Statistical Trend Estimation with Application to Workers
Compensation Ratemaking

Frank Schmid

Abstract
Motivation. Estimating the trend of the severity, frequency, and loss ratio rates of growth is an integral part of
NCCI ratemaking. The time series from which such trend estimation has to be derived are typically short and
volatile, comprising only 19 observations or, equivalently, 18 rates of growth. Thus, separating signal (i.e., trend)
from (white) noise is particularly challenging.
Method. NCCI has developed a Bayesian Statistical Trend model that is geared toward extracting the trend in
short and high-volatility time series. This model has been optimized by minimizing the root mean squared
prediction error across NCCI states using three-year hold-out petiods (as the applicable forecasting horizon is
typically around three years).
Results. We present trend estimates for severity, frequency, and loss ratio rates of growth for an unidentified
state. The model is robust to outliers and delivers stable, yet time-varying trend estimates.
Conclusions. The statistical properties of the model are conducive to rate stability and, at the same time, allow
the practicing actuary to recognize changes in trend.
Availability. The model tuns in WinBUGS 1.4.3 (www.mtc-bsu.cam.ac.uk/bugs) within the R (www.t-
project.otg) package R2WinBUGS (http://cran.t-project.otg). WinBUGS is administered by the MRC
Biostatistics Unit, University of Cambridge, UK; R is administered by the Technical University of Vienna,
Austria. WinBUGS and R are GNU projects of the Free Softwate Foundation and hence available free of charge.
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1. INTRODUCTION

Estimating the trend of the frequency, severity, and loss ratio rates of growth is an integral part of
NCCI ratemaking. The time series on which such trend estimation rests are typically short,
comprising only 19 observations or, equivalently, 18 rates of growth. Further, these time series may
display high degrees of volatility. Thus, separating signal (i.e., trend) from (white) noise is critical for
discerning the trend. To achieve this objective, NCCI has developed and implemented a Bayesian
state-space model that is designed to elicit the trend in short and volatile time series. This model has
been optimized by minimizing the root mean squared prediction error (RMSPE) across NCCI states
using three-year hold-out periods (as the applicable forecasting horizon typically amounts to about

three years).

The Statistical Trend model runs in WinBUGS 1.4.3 (www.mrtc-bsu.cam.ac.uk/bugs) within the
R (www.t-project.org) package R2ZWinBUGS (http://cran.r-project.org). WinBUGS is administered
by the MRC Biostatistics Unit, University of Cambridge, UK; R is administered by the Technical
University of Vienna, Austria. WinBUGS and R are GNU projects of the Free Software Foundation
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and hence available free of charge.

1.1 Research Context

Forecasting is a signal extraction and signal extrapolation problem. Measurement errors cause the
quantities of interest (such as the rates of growth of indemnity severity, medical severity, and
frequency) to be observed with (presumably Gaussian) noise, thus obscuring the signal. In
forecasting, the signal is the quantity of interest, because it is the signal on which future observations
center. Specifically, it is the objective of a forecasting model to educe from historical observations
the process that generates the unobservable signal. Because a forecasting model replicates the data-
generating process of the signal (as opposed to replicating the observations themselves), its quality
cannot be judged by the (in-sample) fit to the observed data, as gauged, for instance, by the R % or
similar measures of goodness of fit. In fact, good fit to heretofore observed data harbors the risk of
overfitting. Such overfitting may imply that the forecasts do not center on the signal, thus giving rise
to potentially large forecasting errors. The risk of overfitting affords parsimony a critical role in time

series modeling.

As an example, consider a game of dice. In any roll of a pair of dice, the expected value of the
outcome is 7. This expected value is the signal, which manifests itself as the mean outcome as the
number of rolls goes to infinity. The signal offers an unbiased forecast for any future toss; the
difference between the observations and the signal is noise. Thus, among all possible forecasting
models, the one that simply produces the time-invariant signal of 7 as its forecast has the lowest
expected root mean squared prediction error. Yet, this forecasting algorithm offers the worst in-
sample fit possible, as the model has no explanatory power with regards to the variation of the
outcome around the expected value. Not surprisingly, a least-squares regression of the 36 possible

outcomes on the time-invariant signal reveals an R 2 equal to zero.

