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Abstract 

Motivation. Estimating the trend of the severity, frequency, and loss ratio rates of growth is an integral part of 
NCCI ratemaking. The time series from which such trend estimation has to be derived are typically short and 
volatile, comprising only 19 observations or, equivalently, 18 rates of growth. Thus, separating signal (i.e., trend) 
from (white) noise is particularly challenging. 
Method. NCCI has developed a Bayesian Statistical Trend model that is geared toward extracting the trend in 
short and high-volatility time series. This model has been optimized by minimizing the root mean squared 
prediction error across NCCI states using three-year hold-out periods (as the applicable forecasting horizon is 
typically around three years). 
Results. We present trend estimates for severity, frequency, and loss ratio rates of growth for an unidentified 
state. The model is robust to outliers and delivers stable, yet time-varying trend estimates. 
Conclusions. The statistical properties of the model are conducive to rate stability and, at the same time, allow 
the practicing actuary to recognize changes in trend. 
Availability. The model runs in WinBUGS 1.4.3 (www.mrc-bsu.cam.ac.uk/bugs) within the R (www.r-
project.org) package R2WinBUGS (http://cran.r-project.org). WinBUGS is administered by the MRC 
Biostatistics Unit, University of Cambridge, UK; R is administered by the Technical University of Vienna, 
Austria. WinBUGS and R are GNU projects of the Free Software Foundation and hence available free of charge. 
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1. INTRODUCTION 

Estimating the trend of the frequency, severity, and loss ratio rates of growth is an integral part of 
NCCI ratemaking. The time series on which such trend estimation rests are typically short, 
comprising only 19 observations or, equivalently, 18 rates of growth. Further, these time series may 
display high degrees of volatility. Thus, separating signal (i.e., trend) from (white) noise is critical for 
discerning the trend. To achieve this objective, NCCI has developed and implemented a Bayesian 
state-space model that is designed to elicit the trend in short and volatile time series. This model has 
been optimized by minimizing the root mean squared prediction error (RMSPE) across NCCI states 
using three-year hold-out periods (as the applicable forecasting horizon typically amounts to about 
three years). 

The Statistical Trend model runs in WinBUGS 1.4.3 (www.mrc-bsu.cam.ac.uk/bugs) within the 
R (www.r-project.org) package R2WinBUGS (http://cran.r-project.org). WinBUGS is administered 
by the MRC Biostatistics Unit, University of Cambridge, UK; R is administered by the Technical 
University of Vienna, Austria. WinBUGS and R are GNU projects of the Free Software Foundation 
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and hence available free of charge. 

1.1 Research Context 

Forecasting is a signal extraction and signal extrapolation problem. Measurement errors cause the 
quantities of interest (such as the rates of growth of indemnity severity, medical severity, and 
frequency) to be observed with (presumably Gaussian) noise, thus obscuring the signal. In 
forecasting, the signal is the quantity of interest, because it is the signal on which future observations 
center. Specifically, it is the objective of a forecasting model to educe from historical observations 
the process that generates the unobservable signal. Because a forecasting model replicates the data-
generating process of the signal (as opposed to replicating the observations themselves), its quality 
cannot be judged by the (in-sample) fit to the observed data, as gauged, for instance, by the 2R  or 
similar measures of goodness of fit. In fact, good fit to heretofore observed data harbors the risk of 
overfitting. Such overfitting may imply that the forecasts do not center on the signal, thus giving rise 
to potentially large forecasting errors. The risk of overfitting affords parsimony a critical role in time 
series modeling. 

As an example, consider a game of dice. In any roll of a pair of dice, the expected value of the 
outcome is 7. This expected value is the signal, which manifests itself as the mean outcome as the 
number of rolls goes to infinity. The signal offers an unbiased forecast for any future toss; the 
difference between the observations and the signal is noise. Thus, among all possible forecasting 
models, the one that simply produces the time-invariant signal of 7 as its forecast has the lowest 
expected root mean squared prediction error. Yet, this forecasting algorithm offers the worst in-
sample fit possible, as the model has no explanatory power with regards to the variation of the 
outcome around the expected value. Not surprisingly, a least-squares regression of the 36 possible 
outcomes on the time-invariant signal reveals an 2R  equal to zero. 

