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Unstable Loss Development Factors 

Gary Blumsohn, FCAS, Ph.D., and Michael Laufer, FCAS, MAAA 
 

Abstract 
Most actuaries learn loss development on the job and pick up whatever techniques are being used by those 
around them.  The experienced actuary is exposed to many varieties of methods and techniques.  In dealing with 
unstable triangles, actuaries will employ myriad assumptions, judgments and tools along the way to selecting loss 
development factors.  The authors describe a recent survey demonstrating the variety of methods and variability 
of selections of loss development factors (prior to consideration of the tail) and the variability of the resulting 
reserve projections. 
 
Keywords:  Reinsurance Analysis, Trend and Loss Development, Reserving Methods, Reserve Variability, 
Uncertainty and Ranges. 

 

1. INTRODUCTION 

A major challenge in day-to-day reinsurance actuarial work is selecting loss development factors 
when triangles are unstable.  This topic does not receive significant attention in exams and papers, 
and yet it’s something reinsurance actuaries encounter regularly. Most actuaries learn how to select 
loss development factors on the job, picking up rules of thumb and helpful approaches along the 
way.  Whether these ad hoc approaches are good or bad depend on the particulars of the underlying 
data. 

In the early part of 2008, we asked a group of actuaries to select loss development factors for a 
12-year triangle of umbrella business (disguised in various ways to avoid divulging proprietary 
information).  The selection of the group was not random:  it consisted of people signed up to 
attend the 2008 Casualty Actuarial Society Seminar on Reinsurance, as well as various acquaintances 
of the authors.  There was nothing special about this triangle, other than that it was deemed to be 
sufficiently unstable for the purpose at hand. 

The triangle was provided in an Excel spreadsheet, and the participants were asked to select age-
to-age factors.  To keep the topic focused on the triangle, participants were instructed to ignore the 
tail factor. They were also asked to describe how they selected their factors, including such items as 
what types of averages they relied on, how they dealt with outliers, and how they dealt with reversals 
in the pattern.  The original request, including the triangle, is shown in Appendix A. 

Originally, the project was intended to lead to work that would provide some guidance on the 
selection of factors.  This paper does not provide such guidance, except indirectly.  Rather, this 
paper reports the results of what we received and catalogs the high variation in people’s responses.  
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While we provide some commentary along the way, we largely allow the results to speak for 
themselves. 

We received 52 responses, although only 51 of them gave us selected factors. The other one, 
from senior actuary with many years of experience, gave us a list of questions that one would need 
to ask before even beginning to select factors. Though this actuary had a point, we continued with 
our project nevertheless. 

Initial reactions from people varied from the positive  

“Great and gutsy project!” 

to the horrified 

“I believe the whole notion of ‘picking factors’ with no statistical guidance is something of a disgrace to the 
profession….” 

to the concerned 

“While it may be helpful to share ideas on how to pick LDFs, it is vital that more information than just 
the triangle at hand be considered…  I wouldn’t make selections without other information such as individual 
claim information, changes in the underlying business, comparison to competitor or industry triangles if 
available, etc.  Of course you can’t always get the information you want…but I would hate to see people come 
to the seminar and learn some new selection techniques that don’t look beyond the triangle.” 

2. THE RESULTS 

This section of the paper summarizes the results we received. For now, we content ourselves 
with describing the outputs, leaving for later people’s explanations of their loss development factor 
picks. 

The graphs below show the age-to-age (ATA) factors and the age-to-ultimate (ATU) factors 
selected by each of the 51 participants. While it isn’t easy to draw detailed conclusions simply from 
looking at the graphs, one can quite easily see that the range of selections is wide. 
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a paper that is more psychology and rules of thumb than technical actuarial work, we are interested 
in the practical import of the dispersion among actuaries’ selections. In that vein, our measure of 
dispersion will rely on looking at the expected reserve from a chain-ladder projection – in this case, 
the dispersion of the expected chain-ladder reserve that results from the different factor selections.  
We are, of course, aware that most actuaries would not use only one method to get the reserves, and 
would quite likely rely on a more stable method, like the Bornhuetter-Ferguson, to estimate the 
reserves for the more recent years.  However, for our purposes we choose to ignore this because we 
are focusing on the development factors, rather than on the full range of reserving procedures. 

The table below and the graph that follows show the implied reserves from the 51 respondents, 
ranging from a low of $10.7 million to a high of $60.2 million.  The mean is $28.0 million, with a 
standard deviation of $8.3 million – a coefficient of variation of a whopping 30%. 

Implied chain-ladder reserves, sorted from lowest to highest 
(in $millions) 

1 10.7  18 24.7  35 29.5 
2 18.3  19 24.8  36 29.8 
3 18.5  20 25.0  37 29.8 
4 18.6  21 25.1  38 30.9 
5 19.5  22 25.4  39 31.3 
6 21.0  23 25.6  40 31.7 
7 21.2  24 25.9  41 31.8 
8 21.3  25 26.2  42 32.4 
9 21.8  26 26.2  43 33.5 

10 22.0  27 26.7  44 33.5 
11 22.8  28 26.9  45 33.5 
12 23.4  29 27.1  46 38.0 
13 23.7  30 27.5  47 38.2 
14 23.7  31 27.6  48 39.0 
15 24.4  32 28.7  49 39.2 
16 24.6  33 29.1  50 55.2 
17 24.7  34 29.4  51 60.2 

      
Mean 28.0 

Median 26.2 
Std. deviation 8.3 

Coefficient of variation 30% 
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The range and the standard deviation of the reserves are greatly widened by three apparent 
outliers:  one on the low end with reserves of $10.7 million, and two high-end selections of $60.2 
million and $55.2 million. 

Half the responses implied reserves in a fairly tight range between $23.7 million and $30.9 
million. However, one cannot ignore that half the actuaries made picks that implied loss reserves 
outside of this range. In a world in which many employers, regulators, auditors, and investors seem 
to think actuaries can make loss picks that are within 10% of the “truth,” this should be sobering.  
And it should not be forgotten that we deliberately ignored the tail factor in this exercise, which 
reduces the volatility. 

The following graph shows the distribution of the reserves by accident year. It is not surprising 
that the greatest variability is in the most recent years. 

 

Mean 
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This graph has profound implications for pricing actuaries. It is not unusual for an actuary 
pricing a quota share to have 10 or fewer years of data. One would typically trend and develop losses 
and on-level the premiums, to bring everything to current level. One would then typically review the 
series of loss ratios in an attempt to divine the most likely loss ratio for the year being priced. Many 
pricing actuaries put more weight on the recent years than on the older years, on the assumption 
that more recent information is more valuable. However, the volatility in the estimates of the most 
recent years is extremely high, so that there is a high probability that the pricing estimate will differ 
significantly from the true mean. 

In interpreting these results, it should not be forgotten that the distribution shown here is a 
distribution of estimates of the mean of the distribution of the unpaid losses.  It is not a distribution of 
the unpaid losses.  Typically, although not necessarily, the distribution of the unpaid losses will be 
considerably wider than distribution of estimates of the mean of the distribution of unpaid losses.  
For example, if we assume the estimate of the mean of the unpaid losses has a standard error of 
30%, and the distribution of unpaid losses, given the expected reserve, has a coefficient of variation 
of 15%, then one would have to mix these two distributions to get an overall distribution of 
outcomes. The potential dispersion of loss reserve outcomes is extremely high. 
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2.1 A Side-Note on Reserve Variability and the Reputation of Casualty 
Actuaries 

In March 2008, the CAS Task Force on Enhancing the Reputation of Casualty Actuaries 
produced a report ([2]) that discussed, among other things, the need for actuaries to communicate 
the uncertainty of their estimates to ensure that users understand it.  They also called for an 
improvement in actuarial methodologies and terminology, all of which is to be applauded.  What 
struck us, relative to our work in this paper, was a section titled “Comparison of Methods” on pp. 
16 – 18 of that report, and, in particular, a graph on p. 17, reproduced below. 

 
 

The graph shows the distribution of reserves that emerge from four approaches actuaries have 
used for getting a distribution of reserves, as applied to some unspecified general liability data.1  

 While we endorse the task force’s suggestion that actuaries be concerned with the variability of 
reserves as demonstrated by a particular method, we want to stress the need to account for both the 
variability that results from a particular method of calculation as well as the variability among 
particular methods of calculation.  At each step of the process, there is variability, and all the 
variability gets compounded.  For example, if my analysis indicates that the mean loss reserve for a 
block of business is 100, and my approach to calculating the standard deviation of the reserve 
indicates that the standard deviation is 15, I could proceed to use those assumptions to estimate, say, 

                                                 
1  For Mack method, see [7]; for HFB method see [6]; for Bootstrap method see [3]; and for LSM method see [8]. 
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the 95th percentile of the distribution of losses.  However, I must recognize that if another actuary 
were to estimate the mean, that estimate could easily be, say, 92 or 112.  Even if the other actuary’s 
estimate of the standard deviation were the same as mine, the range of possible outcomes from 
these two actuaries will be considerably wider than the range of possible outcomes from my estimate 
alone.  And if we recognize that the difficulties in estimating the standard deviation and the shape of 
the distribution are even greater than the difficulties in estimating the mean, we should recognize 
that our ability to accurately pin down the tail probabilities is very limited. 

For example, in the GL example used by the CAS Task Force on Enhancing the Reputation of 
Casualty Actuaries, some of the methods gave a 95th percentile that is about 25% above the mean.  If 
we assume, for convenience, that the reserves are lognormally distributed, this implies a coefficient 
of variation of about 15%.  However, if we assume that the mean itself is lognormally distributed 
with a mean of 30%, then the mixture of the two distributions gives a 95th percentile that is more 
than 60% higher than the mean.  To make things even harder, once one realizes that estimates of the 
coefficients of variation are themselves just estimates, and that the shape of the distribution is 
usually not much more than an educated guess, one realizes that one can place little faith in one’s 
estimates of the tails of the distribution.  If one is worried about the credibility of casualty actuaries, 
this is a key point that must be made. 

2.2  How Did Participants Get Their Factors? 

Most of the participants (42 of the 51) either wrote some explanation of how they had derived 
their factors or set up a spreadsheet so that it could be inferred how they thought. Broadly, these can 
be divided into those who picked factors based on reviewing the various averages of the factors (34 
of the 42) and those who used some statistical approach to the problem (8 of the 42), though it must 
be noted that this classification is somewhat arbitrary, as there were a number of responses that were 
in a gray area, and where we used our judgment.  A complete listing, edited for spelling and 
anonymity, together with the selected factors, is in Appendix B. 

In comparing the factors from the various methods, we calculated the means and standard 
deviations of the implied loss reserves: 

 

Method 
classification 

# of 
Respondents

Mean implied 
reserve 

(in $millions) 

Standard deviation of the implied 
reserve 

(in $millions) 
Pick 34 27.1 5.9 

Statistical 8 36.0 13.2 
Not clear 9 24.6 5.0 

Total 51 28.0 8.3 
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The statistical approaches gave a mean and standard deviation that were both much higher than 
from the pick approaches.  However, given the small number of statistical approaches, and the 
possibly random fact that both of the high-end outliers are statistical approaches, this might be 
noise, rather than a signal that statistical methods generally lead to higher answers. 

2.3  What Methods Did Participants Consider in Developing Their Factors? 

We found broad categories in which participants described what they considered in making their 
factor selections, and they are summarized in the table below.  Any single respondent might have 
given thought to more than one of these considerations, and some respondents did not tell us how 
they got their selections.  Many respondents gave thought to why different methods were yielding 
different results, and they described why they believed a particular method to be appropriate to the 
case at hand. 

The three responses well out of range mentioned above are removed from this table.  The 
average estimate for the remaining 48 respondents is $27.2 million with a standard deviation of $5.3 
million. 

Table:  Considerations in Selecting Factors for Unstable Triangles 
 

 
Average Reserve 

(in $millions) 

Standard 
Deviation 

(in $millions) 
# of 

Respondents
Consideration Yes No Yes No Yes No 

(1) Removed Outliers (including ex-high-low) 27.9 27.8 5.3 5.5 15 21 
(2) Smoothed Links 28.7 24.0 8.1 3.3 23 13 
(3) Would Use Only Factors > 1.00 27.5 25.0 5.7 1.0 12 5 
(4-a) Used Volume Weighted Average 26.6 34.7 6.9 7.6 30 3 
(4-b) Used Straight Average 25.2 27.6 11.3 5.1 8 24 
(4-c) Used Ex-High-Low Average 27.1 28.0 5.6 5.0 12 17 
(5) Used All (or Nearly All) Years 29.2 21.7 5.0 8.4 19 11 
(6) Used Industry Data 32.4  4.8  3  
(7) Used Regression or Other Curve Fitting 28.0  4.9  9  
(8) No Risk Margin 24.7  7.3  2  
(9) Wanted More Information 26.2  8.3  17  

 
The decision whether or not to consider a certain method might have resulted in significantly 

different results; for example, whether to smooth the data, rely on all-year averages, use industry 
data, use curve-fitting techniques, or use volume-weighted averages. 

We now address each category listed above in more detail. 
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2.3.1  Removing outliers (15 responses) 

Some respondents began by checking the data for anomalies, and by excluding certain years or 
links; for example by excluding certain links when calculating link averages, by removing certain 
accident years, or by not using an average that contained the outlier.  The questions here are (1) the 
extent to which outliers in the data can be identified, (2) the potential causes of the outliers, (3) how 
the outliers should be treated, and (4) the impact of removing or including the outliers on the result. 

These questions are somewhat beyond the scope of this paper.  Without resolving these issues, it 
seems we should consider the following: 

• From a purely statistical standpoint, one might argue that removing outliers will tend to bias the 
results, especially seeing the distribution of development factors is probably positively skewed, 
so that outliers are more likely to be identified in the right-hand tail of the distribution.  If these 
outliers are discarded, there will be a tendency for results to be biased downwards.2 

• It must be recognized, though, that most triangles consist of a small number of points.  A 12-
year triangle, such as we are using as the basis for this paper, has only 66 loss-development 
points – hardly a large sample with which to apply fancy techniques.  Outliers, particularly 
towards the tail of the triangle, can sharply change the results. 

• If one is dealing with a large number of triangles, one might be most concerned with having an 
unbiased set of development factors.  This might be the case if one is doing a reserve study, has 
divided the book of business into 20 segments, and is selecting development factors for each 
segment.  By retaining the outliers, one acknowledges that the reserves on some segments will be 
high, and others will be low, but overall, one hopes to have an unbiased result.  On the other 
hand, suppose one is a pricing actuary, separately pricing 20 reinsurance transactions.  If one 
retains the outliers, the results on the 20 transactions may well be unbiased, but since clients are 
more likely to accept quotes that are based on low development factors than quotes based on 
high development factors (the well-known Winner’s Curse – see [10], for example), the business 
that ends up on the books will more likely be where the loss estimates were biased downwards.  
In this situation, reducing the variance of the results by eliminating outliers may be more 
important than introducing a (hopefully) small amount of bias in the results.  The uncomfortable 
upshot is that actuaries must recognize that there is no “best way to select development factors” 
isolated from the purpose for which those factors are being selected.  Context matters. 

• Until now, we’ve assumed the outlier question is a statistical one.  Beyond the statistical 
question, there’s the question of data errors.  Reinsurance actuaries are familiar with the 
problems of data quality, and our well-honed intuition is alert for outliers that are not the result 

                                                 
2 For a recent discussion of the impact of skewed distributions and small sample sizes in actuarial work, see [4]. 
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of statistical fluctuation, but are the result of claim-department policy changes, changes in 
underwriting approach, changes in the mix of business, changes in the approach to settling 
claims or setting case reserves, coding errors, claim personnel errors, or simply errors without a 
cause known to the actuary.  As a practical matter, it’s virtually impossible for reinsurance 
actuaries to uncover the causes of many of the fluctuations in the data, or even to identify 
whether they are statistical fluctuations rather than data errors.  We can speculate as to the 
causes, but without details of the underlying policies and claims, it’s impossible to pin them 
down.  Our assumption in eliminating outliers is that we are able to improve the quality of the 
data, and hence the quality of the answers, through “actuarial judgment,” but one wonders 
whether it would be possible to somehow set up an experiment that would test this assumption.3 

2.3.2  Link smoothing (23 responses) 

Some respondents smoothed selected links across ages.  A few believed it was appropriate to 
consider adjusting for reversals in the factors where links did not show a smooth pattern of 
decreasing with maturity; however others believed it unnecessary to smooth links at all. 

Some respondents may have adjusted the data when they perceived takedowns followed later by 
upwards adjustments, or the reverse.  In general, it probably isn’t a bad a priori assumption that age-
to-age factors decrease monotonically and smoothly until they reach 1, but it’s only an assumption, 
and there are significant situations where the assumption has been wrong. 

One of the authors worked on an instructive situation where this assumption proved wrong.  It 
involved pricing working-layer excess workers compensation reinsurance.  In reviewing the 
incurred-loss triangle, a surprising number of the 24-to-36 factors developed downwards, despite all 
the surrounding factors developing upwards.  At first, we were tempted to smooth out this 
downward development.  However, this was one of the relatively rare situations where we had 
complete access to the underlying data, and, once we examined the data, the downward 
development made perfect sense.  The layer was high enough that most of the dollars of claims in 

                                                 
3   The recent book Super Crunchers by Ian Ayres [1] devotes a chapter to “Experts Versus Equations” (pp. 112 – 139), 
which presents evidence that mechanically applied equations seem to come up with better predictions than “experts” in 
a wide variety of situations.  Ranging from models of legal decision-making that were better at predicting Supreme Court 
decisions than a group of experts, to medical studies where models were better at predicting how patients with 
schizophrenia would respond to electroshock therapy, to studies showing that models made better purchasing decisions 
than professional purchasing managers, Ayres contends that models work better than experts.  He attributes the failures 
by experts to the cognitive biases and overconfidence that are by now well known. 
 
In the actuarial case, it would be intriguing to have an experiment to test whether, over a large number of triangles, one 
would get better answers from purely mechanical application of some algorithm for selecting development factors.  We 
like to think we add value in our analysis of loss triangles, and no doubt some data errors would not be revealed by an 
algorithm.  But one wonders whether the data “errors” we find, and the outliers we throw out, are too often valuable 
bits of data that we choose to ignore more frequently than we should – at our peril and at the peril of our employers. 
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the layer, and especially those that were reported early, were from very severe injuries, such as brain 
and spinal-cord injuries.  When the case reserves were first put up, they covered an “average” claim 
amount for that injury type.  However, a significant fraction of severely injured people die within a 
year or two of the injury, and when that happened, the case reserve dropped to zero, or perhaps a 
small amount paid to the claimant’s survivors.  Meanwhile, the case incurred amount on those 
claimants who survived was kept the same as when it had first been set, with no increase.  This 
explained the downward case development observed in the 24-to-36 factor.  The subsequent upward 
case development was explained by less obviously severe claims, such as back or knee injuries, 
bleeding into the excess layer, as well as eventual recognition of increased costs due to medical 
inflation and increased life expectancies for those who survived the first couple of years.  As 
actuaries, we may have suggestions for better ways to set the case reserves so that the loss 
development is smoother, but the bottom line is that we were not the ones setting the case reserves, 
and the downward development was real.  The real world isn’t always smooth. 

2.3.3  Adjusting for factors less than 1.00 

Akin to smoothing links, some respondents believed it was appropriate to adjust for reversals in 
the data where development factors were less than 1.00.  Some expressed a tolerance for 
development factors that were marginally less than 1.00. 

The workers compensation example given above applies to this situation as well.  Sometimes 
downward development is real.  Reinsurance actuaries sometimes learn about the case reserving 
habits of their clients – which clients tend to under-reserve and which tend to over-reserve.  It is not 
altogether unusual to have downward development on incurred triangles (and occasionally on paid 
triangles).  Most actuaries will concede this point, but when given a triangle where the case reserving 
practices are unknown, they are often resistant to allowing downward development, and perhaps for 
good reason.  Downward case development is often a tipoff to bad data, or the existence of some 
unusual situation that is unlikely to be predictive of future downward development.  While we 
cannot be sure that downward development is wrong, it may be correct to underweight it. 

Another valid downward development situation occurs, of course, at mature ages in lines with 
significant salvage or subrogation, when data is given net of paid salvage and subrogation. 

2.3.4  Type of average 

Many respondents thought it was appropriate to calculate a variety of averages using varying 
weights and varying years.  After doing so, respondents felt better equipped to discern trends, spot 
outliers, or raise other questions about the data. 

Preferences for how to weight the averages ranged widely.  (1) Some participants expressed a 
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preference for volume-weighted averages on unstable triangles to avoid over-weighting erratic low-
volume years.  (2) Others were apprehensive about using volume-weighted averages without 
additional information such as large claim information, and preferred to use straight averages.  (3) 
Some thought it was appropriate to use averages-excluding-high-low.  (4) Some weighted their 
averages using time-sensitive weights. 

