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Abstract 
The objective of this study is to compare the methods of minimum bias and maximum likelihood by using a 
weighted equation on claim severity data. The advantage of using the weighted equation is that the fitting 
procedure provides a faster convergence compared to the classical procedure introduced by Bailey and Simon 
[1] and Bailey [2]. Furthermore, the fitting procedure may be extended to other models in addition to the 
multiplicative and additive models, as long as the function of the fitted value is written in a specified linear 
form. In this study, the minimum bias and maximum likelihood methods will be compared and fitted on three 
types of claim severity data; the Malaysian data, the U.K. data from McCullagh and Nelder [3] and the Canadian 
data from Bailey and Simon [1]. 
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1. INTRODUCTION 

The process of establishing premium rates for insuring uncertain events requires estimates which are 
made of two important elements; the probabilities or frequencies associated with the occurrence of 
insured event, and the magnitude or severities of such event. The process of grouping risks of 
similar risk characteristics for frequencies or severities is known as risk classification where its goal is 
to group homogeneous risks and charge each group a premium commensurate with the expected 
average loss. Failure to achieve this goal may lead to adverse selection to insureds and economic 
losses to insurers. The risks may be categorized according to risk or rating factors; in motor 
insurance for instance, driver’s gender and claim experience, or vehicle’s make and capacity, may be 
considered as rating factors. 

 In the last forty years, actuarial researchers suggested various statistical procedures for risk 
classification. For instance, Bailey and Simon [1] suggested the minimum chi-squares, Bailey [2] 
proposed the zero bias, Jung [4] produced a heuristic method for minimum modified chi-squares, 
Ajne [5] applied the method of moments also for minimum modified chi-squares, Chamberlain [6] 
used  the  weighted  least squares, Coutts [7] produced the method of orthogonal weighted least 
squares with logit transformation, Harrington [8] suggested the maximum likelihood procedure for 
models with functional form, and Brown [9] proposed the bias and likelihood functions. 

In the recent actuarial literature, research on risk classification methods is still continuing and 
developing. For example, Mildenhall [10] studied the relationship between the minimum bias and 
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the Generalized Linear Models (GLMs), Feldblum and Brosius [11] provided the minimum bias 
procedures for practicing actuaries, Anderson et al. [12] provided practical insights for the GLMs 
analysis also for practicing actuaries, Fu and Wu [13] developed and generalized the minimum bias 
models, Ismail and Jemain [14] bridged the minimum bias and maximum likelihood methods for 
claim frequency data, and Ismail and Jemain [15] suggested the Negative Binomial and the 
Generalized Poisson regressions as alternatives to handle over-dispersion in claim frequency or 
count data. 

  The objective of this study is to compare the methods of minimum bias and maximum 
likelihood by using a weighted equation on claim severity data. Although the weighted equation was 
previously suggested by Ismail and Jemain [14], the application was implemented on claim frequency 
data. Therefore, this study differs such that the weighted equation will be applied to estimate claim 
severity or average claim cost which is equivalent to the total claim costs divided by the number of 
claims. Since the nature of claim frequency and severity is different, the approach taken is also 
slightly modified. In fact, with a few modifications, the same weighted equation may also be used for 
loss cost or pure premium which is equal to the total claim costs divided by the exposures, and for 
loss ratio which is equal to the total claim costs divided by the premiums. However, the weight 
generally used for fitting loss cost and loss ratio is the exposures. 

  Several studies have been carried out on claim severity data in the actuarial literature. Since it 
is well established that the claim cost distributions generally have positive support and are positively 
skewed, the distributions of Gamma and Lognormal have been used by practitioners for modeling 
claim severities. As a comparison, several actuarial studies also reported severity results from the 
Normal distribution. For example, Baxter et al. [16] fit the U.K. own damage costs for privately 
owned and comprehensively insured vehicles to the weighted linear regression (additive model) by 
assuming that the variance is constant within classes, McCullagh and Nelder [3] reanalyzed the same 
data by fitting the Gamma regression model and assuming that the coefficient of variation is 
constant within classes and the mean is linear on reciprocal scale (inverse model), Brockman and 
Wright [17] fit the U.K. own damage costs for comprehensive policies also to the Gamma model by 
using a log-linear regression (multiplicative model), Renshaw [18] fit the U.K. motor insurance claim 
severity also to the Gamma log-linear regression model, and Fu and Moncher [19] applied several 
Monte Carlo simulation techniques to examine the unbiasedness and stability of the Gamma, 
Lognormal and Normal distributions which were fitted on the severity data obtained from 
Mildenhall [10]. 

  The advantage of using the weighted equation suggested in this study is that the fitting 
procedure provides a faster convergence compared to the classical procedure introduced by Bailey 
and Simon [1] and Bailey [2]. Furthermore, the fitting procedure may be extended to other models in 
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addition to the multiplicative and additive models, as long as the function of the fitted value is 
written in a specified linear form. 

  In this study, the minimum bias and maximum likelihood methods will be compared and 
fitted on three types of claim severity data; the Malaysian data, the U.K. data from McCullagh and 
Nelder [3] and the Canadian data from Bailey and Simon [1]. 

 
2. REGRESSION MODEL 

In the actuarial literature, various methods have been studied and implemented by actuarial 
researchers and practitioners for classifying risks. Most of these methods, which also include the 
minimum bias and maximum likelihood, may be written as a regression model where the explanatory 
variables are the risk or rating factors. In this study, the regression methods of minimum bias and 
maximum likelihood will be compared and fitted on claim severity data. 

  The related data sets for claim severity regression model are ),( ii yc , where ic  and iy  
denotes the average claim cost already adjusted for inflation and the claim count for the i th rating 
class, ni ,...,2,1= , so that the total claim cost is equal to the product of claim count and average 
claim cost, ii cy . The response variable and weight for the regression model is the average claim 
cost, ic , and the claim count, iy , respectively. 

  Consider a regression model with n  observations of average claim cost and p  explanatory 
variables inclusive of an intercept and dummy variables. Next, consider a data of average claim costs 
involving three rating factors, each respectively with three, two, and three rating classes. Thus, the 
data has a total of 18=n  observed average claim costs with 6=p  explanatory variables.  

  Let c  denotes the vector of average claim cost vector, y  the vector of claim count, X  the 
matrix of explanatory variables where the ith row is equivalent to vector T

ix , and β  the vector of 
regression parameters. If ijx , 18,...,2,1=i , 6,...,2,1=j , is the ijth element of matrix X , the value 
for ijx  is either one or zero. Table 1 summarizes the regression model for the claim severity data. 