Two common properties in time series are nonstationarity and mean reversion. In the example
above, nonstationary is equivalent to a time-varying mean; instead of invariably equaling 7, this mean
would change in time. As will be argued below, in workers compensation, the frequency rate of

growth (and, as a result, the loss ratio rate of growth) should be treated as nonstationary.

Mean reversion, on the other hand, implies that the outcomes of the mentioned rolls of dice are
not independent draws, thus causing serial correlation. In games of chance, such mean reversion is

associated with the gambler’s fallacy, which rests on the (erroneous) belief that below-average
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outcomes of past rolls of dice are to be corrected by above-average outcomes in the future (instead
of simply being diluted). Although the business cycle may introduce mean reversion in the severities
and frequency rates of growth, such mean reversion is likely to be weak and, more importantly,
cannot be expected to improve the quality of the forecasts in short non-stationary time series due to

lack of precision in estimating such mean reversion.

Traditionally, NCCI estimates trends using the exponential trend approach, which is a linear

regression of logarithmic levels on a sequence of integers that indicate time.

1.2 Objective

Recent advances in statistical modeling offer ways of dealing with the problem of estimating
trend rates of growth from times series that are short, volatile, and potentially nonstationary. The
state-space modeling framework, along with the Metropolis-Hastings algorithm for estimating
Bayesian models by means of Markov-Chain Monte Carlo (MCMC) simulation, makes such

sophisticated statistical modeling available to the practicing actuary.

1.3 Outline

What follows is the presentation of a multiequation model for forecasting the trend in the rates
of growth of the indemnity and medical severities, frequency, and the respective loss ratios. This
model is then applied to a “paid” data set of an unidentified U.S. state for the time period 1987—
2005. The last section offers conclusions and guidance for implementation of this model in actuarial

practice.

2. BACKGROUND AND METHODS

In the context of NCCI ratemaking, frequency is defined as the ratio of the developed (to the 5"
report) number of claims to the developed (to the 5" report), on-leveled (to the current loss-cost or
rate level, depending on the case), and wage-adjusted premium. Severity is defined as the ratio of the
developed, on-leveled, and wage-adjusted loss to the developed (to the 5" report) number of claims.
When defined in such way, the product of indemnity (medical) severity and frequency equals the
indemnity (medical) loss ratio. In consequence, the logarithmic rate of growth of the loss ratio equals
the sum of the logarithmic rates of growth of frequency and the applicable severity; in what follows,

this property is referred to as the add-up constraint.
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The model estimates the five rates of growth (the two severities, frequency, and the two loss
ratios) simultaneously. Covariances among these variables account for common shocks. For
instance, the severities and frequency are subject to common shocks because they share the wage
adjustment; further, the severities and frequency share components of the on-leveling for changes in
benefits levels. The joint estimation of the growth rates also allows for implementing the mentioned
add-up constraint. This constraint ensures that, at any point in time, the estimated rates of growth of
the indemnity (medical) severity and frequency are consistent with the estimated rate of growth of

the indemnity (medical) loss ratio.

The model uses logarithmic rates of growth, because conventional rates of growth have a lower
bound at minus 1 and, hence, violate the assumption of normality. These logarithmic rates of growth
are then transformed into conventional rates of growth to obtain the forecast rates of growth and,
after adding 1, the NCCI trend factors. Further, the (conventional) rates of growth are compounded
over the multiyear forecasting horizon or, equivalently, the NCCI trend period; the number of years
of this trend period is typically not an integer. Adding 1 to the compounded rates of growth delivers
the NCCI adjustment factors. The purpose of the adjustment factor is to scale up the levels of the
variables of interest (the severities, frequency, and the loss ratios) from the end of the experience
period (i.e., the time period for which there are observations available) to the end of the trend period

(i.e., the end of the forecasting horizon).