Daniel Murphy’s paper “Unbiased Loss Development Factors” [8] treats development factors as 
regression coefficients from the equation y = bx + error, and shows the various assumptions that 
would make weighted or unweighted averages the best choice.  Various authors have concluded that 
it generally appears that weighted averages are better than unweighted averages.  See, for example, 
Struzzieri and Hussian’s nice summary of these various results in their section “Best Link Ratio 
Averages” (pp. 384 – 388 of [9]).  However, the interesting thing is that, with all of these papers by 
Murphy and Mack and others stressing that the key item is to check the assumptions, only one of 
the respondents to our survey appeared to have actually checked the assumptions (respondent 
number 32 – see Appendix B). 

Though, as Struzzieri and Hussian note (p. 386), the literature generally supports weighted 
averages over unweighted averages, it is not perfectly settled in our minds.  A counter to weighted 
averages is that if, say, high development factors correspond to years with high volume, the 
weighted average could bias the answer high.  Another counter would be that in a time of high 
inflation, more recent years get more weight, even though they may be no different from the earlier 
years in real terms.  While these counter-arguments are correct, our casual empiricism says that for 
the typically unstable triangles that we see in reinsurance, weighted averages are almost always 
superior. 

2.3.5  Appropriate number of years to use in the average 

Many participants preferred to use all (or nearly all) valuation years of data when reviewing 
unstable triangles.  Others gave more weight to recent valuations, sometimes looking for patterns 
that they believed were different and discernible in the most recent valuations. 

We are not aware of literature that answers the question of whether to put more weight onto 
recent information.  Intuitively, it seems reasonable, since we believe the statistical process 
underlying the loss development changes over time, so more recent data is likely to be more 
representative of the future.  However, the guidance on when to use each type of average seems to 
be fairly informal. 

On the other hand, volatile data might be the result of claim situations that occur infrequently.  
For example, if a particular type of claim is encountered only once or twice a decade, and the 
development pattern for this type of claim is unique, it makes sense to include as many years as 
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possible, to capture the data from this infrequent claim type.  If this particular claim situation and its 
resulting development would not be captured in the most recent three or five-year average, using 
these short-term averages could yield inaccurate results; or if it is captured in the most recent years, 
it could be overweighted. 

In determining the appropriate number of years to use, it is important for the actuary to assess 
the issues of (a) using later information, which presumably provides better insight into changes in 
the claims development process or changes in the claims environment, and (b) using more data 
points, which would contain development information on more (types of) claims. 

2.3.6  Industry information (3 responses) 

Some participants used industry link information culled from their own sources.  These 
respondents generally weighted industry data with the data in the exercise for some or all of the 
links.  These respondents may have considered adjusting their industry link set to be consistent with 
the exercise data. 

While it’s always useful to compare one’s data to industry information, there was very little 
information provided about the triangle.  Participants were told that it was “umbrella” data, but were 
not told whether it was personal umbrella or commercial umbrella, supported or unsupported, the 
limits being offered, and other important information.  In the absence of this information, one must 
wonder how much weight one can reasonably give to industry information. 

2.3.7  Regression or other curve fitting (9 responses) 

Some respondents used limited regression techniques on the data to come up with selections or 
used regression techniques as a check on their selections.  While each of these respondents used 
some regression technique, each one seemed to be using a different technique and applying it to 
different data, so that there wasn’t a consistent method for us to describe. 

Other respondents fit curves to the data, relying on a number of curves and fitting techniques.  
Curves mentioned include the inverse power/loglogistic, lognormal, exponential and Weibull.  
Again, there was no single, consistent method for us to describe. 

2.3.8  Risk margin (2 responses) 

Two respondents wondered whether to include a risk margin in their selections; they both 
ultimately decided not to include a risk margin. 

We had not expected to encounter risk margins in this exercise, so it was interesting that more 
than one person raised the question.  We aren’t sure of the benefits of including a risk margin in 
development factors, rather than building risk margin in at the end of the procedure.  For pricing, 
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one would want a risk margin, though it’s hard to see that the best place for it is in the development 
factors, rather than directly building it into the final price.  A risk margin may be warranted in 
reserving, although, for example, US GAAP requires that companies carry the best estimate of the 
reserves – presumably precluding a risk margin. 

2.3.9  Needs more information 

We did not ask participants to tell us if they would have liked to see additional information; 
nevertheless, many participants described what additional information they felt would have been 
useful. 

The type of information requested can be categorized into the following groups:  (a) company 
loss data, (b) claims department information, (c) underwriting data, (d) industry data, and (e) prior 
selections. 

A. Loss Data 

a. Paid triangle 

b. Claim count triangle 

i. Open claim count triangle 

ii. Paid closed claim count triangle 

c. Average claim size triangle 

d. Individual claim development 

    Participants thought the paid data could provide additional insight into the claims 
settlement and reserving process.  Similarly, participants would have liked to have reviewed 
claim count data. 

B. Qualitative claims information 

a. Changes in company case reserving philosophy 

b. Changes in company claim processing 

c. Claims audit report 

C. Underwriting data 

a. Premium or other exposure proxy by year 

b. How long the company has been in the line 

c. Information on the underlying book 



Unstable Loss Development Factors 

Casualty Actuarial Society E-Forum, Spring 2009 16 

i. Retention and limit (and/or their changes over time) 

ii. Type of umbrella 

1. personal vs. commercial 

2. supported vs. unsupported 

d. Mix of business changes 

    Some respondents said they made assumptions with regard to exposures.  Others said 
they would have liked to know more about the underlying book, with a view to guiding their 
selections. 

D. Industry Information 

a. Industry default development factors 

b. Underwriting cycle information 

c. Loss ratio benchmarks 

d. Legal/legislative trends 

    Many participants said they would have liked to have had industry development factors, 
hoping to apply weights to company data vs. industry data.  As mentioned above, some 
responders did assume an industry pattern and considered this industry pattern in their 
selection. 

    Some respondents said they would consider adjusting their factors by accident year based 
on where each year stood in terms of the underwriting cycle.  This is an interesting notion 
that needs to be examined further.  While some stable lines of business, like primary workers 
compensation, sometimes exhibit have cyclical loss development, we are not aware of 
anyone successfully applying cycles on top of unstable factors.  It would be interesting to 
know whether the assumptions of cycles can be shown in fairly general cases to mute the 
instability of factors, or whether they might add to the noise. 

    Some respondents would have liked to have had company premium information and 
industry loss ratios in order to compare company loss ratio indications to industry loss ratio 
benchmarks.  While loss ratios are always helpful, it isn’t clear to us how to change 
development factors based on this information:  if the company’s loss ratios are much higher 
than industry loss ratios, does that mean higher or lower development factors? 

    Others mentioned they needed more information on recent industry trends.  This request 
seems reasonable.  An understanding of industry trends, and more generally, social and legal 
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developments, might explain some apparently odd loss development, or might lead one to 
select development factors that are higher or lower than those suggested by the triangle. 

E. Prior information 

    One respondent thought an appropriate method of validating selections would be to 
review prior selections that were based on this data.  If, say, one were updating a reserve 
study, this would be a reasonable request, although one that obviously isn’t always possible. 

2.4  What lessons can we draw from the three respondents we removed from 
our review? 

As mentioned above, three respondents were well out of range of the other participants.  One of 
these participants was very low and two were very high.  Each of these respondents discussed their 
methodology. 

2.4.1  Second highest respondent 

The respondent who produced the second highest loss reserve fit a single curve to all maturities.4  
Without knowing the details of the distribution that was fit, it’s hard to comment definitively on this 
approach.  However, the respondent produced low or moderate link ratios through the first six or so 
maturities and high factors beyond age six.  In fitting the later maturities a reasonability check might 
have provided this respondent with additional insight into his fitting procedure.  For example other 
respondents used a reasonability check on fitted results by comparing the fitted links to average links 
from the data over a multiple maturity period.  In this case the respondent’s fitted links from age 
7:12 results in a total multi-age link of 1.29 while the data shows volume-weighted 7:12 link of about 
1.03. 

While fitting a distribution may seem more statistically sophisticated, there is the ticklish problem 
of selecting a distribution.  Given the limited number of data points in a typical loss triangle, it’s 
quite likely that many distributions will pass a goodness-of-fit test.  It’s not obvious that any of the 
“usual” distributions should be believed a priori to provide a good fit to loss development factors. 

2.4.2  Lowest respondent 

The respondent who produced very low results selected simple averages based on only the most 
recent valuations for the first four links.5  For these earlier maturities, selecting only the most recent 
                                                 
4 This respondent described his process as follows:  “I model a distribution of the ‘time until reported’ random variable. 
I then fit the incremental amounts to what the distribution would imply as a fraction of the cumulative amount for the 
accident period. I then inspect the errors for consistent bias and make adjustments if appropriate.” 
5 This respondent also noted that he generally prefers weighted averages, but “since I just came back from vacation and 
will soon be on the road again, I did mostly a straight average analysis.”  We are not sure what lessons should be drawn 
from this comment.  If the comment is meant to say he was pressed for time, so that he took some short-cuts, then the 
lesson would be that short-cuts are dangerous, and one should be especially careful of making rapid selections when 
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valuations, of course, ignores the development of the earlier accident years.  Many other respondents 
believed that for unstable triangles it was important to consider development beyond the most 
recent accident years. 

Also after the first four links, this respondent selected factors based on judgment, believing the 
data to have little credibility beyond this point.  This judgment resulted in factors that were much 
lower than what the data indicated.  For example using the reasonability check described above we 
see that for this respondent the multi-age link over the period 5:12 is a factor of 1.08, while the data 
shows a volume-weighted 5:12 link of 1.21. 

2.4.3  Highest respondent 

The respondent who produced the highest results described used a regression analysis on the first 
four links.  In particular, noting a negative correlation between the age-to-age factor and the dollars 
of reported loss, he fit a regression line with the age-to-age factor (say the 12-24 factor) as the 
dependent variable and the dollars of reported loss (at age 12, in this example) as the independent 
variable. This regression was then used to fill out succeeding points within the lower half-triangle.  
After the first four years, he selected age-to-age factors judgmentally, “with the consideration of 
weighted averages, simple averages, smoothness, conservatism, and historical LDF range.”  In fact, 
it was in large part due to the judgmental factors after age 4 that led to the high result.  If he had 
simply used the all-year weighted averages, the 5:12 factor would have been 1.21, and the reserve 
would have been $45.3 million, which would still have been high, but much lower than the selected 
5:12 factor of 1.35 that gave reserves of $60.2 million.   

The point regarding the negative correlation for the first four factors is correct, and is not 
addressed by most other participants.  It is notable, however, that the dollars of loss could be low 
either because i) there is light reporting at, say, age 12, which is then offset by “more normal” 
reporting at age 24, and hence the negative correlation that was noted, or ii) the exposure is lower.  
Exposures were not given in our example, so it is not possible for the actuary to distinguish between 
them.  This lack of exposure data was noted by a few of the respondents. 

2.4.4  Lessons from the outliers? 

It’s hard to draw firm lessons from the three outliers.  One apparent lesson is for the need to use 
reasonableness checks when heavily relying on judgment or models.  If the selected factors or the 
fitted model differ significantly from the mean of the data, one must be sure there is a good reason 

                                                                                                                                                             
under pressure.  On the other hand, if the comment was meant to say that he had just returned from vacation, and was 
thus in a good mood, then it is reminiscent of some of the literature on cognitive biases that has found that traders are 
more optimistic on sunny days, and that their trades reflect it.  (See [5].)  Perhaps the lesson is that actuaries should work 
in windowless offices. 
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for the discrepancy.  There’s an ever-present danger of getting so engrossed in the details of one’s 
favorite approach that the big picture of fitting to data can be missed.  A well-constructed graph will 
often visually draw one back to the underlying data, and provide some reasonableness to the work. 

3.  WHAT CONCLUSIONS CAN WE DRAW FROM THIS EXERCISE? 

As we noted at the start of the paper, this exercise began with a hope that we could draw on the 
results that we received to provide some guidance to actuaries faced with selecting development 
factors from unstable loss triangles.  This paper has turned out to be more of a description of the 
results we received, together with some commentary.  The number of approaches varied widely – 
and so did the selected factors.  It has proved difficult to find many general themes in the 
approaches; rather, it has provided much food for thought, and a guide to the many things that 
actuaries need to keep in mind when working with development factors. 

We found that actuaries who used what sounded like similar methods when they were being 
described, sometimes ended up with results that proved to be significantly different.  Conversely, 
much of the time, actuaries using what sounded like very different methods, came up with results 
that were very similar.  Some actuaries saw patterns where others saw only noise, and there was a fair 
amount of disagreement as to what constituted reasonable or appropriate assumptions. 

The guidance we hoped to provide is for another paper.  Perhaps the best advice that we can 
provide for now is for actuaries to keep open minds, and to approach unstable triangles from a 
variety of perspectives.  Having many tools in one’s toolkit, and tempering all of these tools with 
good common sense and careful judgment, is more likely to give consistently reasonable answers 
over the variety of situations in which we find ourselves. 
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Appendix A 

Here is the e-mail that was sent to people attending the 2008 CAS Reinsurance Seminar: 

 
From: Vincent Edwards [mailto:vedwards@casact.org] 

Sent: Mon 5/12/2008 4:23 PM 

To: cas@lists.casact.org 

Subject: 2008 Reinsurance Seminar Research Opportunity! (File Attached) 

 

Dear CAS Reinsurance Seminar Attendee, 

The CAS Reinsurance Research Committee is conducting research to look at how 
practicing actuaries select loss development factors when dealing with unstable triangles.  
Some of the early results of this work will be presented at the “Loss Triangle Philosophy” 
session at the Reinsurance Seminar.  To increase our sample size, we want to extend an 
invitation for attendees to participate in this study.  In addition, session attendees may find it 
interesting to participate before they see what others have done. 

Here’s what we’re trying to do: 

One of the biggest challenges in day-to-day reinsurance actuarial work is selecting loss 
development factors when triangles are unstable.  This topic does not receive significant 
attention in exams and papers, and yet it’s something reinsurance actuaries do on a regular 
basis. Most actuaries learn how to select loss development factors on the job, pick up rules 
of thumb and helpful approaches along the way.  Whether these approaches are good or bad 
probably depends on the particulars of the underlying data. 

Taking a look at how different actuaries do things can be beneficial, even if it simply 
shows how many different approaches there are, and how widely the ultimate results vary.  
The attached Excel spreadsheet has an umbrella triangle (disguised in various ways to avoid 
divulging anything proprietary), but there is no special meaning to the choice, other than that 
it’s unstable. 

To participate, here are your instructions:   

Select age-to-age factors from the triangle, and insert them in row 33 of the spreadsheet, 
where indicated.  To keep the topic focused, we’re ignoring the tail factor. Also, give a few 
sentences on how you selected your factors:  all year averages? 5 year averages?  Weighted or 
un-weighted?  How many different averages did you look at before making your selection?  
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How did you deal with apparent outliers or with reversals in the nice smooth pattern you 
might have expected?  

If you would like to participate and have your results included at the Seminar, please 
respond by emailing the spreadsheet to LDFs@comcast.net by May 17. Responses will be 
kept anonymous. 

Thanks. 

Gary Blumsohn 

Chair 

Committee on Reinsurance Research 

 

 

The attached Excel file contained the following 
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Umbrella incurred loss triangle          
             

Accident             
Year 1 2 3 4 5 6 7 8 9 10 11 12 
1991 1,782 3,000 6,924 10,167 12,369 14,047 13,577 14,289 13,831 14,419 14,563 14,484
1992 430 2,814 3,557 5,745 9,033 7,884 8,715 8,982 9,048 8,934 8,856
1993 2,234 3,902 10,841 14,262 17,666 19,154 19,411 19,021 18,854 19,085
1994 3,335 12,937 23,694 20,477 19,715 23,689 23,955 25,066 25,269
1995 2,006 5,406 9,802 8,949 10,611 10,623 16,633 16,699 
1996 7,640 8,485 12,085 13,515 15,418 18,894 19,029  
1997 6,643 13,184 18,530 17,782 20,867 21,358  
1998 2,474 9,684 10,636 16,266 16,649  
1999 4,229 6,135 5,972 8,613  
2000 2,065 2,982 3,384  
2001 3,448 4,240  
2002 1,736   

             
Age-to-age             
             

1991 1.684 2.308 1.468 1.217 1.136 0.967 1.052 0.968 1.043 1.010 0.995  
1992 6.544 1.264 1.615 1.572 0.873 1.105 1.031 1.007 0.987 0.991   
1993 1.747 2.778 1.316 1.239 1.084 1.013 0.980 0.991 1.012    
1994 3.879 1.831 0.864 0.963 1.202 1.011 1.046 1.008     
1995 2.695 1.813 0.913 1.186 1.001 1.566 1.004      
1996 1.111 1.424 1.118 1.141 1.225 1.007       
1997 1.985 1.405 0.960 1.173 1.024        
1998 3.914 1.098 1.529 1.024         
1999 1.451 0.973 1.442          
2000 1.444 1.135           
2001 1.230            

             
Insert your selected ATA factors below.  Ignore the tail factor.       
Selected  ATA 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000  
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Appendix B 

The table below shows the selected factors that the various participants provided, sorted in 
increasing order of the implied reserve from the factors. 

 
  Selected age-to-age factors 

Reserve 
ranking 

Implied 
reserve 1 2 3 4 5 6 7 8 9 10 11 

1 10,707 1.375 1.213 1.163 1.113 1.050 1.010 1.007 1.005 1.003 1.001 1.000
2 18,323 1.921 1.300 1.142 1.124 1.112 1.021 1.013 1.008 1.005 1.003 1.002
3 18,512 1.626 1.213 1.173 1.113 1.103 1.043 1.013 1.002 1.017 1.003 1.000
4 18,561 1.921 1.157 1.214 1.081 1.085 1.050 1.021 1.002 1.017 1.000 1.000
5 19,512 1.499 1.138 1.194 1.113 1.094 1.082 1.020 1.002 1.010 1.002 1.000
6 21,028 2.000 1.250 1.150 1.110 1.090 1.070 1.021 1.010 1.005 1.002 1.001
7 21,163 1.921 1.250 1.142 1.113 1.112 1.093 1.021 1.000 1.000 1.000 1.000
8 21,304 1.758 1.250 1.142 1.113 1.094 1.075 1.021 1.013 1.007 1.003 1.000
9 21,807 1.371 1.063 1.214 1.113 1.085 1.120 1.013 1.008 1.017 1.003 1.000
10 21,958 2.000 1.250 1.210 1.100 1.100 1.075 1.020 1.005 1.005 1.003 1.000
11 22,827 1.921 1.340 1.142 1.112 1.093 1.060 1.021 1.014 1.008 1.005 1.003
12 23,398 2.000 1.400 1.150 1.120 1.100 1.080 1.020 1.005 1.003 1.002 1.001
13 23,703 2.005 1.383 1.142 1.134 1.112 1.093 1.021 1.000 1.000 1.000 1.000
14 23,729 2.014 1.535 1.249 1.163 1.089 1.034 1.023 0.994 1.014 1.001 0.995
15 24,433 1.550 1.250 1.182 1.163 1.100 1.049 1.030 1.018 1.011 1.007 1.004
16 24,636 1.962 1.380 1.138 1.111 1.090 1.065 1.030 1.015 1.010 1.005 1.002
17 24,706 2.005 1.538 1.135 1.142 1.094 1.075 1.021 0.995 1.017 1.003 0.995
18 24,706 2.005 1.538 1.135 1.142 1.094 1.075 1.021 0.995 1.017 1.003 0.995
19 24,835 1.866 1.343 1.232 1.146 1.062 1.093 1.021 1.002 1.014 1.003 1.000
20 25,002 1.921 1.250 1.142 1.081 1.112 1.093 1.021 1.000 1.017 1.010 1.005
21 25,056 1.921 1.250 1.142 1.081 1.112 1.050 1.025 1.020 1.015 1.010 1.010
22 25,439 2.153 1.443 1.227 1.127 1.074 1.043 1.025 1.014 1.008 1.004 1.005
23 25,619 1.816 1.457 1.140 1.112 1.104 1.094 1.020 1.014 1.008 1.002 1.000
24 25,856 2.500 1.535 1.195 1.165 1.090 1.035 1.023 0.995 1.014 1.000 1.000
25 26,235 2.000 1.400 1.400 1.180 1.120 1.010 1.020 0.995 1.012 1.010 0.995
26 26,247 2.005 1.538 1.247 1.142 1.094 1.050 1.021 1.010 1.005 1.003 1.000
27 26,730 2.513 1.538 1.188 1.090 1.094 1.075 1.011 1.005 1.007 1.005 1.002
28 26,880 2.000 1.250 1.200 1.140 1.100 1.100 1.025 1.010 1.010 1.005 1.000
29 27,137 2.250 1.500 1.250 1.200 1.100 1.050 1.025 1.000 1.000 1.000 1.000
30 27,468 1.900 1.350 1.200 1.115 1.100 1.120 1.020 1.005 1.015 1.001 1.000
31 27,599 2.150 1.525 1.200 1.150 1.100 1.050 1.025 1.015 1.005 1.003 1.002
32 28,712 2.005 1.538 1.135 1.142 1.094 1.075 1.021 1.018 1.017 1.003 1.002
33 29,107 1.626 1.213 1.173 1.142 1.094 1.075 1.044 1.021 1.016 1.012 1.009
34 29,444 2.000 1.450 1.200 1.135 1.100 1.075 1.025 1.015 1.010 1.008 1.005
35 29,528 2.179 1.515 1.197 1.156 1.094 1.075 1.021 1.017 1.010 1.003 1.000
36 29,805 1.934 1.482 1.158 1.141 1.095 1.073 1.026 1.021 1.017 1.006 1.004
37 29,837 2.033 1.500 1.256 1.138 1.078 1.047 1.029 1.019 1.013 1.009 1.006
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  Selected age-to-age factors 
Reserve 
ranking 