Table 1. Data summary 
 

i ci yi xi1 xi2 xi3 xi4 xi5 xi6 
 
1 
2 
3 
4 
5 
6 

 
c1 
c2  
M  
 
 
 

 
y1  
y2  
M  
 
 
 

 
1 
1 
1 
1 
1 
1 

 
0 
0 
0 
0 
0 
0 

 
0 
0 
0 
0 
0 
0 

 
0 
0 
0 
1 
1 
1 

 
0 
1 
0 
0 
1 
0 

 
0 
0 
1 
0 
0 
1 



Comparison of Minimum Bias and Maximum Likelihood Methods for Claim Severity 

Casualty Actuarial Society E-Forum, Winter 20009 246 

7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
 

 
 
 
 
 
 
 
 
 
 
 

c18  

 
 
 
 
 
 
 
 
 
 
 

y18  

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
 

0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
 

0 
0 
0 
1 
1 
1 
0 
0 
0 
1 
1 
1 
 

0 
1 
0 
0 
1 
0 
0 
1 
0 
0 
1 
0 
 

0 
0 
1 
0 
0 
1 
0 
0 
1 
0 
0 
1 

 

  Moreover, let f , a function of X  and β , denote the vector of fitted average claim costs. If 
the function of the fitted average claim cost is log-linear (multiplicative model), the fitted value in 
the i th rating class is equivalent to 

      )exp( βxTi=if ,            (1) 

if the function is linear (additive model), the fitted average claim cost in the i th rating class is equal 
to 

          βxTi=if ,             (2) 

and if the function is inverse (inverse model), the fitted average claim cost in the i th rating class is  

         ( ) 1

if
−

= T
ix β .            (3) 

  In fact, a variety of regression models may be created and fitted, as long as the function of 
the fitted value is written as 

    
1

, 1 0,  0 1
bp

i j ij
j

f x b bβ
=

⎛ ⎞
= − ≤ < < ≤⎜ ⎟
⎝ ⎠
∑ .          (4) 

Thus, the objective of risk classification is to have the fitted average claim cost, if , be as close as 
possible to the observed average claim cost, ic , for all i . 

3. MINIMUM BIAS 

Bailey and Simon [1] were among the pioneer researchers that consider bias in risk classification. 
They introduced the minimum bias method and proposed a famous list of four criteria for an 
acceptable set of classification rates: 
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• The rates should reproduce experience for each class and overall, i.e., they should be 
balanced for each class and overall. 

• The rates should reflect the relative credibility of various classes. 

• The rates should provide minimum amount of departure from the raw data. 

• The rates should produce a rate for each class close enough to the experience so that the 
differences could reasonably be caused by chance. 

3.1 Zero Bias 

Bailey and Simon [1] proposed a suitable test for the first criteria by calculating, 

           
∑
∑

i
ii

i
ii

cy

fy
,            (5) 

for each j and total. Thus, a set of rates is balanced, i.e., zero bias, if Equation (5) equals 1.00 and 
automatically, zero bias for each class implies zero bias for all classes. 

  From this test, Bailey [2] derived a minimum bias model by setting the average difference 
between the observed and the fitted rates to be equal to zero. In the case of claim severity regression 
model, the zero bias equation for each j can be written in the form of a weighted difference between 
the observed and the fitted average claim cost, 

              pjfcw
i

iii ,...,2,1,0)( ==−∑ ,           (6) 

where iw  is equal to iji xy . 

 

 

3.2 Minimum Chi-squares 

Bailey and Simon [1] also suggested the chi-squares statistics, 2χ , as an appropriate test for the 
fourth criteria,  

2 2( )i
i i

i i

yK c f
f

χ = −∑ , 

where K  is a constant dependent on the data. The same test is also suitable for the second and third 
criteria as well. 
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  By minimizing the chi-squares, another minimum bias model was derived. For each j, the 
minimum chi-squares equation could be written in the form of a weighted difference between the 
observed and the fitted average claim cost, 

             
2

( ) 0, 1,2,...,i i i
ij

w c f j pχ
β
∂

= − = =
∂ ∑ ,          (7) 

where iw  is 2

( )i i i i

i j

y c f f
f β
+ ∂

∂
. 

  If the function is log-linear (multiplicative model), the first derivative of the fitted value is 
equal to 

                                      iji
j

i xf
f

=
∂
∂
β

,                  (8) 

if the function is linear (additive model), the first derivative is                     

                                          ij
j

i x
f

=
∂
∂
β

,                              (9) 

and if the function is inverse (inverse model), the first derivative is 

         2i
i ij

j

f f x
β
∂

= −
∂

 .         (10) 

 

4. MAXIMUM LIKELIHOOD 

Let iii CyT =  be the random variable for total claim costs and assume that the ith total claim cost, 

i iy c , comes from a distribution whose probability density function is ( ; )i ig c f . A maximum 
likelihood method maximizes the likelihood function, 

( ; )i i
i

L g c f=∏ , 

or equivalently, the log likelihood function, 

( )log log ( ; )i i
i

L g c f= =∑l . 

Thus, the regression parameters can be obtained by setting 0
jβ

∂
=

∂
l  for each j , 1,2,...,j p= . 

4.1 Normal 
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If iii CyT =  is assumed to follow Normal distribution with mean iii fyTE =)(  and variance 
2)( σ=iTVar , the probability density function is (Brown [9]) 

( )2
22

1 1( ; ) exp
22

i i i i i ig c f y c y f
σπσ

⎧ ⎫= − −⎨ ⎬
⎩ ⎭

. 

The regression parameters may be solved by using the likelihood equation 

    pjfcw
i

iii
j

,...,2,1,0)( ==−=
∂
∂ ∑β
l ,                   (11) 

where iw  is 
j

i
i

fy
β∂
∂2 . The first derivative of the fitted value is equal to equation (8) for a log-linear 

function (multiplicative), equation (9) for a linear function (additive), and equation (10) for an 
inverse function.   

4.2 Poisson 

If iii CyT =  is Poisson distributed with mean iii fyTE =)( , the probability density function is 

)!(
))(exp(

);(
ii

cy
iiii

ii cy
fyfy

fcg
ii−

= . 

As a result, the likelihood equation for each j  is equal to 

    pjfcw
i

iii
j

,...,2,1,0)( ==−=
∂
∂ ∑β
l ,                                (12) 

 but iw  is now equivalent to 
j

i

i

i f
f
y

β∂
∂ . 

  The same weighted equation could also be used to show that the Poisson is actually 
equivalent to the zero bias if the function of the fitted value is in a log-linear form (multiplicative 
model). By substituting Equation (8) into Equation (12), the likelihood equation for the Poisson is 
now equal to 

pjfcw
i

iii
j

,...,2,1,0)( ==−=
∂
∂ ∑β
l , 

where iw  is iji xy , and this likelihood equation is equivalent to the zero bias. 

4.3 Exponential 

Let iii CyT =  be exponential distributed with mean iii fyTE =)( . The probability density function is 



Comparison of Minimum Bias and Maximum Likelihood Methods for Claim Severity 

Casualty Actuarial Society E-Forum, Winter 20009 250 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

i

i

ii
ii f

c
fy

fcg exp1);( , 

and the regression parameters may be solved by using the likelihood equation 

    pjfcw
i

iii
j

,...,2,1,0)( ==−=
∂
∂ ∑β
l ,                   (13) 

where iw  is 
j

i

i

f
f β∂

∂
2

1 . 