Two common properties in time series are nonstationarity and mean reversion. In the example 
above, nonstationary is equivalent to a time-varying mean; instead of invariably equaling 7, this mean 
would change in time. As will be argued below, in workers compensation, the frequency rate of 
growth (and, as a result, the loss ratio rate of growth) should be treated as nonstationary. 

Mean reversion, on the other hand, implies that the outcomes of the mentioned rolls of dice are 
not independent draws, thus causing serial correlation. In games of chance, such mean reversion is 
associated with the gambler’s fallacy, which rests on the (erroneous) belief that below-average 
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outcomes of past rolls of dice are to be corrected by above-average outcomes in the future (instead 
of simply being diluted). Although the business cycle may introduce mean reversion in the severities 
and frequency rates of growth, such mean reversion is likely to be weak and, more importantly, 
cannot be expected to improve the quality of the forecasts in short non-stationary time series due to 
lack of precision in estimating such mean reversion. 

Traditionally, NCCI estimates trends using the exponential trend approach, which is a linear 
regression of logarithmic levels on a sequence of integers that indicate time. 

1.2 Objective 

Recent advances in statistical modeling offer ways of dealing with the problem of estimating 
trend rates of growth from times series that are short, volatile, and potentially nonstationary. The 
state-space modeling framework, along with the Metropolis-Hastings algorithm for estimating 
Bayesian models by means of Markov-Chain Monte Carlo (MCMC) simulation, makes such 
sophisticated statistical modeling available to the practicing actuary. 

1.3 Outline 

What follows is the presentation of a multiequation model for forecasting the trend in the rates 
of growth of the indemnity and medical severities, frequency, and the respective loss ratios. This 
model is then applied to a “paid” data set of an unidentified U.S. state for the time period 1987–
2005. The last section offers conclusions and guidance for implementation of this model in actuarial 
practice. 

2. BACKGROUND AND METHODS 

In the context of NCCI ratemaking, frequency is defined as the ratio of the developed (to the 5th 
report) number of claims to the developed (to the 5th report), on-leveled (to the current loss-cost or 
rate level, depending on the case), and wage-adjusted premium. Severity is defined as the ratio of the 
developed, on-leveled, and wage-adjusted loss to the developed (to the 5th report) number of claims. 
When defined in such way, the product of indemnity (medical) severity and frequency equals the 
indemnity (medical) loss ratio. In consequence, the logarithmic rate of growth of the loss ratio equals 
the sum of the logarithmic rates of growth of frequency and the applicable severity; in what follows, 
this property is referred to as the add-up constraint. 
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The model estimates the five rates of growth (the two severities, frequency, and the two loss 
ratios) simultaneously. Covariances among these variables account for common shocks. For 
instance, the severities and frequency are subject to common shocks because they share the wage 
adjustment; further, the severities and frequency share components of the on-leveling for changes in 
benefits levels. The joint estimation of the growth rates also allows for implementing the mentioned 
add-up constraint. This constraint ensures that, at any point in time, the estimated rates of growth of 
the indemnity (medical) severity and frequency are consistent with the estimated rate of growth of 
the indemnity (medical) loss ratio. 

The model uses logarithmic rates of growth, because conventional rates of growth have a lower 
bound at minus 1 and, hence, violate the assumption of normality. These logarithmic rates of growth 
are then transformed into conventional rates of growth to obtain the forecast rates of growth and, 
after adding 1, the NCCI trend factors. Further, the (conventional) rates of growth are compounded 
over the multiyear forecasting horizon or, equivalently, the NCCI trend period; the number of years 
of this trend period is typically not an integer. Adding 1 to the compounded rates of growth delivers 
the NCCI adjustment factors. The purpose of the adjustment factor is to scale up the levels of the 
variables of interest (the severities, frequency, and the loss ratios) from the end of the experience 
period (i.e., the time period for which there are observations available) to the end of the trend period 
(i.e., the end of the forecasting horizon). 

