issued ERE would be growing significantly over 

time, as the average length of time between the ERE effective date and the retroactive date grows.  

In this case, a different average ERE-to-claims-made factor should be derived by policy year, and it 

might be prudent to take into account the retroactive dates on each ERE in estimating exposure. 

A second potential pitfall that should be avoided is failing to account for issued DDR EREs in 

addition to purchased EREs.  This could result, for example, if a loss ratio methodology rather than 

a pure premium methodology were used to develop the a priori ultimate loss and LAE by policy 

year.  Unless the premium used was adjusted to reflect DDR EREs written (which can be half or 

more of issued EREs), such a methodology could significantly understate the reserve associated with 

unreported claims on EREs.  For the same reason, the actuary should also take care that issued ERE 

counts reflect issued DDR EREs, in addition to purchased EREs. 

As mentioned above, under the pure premium methodology, a separate reserve indication will 

need to be derived for reported claims on EREs.  This is typically done by including claims reported 

to date on EREs in the analysis of the reserve for claims-made policies.  Both claims reported on 
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claims-made policies, as well as claims reported on EREs, would be included in the analysis on a 

report-year basis. 

2.2 Triangular Methodology 

If a sufficient volume of ERE claims is available (or if the company has an occurrence book of 

business with which the ERE claims can be combined), a standard actuarial analysis can be 

performed on the reported ERE claims to develop an indicated liability for both reported and 

unreported claims on EREs.  Generally, including ERE claims in a triangle separate from the 

occurrence business is considered preferable, since the development patterns exhibited by each of 

these policy types can be materially different.  For many companies, the proportion of EREs written 

relative to occurrence policies could vary over time, possibly having a significant impact on the 

analysis.  However, for many companies, there is an insufficient volume of ERE claims to analyze 

EREs on their own, and including these claims with the occurrence business (or opting for the pure 

premium methodology described above) is necessary. 

In performing a triangular analysis of the liability associated with ERE claims, it is important to 

organize the ERE claims reported to date on a policy year basis.  Organizing the claims on an 

accident-year basis (as is sometimes done in error, possibly out of confusion due to including these 

claims with the occurrence business), would effectively develop a reserve for all claims to be 

reported on EREs that have occurred as of the evaluation date, regardless of whether an ERE to 

cover such a claim has been written.  This would result in a possibly significant overstatement of the 

indicated reserve.7 

3. THE LIABILITY FOR THE DDR POLICY PROVISION 

The methodology proposed within this monograph for derivation of an indicated DDR reserve is 

based on a different perception of the source of the liability for the DDR policy provision than the 

current methodology.  This merits further discussion before proceeding to the details of the 

proposed methodology. 

                                                           
7 Organization of ERE claims by policy year also has the benefit of being consistent with the NAIC’s Annual 

Statement instructions for Schedule P, which require ERE premium and claims to be included on a policy year basis 
within the MPL-Occurrence section (see the Annual Statement instructions, under the heading Schedule P-Parts 1A 
through 1T). 
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The following chart demonstrates four categories in which unreported claims on an in-force 

claims-made book of business may fall: 

 
Unreported Claims on In-Force Claims-Made Book of Business 
 Occurred Not Yet Occurred 

To Be Reported under 
Renewal Claims-Made Policy 

  

To Be Reported 
on ERE 

  

 

As shown by this chart, unreported claims may stem from an event that has either occurred as of 

a given evaluation date or has not yet occurred.  Once reported, the claim will either be reported on 

a renewal of the in-force claims-made policy (or on the unexpired portion of the claims-made policy 

in-force), or on an ERE issued at the time the insured’s last claims-made policy is non-renewed 

(assuming such an ERE is issued; otherwise, the insurer would have no liability for a claim reported 

after the date of non-renewal). 

Next, we overlay on this chart a visual representation of two ways of viewing the DDR liability: 
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Unreported Claims on In-Force Book of Business 

 Occurred Not Yet Occurred 
To Be Reported under 

Renewal Claims-Made Policy 
   

To Be Reported 
on ERE 

  

 

 Claims for which only the proposed methodology reserves 

 Claims for which only the current methodology reserves 

 Claims for which both methodologies reserve 

 

As shown above, the methodology proposed in this monograph (to be discussed in detail in the 

following section) assumes that the liability associated with the DDR policy provision stems only 

from claims that have occurred as of the given evaluate date, regardless of whether such a claim will 

be reported on the renewal of a claims-made policy or on an ERE issued at the time of the claims-

made policy’s non-renewal.  This is in contrast to the current methodology for development of the 

DDR reserve, which views the liability as stemming only from yet-to-be-issued DDR EREs on the 

in-force book, regardless of whether the loss costs associated with those EREs stem from claims 

that have occurred as of the evaluation date (see Section 5 and Appendix A for further information 

on the current methodology). 

This is easier to discuss and comprehend if we consider, rather than the DDR policy provision, a 

policy provision in which the insurer contractually agrees to provide EREs to all of its claims-made 

insureds at the time of their non-renewal.  Such a construct is not entirely theoretical, as there are 

several MPL writers offering such a policy in the current market.  For ease of discussion, let us refer 

to such a policy form as the Enhanced Claims-Made policy form. 

As shown in the chart above, under the Enhanced Claims-Made policy form, there are two ways 

that the liability can be viewed.  The first is to view the liability as essentially that of an occurrence 

policy and reserve for it as such (i.e., reserve for claims that have occurred as of the evaluation date, 

regardless of whether such a claim is expected to be reported on an ERE or on the renewal of an in-

force claims-made policy).  The second is to view the liability as that of a claims-made policy, plus 
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the liability for EREs unissued as of the evaluation date for the in-force book.  Each of these 

viewpoints deserves further discussion: 

(1) Occurrence Liability — If one considers that an ERE is intended to cover the gap in 

coverage between a claims-made and an occurrence policy, the notion that an Enhanced 

Claims-Made policy should be reserved for as an occurrence policy seems like the most 

natural course.  Consider, for example, a claim that has occurred but remains unreported 

under the Enhanced Claims-Made policy form.  Given the contractual language of this 

policy form stating that an ERE will be issued upon non-renewal of the policy, it is clear 

that coverage will be provided for such a claim and that a reserve should be held 

(although it remains unknown whether this claim will be reported under a renewal of the 

claims-made policy or under the ERE to be issued upon non-renewal).  However, 

whether such a reserve should be held as a loss reserve or an unearned premium reserve 

would be a matter of debate. 

(2) Claims-Made Plus Tail Liability — Under this viewpoint, the insurer would reserve for a 

claim if it had been reported as of the given evaluation date (this would be in common 

with the Occurrence Liability viewpoint discussed above, as shown in the chart preceding 

this discussion), or if the claim was expected to be reported on an ERE to be written 

upon expiration of the insured’s last claims-made policy, regardless of whether such a 

claim had occurred as of the given evaluation date.  On the surface, this viewpoint may 

seem technically consistent with the contractual policy language (which explicitly refers to 

coverage for claims reported during the policy period and to the offer of a pre-funded 

ERE at policy termination).  However, including a reserve for claims that have not yet 

occurred may be inconsistent with the claims whose liability the insurer has in fact 

assumed at the given evaluation date, and seems counterintuitive relative to all other 

property & casualty reserving practices. 

As discussed above, the writer of an Enhanced Claims-Made policy will have liability 

for any claim that has occurred subsequent to the retroactive date of a given Enhanced 

Claims-Made policy, regardless of whether the claim has been reported as of the 

evaluation date.  As is always the case, the insurer retains the right to cancel the policy at 

any time (although an ERE would be issued without additional premium charge upon 

such a cancellation), and so can be considered to have no liability for any claim that has 
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not yet occurred.  This is similar to other aspects of property & casualty reserving, in 

which a reserve is carried only for claims that have occurred and for which the insurer is 

contractually liable (excluding, in particular, any claim to be incurred on the unearned 

portion of a policy). 

Most fundamentally, the principal difference between the current and proposed methodologies is 

that the proposed methodology is based on actuarial methods common to property & casualty 

coverage, while the current methodology is characteristic of methodologies associated with life 

insurance.  Reserving for fixed-premium life insurance policies evolved to its current status because 

of the insurer’s contractual agreement as to the fixed-premium amount.  Consequently, the life 

insurance reserving methodology requisitely reflects the possible difference between expected 

premium and expected payments over the remaining life of the policy.  However, there is no 

contractual agreement on the part of the MPL insurer to continue to provide coverage at the current 

level of pricing.  Consequently, a methodology more akin to typical property & casualty reserving 

(where a reserve is developed only for those claims that have already occurred) seems appropriate. 

The methodology proposed in the following section assumes the first of the viewpoints discussed 

above; that is, the liability associated with the DDR policy provision stems from claims that have 

occurred as of the given evaluation date, and in particular, the portion of the loss and LAE on these 

claims that will be reported on DDR EREs. 

4. AN INDICATED RESERVE FOR DDR EXPOSURE 

As discussed above, the proposed methodology used to derive an indicated reserve for DDR 

exposure is based on the observation that a claims-made policy with a DDR provision offers 

coverage that is effectively between a claims-made policy without this provision and an occurrence 

policy.  Thus, the DDR reserve can be thought of as a subset of the difference between the reserve 

that would exist for a claims-made book of business, if the business had been written on an 

occurrence basis, and the reserve that exists for the business as it was written (on a claims-made 

basis).  The key is recognizing that the difference between these two reserve indications (the 

claims-made and the occurrence) can be grouped into the following categories: 
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(1) Claims that will be reported on claims-made policies (either unissued – i.e., 

non-renewed – as of the evaluation date or, if issued, on the unexpired portion of such 

a policy). 

(2) Claims that will be reported after an insured’s last claims-made policy has terminated, 

which themselves can be allocated to three subcategories: 

(a) Claims that will be reported on a yet-to-be-issued DDR ERE. 

(b) Claims that will be reported on a yet-to-be-issued purchased ERE. 

(c) Claims for which the insurer will have no liability, as the insured was not eligible 

for a DDR ERE at termination of the claims-made policy and the insured chose 

not to purchase an ERE.  (In a case such as this, the insured may have coverage 

from another insurer for such a claim, if the other insurer agreed to provide the 

insured with a retroactive date preceding the newly purchased policy’s initial 

effective date.  This is oftentimes referred to as “prior acts” coverage within the 

MPL industry.) 

At any given evaluation date, the insurer of a claims-made book has no current liability for claims 

in category (1), (2b) or (2c).  The DDR reserve can be thought of as a provision for claims in 

category (2a). 

Note that the above classification pertains to reserve indications derived for the in-force 

claims-made book only.  In other words, the liability associated with issued EREs is not included 

above.  Deriving an indicated reserve for this liability was discussed in Section 2. 

Exhibit 2 outlines the proposed methodology to derive an indicated reserve for the DDR 

exposure.  This methodology is based on the categorization of unreported claims discussed above 

for an in-force book of claims-made policies.  In brief, the methodology derives an indicated a priori 

ultimate loss and LAE indication for the in-force claims-made book on an accident-year (i.e., 

occurrence) basis.  The portion of this indication assumed to stem from unreported claims is then 

estimated, and from this, the estimated portion associated with DDR claims (i.e., claims that are 

projected to be reported under yet-to-be-issued DDR EREs) is allocated.  The resulting value is the 

indicated DDR reserve. 

The details of Exhibit 2 by column are as follows: 
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(1) These are the number of earned exposures by accident year for insureds remaining 

in-force on claims-made policies only (i.e., excluding insureds for whom an ERE has 

been issued).  Consistent with standard exposure calculations for PPL reserving, the 

exposures are adjusted to a base-class equivalent basis by the classification of each 

physician insured.  However, they are not adjusted to be mature claims-made (MCM) 

equivalent.  This is because, on an occurrence basis, as the indicated ultimate loss and 

LAE will be measured here, there is no reduction in liability for an insured holding a 

claims-made policy that is less than fully mature. 

Note furthermore that the exposures are calculated on an accident-year basis, as 

opposed to the report-year basis on which claims-made exposures would normally be 

calculated.  In other words, the exposures are determined based on the retroactive date 

of the policies, as opposed to their initial effective dates.  If retroactive dates preceding 

the initial policy effective date have been provided, the accident-year exposures could 

be very different in magnitude from the report-year exposures.  This will be the case if 

insureds were offered “full prior acts” coverage upon their initial purchase of a 

claims-made policy. 

Lastly, note that the exposures in any given accident year are effectively a subset of 

the exposures in any subsequent accident year.  This is because the exposures in a given 

accident year represent that portion of the in-force exposures with retroactive dates in 

or preceding this accident year.  This observation can be helpful in understanding the 

methodology that follows. 

(2) The indicated loss and LAE base-class occurrence pure premium is developed for the 

most recent accident year on Exhibit 3.  Note that the underlying data is consistent with 

the data used in the derivation of the ERE pure premium used in Section 2.1 above.  

While the methodology in Section 2.1 serves to develop an indicated reserve for issued 

ERE policies, and hence, relies on an ERE pure premium applied to counts of these 

policies, the methodology under discussion for the DDR reserve relies on an 

occurrence pure premium.  This is because the methodology is based on exposures 

measured on an accident-year basis and develops an indicated reserve for as yet 

unissued DDR EREs.  The pure premium for each of the older accident years is 
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developed by de-trending the indication for the most recent year at an assumed trend 

rate of 5.0% per annum. 

(3) The multiplication of Columns (1) and (2) produces an a priori ultimate loss and LAE 

for each accident year.  As mentioned previously, in the context of the pure premium 

methodology for unreported ERE claims, this a priori ultimate loss and LAE could be 

very different from the ultimate loss and LAE that would be derived based on an 

analysis of claims reported to date.  In this context, the liability associated with reported 

claims is unimportant, as we intend to use this indication of ultimate loss and LAE 

solely to derive a subsequent indication of loss and LAE on unreported claims alone. 

(4) The portion of ultimate loss and LAE estimated to stem from claims unreported at the 

current evaluation date is based on the trended claim reporting pattern given on 

Exhibit 5.  As was the case with the pure premium methodology for unreported ERE 

claims, it is important to rely on a claim reporting pattern rather than a loss reporting 

pattern for these indications, as it is solely the indicated reserve associated with IBNR 

claims that we are deriving through this methodology (as opposed to the IBNR reserve 

in its totality). 

(5) The multiplication of Columns (3) and (4) derives, by accident year, an indicated reserve 

for the loss and LAE expected to stem from unreported claims on in-force claims-made 

policies, which have occurred as of the evaluation date of the analysis. 

(6) The portion of the indicated reserve of interest is the portion expected to be reported 

on yet-to-be-issued DDR EREs.  To segregate this portion of the indicated reserve, it is 

necessary to estimate, by accident year, the portion of loss and LAE on unreported 

claims that is expected to be reported on DDR EREs.  This is done on Exhibit 6 

(which is, in turn, based on the selected per annum retention and DDR rates from 

Exhibit 7). 

On Exhibit 6, the average portion of the in-force book of insureds remaining 

in-force during subsequent calendar periods (cumulative retention) is estimated based 

on the selected per annum retention ratio.  The cumulative retention ratios are then 

used to estimate the expected portion of insureds to experience DDR in each future 

calendar year (relative to the insureds in-force as of the current evaluation date).  The 

incremental portion expected to DDR in any year is equal to the selected per annum 
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DDR rate times the portion remaining in-force.  The result is referred to as the 

“incremental DDR portion.”  The cumulative portion of insureds expected to have 

obtained a DDR ERE at any given evaluation date (cumulative DDR portion) is the 

sum of these incremental DDR portions. 

It is possible that the prospective portion of loss and LAE expected to be reported 

on DDR EREs is biased low for older accident years under the above methodology.  

This is because the physicians whose exposures are contemplated in the older accident 

years will, on average, be older than the physicians whose exposures are included in the 

more recent accident years (recall that the exposures of an older accident year are a 

subset of the exposures in any more recent accident year; in particular, they are the 

subset with retroactive dates in or preceding the given older accident year, and are 

consequently more likely to consist of older physicians).  The likelihood of a claim 

being reported on a DDR ERE can be expected to increase as a physician ages 

(although this does not necessarily imply that the weighted average portion of claims 

expected to be reported on DDR EREs will increase for older accident years, as this is 

influenced by other factors, such as the reporting pattern).  The actuary may wish to 

consider an adjustment to the methodology for this aging phenomenon, although in 

doing so, the actuary should observe that the portion of the indicated DDR reserve 

stemming from older accident years is usually quite small, and consequently, the effect 

of such an adjustment may be immaterial. 

This observation may also hold for the later report periods associated with the more 

recent accident years, in which the physicians will have aged relative to the evaluation 

date of the analysis.  Consequently, their DDR rate may have increased relative to the 

in-force book from which it was projected.  However, their retention rate can also be 

expected to have decreased (as a result of the increase in the DDR rate), and the effect 

of these two on the prospective incremental DDR portions may be offsetting.  As was 

noted in the prior paragraph concerning the older accident years, the loss and LAE 

associated with these later report periods is minimal, and consequently, any attempt to 

adjust for this phenomenon may be immaterial.  However, the actuary should consider 

the appropriateness and possible effect of the underlying assumptions for the book of 

business under review. 
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Two factors that may affect the portion of insureds to DDR on an historical basis 

that should be considered in selecting a prospective portion to DDR are the economic 

cycle and the overall age of the claims-made book.  Physicians may choose to postpone 

retirement during an economic recession, so the portion of insureds that are observed 

to experience a DDR event during such a time period may be lower than during times 

of economic growth. 

In addition, an insurer that has provided claims-made coverage for a relatively short 

period of time will have experienced few DDR occurrences.  This is in part due to what 

may be a younger book of insureds than will be experienced as the book ages, but also 

due to stipulations that may exist in the DDR ERE provision, such as a frequent 

requirement that a physician maintain a claims-made policy in-force for a minimum of 

typically five years in order to qualify for the retirement benefit.  The large majority of 

DDR policy issuances stem from a physician’s retirement, and consequently, the 

number of such issuances can be very small for a relatively new PPL insurer. 

Changes may also occur over time in the particular policy language of the DDR 

provision.  As mentioned in the previous paragraph, physician insureds are frequently 

required to maintain a claims-made policy in-force for five years in order to qualify for a 

pre-funded ERE in the event of retirement.  This requirement is often relaxed or 

eliminated during a soft market, and in some cases, insurers may also eliminate the age 

requirement from the policy language.  Such a change can, of course, affect the portion 

of insureds to earn a DDR ERE over time and should be considered in a prospective 

selection. 

The retention ratio can also be expected to vary over time, and is largely a function 

of market factors.  The retention ratio will vary depending on the state in which the 

insurer provides coverage and can also vary as a result of the insurance cycle.  

Consequently, it is prudent to consider multi-year time periods in measuring indications 

of this ratio.  The claims for which this methodology derives an indicated reserve are 

expected to be reported over several years, and a multi-year average is consequently 

appropriate. 
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(7) The product of the indicated reserve in Column (5) (for all unreported claims) and the 

weighted average portion of claims to be reported on DDR EREs in Column (6) 

produces an indicated reserve for claims expected to be reported on DDR EREs. 

(8) The last adjustment included in this methodology is for the assumed reduction in 

exposure associated with DDR EREs relative to purchased EREs.  This assumed 

adjustment is due to a reduction in a physician’s exposure preceding retirement.  While 

such an adjustment would be largely judgmental for some insurers, insurers with larger 

books of business may be able to compare the frequency on DDR EREs with the 

frequency on purchased EREs to develop an indication for this adjustment. 

(9) The indicated DDR reserve is the product of the total from Column (7) with Row (8). 

Note that, unlike the pure premium methodology for issued EREs discussed in Section 2.1 

above, the analysis described above is performed solely on a gross of reinsurance basis, with no 

separate reduction to net liability.  This is typically the manner in which the DDR reserve is carried 

within an insurer’s financial statements, and results from the observation that the DDR ERE 

remains unissued as of the evaluation date of these statements.  Consequently, there is no 

reinsurance treaty in-force to cover the ERE.8  The lack of a ceded DDR reserve can also be 

considered the interpretation of Statement of Statutory Accounting Principles (SSAP) 65-8, which 

states that “The amount of the reserve should be adequate to pay for all future claims arising from 

these coverage features, after recognition of future premiums to be paid by current insureds for 

these benefits.” 

The requirement of SSAP 65-8 that the indicated DDR reserve include an offset for “recognition 

of future premiums to be paid by current insureds for these benefits” merits further discussion.  

Clearly, the methodology proposed above includes no such offset.  However, the lack of such an 

offset seems reasonable, as the only claims for which a reserve is projected are those that have 

already occurred, as opposed to “all future claims arising from these coverage features.”  The 

methodology also seems consistent with the NAIC’s original intent in requiring the DDR reserve, 

which was “to assure that amounts collected by insurers to pay for these benefits are not earned 

prematurely and that an insurer with an aging book of business will not show adverse operating 

                                                           
8 Reinsurance treaties for MPL coverage typically apply either on a claims-made or policies-issued basis.  The language 

of a reinsurance treaty on a policies-issued basis is usually such that an ERE would attach upon the effective date of 
the endorsement itself, and not at the effective date of the claims-made policy that it endorses. 
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results simply because an increasing portion of insureds is earning the benefits for which it has 

paid.” 9 

5. COMPARISON TO CURRENT METHODOLOGY FOR DDR 
RESERVING 

There are various forms of the current methodology for developing an indicated DDR reserve 

commonly in use today.  One of these is described by Walker and Skrodenis [3], as well as by 

Walling [4].  Fundamentally similar methodology has been employed by various MPL writers, as well 

as various consulting firms providing actuarial services to MPL writers.  While each user has 

incorporated (or chosen not to incorporate) various adjustments into the methodology, and has also 

organized the presentation of the methodology differently, the fundamental concept underlying each 

version of the methodology remains the same.  Appendix A presents a version of the methodology 

commonly employed, and will be the focus of the discussion here. 

5.1 Overview of the Current Methodology 

The current methodology requires a number of assumptions, including: 

 Death, disability and retirement rates by age; 

 Policy renewal rates, also typically analyzed by age; 

 Average pure premium and collected premium per exposure; 

 Prospective pricing provision for DDR coverage; 

 Age demographics for the in-force book of claims-made insureds; and 

 Interest rate and trend assumptions. 

These are used to project the number of physicians to die, become disabled, retire, or to lapse his 

or her policy over each of the next 50 or more calendar years, from among the in-force book of 

claims-made insureds.  The estimated loss cost associated with physicians who DDR is then 

determined, and offset on a discounted basis by the premium collected during these same calendar 

years associated with DDR coverage (based on the pricing provision for DDR within the 

claims-made policy). 

                                                           
9 NAIC Proceedings - 1991 Vol. IIB (also, NAIC Accounting Practices & Procedures Manual, Issue Paper 65, Section 

41). 
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This method is complex and highly leveraged on its underlying assumptions (including the 

discount rate, trend rate, the death and disability rates, and, in particular, the retirement rates, which 

are highly uncertain).  Given the magnitude of the DDR reserve relative to the loss and LAE 

reserve, a more streamlined methodology seems appropriate.  Perhaps most significantly, the current 

method projects losses to be reported at some future date, but which have not yet occurred.  These 

losses contribute significantly to the indicated reserve, yet given that no reserve for these claims 

would be required even if an occurrence policy had been written, their inclusion within the 

methodology seems intuitively suspect. 

A more complete description of one version of the current methodology can be found in 

Appendix A. 

5.2 Actuarial Research on the Current Methodology 

Prior to the 1980s, MPL policies were largely written on an occurrence basis, consistent with the 

rest of the property & casualty industry.  However, this changed during the early 1980s, largely in 

response to pressure from reinsurers who wanted to limit the uncertainty associated with the 

coverage they were providing.  MPL insurers introduced claims-made policy forms, and some 

eliminated occurrence coverage entirely (although others have continued to offer occurrence 

coverage, sometimes under certain limitations, such as only for particular specialties or only up to 

particular policy limits that would be below the level of loss ceded to reinsurers).  Not long after 

this, the DDR policy provision was introduced, although the liability associated with this provision 

seems not to have been immediately understood. 

McClenahan [2] may have been the first to consider the need for an accrued liability related to 

yet-to-be-issued DDR EREs, and much of his paper, authored in 1988, is devoted to arguing for this 

accrual.  However, his conclusion is that most insureds will remain in-force until death, disability or 

retirement, and consequently, the insurer should carry the difference between the indicated 

occurrence reserve and the claims-made reserve as an accrual for the DDR liability. 

Subsequently, other actuaries observed that the portion of in-force insureds who will DDR (as 

opposed to canceling coverage for another reason and purchasing an ERE tail) may in fact be much 

smaller than the book as a whole.  In addition, much of the difference between the occurrence 

liability and the claims-made liability will be covered by claims-made policies that have not yet been 

renewed, and an accrual for DDR liability should be offset by these future premiums. 
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Walker and Skrodenis [3] recognized both of these offsets to the DDR liability.  The focus of 

Walker and Skrodenis’s work was on pricing for DDR coverage within a claims-made policy, but the 

three techniques presented are also discussed by the authors as applicable to establishing the DDR 

reserve.  Each of these techniques is based on estimating rates of mortality, disability, retirement and 

policy lapse by age. 

When applied to the in-force group of physicians, estimates of the number of insureds to die, 

become disabled, retire, or lapse their policy can be obtained by calendar year.  Together with 

associated estimates of each physician’s earned premium and pure premium during these calendar 

years, an estimate of the DDR reserve is derived.  Note that this model effectively makes projections 

over the next fifty years or more (the length of time that a relatively young physician may be 

continuously insured). 

Walling [4] presents two methods for estimating the DDR reserve.  The first is fundamentally 

identical to Walker and Skrodenis’s model, but adds modifications for items such as the waiting 

period for eligibility and trends in mortality.  The second method is a stochastic approach in which 

interest rates, inflation rates, and mortality are simulated, but is otherwise similar to the model 

presented by Walker and Skrodenis. 

The modifications proposed by Walling within his first method can be considered improvements 

over the Walker and Skrodenis model.  However, the disadvantages associated with the model itself 

(discussed further below) remain.  It is not clear whether the second method proposed by Walling 

(in which the parameters are stochastically simulated) represents an improvement in methodology, 

or rather, a difference in methodology.  The appeal of stochastically varying the underlying 

assumptions seems to lie in the recognition that these assumptions are highly uncertain, and 

stochastically varying the assumptions allows the actuary to incorporate a wider range of parameter 

values into the indicated reserve.  However, as Walling notes, “significant parameter risk still exists 

and may actually be increased by using a stochastic model.”10 

5.3 Comparison of the Current and Proposed Methodologies 

There are several advantages of the proposed methodology over the current.  In particular: 

                                                           
10 [4], page 10. 
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(1) It avoids the projection of claims from accidents that have not occurred as of the 

evaluation date. 

(2) It avoids the projection of future earned premiums on policies that have not renewed as 

of the evaluation date. 

(3) It avoids the discounting of the above projections for the time value of money and the 

need to select a discount rate. 

(4) The current methodology has the potential to be highly inaccurate, given its reliance on 

unknown parameters such as mortality, disability, and retirement rates by age (which may 

differ from the general population). 

(5) The proposed methodology is significantly less leveraged than the current methodology, 

which has the potential to produce a wide range of reserves based on seemingly small 

variations in the underlying assumptions. 

(6) The time requirement for the actuary of the proposed methodology is appropriate to the 

relative magnitude of the reserve. 

The following table highlights the leverage of the current methodology by providing the indicated 

increase in reserve under various changes in parameter assumptions: 
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Indicated Change in Reserve Under Various Parameter Assumptions 

Current Methodology1 
Parameter Initial Value Revised Value Indicated Change 

in Reserve 
Retention 91.0% 89.0% (24.4)% 

Pure Premium2 $11,171 $10,054 (17.1)% 

DDR Provision 3.0% 4.0% (23.8)% 

Per Annum Trend3 5.0% 6.0% 22.6% 

Per Annum Discount Rate 3.0% 4.0% (20.9)% 

Retirement Rates Additive Increase of 1.0% from 
Age 55 to 79 

16.6% 

1 Under an assumed 3.0% per annum discount rate for the time value of money. 

2 A 10% reduction in revised value relative to initial value. 

3 Using same selected pure premium and changing prospective selected trend only. 

 

Other changes in assumptions not outlined here can also have a significant impact on the 

resulting indicated reserve.  For example, varying the DDR rates (perhaps under the assumption that 

physicians may have slightly longer life expectancies than the general population) or the projected 

average premium (for long-term pricing assumptions) can also have significant impacts on the 

analysis. 

For comparison, the following table provides the effect of revisions consistent with the above on 

the indicated reserve under the proposed methodology: 
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Indicated Change in Reserve Under Various Parameter Assumptions 

Proposed Methodology 
Parameter Initial Value Revised Value Indicated Change 

in Reserve 

Retention 91.0% 89.0% (1.3)% 

Per Annum Trend1 5.0% 6.0% 1.3% 

Pure Premium2 $7,680 $6,912 (10.0)% 

1 Using same selected pure premium and changing factor used to de-trend selected pure premium and 

derive trended reporting pattern only. 

2 A 10% reduction in revised value relative to initial value. 

 

For most other parameters on which the indicated DDR reserve depends under the proposed 

methodology, similar to the pure premium parameter, the effect on the indicated reserve of a change 

in the parameter is also proportional.  This is the case, for example, for the exposure adjustment for 

DDR EREs relative to purchased EREs. 

6. PRICING THE DDR POLICY PROVISION 

The idea behind the methodology proposed above for developing a DDR reserve also provides a 

simplified methodology to price the DDR provision within the claims-made policy.  Recall that a 

claims-made policy with a DDR policy provision can be thought of as providing coverage between a 

claims-made policy without this provision and an occurrence policy.  Thus the premium charge for a 

claims-made policy with the DDR provision should also be between the premium charges for these 

two policy types. 

In MPL policies, a typical occurrence factor is 1.10 (i.e., it is typical to charge 10% more for an 

occurrence policy than for a comparable claims-made policy).  This factor is typically derived 

actuarially by use of a claims reporting pattern and a selected trend rate.  An offset for investment 

income may also be included, depending on the pricing targets for the claims-made and occurrence 

books of business. 
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If an insurer experiences a very high retention rate, perhaps so high that the only insureds non-

renewing their coverage are those experiencing a DDR event, then that insured is effectively 

providing occurrence coverage.  This is because for every issued claims-made policy, an insurer can 

expect to provide coverage for all claims occurring during the policy period (whether reported 

during this same period, on a subsequent renewal of the claims-made policy, or on the DDR ERE 

eventually issued).  Consequently, the charge by such an insurer for a claims-made policy with a 

DDR provision should be equal to the charge for an occurrence policy (i.e., a DDR provision of 

10%). 

Conversely, consider an insurer with an abnormally low retention rate.  For purposes of this 

theoretical argument, suppose that the retention rate is so low that effectively no insureds qualify for 

DDR EREs (recall that the number of in-force insureds experiencing death or disability is very 

small, and there is typically a vesting period required to qualify for the retirement provision of DDR 

coverage).  In this admittedly theoretical case, there is no cost to the insurer of the DDR provision, 

and a pricing provision of 0% would be indicated. 

Lastly, consider a more realistic insurer, whose retention falls between these two theoretical 

examples.  Suppose that the insurer experiences a per annum retention of 91.0%, and a per annum 

DDR rate (i.e., the portion of in-force insureds to experience a DDR event) of 3.5%, each measured 

as a portion of the in-force claims-made book.  Thus approximately 39%11 of the in-force claims-

made insureds of this insurer can be expected to obtain a DDR ERE upon non-renewal.  The 

insurer is thus effectively providing occurrence coverage for this 39% of its in-force claims-made 

insureds, and claims-made coverage only for its remaining insureds.  Assuming an occurrence factor 

of 1.10 for this insurer implies a DDR factor of approximately 1.0412 within the ratemaking process. 

The DDR factor incorporated into the indicated rate level could also vary judgmentally from this 

indication in the event of changes to the DDR policy language (e.g., a restriction or expansion of the 

retirement qualification) or in the event of expected changes, such as increased retention or aging of 

the book of business.  A judgmental adjustment to the DDR factor could also be made to reflect the 

reduction in exposure preceding retirement discussed previously.  However, in applying such an 

adjustment factor, the actuary would want to take into account that this reduction occurs only 

                                                           
11 Calculated as 3.5% / [100.0% - 91.0%]. 
12 Calculated as [1.10 – 1.00] x 39% + 1.00. 
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during the three to four years preceding retirement, and not to the full exposure associated with 

these insureds. 

The current process commonly used for deriving an indicated rate load for the DDR policy 

provision is discussed in [3].  Similar to the comparison of the current and proposed reserving 

methodologies, the proposed methodology for developing an indicated pricing provision for DDR 

coverage is much less time-consuming and more stable than the methodology currently in place. 

7. CONCLUSION 

Methodologies have been presented for deriving an indicated loss and LAE reserve on issued 

EREs, a reserve associated with yet-to-be-issued DDR EREs, and for a DDR factor to be 

incorporated within the ratemaking process.  Each of these methodologies has been shown to be an 

improvement over the methodologies currently in place for deriving each of these indications.  The 

author believes these methodologies would constitute a significant improvement in the techniques 

employed by actuaries within the MPL industry. 
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Appendix A 

One version of the most common methodology currently in use for developing an indicated 
DDR reserve is provided on Exhibits A1 through A18.  The following paragraphs describe this 
methodology in more detail, taking care also to highlight the most significant differences that exist 
between this and the proposed methodology.  Note that where assumptions of this methodology 
overlap with those of the proposed methodology (such as for the selected pure premium), the 
assumptions have been made consistently.  While both sets of exhibits consist of manufactured data, 
an attempt has been made to present reasonable parameter selections and to maintain consistency 
between the method assumptions, in order to facilitate comparison. 

The results of the current methodology are given on Exhibit A1.  The indicated reserve is the 
discounted loss and LAE paid on yet-to-be-issued DDR EREs, less the discounted DDR premium 
yet to be earned (i.e., the portion of premium included within the ratemaking analysis for DDR 
exposure), both for the in-force book of claims-made insureds as of the evaluation date.  While 
SSAP 65 does not explicitly allow or disallow discounting within the DDR reserve, a provision for 
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the time value of money is usually included so as to develop an intuitively reasonable reserve.  In 
addition, other NAIC accounting guidance characterizes the time value of money as one of the 
factors that “should be considered” in estimating the DDR reserve.13 

The first step in the development of the indicated reserve is the selection of per annum retention 
ratios (typically done by age) as well as per annum rates of death, disability, and retirement.  The 
DDR rates assumed are given on Exhibit A2.  These can be based on information from the Census 
Bureau (for the death rates), or other public sources, as well as information from the insurer, which 
will typically be of limited credibility.  In selecting the DDR rates, the actuary should take care that 
they are consistent with the selected retention rates by age (i.e., that the sum of all the rates is less 
than or equal to 100.0%, and presumably that this sum increases with age). 

Exhibit A3 provides the selected overall per annum retention ratio.  Due to the long-term nature 
of the methodology, the selected retention rate will typically be based on a longer-term indication, 
unless the actuary has reason to expect a difference in retention rates prospectively.  The retention 
rate can also be selected to vary by age, as shown on Exhibit A4.  While indicated retention rates for 
most age groups will be substantially similar until a typical retirement age (e.g., 65), retention rates 
can be expected to decrease somewhat for older physicians. 

The selected retention rates are used on Exhibits A5 through A8 to project the number of 
in-force insureds to remain insured at future evaluation points.  Note that projections are made over 
a 50-year time period, as a small portion of the insureds age 30 or less at the current evaluation is 
expected to remain continuously insured up to that point. 

Similar projections are made on Exhibits A9 through A12 for the number of in-force insureds 
expected to die, become disabled, or retire during the next 50 calendar years.  This information, 
together with the projections of physicians expected to remain in-force, is summarized on 
Exhibit A13.  As a check of reasonability, comparisons can be made here of the number of insureds 
expected to lapse (whether due to DDR or other reasons) during the next several calendar years to 
the number known to have lapsed for the claims-made book in the calendar years preceding the 
evaluation date, recognizing that the projected values will likely be less due to the run-off nature of 
the methodology. 

Exhibit A14 provides the selected average ERE pure premium to be applied to the projected 
DDR ERE issuances.  Its derivation is analogous to the ERE pure premium derivation for the 
issued ERE reserve methodology discussed in Section 2.1, and shown on Exhibit 3.  Note that 
Exhibit A14 includes an adjustment to the indicated pure premium for an assumed reduction in 
exposure for DDR EREs due to a physician’s reduced practice hours preceding retirement.  This is 
not reflected on Exhibit 3 for the proposed methodology, but is reflected instead on Exhibit 2, as a 
final adjustment to the indicated DDR reserve. 

The pure premium is combined with the projected number of DDR ERE issuances on 
Exhibit A15.  The projected total loss and LAE to be incurred on these EREs is allocated to 
calendar period by a selected payment pattern, given on Exhibit A18.  The projected loss and LAE 

                                                           
13 NAIC Accounting Practices & Procedures Manual, Issue Paper 65, Section 41. 
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to be paid by calendar period is discounted for the time value of money at various rates of return on 
Exhibit A16. 

Note that the projection of DDR EREs and associated loss and LAE reflects all DDR EREs to 
be issued at any future point in time for claims-made insureds in-force as of the current evaluation 
date.  Consequently, these DDR EREs include exposure associated with claims that will have 
occurred subsequent to the evaluation date of the analysis, but prior to the issuance of the DDR 
ERE.  This is a disadvantage of the current methodology, as a reserve based on these claims would 
not be required even if occurrence coverage had been written. 

Exhibit A17 provides the projection of yet-to-be-earned DDR premium on the renewal of the 
in-force claims-made policies, based on the current DDR provision included within the ratemaking 
process for these policies.  This projected DDR premium is then discounted at the same per annum 
rates of return used for the loss and LAE payments on Exhibit A16.  It is the total discounted 
projections from Exhibits A16 and A17 that are used on Exhibit A1 to derive the resulting indicated 
DDR reserve. 
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Abbreviations and notations 
ALAE, allocated loss adjustment expense 
BCE, base-class equivalent 
DDR, death, disability and retirement 
ERE, extended reporting endorsement 
IBNR, incurred but not reported 
LAE, loss adjustment expense 
 

MCM, mature claims-made 
MPL, medical professional liability 
NAIC, National Association of Insurance Commissioners 
PPL, physicians professional liability 
ULAE, unallocated loss adjustment expense 
SSAP, Statement of Statutory Accounting Principles 
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Analysis of Unreported Tail Claims Loss and LAE Reserve And
DDR Reserve, as of December 31, 2009

Indicated Unreported Tail Claims Loss and LAE Reserve

(1) (2) (3) (4) (5)
= (1) x (2) = (3) x (4)

Gross of Reinsurance
Issued ERE Indicated A Priori Portion of Indicated Loss & LAE
Base Class ERE Policy Indicated A Priori Loss and LAE on on Claims Unreported,

Policy Equivalent Exposures Loss & LAE Ultimate Loss & LAE Claims Unreported On Issued ERE Policies
Year (Not MCM Equivalent) Pure Premium1 On Issued ERE Policies as of 12/31/09 2 as of 12/31/09
1997 9 7,776  67,687 0.0% 0
1998 10 8,164  85,547 0.0% 0
1999 13 8,573  110,301 0.2% 174
2000 14 9,001  126,632 0.5% 580
2001 16 9,451  148,859 1.3% 1,951
2002 24 9,924  235,961 2.3% 5,312
2003 57 10,420  589,595 2.9% 17,028
2004 74 10,941  814,874 4.2% 34,287
2005 90 11,488  1,038,188 6.7% 69,217
2006 106 12,063  1,280,700 13.7% 175,779
2007 122 12,666  1,542,150 21.8% 335,896
2008 128 13,299  1,702,278 45.8% 779,120
2009 134 13,964  1,871,176 73.4% 1,373,810

Total 797 9,613,948 29.1% 2,793,155

1 From Exhibit 3, detrended by a per annum trend of 5.0%.
2 From Exhibit 5, and assumed a twelve-month lag between accident year and ERE policy year claim reporting patterns.
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Analysis of Unreported Tail Claims Loss and LAE Reserve And
DDR Reserve, as of December 31, 2009

Indicated DDR Reserve

(1) (2) (3) (4) (5) (6) (7)
= (1) x (2) = (3) x (4) = (5) x (6)

In Force as of 12/31/09 Indicated A Priori Portion of Indicated Loss & LAE Weighted Average Indicated Unreported
Base Class Occurrence Indicated A Priori Loss and LAE on on Claims Unreported, Portion of Claims Loss & LAE to be

Accident Equivalent Exposures Loss & LAE Ultimate Loss & LAE Claims Unreported But Having Occurred To be Reported On Reported on
Year (Not MCM Equivalent) Pure Premium1 On an Occurrence Basis as of 12/31/09 2 as of 12/31/09 DDR Policies3 DDR Policies
1997 167 4,277  712,798 0.0% 0 1.8% 0
1998 201 4,490  900,871 0.2% 1,423 1.8% 25
1999 246 4,715  1,161,550 0.5% 5,321 2.9% 156
2000 269 4,951  1,333,536 1.3% 17,478 3.3% 584
2001 302 5,198  1,567,601 2.3% 35,292 4.6% 1,632
2002 455 5,458  2,484,844 2.9% 71,764 6.6% 4,706
2003 1,083 5,731  6,208,885 4.2% 261,249 7.2% 18,940
2004 1,426 6,017  8,581,241 6.7% 572,120 7.2% 41,329
2005 1,730 6,318  10,932,914 13.7% 1,500,569 6.0% 89,302
2006 2,033 6,634  13,486,747 21.8% 2,937,548 6.4% 189,005
2007 2,331 6,966  16,240,017 45.8% 7,432,933 5.5% 409,327
2008 2,451 7,314  17,926,284 73.4% 13,161,410 6.1% 805,404
2009 2,762 7,680  21,213,994 96.9% 20,559,196 7.5% 1,542,578

Total 15,457 102,751,282 46,556,302 3,102,987

Assumed Reduction in DDR Liability Due to Reduced Exposure Prior to Retirement (8) 80.0%

Indicated DDR Reserve; (7) Total x (8) = (9) 2,482,390

1 From Exhibit 3, detrended by a per annum trend of 5.0%.
2 From Exhibit 5.
3 Weighted average portion to DDR from Exhibit 6.

Exhibit 2Reserving for Extended Reporting Endorsement Coverage, Including the Death, Disability, and Retirement Policy Provision

Casualty Actuarial Society E-Forum, Fall 2010 29



Analysis of Unreported Tail Claims Loss and LAE Reserve And
DDR Reserve, as of December 31, 2009

Indicated Pure Premiums For Occurrence and Tail Coverage

Ultimate Trended2

Loss & ALAE Mature Claims-Made Ultimate Ultimate
Report Limited to Base Class Loss & ALAE Loss & ALAE
Year Policy Limits1 Equivalent Exposures Pure Premium Pure Premium
1998 5,424,163 1,359 3,992 6,828
1999 2,396,646 1,427 1,679 2,736
2000 9,206,638 1,574 5,847 9,071
2001 4,793,956 1,777 2,698 3,986
2002 7,511,520 1,825 4,117 5,793
2003 8,367,549 1,774 4,717 6,321
2004 17,946,284 2,526 7,106 9,069
2005 19,199,929 2,736 7,017 8,529
2006 14,844,834 2,844 5,220 6,043
2007 10,900,615 2,500 4,360 4,807
2008 13,165,910 2,414 5,455 5,728
2009 16,783,983 2,674 6,277 6,277

2003 - 2009 6,713
2005 - 2009 6,315

(1) Selected Base Class Claims-Made Loss & ALAE Pure Premium at Total Limits 6,525

(2) ULAE Load1 7.0%

(3) Selected Base Class Claims-Made Loss & LAE Pure Premium at Total Limits; (1) x [1 + (2)] 6,982  

(4) Mature Claims-Made to Occurrence Factor3 1.100

(5) Selected Base Class Loss & LAE Occurrence Pure Premium;  (3) x (4) 7,680

(6) Mature Claims-Made to Average ERE Factor3 2.000

(7) Selected Base Class Loss & LAE Tail Pure Premium;  (3) x (6) 13,964

1 Based on claims-made reserve analysis
2 Trended at 5.0% per annum to average report date of July 1, 2009
3 Based on actuarial analysis or currently filed occurrence and ERE factors
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Analysis of Unreported Tail Claims Loss and LAE Reserve And
DDR Reserve, as of December 31, 2009

Indicated Portion Unreported by Accident Year

Accident Reported Claim Counts
Year 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180
1995 6 48 119 161 163 168 171 173 174 175 176 176 176 176 176
1996 4 32 72 96 101 105 107 109 109 110 111 111 111 111
1997 6 48 114 158 166 177 183 184 186 187 188 189 189
1998 5 57 119 170 181 195 200 202 203 204 205 205
1999 6 60 122 164 178 191 195 197 197 199 200
2000 5 59 149 222 237 253 258 261 262 263
2001 5 60 140 207 225 241 247 250 251
2002 9 72 139 195 209 223 228 231
2003 10 81 158 213 236 255 261
2004 7 64 133 198 219 234
2005 10 70 141 194 212
2006 6 67 136 195
2007 12 82 152
2008 10 71
2009 14

Accident Reported Claim Counts Development Factors
Year 12 - 24 24 - 36 36 - 48 48 - 60 60 - 72 72 - 84 84 - 96 96 - 108 108 - 120 120 - 132 132 - 144 144 - 156 156 - 168 168 - 180 180 - ult
1995 8.000 2.479 1.353 1.012 1.031 1.018 1.012 1.006 1.006 1.006 1.000 1.000 1.000 1.000
1996 8.000 2.250 1.333 1.052 1.040 1.019 1.019 1.000 1.009 1.009 1.000 1.000 1.000
1997 8.000 2.375 1.386 1.051 1.066 1.034 1.005 1.011 1.005 1.005 1.005 1.000
1998 11.400 2.088 1.429 1.065 1.077 1.026 1.010 1.005 1.005 1.005 1.000
1999 10.000 2.033 1.344 1.085 1.073 1.021 1.010 1.000 1.010 1.005
2000 11.800 2.525 1.490 1.068 1.068 1.020 1.012 1.004 1.004
2001 12.000 2.333 1.479 1.087 1.071 1.025 1.012 1.004
2002 8.000 1.931 1.403 1.072 1.067 1.022 1.013
2003 8.100 1.951 1.348 1.108 1.081 1.024
2004 9.143 2.078 1.489 1.106 1.068
2005 7.000 2.014 1.376 1.093
2006 11.167 2.030 1.434
2007 6.833 1.854
2008 7.100

Average 9.039 2.149 1.405 1.073 1.064 1.023 1.012 1.004 1.007 1.006 1.001 1.000 1.000 1.000
Wtd Average 8.624 2.118 1.409 1.075 1.066 1.023 1.011 1.004 1.006 1.006 1.001 1.000 1.000 1.000

Avg L5 8.249 1.985 1.410 1.093 1.071 1.022 1.011 1.005 1.007 1.006
Avg L3 8.367 1.966 1.433 1.102 1.072 1.024 1.012 1.003 1.006 1.005 1.002 1.000

Avg L5 x H/L 7.748 1.998 1.404 1.095 1.069 1.022 1.011 1.004 1.006 1.005
Tail 

Select 8.249 1.985 1.410 1.093 1.071 1.022 1.011 1.005 1.007 1.006 1.002 1.001 1.000 1.000 1.000
Cumulative 28.516 3.457 1.742 1.235 1.130 1.055 1.032 1.021 1.016 1.009 1.003 1.001 1.000 1.000 1.000

Implicit Portion of Claims Unreported at Given Month of Development
12 24 36 48 60 72 84 96 108 120 132 144 156 168 180

96.5% 71.1% 42.6% 19.0% 11.5% 5.2% 3.1% 2.1% 1.6% 0.9% 0.3% 0.1% 0.0% 0.0% 0.0%
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Analysis of Unreported Tail Claims Loss and LAE Reserve And
DDR Reserve, as of December 31, 2009

Indicated Portion Unreported by Accident Year -- Adjusted for Trend in Payments

(1) Implicit Portion of Claims Unreported at Given Month of Development1

12 24 36 48 60 72 84 96 108 120 132 144 156 168 180
96.5% 71.1% 42.6% 19.0% 11.5% 5.2% 3.1% 2.1% 1.6% 0.9% 0.3% 0.1% 0.0% 0.0% 0.0%

(2) Incremental Portion of Claims Reported Between Given Months of Development2

0 - 12 12 - 24 24 - 36 36 - 48 48 - 60 60 - 72 72 - 84 84 - 96 96 - 108 108 - 120 120 - 132 132 - 144 144 - 156 156 - 168 168 - 180 Total
3.5% 25.4% 28.5% 23.5% 7.5% 6.3% 2.1% 1.1% 0.5% 0.7% 0.6% 0.2% 0.1% 0.0% 0.0% 100.0%

(3) Trend Factor at 5.0% per annum Relative to 0 - 12 Reporting Period
0 - 12 12 - 24 24 - 36 36 - 48 48 - 60 60 - 72 72 - 84 84 - 96 96 - 108 108 - 120 120 - 132 132 - 144 144 - 156 156 - 168 168 - 180 
1.000  1.050  1.103  1.158  1.216  1.276  1.340  1.407  1.477  1.551  1.629  1.710  1.796  1.886  1.980  

(4) Trended Incremental Portion of Claims Reported Between Given Months of Development
 = (2) x (3) 0 - 12 12 - 24 24 - 36 36 - 48 48 - 60 60 - 72 72 - 84 84 - 96 96 - 108 108 - 120 120 - 132 132 - 144 144 - 156 156 - 168 168 - 180 Total

3.5% 26.7% 31.4% 27.3% 9.2% 8.0% 2.8% 1.5% 0.7% 1.1% 1.0% 0.3% 0.2% 0.0% 0.0% 113.6%

(5) Normalized and Trended Incremental Portion of Claims Reported Between Given Months of Development
 = (4) / (4) Total 0 - 12 12 - 24 24 - 36 36 - 48 48 - 60 60 - 72 72 - 84 84 - 96 96 - 108 108 - 120 120 - 132 132 - 144 144 - 156 156 - 168 168 - 180 Total

3.1% 23.5% 27.7% 24.0% 8.1% 7.1% 2.5% 1.3% 0.6% 0.9% 0.9% 0.3% 0.2% 0.0% 0.0% 100.0%

(6) Normalized and Trended Portion of Claims Unreported at Given Month of Development (i.e., Portion of Loss and LAE on Unreported Claims)3

12 24 36 48 60 72 84 96 108 120 132 144 156 168 180
96.9% 73.4% 45.8% 21.8% 13.7% 6.7% 4.2% 2.9% 2.3% 1.3% 0.5% 0.2% 0.0% 0.0% 0.0%

1 From Exhibit 4.
2 Incremental differences of the portion of claims unreported at the given evaluations.
3 100% less the cumulative sum of the portion reported in each time interval preceding the given evaluation.
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Analysis of Unreported Tail Claims Loss and LAE Reserve And
DDR Reserve, as of December 31, 2009

Indicated Portion of Claims by Accident Year Yet to be Reported on Claims-Made Policies

Selected Weighted Average
Percentage Portion of Loss

of Loss and and LAE on
LAE on Claims Unreported Claims

Accident Unreported Percentage of Loss and LAE on Unreported Claims to be Reported in the Twelve Months Preceding 1 to be Reported on
Year @ 12/31/09 12/31/10 12/31/11 12/31/12 12/31/13 12/31/14 12/31/15 12/31/16 12/31/17 12/31/18 12/31/19 12/31/20 12/31/21 12/31/22 DDR Policies2

1997 0.0% 100.0% 1.8%
1998 0.2% 100.0% 0.0% 1.8%
1999 0.5% 65.5% 34.5% 0.0% 2.9%
2000 1.3% 65.0% 22.9% 12.0% 0.0% 3.3%
2001 2.3% 41.8% 37.9% 13.3% 7.0% 0.0% 4.6%
2002 2.9% 22.0% 32.6% 29.5% 10.4% 5.5% 0.0% 6.6%
2003 4.2% 31.4% 15.1% 22.4% 20.3% 7.1% 3.8% 0.0% 7.2%
2004 6.7% 36.9% 19.8% 9.6% 14.1% 12.8% 4.5% 2.4% 0.0% 7.2%
2005 13.7% 51.4% 17.9% 9.6% 4.6% 6.9% 6.2% 2.2% 1.2% 0.0% 6.0%
2006 21.8% 37.0% 32.4% 11.3% 6.1% 2.9% 4.3% 3.9% 1.4% 0.7% 0.0% 6.4%
2007 45.8% 52.4% 17.6% 15.4% 5.4% 2.9% 1.4% 2.1% 1.9% 0.7% 0.3% 0.0% 5.5%
2008 73.4% 37.7% 32.7% 11.0% 9.6% 3.3% 1.8% 0.9% 1.3% 1.2% 0.4% 0.2% 0.0% 6.1%
2009 96.9% 24.2% 28.5% 24.8% 8.3% 7.3% 2.5% 1.4% 0.7% 1.0% 0.9% 0.3% 0.2% 0.0% 7.5%

Cumulative
Retention3 95.5% 91.2% 87.1% 83.2% 79.4% 75.9% 72.4% 69.2% 66.1% 63.1% 60.3% 57.5% 55.0%

Incremental
DDR Portion4 3.5% 3.3% 3.2% 3.0% 2.9% 2.8% 2.7% 2.5% 2.4% 2.3% 2.2% 2.1% 2.0%

Cumulative
DDR Portion5 1.8% 5.2% 8.4% 11.6% 14.5% 17.4% 20.1% 22.7% 25.2% 27.5% 29.8% 32.0% 34.0%

1 Percentage of ultimate loss and LAE expected to be reported in the given interval divided by the percentage unreported as of 12/31/2009.
2 Weighted average portion of exposures to have experienced DDR ("Cumulative DDR Portion"), where the weights are proportional to the percentage of loss and LAE to be reported in the corresponding interval.
3 Annual retention (from Exhibit 7) compounded over time; retention within first calendar period is adjusted to be the average of the annual retention and 100%.
4 Selected per annum DDR rate (from Exhibit 7) times portion remaining in-force ("cumulative retention") from prior column.
5 Cumulation of incremental DDR portions; adjusted to reflect the average portion expected to have experienced DDR during the calendar year of the given column.
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Analysis of Unreported Tail Claims Loss and LAE Reserve And
DDR Reserve, as of December 31, 2009

Selected Per Annum Retention

(1) (2) (3) (4) (5) (6)
= (3) / (2) = (5) / (2)

Number of Number of
Number of Base Class Base Class

Policy Base Class Insureds Indicated Insureds Indicated
Year Insureds To Renew Retention to DDR Portion to DDR

1996 1,359 1,182 87.0% 58  4.3%
1997 1,393 1,227 88.1% 53  3.8%
1998 1,501 1,339 89.2% 62  4.1%
1999 1,676 1,455 86.8% 60  3.6%
2000 1,801 1,516 84.2% 56  3.1%
2001 1,799 1,556 86.5% 62  3.4%
2002 2,150 1,903 88.5% 81  3.8%
2003 2,631 2,344 89.1% 86  3.3%
2004 2,790 2,558 91.7% 115  4.1%
2005 2,672 2,413 90.3% 96  3.6%
2006 2,457 2,290 93.2% 97  3.9%
2007 2,544 2,320 91.2% 87  3.4%
2008 2,674 2,423 90.6% 83  3.1%

Total 27,446 24,525 89.4% 994 3.6%
1998 - 2006 19,476 17,374 89.2% 714 3.7%
2004 - 2008 13,137 12,004 91.4% 478 3.6%

Select  91.0% 3.5%
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Analysis of DDR Unearned Premium Reserve
Under Current Methodology, as of December 31, 2009

Summary of Indicated DDR Reserve

(1) (2) (3)
= (1) - (2)

Present
Present Value of
Value of Future DDR Indicated

Discount rate Benefits1 Premiums2 Reserve

Undiscounted $33,074,314 $10,488,515 $22,585,799
3.0% $18,471,516 $7,692,363 $10,779,153
4.0% $15,568,357 $7,039,737 $8,528,620
5.0% $13,253,623 $6,482,270 $6,771,353
6.0% $11,386,908 $6,002,160 $5,384,748

1 From Exhibit A16.
2 From Exhibit A17.
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Analysis of DDR Unearned Premium Reserve
Under Current Methodology, as of December 31, 2009

Selected Per Annum Rates of DDR by Age

Selected DDR Rates
Age Death Disability Retirement Total
22
23
24
25 0.118% 0.090% 0.000% 0.208%
26 0.118% 0.100% 0.000% 0.218%
27 0.118% 0.100% 0.000% 0.218%
28 0.118% 0.110% 0.000% 0.228%
29 0.118% 0.120% 0.000% 0.238%
30 0.130% 0.130% 0.000% 0.260%
31 0.130% 0.140% 0.000% 0.270%
32 0.130% 0.150% 0.000% 0.280%
33 0.130% 0.160% 0.000% 0.290%
34 0.130% 0.170% 0.000% 0.300%
35 0.169% 0.180% 0.000% 0.349%
36 0.169% 0.190% 0.000% 0.359%
37 0.169% 0.200% 0.000% 0.369%
38 0.169% 0.210% 0.000% 0.379%
39 0.169% 0.230% 0.000% 0.399%
40 0.263% 0.240% 0.000% 0.503%
41 0.263% 0.260% 0.000% 0.523%
42 0.263% 0.280% 0.000% 0.543%
43 0.263% 0.300% 0.000% 0.563%
44 0.263% 0.320% 0.000% 0.583%
45 0.399% 0.350% 0.000% 0.749%
46 0.399% 0.380% 0.000% 0.779%
47 0.399% 0.410% 0.000% 0.809%
48 0.399% 0.450% 0.000% 0.849%
49 0.399% 0.490% 0.000% 0.889%
50 0.595% 0.530% 0.000% 1.125%
51 0.595% 0.580% 0.000% 1.175%
52 0.595% 0.640% 0.000% 1.235%
53 0.595% 0.690% 0.000% 1.285%
54 0.595% 0.750% 0.000% 1.345%
55 0.833% 0.820% 4.000% 5.653%
56 0.833% 0.890% 4.000% 5.723%
57 0.833% 0.960% 4.000% 5.793%
58 0.833% 1.040% 4.000% 5.873%
59 0.833% 1.120% 4.000% 5.953%
60 1.279% 1.210% 4.000% 6.489%
61 1.279% 1.300% 5.000% 7.579%
62 1.279% 1.400% 5.000% 7.679%
63 1.279% 1.490% 5.000% 7.769%
64 1.279% 1.590% 5.000% 7.869%
65 1.904% 1.690% 6.000% 9.594%
66 1.904% 0.000% 6.500% 8.404%
67 1.904% 0.000% 6.500% 8.404%
68 1.904% 0.000% 6.500% 8.404%
69 1.904% 0.000% 6.500% 8.404%
70 2.991% 0.000% 6.500% 9.491%
71 2.991% 0.000% 6.500% 9.491%
72 2.991% 0.000% 6.500% 9.491%
73 2.991% 0.000% 6.500% 9.491%
74 2.991% 0.000% 6.500% 9.491%
75 4.694% 0.000% 6.500% 11.194%
76 4.694% 0.000% 6.500% 11.194%
77 4.694% 0.000% 6.500% 11.194%
78 4.694% 0.000% 6.500% 11.194%
79 4.694% 0.000% 6.500% 11.194%
80 7.566% 0.000% 92.434% 100.000%
81 7.566% 0.000% 92.434% 100.000%
82 8.932% 0.000% 91.068% 100.000%
83 9.753% 0.000% 90.248% 100.000%

Exhibit A2Reserving for Extended Reporting Endorsement Coverage, Including the Death, Disability, and Retirement Policy Provisioin

Casualty Actuarial Society E-Forum, Fall 2010 36



Analysis of DDR Unearned Premium Reserve
Under Current Methodology, as of December 31, 2009

Selected Per Annum Retention

Number of
Number of Base Class

Policy Base Class Insureds Indicated
Year Insureds To Renew Retention

1996 1,359 1,182 87.0%
1997 1,393 1,227 88.1%
1998 1,501 1,339 89.2%
1999 1,676 1,455 86.8%
2000 1,801 1,516 84.2%
2001 1,799 1,556 86.5%
2002 2,150 1,903 88.5%
2003 2,631 2,344 89.1%
2004 2,790 2,558 91.7%
2005 2,672 2,413 90.3%
2006 2,457 2,290 93.2%
2007 2,544 2,320 91.2%
2008 2,674 2,423 90.6%

Total 27,446 24,525 89.4%
1998 - 2006 19,476 17,374 89.2%
2004 - 2008 13,137 12,004 91.4%

Select  91.0%
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Analysis of DDR Unearned Premium Reserve
Under Current Methodology, as of December 31, 2009

Selected Retention Pattern by Age

Number of
Number of Base Class

Age Base Class Insureds Indicated Selected
Group Insureds To Renew Retention Retention1

<35 2,295 1,944 84.7% 86.0%
35 - 39 4,013 3,539 88.2% 90.0%
40 - 44 4,610 4,159 90.2% 92.0%
45 - 49 4,941 4,535 91.8% 93.0%
50 - 54 3,916 3,501 89.4% 91.0%
55 - 59 3,171 2,857 90.1% 92.0%
60 - 64 2,329 2,107 90.5% 92.0%
65 - 69 1,196 1,066 89.2% 91.0%
70 - 74 530 456 85.9% 87.0%
75 - 79 323 266 82.4% 84.0%
80 + 123 105 84.9% 0.0%

Total 27,446 24,535 89.4%

1 Selection normalized to balance to overall selected retention of 91%
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Analysis of DDR Unearned Premium Reserve
Under Current Methodology, as of December 31, 2009

Persistency Schedule by Calendar Year

Claims-Made
In-Force 

BCE2

Selected Physicians
Retention As Of Number of Equivalent Physicians Remaining as of December 31, xxxx  

Age Factors1 12/31/09 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

25 86.0% 0.3 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0
26 86.0% 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
27 86.0% 0.4 0.4 0.3 0.3 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
28 86.0% 1.0 0.8 0.7 0.6 0.5 0.4 0.4 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2
29 86.0% 1.1 1.0 0.8 0.7 0.6 0.5 0.4 0.4 0.4 0.3 0.3 0.3 0.2 0.2 0.2 0.2
30 86.0% 3.7 3.2 2.7 2.4 2.0 1.7 1.6 1.4 1.3 1.1 1.0 0.9 0.9 0.8 0.7 0.7
31 86.0% 8.0 6.9 5.9 5.1 4.4 4.0 3.6 3.2 2.9 2.6 2.4 2.2 2.0 1.9 1.7 1.6
32 86.0% 12.7 10.9 9.4 8.0 7.2 6.5 5.9 5.3 4.8 4.4 4.0 3.7 3.4 3.1 2.9 2.7
33 86.0% 15.9 13.6 11.7 10.6 9.5 8.6 7.7 6.9 6.4 5.9 5.4 5.0 4.6 4.2 4.0 3.7
34 86.0% 30.9 26.6 23.9 21.6 19.4 17.5 15.7 14.5 13.3 12.2 11.3 10.4 9.6 9.0 8.3 7.7
35 90.0% 32.4 29.1 26.2 23.6 21.2 19.1 17.6 16.2 14.9 13.7 12.6 11.7 10.9 10.1 9.4 8.8
36 90.0% 60.7 54.6 49.1 44.2 39.8 36.6 33.7 31.0 28.5 26.2 24.4 22.7 21.1 19.6 18.3 16.6
37 90.0% 47.5 42.8 38.5 34.6 31.9 29.3 27.0 24.8 22.8 21.2 19.7 18.4 17.1 15.9 14.4 13.1
38 90.0% 75.6 68.0 61.2 56.3 51.8 47.7 43.9 40.4 37.5 34.9 32.5 30.2 28.1 25.6 23.3 21.2
39 90.0% 77.1 69.4 63.9 58.8 54.1 49.7 45.8 42.6 39.6 36.8 34.2 31.8 29.0 26.4 24.0 21.8
40 92.0% 80.3 73.9 68.0 62.6 57.6 52.9 49.2 45.8 42.6 39.6 36.8 33.5 30.5 27.8 25.3 23.0
41 92.0% 79.4 73.0 67.2 61.8 56.8 52.9 49.2 45.7 42.5 39.5 36.0 32.8 29.8 27.1 24.7 22.7
42 92.0% 98.4 90.5 83.3 76.6 71.3 66.3 61.6 57.3 53.3 48.5 44.1 40.2 36.6 33.3 30.6 28.2
43 92.0% 88.9 81.8 75.2 70.0 65.1 60.5 56.3 52.3 47.6 43.4 39.4 35.9 32.7 30.1 27.6 25.4
44 92.0% 67.9 62.5 58.1 54.1 50.3 46.7 43.5 39.6 36.0 32.8 29.8 27.1 25.0 23.0 21.1 19.4
45 93.0% 84.9 79.0 73.5 68.3 63.5 59.1 53.8 48.9 44.5 40.5 36.9 33.9 31.2 28.7 26.4 24.3
46 93.0% 75.9 70.6 65.6 61.0 56.8 51.7 47.0 42.8 38.9 35.4 32.6 30.0 27.6 25.4 23.3 21.5
47 93.0% 69.8 64.9 60.4 56.2 51.1 46.5 42.3 38.5 35.0 32.2 29.7 27.3 25.1 23.1 21.2 19.5
48 93.0% 76.8 71.4 66.4 60.5 55.0 50.1 45.6 41.5 38.1 35.1 32.3 29.7 27.3 25.1 23.1 21.3
49 93.0% 69.1 64.2 58.4 53.2 48.4 44.0 40.1 36.9 33.9 31.2 28.7 26.4 24.3 22.4 20.6 18.9
50 91.0% 64.0 58.2 53.0 48.2 43.9 39.9 36.7 33.8 31.1 28.6 26.3 24.2 22.3 20.5 18.9 17.3
51 91.0% 65.1 59.3 53.9 49.1 44.7 41.1 37.8 34.8 32.0 29.4 27.1 24.9 22.9 21.1 19.4 17.7
52 91.0% 86.0 78.3 71.2 64.8 59.6 54.9 50.5 46.4 42.7 39.3 36.2 33.3 30.6 28.2 25.6 23.3
53 91.0% 118.1 107.4 97.8 89.9 82.8 76.1 70.0 64.4 59.3 54.5 50.2 46.2 42.5 38.6 35.2 32.0
54 91.0% 54.4 49.5 45.6 41.9 38.6 35.5 32.6 30.0 27.6 25.4 23.4 21.5 19.6 17.8 16.2 14.8
55 92.0% 59.6 54.8 50.4 46.4 42.7 39.2 36.1 33.2 30.6 28.1 25.9 23.5 21.4 19.5 17.7 16.1
56 92.0% 97.3 89.5 82.4 75.8 69.7 64.1 59.0 54.3 49.9 46.0 41.8 38.1 34.6 31.5 28.7 24.9
57 92.0% 80.9 74.4 68.5 63.0 58.0 53.3 49.1 45.1 41.5 37.8 34.4 31.3 28.5 25.9 22.5 19.6
58 92.0% 57.0 52.5 48.3 44.4 40.9 37.6 34.6 31.8 29.0 26.4 24.0 21.8 19.9 17.3 15.0 13.1
59 92.0% 80.7 74.2 68.3 62.8 57.8 53.2 48.9 44.5 40.5 36.9 33.6 30.5 26.6 23.1 20.1 17.5
60 92.0% 70.4 64.8 59.6 54.8 50.4 46.4 42.2 38.4 35.0 31.8 29.0 25.2 21.9 19.1 16.6 14.4
61 92.0% 65.6 60.3 55.5 51.1 47.0 42.8 38.9 35.4 32.2 29.3 25.5 22.2 19.3 16.8 14.6 12.3
62 92.0% 82.7 76.1 70.0 64.4 58.6 53.3 48.5 44.1 40.2 35.0 30.4 26.5 23.0 20.0 16.8 14.1
63 92.0% 69.4 63.9 58.8 53.5 48.7 44.3 40.3 36.7 31.9 27.8 24.2 21.0 18.3 15.4 12.9 10.8
64 92.0% 57.5 52.9 48.2 43.8 39.9 36.3 33.0 28.7 25.0 21.7 18.9 16.5 13.8 11.6 9.8 8.2
65 91.0% 45.5 41.4 37.7 34.3 31.2 28.4 24.7 21.5 18.7 16.3 14.1 11.9 10.0 8.4 7.0 5.9
66 91.0% 36.8 33.5 30.5 27.8 25.3 22.0 19.1 16.6 14.5 12.6 10.6 8.9 7.5 6.3 5.3 0.0
67 91.0% 26.6 24.2 22.0 20.0 17.4 15.2 13.2 11.5 10.0 8.4 7.0 5.9 5.0 4.2 0.0 0.0
68 91.0% 38.7 35.2 32.1 27.9 24.3 21.1 18.4 16.0 13.4 11.3 9.5 8.0 6.7 0.0 0.0 0.0
69 91.0% 36.7 33.4 29.1 25.3 22.0 19.1 16.6 14.0 11.7 9.9 8.3 7.0 0.0 0.0 0.0 0.0
70 87.0% 37.7 32.8 28.5 24.8 21.6 18.8 15.8 13.2 11.1 9.3 7.8 0.0 0.0 0.0 0.0
71 87.0% 11.9 10.3 9.0 7.8 6.8 5.7 4.8 4.0 3.4 2.8 0.0 0.0 0.0 0.0
72 87.0% 17.6 15.3 13.3 11.6 9.8 8.2 6.9 5.8 4.9 0.0 0.0 0.0 0.0
73 87.0% 27.3 23.8 20.7 17.4 14.6 12.3 10.3 8.6 0.0 0.0 0.0 0.0
74 87.0% 13.5 11.7 9.9 8.3 7.0 5.8 4.9 0.0 0.0 0.0 0.0
75 84.0% 7.8 6.6 5.5 4.6 3.9 3.3 0.0 0.0 0.0 0.0
76 84.0% 8.1 6.8 5.7 4.8 4.0 0.0 0.0 0.0 0.0
77 84.0% 10.4 8.8 7.4 6.2 0.0 0.0 0.0 0.0
78 84.0% 6.9 5.8 4.9 0.0 0.0 0.0 0.0
79 84.0% 17.3 14.5 0.0 0.0 0.0 0.0
80 0.0% 13.4 0.0 0.0 0.0 0.0
81 0.0% 6.2 0.0 0.0 0.0
82 0.0% 1.5 0.0 0.0
83 0.0% 17.5 0.0

Total 2,649.0 2,379.9 2,158.5 1,965.9 1,789.6 1,630.7 1,485.1 1,349.6 1,221.7 1,106.7 1,002.7 902.6 811.5 728.1 653.9 584.8

1 From Exhibit A4.
2 Base Class, Mature Claims-Made, Full-Time Equivalent Physicians
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Claims-Made
In-Force 

BCE2

Selected Physicians
Retention As Of

Age Factors1 12/31/09

25 86.0% 0.3
26 86.0% 0.1
27 86.0% 0.4
28 86.0% 1.0
29 86.0% 1.1
30 86.0% 3.7
31 86.0% 8.0
32 86.0% 12.7
33 86.0% 15.9
34 86.0% 30.9
35 90.0% 32.4
36 90.0% 60.7
37 90.0% 47.5
38 90.0% 75.6
39 90.0% 77.1
40 92.0% 80.3
41 92.0% 79.4
42 92.0% 98.4
43 92.0% 88.9
44 92.0% 67.9
45 93.0% 84.9
46 93.0% 75.9
47 93.0% 69.8
48 93.0% 76.8
49 93.0% 69.1
50 91.0% 64.0
51 91.0% 65.1
52 91.0% 86.0
53 91.0% 118.1
54 91.0% 54.4
55 92.0% 59.6
56 92.0% 97.3
57 92.0% 80.9
58 92.0% 57.0
59 92.0% 80.7
60 92.0% 70.4
61 92.0% 65.6
62 92.0% 82.7
63 92.0% 69.4
64 92.0% 57.5
65 91.0% 45.5
66 91.0% 36.8
67 91.0% 26.6
68 91.0% 38.7
69 91.0% 36.7
70 87.0% 37.7
71 87.0% 11.9
72 87.0% 17.6
73 87.0% 27.3
74 87.0% 13.5
75 84.0% 7.8
76 84.0% 8.1
77 84.0% 10.4
78 84.0% 6.9
79 84.0% 17.3
80 0.0% 13.4
81 0.0% 6.2
82 0.0% 1.5
83 0.0% 17.5

Total 2,649.0

Analysis of DDR Unearned Premium Reserve
Under Current Methodology, as of December 31, 2009

Persistency Schedule by Calendar Year

Number of Equivalent Physicians Remaining as of December 31, xxxx
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0
0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.6 0.6 0.5 0.5 0.5 0.4 0.4 0.4 0.3 0.3 0.3 0.2 0.2 0.2 0.2
1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.7 0.6 0.6 0.5 0.5 0.4
2.5 2.3 2.2 2.0 1.8 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.8
3.4 3.2 2.9 2.6 2.4 2.2 2.0 1.8 1.7 1.5 1.4 1.3 1.2 1.1 1.0
7.2 6.6 6.0 5.4 4.9 4.5 4.1 3.8 3.5 3.2 3.0 2.7 2.5 2.3 2.1
8.0 7.3 6.6 6.0 5.5 5.0 4.6 4.3 3.9 3.6 3.3 3.1 2.8 2.6 2.4

15.1 13.8 12.5 11.4 10.5 9.6 8.9 8.2 7.5 6.9 6.4 5.8 5.4 4.9 4.5
12.0 10.9 9.9 9.1 8.4 7.7 7.1 6.5 6.0 5.5 5.1 4.7 4.3 3.9 3.6
19.3 17.5 16.1 14.8 13.6 12.6 11.5 10.6 9.8 9.0 8.3 7.6 6.9 6.3 5.7
19.9 18.3 16.8 15.5 14.2 13.1 12.0 11.1 10.2 9.4 8.6 7.9 7.1 6.5 5.9
21.1 19.5 17.9 16.5 15.2 13.9 12.8 11.8 10.9 10.0 9.1 8.3 7.5 6.8 6.2
20.9 19.2 17.7 16.3 15.0 13.8 12.7 11.7 10.7 9.8 8.9 8.1 7.4 6.7 5.8
25.9 23.8 21.9 20.2 18.6 17.1 15.7 14.5 13.1 12.0 10.9 9.9 9.0 7.8 6.8
23.4 21.5 19.8 18.2 16.8 15.4 14.2 12.9 11.8 10.7 9.7 8.9 7.7 6.7 5.8
17.9 16.5 15.1 13.9 12.8 11.8 10.7 9.8 8.9 8.1 7.4 6.4 5.6 4.8 4.2
22.4 20.6 18.9 17.4 16.0 14.6 13.3 12.1 11.0 10.0 8.7 7.6 6.6 5.7 5.0
19.8 18.2 16.7 15.4 14.0 12.7 11.6 10.6 9.6 8.4 7.3 6.3 5.5 4.8 4.0
18.0 16.5 15.2 13.9 12.6 11.5 10.4 9.5 8.3 7.2 6.3 5.4 4.7 4.0 3.3
19.6 18.0 16.4 14.9 13.6 12.4 11.2 9.8 8.5 7.4 6.4 5.6 4.7 4.0 3.3
17.4 15.8 14.4 13.1 11.9 10.9 9.5 8.2 7.2 6.2 5.4 4.5 3.8 3.2 2.7
15.8 14.4 13.1 11.9 10.8 9.4 8.2 7.1 6.2 5.4 4.5 3.8 3.2 2.7 2.3
16.1 14.6 13.3 12.1 10.5 9.2 8.0 6.9 6.0 5.1 4.3 3.6 3.0 2.5 0.0
21.2 19.3 17.6 15.3 13.3 11.6 10.1 8.8 7.4 6.2 5.2 4.4 3.7 0.0 0.0
29.1 26.5 23.1 20.1 17.5 15.2 13.2 11.1 9.3 7.8 6.6 5.5 0.0 0.0 0.0
13.4 11.7 10.2 8.8 7.7 6.7 5.6 4.7 4.0 3.3 2.8 0.0 0.0 0.0 0.0
14.0 12.2 10.6 9.2 8.0 6.8 5.7 4.8 4.0 3.4 0.0 0.0 0.0 0.0
21.7 18.9 16.4 14.3 12.0 10.1 8.5 7.1 6.0 0.0 0.0 0.0 0.0
17.1 14.8 12.9 10.8 9.1 7.7 6.4 5.4 0.0 0.0 0.0 0.0
11.4 9.9 8.3 7.0 5.9 4.9 4.1 0.0 0.0 0.0 0.0
15.2 12.8 10.7 9.0 7.6 6.4 0.0 0.0 0.0 0.0
12.1 10.2 8.6 7.2 6.0 0.0 0.0 0.0 0.0
10.3 8.7 7.3 6.1 0.0 0.0 0.0 0.0
11.9 10.0 8.4 0.0 0.0 0.0 0.0
9.1 7.6 0.0 0.0 0.0 0.0
6.9 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0
0.0

521.5 463.3 409.7 360.5 318.0 279.9 245.2 215.7 187.9 162.3 141.6 123.3 104.5 89.1 76.3

1 From Exhibit A4.
2 Base Class, Mature Claims-Made, Full-Time Equivalent Physicians
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Claims-Made
In-Force 

BCE2

Selected Physicians
Retention As Of

Age Factors1 12/31/09

25 86.0% 0.3
26 86.0% 0.1
27 86.0% 0.4
28 86.0% 1.0
29 86.0% 1.1
30 86.0% 3.7
31 86.0% 8.0
32 86.0% 12.7
33 86.0% 15.9
34 86.0% 30.9
35 90.0% 32.4
36 90.0% 60.7
37 90.0% 47.5
38 90.0% 75.6
39 90.0% 77.1
40 92.0% 80.3
41 92.0% 79.4
42 92.0% 98.4
43 92.0% 88.9
44 92.0% 67.9
45 93.0% 84.9
46 93.0% 75.9
47 93.0% 69.8
48 93.0% 76.8
49 93.0% 69.1
50 91.0% 64.0
51 91.0% 65.1
52 91.0% 86.0
53 91.0% 118.1
54 91.0% 54.4
55 92.0% 59.6
56 92.0% 97.3
57 92.0% 80.9
58 92.0% 57.0
59 92.0% 80.7
60 92.0% 70.4
61 92.0% 65.6
62 92.0% 82.7
63 92.0% 69.4
64 92.0% 57.5
65 91.0% 45.5
66 91.0% 36.8
67 91.0% 26.6
68 91.0% 38.7
69 91.0% 36.7
70 87.0% 37.7
71 87.0% 11.9
72 87.0% 17.6
73 87.0% 27.3
74 87.0% 13.5
75 84.0% 7.8
76 84.0% 8.1
77 84.0% 10.4
78 84.0% 6.9
79 84.0% 17.3
80 0.0% 13.4
81 0.0% 6.2
82 0.0% 1.5
83 0.0% 17.5

Total 2,649.0

Analysis of DDR Unearned Premium Reserve
Under Current Methodology, as of December 31, 2009

Persistency Schedule by Calendar Year

Number of Equivalent Physicians Remaining as of December 31, xxxx
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0
0.4 0.4 0.4 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1
0.7 0.6 0.6 0.5 0.5 0.4 0.4 0.4 0.3 0.3 0.2 0.2 0.2 0.2
0.9 0.9 0.8 0.7 0.6 0.6 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.2
2.0 1.8 1.6 1.5 1.3 1.2 1.1 0.9 0.8 0.7 0.6 0.5 0.4 0.4
2.2 2.0 1.8 1.6 1.5 1.3 1.1 1.0 0.8 0.7 0.6 0.5 0.4 0.4
4.1 3.7 3.4 3.1 2.7 2.3 2.0 1.8 1.5 1.3 1.1 0.9 0.8 0.6
3.2 3.0 2.7 2.3 2.0 1.8 1.5 1.3 1.1 0.9 0.8 0.7 0.6 0.0
5.2 4.7 4.1 3.6 3.1 2.7 2.4 2.0 1.7 1.4 1.2 1.0 0.0 0.0
5.4 4.7 4.1 3.5 3.1 2.7 2.3 1.9 1.6 1.3 1.1 0.0 0.0 0.0
5.4 4.7 4.1 3.6 3.1 2.6 2.2 1.8 1.5 1.3 0.0 0.0 0.0 0.0
5.1 4.4 3.8 3.3 2.8 2.4 2.0 1.7 1.4 0.0 0.0 0.0 0.0
5.9 5.2 4.5 3.8 3.2 2.7 2.2 1.9 0.0 0.0 0.0 0.0
5.1 4.4 3.7 3.1 2.6 2.2 1.8 0.0 0.0 0.0 0.0
3.7 3.1 2.6 2.2 1.8 1.5 0.0 0.0 0.0 0.0
4.2 3.5 3.0 2.5 2.1 0.0 0.0 0.0 0.0
3.4 2.8 2.4 2.0 0.0 0.0 0.0 0.0
2.8 2.4 2.0 0.0 0.0 0.0 0.0
2.8 2.3 0.0 0.0 0.0 0.0
2.3 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0
0.0

65.0 54.9 45.7 37.9 31.0 24.9 20.0 15.5 11.6 8.7 6.2 4.3 2.8 1.9

1 From Exhibit A4.
2 Base Class, Mature Claims-Made, Full-Time Equivalent Physicians
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Claims-Made
In-Force 

BCE2

Selected Physicians
Retention As Of

Age Factors1 12/31/09

25 86.0% 0.3
26 86.0% 0.1
27 86.0% 0.4
28 86.0% 1.0
29 86.0% 1.1
30 86.0% 3.7
31 86.0% 8.0
32 86.0% 12.7
33 86.0% 15.9
34 86.0% 30.9
35 90.0% 32.4
36 90.0% 60.7
37 90.0% 47.5
38 90.0% 75.6
39 90.0% 77.1
40 92.0% 80.3
41 92.0% 79.4
42 92.0% 98.4
43 92.0% 88.9
44 92.0% 67.9
45 93.0% 84.9
46 93.0% 75.9
47 93.0% 69.8
48 93.0% 76.8
49 93.0% 69.1
50 91.0% 64.0
51 91.0% 65.1
52 91.0% 86.0
53 91.0% 118.1
54 91.0% 54.4
55 92.0% 59.6
56 92.0% 97.3
57 92.0% 80.9
58 92.0% 57.0
59 92.0% 80.7
60 92.0% 70.4
61 92.0% 65.6
62 92.0% 82.7
63 92.0% 69.4
64 92.0% 57.5
65 91.0% 45.5
66 91.0% 36.8
67 91.0% 26.6
68 91.0% 38.7
69 91.0% 36.7
70 87.0% 37.7
71 87.0% 11.9
72 87.0% 17.6
73 87.0% 27.3
74 87.0% 13.5
75 84.0% 7.8
76 84.0% 8.1
77 84.0% 10.4
78 84.0% 6.9
79 84.0% 17.3
80 0.0% 13.4
81 0.0% 6.2
82 0.0% 1.5
83 0.0% 17.5

Total 2,649.0

Analysis of DDR Unearned Premium Reserve
Under Current Methodology, as of December 31, 2009

Persistency Schedule by Calendar Year

Number of Equivalent Physicians Remaining as of December 31, xxxx
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0
0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0
0.2 0.1 0.1 0.0 0.0 0.0 0.0
0.3 0.3 0.0 0.0 0.0 0.0
0.3 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0
0.0

1.1 0.6 0.3 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1 From Exhibit A4.
2 Base Class, Mature Claims-Made, Full-Time Equivalent Physicians
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Percent of In-force:1

Age Death Disability Retirement

25 0.118% 0.090% 0.000%
26 0.118% 0.100% 0.000%
27 0.118% 0.100% 0.000%
28 0.118% 0.110% 0.000%
29 0.118% 0.120% 0.000%
30 0.130% 0.130% 0.000%
31 0.130% 0.140% 0.000%
32 0.130% 0.150% 0.000%
33 0.130% 0.160% 0.000%
34 0.130% 0.170% 0.000%
35 0.169% 0.180% 0.000%
36 0.169% 0.190% 0.000%
37 0.169% 0.200% 0.000%
38 0.169% 0.210% 0.000%
39 0.169% 0.230% 0.000%
40 0.263% 0.240% 0.000%
41 0.263% 0.260% 0.000%
42 0.263% 0.280% 0.000%
43 0.263% 0.300% 0.000%
44 0.263% 0.320% 0.000%
45 0.399% 0.350% 0.000%
46 0.399% 0.380% 0.000%
47 0.399% 0.410% 0.000%
48 0.399% 0.450% 0.000%
49 0.399% 0.490% 0.000%
50 0.595% 0.530% 0.000%
51 0.595% 0.580% 0.000%
52 0.595% 0.640% 0.000%
53 0.595% 0.690% 0.000%
54 0.595% 0.750% 0.000%
55 0.833% 0.820% 4.000%
56 0.833% 0.890% 4.000%
57 0.833% 0.960% 4.000%
58 0.833% 1.040% 4.000%
59 0.833% 1.120% 4.000%
60 1.279% 1.210% 4.000%
61 1.279% 1.300% 5.000%
62 1.279% 1.400% 5.000%
63 1.279% 1.490% 5.000%
64 1.279% 1.590% 5.000%
65 1.904% 1.690% 6.000%
66 1.904% 0.000% 6.500%
67 1.904% 0.000% 6.500%
68 1.904% 0.000% 6.500%
69 1.904% 0.000% 6.500%
70 2.991% 0.000% 6.500%
71 2.991% 0.000% 6.500%
72 2.991% 0.000% 6.500%
73 2.991% 0.000% 6.500%
74 2.991% 0.000% 6.500%
75 4.694% 0.000% 6.500%
76 4.694% 0.000% 6.500%
77 4.694% 0.000% 6.500%
78 4.694% 0.000% 6.500%
79 4.694% 0.000% 6.500%
80 7.566% 0.000% 92.434%
81 7.566% 0.000% 92.434%
82 8.932% 0.000% 91.068%
83 9.753% 0.000% 90.248%

Total

Analysis of DDR Unearned Premium Reserve
Under Current Methodology, as of December 31, 2009

DDR Lapse Schedule by Calendar Year

 

Number of Equivalent Physicians to DDR During Period3

1/10 - 12/10 1/11 - 12/11 1/12 - 12/12 1/13 - 12/13 1/14 - 12/14 1/15 - 12/15 1/16 - 12/16 1/17 - 12/17 1/18 - 12/18 1/19 - 12/19 1/20 - 12/20 1/21 - 12/21 1/22 - 12/22 1/23 - 12/23 1/24 - 12/24