4.4 Gamma 

If iii CyT =  is Gamma distributed with mean iii fyTE =)(  and variance 1 2 2( )i i iVar T v y f−= , the 
probability density function is 

1( ; ) exp
( )

v

i i
i i

i i i i

vc vcg c f
y c v f f

⎛ ⎞ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟Γ ⎝ ⎠ ⎝ ⎠

, 

where v  denotes the index parameter. Assuming that v  is allowed to vary within classes and written 
as ii yv 2−= σ , the likelihood equation is 

    pjfcw
i

iii
j

,...,2,1,0)( ==−=
∂
∂ ∑β
l ,                   (14) 

where iw  is 
j

i

i

i f
f
y

β∂
∂

2 . 

4.5 Inverse Gaussian 

The derivation of the weighted equation for an Inverse Gaussian distribution is slightly different. 
Instead of using the random variable for total claim cost, iii CyT = , the random variable for average 
claim cost, iC , is used. Let the random variable for average claim cost, iC , be distributed as Inverse 
Gaussian with mean ii fCE =)(  and variance τ3)( ii fCVar = . The probability distribution function 
is (see Mildenhall [10] and Renshaw [18]) 

( )
⎭
⎬
⎫

⎩
⎨
⎧

−−= 2
23 2

1exp
2

1);( ii
iii

ii fc
fcc

fcg
ττπ

, 

where τ  denotes the scale parameter. If τ  is allowed to vary within classes and written as 
12 −= ii yστ , the likelihood equation is 

    pjfcw
i

iii
j

,...,2,1,0)( ==−=
∂
∂ ∑β
l ,                   (15) 
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where iw  is 
j

i

i

i f
f
y

β∂
∂

3 . 

4.6 Lognormal 

The derivation of the weighted equation for a Lognormal distribution is also slightly different. Let 
the average claim cost, iC , be distributed as Lognormal with parameters if  and 12 −

iyσ . Thus, the 
logarithm of the average claim cost, iClog , is Normal distributed with mean if  and variance 

12 −
iyσ  and the probability density function is now equivalent to  

  
⎭
⎬
⎫

⎩
⎨
⎧ −
−=

− 2

2

12 2
)(log

exp
2

1);(log
σπσ

iii

ii

ii
fcy

yc
fcg . 

The likelihood equation can be written as, 

              pjfcw
i

iii
j

,...2,1            ,0)(log ==−=
∂
∂ ∑β
l .                  (16) 

where iw  is 
j

i
i

f
y

β∂
∂

. Compared to the likelihood equation for other distributions shown by 

Equations (6), (7), (11), (12), (13), (14) and (15), the Lognormal likelihood equation is slightly 
different. 

 

5. OTHER MODELS  

5.1 Least Squares 

The weighted equation may also be extended to other error functions as well. For example, if the 
sum squares error is defined as (Brown [9]) 

∑ −=
i

iii fcyS 2)( , 

the regression parameters may be solved by using the least squares equation        

      pjfcwS

i
iii

j
,...,2,1,0)( ==−=

∂
∂ ∑β

,                   (17) 

where iw  is 
j

i
i

fy
β∂
∂ . 

  The same weighted equation could also be used to show that the least squares is actually 
equivalent to the zero bias if the function of the fitted value is in a linear form (additive model). By 
substituting Equation (9) into Equation (17), the likelihood equation for the least squares is 
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pjfcw
i

iii
j

,...,2,1,0)( ==−=
∂
∂ ∑β
l , 

where iw  is equal to iji xy , and this likelihood equation is equivalent to the zero bias. 

5.2 Modified Chi-squares 

If the function of error is a modified chi-squares which is defined as  

∑ −=
i

ii
i

i fc
c
y 22

mod )(χ , 

the weighted equation is equal to 

pjfcw
i

iii
j

,...,2,1,0)(
2
mod ==−=

∂
∂ ∑β
χ  ,       (18) 

where iw  is 
j

i

i

i f
c
y

β∂
∂ . 

  Table 2 summarizes the weighted equations for all of the models discussed above.  
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Table 2: Weighted equations 

Models 
iw  for weighted equation, 0)( =−∑

i
iii fcw  

 

Zero bias 

 

iji xy  

Minimum 2χ  

j

i

i

iii f
f

fcy
β∂
∂+

2

)(
 

Normal 

j

i
i

f
y

β∂
∂2  

Poisson 

j

i

i

i f
f
y

β∂
∂

 

Exponential 

j

i

i

f
f β∂

∂
2

1  

Gamma 

j

i

i

i f
f
y

β∂
∂

2  

Inverse Gaussian 

j

i

i

i f
f
y

β∂
∂

3  

Least squares 

j

i
i

f
y

β∂
∂

 

Minimum 
modified 2χ  

j

i

i

i f
c
y

β∂
∂

 

 

Models 
iw  for weighted equation, 0)(log =−∑

i
iii fcw  

 

Lognormal 

 

j

i
i

f
y

β∂
∂

 

 

From Table 2, the following conclusions can be drawn: 

• If the function of fitted value is in a linear form (additive), the zero bias and the least squares 
are equivalent. 
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• If the function of fitted value is in a log-linear form (multiplicative), the zero bias and the 
Poisson are equivalent. 

• The weighted equation, which is in the form of a weighted difference between the observed 
and the fitted average claim cost, shows that all models are similar and can be distinguished 
by its weight. 

• Since the weighted equation for all models are similar, the regression parameters for all 
models are expected to be similar. However, the Lognormal regression parameters are 
expected to be different from the rest of other models because its weighted equation is in 
the form of a weighted difference between the logarithm of the observed value and the fitted 
value. 

 
6. FITTING PROCEDURE 

The regression fitting procedure suggested in this study provides a faster convergence compared to 
the classical procedure introduced by Bailey and Simon [1] and Bailey [2]. In the classical procedure, 
each regression parameter, pjj ,...,2,1 , =β , is calculated individually in each iteration whereas in 
the regression procedure, all of the regression parameters are calculated simultaneously in each 
iteration.  

  In the regression fitting procedure, the parameters, jβ , are solved by minimizing, 

                2( )i i i
i

w c f−∑ ,               (19) 

or by equating, 

       ( ) 0i
i i i

i j

fw c f
β
∂

− =
∂∑ ,            pj ,...,2,1= .             (20) 

It can be seen that Equation (20) is equivalent to the weighted equation for the minimum bias and 
maximum likelihood methods shown by Equations (6), (7), (11), (12), (13), (14), (15), (17) and (18). 
As for Equation (16), the equation is equivalent to the same weighted equation if the value of ic  is 
replaced by log ic . 