Note that transforming logarithmic rates of growth into conventional rates of growth necessitates
a bias-adjustment when such transformation is done on the expected value; this is because, for a
normally distributed variable X, E[ex]zeE[X]lez. Because the model is estimated by means of
Monte Carlo simulation, such transformation happens “draw by draw” (instead of on the expected

value) and, thus, no bias-adjustment is necessary.

For the time period 1988-2005, Chart 1 shows for an unidentified state the (conventional) rates
of growth of the indemnity and medical severities. Chart 2 displays the growth rate for frequency.

Finally, Chart 3 presents the growth rates of the corresponding loss ratios.

Although Charts 1 through 3 are not necessarily representative of NCCI states, they are typical in
that they are indicative of nonstationarity (i.e., time-variation in the mean) in the growth rate of
frequency, but less so in the severities. Note that because the sum of two time series is nonstationary
if at least one of the individual series is nonstationary, a time-varying mean in the growth rate of

frequency implies time-varying means in the growth rates of both loss ratios. For instance, as Chart

2009 Ratemaking Seminar 323



Statistical Trend Estimation with Application to Workers Compensation Ratemaking

2 shows, the growth rate of frequency was higher at around the year 1990 than it was ten years later;
and because the variation in the mean growth rate of frequency was not offset by a change (in
opposite direction) of the growth rates of the severities, such variation is mirrored in the means of

the growth rates of the loss ratios (see Chart 3).

Time series can be checked for nonstationarity, but such unit root tests have little power for
short time series; as a consequence, these tests favor the null hypothesis of a (pure) random walk
(see, for instance, Hamilton [4]). As will be argued below, stationarity and nonstationarity are
limiting cases of a smoothed random walk. Frequently, neither stationarity (a time-invariant mean)
nor a (pure) random walk is an appropriate assumption for forecasting models that rely on short and

volatile time series.

Chart 1: Growth Rates of Indemnity and Medical Severities, Policy Years 1988-2005
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Another property frequently present in time series is serial correlation. Such serial correlation may
originate in mean reversion, as caused by the business cycle. First, the rate of frequency growth may

be hypothesized to vary with economic activity as the least productive workers are the last to be
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hired in an economic upturn and the first to be laid off in a downturn. Second, wage growth is a
(lagging) indicator of economic activity; hence, the wage-adjusting of losses (severities) and premium
(frequency) may introduce mean reversion into the severities and frequency series. On the other
hand, the business cycle in the United States has been fairly shallow over the past 20 years; there
were only two official recessions (1990/91 and 2001) according to the NBER Business Cycle Dating
Committee (http://www.nber.org/cycles/cyclesmain.html) and, according to the Federal Reserve
Bank of Saint Louis Fred2 database (https://research.stlouisfed.org/fred2), only one-quarter of
negative GDP growth. In conclusion, discerning a shallow mean-reverting process in time series as
short and volatile as those depicted in Charts 1 through 3 harbors the risk of overfitting and is likely

to add little predictive power to the forecasts.

Chart 2: Growth Rate of Frequency, Policy Years 1988-2005
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As mentioned, the forecasting model makes use of the concept of the smoothed random walk.

For illustration, a simple model of a smoothed random walk may be written as follows:

¥ ~N(x,00) , t=1...T (1.1)
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X ~N(X_j,02), t=2,..,T (1.2)

where N(,u,az) indicates a normal distribution with mean g and finite variance o?. Equation (1.1)

states that the variable y; is observed with measurement noise o2 around the unobservable mean

y
X; ; in state-space format, this equation is called the measurement equation. Equation (1.2) states that
the mean X, is time-varying as described by a random walk with innovation variance oZ; in state-

space format, this equation is called the transition equation.