0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
0.010 0.009 0.008 0.007 0.006 0.006 0.006 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.004
0.022 0.019 0.017 0.015 0.015 0.014 0.013 0.012 0.012 0.013 0.012 0.012 0.011 0.011 0.013
0.035 0.032 0.028 0.028 0.026 0.024 0.022 0.021 0.024 0.023 0.022 0.021 0.020 0.023 0.023
0.046 0.041 0.041 0.038 0.035 0.032 0.031 0.035 0.033 0.032 0.030 0.029 0.034 0.033 0.032
0.093 0.093 0.086 0.080 0.074 0.070 0.079 0.076 0.072 0.069 0.066 0.078 0.075 0.072 0.071
0.113 0.105 0.097 0.090 0.085 0.096 0.092 0.088 0.084 0.080 0.094 0.091 0.088 0.086 0.084
0.218 0.202 0.186 0.177 0.200 0.192 0.183 0.175 0.166 0.196 0.190 0.184 0.179 0.174 0.205
0.175 0.162 0.154 0.174 0.167 0.159 0.152 0.145 0.171 0.165 0.160 0.156 0.152 0.179 0.170
0.287 0.272 0.308 0.295 0.282 0.269 0.256 0.302 0.292 0.282 0.276 0.268 0.316 0.300 0.287
0.308 0.349 0.334 0.319 0.304 0.290 0.343 0.331 0.320 0.312 0.304 0.358 0.340 0.326 0.308
0.404 0.387 0.369 0.352 0.336 0.397 0.384 0.370 0.362 0.352 0.414 0.394 0.377 0.357 0.340
0.415 0.397 0.378 0.360 0.426 0.412 0.398 0.388 0.378 0.445 0.423 0.404 0.383 0.365 1.395
0.535 0.510 0.486 0.574 0.555 0.536 0.523 0.510 0.600 0.570 0.545 0.516 0.492 1.880 1.751
0.501 0.477 0.564 0.545 0.526 0.514 0.500 0.589 0.560 0.535 0.507 0.483 1.847 1.720 1.602
0.396 0.468 0.453 0.437 0.427 0.416 0.489 0.465 0.445 0.421 0.401 1.534 1.428 1.330 1.241
0.636 0.615 0.594 0.580 0.565 0.665 0.632 0.604 0.572 0.545 2.084 1.941 1.808 1.686 1.572
0.591 0.571 0.557 0.543 0.639 0.607 0.581 0.550 0.524 2.002 1.865 1.737 1.620 1.511 1.515
0.565 0.551 0.537 0.632 0.600 0.574 0.544 0.518 1.981 1.845 1.718 1.603 1.494 1.499 1.611
0.652 0.635 0.747 0.710 0.679 0.643 0.613 2.344 2.183 2.033 1.896 1.768 1.773 1.906 1.776
0.614 0.722 0.687 0.657 0.622 0.592 2.265 2.110 1.965 1.833 1.709 1.714 1.842 1.717 1.598
0.720 0.684 0.654 0.620 0.590 2.257 2.103 1.958 1.826 1.703 1.708 1.835 1.711 1.592 1.484
0.765 0.732 0.693 0.660 2.525 2.352 2.190 2.043 1.905 1.911 2.053 1.914 1.781 1.660 1.862
1.062 1.006 0.958 3.376 3.414 3.179 2.965 2.765 2.773 2.980 2.778 2.585 2.409 2.702 2.154
1.517 1.445 5.007 4.799 4.794 4.471 4.170 4.182 4.493 4.188 3.899 3.633 4.075 3.248 2.956
0.732 2.344 2.447 2.353 2.265 2.112 2.118 2.276 2.122 1.975 1.840 2.064 1.645 1.497 1.362
2.443 2.730 2.771 2.704 2.540 2.547 2.737 2.551 2.375 2.213 2.482 1.978 1.800 1.638 1.491
3.913 4.444 4.614 4.481 4.525 4.862 4.532 4.218 3.931 4.409 3.514 3.198 2.910 2.648 2.722
2.947 3.080 3.609 4.015 4.393 4.095 3.811 3.552 3.984 3.176 2.890 2.630 2.393 2.459 2.140
2.753 2.774 3.050 3.313 3.138 2.921 2.722 3.053 2.434 2.215 2.015 1.834 1.885 1.640 1.427
3.831 4.026 4.714 4.776 4.491 4.185 4.694 3.742 3.405 3.099 2.820 2.898 2.521 2.193 1.908
3.736 4.289 4.432 4.235 3.970 4.452 3.549 3.230 2.939 2.675 2.749 2.391 2.080 1.810 1.575
4.134 4.058 4.031 4.019 4.507 3.593 3.270 2.975 2.708 2.783 2.421 2.106 1.832 1.594 1.636
5.274 5.120 5.317 6.093 4.924 4.480 4.077 3.710 3.813 3.317 2.886 2.511 2.184 2.241 1.883
4.267 4.194 5.248 4.309 4.091 3.723 3.388 3.481 3.029 2.635 2.293 1.995 2.046 1.719 1.444
3.591 4.468 3.853 3.554 3.352 3.050 3.135 2.727 2.373 2.064 1.796 1.843 1.548 1.300 1.092
3.243 2.815 2.993 2.849 2.622 2.694 2.344 2.039 1.774 1.543 1.584 1.330 1.117 0.939 0.788
2.001 2.400 2.257 2.302 2.398 2.087 1.815 1.579 1.374 1.410 1.184 0.995 0.836 0.702 5.267
1.607 1.769 1.687 1.800 1.654 1.439 1.252 1.089 1.117 0.939 0.788 0.662 0.556 4.175 0.000
2.883 2.730 2.950 2.637 2.303 2.004 1.743 1.789 1.503 1.262 1.060 0.891 6.684 0.000 0.000
2.792 2.904 2.758 2.400 2.088 1.816 1.864 1.566 1.315 1.105 0.928 6.963 0.000 0.000 0.000
2.248 2.483 2.239 2.200 2.048 2.101 1.765 1.482 1.245 1.046 7.850 0.000 0.000 0.000
1.033 0.898 0.852 0.741 0.761 0.639 0.537 0.451 0.379 2.842 0.000 0.000 0.000
1.100 1.213 1.267 1.300 1.092 0.917 0.770 0.647 4.855 0.000 0.000 0.000
1.766 1.652 2.276 1.944 1.633 1.372 1.152 8.647 0.000 0.000 0.000
1.192 1.314 1.104 0.927 0.779 0.654 4.910 0.000 0.000 0.000
0.762 0.708 0.618 0.519 0.436 3.275 0.000 0.000 0.000
0.679 0.664 0.636 0.535 4.011 0.000 0.000 0.000
1.007 0.899 0.755 6.191 0.000 0.000 0.000
0.665 0.559 4.875 0.000 0.000 0.000
1.857 13.605 0.000 0.000 0.000

10.770 0.000 0.000 0.000
3.616 0.000 0.000
1.507 0.000

13.710

102.7 88.6 85.3 86.3 81.9 77.8 75.7 75.4 68.4 63.2 64.3 59.6 56.3 50.9 48.8

1 From Exhibit A2.
2 Base Class, Mature Claims-Made, Full-Time Equivalent Physicians
3 Lapses due to retirement are excluded if the provider has been continuously insured less than five years
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Percent of In-force:1

Age Death Disability Retirement

25 0.118% 0.090% 0.000%
26 0.118% 0.100% 0.000%
27 0.118% 0.100% 0.000%
28 0.118% 0.110% 0.000%
29 0.118% 0.120% 0.000%
30 0.130% 0.130% 0.000%
31 0.130% 0.140% 0.000%
32 0.130% 0.150% 0.000%
33 0.130% 0.160% 0.000%
34 0.130% 0.170% 0.000%
35 0.169% 0.180% 0.000%
36 0.169% 0.190% 0.000%
37 0.169% 0.200% 0.000%
38 0.169% 0.210% 0.000%
39 0.169% 0.230% 0.000%
40 0.263% 0.240% 0.000%
41 0.263% 0.260% 0.000%
42 0.263% 0.280% 0.000%
43 0.263% 0.300% 0.000%
44 0.263% 0.320% 0.000%
45 0.399% 0.350% 0.000%
46 0.399% 0.380% 0.000%
47 0.399% 0.410% 0.000%
48 0.399% 0.450% 0.000%
49 0.399% 0.490% 0.000%
50 0.595% 0.530% 0.000%
51 0.595% 0.580% 0.000%
52 0.595% 0.640% 0.000%
53 0.595% 0.690% 0.000%
54 0.595% 0.750% 0.000%
55 0.833% 0.820% 4.000%
56 0.833% 0.890% 4.000%
57 0.833% 0.960% 4.000%
58 0.833% 1.040% 4.000%
59 0.833% 1.120% 4.000%
60 1.279% 1.210% 4.000%
61 1.279% 1.300% 5.000%
62 1.279% 1.400% 5.000%
63 1.279% 1.490% 5.000%
64 1.279% 1.590% 5.000%
65 1.904% 1.690% 6.000%
66 1.904% 0.000% 6.500%
67 1.904% 0.000% 6.500%
68 1.904% 0.000% 6.500%
69 1.904% 0.000% 6.500%
70 2.991% 0.000% 6.500%
71 2.991% 0.000% 6.500%
72 2.991% 0.000% 6.500%
73 2.991% 0.000% 6.500%
74 2.991% 0.000% 6.500%
75 4.694% 0.000% 6.500%
76 4.694% 0.000% 6.500%
77 4.694% 0.000% 6.500%
78 4.694% 0.000% 6.500%
79 4.694% 0.000% 6.500%
80 7.566% 0.000% 92.434%
81 7.566% 0.000% 92.434%
82 8.932% 0.000% 91.068%
83 9.753% 0.000% 90.248%

Total

Analysis of DDR Unearned Premium Reserve
Under Current Methodology, as of December 31, 2009

DDR Lapse Schedule by Calendar Year

Number of Equivalent Physicians to DDR During Period
1/25 - 12/25 1/26 - 12/26 1/27 - 12/27 1/28 - 12/28 1/29 - 12/29 1/30 - 12/30 1/31 - 12/31 1/32 - 12/32 1/33 - 12/33 1/34 - 12/34 1/35 - 12/35 1/36 - 12/36 1/37 - 12/37 1/38 - 12/38 1/39 - 12/39

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001
0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.003 0.003 0.003
0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.004 0.004 0.004 0.003
0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.004 0.017 0.015 0.014 0.013 0.013
0.012 0.012 0.012 0.011 0.013 0.013 0.012 0.012 0.011 0.042 0.039 0.036 0.034 0.032 0.032
0.022 0.021 0.021 0.025 0.023 0.022 0.021 0.020 0.077 0.072 0.067 0.062 0.058 0.058 0.062
0.031 0.030 0.036 0.034 0.032 0.031 0.029 0.112 0.104 0.097 0.091 0.085 0.085 0.091 0.085
0.069 0.081 0.077 0.074 0.070 0.066 0.254 0.237 0.220 0.206 0.192 0.192 0.207 0.193 0.179
0.099 0.094 0.090 0.085 0.081 0.309 0.288 0.268 0.250 0.233 0.234 0.251 0.234 0.218 0.203
0.195 0.187 0.177 0.168 0.644 0.600 0.558 0.521 0.486 0.487 0.523 0.488 0.454 0.423 0.475
0.162 0.154 0.146 0.560 0.522 0.486 0.453 0.423 0.424 0.455 0.424 0.395 0.368 0.413 0.329
0.272 0.259 0.990 0.923 0.859 0.801 0.747 0.749 0.805 0.751 0.699 0.651 0.730 0.582 0.530
0.294 1.123 1.046 0.974 0.908 0.847 0.850 0.913 0.851 0.792 0.738 0.828 0.660 0.601 0.546
1.299 1.210 1.127 1.051 0.980 0.983 1.056 0.985 0.917 0.854 0.958 0.764 0.695 0.632 0.575
1.299 1.210 1.129 1.052 1.056 1.134 1.057 0.984 0.917 1.029 0.820 0.746 0.679 0.618 0.635
1.631 1.521 1.419 1.423 1.529 1.425 1.326 1.236 1.386 1.105 1.006 0.915 0.833 0.856 0.745
1.494 1.393 1.397 1.501 1.399 1.303 1.214 1.361 1.085 0.988 0.899 0.818 0.840 0.731 0.636
1.157 1.160 1.247 1.162 1.082 1.008 1.131 0.901 0.820 0.746 0.679 0.698 0.607 0.528 0.460
1.577 1.694 1.579 1.470 1.370 1.537 1.225 1.115 1.014 0.923 0.949 0.825 0.718 0.625 0.543
1.628 1.518 1.413 1.316 1.476 1.177 1.071 0.975 0.887 0.911 0.793 0.690 0.600 0.522 0.536
1.501 1.397 1.302 1.460 1.164 1.059 0.964 0.877 0.902 0.784 0.682 0.594 0.517 0.530 0.445
1.653 1.541 1.728 1.377 1.254 1.141 1.038 1.067 0.928 0.807 0.702 0.611 0.627 0.527 0.442
1.489 1.670 1.331 1.211 1.102 1.003 1.031 0.897 0.780 0.679 0.591 0.606 0.509 0.428 0.359
1.664 1.327 1.207 1.099 1.000 1.027 0.894 0.778 0.677 0.589 0.604 0.507 0.426 0.358 0.301
1.484 1.351 1.229 1.118 1.149 1.000 0.870 0.757 0.658 0.676 0.568 0.477 0.400 0.336 2.524
1.960 1.784 1.623 1.668 1.451 1.263 1.098 0.956 0.981 0.824 0.692 0.581 0.488 3.663 0.000
2.690 2.448 2.515 2.188 1.904 1.656 1.441 1.479 1.242 1.043 0.876 0.736 5.524 0.000 0.000
1.240 1.274 1.109 0.964 0.839 0.730 0.749 0.629 0.528 0.444 0.373 2.798 0.000 0.000 0.000
1.532 1.333 1.160 1.009 0.878 0.901 0.757 0.635 0.534 0.448 3.365 0.000 0.000 0.000
2.368 2.060 1.792 1.559 1.600 1.344 1.129 0.948 0.797 5.977 0.000 0.000 0.000
1.861 1.619 1.409 1.446 1.214 1.020 0.857 0.720 5.401 0.000 0.000 0.000
1.241 1.080 1.108 0.931 0.782 0.657 0.552 4.139 0.000 0.000 0.000
1.660 1.703 1.431 1.202 1.010 0.848 6.364 0.000 0.000 0.000
1.616 1.357 1.140 0.958 0.804 6.036 0.000 0.000 0.000
1.374 1.154 0.969 0.814 6.111 0.000 0.000 0.000
1.581 1.328 1.116 8.374 0.000 0.000 0.000
1.213 1.019 7.646 0.000 0.000 0.000
0.917 6.884 0.000 0.000 0.000
5.917 0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000
0.000

46.2 44.0 41.7 39.2 34.3 31.4 29.0 24.7 23.7 22.0 17.6 15.4 16.3 13.0 10.7

1 From Exhibit A2.
2 Base Class, Mature Claims-Made,Full-Time Equivalent Physicians
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Percent of In-force:1

Age Death Disability Retirement

25 0.118% 0.090% 0.000%
26 0.118% 0.100% 0.000%
27 0.118% 0.100% 0.000%
28 0.118% 0.110% 0.000%
29 0.118% 0.120% 0.000%
30 0.130% 0.130% 0.000%
31 0.130% 0.140% 0.000%
32 0.130% 0.150% 0.000%
33 0.130% 0.160% 0.000%
34 0.130% 0.170% 0.000%
35 0.169% 0.180% 0.000%
36 0.169% 0.190% 0.000%
37 0.169% 0.200% 0.000%
38 0.169% 0.210% 0.000%
39 0.169% 0.230% 0.000%
40 0.263% 0.240% 0.000%
41 0.263% 0.260% 0.000%
42 0.263% 0.280% 0.000%
43 0.263% 0.300% 0.000%
44 0.263% 0.320% 0.000%
45 0.399% 0.350% 0.000%
46 0.399% 0.380% 0.000%
47 0.399% 0.410% 0.000%
48 0.399% 0.450% 0.000%
49 0.399% 0.490% 0.000%
50 0.595% 0.530% 0.000%
51 0.595% 0.580% 0.000%
52 0.595% 0.640% 0.000%
53 0.595% 0.690% 0.000%
54 0.595% 0.750% 0.000%
55 0.833% 0.820% 4.000%
56 0.833% 0.890% 4.000%
57 0.833% 0.960% 4.000%
58 0.833% 1.040% 4.000%
59 0.833% 1.120% 4.000%
60 1.279% 1.210% 4.000%
61 1.279% 1.300% 5.000%
62 1.279% 1.400% 5.000%
63 1.279% 1.490% 5.000%
64 1.279% 1.590% 5.000%
65 1.904% 1.690% 6.000%
66 1.904% 0.000% 6.500%
67 1.904% 0.000% 6.500%
68 1.904% 0.000% 6.500%
69 1.904% 0.000% 6.500%
70 2.991% 0.000% 6.500%
71 2.991% 0.000% 6.500%
72 2.991% 0.000% 6.500%
73 2.991% 0.000% 6.500%
74 2.991% 0.000% 6.500%
75 4.694% 0.000% 6.500%
76 4.694% 0.000% 6.500%
77 4.694% 0.000% 6.500%
78 4.694% 0.000% 6.500%
79 4.694% 0.000% 6.500%
80 7.566% 0.000% 92.434%
81 7.566% 0.000% 92.434%
82 8.932% 0.000% 91.068%
83 9.753% 0.000% 90.248%

Total

Analysis of DDR Unearned Premium Reserve
Under Current Methodology, as of December 31, 2009

DDR Lapse Schedule by Calendar Year

Number of Equivalent Physicians to DDR During Period
1/40 - 12/40 1/41 - 12/41 1/42 - 12/42 1/43 - 12/43 1/44 - 12/44 1/45 - 12/45 1/46 - 12/46 1/47 - 12/47 1/48 - 12/48 1/49 - 12/49 1/50 - 12/50 1/51 - 12/51 1/52 - 12/52 1/53 - 12/53

0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
0.003 0.002 0.002 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001
0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.001
0.013 0.014 0.013 0.012 0.011 0.012 0.010 0.009 0.008 0.007 0.008 0.007 0.006 0.005
0.034 0.032 0.030 0.028 0.031 0.025 0.022 0.020 0.019 0.019 0.017 0.014 0.013 0.011
0.058 0.054 0.051 0.057 0.045 0.041 0.037 0.034 0.035 0.030 0.026 0.023 0.020 0.021
0.079 0.074 0.083 0.066 0.060 0.055 0.050 0.051 0.044 0.039 0.034 0.029 0.030 0.025
0.167 0.187 0.149 0.136 0.124 0.113 0.116 0.101 0.088 0.076 0.066 0.068 0.057 0.048
0.228 0.182 0.165 0.150 0.137 0.141 0.122 0.107 0.093 0.081 0.083 0.069 0.058 0.049
0.378 0.344 0.313 0.285 0.293 0.255 0.222 0.193 0.168 0.172 0.145 0.122 0.102 0.086
0.300 0.273 0.248 0.255 0.222 0.193 0.168 0.146 0.150 0.126 0.106 0.089 0.075 0.560
0.482 0.439 0.451 0.392 0.341 0.297 0.258 0.265 0.223 0.187 0.157 0.132 0.990 0.000
0.497 0.511 0.445 0.387 0.337 0.293 0.300 0.252 0.212 0.178 0.150 1.122 0.000 0.000
0.591 0.515 0.448 0.389 0.339 0.348 0.292 0.245 0.206 0.173 1.299 0.000 0.000 0.000
0.552 0.481 0.418 0.364 0.373 0.314 0.263 0.221 0.186 1.394 0.000 0.000 0.000
0.648 0.564 0.490 0.503 0.423 0.355 0.298 0.250 1.880 0.000 0.000 0.000
0.553 0.482 0.494 0.415 0.349 0.293 0.246 1.846 0.000 0.000 0.000
0.400 0.410 0.345 0.290 0.243 0.204 1.533 0.000 0.000 0.000
0.558 0.468 0.393 0.330 0.278 2.083 0.000 0.000 0.000
0.450 0.378 0.318 0.267 2.002 0.000 0.000 0.000
0.374 0.314 0.264 1.980 0.000 0.000 0.000
0.372 0.312 2.343 0.000 0.000 0.000
0.302 2.264 0.000 0.000 0.000
2.256 0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000
0.000

9.3 8.3 7.5 6.3 5.6 5.0 3.9 3.7 3.3 2.5 2.1 1.7 1.4 0.8

1 From Exhibit A2.
2 Base Class, Mature Claims-Made,Full-Time Equivalent Physicians
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Percent of In-force:1

Age Death Disability Retirement

25 0.118% 0.090% 0.000%
26 0.118% 0.100% 0.000%
27 0.118% 0.100% 0.000%
28 0.118% 0.110% 0.000%
29 0.118% 0.120% 0.000%
30 0.130% 0.130% 0.000%
31 0.130% 0.140% 0.000%
32 0.130% 0.150% 0.000%
33 0.130% 0.160% 0.000%
34 0.130% 0.170% 0.000%
35 0.169% 0.180% 0.000%
36 0.169% 0.190% 0.000%
37 0.169% 0.200% 0.000%
38 0.169% 0.210% 0.000%
39 0.169% 0.230% 0.000%
40 0.263% 0.240% 0.000%
41 0.263% 0.260% 0.000%
42 0.263% 0.280% 0.000%
43 0.263% 0.300% 0.000%
44 0.263% 0.320% 0.000%
45 0.399% 0.350% 0.000%
46 0.399% 0.380% 0.000%
47 0.399% 0.410% 0.000%
48 0.399% 0.450% 0.000%
49 0.399% 0.490% 0.000%
50 0.595% 0.530% 0.000%
51 0.595% 0.580% 0.000%
52 0.595% 0.640% 0.000%
53 0.595% 0.690% 0.000%
54 0.595% 0.750% 0.000%
55 0.833% 0.820% 4.000%
56 0.833% 0.890% 4.000%
57 0.833% 0.960% 4.000%
58 0.833% 1.040% 4.000%
59 0.833% 1.120% 4.000%
60 1.279% 1.210% 4.000%
61 1.279% 1.300% 5.000%
62 1.279% 1.400% 5.000%
63 1.279% 1.490% 5.000%
64 1.279% 1.590% 5.000%
65 1.904% 1.690% 6.000%
66 1.904% 0.000% 6.500%
67 1.904% 0.000% 6.500%
68 1.904% 0.000% 6.500%
69 1.904% 0.000% 6.500%
70 2.991% 0.000% 6.500%
71 2.991% 0.000% 6.500%
72 2.991% 0.000% 6.500%
73 2.991% 0.000% 6.500%
74 2.991% 0.000% 6.500%
75 4.694% 0.000% 6.500%
76 4.694% 0.000% 6.500%
77 4.694% 0.000% 6.500%
78 4.694% 0.000% 6.500%
79 4.694% 0.000% 6.500%
80 7.566% 0.000% 92.434%
81 7.566% 0.000% 92.434%
82 8.932% 0.000% 91.068%
83 9.753% 0.000% 90.248%

Total

Analysis of DDR Unearned Premium Reserve
Under Current Methodology, as of December 31, 2009

DDR Lapse Schedule by Calendar Year

Number of Equivalent Physicians to DDR During Period
1/54 - 12/54 1/55 - 12/55 1/56 - 12/56 1/57 - 12/57 1/58 - 12/58 1/59 - 12/59 1/60 - 12/60 1/61 - 12/61 1/62 - 12/62 1/63 - 12/63 1/64 - 12/64 1/65 - 12/65 1/66 - 12/66 1/67 - 12/67

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000
0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.003 0.000 0.000 0.000
0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.004 0.000 0.000 0.000
0.004 0.004 0.004 0.003 0.003 0.002 0.017 0.000 0.000 0.000
0.011 0.009 0.008 0.007 0.006 0.042 0.000 0.000 0.000
0.017 0.015 0.012 0.010 0.077 0.000 0.000 0.000
0.021 0.018 0.015 0.112 0.000 0.000 0.000
0.040 0.034 0.254 0.000 0.000 0.000
0.041 0.309 0.000 0.000 0.000
0.644 0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000
0.000

0.8 0.4 0.3 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1 From Exhibit A2.
2 Base Class, Mature Claims-Made,Full-Time Equivalent Physicians
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Analysis of DDR Unearned Premium Reserve
Under Current Methodology, as of December 31, 2009

Attrition Pattern by Calendar Year

(1) (2) (3) (4)
= (4) - (1) - (2)

Number of Base Class/Mature CM/Full-Time Equivalents:
In-Force Lapsing In-Force

Calendar at Beginning Lapsing Other Than at End
Period Of Period1 Due to DDR2 Due to DDR Of Period1

1/10 - 12/10 2,649.0 102.7 166.4 2,379.9
1/11 - 12/11 2,379.9 88.6 132.8 2,158.5
1/12 - 12/12 2,158.5 85.3 107.3 1,965.9
1/13 - 12/13 1,965.9 86.3 90.1 1,789.6
1/14 - 12/14 1,789.6 81.9 77.0 1,630.7
1/15 - 12/15 1,630.7 77.8 67.8 1,485.1
1/16 - 12/16 1,485.1 75.7 59.7 1,349.6
1/17 - 12/17 1,349.6 75.4 52.6 1,221.7
1/18 - 12/18 1,221.7 68.4 46.5 1,106.7
1/19 - 12/19 1,106.7 63.2 40.8 1,002.7
1/20 - 12/20 1,002.7 64.3 35.8 902.6
1/21 - 12/21 902.6 59.6 31.6 811.5
1/22 - 12/22 811.5 56.3 27.0 728.1
1/23 - 12/23 728.1 50.9 23.3 653.9
1/24 - 12/24 653.9 48.8 20.3 584.8
1/25 - 12/25 584.8 46.2 17.1 521.5
1/26 - 12/26 521.5 44.0 14.1 463.3
1/27 - 12/27 463.3 41.7 11.9 409.7
1/28 - 12/28 409.7 39.2 10.0 360.5
1/29 - 12/29 360.5 34.3 8.1 318.0
1/30 - 12/30 318.0 31.4 6.7 279.9
1/31 - 12/31 279.9 29.0 5.6 245.2
1/32 - 12/32 245.2 24.7 4.9 215.7
1/33 - 12/33 215.7 23.7 4.1 187.9
1/34 - 12/34 187.9 22.0 3.6 162.3
1/35 - 12/35 162.3 17.6 3.2 141.6
1/36 - 12/36 141.6 15.4 2.9 123.3
1/37 - 12/37 123.3 16.3 2.5 104.5
1/38 - 12/38 104.5 13.0 2.3 89.1
1/39 - 12/39 89.1 10.7 2.2 76.3
1/40 - 12/40 76.3 9.3 2.0 65.0
1/41 - 12/41 65.0 8.3 1.8 54.9
1/42 - 12/42 54.9 7.5 1.7 45.7
1/43 - 12/43 45.7 6.3 1.5 37.9
1/44 - 12/44 37.9 5.6 1.3 31.0
1/45 - 12/45 31.0 5.0 1.1 24.9
1/46 - 12/46 24.9 3.9 0.9 20.0
1/47 - 12/47 20.0 3.7 0.8 15.5
1/48 - 12/48 15.5 3.3 0.6 11.6
1/49 - 12/49 11.6 2.5 0.5 8.7
1/50 - 12/50 8.7 2.1 0.3 6.2
1/51 - 12/51 6.2 1.7 0.2 4.3
1/52 - 12/52 4.3 1.4 0.2 2.8
1/53 - 12/53 2.8 0.8 0.1 1.9
1/54 - 12/54 1.9 0.8 0.1 1.1
1/55 - 12/55 1.1 0.4 0.0 0.6
1/56 - 12/56 0.6 0.3 0.0 0.3
1/57 - 12/57 0.3 0.1 0.0 0.2
1/58 - 12/58 0.2 0.1 0.0 0.1
1/59 - 12/59 0.1 0.0 0.0 0.0
1/60 - 12/60 0.0 0.0 0.0 0.0
1/61 - 12/61 0.0 0.0 0.0 0.0
1/62 - 12/62 0.0 0.0 0.0 0.0
1/63 - 12/63 0.0 0.0 0.0 0.0
1/64 - 12/64 0.0 0.0 0.0 0.0
1/65 - 12/65 0.0 0.0 0.0 0.0
1/66 - 12/66 0.0 0.0 0.0 0.0
1/67 - 12/67 0.0 0.0 0.0 0.0

Total 26,451.6 1,557.7 1,091.3 23,802.6

1 From Exhibits A5 through A8.
2 From Exhibit A9 through A12.
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Analysis of DDR Unearned Premium Reserve
Under Current Methodology, as of December 31, 2009

Indicated Pure Premiums For ERE Coverage

(1) (2) (3) (4) (5)
= (2) / (3)

Ultimate Trended2

Loss & ALAE Mature Claims-Made Ultimate Ultimate
Report Limited to Base Class Loss & ALAE Loss & ALAE
Year Policy Limits1 Equivalent Exposures Pure Premium Pure Premium
1998 5,424,163 1,359 3,992 6,828
1999 2,396,646 1,427 1,679 2,736
2000 9,206,638 1,574 5,847 9,071
2001 4,793,956 1,777 2,698 3,986
2002 7,511,520 1,825 4,117 5,793
2003 8,367,549 1,774 4,717 6,321
2004 17,946,284 2,526 7,106 9,069
2005 19,199,929 2,736 7,017 8,529
2006 14,844,834 2,844 5,220 6,043
2007 10,900,615 2,500 4,360 4,807
2008 13,165,910 2,414 5,455 5,728
2009 16,783,983 2,674 6,277 6,277

2003 - 2009 6,713
2005 - 2009 6,315

(6) Selected Base Class Claims-Made Loss & ALAE Pure Premium at Total Limits 6,525

(7) ULAE Load1 7.0%

(8) Selected Base Class Claims-Made Loss & LAE Pure Premium at Total Limits; (6) x [1 + (7)] 6,982  

(9) Mature Claims-Made to Average ERE Factor3 2.000

(10) Assumed Reduction in DDR Liability Due to Reduced Exposure Prior to Retirement 80.0%

(11) Selected Base Class Loss & LAE ERE Pure Premium;  (8) x (9) x (10) 11,171

1 Based on claims-made reserve analysis
2 Trended at 5.0% per annum to average report date of July 1, 2009
3 Based on actuarial analysis or currently filed tail factor
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Analysis of DDR Unearned Premium Reserve
Under Current Methodology, as of December 31, 2009

Projections of Loss and LAE on DDR Policies

Assumptions
Per Annum Trend: 5.00%

Projected Projected Loss & LAE Paid4

Calendar Number to Pure Loss & LAE 0.5% 2.5% 2.0% 25.0% 20.0% 15.0% 10.0% 5.0% 5.0% 5.0% 5.0% 2.5% 2.5%  
Period DDR1 Premium2 Incurred3 1st Year 2nd Year 3rd Year 4th Year 5th Year 6th Year 7th Year 8th Year 9th Year 10th Year 11th Year 12th Year 13th Year Total

1/10 - 12/10 102.7 11,171 1,147,766 5,739 5,739
1/11 - 12/11 88.6 11,730 1,039,567 5,198 28,694 33,892
1/12 - 12/12 85.3 12,316 1,050,612 5,253 25,989 22,955 54,198
1/13 - 12/13 86.3 12,932 1,115,615 5,578 26,265 20,791 286,941 339,576
1/14 - 12/14 81.9 13,578 1,112,278 5,561 27,890 21,012 259,892 229,553 543,909
1/15 - 12/15 77.8 14,257 1,109,064 5,545 27,807 22,312 262,653 207,913 172,165 698,396
1/16 - 12/16 75.7 14,970 1,133,551 5,668 27,727 22,246 278,904 210,122 155,935 114,777 815,378
1/17 - 12/17 75.4 15,719 1,185,086 5,925 28,339 22,181 278,069 223,123 157,592 103,957 57,388 876,575
1/18 - 12/18 68.4 16,505 1,129,272 5,646 29,627 22,671 277,266 222,456 167,342 105,061 51,978 57,388 939,436
1/19 - 12/19 63.2 17,330 1,096,102 5,481 28,232 23,702 283,388 221,813 166,842 111,561 52,531 51,978 57,388 1,002,915
1/20 - 12/20 64.3 18,196 1,169,327 5,847 27,403 22,585 296,272 226,710 166,360 111,228 55,781 52,531 51,978 57,388 1,074,082
1/21 - 12/21 59.6 19,106 1,137,841 5,689 29,233 21,922 282,318 237,017 170,033 110,906 55,614 55,781 52,531 51,978 28,694 1,101,716
1/22 - 12/22 56.3 20,062 1,129,504 5,648 28,446 23,387 274,026 225,854 177,763 113,355 55,453 55,614 55,781 52,531 25,989 28,694 1,122,540
1/23 - 12/23 50.9 21,065 1,073,047 5,365 28,238 22,757 292,332 219,220 169,391 118,509 56,678 55,453 55,614 55,781 26,265 25,989 1,131,591
1/24 - 12/24 48.8 22,118 1,079,123 5,396 26,826 22,590 284,460 233,865 164,415 112,927 59,254 56,678 55,453 55,614 27,890 26,265 1,131,635
1/25 - 12/25 46.2 23,224 1,073,217 5,366 26,978 21,461 282,376 227,568 175,399 109,610 56,464 59,254 56,678 55,453 27,807 27,890 1,132,304
1/26 - 12/26 44.0 24,385 1,073,050 5,365 26,830 21,582 268,262 225,901 170,676 116,933 54,805 56,464 59,254 56,678 27,727 27,807 1,118,284
1/27 - 12/27 41.7 25,604 1,068,412 5,342 26,826 21,464 269,781 214,609 169,426 113,784 58,466 54,805 56,464 59,254 28,339 27,727 1,106,287
1/28 - 12/28 39.2 26,884 1,054,322 5,272 26,710 21,461 268,304 215,825 160,957 112,950 56,892 58,466 54,805 56,464 29,627 28,339 1,096,072
1/29 - 12/29 34.3 28,229 968,651 4,843 26,358 21,368 268,262 214,643 161,868 107,305 56,475 56,892 58,466 54,805 28,232 29,627 1,089,146
1/30 - 12/30 31.4 29,640 931,744 4,659 24,216 21,086 267,103 214,610 160,983 107,912 53,652 56,475 56,892 58,466 27,403 28,232 1,081,690
1/31 - 12/31 29.0 31,122 903,937 4,520 23,294 19,373 263,581 213,682 160,957 107,322 53,956 53,652 56,475 56,892 29,233 27,403 1,070,340
1/32 - 12/32 24.7 32,678 807,177 4,036 22,598 18,635 242,163 210,864 160,262 107,305 53,661 53,956 53,652 56,475 28,446 29,233 1,041,287
1/33 - 12/33 23.7 34,312 812,854 4,064 20,179 18,079 232,936 193,730 158,148 106,841 53,652 53,661 53,956 53,652 28,238 28,446 1,005,584
1/34 - 12/34 22.0 36,028 791,523 3,958 20,321 16,144 225,984 186,349 145,298 105,432 53,421 53,652 53,661 53,956 26,826 28,238 973,239
1/35 - 12/35 17.6 37,829 665,111 3,326 19,788 16,257 201,794 180,787 139,762 96,865 52,716 53,421 53,652 53,661 26,978 26,826 925,833
1/36 - 12/36 15.4 39,720 610,757 3,054 16,628 15,830 203,214 161,435 135,591 93,174 48,433 52,716 53,421 53,652 26,830 26,978 890,956
1/37 - 12/37 16.3 41,706 680,517 3,403 15,269 13,302 197,881 162,571 121,077 90,394 46,587 48,433 52,716 53,421 26,826 26,830 858,709
1/38 - 12/38 13.0 43,792 568,706 2,844 17,013 12,215 166,278 158,305 121,928 80,718 45,197 46,587 48,433 52,716 26,710 26,826 805,769
1/39 - 12/39 10.7 45,981 490,337 2,452 14,218 13,610 152,689 133,022 118,728 81,285 40,359 45,197 46,587 48,433 26,358 26,710 749,649
1/40 - 12/40 9.3 48,280 449,029 2,245 12,258 11,374 170,129 122,151 99,767 79,152 40,643 40,359 45,197 46,587 24,216 26,358 720,437
1/41 - 12/41 8.3 50,694 420,964 2,105 11,226 9,807 142,176 136,103 91,614 66,511 39,576 40,643 40,359 45,197 23,294 24,216 672,826
1/42 - 12/42 7.5 53,229 397,460 1,987 10,524 8,981 122,584 113,741 102,078 61,076 33,256 39,576 40,643 40,359 22,598 23,294 620,696
1/43 - 12/43 6.3 55,891 352,834 1,764 9,936 8,419 112,257 98,067 85,306 68,052 30,538 33,256 39,576 40,643 20,179 22,598 570,592
1/44 - 12/44 5.6 58,685 329,396 1,647 8,821 7,949 105,241 89,806 73,550 56,871 34,026 30,538 33,256 39,576 20,321 20,179 521,781
1/45 - 12/45 5.0 61,619 309,735 1,549 8,235 7,057 99,365 84,193 67,354 49,034 28,435 34,026 30,538 33,256 19,788 20,321 483,150
1/46 - 12/46 3.9 64,700 255,247 1,276 7,743 6,588 88,208 79,492 63,145 44,903 24,517 28,435 34,026 30,538 16,628 19,788 445,287
1/47 - 12/47 3.7 67,935 254,557 1,273 6,381 6,195 82,349 70,567 59,619 42,096 22,451 24,517 28,435 34,026 15,269 16,628 409,806
1/48 - 12/48 3.3 71,332 236,522 1,183 6,364 5,105 77,434 65,879 52,925 39,746 21,048 22,451 24,517 28,435 17,013 15,269 377,369
1/49 - 12/49 2.5 74,899 186,359 932 5,913 5,091 63,812 61,947 49,409 35,283 19,873 21,048 22,451 24,517 14,218 17,013 341,507
1/50 - 12/50 2.1 78,644 164,669 823 4,659 4,730 63,639 51,049 46,460 32,940 17,642 19,873 21,048 22,451 12,258 14,218 311,791
1/51 - 12/51 1.7 82,576 138,720 694 4,117 3,727 59,131 50,911 38,287 30,973 16,470 17,642 19,873 21,048 11,226 12,258 286,357
1/52 - 12/52 1.4 86,705 117,458 587 3,468 3,293 46,590 47,304 38,184 25,525 15,487 16,470 17,642 19,873 10,524 11,226 256,172
1/53 - 12/53 0.8 91,040 73,564 368 2,936 2,774 41,167 37,272 35,478 25,456 12,762 15,487 16,470 17,642 9,936 10,524 228,273
1/54 - 12/54 0.8 95,592 74,784 374 1,839 2,349 34,680 32,934 27,954 23,652 12,728 12,762 15,487 16,470 8,821 9,936 199,986
1/55 - 12/55 0.4 100,372 39,341 197 1,870 1,471 29,365 27,744 24,700 18,636 11,826 12,728 12,762 15,487 8,235 8,821 173,841
1/56 - 12/56 0.3 105,390 31,140 156 984 1,496 18,391 23,492 20,808 16,467 9,318 11,826 12,728 12,762 7,743 8,235 144,405
1/57 - 12/57 0.1 110,660 14,882 74 778 787 18,696 14,713 17,619 13,872 8,233 9,318 11,826 12,728 6,381 7,743 122,769
1/58 - 12/58 0.1 116,193 10,127 51 372 623 9,835 14,957 11,035 11,746 6,936 8,233 9,318 11,826 6,364 6,381 97,676
1/59 - 12/59 0.0 122,002 5,603 28 253 298 7,785 7,868 11,218 7,356 5,873 6,936 8,233 9,318 5,913 6,364 77,443
1/60 - 12/60 0.0 128,102 2,323 12 140 203 3,721 6,228 5,901 7,478 3,678 5,873 6,936 8,233 4,659 5,913 58,975
1/61 - 12/61 0.0 134,507 686 3 58 112 2,532 2,976 4,671 3,934 3,739 3,678 5,873 6,936 4,117 4,659 43,289
1/62 - 12/62 0.0 141,233 491 2 17 46 1,401 2,025 2,232 3,114 1,967 3,739 3,678 5,873 3,468 4,117 31,680
1/63 - 12/63 0.0 148,294 208 1 12 14 581 1,121 1,519 1,488 1,557 1,967 3,739 3,678 2,936 3,468 22,081
1/64 - 12/64 0.0 155,709 52 0 5 10 171 465 840 1,013 744 1,557 1,967 3,739 1,839 2,936 15,287
1/65 - 12/65 0.0 163,495 96 0 1 4 123 137 348 560 506 744 1,557 1,967 1,870 1,839 9,658
1/66 - 12/66 0.0 171,669 0 0 2 1 52 98 103 232 280 506 744 1,557 984 1,870 6,429
1/67 - 12/67 0.0 180,253 0 0 0 2 13 42 74 69 116 280 506 744 778 984 3,608

12/67 - 11/68 0 0 0 24 10 31 49 34 116 280 506 372 778 2,202
12/68 - 11/69 0 0 0 0 19 8 21 25 34 116 280 253 372 1,128
12/69 - 11/70 0 0 0 0 0 14 5 10 25 34 116 140 253 598
12/70 - 11/71 0 0 0 0 0 0 10 3 10 25 34 58 140 280
12/71 - 11/72 0 0 0 0 0 0 0 5 3 10 25 17 58 118
12/72 - 11/73 0 0 0 0 0 0 0 0 5 3 10 12 17 47
12/73 - 11/74 0 0 0 0 0 0 0 0 0 5 3 5 12 25
12/74 - 11/75 0 0 0 0 0 0 0 0 0 0 5 1 5 11
12/75 - 11/76 0 0 0 0 0 0 0 0 0 0 0 2 1 4
12/76 - 11/77 0 0 0 0 0 0 0 0 0 0 0 0 2 2
12/77 - 11/78 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Total 1,557.7 33,074,314 165,372 826,858 661,486 8,268,578 6,614,863 4,961,147 3,307,431 1,653,716 1,653,716 1,653,716 1,653,716 826,858 826,858 33,074,314

1 From Exhibit A13.
2 First calendar period value is from Exhibit A14; subsequent values are trended at the per annum trend rate selected above.
3 Product of the projected number of insureds to DDR and the projected pure premium.
4 From Exhibit A18.
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Analysis of DDR Unearned Premium Reserve
Under Current Methodology, as of December 31, 2009

Discounted Projections of Loss & LAE

Calendar Total Paid Paid Loss & LAE Discounted at a Per Annum Rate of
Period Loss & LAE1 3.0% 4.0% 5.0% 6.0%

1/10 - 12/10 5,739 5,655 5,627 5,601 5,574
1/11 - 12/11 33,892 32,422 31,956 31,500 31,055
1/12 - 12/12 54,198 50,337 49,136 47,974 46,851
1/13 - 12/13 339,576 306,201 296,020 286,269 276,928
1/14 - 12/14 543,909 476,166 455,907 436,691 418,456
1/15 - 12/15 698,396 593,604 562,883 534,024 506,897
1/16 - 12/16 815,378 672,848 631,891 593,784 558,304
1/17 - 12/17 876,575 702,279 653,189 607,952 566,233
1/18 - 12/18 939,436 730,720 673,107 620,523 572,489
1/19 - 12/19 1,002,915 757,374 690,951 630,908 576,578
1/20 - 12/20 1,074,082 787,493 711,520 643,502 582,540
1/21 - 12/21 1,101,716 784,227 701,756 628,627 563,706
1/22 - 12/22 1,122,540 775,776 687,520 610,008 541,849
1/23 - 12/23 1,131,591 759,254 666,407 585,644 515,300
1/24 - 12/24 1,131,635 737,168 640,801 557,778 486,151
1/25 - 12/25 1,132,304 716,121 616,519 531,532 458,905
1/26 - 12/26 1,118,284 686,654 585,466 499,952 427,568
1/27 - 12/27 1,106,287 659,502 556,909 471,037 399,039
1/28 - 12/28 1,096,072 634,382 530,545 444,465 372,976
1/29 - 12/29 1,089,146 612,012 506,916 420,625 349,641
1/30 - 12/30 1,081,690 590,119 484,082 397,852 327,591
1/31 - 12/31 1,070,340 566,919 460,580 374,931 305,806
1/32 - 12/32 1,041,287 535,467 430,844 347,385 280,665
1/33 - 12/33 1,005,584 502,046 400,069 319,499 255,700
1/34 - 12/34 973,239 471,745 372,308 294,498 233,467
1/35 - 12/35 925,833 435,696 340,551 266,812 209,524
1/36 - 12/36 890,956 407,071 315,118 244,534 190,218
1/37 - 12/37 858,709 380,910 292,031 224,461 172,956
1/38 - 12/38 805,769 347,016 263,488 200,593 153,106
1/39 - 12/39 749,649 313,444 235,708 177,735 134,380
1/40 - 12/40 720,437 292,456 217,811 162,676 121,834
1/41 - 12/41 672,826 265,174 195,593 144,691 107,342
1/42 - 12/42 620,696 237,503 173,498 127,124 93,420
1/43 - 12/43 570,592 211,972 153,359 111,297 81,018
1/44 - 12/44 521,781 188,193 134,846 96,930 69,893
1/45 - 12/45 483,150 169,184 120,060 85,479 61,055
1/46 - 12/46 445,287 151,384 106,395 75,029 53,086
1/47 - 12/47 409,806 135,264 94,152 65,763 46,090
1/48 - 12/48 377,369 120,930 83,365 57,674 40,040
1/49 - 12/49 341,507 106,250 72,541 49,708 34,184
1/50 - 12/50 311,791 94,180 63,682 43,221 29,443
1/51 - 12/51 286,357 83,977 56,237 37,805 25,510
1/52 - 12/52 256,172 72,937 48,374 32,210 21,529
1/53 - 12/53 228,273 63,101 41,448 27,335 18,099
1/54 - 12/54 199,986 53,671 34,915 22,807 14,959
1/55 - 12/55 173,841 45,296 29,183 18,882 12,267
1/56 - 12/56 144,405 36,530 23,309 14,938 9,613
1/57 - 12/57 122,769 30,152 19,055 12,095 7,710
1/58 - 12/58 97,676 23,291 14,577 9,165 5,787
1/59 - 12/59 77,443 17,928 11,113 6,920 4,329
1/60 - 12/60 58,975 13,255 8,137 5,019 3,110
1/61 - 12/61 43,289 9,446 5,743 3,509 2,153
1/62 - 12/62 31,680 6,712 4,041 2,445 1,487
1/63 - 12/63 22,081 4,542 2,709 1,623 978
1/64 - 12/64 15,287 3,053 1,803 1,070 638
1/65 - 12/65 9,658 1,872 1,095 644 381
1/66 - 12/66 6,429 1,210 701 408 239
1/67 - 12/67 3,608 659 378 218 127

12/67 - 11/68 2,202 391 222 127 73
12/68 - 11/69 1,128 194 109 62 35
12/69 - 11/70 598 100 56 31 18
12/70 - 11/71 280 45 25 14 8
12/71 - 11/72 118 19 10 6 3
12/72 - 11/73 47 7 4 2 1
12/73 - 11/74 25 4 2 1 1
12/74 - 11/75 11 2 1 0 0
12/75 - 11/76 4 1 0 0 0
12/76 - 11/77 2 0 0 0 0
12/77 - 11/78 0 0 0 0 0

Total $33,074,314 $18,471,516 $15,568,357 $13,253,623 $11,386,908

1 From Exhibit A15.
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Analysis of DDR Unearned Premium Reserve
Under Current Methodology, as of December 31, 2009

Discounted Projections of DDR Premiums

Assumptions
Annual Avg. Rate Change: 5.00%
DDR Provision (% of premium) 3.00%

Average Projected
Base Class/ Number of
Mature CM Equivalents
Full-Time Renewing

Calendar Equivalent During Undiscounted DDR Premium Discounted at a Per Annum Rate of
Period Premium1 Period2 DDR Premium3 3.0% 4.0% 5.0% 6.0%

1/10 - 12/10 9,302 2,379.9 664,128 654,384 651,231 648,122 645,058
1/11 - 12/11 9,767 2,158.5 632,464 605,034 596,329 587,830 579,532
1/12 - 12/12 10,255 1,965.9 604,842 561,758 548,351 535,388 522,850
1/13 - 12/13 10,768 1,789.6 578,124 521,304 503,970 487,370 471,466
1/14 - 12/14 11,307 1,630.7 553,121 484,231 463,629 444,087 425,543
1/15 - 12/15 11,872 1,485.1 528,916 449,554 426,288 404,432 383,888
1/16 - 12/16 12,466 1,349.6 504,724 416,497 391,144 367,556 345,593
1/17 - 12/17 13,089 1,221.7 479,700 384,318 357,454 332,698 309,867
1/18 - 12/18 13,743 1,106.7 456,301 354,924 326,940 301,400 278,069
1/19 - 12/19 14,430 1,002.7 434,067 327,796 299,048 273,060 249,546
1/20 - 12/20 15,152 902.6 410,299 300,822 271,801 245,818 222,530
1/21 - 12/21 15,910 811.5 387,308 275,695 246,702 220,994 198,171
1/22 - 12/22 16,705 728.1 364,909 252,185 223,495 198,298 176,141
1/23 - 12/23 17,540 653.9 344,080 230,865 202,633 178,076 156,686
1/24 - 12/24 18,417 584.8 323,091 210,468 182,954 159,250 138,800
1/25 - 12/25 19,338 521.5 302,534 191,337 164,724 142,017 122,612
1/26 - 12/26 20,305 463.3 282,238 173,301 147,763 126,181 107,912
1/27 - 12/27 21,320 409.7 262,055 156,222 131,920 111,578 94,524
1/28 - 12/28 22,386 360.5 242,115 140,130 117,194 98,179 82,388
1/29 - 12/29 23,506 318.0 224,277 126,026 104,384 86,615 71,998
1/30 - 12/30 24,681 279.9 207,220 113,050 92,736 76,217 62,757
1/31 - 12/31 25,915 245.2 190,662 100,987 82,044 66,787 54,474
1/32 - 12/32 27,211 215.7 176,067 90,540 72,850 58,738 47,456
1/33 - 12/33 28,571 187.9 161,016 80,389 64,060 51,159 40,943
1/34 - 12/34 30,000 162.3 146,091 70,813 55,886 44,206 35,045
1/35 - 12/35 31,500 141.6 133,767 62,951 49,204 38,550 30,273
1/36 - 12/36 33,075 123.3 122,346 55,899 43,272 33,580 26,121
1/37 - 12/37 34,729 104.5 108,830 48,275 37,011 28,447 21,920
1/38 - 12/38 36,465 89.1 97,495 41,988 31,881 24,271 18,525
1/39 - 12/39 38,288 76.3 87,648 36,648 27,559 20,781 15,712
1/40 - 12/40 40,203 65.0 78,383 31,819 23,698 17,699 13,255
1/41 - 12/41 42,213 54.9 69,462 27,376 20,193 14,938 11,082
1/42 - 12/42 44,323 45.7 60,784 23,258 16,990 12,449 9,148
1/43 - 12/43 46,540 37.9 52,944 19,668 14,230 10,327 7,517
1/44 - 12/44 48,867 31.0 45,448 16,392 11,745 8,443 6,088
1/45 - 12/45 51,310 24.9 38,288 13,407 9,514 6,774 4,838
1/46 - 12/46 53,875 20.0 32,312 10,985 7,720 5,444 3,852
1/47 - 12/47 56,569 15.5 26,287 8,676 6,039 4,218 2,956
1/48 - 12/48 59,398 11.6 20,660 6,621 4,564 3,157 2,192
1/49 - 12/49 62,368 8.7 16,195 5,039 3,440 2,357 1,621
1/50 - 12/50 65,486 6.2 12,241 3,698 2,500 1,697 1,156
1/51 - 12/51 68,760 4.3 8,906 2,612 1,749 1,176 793
1/52 - 12/52 72,198 2.8 6,084 1,732 1,149 765 511
1/53 - 12/53 75,808 1.9 4,311 1,192 783 516 342
1/54 - 12/54 79,599 1.1 2,517 676 439 287 188
1/55 - 12/55 83,579 0.6 1,571 409 264 171 111
1/56 - 12/56 87,757 0.3 825 209 133 85 55
1/57 - 12/57 92,145 0.2 468 115 73 46 29
1/58 - 12/58 96,753 0.1 226 54 34 21 13
1/59 - 12/59 101,590 0.0 92 21 13 8 5
1/60 - 12/60 106,670 0.0 37 8 5 3 2
1/61 - 12/61 112,003 0.0 20 4 3 2 1
1/62 - 12/62 117,603 0.0 9 2 1 1 0
1/63 - 12/63 123,484 0.0 4 1 0 0 0
1/64 - 12/64 129,658 0.0 2 0 0 0 0
1/65 - 12/65 136,141 0.0 0 0 0 0 0
1/66 - 12/66 142,948 0.0 0 0 0 0 0
1/67 - 12/67 150,095 0.0 0 0 0 0 0

Total $10,488,515 $7,692,363 $7,039,737 $6,482,270 $6,002,160

1 First calendar period based on most recent rate-making analysis; subsequent calendar periods based on selected per annum trend rate given above.
2 From Exhibit A13.
3 Product of the preceding two columns with the selected DDR premium provision given above.
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Analysis of DDR Unearned Premium Reserve
Under Current Methodology, as of December 31, 2009

Indicated Payment Pattern

Report Paid and ALAE Limited to Total Limits Ultimate
Year 6 18 30 42 54 66 78 90 102 114 126 138 Loss & ALAE 1

1998 25,164 89,752 1,130,799 2,542,591 2,967,665 2,995,798 3,437,037 3,559,235 3,801,522 4,491,207 5,169,227 5,424,163 5,424,163
1999 6,521 105,758 1,003,750 1,031,549 1,473,937 1,941,283 2,214,501 2,377,473 2,396,646 2,396,646 2,396,646 2,396,646
2000 40,354 454,320 714,843 2,533,727 5,365,433 7,885,766 8,493,316 8,775,703 9,206,638 9,206,638 9,206,638
2001 3,676 81,617 1,970,348 2,133,686 2,784,400 3,241,764 3,339,004 3,789,487 4,067,321 4,793,956
2002 30,553 173,218 1,894,060 2,377,270 2,591,217 4,738,023 4,844,448 5,411,389 7,511,520
2003 19,591 255,093 1,730,200 5,041,606 7,464,685 8,363,029 8,367,549 8,367,549
2004 11,365 64,274 997,369 7,616,690 12,400,882 12,098,981 17,946,284
2005 31,269 923,539 7,581,324 12,268,755 13,911,166 19,199,929
2006 53,595 1,172,375 5,880,446 7,986,521 14,844,834
2007 48,480 990,712 3,243,150 10,900,615
2008 57,096 261,824 13,165,910
2009 24,899 16,783,983

Report Months of Development
Year 6 18 30 42 54 66 78 90 102 114 126 138
1998 0.5% 1.7% 20.8% 46.9% 54.7% 55.2% 63.4% 65.6% 70.1% 82.8% 95.3% 100.0%
1999 0.3% 4.4% 41.9% 43.0% 61.5% 81.0% 92.4% 99.2% 100.0% 100.0% 100.0%
2000 0.4% 4.9% 7.8% 27.5% 58.3% 85.7% 92.3% 95.3% 100.0% 100.0%
2001 0.1% 1.7% 41.1% 44.5% 58.1% 67.6% 69.7% 79.0% 84.8%
2002 0.4% 2.3% 25.2% 31.6% 34.5% 63.1% 64.5% 72.0%
2003 0.2% 3.0% 20.7% 60.3% 89.2% 99.9% 100.0%
2004 0.1% 0.4% 5.6% 42.4% 69.1% 67.4%
2005 0.2% 4.8% 39.5% 63.9% 72.5%
2006 0.4% 7.9% 39.6% 53.8%
2007 0.4% 9.1% 29.8%
2008 0.4% 2.0%
2009 0.1%

Average 0.3% 3.8% 27.2% 46.0% 62.2% 74.3% 80.4% 82.2% 88.7% 94.3% 97.7% 100.0%
Weighted Average 0.3% 4.0% 26.0% 48.5% 65.4% 74.2% 81.4% 81.5% 89.2% 94.5% 96.7% 100.0%
Average L5 0.3% 4.8% 27.0% 50.4% 64.7% 76.7% 83.8% 82.2%
Average L3 0.3% 6.3% 36.3% 53.4% 76.9% 76.8% 78.0% 82.1% 94.9% 94.3%

Selected 6 - Ult 18 - Ult 30 - Ult 42 - Ult 54 - Ult 66 - Ult 78 - Ult 90 - Ult 102 - Ult 114 - Ult 126 - Ult 138 - Ult
Cumulative 0.3% 5.0% 30.0% 50.0% 65.0% 75.0% 80.0% 85.0% 90.0% 95.0% 97.5% 100.0%

Tail Year Payment Pattern
12 - Ult 24 - Ult 36 - Ult 48 - Ult 60 - Ult 72 - Ult 84 - Ult 96 - Ult 108 - Ult 120 - Ult 132 - Ult 144 - Ult 156 - Ult

Cumulative2 0.5% 3.0% 5.0% 30.0% 50.0% 65.0% 75.0% 80.0% 85.0% 90.0% 95.0% 97.5% 100.0%
Incremental 0.5% 2.5% 2.0% 25.0% 20.0% 15.0% 10.0% 5.0% 5.0% 5.0% 5.0% 2.5% 2.5%

1 Based on claims-made reserve analysis.
2 In order to determine a "tail year"  payment pattern, we assume an 18 month lag between a report year pattern and a tail year pattern (12 and 24 month factors are judgmentally selected)
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Bootstrapping Generalized Linear Models for Development 
Triangles Using Deviance Residuals  

Thomas Hartl, ACAS 

 
______________________________________________________________________________ 
Abstract: This paper presents a practical study of how to bootstrap a development triangle using a generalized linear 

model (GLM) and deviance residuals. We also point out some limitations inherent in bootstrapping approaches. 
(Interested readers can contact the author and request a copy of an MS Excel application to further explore the 
concepts discussed in this paper.) First we demonstrate how Pearson residual bootstrapping can fail when applied 
to GLMs because of their linear rescaling properties. Next we describe an algorithm for rescaling deviance 
residuals based on the identity variance function. We continue with an example where Pearson residual 
bootstrapping fails, while deviance residuals bootstrapping works.  We then present bootstrap simulation results 
for two GLMs: one where both approaches work and the original example where only deviance residuals can be 
applied. Subsequently we prove that deviance residuals based on the identity variance function are bounded 
below for any given data point with the lower bound depending on the fitted value for the data point. We then 
give an example of a GLM where deviance residual bootstrapping fails because of this property. The paper 
concludes with a discussion of “distribution-free” versus parametric resampling. 

 
Keywords. Bootstrapping and Resampling Methods, Generalized Linear Modeling, Reserve Variability, Reserving 

Methods, Nonparametric Methods. 
              

1. INTRODUCTION 

In the context of stochastic reserving, several authors (e.g., [4], [7] and [9]) have stressed the need 

of casting the task of projecting reserves in a rigorous way as a regression problem. Several authors 

(e.g., [4], [7] and [9]) have also pointed out that performing an all-years, volume weighted, link-ratio 

estimate leads to the same result as fitting a GLM with the logarithmic link function and the identity 

variance function. Some papers (e.g., [4]) and many practitioners have exploited this equivalence to 

implement spreadsheet based applications for deriving a distribution of possible reserve outcomes 

based on bootstrap simulations by repeated resampling and application of the link-ratio estimate. 

While suitable to illustrate the concept of bootstrapping, these applications are typically not flexible 

enough to deal with practical judgments reserving analysts have to make about which cells of the 

triangle are deemed to be representative of future development (e.g., use data from last n diagonals 

or exclude obvious abnormalities). In [5] the author of this paper presented a practical account of 

how to rigorously translate such judgments into a well-defined regression problem using the 

apparatus of GLM theory. This paper builds on the framework established in [5] and presents a case 

study to give a practical demonstration of some limitations inherent in non-parametric 

bootstrapping approaches based on Pearson or deviance residuals.  



Bootstrapping Generalized Linear Models for Development Triangles Using Deviance Residuals 

Casualty Actuarial Society E-Forum, Fall 2010  2 

1.1 Research Context 

General accounts of how to apply bootstrapping methods to a GLM for a incremental 

development triangle have been provided in [4] and [7]. Details on how to apply bootstrapping to a 

GLM can also be found in chapter 7.2 of [3]. This paper demonstrates that the common 

Boostrapping approach based on Pearson residuals does break down when the linear rescaling of 

residuals leads to negative incremental values in the resampling distribution for some triangle cells. 

In [3], [4], and [7] the authors do mention that there are also alternative ways of defining residuals. 

We illustrate that a bootstrapping approach based on deviance residuals (using the identity variance 

function) may succeed where bootstrapping based on Pearson residuals fails. As we demonstrate, 

this alternative approach also has practical limitations. At least for the identity variance function, 

deviance residuals are technically not identically distributed, and it may not be possible to rescale all 

residuals for resampling purposes. Throughout this paper we use the GLM framework for 

incomplete development triangles established in [5]. Our case study suggests that there may be good 

practical reasons to prefer parametric resampling over nonparametric resampling. 

1.2 Objective 

Bootstrapping has become a popular method for deriving distributions of reserve outcomes 

based on development triangles. This paper provides a case study to demonstrate some inherent 

limitations of applying versions of this method to a GLM for an incremental development triangle. 

These practical limitations point to the need for further research into alternative resampling 

schemes. We also hope that the case study and the discussion of the issues encountered will provide 

readers with a better understanding of what bootstrapping really is. 

1.3 Outline 

The remainder of the paper proceeds as follows. Section 2 explains the difference between linear 

and non-linear rescaling of residuals, introduces a version of a Newton-Raphson algorithm for 

rescaling deviance residuals based on the identity variance function, and presents an example of a 

GLM for an incremental development triangle for which bootstrapping with deviance residuals is 

possible while bootstrapping with Pearson residuals fails. In section 3 we analyze a limitation of 

bootstrapping with deviance residuals based on the identity variance function. We demonstrate that 

the theoretical distribution of deviance residuals for a given triangle cell is bounded below, and that 

the bound varies with the square root of the expected mean. This means that negative deviance 

residuals for triangle cells with larger expected means may be “out of bounds” for some triangle cells 

with smaller expected means. We provide an example of a GLM for an incremental development 
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triangle where bootstrapping with deviance residuals is not possible for this reason. In the summary 

and discussion section we review our results provide and invite the reader to explore the concepts 

presented with the accompanying MS Excel file. In the conclusion we reflect on the “distribution 

free” or “non-parametric” attributes of bootstrapping approaches. We suggest that in the context of 

GLMs (or other stochastic models) for development triangles “parametric” resampling may be just 

as useful while avoiding some of the limitations demonstrated in this paper.  

2 RESCALING OF RESIDUALS FOR RESAMPLING 

In general bootstrapping deals with the heteroscedasticity of the underlying stochastic model by 

rescaling the residuals obtained from a specific data point so they can be applied to the expected 

means of other data points. The procedure for rescaling depends on the definition of residual used. 

While various residuals are mentioned in [4] and [7], the examples presented in these papers use 

Pearson residuals. Here we demonstrate a limitation imposed by the linear rescaling of Pearson 

residuals and contrast this with the non-linear rescaling properties of deviance residuals. 

2.1 Linear vs. non-linear rescaling 

We assume that we have a collection of suitably standardized residuals that were obtained by 

fitting a GLM to an incremental development triangle using pseudo-likelihood with the identity 

variance function and the natural logarithm as the link function. Suitably standardized means that 

the standardized residuals for various triangle cells can be considered as being approximately 

independent identically distributed (iid). We will return to the question of whether deviance residuals 

can be considered iid in section 3 of this paper. For the time being we simply follow the 

standardization suggested by equations 12.4 and 12.5 on page 397 in [6]. So, in continuing we 

assume that we a have vector of standardized residuals denoted by s. Note that technically this 

vector will be defined differently for Pearson and deviance residuals, but we will not distinguish this 

in our notation. For any given data point we can think of the residuals as a measure of how much an 

actual observation differs from the expected value for that observation. If the expected value, ŷ, for 

the observation is considered a constant parameter the residual, r, is a function of the actual 

observation, y, alone: 

 yr ŷH . (2.1)
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In abstract terms the rescaling of the standardized residuals, s, is accomplished by applying the 

functional inverse of Hŷ to the elements of s. So the vector of resampling values y* can be defined 

by: 

 sy -1
ŷH . (2.2)

Noting that V(ŷ) stands for the variance function of the expected mean of a data point, equation 

(2.1) for Pearson residuals becomes: 

 ŷV

ŷ
P




y
r . 

(2.3)

As one can seem this is a linear function of y, and equation (2.2) therefore also takes linear form: 

  sy  ŷVŷP . (2.4)

So the distribution of resampling values is a linear transformation of the standardized residuals, 

with the same rescaling factor being applied to all standardized residuals. 

 Since the standardized residuals have a mean of zero,1 this also means that for sufficiently small 

expected values, ŷ, there will always be negative values in the resampling distribution. For a GLM 

with a logarithmic link function, this represents a violation of the fundamental model assumption of 

positive incremental values and the MLE algorithm cannot be applied since we cannot take the 

logarithm of a negative number. 

In the context of quasi-likelihood estimation, equation (2.1) for deviance residuals can generally 

be expressed as follows (see equation 9.4 on page 327 in [6]): 

 



y

dt
t

ty
yr

ŷD V
2)ŷsign( . 

(2.5)

Needless to say that dealing with this sort of expression is mathematically more complex than the 

relatively simple functional form of equation (2.3). In particular it is not possible to give a general 

expression for the functional inverse analogous to equation (2.4). We will explain how to approach 

this task numerically for the identity variance function in the next subsection. We conclude this 

subsection by noting that while highly non-linear, deviance residuals are perfectly well-behaved, and 

provided that V(t) goes to 0 sufficiently fast as t goes to 0, we are guaranteed that inverting the 

function will not result in negative resampling values. 

                                                           
1 If necessary we will make a centering adjustment to guarantee that this is the case. 
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2.2 Rescaling deviance residuals based on the identity variance function 

With the identity variance function (i.e., V(ŷ)= ŷ) the integral in equation (2.6) can be given in 

closed form and we get the following expression (see expression for Poisson distribution on page 39 

in [6]) for the deviance residuals: 

  ŷŷ/log2)ŷsign(D  yyyyr . (2.6)

We are still not in a position to give a closed-form expression for the functional inverse, but we 

can numerically solve this using a variant of the Newton-Raphson algorithm (combined with the 

bisection method) based on the code provided on pages 366/7 in [8].2 Since this is a well 

documented standard algorithm we will not go into all implementation details here. We will, 

however, give some details on the modifications we have made to tweak this to the concrete task at 

hand. Firstly, to simplify treatment of the sign of the residual and to get rid of the square root, we 

actually just invert the right-hand side of the following equation: 

    1ŷ/ŷ/logŷ/ŷ22
D  yyyr . (2.7)

Note that the right-hand side of this equation does not define a one-on-one function, so we need 

to choose an appropriate domain (i.e., upper and lower bound for y) based on the sign of the 

residual in question. To further simplify, we substitute x = y/ŷ and w =  

(rD)2 / (2·ŷ) - 1, and thus arrive at: 

  xxxw  log . (2.8)

In order to numerically solve this for x, we need upper and lower bounds depending on the value 

of w. With negative residuals, it suffices to restrict x to (0,1). For positive residuals the lower bound 

for x is clearly 1, but our algorithm uses more refined initial estimates as detailed in appendix 1. With 

this set-up, we solve for x in terms of w by using the Newton-Raphson algorithm to find the zero of 

the function f(x) defined by: 

  wxxxxf  log)( . (2.9)

For those readers not familiar with the Newton-Raphson method, the algorithm proceeds by 

iterating over x until convergence is achieved, using the following formula: 

)(

)(
1

i

i
ii xf

xf
xx


 . 

(2.10)

 

                                                           
2 A pdf of the cited section is freely available at http://www.nrbook.com/a/bookcpdf/c9-4.pdf. 
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For completeness, in our case the derivative of f(x) is given by: 

 xxf log)(  . (2.11)

As indicated above the actual algorithm implemented is mixing the Newton-Raphson method 

with the bisection method to prevent x from jumping out of bounds or to improve the speed of 

convergence when f(x)<< f’(x). 

The interested reader can contact the author and request a copy of the companion MS Excel 

application to study and explore the source code of user defined function 

VB_PoissonDevianceResidual_Inverse. Also note that, as implemented here, the algorithm assumes 

that residuals have not been adjusted (i.e., normalized) for the dispersion factor. 

Now that we know how to compute resampling distributions using both Pearson and deviance 

residuals, we can apply this apparatus to real-life data.  

2.3 Example 

We are using a data set that the authors of [7] attribute to Taylor and Ashe (1983). Here is the 

data in incremental form: 

357,848  766,940  610,542  482,940 527,326 574,398 146,342 139,950  227,229  67,948 

352,118  884,021  933,894  1,183,289 445,745 320,996 527,804 266,172  425,046  

290,507  1,001,799  926,219  1,016,654 750,816 146,923 495,992 280,405  
 

310,608  1,108,250  776,189  1,562,400 272,482 352,053 206,286 
 

443,160  693,190  991,983  769,488 504,851 470,639 
 

396,132  937,085  847,498  805,037 705,960 
 

440,832  847,631  1,131,398  1,063,269 
 

359,480  1,061,648  1,443,370  
 

376,686  986,608  
  

344,014 
   

To avoid visual clutter we have omitted row and column labels. There are no non-positive or 

missing data points, but we have chosen only to include the latest five diagonals of incremental 

values and to exclude three further triangle cells that were identified as outliers in preliminary 

analysis. Excluded data points from the original data set have been indicated by “strikethrough” 

formatting. 
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Fitting a GLM with the logarithm as link function and the identity variance function results in the 

following fitted values: 

140,801 338,807 431,201 358,694 242,579 197,553 185,516 116,383 211,622 67,948 

293,186 705,487 897,876 746,898 505,115 411,359 386,295 242,341 440,653 141,486 

396,579 954,279 1,214,515 1,010,295 683,246 556,426 522,523 327,803 596,051 191,382 

214,098 515,178 655,669 545,419 368,858 300,393 282,090 176,968 321,785 103,319 

307,853 740,778 942,791 784,261 530,383 431,937 405,619 254,464 462,697 148,564 

343,763 827,188 1,052,766 875,744 592,251 482,321 452,933 284,146 516,669 165,893 

386,316 929,583 1,183,083 984,148 665,564 542,025 509,000 319,320 580,625 186,429 

442,821 1,065,549 1,356,128 1,128,096 762,913 621,305 583,450 366,025 665,551 213,697 

400,230 963,064 1,225,695 1,019,595 689,536 561,548 527,333 330,821 601,538 193,143 

344,014 827,792 1,053,534 876,383 592,684 482,673 453,264 284,354 517,046 166,014 

As the author of this paper has demonstrated in [5], this type of GLM does not only project 

expected values for future triangle cells but also extrapolates the expected values for all past triangle 

cells that were excluded from the analysis. In the above table, we show all fitted values that 

correspond to included data points in bold letters. All values in italics correspond to 

projections/extrapolations based on the fitted parameters for the model. Since we have chosen the 

identity variance function the reader can also verify that fitted values in bold preserve the row and 

column sums of the original data points for the included triangles cells. 

To bootstrap this GLM, we repeatedly generate pseudo-data for each of the included triangle 

cells (see bold-face fitted values in the above table). During each iteration step we re-estimate the 

GLM based on the pseudo-data generated. For a stochastic reserving application we also calculate 

the estimated reserve and save the total by accident year or in aggregate to get a simulated 

distribution of reserve estimates to evaluate the inherent parameter error. Typically one would 

similarly simulate future development amounts to account for the process error. 

 Effectively this resampling process defines a resampling distribution for each data point, which 

is obtained by rescaling all available standardized residuals and applying them to the fitted values as 

described in the previous two subsections. These resampling distributions can be pre-computed and 

stored both to save execution time during each bootstrap iteration, and to evaluate them for 

consistency with the underlying model assumptions. Here our main concern is with negative 

incremental values, since these prevent us from fitting the model with the MLE algorithm. On the 

following two pages we graph the resampling distributions for two of the triangle cells. Figure 1 

shows the results obtained based on Pearson residuals and Figure 2 shows the corresponding results 

using deviance residuals. 
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Resampling Distributions with Pearson Residuals 
Triangle Cell (1,7)—Fitted Mean = 185,516 
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Resampling Distributions with Deviance Residuals 
Triangle Cell (1,7)—Fitted Mean = 185,516 
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Figure 2 
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Overall the two sets of resampling distributions are very similar. Comparing the top graphs for 

triangle cell (1,7) one can see that the smallest value obtained by Pearson residual resampling is 

below that obtained by deviance residual resampling. The same holds true for the largest value. The 

fact that both distributions nevertheless have the same mean of 185,516 (and approximately the 

same variance) is the first indication that deviance residuals are subtly different. 

Comparing the middle graphs for triangle cell (1,10) to the corresponding top graphs for cell (1,7) 

one notices how the spread from minimum to maximum resampling value is smaller for triangle cell 

(1,7) than for triangle cell (1,10). This is the effect of the rescaling to ensure that each resampling 

distribution has the appropriate variance as defined by the variance function assumed in the GLM 

specification. 

Since our main concern here is with negative incremental values we have included slightly larger 

scale graphs of the lower part of the resampling distribution for triangle cell (1,10) at the bottom of 

figure 1 and 2. As we can see, Pearson resampling leads to one negative resampling value, while 

deviance resampling stays positive for the corresponding residual. 

In this particular example the negative resampling value for cell (1,10) is actually the only negative 

value resulting from Pearson resampling. Nevertheless it does mean that the GLM as specified 

cannot be bootstrapped using Pearson residuals. One alternative would be to exclude cell (1,10) 

from the model specification. In this particular case this leads to a model that projects a reserve of 

versus a reserve of for the original model including cell (1,10). Noting that excluding cell (1,10) 

amounts to assuming zero development for the 10th development period, it is not surprising that the 

projected reserve is smaller. 

To demonstrate the differences in outcomes, we conclude this section with output obtained by 

bootstrapping the model excluding cell (1,10) both with Pearson and with deviance residuals. We 

also include the bootstrapping results for the model including cell (1,10). The “Modeled Reserve” 

column of each output table shows the reserve projection representing the expected future 

development amounts that result from fitting the GLM. The “Bootstrap Projection” column shows 

the mean of the reserve projections based on simulated data. Note that the “Bootstrap Projection” 

distribution defines the parameter error. The “Simulated Future Development” column shows the 

mean of the simulated future development amounts used to incorporate process error. Comparing 

the “Modeled Reserve” to “Simulated Future Development” also allows one to gauge whether we 

have sufficiently many bootstrap iterations to keep bias resulting from sampling error to an 

acceptable level. The “Standard Prediction Error” is the root of the mean square error of simulated 
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reserve outcomes (i.e., projected reserve based on pseudo-data less simulated future development). 

All the way to the right we also show a confidence interval based on empirical percentiles of 

simulated reserve outcomes. Note that a positive number represents a reserve projection above the 

simulated future development amount. 
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Bootstrapping Results with 10,000 Iterations 
Excluding Cell (1,10)—Pearson Residuals 

Accident Modeled Bootstrap Sim. Future Standard 5%-ile Sim. 95%-ile Sim.
Period Reserve Projection Development Pred. Error Outcome Outcome

1 -              -              -              -              -              -              
2 -              -              -              -              -              -              
3 596,051      603,398      595,127      166,522      (254,940)     288,038      
4 498,753      504,064      498,789      135,273      (214,047)     231,751      
5 1,122,779   1,134,746   1,125,780   224,917      (345,901)     394,656      
6 1,736,070   1,751,181   1,734,825   302,852      (467,485)     522,686      
7 2,616,534   2,640,194   2,612,849   407,758      (613,245)     724,636      
8 4,127,340   4,164,901   4,132,367   586,633      (892,087)     1,040,074   
9 4,956,065   4,990,267   4,959,138   801,618      (1,232,452)  1,417,929   

10 5,087,731   5,161,854   5,082,052   1,393,141   (2,030,612)  2,510,119   
Total 20,741,324 20,950,606 20,740,927 2,504,915 (3,645,668) 4,603,584    

Excluding Cell (1,10)—Deviance Residuals 

Accident Modeled Bootstrap Sim. Future Standard 5%-ile Sim. 95%-ile Sim.
Period Reserve Projection Development Pred. Error Outcome Outcome

1 -              -              -              -              -              -              
2 -              -              -              -              -              -              
3 596,051      601,425      595,682      165,133      (254,824)     283,543      
4 498,753      502,686      497,483      135,937      (213,619)     233,681      
5 1,122,779   1,130,897   1,122,776   225,374      (348,761)     388,058      
6 1,736,070   1,748,560   1,735,691   300,235      (460,344)     514,240      
7 2,616,534   2,636,940   2,619,302   409,205      (630,112)     709,919      
8 4,127,340   4,156,304   4,128,423   582,196      (885,958)     1,016,114   
9 4,956,065   5,002,022   4,962,549   802,422      (1,215,009)  1,405,855   

10 5,087,731   5,169,300   5,088,560   1,404,841   (2,048,259)  2,501,894   
Total 20,741,324 20,948,135 20,750,465 2,530,813 (3,764,693) 4,599,894    

Including Cell (1,10)—Deviance Residuals 

Accident Modeled Bootstrap Sim. Future Standard 5%-ile Sim. 95%-ile Sim.
Period Reserve Projection Development Pred. Error Outcome Outcome

1 -              -              -              -              -              -              
2 141,486      148,558      141,810      99,435        (142,027)     181,427      
3 787,433      802,512      786,345      227,758      (332,132)     415,547      
4 602,073      612,774      600,459      168,556      (252,157)     302,197      
5 1,271,343   1,290,547   1,271,004   266,900      (394,291)     476,089      
6 1,901,963   1,926,750   1,906,391   343,783      (513,444)     607,984      
7 2,802,963   2,834,990   2,804,315   448,446      (679,871)     795,858      
8 4,341,037   4,384,089   4,338,730   639,559      (958,332)     1,144,621   
9 5,149,209   5,209,231   5,145,549   844,468      (1,259,637)  1,509,566   

10 5,253,745   5,354,869   5,249,988   1,444,013   (2,074,331)  2,567,191   
Total 22,251,251 22,564,319 22,244,592 2,868,629 (4,054,094) 5,235,817    

Figure 3 



Bootstrapping Generalized Linear Models for Development Triangles Using Deviance Residuals 

Casualty Actuarial Society E-Forum, Fall 2010 13 

3 A PRACTICAL LIMIT OF DEVIANCE RESIDUALS 

In the previous section we demonstrated that the non-linear rescaling properties of deviance 

residuals allow us to bootstrap a GLM in some instances where Pearson residuals lead to negative 

values in the resampling distribution for some data points. This does not mean that any GLM for an 

incomplete development triangle can be bootstrapped using deviance residuals. In this brief section 

we explore the mathematical reason for why this is the case for deviance residuals based on the 

identity variance function. We also give an example of a GLM based on the same data set used in 

the previous section where deviance residual resampling cannot be applied. 

3.1 Taking the limit 

For convenience we repeat the definition of deviance residuals based on the identity variance 

function (i.e., equation 2.):  

  ŷŷ/log2)ŷsign(D  yyyyr . (3.1)

Here we are interested in the lower limit as y  0, hence we can substitute -1 for sign(y-ŷ). After 

some rearranging we obtain:  
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Dealing with the easy parts we get: 
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The remaining part goes to -/ as y  0, so we can use l’Hôpital’s rule to evaluate it, leading 

to:  
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This simplifies to: 

  ŷ2ŷŷlim2lim
0

D
0




yr
yy

. (3.5)

So we can see that for any given triangle cell the smallest theoretical value for the deviance 

residual is -(2ŷ).5. Obviously this result is dependent on the particular functional form of the 

deviance residual, which in the case of the identity variance function is given by equation 3.1. 

This does raise the question of whether deviance residuals can be considered approximately iid, 

which is a fundamental underlying assumption of resampling methods. Theory aside, we are left with 
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a practical issue when trying to use deviance residuals for bootstrapping: a deviance residual 

obtained from a data point with a larger expected mean may be below the lower bound for deviance 

residuals for a data point with a smaller expected mean. If this happens we cannot rescale the 

deviance residual in question for the purpose of resampling. So, if ŷmin is the smallest fitted value for 

a particular GLM with the identity variance function, we can only use deviance residual 

bootstrapping, if for all data points included in the model we have   

minD ŷ2 r . (3.6)

We will now demonstrate that it is not difficult to come up with an example where this 

relationship does not hold for all data points. 

3.2 Example 

The GLM used as an example here is not very different from the one introduced in section 2.3. 

We include cells (1,6) and (3,6) which were previously excluded: 

357,848  766,940  610,542  482,940 527,326 574,398 146,342 139,950  227,229  67,948 

352,118  884,021  933,894  1,183,289 445,745 320,996 527,804 266,172  425,046  

290,507  1,001,799  926,219  1,016,654 750,816 146,923 495,992 280,405  
 

310,608  1,108,250  776,189  1,562,400 272,482 352,053 206,286 
  

443,160  693,190  991,983  769,488 504,851 470,639 
  

396,132  937,085  847,498  805,037 705,960 
  

440,832  847,631  1,131,398  1,063,269 
  

359,480  1,061,648  1,443,370  
  

376,686  986,608  
   

344,014 
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As before we fit a GLM with a logarithmic link function and the identity variance function. This 

results in the following fitted values: 

254,672 611,704 774,193 665,389 434,726 320,588 299,529 184,715 283,087 67,948 

332,131 797,756 1,009,667 867,770 566,950 418,096 390,632 240,897 369,188 88,615 

359,730 864,049 1,093,569 939,880 614,062 452,839 423,093 260,915 399,867 95,978 

223,757 537,449 680,214 584,618 381,955 281,672 263,169 162,293 248,723 59,700 

311,253 747,608 946,198 813,221 531,310 391,814 366,076 225,754 345,981 83,044 

343,043 823,968 1,042,841 896,282 585,577 431,833 403,467 248,812 381,319 91,526 

384,679 923,974 1,169,412 1,005,065 656,650 484,245 452,436 279,011 427,600 102,635 

444,666 1,068,059 1,351,772 1,161,796 759,049 559,759 522,990 322,520 494,280 118,640 

400,741 962,553 1,218,240 1,047,030 684,067 504,464 471,327 290,660 445,454 106,920 

344,014 826,299 1,045,792 898,818 587,234 433,055 404,608 249,516 382,397 91,785 

We can see that if ŷmin = 67,948 from cell (1,10). For bootstrapping purposes this results in a 

lower bound of -368.64 for (unscaled) deviance residuals. Applying equation 3.1 to cell (3,6) with 

y = 146,923 and ŷ = 452,839 we get the following (unscaled) deviance residual: 

16.530D r . (3.7)

Hence we can see that it is not possible to bootstrap this GLM using deviance residuals. Finally, 

our discussion has focused on the resampling of included data points. If the residuals are also used 

for simulating the process error, the allowable minimum would also depend on the smallest 

expected value for future development periods. 

4. RESULTS AND DISCUSSION 

In section 2.1 we showed how resampling with Pearson residuals can lead to negative incremental 

values in the resampling distribution. This in turn means that we cannot apply the MLE algorithm to 

for fitting the GLM during bootstrap iterations. We also presented the concept of deviance residuals 

and explained how these hold the promise of avoiding the issue of negative incremental values.  

Section 2.2 provided details on how to compute the inverse of the deviance residual function 

based on the identity variance function. The algorithm is based on a variation of the Newton-

Raphson method. 

In section 2.3 an example of a GLM was presented, where bootstrapping with Pearson residuals 

is not possible, but bootstrapping with deviance residuals works. The crucial difference in the 

resampling distributions resulting from the different techniques was graphically illustrated. We also 

showed bootstrapping output for a slightly modified model where both approaches work and for 
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the main example where only the deviance residual approval can be applied. It should be noted that 

deviance residuals therefore can broaden the scope of bootstrapping approaches. 

In section 3.1 we proved that for any given data point, the deviance residuals for log-link GLMs 

with the identity variance function are bounded below -(2ŷ).5, where ŷ is the fitted value for that data 

point. This result means that Boostrapping with deviance residuals can only work if all standardized 

deviance residuals exceed the lower bound for the smallest fitted value. In section 3.2 we presented 

another GLM (again a slightly modified version of the example in section 2.3) where this condition 

is indeed violated. 

The material in this paper is based on standard GLM theory and standard numerical methods. 

We hope this paper contributes to making more actuaries aware of how these powerful methods can 

practically be applied in the context of stochastic reserving. Given the popularity of bootstrapping 

approaches, we also feel that it is also important to draw attention to some of their inherent 

limitations.  

Interested readers are encouraged to contact the author and request a copy of the companion MS 

Excel application to further explore the concepts and algorithms presented in this paper. Interacting 

with this application should prove a useful aid to gaining a deeper understanding of what regression 

models can accomplish in the context of development triangles. As far as the bootstrapping 

functionality is concerned, the application follows the approach outlined in [7]. In particular we use 

“procedure 2” as outlined in Figure 2 of that paper. As pointed out in [7], this is also the approach 

described in [3]. 

We want to conclude this section reflecting on “distribution-free” (or “non-parametric”) versus 

parametric approaches to bootstrapping. Before bootstrapping was applied in an actuarial context, it 

was introduced as stochastic modeling techniques for detecting bias for estimators or to derive 

confidence intervals for parameter estimates in cases where standard regression may not work well 

because the underlying error structure is not normally distributed (or does not follow other known 

error distributions, for which specialized regression techniques are available). Especially in cases 

where there is a decent number of observations which all can be assumed to come from the same 

underlying distribution, bootstrapping can provide results that are superior to those obtained by 

applying standard regression techniques, based on assumptions not satisfied by the data at hand. 

This is the context in which “distribution-free” approaches shine.  

The question to consider here is “What makes bootstrapping attractive in the context of 

stochastic reserving?” One advantage is that bootstrapping can derive a distribution for just about 
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any function one may want to calculate based on an observed sample of data points. Note that the 

estimated reserves technically are not the fitted model itself, but a projection of expected amounts 

for future (i.e., out of sample) development periods. Hence bootstrapping is useful, because we can 

just recalculate the reserve based on the pseudo data generated for each iteration, and thus we 

simulate an empirical distribution of reserve estimates. There is no need to theoretically understand 

how the errors in the parameter estimates of the underlying model (and their correlations) might 

affect the distribution of reserve estimates. 

The “distribution free” aspect of bootstrapping does not appear to be particularly important in 

the context of stochastic reserving based on development triangles. Often the data sample (number 

of triangle cells) is not particularly large in relation to the number of parameters we are trying to 

estimate. Furthermore, it is not obvious that the error structure for incremental development in the 

first year, for example, is in anyway systematically related to the error structure in the fifth year. 

Variation in the first year may be due to subtle variation in the mix of claims for subcoverages, while 

fifth-year development might be caused by sporadic late reporting claims, or an unexpected judicial 

decision for a single open claim. Non-parametric bootstrapping is based on the assumption that 

(after standardization and dealing with heteroscedasticity) the residuals are the best available 

approximation for the error structure driving the underling stochastic process. 