Implied 
reserve 1 2 3 4 5 6 7 8 9 10 11 

38 30,883 1.950 1.500 1.180 1.140 1.100 1.075 1.040 1.020 1.010 1.005 1.003
39 31,336 1.650 1.300 1.250 1.150 1.100 1.060 1.040 1.030 1.020 1.010 1.005
40 31,715 2.000 1.500 1.250 1.150 1.100 1.090 1.025 1.010 1.010 1.010 1.000
41 31,819 1.951 1.538 1.135 1.142 1.094 1.075 1.050 1.025 1.017 1.003 1.000
42 32,416 2.200 1.250 1.500 1.150 1.110 1.075 1.025 1.010 1.010 1.005 1.000
43 33,487 2.225 1.535 1.249 1.163 1.094 1.050 1.029 1.020 1.015 1.010 1.005
44 33,520 2.150 1.500 1.200 1.185 1.115 1.095 1.025 1.015 1.010 1.005 1.000
45 33,539 1.700 1.250 1.175 1.130 1.120 1.100 1.050 1.025 1.015 1.010 1.010
46 37,958 2.517 1.538 1.241 1.142 1.094 1.055 1.021 1.015 1.010 1.050 1.000
47 38,201 2.419 1.376 1.188 1.115 1.078 1.057 1.043 1.034 1.027 1.023 1.019
48 38,973 2.517 1.603 1.247 1.189 1.112 1.112 1.023 1.014 1.014 1.001 1.000
49 39,156 2.000 1.400 1.350 1.175 1.150 1.100 1.030 1.025 1.020 1.000 1.000
50 55,197 1.641 1.297 1.187 1.134 1.103 1.083 1.069 1.058 1.051 1.045 1.040
51 60,152 2.788 1.378 1.656 1.336 1.130 1.070 1.040 1.020 1.020 1.020 1.010
 

The next table shows an edited version of the narratives from the respondents, sorted in the 
same order as the table above.  We have tried to edit lightly when the narrative wasn’t clear.  We 
have also edited spelling and egregious grammatical errors, as well as editing to retain the anonymity 
of the participants.  While we have done our best to avoid changing the meaning of what was 
intended by the participants, it is quite possible that we have misunderstood something and have 
misrepresented some of what was intended.  We apologize for any such errors.  We also freely admit 
that we do not fully understand all of the explanations.  In general, participants dashed off a quick 
few sentences – rather than a detailed documentation of what they had done.  Where the 
explanation is blank, the respondent didn’t provide one. 
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1 

I generally prefer weighted averages, 3-5 years for incurred and 5-7 for paid, but since 
I just came back from vacation and will soon be on the road again I did mostly a 
straight average analysis.  With an unstable pattern, one technique I frequently use is a 
5 or 7 year average excluding hi-lo. 
 
For year 1, I did a 3 year average, seeing that the numbers were reasonably close and 
showing a downward trend, possibly suggesting that claims are being settled more 
quickly. 
 
Year 2, 4: 5 year ex-hi/lo 
 
Year 3: No clue what to do here, just made it halfway between 2 and 4. 
 
As I typically do in later years where the observations are less credible, I just choose 
round numbers that slowly go down to 1.  I’ve seen others use something like a 
Bondi curve for similar purposes. 
 
At the end of the day, everything we do in reserving is “wrong” according to 
management; reserving actuaries take the hit when adverse development rears its ugly 
head.  That’s probably why it receives so little attention on the syllabus. 

2  

3 

For 12-24 and 24-36 months, average ATA factors are lower in the more recent years 
(1996-2001).  Considering this, I selected 5-point ex hi-lo averages for 12-24 through 
72-84.  For 84-96 I selected a 3-year weighted average; beyond 96 I selected all year 
weighted averages.  I looked at simple and weighted averages for 1 to 7 years plus all 
years.  I also looked at 12 to 36 months, 36 to 84 months, and 84 months to current 
as reasonability checks of my selections. 

4 

Apparently something going on in the latest diagonal. Hard to tell without paid 
triangle or claims audit report.  Would like to use some sort of industry default as a 
test to see how the pattern here compares.  No idea as to how exposures have 
increased/decrease => can’t tell whether the 2002 year is uncharacteristically low, as 
expected, or higher than expected. 
 
I went with the standard 3/5/All Year Averages.  I’m not convinced that alternative 
methods for selecting LDFs do a better job than standard averages of capturing the 
full gamut of frequency/severity scenarios which could impact loss development.  
Perhaps this is just ignorance on my part. 

5 
For the most part I rely upon an average of 3-year loss-weighted and 5-year ex-hi-lo, 
with some regression for factors in the tail.  I might be inclined to add part of a 
cumulative standard deviation for a volatile line such as umbrella. 

6  
7  

8 

My first pass was to select the median of the 3, 5, 7 year weighted averages. 
I smoothed the tail, using 7-8 and 10-11 as anchors.  Then I graphed the individual 
ATA factors and tweaked/smoothed the 6-7 selection.  Then I graphed the whole 
range and tweaked 7-8 from median to higher 5-weighted average. 

9  
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10  

11 

Generally used the 5 year weighted average.  Exception 2-3 ATA factor is the average 
of the 5-year and 7-year.  The 5-year point on its own was a bit low and 
uncomfortable so it was judgmentally increased. 
 
The selections were smoothed to decrease with maturity.  The 5-year 4-5 ATA was 
reduced from 1.081 to 1.060 --- the difference was used with the more mature points 
(e.g., 8-9 and 11-12) for additional smoothing.  
 
In situations with unstable data, we like using dollar weighted averages versus straight 
averages so years with small volume/high development do not receive undo weight.   
And we’re more likely to use more years rather than fewer years.  With more stable 
data we’re more likely to rely on shorter/more recent averages; and also use straight 
averages and not weighted averages. 
      
Like to use more recent information rather then older diagonals.  Legal and legislative 
trends or changes in company claim processing.  Company maybe starting out and 
the earlier stuff they are “just cutting their teeth.”  In fact when there is a lot of data, 
we will show/use the latest 10 or 12 diagonals and not use the diagonals prior to that.  
I do realize this point contradicts the prior point -- I guess there is a balance that 
needs to be struck --- and in fact we like to have two selections one based on a longer 
term average and one based on shorter term averages.  In this case we went with mid- 
to longer-term averages given the “instability” of the data. 
 
We like to see decreasing factors --- so we smooth.  Will borrow from one ATA to 
smooth another ATA. 
      
Would like more information:    
Have the retentions and limits been changing over time? 
Can we get the individual claims at each valuation date?  If so we would trend losses 
(perhaps even retentions and limits) to current date and then recast development 
triangle. 
Are there any changes in payments or case reserving philosophy? 
      
Important to look at the analysis every year (or more frequently) and adjust selections 
with latest information.  Test prior assumptions and adjust when necessary.  This 
point is the most important point here --- perhaps even more important than the 
ATA selections themselves (assuming that they were selected within reason). 
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12 

I dislike using straight averages to make LDF selections for umbrella, or excess in 
general.  I calculated an all-year and a 5-year weighted average, and made selections 
for smoothing purposes, trying to ensure my selections kept the cumulative factors 
somewhat consistent with the experience.  If benchmark data had been made 
available, I would have looked at that as well. 
 
Also, I spent very little time with this.  True it’s just a sample, but I try not to 
overanalyze loss triangles.  I will never know the “true” LDFs (assuming they even 
exist) regardless of the amount of time I spend analyzing the data, and I don’t want to 
fool myself that my work is more predictive than it really is. 

13 

Early years: I like all-year weighted averages for highly variable books like umbrella. 
In this triangle, early years straight average > weighted average, implies larger years 
develop less. I would like to see premium normally, as well as previous selections and 
actual vs. expected to see how well previous selections are holding up. I also look at 
the year of the development - for example, I will put more or less weight on a year if 
it’s clearly a soft market year whose development won’t be repeated in the hard 
market. 
 
In this example, it really looks like a lot of losses got put up, then brought down, then 
developed upward. I tried to pick factors for 2:5 whose product was generally close to 
the weighted average development I saw on 94-98 for 2:5 - though I built in some 
conservatism. 
 
One other comment: This looks pretty short tailed for umbrella business. Is it 
personal umbrella? Based on what I see here, it’s hard to justify development beyond 
8 years. With more time, I’d poke into the whys and wherefores around that. 

14 

For the first evaluation, I excluded what I considered an outlier, the AY 1992 point 
and then took the average of the remaining ratios, excluding the remaining high and 
low values.  For the next 5 evaluations, I took the all point average, excluding the 
high and low points.  For the last 5 evaluations, the ratios were more stable and I 
used an all point average. 

15 This is a formulaic approach giving some extra weight to more recent experience.  
Some judgmental smoothing is then applied. 

16 Looked at various averages 
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17 

I am basically selecting the “volume weighted all” factors. The logic behind the 
selection is based on the recent paper 
http://www.casact.org/pubs/forum/08fforum/1Bardis_Majidi_Murphy.pdf. 
 
The main idea is to build a statistical framework which would help test the underlying 
assumptions of the chain-ladder method.  Given a set of selected development factors 
you can find a linear regression (with “good” assumptions about the variance of its 
error terms) that produces as best linear unbiased estimators (BLUE) the selected 
development factors. The significance of the previous statement is that a practitioner 
can use the robust statistical regression framework to check the reasonability of 
his/her selections. So residuals in the AY/DY/CY dimensions will provide the 
underlying trends and normality tests and the AIC/BIC fitting criteria will provide a 
statistical evidence of how well the chain ladder method “fits” the historical data. The 
important point is that all these statistics are within the confines of the chain ladder 
method that practitioners are comfortable with. 
 
I looked at the volume weighted, straight average (all vs. 5 years) and judgmental 
selections (with and without outliers) and the visual inspection suggested that the 
“volume weighted all” model performs as well as anybody. This should not come as a 
total surprise given the change in the volume of losses by accident year. Surprisingly 
also, it does not produce any outliers (within 1.5 interquartile distance) and the 
normality graph is pretty “tight” around the 45 degrees line. The data exhibits some 
decreasing trends on the accident year dimension which could suggest that an 
exposure adjustment is in order. Both the calendar year trend and standardized 
residuals vs. fitted values suggests that the selections understate the low historical 
losses (not surprisingly since some of the low volume years exhibit higher 
development than the average). 

18 

For the age to age factors I selected the all year weighted averages since the individual 
ATA factors are volatile.  I did not make adjustments for reversals (ages 8 to 9 and 11 
and 12) since they were minimal.  If the AGA factor in that case was 0.800 instead of 
0.995, I would make an adjustment. 

19 
I will often look at the triangle and if there appear to be some big takedowns 
following big increases, I will “smooth out” the triangle by removing the reversals.  
Then I’ll tend to look at the last 3, 5 and all years both weighted and unweighted. 
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20 

I generally went with 5 year weighted averages, until the factors close to the tail where 
I ignored the one age with negative development and selected a small positive factor.  
I looked at 3, 5, and all-year weighted and simple and hi-lo out averages. 
 
In real life I would look at the paid triangles to see what kind of ultimates that was 
producing as compared to incurred.  Also might look at some diagnostics such as 
change in average claim size, etc if I was feeling really crazy.  I would also get industry 
development factors. 
 
I also noticed that for the first 2 ages, the recent diagonals appear to be lower than 
the older ones - would have to investigate if this was random or a trend.  Since I went 
with 5 year averages, I am giving it some, but not full credit, as my selections are still 
higher than the recent 3 diagonals for these ages.  This isn’t the case for the later 
evaluations - recent diagonals are not generally lower. 
 
For the 91 year it looks like the 0.967 and 0.968 get ‘erased’ by the factor after them, 
reserve takedown gets put back up the next year, so I judgmentally selected 1.0 for 
the 8-9 year even though the 5 year avg was <1, although I didn’t completely throw 
out that year. 

21  

22 

My usual technique is to compare Weighted-All with Weighted for a certain number 
of years. I believe that straight Average is too subject to biases caused by years with 
very little loss reported. Also, I believe that removing the Min-Max is inherently 
biased since LDFs are capped from below by 0, but uncapped from above, so 
removing the Max will tend to have a larger effect than removing the min. I often use 
the Brosius Linear method as a “sanity check”, but in this case it is prone to 
distortion for two reasons: It is most accurate when applied to trended loss ratios to 
on-leveled earned premium to best remove effects of loss trends and changes in 
exposures, and the linear statistical model assumes that variations from the “best fit” 
are due to random noise (independent, identically normally distributed for that 
matter) that is not always the case. For the purposes of this exercise, I also ran 
Markus Gesman’s package in ‘R’ to calculate the bootstrap ultimates based on 
England and Verrall. However, this too is based on a generalized linear model that 
less accounts for changes in underlying factors as opposed to finding the best 
generalized linear fit to the data supplied. I will often choose a final “raw” selection 
and then fit a smoothed weibull and lognormal to that data. If the fitted curve fits he 
raw data “well,” then the argument can be made that the fluctuations are the “noise” 
and the fit is the signal. Certain lines of business, however, which are known to over-
reserve and then take down, are not suited to this kind of smoothing. 
 
In this case, the distribution of each age’s ATA seems random, and the all-year 
weighted is a decent selection for each age.  It also is a good candidate for smoothing, 
so the final selected ATA’s would be the weibull-smoothed version of the weighted 
all-year ATU. 
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23 

I calculated weighted 3, 5, and all-year averages; simple 3, 5, and all-year averages; and 
5, 7 excluding hi-lo averages. I calculated the average of averages. I also calculate the 
median of these averages. Then I ran regression on losses at evaluation 1 through 6, 
assuming zero intercept. The final selection is basically a weighted average of these 
three methods for ATA from 1 to 5, and using average of averages for the rest, with 
adjustments and linear interpolation to smooth out the LDF curve. 

24 

Looked at volume weighted averages 3 years, 5 years and all years.  Then simple 
averages 3 years, 5 years and all years.  Finally simple average excluding the highest 
and lowest data points.  In the end I selected RTRs according to the following: 
  
1-2: simple average all years 
2-3: simple average ex high/low 
3-4: simple average 5 years 
4-5: simple average ex high/low 
5-6: simple average ex high/low 
6-7: simple average ex high/low 
7-8: simple average all 
8-9: simple average all 
9-10: simple average all 
10-11: simple average all 
11-12: simple average all 
  
I ended up not focusing on the volume weighted averages.  Generally I would use 
these when information is available on premium volume by year, or number of claims 
by year.  Large dollars of loss do not necessarily increase predictive power, as this 
might be the result of one or two unusually large claims, the development of which 
might not be representative of the average. 
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25 

Assumption:  I assumed the policy count and class/limit profile of the book remained 
relatively stable during over the history provided. 
 
Methods Employed: 
 
1)  Evaluated magnitude of losses for each year at each maturity and ranked as “H” 
high, “M” medium and “L” low.  With low volume data I’ve found that the link ratio 
methods are very sensitive to the actual magnitude of losses at a point in time.  
Determined separate average link ratios for L, M, and H.   
2)  All years weighted average 
3)  All years straight average 
4)  All years straight average excluding minimum and maximum 
5)  All years weighted average excluding 1992.  After review the 1992 year seemed 
very different from the others due to the low magnitude of losses and the up and 
down development pattern. 
 
Selection for older years looked primarily at the all year weighted average excluding 
1992.  Selection for more recent years looked at “L, M, H” averages based upon the 
magnitude of losses along the diagonal. 
 
Other data would have been helpful: 
Premium / Policy Counts for each calendar/accident year and perhaps a limit profile 
Paid closed claim count triangle 
Open claim count triangle 
Separate paid and outstanding loss triangles 
Any kind of class of business distribution (SIC, NAICS, GL Class Code, CMP 
Program) 

26  
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27 

1st Pass 2.005 1.538 1.135 1.142 1.094 1.075 1.021 0.995 1.017 1.003 0.995 1.140.  
All-years weighted averages were selected because they behaved reasonably in a 48 
month model of early development which attempts to spot unreasonable 
relationships between the early ATA factors.  The 3 & 5 year weighteds did not pass 
this test.  On volatile triangles like this, I also want to use as many years as I can.   I 
never look at simple averages of ATA factors – only weighted.             
             
2nd Pass 2.005 1.538 1.188 1.090 1.094 1.075 1.011 1.005 1.007 1.005 1.002 1.140.  
The modest reversals were eliminated using exponential smoothing.  I generally do 
this as I find reversals to be abhorrent.  When possible, I develop gross losses and 
salvage and subrogation separately in order to avoid analyzing downward 
development.  The fact that I left 1 small reversal shows that I am not a fanatic! 
             
3rd Pass 2.513 1.538 1.188 1.090 1.094 1.075 1.011 1.005 1.007 1.005 1.002 1.140.  
The last revision of the 12-24 ATA factor is based on the early development model.     
             
As a last comment, when I develop losses I want both Paid and Reported as I 
develop them together.  This helps dramatically in estimating tail factors and the 
general quality of the data.  I often hear, especially regarding volatile groups, that the 
paid data is just not useful.  When developed on its own that may be true but when 
developed alongside the reported losses, I usually find it very helpful in making 
judgment calls at the very least. 

28 

I used simple and weighted averages for all years, most recent 3, and most recent 5 as 
summary references.  While I see some volatility in the age-age factors, I didn’t see 
many that were so freakish as to cause me to censor them out.  I generally do not 
select to allow reversals unless the evidence is clear, and that they aren’t re-reversed 
back later. 

29 

Generally I look at the average ex-hi/lo and the weighted average, and pick 
something close.  I prefer to pick round numbers, as they won’t fluctuate as much 
from year to year.  In certain cases I will ignore the weighted average if one 
observation is influencing it too much (e.g. the 0.963 4-5 factor in 1994).  I selected 
1.00 for the last 4 factors, as I would normally cover these developments in a tail 
factor. 

30 

I considered all averages (weighted and unweighted) that end with the factor in the 
last diagonal.  No ex-ante averages were considered. Most selections rely on the long 
term average (all-years or close to all-years) with tempered movements in the 
direction of the latest calendar years’ link ratios. There is no smoothing between 
consecutive link ratios.  Smoothing seems appropriate when there is an outlier.  With 
erratic data, it’s not too clear what points are outliers and to what degree they are 
outliers. 

31 I selected mostly the volume weighted ex hi/lo with some judgment applied. 

32 

Weighted average all years, with a bias against factors < 1. No obvious calendar-year 
correlation effects so Mack gives the answer. I am not a reserving actuary and I don’t 
get called upon to pick factors very often (I can recall no instances in the last three 
years, in fact) so you should underweight my choices.  
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As part of the selection process, I looked at the all-year weighted averages, the 
weighted averages of the last 5 years, of the last 4 years and the last 3 years, as well as 
the mean of the last 5 excluding high and low.  For the 1-2 ATA factor, there appears 
to be a downward trend, but the 2001 factor seems to be very low.  Rather than 
allowing that factor or the 1998 factor (which is very high) unduly influence the 
selection, I selected the mean of the last 5 excluding the lowest (2001) and highest 
(1998).  I selected the next 3 ATA’s in the same manner (i.e. last 5 ex high-low).For 
the 5-6 and 6-7 ATA’s, the all-year weighted averages appeared to be reasonable.  
After that age, the limited number of data points were indicating even more erratic 
patterns.  The 7-12 ATA is indicated as 1.031, whereas an indicated decay rate off the 
6-7 ATA of 1.075 would generate 1.056.  I decided to weight 50-50 the ATA’s 
indicated by the data with the ATA’s generated by a decay rate.  In general, I look to 
select ATA’s that are monotonically decreasing. 

34 

I also would include information that I have regarding the industry.  It was not clear if 
the umbrella was supported or unsupported, but looking at the information I would 
guess supported.  My selections are based on looking at all the averages and my 
general expectations regarding the line of business.  I will typically select a smooth 
pattern, with the overall pattern based on the overall data. 