Chart 3: Growth Rates of Indemnity and Medical Loss Ratios, Policy Years 1988—2005
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There are two limiting cases to model (1.1-1.2), one of which is the case of stationarity, and the
other one is the (pure) random walk. We obtain stationarity by setting the innovation variance o in

the transition equation to zero:
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Y ~N(4,05), t=1...T @2.1)
Xt :Xt—l f t=2,...,T (2.2)

Alternatively, we obtain the limiting case of a pure random walk by setting the measurement

noise 05, to zero:

yt :Xt ’ t:].,...,T (3.1)

X ~N(x_j,02), t=2,...,T (3.2)

In the general case where neither time-variation in the mean (nonstationarity) nor measurement
noise can be excluded, model (1.1-1.2) applies. In such a general model, it is necessary to determine
how much of the time-variation in the dependent variable Yy; should be assigned to noise (0'3); the
remainder represents innovation (o2). This allocation decision, which determines the degree of
smoothing of the dependent variable, may be assigned to an algorithm such as the Kalman filter (as
discussed in Evans and Schmid [2]; for a general discussion of the Kalman filter, see, for instance,
Hamilton [4]). Note that for any given set of observations Y;, t=1,...,T, there is only one degree of
freedom in determining the optimal degree of smoothing, as choosing 05 determines o, and vice

versa.

Unfortunately, the Kalman filter does not necessarily deliver the optimal degree of smoothing; in
short and volatile time series in particular, the Kalman filter assigns more time variation to

innovations in the mean than is conducive to minimizing the forecasting error.

2.1 The Model

The model to be introduced in this section is Bayesian. Such Bayesian models have a number of
advantages over frequentist approaches, among which is the ease at which even very complex
models can be estimated. For instance, if there were missing values in the severity, frequency, or loss
ratio series, the model shown below would interpolate of its own accord, based on the estimated

random walk properties.
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The model is estimated using the Metropolis—Hastings algorithm, which computes the (posterior)
distributions of the model parameters by means of Markov—Chain Monte Carlo simulation. For an

introduction to Bayesian modeling see Gelman et al. [3].

Equation (4) below represents a system of transition equations for the rates of severity and
frequency growth, which describe (smoothed) random walks; the innovations to these variables (i.e.,
the changes to their means) follow a multivariate normal distribution. Equation (5) states that the
initial values for the three mentioned growth rates are also draws from a multivariate normal; the
expected values of this normal are zero, but the covariance matrix imposes little restrictions on the
means of their posterior distributions. Equation (6) describes the measurement equations, inclusive
of the add-up constraint; in the measurement equations, the model fits to the observed values the
process that is stated in Equation (4). Equations (7) through (10) describe the prior distributions for
the covariance matrices of the initial states, the innovations, and the measurement noise; these

covariance matrices are modeled on Wishart distributions.

Z Sind it z Sind -1
zsmedvt ~N ZSmed,t—l ' Ql ’ t:2,...,T (4)
Zfrt Zfria
2 Sing 1 0
25 s d ~N[ |0, Q, (5)
z fr,1 0
Sindt zsind't
S ZS ea t
med ,t med »
frt -~ N z fr,t y 93 y t:111T (6)
Irind,t ZSindyt"'Zfr,t
Ir
med ,t z S e oL +7 frt

Q; ~ W(R;,1000) , i =1,3 %
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Q. ~ W(R;,10) ,i=2 ®)

where N and W indicate normal and Wishart distributions, respectively. The variables ;4 and
Smedt are the logarithmic rates of growth of indemnity and medical severities, respectively. The
variable fry is the logarithmic rate of growth of frequency, and the variables Irjq and Irpqq, are
the logarithmic rates of growth of the indemnity and medical loss ratios, respectively. ls5 and Isg
symbolize identity matrices. The larger the diagonal elements of Rj are, the greater the degree of
smoothing is. The matrix R;(i=1,...,3) is a scale matrix that “represents an assessment of the order
of magnitude of the covariance matrix” Q;*(i =1,..,3) (WinBUGS [5]). (Note that the WinBUGS
notation for the normal distribution makes use of the precision matrix, which is the inverse of the

covariance matrix.)