  By using Taylor series approximation, it can be shown that the value of vector β  in the first 
iteration is  

    ( ) ( )-1T T
(1) (0) (0) (0) (0) (0) (0)β = Z W Z Z W c - s ,                                         (21) 
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where (0)β  is the initial value of vector β , (0)Z  the pn×  matrix whose ij th element is equal to the 
first derivative of the fitted value evaluated at (0)β , 

(0)
( )i

ij
j

fz
β

∂
=

∂
(0)β=β

β , 

(0)W  the n n×  diagonal weight matrix evaluated at (0)β , and (0)s  the 1n×  vector whose i th row is 
equal to 

(0) (0)
1

( )
p

i i j ij
j

s f zβ
=

= −∑(0)β . 

  In the first iteration, the vector of initial values, (0)β , are required to calculate (1)β . The 
process of iteration is then repeated until the solution converges. Since the regression parameters are 
represented by vector β , the regression model solves them simultaneously and thus, providing a 
faster convergence compared to the classical approach. 

As an example, the fitting procedure for the least squares additive whereby the weighted 
equation is equivalent to 

     ( ) 0,      1, 2,...,i
i i i

i j

fy c f j p
β
∂

− = =
∂∑ ,        (22) 

will be discussed here. By comparing the least squares weighted equation, i.e., Equation (22), with 
the regression fitting equation, i.e., Equation (20), the i th diagonal element of the weight matrix, 

(0)W , is equal to iy  and this value is free of (0)β . 

For an additive model, the ij th element of matrix (0)Z  is 

(0)
( )i

ij ij
j

fz x
β

=

∂
= =

∂
(0)β β

β , 

and this value is also free of (0)β . 

Therefore, 

XZ(0) = , 

and 

0=−= (0)(0)(0) Xβ)f(βs , 

and Equation (21) for the least squares additive may now be simplified into 

    WcXWXXββ TT
(1)

1)( −== .        (23) 
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It can be seen that Equation (23) is equivalent to the Normal equation in standard linear regression 
and the equation also indicates that the regression parameters for the least squares additive may be 
solved without any iteration. 

However, for a multiplicative model, the ij th element of matrix (0)Z  is equivalent to  

iji
j

i
ij xf

f
z )(

)(
)0( (0)

ββ

β
β

(0)

=
∂
∂

=
=

β
. 

Therefore, matrix (0)Z  may be written as 

             XFZ (0)(0) = ,                     (24) 

where (0)F  is the nn×  diagonal matrix whose i th diagonal element is )( (0)βif . Vector (0)s  may 
now be written as 

(0)(0)(0)(0) XβF)f(βs −= . 

Besides multiplicative and additive models, the fitting procedure suggested in this study can 
also be extended to other regression models and thus, allowing a variety of regression model to be 
created and applied as long as the function of the fitted value is written as 

10   ,01        ,
1

≤<<≤−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

=

bbxf
bp

j
ijji β . 

As an example, if the fitted average claim cost is assumed to follow an inverse function, i.e., 
1−=b , the ij th element of matrix (0)Z  is equal to 

{ } iji
j

i
ij xf

f
z 2

)0( )(
)(

(0)

ββ

β
β

(0)

−=
∂
∂

=
=

β
. 

Therefore, the equation for matrix (0)Z  may also be written as Equation (24), but the i th diagonal 
element of matrix (0)F  is equal to 2{ ( )}if− (0)β . 

An example of S-PLUS programming for the least squares multiplicative is given in 
Appendix A. Similar programming can also be used for all of the multiplicative, additive and inverse 
models proposed in this study. Each programming should be differentiated only by the following 
three elements: 

• The vector of fitted average claim cost is equal to )exp(Xβf =  for a multiplicative model, 
Xβf =  for an additive model, and 1)( −= Xβf  for an inverse model. 
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• The equation for (0)Z is XZ(0) =  for an additive model, and XFZ (0)(0) =  for both 
multiplicative and inverse models. However, the i th diagonal element of matrix (0)F  is equal 
to )( (0)βif  for a multiplicative model, and 2{ ( )}if− (0)β  for an inverse model. 

• Each model has its own weight matrix. 

 
7. EXAMPLES 

7.1 Malaysian Data 

In this study, the methods of minimum bias and maximum likelihood will be compared and fitted 
on three types of claim severity data; the Malaysian data, the U.K. data from McCullagh and Nelder 
[3] and the Canadian data from Bailey and Simon [1]. For the Malaysian data, the weighted equation 
will be applied on a set of private car Third Party Property Damage (TPPD) claim costs obtained 
from an insurer in Malaysia which covers the legal liability of third party property loss or damage 
caused by or arising out of the use of an insured motor vehicle. The Malaysian data was based on 
170,000 private car policies (1998-2000). The claims, which include both paid and outstanding, were 
already adjusted for inflation and were provided in Ringgit Malaysia (RM) currency. 

  The risks for the Malaysian claims were associated with five rating factors namely scope of 
coverage, vehicle make, vehicle use and gender of driver, vehicle year, and location. Altogether, there 
were 24054322 =××××  cross-classified rating classes of claim severities to be estimated. Appendix 
B shows the rating factors, claim counts and average claim costs for the Malaysian data. 

The fitting procedure involves only 108 data points because 132 of the rating classes have 
zero claim count (or weight). In addition, the models were evaluated using two different tests; the 
chi-squares and the average absolute difference. The average absolute difference, 

∑
∑ −

i
ii

i
iii

cy

fcy
, 

was suggested by Bailey and Simon [1] as a suitable test for the third criteria whereas the chi-squares,  

2 2( )i
i i

i i

yK c f
f

χ = −∑ , 

was proposed by Bailey and Simon [1] as a suitable test for the fourth criteria. 
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Table 3 and Table 4 give the results of the regression parameters, chi-square values and 
average absolute difference for the multiplicative and additive models of the Malaysian data. Based 
on the results, the following conclusions can be made: 

• For multiplicative models, the regression parameters for the Poisson are equivalent to the zero 
bias. 

• For additive models, the regression parameters for the least squares are equal to the zero bias. 

• Except for Lognormal, the regression parameters for multiplicative and additive models are 
similar. The reason is that the observed average claim costs, ic , in the Lognormal were 
replaced by the logarithm of the average claims costs, log ic . 

• Except for Lognormal, the smallest chi-square value is given by the minimum chi-squares for 
both additive and multiplicative models. 

• Except for Lognormal, the smallest absolute difference is given by the least squares for both 
additive and multiplicative models. 