35 

I looked at 5 different averages:  weighted and unweighted and for all years and 5 
years, as well as weighted average ex-hi-lo.  I did not calculate an average for less than 
5 years, since the line is umbrella and due to the long tailed nature with volatility more 
experience is best. I prefer weighted averages as opposed to straight because it 
smoothes out the data. The weighted average of all and excluding high and low are 
very close.  This gave me comfort in the selections, but I am still skeptical about the 
difference in the older years prior to 1996.  I selected the weighted average ex hi-lo 
for 12-60 months and then went to all year weighted average for 72 and 84 months. If 
you kick out the high and low in the 72 and 84 months, you are only left with 3 and 4 
factors, so I went with the all year weighted average for these selections. I smoothed 
out the 96 ATA factor and put the 108 factor in its place.  For the 108 factor, I 
averaged the 108 and 120 factor.  For 132, I assumed one based on the data, but 
given this is umbrella there will be a tail factor. 
I still am not sure about the data, since it does seem like it changed starting in 1996.  
The factors starting dropping off dramatically in 1996.  There also seem to be reserve 
takedowns at 12/31/96 for the older years.  It also seems like they are setting higher 
initial reserves at 12 months starting for 1996 and 1997. They strengthened reserves at 
12/31/00 for ‘94-’97, but not so high as to match the cumulative products for the 
early 1990’s. 
The danger of my selections would be if reserves are weaker now, since my selected 
factors more reflect the more recent years because I selected the weighted average 
and the hi-lo which often kicks out the older years. 
I would want to see more info such as: large loss listing, paid data, claim counts, 
premium volume, mix of business changes. 
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I’m not sure whether you were specifically looking for implicit or explicit inclusion of 
some risk margin in the selections (to anticipate for when things invariably go wrong, 
e.g., for reserving) or whether you were looking for “best estimate,” without regard to 
a margin.  I took the latter approach. 
 
In answer to your additional information request, I used the following 4 averages: 
Unweighted all year and weighted all year, 6 year and 3 year. In my selection, I 
assumed that weighted averages are more representative than unweighted. That is, I 
assumed more volume in one AY would indicate more credibility than an AY with 
less volume. This assumption would not be true if larger AY volumes were only due 
to larger shares in that AY, e.g. larger reinsurance shares but same underlying book. I 
gave a majority of the weight to the all year volume-weighted average. I did not 
include a tail factor, per your instructions.  
 
To help smooth selections and adjust for reversals, I selected an “industry” pattern 
based upon excess layer, LOB, and lagging assumptions for this umbrella book. To 
do this right, would naturally need more information on the underlying book, but 
nonetheless I took a stab at it. I first scaled the industry factors based on the volume 
weighted averages underlying my assumptions above, and comparing actual vs. 
expected development at each maturity. I then generated a scaled industry factor set, 
in this case using a factor of 0.9. For purposes of illustration for this survey, I then 
credibility weighted this scaled industry factor set using a claim count based formulaic 
approach and an estimate of excess claim counts underlying the umbrella triangle. Of 
course, would ideally have all this information including all individual claims and their 
histories in the data and not have to make these assumptions. The credibility formula 
uses actual claim counts (vs. e.g. expected claim counts using premiums, expected loss 
ratios, claim count reporting patterns, etc.) and a z=n/(n+K) form. I adjusted the K 
from a default based upon the extra variability in the LDFs. These selected factors 
were slightly overridden to produce the ATA factors that I put into your spreadsheet. 
 
I did not include a specific risk margin in the selections, for the “things that invariably 
go wrong.”  To do this, I might not have scaled back the industry factors, nor 
included weights for the more recent (in general lower) averages. May also have 
selected factors higher than the averages and of course also included a tail factor. 

37 

(1)  I assumed the data is on-level with a constant level of exposure.  
(2)  I fit an inverse power function utilizing David Clark’s maximum likelihood 
approach.  http://www.casact.org/pubs/forum/03fforum/03ff041.pdf  
(3)  I examined the total variance (parameter and process risk) for the two year 
weighted average, three year weighted average, etc…  and selected the weighting with 
the lowest variance. This happened to be an all year weighted average.  
(4)  I did not exclude any “outliers.” 
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Attached are my picks.  However, let me add that given paid losses and claim counts, 
I might have done something completely different.    
 
Due to the volatility, I tended to use the long term weighted averages as my guide but 
looked at all years, last five years and last three years weighted averages.  I also did 
some smoothing of some of the points by moving dollars between generally 
contiguous evaluations (but not necessarily contiguous), recomputing LDFs and 
looking at the same statistics.  After selecting, I compared the product of my 
selections through the first 7 points to the product of the all weighted average 
through the first 7 points and adjusted my selections slightly.  The points after 7 were 
based on a judgmentally selected decay in the first 7 selections and the same set of six 
statistics noted above.  The latter LDFs were selected more conservatively given it is 
umbrella (although did not have attachment point and limits) and given additional 
information on paid losses and open claims would probably have selected differently.  
I also compared my results to the fitted values from inverse power, exponential and 
Weibull curves.  
 
This has not been subjected to our quality control process and should be considered 
my thoughts. 

39 

I looked at 3 and 4 year averages, both weighted and unweighted, the 5 year excluding 
the high and low, the median, and an all year simple average.  I tend to ignore outliers 
and reversals in the pattern.  Loss data that comprises few losses, driven by severity 
rather than frequency, which this appears to be, cannot be relied upon for reasonable 
patterns – smoothing helps this out. 

40 I mainly looked at weighted averages and also looked at how close these methods 
were.  I may also give some credibility to an industry or default pattern. 

41 

In general, I used an all-year weighted average, but also looked at 3, 5, and 8 year 
averages.  For unstable triangles, I tend to use as many years as I can.  For the 1-2 
ATA factor, I excluded the 6.544 because it was such an outlier, although it had little 
impact since the dollar amount was small.  Beginning with the 7-8 ATA factor, I 
started smoothing the pattern out judgmentally - no real scientific reason as to why, 
just because there were so few points. 

42  

43 The selections primarily use all year link ratios excluding high and low.  Links are 
further smoothed. 

44 

I looked at straight, weighted, truncated, and geometric averages over a wide range of 
time frames (from 1 to 11 years) to see what type of pattern emerged.  Without 
knowing the underlying business, it’s tough to select factors.  The use of the 
geometric average gave a quick look at the impact of outliers.  For those older ages 
where it appeared to reverse, I judgmentally smoothed out the pattern. 

45  
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In the absence of an obvious pattern in any of the averages, will initially select overall 
weighted average, with the following exceptions: 
Age 1 - weighted average looks more reasonable relative to Age 2 
Age 3 - weighted 75%/25% with Ages 4 & 2 to smooth the reversal (those are 
assumed more reasonable relative to industry/company default patterns, so Age 3 is 
replaced).  Also concern over several negative points in the data. 
Age 6 - appears to be driven up by an outlier, however if I exclude the outlier it looks 
artificially low, so I gave some credit off the weighted average with an eye on the 
overall progression. 
Ages 5 & 7 appear reasonable relative to industry/company default XS pattern.  (Age 
5 highs are balanced by a low “outlier.”) 
Ages 8-10: set to industry/company default (#’s changed slightly and rounded for 
proprietary reasons). 

47 

I looked at five weighted averages, but based my selections on an inverse power fit of 
the entire triangle of incremental reported losses, using the method described in Dave 
Clark’s 2003 CAS Forum paper on “LDF Curve-Fitting and Stochastic Reserving: A 
Maximum Likelihood Approach.”  I also considered fitting only the last few 
diagonals, but ultimately decided that it made sense to fit all the data.  I ignored loss 
trend in this example.  Graphs of the factors (actual all years versus fitted all years, 
columns of actuals by development period compared to fitted, standardized residuals) 
increased my confidence that the maximum-likelihood approach was doing a good  
job fitting the entire triangle with all its volatility. 

48 
I used unweighted and no less than following age-to-age. For this case, it looks like 
better experience in recent years. If I find that there is a solid reason for the better 
experience, I will apply an adjustment factor for all ATA factors. 

49 
I didn’t look at any averages formally.  I eye-balled each column and struck repeated 
compromises between what the column suggested and my feeling that the age-to-age 
factors should decrease monotonically. 

50 

I model a distribution of the “time until reported” random variable. I then fit the 
incremental amounts to what the distribution would imply as a fraction of the 
cumulative amount for the accident period. I then inspect the errors for consistent 
bias and make adjustments if appropriate. 
 
I find this method to deal well with volatile development data. Because it is looking 
across the entire curve for the parameterization, the impact of an outlier is generally 
smoothed across development periods. In this example, my factors are larger for the 
later development periods than what history would indicate. However with a 6-7 
factor on the 2nd most recent diagonal of 1.5, clearly the potential for late period 
development is there, and I feel this should impact the selection for other periods. 
 
This method is only appropriate when negative incremental amounts are observed 
sporadically, not consistently. I prefer to use a method that models case reserve 
balances and incremental paid losses within a single model framework, which 
therefore does not suffer this problem. 
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I looked at two kinds of averages, weighted averages and simple averages. If I had 
some extra knowledge on this book of business, I might have done some time 
weighted averages. I usually prefer the weighted average to simple average because 
the simple average has inherent bias. However, I didn’t use either of them for LDFs 
of age 1-4. I found them to be disturbingly low and feel uncomfortable to go with any 
of them (5-year weighted average etc). 
 
I found the age 1-4 LDFs have a wider range then those of age 5 and on. I also 
noticed that there is a negative correlation between the LDF factors and reported 
amount at the same age. This is very typical for LOBs of high variance. For age 1-4, I 
used a linear regression to predict the LDF factors. For example: 2002 factor age 1 
factor (3.14) was calculated using age one reported amounts and age 1-2 ATA factors. 
2002 age 2 factor (1.65) was calculated using age two reported amounts and age 2-3 
ATA factors.  
 
For age 5 and on, I judgmentally picked LDF with the consideration of weighted 
averages, simple averages, smoothness, conservatism, and historical LDF range. 
 
I did this for each year and each age. I did the age to ultimate factors by using 
ultimate divided by reported. ATA factors were derived from age to ultimate factors. 
 
There is a bump in the ATA curve, which is mostly caused by the low reported 
amount of year 2000. 

52 

Authors’ note:  This participant didn’t provide selected factors, and was thus not included in the 
earlier tables.  However, we felt that the thought process was worth including. 
 
Being the pain in the (you know where) actuary I am, I would first ask the 
underwriters/claim handlers a series of questions (either my own or via an 
underwriting/claim audit): 
 
What are the attachment and limit profiles of the underlying umbrella business and 
how have these changed over time? 
Is the data net or gross of reinsurance and how has the company’s retention changed 
over time? 
What is the company’s case reserving policy and how has this policy changed over 
time? 
What is the nature of the underlying umbrella business (i.e. commercial or personal)? 
 
Absent any answers to my questions, then I would probably take a series of averages 
(3 to 5 year simple average, 3 to 5 year weighted average, 5 year excluding high & low 
simple average).  I would then probably take an average of the averages (yes I’ve done 
this) and then make a selection.  In other words smooth the data to the point where a 
selection is easier and more formulaic and less arbitrary. 
 
While making selections, I would also note where in the underwriting cycle I am 
(helps to select a calibration period for the averages) - or perhaps use loss ratio 
benchmarks to see if ultimate loss projections take sense. 
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An Analysis of  the Market Price of  Cat Bonds 

Neil M. Bodoff, FCAS, MAAA, and Yunbo Gan, Ph.D 
 
________________________________________________________________________ 
Abstract 

Motivation. Existing models of the market price of cat bonds are often overly exotic or too simplistic. 
We intend to offer a model that is grounded in theory yet also tractable. We also intend for our analysis 
of cat bond pricing to shed light on broader issues relating to the theory of risk pricing. 
Method. We analyze several years of cat bond prices “when issued.”  
Results. We describe the market clearing issuance price of cat bonds as a linear function of expected 
loss, with parameters that vary by peril and zone. 
Conclusions. The results provide a compact form of describing market prices of cat bonds and thus 
provide a framework for measuring differences in prices across various perils and zones; the results also 
allow us to measure changes in the price function over time. The results also suggest an overarching 
theory of risk pricing, in which price depends on two factors: the first factor is the required rate of return 
on downside risk capital in a portfolio context, and the second factor is the uncertainty of the estimate of 
the expected loss. 
 
Keywords. Cat bonds; Insurance Linked Securities (ILS); market price of risk; reinsurance 

             

1. INTRODUCTION 

Describing the market price of property catastrophe (cat) bonds is important on two planes: the 
practical and theoretical. On the practical plane, firms desire to know how prices have behaved in 
the past, how prices vary by type of risk, and, potentially, how prices will behave in the future. 
Moreover, a model that accurately describes prices can also assist in benchmarking an observed price 
relative to a predicted price. On the theoretical plane, describing the market price of cat bonds 
illuminates the more general question of risk pricing, which relates to reinsurance contracts and 
other risk bearing transactions. 

1.1 Research Context 

Cat bond pricing has been investigated in Lane [6]. More recently, Gatumel [2] has reviewed 
Lane’s model as well as other models of risk pricing. 

1.2 Objective 

Our objective is to propose a model that describes the market clearing price of cat bonds.1 We 
propose a model that builds on theory, parsimoniously conforms to empirical data, and accentuates 

                                                           
1 We do not intend for our model to address the full spectrum of complex issues that affect the prices of cat bonds. 
Rather, our proposed model, like all models, serves only as an approximation to reality. 
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practicability. 

2. BACKGROUND 

Insurance and reinsurance companies have used “cat bonds” to transfer, for a price, the risk of 
property catastrophe (cat) loss to investors.2 Essentially, investors supply capital equal (usually) to 
the amount of the bond; the capital is then available to pay any covered losses from property 
catastrophe as defined in the bond. The insurance and reinsurance companies who sponsor the 
bonds thus hedge their exposure to cat risk, while investors earn return on capital via the coupon 
payments on the bonds.3 If no cat event takes place, the investors receive all the coupon payments 
and return of principal, whereas if a cat loss does occur, the investors will typically lose out on some 
coupons and also sustain loss of principal. 

The coupon rate received by the investors is usually split into two components. First, because the 
investors contribute money for one (or more) years, the investors receive interest payments for the 
time value of their money, which is usually based on the LIBOR rate.4 In addition, the investors are 
subject to a potential cat loss, so they receive an additional coupon rate for taking on this risk; this 
additional coupon rate, quoted as a percentage of the amount of the bond, can be referred to as 
“risk premium,” “risk spread,” “spread over LIBOR,” and “spread.” In this paper, we will use the 
term “spread.” Thus, we can say that: 

 

Total coupon rate % to investors = LIBOR % + spread % (2.1) 

 

The LIBOR rate is intended to compensate investors primarily for the holding of their money 
but not for cat risk; thus the spread is the component of the coupon rate that relates to the event 

                                                           
2 This section serves as basic introduction and background for the purpose of discussing the market price of cat risk. It is 
not intended as a comprehensive text on the cat bond market. Therefore, we caution the reader that some statements 
that are generally true may have caveats and exceptions; we typically choose not to highlight these caveats and 
exceptions, because our concerns are materiality and brevity. 
3 We caution the reader that this section serves as a streamlined background and does not address all the various 
technicalities of cat bonds. One example of a technicality is that an insurance company typically uses a Special Purpose 
Vehicle (SPV) to “issue” the bond; the company only “sponsors” the bond. In this paper, we use the terms “sponsor” 
and “issue” interchangeably. 
4 Technically, the time value of money should be based on a risk-free rate. The LIBOR rate, which is slightly higher than 
the risk-free rate, incorporates a modest amount of credit risk as well. Thus the reach for higher yield has served as a 
Trojan horse to insinuate credit risk into the cat bond market; these issues are beyond the scope of this paper. 



An Analysis of the Market Price of Cat Bonds 
 

Casualty Actuarial Society E-Forum, Spring 2009 3 

risk of a cat loss. Therefore, we will generally use the spread to measure the “price” of risk transfer 
of cat risk: 

 

Price of risk transfer = spread % (2.2) 

 

While the spread represents the price of the bond, it does not measure the “net cost” to the 
sponsor of the bond. After all, the sponsor has a mathematical expectation of receiving some cat 
loss recoveries from the bond; the “annual average loss” (AAL) or “expected value” measures this 
quantity. In fact, as part of the bond issuance process, the sponsor will typically hire a third-party cat 
modeling firm to estimate the expected loss (which is then usually expressed as a percentage of the 
amount of the bond, a convention we follow in this paper). Usually, the spread should exceed the 
modeled expected loss, because the spread should be large enough to provide for the mathematically 
average loss and still provide some additional rate of return (above zero). Thus we can say: 

 

Spread % = expected loss % + additional rate of return % (2.3) 

 

Spread % = expected loss % + margin % (2.4a)

 

Margin % = spread % - expected loss % (2.4b)

 

Generally, these values are quoted as percentages of the amount of the bond; thus in this paper 
the terms “spread,” “expected loss,” and “margin” will typically be used in the context of “as a 
percentage of the bond amount.” We also note that the bond amount is analogous to the occurrence 
limit and the aggregate limit of a property cat reinsurance contract; we will therefore use the term 
“limit” interchangeably with “bond amount.”5 

The question we investigate in this paper relates to the market pricing of cat bonds: how can we 
explain and predict the spreads of cat bonds? Do models of spread behavior conform to conceptual 
frameworks and also conform to empirical evidence? How does a theory of risk pricing inform our 

                                                           
5 Where “limit” is the “100% limit” reduced for “co-participation” or “coinsurance.” 
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choice of model? Simultaneously, how does our inspection of empirical data affect our theory of risk 
pricing? These are the themes we explore in this paper. 

3. MODELS OF CAT BOND PRICES 

Each buyer and seller in the market uses his own risk preferences to evaluate price. Models of cat 
bond prices do not necessarily attempt to replicate the exact risk preferences and decisions of each 
market participant; rather, using a macro-level perspective, they describe the observed market 
clearing price, which is the outcome of all the risk preferences of all the individual buyers and sellers. 

Before proceeding with our analysis, we discuss several pre-existing models of cat pricing and 
describe what motivates us to find an alternative model. Because the issue of pricing for cat risk 
arises in both the cat bond market as well as the traditional reinsurance market, we discuss models of 
cat risk pricing that derive from both sources. 

3.1 Some Existing Models 

One existing model of spreads is “multiple of expected loss.” Practitioners in the cat bond 
market often measure, report, and benchmark cat bond spreads as a “multiple of expected loss.” 
Implicitly, they espouse a model such that: 

 

Spread % = expected loss % * multiple (3.1) 

 

In this model, the parameter “multiple” varies quite significantly: when expected loss is large, the 
multiple is small, and when expected loss is small, the multiple is large. As a result, the “multiple of 
expected loss” model is neither a complete nor an accurate description of spread. Thus one of our 
central motivations is to find an alternative model that better describes spread behavior, yet 
preserves both the parsimony and tractability of the “multiple of expected loss” model. 

A different class of existing models focuses on some form of volatility metric or risk measure of 
the individual bond (or layer or “tranche”) in order to model the spread. Thus: 

 

Spread % = expected loss % + margin % based on standalone risk (3.2) 
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This family of models includes: 

1. Margin % = function of standalone standard deviation.6  

2. Margin % = function of conditional expected loss (i.e., conditional severity).7 

One problem with using standard deviation is that for highly skewed distributions, which are 
prevalent in property cat reinsurance, standard deviation is not an accurate description of extreme 
downside risk; rather, the skewed downside risk must be measured using other metrics.8 Thus we 
hypothesize that the following model, which focuses on the extreme downside of total amount of 
capital at risk, might be a suitable candidate: 

 

bondtheofamount
%)capitalonreturnofraterequired*riskatcapitalof(amount

%lossexpected%Spread +=  (3.3) 

 

For typical cat bonds, a severe downside loss can wipe out the entire principal; so the amount of 
“capital at risk” equals the full amount of the bond. Returning to equation (3.3), if we replace the 
term “amount of capital at risk” with “amount of the bond” and cancel the term in the numerator 
and the denominator, we derive: 

 

Spread % = expected loss % + required rate of return on capital % (3.4) 

 

Another problem with the standalone standard deviation and conditional severity models is that 
they violate a key principle of risk pricing: that one ought to measure risk not on a standalone basis 
but rather in a portfolio context. Thus the standard deviation or conditional severity of a particular 
bond should be much less important in a portfolio context—what matters is the bond’s contribution 
to the total risk of the portfolio, which may differ from its standalone volatility.9 

What attribute of a cat bond can approximately indicate its contribution to the risk of the overall 

                                                           
6 See Kreps [5]; this model enjoys widespread popularity in the traditional reinsurance market. 
7 See Lane [6]. 
8 See Kozik [4]. 
9 Indeed, Kreps [5] states quite explicitly that a price based on standalone standard deviation should be viewed only as an 
upper bound of the price, whereas the actual market price should be lower. 
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portfolio?10 In the context of property catastrophe risk, it seems that different perils ought to behave 
independently of one another; thus, we would expect virtually no connection or correlation between 
losses on a bond covering Southeast USA Hurricane and losses on a bond covering California 
Earthquake. At the same time, two bonds that both cover California Earthquake would likely tend 
to be correlated—if there’s a loss on one bond, there will likely be a loss on the second bond as well. 
So a bond’s covered “peril and geographical zone” (often “peril” for short), such as Southeast USA 
Wind, California Earthquake, etc., ought to be important for understanding a bond’s contribution to 
the risk of the total portfolio. 