 So, can we harvest the power of bootstrapping as a simulation technique for deriving a 

distribution of reserve estimates while not implicitly relying on treating the residuals as our best 

approximation to the “true” error structure? The answer is “yes.” If we can make educated guesses 

about how the error structure for various development periods should look like (preferably in the 

shape of assumed parametric distributions), we can generate pseudo-data based on these educated 

guesses and then continue with calculating the resulting reserve and thus build up an empirical 

distribution of reserve estimates Monte Carlo style. This type of approach also avoids the practical 

limitations of Pearson or deviance residual bootstrapping we demonstrated in this paper. 

5. CONCLUSIONS 

Our case study of GLM-based bootstrapping for incremental development triangles reveals a 

serious limitation of the standard approach based on Pearson residuals: the possible existence of 

negative resampling values due to the linear nature of the rescaling procedure. We demonstrated that 

the obstacle of negative resampling value can be overcome by using deviance residuals that rely on 

non-liner rescaling. We also proved that deviance residuals based on the identity variance function 

cannot be used for resampling under all circumstances. A practical example of this was provided. In 
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our discussion, we suggested that in a stochastic reserving context the main advantage of 

bootstrapping is that it can generate a distribution of reserve estimates that accounts for parameter 

correlations imposed by the estimation process. To use this advantage, we can also employ 

resampling schemes that are based on assumed parametric distributions and thus circumvent the 

limitations of non-parametric resampling revealed by this case study. Further research may also 

reveal more robust non-parametric resampling schemes. 
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APPENDIX A 

In the case of positive deviance residuals we use the following upper and lower bounds to 

initialize the inversion algorithm: 
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We do not provide a formal proof that these bounds are valid, but x, w, and the lower and upper 

bounds can easily be plotted to visually demonstrate that this is case (see next page). 
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Fitting a GLM to Incomplete Development Triangles  
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______________________________________________________________________________ 

Abstract:  When fitting a generalized liner model (GLM) to a development triangle is discussed in the existing 
actuarial literature, reference is usually made to statistical packages for accomplishing this task. This paper 
presents a practical discussion of how to use Visual Basic to fit a GLM to a triangle with special emphasis on 
how to deal with incomplete data. Interested readers can contact the author to request a copy of an MS Excel 
application that implements the algorithms discussed in this paper. The application of GLMs to incomplete 
development triangles is motivated by translating judgments of practicing actuaries (e.g.,  use last n diagonals) 
into a rigorous regression framework. The key original contribution of this paper is the discussion of how graph 
theory can be used to analyze the topology of an arbitrary selection of triangle cells, and how to use the 
information gained to set up a regression model that is suitable for projecting future development. Once 
properly specified, fitting a GLM using maximum likelihood estimation (MLE) is straight forward, and we 
describe how this can be accomplished from a practical point of view in Visual Basic. To round off our 
discussion of model fitting, we briefly describe the standardization of residuals, and how to plot them for 
graphically evaluating goodness of fit. Finally we briefly discuss how the described class of GLMs for 
development triangles compares to some other stochastic models proposed in the actuarial literature. 

 
Keywords. Generalized Linear Modeling, Reserving Methods, Regression, Data Diagnostics, Data Visualization, 
Bootstrapping, and Resampling Methods. 

______________________________________________________________________________ 

1. INTRODUCTION 

In the context of stochastic reserving, several authors (e.g.,  [4], [7], and [9]) have stressed the 

need of casting the task of projecting reserves in a rigorous way as a regression problem. These 

authors have also pointed out that performing an all years volume weighted link-ratio estimate leads 

to the same result as fitting a GLM with the logarithmic link function and the identity variance 

function. Many practitioners have exploited this equivalence to implement spreadsheet-based 

applications for deriving a distribution of possible reserve outcomes based on bootstrap simulations 

by repeated resampling and application of the link-ratio estimate. While suitable to illustrate the 

concept of bootstrapping, these applications are typically not flexible enough to deal with practical 

judgments reserving analysts have to make about which cells of the triangle are deemed to be 

representative of future development (e.g.,  use data from last n diagonals or exclude obvious 

abnormalities). At other times practicing actuaries are also faced with data that are simply incomplete 

to start with. The important question here is how incomplete can a triangle ultimately be, while still 

providing information that is useful for the purpose of projecting future development? The key 

result presented in this paper is that concepts from an area of mathematics know as graph theory 

can be used to answer this question. Once we have analyzed some key aspects of the graph topology 

of a set of triangle cells, we can easily set up a well-defined regression problem and gain further 
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insights into what information about the variability of the underlying stochastic process can be 

gained from the resulting model.   

1.1 Research Context 

Several papers (e.g.,  [4], [7], and [9]) in the actuarial literature do describe in abstract terms how 

to apply GLM theory to fitting a model to an actuarial development triangle. The actual algorithm 

for fitting a GLM follows the description in McCullagh and Nelder’s classic Generalized Linear Models 

(2nd Edition) [6]. When fitting a GLM to an incomplete development triangle, however, the 

question of what constitutes a valid regression model specification naturally arises. We discuss how 

to use graph theory to algorithmically deal with this issue. By fitting a GLM to incomplete 

development triangles we furthermore extend the scope of traditional triangle-based reserving 

techniques: often a reserve projection can be made even if we only have partial information about 

the past development history. While this paper deals with the fitting of a regression model, the graph 

topology of the selected set of triangle cells also determines what information about the variability of 

the underlying stochastic process can be gleaned from the data. As it turns out, even when a data set 

supports projections for all development periods, different regions of an incomplete triangle may 

split into areas that are effectively fit without any influence from other areas. So, we can have 

multiple weakly connected regression models, rather than one comprehensive model for all selected 

data points. We use some of this information in our description of how to standardize residuals and 

how to plot them for diagnostic purposes. This insight also has implications for the scope and 

applicability of bootstrapping methods. 

1.2 Objective 

The iterative weighted LSQ algorithm for fitting a GLM is described in [6] and [9], but these 

textbooks generally assume that the reader is already familiar with the algorithms for performing 

regression fits. This paper seeks to explain at a practical level how to fit a GLM to a triangle of 

incremental development amounts. In particular, we address the issue of what happens if we either 

do not have complete information about the development history or want to exercise actuarial 

judgment about what data to include in our model. In addition, while there may be many advantages 

to using a fully fledged statistical package, we hope that interested readers who contact the author to 

request a copy of the companion MS Excel application will be able to explore the issues discussed 

and thus deepen their understanding of the process of fitting a regression model to a development 

triangle. 
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1.3 Outline 

The remainder of the paper proceeds as follows. The second section starts with a visual 

description of the structure of a regression model for an incomplete development triangle. We then 

briefly discuss how we can link the discussed features of the model structure to aspects of the graph 

topology of an incomplete development triangle. Next we introduce an algorithm known as 

“breadth first search” which can be used to identify the situations previously described. We 

conclude by indicating how the information gathered can be used to specify the regression problem 

and deal with data points that require special attention. We believe that the application of graph 

theory to specifying a regression problem has not been previously discussed in the actuarial 

literature. The third section provides an overview of how to use Visual Basic to implement a 

maximum likelihood estimator based on iterative weighted least squares. The core algorithm here 

follows standard textbook treatment, but we make use of the graph topology of the incomplete 

development triangle to piece together the overall regression model from its subcomponents, if 

applicable. The fourth section deals with the standardization of residuals and plotting them for 

graphically evaluating goodness of fit. This section also walks through a number of the diagnostic 

exhibits using a concrete data set to demonstrate how an analyst may use them in practice. Finally 

we briefly discuss how the class of GLMs described in this paper compares to some other stochastic 

models for development triangles that are discussed in the actuarial literature. 

2 SETTING UP THE MODEL SPECIFICATION 

In this section we go into the details of how to set up the model specification that formally 

describes the regression problem corresponding to a multiplicative model for an incremental 

development triangle with separate parameters for rows and columns.  

2.1 Notes on the structure of the regression model 

To visualize what our set-up algorithm is trying to accomplish, we use the example of a five-by-

five triangle. We have dispensed with row or column labels to reduce clutter. We follow the 

convention that rows denote exposure periods and columns development periods. With this said, a 

multiplicative model for expected incremental amounts looks something like this:  
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(2.1)

This parameterization corresponds to a common method for dealing with extrinsic aliasing for 

factorial models: drop one level from each factor and replace them by one offset parameter 

common to all observations. For (2.1) we have dropped the first exposure and the first development 

period parameter and replaced them with an offset parameter. In this parameterization the offset 

parameter c denotes the value of a base (or reference) cell and the ai and bj parameters are relativities 

for exposure and development periods, respectively. Also note that the choice of reference cell 

generally does not affect the fitted values produced by the model. We could have equally chosen the 

following parameterization: 
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(2.2)

For a complete triangle either of the above parameterizations can straightforwardly be translated 

into a standard regression problem and the fitted incremental amounts will be identical. When we 

start excluding data points from the analysis, we may encounter a number of issues that force us to 

pay closer attention the structure and parameterization of our regression model. The algorithm 

presented here deals with four specific issues relating to ensuring we are dealing with a well-defined 

regression problem, and to identifying triangle cells requiring special treatment in our subsequent 

goodness of fit analysis. 

2.1.1 Not enough data points to estimate some parameters 
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(2.3)

The cross symbol here denotes data points that are missing or excluded by the analyst (e.g.,  

truncated triangles or want to use last n diagonals). Clearly we have no information on the b4 
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parameter and it therefore has to be dropped from the model. Note that despite the “gap” at 

development period 4, there is no issue with relating the top right corner (development period 5) 

with the rest of the triangle—we can compare this value to the first 3 incremental values for 

exposure period 1. 

2.1.2 Choice of reference cell does matters after all 

Assume we are trying to use our cell (3,1) as our reference cell for the following data set: 

cba

cbacba

cbacacbacba

cbacbacacbacba

15

2414

4222212

514112111

  

(2.4)

Clearly we have no information on a3, and this situation could be remedied by dropping this 

parameter from the model. In this case, however, we cannot do this because a3 has already been 

replaced by the common offset parameter c. Actually, our algorithm circumvents this problem 

altogether by first analyzing which rows and columns are part of the connected component of 

triangle cells for which fit a model before attempting to assign parameters to rows and columns.  

2.1.3 Data splits into unrelated regions 
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(2.5)

In this situation, there is no information on how to relate the upper right sub-triangle to the 

lower triangle. This is an issue that cannot be fixed in a meaningful way, as far as predicting future 

values for all exposure and development periods is concerned. We handle this issue by using graph 

theory, noting that two triangle cells can be regarded as connected if they are either in the same row 

or in the same column. We determine what is called the maximal connected components of the 

triangle viewed as a graph. Further information on graph theory will be provided in section 2.2, 

below. One could fit a separate regression model for each of the connected components, but this is 

not useful for projecting future development amounts. Generally we hope that there is only one 

connected component. If not, we continue with the connected component that has the maximum 

number of triangle cells. If the number of triangle cells does not uniquely determine which 
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component to pick, we take the component with the left-most column. 

2.1.4 Exact fit cells 
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(2.6)

One of the general goals in stochastic model fitting is to assess goodness-of-fit and measure the 

variability inherent in the observed process. To this end residuals (actual value less fitted value) need 

to be analyzed. This analysis can be distorted by triangle cells where the fitted value will always be 

exactly the same as the actual value. For a complete triangle this will always be the case for the top 

right and the bottom left corner, but when there are missing data points the same may be true for 

other cells. In the above example parameters a5 and b5 each appear in exactly one triangle cell, so 

they will always take values that ensure a perfect fit. What may be less obvious is that there will 

always be an exact fit for the cell in row 3, column 3. The reason for this is that removing this cell 

would split the incomplete triangle into two unrelated regions (as discussed under 2.1.2 above). Our 

algorithm for analyzing the model structure identifies exact fit cells by looping over all cells in the 

selected connected component and checking for each cell whether the removing the cell from the 

model changes to model structure by either dropping a row or column, or by splitting the model 

into two unrelated regions. 

2.1.5 Further remarks on the model structure 

Until now our discussion on the model structure preserved the shape of the triangle because the 

distinction between exposure and development periods is meaningful to us as P&C actuaries. 

Algorithms for fitting a simple GLM model as described above, however, are indifferent to how we 

perceive the various triangle cells as data points that are somehow ordered by exposure and 

development periods. Consider the following sparse data set for a hypothetical ratemaking problem 

with a multiplicative model with two classification dimensions, namely group and territory: 
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(2.7)

Group 3 in territory 1 corresponds to the base rate b, while the gi and ti parameters represent group 
and territory relativities. This may not look like a development triangle, but this data set is 
structurally identical to multiplicative model for a complete triangle of incremental development 
amounts (see our original example at the beginning of section 2). 

Hence, when using a model based on distinct parameters for each exposure and development 

period, a triangle is just an unordered list of data points, and the only relationships between data 

points are defined by certain parameters simultaneously affecting the fitted values of multiple 

triangle cells. For the purpose of implementing a concrete algorithm, however, we do need to find a 

way of listing all triangle cells. To keep things simple our default is to loop over rows, then columns, 

resulting in the following order of processing cells:  

13

1211

109

876

54321




 

(2.8)

Note how excluded cells are skipped. There will be occasions when this order changes, so when 
interpreting the Visual Basic code, the reader should generally not rely on triangle cells being ordered 
in this way. 

Another point, that is worth understanding in translating between triangles and the common 

representation of regression problems (e.g., following McCullagh and Nelder), is that all explanatory 

variables are on the same footing after aliasing has been taking care of—the regression algorithm 

does not distinguish between exposure or development period parameters (or the offset parameter). 

2.1.6 Moving to GLMs—taking the log transform 

The above discussion on the model parameterization is generic in the sense that it applies to any 

multiplicative regression model for an incremental development triangle that is restricted to distinct, 

unordered parameters for exposure and development periods. This paper is more specifically about 

fitting a GLM to a development triangle. To linearize the multiplicative model we need to choose 

the logarithm as a link function. This results in the following additive model structure for the 

logarithms of the expected incremental amounts: 
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(2.9)

 We are emphasizing this step here for two reasons. Firstly, the use of a logarithmic link function 

restricts the model to positive incremental values. Secondly, understanding the connection between 

this additive model and the more generic multiplicative model is crucial to interpreting the output 

from GLM packages.  

2.2 Graph topology of an incomplete development triangle 

We noted above the cells of an incomplete development triangle can be thought of as forming a 

mathematical structure know as a graph. Generally a graph is collection of nodes (or vertices) that 

are connected to each other by edges. Two nodes are considered neighbors if there is an edge that 

directly joins them. We can also define an equivalence relationship among nodes called 

connectedness. Two nodes are connected if there is a path (or sequence) of neighboring nodes that 

leads from one node to the other. Two nodes are disconnected if there is no way of getting from 

one to the other by passing from neighbor to neighbor. This equivalence relationship of 

connectedness defines equivalence classes of nodes that are called maximal connected components. 

Note that in this paper we often refer to maximal connected components as connected components 

since repeating “maximal” becomes cumbersome. 

If we think of the triangle cells as nodes and define two triangle cells as being neighbors if they 

are in the same row or column of the triangle, the collection of cells from an incomplete 

development triangle can be seen to form a graph. We will now briefly outline how graph theory to 

can be used to handle the issues regarding model parameterization and exact fit cells identified 

above. 

2.2.1 What parameters are needed for the model? 

We use an algorithm known as “breadth first search” (described in detail in section 2.4) to first 

identify the maximal connected components of the incomplete triangle. As explained above in 

section 2.1.3 we can only “complete the triangle” for projection purposes if the given triangle cells 

form a connected component. If there is more than one connected component our algorithm 

proceeds by picking the largest (most triangle cells) connected component. If there is more than one 
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largest connected component the algorithm chooses the component that has the left most column. 

Once we have identified the connected component for which we will fit a regression model we 

analyze which rows and columns are covered by the connected component. We parameterize our 

regression model by choosing the cell corresponding to the top row and left most column as our 

reference cell, with separate parameters for each other row and column. This takes care of the issues 

identified in section 2.1.1 and 2.1.2. 

2.2.2 Which cells are exact fit cells? 

As indicated above there are two circumstances under which the fitted value for a particular 

triangle cell will always match the given data point. Both situations can be identified by eliminating a 

particular cell from the regression model and seeing how the elimination affects the structure of the 

model. Technically we do this by looping over all cells in the selected connected component, remove 

each cell in turn and then run the “breath first search” algorithm also used in section 2.2.1 to analyze 

the structure of the remaining model. This allows us to identify three different types of cells: 

Single parameter cells: when this cell is eliminated from the model, we lose one row or column 

and the corresponding parameter. Since this is therefore the only data point for that parameter, the 

parameter will always take a value that produces an exact fit for this cell. 

Critical connector cells: eliminating this cell from the model, splits it into exactly two 

disconnected components (proof left as an easy exercise for the reader1). The issue of aliasing now 

affects both disconnected components separately, so we lose a parameter. The details of how this 

parameter disappears are more subtle than for single parameter cells, but the bottom line is that 

there is some “slack” in the parameterization and we always get an exact fit for a critical connector 

cell. 

Regression cells: when eliminating this cell, the model structure is not affected in a significant way 

(same number of rows and columns covered, same number of parameters needed to parameterize 

the model).  

Both types of exact-fit cells need to be excluded when analyzing standardized residuals and 

measuring the inherent uncertainty of the underlying stochastic process. The impact of the critical 

connector cells is more far reaching. Despite having a valid regression model for the entire 

connected component, the critical connector cells (if they exist) split the incomplete triangle into 

                                                           
1 Hint: if another cell, C, is connected to the critical connector cell, there has to be at least one cell that is connected to 
C, which either shares a row or column with the critical connector cell. 
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regions for which the regression fit is performed without any influence from the other regions. Our 

algorithm for fitting the GLM powerfully demonstrates this feature by literally applying the iterated 

weighted least square procedure to these separate regression components. To get the final 

parameterization for the overall model we then perform a single-weighted least square fit based on 

the fitted values separately obtained for regression regions and the actual data points for the 

identified exact fit cells. Note that it is not necessary to perform the fit separately for the regression 

regions, but when it comes to actual computations, it is usually more efficient to split a larger 

problem into separate smaller problems, especially when the computational cost scales non-linearly. 

2.3 Formal set-up 

To formally establish the relationship between the data for which we want to find a model (i.e., 

the cells of the triangle) and the explanatory variables (i.e., the exposure and development periods) 

we set up a data structure known as the model matrix, X, the columns of which represent the 

explanatory variables, and a corresponding column vector, y, which represents the data. Interested 

readers are referred to the CAS Practitioners’ Guide to GLMs ([1]) for a general introduction to 

setting up information matrices. Here we will simply show an example of how a complete 5 x 5 

triangle can be represented: 



Fitting a GLM to Incomplete Development Triangles 

Casualty Actuarial Society E-Forum, Fall 2010  11 

 
Parameters P γ β2 α 2 β3 α 3 β4 α 4 β5 α5   

  Data  Model matrix  Fitted Values 
Unit #  Y  X  Exp(Xp) 

1  inc(1,1)  1 0 0 0 0 0 0 0 0  Exp(γ) 
2  inc(1,2)  1 1 0 0 0 0 0 0 0  Exp(β2+γ) 
3  inc(2,1)  1 0 1 0 0 0 0 0 0  Exp(α2+γ) 
4  inc(2,2)  1 1 1 0 0 0 0 0 0  Exp(α2+β2+γ) 
5  inc(1,3)  1 0 0 1 0 0 0 0 0  Exp(β3+γ) 
6  inc(3,1)  1 0 0 0 1 0 0 0 0  Exp(α3+γ) 
7  inc(2,3)  1 0 1 1 0 0 0 0 0  Exp(α2+β3+γ) 
8  inc(3,2)  1 1 0 0 1 0 0 0 0  Exp(α3+β2+γ) 
9  inc(1,4)  1 0 0 0 0 1 0 0 0  Exp(β4+γ) 
10  inc(4,1)  1 0 0 0 0 0 1 0 0  Exp(α4+γ) 
11  inc(3,3)  1 0 0 1 1 0 0 0 0  Exp(α3+β3+γ) 
12  inc(2,4)  1 0 1 0 0 1 0 0 0  Exp(α2+β4+γ) 
13  inc(4,2)  1 1 0 0 0 0 1 0 0  Exp(α4+β2+γ) 
14  inc(1,5)  1 0 0 0 0 0 0 1 0  Exp(β5+γ) 
15  inc(5,1)  1 0 0 0 0 0 0 0 1  Exp(α5+γ) 

Note that the unit #s are simply for referencing values stored in arrays and that inc(i,j) denotes 

the incremental amount for accident period i and development period j. The model matrix, X, has 

one row for each triangle cell and one column for each parameter of the model. All entries of X are 

either 0 or 1. A value of 1 simply means that the parameter corresponding to the respective column 

contributes to the fitted value for the triangle cell corresponding to the respective row; a value of 0 

implies the converse. In the above table we have introduced the parameter vector, p. If ŷ denotes 

the vector of fitted values, the systematic part of our GLM model can neatly be summarized by the 

following equation: 

log(ŷ) = Xp (2.10)

2.4 The algorithm for setting up the model specification 

Setting up the actual model matrix is straightforward. The real challenge here is to algorithmically 

analyze the incomplete development triangle to come up with a valid parameterization and to 

identify the exact fit cells. Before we introduce the pseudo-code for the “breadth first search” 

algorithm that is at the core of this undertaking, we briefly describe some auxiliary data elements. 

Readers in a hurry can jump right to section 2.4.1 where the pseudo-code is presented. 

In the following we use some name ranges and variable names specific to the MS Excel 

application available from the author at request. We hope that their mention here does provide the 

reader with an idea of what is involved from a practical implementation point of view. We start with 

a complete triangle in a range called data_incremental. To exclude triangle cells from the analysis, we 
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use a second triangle of 0s and 1s in a range called data_excluded to mask the corresponding cells in 

the triangle of incremental amounts. 

For determining the maximal connected components of the selected triangle cells viewed as a 

graph, we use a “breadth first search”-type algorithm (see [5]) adapted to the fact that our graph 

edges (the links between cells) come in two “flavors:” shared row or shared column. To this end we 

need to maintain four lists of cells: (connected component) assigned, rows tested, columns tested 

and untested. To facilitate moving cells from and to these lists we use an array called UnitIndex that 

has a row for each selected triangle cell and columns for storing the cells predecessor and successor 

in its current list. In addition, for each list we maintain a special pointer to the first element in the 

list. This data structure allows us to store all four lists in parallel in the same array. The array 

UnitIndex also has additional columns for identifying a cell’s row and column in the triangle. At 

times, we use a separate triangle of unit numbers to efficiently locate triangle cells in the UnitIndex 

array based on their position in the triangle.  

There are also a number of arrays to facilitate moving from the model matrix to the actual 

triangle and vice versa: 

UnitIndex() has fields for mapping a row of the model matrix to the corresponding triangle cell 

Data_Selected() or Data_Regression() are used to either mark some specific triangle cells for 

further processing or to store pointers from the triangle cells to the corresponding row in 

UnitIndex() 

GLM_Par_To_Triangle() maps each column of the model matrix (or the parameter row vector) 

to the corresponding row or columns of the triangle 

ExporsurePeriod_To_GLM_Paramter() maps rows of the triangle to columns of the model 

matrix 

DevelopmentPeriod_To_GLM_Paramter() maps columns of the triangle to columns of the 

model matrix 

2.4.1 Determining connected components of the incomplete development triangles 

Below we outline pseudo-code for the “breadth first search”-type algorithm for an incomplete 

development triangle operates as follows. Here is how the general “breadth first search” algorithm 

works. It is called “breadth first” because while we are trying to find all nodes connected a particular 

untested node we first mark all its immediate neighbors before trying to find neighbors of 

neighbors. Once all the immediate neighbors of a node have been identified we are done with that 
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node. What is left to do is to loop over all the immediate neighbors previously identified and check 

whether they have any neighbors we have not looked at, yet. For each node we are done once we 

have marked all of its immediate neighbors. This process continues until we cannot find any further 

new neighbors. We have now identified the maximal connected component of the original untested 

node. If there are untested nodes left, we know that our graph has a further connected component 

and we start the process all over to find all the nodes belonging to the next connected component. 

 For a development triangle the algorithm generally proceeds exactly the same way except that we 

are now done with a particular cell when we have identified all its row and all its column neighbors. 

In order to efficiently do this, we introduce two lists of cells with an intermediate testing status: all 

row neighbors identified (i.e., still need to check column neighbors) and all column neighbors 

identified (i.e., still need to check row neighbors). Hence there are two possible processing paths for 

a particular triangle cell: untested to column tested to component assigned, or untested to row tested 

to component assigned. 

Here is the pseudo-code:  

Input: DataSelected.....................two-dimensional array indicating which triangle cells are included in 
model 

 UnitIndex..........................array for storing information about data points and maintaining list 
structures utilized by algorithm 

 ConnectedComponent ...array for keeping track of maximal connected components and 
some key properties 

Goal: Assign component sequence number to each selected triangle cell and gather summary 
information about connected components 

BreadthFirst 1) Initialize UnitIndex and associated data structures needed for determining maximal 
connected components of selected triangle cells. In particular list of untested cells 
contains all cells included by user, while the list of assigned, row tested, or column 
tested cells are empty. 

BreadthFirst 2) Beginning of outer loop - keep going while the list of untested cells is empty. 

BreadthFirst 3) Increment component counter; get column of last untested cell; loop over untested 
rows in this column; assign component counter to untested cells found and move 
them from the untested list to the column tested list. 

BreadthFirst 4) Beginning of inner loop - keep going while there are newly identified neighbors for 
the current connected component. 

BreadthFirst 5) Loop over cells in column tested list; get row of current column tested cell; move 
current cell from column tested list to assigned list; loop over untested columns in 
current row; assign component counter to untested cells found and move them 
from the untested list to the row tested list. 
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BreadthFirst 6) Loop over cells in row tested list; get column of current row tested cell; move 
current cell from row tested list to assigned list; loop over untested rows in current 
column; assign component counter to untested cells found and move them from 
the untested list to the column tested list. 

BreadthFirst 7) End of inner loop - if list of column tested cells is not empty, execution will 
continue with BreadthFirst 5). 

BreadthFirst 8)  End of outer loop - if list of untested cells in non-empty, execution will continue 
with BreadthFirst 3). 

2.4.2 Selecting connected component for the subsequent model fit 

While it would be possible to fit a regression model for each separate connected component, 

there is no way of using these disconnected models for projecting future development for all 

periods. Hence our algorithm proceeds by selecting the component with the most triangle cells for 

further processing. If there is more than one largest connected component the algorithm simply 

picks the component with the left most column. Note that in the companion spreadsheet, which is 

available from the author at request, there is an exhibit that shows all connected components. If the 

user does not like the default choice imposed by the algorithm, they can change the selected data 

points to only include the connected component that they are interested in.  

2.4.3 Determining the cell types for the selected connected component 

As described in section 2.2.2, above, there are three types of cells within each connected 

component: single parameter cells, critical connector cells, and regression cells. For reference let 

NoUnits stand for the number of cells in the selected connected component. We test for the cell 

types by looping over all the cells in the selected connected component and remove each cell in turn 

from the selected component. After removing the cell we analyze the structure of the remaining 

cells. In order to do so it is sufficient to start with any of the remaining cells and then run the inner 

loop of the “breadth first search” algorithm described above. If the maximal connected component 

associated with that cell has less than NoUnits - 1 cells, we know that the removed cell must be a 

critical connector cell. Otherwise we need to check whether we lost a row or column by removing 

the cell. If we did lose a row or column, then the removed cell is a single parameter cell. If the latter 

is not the case, we know by elimination that the removed cell is a regression cell. The above-

mentioned exhibit for the connected components also visualized the cell types for cells in the 

selected components by formatting; single parameter cells have a border, critical connector cells are 

crossed out, and regression cells have a grey fill. 
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2.4.4 Determining the regression components within the selected connected component 

We now run the full “breadth first search” algorithm again, but only on the regression cells 

within the selected connected component. This allows us to identify decoupled areas of connected 

regression cells if they exist. Gathering this information allows us to split the fitting of the overall 

model into smaller pieces, each of which purely consists of regression cells. 

2.4.5 Setting up the model matrix and associated data vector 

Having done all the preparatory work of analyzing the graph topology of the incomplete triangle 

the task of setting up the model matrix and data vector is trivial. We set up separate model matrices 

and data vectors for each of the regression regions identified above. We also set up one overall 

model matrix and data vector. Note however, that technically we will only run the full-fitting 

algorithm on the model matrices for the regression regions. The model matrix for the overall model 

will only be used to for a single iteration weighted least square fit based on the fitted values obtained 

for the regression regions and the actual data points for the exact fit cells. This last step is only 

needed to obtain a convenient parameterization for the overall model that can be used for 

projection purposes. Note, however, that the model matrix for the overall model is perfectly valid 

and that feeding it into a GLM fitting algorithm should produce the same parameter values (give or 

take some rounding) as the approach we are taking. Keeping track of the exact fit cells and 

regression regions, however, is computationally advantageous and provides useful information for 

the subsequent residual analysis. 

3 MAXIMUM LIKELIHOOD ESTIMATION USING ITERATED 
WEIGHTED LEAST SQUARES 

In section 2 we went into considerable detail of how our algorithm for setting up the model 

matrix works, because we are not aware of such a step-by-step description in the actuarial literature. 

Algorithms for fitting a generalized linear model (GLM) by using a maximum likelihood estimator, 

however, are described in many text books (e.g.,  chapter 2.5 in [6] or chapter 6.4.2 in [9]). We will 

therefore concentrate on how to implement such an approach relying on standard linear algebra 

routines available in open source form—we have used code from the ALGLIB project available for 

download at www.alglib.net. Other than demonstrating that Visual Basic for MS Excel is well 

capable of fitting a GLM to triangles of considerable size, we also want to show that in the process 
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of performing the calculations we can also extract useful information2 other than the fitted 

parameter values. 

3.1 Notation 

Before continuing we need to introduce some standard notation for describing a GLM model. 
Often a GLM model is specified by assuming a specific distribution from the exponential family for 
the observations. In practice the algorithm for fitting a GLM works just as well under the weaker 
assumption that the second moment of the distribution is a function of the expected mean (see 
chapter 9 on pseudo-likelihood functions in [6]). Hence we regard a GLM type problem to be fully 
specified by the following elements: 

 Model matrix, X  

 Data vector, y 

 Fitted values vector, ŷ 

 Link function, g—note that here we only will use the logarithm 

 Variance function, V 

The following notation is also useful in describing the algorithm and computations: 

 Parameter vector, p 

 Linear estimator, η 

 Vector of quadratic weights for weighted LSQ regression, w 

 Vector of linearized data, z 

 Vector of expected variance for data points, v 

The algorithm described here follows the approach outlined in chapter 2.5 of [6]—we perform 

iterated weighted least square regressions. This procedure can be understood as an adaption of the 

multi-dimensional Newton-Raphson method to the problem of solving the maximum likelihood 

equations for a GLM. In effect we are repeatedly solving a linearized regression problem until the 

successive solutions have converged to a sufficient degree. In general such numerical procedures can 

be sensitive to the starting point chosen. Here we can use the actually observed values for the data 

points (triangle cells), which makes the practical implementation easy.  

3.2 Pseudo-code for MLE algorithm 

Deferring our discussion of how to perform the weighted least squares (LSQ) regression, here is 

                                                           
2 Specifically we are referring to the diagonal elements of the hat matrix, which can be used to standardize residuals. This 
will be discussed in more detail in section 4. 
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how the MLE algorithm implemented here works: 

Step 10)  Based on the actual data points, initialize the fitted data points, the linear estimator, and the 
expected variances: ŷ0 = y, η0 = g(y) = log(y), and v0 = V(y). 

Step 11)  Based on a current estimator, ηi, determine the vector of linearized data using the following 
formula: 
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Step 12)  Based on a current estimator, ηi, the expected variances, vi, calculate the vector of weights 
for weighted LSQ regression: 
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(3.2)

Step 13)  Perform weighted LSQ regression of zi on X subject to wi to obtain new set of parameters, 
pi+1, leading to a new liner estimator, ηi+1, and fitted values, ŷi+1. 

Step 14)  Compare pi with pi+1 to determine whether convergence is satisfactory. 
If not, repeat from Step 1). 

Step 15)  Extract diagonal elements of hat matrix, H, calculate deleveraged residuals, estimate 
dispersion parameter, and calculate standardized residuals. 

Step 16)  Loop over exact-fit cells and recursively determine exact-fit parameters based on 
parameters obtained with MLE algorithm. 

Note that with the logarithm as our link function we get η = g(ŷ) = log(ŷ), and dη/dŷ = 1/ŷ. 

Readers who are interested in why this procedure (specifically steps 0 to 4) works are referred to 

chapter 2.5.1 in [6]. Step 5) will be discussed in detail in section 3. Step 6) utilizes the information 

gathered by the algorithm for setting up the model matrix, X, as described in section 2. While this 

also reduces the computational cost, the main purpose is to keep track for which data points we can 

calculate standardized residuals. 

3.3 Notes on implementation issues 

Implementing this general algorithm in Visual Basic is pretty straight forward. To make the 

implementation flexible regarding specific choices of variance and link functions we are using a 

number of generic functions that such as Calc_dL (for dη/dŷ), Calc_Variance (for v), and 

Calc_Weights (for w), that are simply passing through a symbolic parameter indicating the current 

choice of link and variance function to lower level functions that compute those values for specific 

data points (Link_Scalar, LinkInv_Scalar, Var_Scalar, dL_Scalar). Note that despite this flexibility in 

design, the template does only implement the logarithmic link function. 
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For those readers who want to go over the Visual Basic code in detail, please note that we are 

making extensive use of passing data by reference to provide functions with input and to return the 

results. The formal function results are mainly used for debugging and error handling. Passing by 

reference means that subroutines are given direct access to data structures (variables and/or arrays) 

defined at a higher level rather than having their own copy of the data passed in. So the main point 

of a statement like 

If Not Calc_dL(dL, Y_, LinkFunc) Then Stop 

is not to stop execution if the function Calc_dL returns FALSE. Rather we want to calculate the 
vector of derivatives for the link function, which is accomplished as a side effect to the function call 
by updating the values of the vector (1-d array) dL that is passed to the function by reference. The 
“If … Then Stop” statement is simply a way of pointing the developer to the right position in the 
code in case something were to go wrong. 

Performing the weighted LSQ regression is mainly an exercise in linear algebra. Built-in Excel 

functions only provide limited support for matrix operations and the matrices the built in functions 

can deal with is limited. We are therefore providing some auxiliary routines for simple matrix 

operations. A list with short descriptions follows:  

 MClearUpper ..clears the upper right triangle of a square matrix A; needed because 
the Cholesky transform routine from ALGLIB assumes that 
symmetric matrix is represented in triangular format 

 MTrans.............populates matrix transpose AT of matrix A 

 MMult ..............populates matrix R with the product of matrices A and B 

 MDiagRMult ...left multiplies matrix A with a diagonal matrix that is represented as a 
vector diag 

 MDiagLMult ...right multiplies matrix A with a diagonal matrix that is represented as 
a vector diag 

 MSet .................populates matrix R by copying entries of matrix A 

 MSwapCol .......swap column c1 and c2 of matrix A 

 MSwapRow .....swap row r1 and r2 of matrix A 

 MQuickMult....populates vector r with the product of matrix A and vector b 

 VectorSqrt .......populate vector sqrt_w with square root of elements of vector w 

As indicated above, we are also using code from the open source ALGLIB project 

(www.alglib.net). The following functions are Visual Basic implementations of LAPACK routines 

(www.netlib.org/lapack/): 
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 SPDMatrixCholesky.perform Cholesky decomposition of matrix A which is 
assumed to be a symmetric matrix stored in triangular format. 

 RMatrixTRInverse....perform matrix inversion of triangular matrix A. 

We will not explain the algorithms in detail, but we do want to briefly outline why these routines 

are useful for our purposes. The key computational step in performing the weighted LSQ regression 

is the inversion of the matrix XT.W.X, where W is the diagonal matrix of weights represented by the 

vector w. If the regression problem is well defined, this matrix is symmetric and positive-definite. 

Now, if you have a symmetric, positive-definite matrix A, then there is a lower triangular matrix L 

such that A=L.LT. This representation of A is called its Cholesky decomposition. It follows from 

basic matrix algebra that  

A-1=(L-1) T.(L-1). Hence we can see how the inversion of XT.W.X. can be accomplished by first 

finding its Cholesky decomposition and then inverting the resulting lower triangular matrix. 

In symbolic form the weighted LSQ regression estimate for the parameters based on the 

linearized data is given by: 

p = (XT.W.X)-1.XT.W.z. (3.3)

3.4 Pseudo-code for weighted LSQ regression 

We now present an outline of the code for performing the weighted LSQ regression. Note that in 

essence we are building up three matrices: XT.W, (XT.W.X)-1, and 

(XT.W.X)-1.XT.W. The corresponding variables are called XtW, XtWXinv, and XtWXinvXtW: 

wLSQ 11) MTrans_C(XtW, X)—i.e., XtW = XT 

wLSQ 12) MDiagRMult_C(XtW, w)—now XtW = XT.W 

wLSQ 13) MMult_C(XtWXinv, XtW, X)—i.e., XtWXinv = XT.W.X 

wLSQ 14) MSet_C(M1, XtWXinv)—i.e., M1 = XT.W.X 

wLSQ 15) MClearUpper_C(M1)—prepare M1 for Cholesky routine 

wLSQ 16) MCholesky_C(M1)—calculate the L for XT.W.X 

wLSQ 17) MTriInv_C(M1, t)—i.e., M1 = L-1 

wLSQ 18) MTrans_C(M2, tmpM1)—i.e., M2 = (L-1) T 

wLSQ 19) MMult_C(XtWXinv, M2, M1)—i.e., XtWXinv = (L-1) T.(L-1) 

wLSQ 10) MMult_C(XtWXInvXtW, XtWXinv, XtW)—used for calculating h 

The rest of the tasks associated with Step 3) of the iterated weighted LSQ algorithm is 

accomplished with the following statements: 
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wLSQ 11) MQuickMult(p, XtWXInvXtW, z)—i.e., p1 = (XT.W.X)-1.XT.W.z0 

wLSQ 12) MQuickMult(z_, X, p)—i.e., η1 = X. p1 

wLSQ 13) LinkInv(y_, z_, LinkFunc)—i.e., ŷ1 = g-1(η1) 

3.5 Concluding remarks 

We encourage interested readers to contact the author and request a copy of the accompanying 

MS Excel application, so they can study the commented source code for further implantation details. 

One note on performance: the computational cost of many sub-tasks except for the matrix 

operations varies linearly with the number of triangle cells included in the analysis. For fitting a 

single model the performance of the Visual Basic code seems satisfactory, even for larger triangles 

(the author tested up to 40 by 40). For repeated applications (such as bootstrapping) execution time 

can become an issue. Without changing the logic, significant gains in performance can be gained 

from porting the weighted LSQ routines to C++ and compiling them into a dll, which is then 

loaded by the Visual Basic code. In this paper we do not discuss the issues of interfacing Visual 

Basic with a dll and/or how to write code in C++ that can be compiled into a dll. For readers 

interested in those issues we recommend Steve Dalton’s Financial Applications using Excel Add-in 

Development in C/C++ (different versions exist for MS Excel 2003 and MS Excel 2007). 

4 STANDARDIZED RESIDUALS AND THEIR APPLICATION 

In this section, we introduce standardized residuals and how to compute them. After briefly 

describing how to create diagnostic plots based on these standardized residuals we present a 

practical example (based on a data set also used in a number of other papers on triangle-based 

stochastic reserving) of how these plots can be used to assess goodness-of-fit and make decisions 

about the model structure. 

4.1 Standardized Residuals 

Residuals are simply the difference between the actual data points and their fitted values based on 

a concrete model specification. Suitably standardized, so comparisons for residuals corresponding to 

different data points can be made, residuals can be a powerful tool for visually analyzing the 

goodness of fit of a model. Standardizing residuals is also a crucial step in bootstrapping a GLM. 

The approach here follows chapter 12.5 and 12.7 in [6], but similar descriptions of the 

standardization procedure can also be found in [7] and in chapter 7.2 of [3]. 
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For a GLM, there are two adjustments to residuals that need to be made in order get residuals 

that are approximately identically distributed. Firstly we need to adjust for the differences in 

expected variances based on the relationship imposed by the variance function. This motivates the 

following definition of Pearson residuals: 
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(4.1)

In addition we also need to adjust for the leverage that individual data points exert on their 

corresponding fitted value. At the extreme there are the exact-fit cells where the fitted value will 

always identically match the observed data point. For other points the observed value will still exert 

a pull on the fitted value that biases the residuals as a measure of variability inherent in the data. For 

a detailed discussion of the concept of leverage, we refer the reader to chapter 12.7 in [6]. A useful 

measure of leverage can be obtained by the diagonal values of the hat matrix, H, which for a GLM is 

defined as (equation 12.3 in [6]): 

H = W½.X.(XT.W.X)-1.XT.W½. (4.2)

Note that since we are only interested in the vector h of diagonal elements we can also use the 

following formula: 

h = diag(X.(XT.W.X)-1.XT.W). (4.3)

With this we can now introduce the following definition of deleveraged Pearson residuals: 
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Note that the deleveraged Pearson residuals are not defined for exact fit cells. Also note that this 

definition is still missing the estimated dispersion factor as a normalizing constant. The reason for 

this is that we are proposing the following estimator for the dispersion factor: 

)rVar(~ˆ   (4.5)

Compare this to the conventional estimator (unnumbered formula on page 328 in [6]), based on 

an after-the-fact degree of freedom adjustment: 

pn

n

-
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(4.6)

where n is the number of data points and p is the number of estimated parameters. Both estimators 
for the dispersion parameter are ad hoc and are trying to adjust for the leverage effect. Equation 4.5 
relies on the bias correction applied to each individual residual. Equation 4.6 does not distinguish 
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between the difference in leverage for individual data points. Further research is required for 
assessing the relative performance (e.g.,  in terms of bias or standard error) of these two estimators. 
For the purposes of assessing goodness of fit and for bootstrapping applications, deleveraged 
residuals are the better choice since the assumption that they are approximately identically 
distributed is more likely to be true. For this reason, we continue with using equation 4.5, but the 
accompanying excel application displays both versions of the estimate of the dispersion factor. 

With this we derive at our final definition of standardized Pearson residuals: 
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This concludes our discussion of the subtasks summarized as step 5 in MLE algorithm outlined 

in section 2. For convenience, we are repeating the step: 

Step 15)  Extract diagonal elements of hat matrix, H, calculate deleveraged residuals, estimate 
dispersion parameter, and calculate standardized residuals. 

4.2 Graphical Representation 

Now that we have defined standardized residuals and know how to calculate them, the task of 

plotting them in MS Excel is straightforward. The main trick for getting pretty plots is to keep track 

of how many residuals we are actually trying to plot. We address this issue by having the MLE 

algorithm automatically update named ranges, which are used to specify the data source for the 

plots. We are graphing standardized residuals against exposure period, development period, calendar 

period, and size of fitted value. As an aid in the visual inspection we are adding a trend line to each 

of the plots. For the period-based plots this trend line simply is the average of all residuals for that 

period. For the plot against size of fitted value, we perform a linear regression of the residuals on the 

fitted values to plot the trend line. 

Plots of standardized residuals against various axis of interest are a standard tool for assessing 

goodness of fit in stochastic modeling. Barnett and Zenwirth’s paper on “Best Estimates for 

Reserves” ([2]) has popularized the concept in the context of analyzing actuarial development 

triangles and they are now a staple of stochastic reserving packages. The idea is that standardized 

residuals should be randomly and identically distributed. If there are any obvious systematic trends 

visible in the plots, then the residuals are not random after all. In addition one can also detect 

extreme outliers and an experienced analyst may also infer other information that can be used to 

find an optimal model. 
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4.2 Example 

We are using a data set that the authors of [7] attribute to Taylor and Ashe (1983). Here is the 

data in incremental form: 

357,848  766,940  610,542  482,940  527,326 574,398 146,342 139,950 227,229  67,948  

352,118  884,021  933,894  1,183,289 445,745 320,996 527,804 266,172 425,046   

290,507  1,001,799  926,219  1,016,654 750,816 146,923 495,992 280,405   

310,608  1,108,250  776,189  1,562,400 272,482 352,053 206,286    

443,160  693,190  991,983  769,488  504,851 470,639     

396,132  937,085  847,498  805,037  705,960      

440,832  847,631  1,131,398  1,063,269       

359,480  1,061,648  1,443,370         

376,686  986,608          

344,014          

There are no non-positive or missing data points, so we can go ahead and fit a model based on 

the full triangle. To start with we chose the identity variance function, which produces a model that 

preserves the row and column sums of the triangle and is equivalent to the model obtained by 

developing the triangle using the all-year, volume-weighted link ratios. This results in the following 

residual plots: 
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From the jagged trend line for calendar period plot we can see that there are calendar year effects 

that our model does not capture. From the exposure period and development period plots, we can 

see that there are two relatively large residuals for cells (4,4) and (1,6)—looking at the data set above 

we can see that the corresponding values are 1,562,400 and 574,398, respectively. Inspection of the 

corresponding columns in the triangle does confirm that these values appear unusually high. For 

demonstration purposes, we assume that theses values represent abnormal circumstances that 

should not be included in our model to predict future development. Hence we exclude these data 

points. Technically we have now parameterized a new model and the new residual plots look as 

follows: 
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Before looking at the remaining plots on the next page, please note that these plots should mainly 

be used for assessing the internal consistency of the current model. We emphasize that by excluding 

data points we end up with different models that cannot be directly compared. With that said, we 
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note that while there are still ups and downs in the exposure and development period plots, the 

biggest and smallest residuals now do not look way out. 

0 2 4 6 8 10 12
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Fitted Value

 
The calendar period plot looks no better than before. Since our model only has exposure and 

development period parameters, we have limited options for responding to these calendar period 

effects. For demonstration purposes we will try a model that only includes the latest five diagonals 

except for the diagonal for calendar period 8, which looks out of line, and cells (4,4) and (1,6), which 

we previously excluded. 

At this point, let us have a look at the output produced by our model. One feature of this type of 

model is that we cannot only project expected values for future triangle cells, but we can also 

extrapolate what the expected values for all past triangle cells that were excluded from the analysis. 

In the table on the following page we show all fitted values that correspond to included data points 

in bold letters. All values in italics correspond to projections/extrapolations based on the fitted 
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parameters for the model. Since we have chosen the identity variance function the reader can also 

verify that fitted values in bold preserve the row and column sums of the original data points for the 

included triangles cells along the last three diagonals. 

142,392 330,441 425,664 331,922 244,123 196,001 146,600 110,970 226,971 67,948 

266,817 619,189 797,621 621,963 457,443 367,273 274,703 207,939 425,304 127,323 

434,523 1,008,377 1,298,962 1,012,895 744,967 598,120 447,366 338,638 692,627 207,351 

247,343 573,998 739,407 576,569 424,057 340,467 254,654 192,763 394,263 118,030 

316,708 734,969 946,766 738,262 542,980 435,948 326,069 246,821 504,831 151,130 

386,120 896,049 1,154,264 900,064 661,982 531,493 397,532 300,915 615,472 184,253 

416,980 967,665 1,246,518 972,001 714,890 573,972 429,304 324,966 664,663 198,979 

471,751 1,094,769 1,410,249 1,099,674 808,792 649,363 485,694 367,650 751,967 225,115 

410,550 952,744 1,227,297 957,013 703,867 565,121 422,684 319,955 654,414 195,911 

344,014 798,336 1,028,394 801,913 589,794 473,534 354,182 268,101 548,356 164,160 

There is one last feature of the MLE algorithm implemented here that we want to demonstrate: 

the user can choose from a number of pre-defined variance functions (identity, unity, square root, 

power 2, and power family with a specifiable positive exponent). To see the effect this may have on 

the model, consider the residuals versus fitted size plot for our latest model with the identity 

variance function:  

Fitted Value

 
For comparison we will also be fitting a model with the same data points but using the unity 

variance function. With the unity variance function all data points are assumed to have the same 

expected variance. Hence we would expect that, relative to the identity variance function, smaller 

fitted values are given more weight and therefore should have smaller residuals (relative to the 

residuals for larger fitted values). The reader can inspect the residual plot on the following page to 

see whether this expectation holds up. 
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Fitted Value

 
 

This concludes our walk through on how to use the MLE template. We encourage readers to 

download the accompanying MS Excel template and put it through its paces with data sets of your 

choice. 

5. RESULTS AND DISCUSSION 

In section 2.1, we visually presented the issues that need to be addressed when setting up a model 

matrix for a development triangle-assuming a multiplicative model which has distinct unordered 

parameters for exposure and development periods. 

The following section 2.2 more formally introduces some concepts from graph theory that allow 

us to analyze the graph topology of an incomplete development triangle. This enables us to generate 

a valid model specification and to gather information that is important for interpreting the output of 

the fitting procedure. In particular we can identify exact fit cells and sub-regions of the incomplete 

development triangle for which the regression fit is performed without any influence from other 

regions. 

Section 2.4 provided details for an original algorithm based on graph theory that generates a valid 

model specification for a regression model that can be used to project future development for an 

incomplete development triangle. If necessary the algorithm will restrict the model to a maximal 

connected component of the selected incomplete triangle. Note that with minor modifications the 

algorithm would also work for a rectangle of data points (still assuming a two-dimensional factorial 

model). 
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An outline of how to use iterated weighted least squares to implement a maximum likelihood 

estimator for a GLM was given in section 3.2. The algorithm (and its implementation in Visual 

Basic, which can be found in the accompanying MS Excel application) is generic and should work 

for any valid model matrix. An interested reader could easily extend the functionality by adding their 

own code for other link functions, the derivative of the link function, and/or code for other 

variance functions. 

After providing further guidance on implementation issues in section 3.3, we explained the 

concrete steps required for performing a weighted least squares regression in section 3.4. This code 

utilized some simple routines for basic matrix operations tailored to our specific application and 

standard LAPACK routines implemented in Visual Basic from the open source ALGLIB project. 

We note in section 3.5 that performance of the MLE algorithm can be significantly improved by 

porting the matrix routines to C++ and compiling them into a dll that then can be accessed from 

Visual Basic. 

In section 4.1 we presented an intuitive account of the concept of leverage and its role in the 

computation of standardized residuals that can be used for visual analysis of goodness of fit and for 

bootstrapping applications. We also proposed an alternative estimator for the dispersion parameter 

which is based on deleveraged residuals that have been individually adjusted for the bias introduced 

by leverage. The conventional estimator uses a degree of freedom adjustment that in effect is 

uniformly applied to all Pearson residuals. 

After providing a brief outline on how to create plots of standardized residuals we presented a 

“walk through” of how these plots can be used in assessing goodness of fit and making informed 

choices about which data points should be included for a concrete triangle that has also been used in 

other papers on stochastic reserving. Note that the intention of the walk through is not to provide 

an optimal model for the specific data set, but to showcase the kind of judgments an analyst can 

make in the context of the type of GLM model presented here. 

The material in this paper is based on standard GLM theory and standard numerical methods. 

We hope, that by presenting a complete open-source implementation, we can contribute to making 

more actuaries aware of how these powerful methods can be used in the context of stochastic 

reserving, and that interacting with the accompanying MS Excel template will prove a useful aid to 

gaining a deeper understanding of what regression models can accomplish in the context of 

development triangles. 

Interested readers are encouraged to contact the author and request a copy of the companion MS 
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Excel application to further explore the concepts and algorithms presented in this paper.  

We want to conclude this section by comparing the model presented in this paper to some other 

stochastic models for incremental development triangles discussed in the actuarial literature. The 

type of model described in this paper (multiplicative effects with discrete parameters for exposure 

and development periods) is the same as the model described in [7], except that we provide the full 

apparatus that allows an analyst to exclude arbitrary triangle cells from the analysis. By allowing for 

excluded data points and different choices of variance functions we somewhat extend the simple 

bootstrapping models discussed in [4] and [7]. As noted also in these papers a GLM with the identity 

variance function produces the same estimated reserve as the all-year, volume-weighted link ratio 

method, when applied to a complete development triangle. But, as observed in [9], such a GLM is 

more like the traditional BF or Cape Cod method than the link ratio method, in the sense that 

generally we derive a development pattern and an estimate of exposure by exposure period and then 

calculate future development by multiplying the two. 

Models such as those proposed in [2] and [8] differ from the model presented here in at least two 

important ways. The first difference is that the models in [2] and [8] effectively group development 

(or even exposure) periods together and parameterize them using either parametric curves or forms 

non-parametric smoothing (also discussed in [4]). The second difference is that these models add the 

calendar period as an additional dimension to the analysis. The model proposed in [8] and some 

models discussed in [4] furthermore use a Bayesian framework utilizing Monte Carlo Markov Chain 

simulation techniques. 

One straight-forward extension for the model presented here is to allow for arbitrary prior 

weights for the various triangle cells. Some grouping of development periods (or accident periods) 

based on parametric curves should not be too difficult to implement either. 

A persistent nuisance of most stochastic reserving models for development triangles is that they 

do not work for negative incremental values. As we have noted in the case of our model in section 

2, this seems to be due to the seemingly inevitable choice of a logarithmic link function or a similar 

transformation involving taking a logarithm. Given how often we encounter triangles with negative 

incremental values as practicing U.S. P&C reserving actuaries, one would hope that a solution to this 

problem is found soon. 

We conclude our discussion by reiterating that the model and material presented here is intended 

to introduce a wider audience of P&C actuaries to regression analysis for development triangles. The 

paper should aid practitioners in deepening their understanding of regression analysis, in general, 
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and GLM analysis, in particular. We also hope that practitioners will start appreciating that 

development triangles represent a rather condensed form of data and that even the most 

sophisticated stochastic models cannot recover the information that was destroyed in the process of 

aggregating individual claims data. 
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6. CONCLUSIONS 

We have demonstrated that an incomplete development history is no obstacle to projecting 

future development. Our analysis of the graph topology of an incomplete development triangle 

precisely describes to what extent such projections are possible based on the data points given. 

Understanding the nature and implications of exact fit cells and critical connector cells is crucial for 

assessing the goodness of fit of the model and for bootstrapping applications. To our knowledge the 

application of graph theory in this context has not previously been discussed in the actuarial 

literature. The companion MS Excel application, which is available from the author at request, 

demonstrates that performing a GLM-based regression fit to a development triangle is a tool within 

easy reach of any practitioner with access to a personal computer. 
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On Small Samples and the Use of Robust
Estimators in Loss Reserving

Hou-wen Jeng∗

Abstract

This paper explores the use of robust location estimators such as Average-
Excluding-High-And-Low and Huber’s M-estimators in loss reserving. Stan-
dard order statistics results are used to investigate the finite-sample proper-
ties of Average-Excluding-High-And-Low for positively skewed distributions
including bias and efficiency, based on the criterion of mean squared error.
The paper concludes that Averages-Excluding-High-And-Low, although bi-
ased with respect to the population mean for positively skewed distributions,
is more efficient than the sample average in small samples. The paper also
shows that the use of Huber’s M-estimators can enhance the consistency in
loss development factor selections by identifying the implied risk preference.

Keywords: Robust Estimators; Order Statistics; Averages-Excluding-High-
And-Low; Huber’s M-Estimators; Loss Reserving.

1 Introduction

In practice, actuarial data are usually plagued by two problems: heterogeneity and
small sample sizes. Heterogeneity refers to the fact that the underlying exposures
consist of policies with vastly different statistical properties, either within a rating
period or between different periods. For example, losses from separate policies may
follow different probability distributions, or follow the same type of distribution
but with different parameters. Actuaries try hard to adjust the data by using
trend factors, rate change history, and other cross-section and time series factors.
After these adjustments, in many instances, doubts may still linger as to whether
more adjustments are needed to make the data homogeneous.

∗Thanks are due to David Homer for discussion, and to Elizabeth Smith of the CAS for
editorial review. The usual disclaimer applies.
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Heterogeneity, which usually renders the data from older years obsolete, may
exacerbate the problem of small sample sizes. A typical example is that the insurer
changes its underwriting focus and the current policy mix becomes drastically dif-
ferent from those just a few years before. As a result, when it comes to estimating
loss development factors or loss ratios, one rarely can have more than a dozen qual-
ity data points. That poses difficult problems in parameter estimation, confidence
interval calculation, and hypothesis testing.

A recent paper by Blumsohn and Laufer [2] describes in great detail such dilem-
mas faced by casualty actuaries. The authors asked a group of actuaries to select
loss development factors for an umbrella incurred loss triangle. The methods used
by the participants were tabulated and the resulting estimated reserves compared.
They found that, due largely to the instability of the loss development, the num-
ber of approaches and the selected factors varied widely. They concluded that
(1) actuaries should keep an open mind and to approach unstable triangles from
a variety of perspectives, and (2) if the selected factors or the fitted model differ
significantly from the sample average, one must be sure there is a good reason for
the discrepancy.

Blumsohn and Laufer also noted that the majority of the participants were
using a variety of averaging methods such as loss weighted averages and Average-
Excluding-High-And-Low (ĀxHL), which calculates the sample average after dis-
carding the sample maximum and sample minimum. Notice that these methods
are equivalent to either down-weighting or rejecting outliers. In the case of ĀxHL,
the sample maximum and minimum are automatically identified as outliers and
excluded. ĀxHL is widely used by practicing actuaries in the estimation of loss
development factors and loss ratios despite the potential downward bias pointed
out by Wu [12], who argues that if the data exhibit a long-tailed property as
they do in most of the insurance loss distributions, the use of ĀxHL would lead to
downward bias when compared to the sample average.

Wu’s argument seems to be consistent with most of the current actuarial
methodologies, which focus mainly on estimating the population means of the
underlying distributions, with a clear preference for unbiased estimators. Nat-
urally, the most frequent choice is the sample average due to its simplicity and
unbiasedness. However, from a modern robust statistics point of view, the sample
average is probably the worst estimator for the population mean. The sample
average is not robust in the sense that it takes only one outlier to make the sam-
ple average arbitrarily large or small. Thus it is not difficult to understand why
Averages-Excluding-High-And-Low are popular with actuaries since in many in-
stances (particularly when the sample sizes are small), the necessity of eliminating
extreme outliers seems to outweigh the consequences of possible downward bias.
But, is ĀxHL just a convenient escape route for actuaries when facing selection
dilemmas? Or are there instances where one can justifiably select ĀxHL over un-
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biased estimators such as the sample average?
Robust statistics studies the construction of statistical methods and estimators

that can produce reliable parameter estimates and that are less sensitive to sample
outliers (see Maronna et al. [10]). The idea of robust statistics also stems from
the fact that the underlying distribution may not always be correctly specified
and the existence of outliers may be the result of contaminated data. In these
circumstances, robust estimators can often perform better and are more efficient
in terms of variance or mean squared error than, say, the sample average.

This paper tries to argue that in the case of small samples and skewed dis-
tributions the use of robust estimators is even more valuable and can help the
analyst make difficult selections. The goal here is to rationalize the use of ĀxHL
and Huber’s M-estimator in loss reserving by providing evidence from the statis-
tics literature on theoretical grounds, and constructing examples to show its rel-
ative efficiency in the context of small samples and skewed distributions. The
main reasons of using Huber’s M-estimator are its relative simplicity and ease of
calculation. In addition, the analyst’s selection of the critical value in Huber’s
M-estimator may also reveal his or her risk preference in identifying outliers.

Section 2 explores the implications of small sample sizes, while the standard
results from order statistics are used in Section 3 to investigate the finite-sample
properties of ĀxHL. The means and variances of ĀxHL are calculated and compared
with those of the sample average for four positively skewed distributions, namely
exponential, Weibull, lognormal, and Pareto. It shows by example that the mean
squared error of ĀxHL can be smaller than that of the sample average for positively
skewed distributions, and thus more efficient than the sample average despite its
downward bias with respect to the population mean. Section 4 discusses the
general properties of Huber’s M-estimator and its use in loss development factor
selections. Section 5 uses the incurred loss triangle from Blumsohn and Laufer
[2] to illustrate the merit of ĀxHL and Huber’s M-estimator when volatility is the
main issue. Section 6 provides a summary of the publicly available softwares in
Excel and R that calculate Huber’s M-estimators. The concluding remarks are in
Section 7.

2 Outliers and Small Samples

Since the sample average can be significantly altered by outliers, the positive
skewness of the underlying distribution can exacerbate the outlier problem as
outliers may be coming further from the right tail. In the case of small samples,
the potential influence of outliers on the sample average is even greater than those
in large samples as the weight of each observation is larger. One might think
that the impact of the outliers from both tails of the distribution on the sample
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average may cancel out each other. This may be true for symmetric distributions
in a relatively large sample. But most of the actuarial applications considered
here involve small samples that presumably are drawn from positively skewed,
heavy-tailed distributions with non-negative support, such as lognormal or Pareto
distributions. Thus outliers from the right tail, if present in the sample, tend to
be larger and their effect on the sample average more significant.

Table 1 shows the probability, by sample size, of having at least one outlier from
the right tail of an independent sample when outliers are defined as data points
greater than either the 95th percentile or the 90th percentile of the underlying
distribution.1 Given the measurable chance for outliers in small samples, the
sample average may not be a reliable estimator for the population mean if the
underlying distribution is heavy-tailed.

Table 1 : Probability of At Least One Outlier
from the Right Tail in A Sample of Size n

Sample Size n = 5 n = 6 n = 7 n = 8 n = 9 n = 10
Outlier defined as
≥ 95th percentile 22.6% 26.5% 30.2% 33.7% 37.0% 40.1%
Outlier defined as
≥ 90th percentile 41.0% 46.9% 52.2% 57.0% 61.3% 65.1%

There are other problems associated with small samples from skewed distribu-
tions. For example, Fleming [5] warns that the sample average of a small sample
from a positively skewed distribution is most likely smaller than the population
mean. In other words, the skewness of the parent distribution can be carried over
to the sampling distribution of X̄. The statistics literature provided an elegant
explanation of this phenomenon nearly 70 years ago through the Berry-Esseen the-
orem, 2 3 which says that the largest difference between the sampling distribution
function of X̄ and the standard normal distribution (its limiting distribution) is
bounded by a ratio of the skewness of the underlying distribution to the square
root of the sample size. In short, it simply means that the larger the skewness, the
slower the speed of convergence to normality. Thus in order to achieve a certain
level of sampling precision, the sample average may require a considerably large

1The probability is (1− (0.95)n) or (1− (0.90)n).
2David Homer pointed out this fact to me.
3Formally, let X1, ..., Xn be i.i.d. with E(X1) = µ, V ar(X1) = σ2, and β3 = E(|X1 − µ|3) <

∞. Then there exists a constant C, independent of n or the distribution of the Xi, such that

sup
X

∣∣∣∣P (
X̄ − µ
σ/
√
n
≤ x)− Φ(x)

∣∣∣∣ ≤ Cβ3/σ
3

√
n

,

where β3/σ
3 is the skewness and C ≤ 0.7655.
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sample size to compensate for the skewness of the parent distribution. This issue
is of a different nature from the outlier problem. The solution seems to either get
a larger sample or use certain transformation methods to get around the skewness
problem. From a robust statistics point of view, the outlier problem exists in sam-
ples of all sizes. For small samples, however, the choice of the estimator (either
robust or non-robust) may have a more significant impact on the final results.

The following graph shows the simulated results for the sampling distributions
of X̄ from a lognormal parent distribution (mean = 1.649, sd = 2.161, or µ = 0 ,
σ = 1) with different sample sizes (n=10, 7, and 5). Notice the gradual increase
in skewness (thicker tail) when the sample size decreases from 10 to 5.

Graph 1 : Sampling Distributions of X̄ (n = 10, 7, and 5)

3 ĀxHL: A Robust Estimator

Trimmed means, which are considered robust estimators for location parameters,
calculate the sample average after discarding a fixed number or a fixed percentage
of the observations from both ends of an ordered sample. Trimmed means are less
sensitive to outliers compared to the sample average X̄. Trimmed means come in
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many varieties, and their statistical properties as well as asymptotic behavior are
studied extensively in the statistics literature (see Maronna et al. [10] and Wilcox
[11]). The use of Average-Excluding-High-And-Low ĀxHL in actuarial practice is a
classical example of trimmed means. It is obvious that ĀxHL is just a special case
of trimmed means, where only the sample maximum and minimum are discarded.

3.1 Finite-Sample Statistics of ĀxHL

In this section we calculate the finite-sample mean and variance of ĀxHL while the
asymptotic properties of ĀxHL are explored in Section 3.3. Let (X1, . . . , Xn) be
a sample of n independent and identically distributed random variables. Denote
the cumulative distribution function (cdf) F (x) and probability density function
(pdf) f(x) with mean µ and variance σ2 (subject to existence).

LetX(i) be the ith order statistic of (X1, . . . , Xn). ThusX(1) = min(X1, . . . , Xn),
X(n) = max(X1, . . . , Xn), and X(1) ≤ . . . ≤ X(i) ≤ . . . ≤ X(n) for 1 ≤ i ≤ n.
Average-Excluding-High-And-Low ĀxHL is defined as

ĀxHL =

∑n
i=1Xi −X(1) −X(n)

n− 2
.

The mean and the variance of ĀxHL when the sample size is n are

E(ĀxHL) =
nµ− E(X(1))− E(X(n))

n− 2
(1)

and

V ar(ĀxHL) = V ar

{∑n−1
i=2 X(i)

n− 2

}
=

∑n−1
i=2

∑n−1
j=2 Cov(X(i), X(j))

(n− 2)2
, (2)

respectively. Note that although all observations are i.i.d., the order statistics (i.e.,
X(i)) of an independent sample are correlated with one another.

3.2 Bias and Relative Efficiency of ĀxHL

Next, define Bias of ĀxHL with respect to the population mean µ as

Bias(ĀxHL;µ) =
E(ĀxHL)− µ

µ
=

2µ− E(X(1))− E(X(n))

(n− 2)µ
.

It can be shown that 2µ = (E(X(1)) + E(X(n))) for symmetric distributions and
2µ < (E(X(1)) +E(X(n))) for positively skewed distributions. For the latter case,
it implies Bias(ĀxHL) < 0.
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Define MSE with respect to the population mean µ as

MSE(ĀxHL;µ) = V ar(ĀxHL) +
{
Bias(ĀxHL;µ) ∗ µ

}2

= V ar(ĀxHL) +

{
2µ− E(X(1))− E(X(n))

(n− 2)

}2

and the relative efficiency between X̄ and ĀxHL with respect to the population
mean µ as

REff (X̄, ĀxHL;µ) =
MSE(X̄;µ)

MSE(ĀxHL;µ)
=

V ar(X̄)

V ar(ĀxHL) +
{

2µ−E(X(1))−E(X(n))

(n−2)

}2 .

Bias is a common way to quantify the distance between an estimator and a pa-
rameter while MSE is a widely accepted measure of accuracy for estimators with
respect to a parameter. Traditionally, the efficiency measure is a ratio between
the Cramér-Rao lower bound and the variance of an unbiased estimator. Here,
however, REff (X̄, ĀxHL;µ) is narrowly defined to compare the MSEs of the sam-
ple average X̄ and ĀxHL. Note that if the underlying distribution is skewed, ĀxHL
is always biased with respect to the population mean. As such, MSE may be a
more appropriate measure in comparing X̄ and ĀxHL as it penalizes the estimator
for its deviation from the parameter µ.

In the appendix, the mean, variance, Bias, MSE, Asym, and REff of ĀxHL
from five distributions are calculated for sample sizes from five to ten as shown
in Table 2. The distributions range from symmetric (standard normal), light-
tailed (exponential) to positively skewed and heavy-tailed (lognormal, Pareto)
distribution. The selections of the parameter values are subjective as the goals
are to illustrate the influence of sample size on E(ĀxHL) and V ar(ĀxHL) and to
contrast their differences with E(X̄) and V ar(X̄), respectively.

Table 2 : Means, Variances, Coefficients of Variation
and Skewness of Selected Distributions

Distribution Mean Variance Coeff. Vari. Skewness
Standard Normal 0 1 N.A. 0

Exponential (θ = 1) 1 1 100% 2
Pareto (θ = 1, α = 4) 1.333 0.222 35% 7.071

LogNormal (µ = 0, σ2 = 1) 1.649 4.671 131% 6.185
Weibull (θ=1, τ=0.5) 2 20 224% 6.618

Overlaying on Graph 1, Graph 2 shows the simulated results for the sampling
distributions of ĀxHL from a lognormal parent distribution with sample sizes of 10,
7, and 5. Note the differences in skewness (thicker tail) and standard deviation
between the corresponding distributions of X̄ and ĀxHL with the same sample
size.
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Graph 2 : Sampling Distributions of X̄ and ĀxHL (n = 10, 7, and 5)

As indicated earlier, ĀxHL are biased downward in positively skewed distribu-
tions. The degree of the bias depends on the shape parameter and the sample size.
The larger the sample size, the smaller the bias. Table 3 summarizes the results
from the calculations using order statistics in the appendix. Note that ĀxHL are
unbiased if the underlying distribution is symmetric.

Table 3 : Bias(ĀxHL;µ) by Sample Size n
Sample Size n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

Standard Normal 0 % 0% 0% 0% 0% 0%
Exponential (θ = 1) -16% -15% -15% -14% -13% -13%

Pareto (θ = 1, α = 4) -6% -6% -6% -6%
LogNormal (µ = 0, σ2 = 1) -23% -23% -22% -21% -20% -20%

Weibull (θ=1, τ=0.5) -46% -44% -43% -41% -40% -38%

While ĀxHL is biased with respect to the population mean for positively skewed
distributions, they are more efficient than the sample average in terms of mean
squared error. The efficiency advantage is consistent across the sample sizes as
shown in Table 4, which summarizes the results from the appendix. Note that
given a normal distribution, the sample average is universally more efficient than
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ĀxHL regardless of the sample size. For an exponential distribution, ĀxHL is
almost as efficient as the sample average. However, for the Pareto, LogNormal,
and Weibull distributions, ĀxHL are much more efficient than X̄.

Table 4 : REff(X̄, ĀxHL;µ) by Sample Size n
Sample Size n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

Standard Normal 88% 91% 92% 93% 94% 95%
Exponential (θ = 1) 97% 97% 97% 97% 97% 97%

Pareto (θ = 1, α = 4) 151% 148% 145% 142%
LogNormal (µ = 0, σ2 = 1) 159% 159% 159% 159% 159% 159%

Weibull (θ=1, τ=0.5) 185% 185% 185% 185% 185% 185%

3.3 Asymptotic Properties of ĀxHL

The asymptotic properties of trimmed means depend on the nature of trimming in
relation to the sample size n. If the number of the trimmed observations is fixed,
the trimming is considered light , such as ĀxHL. All other cases are considered
either intermediate or heavy trimming, where the number of the trimmed obser-
vations may be infinite as n goes to infinity. For example a 25% trimmed mean
is calculated by trimming 25% of the observations from both ends of the ordered
sample regardless of the sample size.

Light Trimming - Note that the value of ĀxHL approaches X̄ as n becomes
large. Kesten [8] also shows that the convergence in distribution of lightly trimmed
means and sample average are equivalent. In other words, both ĀxHL and the
sample average are asymptotically normal with the same normalizing factors (i.e.,
the asymptotic mean and standard deviation). Thus the asymptotic mean of
ĀxHL is the population mean µ and it is in this sense that ĀxHL is asymptotically
unbiased. However, as shown in Section 3.2 and the appendix, depending on
the type of the distribution, the finite-sample properties of ĀxHL and the sample
average can be very different.

Heavy Trimming - In the case of heavy trimming, where a fixed percentage
of the sample points are trimmed from both ends of the ordered sample, Csörgő
et al. [3] have shown that a normalized trimmed mean so defined converges in
distribution to a standard normal random variable, and the asymptotic mean is
the expected value of a truncated parent distribution with the upper and lower
truncation points at the same fixed percentiles as in the sample. For example,
if a trimmed mean is obtained by trimming 20% of the sample from both ends,
the support of the truncated distribution is from the 20th percentile to the 80th
percentile of the parent distribution.

Wu [12] indicates that ĀxHL would underestimate the population mean of a
positively skewed distribution. He first defines the asymptotic means of ĀxHL ([12]
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p. 717, Exhibit 1) as

Asym(ĀxHL) =
1

1− 2/n

∫ F−1(1− 1
n

)

F−1( 1
n

)

xf(x)dx, (3)

which4 is equivalent to the asymptotic mean for heavily trimmed means when
the trimming percentage is fixed at 1/n. For example, if the sample size is five,
Asym(ĀxHL) is the expected value of a truncated parent distribution with the
upper and lower truncation points at the 80th and 20th percentiles of the parent
distribution, respectively. As such, F−1(1 − 1

n
) = F−1(0.8), F−1( 1

n
) = F−1(0.2),

and

Asym(ĀxHL) =
1

1− 2/5

∫ F−1(0.8)

F−1(0.2)

xf(x)dx.

The magnitude of the truncation is based on the size of the sample. As a result,
Asym(ĀxHL) can be different when the sample size varies. Wu [12] then estimates
the bias of ĀxHL by comparing Asym(ĀxHL) with the population mean, and argues
that the sampling bias can be corrected by using a ratio of the population mean
and Asym(ĀxHL).

Wu’s approach to the problem raises two issues. First, we know through the
statistics literature (e.g., Kesten [8]), when the trimming is light, such as ĀxHL,
the asymptotic mean is the same as the underlying population mean regardless
of the sample size. Second, although ĀxHL and X̄ have the same asymptotic
mean, the finite-sample expected values for ĀxHL can be very different, depending
on the sample size. The sample sizes under consideration in actuarial practice
are usually quite small. Despite the fact that the exact distribution of ĀxHL is
often intractable, the means, variances, and covariances of ĀxHL for small samples
can often be derived explicitly or numerically approximated. Therefore, it is not
necessary to use the asymptotic mean to calculate the theoretical bias in small
samples since doing so would actually overstate the size of the bias.

Table 5 : Bias(Asym(ĀxHL);µ) by Sample Size n
Sample Size n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

Standard Normal 0 % 0% 0% 0% 0% 0%
Exponential (θ = 1) -24% -22% -21% -19% -18% -17%

Pareto (θ = 1, α = 4) -11% -10% -10% -10%
LogNormal (µ = 0, σ2 = 1) -33% -31% -29% -27% -26% -25%

Weibull (θ=1, τ=0.5) -64% -60% -57% -54% -52% -50%

4Since we are only interested in continuous distributions, F−1(u) here is assumed to be
uniquely determined for each u in [0, 1].
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The appendix compares the estimated bias resulting from using Asym(ĀxHL) in-
stead of E(ĀxHL) for the five distributions. Table 5 summarizes the results by
sample size and indicates that the overstatement exists across the sample sizes
of five to ten and can be as much as 50% for some positively skewed distributions,
compared to Bias(ĀxHL;µ) in Table 3.

One may also argue on philosophical grounds that the correction, for either
small or large samples, is not necessary. That is, from a robust statistics point of
view, the examination and treatment of outliers are of fundamental importance5

while the unbiasedness with respect to the population mean is never an objective
nor a concern. In general, the goal of robust location estimators is to measure
the central tendency of the distribution, not the population mean. Thus the
question is not whether the outliers should be eliminated or not, but how to lessen
their impact if outliers exert undue influence on the estimation.

Unbiasedness seems to have been fully embraced in the casualty literature as
the most important property for an estimator, but in practice unbiased estimators,
such as the sample average are rarely used as selections. Instead, it is always
some type of modified average depending on the circumstance, the data, and
the analyst. Moving away from the “first moment only” mentality can help us
achieve a shorter confidence interval and gain efficiency in terms of mean squared
error, which considers both the first and second moments. Here it should be
emphasized that we are not advocating abandoning the sample average as an
estimator. Rather, we suggest that efficient robust estimators should always be
considered along with other unbiased estimators.

4 Huber’s M-Estimators

To calculate ĀxHL, automatically trimmed are the sample maximum and sample
minimum, which may or may not be outliers relative to the rest of the sample.
Thus it makes sense if the trimming can be limited to the outliers identified during
the calculating process. Huber’s M-estimator does exactly that. The theory of
Huber (See Huber and Ronchetti [7]) is to solve the following problem given n
i.i.d. observations (x1, . . . , xn):

min
t

(
n∑
i=1

ξ(xi − t))

5The usual benchmarks for robustness measurement are breakdown point and influence func-
tion (see Maronna et al. [10]).
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with ξ a suitable function. Or equivalently,
∑n

i=1 Ψ(xi − t) = 0 where Ψ is the
derivative of ξ. Specifically, Huber’s Ψ is defined as follows:

Ψ(x) =


K if x > K,

x if |x| ≤ K,

−K if x < −K,

where K > 0 is a factor selected by the analyst. In practice, the following form of
Ψ is used:

n∑
i=1

Ψ(
xi − t
τ

) = 0 (4)

where τ is a scale measure added to ensure that the resulting solution t = M is
scale equivariant. The intuition here is that instead of trimming a fixed number
or percentage of observations, only those observations with the adjusted values
of (x −M)/τ outside the range of [−K,K] are replaced by either (M − τK) or
(M + τK). Note that the presumed outliers are not trimmed but replaced.

Graph 3 : Sampling Distributions of X̄, ĀxHL, and Huber’s
M-Estimators (n=10)
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If K = ∞,
∑n

i=1(Ψ(xi − t)) =
∑n

i=1(xi − t) = 0 and the solution to the op-
timization is the sample average X̄. And if K = 0, the sample median is the
solution. If K is between 0 and infinity, no closed-form solutions exist and a nu-
merical approximation using the Newton-Raphson algorithm is usually employed
to derive the solution. Note that when K is between 0 and infinity, the solution is
not necessarily between the median and X̄ due to the non-linearity of the problem.

The finite-sample properties of Huber’s M-estimator can be obtained through
simulation. Graph 3 shows the simulation results for the sampling distributions
of X̄, ĀxHL, and Huber’s M-estimators with K = 1.0 and 2.0 from a lognormal
parent distribution when the sample size is 10. The distribution of ĀxHL is almost
indistinguishable from that of Huber’s M-estimators with K = 2.0 while X̄ has a
thicker tail and a larger standard deviation than the two robust estimators. Note
that Huber’s M-estimator with K = 1.0 has a smaller standard deviation but a
larger bias than Huber’s M-estimator with K = 2.0.

In theory, the selection of the K value is to balance between efficiency (asymp-
totic variance at the normal distribution) and robustness (resistance against out-
liers from heavy-tailed distributions). For example, compared with Huber’s M-
estimator with K = 1.0, Huber’s M-estimator with K = 2.0 has a lower asymp-
totic variance at the normal distribution. Huber’s M-estimator with K = 1.0, on
the other hand, is more robust in terms of guarding against the impact of outliers.

Using the standard normal approximation may provide another perspective on
what the K value implies in the calculation of Huber’s M-estimator. Given 1.64 is
the 95th percentile of the standard normal distribution, a range of [-1.64, 1.64] for
the adjusted value (x− t)/τ may be interpreted as covering 90% of the underlying
distribution.6 With a higher K value, the range for admissible observations is
getting larger and thus fewer observations are classified as outliers. If we define
risk as the influence of outliers on the measure of the distribution center, then the
selection of the K value may have an added benefit in reflecting the risk preference
of the analyst. In other words, the more risk averse the analyst is, the lower the
K value may be selected.

5 An LDF Example Using Robust Estimators

In this section, we illustrate the calculation of ĀxHL and Huber’s M-estimators
using the data from Blumsohn and Laufer [2]. For completeness, the age-to-age
development factors of the incurred loss triangle from Blumsohn and Laufer [2] (p.
22) are reproduced in Table 6 below along with the medians, ĀxHL, and means of
the respective age-to-age factors.7

6No references can be found for this interpretation, which may be regarded as speculative.
7Here we assume that the age-to-age factors in each column are i.i.d.
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Table 6: Age-to-Age Loss Development Factors

Year 2-1 3-2 4-3 5-4 6-5 7-6 8-7 9-8 10-9 11-10 12-11
1991 1.68 2.31 1.47 1.22 1.14 0.97 1.05 0.97 1.04 1.01 0.99
1992 6.54 1.26 1.62 1.57 0.87 1.11 1.03 1.01 0.99 0.99
1993 1.75 2.78 1.32 1.24 1.08 1.01 0.98 0.99 1.01
1994 3.88 1.83 0.86 0.96 1.20 1.01 1.05 1.01
1995 2.69 1.81 0.91 1.19 1.00 1.57 1.00
1996 1.11 1.42 1.12 1.14 1.23 1.01
1997 1.98 1.41 0.96 1.17 1.02
1998 3.91 1.10 1.53 1.02
1999 1.45 0.97 1.44
2000 1.44 1.13
2001 1.23

Med. 1.75 1.41 1.32 1.18 1.08 1.01 1.03 1.00 1.01 1.00 0.99
ĀxHL 2.23 1.53 1.25 1.16 1.09 1.03 1.03 1.00 1.01 1.00 0.99
Avg 2.52 1.60 1.25 1.19 1.08 1.11 1.02 0.99 1.01 1.00 0.99

Table 7: Implied Loss Reserves and
M-Estimates of LDF for Various K Values

Implied
K Prob Reserve 2-1 3-2 4-3 5-4 6-5 7-6 8-7 9-8 10-9

0.06 5% 22,017k 1.75 1.41 1.32 1.18 1.08 1.01 1.03 1.00 1.01
0.13 10% 22,089k 1.76 1.41 1.32 1.18 1.08 1.01 1.03 1.00 1.01
0.25 20% 22,382k 1.80 1.41 1.32 1.18 1.08 1.01 1.03 1.00 1.01
0.39 30% 22,741k 1.80 1.43 1.32 1.18 1.08 1.02 1.03 1.00 1.01
0.52 40% 22,673k 1.82 1.46 1.30 1.18 1.08 1.02 1.03 1.00 1.01
0.67 50% 22,854k 1.87 1.48 1.28 1.18 1.08 1.02 1.03 1.00 1.01
0.84 60% 23,415k 1.92 1.49 1.27 1.18 1.09 1.02 1.03 1.00 1.01
1.04 70% 23,503k 1.97 1.51 1.25 1.18 1.09 1.02 1.02 1.00 1.01
1.15 75% 23,650k 2.00 1.52 1.25 1.17 1.09 1.03 1.02 1.00 1.01
1.28 80% 23,758k 2.04 1.54 1.25 1.17 1.09 1.03 1.02 1.00 1.01
1.64 90% 24,227k 2.14 1.57 1.25 1.17 1.08 1.03 1.02 1.00 1.01
1.96 95% 24,908k 2.23 1.59 1.25 1.16 1.08 1.04 1.02 0.99 1.01
2.58 99% 25,799k 2.31 1.60 1.25 1.16 1.08 1.04 1.02 0.99 1.01

Med. 22,017k 1.75 1.41 1.32 1.18 1.08 1.01 1.03 1.00 1.01
ĀxHL 25,502k 2.23 1.53 1.25 1.16 1.09 1.03 1.03 1.00 1.01
Avg 33,349k 2.52 1.60 1.25 1.19 1.08 1.11 1.02 0.99 1.01
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Using the data from Table 6, Table 7 shows the resulting estimated loss reserves
with various K values in Huber’s M-estimators. For each K value, the implied
loss reserve is calculated by assuming that the same K value is used for each of the
columns in the age-to-age factor selection. The K value ranges from 0.06 to 2.58,
which correspond to the 5% and 99% pseudo-probability ranges, respectively (i.e.,
as if approximated by a standard normal distribution). Using a K value of 0.06
implies that the analyst classifies any observation x as an outlier if its adjusted
value (x−M)/τ is outside the range of [-0.06, 0.06].

In the example, at the 5% pseudo-probability level, all observations are deemed
outliers and the Huber’s M-estimate is the sample median for all ages. With
higher K values, the M-estimates change gradually from the sample median to
the sample average. Finally at the 99% pseudo-probability level, only a handful of
observations are deemed outliers and the Huber’s M-estimate is the sample average
for most of the age-to-age factors. The range of the implied reserves is between
22.0 million and 25.8 million, corresponding to K=0.06 and K=2.58, respectively.

Table 8 below shows the data points in the 2-1 age-to-age factors that are
deemed outliers for various K values in the calculation of Huber’s M-estimates.
At K = 0.06, all points are outliers except 1.75, which happens to be the sample
median. As K becomes larger, fewer data points are declared outliers. At K =
2.58, the only outlier is 6.54.

Table 8: Implied Outliers For 2-1 Age-To-Age Factors By K Value

K Out1 Out2 Out3 Out4 Out5 Out6 Out7 Out8 Out9 Out10
0.06 6.54 3.91 3.88 2.69 1.98 1.68 1.45 1.44 1.23 1.11
0.13 6.54 3.91 3.88 2.69 1.98 1.45 1.44 1.23 1.11
0.25 6.54 3.91 3.88 2.69 1.45 1.44 1.23 1.11
0.39 6.54 3.91 3.88 2.69 1.45 1.44 1.23 1.11
0.52 6.54 3.91 3.88 2.69 1.23 1.11
0.67 6.54 3.91 3.88 2.69 1.23 1.11
0.84 6.54 3.91 3.88 2.69 1.23 1.11
1.04 6.54 3.91 3.88 1.11
1.28 6.54 3.91 3.88
1.64 6.54 3.91 3.88
1.96 6.54 3.91 3.88
2.58 6.54

A few comments on the age-to-age selection methods may be in order:

• One potential flaw or inconsistency of ĀxHL when applied to the setting of
age-to-age factor calculation is that ĀxHL trims a different percentage of
data for each of the columns. For example, for the 2-1 factor, two out of
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11 observations or 18.2% of the data are trimmed while for the 8-7 factors,
40% of the data (two out of five) are trimmed. The inconsistency stems
from the fact that ĀxHL trims less percentage of the data when the data are
more volatile (e.g., the 2-1 factors) and more percentage of the data when
the data are relatively stable (e.g., the 8-7 factors). As indicated in Section
3.2, the finite-sample properties of ĀxHL are dependent on the sample size
and can be very different between trimming 18.2% and 40% of the data. On
the other hand, using Huber’s M-estimators and selecting ”appropriate” K
values by age may avoid this problem and maintain some level of consistency
in the age-to-age factor calculation.

• The loss reserve estimates based on the M-estimates are in the middle-to-
lower range of the reserves estimated by the participants in the Blumsohn
and Laufer study. The primary reason is that many participants downweight
or ignore the negative development in the age-to-age factor selection. For the
earlier development ages, their age-to-age factor selections seem to largely
fall within the range of the M-estimates with the K values between 0.06 and
2.58, except for the age 7-6 factors, where 1.566 is a prominent outlier and
causes a great deal of variations in the participants’ selection.