 



Comparison of Minimum Bias and Maximum Likelihood Methods for Claim Severity 

Casualty Actuarial Society E-Forum, Winter 20009 259 

Table 3: Multiplicative models for Malaysian data 
 
Regression parameters Zero 

bias 
Minimum 

2χ  
Normal Exponential Poisson Gamma Inverse 

Gaussian
Least 

squares
Minimum 

modified 2χ
Lognormal

           
)exp( 1β  Intercept 9242.10 9233.24 9278.99 8938.08 9242.10 9257.87 9281.65 9233.38 9267.88 9.14

  
)exp( 2β  Non-comp 1.16 1.18 1.14 1.17 1.16 1.16 1.16 1.16 1.11 1.01

  
)exp( 3β  Foreign 1.08 1.08 1.07 1.21 1.08 1.09 1.09 1.08 1.08 1.01

  
)exp( 4β  Female 0.90 0.90 0.93 0.80 0.90 0.89 0.88 0.90 0.88 0.99
)exp( 5β  Business 0.19 0.19 0.20 0.21 0.19 0.19 0.19 0.19 0.19 0.81

  
)exp( 6β  2-3 years 0.78 0.78 0.78 0.73 0.78 0.77 0.77 0.78 0.77 0.97
)exp( 7β  4-5 years 0.69 0.69 0.68 0.65 0.69 0.68 0.68 0.69 0.68 0.96
)exp( 8β  6+ years 0.72 0.72 0.71 0.71 0.72 0.72 0.72 0.71 0.72 0.96

  
)exp( 9β   North 0.94 0.94 0.93 0.92 0.94 0.94 0.94 0.94 0.93 0.99
)exp( 10β  East 0.86 0.88 0.84 0.88 0.86 0.87 0.88 0.85 0.83 0.98
)exp( 11β  South 0.94 0.94 0.94 1.04 0.94 0.94 0.93 0.94 0.93 0.99
)exp( 12β  East M’sia 0.94 0.97 0.94 1.06 0.94 0.94 0.93 0.95 0.89 0.99

  
  

2χ   476,081 471,147 492,026 844,318 476,081 477,160 480,147 477,541 517,605 8.16
65.62 66.12 66.60 115.76 65.62 66.15 66.63 65.19 66.58 7.83Absolute difference 3( 10 )×  
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Table 4: Additive models for Malaysian data 
 

Parameters  Zero 
bias 

Minimum 
2χ  

Normal Poisson Exponential Gamma Inverse 
Gaussian

Least 
Squares 

Minimum 
modified 2χ

Lognormal

           
1β  Intercept 9167 9165 9254 9165 9006 9166 9171 9167 9170 9.13

   
2β  Non-comp  1038 1201 931 1034 712 1031 1026 1038 684 0.13

   
3β  Foreign 557 597 523 582 1274 606 628 557 555 0.08

   
4β  Female -765 -775 -592 -805 -1537 -838 -863 -765 -884 -0.12

5β  Business -4988 -4981 -4908 -4992 -4858 -4997 -5002 -4988 -5024 -1.64
   

6β  2-3 years -1976 -1983 -1968 -1987 -2315 -2000 -2013 -1976 -2009 -0.26

7β  4-5 years -2793 -2793 -2896 -2810 -2937 -2832 -2855 -2793 -2850 -0.39

8β  6+ years -2505 -2532 -2615 -2508 -2458 -2511 -2515 -2505 -2458 -0.33
   

9β  North -467 -446 -525 -459 -484 -451 -447 -467 -481 -0.07

10β  East -1046 -833 -1084 -946 -782 -869 -815 -1046 -1193 -0.16

11β  South -479 -452 -471 -467 314 -457 -449 -479 -496 -0.07

12β  East M’sia -431 -257 -439 -452 269 -477 -504 -431 817 -0.09
   
   

2χ   468,589 462,541 482,320 467,208 780,662 467,624 469,012 468,589 507,891 8.14

Absolute difference 3( 10 )×  64.65 65.42 65.42 64.97 109.19 65.50 66.02 64.65 66.48 7.81
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7.2 U.K. Data 

The U.K. data provides information on the Own Damage claim counts and average claim costs for 
privately owned and comprehensively insured vehicles (McCullagh and Nelder [3]). The average 
claim costs (in Pound Sterling) were already adjusted for inflation and the risks were associated with 
three rating factors: policyholder’s age, car group, and vehicle age. Altogether, there were 

128448 =××  cross-classified rating classes of claim severities to be estimated. However, the fitting 
procedure involved only 123 data points because five of the rating classes have zero claim count. In 
addition to multiplicative and additive models, the severities were also fitted to the inverse models. 
The results of inverse models were compared to those of McCullagh and Nelder [3], who have 
applied Gamma regression model on the same severity data by assuming that the regression effects 
were linear on reciprocal scale.  

  Table 5, Table 6 and Table 7 give the results of the regression parameters, chi-square values, 
and average absolute difference for the U.K. data. As expected, except for Lognormal, the 
regression parameters for each of the multiplicative, additive, and inverse models are similar. In 
addition, the regression parameters for the Gamma whose fitted value is in the form of an inverse 
function are equal to the regression parameters produced by the McCullagh and Nelder [3]. The 
smallest chi-square value for additive, multiplicative and inverse models is provided by the minimum 
chi-square, whereas the smallest absolute difference for additive, multiplicative and inverse models is 
given by the Gamma. 

7.3 Canadian Data 

The Canadian data was obtained from Bailey and Simon [1] and it provides information on the 
liability claim counts and average claim costs for private passenger automobile insurance. The data 
involves two rating factors, namely merit and class, and altogether there were 2054 =×  cross-
classified rating classes of claim severities to be estimated. In this study, the claim severities were 
fitted to the multiplicative and additive models. 

Table 8 and Table 9 give the results of the regression parameters, chi-square values, and 
average absolute difference for the Canadian data. As expected, each of the multiplicative and 
additive models gives similar estimates for the regression parameters. The smallest chi-square value 
is provided by the minimum chi-squares for both additive and multiplicative models, whereas the 
smallest absolute difference is given by the Normal for both additive and multiplicative models. 
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Table 5: Multiplicative models for UK data 
 

Parameters Zero bias Minimum 
2χ  

Normal Poisson Exponential Gamma Inverse 
Gaussian

Least 
squares

Minimum 
modified 2χ

Lognormal

           
1exp( )β  Intercept 297.57 313.59 279.34 297.57 302.38 286.75 276.52 309.81 257.91 5.61