3.2 Initial Hypothesis 

As a result of the discussion above, our initial hypothesis is that cat bond pricing ought to 
conform to the following model: 

 

Spread % = expected loss % + peril specific required rate of return on capital % (3.5) 

 

Spread % = expected loss % + peril specific margin % (3.6) 

 

Such a model states that a bond’s spread over LIBOR must be large enough to cover the 
expected loss and also provide an “additional rate of return on capital” to compensate for the bond’s 
contribution to total portfolio risk, which varies based upon the covered peril. One advantage of this 
type of model, in which the compensation for risk is expressed as an additional rate of return, is its 
similarity to other bond market models.11 In addition, such a model would satisfy the intuition of 
practitioners that: 

1. If a bond’s expected loss is small, then the spread’s “multiple of expected loss” is 
relatively high. 

                                                           
10 This “overall portfolio” could theoretically be as diverse as the portfolio of all investments opportunities, but we note 
that taking cat risk may require critical mass of time, money, and expertise, which implies an “overall portfolio” that is 
concentrated in cat bonds. At the same time, cat bond pricing can be influenced by pricing in the traditional reinsurance 
market. So the “overall portfolio” in which we evaluate the risk of a cat bond may range from the portfolio of all 
investment opportunities to the portfolio of all cat bonds to the portfolio of all reinsured exposures; or it may reflect a 
mixture of these various perspectives. This issue requires further research. 
11 Hull [3]. 
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2. If a bond’s expected loss is large, then the spread’s “multiple of expected loss” is 
relatively low. 

3.3 Revised Hypothesis 

A cursory glance at cat bond market prices, however, shows that this model does not fully 
describe the data. Rather, as the expected loss increases, not only does the spread increase, but the 
margin itself (which equals spread minus expected loss) tends to increase as well. This surprising 
phenomenon occurs in the corporate bond market as well, where it is sometimes referred to as the 
“credit spread puzzle.”12 

We therefore revise our hypothesis and propose the following model: 

1. Spread % = expected loss % + peril specific margin % 

2. Peril specific margin % = increasing function of expected loss % 

To describe margin as an increasing function of expected loss, we begin with a basic model, a 
linear relationship: 

 

Peril specific margin % = peril specific flat margin % + peril specific factor * 
expected loss % (3.7) 

 

Combining all the pieces of equations (3.6) and (3.7), we obtain: 

 

Spread % = expected loss % + peril specific flat margin % + peril specific factor * 
expected loss % (3.8) 

 

Or, more concisely, we have a straightforward linear function to describe spread: 

 

Spread % = peril specific flat margin % + expected loss % * (1+ peril specific 
factor) (3.9) 

 

                                                           
12 Hull [3]. 
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Or, for each peril, we can say: 

 

Spread % = constant % + loss multiplier * expected loss % (3.10)

 

Because the variables of “spread,” “constant,” and “expected loss” are defined as “% of bond 
amount,” we also wish to show the equation in dollar terms. Multiplying both sides of the equation 
by “bond amount,” we obtain: 

 

Spread $ = bond amount $ * constant % + loss multiplier * expected loss $ (3.11)

 

This form of the model clarifies that the total dollar price of risk transfer in the cat bond market 
is a linear function of expected loss and bond amount.  

Similarly, we note that we can rewrite equation (3.11) in the terminology of traditional 
reinsurance13: 

 

Premium $ = aggregate limit $ * constant % + loss multiplier * expected loss $ (3.12)

 

This form of the model clarifies that the total dollar price of risk transfer in the reinsurance 
market is a linear function of expected loss and aggregate limit.  

One favorable aspect of this type of model, as described in equations (3.10), (3.11), and (3.12), is 
that it satisfies the “no arbitrage principle of pricing” as described by Venter [9]. In 
contradistinction, a pricing model based on standalone standard deviation violates the principle of 
“no arbitrage.” 

3.4 Conjecture on Revised Hypothesis 

Why does the original hypothesis, “spread % = constant % + expected loss %,” fail? Why do we 

                                                           
13 Here the “spread” is the “price” (or “premium”) and the “bond amount” is the aggregate limit. This analogy holds for 
reinsurance contracts that have no reinstatement premium and no reinstatement of limit. We require further research to 
determine how to adapt the cat bond pricing formula for a reinsurance contract with reinstatable limit and premium. 
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need the revised model, “spread % = constant % + loss multiplier * expected loss %”? Why does 
the expected loss need to be multiplied by a factor to obtain a viable model for spread? What does 
the “loss multiplier” represent? On one hand, we do not strictly need to answer these questions; so 
long as one model does a superior job of approximating, describing, and predicting reality, we 
should generally choose the better model (all else equal). On the other hand, formulating a 
reasonable conjecture about why a promising initial model fails, and why a modified model works 
better, can provide insight and potentially assist us in our later analysis. 

Our conjecture is that the “loss multiplier” parameter relates to uncertainty in the expected loss 
estimate. Recall that we do not actually know the true underlying value of expected loss; rather, cat 
modeling firms, using computer software, provide values that are merely estimates of the true 
expected loss.14 Perhaps if we knew the precise value of expected loss, then we could say that a 
reasonable model is “spread % = constant % + expected loss %.” But given the uncertainty in the 
estimated expected loss, we must amend the model to say that “spread % = constant % + loss 
multiplier * expected loss %.”15 

4. ANALYSIS OF EMPIRICAL DATA 

In this section, we discuss the underlying data that we use in our analysis and investigate the 
results of fitting parameters of our proposed model to the empirical data. 

4.1 Data and Limitations 

When investigating the price of risk in the cat bond market, we can analyze the spreads of bonds 
“when issued” (when they are first bought by investors in the “primary market”) and also later on 
when the bonds are resold and traded in the “secondary market.” Although trading in the secondary 
market has become more active, many initial investors prefer to buy and hold their bonds to 
maturity. Thus, we view the pricing of “when issued” bonds to be more informative and robust, 
whereas the secondary market, still in its formative stages, may not be sufficiently reliable (yet) for 
analyzing the price of risk. As a result, we use only the data points for cat bonds in the primary 
market, when they are originally issued. 

                                                           
14 A telling manifestation of this loss estimation uncertainty is the fact that various major modeling firms calculate values 
for expected loss that are sometimes quite different from each other. 
15 The uncertainty of the estimated expected loss may explain the “credit spread puzzle” as well. Several competing 
explanations for the “credit spread puzzle,” however, would not explain our observations in the cat bond market. 
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The data for this study comprises various tranches of bonds, their expected loss, spreads, and the 
perils they cover, for the years 1998–2008. Before proceeding to analyze the data, we applied a 
number of filters to the data. First, because we describe cat bond spreads with peril-specific 
parameters, we could use only single peril bonds; we excluded from this analysis any bonds that 
covered more than one peril.16 This initial filtering left us with approximately 150 useable data 
points. Next, some bonds can be issued for a longer duration than the time that they are exposed to 
property cat risk; thus, the published spread, which corresponds to the entire lifespan of the bond, 
does not correspond to the time that the bond is “on risk.” To avoid this problem, we excluded any 
bonds whose issuance date preceded the inception date by more than 30 days. A similar 
complication arises when the bond covers a seasonal risk such as Wind: because the risk of cat loss 
is not uniform throughout the year, there can be a difference between the lifespan of the bond and 
the amount of time it is “on risk.” To deal this problem, we excluded any bonds whose covered peril 
was Wind and whose duration exceeded a whole number of years by more than 30 days. After 
applying the various data filters, we began the analysis with 115 data points. We also mapped the 
data to “issuance year” based on a 12-month period ending June 30; thus the “2008 issuance year” 
comprises bonds issued between July 1, 2007 and June 30, 2008.17 

4.2 Results 

In this section we use the empirical data to fit the parameters of our proposed model: 

 

Spread % = constant % + loss multiplier * expected loss % (4.1) 

 

4.2.1 Wind: USA 

We begin by inspecting results for USA Wind.18 Exhibit 1 shows the fitted parameters: 

 

                                                           
16 With sufficiently detailed information, one could include multi-peril bonds in the analysis; however, because we could 
not obtain reliable data quantifying how much the various perils contributed to the total expected loss of multi-peril 
bonds, we could not include these bonds in our analysis. 
17 This mapping is used in AON Capital Markets [1]. 
18 The bonds in this category generally cover some combination of Florida, Southeast USA, and/or Northeast USA. We 
could not split this large category into more granular subcategories. 
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Exhibit 1 

Peril Zone Years
Market 

Condition Parameter Name
Parameter 

Value
Standard 

Error

Confidence 
Interval (95%) 
Lower Bound

Confidence 
Interval (95%) 
Upper Bound

Wind USA All years Full cycle Constant % 3.33% 0.45% 2.38% 4.27%
Wind USA All years Full cycle Loss Multiplier 2.40           0.17             2.05                 2.76                 

 

The parameters in Exhibit 1 show that we can approximate the spread (when issued) of any cat 
bond that covers USA Wind as follows: 

Spread % = 3.33% + 2.40 * expected loss % 

The model provides an approximation for describing spread; one can use expert judgment to 
refine the modeled spread by incorporating the many additional factors that influence the actual 
issuance spread (market conditions, trigger type, etc.). 

As noted in Exhibit 1, the regression applies to USA Wind, using all years of data (1998-2008); 
the time horizon of the historical data covers market conditions ranging from the high prices of a 
“hard market” to the low prices of a “soft market.” We note that the model’s intercept (Constant %) 
and slope (Loss Multiplier) are significant variables. 

One benefit of having a mathematical model of cat bond pricing is that it allows us to take the 
wide array of cat bond prices and summarize them in compact form (two variables). Such a model 
also enables us to compare and contrast price behavior for various different perils, zones, time 
periods, and market conditions.  

4.2.2 USA Wind vs. Europe Wind 

We now inspect the results for the peril Wind in two different geographical zones: USA and 
Europe. 
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Exhibit 2 

Peril Zone Years
Market 

Condition
# of 

Observations R Square

Wind USA All years Full cycle 21 91.6%
Wind Europe All years Full cycle 12 96.8%  

 

USA Wind All Years

Expected Loss %
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%

Europe Wind All Years

Expected Loss %
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Peril Zone Years
Market 

Condition Parameter Name
Parameter 

Value
Standard 

Error

Confidence 
Interval (95%) 
Lower Bound

Confidence 
Interval (95%) 
Upper Bound

Wind USA All years Full cycle Constant % 3.33% 0.45% 2.38% 4.27%
Wind USA All years Full cycle Loss Multiplier 2.40           0.17             2.05                 2.76                 

Wind Europe All years Full cycle Constant % 1.61% 0.33% 0.88% 2.33%
Wind Europe All years Full cycle Loss Multiplier 2.49           0.14             2.17                 2.81                 

 

We note that the parameter “Constant %” for Wind is significantly higher for USA than for 
Europe. Given the very large accumulation of exposure in USA, it is reasonable that USA Wind 
contributes much more than Europe Wind to the total risk of an overall portfolio; thus the higher 
value of “Constant %” for USA is consistent with our hypothesis that this parameter relates to the 
“peril-specific required rate of return on capital.” We also note that the second parameter, “Loss 
Multiplier,” is significantly different than unity. Interestingly, the “Loss Multiplier” for Wind does 
not vary much between USA and Europe. This may suggest a similar magnitude of uncertainty for 
expected loss estimates for USA Wind and Europe Wind. 
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4.2.3 USA Wind All Years vs. USA Wind Hard Market 

Having inspected two different zones, we now turn to analyzing two different time periods. 

 

Exhibit 3 

Peril Zone Years
Market 

Condition
# of 

Observations R Square

Wind USA All years Full cycle 21 91.6%
Wind USA 2006 - 2007 Hard Market 13 97.3%  

 

USA Wind All Years

Expected Loss %
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USA Wind Hard Market

Expected Loss %
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Peril Zone Years
Market 

Condition Parameter Name
Parameter 

Value
Standard 

Error

Confidence 
Interval (95%) 
Lower Bound

Confidence 
Interval (95%) 
Upper Bound

Wind USA All years Full cycle Constant % 3.33% 0.45% 2.38% 4.27%
Wind USA All years Full cycle Loss Multiplier 2.40           0.17             2.05                 2.76                 

Wind USA 2006 - 2007 Hard Market Constant % 4.28% 0.37% 3.47% 5.09%
Wind USA 2006 - 2007 Hard Market Loss Multiplier 2.33           0.12             2.07                 2.58                 

 

Exhibit 3 shows results for the peril Wind and the zone USA on two bases:  

1. Using all years of data across a full cycle of market conditions. 

2. Using the 2006 and 2007 years of data, which correspond to a “hard market,” a time 
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period of increased risk aversion and higher prices. 

We note that the “Constant %” tends to be significantly higher during the hard market than the 
all years average, which conforms to our expectations that the required rate of return on capital 
increases during a hard market. In contrast, the fitted value for “Loss Multiplier” does not vary 
much for USA Wind between the hard market and the all years average. 

4.2.4 Earthquake: California vs. Japan 

We now turn to the other major catastrophic peril, Earthquake (EQ). The exhibit below shows a 
comparison between California EQ and Japan EQ: 

 

Exhibit 4 

Peril Zone Years
Market 

Condition
# of 

Observations R Square

Earthquake California All years Full cycle 42 69.4%
Earthquake Japan All years Full cycle 18 93.9%  

 

California EQ All Years

Expected Loss %
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Japan EQ All Years
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Peril Zone Years
Market 

Condition Parameter Name
Parameter 

Value
Standard 

Error

Confidence 
Interval (95%) 
Lower Bound

Confidence 
Interval (95%) 
Upper Bound

Earthquake California All years Full cycle Constant % 3.78% 0.29% 3.19% 4.36%
Earthquake California All years Full cycle Loss Multiplier 1.48        0.16        1.16                1.79                

Earthquake Japan All years Full cycle Constant % 2.28% 0.20% 1.85% 2.70%
Earthquake Japan All years Full cycle Loss Multiplier 1.85        0.12        1.60                2.10                

 

California, with its peak level of exposure accumulation, has a significantly higher “Constant %” 
than Japan. The value of the parameter “Loss Multiplier” does vary between USA and Japan, 
although the difference is not as significant as the difference in the “Constant %” parameter. 

4.2.5 California EQ All Years vs. California EQ Hard Market 

We now analyze EQ pricing during different time periods. 

 

Exhibit 5 

Peril Zone Years
Market 

Condition
# of 

Observations R Square

Earthquake California All years Full cycle 42 69.4%
Earthquake California 2006 - 2007 Hard Market 10 85.1%  

 

California EQ All Years

Expected Loss %
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California EQ Hard Market
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Peril Zone Years
Market 

Condition Parameter Name
Parameter 

Value
Standard 

Error

Confidence 
Interval (95%) 
Lower Bound

Confidence 
Interval (95%) 
Upper Bound

Earthquake California All years Full cycle Constant % 3.78% 0.29% 3.19% 4.36%
Earthquake California All years Full cycle Loss Multiplier 1.48        0.16        1.16                1.79                

Earthquake California 2006 - 2007 Hard Market Constant % 4.40% 0.55% 3.12% 5.67%
Earthquake California 2006 - 2007 Hard Market Loss Multiplier 2.04        0.30        1.34                2.73                

 

Exhibit 5 shows that for California Earthquake, the “Constant %” and the “Loss Multiplier” 
both increased significantly during the hard market of 2006–2007 relative to the all years average. 

4.2.6 Wind and EQ, USA and Europe, California and Japan 

We now examine our results for Wind and EQ in one combined context: 

 

Exhibit 6a 

Peril Zone Years
Market 

Condition Parameter Name
Parameter 

Value
Standard 

Error

Confidence 
Interval (95%) 
Lower Bound

Confidence 
Interval (95%) 
Upper Bound

Wind USA All Years Full Cycle Constant % 3.33% 0.45% 2.38% 4.27%
Wind USA All Years Full Cycle Loss Multiplier 2.40        0.17        2.05                2.76                

Wind Europe All Years Full Cycle Constant % 1.61% 0.33% 0.88% 2.33%
Wind Europe All Years Full Cycle Loss Multiplier 2.49        0.14        2.17                2.81                

Earthquake California All Years Full Cycle Constant % 3.78% 0.29% 3.19% 4.36%
Earthquake California All Years Full Cycle Loss Multiplier 1.48        0.16        1.16                1.79                

Earthquake Japan All Years Full Cycle Constant % 2.28% 0.20% 1.85% 2.70%
Earthquake Japan All Years Full Cycle Loss Multiplier 1.85        0.12        1.60                2.10                

 

Exhibit 6a displays the critical parameters that summarize the behavior of four major peril/zone 
combinations: USA Wind, Europe Wind, California EQ, and Japan EQ. Each unique combination 
of peril and zone contributes in a different way to the risk of the total portfolio; thus each 
peril/zone requires its own linear model with different parameters. Despite the differences in the 
models, however, there appear to be some similarities. We begin by focusing on the “Constant %” 
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parameter of the linear models: 

 

Exhibit 6b 

Peril Zone Years
Market 

Condition Parameter Name
Parameter 

Value
Standard 

Error

Confidence 
Interval (95%) 
Lower Bound

Confidence 
Interval (95%) 
Upper Bound

Wind USA All Years Full Cycle Constant % 3.33% 0.45% 2.38% 4.27%
Earthquake California All Years Full Cycle Constant % 3.78% 0.29% 3.19% 4.36%
Wind Europe All Years Full Cycle Constant % 1.61% 0.33% 0.88% 2.33%
Earthquake Japan All Years Full Cycle Constant % 2.28% 0.20% 1.85% 2.70%

 

Exhibit 6b shows that for the parameter “Constant %,” which is the intercept of the linear 
models, the values for the “peak” perils/zones of USA Wind and California EQ are quite similar. 
Additionally, the values for the significant yet “non-peak” perils of Europe Wind and Japan EQ are 
simultaneously similar to each other and also dissimilar to the values for the two peak perils.19 This 
phenomenon is consistent with our hypothesis that the “Constant %” relates to the “required rate of 
return on capital”: peak zones with the largest accumulation of exposure tend to contribute the most 
to the total portfolio risk and thus ought to have the highest “required rate of return on capital”; 
non-peak zones, which have less acute accumulation of exposure, tend to correlate less directly with 
the overall portfolio, will receive some credit for their diversification effect, and will have lower 
“required rate of return on capital.” 

We now turn to the second parameter of the model, “Loss Multiplier.” 

 

                                                           
19 See MMC Securities [8], which categorizes perils/zones into three major buckets:  
1. “Peak” (USA Wind and USA EQ)  
2. “Non-Peak” (Europe Wind and Japan EQ) 
3. “Pure Diversifying Perils” (other perils such as Australia EQ, Mexico EQ, and Japan Wind) 
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Exhibit 6c 

Peril Zone Years
Market 

Condition Parameter Name
Parameter 

Value
Standard 

Error

Confidence 
Interval (95%) 
Lower Bound

Confidence 
Interval (95%) 
Upper Bound

Wind USA All Years Full Cycle Loss Multiplier 2.40        0.17        2.05                2.76                
Wind Europe All Years Full Cycle Loss Multiplier 2.49        0.14        2.17                2.81                
Earthquake California All Years Full Cycle Loss Multiplier 1.48        0.16        1.16                1.79                
Earthquake Japan All Years Full Cycle Loss Multiplier 1.85        0.12        1.60                2.10                

 

In exhibit 6c, parameter values are similar not based on “peak” and “non-peak” but rather they 
are similar based on geophysical peril. The value for Loss Multiplier for the peril Wind hardly varies, 
whether in the USA zone or in the Europe zone. In addition, the value for Loss Multiplier for the 
peril Earthquake for the California zone is somewhat similar to its value for the Japan zone; 
moreover, these values for Earthquake are dissimilar to the values for Wind. Returning once again to 
our conjecture: if the Loss Multiplier is greater than 1.0 because of the uncertainty in the cat model’s 
estimated expected loss, then this uncertainty would likely be similar within a common peril (Wind) 
and likely dissimilar across different perils (Wind vs. EQ). 