Note that transforming logarithmic rates of growth into conventional rates of growth necessitates 
a bias-adjustment when such transformation is done on the expected value; this is because, for a 
normally distributed variable x , 

2E[ ] / 2E[ ]x xe e σ+= . Because the model is estimated by means of 
Monte Carlo simulation, such transformation happens “draw by draw” (instead of on the expected 
value) and, thus, no bias-adjustment is necessary. 

For the time period 1988-2005, Chart 1 shows for an unidentified state the (conventional) rates 
of growth of the indemnity and medical severities. Chart 2 displays the growth rate for frequency. 
Finally, Chart 3 presents the growth rates of the corresponding loss ratios. 

Although Charts 1 through 3 are not necessarily representative of NCCI states, they are typical in 
that they are indicative of nonstationarity (i.e., time-variation in the mean) in the growth rate of 
frequency, but less so in the severities. Note that because the sum of two time series is nonstationary 
if at least one of the individual series is nonstationary, a time-varying mean in the growth rate of 
frequency implies time-varying means in the growth rates of both loss ratios. For instance, as Chart 
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2 shows, the growth rate of frequency was higher at around the year 1990 than it was ten years later; 
and because the variation in the mean growth rate of frequency was not offset by a change (in 
opposite direction) of the growth rates of the severities, such variation is mirrored in the means of 
the growth rates of the loss ratios (see Chart 3). 

Time series can be checked for nonstationarity, but such unit root tests have little power for 
short time series; as a consequence, these tests favor the null hypothesis of a (pure) random walk 
(see, for instance, Hamilton [4]). As will be argued below, stationarity and nonstationarity are 
limiting cases of a smoothed random walk. Frequently, neither stationarity (a time-invariant mean) 
nor a (pure) random walk is an appropriate assumption for forecasting models that rely on short and 
volatile time series. 

Chart 1: Growth Rates of Indemnity and Medical Severities, Policy Years 1988–2005 

-1
5

-1
0

-5
0

5
10

15

Policy Year

G
ro

w
th

 R
at

e 
as

 P
er

ce
nt

ag
e

1990 1995 2000 2005

Indemnity Severity Medical Severity

 

Another property frequently present in time series is serial correlation. Such serial correlation may 
originate in mean reversion, as caused by the business cycle. First, the rate of frequency growth may 
be hypothesized to vary with economic activity as the least productive workers are the last to be 
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hired in an economic upturn and the first to be laid off in a downturn. Second, wage growth is a 
(lagging) indicator of economic activity; hence, the wage-adjusting of losses (severities) and premium 
(frequency) may introduce mean reversion into the severities and frequency series. On the other 
hand, the business cycle in the United States has been fairly shallow over the past 20 years; there 
were only two official recessions (1990/91 and 2001) according to the NBER Business Cycle Dating 
Committee (http://www.nber.org/cycles/cyclesmain.html) and, according to the Federal Reserve 
Bank of Saint Louis Fred2 database (https://research.stlouisfed.org/fred2), only one-quarter of 
negative GDP growth. In conclusion, discerning a shallow mean-reverting process in time series as 
short and volatile as those depicted in Charts 1 through 3 harbors the risk of overfitting and is likely 
to add little predictive power to the forecasts. 

Chart 2: Growth Rate of Frequency, Policy Years 1988–2005 
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As mentioned, the forecasting model makes use of the concept of the smoothed random walk. 
For illustration, a simple model of a smoothed random walk may be written as follows: 

2~ N( , ) ,  1,...,t t yy x t Tσ =  (1.1)
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2

1~ N( , ) ,  2,...,t t xx x t Tσ− =  (1.2)
 

where 2N( , )μ σ  indicates a normal distribution with mean μ  and finite variance 2σ . Equation (1.1) 
states that the variable ty  is observed with measurement noise 2

yσ  around the unobservable mean 

tx ; in state-space format, this equation is called the measurement equation. Equation (1.2) states that 
the mean tx  is time-varying as described by a random walk with innovation variance 2

xσ ; in state-
space format, this equation is called the transition equation. 