 
2exp( )β  21-24 years 0.98 0.95 1.05 0.98 0.90 1.00 1.02 0.94 1.08 1.01

3exp( )β  25-29 years 0.91 0.87 0.97 0.91 1.01 0.94 0.97 0.88 1.04 1.00

4exp( )β  30-34 years 0.88 0.84 0.96 0.88 0.75 0.89 0.90 0.86 1.01 0.99

5exp( )β  35-39 years 0.70 0.67 0.75 0.70 0.72 0.73 0.76 0.67 0.79 0.95

6exp( )β  40-49 years 0.77 0.73 0.81 0.77 0.76 0.79 0.80 0.75 0.89 0.97

7exp( )β  50-59 years 0.78 0.75 0.83 0.78 0.79 0.80 0.82 0.76 0.89 0.97

8exp( )β  60+ years 0.78 0.74 0.82 0.78 0.75 0.80 0.81 0.77 0.90 0.97
 

9exp( )β   B 0.99 0.99 0.96 0.99 1.06 1.00 1.01 0.98 0.99 1.00

10exp( )β  C 1.16 1.16 1.14 1.16 1.17 1.17 1.18 1.15 1.16 1.03

11exp( )β  D 1.48 1.50 1.53 1.48 1.60 1.49 1.50 1.48 1.45 1.07
 

12exp( )β  4-7 years 0.91 0.91 0.95 0.91 0.89 0.92 0.92 0.90 0.91 0.98

13exp( )β  8-9 years 0.70 0.70 0.74 0.70 0.66 0.71 0.72 0.69 0.69 0.94

14exp( )β  10+ years 0.49 0.51 0.50 0.49 0.48 0.50 0.50 0.48 0.46 0.87
 
 

2χ   31,410 30,722 32,685 31,410 45,003 31,250 31,948 31,344 34,046 24.03

Absolute difference 3( 10 )×  81.30 82.05 83.06 81.30 106.90 80.74 81.24 83.46 82.73 14.56
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Table 6: Additive models for UK data 
 

Parameters Zero 
bias 

Minimum 
2χ  

Normal Poisson Exponential Gamma Inverse 
Gaussian

Least 
squares 

Minimum 
modified 2χ

Lognormal

           
1β  Intercept 298.67 303.94 273.49 288.34 291.89 278.98 270.03 298.67 241.88 5.60

 
2β  21-24 years  -5.60 -7.53 17.58 0.31 -10.84 4.96 9.08 -5.60 34.01 0.04

3β  25-29 years -24.64 -30.52 -2.01 -16.95 15.31 -9.91 -2.61 -24.64 26.37 -0.01

4β  30-34 years -33.22 -43.39 -7.76 -29.34 -47.35 -26.59 -24.37 -33.22 14.17 -0.06

5β  35-39 years -87.89 -89.26 -64.78 -75.74 -44.23 -64.82 -53.72 -87.89 -33.45 -0.27

6β  40-49 years -66.99 -75.55 -50.51 -60.27 -45.84 -54.15 -47.87 -66.99 -13.68 -0.18

7β  50-59 years -63.35 -70.12 -45.49 -55.64 -36.19 -48.60 -41.39 -63.35 -10.87 -0.17

8β  60+ years -63.15 -72.15 -47.39 -56.91 -44.32 -51.10 -44.79 -63.15 -10.32 -0.17
 

9β  B -2.46 -0.50 -7.03 -0.21 8.19 2.04 4.11 -2.46 -0.30 0.00

10β  C 34.18 35.05 33.89 35.45 25.86 36.41 36.83 34.18 35.84 0.16

11β  D 108.66 113.74 123.07 108.76 97.83 108.90 108.62 108.66 96.09 0.39
 

12β  4-7 years -24.21 -21.98 -10.57 -21.54 -30.60 -19.62 -18.39 -24.21 -20.39 -0.08

13β  8-9 years -76.75 -71.63 -59.08 -72.26 -96.51 -69.12 -67.12 -76.75 -74.38 -0.35

14β  10+ years -126.63 -118.78 -111.15 -121.21 -147.85 -117.94 -116.35 -126.63 -128.54 -0.72
 
 

2χ   34,060 33,200 35,487 33,547 48,796 33,954 35,059 34,060 37,670 24.34

Absolute difference 3( 10 )×  87.22 85.47 86.61 85.33 114.54 85.07 86.26 87.22 88.42 14.66
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Table 7: Inverse models for UK data 
 

Parameters (104) Minimum 
2χ  

Normal Poisson Exponential Gamma Inverse 
Gaussian

Least 
squares 

Minimum 
modified 2χ

Lognormal

          
1β  Intercept 31.23 35.10 32.79 33.24 34.11 35.37 31.30 37.44 1782.06

  
2β  21-24 years  3.12 -0.28 2.41 6.04 1.01 -0.11 4.16 -0.74 -7.66

3β  25-29 years 6.11 2.25 4.75 3.53 3.50 2.30 6.26 0.46 8.40

4β  30-34 years 6.81 2.50 5.30 11.78 4.62 4.23 6.39 0.83 20.99

5β  35-39 years 16.11 12.41 14.97 16.36 13.70 12.64 16.61 11.36 93.71

6β  40-49 years 11.73 8.41 10.28 12.04 9.69 9.25 11.12 5.97 63.00

7β  50-59 years 11.30 7.78 9.96 11.00 9.16 8.47 10.98 5.89 58.45

8β  60+ years 11.26 7.88 9.75 12.39 9.20 8.81 10.58 5.32 58.59
  

9β  B 0.68 2.06 0.70 -2.82 0.38 -0.08 0.93 0.65 0.34

10β  C -5.60 -5.11 -5.68 -6.51 -6.14 -6.70 -5.29 -5.95 -52.43

11β  D -13.90 -14.27 -13.77 -18.24 -14.21 -14.83 -13.55 -13.60 -123.83
  

12β  4-7 years 3.99 2.65 3.95 3.39 3.66 3.38 4.21 3.88 28.61

13β  8-9 years 16.33 15.45 16.83 17.42 16.51 16.21 17.14 17.95 123.20

14β  10+ years 38.52 43.50 41.74 33.78 41.54 41.38 41.97 47.09 275.82
  
  

2χ   30,699 32,744 31,032 42,866 31,166 31,731 31,304 33,693 23.80

Absolute difference 3( 10 )×  81.29 81.93 80.18 99.61 79.23 79.33 81.46 80.30 14.45
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Table 8: Multiplicative models for Canadian data 
 

Parameters Zero bias Minimum 
2χ  

Normal Poisson Exponential Gamma Inverse 
Gaussian

Least 
squares

Minimum 
modified 2χ

Lognormal

           
1exp( )β  Intercept 292.00 291.97 291.08 292.00 294.57 291.92 291.84 292.10 292.07 5.68

  
2exp( )β  Merit X 0.99 0.99 1.00 0.99 0.97 0.99 0.99 0.99 0.98 1.00

3exp( )β  Merit Y 0.99 0.99 0.99 0.99 1.00 0.99 0.99 0.99 0.99 1.00

4exp( )β  Merit B 1.06 1.06 1.07 1.06 1.05 1.06 1.06 1.05 1.06 1.01
  

5exp( )β  Class 2 1.09 1.09 1.09 1.09 1.12 1.09 1.09 1.08 1.08 1.01

6exp( )β  Class 3 1.02 1.02 1.03 1.02 0.98 1.02 1.02 1.02 1.02 1.00

7exp( )β  Class 4 1.17 1.17 1.18 1.17 1.16 1.17 1.17 1.17 1.17 1.03

8exp( )β  Class 5 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.99
  
  