• One interesting observation regarding the age-to-age factor selections by the
participants of the Blumsohn and Laufer study is that the implied K values
across ages are not consistent. For example, one may select 1.75 for the 2-1
factor with an implied K value of 0.06 while selecting 1.60 for the 3-2 factor
with an implied K value of 2.58 (see Table 7). This lack of consistency in
terms of the K value may be due to the fact that different averaging methods
were used for different ages in selections while the statistical implications of
the methods are not obvious.

• When Huber’s M-estimator is used with a specific K value, the confidence
interval for the loss reserves can be obtained by bootstrapping individual
age-to-age factors. One potential problem of this approach is that the τ
value can easily become zero in equation (4) for the bootstrap samples when
the sample size is small. Note that Huber’s M-estimator is not well-defined
when τ = 0.

6 Software Implementation

Software in Excel VBA -

• Written by this author and included in the appendix are two Excel/VBA
functions (HuberM and MADN) for calculating Huber’s M-estimators. To

On Small Samples and the Use of Robust Estimators in Loss Reserving

Casualty Actuarial Society E-Forum, Fall 2010 16



implement the functions, copy the code for both functions into a Visual
Basic module of the desired Excel file. The first required input for HuberM
is a numeric range/vector while the second required input is the selected K
value. Note that HuberM is not well-defined when τ from Equation (4) is
zero. When this occurs, Excel will exhibit a warning message.

• The Royal Society of Chemistry has made available an Excel Add-in for
Huber’s M-estimator, RobStat.xla.8 All the installation instructions are in
the ReadMe.txt file, as well as in the full help system. The Add-in has two
Excel functions, A15 MEAN and H15 MEAN, which calculate two types of
Huber’s M-estimators. The difference is that the former uses a fixed MADN
for τ from Equation (4) in the iteration process while the latter continues to
update the τ in each iteration.

Despite the Add-in’s strength in error handling and help system, this au-
thor was not able to reconcile the calculation results from A15 MEAN (or
H15 MEAN) with the results from any R-based functions including huberM
in the R package and mest in Wilcox’s collection.

• The function TRIMMEAN(array,α%) supplied by Excel calculates the α%
trimmed mean for the array specified in the first argument of the function.
For example, the 20% trimmed mean TRIMMEAN(array,20%) for a sample
size five is the same as ĀxHL.

Software in R -

• Two R packages (“robust” and “robustbase”) are available on the R web-
site to calculate a variety of robust estimators. The function huberM in “ro-
bustbase” calculates Huber’s M-estimator, which requires a numeric vector
and a K value as inputs.

• Wilcox [11] maintains a significant collection of R functions in robust statis-
tics.9 mest is the function that calculates Huber’s M-estimator.

• Interested readers can also find other collections of related R or S-Plus
functions in http://www.statistik.tuwien.ac.at/rsr/index.html.

8http://www.rsc.org/Membership/Networking/InterestGroups/Analytical/AMC/Software
/RobustStatistics.asp

9http://www-rcf.usc.edu/ rwilcox/
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7 Conclusion

Modern robust statistics has made it well-known that outliers can have unbounded
influence on classical estimators such as the sample average, resulting in: (1)
inaccurate parameter estimates/inference, (2) large standard errors, and (3) wide
confidence intervals.

The purpose of this paper is to provide some theoretical facts and examples
regarding average-excluding-high-and-low and more broadly, some robust estima-
tors, which may not have been given proper credit in our literature. We have
shown by example that ĀxHL is more efficient than the sample average. It also
shows that using Huber’s M-estimators with selected K values may have some
more benefit than using ĀxHL.

Although these two estimators only represent a tiny portion of the large number
of robust estimators in the statistics literature, one of the major advantages of
ĀxHL and Huber’s M-estimators is that they can be easily implemented through
simple software (see Section 6). The famed Princeton Study on robust estimators
(see Andrews et al. [1]) also shows that (1) some trimmed means (similar to ĀxHL)
and Huber’s M-estimators behave rather well under many scenarios in comparison
with other robust estimators, and (2) no single robust estimator is more efficient
for all distributions.

John Tukey, an early pioneer of the modern robust statistics, once said “ust
which robust/resistant methods you use is not important – what is important is
that you use some.” It is this author’s belief that the use of ĀxHL and Huber’s
M-estimators may be beneficial to actuaries in tackling the day-to-day selection
problems.
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Appendix

A.0 Basic Formulas in Order Statistics

Let (X1, . . . , Xn) be a sample of n independent and identically distributed random
variables. Denote the cumulative distribution function (cdf) F (x) and probability
density function (pdf) f(x) with mean µ and variance σ2 (subject to existence).

LetX(i) be the ith order statistic of (X1, . . . , Xn). ThusX(1) = min(X1, . . . , Xn),
X(n) = max(X1, . . . , Xn), and X(1) ≤ . . . ≤ X(i) ≤ . . . ≤ X(n) for 1 ≤ i ≤ n. If
F (x) is absolutely continuous, the expected value and the variance of X(i), and
the expected value of X(i) and X(j) for 1 ≤ i < j ≤ n can be expressed as (see
David and Nagaraja [4])

E(X(i)) =

(
n

i

)∫ ∞
−∞

xf(x)[F (x)]i−1[1− F (x)]n−idx

V ar(X(i)) =

(
n

i

)∫ ∞
−∞

x2f(x)[F (x)]i−1[1− F (x)]n−idx− [E(X(i))]
2

and

E(X(i), X(j)) = Cov(X(i), X(j)) + E(X(i))E(X(j))

=
n!

(i− 1)!(j − i− 1)!(n− j)!
×∫ ∞

−∞

∫ y

−∞
xyf(x)f(y)[F (x)]i−1[F (y)− F (x)]j−i−1[1− F (y)]n−jdxdy,

respectively.

The closed-form solutions to E(X(i)), V ar(X(i)), and Cov(X(i), X(j)) can be de-
rived explicitly for the exponential, Weibull, and Pareto distributions. For the log-
normal distribution, numerical approximation is needed to calculate these statis-
tics. In the order statistics literature, extensive studies (see David and Nagraja
[4]) were performed in the 1950s and 1960s on the calculations of the moments of
order statistics for various distributions by sample size. Harter and Balakrishnan
[6] have summarized and tabulated the numerical results of those studies in their
1996 Handbook.

In this section, we calculate and tabulate the numerical values of the means and
variances of ĀxHL for the standard normal distribution and four distributions with
nonnegative supports, namely the exponential, lognormal, Pareto and Weibull
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distributions.10 In other words, We assume the underlying distribution is known
and there is no model misspecification or data contamination. We then employ
these results to calculate the exact values of the bias and the relative efficiency of
the sample average and ĀxHL for the sample sizes between five and ten. Although
ĀxHL may be significantly downward biased for a positively skewed distribution,
MSE(ĀxHL) usually is smaller than MSE(X̄), which is just V ar(X̄) = σ2/n.
That is, even considering the penalty for bias, the average distance as defined by
MSE between ĀxHL and µ may still be shorter than that between X̄ and µ.

A.1 The Standard Normal Distribution

Since the standard normal is symmetric, ĀxHL is unbiased. Note that X̄ is more
efficient than ĀxHL as V ar(X̄) ≤ V ar(ĀxHL) for all sample sizes. In fact, the
standard normal distribution has the rare property that X̄ is more efficient than
most robust location estimators.

Table A.1 : Efficiency of ĀxHL for Standard Normal
Sample Size n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

E(X̄) 0 0 0 0 0 0
E(ĀxHL) 0 0 0 0 0 0

Bias(ĀxHL;µ) 0% 0% 0% 0% 0% 0%
Asym(ĀxHL) 0 0 0 0 0 0

Bias(Asym(ĀxHL);µ) 0% 0% 0% 0% 0% 0%
V ar(X̄) 0.20000 0.16667 0.14286 0.12500 0.11111 0.10000

V ar(ĀxHL) 0.22706 0.18403 0.15494 0.13387 0.11790 0.10535
MSE(ĀxHL;µ) 0.22706 0.18403 0.15494 0.13387 0.11790 0.10535

REff (X̄, ĀxHL;µ) 88% 91% 92% 93% 94% 95%

A.2 The Exponential Distribution

The pdf and cdf of the exponential distribution with scale parameter θ are

f(x; θ) =
1

θ
e−x/θ, x ≥ 0, θ > 0,

F (x; θ) = 1− e−x/θ,
respectively. Given that the rth moment of X is E(xr) = θrr!, the exponential
distribution has a fixed skewness of 2, independent of θ as shown below

Skewness(x) =
E(x3)− 3θE(x2) + 2θ3

θ3
= 2.

10The distribution forms and the corresponding statistics are based on Klugman et al. [9].
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The closed-form solutions exist for the mean and variance of X(i), which are

E(X(i); θ) = θ

i∑
j=1

1

n− j + 1
,

and

V ar(X(i); θ) = θ2

i∑
j=1

1

(n− j + 1)2
,

respectively. For i < j, the covariance of X(i) and X(j) is the same as V ar(X(i); θ).
For a sample of five,

Bias(ĀxHL) =
5θ − θ(1 + 1

2
+ 1

3
+ 1

4
+ 1

5
)− θ(1

5
)

(5− 2)θ
− 1 = −16.1%.

Given the fixed skewness of the exponential distribution, it is not surprising that
Bias(ĀxHL) is dependent on the sample size n only and independent of the pa-
rameter θ.

The calculation of Asym(ĀxHL) depends on the sample size n and θ.

Asym(ĀxHL) =
θ

1− 2/n

{
Γ(2;−ln(

1

n
))− Γ(2;−ln(1− 1

n
))

}
where Γ(., .) is the incomplete Gamma function. The following table shows the
statistics for the exponential distribution with θ = 1. Note that E(x) = 1 and
V (x) = 1 when θ = 1. As expected, when the sample size gets larger the bias is
getting smaller. On the other hand, ĀxHL is almost as efficient as X̄ for sample
sizes 5 to 10.

Table A.2 : Bias and Efficiency of ĀxHL for Exponential (θ=1)
Sample Size n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

E(X̄) 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
E(ĀxHL) 0.83889 0.84584 0.85286 0.85952 0.86570 0.87138

Bias(ĀxHL;µ) -16.1% -15.4% -14.7% -14.0% -13.4% -12.9%
Asym(ĀxHL) 0.76085 0.77970 0.79547 0.80914 0.82076 0.83058

Bias(Asym(ĀxHL);µ) -23.9% -22.0% -20.5% -19.1% -17.9% -16.9%
V ar(X̄) 0.20000 0.16667 0.14286 0.12500 0.11111 0.10000

V ar(ĀxHL) 0.17966 0.14634 0.12407 0.10801 0.09585 0.08628
MSE(ĀxHL;µ) 0.20562 0.17011 0.14572 0.12775 0.11389 0.10282

REff (X̄, ĀxHL;µ) 97% 97% 97% 97% 97% 97%
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A.3 The Pareto Distribution

The pdf and cdf of the Pareto distribution with scale parameter θ and shape
parameter α are

f(x) =
αθα

xα+1
, F (x) = 1− (

θ

x
)α, x ≥ θ, α > 0,

respectively. The mean, variance, and skewness are

E(x) =
αθ

α− 1
, V ar(x) =

θ2α

(α− 2)(α− 1)2
,

and

Skewness(x) =
2(1 + α)

α− 3

√
α− 2

α
,

respectively. The calculation of Asym(ĀxHL) depends on the sample size n,

Asym(ĀxHL) =
1

(1− 2/n)

αθ

(α− 1)

{
(1− 1

n
)1−1/α − (

1

n
)1−1/α

}
.

Using Tables C13.1 and C13.2 in Harter and Balakrishnan [6] and Eqs. (1)-
(2) in Section 3.1, the means and variances of ĀxHL with the underlying Pareto
(α = 4, θ = 1) are shown in the following table. Note that E(x) = 1.33333,
V ar(x) = 0.22225, and Skewness(x) = 7.07106 for the Pareto distribution with
α = 4 and θ = 1.

Table A.3 : Bias and Efficiency of ĀxHL for Pareto (θ=1, α=4)
Sample Size n = 5 n = 6 n = 7 n = 8

E(X̄) 1.33334 1.33332 1.33333 1.33333
E(ĀxHL) 1.24920 1.25220 1.25530 1.25823

Bias(ĀxHL;µ) -6.3% -6.1% -5.9% -5.6%
Asym(ĀxHL) 1.18859 1.19496 1.20037 1.20502

Bias(Asym(ĀxHL);µ) -10.9% -10.4% -10.0% -9.6%
V ar(X̄) 0.04445 0.03703 0.03174 0.02777

V ar(ĀxHL) 0.02234 0.01839 0.01578 0.01391
MSE(ĀxHL;µ) 0.02942 0.02497 0.02187 0.01954

REff (X̄, ĀxHL;µ) 151% 148% 145% 142%
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A.4 The LogNormal Distribution

The pdf of the standard lognormal distribution with location parameter11 µ and
shape parameter σ2 is

f(x) =
1√

2πσx
e−(ln(x)−µ)2/2σ2

0 < x <∞.

The mean, variance, and skewness are

E(x) = eµ+σ2/2, V ar(x) = (eσ
2 − 1)e2µ+σ2

,

and
Skewness(x) = (eσ

2

+ 2)
√
eσ2 − 1,

respectively.

No closed-form solutions exist for the cdf. So numerical approximation has
to be performed for the means and variance of X̄, ĀxHL. The calculation of
Asym(ĀxHL) depends on the sample size n, µ, and σ2.

Asym(ĀxHL) =
eµ+σ2/2

1− 2/n

{
θ(θ−1(1− 1

n
)− σ)− θ(θ−1(

1

n
)− σ)

}
,

where θ() is the cdf of the standard normal distribution. Using Tables C6.1
and C6.2 in Harter and Balakrishnan [6] and Eqs. (1)-(2) in Section 3.1, the
means and variances of ĀxHL with the underlying lognormal (µ = 0, σ = 1) are
shown in the following table. Note that E(x) = 1.64872, V ar(x) = 4.67075, and
Skewness(x) = 6.1849 for the lognormal distribution with µ=0 and σ2=1.

Table A.4 : Bias and Efficiency of ĀxHL for LogNormal (µ=0, σ2=1)
Sample Size n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

E(X̄) 1.64872 1.64872 1.64873 1.64872 1.64872 1.64872
E(ĀxHL) 1.26269 1.27623 1.29000 1.30314 1.31542 1.32679

Bias(ĀxHL;µ) -23.4% -22.6% -21.8% -21.0% -20.2% -19.5%
Asym(ĀxHL) 1.11100 1.14365 1.17164 1.19585 1.21702 1.23571

Bias(Asym(ĀxHL);µ) -32.6% -30.6% -28.9% -27.5% -26.2% -25.1%
V ar(X̄) 0.93415 0.77846 0.66725 0.58385 0.51898 0.46708

V ar(ĀxHL) 0.43857 0.36178 0.31139 0.27534 0.24803 0.22646
MSE(ĀxHL;µ) 0.58759 0.50053 0.44008 0.39477 0.35912 0.33011

REff (X̄, ĀxHL;µ) 159% 159% 159% 159% 159% 159%

11This is not the same µ as in Bias(ĀxHL;µ)
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A.5 The Weibull Distribution

The pdf and cdf of the two-parameter Weibull distribution with scale parameter
θ and shape parameter τ are

f(x; θ, τ) =
τ

θ

{x
θ

}τ−1

e−(x/θ)τ x ≥ 0, θ > 0, τ > 0

and
F (x; θ, τ) = 1− e−(x/θ)τ ,

respectively. The mean, variance, and Skewness are

E(x) = θΓ(1 +
1

τ
), V ar(x) = θ2Γ(1 +

2

τ
)− (θΓ(1 +

1

τ
))2,

and

Skewness(x) =
Γ(1 + 3

τ
)− 3Γ(1 + 2

τ
)Γ(1 + 1

τ
) + 2[Γ(1 + 1

τ
)]3

[Γ(1 + 2
τ
)− [Γ(1 + 1

τ
)]2]3/2

,

respectively.
Various closed-form solutions exist for the means and variances for X(i) (see

Harter and Balakrishnan [6]). The calculation of Asym(ĀxHL) depends on the
sample size n and parameters θ and τ ,

Asym(ĀxHL) =
θΓ(1 + 1

τ
)

1− 2/n

{
Γ(1 +

1

τ
; [
F−1(1− 1

n
)

θ
]τ )− Γ(1 +

1

τ
; [
F−1( 1

n
)

θ
]τ )

}
=
θΓ(1 + 1

τ
)

1− 2/n

{
Γ(1 +

1

τ
;−ln(

1

n
))− Γ(1 +

1

τ
;−ln(1− 1

n
))

}
.

Note that E(x) = 2, V ar(x) = 20, and Skewness(x) = 6.618 for the Weibull
distribution with τ = 0.5 and θ = 1. Using Tables C3.1 and C3.2 in Harter and
Balakrishnan [6] and Eqs. (1)-(2) in Section 3.1, the means and variances of ĀxHL
with the underlying Weibull distribution (θ=1,τ=0.5) are shown in the following
table.

Table A.5 : Bias and Efficiency of ĀxHL for Weibull (θ=1, τ=0.5)
Sample Size n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

E(X̄) 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000
E(ĀxHL) 1.08093 1.11264 1.14489 1.17576 1.20464 1.23142

Bias(ĀxHL;µ) -46.0% -44.4% -42.8% -41.2% -39.8% -38.4%
Asym(ĀxHL) 0.72468 0.79828 0.86211 0.91824 0.96747 1.01078

Bias(Asym(ĀxHL);µ) -63.8% -60.1% -56.9% -54.1% -51.6% -49.5%
V ar(X̄) 4.00000 3.33333 2.85714 2.50000 2.22222 2.00000

V ar(ĀxHL) 1.31714 1.09927 0.96081 0.86327 0.78969 0.73149
MSE(ĀxHL;µ) 2.16184 1.88668 1.69202 1.54263 1.42229 1.32221

REff (X̄, ĀxHL;µ) 185% 185% 185% 185% 185% 185%
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A.6 Excel VBA Functions for Huber’s M-Estimator

Function HuberM(x As Range, KValue As Double) As Double

Dim vRange1 As Variant

Dim dTemp, dHuberSum, dTempHuberM, dMADN As Double

Dim h, i, j, iRowCount, iColumnCount, iHuberCount As Integer

iRowCount = x.Rows.Count

iColumnCount = x.Columns.Count

vRange1 = x.Cells.Value

dMADN = MADN(x)

dTempHuberM = WorksheetFunction.Median(x)

dTemp = 0

For h = 1 To 20 ’20 is arbitrary

dHuberSum = 0

iHuberCount = 0

For i = 1 To iRowCount

For j = 1 To iColumnCount

dTemp = (vRange1(i, j) - dTempHuberM) / dMADN

If Abs(dTemp) < KValue Then

dHuberSum = dHuberSum + dTemp

iHuberCount = iHuberCount + 1

ElseIf dTemp > KValue Then

dHuberSum = dHuberSum + KValue

Else

dHuberSum = dHuberSum - KValue

End If

Next j

Next i

If iHuberCount = 0 Then

dTemp = dTempHuberM

Else

dTemp = dTempHuberM + dMADN * dHuberSum / iHuberCount

End If

If Abs(dTemp - dTempHuberM) < 0.0001 Then

HuberM = dTemp

Exit Function

Else

dTempHuberM = dTemp

End If

Next h

End Function
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Function MADN(x As Range) As Double

Dim vRange1 As Variant

Dim dMedian As Double

Dim i, j, iRowCount, iColumnCount As Integer

iRowCount = x.Rows.Count

iColumnCount = x.Columns.Count

vRange1 = x.Cells.Value

dMedian = WorksheetFunction.Median(x)

For i = 1 To iRowCount

For j = 1 To iColumnCount

vRange1(i, j) = Abs(vRange1(i, j) - dMedian)

Next j

Next i

MADN = WorksheetFunction.Median(vRange1) / 0.6745

End Function
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Abstract

In a linear model for loss reserving, Gauss–Markov prediction is the natural
principle of prediction: It minimizes the mean squared error of prediction over
the class of all unbiased linear predictors, and it provides exact formulas for
predictors and their mean squared error of prediction. Another advantage of
Gauss–Markov prediction is in the fact that the Gauss–Markov predictor of
a sum is just the sum of the Gauss–Markov predictors of the single terms of
that sum such that essentially only the most elementary quantities have to be
predicted.
The use of Gauss–Markov prediction in loss reserving is not new. For example,
the additive (or incremental loss ratio) method and the Panning method are
based on Gauss–Markov prediction in an appropriate linear model. Here we
propose a systematic study of Gauss–Markov prediction in these and several
related models. This leads to a variety of new methods of loss reserving, and
for each of these models and methods we obtain straightforward estimators of
the mean squared error of prediction.
To complete the discussion, we also explain certain limitations of the Gauss–
Markov principle in connection with the chain–ladder method.

∗Corresponding author. E–mail address: klaus.d.schmidt@tu-dresden.de
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1 Introduction

For at least six decades, loss reserving was determined by a variety of heuristic
methods among which the most popular ones are the chain–ladder method described
by Tarbell [1934] and the Bornhuetter–Ferguson method proposed by Bornhuetter
and Ferguson [1972].

The first stochastic model for loss reserving is probably that of Hachemeister and
Stanard [1975]. In their model, the incremental losses are independent and Poisson
distributed with a multiplicative structure of the expectations, and it turns out that
maximum–likelihood estimations leads to the chain–ladder predictors. Their model
thus provides a first justification of the chain–ladder method, but because of the
Poisson assumption it applies to claim numbers rather than claim amounts.1

About two decades later, a couple of papers appeared which considerably advanced
the use of stochastic models in loss reserving. In one of these papers, Mack [1991]
proposed a model in which the incremental losses are uncorrelated with a multi-
plicative structure of the expectations and variances and in which least squares
estimation leads to the additive (or incremental loss ratio) method. Subsequently,
Mack [1993] proposed another but similar model in which least squares estimation
leads to the chain–ladder method.2 In both of these papers, however, emphasis is
on parameter estimation and not on prediction of future losses.

It is easy to see that the additive model of Mack [1991] is a linear model, and it
follows from Schmidt and Schnaus [1996] that the chain–ladder model of Mack [1993]
is a sequential linear model.3 But this was certainly not the usual way of looking at
these models at the time when they were published, and it is the merit of Halliwell
[1996] of having pointed out that linear models are most useful in loss reserving
since the Gauss–Markov principle provides not only estimators of parameters but
also predictors of future losses.

About another decade later, linear models turned out to be a driving force for the
development of new methods of loss reserving: Inspired by Braun [2004], Pröhl and
Schmidt [2005] proposed a sequential linear model in which Gauss–Markov predic-
tion leads to a multivariate version of the chain–ladder method4 and Hess, Schmidt
and Zocher [2006] proposed a linear model in which Gauss–Markov prediction leads
to a multivariate version of the additive method. Both methods are of interest for

1Extensions of the model of Hachemeister and Stanard [1975], which allow for dependence
within the accident years and in which maximum–likelihood estimation still produces the chain–
ladder predictors of the ultimate cumulative losses were proposed by Schmidt and Wünsche [1998]
and by Schmidt and Zocher [2005].

2It is remarkable that the assumptions of the model of Hachemeister and Standard [1972] and
those of the model of Mack [1993] cannot be fulfilled simultaneously; see Hess and Schmidt [2002]
for a comparison of a variety of models for the chain–ladder method.

3See Schmidt [2003] and Radtke and Schmidt [2004].
4Another paper which is in the spirit of Pröhl and Schmidt [2005] that of Kremer [2005].
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simultaneous prediction for dependent lines of business.5 At the same time, Panning
[2006] proposed a linear model which in a certain sense is intermediate between the
linear model for the additive method and the sequential linear model for the chain–
ladder method. More recently, Kloberdanz and Schmidt [2009] used a bivariate
version of the additive model to approach the paid & incurred problem which was
first studied by Halliwell [1997] and later by Quarg and Mack [2004, 2008].

At this point, it is useful to briefly review some basic aspects of linear and general
linear models and of Gauss–Markov estimation and prediction in such models; a
more precise discussion will be given in Section 3.

A linear model (or regression model) essentially consists in the assumption that the
unknown expectations of certain random variables X1, . . . , Xs can be expressed as
linear functions of certain unknown parameters β1, . . . , βr with r < s. This means
that, for every i ∈ {1, . . . , s}, there exist known coefficients ai,1, . . . , ai,r such that

E[Xi] =
r∑

k=1

ai,k βk

The point is that in a linear model the s unknown expectations are explained by r
unknown parameters such that the problem of estimating s expectations is reduced
to that of estimating only r < s parameters. A general principle for estimating
the parameters in a linear model is Gauss–Markov estimation which consists in the
computation of the Gauss–Markov estimators βGM

k minimizing the mean squared
error of estimation

E[(β̂k−βk)
2]

over all estimators β̂k which are linear in X1, . . . , Xs and unbiased for βk. Thus,
with respect to the mean squared error of estimation, the Gauss–Markov estimator
βGM

k is the best linear unbiased estimator of βk.

In a general linear model, only the first s1 < s random variables are observable
while the remaining s2 := s− s1 random variables are non–observable. In this case,
Gauss–Markov estimation of the parameters is still possible by replacing s with s1

in the previous identities, but the real problem is Gauss–Markov prediction of the
non–observable random variables which consists in the computation of the Gauss–
Markov predictors XGM

j with j ∈ {s1+1, . . . , s1+s2} minimizing the mean squared
error of prediction

E[(X̂j−Xj)
2]

over all predictors X̂j which are linear and unbiased for Xj in the sense that E[X̂j] =
E[Xj]. Thus, with respect to the mean squared error of prediction, the Gauss–
Markov predictor XGM

j is the best linear unbiased predictor of Xj.

Under mild conditions on the coefficients and the variances and covariances of the
random variables, Gauss–Markov estimators and predictors exist and are unique. To

5See Schmidt [2006b] for a survey of the results of these papers.
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determine Gauss–Markov estimators and predictors, the variances and covariances
of the random variables must be known or have to be estimated but no further
assumptions on their joint distribution have to be made.6 Moreover, since Gauss–
Markov estimators and predictors are linear and unbiased, it is evident that also the
mean squared errors of estimation and prediction are determined by the variances
and covariances.

Since loss reserving aims at the prediction of future losses from those observed in the
past, every stochastic model for loss reserving typically has to consist of observable
and non–observable random variables representing past and future losses. Therefore,
general linear models provide a wide class of stochastic models which meet the basic
requirement on every stochastic model for loss reserving.

Whenever it is judged to be appropriate, the use of general linear models in loss
reserving is strongly recommendable since
– explicit formulas can be given for Gauss–Markov predictors of reserves and for

their mean squared error of prediction, and
– estimators of the mean squared errors of prediction can be obtained by simply

replacing unknown variances and covariances with appropriate estimators.
Of course, the choice of a particular stochastic model for loss reserving should not
be determined by such technical advantages but rather by statistical analysis and
actuarial judgement. In many cases, however, such considerations will not end up
with a single model and the choice of a general linear model could be reasonable.

In the present paper we propose Gauss–Markov prediction in a general linear model
as a common approach to the additive method, the Panning method and a new
method which is a combination of both and could be extended further. We thus
extend results of Ludwig, Schmeisser and Thänert [2009].

This paper is organized as follows: We first present the typical data structure in
loss reserving (Section 2) and discuss Gauss–Markov prediction in the general linear
model (Section 3). We then apply the general results on Gauss–Markov prediction
to the additive model (Section 4), the Panning model (Section 5) and the combined
model (Section 6). For the sake of comparison, we also consider the Mack model
for the chain–ladder method (Section 7) which because of its sequential structure
presents certain difficulties with regard to the estimation of the mean squared errors
of prediction for reserves.7 Finally, we present a numerical example (Section 9) and
we conclude with some remarks (Section 8).

6In particular, it is not necessary to assume that the random variables are jointly normally
distributed. The popularity of the normal assumption is probably due to the fact that, if it holds,
then the Gauss–Markov estimators agree with the maximum–likelihood estimators. While the
normal assumption is inessential for Gauss–Markov estimation and prediction, it is of interest for
the construction of confidence intervals or prediction intervals; these topics, however, will not be
dealt with in the present paper.

7The use of plug–in estimators for estimating the mean squared errors of prediction is not possi-
ble in the Mack model; instead, certain approximations seem to be unavoidable in the construction
of estimators or the mean squared errors of prediction and it appears to be difficult to quantify
the approximation errors.

Casualty Actuarial Society E-Forum, Fall 2010 4

esmith
Typewritten Text
,

esmith
Typewritten Text
,

esmith
Typewritten Text
,



2 Data Structure

In the present paper, we consider a portfolio of risks and we assume that each claim
of the portfolio is settled either in the accident year or in finitely many subsequent
development years.

To model such a portfolio, we consider a family of square integrable random variables

{Zi,k}i∈{−m,...,n},k∈{0,...,n}

and we interpret the random variable Zi,k as the loss of accident year i which is
settled with a delay of k years and hence in development year k and in calendar year
i + k. We refer to Zi,k as the incremental loss of accident year i and development
year k.

We assume that the incremental losses Zi,k are observable for calendar years i+k ≤ n
and that they are non–observable for calendar years i + k ≥ n + 1. The observable
incremental losses are represented by the following run–off trapezoid :

Accident Development Year

Year 0 1 . . . k . . . n−i . . . n−1 n

−m Z−m,0 Z−m,1 . . . Z−m,k . . . Z−m,n−i . . . Z−m,n−1 Z−m,n

...
...

...
...

...
...

...
0 Z0,0 Z0,1 . . . Z0,k . . . Z0,n−i . . . Z0,n−1 Z0,n

1 Z1,0 Z1,1 . . . Z1,k . . . Z1,n−i . . . Z1,n−1

...
...

...
...

...
i Zi,0 Zi,1 . . . Zi,k . . . Zi,n−i

...
...

...
...

n−k Zn−k,0 Zn−k,1 . . . Zn−k,k

...
...

...
n−1 Zn−1,0 Zn−1,1

n Zn,0

In the traditional case m = 0, the run–off trapezoid reduces to a run–off triangle.
The case m ≥ 1 is of interest, since it is always desirable to have more than one
completely developed accident year and since this also turns out to be necessary for
certain stochastic models which to some extent specify the joint distribution of the
family of all incremental losses.

For the stochastic models to be considered in this paper, it is essential to linearize the
run–off trapezoid of observable incremental losses and the triangle of non–observable
incremental losses. Therefore, we define the random vectors

Casualty Actuarial Society E-Forum, Fall 2010 5



X1 :=




Z−m,0

...
Zn,0

...
Z−m,k

...
Zn−k,k

...
Z−m,n

...
Z0,n




and X2 :=




Zn,1

...
Zn−k+1,k

...
Zn,k

...
Z1,n

...
Zn,n




such that X1 represents the run–off trapezoid of observable incremental losses and
X2 represents the triangle of non–observable incremental losses.

The first problem is to predict
(1) the accident year reserves

Ri :=
n∑

k=n−i+1

Zi,k

for i ∈ {1, . . . , n},
(2) the calendar year reserves

R(c) :=
n∑

i=c−n

Zi,c−i

for c ∈ {n+1, . . . , 2n}, and
(3) the total reserve

R :=
n∑

k=1

n∑

i=n−k+1

Zi,k

In either case, the problem is to predict d′X2 for a suitable vector d.

The second problem is to estimate the mean squared error of prediction for the
predictors of these reserves.
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3 Gauss–Markov Prediction

in the General Linear Model

The stochastic models of loss reserving to be studied in the present paper are special
cases of the following general linear model for a random vector

X =

(
X1

X2

)

consisting of an observable part X1 and a non–observable part X2 with square
integrable coordinates:

General Linear Model: There exist known matrices A1 and A2 and
an unknown parameter vector β such that

E

[(
X1

X2

)]
=

(
A1

A2

)
β

Moreover, A1 has full column rank and var[X1] is invertible.

The general linear model is more general than the traditional linear model since
it involves the non–observable part X2. In particular, the problem is not only to
estimate the parameter vector β but also to predict the non–observable random
vector X2. The matrices A1 and A2 are called the design matrices of the general
linear model.

For the remainder of this section, we assume that the assumptions of the general
linear model are fulfilled.

Following an idea of Hamer [1999], the best way to simultaneously estimate the
parameter vector β and predict the non–observable random vector X2 is to predict
a target quantity of the form

T = C0β + C1X1 + C2X2

with matrices C0,C1,C2 of suitable dimensions which also allows for the prediction
of linear combinations of the coordinates of X1 and X2.

Since only X1 is observable, every random variable T̂ which is a (measurable) trans-
formation of X1 is said to be a predictor of T.

A predictor T̂ is said to be an admissible predictor of T if there exists a matrix Q
satisfying

T̂ = QX1

and

QA1 = C0 + C1A1 + C2A2
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Because of the first identity, every admissible predictor T̂ of T is linear (in X0), and
because of the second identity it is also unbiased since

E[T̂] = E[QX1]

= QE[X1]

= QA1β

= (C0 + C1A1 + C2A2)β

= C0β + C1A1β + C2A2β

= C0β + C1E[X1] + C2E[X2]

= E[C0β + C1X1 + C2X2]

= E[T]

An admissible predictor T̂ of T is said to be a Gauss–Markov predictor of T if it
minimizes the mean squared error of prediction

E[(T̂−T)′(T̂−T)]

which is sometimes also called the mean squared error of prediction of T̂ and is
denoted by m.s.e.p.[T̂]. Since every admissible predictor T̂ of T is unbiased, we

have E[T̂−T] = 0 and hence

E[(T̂−T)′(T̂−T)] = E[trace((T̂−T)(T̂−T)′)]

= trace(E[(T̂−T)(T̂−T)′)]

= trace(var[T̂−T] + E[T̂−T] E[T̂−T]′)

= trace(var[T̂−T])

We have the following result:

3.1 Proposition (Gauss–Markov Theorem). There exists a unique Gauss–
Markov predictor TGM of T and it satisfies

TGM = Cβ∗ + C1X1 + C2X
∗
2

with
β∗ := (A′

1Σ
−1
11 A1)

−1A′
1Σ

−1
11 X1

and
X∗

2 := A2β
∗ + Σ21Σ

−1
11

(
X1−A1β

∗)

Moreover,

var[TGM−T] = Kvar[β∗]K + C2(Σ22−Σ21Σ
−1
11 Σ12)C

′
2

with K := C + C2A2 −C2Σ21Σ
−1
11 C′

2 and var[β∗] = (A′
1Σ

−1
11 A1)

−1.

Proposition 3.1 is well–known; see e. g. Rao and Toutenburg [1995], Radtke and
Schmidt [2004], Schmidt [2004] and, in particular, Hamer [1999].
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The previous result shows that Gauss–Markov prediction of the target quantity T
is based on Gauss–Markov estimation of the parameter β. Although the following
result is a special case of Proposition 3.1, we state it because of its importance and
for later reference:

3.2 Corollary. The Gauss–Markov estimator βGM of β satisfies

βGM = (A′
1Σ

−1
11 A1)

−1A′
1Σ

−1
11 X1

and
var[βGM] = (A′

1Σ
−1
11 A1)

−1

In the models considered in this paper, we always have Σ12 = O. In this case, we
obtain particularly simple formulas for the Gauss–Markov predictor of X2 and for
the variance of the prediction error:

3.3 Corollary. Assume that Σ12 = O. Then the Gauss–Markov predictor XGM
2

of X2 satisfies
XGM

2 = A2β
GM

and
var[XGM

2 −X2] = A2var[βGM]A′
2 + Σ22

Because of the previous result, the mean squared error of prediction

E[(XGM
2 −X2)

′(XGM
2 −X2)] = trace

(
var[XGM

2 −X2]
)

is the sum of the estimation error trace(A2var[βGM]A′
2) and the random error

trace(Σ22).

Finally, the Gauss–Markov predictor of a linear transformation C2X2 of X2 is easily
obtained from the Gauss–Markov predictor of X2:

3.4 Corollary. The Gauss–Markov predictor (C2X2)
GM of C2X2 satisfies

(C2X2)
GM = C2X

GM
2

and
var[(C2X2)

GM−C2X2] = C2var[XGM
2 −X2]C

′
2

Because of the previous result, Gauss–Markov prediction is linear in the sense that
the Gauss–Markov predictor of a linear combination of non–observable random vari-
ables is the same linear combination of their Gauss–Markov predictors.

We shall also need a conditional version of the general linear model and of the
Gauss–Markov Theorem. For a sub–σ–algebra G ⊆ F , the G–conditional linear
model is defined as follows:
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G–Conditional General Linear Model: There exist observable G–
measurable random matrices A1 and A2 and an unknown parameter
vector β such that

EG
[(

X1

X2

)]
=

(
A1

A2

)
β

Moreover, A1 has full column rank and varG[X1] is invertible.

Here and in the sequel, EG[Xi ] and varG[Xi ] denote the G–conditional expecta-
tion and the G–conditional variance of Xi , respectively; accordingly, covG[X1,X2]
denotes the G–conditional covariance of X1 and X2.

The discussion of the G–conditional general linear model is entirely analogous to
that of the general linear model: Replace the admissible predictors by the G–
conditionally admissible predictors (which are obtained by replacing the matrix Q
by a G–measurable random matrix Q and which are linear and G–conditionally
unbiased in the sense that their G–conditional expectation coincides with that of
the target quantity) and replace the first and second order moments by their G–
conditional counterparts.
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4 Gauss–Markov Loss Prediction

in the Extended Additive Model

The extended additive model is defined as follows:

Extended Additive Model: There exist known parameters vi, wi ∈
(0,∞) with i ∈ {−m, . . . , n} as well as unknown parameters ζk ∈ R and
σ2

k ∈ (0,∞) with k ∈ {0, . . . , n} such that the incremental losses satisfy

E[Zi,k] = vi ζk

cov[Zi,k, Zj,l] = wi σ
2
k δi,j δk,l

for all i, j ∈ {−m, . . . , n} and k, l ∈ {0, . . . , n}.
In the extended additive model, the accident year parameter vi is usually referred
to as a volume measure of accident year i; for example, the volume measure could
be the total premium income or the number of contracts in the accident year. Since
the first identity in the extended additive model can be written as

E[Zi,k/vi] = ζk

the development year parameter ζk is the expected incremental loss ratio of develop-
ment year k (with respect to the volume measures) and is assumed to be independent
of the accident year such that the collection of these parameters forms a development
pattern; see Schmidt and Zocher [2009].

The extended additive model extends the traditional additive model in which it is
assumed that m = 0 and that wi = vi holds for all i ∈ {−m, . . . , n}; see Mack
[1991], Radtke and Schmidt [2004], Hess, Schmidt and Zocher [2006], and Schmidt
and Zocher [2009]. The reason for considering the extended additive model becomes
evident from its comparison with the extended Panning model (Section 5) and with
the combination of both models (Section 6).

Assume that the assumptions of the extended additive model are fulfilled. Then the
expectation of the random vector X1 of all observable incremental losses satisfies

E







Z−m,0

...
Zn,0

...
Z−m,k

...
Zn−k,k

...
Z−m,n

...
Z0,n







=




v−m · · · 0 · · · 0
...

...
...

vn · · · 0 · · · 0
...

...
...

0 · · · v−m · · · 0
...

...
...

0 · · · vn−k · · · 0
...

...
...

0 · · · 0 · · · v−m

...
...

...
0 · · · 0 · · · v0







ζ0

...
ζk

...
ζn
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such that there exist a design matrix A1 having full column rank and a parameter
vector β satisfying E[X1] = A1β, and the expectation of the random vector X2 of
all non–observable incremental losses satisfies

E







Zn,1

...
Zn−k+1,k

...
Zn,k

...
Z1,n

...
Zn,n







=




0 vn · · · 0 · · · 0
...

...
...

...
0 0 · · · vn−k+1 · · · 0
...

...
...

...
0 0 · · · vn−k · · · 0
...

...
...

...
0 0 · · · 0 · · · v1

...
...

...
...

0 0 · · · 0 · · · vn







ζ0

ζ1

...
ζk

...
ζn




Moreover, the variance Σ11 of X1 satisfies

var







Z−m,0

...
Zn,0

...
Z−m,k

...
Zn−k,k

...
Z−m,n

...
Z0,n







=




w−mσ2
0 · · · 0 · · · 0 · · · 0 · · · 0 · · · 0

...
. . .

... · · · ...
. . .

... · · · ...
. . .

...
0 · · · wnσ2

0 · · · 0 · · · 0 · · · 0 · · · 0
...

...
...

. . .
...

...
...

. . .
...

...
...

0 0 0 · · · w−mσ2
k · · · 0 · · · 0 · · · 0

...
...

... · · · ...
. . .

... · · · ...
. . .

...
0 0 0 · · · 0 · · · wn−kσ2

k · · · 0 · · · 0
...

...
...

. . .
...

...
...

. . .
...

...
...

0 0 0 · · · 0 · · · 0 · · · w−mσ2
n · · · 0

...
...

... · · · ...
...

... · · · ... · · · ...
0 0 0 · · · 0 · · · 0 · · · 0 · · · w0σ

2
n




and is thus invertible, and the variance Σ22 of X2 satisfies

var







Zn,1

...
Zn−k+1,k

...
Zn,k

...
Z1,n

...
Zn,n







=




wnσ2
1 · · · 0 · · · 0 · · · 0 · · · 0

...
. . .

...
...

...
. . .

...
...

...
0 · · · wn−k+1σ

2
k · · · 0 · · · 0 · · · 0

... · · · ...
. . .

... · · · ...
. . .

...
0 · · · 0 · · · wnσ2

k · · · 0 · · · 0
...

. . .
...

...
...

. . .
...

...
...

0 · · · 0 · · · 0 · · · w1σ
2
n · · · 0

... · · · ...
...

... · · · ... · · · ...
0 · · · 0 · · · 0 · · · 0 · · · wnσ2

n




Furthermore, we have Σ12 = cov[X1,X2] = O. We thus obtain the following result:

4.1 Theorem. The extended additive model is a linear model.

In a first step, we compute the Gauss–Markov estimators of the coordinates of the
parameter vector and their covariances:
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4.2 Lemma (Gauss–Markov estimation of parameters). In the extended
additive model, the Gauss–Markov estimators of the coordinates of the parameter
vector satisfy

ζGM
k =

∑n−k
i=−m viZi,k/wi∑n−k

i=−m v2
i /wi

and

cov[ζGM
k , βGM

l ] =
1∑n−k

i=−m v2
i /wi

σ2
k δk,l

for all k, l ∈ {0, 1, . . . , n}.

Proof. The coordinates of the random vector A′
1Σ

−1
11 X1 satisfy

(
v−m · · · vn−k

)



w−mσ2
k · · · 0

...
. . .

...
0 · · · wn−kσ

2
k




−1 


Z−m,k
...

Zn−k,k


 =

(
n−k∑

i=−m

viZi,k

wi

)
1

σ2
k

Moreover, the matrix A′
1Σ

−1
11 A1 is diagonal and its diagonal elements satisfy

(
v−m · · · vn−k

)



w−mσ2
k · · · 0

...
. . .

...
0 · · · wn−kσ

2
k




−1 


v−m
...

vn−k


 =

(
n−k∑

i=−m

v2
i

wi

)
1

σ2
k

Because of Corollary 3.2, we have βGM = (A′
1Σ

−1
11 A1)

−1A′
1Σ

−1
11 X1 and hence

ζGM
k =

∑n−k
i=−m viZi,k/wi∑n−k

i=−m v2
i /wi

which is the first identity, and we also have var[βGM] = (A′
1Σ

−1
11 A1)

−1 and hence

cov[ζGM
k , ζGM

l ] =
1∑n−k

i=−m v2
i /wi

σ2
k δk,l

which is the second identity. 2

In a second step, we compute the Gauss–Markov predictors of the non–observable
incremental losses and the covariances of their prediction errors:

4.3 Lemma (Gauss–Markov prediction of incremental losses). In the
extended additive model, the Gauss–Markov predictors of the non–observable incre-
mental losses satisfy

ZGM
i,k = vi ζ

GM
k

and
cov[ZGM

i,k −Zi,k, Z
GM
j,l −Zj,l] =

(
vivj var[ζGM

k ] + wi σ
2
k δi,j

)
δk,l

for all i, j ∈ {−m, . . . , n} and k, l ∈ {0, . . . , n} such that min{i+k, j+l} ≥ n + 1.
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Proof. Because of Corollary 3.3, we have XGM
2 = A2β

GM. For all i ∈ {−m, . . . , n}
and k ∈ {0, . . . , n} such that i + k ≥ n + 1, this yields

ZGM
i,k = vi ζ

GM
k

which is the first identity.
Corollary 3.3 also provides an identity for var[XGM

2 −X2], but in the present model
the direct computation of the elements of this matrix seems to be more transparent.
Consider i, j ∈ {−m, . . . , n} and k, l ∈ {0, . . . , n} such that min{i+k, j+ l} ≥ n+1.
Lemma 4.2 yields

cov[ZGM
i,k , ZGM

j,l ] = cov[viζ
GM
k , vjζ

GM
l ]

= vivj cov[ζGM
k , ζGM

l ]

= vivj var[ζGM
k ] δk,l

and we also have

cov[Zi,k, Zj,l] = wi σ
2
k δi,j δk,l

Since ZGM
i,k and ZGM

j,l are linear combinations of observable incremental losses whereas
Zi,k and Zj,l are non–observable incremental losses, we have cov[ZGM

i,k , Zj,l] = 0 =
cov[Zi,k, Z

GM
j,l ] and hence

cov[ZGM
i,k −Zi,k, Z

GM
j,l −Zj,l] = cov[ZGM

i,k , ZGM
j,l ] + cov[Zi,k, Zj,l]

= vivj var[ζGM
k ] δk,l + wi σ

2
k δi,j δk,l

which is the second identity. 2

In a third step, we compute the Gauss–Markov predictors of reserves and their mean
squared errors of prediction:

4.4 Theorem (Gauss–Markov prediction of reserves). In the extended
additive model,
(1) the Gauss–Markov predictors of the accident year reserves satisfy

RGM
i = vi

n∑

k=n−k+1

ζGM
k

and

cov[RGM
i −Ri, R

GM
j −Rj] = vivj

n∑

k=n−i∧j+1

var[ζGM
k ] + wi

(
n∑

k=n−i+1

σ2
k

)
δi,j

for all i, j ∈ {1, . . . , n}; in particular,

E[(RGM
i −Ri)

2] = v2
i

n∑

k=n−i+1

var[ζGM
k ] + wi

n∑

k=n−i+1

σ2
k

holds for all i ∈ {1, . . . , n}.
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(2) the Gauss–Markov predictors of the calendar year reserves satisfy

RGM
(c) =

n∑
i=c−n

vi ζ
GM
c−i

and

cov[RGM
(c) −R(c), R

GM
(d) −R(d)] =

n∑

i=c∨d−n

vivi−|c−d| var[ζGM
c∨d−i]+

(
n∑

i=c−n

wi σ
2
c−i

)
δc,d

for all c, d ∈ {n+1, . . . , 2n}; in particular,

E[(RGM
(c) −R(c))

2] =
n∑

i=c−n

v2
i var[ζGM

c−i ] +
n∑

i=c−n

wi σ
2
c−i

holds for all c ∈ {n+1, . . . , 2n}.
(3) the Gauss–Markov predictor of the total reserve satisfies

RGM =
n∑

k=1

(
n∑

i=n−k+1

vi

)
ζGM
k

and

E[(RGM−R)2] =
n∑

k=1

(
n∑

i=n−k+1

vi

)2

var[ζGM
k ] +

n∑

k=1

(
n∑

i=n−k+1

wi

)
σ2

k

Proof. Let us first consider the accident year reserves. We have

Ri =
n∑

k=n−i+1

Zi,k

and, since Gauss–Markov prediction is linear, we obtain

RGM
i =

n∑

k=n−i+1

ZGM
i,k

which because of Lemma 4.3 gives the first identity. This yields

RGM
i −Ri =

n∑

k=n−i+1

(ZGM
i,k −Zi,k)

and because of Lemma 4.3 we obtain

cov[RGM
i −Ri, R

GM
j −Rj] = cov

[
n∑

k=n−i+1

(ZGM
i,k −Zi,k),

n∑

l=n−j+1

(ZGM
j,l −Zj,l)

]
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=
n∑

k=n−i+1

n∑

l=n−j+1

cov[ZGM
i,k −Zi,k, Z

GM
j,l −Zj,l]

=
n∑

k=n−i+1

n∑

l=n−j+1

(
vivj var[ζGM

k ] + wi σ
2
k δi,j

)
δk,l

=
n∑

k=n−i∧j+1

(
vivj var[ζGM

k ] + wi σ
2
k δi,j

)

= vivj

n∑

k=n−i∧j+1

var[ζGM
k ] + wi

(
n∑

k=n−i+1

σ2
k

)
δi,j

which is the second identity. Since Gauss–Markov predictors are unbiased, the third
identity follows from the second.
Let us now consider the calendar year reserves. We have

R(c) =
n∑

i=c−n

Zi,c−i

and hence

RGM
(c) =

n∑
i=c−n

ZGM
i,c−i

which because of Lemma 4.3 gives the first identity. This yields

RGM
(c) −R(c) =

n∑
i=c−n

(ZGM
i,c−i−Zi,c−i)

and because of Lemma 4.3 we obtain

cov[RGM
(c) −R(c), R

GM
(d) −R(d)] = cov

[
n∑

i=c−n

(ZGM
i,c−i−Zi,c−i) ,

n∑

j=d−n

(ZGM
j,d−j−Zj,d−j)

]

=
n∑

i=c−n

n∑

j=d−n

cov[(ZGM
i,c−i−Zi,c−i), (Z

GM
j,d−j−Zj,d−j)]

]

=
n∑

i=c−n

n∑

j=d−n

(
vivj var[ζGM

c−i ] + wi σ
2
c−i δi,j

)
δc−i,d−j

=
n∑

i=c∨d−n

vivi−|c−d| var[ζGM
c∨d−i] +

(
n∑

i=c−n

wi σ
2
c−i

)
δc,d

which is the second identity.
Let us finally consider the total reserve. We have

R =
n∑

k=1

n∑

i=k+1

Zi,k
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and, since Gauss–Markov prediction is linear, we obtain

RGM =
n∑

k=1

n∑

i=k+1

ZGM
i,k

which because of Lemma 4.3 gives the first identity. This yields

RGM −R =
n∑

k=1

n∑

i=k+1

(ZGM
i,k −Zi,k)

and because of Lemma 4.3 we obtain

E[(RGM−R)2] = var[RGM−R]

= var

[
n∑

k=1

n∑

i=n−k+1

(ZGM
i,k −Zi,k)

]

=
n∑

k=1

var

[
n∑

i=n−k+1

(ZGM
i,k −Zi,k)

]

=
n∑

k=1

n∑

i=n−k+1

n∑

j=n−k+1

cov[ZGM
i,k −Zi,k, Z

GM
j,k −Zj,k]

=
n∑

k=1

n∑

i=n−k+1

n∑

j=n−k+1

(
vivj var[ζGM

k ] + wi σ
2
k δi,j

)

=
n∑

k=1

(
n∑

i=n−k+1

vi

)2

var[ζGM
k ] +

n∑

k=1

(
n∑

i=n−k+1

wi

)
σ2

k

which is the second identity. 2

In the special case where m = 0 and wi = vi holds for all i ∈ {−m, . . . , n}, the
Gauss–Markov predictors of incremental losses and reserves are identical with the
predictors used in the traditional additive method of loss reserving. This means that
Gauss–Markov prediction in the extended additive model provides simultaneously an
extension of the additive method and its justification based on a general statistical
principle.

Via Lemma 4.3 and Lemma 4.2, the mean squared errors of prediction depend on
unknown variance parameters which may be estimated as follows:

4.5 Theorem (Estimation of variance parameters). In the extended additive
model with m ≥ 1 and for every k ∈ {0, . . . , n}, the random variable

σ̂2
k :=

1

m + n− k

n−k∑
i=−m

1

wi

(Zi,k−viζ
GM
k )2

is an unbiased estimator of σ2
k.
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Proof. Consider i ∈ {−m, . . . , n−k}. By Lemma 4.2, we have E[viζ
GM
k ] = E[Zi,k]

and thus

E[(Zi,k−viζ
GM
k )2] = var[Zi,k−viζ

GM
k ]

= var[Zi,k]− 2 vi cov[Zi,k, ζ
GM
k ] + v2

i var[ζGM
k ]

Recall that

var[Zi,k] = wi σ
2
k

Furthermore, using Lemma 4.2 and Lemma 4.3 we obtain

cov[Zi,k, ζ
GM
k ] = cov

[
Zi,k,

∑n−k
j=−m vjZj,k/wj∑n−k

j=−m v2
j /wj

]

=
n−k∑

j=−m

vj/wj∑n−k
h=−m v2

h/wh

cov[Zi,k, Zj,k]

=
n−k∑

j=−m

vj/wj∑n−k
h=−m v2

h/wh

wi σ
2
k δi,j

= vi
1∑n−k

h=−m v2
h/wh

σ2
k

and Lemma 4.2 yields

var[ζGM
k ] =

1∑n−k
h=−m v2

h/wh

σ2
k

Therefore, we have

E[(Zi,k−viζ
GM
k )2] = var[Zi,k]− 2 vi cov[Zi,k, ζ

GM
k ] + v2

i var[ζGM
k ]

= wi σ
2
k − 2 v2

i

1∑n−k
h=−m v2

h/wh

σ2
k + v2

i

1∑n−k
h=−m v2

h/wh

σ2
k

=

(
wi − v2

i∑n−k
h=−m v2

h/wh

)
σ2

k

and hence

n−k∑
i=−m

1

wi

E[(Zi,k−viζ
GM
k )2] =

n−k∑
i=−m

1

wi

(
wi − v2

i∑n−k
h=−m v2

h/wh

)
σ2

k

=
(
(m+1+n−k)− 1

)
σ2

k

= (m+n−k) σ2
k

which proves the assertion. 2
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In the case m = 0, the assertion of Theorem 4.5 remains valid for k ∈ {0, . . . , n−1}.
To obtain an estimator of σ2

n also in this case, one may choose a parametric class
{fc | c ∈ C} of real functions (e.g. the class {f(a,b) : R → R | (a, b) ∈ (0,∞)2} with
f(a,b)(x) = a e−bx), determine ĉ ∈ C satisfying

n−1∑

k=0

(
fĉ(k)− σ̂2

k

)2

= inf
c∈C

n−1∑

k=0

(
fc(k)− σ̂2

k

)2

and define

σ̂2
n := fĉ(n)

If the sequence {σ̂2
k}k∈{0,...,n−1} is decreasing, one might alternatively define σ̂2

n :=
σ̂2

n−1.

Now estimators of the mean squared errors of prediction can be obtained by replacing
the variance parameters by their estimators in the formulas for the mean squared
errors of prediction.
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5 Gauss–Markov Loss Prediction

in the Extended Panning Model

In the present section, we denote by F0 the σ–algebra generated by the family
{Zi,0}i∈{−m,...,n} of the losses of development year 0. The extended Panning model
is defined as follows:

Extended Panning Model: There exist known F0–measurable random
parameters wi with wi > 0 and i ∈ {−m, . . . , n} as well as unknown
parameters ξk ∈ R and σ2

k ∈ (0,∞) with k ∈ {0, . . . , n} such that the
incremental losses satisfy

EF0 [Zi,k] = Zi,0 ξk

covF0 [Zi,k, Zj,l] = wi σ
2
k δi,j δk,l

for all i, j ∈ {−m, . . . , n} and k, l ∈ {0, . . . , n}. Moreover, Zi,0 > 0 holds
for all i ∈ {−m, . . . , n}.

In the extended Panning model, the initial losses Zi,0 replace the volume measures
used in the extended additive model. Since the first identity in the extended Panning
model implies

E[Zi,k/Zi,0] = ξk

the development year parameter ξk is assumed to be independent of the accident
year such that the collection of these parameters forms a development pattern; see
Schmidt and Zocher [2009].

The extended Panning model extends the traditional Panning model in which it is
assumed that m = 0 and that wi = 1 holds for all i ∈ {−m, . . . , n}; see Panning
[2006] and Schmidt and Zocher [2009]. The reason for considering the extended
Panning model becomes evident from its comparison with the extended additive
model (Section 4) and with the combination of both models (Section 6).

The following results are entirely analogous to those for the extended additive model
and can be obtained by replacing the volume measures vi used in the extended
additive model by the initial losses Zi,0 and by replacing the first and second order
moments by their F0–conditional counterparts.

5.1 Theorem. The extended Panning model is an F0–conditional linear model.

5.2 Lemma (Gauss–Markov estimation of parameters). In the extended
Panning model, the F0–conditional Gauss–Markov estimators of the coordinates of
the parameter vector satisfy

ξGM
k =

∑n−k
i=−m Zi,0Zi,k/wi∑n−k

i=−m Z2
i,0/wi
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and

covF0 [ξGM
k , ξGM

l ] =
1∑n−k

i=−m Z2
i,0/wi

σ2
k δk,l

for all k, l ∈ {0, 1, . . . , n}.

5.3 Lemma (Gauss–Markov prediction of incremental losses). In the
extended Panning model, the F0–conditional Gauss–Markov predictors of the non–
observable incremental losses satisfy

ZGM
i,k = Zi,0 ξGM

k

and

covF0 [ZGM
i,k −Zi,k, Z

GM
j,l −Zj,l] =

(
Zi,0Zj,0 varF0 [ξGM

k ] + wi σ
2
k δi,j

)
δk,l

for all i, j ∈ {−m, . . . , n} and k, l ∈ {0, . . . , n} such that min{i + k, j + l} ≥ n + 1.

5.4 Theorem (Gauss–Markov prediction of reserves). In the extended
Panning model,
(1) the F0–conditional Gauss–Markov predictors of the accident year reserves satis-

fy

RGM
i = Zi,0

n∑

k=n−k+1

ξGM
k

and

covF0 [RGM
i −Ri, R

GM
j −Rj] = Zi,0Zj,0

n∑

k=n−i∧j+1

varF0 [ξGM
k ]+wi

(
n∑

k=n−i+1

σ2
k

)
δi,j

for all i, j ∈ {1, . . . , n}; in particular,

EF0 [(RGM
i −Ri)

2] = Z2
i,0

n∑

k=n−i+1

varF0 [ξGM
k ] + wi

n∑

k=n−i+1

σ2
k

holds for all i ∈ {1, . . . , n}.
(2) the F0–conditional Gauss–Markov predictors of the calendar year reserves satis-

fy

RGM
(c) =

n∑
i=c−n

Zi,0 ξGM
c−i

and

covF0 [RGM
(c) −R(c), R

GM
(d) −R(d)]

=
n∑

i=c∨d−n

Zi,0Zi−|c−d|,0 varF0 [ξGM
c∨d−i] +

(
n∑

i=c−n

wi σ
2
c−i

)
δc,d
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for all c, d ∈ {n+1, . . . , 2n}; in particular,

EF0 [(RGM
(c) −R(c))

2] =
n∑

i=c−n

Z2
i,0 varF0 [ξGM

c−i ] +
n∑

i=c−n

wi σ
2
c−i

holds for all c ∈ {n+1, . . . , 2n}.
(3) the F0–conditional Gauss–Markov predictor of the total reserve satisfies

RGM =
n∑

k=1

(
n∑

i=n−k+1

Zi,0

)
ξGM
k

and

EF0 [(RGM−R)2] =
n∑

k=1

(
n∑

i=n−k+1

Zi,0

)2

varF0 [ξGM
k ] +

n∑

k=1

(
n∑

i=n−k+1

wi

)
σ2

k

In the special case where m = 0 and wi = 1 holds for all i ∈ {−m, . . . , n}, the
Gauss–Markov predictors of incremental losses and reserves are identical with the
predictors used in the traditional Panning method of loss reserving. This means that
Gauss–Markov prediction in the extended Panning model provides simultaneously
an extension of the Panning method and its justification based on a general statistical
principle.

The unknown variance parameters may be estimated as follows:

5.5 Theorem (Estimation of variance parameters). In the extended Panning
model with m ≥ 1 and for every k ∈ {0, . . . , n}, the random variable

σ̂2
k :=

1

m + n− k

n−k∑
i=−m

1

wi

(Zi,k−Zi,0ξ
GM
k )2

is an F0–conditionally unbiased estimator of σ2
k.

The final remarks of Section 4 apply to the extended Panning model as well.
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6 Gauss–Markov Loss Prediction

in the Combined Model

Because of the similarity of the extended additive model and the extended Panning
model, it is natural to consider convex combinations of these models. As in the previ-
ous section, we denote by F0 the σ–algebra generated by the family {Zi,0}i∈{−m,...,n}
of the losses of development year 0. The combined model is defined as follows:

Combined Model: There exist known F0–measurable random para-
meters vi, wi with vi, wi > 0 and i ∈ {−m, . . . , n} as well as unknown
parameters ζk, ξk ∈ R and σ2

k ∈ (0,∞) with k ∈ {0, . . . , n} such that the
incremental losses satisfy

EF0 [Zi,k] = vi ζk + Zi,0 ξk

covF0 [Zi,k, Zj,l] = wi σ
2
k δi,j δk,l

for all i, j ∈ {−m, . . . , n} and k, l ∈ {0, . . . , n}. Moreover, Zi,0 > 0
holds for all i ∈ {−m, . . . , n} and viZj,0 6= vjZi,0 holds for some i, j ∈
{−m, . . . , 0} with i 6= j.

It is evident that the combined model combines the extended additive model and
the extended Panning model: Formally, putting ξk := 0 yields the extended additive
model and putting ζk := 0 yields the extended Panning model. However, the analysis
of the combined model turns out to be a bit more subtle than the analysis of the
extended additive and Panning models.

Assume that the assumptions of the combined model are fulfilled. Then the F0–
conditional expectation of the random vector X1 of all observable incremental losses
satisfies

EF0







Z−m,0

...
Zn,0

...
Z−m,k

...
Zn−k,k

...
Z−m,n

...
Z0,n







=




v−m · · · 0 · · · 0 Z−m,0 · · · 0 · · · 0
...

...
...

...
...

...
vn · · · 0 · · · 0 Zn,0 · · · 0 · · · 0
...

...
...

...
...

...
0 · · · v−m · · · 0 0 · · · Z−m,0 · · · 0
...

...
...

...
...

...
0 · · · vn−k · · · 0 0 · · · Zn−k,0 · · · 0
...

...
...

...
...

...
0 · · · 0 · · · v−m 0 · · · 0 · · · Z−m,0

...
...

...
...

...
...

0 · · · 0 · · · v0 0 · · · 0 · · · Z0,0







ζ0

...
ζk

...
ζn

ξ0

...
ξk

...
ξn




such that there exist an F0–measurable random design matrix A1 having full column
rank and a parameter vector β satisfying EF0 [X1] = A1β. A similar identity holds
for the F0–conditional expectation of the random vector X2 of all non–observable
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incremental losses. Moreover, the F0–conditional variance of the random vector X
is the same as in the extended additive model and the extended Panning model.

6.1 Theorem. The combined model is an F0–conditional linear model.

For a concise and transparent presentation of the result for the combined model, we
now introduce some auxiliary random variables. By assumption, we have

0∑
i=−m

0∑
j=−m

(viZj,0−vjZi,0)
2 > 0

We may thus define, for k ∈ {0, . . . , n} and r, s ∈ {0, 1, 2},

Y
(r,s)
k := 2

∑n−k
i=−m vr

i Z
s
i,0/wi∑n−k

i=−m

∑n−k
j=−m(viZj,0−vjZi,0)2/wiwj

and straightforward calculation shows that

Y
(r,s)
k =

∑n−k
i=−m vr

i Z
s
i,0/wi

(
∑n−k

i=−m v2
i /wi)(

∑n−k
i=−m Z2

i,0/wi)− (
∑n−k

i=−m viZi,0/wi)2

Note that these random variables are F0–measurable.

6.2 Lemma (Gauss–Markov estimation of parameters). In the combined
model, the F0–conditional Gauss–Markov estimators of the coordinates of the para-
meter vector satisfy

ζGM
k = Y

(0,2)
k

n−k∑
i=−m

viZi,k

wi

− Y
(1,1)
k

n−k∑
i=−m

Zi,0Zi,k

wi

ξGM
k = Y

(2,0)
k

n−k∑
i=−m

Zi,0Zi,k

wi

− Y
(1,1)
k

n−k∑
i=−m

viZi,k

wi

as well as

covF0 [ζGM
k , ζGM

l ] = Y
(0,2)
k σ2

k δk,l

covF0 [ζGM
k , ξGM

l ] = −Y
(1,1)
k σ2

k δk,l

covF0 [ξGM
k , ξGM

l ] = Y
(2,0)
k σ2

k δk,l

and, in particular,

covF0

[(
ζGM
k

ξGM
k

)
,

(
ζGM
l

ξGM
l

)]
= varF0

[(
ζGM
k

ξGM
k

)]
δk,l

for all k, l ∈ {0, 1, . . . , n}.
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Proof. We have

A′
1Σ

−1
11 X1 =




(
1

σ2
k

n−k∑
i=−m

viZi,k

wi

)

k∈{0,...,n}(
1

σ2
k

n−k∑
i=−m

Zi,0Zi,k

wi

)

k∈{0,...,n}




and

A′
1Σ

−1
11 A1 =




diag

(
1

σ2
k

n−k∑
i=−m

v2
i

wi

)

k∈{0,...,n}
diag

(
1

σ2
k

n−k∑
i=−m

viZi,0

wi

)

k∈{0,...,n}

diag

(
1

σ2
k

n−k∑
i=−m

viZi,0

wi

)

k∈{0,...,n}
diag

(
1

σ2
k

n−k∑
i=−m

Z2
i,0

wi

)

k∈{0,...,n}




Therefore, we have

A′
1Σ

−1
11 A1 =

(
U V
V W

)

with suitable diagonal matrices U,V,W, and we also have

(
U V
V W

)−1

=

(
(U−VW−1V)−1 −U−1V(W−VU−1V)−1

−W−1V(U−VW−1V)−1 (W−VU−1V)−1

)

Therefore, straightforward calculation yields

(A′
1Σ

−1
11 A1)

−1 =

(
diag(Y

(0,2)
k σ2

k)k∈{0,...,n} − diag(Y
(1,1)
k σ2

k)k∈{0,...,n}
− diag(Y

(1,1)
k σ2

k)k∈{0,...,n} diag(Y
(2,0)
k σ2

k)k∈{0,...,n}

)

We thus obtain

(A′
1Σ

−1
11 A1)

−1A′
1Σ

−1
11 X1 =




(
Y

(0,2)
k

n−k∑
i=−m

viZi,k

wi

− Y
(1,1)
k

n−k∑
i=−m

Zi,0Zi,k

wi

)

k∈{0,...,n}(
Y

(2,0)
k

n−k∑
i=−m

Zi,0Zi,k

wi

− Y
(1,1)
k

n−k∑
i=−m

viZi,k

wi

)

k∈{0,...,n}




and hence

ζGM
k = Y

(0,2)
k

n−k∑
i=−m

viZi,k

wi

− Y
(1,1)
k

n−k∑
i=−m

Zi,0Zi,k

wi

ξGM
k = Y

(2,0)
k

n−k∑
i=−m

Zi,0Zi,k

wi

− Y
(1,1)
k

n−k∑
i=−m

viZi,k

wi
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The above identity for (A′
1Σ

−1
11 A1)

−1 also yields

covF0 [ζGM
k , ζGM

l ] = Y
(0,2)
k σ2

k δk,l

covF0 [ζGM
k , ξGM

l ] = −Y
(1,1)
k σ2

k δk,l

covF0 [ξGM
k , ξGM

l ] = Y
(2,0)
k σ2

k δk,l

which completes the proof. 2

We can now compute the Gauss–Markov predictors of the non–observable incremen-
tal losses and the covariances of their prediction errors:

6.3 Lemma (Gauss–Markov prediction of incremental losses). In the
combined model, the F0–conditional Gauss–Markov predictors of the non–observable
incremental losses satisfy

ZGM
i,k = vi ζ

GM
k + Zi,0 ξGM

k

and

covF0 [ZGM
i,k −Zi,k, Z

GM
j,l −Zj,l]

=

((
vi

Zi,0

)′
varF0

[(
ζGM
k

ξGM
k

)] (
vj

Zj,0

)
+ wiσ

2
kδi,j

)
δk,l

for all i, j ∈ {−m, . . . , n} and k, l ∈ {0, . . . , n} such that min{i + k, j + l} ≥ n + 1;
in particular,

EF0 [(ZGM
i,k −Zi,k)

2] =

(
vi

Zi,0

)′
varF0

[(
ζGM
k

ξGM
k

)](
vi

Zi,0

)
+ wi σ

2
k

holds for all i ∈ {−m, . . . , n} and k ∈ {0, . . . , n} such that i + k ≥ n + 1.

Proof. The first identity is evident. Furthermore, Lemma 6.2 yields

covF0 [ZGM
i,k , ZGM

j,l ] = covF0 [vi ζ
GM
k +Zi,0ξ

GM
k , vj ζGM

l +Zj,0 ξGM
l ]

= covF0

[(
vi

Zi,0

)′ (
ζGM
k

ξGM
k

)
,

(
vj

Zj,0

)′ (
ζGM
l

ξGM
l

)]

=

(
vi

Zi,0

)′
covF0

[(
ζGM
k

ξGM
k

)
,

(
ζGM
l

ξGM
l

)](
vj

Zj,0

)

=

(
vi

Zi,0

)′
varF0

[(
ζGM
k

ξGM
k

)](
vj

Zj,0

)
δk,l

Since covF0 [ZGM
i,k , Zj,l] = 0 = covF0 [Zi,k, Z

GM
j,l ] and

covF0 [Zi,kZj,l] = wi σ
2
k δi,jδk,l

Gauss-Markov Loss Prediction in a Linear Model
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we obtain

covF0 [ZGM
i,k −Zi,k, Z

GM
j,l −Zj,l]

= covF0 [ZGM
i,k , ZGM

j,l ] + covF0 [Zi,kZj,l]

=

((
vi

Zi,0

)′
varF0

[(
ζGM
k

ξGM
k

)](
vj

Zj,0

)
δk,l + wiσ

2
kδi,j

)
δk,l

which is the second identity. 2

The following result on the Gauss–Markov predictors of reserves and their expected
squared prediction errors is formally identical with the results for the extended
additive model and the extended Panning model:

6.4 Theorem (Gauss–Markov prediction of reserves). In the combined
model,
(1) the F0–conditional Gauss–Markov predictors of the accident year reserves satis-

fy

RGM
i = vi

n∑

k=n−k+1

ζGM
k + Zi,0

n∑

k=n−k+1

ξGM
k

and

covF0 [RGM
i −Ri, R

GM
j −Rj]

=

(
vi

Zi,0

)′ ( n∑

k=n−i∧j+1

varF0

[(
ζGM
k

ξGM
k

)])(
vj

Zj,0

)
+ wi

( ∑

k=n−i+1

σ2
k

)
δi,j

for all i, j ∈ {1, . . . , n}; in particular,

EF0 [(RGM
i −Ri)

2]

=

(
vi

Zi,0

)′ ( n∑

k=n−i+1

varF0

[(
ζGM
k

ξGM
k

)])(
vi

Zi,0

)
+ wi

∑

k=n−i+1

σ2
k

holds for all i ∈ {1, . . . , n}.
(2) the F0–conditional Gauss–Markov predictors of the calendar year reserves satis-

fy

RGM
(c) =

n∑
i=c−n

(
vi ζ

GM
c−i + Zi,0 ξGM

c−i

)

and

covF0 [RGM
(c) −R(c), R

GM
(d) −R(d)]

=
n∑

i=c∨d−n

(
vi

Zi,0

)′
varF0

[(
ζGM
c∨d−i

ξGM
c∨d−i

)](
vi−|c−d|

Zi−|c−d|,0

)
+

(
n∑

i=c∨d−n

wiσ
2
c−i

)
δc,d

Gauss-Markov Loss Prediction in a Linear Model

Casualty Actuarial Society E-Forum, Fall 2010 27



for all c, d ∈ {n+1, . . . , 2n}; in particular,

EF0 [(RGM
(c) −R(c))

2]

=
n∑

i=c−n

(
vi

Zi,0

)′
varF0

[(
ζGM
c−i

ξGM
c−i

)](
vi

Zi,0

)
+

n∑
i=c−n

wiσ
2
c−i

holds for all c ∈ {n+1, . . . , 2n}.
(3) the F0–conditional Gauss–Markov predictor of the total reserve satisfies

RGM =
n∑

k=1

n∑

i=n−k+1

(
vi ζ

GM
k + Zi,0 ξGM

k

)

and

EF0 [(RGM
i −Ri)

2]

=
n∑

k=1




n∑

i=n−k+1

vi

n∑

i=n−k+1

Zi,0




′

varF0

[(
ζGM
k

ξGM
k

)]



n∑

i=n−k+1

vi

n∑

i=n−k+1

Zi,0




+
n∑

k=1

(
n∑

i=n−k+1

wi

)
σ2

k

The proof of Theorem 6.4 is analogous to that of Theorem 4.4 (using Lemma 6.3
instead of Lemma 4.3).

Finally, the unknown variance parameters may be estimated as follows:

6.5 Theorem (Estimation of variance parameters). In the combined model
with m ≥ 2 and for every k ∈ {0, . . . , n}, the random variable

σ̂2
k :=

1

m + n− k − 1

n−k∑
i=−m

1

wi

(
Zi,k − (viζ

GM
k +Zi,0ξ

GM
k )

)2

is an F0–conditionally unbiased estimator of σ2
k.

The proof of Theorem 6.5 is analogous to that of Theorem 4.5 (using Lemmas 6.2
and 6.3 instead of Lemmas 4.2 and 4.3).

In the case m = 1, the assertion of Theorem 6.5 remains valid for k ∈ {0, . . . , n−1},
and in the case m = 0 it remains valid for k ∈ {0, . . . , n−2}. Thus, the final remarks
of Section 4 apply mutatis mutandis to the combined model as well.

Gauss-Markov Loss Prediction in a Linear Model

Casualty Actuarial Society E-Forum, Fall 2010 28

esmith
Typewritten Text
.



7 Loss Prediction in the Mack Model

For the sake of comparison, the present section provides a brief discussion of the
famous Mack model for the chain–ladder method. In a sense to be made precise
below, the Mack model is related to linear models but it is not a linear model as
such.

For k ∈ {0, . . . , n}, we denote by Fk the σ–algebra generated by the family

{Sj,l}l∈{0,...,k}, j∈{−m,...,n−l}

of all observable cumulative losses up to development year k and, for i ∈ {−m, . . . , n}
and k ∈ {0, . . . , n}, we denote by Fi,k the σ–algebra generated by the family

{Si,l}l∈{0,...,k}

of all cumulative losses of accident year i up to development year k; note that the
definition of F0 is in accordance with that used in Sections 5 and 6. The Mack
model is defined as follows:

Mack Model: The accident years are independent (in the sense that
the family of σ–algebras {Fi,n}i∈{−m,...,n} is independent ) and, for every
development year k ∈ {1, . . . , n}, there exist unknown parameters ϕk ∈ R
and σ2

k ∈ (0,∞) such that the cumulative losses satisfy

EFi,k−1 [Si,k] = Si,k−1 ϕk

varFi,k−1 [Si,k] = Si,k−1 σ2
k

for all i ∈ {−m, . . . , n}. Moreover, Si,k > 0 holds for all i ∈ {−m, . . . , n}
and k ∈ {0, . . . , n−1}.

In the Mack model, the cumulative losses Si,k replace the incremental losses used
in the models considered before, the cumulative losses Si,k−1 replace the volume
measures used in the extended additive model and the initial losses used in the
extended Panning model, and they also replace the accident year parameters wi

used in each of these models. Since the first identity in the Mack model implies

E[Si,k/Si,k−1] = ϕk

the development year parameter ϕk is assumed to be independent of the accident
year and the collection of these parameters forms a development pattern; see Schmidt
and Zocher [2009].

The Mack model is due to Mack [1993] who assumed that m = 0.

Assume that the assumptions of the Mack model are fulfilled. Then we have, for
every k ∈ {1, . . . , n},

EFk−1







S−m,k
...

Sn−k,k





 =




S−m,k−1
...

Sn−k,k−1


 ϕk
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and

EFk−1 [Sn−k+1,k] = Sn−k+1,k−1 ϕk

as well as

varFk−1







S−m,k
...

Sn−k,k





 =




S−m,k−1 · · · 0
...

. . .
...

0 · · · Sn−k,k−1


 σ2

k

and

varFk−1 [Sn−k+1,k] = Sn−k+1,k−1 σ2
k

and we also have

covFk−1 [Si,k, Sj,k] = 0

for all i, j ∈ {−m, . . . , n−k+1} such that i 6= j; see Schmidt and Schnaus [1996].
We thus obtain the following result:

7.1 Theorem. For every development year k ∈ {1, . . . , n}, the Mack model
provides an Fk−1–conditional linear model for the family {Si,k}i∈{−m,...,n−k+1}.

Because of Theorem 7.1, the Mack model may be called a sequential linear model.

Let us first consider Gauss–Markov estimation of the parameter in the conditional
linear models provided by the Mack model:

7.2 Lemma (Gauss–Markov estimation of parameters). In the Mack model
and for every development year k ∈ {1, . . . , n}, the Fk−1–conditional Gauss–Markov
estimator of the parameter ϕk satisfies

ϕGM
k =

∑n−k
i=−m Si,k∑n−k

i=−m Si,k−1

and

varFk−1 [ϕGM
k ] =

1∑n−k
i=−m Si,k−1

σ2
k

The linear models for the families {Si,k}i∈{−m,...,n−k+1} cannot be extended to the
families {Si,k}i∈{−m,...,n} since the cumulative losses Si,k−1 with i ∈ {n−k+2, . . . , n}
are non–observable and hence cannot be part of the design matrix of a conditional
linear model (in which the design matrix is assumed to be observable); therefore,
Gauss–Markov prediction is possible only for the non–observable cumulative losses
Sn−k+1,k of the first non–observable calendar year n+1:
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7.3 Lemma (Gauss–Markov prediction of cumulative losses). In the Mack
model and for every development year k ∈ {1, . . . , n}, the Fk−1–conditional Gauss–
Markov predictor of the cumulative loss Sn−k+1,k satisfies

SGM
n−k+1,k = Sn−k+1,k−1ϕ

GM

At this point, let us recall that, for every k ∈ {1, . . . , n}, the chain–ladder factor
ϕCL

k is defined as

ϕCL
k :=

∑n−k
i=−m Si,k∑n−k

i=−m Si,k−1

and that, for all i, k ∈ {0, . . . , n} such that i + k ≥ n, the chain–ladder predictor of
the cumulative loss Si,k (which is non–observable for i+k ≥ n+1) is defined as

SCL
i,k := Si,n−i

k∏

l=n−i+1

ϕCL
l

(such that SCL
i,n−i = Si,n−i). Thus, Lemmas 7.2 and 7.3 assert that

ϕGM
k = ϕCL

k

and

SGM
n−k+1,k = SCL

n−k+1,k

holds for all k ∈ {1, . . . , n}. Since Gauss–Markov predictors are unbiased, the
previous identity yields

E[SCL
i,k −Si,k] = 0

and hence

E[(SCL
i,k −Si,k)

2] = var[SCL
i,k −Si,k]

for all i, k ∈ {1, . . . , n} such that i + k = n + 1, and it can be shown that these
identities are also true for all i, k ∈ {1, . . . , n} such that i + k ≥ n + 2.

Following Mack [1993], however, one should consider the Fn–conditional mean
squared error of prediction

EFn [(SCL
i,k −Si,k)

2] = varFn [SCL
i,k −Si,k]+

(
EFn [SCL

i,k −Si,k]
)2

instead of the unconditional mean squared error of prediction E[(SCL
i,k−Si,k)

2]. Since

EFn [SCL
i,k ] = Si,n−i

k∏

l=n−i+1

ϕCL
l

EFn [Si,k] = Si,n−i

k∏

l=n−i+1

ϕl
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we have

EFn [SCL
i,k −Si,k] = Si,n−i

(
k∏

l=n−i+1

ϕCL
l −

k∏

l=n−i+1

ϕl

)

which shows that the chain–ladder predictors fail to be Fn–conditionally unbiased.
Thus, the bias does not vanish in the identity for the Fn–conditional mean squared
error of prediction, which is most unfortunate since obviously plug–in estimators
cannot be used to estimate the bias. By contrast, Mack [1993] has shown that the
Fn–conditional variance of the prediction error satisfies

varFn [SCL
i,k −Si,k] = Si,n−i

k∑

l=n−i+1

(
l−1∏

h=n−i+1

ϕh

)
σ2

l

(
k∏

h=l+1

ϕ2
h

)

(which provides the identity

varFn [Si,k] = Si,n−i

k∑

l=n−i+1

(
l−1∏

h=n−i+1

ϕh

)
σ2

l

(
k∏

h=l+1

ϕ2
h

)

needed in Theorem 7.4 below). In conclusion, estimation of the bias causes a serious
difficulty in the estimation of the Fn–conditional mean squared error of prediction
of the chain–ladder predictor of a non–observable cumulative loss.

These observations also apply to the chain–ladder predictors of non–observable in-
cremental losses which are defined as

ZCL
i,k := SCL

i,k − SCL
i,k−1

and, in particular, to the chain–ladder predictors of reserves which are defined as

RCL
i :=

n∑

k=n−i+1

ZCL
i,k

RCL
(c) :=

n∑
i=c−n

ZCL
i,c−i

RCL :=
n∑

k=1

n∑

i=n−k+1

ZCL
i,k

This can be seen from the following result:

7.4 Theorem (Chain–ladder prediction of reserves). In the Mack model,
(1) the chain–ladder predictors of the accident year reserves satisfy

EFn [RCL
i −Ri] = Si,n−i

(
n∏

k=n−i+1

ϕCL
k −

n∏

k=n−i+1

ϕk

)
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and

EFn [(RCL
i −Ri)

2] =

(
Si,n−i

(
n∏

k=n−i+1

ϕCL
k −

n∏

k=n−i+1

ϕk

))2

+ varFn [Si,n]

as well as
covFn [RCL

i −Ri, R
CL
j −Rj] = varFn [Si,n] δi,j

(2) the chain–ladder predictors of the calendar year reserves satisfy

EFn [RCL
(c)−R(c)]

=
n∑

i=c−n

Si,n−i

((
c−i−1∏

k=n−i+1

ϕCL
k

)
(ϕCL

c−i−1)−
(

c−i−1∏

k=n−i+1

ϕk

)
(ϕc−i−1)

)

and

EFn [(RCL
(c)−R(c))

2]

=

(
n∑

i=c−n

Si,n−i

((
c−i−1∏

k=n−i+1

ϕCL
k

)
(ϕCL

c−i−1)−
(

c−i−1∏

k=n−i+1

ϕk

)
(ϕc−i−1)

))2

+
n∑

i=c−n

(
varFn [Si,c−i−1] (ϕc−i−1)2 + Si,n−i

(
c−i−1∏

k=n−i+1

ϕk

)
σ2

c−i

)

(3) the chain–ladder predictor of the total reserve satisfies

EFn [RCL−R] =
n∑

i=1

Si,n−i

(
n∏

k=n−i+1

ϕCL
k −

n∏

k=n−i+1

ϕk

)

and

EFn [(RCL−R)2] =

(
n∑

i=1

Si,n−i

(
n∏

k=n−i+1

ϕCL
k −

n∏

k=n−i+1

ϕk

))2

+
n∑

i=1

varFn [Si,n]

A proof of Theorem 7.4 will be given in the Appendix.

Theorem 7.4 provides explicit formulas for the Fn–conditional mean squared errors of
prediction, but the use of plug–in estimators in these formulas is not recommendable
since it would result in wiping out a part of the Fn–conditional mean squared errors
of prediction.

7.5 Theorem (Estimation of variance parameters). In the Mack model with
m ≥ 1 and for every k ∈ {1, . . . , n}, the random variable

σ̂2
k :=

1

m + n− k

n−k∑
i=−m

1

Si,k−1

(Si,k−Si,k−1ϕ
CL
k )2
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is an Fk−1–conditionally unbiased estimator of σ2
k.

As noted before, the use of plug–in estimators for the parameters of the development
pattern in the formulas provided by Theorem 7.4 is not recommendable. Mack [1993]
proposed the estimators

ÊFn [(RCL
i −Ri)

2]

:= (SCL
i,n )2

n∑

k=n−i+1

(
1∑n−k

h=−m Sh,k

+
1

SCL
i,k

)
σ̂2

k

ϕCL
k

= (SCL
i,n )2

n∑

k=n−i+1

1∑n−k
h=−m Sh,k

σ̂2
k

ϕCL
k

+ (SCL
i,n )2

n∑

k=n−i+1

1

SCL
i,k

σ̂2
k

ϕCL
k

for the Fn–conditional mean squared errors of prediction of the accident year reserves
and

ÊFn [(RCL−R)2]

:=
n∑

i=1

n∑
j=1

SCL
i,n SCL

j,n

n∑

k=n−i∧j+1

1∑n−k
h=−m Sh,k

σ̂2
k

ϕCL
k

+
n∑

i=1

(SCL
i,n )2

n∑

k=n−i+1

1

SCL
i,k

σ̂2
k

ϕCL
k

for the Fn–conditional mean squared error of prediction of the total reserve. The
construction of each of these estimators involves certain approximations.

Apparently, no estimators have been proposed in the literature for the conditional
mean squared errors of prediction of the calendar year reserves.
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8 Remarks

In the Panning model and in the combined model, it would be sufficient to assume
Zi,0 > 0 only for i ∈ {1, . . . , n}, but then the formulas for predictors and mean
squared errors of prediction have would have to be modified as to avoid divisions by
zero.

The accident year parameters wi may e. g. be chosen as follows:
– In the extended additive model, one may choose wi := 1 (corresponding to the

traditional Panning model) or wi := vi (traditional additive model) or, more
generally, wi := α + βvi with α, β ∈ [0, 1] and α + β = 1.

– In the extended Panning model, one may choose wi := 1 (traditional Panning
model) or wi := vi (corresponding to the traditional additive model) or wi :=
Zi,0 (in analogy with the traditional additive model) or, more generally, wi :=
α + βvi + γZi,0 with α, β, γ ∈ [0, 1] and α + β + γ = 1.

– In the combined model, one may choose wi := 1 (corresponding to the tra-
ditional Panning model) or wi := vi (corresponding to the traditional additive
model) or wi := Zi,0 or, more generally, wi := α+βvi+γZi,0 with α, β, γ ∈ [0, 1]
and α + β + γ = 1.

The combined model uses volume measures and initial losses as regressors and thus
provides an example for a broad class of general linear models combining different
sources of information on the accident years. As there are several possible choices
for the volume measure, like the number of contracts, the premium income, market
statistics or even information on a similar portfolio of risks, one might want to use
some of them simultaneously; also, as for example in excess–of–loss reinsurance, one
might want to use several volume measures but avoid initial losses. In both cases,
it is straightforward to construct appropriate modifications of the combined model
and the analysis of the resulting models would follow the lines of Section 6.