Chart 3: Growth Rates of Indemnity and Medical Loss Ratios, Policy Years 1988–2005 
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There are two limiting cases to model (1.1–1.2), one of which is the case of stationarity, and the 
other one is the (pure) random walk. We obtain stationarity by setting the innovation variance 2

xσ  in 
the transition equation to zero: 
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2~ N( , ) ,  1,...,t t yy x t Tσ =  (2.1)

 

1 ,  2,...,−= =t tx x t T  (2.2)
 

Alternatively, we obtain the limiting case of a pure random walk by setting the measurement 
noise 2

yσ  to zero: 

 

,  1,...,t ty x t T= =  (3.1)
 

2
1~ N( , ) ,  2,...,t t xx x t Tσ− =  (3.2)

 

In the general case where neither time-variation in the mean (nonstationarity) nor measurement 
noise can be excluded, model (1.1-1.2) applies. In such a general model, it is necessary to determine 
how much of the time-variation in the dependent variable ty  should be assigned to noise ( 2

yσ ); the 
remainder represents innovation ( 2

xσ ). This allocation decision, which determines the degree of 
smoothing of the dependent variable, may be assigned to an algorithm such as the Kalman filter (as 
discussed in Evans and Schmid [2]; for a general discussion of the Kalman filter, see, for instance, 
Hamilton [4]). Note that for any given set of observations ,  1,...,ty t T= , there is only one degree of 
freedom in determining the optimal degree of smoothing, as choosing 2

yσ  determines 2
xσ , and vice 

versa. 

Unfortunately, the Kalman filter does not necessarily deliver the optimal degree of smoothing; in 
short and volatile time series in particular, the Kalman filter assigns more time variation to 
innovations in the mean than is conducive to minimizing the forecasting error. 

2.1 The Model 

The model to be introduced in this section is Bayesian. Such Bayesian models have a number of 
advantages over frequentist approaches, among which is the ease at which even very complex 
models can be estimated. For instance, if there were missing values in the severity, frequency, or loss 
ratio series, the model shown below would interpolate of its own accord, based on the estimated 
random walk properties. 
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The model is estimated using the Metropolis–Hastings algorithm, which computes the (posterior) 
distributions of the model parameters by means of Markov–Chain Monte Carlo simulation. For an 
introduction to Bayesian modeling see Gelman et al. [3]. 

Equation (4) below represents a system of transition equations for the rates of severity and 
frequency growth, which describe (smoothed) random walks; the innovations to these variables (i.e., 
the changes to their means) follow a multivariate normal distribution. Equation (5) states that the 
initial values for the three mentioned growth rates are also draws from a multivariate normal; the 
expected values of this normal are zero, but the covariance matrix imposes little restrictions on the 
means of their posterior distributions. Equation (6) describes the measurement equations, inclusive 
of the add-up constraint; in the measurement equations, the model fits to the observed values the 
process that is stated in Equation (4). Equations (7) through (10) describe the prior distributions for 
the covariance matrices of the initial states, the innovations, and the measurement noise; these 
covariance matrices are modeled on Wishart distributions. 
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~ W( ,1000) , 1,3=Ω Ri i i  (7) 
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~ W( ,10) , 2=Ω Ri i i  (8) 
 

1 2 3 30.01 ×= = ×R R I  (9) 
 

3 5 50.2 ×= ×R I  (10)

 

where N  and W  indicate normal and Wishart distributions, respectively. The variables ,ind ts  and 

,med ts  are the logarithmic rates of growth of indemnity and medical severities, respectively. The 
variable tfr  is the logarithmic rate of growth of frequency, and the variables ,ind tlr  and ,med tlr  are 
the logarithmic rates of growth of the indemnity and medical loss ratios, respectively. 3 3I ×  and 5 5I ×  
symbolize identity matrices. The larger the diagonal elements of 3R  are, the greater the degree of 
smoothing is. The matrix ( 1,...,3)i i =R  is a scale matrix that “represents an assessment of the order 
of magnitude of the covariance matrix” 1( 1,...,3)i i− =Ω  (WinBUGS [5]). (Note that the WinBUGS 
notation for the normal distribution makes use of the precision matrix, which is the inverse of the 
covariance matrix.) 