2χ   49,520 49,470 54,461 49,520 80,313 49,542 49,657 49,609 49,895 27.51

Absolute difference 3( 10 )×  10.66 10.59 7.84 10.66 20.38 10.42 10.20 10.94 10.94 1.81
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Table 9: Additive models for Canadian data 
 
Parameters  Zero 

bias 
Minimum 

2χ  
Normal Poisson Exponential Gamma Inverse 

Gaussian
least 

squares
Minimum 

modified 2χ
Lognormal

           
1β  Intercept 291.95 291.83 291.06 291.87 294.77 291.80 291.74 291.95 291.94 5.68

 
2β  Merit X  -4.24 -3.38 0.59 -4.05 -10.11 -3.92 -3.82 -4.24 -5.37 -0.02

3β  Merit Y -3.45 -3.51 -3.95 -3.58 1.00 -3.68 -3.74 -3.45 -3.71 -0.01

4β  Merit B 17.11 17.58 20.28 17.53 15.49 17.92 18.28 17.11 17.44 0.06
 

5β  Class 2 25.16 25.75 25.13 25.35 35.64 25.54 25.73 25.16 24.63 0.08

6β  Class 3 4.71 4.80 8.26 4.68 -6.92 4.65 4.62 4.71 4.43 0.02

7β  Class 4 51.08 51.28 53.30 51.18 47.12 51.30 51.42 51.08 51.01 0.16

8β  Class 5 -22.92 -22.79 -23.60 -22.99 -25.33 -23.05 -23.11 -22.92 -23.38 -0.08
 
 

2χ   46,776 46,665 51,049 46,713 82,024 46,722 46,790 46,776 47,074 27.22

Absolute difference 3( 10 )×  10.08 9.79 7.17 9.86 20.51 9.66 9.49 10.08 10.10 1.79
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8. CONCLUSION 

This study compares several minimum bias and maximum likelihood methods by using a weighted 
equation which is written as a weighted difference between the observed and the fitted values. The 
weighted equation was applied to estimate claim severity or average claim cost which is equivalent to 
the total claim costs divided by the number of claims.  

  The weighted equations are summarized in Table 2. Based on the weighted equations, it can 
be concluded that the equations for zero bias and least squares are equal if the function of fitted value is 
linear (additive model) and the equations for zero bias and Poisson are equal if the function of fitted 
value is log-linear (multiplicative model). It can also be shown from the weighted equations that all 
models are similar and can be distinguished by its own weight, except for Lognormal where the 
observed average claim costs, ic , were replaced by the logarithm of the average claim costs, log ic . 

  The fitting procedure was suggested to be carried out using a regression approach. The 
advantage of using the regression fitting procedure is that it provides a faster convergence compared 
to the classical procedure introduced by Bailey and Simon [1] and Bailey [2]. Furthermore, the fitting 
procedure may also be extended to other models in addition to the multiplicative and additive 
models, as long as the function of fitted value is written in a specified linear form. A similar 
programming for the fitting procedure may also be used for all of the multiplicative, additive and 
inverse models proposed in this study. Each model should be differentiated only by three elements: 
the vector of fitted average claim cost, f ;  the equation for matrix Z ; and the equation for weight 
matrix, W . 

  In this study, the minimum bias and maximum likelihood methods were applied to fit three 
types of severity data: the Malaysian data, the U.K. data from McCullagh and Nelder [3], and the 
Canadian data from Bailey and Simon [1]. The models were tested based on the average absolute 
difference and the chi-square value. Based on the results, except for Lognormal, the smallest chi-
square value is given by the minimum chi-squares. As for the absolute difference, the smallest value for 
the Malaysian, U.K., and Canadian data is provided by the least squares, Gamma and Normal, 
respectively. The U.K. data also showed that the regression parameters for Gamma with an inverse 
fitted function are equivalent to those produced by the McCullagh and Nelder [3]. 

 When this study was carried out, two main targets were outlined: to provide strong basic 
statistical justification for the available models, and to search for a match point that is able to merge 
the available parametric and nonparametric models into a more generalized form. It is hoped that a 
more friendly and efficient computation approach can be created through both of these targets. As a 
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result, this study managed to not only offer more models which include both parametric and 
nonparametric approaches, but also a friendlier computation method.  

Even though the approach taken in this study was based on statistical parametric theory, the 
theory can be matched with nonparametric theory as well. For the proposed models, the actuary 
does not really have to determine the statistical distribution appropriate for the available data; all he 
needs to do is just determine the weight. Therefore, the main principle which is applied in this 
approach is the selection of an appropriate weight suitable for the available data. The proposed 
models may be more flexible and at the same time able to attend both streams of thought in 
statistics; nonparametric and parametric. 

Besides modeling aspects, the suggested regression approach may build a base for efficient 
computation as well as analysis. The reason is that the regression approach allows the data to be 
analyzed, interpreted, and predicted with a similar manner to the data analysis, interpretation, and 
prediction of the regression analysis.  

  Finally, rewriting the equations of minimum bias and maximum likelihood as a weighted 
equation has several advantages: 

• The mathematical concept of the weighted equation is simpler and hence, providing an 
easier understanding particularly for insurance practitioners. 

• The weighted equation allows the usage of a regression model as an alternative programming 
algorithm to calculate the regression parameters. 

• The weighted equation provides a basic step to further understand the more complex 
distributions such as Gamma, Inverse Gaussian, and Lognormal. 

• The weights of each of the multiplicative, additive and inverse models show that the models 
have similar regression parameters. 
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Appendix A: S-PLUS programming for least squares multiplicative 
 
leastsquares.multi <- function(data) 
{ 
# To identify matrix X, vector cost and vector count from the data 
 X <- as.matrix(data[,-(1:2)]) 
 cost <- as.vector(data[,1]) 
 count <- as.vector(data[,2]) 
#  To set initial values for vector beta 
 new.beta <- c(10, rep(c(0.01), dim(X)[2])) 
#  To start iteration 
 for (i in 1:20) 
 { 
  beta <- new.beta 
  fitted <- as.vector(exp(X%*%beta)) 
  Z <- diag(fitted)%*%X 
  W <- diag(count) 
  r.s <- cost-fitted+as.vector(Z%*%beta) 
  new.beta <- as.vector(solve(t(Z)%*%W%*%Z)%*%t(Z)%*%W%*%r.s) 
 } 
#  To calculate fitted values, chi-square and absolute difference 
 fitted <- as.vector(exp(X%*%new.beta)) 
 chi.square <- sum((count*(cost-fitted)^2)/fitted) 
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 abs.difference <- sum(count*abs(cost-fitted))/sum(count*cost) 
#  To list programming output 
 list  (expbeta= exp(new.beta), chi.square= chi.square,  
   abs.difference= abs.difference) 
} 
 