Until now we have advocated the use of an individual linear model for each unique combination 
of major peril and zone, as described in Exhibit 6a; using two parameters to describe each major 
peril/zone combination, we have a total of eight parameters to describe cat bond pricing for these 
major perils. However, our discussion of the partial similarities of the linear models (the intercept is 
similar by zone, the slope is similar by peril) suggests the possibility of combining the various 
peril/zone combinations into one single linear model. We’ve seen that the Loss Multiplier varies by 
peril (Wind versus EQ) and that the Constant % varies by zone (peak USA Wind and California EQ, 
versus non-peak Europe Wind and Japan EQ). So a single linear model combining all the individual 
linear models ought to be: 

 

                   Spread % = ConstantAll %  
 
                                    + Additional ConstantPeak % * Peak Peril Indicator  
 
                                    + Loss MultiplierEQ * Expected LossEQ % 
 
                                    + Loss MultiplierWind * Expected LossWind % 
 

(4.2) 
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For this model, we assign each data point’s expected loss to either EQ or Wind. We also use an 
indicator variable to classify the data point as peak or non-peak (1 or 0). Now we can include all data 
points from single peril bonds covering USA Wind, California EQ, Europe Wind, and Japan EQ in 
one model and fit the parameters: 

 

Exhibit 7a 

Peril Zone Years
Market 

Condition
# of 

Observations R Square
Adjusted R 

Square

Multiple Multiple All years Full cycle 93 87.3% 86.9%  

 

Peril Zone Years
Market 

Condition Parameter Name
Parameter 

Value
Standard 

Error

Confidence 
Interval (95%) 
Lower Bound

Confidence 
Interval (95%) 
Upper Bound

Multiple Multiple All Years Full Cycle ConstantAll % 2.31% 0.26% 1.79% 2.83%
Multiple Multiple All Years Full Cycle Additional ConstantPeak % 1.24% 0.28% 0.70% 1.79%
Multiple Multiple All Years Full Cycle Loss MultiplierEQ 1.63        0.11       1.41                1.85                
Multiple Multiple All Years Full Cycle Loss MultiplierWind 2.32        0.10       2.12                2.52                

 

Exhibit 7a shows how the spread varies based upon expected loss, peril (Wind vs. EQ), and zone 
(Peak vs. Non-Peak). The intercept of the line for a non-peak zone is ConstantAll %, whereas the 
intercept for a peak zone is the sum of ConstantAll % and Additional ConstantPeak %; thus peak 
zones have a larger intercept value. The slope of the line depends upon the Loss Multiplier, which 
varies by peril; thus the slope of the line is steeper for Wind than for Earthquake. 

We can also examine such a model for a restricted time period, when market conditions are more 
homogeneous: 
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Exhibit 7b 

Peril Zone Years
Market 

Condition
# of 

Observations R Square
Adjusted R 

Square

Multiple Multiple 2006 - 2007 Hard Market 32 95.7% 95.3%  

 

Peril Zone Years
Market 

Condition Parameter Name
Parameter 

Value
Standard 

Error

Confidence 
Interval (95%) 
Lower Bound

Confidence 
Interval (95%) 
Upper Bound

Multiple Multiple 2006 - 2007 Hard Market ConstantAll % 2.07% 0.41% 1.23% 2.91%
Multiple Multiple 2006 - 2007 Hard Market Additional ConstantPeak % 2.30% 0.38% 1.51% 3.09%
Multiple Multiple 2006 - 2007 Hard Market Loss MultiplierEQ 1.94        0.14       1.65                2.24                
Multiple Multiple 2006 - 2007 Hard Market Loss MultiplierWind 2.34        0.09       2.15                2.53                

 

Exhibit 7b, together with Exhibit 7a, shows that when using the data of the hard market years of 
2006–2007, the parameters of the linear model change in various ways. The parameter “Additional 
ConstantPeak %,” which reflects the incremental additional price for peak zones, roughly doubles, 
from a 1.17% all years average to a hard market value of 2.30%; meanwhile, the parameter 
“ConstantAll %”, which serves as the intercept for “non-peak” zones, hardly changes. The parameter 
“Loss MultiplierWind,” which already has a high value for the all years data, does not change when 
fitted to the hard market data; “Loss MultiplierEQ,” which has a lower prevailing value for the all 
years data, increases significantly when fitted to hard market data. 

4.2.7 All Perils 

When we describe bond spreads using individual linear models, there are certain peril/zone 
combinations that will not have sufficient data to support reliable parameters. For example, Australia 
EQ, Mexico EQ, Mediterranean EQ, and Japan Wind are some of the perils for which we do not 
have enough data points to support standalone linear price functions. However, one of the 
advantages of a “combined” model such as equation (4.2) is the ability to include many of these 
ancillary perils in one overall linear function. In order to do so, we first note that these ancillary 
perils are likely less correlated with the overall portfolio than “peak” and “non-peak” perils; as a 
result, they ought to have a lower required rate of return on capital and thus a materially different 
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value for “Constant %.” We thus expand our categories of perils to three buckets20: 

1. Peak (USA Wind, California EQ) 

2. Non-peak (Europe Wind, Japan EQ) 

3. Diversifying (Japan Wind, Australia EQ, Mexico EQ, Mediterranean EQ, Central USA EQ, 
and Pacific Northwest USA EQ) 

We now can augment equation (4.2) to apply to all peril/zone combinations, as follows: 

 

           Spread % = ConstantAll %  
 
                               + Additional ConstantPeak % * Peak Peril Indicator  
 
                               + Additional ConstantDiversifying % * Diversifying Peril Indicator  
 
                               + Loss MultiplierEQ * Expected LossEQ % 
 
                               + Loss MultiplierWind * Expected LossWind % 
 

(4.3) 

 

In equation (4.3), the slope of the linear price function depends on whether the covered peril is 
EQ or Wind; the intercept depends upon the peril/zone being peak, non-peak, or diversifying.  

For a diversifying peril, the intercept is the sum of “ConstantAll %” and “Additional 
ConstantDiversifying %.” We expect that the parameter value for “Additional ConstantDiversifying %” 
should be negative, because a diversifying peril should have a lower required rate of return on capital 
and thus a lower intercept than other perils.  

Exhibit 8a below shows the results of fitting parameters to the model in equation (4.3), using data 
from bonds covering all perils/zones: 

 

                                                           
20 See MMC Securities [8]. 
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Exhibit 8a 

Peril Zone Years
Market 

Condition
# of 

Observations R Square
Adjusted R 

Square

All All All years Full cycle 115 87.4% 87.0%  

 

Peril Zone Years
Market 

Condition Parameter Name
Parameter 

Value
Standard 

Error

Confidence 
Interval (95%) 
Lower Bound

Confidence 
Interval (95%) 
Upper Bound

All All All Years Full Cycle ConstantAll % 2.35% 0.25% 1.85% 2.85%
All All All Years Full Cycle Additional ConstantPeak % 1.28% 0.27% 0.76% 1.81%
All All All Years Full Cycle Additional ConstantDiversifying % -1.09% 0.35% -1.79% -0.39%
All All All Years Full Cycle Loss MultiplierEQ 1.60          0.10       1.40                 1.81                
All All All Years Full Cycle Loss MultiplierWind 2.29          0.10       2.10                 2.48                

 

The parameters displayed in Exhibit 8a describe the spreads of property cat bonds covering all 
perils and zones. They tell us that one can approximate the spread of any “single peril” cat bond by 
taking the product of the expected loss and a “Loss Multiplier” (which depends on whether the peril 
is Wind or EQ) and then adding a “Constant %” (which depends upon the whether the covered 
peril/zone is “peak,” “non-peak,” or “diversifying”).21 Exhibit 8a also confirms our expectations that 
the linear function for a diversifying peril has a significant additional negative parameter (Additional 
ConstantDiversifying %) and thus a lower intercept than other perils. 

We now inspect the results of fitting parameters to the same model but using the more 
homogenous market conditions prevalent during the hard market years of 2006–2007: 

 

                                                           
21 The equation should be easily extendable to apply to multi-peril bonds as well. 
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Exhibit 8b 

Peril Zone Years
Market 

Condition
# of 

Observations R Square
Adjusted R 

Square

All All 2006 - 2007 Hard Market 43 95.5% 95.1%  

 

Peril Zone Years
Market 

Condition Parameter Name
Parameter 

Value
Standard 

Error

Confidence 
Interval (95%) 
Lower Bound

Confidence 
Interval (95%) 
Upper Bound

All All 2006 - 2007 Hard Market ConstantAll % 2.20% 0.40% 1.38% 3.02%
All All 2006 - 2007 Hard Market Additional ConstantPeak % 2.31% 0.38% 1.54% 3.08%
All All 2006 - 2007 Hard Market Additional ConstantDiversifying % -1.66% 0.45% -2.56% -0.76%
All All 2006 - 2007 Hard Market Loss MultiplierEQ 1.87          0.13       1.60                 2.14                
All All 2006 - 2007 Hard Market Loss MultiplierWind 2.31          0.09       2.12                 2.50                

 

Exhibit 8b, together with Exhibit 8a, shows that when using the data of the hard market years of 
2006–2007, the parameters of the model change in various ways. The parameter “Additional 
ConstantPeak %,” which reflects the incremental additional price for peak zones, increases sharply. 
The parameter “ConstantAll %,” which serves as the intercept for non-peak zones, hardly changes. 
Finally, the parameter “Additional ConstantDiversifying %” becomes even more negative when using 
hard market data, implying that the price of a “diversifying peril” is lower when the additional cost 
of peak perils is higher; stated differently, the “benefit” of a diversifying peril is larger when the 
incremental cost of peak perils is larger. However, the large standard error for this negative 
parameter indicates that this change may not be significant, so this issue requires further 
investigation. Finally, we note that the parameter “Loss MultiplierEQ” increases when fitted to hard 
market data, while the parameter “Loss MultiplierWind” does not change. While the future seldom 
duplicates the past, these results may provide some hints about how key pricing parameters may 
behave during future hard markets. 

5. AREAS FOR FURTHER RESEARCH 

Some areas for further research are as follows: 

1. Our analysis uses simple regression, which weights all squared errors equally. Future 
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research may consider a linear model that allows for varying weights on the squared error 
terms when fitting parameters. 

2. Because of data limitations, we included only single peril bonds in our analysis. For multi-
peril bonds, one requires information about the amount of expected loss that various 
perils and zones contribute to the total expected loss. With such data, one can include 
price information from multi-peril bonds when selecting models and fitting parameters. 
One could also then quantify to what extent (if any) a multi-peril bond suffers a price 
penalty relative to what the price “should have been” based on its expected loss and 
covered perils. Such a model could help quantify the tradeoff of sponsoring several bonds 
that each cover a single peril (e.g., better price but higher transactional costs) versus the 
advantages of sponsoring one bond covering multiple perils (e.g., worse price but lower 
transactional costs). 

3. The parameters of the proposed linear model tend to vary based on market conditions, 
which are constantly changing. With sufficient data, one may be able to fit parameters to 
many incremental time periods and produce a time series of fitted parameters; such a data 
set would allow one to analyze how the parameters drift over time. If one could identify 
the catalysts that drive the changes in the parameters over time, one could develop a 
forward-looking model that predicts the likely values of the key parameters of the price 
function for the next time period. 

4. Our focus thus far has been on the price of transferring cat risk via the cat bond market. 
What about the price of transferring cat risk in the traditional reinsurance market? We 
note that reinsurance contracts, which typically have reinstatable limit and premium, have 
different contractual features than cat bonds. Still, would some form of linear model 
adequately capture the market price of reinsurance contracts? Would such a model for the 
price of reinsurance contracts be similar or dissimilar to the model for cat bond prices? 
What would the similarity or dissimilarity of these models tell us? What would these 
models tell us about which types of cat risk are best handled via balance sheet equity 
capital, reinsurance capital, and cat bond capital? For example, our analysis suggests that 
two forces affect the price of cat risk in the cat bond market: the first factor is required 
rate of return on capital, and the second factor is uncertainty in the estimate of expected 
loss. Now, the broad asset portfolios that hold cat bonds may provide excellent 
diversification, which may lower the required rate of return on capital and reduce the 
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price of risk transfer for cat bonds. But the uncertainty in the estimated expected loss 
raises the price of risk transfer for cat bonds. So cat bonds may be relatively attractive in 
situations in which price is dominated by the “required rate of return” factor, but not in 
situations in which price is dominated by the “uncertainty in the expected loss” factor. 
This suggests that cat bonds will likely continue to be relevant mainly for cat layers that 
have low expected loss and/or cover peak perils, whereas other forms of capital may be 
preferable in other situations. The implication is that insurers may be able to enhance 
their capital structure by mixing together equity capital, reinsurance capital, and cat bond 
capital in an optimal combination. 

6. CONCLUSIONS 

In this paper, we describe the market clearing price of cat bonds by modeling cat bond spreads as 
a linear function of the bonds’ expected loss. This relationship between spread and expected loss, 
however, differs by cat peril and geographic zone; each unique combination of peril and zone sports 
its own “price line” with a different intercept and slope. We also present an approach that combines 
these individual models into one unified model. Whether using individual models or a combined 
model, the parameters change over time as market conditions change. We hypothesize that the key 
parameters in the linear models relate to two main drivers of price: required rate of return on capital 
and uncertainty of the expected loss. These two factors provide a roadmap for indentifying 
situations that are most suitable for reinsurance versus cat bonds and vice versa. We also note that 
the factor relating to uncertainty of the expected loss may help explain the broader issue of the 
“credit spread puzzle,” which appears in the corporate bond market. 

Using the proposed linear models, we can compare the market clearing price functions for cat 
bonds for various perils and zones, how they compare and contrast to each other, and how they 
change over time. Such models help us understand the drivers of the price of cat risk and help us 
describe how prices have behaved in the past and, potentially, how they may behave in the future. 
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Common Pitfalls and Practical Considerations in Risk 
Transfer Analysis 

Derek Freihaut, FCAS, MAAA, and Paul Vendetti, FCAS, MAAA 
________________________________________________________________________ 

The current papers available on risk transfer have provided background and a general description of the 
tools available for analysis.  Risk transfer analysis has many nuances that can trip up an actuary testing a 
contract.  This paper discusses several of these pitfalls and provides direction on how to address them 
based on previously published materials from the accounting boards, the American Academy of Actuaries 
(AAA), and the Casualty Actuarial Society (CAS).  This paper also addresses several outstanding risk 
transfer concerns that have no easy answers.  While these issues do not have obvious solutions, the intent 
of the paper is to shed some light on these topics and open the door for further discussion. 
 
To facilitate the discussion of these common pitfalls and practical considerations two example contracts 
are reviewed with an Expected Reinsurer Deficit (ERD) calculated for both. 

 
Keywords: Risk transfer, Expected Reinsurer Deficit (ERD), FAS 113, Reinsurance Attestation 
Supplement (RAS), SSAP 62. 

             

1. INTRODUCTION 

Current papers available on risk transfer have provided background and a general description of 
the tools available for analysis.  However, risk transfer analysis has many seemingly minor nuances 
that can trip up an actuary testing a contract.  In this paper, we will discuss several of these pitfalls 
and provide direction on how to address them based on previously published materials from the 
accounting boards, the American Academy of Actuaries (AAA), and the Casualty Actuarial Society 
(CAS).  We will also highlight a number of practical considerations that have not received as much 
attention in the available literature.  While these practical considerations do not have obvious 
solutions, we hope to shed some light on the available options and open the door for further 
discussion on the topic. 

1.1 Risk Transfer in Current Literature 

This discussion is derived from a review of existing risk transfer literature, most notably 
“Reinsurance Attestation Supplement 20-1: Risk Transfer Testing Practice Note” from the AAA 
Committee on Property and Liability Financial Reporting and “Risk Transfer Testing of Reinsurance 
Contracts: Analysis and Recommendations” from the CAS Research Working Party on Risk 
Transfer Testing [1][2].  We also relied heavily on the accounting standards, Financial Accounting 
Standard No. 113, “Considerations in Risk Transfer Testing” (FAS 113) and SSAP 62, “Property 
and Casualty Reinsurance.”  While some discussion of the CAS Working Party paper and the AAA 
Practice Note is necessary, this paper is an attempt to go beyond the framework provided in the 
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current literature and review the more routine issues faced by actuaries in reviewing reinsurance 
transactions for risk transfer. 

1.2 Objective 

In this paper, we will discuss several pitfalls and practical considerations with risk transfer 
analyses.  We will provide direction on how to address the pitfalls based on previously published 
materials and we hope to shed some light on the available options concerning the practical 
considerations and open the door for further discussion on the topics.  

1.3 Outline 

In Section 2 of this paper we will present a brief history and background of risk transfer, 
including a discussion of the terms “substantially all” and “self-evident,” as well as discussion on 
measuring risk transfer and risk transfer thresholds. 

Section 3 will contain a discussion on the pitfalls and practical considerations.  We will start by 
showing two sample contracts that will be used as a basis for much of the discussion, and how to 
analyze risk transfer.  Next we will cover various pitfalls, including discussion on the following 
topics: 

• Profit Commissions 

• Reinsurer Expenses 

• Interest Rates and Discount Factors 

• Premiums 

• Evaluation Date 

• Commutation and Timing of Payments 

In the last part of Section 3, we will highlight some of the practical considerations in risk transfer 
testing, including discussion on: 

• Parameter Selection 

• Interest Rate 

• Payment Pattern 

• Loss Distribution 
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• Parameter Risk 

• Use of Pricing Assumptions 

• Commutation Clauses 

The fourth and final section of the paper will contain a short wrap up, conclusions and a 
reminder that risk transfer testing is a principle-based exercise and not just a “plug and chug” 
methodological exercise. 

2. BRIEF HISTORY OF RISK TRANSFER 

Since the reinsurance goals of ceding companies are as different as the risks reinsured, 
reinsurance contracts contain a variety of terms and conditions that can impact the economic 
structure of the reinsurance transaction.  When a contract qualifies as reinsurance there are certain 
accounting benefits that a ceding company can realize.   

The demonstration of risk transfer for reinsurance is required by FAS 113 in order for the 
contract to receive reinsurance accounting treatment under Generally Accepted Accounting 
Principles (GAAP).  Statutory Accounting Principles (SAP) defined in SSAP 62 are similar in 
guidance to FAS 113. Generally, both standards for risk transfer require that: 

1. The reinsurer assumes significant insurance risk under the reinsured portion of the 
underlying insurance agreement; and 

2. It is reasonably possible that the reinsurer may realize a significant loss from the transaction. 

Because the terms “significant insurance risk,” “reasonably possible,” and “significant loss” are 
not defined in either accounting standard, the challenge is to appropriately interpret and apply the 
accounting standards to each reinsurance transaction. 

The abuses of the past several years in the use of finite reinsurance contracts have highlighted the 
need to document and quantify risk transfer. An increase in scrutiny of reinsurance contracts led to 
the introduction of the “Reinsurance Attestation Supplement,” in the 2005 NAIC Annual 
Statement.  

The supplement requires the chief executive officer (CEO) and chief financial officer (CFO) to 
confirm that:  

1. There are no separate written or oral agreements between the reporting entity and assuming 
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reinsurer. 

2. There is documentation for every reinsurance contract for which risk transfer is not 
reasonably self-evident that details the transaction’s economic intent and that documentation 
evidencing risk transfer is available for review. 

3. The reporting entity complies with all requirements set forth in the Statement of Statutory 
Accounting Principles No. 62, “Property and Casualty Reinsurance” (SSAP 62). 

4. The appropriate controls are in place to monitor the use of reinsurance. 

CEOs and CFOs have the responsibility to attest to risk transfer in reinsurance transactions. 
However, since actuaries are uniquely qualified to quantify and evaluate risk transfer, they are 
increasingly being called upon to quantify risk transfer and provide the necessary documentation. 

As mentioned above, GAAP and SAP accounting standards contain similar wording about what 
is required for risk transfer to be present.  Most notably, both require the presence of insurance risk.  
Insurance risk has two components, underwriting risk and timing risk.  If both of these types of risk 
are not present, then insurance risk has not been transferred.  While risk transfer is independently 
defined in each standard, we are unaware of any examples of a contract that would meet the 
requirements of one standard, but not the other.  Contracts that qualify according to one standard 
are generally considered to meet the requirements of the other standard as well.   

2.1 One Exemption from Risk Transfer Requirements – “Substantially All” 

Both GAAP and SAP accounting standards specifically require that it be reasonably possible that 
the reinsurer may realize a significant loss from the transaction, except in cases where the reinsurer 
meets the “substantially all” requirement.  This is meant to exempt a very narrow definition of 
contracts where the reinsurer assumes “substantially all of the insurance risk relating to the reinsured 
portions of the underlying insurance contracts.”  The most common examples are straight quota 
share or individual risk contracts with no loss ratio caps or other risk limiting features.  The reason 
for this exemption is that it allows companies to acquire qualifying reinsurance on inherently 
profitable books of business where it may not be reasonably possible that the reinsurer will realize a 
significant loss. 

2.2 Required Risk Transfer Documentation and Reasonably Self-Evident 

When the NAIC introduced the “Reinsurance Attestation Supplement” (RAS) in 2005 they also 
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introduced a new term to the risk transfer lexicon, “reasonably self-evident.”  The RAS requires 
documentation “for every reinsurance contract for which risk transfer is not reasonably self-
evident.”  This classification of contracts is meant to reduce the need to rigorously test every 
reinsurance contract for risk transfer.  Unfortunately, very little guidance was offered on what 
“reasonably-self evident” encompasses.  The AAA Practice Note followed the introduction of the 
RAS and laid out some general guidelines for establishing when the presence of risk transfer is 
reasonably self-evident.  The guidelines were general in nature and provided characteristics to look 
for in contracts to determine when risk transfer is reasonably self-evident and when it is not.  

The CAS Working Party paper took these guidelines one step further and provided a list of 
specific contract categories where risk transfer is reasonably self-evident based on meeting a 1% 
Expected Reinsurer Deficit (ERD) threshold.  They point out that this list is preliminary and expect 
it could be considerably expanded.  They also point out that there are exceptions to the list, such as 
when a contract looks contrived.  We feel that it can be dangerous to attempt to codify this 
terminology with explicit definitions.  Every contract is different and must have its terms thoroughly 
reviewed.   