If (and only if) there is a predictable upswing in future economic activity, the model employs a 
covariate (explanatory variable). In this case then, the rate of frequency growth is modeled as the 
sum of a (smoothed) random walk and a standard regression component; this standard regression 
component hosts the covariate. The covariate of choice is the change in the rate of unemployment. 
As argued, in an economic upswing, the growth rate of frequency can be expected to rise as 
currently employed labor is utilized more intensively and currently unemployed labor is put back to 
work. Predictable upswings in economic activity typically happen in the wake of natural disasters; an 
example of such an event is Hurricane Katrina in 2005. 

When including a covariate, equations 
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substitute for Equations (4) and (5), and the following two equations are added to the model: 

 

~ N(0, )λλ τ  (13)
 

, , ,  1,...,fr t fr t tz z t Tλ δ= − ⋅ =  (14)

 

where the variable tδ  is the t  to 1t −  (accident year; policy year: 1t +  to 1t − ) difference in the rate 
of unemployment. The prior for the parameter λ  is a normal distribution with an expected value of 
zero and a variance ( 1

λτ
− ) that must be chosen sufficiently small to prevent λ  from picking up noise. 

The model generates forecasts by moving the (logarithmic) rates of growth of frequency and the 
severities forward according to the innovation variances of the random walks described in Equation 
(4) (or Equation (11), if applicable), based on the estimated innovation covariance matrix 1

1
ˆ −Ω . As is 

the case with all estimated parameters of the models, the forecasts come as posterior distributions, 
the means of which serve as the point estimates. The posterior distributions of the forecast trend 
and adjustment factors offer credible intervals, based on the chosen probability level (e.g., 95 
percent). These credible intervals differ in important ways from traditional, frequentist confidence 
intervals. Whereas in frequentist statistics the true value either lies within a given confidence interval 
or not, the (Bayesian) credible interval is indeed a probabilistic statement about its location; see 
Carlin and Louis [1]. Note that the credible intervals are statements about the trend rates of growth, 
rather than the realized rates of growth (which are the sum of trend and noise). 

3. RESULTS AND DISCUSSION 

In what follows we apply the model (without a covariate, that is, Equations 4 through 10) to an 
unidentified U.S. state. The observations for the severities, frequency, and the loss ratios run from 
policy years 1987 through 2005, which renders 18 rates of growth (1988–2005). 
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As mentioned, the objective of the model is to generate trend factors, which are estimates of the 
trend rates of growth. By means of scaling up these trend factors to the trend period (i.e., the 
forecasting horizon), we obtain the adjustment factors. 

NCCI typically computes adjustment factors not just for the final year, but also for the 
penultimate and antepenultimate years of the experience period. For instance, if the experience 
period ends with policy year 2005, then these alternative adjustment factors attach to the policy years 
2004 and 2003, respectively; the corresponding alternative trend periods end on the same point on 
the calendar year axis as does the trend period that attaches to policy year 2005. (Note that the 
model is estimated only once; in the example above, this means that the trend factors that attach to 
policy years 2004 and 2003 are based on the same estimation as the trend factor that attaches to 
policy year 2005, thus utilizing all observations of the experience period.) 

For a given policy year, the trend period runs from the midpoint of the policy year to the 
midpoint of what is known at NCCI as the effective period. The effective period is defined as the 
period in which the filed rate or loss cost (depending on the case) is going to be in effect. The 
midpoint of a policy year or an effective period is based on the assumed monthly premium 
distribution; such premium distribution may vary across states. As mentioned, the trend period 
attaches to the final year of the experience period, with alternative trend periods attaching to the 
penultimate and antepenultimate policy years. For the case at hand, this final year of the experience 
period is policy year 2005, and the trend period equals 3.001 years, rounded to the third decimal. 
Correspondingly, the trend period that attaches to the penultimate (antepenultimate) policy year of 
the experience period is 4.001 (5.001) years of length. 