For the additive method and the Panning method, the principle of Gauss–Markov
prediction in an appropriate linear model shows that, under certain assumptions on
the first and second order moments of the incremental losses,
– the predictors used in these methods are unbiased and minimize the mean

squared error of prediction, and
– the mean squared errors of prediction can be estimated by the simple use of

plug–in estimators for the unknown variance parameters.
In addition, the systematic use of Gauss–Markov prediction in a linear model leads
to variations and combinations of these methods; see Section 9 below for nine such
methods using the available information in a slightly different way. The analysis of
results from different but similar methods may be useful to study the sensitivity of
result with respect to model variations and to analyze the impact of loss develop-
ment data and volume measures; see also Schmidt and Zocher [2009] for a similar
discussion of another family of models and methods.

Unfortunately, the situation is not that comfortable for the chain–ladder method.
While the Mack model was certainly a breakthrough in stochastic modelling for the
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chain–ladder method and provides a partial justification of that method, it seems
that in this model
– the question of whether or not the chain–ladder predictors minimize the mean

squared error of prediction cannot be settled and that
– the construction of estimators of the mean squared errors of prediction presents

a serious problem and seems to require certain delicate approximations.
This is due to the sequential character of the Mack model, which provides a linear
model for every development year but not for the entire loss development.
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9 A Numerical Example

In the present section we illustrate the results of this paper by a numerical example.
In the example, we consider a portfolio of auto liability and use the incremental
losses provided by Braun [2004], truncated at development year 9, and the volume
measures proposed by Merz and Wüthrich [2009]. These data are presented in
Table 1.

For each of the additive model, the Panning model and the combined model we
consider the three cases in which the accident year parameters of the variances are
chosen as wi = 1, wi = vi and wi = Zi,0, respectively, and we also consider the
Mack model in which the corresponding parameters are the cumulative losses Si,k−1.
The Gauss–Markov estimators of the parameters ζk (additive model and combined
model), ξk (Panning model and combined model) and ϕk (Mack model) are displayed
in Tables 2–5.

In the combined model, the signs of the Gauss–Markov estimators given Table 4
show that the volume measures and the initial losses have an opposite effect on
the Gauss–Markov predictors of reserves; see Theorem 6.4. The Gauss–Markov
predictors of the reserves of accident years 1–9, the total reserves and the reserves
of calendar years 10–18 are displayed in Table 6.

The standard error of prediction is defined as the square root of the mean squared
error of prediction and measures uncertainty in the monetary unit. The estimated
standard errors of prediction are displayed in Table 7.

As an alternative measure of uncertainty, one could also consider the coefficient of
variation which is defined as the ratio between the standard error of prediction and
the predictor and is dimension–free. The coefficients of variation are displayed in
Table 8.

Of course, the choice of a stochastic model should not be driven by the numerical
results which it produces. Nevertheless, model selection should perhaps proceed in
steps, starting with the choice of a plausible class of models (like the class of general
linear models) and subsequently shrinking this class to only a few models or even
a single one. In this process a comparative analysis of a family of similar models
could help to obtain some insight into some of the characteristics of these models.

For the example considered here, we make the following observations:
– The choice of regressors (volume measures in the additive model, initial losses

in the Panning model, and both of them in the combined model) may affect the
predictors and the standard errors of prediction. For example, for the Panning
model, the predictors of the total reserves are smaller and the standard errors
of calendar year 10 are larger than for the additive model and the combined
model.
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– The choice of the accident year parameters may affect the predictors and the
standard errors of prediction. For example, for wi = 1, the total reserves are
larger and the standard errors are smaller than for wi = vi and wi = Zi,0.

– For the Mack model, the predictors are in the range of those obtained for the
other models but the standard errors are larger.

Such considerations combined with actuarial judgement could help to determine
estimates of reserves and estimates of standard errors of prediction for the portfolio
under consideration.

Nevertheless, such an analysis for a particular portfolio cannot justify a general
preference for a particular stochastic model.
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Appendix

Here we present a proof of Theorem 7.4:

Proof. We have RCL
i −Ri = SCL

i,n − Si,n and hence

EFn [RCL
i −Ri] = EFn [SCL

i,n −Si,n]

= Si,n−i

(
n∏

k=n−i+1

ϕCL
k −

n∏

k=n−i+1

ϕk

)

Since the accident years are independent, we also have

covFn [RCL
i −Ri, R

CL
j −Rj] = covFn [SCL

i,n −Si,n, S
CL
j,n−Sj,n]

= covFn [Si,n, Sj,n]

= varFn [Si,n] δi,j

In particular, we have

EFn [(RCL
i −Ri)

2] = varFn [RCL
i −Ri] +

(
EFn [RCL

i −Ri]
)2

= varFn [Si,n] + S2
i,n−i

(
n∏

k=n−i+1

ϕCL
k −

n∏

k=n−i+1

ϕk

)2

This proves (1).
We have

RCL
(c) −R(c) =

n∑
i=c−n

((SCL
i,c−i−SCL

i,c−i−1)− (Si,c−i−Si,c−i−1))

=
n∑

i=c−n

(SCL
i,c−i−Si,c−i)−

n∑
i=c−n

(SCL
i,c−i−1−Si,c−i−1)

and hence

EFn [RCL
(c)−R(c)]

=
n∑

i=c−n

EFn [(SCL
i,c−i−Si,c−i)]−

n∑
i=c−n

EFn [(SCL
i,c−i−1−Si,c−i−1)]

=
n∑

i=c−n

Si,n−i

(
c−i∏

k=n−i+1

ϕCL
k −

c−i∏

k=n−i+1

ϕk

)
−

n∑
i=c−n

Si,n−i−1

(
c−i−1∏

k=n−i+1

ϕCL
k −

c−i−1∏

k=n−i+1

ϕk

)

=
n∑

i=c−n

Si,n−i

((
c−i−1∏

k=n−i+1

ϕCL
k

)
(ϕCL

c−i−1)−
(

c−i−1∏

k=n−i+1

ϕk

)
(ϕc−i−1)

)

Since the accident years are independent, we also have

varFn [RCL
(c)−R(c)] = varFn

[
n∑

i=c−n

((
SCL

i,c−i−SCL
i,c−i−1

)
−

(
Si,c−i−Si,c−i−1

))]
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= varFn

[
n∑

i=c−n

(
Si,c−i−Si,c−i−1

)]

=
n∑

i=c−n

varFn [Si,c−i−Si,c−i−1]

as well as

varFn [Si,c−i−Si,c−i−1] = varFn [Si,c−i−1] (ϕc−i−1)2 + Si,n−i

(
c−i−1∏

k=n−i+1

ϕk

)
σ2

c−i

and hence

varFn [RCL
(c)−R(c)] =

n∑
i=c−n

(
varFn [Si,c−i−1] (ϕc−i−1)2 + Si,n−i

(
c−i−1∏

k=n−i+1

ϕk

)
σ2

c−i

)

In particular, we have

EFn [(RCL
(c)−R(c))

2]

= varFn [RCL
(c)−R(c)] +

(
EFn [RCL

(c)−R(c)]
)2

=
n∑

i=c−n

(
varFn [Si,c−i−1] (ϕc−i−1)2 + Si,n−i

(
c−i−1∏

k=n−i+1

ϕk

)
σ2

c−i

)

+

(
n∑

i=c−n

Si,n−i

((
c−i−1∏

k=n−i+1

ϕCL
k

)
(ϕCL

c−i−1)−
(

c−i−1∏

k=n−i+1

ϕk

)
(ϕc−i−1)

))2

This proves (2).
We have RCL −R =

∑n
i=1(R

CL
i −Ri) and hence

EFn [RCL−R] =
n∑

i=1

EFn [RCL
i −Ri]

=
n∑

i=1

Si,n−i

(
n∏

k=n−i+1

ϕCL
k −

n∏

k=n−i+1

ϕk

)

From (1) we obtain

varFn [RCL −R] =
n∑

i=1

varFn [RCL
i −Ri]

=
n∑

i=1

varFn [Si,n]

In particular, we have

EFn [(RCL−R)2] = varFn [RCL−R] +
(
EFn [RCL−R]

)2

=
n∑

i=1

varFn [Si,n] +

(
n∑

i=1

Si,n−i

(
n∏

k=n−i+1

ϕCL
k −

n∏

k=n−i+1

ϕk

))2
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This proves (3). 2
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Pröhl, C., and K.D. Schmidt, Multivariate chain–ladder,” Dresdner Schriften zur Versicherungs-
mathematik 3/2005.

Quarg, G., and T. Mack, Munich chain–ladder,” Blätter DGVFM 26, 2004, 597–630.

Quarg, G., and T. Mack, Munich chain–ladder: A reserving method that reduces the gap between
IBNR projections based on paid losses and IBNR projections based on incurred losses,” Variance
2, 2008, pp. 266–299.

Radtke, M., and K.D. Schmidt K.D. (eds.), Handbuch zur Schadenreservierung, Karlsruhe: Verlag
Versicherungswirtschaft, 2004.
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The Technical Provisions in Solvency II 
What EU Insurers Could Do if  They Had Schedule P 

Glenn Meyers, FCAS, MAAA, Ph.D. 

___________________________________________________________________________ 

Abstract: The goal of this paper is to demonstrate how publicly available data can be used to calculate the 
technical provisions in Solvency II. This is a purely hypothetical exercise, since the publicly available data is in 
America, and Solvency II applies to the European Union. Using American Schedule P data, this paper:  

Develops “prior information” to be used in an empirical Bayesian loss reserving method. 

Uses the Metropolis-Hastings algorithm to develop a posterior distribution of parameters for a Bayesian Analysis. 

Develops a series of diagnostics to assess the applicability of the Bayesian model. 

Uses the results to calculate the best estimate and the risk margin in accordance with the principles underlying 
Solvency II. 

Develops an ongoing process to regularly compare projected results against experience. 

The paper includes analyses of the Schedule P data for four American Insurers based on its methodology.  

Keywords: Solvency II, reserving methods, reserve variability, uncertainty and ranges, Bayesian estimation  

___________________________________________________________________________ 

 

1. INTRODUCTION 

In 2009 the European Parliament passed a new act for regulating insurers known as Solvency II. 

Its objectives include: 

 Increased focus on effective risk management, control, and governance, 

 Market consistent valuation of  assets and liabilities, 

 Increased disclosure and transparency. 

This act will become effective on October 31, 2012. Because of the growing international nature 

of the business of insurance, the development of the provisions in this act has been watched and 

debated by interested parties worldwide.  

This paper focuses on calculating the “technical provisions” specified in this act1. The “technical 

provisions” refer to the insurer’s liability for unpaid losses. Specifically: 

 “The value of the technical provisions shall be equal to the sum of a best estimate and a 

risk margin.”2 

                                                 
1The provisions quoted below are stated in Section 2 of Chapter VI of the act, p 222, 
http://register.consilium.europa.eu/pdf/en/09/st03/st03643-re01.en09.pdf. 
2 Article 77 
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 “The best estimate shall correspond to the probability-weighted average of future cash 

flows, taking account of the time value of money using the relevant risk-free interest rate 

term structure.”3 

 “The risk margin shall be calculated by determining the cost of providing an amount of 

eligible own funds equal to the Solvency Capital Requirement necessary to support the 

insurance obligations over the lifetime thereof.”4 

 “Insurance undertakings shall segment their insurance obligations into homogeneous risk 

groups, and as a minimum by lines of business, when calculating the technical 

provisions.”5 

With regard to technical provisions, the act also requires insurers to have “processes and 

procedures in place to insure that best estimates, and the assumptions underlying the calculation of 

the best estimates, are regularly compared against experience.  

When the comparison identifies systematic deviations between the experience and the best 

estimate, the insurer shall make appropriate adjustments to the actuarial methods and/or the 

assumptions being made.”6  

These provisions of the act implicitly, if not explicitly, call for a stochastic model of the loss 

development process. Details such as the particular models and the data being used are not 

specified. 

In America, insurers are required to report very detailed data to regulators. Relevant to the topic 

of technical provisions is Schedule P of the National Association of Insurance Commissioners 

(NAIC) Annual Statement.7 This data contains net premiums, along with paid and incurred loss 

triangles spanning a period of ten accident years. The data is organized into 36 specific lines of 

insurance such as Personal Auto, Commercial Auto, Homeowners, and Workers’ Compensation. 

Note that all dollar amounts are in thousands. 

This paper describes how to use data provided by the NAIC to develop a stochastic model for 

the loss development process. A feature of this model will be that it draws on the information 

provided by several insurers to provide “prior information” for use in the Bayesian estimation of the 

model parameters. The Bayesian methodology will also quantify the uncertainty in the parameters. 

                                                 
3 Article 77 
4 Article 77 
5 Article 80 
6 Article 83 
7 One can purchase an electronic copy of the Annual Statements for all American insurers for a 
nominal price from the NAIC. http://www.naic.org/store_financial_home.htm. 
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This paper will then show how to use this model to carry out the calculations required for the 

technical provisions of Solvency II. In watching parts of the debate that led to Solvency II, I have 

seen reasonable alternatives to its methodology. This paper will explore some of those alternatives.  

The data in Schedule P is available to the public for all American insurers and thus the 

calculations described in this paper can be done by external interested parties. The intent of this 

paper is not to replace the more detailed analysis that insurers can do internally. Instead its intent is 

to do a credible analysis with publicly available data.  

2. A STOCHASTIC MODEL OF THE LOSS DEVELOPMENT PROCESS 

The stochastic model in this paper describes the random incremental paid loss, XAY,Lag, for 

accident year AY, and settlement lag, Lag. The data used to fit the model will consist of a loss 

triangle of ten accident years of incremental paid net losses and the net earned premium for each 

accident year. The model can be used to predict the distribution of losses paid in future settlement 

lags through the tenth year. It can also be used to predict the distribution of sums of losses for any 

given combination of future settlement lags in the given accident years.  

For a given accident year, AY, and settlement lag, Lag, the expected loss is equal to 

 1
,

AY Lag
AY Lag AY AY LagPremium ELR Dev t      

,
 (1) 

where:  

 PremiumAY is the accident year premium obtained from the data, 

 ELRAY is a parameter representing the expected loss ratio for the accident year, 

 DevLag is a parameter representing the incremental paid loss development factor for the 

settlement lag, 

 t is a parameter representing the calendar year trend for the claim frequency. 

The claim severity, Z, in this model is a random variable with a gamma distribution, 

    
1 /

.
zz e

f z
  





  

 (2) 

The claim severity distribution will vary by settlement lag with its mean given by the parameter 

Lag= ·Lag and a fixed shape parameter,  = 1/2. In accordance with the general observation that 

claim severity increases with the settlement lag, this model sets 

 
3

1 1  for   = 1,2 ...,10.
10

Lag

Lag
sev Lag

           
 (3) 

As was done in Meyers (2007a), the claim count, N, in this model has a distribution with its mean 
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given by AYLag = AY,Lag/Lag, and its variance given by  

   2
, ,AY Lag AY LagVar N c   

.
 (4) 

The model, as described by Equations 1-4, depends upon the unknown parameters 

 ELRAY, for AY = 1,2,…,10. 

 DevLag, for Lag = 1,2,…,10. 

 sev (the claim severity for the 10th settlement lag). 

 t (the calendar year frequency trend factor). 

 c (the contagion parameter). 

My selection of the fixed parameters in the model (i.e. the Lag parameters used to describe 

variation by settlement lag and the  parameter in the gamma claim severity distribution) was based 

on a combination of prior experience and sensitivity testing. 

The expected loss in each (AY,Lag) cell is given by Equation (1). The variance of the loss in each 

cell is given by: 

   2
, , ,1 1 /AY Lag AY Lag Lag AY LagVar X c           . (5) 

For each (AY,Lag) cell, the model will be approximated by a Tweedie distribution with the same 

mean and variance8. The mean and variance of the Tweedie distribution are given by  and ·p, 

respectively, with p = (+2)/(+1). Using the value of p that is implied by the value of and 

solving for the  that forces the variances to be equal yields: 

 ,

1

2
, ,

2
AY Lag

p
Lag p

AY Lag AY Lagc
p




  
   


. (6) 

Note that the approximation is exact if N has a Poisson distribution with (implied) c = 0. 

3. BAYESIAN ESTIMATION OF THE MODEL PARAMETERS 

It is generally regarded as good statistical practice to use models with as few parameters as 

possible. As illustrated by Meyers (2008), too many parameters can lead to overfitting problems 

when estimating the parameters by maximum likelihood. Attempts such as Clark (2006) and Meyers 

(2009) to formulate models for loss reserving, with a small number of parameters have not found 

                                                 
8 See Meyers (2009) and/or Smyth and Jørgensen (2002) for an introduction to the Tweedie distribution. 
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general use in the actuarial community.9 

In the same paper, Meyers (2008) suggests, by way of example, that a Bayesian analysis can 

overcome the problems associated with overfitting. The paper recommends using a mixture of 

models over the posterior distribution of parameters. This paper takes a similar Bayesian approach.  

Let Parm denote the set of unknown parameters     , , , , .AY LagELR Dev sev t c  

Let  , , 1,...,10, 1,...,11AY Lagx AY Lag AY   X  denote the observed incremental paid losses from 

a 10x10 Schedule P loss development triangle. According to Bayes’ Theorem: 

      |f Parm Parm f Parm X X|  (7) 

where:  

  f Parm X|  is the posterior distribution of Parm. 

  |ParmX  is the likelihood function of X. 

  f Parm  is the prior distribution of Parm. 

The likelihood function is given by 

    
10 11

, , ,
1 1

| | , , ,
AY

AY Lag AY Lag AY Lag
AY Lag

Parm dtweedie x p


 

   X  (8) 

where: 

 dtweedie is the probability density function for the Tweedie distribution. 

 p is the power parameter. p = (+2)/(+1) = 1.67. 

 AY,Lag and AY,Lag are calculated from Parm and Equations 1 and 6. 

Following Meyers (2009) this paper uses the Metropolis-Hastings algorithm to generate a sample 

of 500 parameter sets that represent the posterior distribution. Appendix A describes how that 

algorithm was implemented in this paper. That appendix also provides the code (written in the R 

programming language) used for this paper. 

This paper uses a gamma distribution (Equation 2) to represent its prior distributions. Table 1 

gives the  and  parameters of the prior distribution for each parameter in Parm. 

                                                 
9 I intend no disparagement here. I consider Clark’s paper to be a very good introduction to the use of maximum 
likelihood methods for fitting loss reserve models.  
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Table 1 

   Implied 
Parameter α  θ Mean Std. Dev. 

sev 1.3676 136.2478 186.3386 159.34 
t 1290.2307 0.0008 0.9931 0.0276 
c 0.0740 0.1391 0.0103 0.0379 

ELR1 29.8506 0.0237 0.7073 0.1295 
ELR2 33.8347 0.0227 0.7674 0.1319 
ELR3 35.3338 0.0214 0.7545 0.1269 
ELR4 24.4908 0.0285 0.6981 0.1411 
ELR5 28.6618 0.0254 0.7272 0.1358 
ELR6 25.6341 0.0304 0.7790 0.1539 
ELR7 16.8043 0.0501 0.8417 0.2053 
ELR8 14.3680 0.0602 0.8650 0.2282 
ELR9 9.3053 0.1017 0.9465 0.3103 
ELR10 6.3667 0.1609 1.0246 0.4061 
Dev1 15.8100 0.0135 0.2137 0.0537 
Dev2 42.8538 0.0059 0.2517 0.0385 
Dev3 56.4944 0.0036 0.2028 0.0270 
Dev4 30.4528 0.0046 0.1403 0.0254 
Dev5 10.2309 0.0085 0.0870 0.0272 
Dev6 5.8094 0.0083 0.0480 0.0199 
Dev7 3.6954 0.0068 0.0250 0.0130 
Dev8 2.3934 0.0057 0.0135 0.0087 
Dev9 1.3559 0.0066 0.0090 0.0077 
Dev10 0.4552 0.0200 0.0091 0.0135 
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These prior distributions were obtained by the following steps. 

1. Obtain the maximum likelihood estimates (MLEs) of the parameters for 50 large active 

insurers using Schedule P data. 

2. Using the MLEs obtained in Step 1 as prior means, run the Metropolis-Hastings 

algorithm to get a sample of 100 parameter sets. 

3. Using the 5,000 parameter sets obtained from the Steps 1 and 2 above, fit the gamma 

distributions by matching the mean and standard deviation of the gamma distribution 

with the sample mean and standard deviation for each parameter in the set. 

Loss reserving is considered by many to be an art that depends on the data and actuarial 

judgment. The experience gained from many reserving analyses often forms the basis of such 

judgments. These steps taken to derive the prior distribution are an attempt to capture the 

experience needed for such judgments in a repeatable and transparent way. The Bayesian approach 

taken by this paper merges the data with the “judgment” supplied by the prior distribution. 

For a given insurer, the iterations generated by the Metropolis-Hastings algorithm can be thought 

of as a sample of equally likely parameter sets describing the posterior distribution of their loss 

development process. Denote the nth parameter set by: 

     , ,, , , ,n n n n n AY n LagParm sev t c ELR Dev . (9) 

Each Parmn can be used to construct “statistics of interest” that can be either used to describe 

parameter risk, or be averaged to get an overall expected value. The sections below provide several 

examples of statistics of interest that involve model diagnostics, prediction intervals, and items in a 

financial statement, such as a best estimate and a risk margin.  
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4. EXAMPLES WITH FOUR ILLUSTRATIVE INSURERS 

This paper has illustrative analyses with data from four real insurers. The paid loss triangles were 

taken from the 1997 Schedule P each insurer reported to the NAIC for the commercial auto line of 

insurance. The data are reported in the form of cumulative paid losses for each accident year. 

Incremental paid losses were obtained by taking the difference of the cumulative paid losses by 

settlement lag. Occasionally, the cumulative paid losses decreased with subsequent settlement lag. 

My understanding of the reporting instructions is that this should not happen, but when it did 

happen, I removed the negative incremental paid loss from the data, and fit the models without that 

data point. The data used for fitting the model consisted of the earned net premium, the incremental 

paid losses indexed by accident year and settlement lag. These data are tabulated in Appendix B. 

Table 2 gives an indication of the size of each insurer. 

Table 2 

Insurer 1997 Net Premium

1 73,359 

2 24,030 

3 99,940 

4 241,228 

 

Before selecting the particular insurers to put in this paper, I fit the model to the data from 

several insurers. I selected these insurers to illustrate the variety of stories that these kinds of data 

can tell. I would discourage any attempts to draw conclusions about the Commercial Auto line of 

business or about other insurers not analyzed in this paper. 

Let us start by looking at the variability of each parameter in the model. Exhibits 1-3 plot 

histograms of the sev, t and c parameters. The top of each exhibit has a histogram of a sample of 

parameters taken from the prior distribution. This shows how much of the initial uncertainty in the 

parameters is reduced by each insurer’s data. Here are some casual observations about the sev, t, and 

c parameters 

The width of the histograms indicates uncertainty in the parameters. An inspection of the 

exhibits indicates that there is no apparent relationship between the parameter uncertainty and the 

size of the insurer. 

Exhibit 2 confirms a general industry trend of a slight decrease in claim frequency over time for 

commercial auto. Given that the trend factor of 1.00 is close to the center of the histograms, one 
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might be tempted to drop the trend parameter but, in light of the industry trend, I chose to keep it 

in. 

As indicated in Meyers (2007a), a positive c parameter indicates that there is a random external 

factor that affects all claims at once. The c parameter is the coefficient of variation squared of the 

external factor. For insurers 2 and 3, the minimal size of the c parameter indicates that the external 

factor is something usual, such as changing inflation rates. The c parameter for Insurer 4 is 

enormous. Something is systematically affecting large blocks of claims. 

Exhibit 4 shows the {ELR} and {Dev} parameters expressed as paths over time for both the 

prior and posterior distributions. One general observation is that the uncertainty in the {ELR} 

parameters decreases as we gain information over time. In other words, we have better information 

about the loss ratio for earlier years. 

It might seem natural to define the “parameter estimates” as the mean of the parameter sets 

Parmn. But the analyses below do not make any use of such a parameter estimate. Instead they create 

“statistics of interest” as functions of each parameter set. They then combine them by either: 

1. taking an average “statistic of interest” over all the Parmns; 

2. plotting related statistics of interest; or 

3. simulating predicted losses derived from a random selection of Parmns.    
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Exhibit 1a 
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Exhibit 1b 
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Exhibit 2a 
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Exhibit 2b 
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Exhibit 3a 
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Exhibit 3b 
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Exhibit 4a 
ELR and Dev Paths for Insurer #1 
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Exhibit 4b 
ELR and Dev Paths for Insurer #2 
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Exhibit 4c 
ELR and Dev Paths for Insurer #3 
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Exhibit 4d 
ELR and Dev Paths for Insurer #3 
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5. MODEL DIAGNOSTICS 

The model specified in Sections 2 and 3 predicts that the losses in each (AY, Lag) cell are a 

mixture of 500 Tweedie distributions. For a given value x in an (AY, Lag) cell, the cumulative 

probability is given by:  

    
500

, , , , ,
1

1
| , , ,

500
AY Lag n AY Lag n AY Lag

n

F x ptweedie x p


    (10) 

and the mean loss for each (AY, Lag) cell is given by: 

 
500

, , ,
1

1
,

500
AY Lag n AY Lag

n

    (11) 

where n,AY,Lag and n,AY,Lag are given by Equations 1 and 6 for each Parmn, and ptweedie is the 

cumulative distribution function for the Tweedie distribution. 

Denote the cumulative probabilities of each observed data point xAY,Lag by pAY,Lag = FAY,Lag(xAY,Lag). 

Both the AY,Lags and the pAY,Lags are given in Appendix B. Table 3 shows that the sum of the actual 

losses and the predicted losses are in excellent agreement. 

Table 3 

 Actual Expected Ratio 

Insurer 
10 10

,
1 11

AY Lag
AY Lag AY

x
  
   

10 10

,
1 11

AY Lag
AY Lag AY  

   
Actual

Expected
 

1 269,804 269,916  0.9996 

2 114,873 114,202  1.0059 

3 394,629 394,854  0.9994 

4 1,793,604 1,822,626  0.9841 

 

For a well-fitting model one should expect that the collection of probabilities {pAY,Lag} will be 

uniformly distributed on the interval from zero to one. Following Meyers (2007b) this can be 

checked graphically with P-P plots. These plots compare the sorted probabilities, {pAY,Lag}, with the 

expected probabilities. If the sorted probabilities are indeed uniform, the points in these plots will lie 

on a 45o line.  

Exhibits 5a-5d provide P-P plots for each of the four insurers. One should expect random 

variation from the 45o line, and so the P-P plots also include confidence bands at the 99% and the 

95% level based on the Kolmogorov-Smirnov test. 



Technical Provisions in Solvency II: What EU Insurers Could Do if They Had Schedule P 

Casualty Actuarial Society E-Forum, Fall 2010 21 

If the probabilities, {pAY,Lag}, are truly random, one should also expect these probabilities to be 

independent of accident year, settlement lag, and calendar year (i.e., AY+Lag – 1). Exhibits 5a-5d 

also contain plots of the probabilities against these variables. These plots are analogous to those 

described by Barnett and Zehnwirth (2000).  

Here are some casual observations about the diagnostics. 

 The P-P plots for all four insurers lie within the 99% confidence bands. The plots for 

Insurers 1, 2 and 3 all lie within the 95% confidence band, although the plot for Insurer 1 

is just barely inside that band. The plot for Insurer 4 lies outside the 95% band. 

 For Insurer 1, the set {pAY,Lag} for the first two accident years appears to be less spread 

out than expected. 

 For Insurer 3, the small amount of overlap in the pAY,Lags in the later calendar years shows 

evidence of instability in the calendar year trend. 

 For Insurer 4, the clearly nonrandom pattern in the calendar year plot leads to rather 

strange-looking patterns in the accident year and settlement lag plots.  

In spite of the excellent agreement between the sum of the actual and the expected losses as 

identified in Table 3, the statistical diagnostics identify some potential problems with the model fits.   
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Exhibit 5a 
Diagnostic Plots for Insurer #1 
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Exhibit 5b 
Diagnostic Plots for Insurer #2 
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Exhibit 5c 
Diagnostic Plots for Insurer #3 
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Exhibit 5d 
Diagnostic Plots for Insurer #4 
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6. RETROSPECTIVE TESTS 

As stated in the introduction, Solvency II requires insurers to have “processes and procedures in 

place to insure that best estimates, and the assumptions underlying the calculation of the best 

estimates, are regularly compared against experience.” This section shows how to use the model to 

predict the distribution of paid loss outcomes for the next calendar year. Observing the next 

calendar year’s total paid loss, 
10

,12
2

AY AY
AY

x 

 , one can check to see if the cumulative probability of 

that sum, as determined by its predictive distribution, lies within a normal range, say 0.05 to 0.95. 

One way to determine this predictive distribution is to take a large sample, say 10,000 or so, of 

random Xs from the following simulation algorithm. 

Simulation Algorithm 1 

1. Select a random parameter set from the list,     , ,, , , ,n n n n n AY n Lagsev t c ELR DevP . 

2. For each (AY,Lag) cell in next calendar year (AY = 2,…,10, Lag = 12 – AY): 

a. Calculate AY,Lag from Equation 1. 

b. Calculate AY,Lag from Equation 6.  

c. Select a random loss XAY,Lag from a Tweedie distribution with parameters p = 

1.67, AY,Lag, and AY,Lag.  

3. Set AYAY
AY




  12,

10

2

 

Following Meyers (2009), this paper uses the fast Fourier transform (FFT) to calculate the 

predictive distributions. It is faster and more numerically precise, but admittedly harder to 

implement. The R code for doing this is included in Appendix A. 

When comparing the predictive distributions of this paper with predictive distributions derived 

from formulas in other papers, e.g., Mack (1993), one should be careful to distinguish between the 

predictive distribution of estimates,
10

,12
2

AY AY
AT




 
 

 
 , and the predictive distribution of outcomes, 

10

,12
2

AY AY
AY

X 


 
 
 
 . For retrospective tests we need the latter. Exhibits 6a-6d below provide the 

predictive distributions for both random variables.  

After fitting the model to the 1997 paid loss triangle, I then obtained test data consisting of 

incremental paid loss data from the 1998 Schedule P and calculated the implied p-value for 
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10

,12
2

AY AY
AY

x 


 
 
 
 . That and other summary statistics are in Table 4. P-values for individual cell losses 

in the test data are given in Appendix B.  

Table 4 

 Actual Expected Ratio  

Insurer 
10

,12
2

AY AY
AY

x 

  

10

,12
2

AY AY
AY




  
Actual

Expected
 p-value 

1 41,403 40,240 102.89% 0.6408 

2 11,082 13,089 84.67% 0.1080 

3 46,735    57,389   81.44% 0.0019 

4 102,257 212,926 48.02% 0.0000 

 

Here are some casual observations about the results. 

 The agreement between actual and expected results is not as good as obtained when 

fitting the data. Taken by itself, that is not necessarily a bad result. The test data contained 

only a single calendar year of data, while the data used for fitting contained 10 calendar 

years of data. The law of large numbers does not have a large enough number to work its 

magic. 

 The p-values for Insurers 1 and 2 appear to be in the normal range. Thus, no change in 

assumptions seems necessary at this time. 

 The p-value for Insurer 3 appears to be out of the normal range. If we examine the cell p-

values for the test data in Appendix B, we see that all except the (AY,Lag) = (9,3) appear 

to be normal. The abnormality for the total calendar year loss appears to be caused by 

one bad cell. To test this, I calculated the predictive distribution for that same calendar 

year without the (9,3) cell. The results of this calculation are in Table 5 below. With that 

adjustment, the p-value moves into the normal range. An investigation into the (9,3) cell 

is called for. It may be a simple miscode, or some unusual event that caused the outlier. 
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Table 5 

 Actual Expected Ratio  

Insurer 
10

,12
2, 9

AY AY
AY

x 
 
  

10

,12
2, 9

AY AY
AY


 

  
Actual

Expected
 p-value 

3 35,861 39,063 91.80% 0.1646 

 

 The extraordinarily low p-value for Insurer 4 cannot be explained by a single outlier. In 

looking at the cell p-values for the test data in Appendix B, one can see several cells with 

low p-values. This indicates there is something wrong with the structure of the model. 

This was apparent in the diagnostics, Exhibit 5d, of the previous section. The 

extraordinarily high c parameter and the very noticeable swings in the cell p-values by 

calendar provide an early indication of the problems with the model when applied to 

Insurer 4.  

 

 



Technical Provisions in Solvency II: What EU Insurers Could Do if They Had Schedule P 

Casualty Actuarial Society E-Forum, Fall 2010 29 

Exhibit 6a 
Predictive Distributions for Insurer #1 
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Exhibit 6b 

Predictive Distributions for Insurer #2 
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Exhibit 6c 

Predictive Distributions for Insurer #3 
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Exhibit 6d 

Predictive Distributions for Insurer #4 
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7. BEST ESTIMATES AND RISK MARGINS 

As stated in the introduction, according to the Solvency II Framework Directive: 

“The value of the technical provisions shall be equal to the sum of a best estimate and a risk 

margin.” 

“The best estimate shall correspond to the probability-weighted average of future cash flows, 

taking account of the time value of money using the relevant risk-free interest rate term structure.” 

“The risk margin shall be calculated by determining the cost of providing an amount of eligible 

own funds equal to the Solvency Capital Requirement necessary to support the insurance obligations 

over the lifetime thereof.” 

This section shows how to use the model developed above to calculate the current estimate and 

the risk margin.  

Let’s start with the best estimate. Given that the future cash flows generated by the Metropolis-

Hastings algorithm are equally likely, the formula for the best estimate becomes. 

 
 

10 10 500

, , 11.5
2 12 1

1 1
,

500 1
n AY Lag AY Lag

AY Lag AY n i
 

   

 
  

 
    (12) 

where i is the “relevant risk-free interest rate.” This formula assumes that the liabilities expire 

mid-year. 

Articles 104 and 105 of the Framework Directive call for the Solvency Capital Requirement to 

have sufficient capital to cover losses over the next 12 months with a probability (Value-at-Risk or 

VaR) of 99.5%. Both the time horizon of one year and the VaR standard are controversial among 

actuaries. 

Instead of the VaR requirement, many actuaries prefer the Conditional Tail Expectation (CTE), 

which is the average of all outcomes above a given percentile (say 99%) of the outcomes. Another 

common name for the CTE is the Tail Value at Risk (TVaR). My speculation on why the EU chose 

the VaR requirement is that many feel uncomfortable calculating tail probabilities at the high end of 

the distribution of outcomes. I believe that when one calculates the distribution of outcomes as 

described above, the VaR and TVaR calculations are equally reliable. So the examples in this paper 

will use the TVaR at 99% to calculate the Solvency Capital Requirement. 

A rationale for the one-year time horizon is that it will provide regulators sufficient time to take 

corrective action if necessary. Not everybody agrees. As we shall see below, the choice of the time 

horizon can make a significant difference in the risk margin. This paper will calculate the risk margin 

assuming both a single year and a 100-year time horizon.  
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The first risk margin formula discussed here is called the Capital Cash Flow (CCF) risk margin. In 

words, this formula assumes that the insurer’s investors need to put up capital to take on the loss 

reserve risk. As claims are settled, the insurer expects to release capital over time. The CCF risk 

margin is the profit that the insurer’s investors would need to be persuaded to take on this risky 

venture. 

We will now discuss the details. Let: 

 i = Risk-free rate of return on investments. 

 r = Total rate of return demanded by the reinsurer for taking additional insurance risk. 

 t = Time the loss reserve liability is set. 

 Ct = Amount of capital required to support an insurance portfolio at time t. 

First look at the cash flow of the insurance transaction. 

 At time t = 0, investors contribute a sum of C0 to the insurer, which earns a risk-free rate 

of return, i, over the next year. 

 At time t = 0, the investors collects a (market value) risk margin, MVMCCF. Equivalently, 

one could say that the investor contributes C0 − MVMCCF to the insurer. 

 At time t = 1, the investors expect to keep C1 invested in the insurer, and they expect to 

receive a cash flow C0(1+i) – C1 at the end of year 1. Since the loss the insurers are 

required to pay and C1 is uncertain, the investors discount the value of the amount 

returned at the risky rate of return r > i. 

 Continuing on to time t, the investors expect to keep Ct invested in the insurer, and they 

expect a cash flow of Ct-1(1+i) – Ct at the end of year t.  

Since the cash flows are uncertain, it is appropriate to discount the cash flow at the risky rate of 

return, r. This leads to the following expression,  
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This equation implies 
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(14)

 

There are two other risk margin formulas that involve slightly similar calculations. Let’s call the 

next formula MVMSST because of its similarity to that used in the Swiss Solvency Test 
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  (15) 

MVMSST differs from MVMCCF in two ways. First it discounts the Cts at the risk-free rate i, rather 

than the risky rate r. Second, it starts at time t = 1 rather than at time t = 0. 

Let’s call the last risk margin formula MVMQIS4 because of its resemblance to that used by some 

in their response to the CEIOPS Quantitative Impact Survey #4, 

  
 4 1
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t
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MVM r i
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  (16) 

MVMQIS4 differs from MVMSST in that it starts at time t = 0. 

I used the term “resemblance” in the description of MVMSST and MVMQIS4 because we now use a 

different calculation of Ct.. 

For a one-year time horizon, C0 depends upon the distribution of the sum of outcomes in calen- 

dar year 11, i.e., 




10

2
12,

AY
AYAYX  . Simulation Algorithm 1 describes the distribution of these losses. 

Other calendar years and other time horizon involve random sums over different sets of (AY,Lag) 

cells, and Simulation Algorithm 1 can be modified to accommodate any given set of cells. As in the 

previous section, this paper uses the FFT methodology to calculate the predictive distribution of 

outcomes and the TVaR statistics.  
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Tables 7 and 8 below describe the calculation of the Cts for the one year and the 10 year time 

horizons for Insurer 1. The calculation accounts for the time value of money. Table 6 shows the 

result of the best estimate and risk margin calculations for Insurer 1 for two time horizons and the 

three risk margin formulas above. 

Table 6 

Insurer 1 

r = 
10% i =4%  Best Estimate = 91,220 

Time 
Horizon MVMCCF % 

MVMS

ST % 
MVM
QIS4 % 

1 1,994 2.2% 1,854 2.0% 2,411 2.6% 

10 5,082 5.6% 4,736 5.2% 6,129 6.7% 
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Table 7 

(1) (2) (3) (4) (5) (6) (7) (8) 

t Nom
tL  Nom

tL  Disc
tL  TVaRNom

t  TVaRNom
t TVaRDisc

t  Ct 

0 40,375 13,882 37,526 52,875 15,933 48,415 10,889

1 26,493 12,004 24,870 36,942 15,641 34,103 9,233 

2 14,490 6,867 13,624 21,301 8,603 19,516 5,893 

3 7,622 3,661 7,165 12,698 4,741 11,524 4,358 

4 3,962 1,919 3,719 7,957 2,606 7,150 3,432 

5 2,042 766 1,910 5,352 834 4,779 2,869 

6 1,276 484 1,205 4,517 230 4,119 2,914 

7 792 341 760 4,287 190 4,050 3,290 

8 451 451 442 4,097 4,097 4,017 3,575 

 

(1) The time, t, after the liability is set. 

(2) The expected value of payments in the next calendar year, 
10

,12
2

t

Nom
AY t AY

AY t

L  
 

  . 

(3) 1
Nom Nom Nom
t t tL L L    . 

(4) The discounted liability, 
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 . 

(5) The Tail-Value-at-Risk, i.e., the conditional expected value of the random loss, 

10

,12
2

AY t AY
AY t

X  
 
 , given that the loss exceeds the 99th percentile. 

(6) ΔTVaR
Nom
t =TVaR

Nom
t -TVaR

Nom
t 1 . 

(7) The discounted TVaR
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The needed capital at time t is expected to be TVaRDisc Disc
t t tC L  .  
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Table 8 

(1) (2) (3) (4) (5) (6) (7) (8)

t Nom
tL  Nom

tL
Disc
tL TVaRNom

t
TVaRNom

t TVaRDisc
t  Ct

0 97,503 40,375 91,220 128,894 48,491 118,529 27,309
1 57,128 26,493 53,695 80,403 31,742 73,819 20,124
2 30,635 14,490 28,824 48,661 17,133 44,401 15,576
3 16,145 7,622 15,201 31,528 9,412 28,705 13,504
4 8,523 3,962 8,035 22,116 6,225 20,255 12,219
5 4,561 2,042 4,317 15,891 4,321 14,717 10,400
6 2,519 1,276 2,407 11,570 3,673 10,899 8,493
7 1,243 792 1,202 7,898 3,801 7,590 6,388
8 451 451 442 4,097 4,097 4,017 3,575

(1) The time, t, after the liability is set. 

(2) The expected value of all future payments, 
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(5) The Tail-Value-at-Risk, i.e., the conditional expected value of the random loss, 
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(8) The needed capital at time t is expected to be TVaRDisc Disc
t t tC L  .  
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8. NEXT STEPS 

The goal of this paper was to demonstrate how publicly available data can be used to calculate the 

technical provisions in Solvency II. This is a purely hypothetical exercise, since the publicly available 

data is in America, and Solvency II applies to the European Union. 

Even if the Americans were to adopt something like Solvency II, or the Europeans were to adopt 

reporting requirements similar to the American Schedule P, there is more work to be done. The 10 

years of paid data reported in Schedule P are reasonably close to final for commercial auto. But 

losses in other lines of insurance can take longer than 10 years to settle. Schedule P does have 

incurred data that can be useful in getting estimates of outstanding losses beyond the 10-year 

maturity reporting limit of Schedule P. There are loss reserving methods now available that integrate 

both paid and incurred data. See, for example, Quarg and Mack (2008) or Posthuma, Cator, 

Veerkamp, and van Zwet (2008). One thing that could be done is to integrate Schedule P incurred 

losses into the empirical Bayesian framework developed in this paper. 



Technical Provisions in Solvency II: What EU Insurers Could Do if They Had Schedule P 

Casualty Actuarial Society E-Forum, Fall 2010 40 

REFERENCES 

[1.] Barnett, Glen and Ben Zehnwirth, “Best Estimates for Reserves,” Proceedings of the Casualty Actuarial Society 
LXXXVII , 2000, 245-321. 

[2.] Clark, David R., “LDF Curve Fitting and Stochastic Loss Reserving: A Maximum Likelihood Approach,” 
Casualty Actuarial Society Forum, Fall 2003, pp. 41-92,  
http://www.casact.org/pubs/forum/03fforum/03ff041.pdf. 

[3.] Mack, T., “Distribution-Free Calculation of the Standard Error of Chain-Ladder Reserve Estimates,” ASTIN 
Bulletin 23, 1993, pp. 213-225, http://www.casact.org/library/astin/vol23no2/213.pdf. 

[4.] Meyers, Glenn G., “The Common Shock Model for Correlated Insurance Losses,” Variance 1:1, 2007a, pp. 40-
52, http://www.variancejournal.org/issues/01-01/040.pdf. 

[5.] Meyers, Glenn G., “Estimating Predictive Distributions for Loss Reserve Models,” Variance 1:2, 2007b, pp. 
248-272, http://www.variancejournal.org/issues/01-02/248.pdf. 

[6.] Meyers, Glenn G., “Thinking Outside the Triangle,” ASTIN Colloquium, 2008. 
http://www.actuaries.org/ASTIN/Colloquia/Orlando/Papers/Meyers.pdf. 

[7.] Meyers, Glenn G., “Stochastic Loss Reserving with the Collective Risk Model,” Variance 3:2, 2009, pp. 239-269, 
http://www.variancejournal.org/issues/03-02/239.pdf.. 

[8.] Posthuma, B., E.A. Cator, W. Veerkamp, and E.W. van Zwet, “Combined Analysis of Paid and Incurred 
Losses,” CAS E-Forum, Fall 2008, http://www.casact.org/pubs/forum/08fforum/12Posthuma.pdf. 

[9.] Quarg, Gerhard, and Thomas Mack, “Munich Chain Ladder: A Reserving Method that Reduces the Gap 
between IBNR Projections Based on Paid Losses and IBNR Projections Based on Incurred Losses,” Variance 
2:2, 2008, pp. 266-299, http://www.variancejournal.org/issues/02-02/266.pdf. 

[10.] Smyth, Gordon K. and Bent Jørgensen, “Fitting Tweedie’s Compound Poisson Model to Insurance Claims 
Data: Dispersion Modeling,” ASTIN Bulletin, Vol. 32, No. 1, 2002, pp. 143-157,  
http://www.casact.org/library/astin/vol32no1/143.pdf. 

 

 



Technical Provisions in Solvency II: What EU Insurers Could Do if They Had Schedule P 

Casualty Actuarial Society E-Forum, Fall 2010 41 

APPENDIX A – ANNOTATED R CODE 

The methodology in this paper follows that of Meyers (2009). This appendix assumes that the 

reader is familiar with the methodology of that paper. I think the methodology needs further 

development before it can be considered to be mature. This paper makes a few evolutionary steps 

along that path.  

This paper makes two improvements over the code in Meyers (2009). 

First it adds the sev, t, and c parameters to the model. Note that Simulation Algorithm 4 or Meyers 

(2009) introduces the {ELR} and {Dev} parameters into the Metropolis-Hastings algorithm in two 

separate steps. This paper introduces the sev and t parameters into the algorithm as an additional 

step, and then introduces the c parameter as a second additional step. 

Next it revises the “speedy Tweedie” approximation of Appendix B of Meyers (2009). The 

function “dtweedie” in R’s Tweedie package is relatively slow compared to other density functions 

available in R. Appendix B makes use of the fact that the dtweeedie works nearly as fast on vectors 

as it does on single numbers. So it calculates the function dtweedie(y,p,y,) over a vector y that 

spans the range needed. It then approximates the function by a single cubic polynomial. This paper 

attains a more accurate approximation with a piecewise cubic interpolation that is just as fast. 

To run the program, you input the name of a comma separated value file containing the first four 

columns of the data in Appendix B. You then specify the names of the various output files 

(identified with various tables in the paper. Finally you have to provide a list of cells whose random 

sum you want to predict. It generally consists of cells that make up one or more calendar years. 

When testing against holdout data, you must take care to match the cells in the holdout data with the 

list of cells the go into the predictive distribution.  

Hopefully the program comments make this clear.  
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# 
# Input 
# 
insurer="Insurer 1 Data.csv"        # input file 
adata=read.csv(insurer) 
outname="Insurer 1 Summary"         # Table 3 and Table 6 
#outname2="Insurer 1 Cells.csv"     # Appendix B  comment out if not testing 
#outname3="Insurer 1 Test.csv"      # Table 4     comment out if not testing 
tweedie.p=1.67 
npost=500 
# 
# set up the (AY,Lag) pairs included in the predictive distribution 
# 
# in ayXX and lagXX below, the XX refers to the calendar year 
# 
ay11=2:10 
lag11=12-ay11 
ay12=3:10 
lag12=13-ay12 
ay13=4:10 
lag13=14-ay13 
ay14=5:10 
lag14=15-ay14 
ay15=6:10 
lag15=16-ay15 
ay16=7:10 
lag16=17-ay16 
ay17=8:10 
lag17=18-ay17 
ay18=9:10 
lag18=19-ay18 
ay19=10:10 
lag19=20-ay19 
# 
# select which (AY,Lag) cells to include in predictive distribution 
# 
# examples 
# use for the next calendar year 
pred.ay=ay11 
pred.lag=lag11 
# use for all outstanding losses 
#pred.ay=c(ay11,ay12,ay13,ay14,ay15,ay16,ay17,ay18,ay19) 
#pred.lag=c(lag11,lag12,lag13,lag14,lag15,lag16,lag17,lag18,lag19) 
# use for insurer 1 retro test (missing ay=3) 
#ayins1=c(2,4,5,6,7,8,9,10) 
#lagins1=12-ayins1 
# use for insurer 3 retro test (missing ay=2) 
#ayins3=3:10 
#lagins3=12-ayins3 
cys=unique(pred.lag+pred.ay-1) 
# 
# discretized gamma severity distribution 
# 
library(actuar) 
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discrete.gamma<-function(tau,p,h,fftn){ 
    alpha=(2-p)/(p-1) 
    theta=tau/alpha 
    m=2^fftn 
    dpar<-rep(0,m) 
    x<-h*0:(m-1) 
    lev=levgamma(x,alpha,scale=theta) 
    dpar[1]=1-lev[2]/h 
    dpar[2:(m-1)]=(2*lev[2:(m-1)]-lev[1:(m-2)]-lev[3:(m)])/h 
    dpar[m]=1-sum(dpar[1:(m-1)]) 
    return(dpar) 
    } # end discrete.gamma function 
# 
# model with variable dev,elr,sev,con 
# 
fact.crm.llike1=function(dev,elr,sev,con){ 
  cyt=sev[2]^(rdata$ay+rdata$lag-1) 
  eloss=rdata$premium*dev[rdata$lag]*elr[rdata$ay]*cyt 
  phi=(eloss^(1-tweedie.p)*sev[1]*tau[rdata$lag])/(2-tweedie.p)+ 
              con*eloss^(2-tweedie.p) 
  llike=ldtweedie.scaled(rdata$loss,eloss,phi) 
  return(sum(llike)) 
  } 
num=250 
front=matrix(0,num,10) 
log.y1=front 
log.ybot=0 
library(statmod) 
library(tweedie) 
ldtweedie.front=function(y,lyf,lf){ 
  ly=log(y) 
  del=lyf[2]-lyf[1] 
  low=pmax(floor((ly-lyf[1])/del),1) 
  d01=(lf[low+1]-lf[low])/del 
  d12=(lf[low+2]-lf[low+1])/del 
  d23=(lf[low+3]-lf[low+2])/del 
  d012=(d12-d01)/2/del 
  d123=(d23-d12)/2/del 
  d0123=(d123-d012)/3/del 
  ld=lf[low]+(ly-lyf[low])*d01+(ly-lyf[low])*(ly-lyf[low+1])*d012+ 
             (ly-lyf[low])*(ly-lyf[low+1])*(ly-lyf[low+2])*d0123 
  return(ld) 
  } 
# 
ldtweedie.scaled=function(y,mu,phi){ 
  dev=y 
  ll=y 
  k=(1/phi)^(1/(2-tweedie.p)) 
  ky=k*y 
  yp=ky>0 
  dev[yp]=2*((k[yp]*y[yp])^(2-tweedie.p)/((1-tweedie.p)* 
     (2-tweedie.p))-k[yp]*y[yp]*(k[yp]*mu[yp])^(1-tweedie.p)/ 
     (1-tweedie.p)+(k[yp]*mu[yp])^(2-tweedie.p)/(2-tweedie.p)) 
  ll[yp]=log(k[yp])+ldtweedie.front(ky[yp],log.y1,front)-dev[yp]/2 
  ll[!yp]=-mu[!yp]^(2-tweedie.p)/phi[!yp]/(2-tweedie.p) 
  return(ll) 
  } 



Technical Provisions in Solvency II: What EU Insurers Could Do if They Had Schedule P 

Casualty Actuarial Society E-Forum, Fall 2010 44 

 
# 
# log prior and proposal density functions 
# 
log.prior=function(dev,elr,sev,con){ 
  ld=dgamma(dev,alpha.dev,scale=theta.dev,log=T) 
  le=dgamma(elr,alpha.elr,scale=theta.elr,log=T) 
  ls=dgamma(sev,alpha.sev,scale=theta.sev,log=T) 
  lc=dgamma(con,alpha.con,scale=theta.con,log=T) 
  return(sum(ld,le,ls,lc)) 
  } 
 
log.proposal.den=function(x,m,alpha){ 
  d=dgamma(x,alpha,scale=m/alpha,log=T) 
  return(sum(d)) 
  } 
# 
# main program 
# 
# initialize variables for metropolis hastings 
# 
set.seed(12345) 
nmh=11000                    # number of MH scenarios 
# 
# parameters for the prior distribution 
# 
alpha.sev=c(1.367644674,1290.230651) 
theta.sev=c(136.2478465,0.00076972) 
alpha.con=0.074005011 
theta.con=0.139142639 
alpha.elr=c(29.85060994,33.8347283, 35.33377535,24.49077508,28.66183085, 
           25.63407528,16.80427236,14.36801632,9.305348568,6.366703316) 
theta.elr=c(0.023695076,0.022680106,0.021353992,0.028504884,0.025371532, 
       0.030388169,0.050089616,0.060203232,0.101715232,0.160927171) 
alpha.dev=c(15.80995889,42.85381689,56.49438570,30.45284406,10.23093999, 
            5.809417079,3.695390712,2.393367923,1.355938768,0.455240196) 
theta.dev=c(0.013514659,0.005874493,0.003588986,0.004605868,0.008501860, 
            0.008263645,0.006753167,0.005653256,0.006622295,0.020023956) 
tau=1-(1-(1:10)/10)^3 
alpha.prop.elr=500 
alpha.prop.sev=500 
alpha.prop.con=500 
alpha.prop.dev=2000*alpha.dev*theta.dev 
# 
# get insurer data and set up tweedie model 
# 
rdata=subset(adata,adata$ay+adata$lag<12) #separate test data from fitting 
data 
# 
# set up the 'speedy tweedie' calculation 
# 
eloss.max=max(rdata$loss) 
phi.min=eloss.max^(1-tweedie.p)*tau[1]/2/(2-tweedie.p) 
k.max=(1/phi.min)^(1/(2-tweedie.p)) 
log.ytop=log(eloss.max*k.max) 
log.ybot=0 
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del=(log.ytop-log.ybot)/num 
log.y1=seq(from=log.ybot,to=log.ytop,length=num) 
front=log(dtweedie(exp(log.y1),tweedie.p,exp(log.y1),1)) 
# 
# initialize metropolic hastings arrays and select starting values 
# 
mh.dev=matrix(0,nmh,10) 
mh.elr=mh.dev 
mh.sev=matrix(0,nmh,2) 
mh.con=mh.sev 
mh.dev[1,]=alpha.dev*theta.dev  # use prior mean for mh starting values 
mh.elr[1,]=alpha.elr*theta.elr 
mh.sev[1,]=alpha.sev*theta.sev 
mh.con[1]=alpha.con*theta.con 
prev.log.post=fact.crm.llike1(mh.dev[1,],mh.elr[1,],mh.sev[1,],mh.con[1])+ 
              log.prior(mh.dev[1,],mh.elr[1,],mh.sev[1,],mh.con[1]) 
# 
# generate samples using mh algorithm 
# 
  for (i in 2:nmh){ 
    devmh=rgamma(10,shape=alpha.prop.dev,scale=mh.dev[i-1,]/alpha.prop.dev) 
    devmh=devmh/sum(devmh) 
    u=log(runif(1)) 
    log.post=fact.crm.llike1(devmh,mh.elr[i-1,],mh.sev[i-1,],mh.con[i-1])+ 
                   log.prior(devmh,mh.elr[i-1,],mh.sev[i-1,],mh.con[i-1]) 
    r=log.post-prev.log.post+ 
      log.proposal.den(mh.dev[i-1,],devmh,alpha.prop.dev)- 
      log.proposal.den(devmh,mh.dev[i-1,],alpha.prop.dev) 
    mh.dev[i,]=mh.dev[i-1,] 
    if(u<r){ 
      mh.dev[i,]=devmh 
      prev.log.post=log.post 
      } 
    # 
    elrmh=rgamma(10,shape=alpha.prop.elr,scale=mh.elr[i-1,]/alpha.prop.elr) 
    u=log(runif(1)) 
    log.post=fact.crm.llike1(mh.dev[i,],elrmh,mh.sev[i-1,],mh.con[i-1])+ 
                   log.prior(mh.dev[i,],elrmh,mh.sev[i-1,],mh.con[i-1]) 
    r=log.post-prev.log.post+ 
      log.proposal.den(mh.elr[i-1,],elrmh,alpha.prop.elr)- 
      log.proposal.den(elrmh,mh.elr[i-1,],alpha.prop.elr) 
    mh.elr[i,]=mh.elr[i-1,] 
    if(u<r){ 
      mh.elr[i,]=elrmh 
      prev.log.post=log.post 
      } 
    # 
    sevmh=rgamma(2,shape=alpha.prop.sev,scale=mh.sev[i-1,]/alpha.prop.sev) 
    u=log(runif(1)) 
    log.post=fact.crm.llike1(mh.dev[i,],mh.elr[i,],sevmh,mh.con[i-1])+ 
                   log.prior(mh.dev[i,],mh.elr[i,],sevmh,mh.con[i-1]) 
    r=log.post-prev.log.post+ 
      log.proposal.den(mh.sev[i-1,],sevmh,alpha.prop.sev)- 
      log.proposal.den(sevmh,mh.sev[i-1,],alpha.prop.sev) 
    mh.sev[i,]=mh.sev[i-1,] 
    if(u<r){ 
      mh.sev[i,]=sevmh 
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      prev.log.post=log.post 
      } 
    conmh=rgamma(1,shape=alpha.prop.con,scale=mh.con[i-1]/alpha.prop.con) 
    u=log(runif(1)) 
    log.post=fact.crm.llike1(mh.dev[i,],mh.elr[i,],mh.sev[i,],conmh)+ 
                   log.prior(mh.dev[i,],mh.elr[i,],mh.sev[i,],conmh) 
    r=log.post-prev.log.post+ 
      log.proposal.den(mh.con[i-1],conmh,alpha.prop.con)- 
      log.proposal.den(conmh,mh.con[i-1],alpha.prop.con) 
    mh.con[i]=mh.con[i-1] 
    if(u<r){ 
      mh.con[i]=conmh 
      prev.log.post=log.post 
      } 
    } 
# 
# sample mh parameters 
# 
samp=sample(1001:nmh,size=npost) 
# 
# calculate predited percentiles of observed losses in training data 
# 
pctloss=rep(0,dim(rdata)[1]) 
meanloss=pctloss 
tpct=rep(0,npost) 
for (i in 1:dim(rdata)[1]){ 
  cyt=mh.sev[samp,2]^(rdata$ay[i]+rdata$lag[i]-1) 
  mu=rdata$premium[i]*mh.elr[samp,rdata$ay[i]]*mh.dev[samp,rdata$lag[i]]*cyt 
  meanloss[i]=mean(mu) 
  phi=(mu^(1-tweedie.p)*mh.sev[samp]*tau[rdata$lag[i]])/(2-tweedie.p)+ 
       mh.con[samp]*mu^(2-tweedie.p) 
  for (j in 1:npost){ 
    tpct[j]=ptweedie(rdata$loss[i],tweedie.p,mu[j],phi[j]) 
    } 
  pctloss[i]=mean(tpct) 
  if (rdata$loss[i]==0) pctloss[i]=pctloss[i]*runif(1) 
  } 
# 
# plot results 
# 
windows(record=T) 
# 
# trace plot of estimates 
# 
nmh.pred=rep(0,nmh) 
ay.prem=rep(0,10) 
for (j in unique(pred.ay)){ 
  ay.prem[j]=mean(rdata$premium[rdata$ay==j]) 
  } 
pred.mean=rep(0,nmh) 
for (i in 1:nmh){ 
  for (j in unique(pred.ay)){ 
    ayp=(pred.ay==j) 
    for (k in pred.lag[ayp]){ 
      cyt=mh.sev[i,2]^(j+k-1) 
      nmh.pred[i]=nmh.pred[i]+ay.prem[j]*mh.elr[i,j]*mh.dev[i,k]*cyt 
      } 
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    } 
  } 
plot(1:nmh,nmh.pred,type="l",main="Trace Plot for Mean Loss") 
# 
# plot of elr paths 
# 
set.seed(12345) 
prior.elr=matrix(0,1000,10) 
for (j in 1:1000){ 
  prior.elr[j,]=rgamma(10,shape=alpha.elr,scale=theta.elr) 
  } 
par(mfrow=c(2,1)) 
plot(1:10,prior.elr[1,],ylim=range(0,1.5*prior.elr), 
       main="ELR Paths", 
       xlab="Accident Year",ylab="ELR",type="n") 
legend("topleft",legend=c("Posterior","Prior"), 
       col=c("black","grey"),lwd=c(3,3)) 
for (j in 1:1000){ 
  par(new=T) 
  plot(1:10,prior.elr[j,],ylim=range(0,1.5*prior.elr),main="", 
         xlab="",ylab="",col="grey",type="l") 
  } 
for (j in samp){ 
  par(new=T) 
  plot(1:10,mh.elr[j,],ylim=range(0,1.5*prior.elr),main="", 
         xlab="",ylab="",col="black",type="l",lwd=1) 
    } 
# 
# plot of dev paths 
# 
prior.dev=matrix(0,1000,10) 
for (j in 1:1000){ 
  prior.dev[j,]=rgamma(10,shape=alpha.dev,scale=theta.dev) 
  } 
 
plot(1:10,prior.dev[1,],ylim=range(0,prior.dev), 
       main="Dev Paths", 
       xlab="Settlement Lag",ylab="Dev",type="n") 
legend("topright",legend=c("Posterior","Prior"), 
       col=c("black","grey"),lwd=c(3,3)) 
for (j in 1:1000){ 
  par(new=T) 
  plot(1:10,prior.dev[j,],ylim=range(0,prior.dev),main="", 
         xlab="",ylab="",col="grey",type="l") 
  } 
for (j in samp){ 
  par(new=T) 
  plot(1:10,mh.dev[j,],ylim=range(0,prior.dev),main="", 
         xlab="",ylab="",col="black",type="l",lwd=1) 
    } 
# 
# plot of severity parameters 
# 
par(mfrow=c(2,1)) 
prior.sev1=rgamma(1000,alpha.sev[1],scale=theta.sev[1]) 
hist(prior.sev1,main="Prior Distribution of 'sev' Parameter",  
  xlim=range(prior.sev1,mh.sev[,1]),xlab="sev") 
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hist(mh.sev[samp,1],xlim=range(prior.sev1,mh.sev[,1]),xlab="sev", 
 main="Posterior Distribution of 'sev' Parameter") 
# 
# plot of calendar year trend parameters 
# 
par(mfrow=c(2,1)) 
prior.sev2=rgamma(1000,alpha.sev[2],scale=theta.sev[2]) 
hist(prior.sev2,main="Prior Distribution 't' Parameter", 
  xlim=range(prior.sev2,mh.sev[,2]),xlab="t") 
hist(mh.sev[samp,2],xlim=range(prior.sev2,mh.sev[,2]),xlab="t", 
 main="Posterior Distribution of 't' Parameter") 
# 
# plot of contagion parameters 
# 
par(mfrow=c(2,1)) 
prior.con=rgamma(1000,alpha.con,scale=theta.con) 
hist(prior.con,main="Prior Distribution of 'c' Parameter", 
  xlim=range(prior.con,mh.con),xlab="c") 
hist(mh.con[samp],xlim=range(prior.con,mh.con),xlab="c", 
 main="Posterior Distribution of 'c' Parameter") 
# 
# pp plot of cell loss percentiles for training data 
# 
par(mfrow=c(2,2)) 
# 
# pp plot of cell loss percentiles for training data 
# 
plot(sort(pctloss),1:length(pctloss)/ 
    (1+length(pctloss)), 
    xlim=c(0,1),ylim=c(0,1),xlab="Predicted P",ylab="Observed P", 
    main="PP Plot") 
crit.val1=1.63/sqrt(length(pctloss)) # 1.36 for 5%, 1.63 for 1% 
crit.val2=1.36/sqrt(length(pctloss)) 
abline(0,1,lwd=3) 
abline(crit.val1,1) 
abline(-crit.val1,1) 
abline(crit.val2,1) 
abline(-crit.val2,1) 
# 
#  plots of ay, lag and calendar year vs percentile for training data 
# 
plot(rdata$ay,pctloss,main="AY vs Cell Percentiles",ylim=c(0,1), 
     xlab="AY",ylab="Observed P") 
plot(rdata$lag,pctloss,main="Lag vs Cell Percentiles",ylim=c(0,1), 
     xlab="Lag",ylab="Ovserved P") 
plot(rdata$ay+rdata$lag-1,pctloss,main="CY vs Cell Percentiles", 
     ylim=c(0,1),xlab="CY",ylab="Observed P") 
# 
# calculate predictive distributions of outcomes - takes some time 
# 
 
fftn=14 
h=max(rdata$premium)*10/2^fftn 
niceh=c(5,10,20,25,40,50,75,100,125,150,200,250,500,750,1000) 
h=min(subset(niceh,niceh>h)) 
x=h*(0:(2^fftn-1)) 
phiz=matrix(0,2^fftn,9) 
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phix=complex(2^fftn,0,0) 
postnum=0 
eloss=matrix(0,length(samp),length(pred.ay)) 
for (k in 1:npost){ 
  i=samp[k] 
  phixp=complex(2^fftn,1,0) 
  for (j in 1:length(pred.ay)){ 
    ay=pred.ay[j] 
    lag=pred.lag[j] 
    premium=min(subset(rdata$premium,rdata$ay==ay)) 
    tau1=mh.sev[i,1]*tau[lag]*mh.sev[i,2]^(ay+lag-1) 
    phiz=fft(discrete.gamma(tau1,tweedie.p,h,fftn)) 
    eloss[k,j]=premium*mh.elr[i,ay]*mh.dev[i,lag]*mh.sev[i,2]^(ay+lag-1) 
    lam=eloss[k,j]/tau1 
    phixp=phixp*exp(lam*(phiz-1)) 
    }  
  phix=phix+phixp 
  postnum=postnum+1 
  print(postnum) 
  } 
pred=round(Re(fft(phix/npost,inverse=TRUE)),12)/2^fftn 
mean.outcome=sum(x*pred) 
sd.outcome=sqrt(sum(x*x*pred)-mean.outcome^2) 
pred.range=(x>.6*mean.outcome)&(x<1.4*mean.outcome) 
# 
# plot distribution of estimates 
# 
par(mfrow=c(2,1)) 
pred.mean=rowSums(eloss) 
hist(pred.mean, 
   main="Posterior Distribution of Estimates", 
   xlim=range(x[pred.range]),xlab="Reserve Estimate (000)", 
   sub=paste("Mean =",format(round(mean(pred.mean)),big.mark=","), 
   " Standard Deviation =",format(round(sd(pred.mean)),big.mark=","))) 
# 
# plot distribution of outcomes 
# 
xb=(x[cumsum(pred)>.99]) 
pb=pred[cumsum(pred)>.99] 
tvar=sum(xb*pb)/sum(pb) 
predb=pred[pred.range] 
plot(x[pred.range],predb/h,type="l",col="black",lwd=3, 
     ylim=c(0,max(predb/h)), 
     xlim=range(x[pred.range]), 
     main="Predictive Distribution of Outcomes", 
     xlab="Reserve Outcome (000)",ylab="Predictive Probability Density", 
     sub=paste("Mean =",format(round(mean.outcome),big.mark=","), 
     "  Standard Deviation =",format(round(sd.outcome),big.mark=","))) 
# 
# write out summary statistics including tvar 
# 
outlab=c("input data","train sum actual","train sum predicted","train sum 
ratio") 
outlab=c(outlab,"pred mean","pred sd est","pred.sd out","pred tvar","cyid") 
results=rep(0,9) 
results[1]=insurer 
results[2]=sum(rdata$loss) 
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results[3]=sum(meanloss) 
results[4]=sum(rdata$loss)/sum(meanloss) 
results[5]=mean.outcome 
results[6]=sd(pred.mean) 
results[7]=sd.outcome 
results[8]=tvar 
results[9]=sum(unique(pred.ay+pred.lag-1)) 
df.results=data.frame(outlab,results) 
df.results 
outname=paste(outname,results[9],".csv") 
write.csv(df.results,file=outname,row.names=F) 
# 
# calculate predited percentiles of observed losses in test data 
# 
edata=subset(adata,adata$ay+adata$lag>11) #separate test data from fitting 
data 
e.pctloss=rep(0,dim(edata)[1]) 
e.meanloss=e.pctloss 
tpct=rep(0,npost) 
for (i in 1:dim(edata)[1]){ 
  cyt=mh.sev[samp,2]^(edata$ay[i]+edata$lag[i]-1) 
  mu=edata$premium[i]*mh.elr[samp,edata$ay[i]]*mh.dev[samp,edata$lag[i]]*cyt 
  e.meanloss[i]=mean(mu) 
  phi=(mu^(1-tweedie.p)*mh.sev[samp]*tau[edata$lag[i]])/(2-tweedie.p)+ 
       mh.con[samp]*mu^(2-tweedie.p) 
  for (j in 1:npost){ 
    tpct[j]=ptweedie(edata$loss[i],tweedie.p,mu[j],phi[j]) 
    } 
  e.pctloss[i]=mean(tpct) 
  if (edata$loss[i]==0) e.pctloss[i]=e.pctloss[i]*runif(1) 
  } 
# 
# calculate p-value for test data 
# 
actual=sum(edata$loss) 
predicted=round(sum(e.meanloss)) 
ratio=round(100*actual/predicted,2) 
b=(x<actual) 
pvalue=round(max(cumsum(pred)[b]),4) 
pvalue 
testout=data.frame(actual,predicted,ratio,pvalue) 
write.csv(testout,file=outname3,row.names=F) 
# 
# reproduce Insurer X Data 
# 
test=rep(0,dim(rdata)[1]) 
e.test=rep(1,dim(edata)[1]) 
ay=c(rdata$ay,edata$ay) 
lag=c(rdata$lag,edata$lag) 
premium=c(rdata$premium,edata$premium) 
loss=c(rdata$loss,edata$loss) 
pctloss=c(pctloss,e.pctloss) 
meanloss=c(meanloss,e.meanloss) 
test=c(test,e.test) 
cell.results=data.frame(ay,lag,premium,loss,pctloss,meanloss,test) 
cell.results 
write.csv(cell.results,outname2,row.names=F) 
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APPENDIX B – INSURER DATA 

This appendix contains the data for the four insurers analyzed in this paper, along with selected 

results particular to the accident year and settlement lag. The first four columns were used to fit the 

model. What follows is a description of each data element. 

1. Accident Year (1987=1)  

2. Settlement Lag 

3. Net Premium 

4. Incremental Paid Net Loss 

5. P-value – FAY,Lag(xAY,Lag) (Equation 10) 

6. Mean of the predictive distribution –μAY,Lag (Equation 11) 

7. Test Indicator (= 0 if used for fitting, =1 in used for testing) 
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APPENDIX B – INSURER #1 

AY Lag Premium Loss p-value E[Loss] Test 
1 1 29,701 5,234 0.62800  4,979.25 0 
1 2 29,701 5,172 0.59792  4,978.05 0 
1 3 29,701 3,708 0.40137 4,025.16 0 
1 4 29,701 1,783 0.25697  2,297.84 0 
1 5 29,701 923 0.31750  1,224.53 0 
1 6 29,701 537 0.47430 627.50 0 
1 7 29,701 175 0.45819  266.75 0 
1 8 29,701 145 0.58558 175.37 0 
1 9 29,701 8 0.36715 110.23 0 
2 1 27,526 5,234 0.46129  5,383.23 0 
2 2 27,526 5,683 0.62545  5,385.46 0 
2 3 27,526 4,392 0.54172 4,355.15 0 
2 4 27,526 2,134 0.35274 2,485.43 0 
2 5 27,526 1,377 0.58789 1,323.74 0 
2 6 27,526 673 0.56343  678.62 0 
2 7 27,526 155 0.38298  287.97 0 
2 8 27,526 81 0.40826 189.45 0 
2 9 27,526 47 0.50786 118.20 0 
3 1 30,750 5,702 0.37457 6,117.66 0 
3 2 30,750 5,865 0.44487 6,111.99 0 
3 3 30,750 7,966 0.98836 4,945.90 0 
3 4 30,750 2,472 0.36650 2,822.51 0 
3 6 30,750 143 0.03003 770.53 0 
3 7 30,750 152 0.32027 326.31 0 
3 8 30,750 73 0.33895 215.34 0 
4 1 35,814 6,349 0.73986 5,706.63 0 
4 2 35,814 4,611 0.18397 5,704.71 0 
4 3 35,814 3,959 0.29187 4,617.25 0 
4 4 35,814 2,522 0.47976 2,635.60 0 
4 5 35,814 1,924 0.82504 1,402.37 0 
4 6 35,814 622 0.46919 719.95 0 
4 7 35,814 206 0.45015  303.85 0 
5 1 42,277 8,377 0.80655 7,291.36 0 
5 2 42,277 6,890 0.41615 7,290.34 0 
5 3 42,277 4,055 0.06994 5,897.94 0 
5 4 42,277 3,795 0.70103 3,363.19 0 
5 5 42,277 1,292 0.24508 1,791.99 0 
5 6 42,277 1,422 0.85865  918.92 0 
6 1 50,088 9,291 0.13432 11,322.40 0 
6 2 50,088 13,836 0.88970 11,316.67 0 
6 3 50,088 12,441 0.95467 9,154.43 0 
6 4 50,088 4,086 0.19012 5,224.03 0 
6 5 50,088 2,293 0.31767 2,780.94 0 
7 1 56,921 12,029 0.51493 12,071.18 0 
7 2 56,921 12,462 0.59261 12,068.66 0 
7 3 56,921 8,369 0.24543 9,759.61 0 
7 4 56,921 7,034 0.85965  5,567.06 0 
8 1 61,406 13,119 0.65267 12,416.19 0 
8 2 61,406 12,618 0.56142 12,410.83 0 
8 3 61,406 9,117 0.33922 10,037.48 0 
9 1 67,983 15,860 0.56056 15,630.32 0 
9 2 67,983 14,893 0.41787 15,622.43 0 
10 1 73,359 16,498 0.51160 16,687.70 0 
2 10 27,526 0 0.36054 143.28 1 
4 8 35,814 194 0.62159 201.01 1 
5 7 42,277 324 0.51047 390.57 1 
6 6 50,088 1,769 0.74071 1,427.91 1 
7 5 56,921 4,783 0.95281 2,972.68 1 
8 4 61,406 7,954 0.92811 5,735.63 1 
9 3 67,983 12,655 0.52867 12,650.30 1 
10 2 73,359 13,724 0.20078 16,718.34 1 
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APPENDIX B – INSURER #2 

AY Lag Premium Loss p-value E[Loss] Test 
1 1 15,274 3,718 0.63752 3,538.62 0 
1 2 15,274 3,243 0.68616 2,962.24 0 
1 3 15,274 1,889 0.25142 2,350.47 0 
1 4 15,274 1,697 0.45221 1,826.75 0 
1 5 15,274 731 0.39982 904.88 0 
1 6 15,274 770 0.85561 434.59 0 
1 7 15,274 287 0.67785 242.21 0 
1 8 15,274 1,086 0.98831 245.97 0 
1 9 15,274 49 0.58684 97.24 0 
1 10 15,274 20 0.55321 89.22 0 
2 1 15,722 3,844 0.53156 3,819.48 0 
2 2 15,722 4,196 0.92276 3,197.64 0 
2 3 15,722 2,806 0.67816 2,536.67 0 
2 4 15,722 2,310 0.72096 1,973.39 0 
2 5 15,722 414 0.09853 977.83 0 
2 6 15,722 78 0.08000 467.88 0 
2 7 15,722 232 0.56845 261.61 0 
2 8 15,722 36 0.18582 265.54 0 
2 9 15,722 5 0.38171 104.54 0 
3 1 16,266 3,854 0.68477 3,594.26 0 
3 2 16,266 3,378 0.72771 3,010.23 0 
3 3 16,266 1,860 0.21581 2,387.61 0 
3 4 16,266 1,736 0.45833 1,857.23 0 
3 5 16,266 662 0.32273 920.45 0 
3 6 16,266 697 0.81186 439.60 0 
3 7 16,266 20 0.14912 245.46 0 
3 8 16,266 228 0.58356 249.83 0 
4 1 17,017 3,184 0.66632 2,975.79 0 
4 2 17,017 1,948 0.18750 2,493.52 0 
4 3 17,017 1,670 0.32708 1,979.80 0 
4 4 17,017 1,257 0.33866 1,538.59 0 
4 5 17,017 1,433 0.92792 761.65 0 
4 6 17,017 217 0.37523 364.88 0 
4 7 17,017 190 0.60559 203.25 0 
5 1 18,016 2,837 0.19607 3,335.78 0 
5 2 18,016 3,180 0.74147 2,793.63 0 
5 3 18,016 1,794 0.26688 2,216.25 0 
5 4 18,016 2,923 0.96200 1,723.16 0 
5 5 18,016 1,035 0.70247 853.66 0 
5 6 18,016 136 0.19534 408.70 0 
6 1 18,395 3,380 0.44921 3,482.92 0 
6 2 18,395 2,394 0.21652 2,916.78 0 
6 3 18,395 2,859 0.80912 2,313.58 0 
6 4 18,395 1,836 0.56140 1,798.69 0 
6 5 18,395 763 0.44185 891.65 0 
7 1 18,932 4,948 0.64629 4,715.55 0 
7 2 18,932 3,288 0.20046 3,948.47 0 
7 3 18,932 4,385 0.93990 3,130.72 0 
7 4 18,932 2,024 0.30727 2,437.57 0 
8 1 20,857 5,116 0.60750 4,936.96 0 
8 2 20,857 4,466 0.67641 4,131.59 0 
8 3 20,857 2,659 0.22562 3,276.81 0 
9 1 24,348 5,702 0.63089 5,466.01 0 
9 2 24,348 3,953 0.24678 4,577.60 0 
10 1 24,030 5,450 0.48231 5,527.01 0 
2 10 15,722 0 0.32000 95.88 1 
3 9 16,266 124 0.73523 99.20 1 
4 8 17,017 99 0.42612 207.58 1 
5 7 18,016 42 0.23582 228.69 1 
6 6 18,395 497 0.66174 427.07 1 
7 5 18,932 1,118 0.48390 1,208.99 1 
8 4 20,857 2,558 0.53458 2,553.63 1 
9 3 24,348 2,531 0.09281 3,632.89 1 
10 2 24,030 4,113 0.30838 4,635.13 1 
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APPENDIX B – INSURER #3 

AY Lag Premium Loss p-value E[Loss] Test 
1 1 39,383 7,701 0.32545 8,174.66 0 
1 2 39,383 7,072 0.32563 7,615.81 0 
1 3 39,383 8,473 0.94002 6,589.57 0 
1 4 39,383 3,549 0.34291 3,969.54 0 
1 5 39,383 3,327 0.85339 2,512.85 0 
1 6 39,383 1,804 0.64478 1,630.75 0 
1 7 39,383 817 0.69365 669.91 0 
1 8 39,383 330 0.64372 298.40 0 
1 9 39,383 105 0.33264 281.69 0 
1 10 39,383 63 0.48387 160.76 0 
2 1 44,770 9,609 0.78559 8,816.87 0 
2 2 44,770 9,540 0.86835 8,213.95 0 
2 3 44,770 5,755 0.12805 7,108.68 0 
2 4 44,770 3,198 0.12712 4,282.46 0 
2 5 44,770 1,898 0.15681 2,711.84 0 
2 6 44,770 1,912 0.63151 1,756.90 0 
2 7 44,770 602 0.45221 723.08 0 
2 8 44,770 122 0.29190 320.84 0 
2 9 44,770 462 0.76641 303.63 0 
3 1 50,914 10,780 0.70914 10,187.56 0 
3 2 50,914 8,570 0.24187 9,491.07 0 
3 3 50,914 7,062 0.19366 8,214.06 0 
3 4 50,914 5,220 0.62343 4,946.45 0 
3 5 50,914 4,849 0.95961 3,134.63 0 
3 6 50,914 2,220 0.63779 2,031.78 0 
3 7 50,914 488 0.24846 834.47 0 
3 8 50,914 239 0.41814 371.71 0 
4 1 56,904 9,098 0.32524 9,619.73 0 
4 2 56,904 8,974 0.51734 8,959.88 0 
4 3 56,904 8,522 0.73617 7,753.12 0 
4 4 56,904 4,985 0.63832 4,672.87 0 
4 5 56,904 2,864 0.48789 2,955.96 0 
4 6 56,904 1,576 0.33841 1,917.89 0 
4 7 56,904 857 0.62105 787.71 0 
5 1 62,551 9,446 0.19963 10,441.16 0 
5 2 62,551 9,620 0.48453 9,727.04 0 
5 3 62,551 10,928 0.96008 8,417.18 0 
5 4 62,551 5,506 0.67673 5,069.52 0 
5 5 62,551 1,973 0.07126 3,209.63 0 
5 6 62,551 1,858 0.41349 2,082.31 0 
6 1 67,205 13,791 0.67421 13,226.53 0 
6 2 67,205 11,656 0.34160 12,322.62 0 
6 3 67,205 11,664 0.75153 10,661.42 0 
6 4 67,205 5,323 0.18643 6,421.71 0 
6 5 67,205 3,731 0.39758 4,067.67 0 
7 1 74,056 16,783 0.53513 16,707.39 0 
7 2 74,056 17,370 0.85083 15,560.35 0 
7 3 74,056 10,413 0.03875 13,467.69 0 
7 4 74,056 9,144 0.77486 8,113.31 0 
8 1 81,035 17,389 0.62141 16,946.46 0 
8 2 81,035 15,132 0.36836 15,783.79 0 
8 3 81,035 13,653 0.51292 13,658.91 0 
9 1 90,568 22,871 0.54331 22,723.13 0 
9 2 90,568 20,819 0.45069 21,167.46 0 
10 1 99,940 22,916 0.47903 23,057.99 0 
3 9 50,914 169 0.35782 352.10 1 
4 8 56,904 372 0.62074 351.26 1 
5 7 62,551 607 0.34127 856.37 1 
6 6 67,205 2,079 0.26920 2,638.39 1 
7 5 74,056 6,121 0.79950 5,138.10 1 
8 4 81,035 8,253 0.52544 8,230.16 1 
9 3 90,568 10,874 0.00027 18,325.98 1 
10 2 99,940 18,260 0.10827 21,496.17 1 
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APPENDIX B – INSURER #4 

AY Lag Premium Loss p-value E[Loss] Test 
1 1 267,666 33,810 0.23507 45,787.91 0 
1 2 267,666 45,318 0.34147 54,471.20 0 
1 3 267,666 46,549 0.60459 44,198.73 0 
1 4 267,666 35,206 0.71245 30,137.93 0 
1 5 267,666 23,360 0.84899 16,758.58 0 
1 6 267,666 12,502 0.68697 10,818.72 0 
1 7 267,666 6,602 0.65542 5,883.45 0 
1 8 267,666 3,373 0.64375 3,018.67 0 
1 9 267,666 2,373 0.63989 2,176.39 0 
1 10 267,666 778 0.50883 1,138.65 0 
2 1 274,526 37,663 0.36921 44,076.07 0 
2 2 274,526 51,771 0.53039 52,532.45 0 
2 3 274,526 40,998 0.50420 42,610.85 0 
2 4 274,526 29,496 0.56482 29,101.82 0 
2 5 274,526 12,669 0.32337 16,191.71 0 
2 6 274,526 11,204 0.62130 10,418.89 0 
2 7 274,526 5,785 0.58105 5,664.48 0 
2 8 274,526 4,220 0.80284 2,908.03 0 
2 9 274,526 1,910 0.54331 2,088.72 0 
3 1 268,161 40,630 0.44228 44,604.21 0 
3 2 268,161 56,318 0.61502 53,036.35 0 
3 3 268,161 56,182 0.82143 43,011.27 0 
3 4 268,161 32,473 0.65752 29,363.66 0 
3 5 268,161 15,828 0.52041 16,328.33 0 
3 6 268,161 8,409 0.35092 10,522.64 0 
3 7 268,161 7,120 0.73419 5,721.56 0 
3 8 268,161 1,125 0.13471 2,948.32 0 
4 1 276,821 40,559 0.54905 40,480.52 0 
4 2 276,821 49,755 0.58209 48,176.91 0 
4 3 276,821 39,323 0.55355 39,099.08 0 
4 4 276,821 24,081 0.44189 26,694.41 0 
4 5 276,821 13,209 0.43920 14,806.69 0 
4 6 276,821 12,655 0.79588 9,561.64 0 
4 7 276,821 2,921 0.19429 5,198.07 0 
5 1 270,214 37,515 0.47765 39,993.47 0 
5 2 270,214 51,068 0.62719 47,562.16 0 
5 3 270,214 34,410 0.42354 38,619.62 0 
5 4 270,214 25,529 0.51768 26,323.12 0 
5 5 270,214 19,433 0.80611 14,676.52 0 
5 6 270,214 5,728 0.17976 9,452.97 0 
6 1 280,568 41,454 0.47870 44,192.46 0 
6 2 280,568 53,552 0.57022 52,642.06 0 
6 3 280,568 40,599 0.49452 42,665.27 0 
6 4 280,568 40,026 0.85032 29,100.24 0 
6 5 280,568 6,750 0.04135 16,206.07 0 
7 1 344,915 57,783 0.50911 60,172.70 0 
7 2 344,915 68,136 0.49687 71,598.64 0 
7 3 344,915 86,915 0.90859 58,013.32 0 
7 4 344,915 18,328 0.04564 39,731.67 0 
8 1 371,139 62,011 0.43460 69,225.13 0 
8 2 371,139 132,553 0.94135 82,082.69 0 
8 3 371,139 21,083 0.00703 66,759.41 0 
9 1 323,753 112,592 0.91665 72,997.37 0 
9 2 323,753 33,783 0.02117 87,133.82 0 
10 1 221,448 38,181 0.44006 43,939.91 0 
2 10 274,526 887 0.56864 1,116.16 1 
3 9 268,161 1,662 0.46527 2,132.64 1 
4 8 276,821 1,043 0.15090 2,686.03 1 
5 7 270,214 2,898 0.19996 5,153.72 1 
6 6 280,568 5,513 0.11725 10,453.71 1 
7 5 344,915 11,551 0.09181 22,134.60 1 
8 4 371,139 17,129 0.01972 45,665.08 1 
9 3 323,753 24,089 0.01220 70,644.07 1 
10 2 221,448 37,485 0.28817 52,940.26 1 
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Anatomy of  Actuarial Methods of  Loss Reserving 

Prakash Narayan, Ph.D., ACAS 

______________________________________________________________________________ 
Abstract: This paper evaluates the foundation of loss reserving methods currently used by actuaries in property 

casualty insurance. The chain-ladder method, also known as the weighted loss development method in North 
America, is the most commonly used actuarial technique for loss reserving and setting liabilities for 
property/casualty insurers. Many actuaries believe that the basic assumption underlying this model is the 
future development of losses is dependent on losses to date for each accident year. We shall see that this is 
not the case and the method may be rooted in the complete independence of future loss development. The 
alternative assumptions are, in this author’s opinion, a more natural way of analyzing the loss triangle. We 
shall also show that most of the methods used by actuaries are based on one common basic model, and the 
differences lie in how and which of the parameters are being estimated. The exposition provides some new 
insight to reserving methods. While it enriches our understanding of the loss reserving process and defines 
the common thread among various methods, it challenges some commonly held views in the actuarial 
profession. The exposition here points out a flaw in the Bornhuetter-Ferguson methodology as well as 
questions the basic framework of the loss development methodology. We shall show that we can obtain the 
same results as the loss development method under the assumption that the future losses are independent of 
what we know currently. 