Specifically, the CAS Working Party paper lists a couple of categories that we do not agree are 
always reasonably self-evident such as individual risk contracts and certain long tail excess of loss 
treaties.  Individual risk treaties with no significant risk limiting features would likely be exempt from 
the accounting standards since the reinsurer assumes “substantially all” of the underlying risk.  For 
individual risk contracts that do not qualify for this exemption, it is not hard to imagine special 
features that would restrict risk transfer.   

For long tail excess of loss treaties, the CAS Working Party paper provides a few numerical 
qualifications to meet the reasonably self-evident standard.  For excess of loss contracts that are not 
on short tail exposures, the CAS Working Party paper finds that any contract with aggregate limits 
no less than one per occurrence limit or twice the premium, meets the reasonably self-evident 
criteria if there are no ceding commissions and the rate on line is below 500%.  It is not difficult to 
construct a contract around these parameters that clearly does not transfer risk.  An extreme 
example would be a single doctor paying $1M for a $1M x $5M medical malpractice treaty with a 
$2M aggregate limit.  This contract passes the established criteria for the risk transfer to be 
reasonably self-evident, but I think most would agree that not enough risk is transferred in this 
contract for it to qualify as reinsurance.  This is obviously an unrealistic example, but it shows how 
applying specific parameters on the terminology can lead to unintended results. 
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The RAS requires documentation “for every reinsurance contract for which risk transfer is not 
reasonably self-evident.”  It seems obvious that any contract requiring a more rigorous review would 
also require documentation for the model results.  However, it is our recommendation that 
documentation be kept on all reinsurance contracts reviewed for risk transfer.  We think it is 
valuable to have documentation for those contracts found to be exempt for any reason, although the 
most notable are those that meet the “substantially all” clause.  We find it to be just as important to 
document any contract where the risk transfer is found to be reasonably self-evident.  While the 
term reasonably self-evident might lead one to believe the conclusion is obvious and anyone who 
picks up the contract will reach the same conclusion, not all contracts that meet this standard are 
clear cut.  This is of particular importance if you are using any reference, such as the previously 
discussed list from the CAS Working Party Paper, to make your determination.  The AAA Practice 
Note also recommends keeping documentation for reasonably self-evident contracts.  The practice 
note also includes several example checklists in the appendix from companies who have made this 
type of documentation standard.   

2.3 Selected Risk Measuring Method – Expected Reinsurer Deficit (ERD) 

Neither SSAP 62 nor FAS 113 provide a clear numeric trigger of when risk transfer fails. The 
“10-10” rule was developed as a benchmark to give meaning to the criteria in the two accounting 
standards. The “10-10” rule says that a reinsurance contract exhibits risk transfer if there is at least a 
10% chance of a 10% or greater loss for the reinsurer. 

Another method that has gained acceptance and overcomes some shortcomings of the “10-10” 
rule is the Expected Reinsurer Deficit (ERD). ERD can be viewed as the probability of a net present 
value (NPV) underwriting loss for the reinsurer multiplied by the NPV of the average severity of the 
underwriting loss.  A treaty is typically considered to exhibit risk transfer if ERD is greater than 1%, 
which is consistent with the “10-10” rule (10% loss multiplied by 10% chance is a 1% ERD). 
Therefore, contracts that qualify for risk transfer under the “10-10” rule generally qualify under a 1% 
ERD.  We will discuss thresholds more in the next section. 

ERD has not been explicitly endorsed by any professional body.  However, while the CAS 
Working Party paper stopped short of endorsing ERD, they did prefer its use as a de facto standard 
over the “10-10” rule.  There are a handful of other methods, but none of them are as widely used 
as the two previously mentioned.  Some methods, such as Value at Risk (VaR) and Tail Value at 
Risk (TVaR) are generalizations of methodologies we have already discussed.  Others, such as the 
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Right Tail Deviation (RTD) method by Wang outlined in the CAS practice note, have not caught on 
due to the complexity of the model [4][5].  There are also methods, such as the Risk Coverage Ratio 
(RCR) by Ruhm, which have not caught on due to the exclusion of key variables [3].  RCR does an 
adequate job of evaluating risk in the losses that are transferred, but it does not make any 
comparison to premium. 

In this paper we will test for risk transfer using a simple cash flow simulation and calculating the 
Expected Reinsurer Deficit (ERD).  While some of these other measures could be used in our 
example analysis we will use only ERD in the interest of consistency. 

2.4 Risk Transfer Thresholds 

The CAS Working Party paper began some brief discussion about what the appropriate guideline 
threshold percentage should be and suggested that further research be done.  Currently, because it is 
consistent with the “10-10” rule, the most commonly recognized threshold for ERD is 1%.  Some 
have suggested that a 2% threshold would be more appropriate.  Our recommendation is to 
continue using the 1% threshold until a more thorough analysis suggests otherwise.  Using 2% 
would be a more stringent guideline, but the 2% threshold does not appear to be any less arbitrary 
than the current 1% threshold.  While the 1% threshold is based on the somewhat arbitrary “10-10” 
rule, there is some reasoning behind it.  The “10-10” rule was loosely derived from the accounting 
standard language that required that the reinsurer face a “reasonable chance of a significant loss.”  
For the purposes of risk transfer, it has been commonly accepted that a 10% chance is a “reasonable 
chance” and that a 10% loss is a “significant loss.”  From these two accepted values, the ERD of 1% 
has been derived and this threshold continues to gain acceptance.   

The CAS Working Party paper also mentions the possibility of including other requirements, 
such as a required maximum loss, in order to show risk transfer.  We recommend not complicating 
the methodology with extra arbitrary requirements.  While adding a maximum loss requirement may 
feel intuitive, it begins to complicate the process and makes explaining results to the decision-makers 
more difficult.  Adding requirements can also lead to more engineering of contrived contracts.   If a 
maximum loss is required, any contract can be rewritten to incorporate a rare maximum loss.   
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3. COMMON PITFALLS AND PRACTICAL CONSIDERATIONS 
DISCUSSION 

In order to illustrate the common pitfalls that can affect a risk transfer analysis it is first important 
to demonstrate how a basic risk transfer analysis is completed, highlighting many of the issues that 
can surface along the way.  Many of the pitfalls referenced in this section are further emphasized 
later in the paper. 

To demonstrate risk transfer analysis two reinsurance contracts are used.  Contract #1 is a quota 
share contract while Contract #2 is an excess of loss contract. 

The terms for Contract #1 are summarized in Table 1: 

 

 

 

 

 

 

 

 

 

 

The underlying exposure for Contract #1 is multi-state workers compensation. The company has 
written workers compensation for a number of years.  The cession is a straightforward quota share 
with a loss ratio cap of 100%.  This loss ratio cap has the potential to significantly affect risk 
transfer.  The presence of the loss ratio cap does not always indicate a lack of risk transfer.  
Contracts, with loss ratio caps at 200% to 300% can clearly result in a significant loss ot the 
reinsurer.  Secondly, there is a profit commission provision whereby the ceding company will receive 
a profit commission if the underlying loss ratio is 66% or less with maximum profit provision of 
5.0%.  The profit provision swings on a one-to-one basis with the loss ratio.  The impact of profit 

Table 1 - Summary of Terms - Contract #1
Inception Date 1/1/2008

Estimated Subject Premium 10,000,000
Reinsurance Premium 8,000,000

Cession 80.0%
Ceding Commission 25.0%
Profit Commission

Loss Ratio 66.0%
Profit Swing 5.0%

Loss Ratio Cap 100.0%

Reinsurers Expenses as % of Prem.
Brokerage 2.0%

Underwriting Exp. 2.0%
Federal Excise Taxes 1.0%
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Table 2 - Summary of Terms - Contract #2
Inception Date 1/1/2008

Estimated Subject Premium 10,000,000
Provisional Reinsurance Rate 8.50%

Provisional Premium 800,000
Maintenance Fee 50,000

Retention 250,000
Limit 250,000

Swing Rate
Swing Loss Ratio 75.0%

Minimum Rate 6.00%
Maximum Rate 11.00%

Reinsurers Expenses as % of Prem.
Brokerage 10.0%

Underwriting Exp. 7.0%
Federal Excise Taxes 1.0%

provisions on risk transfer is discussed later in the paper.  

The terms of the second contract are summarized in Table 2:  

 

 

 

 

 

 

 

 

 

 

 

This is an excess of loss contract covering workers compensation exposure that has a number of 
potential risk limiting features.  The contract is swing rated with a provisional rate of 8.5% which 
can swing up or down by 2.5%.  The swing is based on a ceded loss ratio of 75.0%.  Secondly, there 
is a feature that states that the contract is automatically commuted after five years unless the ceding 
company pays an additional maintenance fee of $50,000. 

For the two example contracts it is not reasonably “self-evident” that risk transfer exists due to 
the presence of such features as low loss ratio caps and swing-rated premiums.   

3.1 Analyzing Risk Transfer 

The first step in any risk transfer review is to understand the reinsurance contract’s terms and 
conditions, focusing especially on the terms that can affect the amount of risk being transferred.  
Care must be taken to understand not only the terms of the treaty but also when those terms will be 
triggered.  In Contract #2 there is a commutation clause that requires a maintenance fee to avoid 
early commutation that is triggered after five years.   

Next the reporting dates and premium due dates need to be determined.  In both example 
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contracts the reinsurance premium is payable in quarterly installments due one month after quarter 
end , i.e., on April 30, July 31, October 31, and January 31 of the following year.   

In both contracts there is not a pre-defined loss payment schedule and therefore losses are 
reimbursed as they occur.  To determine the net present value of the losses, a loss payment pattern 
reflecting the underlying exposure being reinsured is applied.  It is further assumed that losses in any 
given calendar year are paid at the midpoint of the year. 

For Contract #2, it is assumed that the first swing rate adjustment is applied two years after the 
contract’s effective date.  Most contracts will define the timing of the experience adjustments to the 
premium.  It is also assumed in the model that the impact of the adjustment is correctly identified 
for the first adjustment with no further changes to the ceding commission necessary.  This 
assumption implies that the ultimate loss ratio is known at the first adjustment. 

The second assumption is that the commutation fee will be paid by the ceding company after five 
years.  This is a reasonable assumption since the ceding company may not want to commute the 
contract and reassume the risk of changes in the unpaid claims estimates.   

The risk transfer analysis was completed using Monte Carlo simulation, modeling first the direct 
loss payments and then projecting the treaty cessions from the direct loss payments.  The ceded 
losses are then discounted to the effective date of the treaty.  Next, the final premium amounts are 
determined based upon the nominal treaty results, not on the discounted premiums or losses.  Any 
premium adjustments are determined from the modeled results.  Care must be taken so that the 
premium payment dates are appropriately modeled.  Like the losses, premium payments are 
discounted to the treaty effective date.  The reinsurer profit/loss is then calculated for each iteration 
of the simulation as the net present value (NPV) of all payments made from the ceding company to 
the reinsurer minus the NPV of all the payments made from the reinsurer to the ceding company. 

All cash flows between the ceding company and reinsurer need to be represented in the model 
whether they are called premiums, fees, or experience adjustments. Reinsurer expenses are not 
included in the model since this is not a cash flow between the ceding company and the reinsurer.  
For instance in Contract #2 the maintenance fee is included in the analysis and the reinsurer 
expenses are not.  The reinsurer expenses are not part of the risk assumed by the reinsurer from the 
ceding company. 

Finally, the Expected Reinsurer Deficit (ERD) is calculated.  ERD can be viewed as the 
probability of a net present value (NPV) underwriting loss for the reinsurer multiplied by the NPV 
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of the average severity of the reinsurer underwriting losses.  The resulting ERD values are 2.85% for 
Contract #1 and 2.09% for Contract #2.  Details of the simulation and ERD calculation can be 
found in Appendices A and B.  These results indicate that both of these contracts appear to exhibit 
risk transfer.  This conclusion is based on the calculated ERD values and the commonly accepted 
threshold of 1.0%.  As with any risk transfer decision, the ultimate determination must be made by 
the company CEO or CFO or both.  

3.2 Common Pitfalls 

This section will highlight easy-to-make mistakes or common pitfalls.  Most of these come from 
our own experience in reviewing contracts for risk transfer and reviewing risk transfer analyses of 
other actuaries.  It is our intent to provide concrete solutions citing previously published materials. 

3.2.1 Profit Commissions 

Profit commissions generally should not be considered in risk transfer analysis.  When 
determining if risk transfer is present, the analysis focuses only on the scenarios resulting in a loss 
for the reinsurer.  While profit commissions can affect the economic results of a treaty, they usually 
are not triggered during a reinsurer loss.   

This exclusion of profit commissions and focus on reinsurer loss scenarios is not necessarily 
intuitive.  However, the accounting standards clearly state that the presence of risk transfer requires 
a “reasonable chance of a significant loss” to the reinsurer.  Therefore, the results of the ceding 
company should not be considered in a risk transfer analysis.   

It is important to remember that contract features like profit commissions can still have an 
indirect impact on risk transfer.  This impact on risk transfer stems from how these features may 
affect other aspects of the contract, most notably the premium.  Reinsurance contracts are priced 
while considering any and all expected payments paid and received by the reinsurer.  Any addition of 
a profit commission clearly increases the amount of future expected payments by the reinsurer to 
the ceding company and may result in a higher premium for the contract.              

In the example analysis for Contract #1, the profit commissions were included in the simulation 
to demonstrate that they did not affect the reinsurer in any loss scenarios.  However, if the contract 
failed to meet risk transfer requirements, the ceding company and the reinsurer may consider 
potential changes that would allow the contract to be accounted for as reinsurance.  One potential 
change would be to eliminate or reduce the profit commissions with a corresponding decrease in 
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premium.  This change in premium may result in the contract meeting risk transfer requirements.   

Another way profit commissions can affect risk transfer is through carryforwards.  Carryforwards 
may be used in multi-year contracts where the profits or losses from prior years may affect the 
results of the future years.  A contract for periods of more than one year usually requires further 
testing for risk transfer and any carryforwards that may impact a loss position for the reinsurer 
would need to be incorporated into the model.  Carryforwards can also be used in one-year 
contracts where the primary company and reinsurer agree to terms each year and at that time choose 
whether or not results will be carried forward.  In this case each contract renewal may require a 
specific analysis.  If there is a carryforward from a previous year that would affect results when there 
is a loss for the reinsurer, then it must be incorporated into the cash flow model.  However, when 
considering one-year contracts with no impact from prior carryforwards there is no need to 
incorporate potential future carryforwards since they have no impact on the contract being 
reviewed. 

3.2.2 Reinsurer Expenses 

Only cash flows between the ceding company and the reinsurer should be considered in a risk 
transfer analysis.   According to SSAP 62, “The evaluation is based on the present value of all cash 
flows between the ceding and assuming enterprises under reasonably possible outcomes.”  This 
means that broker expenses, operating expenses, fees related to letters of credit, and taxes should 
bear no impact on the analysis.  As can be seen in the Appendices, the analyses of the example 
contracts did not incorporate any of these expenses that did not result in a cash flow between the 
reinsurer and the ceding company. 

3.2.3 Interest Rates and Discount Factors 

SSAP 62 requires a constant interest rate to be used for discounting across all simulated 
scenarios.  The interest rate should not vary by scenario because risk transfer analysis should only 
consider insurance risk.  Non-insurance risks such as investment risk, currency risk, and credit risk 
should not be included.  The AAA Practice Note interprets this to also mean that the same interest 
rate should be applied to all cash flows, including premiums and losses. 

SSAP 62 only requires the selection of the interest rate to be reasonable and appropriate.  The 
AAA Practice Note recommends the risk free rate as a reasonable choice.  This is not necessarily a 
conservative selection.  Because the risk free rate is commonly below a reinsurer’s expected 
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investment returns, it will actually result in higher projected present valued losses.  However, the 
investment abilities of the reinsurer should not affect the presence of risk transfer, so the risk-free 
rate is a consistent and reasonable selection for the analysis.  The selection of other interest rates is 
considered later in the paper. 

SSAP 62 states that a reasonable and appropriate interest rate “generally would reflect the 
expected timing of payments to the reinsurer and the duration over which those cash flows are 
expected to be invested by the reinsurer.”  Therefore the duration used to select an interest rate 
should be based on the net cash flows to the reinsurer.   

There has been a lot of guidance on interest rate selection and there is very little room for 
deviation from the use of a constant interest rate in all risk transfer analyses.  However, in the 
selection of the interest rate the accounting standards do not prescribe a set framework and note 
that judgment is involved.  While using a risk-free rate with duration equal to that of the reinsurers 
net cash flows is recommended, a selected rate could still be considered a “reasonable and 
appropriate rate”. 

Page 4 of Appendix A provides an example of calculating a duration using loss and premium 
payments and then selecting a risk-free rate based on that duration.  To get the duration of the net 
cash flows we performed two duration calculations.  First we determined the duration of the 
premium payments.  This was straight forward since the premium payment schedule is laid out in 
the contract.  Next the loss duration is calculated using an industry payment pattern.  The duration 
of the net cash flows is then the difference between the two.  This calculation may not be exact, but 
it is a good approximation of the “duration over which those cash flows are expected to be invested 
by the reinsurer,” as the standard requires.  The calculated duration of net cash flows was then used 
to select an interest rate based on the years of maturity and yield curve rates from the U.S. Treasury 
in Columns (7) and (8).  This interest rate was used in the analysis for Contract #1. 

For Contract #2 an interest rate was selected with consideration given to the current risk-free 
rates and longer expected payment pattern for an excess of loss contract.   

3.2.4 Premiums 

The premium paid by the ceding company is one of the most significant inputs when determining 
if risk transfer is present.  When using the “10-10” rule or ERD all potential loss situations are going 
to be compared against the premium to calculate a percent of loss.  While its importance is clear, 
what the premium should include is not nearly as straightforward.    



Common Pitfalls and Practical Considerations in Risk Transfer Analysis 
 

Casualty Actuarial Society E-Forum, Spring 2009  14 

First, the premiums used in risk transfer analysis should be gross premiums.  This is specifically 
pointed out in SSAP 62.  Gross premiums entail all premium paid to the reinsurer before the 
consideration of any payments back such as a ceding commission.   

When making comparisons against premium to determine a reinsurer’s profit or loss, it is 
required that the present value of the premium be used.  Reinsurance contracts often lay out specific 
payment plans for premium.  The same interest rate used to discount losses should be applied to 
calculate the present value of the premium. While the risk transfer analysis is a present value 
calculation, it is important to model the actual functioning of the contract.  This means that the 
application of the loss ratio caps and experience adjustments are based upon the nominal premium 
and loss amounts.  As shown in Appendix A, the loss ratio cap in Contract #1 is applied to nominal 
losses and premiums in the simulation.  The discounting of premium and losses happens after the 
contract losses and premiums are determined and any caps or experience based features are applied. 

When the premium of a reinsurance contract is dependent upon future events, using the proper 
premium in a cash flow simulation is slightly more complicated.     

There are a number of premiums that could be considered for this purpose.  The initial deposit 
premium is an intuitive and simple choice, but it does not account for future payments from the 
ceding company to the reinsurer and could therefore be easily manipulated.  The other options are 
to use an expected premium or the actual premium in each scenario.   

The use of expected premiums may also seem intuitive, but can be troublesome as well.  The 
most significant concern with using expected premiums is the potential over detection of risk 
transfer.  When premium is dependent upon loss experience, the highest premium levels often occur 
when the loss experience is the poorest and the reinsurer’s losses are at their highest.  If the 
reinsurer’s percent of loss is calculated using an average expected premium, it is likely that the 
resulting reinsurer loss percentage will be a larger negative value than what is actually possible.  
Because of this it is imperative that actual premiums are developed along with the losses for each 
scenario and that each scenario has a corresponding percent of reinsurer loss developed.  From 
these simulated results, percentiles and values such as ERD can be calculated.   

It is not uncommon for a reinsurance contract to include fees other than premium.  When there 
are fees that depend upon future events, the impact of these events should be included in the model.  
If it is not possible to include certain events in the model, a general assumption about their impact 
on any future cash flows may be necessary.  The conservative decision would be to include all fees 
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that the ceding company may be required to pay to the reinsurer.  There is an example of this in 
Contract #2, which requires a fee to delay mandatory commutation of the contract after five years.  
In the example it is assumed that the primary company will not want to commute the contract and 
reassume the risk after five years and therefore will be required to pay a fee of $50,000.  When this 
type of fee is expected to occur, it should be considered as premium in any calculation of reinsurer 
loss.  While the fee may be entirely administrative and related to the reinsurer’s claim handling costs, 
any cash flows from the ceding company to the reinsurer should be considered as premium.  If this 
were not the case, the determination of risk transfer could be manipulated based upon the labeling 
of certain cash flows as premiums or fees.     