 
Appendix B: Malaysian data 
 

Rating factors 
Scope of coverage Vehicle 

make 
Vehicle use & 
gender of driver

Vehicle 
year 

Location 
Claim 
count 

Average 
claim cost 

(RM) 
 
Comprehensive 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Local 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Private-male 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Private-female 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
0-1 year 
 
 
 
 
 
2-3 year 
 
 
 
 
 
4-5 year 
 
 
 
 
 
6+ year 
 
 
 
 
 
0-1 year 
 
 
 
 
 
2-3 year 
 
 
 
 
 
4-5 year 
 
 
 
 
 
6+ year 

 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 

 
381 
146 
44 

161 
8 
 

422 
203 
41 

164 
19 

 
276 
145 
29 

115 
17 

 
223 
150 
39 
89 
33 

 
165 
55 
12 
23 
6 
 

147 
72 
12 
39 
8 
 

56 
36 
7 

23 
2 
 

51 

 
9290 
8775 
6447 
8484 
7785 

 
7220 
6713 
6461 
7298 
4037 

 
6558 
5220 
6415 
5554 
6937 

 
6678 
6230 
5372 
5915 
5005 

 
9136 
7876 
7536 
6789 

10306 
 

6642 
5731 
5038 
6023 
3977 

 
5545 
4642 
4565 
5038 
3818 

 
5709 
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Foreign 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Business 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Private-male 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Private-female 
 
 
 

 
 
 
 
 
0-1 year 
 
 
 
 
 
2-3 year 
 
 
 
 
 
4-5 year 
 
 
 
 
 
6+ year 
 
 
 
 
 
0-1 year 
 
 
 
 
 
2-3 year 
 
 
 
 
 
4-5 year 
 
 
 
 
 
6+ year 
 
 
 
 
 
0-1 year 
 
 
 

North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 

38 
5 

23 
9 
 

0 
0 
0 
0 
0 
 

0 
0 
0 
0 
0 
 

0 
0 
0 
0 
0 
 

0 
1 
0 
0 
0 
 

          94 
47 
21 
38 
6 
 

202 
85 
21 
65 
23 

 
157 
85 
15 
73 
24 

 
245 
151 
44 

113 
64 

 
29 
11 
2 

17 

6272 
2869 
6243 
3765 

 
0 
0 
0 
0 
0 
 

0 
0 
0 
0 
0 
 

0 
0 
0 
0 
0 
 

0 
1206 

0 
0 
0 
 

8986 
9402 
7321 
9170 

11507 
 

8251 
6772 
5332 
5821 
9503 

 
6498 
8235 
8758 
6391 
7047 

 
6923 
6777 
7563 
7266 
7047 

 
10442 
7599 
9492 
9003 
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Non-
comprehensive 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Local 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Business 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Private-male 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
2-3 year 
 
 
 
 
 
4-5 year 
 
 
 
 
 
6+ year 
 
 
 
 
 
0-1 year 
 
 
 
 
 
2-3 year 
 
 
 
 
 
4-5 year 
 
 
 
 
 
6+ year 
 
 
 
 
 
0-1 year 
 
 
 
 
 
2-3 year 
 
 
 
 
 
4-5 year 

East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 

6 
 

46 
41 
5 

13 
10 

 
39 
15 
0 

16 
11 

 
47 
35 
6 
9 

10 
 

0 
0 
0 
0 
0 
 

0 
0 
0 
0 
0 
 

0 
0 
0 
0 
0 
 

0 
0 
0 
0 
0 
 

0 
0 
0 
0 
0 
 

3 
0 
0 
1 
0 
 

1 

5867 
 

6460 
5966 
3463 
7329 
5222 

 
4798 
4921 

0 
4384 
6792 

 
5197 
7131 
6480 
5152 
7718 

 
0 
0 
0 
0 
0 
 

0 
0 
0 
0 
0 
 

0 
0 
0 
0 
0 
 

0 
0 
0 
0 
0 
 

0 
0 
0 
0 
0 
 

10225 
0 
0 

14265 
0 
 

3619 
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Private-female 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Business 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
6+ year 
 
 
 
 
 
0-1 year 
 
 
 
 
 
2-3 year 
 
 
 
 
 
4-5 year 
 
 
 
 
 
6+ year 
 
 
 
 
 
0-1 year 
 
 
 
 
 
2-3 year 
 
 
 
 
 
4-5 year 
 
 
 
 
 
6+ year 
 
 
 

North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 

5 
0 
1 
0 
 

9 
5 
2 
4 
2 
 

0 
0 
0 
0 
0 
 

0 
1 
0 
0 
0 
 

0 
1 
0 
0 
0 
 

1 
0 
0 
0 
1 
 

0 
0 
0 
0 
0 
 

0 
0 
0 
0 
0 
 

0 
0 
0 
0 
0 
 

0 
0 
0 
0 

5003 
0 

3375 
0 
 

8736 
5142 
3598 
8673 

17210 
 

0 
0 
0 
0 
0 
 

0 
1563 

0 
0 
0 
 

0 
3619 

0 
0 
0 
 

2003 
0 
0 
0 

4455 
 

0 
0 
0 
0 
0 
 

0 
0 
0 
0 
0 
 

0 
0 
0 
0 
0 
 

0 
0 
0 
0 
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Foreign 

 
 
Private-male 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Private-female 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Business 

 
 
0-1 year 
 
 
 
 
 
2-3 year 
 
 
 
 
 
4-5 year 
 
 
 
 
 
6+ year 
 
 
 
 
 
0-1 year 
 
 
 
 
 
2-3 year 
 
 
 
 
 
4-5 year 
 
 
 
 
 
6+ year 
 
 
 
 
 
0-1 year 
 
 
 
 
 
2-3 year 

East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 

0 
 

0 
0 
0 
0 
0 
 

0 
3 
0 
2 
0 
 

0 
3 
0 
0 
3 
 

49 
71 
6 

56 
22 

 
0 
0 
0 
0 
0 
 

0 
0 
0 
0 
0 
 

0 
0 
0 
0 
0 
 

14 
15 
2 
6 
3 
 

0 
0 
0 
0 
0 
 

0 

0 
 

0 
0 
0 
0 
0 
 

0 
6739 

0 
12657 

0 
 

0 
9796 

0 
0 

13812 
 

7234 
7740 
9383 
8108 
6207 

 
0 
0 
0 
0 
0 
 

0 
0 
0 
0 
0 
 

0 
0 
0 
0 
0 
 

6942 
7462 
6148 

10584 
10168 

 
0 
0 
0 
0 
0 
 

0 
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4-5 year 
 
 
 
 
 
6+ year 

North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 
Central 
North 
East 
South 
East Malaysia 
 

0 
0 
0 
0 
 

0 
0 
0 
0 
0 
 

0 
0 
0 
0 
0 

0 
0 
0 
0 
 

0 
0 
0 
0 
0 
 

0 
0 
0 
0 
0

Total 5,728 -
 