We introduce a new method, termed the exposure development method, which has some advantages over 
traditional loss development methods in some situations. The proposed methodology allows us to construct 
several new estimators. One can estimate the ultimate losses by combining the information gleaned from 
paid losses and the incurred loss triangles. Most importantly, this methodology provides better analytical 
tools to examine the model, look for outliers, and provides an alternative method of estimating the variability 
of reserves. 

              

INTRODUCTION 

The results presented in this paper are quite basic and there is no need to review the current state 

of knowledge to proceed. For brevity, it will be appropriate to refer to them as needed in our 

exposition. Let Xi,j denote the losses paid for the accident year i in the jth year of development, where 

i, j =1, 2 … n. We assume that we have observed Xi, j for i + j < n + 2 and are interested in 

estimating Xi, j for i + j = n + 2, n + 3 … 2n. Once we have estimated these, we could add them and 

compute the ultimate losses. In this paper, we restrict our attention to the development period n and 

assume that the losses are fully developed by that time. Any development beyond period n is outside 

the scope of the results presented here. Although we will mainly focus on the paid loss triangle, the 

methodology presented here can equally be applied to incurred or reported loss triangles. We also 

assume that we have some information available about the exposure for each accident year. For 

example, the earned premium for each accident year may be known. Although any measure of 

exposure will suffice for our purpose. If we have prior information about the ultimate losses, that 

may be used as an exposure base as well and might possibly be the best exposure base. The ultimate 

losses are exposure times a rate, and they are identical if the loss rate is constant. Sometimes we have 
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used these interchangeably and the author assumes that does not cause any misunderstanding. As we 

shall see, the assumed knowledge of exposures is for exposition of the ideas presented here and is 

not necessary. Let us denote Ei be the exposure amount for the accident year i. We shall use the 

Buhlman (1967) method to estimate the average loss by development period. 

We compute  
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However, we do not need to compute r1, so the number of parameters we need and use is only n 

- 1. If we use earned premium as a proxy for the exposure, the method is known as the partial loss 

ratio method. One should note that this method does not assume any relationship between 

development periods. We estimate 

 jiji rEX ,
ˆ   for  1 nji . (1.2) 

This method, although somewhat popular in Europe, is seldom used in North America. 

However, we shall see that this method can be used as the building block of the loss development 

method. 

Now let us assume that the exposures Eis are not known and we want to estimate them from the 

data itself. It will suffice for our purpose if we have the estimates of relative exposure levels for each 

accident year, and that information is sufficient to compute rj and hence the values of the unpaid 

losses, which is our primary goal. We assume that the exposure level for the first accident year is 

unity (E1 = 1) and try to estimate the future accident years’ exposure relative to the first accident 

year’s exposure. We compute what we call exposure development factors (EDFs). 

  (1.3) 

It may be easy to relate these factors to weighted loss development factors. All we have done is 

changed the process of loss development from operating in columns to operating in rows. 

Let us define 

 kk dddD  21 . (1.4) 

Dk is the estimated total earned exposure by accident year k +1 relative to accident year 1. 

These exposure development factors can then be used to estimate the relative individual accident 

year exposures. The exposure for accident year k +1 relative to the first accident year is 1 kk DD . 
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We could use these estimated relative exposures to compute rk and then using equation (1.2) 

compute the unknown elements of the loss rectangle. 

One should note that we have estimated 2(n - 1) parameters in the process, (n - 1) parameters for 

the exposure level and another (n - 1) parameters for the development period rates.  

It is interesting to note that one need not compute the payment year rates. One can directly 

estimate the unobserved element by computing 

 1,ˆ
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One can easily verify that the results so obtained are the same that one would obtain by the more 

elaborate procedure stated earlier. Similar to the loss development method, this requires computing 

only (n - 1) parameters. We will call this method the exposure development method. The exposure 

development method has its advantages over the loss development method and may be a better way 

of analyzing loss triangles, as we shall see further on. We have defined our computational scheme 

based on incremental loss data. For computational purpose, it may be better to use cumulative loss 

triangles as we do in the loss development method. The computational procedure for the exposure 

development method is similar to the weighted loss development method. The difference is that we 

first transpose the incremental loss triangle and use this triangle to compute the cumulative loss 

triangle and carry out the same computation as for the weighted loss development method. 

A quite surprising observation is that the estimates so obtained are those that one would obtain if 

the weighted loss development method had been used. The proof is trivial and one can easily verify 

that the formula for estimating Xi,j for the exposure development method is equivalent to the 

weighted loss development method, where the unobserved Xi,j are estimated by the formula 

 . (1.6) 

Where unobserved values of Xi,j used in equation (1.6) are estimated first and then are treated as 

the observed values in the equation. The pictorial view shown in Figure 1 helps illustrate the 

approach better. The symbols A, B, C and D represent the sum of incremental losses of the area 

they cover. The right top formula in the figure 1, represents the estimate when weighted loss 

development method is used. The bottom left is the formula for exposure development, and the 

bottom right is the formula when we first estimated the exposure levels and then use Buhlman’s 

method. We do not show the calculation of exposures (F in the formula in Figure 1) as it cancels 

out. 
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The important point to note is that by using the alternate derivation (i.e., if we compute the 

relative exposures first and then use equation (1.2)) we have estimated 2(n - 1) parameters and arrive 

at the same answer as the weighted loss development method or the exposure development method, 

which appear to have (n - 1) parameters. The contrast in the number of parameters is puzzling. The 

only explanation I have come up with is based on our misunderstanding of what we are trying to 

estimate. The general belief that our aim in loss reserving is to find a number for the value of 

ultimate losses that will be paid when all the claims arising from that accident year are finally settled 

does not follow statistical logic. In a statistical framework, the ultimate losses are a random variable. 

A random variable cannot be estimated. The statistical methods are not meant to estimate a random 

outcome or the results of a flip of a coin. All one can do is to estimate the parameters associated 

with the random process that are generating the random variable based on the observed data. To 

predict a random variable, first we compute (in most cases) the expected value of the random 

variable we want to predict. Then we try to estimate that expected value based on the available 

information or the estimated parameters of the random process. It should be clear that the estimator 

itself is a function of observed data and hence a random variable and its expected value need not 

match the expected value of the random variable we want to predict. If the two quantities are equal, 

the estimate is an unbiased estimator. The unbiasedness may be desirable criteria and in many cases, 

it may be preferred, but it is not always a best estimate and in many cases, it may not be possible to 

find an unbiased estimator. If we accept this notion of estimating the parameters of the loss process, 

the discrepancy we observe in the number of parameters can be explained. We are estimating both 

the relative exposures and the payout pattern and the true number of parameters is 2(n - 1). The 

individual year ultimate losses are themselves parameters of the random process and should be 

counted as such when we use the weighted loss development method or the exposure development 

method. I would like to add one other observation that is relevant to our discussion of number of 

the parameters. Technically, if we are interested in total ultimate losses for all accident years 
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combined, we need to compute just one parameter. The estimated ultimate loss for all accident year 

by the weighted loss development method is same as the exposure development factor Dn-1 times the 

first accident year total paid losses by age n. The result can also be obtained by multiplying the sum 

of paid losses for all accident years in the first year with the age 1 to n ultimate weighted loss 

development factor. This will imply that we need only one parameter in estimating the all accident 

years combined ultimate loss.  

I would like to point out that Lehigh (2007) has expressed similar views. He states that we use 

losses of prior development years as a proxy for exposure. However, the fact may be that we are 

estimating the exposure levels as well and not realizing it. 

The exposure-based method does not assume any relationship between future losses and the paid 

losses to date. After the Mack (1993) paper, there is strong feeling among actuaries that the use of 

loss development methods has an implicit assumption that future development is dependent on 

current observation. It was one of the basic assumptions of Mack’s method that future losses 

depend on losses paid to date by a constant factor. Chu, and Venter (1998) discusses methods to test 

this assumption. 

It is well known that under the assumption that Xi,j are independently distributed Poisson or 

multinomial variates, the same results as the weighted loss development method are obtained and 

the proof can be found in Renshaw and Verrall (1998). Therefore, the claim that 2(n - 1) parameters 

are being estimated, or the losses to be paid in future are independent of paid to date, is not new. 

One important difference in the method presented here is that our assumptions are slightly less 

restrictive. Renshaw and Verral require that both the column and row sum for the observed data be 

positive whereas we require only row sum to be positive. 

The exposure development introduced here can also use simple averages of the exposure 

development factors, similar to what is done in the simple average loss development method. 

However, the two results from loss development and exposure development will not coincide. As 

we shall see, in the weighted loss development method, there is a balancing going on and that causes 

the exposure development and loss development results to coincide. Actuaries generally prefer 

weighted loss development factors over simple average loss development factors. Using simple 

averages of the exposure development factors will be confusing if the incremental loss is negative 

and is therefore not recommended. However, simple averages can be used for estimating rates. It 

may provide an alternative estimate of the ultimate losses and can be used in making a selection of 

the reserve requirements. We shall return to these issues later in the paper. 

In the next section, we introduce yet another alternative computational procedure that reinforces 

the same idea and further strengthens the view that we are estimating both exposure and payout of 
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the ultimate losses. That computational scheme has its own merit and utility besides strengthening 

the ideas presented here. The computational scheme is quite versatile, and helps us in assessing the 

validity or the appropriateness of the model. It identifies any outliers in our data and opens up a new 

area for further research, as well as provides a tool for estimating the variability of our reserve 

estimates. 

In section 3, we define the basic model of loss reserving and discuss the common thread among 

most of the classical actuarial methods of loss reserving. The model presented is not new and one 

form or another has been presented by many authors, however the perspective here is different. The 

reader is encouraged to read Mack and Venter to get a better understanding of the issues and 

controversies. 

Section 4 is quite brief and focused on the basic assumptions of loss development methods and 

some of the actuarial adjustments that are made in practice. We also discuss the validity of the 

method for policy year and report year losses.  

Section 5 is devoted to an example where we carry out an analysis of a selected paid loss triangle 

and test its appropriateness.  

In section 6, we discuss variability in the estimation of ultimate losses. We provide a simple 

simulation approach to attack the problem but most of the details are left to the reader to extend 

and modify the approach as needed for analyzing the data in hand. 

In section 7, we focus on the exposure development method and see how it can be used to deal 

with another important issue, which is using both paid and incurred loss data. As we shall see the 

new methodology provides us a variety of different ways to achieve it. We define several new 

estimators and see how information available, from incurred loss data, can be used along with paid 

loss data to refine our results.  

SECTION 2: INDEPENDENCE OF ACCIDENT YEAR 

Most actuaries are familiar with categorical contingency tables and Chi Square test of 

independence. If we classify a population in two or more different categories and each of these 

classifications have two or more groups and we count the number of observations by category, we 

have a contingency table. For example, we may be interested in whether education level depends on 

gender. We may take a sample and count the number of people that have high school degree, a two-

year college degree, a four-year college degree or a postgraduate degree separately for males and 

females and carry out a test to see whether education level differs for males and females. We shall 

not get into the computational details here, as that is not the purpose of the presentation. However, 
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one can see the similarity and the differences with a loss triangle. The categories are accident years 

and development years and instead of counts we have paid loss amounts. The most important 

difference is that the loss dollars are not scalars and the lower half triangle of the loss rectangle is not 

known and our aim is to estimate them. However, it should not deter us from computing the 

expected value of each cell as we do in analyzing a contingency table. 

Let us assume that we have all the observations in our loss rectangle. Let us define  
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 . (2.3) 

Define  

  (2.4) 

 

However, we do not know some of the Xi,j and aim to estimate them from the observed data to 

date. We shall use an iterative procedure to achieve this. We assign the value 0 to all unknown Xi,j 

and use equation (2.4) to compute them. This is our first iteration and will give us an estimate of 

unobserved Xi,j. We substitute these estimated values in place of the previously assigned values of 

zero for unobserved Xi,j. We update the values of Ri, Cj, and T and use equation 2.4 again to revise 

our estimate for unknown Xi,j. We repeat the process until it converges. The process will converge as 

long as each of the original Ris are positive (i.e., each accident year has positive exposure). The proof 

is messy and left to the reader. We only state that the estimates obtained by the weighted loss 

development method are a solution satisfying the stated criterion. The important point to note is 

that the process converges to the same values as the exposure development method and the 

weighted loss development method. Clearly we have estimated 2(n - 1) parameters. 

This computing method is estimating the losses to be paid for accident years 2, 3 … n assuming 

that the loss payments are independent of accident year and that losses paid so far have nothing to 

do with future loss payments. A typical question one may ask is whether it is possible to test the 
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assumption of independence. The answer is unfortunately no. One can compute statistics similar to 

Chi-Square as we do for contingency tables, but loss amounts are not scalar (i.e., if we restated the 

loss amounts in cents rather than dollars the value of the statistics so computed will be 100 times 

larger). We need a suitable scaling factor to test the assumption of independence. There is no 

satisfactory solution to the problem and we leave it as a challenge to the actuarial profession. One 

solution the author suggests is, if the claim count data is also available, the scaling factor can be 

approximated by the ratio of estimated total loss dollars for all accident years divided by the 

estimated total claim count for all accident years. One will divide the computed Chi-Square type 

statistics by this number and consider it distributed as Chi Square with nn 22   degrees of freedom. 

This technique has two problems. First, the estimated scaling factor is a random variable and second 

the scaling factors may be different for each cell due to inflation and varying average claim size by 

payment lag.  

We cannot test the appropriateness of the assumption of independence of accident year and 

payment year lag. However, it does not prevent us from testing the suitability of the model. We have 

estimated both exposure and payment patterns and can obtain the estimates for each of the 

observed values and compute the residuals. These residuals can be tested for randomness, any 

pattern in accident year and payment year lag, as well as any outliers in the data. We can also 

compute the explained variation of the model and other statistics for goodness of fit of the model. 

We have analyzed a paid loss triangle data and shall discuss these results later in the paper. 

One additional advantage of this iterative procedure is that we can use it when some data points 

are missing or when we believe the residuals are too large for some data elements and want to 

remove them from the analysis. These data points can be treated in the same manner as unobserved 

data points in the iterative estimation process. The only data elements one cannot remove are Xn,1 

and X1,n for the obvious reasons. The removal of individual data elements and the ability to fit the 

original model allows us to compute model skill as introduced by Jing, Lebens, and Lowe (2009) in 

the actuarial field. There are additional advantages to removing a data element, as we shall see later. 

SECTION 3: BASIC MODEL OF LOSS RESERVING METHODS 

We shall define a model that is basic to almost all of the classical actuarial methods. 

 ijjiji ebaX , . (3.1) 

Where 

ai is the accident year i total loss, 

bj is proportion of losses to be paid in payment lag j and is constant for all 
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  accident years, and 

eij are error terms with mean zero and variance that may not be constant. 

This model has 2n - 2 parameters, as there are 2 constraints  
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a1 is presumed known and equals R1 defined earlier.  

 

This model can be re-parameterized as 

 ijjiji ebaX  , , (3.2) 

where 
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 , ia is ai / and  represents total expected loss amount for all accident years 

combined. 

Now we shall explore the various actuarial methods and see how these are related to this basic 

model. 

3.1 Weighted Loss Development Method: In this method the parameters of the model are 

estimated such that 
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The weighted loss development method or the exposure development method introduced here 

can be used to solve the above system of equations. The iterative procedure may be a systematic 

approach to find the same solution. We call it a systematic method merely to convey the idea that a 

mathematician given the problem and not exposed to actuarial methods will probably proceed that 

way. 

3.2 Buhlman Method: We have already seen this method. In this method, as are known and we 

estimate b parameters. 

3.3 Bornhuetter-Ferguson Method: In this method we assume to have prior knowledge of 

ultimate losses. However, we do not use this information to compute the payment pattern. The 

payment pattern is derived as in the weighted loss development method, which presumes no 

knowledge of exposure or loss amounts. We then use this computed payment pattern and the prior 
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known ultimate losses to estimate unknown loss values. The method is sometimes referred to as the 

combining of observed data and prior knowledge. However, this prior knowledge is not fully utilized 

to estimate the parameters to be used in the forecast. The method will be the same as the Buhlman 

method if the prior knowledge of ultimate loss is used in estimating the payment pattern. 

3.4 Cape-Cod Method: This method is similar to Bornhuetter-Ferguson (B-F) method. We 

assume that we know the premium amount for each accident year but not the loss ratio. The loss 

ratio is derived from equating the actual paid to date losses for all accident years to the estimated 

percentage of earned premium. This method has the same basic flaw that the B-F method has. The 

knowledge of premium is not used in estimating the earned percentage or the payment pattern. 

3.5 Least Squares Method: This method is also not that common in North America. We try to 

estimate ai and bjs such that the residual sum of squares (RSS) is minimum, i.e., 
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To solve for as and bs, we differentiate equation 3.5 with respect to ais and bjs and equate them to 

zero. The derived set of equations requires an iterative procedure for solution. We shall not pursue it 

here. A variation of this method is to weigh the individual error term by some predefined weighting 

factors.  

3.6 Log Regression Model: This is a new trend in the last few decades but it is still not widely 

used in practice. The basic model is the same as equation (3.2) with one basic difference. The error 

terms are assumed to be multiplicative and have mean 1 rather than additive with mean 0. One takes 

the logarithm of the paid incremental losses, and the model becomes linear in parameter. These new 

parameters can be estimated much more easily. Interested readers are referred to Verral (1994). The 

modeling process breaks down if some of the paid values are negative and a variety of ad hoc 

adjustments are made to the data are made to fit the model and estimate the model parameters and 

the unpaid losses. The main drawback of this method is that it requires transforming the data by 

taking logarithms. Once we have estimated the parameters we have to convert the estimates to 

original units. There are many advantages as we can test the significance of the various parameters 

and can define the parameters in some functional form and reduce the number of the parameters to 

be estimated. The transformed equation (3.2) can be modified to include the calendar year 

parameters. There is vast literature on this methodology and we will not pursue it here. Alternative 

transformations other than logarithmic are also investigated by a few authors. 

It may be worthwhile to add that the iterative procedure introduced in section 2 provides many 
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of the advantages of this methodology. In section 5 we have a numerical example and discuss it in 

detail.  

SECTION 4: INFLATION EFFECT 

We have seen that for most of the actuarial methods, the basic underlying model is the same. In 

this section, we discuss the effect of inflation on the basic model as well as some of the simple 

approaches used by actuaries to deal with it.  

The basic model presumes that each accident year has an exposure level (ultimate losses); losses 

are paid by a fixed pattern and that pattern remains constant over time. These are the implications of 

the assumption that the claims reporting and handling process is same for all accident years. Any 

changes we may observe are due to randomness and not due to systematic changes in the loss 

process or claims handling. We know that inflationary changes affect the loss payments. Under the 

assumption that inflation affects the loss payment by accident year only, the basic model is not 

affected. Inflation affects the losses paid uniformly for each delay and the payment pattern will 

remain the same for all accident years. The inflation impact will be in parameters ais only and will be 

captured by the estimation process. However, the losses paid may be impacted by both the accident 

year as well as the year losses are paid. Bustic (1988) discusses these issues in detail. Under this 

scenario, the payment pattern is affected and the model (3.1) is distorted. The best way to handle 

such a situation is to restate the loss triangle by removing the inflationary effect, estimate the 

parameters, and adjust the estimated losses for the inflation. However, this may add more estimation 

error in our analysis. First, we have to estimate the inflation by accident year and how the loss 

payment is affected by payment delay and the accident year. There is no simple solution to these 

estimations, thus adjusting the loss triangle for inflation may add more distortion in the results rather 

than improving it. One common technique used by most actuaries is to compute the loss 

development factors based on more recent data (latest three years’ average development factors). If 

we assume that either inflation changes for each year but changes are moderate or the effect of the 

payment lag is small or both, this adjustment works well. One of the advantages of the approach 

that we estimate both exposure level and the payment pattern is that the use of the latest years in 

estimating parameters can be modified. We could use it for exposures only or rates or both and as 

such providing us with alternative estimators. The concept is made clearer when we analyze a loss 

triangle later in the paper. 

The assumption that we are estimating both the exposure level and the payment patterns raises 

another issue of great importance. Actuarial literature encourages the use of the loss development 

method for policy year loss triangles as well as report year loss triangles. Under the assumption that 
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the exposure level is also being estimated, the loss development methodology is inappropriate for 

analyzing report year loss triangles. Each element of a report year loss triangle will have losses 

generated from a different number of accident years and the exposure level keeps changing for such 

a loss triangle. For policy year loss triangles, the inflationary changes will distort the data much more 

severely as they are affected by two years of inflationary impact. Unless inflation is fairly constant, 

the use of exposure development method on a policy year loss triangle may be questionable. 

However, it will lead to the same result as the weighted loss development method and indirectly 

raises questions about the suitability of using the loss development method for the policy year loss 

triangle. The inflationary distortion will be much more significant in a policy year loss triangle if the 

inflationary changes are large. Although, this author has no serious objection to the use of loss 

development method to the policy year loss triangle, however the additional analysis carried out in 

the next section, especially the testing the model validity and defining outliers, may not be 

appropriate for such data. We have also provided a method for computing variability in the loss 

reserve. Such an analysis for policy year loss triangles may be distorted. 

SECTION 5: NUMERICAL EXAMPLE 

We now focus on analyzing a real data set. This will help create a clearer understanding of the 

ideas presented in this paper.  

We have selected a data set for use in this example; the main reason for selecting this data was 

that both the paid and incurred loss triangles are available. We can see how the information from 

both triangles is combined to estimate ultimate losses. In this section we focus on paid losses only. 

We shall use model (3.2) for our discussion. We use a paid loss triangle from Quarg and Mack 

(2008) that has seven years of data. The incremental paid loss triangle, the development factors, and 

some additional computations are given below in table 1. 
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Table 1 

 
 

For simplicity, we have computed ultimate losses using the loss development method. They 

could have easily been computed using an iterative procedure. The column ai is accident year 

ultimate losses divided by the sum of estimated ultimate losses for all accident years, and represents 

the proportion of total losses for the accident year. We shall use the term exposure level to represent 

this quantity. The bottom two rows are the payment pattern and the total losses for the payment lag 

respectively. If we used the iteration procedure, the solution would converge at these values. In table 

2 below, we give the residuals for each accident year and payment year. These are computed by 

subtracting the estimated values from observed data. The estimated values are the bottom row times 

the ais for the corresponding row and columns. 

Table 2 

 
 

Looking at these residuals, the second payment for accident year 5 seems to be an outlier. One 

can remove this observation and revise the estimate. We will be constructing this estimate later in 

the paper for estimating the variability of our reserve estimates. The residuals can be further 



Anatomy of Actuarial Methods of Loss Reserving 

Casualty Actuarial Society E-Forum, Fall 2010 14 

analyzed as to whether there is a systematic variation from the model and some adjustments to the 

model can be made as needed. For the current data set the model seems quite good. The model 

statistics are given in the table below in table 3. 

Table 3 

 
 

The R2 is unusually high for this data set and tells us that the estimated parameters fit the model 

very well. We have computed some basic model testing statistics. One may compute a host of other 

statistics for testing the appropriateness of the model. We shall not pursue these in detail, as that is 

not the theme of the paper. We shall focus on skill of the model statistics recently introduced by Yi 

Jing, Joseph R. Lebens, and Stephen P. Lowe (2009) to the actuarial field. However, they used it 

quite differently by computing it through the observed future with predicted future. The modeling 

procedure presented here allows us to compute it for a current data set and test how good the model 

will be for predicting the future. It may be a bit confusing that we need to look for additional 

statistics even if the explained ratio is quite high or other statistics indicate that the model is a good 

fit. One can think of the skill of the model as testing for model specification error. The assumption 

that we estimated both the exposure level as well as the payment pattern allows us to estimate the 

model skill. We have mentioned before that the iterative procedure can be used by removing 

individual observations. The skill of a model is defined as 

 . (5.1) 

 

where SSE is the average squared error of estimation by fitting all observed data points, 

and SSA is the average squared error of estimation error of individual observations estimated by 

removing that observation and estimating it from the remaining observations. This following 

example will help clarify. We remove the first observed value from our data set and estimate the 

parameters. These parameters provide a new estimate for X11. The original estimate of X11 was 

obtained by using all data points including observed X11. We do this for each of the other 

observations. The square of the error of the second estimate from the observed value is averaged 

over all data points to compute SSA. In our case we can compute it for all but two observations. 

The following table displays the results of this computation along with some additional data that we 

SSE

SSA
Skill 1
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will need for analysis in the next section. 

Table 4 

 
 

The first two columns represent the accident year and the payment year of the observation that 

was removed from the estimation process. The third column is the total error sum of squares for all 

observed values and column four is the estimation error of the observed value that was removed 

from the fitting. One can see that the error sum of squares are comparable to the error sum of 

squares of 704.03, which was computed based on fitting the model to all data points except for the 

error sum of squares for the second payment for accident year 5. Most of this variation is coming 

from the estimation error of this observation itself, as the corresponding residual is quite high (1,436 

in the table). This observation is over-estimated a little more when it is removed from the fitting. 

This gives further credence to the previous statement that this observed value is probably an outlier 

in the data set. The data set overall appears to be well-behaved and the model appears to perform 

quite well as the total error sum of squares remains fairly constant when other individual data points 
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are removed from the estimation process. We also captured the estimated accident year contribution 

to the all accident year estimated ultimate loss in each scenario, which we shall be using in estimating 

variance. These values are in columns 5 to 11. 

The skill of the model is one minus the average of sum of squares of column 4 divided by the 

average error sum of squares with all data points included in the analysis. Its value is 0.79 for this 

data.   

We will not pursue here the removal of the outliers and revising the estimates. We only broach 

this issue to point out that the modeling process presented allows us to identify such data elements 

and adjustments can be made as warranted. However, removal of the second payment for accident 

year 5 will result in accident year 5 ultimate losses of 6,617 instead of 5,056. 

In table 5, we provide our analysis for the corresponding incurred loss triangle.  

Table 5 

 
 

The estimated ultimate losses from the incurred loss triangle are higher than the paid loss triangle. 

Accident year 7 is contributing for most of this difference. There is a significant increase in first year 

incurred loss for accident year 7 compared to earlier accident years. The paid loss triangle does not 

show such an increase. One will probably give less credence to the ultimate losses derived from 

incurred loss triangle for accident year 7 unless there is significant increase in the volume of business 

and is known from some alternative sources. 
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SECTION 6: VARIABILITY IN LOSS RESERVES 

The estimation of variability in loss reserves is becoming an important issue. Although there are 

some methods available to achieve this, there is no consensus in the actuarial profession. Ad hoc 

methods are commonly used to derive a range of estimates. One uses a variety of methods or a 

different data set, paid and incurred loss triangles for example, to derive a range for ultimate losses. 

A range for ultimate losses is achieved but the assigning of a confidence level is not possible when 

these types of methods are used. We shall develop a simulation methodology to estimate the 

variability of the reserve estimates. 

We shall again assume that the exposure levels are known and compute its variability. We shall 

use model (3.2) and further assume that  

 2)( jiij aeV  . (6.1) 
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Since we have only one observation for payment year n, the variance cannot be estimated for that 

period. For our computational example, we have estimated the variance for bn by the maximum of 

the variance estimates of bn-1 and the average of the variance estimates of bn-1 and bn-2. 

It must be noted that the variance assumption in equation (6.1) may not be valid. Exposure 

changes are caused by two factors: changes in volume cause the variance to increase linearly, which 

is consistent with equation (6.1), and changes in inflation cause variance to increase exponentially. 

Our formulation of the model is consistent with the way parameters are being estimated. Large 

changes in inflation may cause this variance to be underestimated slightly. 

Under the assumption of independence of future payments,  
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However, ais are not known and are estimated from the same data. Hence our estimate of the 

variance is understated. We will attack this problem by using bootstrap and simulation methods and 

use the following well-known equation. It is worth mentioning that equation (6.5) defines the 

variance for individual incremental payments. The all accident year variance estimates will be larger 

than the sum of individual accident years due to correlation introduced in accident year estimates by 

the estimation process. 
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In the previous section we computed values ai by reducing our observation set by one 

observation at a time. We can use the results for the exposure levels captured there for estimating 

the variance of the estimation through simulation. Steps of our simulation approach are as follows. 

Step 1. Find minimum and maximum values for each accident year for columns 5 to 11 from 

table 4. 

Step 2. Generate a uniform random variable in the range between minimum and maximum values 

for each accident year. These are preliminary relative exposures for each of the accident years. 

Step 3. These exposure levels will not add to 1. Normalize them by dividing each preliminary 

exposure by the sum of the preliminary exposure levels. 

Step 4. Use the normalized exposure levels in equation (6.2) to (6.5) to estimate the Xi,j and its 

variance. 

Step5. Repeat the process 1,000 times and use these to estimate the terms in equation (6.6); treat 

the result of each iteration as an observation of the corresponding variable. 

One can increase the number of iterations if the data has larger variation. One thousand 

iterations for the current data set were sufficient.  

The results for the paid loss triangle are summarized below for each accident year as well as totals 

for all accident years. One should note that the variance for all accident years is larger than the sum 
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of individual accident years. 

 

Table 6 

 
 

SECTION 7: EXPOSURE DEVELOPMENT METHOD 

The concept of the exposure development factor (EDF) method introduced in this paper is very 

useful. One important area where a lot of attention is being paid is combining the information from 

paid and incurred loss triangles to refine our estimates. In the 2009 CLRS meeting, there was a full 

session devoted to this topic. The EDF method provides an elegant way to achieve this. The 

important characteristic of the EDF method is that, unlike loss development factors, the EDFs for 

paid and incurred loss triangles are measuring the same quantity and provide two estimates of the 

relative exposure levels. This property can be exploited with significant improvement in our analysis 

of loss triangles. One extreme will be to use exposure levels derived from the paid loss triangle to 

the incurred loss triangle and vice versa. A better way would be to average the exposure levels 

determined by the paid and incurred loss triangles. The exposure levels from two triangles will be 

correlated, as the paid losses are included in the incurred losses. The average of the two factors will 

still be a better estimate. The averaging can be done in a variety of ways. One can average the year-

to-year exposure development factors or the normalized exposure levels. One could use differential 

weights as well.  

Once the selection of exposure level for each accident year is made, we use it to determine the 

payout pattern. In the examples presented earlier, we have used combined payout for all years. 

However, one can determine each accident year’s payout rate separately and then make a selection. 
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In the loss development method, actuaries use a variety of averaging procedures and professional 

judgment to select a development factor. Similar analysis can be carried out in determining rates for 

the selected exposure level. One can take an average after removing high and low values for rates, 

for example. 

In the following table we provide an example. The main purpose of this is to show how the data 

from the different triangles can be combined and used in a systematic way. In the table below we 

have adopted an arbitrary weighting scheme to select accident year exposure levels. 

Table 7 

 
 

We have changed weights for accident year 5, 6, and 7. We saw before that the second payment 

for accident year 5 might be an outlier. It will affect EDFs 4 and 5 and exposure levels so less weight 

is assigned to the exposure level derived from the paid triangle for these years. The incurred loses 

for accident year 7 is quite high compared to accident year 6. We do not see that magnitude of 

increase in paid losses. More weight is therefore given to the exposure level derived from the paid 

loss triangle.  

Now we use these selected exposure levels and the total observed payout by delay for each 

accident year and select a payout judgmentally. We are a bit conservative in our selection. This is 

obvious from the fact that the total estimated payout is less than the selected payout. 
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Table 8 

 
 

The incurred loss triangle can be analyzed similarly using the selected exposure levels. We shall 

not do it here.  

Actuaries often use recent accident year data for loss development factor calculations and 

projections of ultimate losses. Such results are responsive to changes that are too complex to model. 

The exposure development method is much more flexible and therefore can achieve this. Some care 

is needed, as the loss payment amount in later lags may be quite thin. It is advisable to use all 

payment lag data of an accident year for computing the exposure development factors. In the 

example below, we use the available latest three accident years to compute our exposure 

development factors. One can directly use these development factors to compute ultimate losses. 
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However, we have computed payout rates as there is flexibility here. One can use all years’ data or 

the latest three years to determine rates. If we use the latest three years’ data, the results will match 

with the latest three-year weighted loss development method.  

One alternative approach that this author prefers is to use all accident year data for exposure 

development factors and use the latest years’ observations for selecting payout rates. Of course, one 

would use exposure levels derived from incurred loss triangles if available, and compute payout rates 

based on the latest years or by excluding Hi-Low rates as is done in selecting development factors. 

One other possible variation is indicated by examining the incurred loss triangle. The incremental 

incurred losses for some accident years are negative possibly due to some recoveries or subrogation. 

These just add additional variation in EDFs. One could compute the EDFs without these values. 

These data points could be included in computing rates. 

SECTION 8: CONCLUSION AND FUTURE RESEARCH 

In this paper we have a methodology that in some sense diverges from the common way 

actuaries look at loss triangles. Results are, however, consistent with loss development method and 

extend it in several ways. In practice, actuaries use a lot of professional judgment. Allowing 

judgment to be applied to both the exposure level and payment pattern, we have a two-dimensional 

selection processes rather than one. Knowledge of both the paid and incurred loss triangles extends 

that even further. The fact that the EDF method measures the same thing for paid and incurred 

losses has one other nice implication for excess and reinsurance writers. The paid loss experience is 

thin and not credible in the first few years. However, the exposure levels derived from incurred loss 

triangles for early years can be used on paid loss data. We had avoided the issue of tail losses. 

Perhaps one can use both the paid and incurred rates to derive a suitable decay function. 

The author believes that the ideas presented will stimulate other researchers to modify and extend 

it further. There is ample opportunity to do so. We defined a range of exposure levels by removing 

one observation at a time and re-computing exposure levels. There may be different ways to achieve 

this result. One may define a range based on paid and incurred loss triangles or use information 

from both data sets or premium data. The simulation results in our example assumed uniform 

distribution in the range. One could use alternative distributions somehow derived from the data. 

Uniform distributions increase the variance estimates and, in that sense, are conservative estimates 

of the variance. Estimation of tail factors is another area where further research will be helpful. 

The methodology presented in this paper is simple and is for practical use. How it fares in 

practice can only be determined by practicing actuaries.  
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______________________________________________________________________________ 

Abstract: The estimation of adjusting and other expense (AOE) reserves can be constrained by the availability of 
historical AOE payment data, lack of uniformity of data, and lack of consensus of what AOE represents.  
Adjusting and other expenses are incurred when claims are first reported and opened, throughout the life of the 
claims when partial payments and revisions are made, and finally when claims are closed and final payments are 
issued by the insurer.  Our paper will present a variation of the count-based methodology whereby we utilize the 
limited data presented to us by an insurer to estimate AOE reserves.  This paper will attempt to describe how 
one can use historical reporting, payment (including partial payment), and closing patterns to estimate AOE 
reserves associated with IBNR counts and future payments on open claims.  Assumptions are also made with 
respect to the average cost of each AOE per claim payment throughout the life of a claim using current AOE 
payment information and the number of claim payment and closing transactions.  The cost of each transaction is 
developed using historical calendar year AOE amounts, and assumptions of the relative cost of each transaction 
type. 
 
Keywords: Unallocated loss adjustment expense reserves, adjusting and other expense reserves 

______________________________________________________________________________ 



Estimation of Adjusting and Other Expense Reserves Utilizing Limited Historical Claim Report, Payment, and 
Closing Transaction Patterns 

Casualty Actuarial Society E-Forum, Fall 2010 2 

1. INTRODUCTION 

1.1 Research Context 

In the annals of reserving literature, the review of adjusting and other expenses (AOE) seems to 

have become relegated to second-tier status.  In the current CAS syllabus only one paper (R. 

Conger/A. Nolibos) on the reserving exam addresses the topic, and in the 2009 Casualty Loss 

Reserve Seminar there were no sessions that covered it.  Furthermore, there has been a limited 

number of existing actuarial subject literature on this topic, particularly in recent years.   

The limited existing actuarial literature (see Section 5 – References) on this topic either assumes 

that detailed, historical payment information is readily available or reviews and/or modifies the 

existing paid to paid methodologies on this topic. 

There are a number of reasons why there is such little focus by actuaries on these expenses.  

Based on year-end 2008 Schedule P data for the U.S. P&C industry, adjusting and other unpaid 

losses represented only 5.2% of total net unpaid losses and expenses.  Generally, there are no 

specific case reserves set up for AOE reserves as there are for the loss and defense and cost 

containment (DCC) reserves. 

In addition, payment information used to develop estimates of AOE reserves is not generally 

available in a format that lends itself to a traditional actuarial analysis. This is due to a number of 

factors discussed below including: 

 Inconsistencies in definition of AOE 

 Lack of “triangular” data 

 Availability of internal studies 

 Operational variations among companies 

1.2 Objective 

The objective of this paper is to describe a methodology we developed in order to estimate AOE 

reserves for a single line of business based on a unique situation presented to us by an insurer where 

their historical expense data and detailed expense information (such as payment information) was 

limited or not available. 



Estimation of Adjusting and Other Expense Reserves Utilizing Limited Historical Claim Report, Payment, and 
Closing Transaction Patterns 

Casualty Actuarial Society E-Forum, Fall 2010 3 

Whereas most actuarial literature on this topic assumes that information to estimate AOE 

reserves is readily available, there are situations where the insurer does not capture certain 

information, does not capture this information in the requisite detail, or undergoes changes in their 

claim handling function making it impractical to use historical information.  The methodology 

described in this paper relies on certain assumptions and calculations related to the limited historical 

information available in this situation, based on discussions with insurance company personnel, 

particularly around the costs associated with various claim handling transactions, and actuarial 

judgment.   

1.2.1 Lack of clarity in the definition of AOE 

 According to statement of Statutory Accounting Principles (SSAP) # 55, AOE are those 

expenses other than DCC that are assigned to the expense group “Loss Adjustment Expense.”  

Whereas DCC are defined in SSAP #55 as defense, litigation, and medical cost containment 

expenses, AOE include, but are not limited to, the following items: 

(a) fees and expenses of adjusters and settling agents; 

(b) loss adjustment expenses for participation in voluntary and involuntary market pools if 

reported by calendar year; 

(c) attorney fees incurred in the determination of coverage, including litigation between the 

reporting entity and the policyholder; and 

(d) fees and salaries for appraisers, private investigators, hearing representatives, inspectors 

and fraud investigators, if working in the capacity of an adjuster. 

There are at least two issues associated with this definition that may arise.  The first relates to the 

fact that AOE includes all expenses other than DCC assigned to the expense group “Loss 

Adjustment Expense.”  Although four examples are given, it is less clear how specific overhead 

costs should be included and how they should be reserved for if a company goes into runoff.  The 

second arises when claims handling services are outsourced to a third party and the overall, 

inseparable fee may include costs for both AOE and DCC services. 

1.2.2 Lack of “triangular” data 

Since typical triangular data by accident year is not available for AOE, standard actuarial 

methodologies employing loss triangles (or loss expense triangles in this case) cannot be used.  The 
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actuary is forced to use calendar-year data, and apply various assumptions specific to what that data 

represents, to both determine the AOE reserve amounts required, and allocate it to accident year. 

1.2.3 Availability of internal studies 

There is a wide variation among companies related to how they determine the portion of 

expenses attributable to AOE.  Based on some of the detailed methodologies, it would appear that 

some of the more sophisticated procedures involve internal studies that relate salaries and other 

costs to time spent on specific activities.  This might vary significantly among companies in their 

frequency (if conducted at all) and methodology.  Often it may be a byproduct of other operational 

efficiency studies conducted by the company when they reorganize to reduce expenses. 

1.2.4 Operational variations among companies 

Although all companies go through some type of process to open claims, set initial reserves, 

revise those reserves as needed, make payments and close claims, how they go about doing it may 

vary considerable.  Some have their own claim departments, while others may use third-party 

administrators (TPAs), or have the insured settle their own claims below a certain dollar amount.  

Even within a company’s claim department, relative costs could vary significantly based on lines of 

business written, the degree of automation, the use of predictive modeling, and other factors. 

Recognizing these limitations, the actuary is often forced to come up with procedures to take 

advantage of the data provided, and make assumptions as to exactly what AOE is meant to 

represent, and how it relates to various measurable claim activities.  It is clear that, even if the best 

data were available, the methodologies that would be appropriate to determine the AOE reserves for 

one company might not be the best for another company with a different book of business, maturity 

of the book, or corporate structure.  Thus it is best for the actuary to develop and consider a menu 

of various techniques to establish reserves. 

The determination of AOE reserves is also different from other reserve reviews in that it often 

involves both allocation and reserve determination calculations.  Initially a portion of the calendar 

year expense payments needs to be allocated to AOE.  It may also need to be allocated to individual 

lines of business as well.  This is then used to develop the overall reserve requirement, and that 

reserve then needs to be allocated to accident year, line of business (if not done previously), etc.  For 

the methodology described in this paper, we assume there is only one line of business, but it could 

be expanded to include multiple lines. 



Estimation of Adjusting and Other Expense Reserves Utilizing Limited Historical Claim Report, Payment, and 
Closing Transaction Patterns 

Casualty Actuarial Society E-Forum, Fall 2010 5 

For the actuary, the calculation of the AOE reserves often comes down to the information 

available, knowledge of the claim department structure and how it handles claims, and selected 

assumptions based on information from management.  As a result there may be a wide variation in 

methodologies used.  This paper presents a methodology we deployed faced with one such unique 

set of constraints.  

1.3 Outline 

The remainder of the paper proceeds as follows.  Section 2 will discuss the background of our 

methodology, and then go into further details of the calculations and formulas used.  A sample 

calculation is presented to explain the methodology and clarify the discussion.  Our methodology 

will also discuss two different approaches an actuary can take – one without trended AOE costs, and 

another assuming trended AOE costs.  Section 3 includes the results of this methodology using the 

sample data shown throughout this paper, along with a discussion of additional enhancements that 

could be made to the methodology.  Section 4 presents our conclusions and main findings of this 

paper.  An appendix is included, providing exhibits relating to the sample calculation referred to 

throughout this paper.  Finally, references are provided in Section 5.   

2. BACKGROUND AND METHODS 

2.1 Information Available 

The methodology and approach described below was developed to estimate AOE reserves for a 

single line of business with a moderate tail based on a unique situation presented to us by an insurer 

where their historical expense data was limited.   

For this situation transaction counts (closings, partial payments, etc.) and AOE payments were 

only useful for the most recent 1-3 years because of recent changes in the insurer’s claim handling 

operations.  Thus the limited information that we did use in our methodology included:  

1. Historical accident year claim reporting patterns 

2. Open claim counts by accident year for the last three calendar year ends 

3. Number of claims closed in the last two calendar years 

4. Number of claim payment transactions in the last calendar year 

5. Estimated calendar year AOE payments for the last year 
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In our methodology, we had to make certain assumptions around the costs associated with 

various claim handling transactions.  These assumptions are described throughout the methodology 

discussion below. 

2.2 Methodology Overview 

In our methodology, based on our approach and assumptions made, estimates of AOE reserves 

are determined for expenses associated with: 

1. Initial reporting of IBNR claims, 

2. Future payments for IBNR claims and claims already reported and currently considered 

open, and 

3. Future closings for IBNR claims and claims already reported and currently considered open. 

It should be noted that the closings and interim payments include those on both known and 

IBNR claims combined, as this process does not allow them to be identified separately.   

Our methodology assumes that the insurer does not incur any expenses when claims are 

reopened.  Furthermore, we assume that no expenses are incurred for claim maintenance on 

outstanding claims for which no payments are issued to the insured during the year.  

Utilizing the available information described above, and incorporating assumptions regarding the 

relative average AOE costs associated with various actions taken on a claim and the impact of 

inflation on future such costs, various estimates of AOE reserves were made.  Based on our 

understanding of claim handling expenses for this particular insurer, they incur considerably more 

expenses when a claim is first reported to them as opposed to when payments are made (including 

interim payments) or when a claim is closed.  This is inconsistent with the 50-50 rule actuaries 

typically use to establish ULAE/AOE reserves, which assumes that 50% of ULAE/AOE is paid 

when the claim is first opened and the other 50% when it is closed. 

In addition to the assumption we made regarding the relative average AOE cost for a given 

transaction, our methodology calculates the following to develop the indicated AOE reserve: 

1. the ultimate claim reporting pattern 

2. an estimate of the ratio of number of claims closed to the number of payment and closing 

transactions 
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3. percentage of total reported claims that remain open at the end of each calendar year based 

on the maturity of the accident year 

As described in more detail below, the average transaction cost assumptions and the selected 

AOE trend factor are applied to the various estimated transaction counts.  To calculate these counts, 

the items listed above were used to project: 

1. estimated IBNR claim counts, 

2. number of payment and closing transactions, for both known and IBNR claims combined, 

and 

3. the timing of the reporting, payment and closing transactions. 

2.2.1 Estimate of IBNR Claim Counts 

The estimate of IBNR claim counts is determined by using a reported claim count loss 

development triangle.  Age-to-age claim development factors are selected at 12-month intervals, and 

age-to-ultimate claim development factors are computed, as shown in Appendix Exhibit A.1.  Using 

the selected age-to-age factors, reported claim counts are developed to ultimate, as shown in 

Appendix Exhibit A.2.  Taking the differences in the implied cumulative reported claim counts at 

future year ends from Appendix Exhibit A.2, the incremental claims to be reported in each future 

calendar year can be obtained (Appendix Exhibit A.3).  The number of reported claim counts, 

ultimate claim counts, and IBNR counts by accident year are shown in Table 1 below: 
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Table 1 – Summary of Reported, IBNR, and Ultimate Claim Counts 

 (1) (2) (3) 
 Reported Ultimate  

Accident Claims Claim IBNR Claims 
Year at 12/31/08 Count (2)-(1) 

    
1993 995 995 0  
1994 979 979 0  
1995 816 816 0  
1996 1,182 1,182 0  
1997 1,376 1,377 1  
1998 1,442 1,444 2  
1999 1,418 1,421 3  
2000 1,534 1,542 8  
2001 1,572 1,582 10  
2002 1,758 1,772 14  
2003 1,999 2,019 20  
2004 2,610 2,659 49  
2005 2,888 2,970 82  
2006 2,684 2,886 202  
2007 2,226 2,526 300  
2008 1,744 2,670 926  
Total 27,223 28,840 1,617  

 

IBNR claim counts are computed by subtracting reported claim counts from the ultimate claim 

counts estimated.  These counts are used to estimate the AOE associated with the first reporting of 

claims and are combined with current open claim counts to estimate the AOE associated with future 

claim payments (for both partial payments and payments to close claims).   

2.3 Methodology – No Trending 

2.3.1 AOE Reserves Associated with the Initial Reporting of Future Claims 

A key assumption we used to estimate the AOE reserves is the relative relationship between the 

average AOE cost when a claim is first reported to an insurer versus when a payment is made or a 

claim is closed.  Using calendar year AOE payments, the number of claims reported in a calendar 

year, the number of payments and closings made in a calendar year, and the relationship of average 

costs by type of transaction, we estimated the average AOE per reported claim and per claim 

payment/closing transaction.   

The average AOE incurred based on the type of transaction (when a claim is first reported or a 

payment or closing is made) is not readily available to most insurers.  The average costs by 

transaction type can be approximated based on an understanding of the claim handling function of 
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an insurance company and interviews with those involved in the process.  This would allow one to 

better discern the AOE costs incurred when a claim is first reported to an insurer relative to the 

costs incurred when a claim payment or closing is made.  As a result of these considerations we 

utilized a ratio of five to one (5:1).  In other words, for every $5 spent on AOE when a claim is first 

reported, $1 is spent on AOE every time a claim payment is made or a claim is closed.  

Using this relationship, along with the amount of paid AOE and the number of claim payments and 

closings in a calendar year, we can estimate the average AOE to open a claim, as shown in Table 2.  

When utilizing calendar year data, information from the most recent calendar year or an average 

from a number of calendar years can be used based on the availability of data.   

Table 2 – Average AOE Cost to Open a Claim 

 5:1 Ratio 
(1) CY AOE Payments $6,105,000 
(2) Number of Claims Reported 2,594 
(3) Number of Payments & Closings Made 3,339 
(4) Average AOE to Open a Claim $1,871.67 

Row (4), the average AOE cost to open a claim, is calculated as follows: 5 x Row (1) ÷ [Row (2) x 

5 + Row (3)] or (5 x $6,105,000 / [2,594 x 5 + 3,339] = $1,871.67. 

In order to estimate the AOE reserves associated with opening of the IBNR claims, we multiply 

the average AOE per claim reported in Row (4) of Table 2 by the IBNR counts in Column (3) of 

Table 1 ($1,871.67 x 1,617 = $3,026,484). This produces an estimate of the AOE reserves associated 

with opening of IBNR claims based on the five to one cost relativity and assuming no increase in 

future costs to set a claim in the future (i.e. no trend). 

2.3.2 Projection of Claim Settlement and Payment Pattern 

The claim settlement pattern can be projected in a similar manner to the claim reporting pattern 

as discussed above by utilizing closed claim development triangles.  Unfortunately, for our situation, 

we were limited to two years of calendar year closed claim count data.  Thus, using this limited data, 

we devised a method to estimate the claim settlement pattern using only recent claim reporting and 

open claim count information as described in the following paragraphs.   

Table 3 displays the open claim count and reported claim count information for the last three 

years with evaluation dates as of December 31.   
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Table 3 – Open Claim and Reported Claim Count 
 

 (1) (2) (3) (4) (5) (6) 
Accident Open Claim Counts Reported Claim Counts 

Year As of YE08 As of YE07 As of YE06 As of YE08 As of YE07 As of YE06 

1993 3 4 4 995 995 995
1994 4 8 12 979 979 979
1995 7 13 14 816 816 816
1996 5 9 11 1,182 1,181 1,172
1997 17 22 28 1,376 1,376 1,376
1998 13 20 25 1,442 1,442 1,442
1999 19 28 38 1,418 1,418 1,418
2000 23 34 49 1,534 1,534 1,532
2001 47 64 99 1,572 1,569 1,568
2002 74 129 255 1,758 1,757 1,752
2003 197 285 440 1,999 1,981 1,962
2004 405 601 876 2,610 2,579 2,456
2005 875 1,134 1,459 2,888 2,678 2,477
2006 987 1,222 1,553 2,684 2,622 1,982
2007 1,455 1,612 2,226 1,702 
2008 1,350  1,744  

Total 5,481 5,185 4,863 27,223 24,629 21,927

 

Using the claim count information summarized in Table 3, we calculate the percentage of 

reported claims that were still open as of the three most recent evaluation dates (December 31, 2006, 

2007, and 2008) by dividing Columns (1) through (3) by Columns (4) through (6) respectively.  The 

results are displayed in Table 4, Columns (1) through (3) below.  Next, based on this three-year 

history, we select the percentage of reported claims that we would expect to be open at different 

evaluation periods (12 months, 24 months, etc.) as shown in Column (4). 
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Table 4 – Claim Settlement Pattern 

 (1) (2) (3) (4) 
 Percentage of Reported % of Claims 

Maturity Claims That are Open Open 
(months) in 2008 in 2007 in 2006 Selection 

     
    

192 0.3% 0.5% 
180 0.4% 0.4% 0.7% 
168 0.9% 0.8% 0.4% 1.0% 
156 0.4% 1.6% 1.2% 1.5% 
144 1.2% 0.8% 1.7% 2.0% 
132 0.9% 1.6% 0.9% 2.2% 
120 1.3% 1.4% 2.0% 2.5% 
108 1.5% 2.0% 1.7% 3.0% 
96 3.0% 2.2% 2.7% 3.5% 
84 4.2% 4.1% 3.2% 4.2% 
72 9.9% 7.3% 6.3% 8.5% 
60 15.5% 14.4% 14.6% 15.0% 
48 30.3% 23.3% 22.4% 25.0% 
36 36.8% 42.3% 35.7% 35.0% 
24 65.4% 46.6% 58.9% 55.0% 
12 77.4% 94.7% 78.4% 85.0% 

 

Using the selected percentages of reported claims that are open in Column (4), adjusting it for 

the actual percentage at the latest point in time (Column (1)) and utilizing the actual number of 

claims reported and open as of year-end 2008 (from Table 3) and estimated to be reported in 

calendar year 2009 (from Appendix Exhibit A.3), we are able to project the number of claims that 

will close in calendar year 2009.  Thus, for example, the number of claim closings in calendar year 

2009 for accident year 2008 is calculated as follows: 

Reported Claims in CY 2009 – [Estimated Reported Claims at YE 2009 x Column (1) {12 

Months} x Column (4) {24 Months] / Column (4) {12 Months}] + Open Claims at YE 2008, or 

610 – [2,354 x 0.774 x 0.55 / 0.85] + 1,350 = 781, where: 

 610 is the number of AY 2008 claims expected to be reported in calendar year 2009 

 2,354 is the number of AY 2008 total reported claims expected through 12/31/09  

 1,350 is the number of open claims as of 12/31/2008 

 77.4% is the actual percentage of AY 2008 reported claims that are open as of 12/31/08 

 55% is the selected percentage of reported claims that are open for a typical AY at 24 

months based on historical data 



Estimation of Adjusting and Other Expense Reserves Utilizing Limited Historical Claim Report, Payment, and 
Closing Transaction Patterns 

Casualty Actuarial Society E-Forum, Fall 2010 12 

 85% is the selected percentage of reported claims that are open for a typical AY at 12 

months based on historical data 

The calculations used to project the number of claims to be closed in calendar year 2010 and 

subsequent are made in conjunction with the estimation of the number of open claims at the 

beginning of each calendar year along with the number of claims that are expected to be reported 

during the calendar year.  The number of new claims reported in future calendar years (from 

Appendix Exhibit A.3) is reduced by these closings (as shown in Table 5 below), and is then added 

to the open claim counts from the beginning of the year to determine the open claim counts for the 

beginning of the following year (as shown in Table 6 below).  Thus, for accident year 2008, in our 

example we estimate that there will be 1,179 open claims as of 12/31/09 (as shown in Table 6), 

which is equal to: 

1,350 + 610 - 781 = 1,179, where: 

 1,350 claims that are open as of 12/31/08 (from Table 3),  

 610 claims that are projected to be reported in calendar year 2009 (as shown in Appendix 

Exhibit A.3),  

 781 claims that are estimated to be closed in calendar year 2009 (as calculated previously and 

shown in Table 5 below).   

Using this estimate of open claims for AY 2008 as of 12/31/09 and a new ratio of open to 

reported claims (50.1%) is calculated for AY 2008 at 24 months.  This is shown in Appendix Exhibit 

A.4.  The same calculation of calendar year closings and the resulting number of open claims at the 

end of the year (and the resulting new ratio of open to reported claims) is repeated for each 

subsequent calendar year until all claims reported have been closed.   

For AY 2008, in calendar year 2010, we expect 517 claims to close based on the following 

calculation: 

129 – [2,483 x 0.501 x 0.35 / 0.55] + 1,179 = 517, where: 

 129 is the number of AY 2008 claims expected to be reported in calendar year 2010 

 2,483 is the number of AY 2008 total reported claims expected through 12/31/10  

 1,179 is the previously calculated number of open claims as of 12/31/2009 

 50.1% is the calculated percentage of AY 2008 reported claims that are open as of 12/31/09 
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 35% is the selected percentage of reported claims that are open for a typical AY at 36 

months based on historical data 

 55% is the selected percentage of reported claims that are open for a typical AY at 24 

months based on historical data 

The same calculation is also made for each of the accident years prior to 2008.   

Thus, Tables 5 and 6, which display the projected closed and open claim patterns by accident 

year and calendar year, respectively, can be built up as a result of this calculation using the reported 

claim pattern in Appendix Exhibit A.2, and the selected percentages of claims open from Table 4, 

Column (4). 

Table 5 – Projected Future Closed Claim Counts 

 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
AY        
1993 3       
1994 1 3      
1995 2 1 4     
1996 2 1 1 2    
1997 5 4 3 2 4   
1998 2 4 3 2 1 3   
1999 3 3 5 4 2 2 4   
2000 6 4 4 6 4 2 2 4   
2001 9 9 6 5 9 7 4 3 7   
2002 16 11 11 7 6 11 9 5 4 9   
2003 105 20 14 14 9 7 14 12 7 5 12   
2004 195 125 24 17 17 11 8 17 14 8 6 14   
2005 374 250 162 31 21 21 14 10 21 18 11 7 18  
2006 371 318 214 138 27 18 18 12 9 18 15 9 6 15 
2007 600 354 312 209 134 26 18 18 12 9 18 15 9 6 15
2008 781 517 313 259 175 111 22 15 15 10 8 15 12 7 5 12
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Table 6 – Projected Open Claim Counts 

 
 

Number of Claims at Open Year-End 

AY 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
1993 - - - - - - - - - - - - - - - 
1994 3 - - - - - - - - - - - - - - 
1995 5 4 - - - - - - - - - - - - - 
1996 3 2 2 - - - - - - - - - - - - 
1997 13 9 6 4 - - - - - - - - - - - 
1998 12 9 6 4 3 - - - - - - - - - - 
1999 17 15 11 8 5 4 - - - - - - - - - 
2000 19 17 15 12 8 5 4 - - - - - - - - 
2001 40 34 30 27 20 14 9 7 - - - - - - - 
2002 62 53 44 39 35 27 18 12 9 - - - - - - 
2003 98 82 70 58 51 47 35 23 16 12 - - - - - 
2004 231 115 96 82 69 60 55 41 28 19 14 - - - - 
2005 530 303 150 125 108 90 79 72 54 36 25 18 - - - 
2006 737 446 255 126 106 91 76 67 61 45 30 21 15 - - 
2007 977 729 442 252 125 104 90 75 66 60 45 30 21 15 - 
2008 1,179 791 591 358 205 101 85 73 61 53 49 36 24 17 12 

 

The next step is to determine the total number of claim payment and closing transactions by 

accident year and calendar year using the calculated closed counts.  Again, we had limited 

information to work with, since only the 2008 interim claim payment counts were available.  Using 

this information, we examined the ratio of closings to total claim payment and closing transactions. 

This is shown on Table 7 below. 
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Table 7 – Claim Payments and Closed Claim Patterns 

  (1) (2) (3) (4) 
    Percentage Selected Percentage
  Claims 2008 Claim of Closings of Closings 
 Accident Closed Payment & to Total to Total 
 Year in 2008 Closing Counts Payments & Closings Payments & Closings
   (1)/(2)  
  1993 1 1 100% 100% 
  1994 4 4 100% 100% 
  1995 6 6 100% 100% 
  1996 5 6 83% 100% 
  1997 5 7 71% 98% 
  1998 7 7 100% 95% 
  1999 9 10 90% 93% 
  2000 11 13 85% 92% 
  2001 20 27 74% 90% 
  2002 56 66 85% 90% 
  2003 106 122 87% 87% 
  2004 227 259 88% 85% 
  2005 469 586 80% 75% 
  2006 297 540 55% 60% 
  2007 681 1,012 67% 50% 
  2008 394 673 59% 40% 

  Total 2,298 3,339  

 

As shown above in Table 7, the percentage of closings to total payments and closings during the 

year increases as the accident year matures.  Using the selected percentages in Column (4), we then 

project the pattern of claim payments and closings to be made by accident year and calendar year as 

shown in Table 8 below. 
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Table 8 – Projected Number of Claim Payments and Closings to be Made 

 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 Total

AY                 

1993 3                3

1994 1 3               4

1995 2 1 4              7

1996 2 1 1 2             5

1997 5 4 3 2 4            18

1998 2 4 3 2 1 3           15

1999 3 3 5 4 2 2 4          22

2000 6 5 4 6 4 2 2 4         32

2001 9 9 6 5 9 7 4 3 7   59

2002 18 12 12 8 6 11 9 5 4 9       92

2003 117 22 15 15 9 7 14 12 7 5 12      234

2004 224 139 27 18 18 12 9 17 14 8 6 14     503

2005 440 288 180 34 23 22 14 10 21 18 11 7 18    1,086

2006 495 374 246 153 30 20 19 13 9 18 15 9 6 15   1,423

2007 1,001 471 367 241 149 28 19 19 13 9 18 15 9 6 15  2,381

2008 1,562 861 417 304 201 124 24 16 16 11 8 15 12 7 5 12 3,595

Total (G) 3,890 2,197 1,288 792 456 237 118 99 90 78 69 60 45 28 20 12 9,479

 

The projected number of combined claim payments and closings to be made in Table 8 is 

determined by dividing the projected number of claims closed by accident year and calendar year in 

Table 5 by the selected ratio of payments and closings made to closed claims from Table 7, Column 

(4).  Thus, for accident year 2008, we project 1,562 claim payments and closings to be made in 2009, 

by dividing the 781 claims we expect to close in the year by 50%, which is the percentage of claims 

that we expect to close from 12 to 24 months after policy inception.   

Thus, the projected total number of payment and closing transactions is the sum of all the future 

calendar year claim payment and closing counts in Table 8, or 9,479.  Using the average AOE to 

open a claim as estimated in Table 2, and the five to one relationship, the implied cost of each 

payment and closing transaction is $374.33 ($1,871.67 ÷ 5).  We can then estimate the AOE reserves 

associated with the future claim payment and closing transactions in Table 8 (9,479 x $374.33, or 

$3,548,248).  It should be noted that the closings and interim payments include those on both 

known and IBNR claims combined, as this process does not allow them to be identified separately.   

By combining the estimates of AOE reserves associated with the cost of opening future IBNR 

claims from Section 2.3.1 ($3,026,484) with the estimates of AOE reserves in Table 8 associated 
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with the projected claim payments and closings ($3,548,248), we obtain an estimate of AOE reserves 

($6,574,732) that does not reflect the impact of inflation.  

2.4 Methodology – Reflecting Trend 

Realistically, AOE costs increase over time as a result of inflationary pressures.  Using the timing 

of the claim reporting and closing patterns as outlined in Appendix Exhibit A.2 and Table 8, 

respectively, along with the average AOE per transaction type, we are able to apply a trending 

procedure to develop additional estimates for AOE reserves.  The following calculations and tables 

assume that the average AOE cost to open a claim is five times higher than the AOE cost associated 

with each subsequent payment or claim closing.  First, we apply the average AOE cost related to 

opening a claim of $1,871.67 (from Table 2, Row (4)) trended by 4.0% annually, to the incremental 

claim counts to be reported in each future calendar-year diagonal shown in Appendix Exhibit A.3.  

This provides an estimate of the AOE reserves associated with the opening of the IBNR claims 

assuming trended AOE costs, which are shown in Appendix Exhibit A.5.   

For example, for accident year 2008, the 610 incremental claim counts expected to be reported in 

2009 are multiplied by the expected cost to open a claim in 2009 ($1,946.53 or $1,871.67 x 1.04), to 

produce $1,187,385 in required AOE reserves.  Summing all the values in Appendix Exhibit A.5 

gives the total AOE reserve required for the opening of future IBNR claims of $3,287,931. (Note: 

differences may exist due to rounding) 

Next, the estimate of AOE reserves associated with the future claim payments and closures is 

made using the projected pattern of claim payment and closing transactions from Table 8.  The 

same procedure used for the newly reported claims is used here, except that the underlying starting 

cost that is used is $374.33 rather than $1,871.67 (assuming an AOE cost relativity of five times).  

The resulting estimate of the AOE reserves for all future payments (partial and closing) is shown in 

Appendix Exhibit A.6.   

For example, for accident year 2008, the 1,562 claim payments to be made in 2009 are multiplied 

by the expected cost to pay a claim in 2009 ($389.30 or $374.33 x 1.04), to produce $608,047 in 

required AOE reserves.  Summing all the values in Appendix Exhibit A.6 gives the total AOE 

reserve required for the future claim payments of $3,956,876. 

By combining the total estimates of AOE reserves in Appendix Exhibits A.5 and A.6 we get the 

total AOE reserves estimate of $7,244,807, which assumes an annual trend of 4.0%.  
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3. RESULTS AND DISCUSSION 

The methodology described above provides us with an estimate of AOE reserves using a specific 

set of assumptions made by the actuary.  To test the sensitivity of the results, we ran the model 

changing one of our assumptions (the relativity of the cost of paying/settling a claim and opening it) 

from a 5:1 ratio to a 3:1 ratio.  The results from each of these are summarized in Table 9 below.   

Table 9 – Summary of AOE Reserves 

  AOE Relativity 
  5X 3X 

No Trend Reporting of IBNR 
Claims 3,026,484 2,663,012 

 

Future Payments and 
Closings on Open & 
IBNR Claims 

3,548,248 5,203,522 

 Total 6,574,732 7,866,534 

Trend Reporting of IBNR 
Claims 3,287,931 2,893,060 

 

Future Payments and 
Closings on Open & 
IBNR Claims 

3,956,876 5,802,778 

 Total 7,244,807 8,695,838 

 

The results from Table 9 demonstrate the sensitivity of estimates of AOE reserves to the AOE 

relativity and application of a trend factor. As the ratio of AOE incurred when a claim is first 

reported versus when a payment is made or claim is settled decreases (from 5:1 to 3:1) the estimate 

of the AOE reserves will increase because the average AOE cost associated with claim payment and 

closing transactions is higher, and the number of claim payment and closing transactions estimated 

are greater than the number of IBNR claims.  Likewise, the methodology assuming an annual trend 

of 4.0% produces estimates of AOE reserves that are approximately 10% higher than the estimates 

without annual trend.  

One consideration for modifying this methodology is to also reflect the average AOE cost 

related to maintaining a claim that remains open during a calendar year regardless of whether there 

were payments or revisions made to that claim.  This could be reflected in the model by assuming a 

fixed cost to maintain any claim that is open during the year.  A relativity could be established 
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between this fixed cost per open claim and the cost to open or make payments on a claim.  Similarly, 

the AOE cost of revising a claim estimate could be included provided the appropriate transaction 

information is available.  Consideration can also be given to different costs associated with the 

reopening of claims previously closed. 

This methodology could also be modified to reflect different assumptions associated with the 

relativity of AOE costs for claim payment and closing transactions, and also to reflect partial 

accident years (i.e., for a quarterly evaluation).  In order to reflect partial accident years for the most 

recent 12-month period, we would have to apply several changes to the calculations in our 

methodology, particularly around those calculations working off of the ultimate claim counts for the 

most recent accident year, 2008.   

4. CONCLUSIONS 

For the actuary, the calculation of the AOE reserves often comes down to the information 

available, knowledge of the claim department structure and how it handles claims, and selected 

assumptions based on information from management.  As a result there may be a wide variation in 

methodologies and assumptions used by the actuary.  An actuary needs to recognize the limitations 

to him or her and work with the information that is available to come up with a reasonable 

methodology, which was the primary reason for us developing the methodology described in this 

paper.  

As noted throughout the paper, considerable uncertainty may be due to assumptions made 

because certain information is not available to the actuary.  Resulting estimates of AOE reserves 

may vary based on differing assumptions of: 

• Annual trend percentage 

• Relationship between AOE costs by transaction type 

• Claim reporting age to age development factors 

• Selected claim payment pattern 

• Selected percentage of claims that will close during a calendar year 
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Appendix Exhibit A.1 

Reported Claim Development Triangle 
 

Accident Year 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192 
1993 406  767  901 945 965 975 975 980 980  980 990 995 995 995 995 995  
1994 390  755  881 940 945 964 964 964 969  969 979 979 979 979 979 
1995 408  618  738 774 798 804 804 804 804  810 810 816 816 816 
1996 581  882  945 980 1,043 1,099 1,132 1,144 1,157  1,170 1,172 1,181 1,182 
1997 737  1,231  1,300 1,360 1,368 1,368 1,368 1,376 1,376  1,376 1,376 1,376 
1998 865  1,264  1,341 1,379 1,386 1,411 1,442 1,442 1,442  1,442 1,442 
1999 847  1,282  1,322 1,370 1,378 1,418 1,418 1,418 1,418  1,418 
2000 936  1,388  1,482 1,496 1,526 1,532 1,532 1,534 1,534   
2001 1,005  1,485  1,518 1,560 1,566 1,568 1,569 1,572  
2002 1,201  1,553  1,722 1,748 1,752 1,757 1,758  
2003 1,498  1,769  1,866 1,962 1,981 1,999  
2004 1,749  2,367  2,456 2,579 2,610  
2005 1,847  2,477  2,678 2,888  
2006 1,982  2,622  2,684  
2007 1,702  2,226    
2008 1,744     

     
Link Ratios 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192

1993 1.889 1.175 1.049 1.021 1.010 1.000 1.005 1.000 1.000 1.010 1.005 1.000 1.000 1.000 1.000
1994 1.936 1.167 1.067 1.005 1.020 1.000 1.000 1.005 1.000 1.010 1.000 1.000 1.000 1.000
1995 1.515 1.194 1.049 1.031 1.008 1.000 1.000 1.000 1.007 1.000 1.007 1.000 1.000
1996 1.518 1.071 1.037 1.064 1.054 1.030 1.011 1.011 1.011 1.002 1.008 1.001
1997 1.670 1.056 1.046 1.006 1.000 1.000 1.006 1.000 1.000 1.000 1.000
1998 1.461 1.061 1.028 1.005 1.018 1.022 1.000 1.000 1.000 1.000
1999 1.514 1.031 1.036 1.006 1.029 1.000 1.000 1.000 1.000  
2000 1.483 1.068 1.009 1.020 1.004 1.000 1.001 1.000  
2001 1.478 1.022 1.028 1.004 1.001 1.001 1.002  
2002 1.293 1.109 1.015 1.002 1.003 1.001  
2003 1.181 1.055 1.051 1.010 1.009  
2004 1.353 1.038 1.050 1.012  
2005 1.341 1.081 1.078  
2006 1.323 1.024   
2007 1.308    
2008     

All Per Avg 1.484 1.082 1.042 1.016 1.014 1.005 1.003 1.002 1.003 1.004 1.004 1.000 1.000 1.000 1.000  

All Per Wtd Avg 1.404 1.067 1.043 1.013 1.013 1.005 1.003 1.002 1.002 1.003 1.004 1.000 1.000 1.000 1.000  
5 Yr Avg 1.301 1.061 1.045 1.010 1.009 1.005 1.002 1.002 1.004 1.002 1.004      
5 Yr Wtd Avg 1.306 1.057 1.049 1.010 1.009 1.004 1.002 1.002 1.003 1.002 1.004      
3 Yr Avg 1.324 1.047 1.060 1.008 1.004 1.000 1.001 1.000 1.000 1.001 1.005 1.000 1.000    
3 Yr Wtd Avg 1.324 1.047 1.061 1.009 1.005 1.000 1.001 1.000 1.000 1.001 1.004 1.000 1.000    
Selected A-A 1.350 1.055 1.045 1.010 1.008 1.003 1.002 1.001 1.001 1.001 1.001 1.001 1.000 1.000 1.000
Selected A-U 1.530 1.134 1.075 1.028 1.018 1.010 1.007 1.005 1.004 1.003 1.002 1.001 1.000 1.000 1.000 1.000 
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Appendix Exhibit A.2 
 
Developed Reported Claim Counts to Ultimate 
 
AY 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192 Ult 

1993 406  767  901  945  965 975 975 980 980 980 990  995  995 995 995 995 995 
1994 390  755  881  940  945 964 964 964 969 969 979  979  979 979 979 979 979 
1995 408  618  738  774  798 804 804 804 804 810 810  816  816 816 816 816 816 
1996 581  882  945  980  1,043 1,099 1,132 1,144 1,157 1,170 1,172  1,181  1,182 1,182 1,182 1,182 1,182 
1997 737  1,231  1,300  1,360  1,368 1,368 1,368 1,376 1,376 1,376 1,376  1,376  1,377 1,377 1,377 1,377 1,377 
1998 865  1,264  1,341  1,379  1,386 1,411 1,442 1,442 1,442 1,442 1,442  1,443  1,444 1,444 1,444 1,444 1,444 
1999 847  1,282  1,322  1,370  1,378 1,418 1,418 1,418 1,418 1,418 1,419  1,420  1,421 1,421 1,421 1,421 1,421 
2000 936  1,388  1,482  1,496  1,526 1,532 1,532 1,534 1,534 1,536 1,538  1,540  1,542 1,542 1,542 1,542 1,542 
2001 1,005  1,485  1,518  1,560  1,566 1,568 1,569 1,572 1,574 1,576 1,578  1,580  1,582 1,582 1,582 1,582 1,582 
2002 1,201  1,553  1,722  1,748  1,752 1,757 1,758 1,762 1,764 1,766 1,768  1,770  1,772 1,772 1,772 1,772 1,772 
2003 1,498  1,769  1,866  1,962  1,981 1,999 2,005 2,009 2,011 2,013 2,015  2,017  2,019 2,019 2,019 2,019 2,019 
2004 1,749  2,367  2,456  2,579  2,610 2,631 2,639 2,644 2,647 2,650 2,653  2,656  2,659 2,659 2,659 2,659 2,659 
2005 1,847  2,477  2,678  2,888  2,917 2,940 2,949 2,955 2,958 2,961 2,964  2,967  2,970 2,970 2,970 2,970 2,970 
2006 1,982  2,622  2,684  2,805  2,833 2,856 2,865 2,871 2,874 2,877 2,880  2,883  2,886 2,886 2,886 2,886 2,886 
2007 1,702  2,226  2,348  2,454  2,479 2,499 2,506 2,511 2,514 2,517 2,520  2,523  2,526 2,526 2,526 2,526 2,526 
2008 1,744  2,354  2,483  2,595  2,621 2,642 2,650 2,655 2,658 2,661 2,664  2,667  2,670 2,670 2,670 2,670 2,670 

 
* Reported Claim Counts in italics are projected.
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Appendix Exhibit A.3 
 
Incremental Future Reported Claim Counts by Accident Year and Calendar Year 
 

AY 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192 

1993 406  361  134  44 20 10 0 5 0 0  10 5 0 0 0 0 

1994 390  365  126  59 5 19 0 0 5 0  10 0 0 0 0 0 

1995 408  210  120  36 24 6 0 0 0 6  0 6 0 0 0 0 

1996 581  301  63  35 63 56 33 12 13 13  2 9 1 0 0 0 

1997 737  494  69  60 8 0 0 8 0 0 0 0 1 0 0 0 

1998 865  399  77  38 7 25 31 0 0 0  0 1 1 0 0 0 

1999 847  435  40  48 8 40 0 0 0 0  1 1 1 0 0 0 

2000 936  452  94  14 30 6 0 2 0 2  2 2 2 0 0 0 

2001 1,005  480  33  42 6 2 1 3 2 2  2 2 2 0 0 0 

2002 1,201  352  169  26 4 5 1 4 2 2  2 2 2 0 0 0 

2003 1,498  271  97  96 19 18 6 4 2 2  2 2 2 0 0 0 

2004 1,749  618  89  123 31 21 8 5 3 3  3 3 3 0 0 0 

2005 1,847  630  201  210 29 23 9 6 3 3  3 3 3 0 0 0 

2006 1,982  640  62  121 28 23 9 6 3 3  3 3 3 0 0 0 

2007 1,702  524  122  106 25 20 7 5 3 3  3 3 3 0 0 0 

2008 1,744  610  129  112 26 21 8 5 3 3  3 3 3 0 0 0 

 
* Incremental reported claim counts in italics are projected. 
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Appendix Exhibit A.4 
 
Projected Percentages of Reported Claims that will be Open at Subsequent Calendar Year Ends 
 

AY  2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 
1993  0.3% 0.0%                
1994 0.4% 0.3% 0.0%               
1995 0.9% 0.6% 0.4% 0.0%              
1996 0.4% 0.3% 0.2% 0.1% 0.0%             
1997 1.2% 0.9% 0.6% 0.4% 0.3% 0.0%            
1998 0.9% 0.8% 0.6% 0.4% 0.3% 0.2% 0.0%           
1999 1.3% 1.2% 1.1% 0.8% 0.5% 0.4% 0.3% 0.0%          
2000 1.5% 1.2% 1.1% 1.0% 0.7% 0.5% 0.3% 0.2% 0.0%         
2001 3.0% 2.6% 2.1% 1.9% 1.7% 1.3% 0.9% 0.6% 0.4% 0.0%        
2002 4.2% 3.5% 3.0% 2.5% 2.2% 2.0% 1.5% 1.0% 0.7% 0.5% 0.0%       
2003 9.9% 4.9% 4.1% 3.5% 2.9% 2.6% 2.3% 1.7% 1.2% 0.8% 0.6% 0.0%      
2004  15.5% 8.8% 4.3% 3.6% 3.1% 2.6% 2.3% 2.1% 1.6% 1.0% 0.7% 0.5% 0.0%     
2005  30.3% 18.2% 10.3% 5.1% 4.2% 3.6% 3.0% 2.7% 2.4% 1.8% 1.2% 0.8% 0.6% 0.0%    
2006  36.8% 26.3% 15.8% 8.9% 4.4% 3.7% 3.2% 2.6% 2.3% 2.1% 1.6% 1.1% 0.7% 0.5% 0.0%   
2007  65.4% 41.6% 29.7% 17.8% 10.1% 5.0% 4.2% 3.6% 3.0% 2.6% 2.4% 1.8% 1.2% 0.8% 0.6% 0.0%  
2008  77.4% 50.1% 31.9% 22.8% 13.7% 7.7% 3.8% 3.2% 2.7% 2.3% 2.0% 1.8% 1.4% 0.9% 0.6% 0.5% 0.0%

 
* Calendar Year-End 2008 percentages in italics are actual
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Appendix Exhibit A.5 
  
Estimates of AOE Reserves Associated with the Opening of IBNR Claims Assuming Trended AOE 
 

AY 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192 Ult 

1993                  0  

1994                 0 0  

1995                0 0 0  

1996               0 0 0 0  

1997              1,947 0 0 0 1,947  

1998             1,947 2,024 0 0 0 3,971  

1999            1,947 2,024 2,105 0 0 0 6,076  

2000           3,893 4,049 4,211 4,379 0 0 0 16,532  

2001          3,893  4,049 4,211 4,379 4,554 0 0 0 21,086  

2002         7,786 4,049  4,211 4,379 4,554 4,737 0 0 0 29,716  

2003        11,679 8,098 4,211  4,379 4,554 4,737 4,926 0 0 0 42,583  

2004       40,877 16,195 10,527 6,569  6,832 7,105 7,389 7,685 0 0 0 103,178  

2005      56,449 46,561 18,948 13,138 6,832  7,105 7,389 7,685 7,992 0 0 0 172,098  

2006     235,530 56,683 48,424 19,706 13,663 7,105  7,389 7,685 7,992 8,312 0 0 0 412,488  

2007    237,477  214,586 52,634 43,792 15,940 11,841 7,389  7,685 7,992 8,312 8,644 0 0 0 616,291  

2008   1,187,385  261,147  235,801 56,929 47,821 18,946 12,315 7,685  7,992 8,312 8,644 8,990 0 0 0 1,861,966  

     Total 3,287,931 
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Appendix Exhibit A.6 
 
Estimates of AOE Reserves Associated with Claim Closings and Payments, Assuming AOE Trend 
 
 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 Total 

1993 1,168   1,168 
1994 445 1,157  1,602 
1995 818 567 1,474 2,858 
1996 649 405 281 730 2,064 
1997 2,040 1,722 1,075 745 1,937 7,519 
1998 863 1,599 1,246 777 539 1,401 6,426 
1999 1,339 1,037 2,020 1,668 1,041 721 1,876 9,702 
2000 2,431 1,825 1,511 2,555 1,755 1,095 759 1,974 13,905 
2001 3,666 3,779 2,660 2,083 3,973 3,200 1,997 1,385 3,600 26,343 
2002 7,004 4,739 4,885 3,349 2,558 5,134 4,374 2,729 1,892 4,920 41,586 
2003 45,578 9,047 6,214 6,404 4,291 3,202 6,728 5,996 3,742 2,594 6,745 100,540 
2004 87,103 56,092 11,195 7,893 8,136 5,562 4,236 8,551 7,328 4,573 3,170 8,243 212,082 
2005 171,170 116,538 75,677 14,968 10,295 10,610 7,096 5,286 11,148 9,972 6,223 4,314 11,217 454,516 
2006 192,690 151,615 103,779 66,969 13,587 9,261 9,544 6,471 4,887 10,028 8,737 5,452 3,780 9,828 596,628 
2007 389,530 190,860 154,651 105,441 67,989 13,494 9,538 9,833 6,671 5,043 10,337 8,996 5,613 3,892 10,119 992,007 
2008 608,047 348,623 175,517 133,318 91,361 58,498 11,896 8,357 8,613 5,955 4,585 9,052 7,578 4,729 3,278 8,524 1,487,929 

    Total 3,956,876 
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______________________________________________________________________________ 
Abstract 

Motivation. Bootstrapping is a very versatile model for estimating a distribution of possible outcomes for the 
unpaid claims, is relatively easy to use and explain to others, and can be readily “generalized” to be more flexible 
and combined with other related models that can be used to assess risk for a wide variety of enterprise risk 
management issues. While the CAS literature includes several papers that describe the bootstrap model, all of 
these papers are limited to the basic calculations of the model or focus on a particular aspect of the model. In 
contrast, this paper outlines the modifications to the basic algorithm that are required in order to put the 
bootstrap model into practical everyday use. 
Method. This paper will start by pulling all of the issues from different papers into the complete basic bootstrap 
modeling framework using a standard notation. Then it will describe some of the enhancements required for 
practical usage and it will show how the output of the model can be easily “extended” to address other risk 
management issues. It will then expand the basic model and generalize the approach, as well as address many 
common modeling issues that arise during the diagnostic testing of the model parameters and assumptions. 
Finally, it will summarize testing of the model using simulated data and suggest possible areas for further 
research. 
Results. The paper will illustrate the practical implementation of the bootstrap modeling framework as a 
powerful tool for estimating a distribution of unpaid claims. 
Conclusions. The paper outlines the full versatility of the bootstrap model for the practicing actuary. 
Availability. A set of companion Excel files are available at http://www.casact.org/pubs/forum/10fforum/, 
which contains the calculations illustrated in this paper as well as serving as a learning tool for the student or 
practicing actuary. 
 
Keywords. Bootstrap, Over-Dispersed Poisson, Reserve Variability. Reserve Range, Distribution of Possible 
Outcomes. 

              

1. INTRODUCTION 

The term “bootstrap” has a colorful history that dates back to German folk tales of the 18th-

century. It is aptly conveyed in the familiar cliché admonishing laggards to “pull oneself up by their 

own bootstraps.” A physical paradox and virtual impossibility, the idea has nonetheless caught the 

imagination of scientists in a broad array of fields, including physics, biology and medical research, 

computer science, and statistics.  

Bradley Efron, Chairman of the Department of Statistics at Stanford University, is most often 

associated as the source of expanding bootstrapping into the realm of statistics, with his notion of 

taking one available sample and using it to arrive at many others through resampling. His essential 

strategy involves duplicating the original sample and then treating the expanded sample that results 

from the process as a virtual population. Samples are then drawn with replacement from this 

population to verify the estimators. 
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In actuarial science, bootstrapping has become increasingly common in the process of loss 

reserving. The most commonly cited examples point to England and Verrall [9, 10], Pinheiro, et al. 

[25], and Kirschner, et al. [15], who suggest using a basic chain ladder technique to square a triangle 

of paid losses, repeating that randomly and stochastically over a large number of trials. The model 

generates a distribution of possible outcomes, rather than the chain ladder’s typical point estimate, 

thus providing more information about the potential results. For example, without an estimated 

distribution it is impossible to directly estimate the amount of capital required1 or how likely it is that 

the ultimate value of the claims will exceed a certain amount. 

Another advantage of a bootstrap model is that it can be specifically tailored to the statistical 

features found in the data under analysis. This is particularly important as the results of any 

simulation model are only as good as the model used in the simulation process. If the model does 

not fit the data then the results of the simulation may not be a very good estimate of the distribution 

of possible outcomes. Like all models and methods, the quality of a bootstrap model depends on the 

quality of the assumptions. Thus, we will elaborate on the model diagnostics in Section 4. 

A third advantage of a bootstrap model is that it can reflect the fact that insurance loss 

distributions are generally “skewed to the right.” Rather than use the commonly recognized normal 

distribution (which is sometimes used as a simplifying assumption in other models), the bootstrap 

sampling process does not require a distributional assumption. Instead, the level of skewness in the 

underlying data is automatically reflected back into the resampled or pseudo data. 

Another aspect of bootstrap models that could be considered a disadvantage is that they are more 

complex than other methods and thus more time consuming to create. However, once a flexible 

model has been developed they can be used as efficiently as most standard methods. 

There are several disadvantages of bootstrap models that we will discuss in due course as we 

describe how this framework can be modified for a variety of practical uses.2 

1.1 Objectives 

The world of enterprise risk management is changing the horizon for actuaries. Understanding 

the central estimate for insurance claims is no longer adequate when managing risk. Actuaries must 

now measure and understand the distribution of the insurance claims in order to better understand 

and explain risk to management. On the pricing and dynamic risk modeling fronts, the actuarial 

                                                           
1 Without an estimated distribution, required capital could be ‘‘estimated’’ using industry benchmark ratios or other 

rules of thumb, but these do not directly account for the specific risk profile under review. 
2 This section is based in large part on [22]. 
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models have already embraced this new reality. 

Unfortunately, in the reserving area the vast majority of actuaries are focused on deterministic 

point estimates for reserving. This is not surprising, as our primary standard of practice for 

reserving, ASOP 36, seems to be focused exclusively on deterministic point estimates and the 

regulators, via the actuarial opinion, are also focused on deterministic estimates. However, actuaries 

are free to estimate distributions instead of point estimates.3 But nothing seems to be forcing the 

profession towards unpaid claim distributions. 

This is changing due to a number of factors: 

 the SEC is looking for more reserving risk information in the 10-K reports filed by publicly 

traded companies; 

 all of the major rating agencies have built or are building dynamic risk models to help with 

their insurance rating process and welcome the input of company actuaries regarding unpaid 

claim distributions; and 

 companies that use dynamic risk models to help their internal risk management processes 

need unpaid claim distributions. 

One objective of this paper is to show how the bootstrap modeling framework can be used in 

practice, to help the wider adoption of unpaid claim distributions. 

Another potential roadblock seems to be the notion that actuaries are still searching for the 

perfect model to describe “the” distribution of unpaid claims, as if imperfections in a model remove 

it from all consideration since it can’t be “the one.” This notion can also manifest itself when an 

actuary settles for a model that seems to work the best or is the easiest to use, or with the idea each 

model must be used in its entirety or not at all. Interestingly, this notion was dispelled long ago with 

respect to practice for deterministic point estimates as actuaries commonly use many different 

methods, which range from easy to complex, and judgmentally weight the results by accident year 

(i.e., use only parts of a method) to arrive at their best estimate. Thus, another objective of this paper 

is to show how stochastic reserving needs to be similar to deterministic reserving when it comes to 

analyzing and using the best parts of multiple models. 