When the change in the rate of unemployment is used as a covariate for frequency growth, 
then this variable is measured by the two-year difference of the rate of unemployment for policy 
years and by the first (i.e., one-year) difference of the rate of unemployment for accident years. For 
instance, for policy year 2005, the pertinent two-year difference is the change in level between the 
end-of-calendar-year 2006 and the end-of-calendar-year 2004 values. For accident year 2005, the first 
difference is the change in level between the end-of-calendar-year 2005 and the end-of-calendar-year 
2004 values. These end-of-calendar-year numbers of the unemployment rate refer to the final 
quarter of the year and are averaged over the three months in the quarter. (We average the rate of 
unemployment because only quarterly forecasts for the rate of unemployment are available.) In 
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determining the trend estimates for the unidentified state discussed below, no covariate was 
employed. 

As mentioned, the model presented above must be calibrated such that it minimizes the 
prediction error. This calibration is done by choosing the optimal degree of smoothing, as it 
manifests itself in the diagonal elements of the scale matrix 3R ; the prediction error is gauged by the 
RMSPE. To determine the optimal degree of smoothing, we ran the model with a holdout period of 
3 years for all NCCI states with an array of smoothing parameters; the diagonal elements of 3R  
(which determine the degree of smoothing) were varied equidistantly on a logarithmic scale. The 3-
year holdout period corresponds (approximately) to the applicable trend periods (of typically little 
more, but sometimes little less than 3 years). As shown in Chart 4, the RMSPE, aggregated across all 
NCCI states varies systematically with the degree of smoothing (which is represented by an index, 
not the actual magnitude of the diagonal elements of 3R ); the prediction error is large for little 
smoothing (low index values), because little smoothing entails a great deal of fitting to noise; also, 
the prediction error is large for extensive smoothing (high index values), because a high degree of 
smoothing insufficiently accommodates the nonstationarity of the underlying growth series. 

Based on data from an unidentified state, the model is estimated using WinBUGS 1.4.3 within 
the R package R2WinBUGS. We sample 50,000 times, following a burn-in of 50,000 iterations. 

The results for the severities, the frequency and the loss ratios are displayed in Charts 5 through 
7. The dashed vertical lines in these charts indicate the beginning of the trend period, which attaches 
to the final year of the experience period (policy year 2005). 

Chart 5 displays the actual, fitted, and forecast trend growth rates for indemnity and medical 
severities. The mean rates of severity growth show little time variation, although the indemnity 
growth rate is slightly trending up. The chart demonstrates that, for both series, the forecasts are not 
sensitive to the respective final observed value, which is desirable as any observed value contains 
potentially a great deal of noise. 

Chart 6 depicts the actual, fitted, and forecast trend growth rates for frequency. Here, there 
is clearly evident a downtrend in the mean rate of growth. Also, note the insensitivity of the model 
to the outlier in the year 1997. 

Chart 7 exhibits the actual, fitted, and forecast trend growth rates for the indemnity and 
medical loss ratios. The medical loss ratio trend rate of growth clearly follows the trend in frequency 
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growth, while the indemnity loss ratio trend rate of growth is also influenced by the uptrend in the 
trend growth rate of indemnity severity. 

Charts 8 and 9 present the posterior distributions for the estimated trend factors and 
adjustment factors for frequency, the indemnity and medical severities, and the indemnity and 
medical loss ratios. 

Chart 4: Root Mean Squared Prediction Error (RMSPE) as a Function of the Degree of Smoothing 
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Chart 5: Growth Rates of Indemnity and Medical Severities (Actual, Fitted, and Forecast), Policy 
Years 1988–2005 (Forecasts: 2006–2009) 
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Chart 6: Growth Rate of Frequency (Actual, Fitted, and Forecast), Policy Years 1988–2005 
(Forecasts: 2006–2009) 

-1
0

-5
0

5

Policy Year

G
ro

w
th

 R
at

e 
as

 P
er

ce
nt

ag
e

1990 1995 2000 2005

Frequency
(Actual)

Frequency
(Fit and Forecast)

 