If (and only if) there is a predictable upswing in future economic activity, the model employs a
covariate (explanatory variable). In this case then, the rate of frequency growth is modeled as the
sum of a (smoothed) random walk and a standard regression component; this standard regression
component hosts the covariate. The covariate of choice is the change in the rate of unemployment.
As argued, in an economic upswing, the growth rate of frequency can be expected to rise as
currently employed labor is utilized more intensively and currently unemployed labor is put back to
work. Predictable upswings in economic activity typically happen in the wake of natural disasters; an

example of such an event is Hurricane Katrina in 2005.

When including a covariate, equations

Sind Sind -1
S e N Zs ot Q1 t=2,..T (11)
7fr,t ffr,t—l
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2 Sing L
z S med 1

0
~Nl|0|, Q, (12)
0

z fr,1
substitute for Equations (4) and (5), and the following two equations are added to the model:

A~N(0,z ;) (13)

Zgr=Zgy— A0 t=1T (14)

where the variable J; is the t to t—1 (accident year; policy year: t+1 to t—1) difference in the rate
of unemployment. The prior for the parameter A is a normal distribution with an expected value of

zero and a variance (7 ;%) that must be chosen sufficiently small to prevent A from picking up noise.

The model generates forecasts by moving the (logarithmic) rates of growth of frequency and the
severities forward according to the innovation variances of the random walks described in Equation
(4) (or Equation (11), if applicable), based on the estimated innovation covariance matrix 9 1 As s
the case with all estimated parameters of the models, the forecasts come as posterior distributions,
the means of which serve as the point estimates. The posterior distributions of the forecast trend
and adjustment factors offer credible intervals, based on the chosen probability level (e.g., 95
percent). These credible intervals differ in important ways from traditional, frequentist confidence
intervals. Whereas in frequentist statistics the true value either lies within a given confidence interval
or not, the (Bayesian) credible interval is indeed a probabilistic statement about its location; see
Carlin and Louis [1]. Note that the credible intervals are statements about the #end rates of growth,

rather than the realized rates of growth (which are the sum of trend and noise).

3. RESULTS AND DISCUSSION

In what follows we apply the model (without a covariate, that is, Equations 4 through 10) to an
unidentified U.S. state. The observations for the severities, frequency, and the loss ratios run from
policy years 1987 through 2005, which renders 18 rates of growth (1988-2005).
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As mentioned, the objective of the model is to generate trend factors, which are estimates of the
trend rates of growth. By means of scaling up these trend factors to the trend period (i.e., the

forecasting horizon), we obtain the adjustment factors.

NCCI typically computes adjustment factors not just for the final year, but also for the
penultimate and antepenultimate years of the experience period. For instance, if the experience
period ends with policy year 2005, then these alternative adjustment factors attach to the policy years
2004 and 2003, respectively; the corresponding alternative trend periods end on the same point on
the calendar year axis as does the trend period that attaches to policy year 2005. (Note that the
model is estimated only once; in the example above, this means that the trend factors that attach to
policy years 2004 and 2003 are based on the same estimation as the trend factor that attaches to

policy year 2005, thus utilizing all observations of the experience period.)

For a given policy year, the trend period runs from the midpoint of the policy year to the
midpoint of what is known at NCCI as the effective period. The effective period is defined as the
period in which the filed rate or loss cost (depending on the case) is going to be in effect. The
midpoint of a policy year or an effective period is based on the assumed monthly premium
distribution; such premium distribution may vary across states. As mentioned, the trend period
attaches to the final year of the experience period, with alternative trend periods attaching to the
penultimate and antepenultimate policy years. For the case at hand, this final year of the experience
period is policy year 2005, and the trend period equals 3.001 years, rounded to the third decimal.
Correspondingly, the trend period that attaches to the penultimate (antepenultimate) policy year of

the experience period is 4.001 (5.001) years of length.