Finally, most of the papers describing stochastic models, including bootstrap models, tend to 

focus primarily on the theoretical aspects of the model while ignoring the data issues that commonly 

                                                           
3 Indeed, ASOP 43 opened the door a bit further by defining ‘‘actuarial central estimate’’ in such a way that it could 

include either deterministic point estimates or a first moment estimate from a distribution. 
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arise in practice. As a result, most models described in papers can be quite elegantly implemented yet 

can suffer from practical limitations such as only being useful for complete triangles or only for 

positive incremental values. This could also act as a deterrent by limiting the usability of a model to 

specific situations and by giving the impression that using the model is not worth the effort. Thus, 

while keeping as close to the theoretical foundation as possible, another objective of the paper is to 

illustrate how a variety of practical adjustments can be made to accommodate common data issues. 

1.2 Outline 

This paper will start by reviewing the notation from the CAS Working Party on Quantifying 

Variability in Reserve Estimates Summary Report [6] which we will use in this paper. Then we will 

illustrate and expand the foundation developed in other papers for the basic calculations of the 

bootstrap model, including showing how the GLM framework of the model can be “generalized” to 

include diagonal parameters. In order to be consistent with the theoretical foundation yet recognize 

practical needs, we will describe data issues that require enhancements to the basic algorithm. With a 

complete modeling framework established, we can then review the diagnostic tests to ensure that the 

model assumptions are consistent with the statistical features in the data. Should the assumptions 

appear inconsistent, we will suggest adjustments to the model that can be made. 

Even though bootstrapping is a very versatile framework, it is still important to draw from the 

strengths of different models and weight distributions, similar to weighting point estimates, in order 

to get a best estimate of the distribution. Thus, we will briefly explore ways to combine the results of 

different models, including non-bootstrap models with bootstrap models. Since the analysis of 

enterprise risk involves all sources of risk, we will also explore correlation issues for the bootstrap 

model and then describe extensions to the model output and how they can be used for assessing 

risks in addition to reserve risk. In order to use the results with confidence, we will briefly discuss 

some findings related to testing of the model compared to another commonly used model (Mack). 

Finally, we will close with some possible areas for future research. 

2. NOTATION 

The papers that describe the basic bootstrap model use different notation, despite sharing 

common steps. Rather than pick the notation in one of the papers, we will use the notation from the 

CAS Working Party on Quantifying Variability in Reserve Estimates Summary Report [6] since it is 

intended to serve as a basis for further research and the bootstrap model is also described in that 

paper. 
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Many models visualize loss statistics as a two-dimensional array. The row dimension is the annual 

period by which the loss information is subtotaled, most commonly an accident year or policy year. 

For each accident period, w , the ),( dw  element of the array is the total of the loss information as 

of development age d .4 Here the development age is the accounting year5 of the loss information 

expressed as the number of time periods after the accident or policy year. For example, the loss 

statistic for accident year 2 as of the end of calendar year 4 has development age 3 years.  

For this discussion, we assume that the loss information available is an “upper triangular” subset 

of the two-dimensional array for rows nw ,,2,1  . For each row, w , the information is available 

for development ages 1 through 1wn . If we think of year n  as the most recent accounting year 

for which loss information is available, the triangle represents the loss information as of accounting 

dates 1 through n . The diagonal k w d   represents the loss information for each accident period 

w  as of accounting year k .6 

The paper uses the following notation for certain important loss statistics:  

),( dwc : cumulative loss from accident7 year w  as of age d . (Think w  = “when” and 

d  = “delay”) 

)(),( wUnwc  : total loss from accident year w  when claims are at ultimate values.  

),( dwR : future development after age d  for accident year w , i.e., = ),()( dwcwU  . 

),( dwq : incremental loss for accident year w  from d  - 1 to d . 

)(df : factor applied to ),( dwc  to estimate )1,( dwq  or can be used more generally 

to indicate any factor relating to age d . 

)(dF : factor applied to ),( dwc  to estimate ),( nwc  or can be used more generally to 

indicate any cumulative factor relating to age d . 

)(wG : factor relating to accident year w  – capitalized to designate ultimate loss level. 

)( dwh  : factor relating to the diagonal k  along which w + d  is constant. 

                                                           

4 Depending on the context, the ),( dw cell can represent the cumulative loss statistic as of development age d  or the 

incremental amount occurring during the d th development period. 
5 The development ages are assumed to be in yearly intervals for ease of discussion. However, they can be in different 

time units such as half-years, quarters, or months. 
6 For a more complete explanation of this two-dimensional view of the loss information, see the Foundations of Casualty 

Actuarial Science [12], Chapter 5, particularly pages 210-226. 
7 The use of accident year is also used for ease of discussion. All of the discussion could also apply to underwriting year, 

policy year, report year, etc. 
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),( dwe : a mean zero random fluctuation which occurs at the w , d  cell. 

)(xE : the expectation of the random variable x . 

)(xVar : the variance of the random variable x . 

What are called factors here could also be summands, but if factors and summands are both used, 

some other notation for the additive terms would be needed. The notation does not distinguish paid 

vs. incurred, but if this is necessary, capitalized subscripts P  and I  could be used. 

3. THE BOOTSTRAP MODEL 

Even though many variations of the bootstrap model framework are possible, we will focus 

primarily on the most common example that essentially reproduces the basic chain ladder method. It 

will also be helpful to briefly review the assumptions that underpin the basic chain ladder method. 
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The foundation for any model is the data being modeled. Like many commonly used models, 

then, we will start with a triangle array of cumulative data: 

  d       
  1 2 3 … n-1 n 

w  1 c(1,1) c(1,2) c(1,3) … c(1,n-1) c(1,n) 
 2 c(2,1) c(2,2) c(2,3) … c(2,n-1)  
 3 c(3,1) c(3,2) c(3,3) …   
 … … …     

 n-1 c(n-1,1) c(n-1,2)     
 n c(n,1)      

A typical deterministic analysis of this data will start with an array of age-to-age ratios or 

development factors: 

( , )
( , )

( , 1)

c w d
F w d

c w d



. 

(3.1)

Then two key assumptions are made in order to make a projection of the known elements to 

their respective ultimate values. First, it is assumed that each accident year has the same 

development factor. Equivalently, for each 1,2, ,w n  : 

( , ) ( )F w d F d . 

Under this first assumption, one of the more popular estimators for the development factor is 

the weighted average: 

1

1
1

1

( , )ˆ ( )
( , 1)

n d

w
n d

w

c w d
F d

c w d

 


 









. 
(3.2)

Certainly there are other popular estimators in use, but they are beyond our scope at this stage yet 

most are still consistent with our first assumption that each accident year has the same factor. 

Projections of the ultimate values, or ˆ( , )c w n for w = 1, 2, 3, … , n, are then computed using: 

1
ˆˆ( , ) ( , ) ( )

n

i d
c w n c w d F i

 
  . (3.3)

This part of the claim projection algorithm relies explicitly on the second assumption, namely 

that each accident year has a parameter representing its relative level. These level parameters are the 

current cumulative values for each accident year, or ( , 1)c w n w  . Of course variations on this 

second assumption are also common, but the point is that every model has explicit assumptions that 

are an integral part of understanding the quality of that model. 

One variation on the second assumption is to assume that the accident years are completely 

homogeneous. In this case we would estimate the level parameter of the accident years using: 
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1

1
( , )

1

n d

w
c w d

n d

 



 


. 
(3.4)

Complete homogeneity implies that the observations (1, )c d , (2, )c d , …, ( 1, )c n d d   are 

generated by the same mechanism. Interestingly, the basic chain ladder algorithm explicitly assumes 

that the mechanisms generating the observations are NOT homogeneous and effectively that 

“pooling” of the data does not provide any increased efficiency.8 In contrast, it could be argued that 

the Bornhuetter-Ferguson and Cape Cod methods are a “blend” of these two extremes as the 

homogeneity of the future expected result depends on the consistency of the a priori loss ratios and 

decay rate, respectively. 

3.1 Origins of Bootstrapping 

Possibly the earliest development of a stochastic model for the actuarial array of cumulative 

development data is attributed to Kremer [16]. The basic model described by Kremer can be defined 

by the multiplicative representation: 

( , ) '( ) '( ) '( , )P w d G w F d e w d   . (3.5)

Where: '( )G w is a parameter representing the effect of accident year w, 

 '( )F d  is a parameter representing the effect of development period d, and 

 '( , )e w d  is a random error term. 

Taking logarithms of both sides of equation (3.5), the model can be formulated as a two-way 

analysis of variance: 

( , ) log[ ( , )] ( ) ( ) ( , )Y w d P w d G w F d e w d     . (3.6)

Where:   is the overall mean effect on a log scale, 

 ( )G w is the residual effect due to accident year w, 

 ( )F d  is the residual effect due to development period d, 

 ( , )e w d  represent zero mean uncorrelated errors with 2[ ( , )]Var e w d  , and 

( ) ( ) 0G w F d   . (3.7)

This model is further described by England and Verrall [9] and Zehnwirth [39], so we will not elaborate 

further here. It should be noted, however, that the model in (3.6) can be extended by considering alternatives. 

This log-normal model, and generalizations thereof, has also been discussed in Zehnwirth [1, 40], Renshaw 

[30], Christofides [7], and Verrall [37, 38], among others. 

                                                           
8 For a more complete discussion of these assumptions of the basic chain ladder model see Zehnwirth [39]. 
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3.2 The Over-Dispersed Poisson Model 

The genesis of this model into a bootstrap framework originated with Renshaw and Verrall [31] 

when they proposed modeling the incremental claims ),( dwq  directly as the response, with the 

same linear predictor as Kremer [16], but using a generalized linear model (GLM) with a log-link 

function and an over-dispersed Poisson (ODP) error distribution. Then, England and Verrall [9] 

discuss how this model can be used to estimate parameters and use bootstrapping (sampling the 

residuals with replacement) to estimate the complete distribution. More formally, using the 

following: 

,[ ( , )] w dE q w d m  and ,[ ( , )] [ ( , )] z
w dVar q w d E q w d m    (3.8)

, ,ln[ ]w d w dm   (3.9)

,w d w dc     , where: w =1, 2, …, n; d =1, 2, …, n; and 1 1 0   . (3.10)

In this case the   parameters function as adjustments to the constant, c, level parameter and the 

  parameters adjust for the development trends after the first development period. The power, z , 

is used to specify the error distribution with 0z   for normal, 1z   for Poisson, 2z   for Gamma 

and 3z   for inverse Gaussian. Alternatively, we can remove the constant which will cause the   

parameters to function as individual level parameters while the   parameters continue to adjust for the 

development trends after the first development period: 

,w d w d    , where: w =1, 2, …, n; and d =2, …, n. (3.11)

Standard statistical software can be used to estimate parameters and goodness of fit measures. 

The parameter   is a scale parameter that is estimated as part of the fitting procedure while setting 

the variance proportional to the mean (thus “over-dispersed” Poisson for 1z  ). For educational 

purposes, we have included the calculations to solve these equations for a 10 x 10 triangle in the 

“Bootstrap Models.xls” file, but we will illustrate the calculations here for a 3 x 3 triangle for ease of 

exposition and in the “Simple GLM.xls” file. Consider the following incremental data triangle: 

 1 2 3 
1 q(1,1) q(1,2) q(1,3) 
2 q(2,1) q(2,2)  
3 q(3,1)   

In order to set up the GLM model to fit parameters to the data we need to do a log-link or 

transform which results in: 

 1 2 3 
1 ln[q(1,1)] ln[q(1,2)] ln[q(1,3)]
2 ln[q(2,1)] ln[q(2,2)]  
3 ln[q(3,1)]   
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The model is then specified using a system of equations with vectors of w  and d  parameters as 

follows: 

1 2 3 2 3ln[ (1,1)] 1 0 0 0 0q           

1 2 3 2 3ln[ (2,1)] 0 1 0 0 0q           

1 2 3 2 3ln[ (3,1)] 0 0 1 0 0q           

1 2 3 2 3ln[ (1,2)] 1 0 0 1 0q           

1 2 3 2 3ln[ (2,2)] 0 1 0 1 0q           

1 2 3 2 3ln[ (1,3)] 1 0 0 1 1q          . 

(3.12)

Converting this to matrix notation we have: 

Y = X x A (3.13)

Where: 

Y = 

ln[ (1,1)] 0 0 0 0 0

0 ln[ (2,1)] 0 0 0 0

0 0 ln[ (3,1)] 0 0 0

0 0 0 ln[ (1,2)] 0 0

0 0 0 0 ln[ (2,2)] 0

0 0 0 0 0 ln[ (1,3)]

q

q

q

q

q

q

 
 
 
 
 
 
 
 
 

, 

(3.14)

X = 

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

1 0 0 1 0

0 1 0 1 0

1 0 0 1 1

 
 
 
 
 
 
 
 
 

, and 

(3.15)

A = 

1

2

3

2

3







 
 
 
 
 
 
  

. 

(3.16)

In this form we can use the Newton-Raphson method9 to solve for the parameters in the A 

vector that minimize the difference between the Y matrix and the W matrix: 

                                                           
9 Other methods, such as orthogonal decomposition, can also be used to solve for the parameters. 
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W = 

1,1

2,1

3,1

1,2

2,2

1,3

ln[ ] 0 0 0 0 0

0 ln[ ] 0 0 0 0

0 0 ln[ ] 0 0 0

0 0 0 ln[ ] 0 0

0 0 0 0 ln[ ] 0

0 0 0 0 0 ln[ ]

m

m

m

m

m

m

 
 
 
 
 
 
 
 
  

. 

(3.17)

Typically, X is known as the design matrix and W is known as the weight matrix. After solving 

the system of equations we will have: 

1,1 1,1 1ln[ ]m     

2,1 2,1 2ln[ ]m     

3,1 3,1 3ln[ ]m     

1,2 1,2 1 2ln[ ]m       

2,2 2,2 2 2ln[ ]m       

1,3 1,3 1 2 3ln[ ]m        . 

(3.18)

This solution can then be shown as a triangle: 

 1 2 3 
1 ln[m1,1] ln[m1,2] ln[m1,3] 
2 ln[m2,1] ln[m2,2]  
3 ln[m3,1]   

These results can then be exponentiated to the fitted, or expected, incremental results of the 

GLM model: 

 1 2 3 
1 m1,1 m1,2 m1,3 
2 m2,1 m2,2  
3 m3,1   

We will refer to this as the “GLM framework” and have illustrated this model for a simple 3 x 3 

triangle in the “Simple GLM.xls” file. While the GLM framework is used to solve these equations 

for the fitted results, the usefulness of this framework is that the fitted results (with the Poisson 

error distribution assumption) will exactly equal the results that can be derived from volume-

weighted average age-to-age ratios. That is, it can be reproduced by using the last cumulative 

diagonal, dividing backwards successively by each age-to-age factor and subtracting to get the fitted 

incremental results. We will refer to this method as the “simplified GLM”. This has three very useful 

consequences. 

First, GLM portion of the algorithm can be replaced with a simpler link ratio algorithm while still 



Bootstrap Modeling: Beyond the Basics 
 

Casualty Actuarial Society E-Forum, Fall 2010  12 

being based on the underlying GLM framework. Second, the use of the age-to-age ratios serves as a 

“bridge” to the deterministic framework and allows the model to be more easily explainable to 

others. And, third, for the GLM algorithm the log-link process means that negative incremental 

values can often cause the algorithm to not have a solution, whereas using the link ratios will 

generally allow for a solution.10 

With a model fitted to the data, the bootstrap process involves sampling with replacement from 

the residuals. England and Verrall [9] note that the deviance, Pearson, and Anscombe residuals 

could all be considered for this process, but the Pearson residuals are the most desirable since they 

are calculated consistently with the scale parameter. The unscaled Pearson residuals and scale 

parameter are calculated as follows: 

,
,

,

( , ) w d
w d z

w d

q w d m
r

m


 . 

(3.19)

,w dr

n p
 




. 
(3.20)

Where n = the number of data cells in the triangle and p = the number of parameters, which is 

typically equal to 2*n – 1.11 Sampling with replacement from the residuals can then be used to create 

new sample triangles of incremental values using formula 3.16. Sampling with replacement assumes 

that the residuals are independent and identically distributed, but it does not require the residuals to 

be normally distributed. Indeed, this is often cited as an advantage of the ODP bootstrap model 

since whatever distributional form the residuals have will flow through the simulation process. Some 

authors have referred to this a “semi-parametric” bootstrap model since we are not parameterizing 

the residuals. 

*
, ,'( , ) z

w d w dq w d r m m   . (3.21)

The sample triangle of incremental values can then be cumulated, new average age-to-age factors 

and loss development factors can be calculated for the sample and applied to calculate a point 

estimate for this data. This process could be described as getting a distribution of point estimates, 

which includes incorporating process variance and parameter variance in the simulation of the 

                                                           
10 More specifically, individual negative cell values may not be a problem. If the total of all incremental cell values in a 

development column is negative, then the GLM algorithm will fail. This situation will not cause a problem fitting the 
model as a link ratio less than one will be perfectly useful. However, this may still cause other problems, which we will 
address in section 4. 

11 The number of parameters could be less than 2*n – 1. For example, if the incremental values are zeros for the last 
three columns in a triangle then there will be three fewer   parameters since none are needed to fit to these zero 
values as the development process is completed already.  
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historical data. In England and Verrall [9] this is the end of the process, but at the end of the 

appendix they note that you should also multiply the resulting distribution by the degrees of 

freedom adjustment factor (3.22), to effectively allow for over-dispersion of the residuals in the 

sampling process. 

n
f

n p



. 

(3.22)

Later, in England and Verrall [10], the authors note that the Pearson residuals (3.19) could be 

multiplied by the degrees of freedom adjustment factor (3.22) in order to correct for a bias in the 

residuals. They also expand the simulation process by adding process variance to the future 

incremental values from the point estimates. To add this process variance, they assume that each 

future incremental value ,w dm  is the mean and the mean times the scale parameter, ,w dm , is the 

variance of a gamma distribution.12 This revised model could now be described as estimating a 

distribution of possible outcomes, which incorporates process variance and parameter variance in 

the simulation of the historical and future data. 

However, Pinheiro et al. [25, 26] noted that the bias correction for the residuals using the degrees 

of freedom adjustment factor (3.22) does not create standardized residuals, which is an important 

step for making sure that the residuals all have the same variance. In order to have standardized 

Pearson residuals, the GLM framework requires the use of a hat matrix adjustment factor. 

  1T TH X X WX X W


 . (3.23)

,
,

1

1
H

w d
i i

f
H




. 
(3.24)

The hat matrix (3.23) is calculated using matrix multiplication of the design matrix (3.15) and the 

weight matrix (3.17). The hat matrix adjustment factor (3.24) uses the diagonal of the hat matrix. In 

Pinheiro, et al. [26] the authors note two important points about the bootstrap process as described 

by England and Verrall [9, 10]. First, the sampling of the residuals should not include any zero-value 

residuals, which are typically in the corners of the triangle.13 The exclusion of the zero-value 

residuals is accounted for in the hat matrix adjustment factor (3.24), but another common 

explanation is that the zero-value cells will have some variance but we just don’t know what it is yet 

so we should sample from the remaining residuals but not the zeros. Second, the hat matrix 

                                                           
12 The Poisson distribution could be used, but it is considerably slower to simulate, so gamma is a close substitute that 

performs much faster in simulation. 
13 Technically, the two ‘‘corner’’ residuals are zero because they each have a parameter that is unique to that incremental 

value which causes the fitted incremental value to exactly equal the actual incremental value. 
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adjustment factor (3.24) is a replacement for the degrees of freedom factor (3.22), which improves 

the calculation of the residuals.14 

Thus, the unscaled Pearson residuals (3.19) should be replaced by the standardized Pearson 

residuals: 

,
, ,

,

( , ) w dH H
w d w dz

w d

q w d m
r f

m


  . 

(3.25)

However, the scale parameter (3.20) is still calculated as before, although the standardized 

Pearson residuals could be used to approximate the scale parameter as follows: 

,
H

w dH r

n
   . 

(3.26)

At this point we have a complete basic “ODP bootstrap” model, as it is often referred to, 

although various stages of this complete model have been in popular use and formally tested. It is 

also important to note that the two key assumptions mentioned earlier, each accident year has the 

same development factor and each accident year has a parameter representing its relative level, are 

equally applicable to this model. 

In order for the reader to test out the different “combinations” of this modeling process the 

“Bootstrap Models.xls” file includes options to allow these historical algorithms to be simulated. 

Our purpose in describing this evolution of the bootstrap model framework is threefold: first, to 

allow the interested reader to better understand the details of the algorithm and how these papers 

have contributed to the model framework; second, to illustrate the value of collaborative research 

via different published papers and the contributions of different authors; and, third, to provide a 

solid basis for us to continue the evolutionary process. 

3.3 Variations on the ODP Model 

When estimating insurance risk it is generally considered desirable to focus on the claim payment 

stream in order to measure the variability of the actual cash flows that directly affect the bottom line. 

Clearly, changes in case reserves and IBNR reserves will also impact the bottom line, but to a 

considerable extent the changes in IBNR are intended to counter the impact of the changes in case 

reserves. To some degree, then, the total reserve movements can act to mask the underlying changes 

due to cash flows. On the other hand, the case reserves represent potential future payments so we 

                                                           
14 This second point was not addressed clearly in Pinheiro et al. [25], but as the authors updated and clarified the paper 

in [26] this issue was more clearly addressed. 
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should not just ignore them and focus exclusively on paid data. 

3.3.1 Bootstrapping the incurred loss triangle 

The ODP model, as described, can be used to model both paid and incurred data. However, the 

resulting distribution from using incurred data will be possible outcomes of the IBNR so they will 

not be directly comparable to the distribution of possible outcomes of the total unpaid (i.e., from 

using paid data). A convenient way of converting the results of an incurred data model to a payment 

stream is to use payment patterns applied to the ultimate value of the incurred claims. This is 

consistent with how a deterministic incurred ultimate can be converted using a paid development 

pattern. If a paid data model is run in parallel with the incurred data model the possible outcomes 

from the paid data model can be used to convert incurred ultimate values to a payment pattern for 

each iteration (and for each accident year individually). 

The “Bootstrap Models.xls” file illustrates this concept. It is worth noting, however, that this 

process allows the “added value” of using the case reserves to help predict the ultimate results to 

work its way into the calculations, thus perhaps improving the estimates, while still focusing on the 

payment stream for measuring risk. In effect, it allows a distribution of IBNR to become a 

distribution of IBNR and case reserves. This process could be made more sophisticated by 

correlating the residual sampling and/or process variance portions of the parallel models. 

Correlations must be considered if, for example, you wanted the iterations showing long payment 

streams to be compared with the iterations with high incurred results. It is also possible to use other 

modeling algorithms such as the Munich chain ladder (see [27]), although that is beyond the scope 

of this paper. 

3.3.2 Bootstrapping the Bornhuetter-Ferguson and Cape Cod models 

Another common issue with using the ODP bootstrap process is that iterations for the latest few 

accident years can produce results with more variance than you would expect given what you 

simulated for the earlier accident years. This is usually due to the fact that age-to-age factors are used 

to extrapolate the sampled values prior to adding process variance, which is completely analogous to 

one of the weaknesses of the deterministic paid chain ladder method. 

As for the deterministic chain ladder method, the ODP bootstrap process can be modified by 

changing the extrapolation of future incremental values by using the Bornhuetter-Ferguson or 

generalized Cape Cod algorithms, among others. These deterministic methods can be converted into 

stochastic models while still using the underlying ODP assumptions and process, and that the 

deterministic assumptions of these methods can also be converted to stochastic assumptions. For 
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example, instead of simply using a vector of deterministic a priori loss ratios for the Bornhuetter-

Ferguson model, we could add a vector of standard deviations to go with these means, assume a 

distribution and simulate a different a priori loss ratio for every iteration of the model. Finally, it is 

worth noting that these “new” models can be set up separately for paid and incurred data and that 

the paid and incurred assumptions should be internally consistent with each other and with other 

models, as they should be for deterministic methods. 

The “Bootstrap Models.xls” file also illustrates the Bornhuetter-Ferguson and Cape Cod models. 

3.4 Generalizing the ODP Model 

Using deterministic algorithms to enhance the flexibility of the basic ODP bootstrap process is a 

straightforward way to create additional models and to overcome many of the limitations of using 

bootstrapping. However, some limitations are more difficult to overcome just by using these 

algorithms. For example, calendar-year effects can be adjusted using a Berquist-Sherman algorithm 

but it is hard to make the assumptions more stochastic. 

Rather than add essentially deterministic algorithms to a stochastic model, another approach is to 

go back to the original GLM framework and generalize the basic model. Returning to formulas (3.8) 

to (3.11), the GLM framework does not require a certain number of parameters so we are actually 

free to specify only as many parameters as we need to get a robust model. Indeed, it is ONLY when 

we specify a parameter for EVERY accident year and EVERY development year and specify a 

Poisson error distribution that we end up exactly replicating the volume weighted average age-to-age 

factors that allow us to substitute the deterministic algorithm instead of solving the GLM fit. 

Thus, using the original GLM framework we can specify a model with only a few parameters, but 

there are two drawbacks to doing so. First, the GLM must be solved for each iteration of the 

bootstrap model (which may slow down the simulation process) and, second, the model is no longer 

directly explainable to others using age-to-age factors.15 While the impact of these drawbacks should 

be considered, the potential benefits of using the GLM framework can be much greater. 

First, having fewer parameters will help avoid the potential of over-parameterizing the model.16 

For example, if we use only one accident year parameter then the model specified using a system of 

equations is as follows (which is analogous to formula 3.12): 

                                                           
15 However, age-to-age factors could be calculated for the fitted data to compare to the actual age-to-age factors and 

used as an aid in explaining the model to others. 
16 Over-parameterization is a common criticism of the ODP bootstrap model. This will be addressed more completely in 

Section 5. 
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1 2 3ln[ (1,1)] 1 0 0q       

1 2 3ln[ (2,1)] 1 0 0q       

1 2 3ln[ (3,1)] 1 0 0q       

1 2 3ln[ (1,2)] 1 1 0q       

1 2 3ln[ (2,2)] 1 1 0q       

1 2 3ln[ (1,3)] 1 1 1q       

(3.27)

In this case we will only have one level parameter and n-1 development trend parameters, but it 

will only be coincidence that we would end up with the equivalent of average age-to-age factors. 

Interestingly, this model parameterization moves us away from one of the common basic 

assumptions (i.e., each accident year has its own level) and substitutes the assumption that all 

accident years are homogeneous. 

Another example of using fewer parameters would be to only use one development year 

parameter (while continuing to use an accident-year parameter for each year), which would equate to 

the following system of equations: 

1 2 3 2ln[ (1,1)] 1 0 0 0q         

1 2 3 2ln[ (2,1)] 0 1 0 0q         

1 2 3 2ln[ (3,1)] 0 0 1 0q         

1 2 3 2ln[ (1,2)] 1 0 0 1q         

1 2 3 2ln[ (2,2)] 0 1 0 1q         

1 2 3 2ln[ (1,3)] 1 0 0 2q         

(3.28)

In this example the model parameterization would continue to follow the two common 

assumptions (i.e., each accident year has its own level and uses the same development factor), 

although again it would be pure coincidence to end up with the equivalent of average age-to-age 

factors.17 It is also interesting to note that for both of these two examples there will be one 

additional non-zero residual that can be used in the simulations because in each case one of the 

incremental values no longer has a unique parameter – i.e., for (3.27) (3,1)q  is no longer uniquely 

defined by 3 , and for (3.28) (1,3)q  is no longer uniquely defined by 3 . 

This flexibility allows the modeler to use enough parameters to capture the statistically relevant 

level and trend changes in the data without forcing a specific number of parameters.18 

The second benefit, and depending on the data perhaps the most significant, is that this 

                                                           
17 If we were to generalize the development factor assumption to focus on the number of parameters instead, then we 

would have only one parameter instead of a different parameter for each development period. 
18 How to determine which parameters are statistically relevant will be discussed in Section 5. 
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framework allows us the ability to add parameters for calendar-year trends. Adding diagonal 

parameters to (3.11) we now have: 

,w d w d k      , where: w =1, 2, …, n; d =2, …, n; and k =2, …, n. (3.29)

A complete system of equations for the (3.29) framework would look like the following: 

1 2 3 2 3 2 3ln[ (1,1)] 1 0 0 0 0 0 0q               

1 2 3 2 3 2 3ln[ (2,1)] 0 1 0 0 0 1 0q               

1 2 3 2 3 2 3ln[ (3,1)] 0 0 1 0 0 1 1q               

1 2 3 2 3 2 3ln[ (1,2)] 1 0 0 1 0 1 0q               

1 2 3 2 3 2 3ln[ (2,2)] 0 1 0 1 0 1 1q               

1 2 3 2 3 2 3ln[ (1,3)] 1 0 0 1 1 1 1q               

(3.30)

However, there is no unique solution for a system with seven parameters and six equations, so 

some of these parameters will need to be removed. A logical starting point would be to start with a 

model with one accident year (level) parameter, one development trend parameter and one calendar 

trend parameter and then add or remove parameters as needed. The system of equations for this 

basic model is as follows: 

1 2 2ln[ (1,1)] 1 0 0q       

1 2 2ln[ (2,1)] 1 0 1q       

1 2 2ln[ (3,1)] 1 0 2q       

1 2 2ln[ (1,2)] 1 1 1q       

1 2 2ln[ (2,2)] 1 1 2q       

1 2 2ln[ (1,3)] 1 2 2q       

(3.31)

A fourth benefit of the GLM framework is that it can be used to model data shapes other than 

triangles. For example, missing incremental data for the first few diagonals would mean that the 

cumulative values could not be calculated and the remaining values in those first few rows would not 

be useful for the simplified GLM. However, since the GLM framework uses the incremental values 

the entire trapezoid can be used to fit the model parameters.19 

 It should also be noted that the GLM framework allows the future expected values to be directly 

estimated from the parameters of model for each sample triangle in the bootstrap simulation 

process. However, we must solve the GLM within each iteration for the same parameters as we 

originally set up for the model rather than using age-to-age factors to project future expected values. 

The additional modeling power that the flexible GLM framework adds to the actuary’s toolkit 
                                                           
19 We will examine this issue in more detail in Section 4. 
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cannot be overemphasized. Not only does it allow one to move away from the two basic 

assumptions of a deterministic chain ladder method, it allows for the ability to match the model 

parameters to the statistical features you find in the data and to extrapolate those features. For 

example, modeling with fewer development trend parameters means that the last parameter can be 

assumed to continue past the end of the triangle which will give the modeler a “tail” of the 

incremental values beyond the end of the triangle without the need for a specific tail factor. 

While we have continued to illustrate the GLM framework in the body of the paper with a 3 x 3 

triangle, also included in the companion Excel files are a set of “Simple GLM 6___.xls” files that 

illustrate the calculations for these different models using a 6 x 6 triangle. Also, the “Bootstrap 

Models.xls” file contains a “flexible” model for a 10 x 10 triangle that can be used to specify any 

combination of accident year, development year, and calendar year parameters, including setting 

parameters to zero. The flexible GLM model is akin to the incremental log model described in 

Barnett and Zehnwirth [1], so we will leave it to the reader to explore this flexibility by using the 

Excel file. 

4. PRACTICAL ISSUES 

Now that we have expanded the basic ODP bootstrap model in a variety of ways, we also want 

to address some of the key assumptions of the ODP model and some common data issues. 

4.1 Negative Incremental Values 

As noted in Section 3.2, because of the log-link used in the GLM framework the incremental 

values must be greater than zero in order to parameterize a model. However, a slight modification to 

the log-link function will help this common problem become a little less restrictive. If we use (4.1) as 

the log-link function, then individual negative values are only an issue if the total of all incremental 

values in a development column is negative, as the GLM algorithm will not be able to find a solution 

in that case. 

ln[ ( , )]q w d  for ( , ) 0q w d  , 

0  for ( , ) 0q w d  , 

ln[ { ( , )}]abs q w d  for ( , ) 0q w d  . 

(4.1)

Using (4.1) in the GLM framework will help in many situations, but it is quite common for entire 

development columns of incremental values to be negative, especially for incurred data. To give the 

GLM framework the ability to solve for a solution in this case we need to make another 

modification to the basic model to include a constant. 
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, ,ln[ ]w d w dm     (4.2)

Whenever a column or columns of incremental values sum to a negative value, we can find the 

largest negative20 in the triangle, add the absolute value of the largest negative to every incremental 

value in the triangle, set   equal to the largest negative, and solve the GLM using formulas (3.10), 

(3.11), or (3.29). Then when we use (4.2) to calculate the fitted incremental values, the constant   is 

used to reduce each fitted incremental value by the largest negative. 

 The combination of formulas (4.1) and (4.2) allow the GLM framework to handle all negative 

incremental values, which overcomes a common criticism of the ODP bootstrap. Incidentally, these 

formulas can also be used to allow the incremental log model described by Barnett and Zehnwirth 

[1] to handle negative incremental values. 

When using the age-to-age factors to simplify the ODP bootstrap simulation process, the 

solution to negative incremental values needs to focus on the residuals and sampled incremental 

values since an age-to-age factor less than 1.00 will create negative incremental values in the fitted 

values. More specifically, we need to modify formulas (3.19) and (3.21) as follows: 

,
,

,

( , )

{ }
w d

w d

w d

q w d m
r

abs m


 . 

(4.3)

*
, ,'( , ) { }w d w dq w d r abs m m   . (4.4)

While the fitted incremental values and residuals using the age-to-age simplification will generally 

not match the GLM framework solution using (4.1) and (4.2) they should be reasonably close. While 

the “purists” may object to these practical solutions, we must keep in mind that every model is an 

approximation of reality so our goal is to find reasonably close models rather than only restrict 

ourselves to “pure” models. After all, the assumptions of the “pure” models are themselves 

approximations. 

4.1.1 Negative values during simulation 

Even though we have solved problems with negative values when parameterizing a model, 

negative values can still affect the process variance in the simulation process. When each future 

incremental value (using ,w dm  as the mean and the mean times the scale parameter, ,w dm , as the 

variance) is sampled from a gamma distribution to add process variance, the parameters of a gamma 

distribution must be positive. In this case we have two options for using the gamma distribution to 

                                                           
20 The largest negative value can either be the largest negative among the sums of development columns (in which case 

there may still be individual negative values in the adjusted triangle) or the largest negative incremental value in the 
triangle. 
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simulate from a negative incremental value, ,w dm . 

, ,{ }, { }w d w dGamma abs m abs m     (4.5)

, , ,{ }, { } 2w d w d w dGamma abs m abs m m     (4.6)

Using formula (4.5) is more intuitive as we are using absolute values to simulate from a gamma 

distribution and then changing the sign of the result. However, since the gamma distribution is 

skewed to the right, the resulting distribution using (4.5) will be skewed to the left. Using formula 

(4.6) is a little less intuitive, but seems more logical since subtracting twice the mean, ,w dm , will 

result in a distribution with a mean of ,w dm  while keeping it skewed to the right (since ,w dm  is 

negative). 

Negative incremental values can also cause extreme outcomes. This is most prevalent when 

resampled triangles are created with negative incremental losses in the first few development 

periods, causing one column of cumulative values to sum close to zero and then next column sum 

to a much larger number and, consequentially, age-to-age factors that are extremely large. This can 

result in one or two extreme iterations in a simulation (for example, outcomes that are multiples of 

1,000s of the central estimate). These extreme outcomes cannot be ignored, even if the high 

percentiles are not of interest, because they are likely to significantly affect the mean of the 

distribution. 

In these instances, you have several options. You can 1) remove these iterations from your 

simulation and replace them with new iterations, 2) recalibrate your model, 3) limit incremental 

values to zero, or 4) use more than one model. 

The first option is to identify the extreme iterations and remove them from your results. Care 

must be taken that only truly unreasonable extreme iterations are removed, so that the resulting 

distribution does not understate the probability of extreme outcomes. 

The second option is to recalibrate the model to fix this issue. First you must identify the source 

of the negative incremental losses. For example, it may be from the first row in your triangle, which 

was the first year the product was written, and therefore exhibit sparse data with negative 

incremental amounts. One option is to remove this row from the triangle if it is causing extreme 

results and does not improve the parameterization of the model. 

The third option is to limit incremental losses to zero, where any negative incremental is replaced 

with a zero incremental. This can be done in many ways. Negative incremental values can be 

replaced with zeros in the original data triangles. Negative incremental values can be kept in the 

original data triangles, but replaced with zeros if they appear in the sampled triangles. Negative 
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incremental losses can be kept in the historical sampled triangle but replaced with zeros in the 

projected future incremental losses. Finally, negative incremental values can be replaced with zeros 

based on which development column they are in (this option is used in the “Bootstrap Models.xls” 

file). Judgment is required when deciding amongst these options. 

The most theoretically sound method to deal with negative incremental values is to consider the 

source of these losses. If they are caused by reinsurance or salvage and subrogation, then you can 

model the losses gross of salvage and subrogation, model the salvage and subrogation separately, 

and combine the iterations assuming 100% correlation. 

4.2 Non-Zero Sum of Residuals 

The residuals that are calculated in the bootstrap model are essentially error terms, and should be 

identically distributed with a mean of zero. Generally, however the average of all the residuals is 

non-zero. The residuals are random observations of the true residual distribution, so this 

observation is not necessarily incompatible with the true residual distribution having a mean of zero. 

The real issue is whether these residuals should be adjusted so that their average is zero. For 

example, if the average of the residuals is positive, then re-sampling from the residual pool will not 

only add variability to the resampled incremental losses, but may increase the resampled incremental 

losses such that the average of the resampled loss will be greater than the fitted loss. 

The reason why residuals may not sum to zero is due to differing magnitudes of losses in each 

accident year. If the magnitude of losses is higher for a particular accident year that shows higher 

development than the weighted average, then the average of all the residuals will be negative. If the 

magnitude of losses is lower for a particular accident year that shows higher development than the 

weighted average, then the average of all the residuals will be positive. 

It can be argued that the non-zero average of residuals is a characteristic of the data set, and 

therefore should not be removed. However, if a zero residual average is desired, then one option is 

the addition of a single constant to all residuals, such that the sum of the shifted residuals is zero. 

4.3 Using an N-Year Weighted Average 

The basic ODP bootstrap model can be simplified by using volume-weighted average age-to-age 

factors for all years in the triangle. It is quite common, however, for actuaries to use weighted 

averages that are less than for all years. Thus, it is also important to be able to adjust the ODP 

bootstrap model to use N-year average age-to-age factors. 

For the GLM framework, we can use N years of data by excluding the first few diagonals in the 
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triangle so that we only use N+1 diagonals (since an N-year average uses N+1 diagonals) to 

parameterize the model. The shape of the data to be modeled essentially becomes a trapezoid 

instead of a triangle, the excluded diagonals are given zero weight in the model and we have fewer 

calendar year trend parameters if we are using formula (3.29). When running the bootstrap 

simulations we will only need to sample residuals for the trapezoid that we used to parameterize the 

model as that is all that will be needed to estimate parameters for each iteration. 

Using the simplified GLM we can also calculate N-year average factors instead of all-year factors 

and exclude the first few diagonals when calculating residuals. However, when running the bootstrap 

simulations we would still need to sample residuals for the entire triangle so that we can calculate 

cumulative values. To be consistent with the assumptions of the simplified GLM in this case, we 

would still want to use N-year average factors for projecting the future expected values. 

The calculations for the GLM framework are illustrated in the companion “Simple GLM 6 with 

3yr avg.xls” file. Note that because the GLM framework estimates parameters for the incremental 

data, the fitted values will no longer match the fitted values from the simplified GLM using volume-

weighted average age-to-age factors. However, the fitted values are generally close so the simplified 

GLM will still be a reasonable approximation to the GLM framework. 

4.4 Missing Values 

Sometimes the loss triangle will have missing values. For example, values may be missing from 

the middle of the triangle. Another example is a triangle that is missing the oldest diagonals, if loss 

data was somehow lost or not kept in the early years of writing the book of business. 

If values are missing, then the following calculations will be affected: 

 Loss development factors 

 Fitted triangle – if the missing value lies on the last diagonal 

 Residuals 

 Degrees of freedom 

There are several solutions. The missing value may be estimated using the surrounding values. 

Or, the loss development factors can be modified to exclude the missing value, and there will not be 

a corresponding residual for this missing value. Subsequently, when triangles are resampled, the 

simulated incremental corresponding to the missing value should not be resampled to reproduce the 

uncertainty in the original dataset. 
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If the missing value lies on the last diagonal, the fitted triangle cannot be calculated in the usual 

way. A solution is to estimate the value, or use the value in the second to last diagonal to construct 

the fitted triangle. These are not strictly mathematically correct solutions, and judgment will be 

needed as to their affect on the resulting distribution.  

4.5 Outliers 

There may be extreme or incorrect values in the original triangle dataset that would be considered 

outliers. These may not be representative of the variability of the dataset in the future and, if so, the 

modeler may want to remove their impact from the model.  

There are several solutions. If these values formed the first row of the data triangle, which is 

common, then this whole first row could be deleted, and the model run on a smaller triangle. 

Alternatively, these values could be removed, and dealt with in the same manner as missing values. 

Another alternative is to identify outliers and exclude them from the average age-to-age factors 

(either the numerator, denominator, or both) and residual calculations, as when dealing with missing 

values, but re-sample the corresponding incremental when simulating triangles. 

The calculations for the GLM framework are illustrated in the companion “Simple GLM 6 with 

Outlier.xls” file. Again the GLM framework fitted values will no longer exactly match the fitted 

values from the simplified GLM using volume weighted average age-to-age factors. 

4.6 Heteroscedasticity 

As noted earlier, the ODP model is based on the assumption that the Pearson residuals are 

independent and identically distributed. It is this assumption that allows the model to take a residual 

from one development period/accident period and apply it to the fitted loss in any other 

development period/accident period, to produce the sampled values. In statistical terms this is 

referred to as homoscedasticity and it is important that this assumption is validated.  

A problem is commonly observed when some development periods have residuals that appear to 

be more variable than others – i.e., they appear to have different distributions or variances. If this 

observation is correct, then we have multiple distributions within the residuals (statistically referred 

to as heteroscedasticity) and it is no longer possible to take a residual from one 

development/accident period and deem it suitable to be applied to any other development/accident 

period. In making this assessment, you must account for the credibility of the observed difference, 

and also to note that there are fewer residuals as the development years become older, so comparing 
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development years is difficult, particularly near the tail-end of the triangle.21 

To adjust for heteroscedasticity in your data there are at least two options, 1) stratified sampling, 

or 2) calculating variance parameters. Stratified sampling is accomplished by organizing the 

development periods by group with homogeneous variances within each group and then sampling 

with replacement only from the residuals in each group. While this process is straightforward and 

easy to accomplish, quite often some groups may only have a few residuals in them, which limits the 

amount of variability in the possible outcomes. 

The second option is to sort the development periods into groups with homogeneous variances 

and calculate the standard deviation of the residuals in each of the “hetero” groups. Then calculate 

ih , which is the hetero-adjustment factor, for each group, i : 

,
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All residuals in group i  are multiplied by ih .  
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Now all groups have the same standard deviation and we can sample with replacement from 

among all ,
iH
w dr . The original distribution of residuals has been altered, but this can be remedied. 

When the residuals are resampled, the residual is divided by the hetero-adjustment factor that applies 

to the development year of the incremental value, as shown in (4.9). 

*
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w d w di
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h
   . 

(4.9)

By doing this, the heteroscedastic variances we observed in the data are replicated when the 

sample triangles are created, but we are able to freely resample with replacement from the entire 

pool of residuals. Also note that we have added more parameters so this will affect the degrees of 

freedom, which impacts the scale parameter (3.20) and the degrees of freedom adjustment factor 

(3.22). Finally, the hetero group parameters should also be used to adjust the variance when 

simulating the future process variance. 

It is possible to modify the GLM framework to also include “hetero group” parameters, but that 

is beyond the scope of this paper. 

                                                           
21 We will illustrate how to use residual graphs and other statistical tests to evaluate heteroscedasticity in Section 5. 
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4.7 Heteroecthesious Data 

The basic ODP bootstrap model requires both a symmetrical shape (e.g., annual by annual, 

quarterly by quarterly, etc. triangles) and homoecthesious data (i.e., similar exposures).22 As discussed 

above, using an N-year weighted average in the simplified GLM model or adjusting to a trapezoid 

shape allow us to “relax” the requirement of a symmetrical shape. Other non-symmetrical shapes 

(e.g., annual x quarterly data) can also be modeled with either the simplified GLM or GLM 

framework, but they will not be discussed in detail in this paper. 

Most often, the actuary will encounter heteroecthesious data (i.e., incomplete or uneven 

exposures) at interim evaluation dates, with the two most common data triangles being either a 

partial first development period or a partial last calendar period. For example, with annual data 

evaluated as of June 30, partial first development period data would have development periods 

ending at 6, 18, 30, etc. months, while partial last calendar period data would have development 

periods as of 12, 24, 36, etc. months for all of the data in the triangle except the last diagonal, which 

would have development periods as of 6, 18, 30, etc. months. In either case, not all of the data in the 

triangle has full annual exposures – i.e., it is heteroecthesious data. 

4.7.1 Partial first development period data 

For partial first development period data, the first development column has a different exposure 

period than the rest of the columns (e.g., in the earlier example the first column has six months of 

development exposure while the rest have 12). In a deterministic analysis this is not a problem as the 

age-to-age factors will reflect the change in exposure. For parameterizing an ODP bootstrap model, 

it also turns to be a moot issue. In addition, since the Pearson residuals use the square root of the 

fitted value to make them all “exposure independent” that part of an ODP bootstrap model is 

likewise unaffected. 

The only adjustment for this type of heteroecthesious data is the projection of future incremental 

values. In a deterministic analysis, the most recent accident year needs to be adjusted to remove 

exposures beyond the evaluation date. For example, continuing the previous example the 

development periods at 18 months and later are all for an entire year of exposure whereas the six 

month column is only for six months of exposure. Thus, the 6-18 month age-to-age factor will 

effectively extrapolate the first six months of exposure in the latest accident year to a full accident 

year’s exposure. Accordingly, it is common practice to reduce the projected future payments by half 

                                                           
22 To our knowledge, the terms homoecthesious and heteroecthesious are new. They are a combination of the Greek homos (or 
ὁμός) meaning the same or hetero (or έτερο) meaning different and the Greek ekthesē (or έκθεση) meaning exposure. 
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to remove the exposure from June 30 to December 31. 

The simulation process for the ODP bootstrap model can be adjusted similarly to the way a 

deterministic analysis would be adjusted. After the age-to-age factors from each sample triangle are 

used to project the future incremental values the last accident year’s values can be reduced (in the 

previous example by 50%) to remove the future exposure and then process variance can be 

simulated as before. Alternatively, the future incremental values can be reduced after the process 

variance step. 

4.7.2 Partial last calendar period data 

For partial last calendar period data, most of the data in the triangle has annual exposures and 

annual development periods, except for the last diagonal which, continuing our example, only has a 

six-month development period (and a six-month exposure period for the bottom cell). For a 

deterministic analysis, it is quite common in this situation to exclude the last diagonal when 

calculating average age-to-age factors, interpolate those factors for the exposures in the last diagonal 

and use the interpolated factors to project the future values. In addition, the last accident year will 

also need to have the future incremental values reduced to remove exposures beyond the evaluation 

date. 

Similarly to the adjustments for partial first development period data, we could adjust the 

calculations and steps in the simplified GLM model, but adjustments to the GLM framework are 

more problematic. Instead of ignoring the last diagonal during the parameterization of the model, an 

alternative is to adjust or annualize the exposures in the last diagonal to make them consistent with 

the rest of the triangle. 

During the bootstrap simulation process, age-to-age factors can be calculated from the fully 

annualized sample triangles and interpolated. Then, the last diagonal from the sample triangle can be 

adjusted to de-annualize the incremental values in the last diagonal – i.e., reversing the annualization 

of the original last diagonal. The new cumulative values can be multiplied by the interpolated age-to-

age factors to project future values. Again, the future incremental values for the last accident year 

must be reduced (in the previous example by 50%) to remove the future exposure.23 

4.8 Exposure Adjustment 

Another common issue in real data is exposures that have changed dramatically over the years. 

                                                           
23 These heteroecthesious data issues are not illustrated in the “Bootstrap Models.xls” file. 
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For example, in a line of business that has experienced rapid growth or is being run off. If the 

earned exposures exist for this data, then a useful option for the ODP bootstrap model is to divide 

all of the claim data by the exposures for each accident year – i.e., effectively using pure premium 

development instead of total loss development. Quite often this will improve the fit of the model to 

the data. 

During the bootstrap simulation process, all of the calculations would be done using the 

exposure-adjusted data and only after the process variance step has been completed would you 

multiply the results by the exposures by year to restate them in terms of total values again. 

4.9 Parametric Bootstrapping 

Because the number of data points used to parameterize the ODP bootstrap model are limited 

(in the case of a 10x10 triangle to 53 residuals), it is hard to determine whether the most extreme 

observation is a one-in-100 or a one-in-1,000 event (or simply, in this example, a one-in-53 event). 

Of course, the nature of the extreme observations in the data will also affect the level of extreme 

simulations in the results. Judgment is involved here, but the modeler will either need to be satisfied 

with the level of extreme simulations in the results or modify the bootstrap algorithm.  

One way to overcome a lack of extreme residuals for the ODP bootstrap model would be to 

parameterize a distribution for the residuals and resample using the distribution (e.g., use a normal 

distribution if the residuals are normally distributed). This option for “sampling residuals” is beyond 

the scope of the companion Excel files, but this is commonly referred to as parametric 

bootstrapping. 

5. DIAGNOSTICS 

The quality of a bootstrap model depends on the quality of the underlying assumptions. When 

any model fails to “fit” the data, it cannot produce a good estimate of the distribution of possible 

outcomes.24 

One of the advantages of the ODP bootstrap model is how readily it can be tailored to some of 

the statistical features of the data using the GLM framework and considerations described in the 

previous two sections. The CAS Working Party, in the third section of their report on quantifying 

variability in reserve estimates [6], identified 20 criteria or diagnostic tools for gauging the quality of 

                                                           
24 While the examples are different, significant portions of sections 5 and 6 are based on [22] and [14]. 
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a stochastic model. The Working Party also noted that, in trying to determine the optimal “fit” of a 

model, or indeed an optimal model, no single diagnostic tool or group of tools can be considered 

definitive. Depending on the statistical features found in the data, a variety of diagnostic tools are 

necessary to best judge the quality of the model assumptions and to change or adjust the parameters 

of the model. In this sense, the diagnostic tools are used to help find the models that ultimately 

provide the best fit to the data. We will discuss some of these tools in detail in this paper. 

The key diagnostic tests are designed for three purposes: to test various assumptions in the 

model, to gauge the quality of the model fit, or to help guide the adjustment of model parameters. 

Some tests may be considered relative in nature, enabling results from one set of model parameters 

to be compared to those of another, for a specific model. In turn, by analyzing these results a 

modeler may then be able to improve the fit of the model. For the most part, however, the tests 

generally can’t be used to compare different models. The objective, consistent with the goals of a 

deterministic analysis, is not to find the one best model, but rather a set of reasonable models. 

Some diagnostic measures include statistical tests, providing a pass/fail determination for some 

aspects of the model assumptions. This can be useful even though a “fail” does not necessarily 

invalidate an entire model; it only points to areas where improvements can be made to the model or 

its parameterization. The goal is to find the sets of models and parameters that will yield the most 

realistic, most consistent simulations, based on statistical features found in the data. 

To illustrate some of the diagnostic tests for the ODP bootstrap model we will consider data 

from England and Verrall [9].25 

5.1 Residual graphs 

The ODP bootstrap model does not require a specific type of distribution for the residuals, but 

they are assumed to be independent and identically distributed. Because residuals will be sampled 

with replacement during the simulations, this requirement becomes important and thus it is 

necessary to test this assumption. A look at graphs of residuals is a good way to do this.  

Figure 5.1 Residual graphs prior to heteroscedasticity adjustment 

 

 

                                                           
25 The data triangle was originally used by Taylor and Ashe (1983) and has been used by other authors. This data is 

included in the “Bootstrap Models.xls” file. 
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Going clock-wise, and starting from the top-left-hand corner, the graphs in Figure 5.1 show the 

residuals (blue dots) by development period, accident period, and calendar period and against the 

fitted incremental loss (in the lower-right-hand corner). In addition, the graphs include a trend line 

(in pink) that highlights the averages for each period. 

At first glance, the residuals in the graphs appear reasonably random, indicating the model is 

likely a good fit of the data. But a closer look may also reveal potential features in the data that, with 

the benefit of further analysis, may indicate ways to improve the model fit. 

The graphs in Figure 5.1 do not appear to indicate issues with trends, even if the trends for the 

development and accident periods are both essentially straight. That's because the simplified GLM 

specifies a parameter for every row and column of the triangle. The development-period graph does, 

however, reveal a potential heteroscedasticity issue associated with the data. Heteroscedasticity is 

when random variables have different variances. Note how the upper left graph appears to show a 

variance of the residuals in the first three periods that differs from those of the middle four or last 

two periods. 

Adjustments for heteroscedasticity can be made with the “Bootstrap Models.xls” file, which 

enables us to recognize groups of development periods and then adjust the residuals to a common 

standard deviation value. As an aid to visualizing how to group the development periods into 

“hetero” groups, graphs of the standard deviation and range relativities can then be developed. 

Figure 5.2 represents pre-adjusted relativities for the residuals shown in Figure 5.1. 
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Figure 5.2 Residual relativities prior to heteroscedasticity adjustment 

 

 

 

 

 

 

The relativities illustrated in Figure 5.2 help to clarify the veracity of this test, indicating that the 

residuals in the first three periods are different from those in the middle four or the last two. 

However, further testing will be required to assess the optimal groups, which can be performed 

using the other diagnostic tests noted below.  

The residual plots in Figure 5.3 originate from the same data model after setting up “hetero” 

groups for the same array: the first three, middle four, and last two development periods, 

respectively. Determining whether this “hetero” grouping has improved the model fit will require 

review of other diagnostic tests. 
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Figure 5.3 Residual graphs after heteroscedasticity adjustment 

 

 

 

 

 

 

 

 

 

 

 

Comparing the residual plots in Figures 5.1 and 5.3 does show that the general “shape” of the 

residuals has not changed and the “randomness” is still consistent. But the residuals now appear to 

exhibit the same standard deviation, or homoscedasticity. More consistent relativities may also be 

seen in a comparison of the residual relativities in Figures 5.2 and 5.4. 

Figure 5.4 Residual relativities after heteroscedasticity adjustment 

 

 

 

 

 

5.2 Normality test 

The ODP bootstrap model does not depend on the residuals being normally distributed, but 

even so, comparing residuals against a normal distribution remains a useful test, enabling 

comparison of parameter sets and gauging skewness of the residuals. This test uses both graphs and 
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calculated test values. Figure 5.5 is based on the same heteroscedasticity groups used earlier. 

Figure 5.5 Normality plots prior to and after heteroscedasticity adjustment 

 

 

 

 

 

 

Even before the heteroscedasticity adjustment, the residual plots appear close to normally 

distributed, with the data points tightly distributed around the diagonal line. The p-value, a statistical 

pass-fail test for normality, came in at 20.5%, which far exceeds the value generally considered a 

“passing” score of the normality test, which is greater than 5.0%.26 The graphs in Figure 5.5 also 

show N (the number of data points) and the R2 test. After the hetero adjustment, the p-value and R2 

don’t appear to improve, which indicates that the tested “hetero” groups have not made the residual 

distribution more normally distributed. 

While the p-value and R2 tests are straightforward and easy to apply, neither adjusts for additional 

parameters used in the model, a critical limitation. Two other tests, the Akaike Information Criteria 

(AIC) and the Bayesian Information Criteria (BIC), address this limitation, using the difference 

between each residual and its normal counterpart from the normality plot to calculate the Residual 

Sum Squared (RSS) and include a penalty for additional parameters, as shown in (5.1) and (5.2), 

respectively.27 

2
2 ln( ) 1

RSS
AIC p n
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(5.1)

ln( ) ln( )
RSS

BIC n p n
n

     
(5.2)

A smaller value for the AIC and BIC tests indicate residuals that fit a normal distribution more 

                                                           
26 Remember that this doesn't indicate whether the bootstrap model itself passes or fails – the bootstrap model doesn’t 

require the residuals to be normally distributed. While not included in the “Bootstrap Models.xls” file, as discussed in 
section 4.9, it could be used to determine whether to switch to a parametric bootstrap process using a normal 
distribution. 

27 There are different versions of the AIC and BIC formula from various authors and sources, but the general idea of 
each version is consistent. 

N = 53 P-Value = R
2
 = 97.2% N = 53 P-Value = R

2
 = 96.4%

Normal:  MU = 0.04,  Sigma = 7.09 AIC = 206.1, BIC = 93.1 Normal:  MU = 0.07,  Sigma = 9.85 AIC = 257.8, BIC = 148.8
20.5% 9.9%
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closely, and this improvement in fit overcomes the penalty of adding a parameter. With some trial 

and error, a better “hetero” grouping was found with the normality results shown in Figure 5.6.28 

For the new “hetero” groups, all of the statistical tests improved dramatically. 

Figure 5.6 Normality plots prior to and after heteroscedasticity adjustment 

 

 

 

 

 

 

5.3 Outliers 

Identifying outliers in the data provides another useful test in determining model fit. Outliers can 

be represented graphically in a box-whisker plot, which shows the inter-quartile range (the 25th to 

75th percentiles) and the median (50th percentile) of the residuals—the so-called box. The whiskers 

then extend to the largest values within three times this inter-quartile range. Values beyond the 

whiskers may generally be considered outliers and are identified individually with a point. 

                                                           
28 In the “Bootstrap Models.xls” file the England and Verrall data was entered as both paid and incurred. The first set of 

“hetero” groups are illustrated for the “incurred” data and the second set of “hetero” groups are illustrated for the 
“paid” data. 

N = 53 P-Value = R
2
 = 97.2% N = 53 P-Value = R

2
 = 99.2%

Normal:  MU = 0.04,  Sigma = 7.09 AIC = 206.1, BIC = 93.1 Normal:  MU = 0.05,  Sigma = 8.51 AIC = 160.8, BIC = 51.7
20.5% 95.4%
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Figure 5.7 Box-Whisker Plots Prior to and After Heteroscedasticity Adjustment 

 

 

 

 

 

 

Figure 5.7 shows an example of the residuals for the second set of “hetero” groups (Figure 5.6). 

A pre-hetero adjustment plot returns four outliers (red dots) in the data model, corresponding to the 

two highest and two lowest values in the previous graphs in Figures 5.1, 5.3, 5.5, and 5.6.  

Even after the hetero adjustment, the residuals still appear to contain three outliers. Now comes a 

very delicate and often tricky matter of actuarial judgment. If the data in those cells genuinely 

represent events that cannot be expected to happen again, the outliers may be removed from the 

model (by giving them zero weight). But extreme caution should be taken even when the removal of 

outliers seems warranted. The possibility always remains that apparent outliers may actually 

represent realistic extreme values, which, of course, are critically important to include as part of any 

sound analysis.  

Additionally, when residuals are not normally distributed a significant number of “outliers” tend 

to result, which may be only an artifact of the function of the distributional shape of the residuals. 

Again, it is preferable to let these stand in order to enable the simulation process to replicate this 

shape. 

While the three diagnostic tests shown above demonstrate techniques commonly used with most 

types of models, they are not the only tests available. Next, we’ll take a look at the flexibility of the 

GLM framework and some of the diagnostic elements of the simulation results. For a more 

extensive list of other tests available, see the report, CAS Working Party on Quantifying Variability 

in Reserve Estimates [6].  

5.4 Parameter adjustment 

As noted in section 5.1 the relatively straight average lines in the development and accident 

period graphs are a reflection of having a parameter for every accident and development period. In 

Interquartile Range = [-4.73, 4.74] Median = -0.87 Interquartile Range = [-6.33, 5.75] Median = -1.14
Outliers = 4 Outliers = 3
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some instances, this is also an indication that the model may be over parameterized. Using the 

“flexible” model in the “Bootstrap Models.xls” file we can illustrate the power of removing some of 

the parameters. 

Starting with the “basic” model which includes only one parameter for accident, development 

and calendar periods (i.e., only one  ,   and   parameter), with a little trial and error we can find 

a reasonably good fit to the data using only three accident, three development and no calendar 

parameters. Adding blue bars to signify a parameter and red bars to signify no parameter (i.e., 

parameter of zero), the residual graphs for the “flexible” model are shown in figure 5.8. 

Figure 5.8 Residual graphs for “flexible” model 
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Using the second set of “hetero” groups we can also check the normality graphs and statistics in 

figure 5.9 and outliers in figure 5.10. Comparing the statistics to the simplified GLM values shown in 

figures 5.6 and 5.7, some values improved while others did not. However, the values are not 

significantly different, yet the “flexible” model is far more parsimonious. 

Figure 5.9 Normality plots for “flexible” model 

 

 

 

 

 

 

 

Figure 5.10 Box-Whisker plots for “flexible” model 

 

 

 

 

 

 

N = 55 P-Value = R
2
 = 96.2% N = 55 P-Value = R

2
 = 99.2%

Normal:  MU = 0.07,  Sigma = 7.26 AIC = 204.9, BIC = 60.9 Normal:  MU = -0.31,  Sigma = 9.40 AIC = 150.3, BIC = 10.2
7.6% 94.8%
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5.5 Model results 

Once diagnostics have been reviewed, simulations should be run for each model. These 

simulation results may often provide an additional diagnostic tool to aid in evaluation of the model. 

As one example, we will review the results for the England and Verrall data using the simplified 

GLM model. The estimated-unpaid results shown in Figure 5.11 were simulated using 1,000 

iterations with the hetero adjustments from Figure 5.6. 

Figure 5.11 Estimated-Unpaid Model Results 

 

 

 

 

 

 

5.5.1 Estimated-Unpaid Results 

It’s recommended to start diagnostic review of the estimated-unpaid table with the standard error 

(standard deviation) and coefficient of variation (standard error divided by the mean), shown in 

Figure 5.11. Keep in mind that the standard error should increase when moving from the oldest 

years to the most recent years, as the standard errors (value scale) should follow the magnitude of 

the mean of unpaid estimates. In Figure 5.11, the standard errors conform to this pattern. At the 

same time, the standard error for the total of all years should be larger than any individual year. 

Also, the coefficients of variation should generally decrease when moving from the oldest years 

to the more recent years and the coefficient of variation for all years combined should be less than 

for any individual year. With the exception of the 2008 accident year, the coefficients of variation in 

Figure 5.11 seem to also conform, although some random fluctuations may be seen. 

The main reason for the decrease in the coefficient of variation has to do with the independence 

in the incremental claim-payment stream. Because the oldest accident year typically has only a few 

incremental payments remaining, or even just one, the variability is nearly all reflected in the 

coefficient. For more current accident years, random variations in the future incremental payment 

stream may tend to offset one another, thereby reducing the variability of the total unpaid loss. 

England & Verrall Data
Accident Year Unpaid

Paid Chain Ladder Model
Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year To Date Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
1999 3,901 -                  -                  -                  -                  -                  -                  -                  -                  
2000 5,339 93                   125                 134.0% (377)                900                 62                   156                 306                 502                 
2001 4,909 479                 246                 51.3% (115)                1,694              447                 615                 940                 1,186              
2002 4,588 723                 276                 38.2% (51)                  1,892              691                 899                 1,220              1,515              
2003 3,873 984                 293                 29.7% 267                 2,160              976                 1,176              1,453              1,802              
2004 3,692 1,430              366                 25.6% 434                 2,888              1,400              1,670              2,072              2,405              
2005 3,483 2,183              484                 22.2% 896                 3,812              2,140              2,497              3,038              3,483              
2006 2,864 3,909              749                 19.2% 1,793              6,482              3,875              4,402              5,175              5,935              
2007 1,363 4,261              830                 19.5% 1,757              7,865              4,221              4,789              5,700              6,321              
2008 344 4,672              1,839              39.4% 617                 11,009            4,523              5,853              7,878              9,509              

Totals 34,358 18,737            2,769              14.8% 11,019            29,190            18,647            20,533            23,611            25,486            
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While the coefficients of variation should go down, they could also start to rise again in the most 

recent years, which can been seen in Figure 5.11 for 2008. Such a reversal could result from a couple 

of issues: 

 With an increasing number of parameters used in the model, the parameter uncertainty tends 

to increase when moving from the oldest years to the more recent years. In the most recent 

years, parameter uncertainty can grow to “overpower” process uncertainty, which may cause 

the coefficient of variation to start rising again. At a minimum, increasing parameter 

uncertainty will slow the rate of decrease in the coefficient of variation. 

 The model may be overestimating the uncertainty in recent accident years if the increase is 

significant. In that case, the Bornhuetter-Ferguson or Cape Cod model may need to be used 

instead of a chain-ladder model.  

Keep in mind also that the standard error or coefficient of variation for the total of all accident 

years will be less than the sum of the standard error or coefficient of variation for the individual 

years. This is because the model assumes that accident years are independent.  

Minimum and maximum results are the next diagnostic element in our analysis of the estimated-

unpaid claims in Figure 5.11, representing the smallest and largest values from all iterations of the 

simulation. These values will need to be reviewed in order to determine their veracity. If any of them 

seem implausible, the model assumptions would need to be reviewed. Their effects could materially 

alter the mean indication. 



Bootstrap Modeling: Beyond the Basics 
 

Casualty Actuarial Society E-Forum, Fall 2010  40 

5.5.2 Mean and Standard Deviation of Incremental Values 

The mean and standard deviation of every incremental value from the simulation process also 

provide useful diagnostic results, enabling us to dig deeper into potential coefficient of variation 

issues that may be found in the estimated-unpaid results. Consider, for example, the mean and 

standard deviation results shown in Figures 5.12 and 5.13, respectively. 

Figure 5.12 Mean of incremental values 

 

 

 

 

 

The mean values in Figure 5.12 appear consistent throughout and support the increases in 

estimated unpaid by accident year that are shown in Figure 5.11. In fact, the future mean values, 

which lay beyond the stepped diagonal line in Figure 5.12, sum to the results in Figure 5.11. The 

standard deviation values in Figure 5.13, however, only appear consistent up to 2007; 2008 has larger 

standard deviations, which again are consistent with the standard deviations seen in Figure 5.11. But 

contrariwise the standard deviations can’t be added because the standard deviations in Figure 5.11 

represent those for aggregated incremental values by accident year, which are less than perfectly 

correlated. 

Figure 5.13 Standard deviation of incremental values 

 

 

 

 

 

6. USING MULTIPLE MODELS 

So far we have focused only on one model. In practice, multiple stochastic models should be 

England & Verrall Data
Accident Year Incremental Values by Development Period

Paid Chain Ladder Model
Accident Mean Values

Year 12 24 36 48 60 72 84 96 108 120
1999 266                 675                 694                 767                 421                 294                 267                 180                 274                 67                   
2000 375                 945                 973                 1,030              588                 400                 376                 251                 383                 93                   
2001 372                 926                 987                 1,040              572                 406                 373                 249                 385                 94                   
2002 369                 916                 967                 1,037              576                 395                 366                 253                 380                 90                   
2003 333                 837                 893                 936                 508                 362                 334                 222                 342                 86                   
2004 351                 876                 943                 983                 546                 384                 354                 237                 362                 93                   
2005 395                 973                 1,028              1,093              606                 425                 389                 266                 400                 97                   
2006 463                 1,165              1,218              1,297              721                 511                 472                 315                 476                 116                 
2007 393                 964                 1,020              1,075              601                 422                 388                 262                 396                 97                   
2008 340                 861                 913                 974                 543                 359                 345                 233                 361                 84                   

England & Verrall Data
Accident Year Incremental Values by Development Period

Paid Chain Ladder Model
Accident Standard Error Values

Year 12 24 36 48 60 72 84 96 108 120
1999 106                 120                 233                 232                 138                 143                 103                 88                   137                 69                   
2000 126                 142                 264                 272                 153                 173                 128                 106                 162                 125                 
2001 131                 134                 260                 281                 156                 174                 127                 102                 205                 129                 
2002 126                 139                 256                 274                 150                 171                 124                 115                 195                 128                 
2003 122                 131                 246                 249                 148                 158                 125                 107                 178                 118                 
2004 128                 134                 252                 259                 151                 167                 132                 108                 187                 127                 
2005 133                 144                 281                 283                 180                 190                 142                 123                 207                 134                 
2006 141                 161                 302                 356                 202                 207                 168                 140                 232                 153                 
2007 124                 142                 297                 326                 185                 180                 138                 115                 208                 124                 
2008 120                 340                 410                 458                 256                 210                 190                 137                 230                 121                 
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used in the same way that multiple methods should be used in a deterministic analysis. First the 

results for each model must be reviewed and finalized, after an iterative process of diagnostic testing 

and reviewing model output. Then these results can be combined by assigning a weight to the results 

of each model.  

Two primary methods exist for combining the results for multiple models: 

 Run models with the same random variables. For this algorithm, every model uses the 

exact same random variables. In the “Bootstrap Models.xls” file, the random values are 

simulated before they are used to simulate results, which means that this algorithm may be 

accomplished by reusing the same set of random variables for each model. At the end, the 

incremental values for each model, for each iteration by accident year (that have a partial 

weight), can be weighted together. 

 Run models with independent random variables. For this algorithm, every model is run 

with its own random variables. In the “Bootstrap Models.xls” file, the random values are 

simulated before they are used to simulate results, which means that this algorithm may be 

accomplished by simulating a new set of random variables for each model. At the end, the 

weights are used to randomly select a model for each iteration by accident year so that the 

result is a weighted “mixture” of models. 

Both algorithms are similar to the process of weighting the results of different deterministic 

methods to arrive at an actuarial best estimate. The process of weighting the results of different 

stochastic models produces an actuarial best estimate of a distribution. 

The second method of combining multiple models can be illustrated using combined Schedule P 

data for five top 50 companies.29 Data for all Schedule P lines with 10 years of history may be found 

in the “Industry Data.xls” file, but we will confine our examination to Parts A, B, and C. For each 

line of business we ran simplified GLM models for paid and incurred data (labeled Chain Ladder), as 

well as paid and incurred data for the Bornhuetter-Ferguson and Cape Cod models described in 

section 3.3. For this section, we will only focus on the results for Part A (Homeowners/Farm 

owners). 

By comparing the results for all six models (or fewer, depending on how many are used)30 a 

qualitative assessment of the relative merits of each model may be determined. Bayesian methods 

                                                           
29 The five companies represent large, medium and smaller companies that have been combined to maintain anonymity. 

For each Part, a unique set of five companies were used. 
30 Other models in addition to a bootstrap model could also be included in the weighting process. 
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can be used to determine weighting based on the quality of each model’s forecasts. The weights can 

be determined separately for each year. The table in Figure 6.1 shows an example of weights for the 

Part A data.31 The weighted results are displayed in the “Best Estimate” column of Figure 6.2. As a 

parallel to a deterministic analysis, the means from the six models could be considered a reasonable 

range (i.e., from $4,059 to $5,242). 

Figure 6.1 Model weights by accident year 

 
 

 

 

 

 

 

Figure 6.2 Summary of results by model 

 

 

 

 

 

 

 

 

 

With our focus on the entire distribution, the weights by year were used to randomly sample the 

specified percentage of iterations from each model. A more complete set of the results for the 

“weighted” iterations can be created similar to the tables shown in section 5. The companion “Best 

Estimate.xls” file can be used to weight six different models together in order to calculate a weighted 
                                                           
31 For simplicity, the weights are judgmental and not derived using Bayesian methods. 

Model Weights by Accident Year
Accident Chain Ladder Bornhuetter-Ferguson Cape Cod

Year Paid Incurred Paid Incurred Paid Incurred TOTAL
1999 50.0% 50.0% 100.0%
2000 50.0% 50.0% 100.0%
2001 50.0% 50.0% 100.0%
2002 50.0% 50.0% 100.0%
2003 50.0% 50.0% 100.0%
2004 50.0% 50.0% 100.0%
2005 50.0% 50.0% 100.0%
2006 12.5% 12.5% 18.8% 18.8% 18.8% 18.8% 100.0%
2007 12.5% 12.5% 18.8% 18.8% 18.8% 18.8% 100.0%
2008 12.5% 12.5% 18.8% 18.8% 18.8% 18.8% 100.0%

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)

Summary of Results by Model
Mean Estimated Unpaid

Accident Chain Ladder Bornhuetter Ferguson Cape Cod Best Est.
Year Paid Incurred Paid Incurred Paid Incurred (Weighted)
1999 -                  -                  -                  -                  -                  -                  -                  
2000 2                     1                     1                     2                     2                     2                     1                     
2001 38                   36                   25                   25                   25                   32                   37                   
2002 42                   40                   36                   36                   36                   42                   41                   
2003 57                   60                   56                   57                   57                   66                   59                   
2004 98                   98                   94                   92                   92                   106                 99                   
2005 212                 219                 164                 166                 166                 189                 218                 
2006 290                 292                 327                 318                 318                 371                 339                 
2007 677                 665                 715                 701                 701                 823                 739                 
2008 3,826              3,826              2,642              2,840              2,840              3,324              3,192              

Totals 5,242              5,239              4,059              4,236              4,236              4,953              4,726              
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best estimate. An example for Part A is shown in the table in Figure 6.3. 

Figure 6.3 Estimated-unpaid model results (best estimate) 

 

 

 

 

 

 

 

 

6.1 Additional Useful Output 

Three rows of percentile numbers for the normal, lognormal, and gamma distributions, which 

have been fitted to the total unpaid-claim distribution, may be seen at the bottom of the table in 

Figure 6.3. These fitted mean, standard deviation, and selected percentiles are in their respective 

columns; the smoothed results can be used to assess the quality of fit, parameterize a DFA model, or 

used to estimate extreme values,32 among other applications. 

Four rows of numbers indicating the Tail Value at Risk (TVaR), defined as the average of all of 

the simulated values equal to or greater than the percentile value, may also be seen at the bottom of 

Figure 6.3. For example, in this table, the 99th percentile value for the total unpaid claims for all 

accident years combined is 7,442, while the average of all simulated values that are greater than or 

equal to 7,442 is 8,915. The Normal TVaR, Lognormal TVaR, and Gamma TVaR rows are 

calculated similarly, except that they use the respective fitted distributions in the calculations rather 

than actual simulated values from the model. 

An analysis of the TVaR values is likely to help clarify a critical issue: if the actual outcome 

exceeds the X percentile value, how much will it exceed that value on average? This type of 

assessment can have important implications related to risk-based capital calculations and other 

technical aspects of enterprise risk management. But it is worth noting that the purpose of the 

                                                           
32 Of course the use of the extreme values assumes that the models are reliable. 

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)

Accident Year Unpaid
Best Estimate (Weighted)

Accident Paid Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year To Date Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
1999 5,234              -                  -                  -                  -                  -                  -                  -                  -                  
2000 6,470              1                     11                   745.3% (52)                  84                   0                     2                     19                   51                   
2001 7,848              37                   39                   104.5% (68)                  263                 28                   56                   112                 164                 
2002 7,020              41                   36                   86.7% (48)                  230                 33                   58                   108                 155                 
2003 7,291              59                   41                   69.1% (41)                  276                 49                   78                   136                 191                 
2004 8,134              99                   49                   49.1% (14)                  377                 90                   121                 188                 259                 
2005 10,800            218                 78                   36.0% 28                   666                 209                 259                 359                 457                 
2006 7,522              339                 129                 38.1% 37                   1,227              321                 402                 570                 739                 
2007 7,968              739                 259                 35.1% 112                 1,981              722                 875                 1,196              1,557              
2008 9,309              3,192              920                 28.8% 1,090              11,122            3,128              3,629              4,792              5,722              

Totals 77,596            4,726              999                 21.1% 2,528              13,422            4,632              5,209              6,554              7,442              
Normal Dist. 4,726              999                 21.1% 4,726              5,400              6,369              7,050              
logNormal Dist. 4,725              968                 20.5% 4,628              5,307              6,461              7,419              
Gamma Dist. 4,726              999                 21.1% 4,656              5,356              6,480              7,354              
TVaR 5,454              6,003              7,311              8,915              
Normal TVaR 5,523              5,996              6,786              7,388              
logNormal TVaR 5,484              6,021              7,054              7,964              
Gamma TVaR 5,518              6,049              7,018              7,824              
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normal, lognormal, and gamma TVaR numbers is to provide “smoothed” values—that is, that some 

of the random statistical noise is essentially prevented from distorting the calculations. 

6.2 Estimated Cash Flow Results 

An ODP bootstrap model’s output may also be reviewed by calendar year (or by future diagonal), 

as shown in the table in Figure 6.4. A comparison of the values in Figures 6.3 and 6.4 indicates that 

the total rows are identical, because summing the future payments horizontally or diagonally will 

produce the same total. Similar diagnostic issues (as discussed in Section 5) may be reviewed in the 

table in Figure 6.4, with the exception of the relative values of the standard errors and coefficients of 

variation moving in opposite directions for calendar years compared to accident years. This 

phenomenon makes sense on an intuitive level when one considers that “final” payments, projected 

to the furthest point in the future, should actually be the smallest, yet relatively most uncertain. 

Figure 6.4 Estimated Cash Flow (best estimate) 

 

 

 

 

 

 

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)

Calendar Year Unpaid
Best Estimate (Weighted)

Calendar Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2009 3,093              726                 23.5% 1,445              9,809              3,024              3,428              4,355              5,101              
2010 799                 186                 23.3% 312                 2,057              786                 900                 1,125              1,329              
2011 362                 97                   26.7% 124                 856                 356                 422                 528                 601                 
2012 191                 63                   32.9% 52                   507                 183                 224                 312                 386                 
2013 118                 52                   44.0% (14)                  430                 110                 144                 212                 285                 
2014 64                   34                   52.8% (61)                  205                 60                   80                   127                 175                 
2015 50                   36                   71.1% (14)                  332                 42                   67                   116                 191                 
2016 41                   39                   95.9% (93)                  296                 31                   56                   112                 177                 
2017 7                     17                   257.3% (60)                  175                 0                     9                     40                   64                   
2018 -                  -                  -                  -                  -                  -                  -                  -                  

Totals 4,726              999                 21.1% 2,528              13,422            4,632              5,209              6,554              7,442              
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6.3 Estimated Ultimate Loss Ratio Results 

Another output table, Figure 6.5, shows the estimated ultimate-loss ratios by accident year. 

Unlike the estimated-unpaid and estimated-cash-flow tables, the values in this table are calculated 

using all simulated values, not just the values beyond the end of the historical triangle. Because the 

simulated sample triangles represent additional possibilities of what could have happened in the past, 

even as the “squaring of the triangle” and process variance represent what could happen as those 

same past values are played out into the future, we are in possession of sufficient information to 

enable us to estimate the complete variability in the loss ratio from day one until all claims are 

completely paid and settled for each accident year.33  

Figure 6.5 Estimated-loss-ratio (best estimate) 

 

 

 

 

 

 

 

The use of all simulated values indicates that the standard errors in Figure 6.5 should be 

proportionate to the means, while the coefficients of variation should be relatively constant by 

accident year. In terms of diagnostics, any increases in standard error and coefficient of variation for 

the most recent years would be consistent with the reasons previously cited in Section 5.4 for the 

estimated-unpaid tables. Risk management-wise, the loss ratio distributions have important 

implications for projecting pricing risk. 

6.4 Distribution Graphs 

The final model output to consider is a histogram of the estimated-unpaid amounts for the total 

of all accident years combined, as shown in the graph in Figure 6.6. This total-unpaid-distribution 

histogram was created by dividing the range of all values generated from the simulation into 100 

                                                           
33 If we are only interested in the “remaining” volatility in the loss ratio, then the values in the estimated-unpaid table 

(Figure 6.3) can be added to the cumulative paid values by year and divided by the premiums. 

Five Top 50 Companies
Schedule P, Part A -- Homeowners / Farmowners (in 000,000's)

Accident Year Ultimate Loss Ratios
Best Estimate (Weighted)

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Loss Ratio Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
1999 66.3% 23.9% 36.0% -1.4% 155.5% 65.5% 71.1% 118.7% 146.5%
2000 78.4% 24.1% 30.8% -0.7% 189.8% 77.6% 83.9% 123.8% 157.3%
2001 87.9% 25.5% 29.0% 12.9% 260.1% 88.5% 94.1% 136.1% 175.3%
2002 72.2% 21.9% 30.3% -31.1% 170.8% 71.6% 76.3% 117.4% 143.5%
2003 64.7% 19.2% 29.7% 15.1% 227.3% 63.4% 68.3% 104.6% 125.7%
2004 64.1% 17.3% 27.1% -5.8% 130.7% 62.9% 67.1% 102.1% 118.6%
2005 80.3% 18.8% 23.4% 16.4% 165.7% 79.1% 84.5% 119.6% 139.1%
2006 55.1% 16.3% 29.5% 7.9% 205.9% 53.8% 57.6% 89.7% 106.1%
2007 56.7% 16.2% 28.6% 10.1% 123.8% 56.8% 60.7% 89.0% 106.4%
2008 83.6% 20.6% 24.6% 33.1% 307.1% 81.8% 87.9% 123.5% 150.9%

Totals 70.1% 6.7% 9.5% 50.0% 114.7% 69.9% 74.1% 81.0% 87.7%
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buckets of equal size and then counting the number of simulations that fall within each bucket. 

Dividing the number of simulations in each bucket by the total number of simulations (1,000 in this 

case) enables us to arrive at the frequency or probability for each bucket or bar in the graph. 

Because the simulation results typically appear jagged, as they do in Figure 6.6, a Kernel density 

function (the blue line) is also used to calculate a smoothed distribution fit to the histogram values.34 

A Kernel density function may be conceptualized as a weighted average of values close to each point 

in the jagged distribution, with systematically less weight being given to values furthest from the 

points evaluated.35 

Figure 6.6 Total Unpaid Claims Distribution 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Another useful strategy for graphing the total unpaid distribution may be accomplished by 

creating a summary of the six model distributions used to determine the weighted “best estimate” 

                                                           
34 Essentially, a Kernel density function will estimate each point in the distribution by weighting all of the values near 

that point, with less weight given the further the other points are from each respective point. 
35 For a more detailed discussion of Kernel density functions, see Wand & Jones, Kernel Smoothing, Chapman & Hall, 

1995. 
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and distribution. An example of this graph using the kernel density functions is shown in Figure 6.7. 

Figure 6.7 Summary of model distributions 

  

 

 

 

 

 

 

 

 

 

 

The corresponding tables and graphs for the Part B and Part C results are shown in Appendices 

A and B, respectively. 

6.5 Correlation 

Results for an entire business unit can be estimated, after each business segment has been 

analyzed and weighted into best estimates, using aggregation. This represents another area where 

caution is warranted. The procedure is not a simple matter of “adding up” the distributions for each 

segment. In order to estimate the distribution of possible outcomes for the company as a whole a 

process that incorporates the correlation of results among segments must be used.36 

Simulating correlated variables is commonly accomplished with a multivariate distribution whose 

parameters and correlations have been previously specified. This type of simulation is most easily 

applied when distributions are uniformly identical and known in advance (for example, all derived 

from a multivariate normal distribution). Unfortunately, these conditions do not exist for the ODP 

bootstrap model, a process that does not allow us to know the characteristics of distributions in 

                                                           
36 This section assumed the reader is familiar with correlation. 
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advance. If their shapes turn out, indeed, to be different, then another approach will be needed. 

Two useful correlation processes for the bootstrap model are location mapping and re-sorting.37 

With location mapping, each iteration will include sampling residuals for the first segment and 

then going back to note the location in the original residual triangle of each sampled residual.38 Each 

of the other segments is sampled using the residuals at the same locations for their respective 

residual triangles. Thus, the correlation of the original residuals is preserved in the sampling process. 

The location-mapping process is easily implemented in Excel and does not require the need to 

estimate a correlation matrix. There are, however, two drawbacks to this process. First, it requires all 

of the business segments to come with data triangles that are precisely the same size with no missing 

values or outliers when comparing each location of the residuals.39 Second, the correlation of the 

original residuals is used in the model, and no other correlation assumptions can be used for stress 

testing the aggregate results. 

The second correlation process, re-sorting, can be accomplished with algorithms such as Iman-

Conover or Copulas, among others. The primary advantages of re-sorting include:  

 The triangles for each segment may have different shapes and sizes  

 Different correlation assumptions may be employed 

 Different correlation algorithms may also have other beneficial impacts on the aggregate 

distribution  

For example, using a t-distribution Copula with low degrees of freedom rather than a normal-

distribution Copula, will effectively “strengthen” the focus of the correlation in the tail of the 

distribution. This type of consideration is important for risk-based capital and other risk modeling 

issues. 

To induce correlation among different segments in the bootstrap model, a calculation of the 

correlation matrix using Spearman’s Rank Order and use of re-sorting based on the ranks of the 

total unpaid claims for all accident years combined may be done. The calculated correlations for 

Parts A, B, and C based on the paid residuals after hetero adjustments may be seen in the table in 

                                                           
37 For a useful reference see Kirschner, et al. [15]. 
38 For example, in the “Bootstrap Models.xls” file the locations of the sampled residuals are shown in Step 15, which 

could be replicated iteration by iteration for each business segment. 
39 It is possible to fill in “missing” residuals in another segment using a randomly selected residual from elsewhere in the 

triangle, but in order to maintain the same amount of correlation the selection of the other residual would need to 
account for the correlation between the residuals, which complicates the process. 
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Figure 6.8. 

Figure 6.8 Estimated Correlation and P-values 

 

 

 

 

 

 

 

Using these correlation coefficients, the “Aggregate Estimate.xls” file, and the simulation data for 

Parts A, B, and C, we can then calculate the aggregate results for the three lines of business that are 

summarized in the table in Figure 6.9. A more complete set of tables for the aggregate results is 

shown in Appendix C. 

Figure 6.9 Aggregate estimated unpaid 

 

 

 

 

 

 

Note that using residuals to correlate the lines of business, as in the location mapping method, 

and measuring the correlation between residuals, as in the re-sorting method, are both liable to 

create correlations that are close to zero. For reserve risk, the correlation that is desired is between 

the total unpaid amounts for two segments. The correlation that is being measured is the correlation 

between each incremental future loss amount, given the underlying model describing the overall 

trends in the data. This may or may not be a reasonable approximation. 