Statistical Trend Estimation with Application to Workers Compensation Ratemaking 
 

2009 Ratemaking Seminar 336 

Chart 7: Growth Rates of Indemnity and Medical Loss Ratios (Actual, Fitted, and Forecast) Policy 
Years 1988–2005 (Forecasts: 2006–2009) 
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Chart 8: Posterior Densities for Trend Factors 
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Note: The first index in brackets refers to the policy year of the experience period at which the trend 
factor attaches (1: final; 2: penultimate; 3: antepenultimate). The second index represents the series 
(1: indemnity severity; 2: medical severity; 3: frequency; 4: indemnity loss ratio; 5: medical loss ratio). 
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Chart 9: Posterior Densities for Adjustment Factors 
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Note: The first index in brackets refers to the policy year of the experience period at which the 
adjustment factor attaches (1: final; 2: penultimate; 3: antepenultimate). The second index represents 
the series (1: indemnity severity; 2: medical severity; 3: frequency; 4: indemnity loss ratio; 5: medical 
loss ratio). 
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Table 1 exhibits the trend and adjustment factors, along with 95 percent credible intervals. Note 
that these intervals are not necessarily symmetric around the forecast values. 

Table 1: Trend Factors and Adjustment Factors 

Policy Year Paid

Frequency

Indemnity Severity

Medical Severity

Indemnity Loss Ratio

Medical Loss Ratio

2005

2004

2003

Year

3.001

4.001

5.001

Trend
Period

2005

2004

2003

Year

3.001

4.001

5.001

Trend
Period

2005

2004

2003

Year

3.001

4.001

5.001

Trend
Period

2005

2004

2003

Year

3.001

4.001

5.001

Trend
Period

2005

2004

2003

Year

3.001

4.001

5.001

Trend
Period

0.9919

0.9945

0.9954

TF Low er
 Bound

0.9243

0.9268

0.9282

TF Low er
 Bound

1.0430

1.0450

1.0460

TF Low er
 Bound

0.9713

0.9735

0.9751

TF Low er
 Bound

0.9334

0.9357

0.9370

TF Low er
 Bound

1.0166

1.0166

1.0153

Mean Trend
 Factor(TF)

0.9475

0.9474

0.9468

Mean Trend
 Factor(TF)

1.0660

1.0660

1.0651

Mean Trend
 Factor(TF)

0.9935

0.9934

0.9932

Mean Trend
 Factor(TF)

0.9537

0.9537

0.9533

Mean Trend
 Factor(TF)

1.0420

1.0390

1.0350

TF Upper
Bound

0.9709

0.9683

0.9656

TF Upper
Bound

1.0890

1.0870

1.0840

TF Upper
Bound

1.0160

1.0140

1.0120

TF Upper
Bound

0.9745

0.9721

0.9698

TF Upper
Bound

0.9759

0.9783

0.9772

AF Low er
Bound

0.7897

0.7378

0.6888

AF Low er
Bound

1.1340

1.1930

1.2530

AF Low er
Bound

0.9164

0.8980

0.8817

AF Low er
Bound

0.8131

0.7664

0.7223

AF Low er
Bound

1.0512

1.0689

1.0800

Mean Adjustment
 Factor(AF)

0.8509

0.8063

0.7617

Mean Adjustment
 Factor(AF)

1.2118

1.2921

1.3718

Mean Adjustment
 Factor(AF)

0.9809

0.9746

0.9674

Mean Adjustment
 Factor(AF)

0.8677

0.8276

0.7878

Mean Adjustment
 Factor(AF)

1.1310

1.1650

1.1900

AF Upper
Bound

0.9151

0.8792

0.8395

AF Upper
Bound

1.2930

1.3960

1.4970

AF Upper
Bound

1.0490

1.0560

1.0600

AF Upper
Bound

0.9253

0.8929

0.8579

AF Upper
Bound

 

Note: The trend period is measured in years. The interval between upper and lower bounds covers 
95 percent of the probability mass of the distribution of the forecast. 
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4. CONCLUSIONS 

NCCI has developed a Bayesian statistical model for estimating the trend rates of growth of the 
indemnity and medical severities, frequency, and the indemnity and medical loss ratios in the context 
of ratemaking. The model is purpose-built for short, volatile and potentially nonstationary time 
series and calibrated to minimize the prediction error. Further, the model accounts for common 
shocks, is robust to outliers, and is capable of interpolating where observations for the mentioned 
rates of growth are missing. Finally, by means of incorporating an add-up constraint, the model 
ensures consistent forecasts for the five time series in question. 
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