When the change in the rate of unemployment is used as a covariate for frequency growth,
then this variable is measured by the two-year difference of the rate of unemployment for policy
years and by the first (i.e., one-year) difference of the rate of unemployment for accident years. For
instance, for policy year 2005, the pertinent two-year difference is the change in level between the
end-of-calendar-year 2006 and the end-of-calendar-year 2004 values. For accident year 2005, the first
difference is the change in level between the end-of-calendar-year 2005 and the end-of-calendar-year
2004 values. These end-of-calendar-year numbers of the unemployment rate refer to the final
quarter of the year and are averaged over the three months in the quarter. (We average the rate of

unemployment because only quarterly forecasts for the rate of unemployment are available.) In
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determining the trend estimates for the unidentified state discussed below, no covariate was

employed.

As mentioned, the model presented above must be calibrated such that it minimizes the
prediction error. This calibration is done by choosing the optimal degree of smoothing, as it
manifests itself in the diagonal elements of the scale matrix Rj; the prediction error is gauged by the
RMSPE. To determine the optimal degree of smoothing, we ran the model with a holdout period of
3 years for all NCCI states with an array of smoothing parameters; the diagonal elements of Rj
(which determine the degree of smoothing) were varied equidistantly on a logarithmic scale. The 3-
year holdout period corresponds (approximately) to the applicable trend periods (of typically little
more, but sometimes little less than 3 years). As shown in Chart 4, the RMSPE, aggregated across all
NCCI states varies systematically with the degree of smoothing (which is represented by an index,
not the actual magnitude of the diagonal elements of Rj); the prediction error is large for little
smoothing (low index values), because little smoothing entails a great deal of fitting to noise; also,
the prediction error is large for extensive smoothing (high index values), because a high degree of

smoothing insufficiently accommodates the nonstationarity of the undetlying growth series.

Based on data from an unidentified state, the model is estimated using WinBUGS 1.4.3 within
the R package R2ZWinBUGS. We sample 50,000 times, following a burn-in of 50,000 iterations.

The results for the severities, the frequency and the loss ratios are displayed in Charts 5 through
7. The dashed vertical lines in these charts indicate the beginning of the trend period, which attaches

to the final year of the experience period (policy year 2005).

Chart 5 displays the actual, fitted, and forecast trend growth rates for indemnity and medical
severities. The mean rates of severity growth show little time variation, although the indemnity
growth rate is slightly trending up. The chart demonstrates that, for both series, the forecasts are not
sensitive to the respective final observed value, which is desirable as any observed value contains

potentially a great deal of noise.

Chart 6 depicts the actual, fitted, and forecast trend growth rates for frequency. Here, there
is clearly evident a downtrend in the mean rate of growth. Also, note the insensitivity of the model

to the outlier in the year 1997.

Chart 7 exhibits the actual, fitted, and forecast trend growth rates for the indemnity and

medical loss ratios. The medical loss ratio trend rate of growth clearly follows the trend in frequency
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growth, while the indemnity loss ratio trend rate of growth is also influenced by the uptrend in the

trend growth rate of indemnity severity.

Charts 8 and 9 present the posterior distributions for the estimated trend factors and

adjustment factors for frequency, the indemnity and medical severities, and the indemnity and

medical loss ratios.

Chart 4: Root Mean Squared Prediction Error (RMSPE) as a Function of the Degree of Smoothing
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Chart 5: Growth Rates of Indemnity and Medical Severities (Actual, Fitted, and Forecast), Policy
Years 1988-2005 (Forecasts: 2006—-2009)
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Chart 6: Growth Rate of Frequency (Actual, Fitted, and Forecast), Policy Years 1988-2005
(Forecasts: 2006—2009)
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Chart 7: Growth Rates of Indemnity and Medical Loss Ratios (Actual, Fitted, and Forecast) Policy
Years 1988-2005 (Forecasts: 2006—-2009)
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Chart 8: Posterior Densities for Trend Factors
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Note: The first index in brackets refers to the policy year of the experience period at which the trend
factor attaches (1: final; 2: penultimate; 3: antepenultimate). The second index represents the series
(1: indemnity severity; 2: medical severity; 3: frequency; 4: indemnity loss ratio; 5: medical loss ratio).