Correlation is often thought of as being much stronger than “close to zero.” For pricing risk, the 

correlation that is desired is between the loss ratio movements by accident year between two 

Rank Correlation of Residuals after Hetero Adjustment - Paid
LOB 1 2 3

1 1.00 0.52 0.23
2 0.52 1.00 0.25
3 0.23 0.25 1.00

P-Values of Rank Correlation of Residuals after Hetero Adjustment - Paid
LOB 1 2 3

1 0.00 0.00 0.09
2 0.00 0.00 0.08
3 0.09 0.08 0.00

Five Top 50 Companies
Aggregate All Lines of Business

Accident Year Unpaid

Accident Paid Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year To Date Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
1999 18,613            -                  -                  -                  -                  -                  -                  -                  -                  
2000 20,618            31                   12                   37.5% (21)                  117                 30                   34                   50                   77                   
2001 22,866            115                 40                   34.8% 12                   354                 108                 137                 189                 234                 
2002 22,842            211                 43                   20.3% 107                 419                 205                 234                 293                 333                 
2003 22,351            387                 52                   13.4% 221                 660                 381                 415                 478                 547                 
2004 22,422            741                 86                   11.5% 439                 1,097              735                 791                 894                 981                 
2005 24,350            1,514              150                 9.9% 874                 2,062              1,507              1,600              1,788              1,911              
2006 19,973            2,958              264                 8.9% 1,944              4,153              2,945              3,087              3,427              3,753              
2007 18,919            5,533              475                 8.6% 3,623              7,612              5,506              5,778              6,356              6,845              
2008 15,961            12,565            1,195              9.5% 8,649              20,314            12,526            13,230            14,542            15,970            

Totals 208,915          24,056            1,324              5.5% 19,572            32,759            24,008            24,852            26,193            27,644            



Bootstrap Modeling: Beyond the Basics 
 

Casualty Actuarial Society E-Forum, Fall 2010  50 

segments. This correlation is not as likely to be close to zero, so correlation of loss ratios (e.g., for 

the data in Figure 6.5) is often done with a different correlation assumption compared to reserving 

risk. 

7. MODEL TESTING 

Work on testing stochastic unpaid claim estimation models is still in its infancy. Most papers on 

stochastic models display results, and some even compare a few different models, but they tend to 

be void of any statistical evidence regarding how well the model in question predicts the underlying 

distribution. This is quite understandable since we don’t know what the underlying distribution is, so 

with real data the best we can hope for is to retrospectively test a very old data set to see how well a 

model predicted the actual outcome.40 

Testing a few old data sets is better than not, but ideally we would need many similar data sets to 

perform meaningful tests. One recent paper authored by the General Insurance Reserving Oversight 

Committee (GI ROC) in their papers for the General Insurance Research Organizing (GIRO) 

conference in 2007 titled “Best Estimates and Reserving Uncertainty” [28] and their updated in 2008 

titled “Reserving Uncertainty” [29] took a first step in performing more meaningful statistical testing 

of a variety of models.  

A large number of models were reviewed and tested in these studies, but one of the most 

interesting portions of the studies were done by comparing the unpaid liability distributions created 

by the Mack and ODP bootstrap model against the “true” artificially generated unpaid loss 

percentiles. To accomplish these tests, artificial datasets were constructed so that all of the Mack and 

ODP bootstrap assumptions, respectively, are satisfied. While the artificial datasets were recognized 

as not necessarily realistic, the “true” results are known so the Working Parties were able to test to 

see how well each model performed against datasets that could be considered “perfect”. 

7.1 Mack model results 

To test the Mack model, incremental losses were simulated for a 10 x 10 square of data based on 

the assumptions of the Mack model. For the 30,000 datasets simulated, the upper triangles were 

used and the Mack model was applied to estimate the expected results and various percentiles. The 

actual results (lower triangle) for each iteration were then compared to the Mack estimates to see 

                                                           
40 For example, data for accident years 1990 to 2000 could be completely settled and all results known as of 2010. Thus, 

we could use the triangle as it existed at year end 2000 to test how well a model predicts the final results. 
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how often they exceeded each tested percentile. If the model is working well, then the actual results 

should exceed the estimated percentiles one minus the percentile percent of the time – e.g., for the 

90th percentile, the actual results should exceed the estimated 10% of the time. 

In the test, the proportion of simulated scenarios in which the “true” outcome exceeded the 99th 

percentile of the Mack method’s results was around 8-13%. If the Mack method’s distribution was 

accurate, this should be 1%. However, it appears that the distribution created by the Mack method 

underestimates tail events. 

7.2 Bootstrap model results 

To test the ODP bootstrap model, incremental losses were simulated for a 10 x 10 square of data 

based on the assumptions of the ODP bootstrap model. For the 30,000 datasets simulated, the 

upper triangles were used and the OPD bootstrap model from England and Verrall [9 and 10] were 

used to estimate the expected results and various percentiles. Similarly, the proportion of simulated 

scenarios in which the “true” outcome exceeded the 99th percentile of the Bootstrap method’s 

results was around 2.6-3.1%. 

Thus, the bootstrap model performed better than the Mack model for “perfect” data, even 

though the results for both models were somewhat deficient in the sense that they both seem to 

underpredict the extremes of the “true” distribution. In fairness, it should be noted however, that 

the ODP bootstrap model that was tested did not include many of the “advancements” described in 

section 3.2. 

7.3 Future testing 

The testing done for GIRO was a significant improvement over simply looking at results for 

different models, without knowing anything about the “true” underlying distribution. The next step 

in the testing process will be to test models against “true” results for realistic data instead of 

“perfect” data. The CAS Loss Simulation Model Working Party is testing a model that will create 

datasets from the claim transaction level up. The goal is to create thousands of datasets based on 

characteristics of real data that can be used for testing various models. 

8. FUTURE RESEARCH 

With testing of stochastic models in its infancy, much work in the area of future research is 

needed. We only offer a few such areas. 
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 Expand testing of the ODP bootstrap model with realistic data using the CAS loss simulation 

model. 

 Expand the ODP bootstrap model in other ways, for example use of the Munich chain ladder 

with an incurred/paid set of triangles, or the use of claim counts and average severities. 

 Research other risk analysis measures and how the ODP bootstrap model can be used for 

enterprise risk management. 

 Research how the ODP bootstrap model can be used for Solvency II requirements in Europe 

and the International Accounting Standards. 

 Research into the most difficult parameter to estimate: the correlation matrix. 

9. CONCLUSIONS 

With this paper we endeavored to show how the ODP bootstrap model can be used in a variety 

of practical ways, and to illustrate the diagnostic tools the actuary needs to assess whether the model 

is working well. By doing so, we believe that this toolset can become an integral part of the actuaries 

regular estimation of unpaid claim liabilities, rather than just a “black box” to be used only if 

necessary. 
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Supplementary Material 
There are several companion files designed to give the reader a deeper understanding of the concepts discussed in 

the paper. The files are all in the “Beyond the Basics.zip” file. The files are: 
 
Model Instructions.doc – this file contains a written description of how to use the primary bootstrap modeling files. 
 
Primary bootstrap modeling files: 
Industry Data.xls – this file contains Schedule P data by line of business for the entire U.S. industry and five of the 

top 50 companies, for each LOB that has 10 years of data. 
  
Bootstrap Model.xls – this file contains the detailed model steps described in this paper as well as various modeling 

options and diagnostic tests. Data can be entered and simulations run and saved for use in calculating a weighted best 
estimate. 

 
Best Estimate.xls – this file can be used to weight the results from six different models to get a “best estimate” of the 

distribution of possible outcomes. 
 
Aggregate Estimate.xls – this file can be used correlate the best estimate results from 3 LOBs/segments. 
 
Correlation Ranks.xls – this file contains the ranks used to correlate results by LOB/segment. 
 
Simple example calculation files: 
Simple GLM.xls – this file illustrates the calculation of the GLM framework for a simple 3 x 3 triangle. 
 
Simple GLM 6.xls – this file illustrates the calculation of the GLM framework for a simple 6 x 6 triangle. 
 
Simple GLM 6 with Outlier.xls – this file illustrates how the calculation of the GLM framework for a simple 6 x 6 

triangle is adjusted for an outlier. 
 
Simple GLM 6 with 3yr avg.xls – this file illustrates how the calculation of the GLM framework for a simple 6 x 6 

triangle is adjusted to only use the equivalent of a three-year average (i.e., the last four diagonals). 
 
Simple GLM 6 with 1 Acc Yr Parameter.xls – this file illustrates the calculation of the GLM framework using only 

one accident year (level) parameter, a development year trend parameter for every year and no calendar year trend 
parameter for a simple 6 x 6 triangle. 

 
Simple GLM 6 with 1 Dev Yr Parameter.xls – this file illustrates the calculation of the GLM framework using only 

one development year trend parameter, an accident year (level) parameter for every year and no calendar year trend 
parameter for a simple 6 x 6 triangle. 

 
Simple GLM 6 with 1 Acc Yr & 1 Dev Yr Parameter.xls – this file illustrates the calculation of the GLM framework 

using only one accident year (level) parameter, one development year trend parameter and no calendar year trend 
parameter for a simple 6 x 6 triangle. 

 
Simple GLM 6 with 1 Acc Yr 1 Dev Yr & 1 Cal Yr Parameter.xls – this file illustrates the calculation of the GLM 

framework using only one accident year (level) parameter, one development year trend parameter and one calendar year 
trend parameter for a simple 6 x 6 triangle. 
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Appendix A – Schedule P, Part B Results 

In this appendix the results for Schedule P, Part B (Private Passenger Auto Liability) are shown. 

Figure A.1 Estimated-unpaid model results (best estimate) 
Five Top 50 Companies

Schedule P, Part B -- Private Passenger Auto Liability (in 000,000's)
Accident Year Unpaid

Best Estimate (Weighted)
Accident Paid Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year To Date Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
1999 11,816            -                  -                  -                  -                  -                  -                  -                  -                  
2000 12,679            27                   4                     14.8% 14                   41                   27                   29                   33                   37                   
2001 13,631            66                   8                     12.4% 35                   96                   66                   70                   81                   88                   
2002 14,472            142                 21                   14.9% 73                   225                 141                 153                 178                 201                 
2003 13,717            270                 32                   11.7% 146                 390                 269                 286                 324                 361                 
2004 13,090            525                 68                   12.9% 277                 767                 526                 559                 641                 709                 
2005 12,490            1,048              127                 12.2% 553                 1,503              1,048              1,100              1,278              1,387              
2006 11,598            2,148              222                 10.4% 1,124              3,066              2,150              2,249              2,511              2,865              
2007 10,306            3,960              383                 9.7% 2,115              5,421              3,962              4,103              4,611              5,158              
2008 6,357              8,195              778                 9.5% 4,554              11,486            8,174              8,549              9,434              10,682            

Totals 120,157          16,380            898                 5.5% 12,811            19,377            16,341            16,836            17,863            18,955            
Normal Dist. 16,380            898                 5.5% 16,380            16,986            17,857            18,469            
logNormal Dist. 16,380            904                 5.5% 16,355            16,975            17,909            18,595            
Gamma Dist. 16,380            898                 5.5% 16,364            16,976            17,884            18,541             

Figure A.2 Estimated cash flow (best estimate) 
Five Top 50 Companies

Schedule P, Part B -- Private Passenger Auto Liability (in 000,000's)
Calendar Year Unpaid

Best Estimate (Weighted)
Calendar Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2009 8,090              459                 5.7% 6,153              9,603              8,081              8,335              8,843              9,338              
2010 3,944              225                 5.7% 3,127              4,787              3,935              4,079              4,311              4,560              
2011 2,162              132                 6.1% 1,586              2,672              2,165              2,239              2,376              2,514              
2012 1,125              77                   6.9% 864                 1,450              1,124              1,171              1,252              1,326              
2013 546                 42                   7.7% 404                 697                 545                 571                 617                 672                 
2014 275                 20                   7.4% 205                 371                 274                 288                 310                 327                 
2015 137                 15                   11.2% 97                   192                 137                 146                 162                 179                 
2016 71                   6                     8.2% 50                   93                   71                   74                   80                   86                   
2017 30                   3                     11.0% 15                   41                   31                   32                   35                   38                   
2018 -                  -                  -                  -                  -                  -                  -                  -                  

Totals 16,380            898                 5.5% 12,811            19,377            16,341            16,836            17,863            18,955             

Figure A.3 Estimated-loss-ratio (best estimate) 
Five Top 50 Companies

Schedule P, Part B -- Private Passenger Auto Liability (in 000,000's)
Accident Year Ultimate Loss Ratios

Best Estimate (Weighted)
Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year Loss Ratio Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
1999 75.6% 9.2% 12.1% 38.2% 103.8% 75.6% 77.5% 92.8% 100.2%
2000 81.8% 9.7% 11.9% 43.8% 112.6% 81.9% 83.9% 99.7% 107.4%
2001 83.5% 9.6% 11.5% 47.6% 116.1% 83.4% 85.6% 101.0% 110.3%
2002 79.4% 9.0% 11.4% 45.3% 108.7% 79.4% 81.3% 97.0% 103.1%
2003 68.9% 7.2% 10.5% 39.3% 94.7% 68.7% 70.7% 82.7% 89.0%
2004 65.7% 7.4% 11.3% 36.3% 89.1% 65.5% 67.3% 80.1% 85.6%
2005 66.5% 7.6% 11.4% 36.2% 91.6% 66.3% 68.1% 80.9% 87.3%
2006 66.4% 5.8% 8.7% 33.6% 92.3% 66.4% 67.3% 76.6% 86.4%
2007 70.1% 6.2% 8.8% 40.4% 95.8% 69.9% 71.0% 81.1% 90.6%
2008 71.1% 6.4% 8.9% 41.5% 98.6% 71.2% 73.0% 81.3% 91.2%

Totals 72.3% 2.4% 3.3% 63.7% 80.6% 72.2% 73.8% 76.3% 78.0%  
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Figure A.4 Mean of incremental values 
Five Top 50 Companies

Schedule P, Part B -- Private Passenger Auto Liability (in 000,000's)
Accident Year Incremental Values by Development Period

Best Estimate (Weighted)
Accident Mean Values

Year 12 24 36 48 60 72 84 96 108 120
1999 5,257              3,374              1,464              850                 460                 225                 113                 59                   32                   25                   
2000 5,625              3,613              1,566              908                 490                 240                 121                 61                   34                   27                   
2001 6,086              3,906              1,690              981                 531                 261                 131                 67                   37                   29                   
2002 6,489              4,168              1,805              1,044              567                 279                 140                 71                   39                   31                   
2003 6,233              3,996              1,730              1,003              544                 268                 134                 68                   38                   30                   
2004 6,073              3,894              1,689              978                 528                 261                 131                 67                   37                   29                   
2005 6,035              3,869              1,679              973                 527                 259                 130                 66                   37                   29                   
2006 6,050              3,882              1,685              1,032              571                 271                 138                 66                   40                   30                   
2007 6,301              4,042              1,798              1,037              577                 272                 139                 66                   41                   30                   
2008 6,361              4,202              1,811              1,048              581                 276                 140                 66                   41                   30                    

Figure A.5 Standard deviation of incremental values 
Five Top 50 Companies

Schedule P, Part B -- Private Passenger Auto Liability (in 000,000's)
Accident Year Incremental Values by Development Period

Best Estimate (Weighted)
Accident Standard Error Values

Year 12 24 36 48 60 72 84 96 108 120
1999 643                 417                 188                 109                 62                   35                   14                   14                   4                     3                     
2000 677                 437                 195                 115                 66                   36                   15                   14                   5                     4                     
2001 708                 456                 201                 119                 70                   38                   16                   14                   5                     4                     
2002 745                 481                 215                 127                 72                   40                   16                   16                   5                     4                     
2003 663                 423                 188                 115                 65                   38                   15                   15                   5                     4                     
2004 691                 441                 201                 122                 67                   39                   15                   17                   5                     4                     
2005 692                 448                 200                 119                 69                   39                   16                   15                   5                     4                     
2006 530                 348                 156                 112                 70                   36                   14                   14                   5                     4                     
2007 556                 363                 178                 109                 67                   37                   14                   13                   5                     3                     
2008 571                 406                 179                 109                 66                   37                   14                   14                   5                     3                      
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Figure A.6 Total unpaid claims distribution 
Five Top 50 Companies

Schedule P, Part B -- Private Passenger Auto Liability (in 000,000's)
Total Unpaid Distribution
Best Estimate (Weighted)
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Figure A.7 Summary of model distributions 
Five Top 50 Companies

Schedule P, Part B -- Private Passenger Auto Liability (in 000,000's)
Summary of Model Distributions

(Using Kernel Densities)
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Appendix B – Schedule P, Part C Results 

In this appendix the results for Schedule P, Part C (Commercial Auto Liability) are shown. 

Figure B.1 Estimated-unpaid model results (best estimate) 
Five Top 50 Companies

Schedule P, Part C -- Commercial Auto Liability (in 000,000's)
Accident Year Unpaid

Best Estimate (Weighted)
Accident Paid Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year To Date Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
1999 1,563              -                  -                  -                  -                  -                  -                  -                  -                  
2000 1,469              3                     2                     70.8% (1)                    12                   2                     4                     6                     8                     
2001 1,387              12                   4                     31.4% 3                     31                   12                   14                   19                   22                   
2002 1,350              28                   5                     19.5% 12                   53                   28                   31                   37                   41                   
2003 1,342              58                   8                     13.9% 33                   84                   59                   64                   71                   79                   
2004 1,198              116                 17                   14.9% 61                   191                 115                 127                 146                 158                 
2005 1,061              249                 34                   13.8% 151                 334                 250                 272                 304                 322                 
2006 853                 472                 56                   11.9% 323                 628                 479                 516                 553                 577                 
2007 645                 834                 73                   8.8% 605                 1,015              844                 891                 937                 965                 
2008 294                 1,178              106                 9.0% 904                 1,484              1,181              1,262              1,337              1,366              

Totals 11,162            2,950              149                 5.0% 2,434              3,363              2,949              3,055              3,186              3,276              
Normal Dist. 2,950              149                 5.0% 2,950              3,050              3,194              3,295              
logNormal Dist. 2,950              150                 5.1% 2,946              3,048              3,202              3,314              
Gamma Dist. 2,950              149                 5.0% 2,947              3,048              3,198              3,306               

Figure B.2 Estimated cash flow (best estimate) 
Five Top 50 Companies

Schedule P, Part C -- Commercial Auto Liability (in 000,000's)
Calendar Year Unpaid

Best Estimate (Weighted)
Calendar Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2009 1,171              65                   5.5% 974                 1,374              1,172              1,214              1,280              1,321              
2010 806                 46                   5.7% 657                 960                 806                 838                 882                 911                 
2011 488                 35                   7.1% 364                 595                 490                 512                 544                 571                 
2012 256                 27                   10.7% 174                 343                 255                 274                 303                 324                 
2013 125                 15                   12.2% 73                   177                 124                 136                 150                 160                 
2014 58                   8                     13.7% 35                   90                   57                   63                   71                   76                   
2015 30                   5                     15.8% 17                   47                   30                   33                   39                   42                   
2016 14                   3                     24.6% 4                     25                   13                   16                   19                   22                   
2017 3                     2                     55.4% (0)                    12                   3                     4                     6                     7                     
2018 -                  -                  -                  -                  -                  -                  -                  -                  

Totals 2,950              149                 5.0% 2,434              3,363              2,949              3,055              3,186              3,276               

Figure B.3 Estimated-loss-ratio (best estimate) 
Five Top 50 Companies

Schedule P, Part C -- Commercial Auto Liability (in 000,000's)
Accident Year Ultimate Loss Ratios

Best Estimate (Weighted)
Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%

Year Loss Ratio Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
1999 89.5% 3.2% 3.5% 80.2% 99.5% 89.5% 91.8% 94.5% 96.3%
2000 81.3% 2.8% 3.5% 72.9% 90.1% 81.2% 83.3% 86.0% 87.4%
2001 73.1% 2.6% 3.5% 63.8% 81.8% 73.2% 74.8% 77.4% 79.2%
2002 60.6% 2.1% 3.5% 53.7% 66.2% 60.6% 62.1% 64.1% 65.5%
2003 55.5% 1.9% 3.5% 48.9% 61.4% 55.5% 56.9% 58.7% 59.8%
2004 53.8% 2.1% 3.9% 47.5% 60.2% 53.8% 55.3% 57.3% 58.5%
2005 51.5% 2.2% 4.3% 43.1% 57.9% 51.6% 53.0% 55.1% 56.5%
2006 53.7% 2.9% 5.3% 43.5% 62.1% 53.9% 55.7% 58.1% 59.8%
2007 59.6% 3.6% 6.1% 46.9% 68.6% 59.9% 62.4% 65.0% 66.6%
2008 61.8% 4.6% 7.5% 49.4% 75.3% 62.1% 65.3% 68.7% 70.2%

Totals 62.5% 0.9% 1.5% 59.6% 65.3% 62.5% 63.1% 64.0% 64.6%  
 
 



Bootstrap Modeling: Beyond the Basics 
 

Casualty Actuarial Society E-Forum, Fall 2010  59 

Figure B.4 Mean of incremental values 
Five Top 50 Companies

Schedule P, Part C -- Commercial Auto Liability (in 000,000's)
Accident Year Incremental Values by Development Period

Best Estimate (Weighted)
Accident Mean Values

Year 12 24 36 48 60 72 84 96 108 120
1999 332                 384                 345                 244                 135                 64                   29                   17                   12                   3                     
2000 312                 360                 326                 229                 127                 61                   27                   15                   11                   3                     
2001 297                 343                 311                 218                 121                 57                   26                   15                   9                     3                     
2002 292                 339                 305                 214                 118                 56                   25                   16                   10                   3                     
2003 296                 343                 309                 218                 119                 58                   28                   17                   11                   3                     
2004 276                 322                 288                 203                 111                 62                   26                   15                   10                   3                     
2005 270                 312                 280                 199                 128                 64                   27                   16                   10                   3                     
2006 265                 308                 278                 224                 128                 65                   27                   16                   10                   3                     
2007 299                 348                 331                 239                 136                 68                   29                   17                   11                   3                     
2008 294                 370                 320                 231                 132                 67                   27                   16                   11                   3                      

Figure B.5 Standard deviation of incremental values 
Five Top 50 Companies

Schedule P, Part C -- Commercial Auto Liability (in 000,000's)
Accident Year Incremental Values by Development Period

Best Estimate (Weighted)
Accident Standard Error Values

Year 12 24 36 48 60 72 84 96 108 120
1999 18                   35                   18                   15                   21                   14                   5                     4                     3                     2                     
2000 17                   34                   18                   15                   19                   13                   5                     4                     3                     2                     
2001 17                   34                   17                   15                   20                   13                   5                     4                     3                     2                     
2002 16                   32                   17                   14                   19                   14                   5                     4                     3                     1                     
2003 17                   32                   17                   14                   20                   13                   6                     4                     3                     2                     
2004 16                   32                   16                   14                   19                   14                   6                     3                     3                     1                     
2005 16                   32                   16                   14                   22                   15                   6                     4                     3                     2                     
2006 16                   31                   16                   25                   22                   15                   6                     4                     3                     1                     
2007 17                   35                   29                   22                   22                   14                   7                     4                     3                     2                     
2008 17                   45                   27                   21                   21                   13                   6                     4                     3                     2                      
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Figure B.6 Total unpaid claims distribution 
Five Top 50 Companies

Schedule P, Part C -- Commercial Auto Liability (in 000,000's)
Total Unpaid Distribution
Best Estimate (Weighted)
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Figure B.7 Summary of model distributions 
Five Top 50 Companies

Schedule P, Part C -- Commercial Auto Liability (in 000,000's)
Summary of Model Distributions

(Using Kernel Densities)
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Appendix C – Aggregate Results 

In this appendix the results for the correlated aggregate of the three Schedule P lines of business 
(Parts A, B, and C) are shown, using the correlation calculated from the paid data after adjustment 
for heteroscedasticity. 

Figure A.1 Estimated-unpaid model results (best estimate) 
Five Top 50 Companies

Aggregate All Lines of Business
Accident Year Unpaid

Accident Paid Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year To Date Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
1999 18,613            -                  -                  -                  -                  -                  -                  -                  -                  
2000 20,618            31                   12                   38.2% (26)                  111                 30                   35                   49                   78                   
2001 22,866            115                 40                   34.7% 5                     348                 106                 136                 190                 240                 
2002 22,842            211                 43                   20.5% 109                 397                 205                 234                 295                 348                 
2003 22,351            387                 51                   13.2% 230                 624                 381                 416                 482                 532                 
2004 22,422            741                 86                   11.6% 432                 1,080              732                 788                 883                 1,003              
2005 24,350            1,514              156                 10.3% 876                 2,079              1,506              1,601              1,779              1,908              
2006 19,973            2,958              267                 9.0% 1,771              3,970              2,942              3,092              3,428              3,704              
2007 18,919            5,533              487                 8.8% 3,472              7,657              5,525              5,770              6,402              6,981              
2008 15,961            12,565            1,410              11.2% 7,894              21,492            12,527            13,260            14,919            16,794            

Totals 208,915          24,056            1,644              6.8% 18,197            34,272            23,963            25,008            26,726            28,724            
Normal Dist. 24,056            1,644              6.8% 24,056            25,164            26,760            27,880            
logNormal Dist. 24,055            1,635              6.8% 24,000            25,124            26,835            28,105            
Gamma Dist. 24,056            1,644              6.8% 24,018            25,143            26,822            28,044             

Figure A.2 Estimated cash flow (best estimate) 
Five Top 50 Companies

Aggregate All Lines of Business
Calendar Year Unpaid

Calendar Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Unpaid Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
2009 12,354            1,018              8.2% 9,070              19,805            12,305            12,931            13,951            15,231            
2010 5,549              348                 6.3% 4,293              7,187              5,535              5,768              6,123              6,499              
2011 3,012              188                 6.2% 2,349              3,740              3,012              3,129              3,329              3,491              
2012 1,572              114                 7.3% 1,262              2,009              1,563              1,641              1,769              1,865              
2013 789                 73                   9.3% 583                 1,117              785                 830                 913                 1,019              
2014 397                 42                   10.5% 260                 552                 395                 420                 470                 512                 
2015 217                 39                   18.1% 133                 505                 211                 234                 289                 351                 
2016 125                 40                   32.3% (13)                  396                 116                 142                 200                 266                 
2017 40                   18                   44.6% (25)                  208                 36                   42                   71                   98                   
2018 -                  -                  -                  -                  -                  -                  -                  -                  

Totals 24,056            1,644              6.8% 18,197            34,272            23,963            25,008            26,726            28,724             

Figure A.3 Estimated loss ratio (best estimate) 
Five Top 50 Companies

Aggregate All Lines of Business
Accident Year Ultimate Loss Ratios

Accident Mean Standard Coefficient 50.0% 75.0% 95.0% 99.0%
Year Loss Ratio Error of Variation Minimum Maximum Percentile Percentile Percentile Percentile
1999 73.7% 9.5% 12.9% 39.8% 110.8% 73.4% 77.6% 91.2% 99.7%
2000 80.7% 9.6% 11.9% 50.0% 122.2% 80.5% 84.5% 97.4% 107.9%
2001 84.2% 10.1% 12.0% 53.4% 139.7% 84.2% 88.4% 101.0% 112.9%
2002 75.7% 9.0% 11.9% 42.2% 119.1% 75.6% 79.2% 92.6% 100.5%
2003 66.5% 7.8% 11.7% 40.7% 116.9% 66.2% 70.0% 80.3% 89.2%
2004 64.3% 7.4% 11.6% 37.4% 97.3% 64.0% 67.8% 78.4% 86.0%
2005 70.7% 8.4% 11.9% 41.1% 104.5% 70.2% 74.0% 86.5% 94.6%
2006 61.2% 6.9% 11.3% 38.4% 119.4% 60.8% 63.1% 74.3% 82.4%
2007 64.0% 7.5% 11.7% 40.4% 93.5% 63.9% 66.4% 78.7% 86.4%
2008 75.5% 9.8% 13.0% 46.7% 168.1% 74.8% 78.4% 92.6% 107.2%

Totals 70.8% 2.9% 4.0% 62.0% 88.1% 70.7% 72.5% 75.7% 78.0%  
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Figure A.4 Mean of incremental values 
Five Top 50 Companies

Aggregate All Lines of Business
Accident Year Incremental Values by Development Period

Accident Mean Values
Year 12 24 36 48 60 72 84 96 108 120
1999 9,292              4,873              2,023              1,183              635                 310                 153                 81                   67                   30                   
2000 10,524            5,354              2,154              1,254              666                 326                 162                 84                   75                   31                   
2001 11,868            5,902              2,324              1,333              713                 348                 174                 90                   82                   34                   
2002 11,809            6,018              2,398              1,382              740                 363                 181                 94                   82                   35                   
2003 11,790            5,934              2,343              1,355              722                 354                 178                 93                   82                   34                   
2004 12,243            5,985              2,313              1,327              703                 356                 175                 92                   85                   33                   
2005 14,191            6,560              2,419              1,369              741                 367                 181                 94                   98                   32                   
2006 11,951            5,878              2,290              1,418              775                 366                 186                 92                   81                   39                   
2007 12,654            6,215              2,525              1,440              793                 371                 188                 93                   83                   39                   
2008 16,129            6,928              2,585              1,463              801                 378                 191                 94                   86                   40                    

Figure A.5 Standard deviation of incremental values 
Five Top 50 Companies

Aggregate All Lines of Business
Accident Year Incremental Values by Development Period

Accident Standard Deviation Values
Year 12 24 36 48 60 72 84 96 108 120
1999 1,503              607                 216                 123                 72                   39                   16                   15                   27                   7                     
2000 1,549              615                 224                 132                 76                   40                   17                   14                   28                   12                   
2001 1,755              681                 242                 137                 81                   43                   18                   15                   37                   14                   
2002 1,704              702                 252                 145                 81                   44                   18                   17                   34                   12                   
2003 1,714              657                 230                 135                 76                   42                   17                   16                   35                   15                   
2004 1,743              662                 231                 138                 79                   43                   18                   17                   38                   13                   
2005 1,998              762                 253                 148                 83                   44                   19                   16                   47                   16                   
2006 1,745              624                 201                 141                 86                   40                   19                   15                   29                   16                   
2007 1,850              678                 246                 138                 85                   42                   18                   14                   32                   17                   
2008 2,534              918                 270                 147                 88                   45                   20                   15                   37                   18                    

Figure A.6 Total unpaid claims distribution 
Five Top 50 Companies

Aggregate All Lines of Business
Total Unpaid Distribution
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Abbreviations and notations 
Collect here in alphabetical order all abbreviations and notations used in the paper 
AIC: Akaike Information Criteria ELR: Expected Loss Ratio 
APD: Automobile Physical Damage GLM: Generalized Linear Models 
BIC: Bayesian Information Criteria ERM, Enterprise Risk Management 
BF: Bornhuetter-Ferguson MLE: Maximum Likelihood Estimate 
CC: Cape Cod ODP: Over-Dispersed Poisson 
CL: Chain Ladder OLS: Ordinary Least Squares 
CoV: Coefficient of Variation RSS: Residual Sum Squared 
DFA, Dynamic Financial Analysis SSE: Sum of Squared Errors 
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Claims Development by Layer: The Relationship 
between Claims Development Patterns, Trend and 

Claim Size Models 
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________________________________________________________________________ 

The purpose of Charles Cook’s 1970 paper Trend and Loss Development Factors was to 
address the “overlap fallacy.” That is, the focus of that paper was to demonstrate that trend and 
claims development were mutually exclusive adjustments. While this is certainly true, it should 
also be understood that there is a relationship between limited claims development patterns 
and trend factors. The “connector” between claims development patterns and trend is the 
claim size model. This relationship is critical to analyzing “real word” data which is rarely 
available on a ground-up, unlimited basis and where the implicit assumption of trend in a 
single direction may not be appropriate.  
 
This paper presents a demonstration of that relationship and also provides an approach to 
adjust development patterns for a particular claim size layer in order to calculate a development 
pattern for any other layer. As importantly, the approach discussed is designed to produce 
models that are internally consistent with respect to development patterns, trend factors and 
size of loss models (increased / decreased limit factors). 
 
Keywords. development patterns, excess layer 

             

1. INTRODUCTION 

The purpose of this paper is to demonstrate the relationship between claims 

development, trend and claim size factors. Those relationships are then explored in order to 

provide a practical approach for adjusting a development pattern appropriate for any claim 

layer to produce a development pattern for any other layer. The approach also allows for 

adjustments related to cost level assumptions implicit in development patterns and ensures 

that assumptions related to claim size models, claims development and trend are internally 

consistent. 

The procedure may be applied to either paid claims or reported claims. Additionally, 

although we use “claims” in the discussion, the procedure may also be applied to claims and 

allocated claim adjustment expenses (or only allocated claim adjustment expenses) assuming 

that all parameters and assumptions are defined consistently.  

1.1 Research Context 

The current approach for estimating excess layer development is based on Emanuel Pinto 

and Daniel Gogol’s paper, “An Analysis of Excess Loss Development.” The focus of that paper is 
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the fitting of observed development factors as a function of retentions. The observed factors 

were developed using an analysis of a large industry database. Pinto/Gogol then present an 

approach for calculating excess layer development in Section 5 and this approach is explored 

further in George M. Levine’s review. However, this approach requires that the actuary first 

calculate excess layer development using their fitting approach.  

Many actuaries would not have access to such industry data and as such the Pinto/Gogol 

approach would not be practical. In addition to this issue, the methodology does not use the 

inherent relationship of claims size models, trend and claims development patterns. 

1.2 Scope and Objective 

This paper includes comments related to assumptions implicit in the determination of 

development patterns, trend and claim size distributions in practice. However, the 

development of these actuarial models and their parameters is beyond the scope of this 

paper. The objective of this paper is to provide a methodology to calculate development 

factors by layer once the actuary has already determined his/her assumptions with respect to 

a “base” development pattern, trend and claim size models. 

1.3 Outline 

The paper presents a discussion of a robust approach and then provides an example that 

incorporates simplifying assumptions that are common in actuarial practice. The remainder 

of the paper proceeds as follows. Section 2 will provide notation and define important 

algebraic definitions of model factors. Section 3 provides the discussion of the inter-

relationship between claims development, trend and claim size models. Section 4 will 

provide implementation examples to the oft-studied Mack triangle and a simpler approach 

that may be sufficient for many analyses. 

2. BACKGROUND 

We begin by examining the implicit and explicit assumptions of claims development, 

trend and claim size models.  

The discussion will assume that we are analyzing an n×n claims triangle. We generalize 

our discussion to allow for data that is truncated from below at d and censored from above 

at p. This is typical of data subject to deductibles and policy limits. Of course, if d = 0 and 
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p = ∞, then the claims data is provided on a ground-up, unlimited (GUU) basis. The 

notation used in this paper is as follows: 

    
  = Cumulative claims in the layer L, for exposure period i as of the end of 

development interval j 

    
  = Ultimate claims in the layer L, for exposure period i (j = ∞) 

       = Claims layer truncated from below at d and censored from above at p 

where 0 ≤ d < p ≤∞ 

Though it will be obvious that this is not a necessary assumption, in order to simplify 

notation, we will assume claims layer L is consistent throughout the data triangle. Claims 

data is typically organized as presented in Table 1. 

TABLE 1 
CUMULATIVE CLAIMS DATA 

  Development Interval (j) 

  1 2 3 … n 

E
xp

o
su

re
  

P
er

io
d
 (

i)
 

1     
      

      
  …     

  

2     
      

      
  …  

3     
      

      
  …  

… …     

n     
      

Below we first discuss trend, claims size models and development patterns separately and 

then discuss their relationships. 

2.1 Trend Factors 

Trend rates typically refer to the annual change in cost level for a particular claims layer. 

In practice, trend rates often do not vary between accident periods. In addition, trend that 

acts in the development period or calendar period direction is often not considered. Finally, 

the consideration of the varying effects of trend applicable to different claims layer is often 

nonexistent.  

Rather than using annual rates of change, we will use cost level indices, T. Cost level 

indices are determined so as to apply to cumulative claims for accident year i as of 
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development maturity j. The indices are an accumulation of the incremental changes relative 

to a “base cost level.” Any accident year and maturity combination can be considered the 

“base.” In practice, the base cost level will typically be defined as the cost level associated 

with ultimate claims for the oldest exposure period. 

Our trend is explicitly defined to apply to the ground-up, unlimited claims layer. This is 

consistent with approaches in practice where the trend assumption is based on external cost 

information such as the Consumer Price Index. If trend is estimated from claims data that is 

subject to policy limits or deductibles then we will first need to adjust the data to a ground-

up, unlimited basis using the claim size model.  

Our model allows for trend that acts in multiple directions. We use the following notation 

for cost level indices. 

     = Trend indices for cumulative GUU claims for exposure period i at the 

end of development interval j 

TABLE 2 
COST LEVEL INDICES 

  Development Interval (j) 

  1 2 3 … n 

E
xp

o
su

re
  

P
er

io
d

 (
i)

 

1                …      

2                …  

3                …  

… …     

n          

2.2 Claim Size Model 

The claim size model describes the distribution of claim sizes. Though we do not restrict 

claim size models with respect to complexity, for practicality we require the following: 

 that claims size model parameters can be adjusted for the impact of inflation 

(includes most common claim size models such as the lognormal and 

exponential) 
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 that limited expected values and unlimited means (first moments) can be 

calculated with reasonable effort. 

2.2.1 Limit Adjustment Factors 

The limit adjustment factors, S(a,b), represents the ratio of expectations of claims between 

layer La and Lb.  

Si,∞( La, Lb) = {LEV(pa; Φi,∞) – LEV(da; Φi,∞)} / {LEV(pb; Φi,∞) – LEV(db; Φi,∞)} (2.1) 
Si,j(La, Lb) = {LEV(pa; Φi,j) – LEV(da; Φi,j)} / {LEV(pb; Φi,j) – LEV(db; Φi,j)} (2.2) 

Si,j(La, Lb) = E[    
  ]/ [    

  ] (2.3) 

where LEV is the characteristic limited expected value function for the claim size model 

and Φ represents the “name” (e.g. lognormal, Pareto, exponential) and parameters of the 

claim size model. We also acknowledge that the parameters of the claims size model, Φ, will 

vary by exposure period i and development interval j as a result of differences in cost level.  

In later sections, we will use the notation LEV(L; Φ) to refer to the limited expected 

value for the layer L(d, p). This is calculated as follows: 

LEV(L; Φ) = LEV(p; Φ) – LEV(d; Φ) (2.4) 

2.2.2 Gross-up Factors 

In the special case where pa=∞ and da=0, S(a,b) simplifies to a factor to gross-up claims to 

a GUU basis. We can then use the characteristic first moment (mean) function, M, in the 

numerator rather than the limited expected value function. 

Gi,.(b) = M(Φi,∞) / {LEV(pb;Φi,∞) – LEV(db;Φi,∞)} (2.4) 
Gi,j(b) = M(Φi,j) / {LEV(pb;Φi,j) – LEV(db;Φi,j)} (2.5) 

2.3 Claims Development 

Claims development factors, F, represent the expected ratios of ultimate claims to claims 

at maturities prior to ultimate. That is: 

    
  =E[     

  /     
  ] (2.6) 

3. RESULTS AND DISCUSSION 

We can now explore the relationships between claims development, trend, and claim size 

models. The discussion assumes that we have been provided with unlimited claims trend 

factors and that we have developed the cost level indices as presented in Table 2. 
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3.1 Claim Size and Trend 

As per the requirements of Section 2.2, for our selected claim size model, we can calculate 

model parameters for prior or future exposure periods using the trend indices.  

                       (3.1) 

3.2 Claim Development Patterns, Claim Size and Trend 

In practice, claims development patterns are estimated from unadjusted data and are 

applied to claims for all exposure periods. We should acknowledge that this is not 

appropriate unless (i) claims data are provided on a GUU basis and (ii)  trend acts only in the 

accident year direction. Since this is oftentimes not the case, we address these issues by 

adjusting the triangle of claims data prior to analysis. Specifically, we adjust observed claim 

amounts for differences in cost level and limit using the limited expected value function. 

3.2.1 Development of Basic Limit Claims Development Pattern, Exposure Year n 
Cost Level 

We first select a Basic Limit, B, which is the threshold at which we believe the data is 

sufficiently credible for the purpose of estimating claims development patterns. Recall from 

Table 1 that L represents the layer for which data is available. We then adjust each 

observation of cumulative claims as follows1: 

      
       

       
                          (3.2) 

We note that there is no restriction that B ≠ L. We should recognize that if B = L, then 

we are simply adjusting the data for differences due to the impact of trend in the layer. (Note 

the difference between the first subscript of Φ in the numerator and denominator of 

Equation 3.2). 

We then analyze this adjusted data,     
  , in order to estimate development patterns at a 

common (basic) limit and an exposure period i=n cost level. This pattern is denoted     
  and 

we have the following relationship: 

    
        

       
    (3.3) 

                                                           

1 We presume that a triangle at the basic limit is not readily available. 
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As you review the following sections, keep in mind that this basic limit development 

pattern at exposure year n cost level will now be used to calculate basic limit development 

for any other layer and exposure period (cost level). 

3.2.2 Calculation of Claims Development Pattern for Any Layer and Cost Level 

Equation 3.2 also provides an important general relationship applicable to any layer X if 

we have data for layer L. 

      
      

       
                          

     
   Si,j(X, L) 

(3.4) 
(3.5) 

Using this general relationship, we can calculate basic limit development factors for any 

exposure period for any layer X from the development factor for B at exposure year n cost 

levels: 

    
    

    
 

    
 

    
    

 

    
  

                       

                       
  

(3.6) 

    
      

  
                       

                       
 

(3.7) 

    
      

  
         

         
 

(3.8) 

However, as we demonstrated in Equation 3.1,      is a function of trend indices and 

    . So, substituting Equation 3.1 into Equation 3.7, we have: 

    
      

  
                                 

                                 
 

(3.9) 

Equations 3.8 and 3.9 are the primary findings of this research: Development factors at 

different cost levels and different layers are related to each other based on claim size 

models and trend. 

3.3 Other Practical Uses 

Oftentimes, we are simply provided with a development pattern. Although we are 

typically aware of the limits associated with the triangle and/or pattern, it is not stated at any 

particular cost level.  

In Equation 3.9, we demonstrated that, for limited claims data, development patterns will 

vary with cost level. However, this relationship is often ignored usually because it is 
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presumed immaterial. For convenience, we will simply assert that the cost level is that of the 

latest exposure period.  

We also typically have a claim size model at ultimate (e.g. increased limit factors), but size 

models by age are usually not available. Let us also assume that we are only concerned with 

estimating development factors applicable to claims at the latest valuation date. 

We can use a variation of Equation 3.6 to develop claims development patterns: 

    
      

  
                       

        
 

(3.10) 

The primary difference between Equations 3.8 and Equation 3.6 is that rather than using 

claim size models by age in the denominator, we use a quantity,          , that is simpler to 

estimate approximately.  

         is the ratio between limited expected values for layer X and B at the end of 

development interval j.          is only evaluated along a single diagonal since we typically 

have at least one diagonal (usually the current diagonal) where we can observe ratios of 

claims at various limits. It should be noted that R carries only one subscript, that for 

maturity. In using this latter approach, we assume that differences in cost level are 

immaterial to the calculation of ratios of claims by layer2.  

For the moment, we will ignore the possibility of negative development and assume that 

        <1. The latter assumption indicates that we are trying to develop an estimate for a 

pattern at a lower layer given a pattern at a higher layer. We should recognize that R will 

have the following properties: 

i. Ra > Rb for a<b - At early maturities, there will be less development in the excess 
layer than at later maturities. 

ii. Ra ≥ U, where            - We should recognize that U can be calculated as 

the product of R and the ratio of ultimate claim development factors layer X and B. 

Until we reach ultimate, the reported ratio will always be greater than ultimate ratio. 

This is because the there is more development associated with the denominator of R 

(claims in layer B, the higher limit) than the numerator of R (claims in layer X, the 

lower limit) and at ultimate R = U. 

                                                           

2 Note that we are not asserting that they are immaterial with respect to absolute limited expected values. 
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iii. If our base development pattern is provided on an unlimited basis (i.e. B=GUU), 

then the maximum value for R may be calculated as U*Claims Development Factor. The 

derivation of this maximum is presented in Appendix A. 

It should be recognized that these conditions will be violated if there is negative 

development or if we assume that an excess layer might develop more quickly than a 

working layer. These conditions are not necessary for application of this approach. However, 

it is useful to review the results under the typical considerations described above to provide a 

more intuitive understanding of the dynamics of the calculation. 

In the third example presented in Section 4, we use a simpler approach to calculating R3 

which is then used to calculate development factors for a layer other than the layer 

associated with the development pattern provided. 

3.4 Issues 

Relative to common development method projections, the procedure described above 

requires additional assumptions and calculations. The use of certain assumptions and 

calculations would not appear to be overly onerous: 

1. The procedure requires that the actuary select a basic limit. However, actuaries 

either explicitly or implicitly select a basic limit in applying the development 

method. That is, whenever a development triangle is analyzed there is an implicit 

assumption that the limit associated with that triangle is sufficiently credible to 

produce development factors. 

2. The procedure requires the use of a(n ultimate) claim size model in order to 

implement a development method analysis. This may or may not result in an 

additional burden on the actuary. Oftentimes, claim size information (such as 

increased limit factors) or a claim size model is already available to the actuary. If 

not, we would submit that knowledge of the distribution of claim sizes is 

important in understanding the dynamics of claims development. 

We should also recognize that we use the claim size model only to calculate 

relative limited expected values near the deductible, basic limit, policy limit and 

                                                           

3 Simpler than calculating claim size models by age. 
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limit underlying the development data. Deductibles generally would not be an 

issue for the types of exposures for which the actuary would be willing to invest 

the effort required of this approach. As such, what is important is that our claim 

size model produces reasonable ratios of limited expectations to unlimited means 

at higher values. It is less important that the absolute limited expected values are 

accurate and therefore a simpler size of loss model may be sufficient though we 

need to recognize its shortcomings and not use that model out of context. 

3. The procedure requires that the data triangle be adjusted to a basic limit and 

common cost level. As demonstrated in Examples 1 & 2 of Section 4, given claim 

size and trend information, the calculation and application of adjustment factors 

would not seem to create a significant additional burden. 

There are however two sets of assumptions that could be perceived as resulting in a 

significant additional burden.  

1. Claim size models at maturities prior to ultimate are generally not available. In 

addition, these models would have limited application outside of this context. 

However, understanding changes in claims size models over time would be a 

significant benefit for actuaries to understand excess layer development.  

With an insurance company database or even a self-insured risk of sufficient size, 

we believe that an algorithm could be reasonably programmed to calculate these 

claim size models. 

Although a robust claim size model is required for full implementation of this 

approach (Examples 1 & 2), it should be recognized that only the ratio of 

expected values is required to adjust development patterns from one layer to 

another. This is a significantly reduced burden as will be demonstrated in 

Example 3 in the next section. 

2. The procedure requires the calculation of a triangle of trend indices in order to 

implement a development method analysis. We would expect that a trend 

assumption exists in the analysis. The trend indices specify the cost level 

associated with cumulative claim observations. This becomes somewhat difficult 

to conceptualize in two respects: 
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a. Trend typically acts on incremental activity. 

b. The impact of trend on reported incurred claims and, more specifically, 

the timing of the effect of trend on case basis reserves, is difficult to 

ascertain. 

These difficulties are not an issue if we assume that development only acts in the 

exposure period direction. Even if we have trend also acting across calendar 

periods, we would submit that this will require the actuary to confront the 

assumption with respect to the direction(s) in which trend acts or (more 

importantly) does not act. In addition documenting this assumption produces 

greater transparency and better informs the consumer of actuarial information. 

4. EXAMPLES 

We now present three examples that implement the concepts described in Section 3. The 

first two examples are based on the oft-studied claims triangle included in the Distribution-

Free Calculation of the Standard Error of Chain Ladder Reserve Estimates by Thomas Mack. 

Example 1 and Example 2 are identical except that in Example 1, the Basic Limit is well 

above the working claims layer; in Example 2, the Basic Limit is within the working layer. 

The third example presents the approach discussed in Section 3.3 where we adjust a 

development pattern provided to us to determine patterns for other layers. 

4.1 Example 1 & 2 

For Examples 1 & 2, we provide the following additional (contrived) information about 

the Mack triangle. This information is intended to be typical of that which might apply to 

actual data: 

 We have selected a basic limit of $500 thousand 

 The policy limit is $2 million 

 The data in the triangle is for the ground-up layer to $1 million 

 Trend acts at a rate of 2% each exposure period; but there was a one-time increase to 

5% between exposure period 6 and 7. 

 Trend acts at a rate of 1% each calendar period; but there was a one-time decrease of 

5% between calendar period 2 and 3. 
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The calculations in the examples are presented as follows: 

- In Section A, we present the claims data and relevant information. Both exposure 

periods and development intervals are annual. However, since this is not a strict 

requirement of our approach, we have retained the more generic labels: 

“Exposure Period” and “Development Interval.” 

- In Section B, we present the calculation of trend indices. 

- In Section C, we present the claim size model. Section C1 provides the claim size 

model at Exposure Period 10 cost level. We use an exponential model for 

simplicity of presentation; however any model that meets the requirements of 

Section 2.2 could be used.  

In Section C2, we present the calculation of adjusted exponential parameters 

based on the Exposure Year 10 parameters and trend indices. 

In Sections C4 through C6, we present the calculation of limited expected values 

using the characteristic function of the exponential model. 

- In Section D1, we present the adjusted cumulative claims triangle. This triangle 

adjusts all historical observations to the basic limit at Exposure Period 10 cost 

levels. The adjustments are based on ratios of limited expected values. In Sections 

D2 and D3, we calculate the incremental and cumulative development patterns. 

- In Section E, we apply Equation 3.7 to calculate development factors for various 

layers at appropriate exposure year cost levels. In Section E7, we present the 

differences between factors calculated through examination of the (unadjusted) 

triangle in Section A1 and the factors resulting from our approach.  

Factors for certain excess layers are presented as “very large.” This occurs since 

the expectation of claim in the layer at early maturities is very small. 

We note that the differences presented in Section of E7 of Example 1 are quite 

small. The differences will grow with the expectation of claims in the layer 

between the basic limit and layer under review. This is demonstrated in 

Example 2, where the resulting differences are quite a bit greater. We should also 
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recognize that layers that are excess layers for an insurer (or self-insured) become 

working layers for reinsurers (excess insurers). 

It will also grow in situations where trend and/or development act over longer 

periods or at higher rates. 

4.2 Example 3 

The third example presents the approach described in Section 3.3. This approach is 

intended to provide a simpler application of the theory in Section 3. As presented in 

Example 1, if the basic limit is sufficiently high and trend is contained, the impact of data 

adjustments is minimal.  

The calculations in Example 3 are reasonably self-explanatory. However, readers should 

note the following: 

 At ultimate, all claims development factors equal unity and the ratio at age (col. 9) 

equals the ratio at ultimate (col. 8). 

 The x axis is labeled “maturity,” not exposure period. The observed pattern 

should be viewed as one observation of a random process at a particular maturity 

and not viewed as the ratio applicable to an exposure period. 

 We use an algorithm to select ratios by age. At the earliest maturity, we know that 

the ratio should be “high.” That is because claims emergence in excess layers is 

still “low.”  

Our selected ratios are calculated as follows: 

Selected Ratio = Ultimate Ratio + (1-Ultimate Ratio) * Decay Factor  

This approach recognizes that we want to “keep” a portion of the distance 

between the ultimate ratio and the maximum ratio (unity). This portion is 

determined through the use of a decay model where we keep most of the 

difference at the earliest maturity and none at ultimate. 

In practice, assuming we are analyzing development patterns at limits at or above 

the working layer, the ratios will be close to unity and the amount of error that 

could possibly be created by this approach is minimal. 
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5. CONCLUSION 

In this paper we have demonstrated that there is a relationship between claim 

development patterns by layer and that that relationship is a function of trend and claim size 

models. This relationship can be used to calculate development patterns for a claims layer 

from a development pattern for any other claims layer. 

These relationships also demonstrate that limited development factors are a function of 

not only maturity but also cost level. Therefore, the same pattern of limited factors should 

not always be applied to all exposure periods under review.  

With short development patterns, low trend rates and limits above the working layer, the 

adjustment is small and often immaterial. Not all exposures exhibit these characteristics and 

for these exposures, the adjustments may be meaningful. For exposures where the 

adjustment may not be meaningful, we provided an alternative simpler approach to adjust 

development patterns. 
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Appendix A: Calculation of Maximum Ratios of Basic Limit to Unlimited Claims 

The maximum ratio is represented by the limiting case where all development in the 
unlimited layer occurs above the basic limit. The maximum ratio is calculated as follows: 

Notation: 
R = Ultimate ratio of basic limit to unlimited claims 
A = Ratio of basic limit to unlimited claims prior to ultimate 
D = Unlimited claim development factor 
Claims 

 Prior to Ultimate At Ultimate 
Limited to Basic Limit Ba Br 
Excess of Basic Limit Xa Xr 

Unlimited Ca Cr 
 
Identities: 
I1: Ba = Br (All development in excess layer; basic limit layer at ultimate) 
I2: R = Br / Cr 

I3: Cr = Ca * D 
 
Then under maximum conditions: 
Amax = Ba / Ca 
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Amax = Ba / (Cr/D) « per I3 » 
Amax = D * Ba / Cr 

Amax = D * Br / Cr « per I1 » 
Amax = D * R  « per I2 » 
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Claims Development by Layer

Example 1

A. Data and Information

1 Cumulative Development Triangle (C i,j )

1 2 3 4 5 6 7 8 9 10

1 357,848 1,124,788 1,735,330 2,218,270 2,745,596 3,319,994 3,466,336 3,606,286 3,833,515 3,901,463

2 352,118 1,236,139 2,170,033 3,353,322 3,799,067 4,120,063 4,647,867 4,914,039 5,339,085

3 290,507 1,292,306 2,218,525 3,235,179 3,985,995 4,132,918 4,628,910 4,909,315

4 310,608 1,418,858 2,195,047 3,757,447 4,029,929 4,381,982 4,588,268

5 443,160 1,136,350 2,128,333 2,897,821 3,402,672 3,873,311

6 396,132 1,333,217 2,180,715 2,985,752 3,691,712

7 440,832 1,288,463 2,419,861 3,483,130

8 359,840 1,421,128 2,864,498

9 376,686 1,363,294

10 344,014

2 Limit of Data in Triangle 1,000,000

3 Selected Basic Limit 500,000

4 Policy Limit 2,000,000

B. Trend Indices

1 Exposure Period Trend Index [ 2% EP Trend; 5% between EP 6 and 7 ]

1 2 3 4 5 6 7 8 9 10

1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2 1.020 1.020 1.020 1.020 1.020 1.020 1.020 1.020 1.020 1.020

3 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040

4 1.061 1.061 1.061 1.061 1.061 1.061 1.061 1.061 1.061 1.061

5 1.082 1.082 1.082 1.082 1.082 1.082 1.082 1.082 1.082 1.082

6 1.104 1.104 1.104 1.104 1.104 1.104 1.104 1.104 1.104 1.104

7 1.159 1.159 1.159 1.159 1.159 1.159 1.159 1.159 1.159 1.159

8 1.182 1.182 1.182 1.182 1.182 1.182 1.182 1.182 1.182 1.182

9 1.206 1.206 1.206 1.206 1.206 1.206 1.206 1.206 1.206 1.206

10 1.230 1.230 1.230 1.230 1.230 1.230 1.230 1.230 1.230 1.230

2 Calendar Period Trend Index [ 1% Calendar Period Trend; -5% between CP 2 and 3 ]

1 2 3 4 5 6 7 8 9 10

1 1.000 1.010 0.960 0.969 0.979 0.989 0.998 1.008 1.019 1.029

2 1.010 0.960 0.969 0.979 0.989 0.998 1.008 1.019 1.029 1.039

3 0.960 0.969 0.979 0.989 0.998 1.008 1.019 1.029 1.039 1.049

4 0.969 0.979 0.989 0.998 1.008 1.019 1.029 1.039 1.049 1.060

5 0.979 0.989 0.998 1.008 1.019 1.029 1.039 1.049 1.060 1.070

6 0.989 0.998 1.008 1.019 1.029 1.039 1.049 1.060 1.070 1.081

7 0.998 1.008 1.019 1.029 1.039 1.049 1.060 1.070 1.081 1.092

8 1.008 1.019 1.029 1.039 1.049 1.060 1.070 1.081 1.092 1.103

9 1.019 1.029 1.039 1.049 1.060 1.070 1.081 1.092 1.103 1.114

10 1.029 1.039 1.049 1.060 1.070 1.081 1.092 1.103 1.114 1.125

3 Combined Trend Index [ B1 * B2 ]

1 2 3 4 5 6 7 8 9 10

1 1.000 1.010 0.960 0.969 0.979 0.989 0.998 1.008 1.019 1.029

2 1.030 0.979 0.988 0.998 1.008 1.018 1.029 1.039 1.049 1.060

3 0.998 1.008 1.018 1.029 1.039 1.049 1.060 1.070 1.081 1.092

4 1.028 1.039 1.049 1.060 1.070 1.081 1.092 1.103 1.114 1.125

5 1.059 1.070 1.081 1.092 1.102 1.114 1.125 1.136 1.147 1.159

6 1.091 1.102 1.113 1.125 1.136 1.147 1.159 1.170 1.182 1.194

7 1.157 1.169 1.181 1.193 1.204 1.217 1.229 1.241 1.253 1.266

8 1.192 1.204 1.216 1.229 1.241 1.253 1.266 1.278 1.291 1.304

9 1.228 1.241 1.253 1.266 1.278 1.291 1.304 1.317 1.330 1.344

10 1.266 1.278 1.291 1.304 1.317 1.330 1.343 1.357 1.370 1.384
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C. Claim Size Model (Apply to Cumulative Claims)

1 Claims Size Model Parameters at Exposure Year 10 Cost Level [ via claim size modeling ]

Exponential (q) 1 2 3 4 5 6 7 8 9 10

i =10 28,138 84,242 133,998 182,460 204,649 228,245 252,830 265,063 275,707 280,000

2 Claims Size Model Parameters [ C1 * B3i,j / B310,j ]

Exponential (q) 1 2 3 4 5 6 7 8 9 10

1 22,233 66,564 99,590 135,608 152,099 169,636 187,908 197,000 204,911 208,101

2 22,905 64,501 102,598 139,703 156,693 174,759 193,583 202,949 211,099 214,386

3 22,195 66,449 105,696 143,922 161,425 180,037 199,429 209,078 217,475 220,861

4 22,865 68,455 108,888 148,268 166,300 185,474 205,452 215,392 224,042 227,531

5 23,555 70,523 112,177 152,746 171,322 191,075 211,657 221,897 230,808 234,402

6 24,267 72,653 115,564 157,359 176,496 196,846 218,049 228,598 237,779 241,481

7 25,735 77,048 122,556 166,879 187,174 208,755 231,241 242,429 252,164 256,090

8 26,512 79,375 126,257 171,919 192,827 215,059 238,224 249,750 259,780 263,824

9 27,313 81,772 130,070 177,111 198,650 221,554 245,418 257,292 267,625 271,792

10 28,138 84,242 133,998 182,460 204,649 228,245 252,830 265,063 275,707 280,000

3 Unlimited Means

1 2 3 4 5 6 7 8 9 10

1 22,233 66,564 99,590 135,608 152,099 169,636 187,908 197,000 204,911 208,101

2 22,905 64,501 102,598 139,703 156,693 174,759 193,583 202,949 211,099 214,386

3 22,195 66,449 105,696 143,922 161,425 180,037 199,429 209,078 217,475 220,861

4 22,865 68,455 108,888 148,268 166,300 185,474 205,452 215,392 224,042 227,531

5 23,555 70,523 112,177 152,746 171,322 191,075 211,657 221,897 230,808 234,402

6 24,267 72,653 115,564 157,359 176,496 196,846 218,049 228,598 237,779 241,481

7 25,735 77,048 122,556 166,879 187,174 208,755 231,241 242,429 252,164 256,090

8 26,512 79,375 126,257 171,919 192,827 215,059 238,224 249,750 259,780 263,824

9 27,313 81,772 130,070 177,111 198,650 221,554 245,418 257,292 267,625 271,792

10 28,138 84,242 133,998 182,460 204,649 228,245 252,830 265,063 275,707 280,000

4 Limited Expected Values at Policy Limits

1 2 3 4 5 6 7 8 9 10

1 22,233 66,564 99,590 135,607 152,099 169,635 187,904 196,992 204,899 208,087

2 22,905 64,501 102,598 139,703 156,692 174,757 193,577 202,938 211,083 214,367

3 22,195 66,449 105,696 143,922 161,424 180,034 199,420 209,063 217,453 220,835

4 22,865 68,455 108,888 148,268 166,299 185,470 205,440 215,372 224,013 227,496

5 23,555 70,523 112,177 152,746 171,321 191,070 211,640 221,870 230,769 234,356

6 24,267 72,653 115,564 157,358 176,494 196,838 218,026 228,562 237,726 241,420

7 25,735 77,048 122,556 166,878 187,170 208,740 231,200 242,365 252,074 255,987

8 26,512 79,375 126,257 171,917 192,821 215,039 238,170 249,667 259,662 263,690

9 27,313 81,772 130,070 177,109 198,642 221,527 245,348 257,184 267,473 271,619

10 28,138 84,242 133,998 182,456 204,638 228,209 252,737 264,922 275,512 279,779

5 Limited Expected Values at Limits of Data Triangle

1 2 3 4 5 6 7 8 9 10

1 22,233 66,564 99,586 135,522 151,887 169,169 186,990 195,770 203,355 206,398

2 22,905 64,501 102,592 139,594 156,428 174,187 192,478 201,479 209,249 212,366

3 22,195 66,449 105,688 143,784 161,096 179,340 198,105 207,328 215,285 218,474

4 22,865 68,455 108,877 148,094 165,893 184,629 203,871 213,318 221,461 224,723

5 23,555 70,523 112,161 152,527 170,822 190,056 209,778 219,448 227,777 231,112

6 24,267 72,652 115,544 157,085 175,885 195,621 215,826 225,719 234,233 237,640

7 25,735 77,048 122,521 166,462 186,279 207,020 228,179 238,510 247,385 250,932

8 26,512 79,375 126,211 171,407 191,748 213,003 234,644 245,194 254,248 257,866

9 27,313 81,772 130,010 176,486 197,356 219,126 241,247 252,014 261,246 264,932

10 28,138 84,241 133,921 181,699 203,105 225,390 247,987 258,969 268,375 272,128

6 Limited Expected Values at Basic Limit

1 2 3 4 5 6 7 8 9 10

1 22,233 66,528 98,933 132,211 146,418 160,735 174,776 181,433 187,052 189,273

2 22,905 64,473 101,813 135,805 150,248 164,762 178,957 185,674 191,337 193,574

3 22,195 66,413 104,764 139,462 154,134 168,836 183,176 189,948 195,652 197,903

4 22,865 68,409 107,785 143,181 158,075 172,956 187,431 194,253 199,993 202,256

5 23,555 70,464 110,876 146,960 162,068 177,119 191,718 198,586 204,358 206,632

6 24,267 72,578 114,037 150,798 166,111 181,322 196,035 202,944 208,743 211,026

7 25,735 76,931 120,483 158,539 174,229 189,725 204,633 211,606 217,447 219,744

8 26,512 79,229 123,851 162,538 178,404 194,029 209,019 216,018 221,873 224,175

9 27,313 81,591 127,286 166,587 182,619 198,360 213,422 220,441 226,307 228,611

10 28,138 84,019 130,788 170,682 186,869 202,716 217,839 224,873 230,745 233,050
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D. Calculation of Development Factors at Basic Limit

1 Cumulative Triangle Exposure Year 10 Cost Levels and Basic Limit (C i,j ) [ A1i,j  * C510,j  / C4 i,j  ]

1 2 3 4 5 6 7 8 9 10

1 452,881 1,419,731 2,279,040 2,793,772 3,377,947 3,978,376 4,038,185 4,142,394 4,349,865 4,405,265

2 432,566 1,610,197 2,766,439 4,100,116 4,538,378 4,794,873 5,260,266 5,484,617 5,887,561

3 368,296 1,634,013 2,745,402 3,840,401 4,623,708 4,671,636 5,090,015 5,324,759

4 382,236 1,741,436 2,636,785 4,330,559 4,539,482 4,811,270 4,902,613

5 529,368 1,353,815 2,481,777 3,242,747 3,722,312 4,131,335

6 459,320 1,541,795 2,468,413 3,244,186 3,922,258

7 481,990 1,405,037 2,583,135 3,571,425

8 381,903 1,504,277 2,968,365

9 388,062 1,400,758

10 344,014

2 Exposure Year 10 Incremental Basic Limit Development Factors [ per D1; Volume Weighted Averages]

1 to 2 2 to 3 3 to 4 4 to 5 5 to 6 6 to 7 7 to 8 8 to 9 9 to 10

i =10 3.511 1.714 1.399 1.147 1.076 1.057 1.039 1.063 1.013

3 Exposure Year 10 Cumulative Development Factors [ per D2 ]

1 to ult 2 to ult 3 to ult 4 to ult 5 to ult 6 to ult 7 to ult 8 to ult 9 to ult 10 to ult

i =10 12.291 3.501 2.042 1.460 1.273 1.183 1.119 1.077 1.013 1.000

E. Calculation of Development Factors by Layer

1 Basic Limit [ D3j * (C6i,10/C610,10) / (C6i,j/C610,j) ]

1 to ult 2 to ult 3 to ult 4 to ult 5 to ult 6 to ult 7 to ult 8 to ult 9 to ult 10 to ult

1 12.633 3.590 2.193 1.531 1.319 1.211 1.133 1.084 1.015 1.000

2 12.541 3.789 2.179 1.524 1.315 1.209 1.132 1.083 1.014

3 13.232 3.761 2.165 1.517 1.310 1.206 1.130 1.083

4 13.126 3.731 2.151 1.510 1.306 1.203 1.129

5 13.017 3.701 2.136 1.503 1.301 1.200

6 12.904 3.669 2.121 1.496 1.296

7 12.671 3.605 2.090 1.482

8 12.547 3.571 2.074

9 12.421 3.536

10 12.291

2 Basic Limit to Policy Limit [ D3j * ( (C4i,10-C6i,10) / C610,10 ) / ((C4i,j-C6i,j/C610,j) ]

1 to ult 2 to ult 3 to ult 4 to ult 5 to ult 6 to ult 7 to ult 8 to ult 9 to ult 10 to ult

1 very large 652.420 32.802 5.924 3.380 2.175 1.499 1.257 1.057 1.000

2 very large 946.242 30.374 5.704 3.293 2.140 1.488 1.252 1.056

3 very large 807.075 28.187 5.498 3.210 2.107 1.477 1.247

4 very large 691.561 26.215 5.305 3.132 2.075 1.466

5 very large 595.239 24.431 5.124 3.058 2.044

6 very large 514.560 22.814 4.954 2.987

7 very large 390.710 20.042 4.647

8 very large 341.869 18.820

9 very large 300.278

10 very large

3 Policy Limit to Unlimited [ D3j * ( (C3i,10-C4i,10) / C610,10 ) / ( (C3i,j-C4i,j) / C610,j) ]

1 to ult 2 to ult 3 to ult 4 to ult 5 to ult 6 to ult 7 to ult 8 to ult 9 to ult 10 to ult

1 very large very large 84,538.278 279.503 48.056 11.155 3.254 1.887 1.183 1.000

2 very large very large 62,192.336 240.423 43.321 10.464 3.157 1.857 1.178

3 very large very large 46,166.664 207.723 39.172 9.835 3.066 1.829

4 very large very large 34,571.138 180.241 35.524 9.261 2.979

5 very large very large 26,108.458 157.047 32.309 8.735

6 very large very large 19,880.311 137.391 29.466

7 very large very large 11,880.695 106.724

8 very large very large 9,257.797

9 very large very large

10 very large
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4 Limit of Data in Triangle [ D3j * ( C5i,10 / C610,10 ) / (C5i,j/C610,j) ]

1 to ult 2 to ult 3 to ult 4 to ult 5 to ult 6 to ult 7 to ult 8 to ult 9 to ult 10 to ult

1 13.776 3.913 2.375 1.629 1.387 1.255 1.155 1.096 1.018 1.000

2 13.759 4.155 2.372 1.627 1.385 1.254 1.154 1.095 1.018

3 14.607 4.149 2.369 1.625 1.384 1.253 1.154 1.095

4 14.584 4.143 2.366 1.623 1.382 1.252 1.153

5 14.559 4.136 2.362 1.620 1.381 1.251

6 14.532 4.128 2.357 1.618 1.379

7 14.469 4.110 2.347 1.612

8 14.433 4.100 2.342

9 14.394 4.089

10 14.352

5 Unadjusted Incremental Development Factors at Limits of Data Triangle[ per A1; Volume Weighted Averages]

1 to 2 2 to 3 3 to 4 4 to 5 5 to 6 6 to 7 7 to 8 8 to 9 9 to 10

3.490 1.747 1.457 1.174 1.104 1.086 1.054 1.077 1.018

6 Unadjusted Cumulative Development Factors [ per E5 ]

1 to ult 2 to ult 3 to ult 4 to ult 5 to ult 6 to ult 7 to ult 8 to ult 9 to ult 10 to ult

14.445 4.139 2.369 1.625 1.384 1.254 1.155 1.096 1.018 1.000

Differences [ E6 / E4, last diagonal -1 ]

7 +0.7% +1.2% +1.2% +0.8% +0.4% +0.3% +0.1% +0.1% +0.0% +0.0%
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A. Data and Information

1 Cumulative Development Triangle (C i,j )

1 2 3 4 5 6 7 8 9 10

1 357,848 1,124,788 1,735,330 2,218,270 2,745,596 3,319,994 3,466,336 3,606,286 3,833,515 3,901,463

2 352,118 1,236,139 2,170,033 3,353,322 3,799,067 4,120,063 4,647,867 4,914,039 5,339,085

3 290,507 1,292,306 2,218,525 3,235,179 3,985,995 4,132,918 4,628,910 4,909,315

4 310,608 1,418,858 2,195,047 3,757,447 4,029,929 4,381,982 4,588,268

5 443,160 1,136,350 2,128,333 2,897,821 3,402,672 3,873,311

6 396,132 1,333,217 2,180,715 2,985,752 3,691,712

7 440,832 1,288,463 2,419,861 3,483,130

8 359,840 1,421,128 2,864,498

9 376,686 1,363,294

10 344,014

2 Limit of Data in Triangle 1,000,000

3 Selected Basic Limit 500,000

4 Policy Limit 2,000,000

B. Trend Indices

1 Exposure Period Trend Index [ 2% EP Trend; 5% between EP 6 and 7 ]

1 2 3 4 5 6 7 8 9 10

1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2 1.020 1.020 1.020 1.020 1.020 1.020 1.020 1.020 1.020 1.020

3 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040

4 1.061 1.061 1.061 1.061 1.061 1.061 1.061 1.061 1.061 1.061

5 1.082 1.082 1.082 1.082 1.082 1.082 1.082 1.082 1.082 1.082

6 1.104 1.104 1.104 1.104 1.104 1.104 1.104 1.104 1.104 1.104

7 1.159 1.159 1.159 1.159 1.159 1.159 1.159 1.159 1.159 1.159

8 1.182 1.182 1.182 1.182 1.182 1.182 1.182 1.182 1.182 1.182

9 1.206 1.206 1.206 1.206 1.206 1.206 1.206 1.206 1.206 1.206

10 1.230 1.230 1.230 1.230 1.230 1.230 1.230 1.230 1.230 1.230

2 Calendar Period Trend Index [ 1% Calendar Period Trend; -5% between CP 2 and 3 ]

1 2 3 4 5 6 7 8 9 10

1 1.000 1.010 0.960 0.969 0.979 0.989 0.998 1.008 1.019 1.029

2 1.010 0.960 0.969 0.979 0.989 0.998 1.008 1.019 1.029 1.039

3 0.960 0.969 0.979 0.989 0.998 1.008 1.019 1.029 1.039 1.049

4 0.969 0.979 0.989 0.998 1.008 1.019 1.029 1.039 1.049 1.060

5 0.979 0.989 0.998 1.008 1.019 1.029 1.039 1.049 1.060 1.070

6 0.989 0.998 1.008 1.019 1.029 1.039 1.049 1.060 1.070 1.081

7 0.998 1.008 1.019 1.029 1.039 1.049 1.060 1.070 1.081 1.092

8 1.008 1.019 1.029 1.039 1.049 1.060 1.070 1.081 1.092 1.103

9 1.019 1.029 1.039 1.049 1.060 1.070 1.081 1.092 1.103 1.114

10 1.029 1.039 1.049 1.060 1.070 1.081 1.092 1.103 1.114 1.125

3 Combined Trend Index [ B1 * B2 ]

1 2 3 4 5 6 7 8 9 10

1 1.000 1.010 0.960 0.969 0.979 0.989 0.998 1.008 1.019 1.029

2 1.030 0.979 0.988 0.998 1.008 1.018 1.029 1.039 1.049 1.060

3 0.998 1.008 1.018 1.029 1.039 1.049 1.060 1.070 1.081 1.092

4 1.028 1.039 1.049 1.060 1.070 1.081 1.092 1.103 1.114 1.125

5 1.059 1.070 1.081 1.092 1.102 1.114 1.125 1.136 1.147 1.159

6 1.091 1.102 1.113 1.125 1.136 1.147 1.159 1.170 1.182 1.194

7 1.157 1.169 1.181 1.193 1.204 1.217 1.229 1.241 1.253 1.266

8 1.192 1.204 1.216 1.229 1.241 1.253 1.266 1.278 1.291 1.304

9 1.228 1.241 1.253 1.266 1.278 1.291 1.304 1.317 1.330 1.344

10 1.266 1.278 1.291 1.304 1.317 1.330 1.343 1.357 1.370 1.384
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C. Claim Size Model (Apply to Cumulative Claims)

1 Claims Size Model Parameters at Exposure Year 10 Cost Level [ via claim size modeling ]

Exponential (q) 1 2 3 4 5 6 7 8 9 10

i =10 60,295 168,483 267,996 348,332 409,299 456,490 505,660 530,125 551,415 565,000

2 Claims Size Model Parameters [ C1 * B3i,j / B310,j ]

Exponential (q) 1 2 3 4 5 6 7 8 9 10

1 47,642 133,128 199,180 258,887 304,199 339,272 375,816 393,999 409,822 419,919

2 49,081 129,001 205,195 266,705 313,386 349,518 387,166 405,898 422,199 432,600

3 47,560 132,897 211,392 274,760 322,850 360,073 398,858 418,156 434,949 445,665

4 48,996 136,911 217,776 283,058 332,600 370,948 410,904 430,784 448,085 459,124

5 50,476 141,046 224,353 291,606 342,644 382,150 423,313 443,794 461,617 472,990

6 52,000 145,305 231,129 300,413 352,992 393,691 436,097 457,197 475,558 487,274

7 55,146 154,096 245,112 318,588 374,348 417,509 462,481 484,857 504,329 516,754

8 56,812 158,750 252,514 328,209 385,654 430,118 476,448 499,500 519,560 532,360

9 58,527 163,544 260,140 338,121 397,300 443,108 490,837 514,585 535,250 548,437

10 60,295 168,483 267,996 348,332 409,299 456,490 505,660 530,125 551,415 565,000

3 Unlimited Means

1 2 3 4 5 6 7 8 9 10

1 47,642 133,128 199,180 258,887 304,199 339,272 375,816 393,999 409,822 419,919

2 49,081 129,001 205,195 266,705 313,386 349,518 387,166 405,898 422,199 432,600

3 47,560 132,897 211,392 274,760 322,850 360,073 398,858 418,156 434,949 445,665

4 48,996 136,911 217,776 283,058 332,600 370,948 410,904 430,784 448,085 459,124

5 50,476 141,046 224,353 291,606 342,644 382,150 423,313 443,794 461,617 472,990

6 52,000 145,305 231,129 300,413 352,992 393,691 436,097 457,197 475,558 487,274

7 55,146 154,096 245,112 318,588 374,348 417,509 462,481 484,857 504,329 516,754

8 56,812 158,750 252,514 328,209 385,654 430,118 476,448 499,500 519,560 532,360

9 58,527 163,544 260,140 338,121 397,300 443,108 490,837 514,585 535,250 548,437

10 60,295 168,483 267,996 348,332 409,299 456,490 505,660 530,125 551,415 565,000

4 Limited Expected Values at Policy Limits

1 2 3 4 5 6 7 8 9 10

1 47,642 133,128 199,171 258,773 303,774 338,338 373,981 391,539 406,709 416,332

2 49,081 129,001 205,183 266,558 312,855 348,374 384,956 402,957 418,499 428,352

3 47,560 132,897 211,376 274,570 322,191 358,680 396,209 414,655 430,569 440,653

4 48,996 136,911 217,754 282,816 331,786 369,258 407,742 426,635 442,921 453,234

5 50,476 141,045 224,323 291,300 341,645 380,112 419,557 438,896 455,554 466,096

6 52,000 145,305 231,088 300,027 351,770 391,243 431,653 451,439 468,466 479,234

7 55,146 154,096 245,042 317,989 372,558 414,040 456,358 477,020 494,769 505,979

8 56,812 158,749 252,423 327,468 383,496 426,005 469,287 490,388 508,497 519,926

9 58,527 163,543 260,021 337,208 394,713 438,252 482,494 504,028 522,492 534,136

10 60,295 168,482 267,843 347,214 406,209 450,779 495,975 517,938 536,750 548,605

5 Limited Expected Values at Limits of Data Triangle

1 2 3 4 5 6 7 8 9 10

1 47,642 133,056 197,865 253,447 292,836 321,470 349,552 362,866 374,105 381,110

2 49,081 128,946 203,626 260,430 300,495 329,523 357,913 371,347 382,674 389,729

3 47,560 132,826 209,527 267,544 308,268 337,673 366,352 379,896 391,303 398,402

4 48,996 136,819 215,569 274,786 316,150 345,913 374,861 388,507 399,986 407,123

5 50,476 140,928 221,752 282,155 324,136 354,239 383,436 397,173 408,715 415,886

6 52,000 145,156 228,075 289,646 332,222 362,644 392,070 405,887 417,485 424,685

7 55,146 153,862 240,967 304,782 348,458 379,450 409,265 423,212 434,894 442,134

8 56,812 158,458 247,701 312,616 356,809 388,057 418,038 432,035 443,746 450,999

9 58,527 163,183 254,572 320,556 365,237 396,720 426,844 440,882 452,614 459,875

10 60,295 168,038 261,575 328,598 373,738 405,433 435,677 449,745 461,490 468,753

6 Limited Expected Values at Basic Limit

1 2 3 4 5 6 7 8 9 10

1 47,641 130,016 182,998 221,361 245,406 261,556 276,465 283,245 288,835 292,261

2 49,079 126,327 187,251 225,794 249,827 265,920 280,743 287,475 293,020 296,416

3 47,558 129,810 191,537 230,232 254,237 270,263 284,992 291,670 297,168 300,532

4 48,994 133,360 195,853 234,671 258,632 274,581 289,207 295,830 301,277 304,609

5 50,473 136,974 200,196 239,109 263,009 278,872 293,389 299,953 305,347 308,645

6 51,997 140,651 204,561 243,542 267,367 283,134 297,533 304,035 309,374 312,637

7 55,140 148,090 213,237 252,269 275,900 291,453 305,601 311,973 317,197 320,386

8 56,803 151,944 217,653 256,671 280,182 295,615 309,626 315,928 321,092 324,242

9 58,516 155,855 222,080 261,056 284,435 299,739 313,608 319,837 324,938 328,049

10 60,280 159,819 226,514 265,423 288,655 303,824 317,544 323,700 328,736 331,806
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D. Calculation of Development Factors at Basic Limit

1 Cumulative Triangle Exposure Year 10 Cost Levels and Basic Limit (C i,j ) [ A1i,j  * C510,j  / C4 i,j  ]

1 2 3 4 5 6 7 8 9 10

1 452,767 1,351,032 1,986,583 2,323,084 2,706,395 3,137,755 3,148,934 3,217,037 3,368,618 3,396,735

2 432,457 1,532,103 2,413,944 3,417,616 3,649,372 3,798,743 4,123,637 4,283,518 4,586,542

3 368,203 1,554,934 2,398,380 3,209,537 3,732,390 3,718,630 4,012,222 4,183,099

4 382,140 1,657,379 2,306,488 3,629,412 3,679,452 3,848,804 3,886,711

5 529,235 1,288,675 2,174,035 2,725,977 3,030,200 3,322,067

6 459,205 1,467,893 2,165,788 2,736,050 3,207,585

7 481,869 1,338,349 2,274,720 3,033,321

8 381,807 1,433,334 2,619,477

9 387,965 1,335,194

10 343,928

2 Exposure Year 10 Incremental Basic Limit Development Factors [ per D1; Volume Weighted Averages]

1 to 2 2 to 3 3 to 4 4 to 5 5 to 6 6 to 7 7 to 8 8 to 9 9 to 10

i =10 3.344 1.578 1.341 1.109 1.061 1.046 1.035 1.061 1.008

3 Exposure Year 10 Cumulative Development Factors [ per D2 ]

1 to ult 2 to ult 3 to ult 4 to ult 5 to ult 6 to ult 7 to ult 8 to ult 9 to ult 10 to ult

i =10 9.639 2.883 1.827 1.363 1.229 1.158 1.107 1.069 1.008 1.000

E. Calculation of Development Factors by Layer

1 Basic Limit [ D3j * (C6i,10/C610,10) / (C6i,j/C610,j) ]

1 to ult 2 to ult 3 to ult 4 to ult 5 to ult 6 to ult 7 to ult 8 to ult 9 to ult 10 to ult

1 10.743 3.121 1.992 1.439 1.273 1.185 1.120 1.077 1.011 1.000

2 10.576 3.258 1.975 1.431 1.269 1.182 1.119 1.076 1.011

3 11.066 3.215 1.957 1.423 1.264 1.179 1.117 1.075

4 10.888 3.172 1.940 1.415 1.259 1.177 1.116

5 10.709 3.129 1.923 1.407 1.255 1.174

6 10.529 3.086 1.906 1.400 1.250

7 10.175 3.004 1.874 1.385

8 9.996 2.963 1.858

9 9.817 2.923

10 9.639

2 Basic Limit to Policy Limit [ D3j * ( (C4i,10-C6i,10) / C610,10 ) / ((C4i,j-C6i,j/C610,j) ]

1 to ult 2 to ult 3 to ult 4 to ult 5 to ult 6 to ult 7 to ult 8 to ult 9 to ult 10 to ult

1 very large 55.346 9.569 3.616 2.273 1.714 1.348 1.195 1.052 1.000

2 very large 68.491 9.178 3.529 2.238 1.697 1.342 1.192 1.050

3 very large 63.024 8.810 3.445 2.205 1.681 1.335 1.189

4 very large 58.114 8.465 3.366 2.172 1.665 1.329

5 very large 53.693 8.140 3.289 2.141 1.649

6 very large 49.704 7.834 3.216 2.111

7 very large 42.907 7.279 3.079

8 very large 39.930 7.020

9 very large 37.221

10 very large

3 Policy Limit to Unlimited [ D3j * ( (C3i,10-C4i,10) / C610,10 ) / ( (C3i,j-C4i,j) / C610,j) ]

1 to ult 2 to ult 3 to ult 4 to ult 5 to ult 6 to ult 7 to ult 8 to ult 9 to ult 10 to ult

1 very large very large 515.543 34.213 9.036 4.072 2.071 1.521 1.151 1.000

2 very large very large 441.637 31.367 8.568 3.939 2.037 1.507 1.147

3 very large very large 380.045 28.831 8.138 3.814 2.005 1.494

4 very large very large 328.487 26.566 7.741 3.697 1.974

5 very large very large 285.139 24.538 7.373 3.586

6 very large very large 248.540 22.717 7.034

7 very large very large 191.734 19.638

8 very large very large 169.080

9 very large very large

10 very large
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4 Limit of Data in Triangle [ D3j * ( C5i,10 / C610,10 ) / (C5i,j/C610,j) ]

1 to ult 2 to ult 3 to ult 4 to ult 5 to ult 6 to ult 7 to ult 8 to ult 9 to ult 10 to ult

1 14.008 3.977 2.403 1.639 1.392 1.257 1.155 1.096 1.018 1.000

2 13.905 4.197 2.387 1.632 1.387 1.254 1.154 1.095 1.017

3 14.669 4.165 2.372 1.623 1.382 1.251 1.152 1.094

4 14.551 4.132 2.356 1.615 1.377 1.248 1.151

5 14.429 4.098 2.339 1.607 1.372 1.245

6 14.302 4.063 2.323 1.599 1.367

7 14.040 3.990 2.289 1.582

8 13.902 3.952 2.271

9 13.760 3.913

10 13.614

5 Unadjusted Incremental Development Factors at Limits of Data Triangle[ per A1; Volume Weighted Averages]

1 to 2 2 to 3 3 to 4 4 to 5 5 to 6 6 to 7 7 to 8 8 to 9 9 to 10

3.490 1.747 1.457 1.174 1.104 1.086 1.054 1.077 1.018

6 Unadjusted Cumulative Development Factors [ per E5 ]

1 to ult 2 to ult 3 to ult 4 to ult 5 to ult 6 to ult 7 to ult 8 to ult 9 to ult 10 to ult

14.445 4.139 2.369 1.625 1.384 1.254 1.155 1.096 1.018 1.000

Differences [ E6 / E4, last diagonal -1 ]

7 +6.1% +5.8% +4.3% +2.8% +1.3% +0.7% +0.3% +0.1% +0.0% +0.0%
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

$500K to $1m

Exposure

Period (i ) Maturity

Claims, 

Limited to 

$1m, as of 

End of EP 10

Claims, 

Limited to 

Basic Limit 

($500K), as of 

End of EP 10

Observed 

Ratio

Exponential 

Claim Size 

Model 

Parameter (q)

Limited 

Expected 

Value at Basic 

Limit at 

Ultimate

Ratio at 

Ultimate

Selected Ratio 

at Age

Ultimate 

Claims 

Development 

Factor at $1m

Ultimate 

Claims 

Development 

Factor at 

$500K

Ultimate 

Claims 

Development 

Factor $500K 

to $1m

1 10 3,901,463 3,846,592 0.986 208,000 189,203 0.910 0.910 1.000 1.000 1.000

2 9 5,339,085 4,692,053 0.879 214,985 193,978 0.902 0.909 1.018 1.010 1.094

3 8 4,909,315 4,695,780 0.957 222,204 198,788 0.895 0.905 1.096 1.083 1.213

4 7 4,588,268 3,795,644 0.827 229,665 203,628 0.887 0.902 1.155 1.135 1.335

5 6 3,873,311 3,873,311 1.000 237,377 208,493 0.878 0.901 1.254 1.222 1.546

6 5 3,691,712 3,670,631 0.994 245,348 213,379 0.870 0.904 1.384 1.332 1.878

7 4 3,483,130 2,750,008 0.790 253,587 218,283 0.861 0.912 1.625 1.534 2.563

8 3 2,864,498 1,771,896 0.619 262,102 223,199 0.852 0.927 2.369 2.175 4.833

9 2 1,363,294 1,363,294 1.000 270,903 228,123 0.842 0.954 4.139 3.652 14.296

10 1 344,014 344,014 1.000 280,000 233,050 0.832 0.998 14.445 12.043 1,444.501

(5) = (4) / (3)

(6) Via claim size model

(7) LEV [exponential(q);x]= q * (1 - exp (x/q))

(8) = (7) / (6)

(9) See Section 4.2

(10) Provided

(11) = (10) * (8) / (9)

(12) = (10) * ( 1- (8) ) / ( 1-  (9) )

0.96751152 0.989715599
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