2009 Ratemaking Seminar

337



Statistical Trend Estimation with Application to Workers Compensation Ratemaking

Chart 9: Posterior Densities for Adjustment Factors
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Note: The first index in brackets refers to the policy year of the experience period at which the
adjustment factor attaches (1: final; 2: penultimate; 3: antepenultimate). The second index represents
the series (1: indemnity severity; 2: medical severity; 3: frequency; 4: indemnity loss ratio; 5: medical

loss ratio).
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Table 1 exhibits the trend and adjustment factors, along with 95 percent credible intervals. Note

that these intervals are not necessarily symmetric around the forecast values.

Table 1: Trend Factors and Adjustment Factors

Policy Year Paid
Frequency

Trend TF Lower Mean Trend TF Upper AF Lower Mean Adjustment AF Upper
Year Period Bound Factor(TF) Bound Bound Factor (AF) Bound
2003 5.001 0.9370 0.9533 0.9698 0.7223 0.7878 0.8579
2004 4.001 0.9357 0.9537 0.9721 0.7664 0.8276 0.8929
2005 3.001 0.9334 0.9537 0.9745 0.8131 0.8677 0.9253

Indemnity Severity

Trend TF Low er Mean Trend TF Upper AF Low er Mean Adjustment AF Upper
Year Period Bound Factor(TF) Bound Bound Factor(AF) Bound
2003 5.001 0.9751 0.9932 1.0120 0.8817 0.9674 1.0600
2004 4.001 0.9735 0.9934 1.0140 0.8980 0.9746 1.0560
2005 3.001 0.9713 0.9935 1.0160 0.9164 0.9809 1.0490

Medical Severity

Trend TF Lower Mean Trend TF Upper AF Low er Mean Adjustment AF Upper
Year Period Bound Factor(TF) Bound Bound Factor (AF) Bound
2003 5.001 1.0460 1.0651 1.0840 1.2530 1.3718 1.4970
2004 4.001 1.0450 1.0660 1.0870 1.1930 1.2921 1.3960
2005 3.001 1.0430 1.0660 1.0890 1.1340 1.2118 1.2930

Indemnity Loss Ratio

Trend TF Lower Mean Trend TF Upper AF Lower Mean Adjustment AF Upper
Year Period Bound Factor(TF) Bound Bound Factor (AF) Bound
2003 5.001 0.9282 0.9468 0.9656 0.6888 0.7617 0.8395
2004 4.001 0.9268 0.9474 0.9683 0.7378 0.8063 0.8792
2005 3.001 0.9243 0.9475 0.9709 0.7897 0.8509 0.9151

Medical Loss Ratio

Trend TF Lower Mean Trend TF Upper AF Lower Mean Adjustment AF Upper
Year Period Bound Factor(TF) Bound Bound Factor (AF) Bound
2003 5.001 0.9954 1.0153 1.0350 0.9772 1.0800 1.1900
2004 4.001 0.9945 1.0166 1.0390 0.9783 1.0689 1.1650
2005 3.001 0.9919 1.0166 1.0420 0.9759 1.0512 1.1310

Note: The trend period is measured in years. The interval between upper and lower bounds covers

95 percent of the probability mass of the distribution of the forecast.
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4. CONCLUSIONS

NCCI has developed a Bayesian statistical model for estimating the trend rates of growth of the
indemnity and medical severities, frequency, and the indemnity and medical loss ratios in the context
of ratemaking. The model is purpose-built for short, volatile and potentially nonstationary time
series and calibrated to minimize the prediction error. Further, the model accounts for common
shocks, is robust to outliers, and is capable of interpolating where observations for the mentioned
rates of growth are missing. Finally, by means of incorporating an add-up constraint, the model

ensures consistent forecasts for the five time series in question.
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