3.2.5 Evaluation Date 

The date used in risk transfer analysis will likely only be used in the selection of an interest rate or 
in determination of how much was known about potential losses when the contract was entered 
into.  SSAP 62 states that “risk transfer assessment is made at the inception date based on facts and 
circumstances known at the time.”  Therefore any parameters that may be affected by the date at 
which they were determined should be considered from the time of the contract’s inception.  The 
contract inception date is the date the contract comes into force, or the original effective date.  
According to SSAP 62 it is not necessary to retest for risk transfer at every renewal unless there are 
any significant amendments made to the treaty.  If a contract is tested at inception, the results of that 
test are unlikely to change.  In the case of an amendment that makes a material change to the 
amount of risk being transferred, the amendment date should be treated as the inception date of the 
contract and the contract should be reviewed again for risk transfer.      

3.2.6 Commutations and Timing of Payments 

According to SSAP 62, any reinsurance contracts that have prescribed payment patterns do not 
meet the risk transfer requirements.  In order to have risk transfer in a reinsurance contract, there 
must be timing risk as well as underwriting risk.  Prescribed payment plans remove the timing risk 
necessary for risk transfer.  In order for the contract to contain timing risk the reinsurer must make 
“timely reimbursement payments.” 

Contracts with commutation clauses may still meet risk transfer requirements, but to the extent 
they affect the cash flows between the ceding company and reinsurer, they must be modeled.  If a 
fee is required to avoid an early forced commutation, this fee should be considered as part of the 
expected premium paid.  If the commutation decision is unilateral, it may be necessary to 
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incorporate the commutation decision into the model based on economically rational decision 
making.  To the extent the commutation clause impacts the payment pattern, this too should be 
considered in the cash flow model.  

3.3 Practical Considerations 

This section is meant to highlight a number of practical considerations that commonly appear in 
risk transfer analyses and have not been thoroughly addressed in the current literature.  While not all 
of these practical considerations have obvious solutions, we hope to shed some light on the available 
options and open the door for further discussion on the topics. 

3.3.1 Parameter Selection 

One of the first and most important steps in performing a cash flow simulation for risk transfer 
analysis is choosing the parameters.  Any parameters that are not given by the contract must be 
selected after some contemplation.  This includes the interest rate, payment pattern, and any loss 
distributions used for projecting cash flows.     

3.3.2 Interest Rate 

Making the appropriate interest rate selection was previously addressed in the Common Pitfalls 
section.  Using a risk-free rate based upon a duration calculation and the expected premium and loss 
payments is recommended by the AAA Practice Note.  It is also required by the accounting 
standards that the same rate be used throughout the analysis.   

While the risk-free rate is recommended, there are other possibilities to consider.  It is difficult to 
envision a scenario were it would be reasonable to use an interest rate that is lower than the risk-free 
rate.  This may seem conservative, but using a lower interest rate would lead to higher losses at 
present value and could result in over-detecting risk transfer.  It is also difficult to construct an 
argument for why a company would not have the risk-free rate available to them.  Therefore, it 
seems reasonable to treat the risk-free rate as the lowest possible choice, or floor, when selecting an 
interest rate.   

A better argument could be made for selecting an interest rate above the risk-free rate.  The most 
logical argument is that the reinsurer in the contract has a higher expected return on investments 
and this expected return should be used when determining if they face a “reasonable chance of a 
significant loss.”  While this argument is intuitive, it does have its flaws.  First, this is not likely an 
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available parameter if the risk transfer analysis is being done on behalf of the ceding company.  
Next, if a reinsurer’s expected investment returns are used in the risk transfer analysis, it will create 
the situation where a contract may be found to exhibit risk transfer for a reinsurer with poor 
investment strategy, but be found not to transfer risk for a reinsurer with superior investment 
strategies.  This type of counter-intuitive result is also why cash flows that are not between the 
ceding company and the reinsurer are not considered. 

Based on these considerations it is difficult to construct an argument for using anything that is 
not at least loosely based upon the risk-free rate.  For consistency and to provide support for the 
interest rate selected, it may be worthwhile to base the selection on the treasury yields available at the 
inception date of the contract and the expected duration of the cash flows, as was done in the 
example for Contract #1.  This approach is consistent with the recommendation from the AAA 
Practice Note.  However, depending on the situation and in an effort to keep an analysis simple, it 
may also be just as reasonable to select an appropriate approximation of the current risk-free rate, as 
was done in the example for Contract #2.   

An alternative to selecting a duration-matched interest rate, which has been used by some 
practitioners, is the selection of a constant yield curve.  Use of a yield curve is common in company 
planning and in making economic decisions on contracts.  However, the use of yield curves in risk 
transfer analysis does not appear to be consistent with the accounting standards.  The AAA Practice 
Note finds that SSAP 62 requires, “that a single interest rate be used to present-value the cash 
flows.”   

A constant yield curve would generally result in a more stringent risk transfer analysis since 
interest rates tend to be higher at longer durations.  The typical yield curve would lead to more 
discount being applied to losses in comparison to the premiums, which are often paid much quicker.  
While the use of a yield curve may seem like an improvement to the analysis, the language in the 
accounting standards clearly leads to a similar conclusion to the AAA Practice Note.  Both standards 
refer to the use of “a constant interest rate,” through all cash flow scenarios.  The intent of the 
standards appears to be that interest rate risk should not be incorporated in the model.  Thus, an 
interest rate that varies by scenario is not allowed.  Capturing interest rate risk is not the intent of 
incorporating a yield curve into the analysis.  A constant yield curve across all scenarios would only 
result in a different interest rate when the timing of the cash flows differed, which reflects risk due 
to the timing of losses and premiums, not the interest rate.  However, the use of a yield curve to 
discount cash flows would result in a different effective interest rate when no losses are paid 
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compared to a situation where significant losses are paid.  This appears to violate the requirement in 
SSAP 62 that the “same interest rate shall be used to compute the present value of cash flows for 
each reasonable possible outcome tested.” 

3.3.3 Payment Pattern 

Payment patterns are often based on previous experience for the ceding company or industry 
benchmarks or both.  While this can be a simple parameter to select, it is important to remember 
that there is uncertainty involved in the payment pattern.  While this risk is more difficult to measure 
than the risk involved in a loss distribution, the timing of payments can play a significant role in the 
amount of risk transferred.  For example, when a constant payment pattern is applied to a loss 
distribution, the results will not recognize the potential impact of quicker than expected payments.  
This will have the most significant impact on the tails of the distribution, which is often the portion 
we are the most interested in for determining risk transfer.  While introducing variability into a 
payment pattern may be too complicated for the benefit it provides, it is important to at least 
consider this risk as you complete your analysis.  

3.3.4 Loss Distribution 

Loss distributions are often based on previous company experience, industry benchmarks, pricing 
information, or judgment, or all of these factors.  For transactions covering large books of business 
with several years of historical experience available, selecting a loss distribution can be as easy as 
fitting a distribution to the available data.  For books of business with low premium volume or 
immature loss experience, selecting the appropriate distribution can be much more difficult.  Even 
for mid-size books of business it can be difficult to select a loss distribution because risk transfer 
testing focuses on the right tail of the distribution.  This concern is compounded when working with 
high-level excess of loss contracts.  However the loss distribution is determined, it is important to 
test the reasonableness of the tail results.  Having an adequate comfort level with the tail results 
produced by the selected distribution is crucial.  

When a company does not have enough historical loss experience to base a distribution upon, it 
is typical to turn to industry benchmarks or the information used to price the reinsurance contract.  
The use of pricing assumptions in risk transfer analyses is discussed later in the paper.  Industry data 
can provide a starting point for overall expected loss ratios or frequencies and severities.  However, 
it is difficult to select a distribution and develop a variance using only industry results.  Individual 
companies can experience significantly higher variance in their loss than the industry as a whole.  In 
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these instances it may be necessary to rely on some generally accepted distributions.  Likewise a 
selected variance will be required.  This selection will depend on a number of considerations, such as 
the size of the book of business, the type of coverage, the type of business being underwritten, and a 
variety of other factors.  

3.3.5 Parameter Risk 

A key consideration for any simulation model is parameter risk.  Cash flow simulations for risk 
transfer are no different. As we previously discussed, selecting parameters to simulate future loss 
payments is a difficult process and it is important to account for the risk that the selected parameters 
or model are incorrect.  Accounting for this increased variability in your simulation will increase the 
likelihood that your analysis will determine risk transfer is present.  This is a reasonable result when 
you consider that the reinsurer is clearly accepting this same parameter risk when entering into the 
contract.   

Parameter risk can be accounted for explicitly or implicitly.  Implicitly it can be reflected in a 
slightly higher expected loss selection or in an increase to the expected volatility of losses.  In the 
case of explicit recognition it is common to see a probability distribution assigned to key parameters 
and then to have them simulated also.  This provides some variability to the selected parameters to 
help account for parameter risk.  While this is a more concrete method than including it implicitly, it 
also depends on judgment and the selection of more distributions and parameters.  There is not 
much information available about incorporating parameter risk into cash flow simulation models.  
Currently, there are no widely accepted methods and the costs of more complicated techniques may 
tend to outweigh the benefits.  

Parameter risk is going to have the greatest impact on the losses simulated, but it can affect other 
facets of the analysis as well.  When premium projections must be estimated based on the treaty 
terms, there is some additional parameter risk, but it will rarely affect the result of the analysis.  
There is also parameter risk in the discounting function used in the analysis.  However, not all of 
that risk should be accounted for in a risk transfer analysis.   

The majority of the parameter risk in discounting comes from two key inputs, the payment 
pattern and the interest rate.  As we previously discussed, there is real risk in not incorporating an 
accurate payment pattern.  This risk relates to timing risk, which is a part of insurance risk and 
should be considered in a risk transfer analysis.  The second piece of the discount, the interest rate, 
however, should not contribute any risk, parameter or process, to the analysis.  SSAP 62 clearly 
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states that “the possibility of investment income varying from expectations is not an element of 
insurance risk.”   

Because there are no widely accepted methods and because the methods available either require 
some arbitrary selections or may add more cost than benefit to the analysis, we do not feel that 
parameter risk must be explicitly shown in a risk transfer analysis.  We would strongly encourage 
practitioners to at least include it implicitly if not explicitly.  Regardless, we recommend 
documenting the existence of parameter risk and, whether or not it is included in the analysis, 
documenting how it could affect the results.  This documentation can be beneficial if another 
actuary needs to review the analysis.  More importantly, parameter risk is too important to entirely 
exclude from both the analysis and the report when the analysis may be directly used to make the 
decision on risk transfer.  

3.3.6 Use of Pricing Assumptions 

One potential resource, if available, for selecting parameters for small or immature books of 
business is the reinsurance pricing assumptions.  This concept is very attractive since a properly 
priced reinsurance agreement is likely to be based on an appropriate expected loss assumption with 
an appropriate risk load and payment pattern.  While we are often more interested in a loss 
distribution than just the expected losses for testing risk transfer, these assumptions can help 
provide some of the necessary parameters for our simulation.   

Pricing assumptions can also be helpful in parameter selection since they reflect how risky the 
market views a particular piece of business.  The reinsurance market may provide a better indication 
of the amount of risk involved in a small new primary company searching for reinsurance than what 
you could find based on industry benchmarks.  Of course, this market-driven view of a reinsurance 
contract is also one of the biggest drawbacks to using pricing assumptions.  Simulation testing for 
risk transfer should be based on expected loss experience and should not be market-driven.  Pricing 
assumptions should only be used in selecting parameters when reasonable.  A hard insurance market 
with higher premiums does not mean that companies do not need to meet the same risk transfer 
standards.  Because of this, when available, the underlying data that the pricing assumption was 
based upon can be even more beneficial than the parameters actually used in the pricing of the 
reinsurance. 

To correctly apply the expected loss assumptions from a pricing model to a risk transfer analysis, 
it is important to properly account for the risk load in the pricing.  In many reinsurance contracts, 
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risk load is a significant piece of the puzzle.  It may be implicitly added into the expected loss ratio 
or explicitly stated in the development of the rate.  If it is implicit in the expected losses, it is 
important not to blindly carry forward the expected losses without recognizing the extra loaded 
amount.  If it is explicitly stated, intuitively there should be a relationship between this risk load 
amount and the level of risk inherent in the underlying coverage.  While this risk load reflects the 
amount of variability the reinsurer anticipates in the contract, it is not easy to translate this load into 
a variance for your loss distribution.  However, it is worthwhile to at least consider the size of this 
risk load when selecting the loss distribution and variance. 

Another caveat to remember when using pricing information to select parameters for risk 
transfer testing is that while both practices are generally aimed at determining expected future losses, 
they both are doing so for very different reasons.  The differences in intent can lead to different 
approaches and selections.  Notably, when pricing a reinsurance contract, it might be considered 
prudent to make conservative selections.  This might lead to slightly higher expected losses and risk 
load.  These selections would not be considered conservative in a risk transfer analysis.  Selecting 
higher expected losses and increasing the expected variability would lead to over-detecting risk 
transfer.  For risk transfer testing the more conservative approach would be to use lower expected 
losses and variability.  These differences in approach are important to remember anytime you are 
relying on assumptions from an analysis developed for a different purpose. 

While pricing assumptions can clearly provide valuable input to any risk transfer analysis, it 
should also be clear that there are variety of reasons one may deviate from them.  This is true even 
for reinsurance analysts who may be testing the same contracts they priced.  These two exercises 
might require different assumptions about the modeled losses.  Loss models used for pricing are 
often optimized based on their projections of all the potential results. Risk transfer, on the other 
hand, requires a model that is optimized on the right tail of the distribution.  Due to this distinct 
difference in focus, the resulting selections for loss distribution and/or parameters may not be the 
same for pricing and risk transfer analysis.   

3.3.7 Commutation Clauses 

As previously discussed, any mandatory fees to delay a required commutation should be included 
when determining if risk transfer is present.  Commutation clauses should be read carefully to 
determine their entire impact on risk transfer.  While commutation clauses do not often prohibit a 
contract from exhibiting risk transfer, it is important to recognize that any commutation requirement 
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does restrict the amount of risk transferred.  It is not uncommon for these clauses to set a 
predetermined date for commutation based on an actuarial determination of the unpaid claim 
estimates at that time.  While this is a fair method for completing a commutation, it does require the 
ceding company to reassume the risk of any changes in the unpaid claims after the predetermined 
commutation date.  This clearly returns some risk back to the ceding company, limiting the amount 
of risk transferred in the original transaction.  

If a commutation clause states that the future commutation will be based on a mutually agreed 
upon value or on an actuarial determination, the payment pattern used to discount losses in the risk 
transfer analysis may not need to be adjusted.  While the commutation may result in an earlier 
payment than anticipated by the reinsurer for any outstanding claims, the payment should reflect the 
present value of expected payments at that time and the impact on the original payment pattern 
assumption should be minimal.  If there are explicit rules for the calculation of the value of 
outstanding claims at commutation, these rules may need to be included in the original analysis and 
may affect the selected payment pattern.   

4. CONCLUSIONS 

It is important to remember that none of the methods to test risk transfer provide a “bright line” 
indicator for its existence.  While actuaries have the necessary skill set to evaluate the existence of 
risk transfer in any reinsurance contract, the final decision belongs to the CEO or CFO of the 
company.  Risk transfer analysis, and more specifically ERD, is a tool to aid them in that decision.  
If a risk transfer analysis produces a borderline result, such as an ERD of 0.95% or 1.05%, it will 
likely require further consideration and documentation to show that risk transfer does or does not 
exist in the contract being reviewed.  Risk transfer testing is a principle-based exercise and the 
existence of risk transfer is entirely based upon there being a “reasonable chance of a significant 
loss” to the reinsurer.  ERD and other methodologies are just tools to help determine if a contract 
meets this standard. 
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An Update to D’Arcy’s “A Strategy for Property-Liability 
Insurers in Inflationary Times”* 

Richard Krivo, FCAS 

In 1980, D’Arcy wrote a paper to provide insurers with a strategy to immunize against inflation. 
Over the past year (2008), it appeared that inflation was going to be a significant obstacle for the 
insurance industry on the basis of a sharp increase in the cost of commodities and increasing severity 
trends for property coverage as a result. These inflationary concerns were eclipsed by a massive 
credit crises spurred on by years of questionable lending practices and commodity prices dropped 
precipitously in response. At this moment, the U.S. government is planning on spending initiative to 
stave off a long recession. To finance this initiative, the government could both print and borrow 
money, which could possibly lead to the kinds of inflationary figures last seen in the late 70s. Given 
the threat inflation poses to insurance firms, the following is an update to this seminal paper. 

Insurance company profits are the sum of underwriting profit (premium less incurred loss) and 
investment income on the premium prior to paying incurred loss amounts as well as the capital 
necessary to support the operation. Each of these components will be discussed separately. 

DATA CAVEATS 

A majority of the analysis relies on calendar year data taken from Best’s Aggregates & Averages. 
Accident and policy year data would be preferable since these are closely tied to the years in which 
the business was assumed or written. An example of bias in calendar year data this is that during the 
soft market years of the late 90s, the largest underwriting losses were realized years later when the 
insurance companies took large reserve hits.  

The Consumer Price Index (CPI) is the measure used as a proxy for inflation of insurers. As 
measured by industry sources the insurance industry has absorbed higher cost increases than the CPI 
would suggest but it’s directionally consistent. 

UNDERWRITING PROFIT MARGIN1 

Insurance companies are unique in that they sell their product without truly knowing the 
underlying costs for the coverage afforded. When prices of goods rise at unanticipated rates, 

                                            
1 Underwriting Profit Margin is defined as 100% less the Combined Ratio before dividends. The Combined Ratio is the 
sum of the Net Loss Ratio and the Underwriting Expense Ratio. The Net Loss Ratio is defined as Loss plus Loss 
Adjustment Expense divided by Net Earned Premium. The Underwriting Expense Ratio is defined as Underwriting 
Expenses over Net Written Premium. 
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insurance companies find they have undercharged for their coverage. In addition, regulators may put 
more scrutiny on insurers charging higher rates or from restricting coverage in a tough economic 
climate.  

Below is a regression equation D’Arcy fitted to explore the relationship between underwriting 
profit margin (UPM) and the inflation rate.  

UPM = -0.617*Inflation + [2.955]  R2 = 27.7% { 1951 - 1976 } (1)

Inflation vs. Underwriting Profit Margin (UPM)
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Exhibit 1 – Graph of Equation #1, which shows a negative correlation between inflation and 
underwriting profit margin.  

This equation displays that underwriting profits and inflation are negatively correlated since the 
coefficient [-0.617] applied to the inflation variable is negative. Performing the same regression 
analysis on data from 1977-2006 resulted in the following. 

UPM = 0.593*Inflation + [-9.586]  R2 = 8.7% { 1977 - 2006 } (2)

The correlation coefficient, from here out referred to as R2, is so low that any observed 
relationship is essentially meaningless. In addition, the equation suggests that the UPM and inflation 
are positively correlated! 



An Update to D’Arcy’s “A Strategy for Property-Liability Insurers in Inflationary Times” 

Casualty Actuarial Society E-Forum, Spring 2009 3

In response to the poor fit, an attempt was made to model the UPM with the “Year-Over-Year 
Change in Inflation” rather than the absolute value. Unfortunately no meaningful relationship was 
observed after this transformation. The fitted equations are in Appendix B.  

 In an attempt to replace the calendar year statistics, Equation (3) is based on Industry 
Schedule P Accident Year data. 2 This equation displayed no measurable relationship between UPM 
and inflation over the years listed. Accident Year data is a better measure of insurer profitability but 
the fit over this period is not meaningful. 

UPM = 1.201*Inflation + [-1.735]  R2 = 0.4% { 1995 - 2007 } (3)
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Exhibit 2 – Graph of Equation #2, which shows a no meaningful relationship between 
inflation and underwriting profit margin.  

Is There Any Possible Explanation For The Lack Of A Meaningful Fit? 

Inflation has remained in a narrow band over the subsequent 30 years since D’Arcy scripted his 
paper. Since 1983, the CPI has stayed between 1.6% (1998) and 5.4% (1990) after exceeding 13% in 
1979 and 1980. On the other hand, profit margins have varied greatly. Notably there have been two 
                                            
2 The Underwriting Profit Margin was derived replacing the Calendar Year with Accident Year Schedule P Loss and 
LAE Ratios. The same calendar year expense ratios from Best’s were used.  
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soft markets (1981-1985: 1997-2001) followed by two hard markets. These cycles appear 
uncorrelated to inflation. 

The underwriting cycle is the key driver behind the dramatic changes in profit margins. Trying to 
appropriately model the underwriting cycle and its varied causes are outside the scope of this paper 
and doing so would relegate the important questions regarding inflation and its impact on insurance 
profitability to obscurity. The prevailing wisdom behind the cause of the underwriting cycle is the 
amount of excess capital in the industry. 3.  

Autoregression Model 

In an attempt to factor out the underwriting cycle’s impact on the underwriting profit margin 
(UPM) and directly observe the inflationary effect, a two-factor autoregressive model was fitted to 
the insurance data compiled.  

UPM(t) = a*UPM(t-1) + b*Inflation(t) + c (4a)

The premise of this model is that the current year’s underwriting profit margin (UPM) is based 
on last year’s. When actuaries price business, the assumption is that the best predictor for the 
current year is the prior year’s data appropriately adjusted. This model should be somewhat familiar 
except for its over-reliance on a single prior year rather than multiple years. An obvious shortcoming 
of this model is that it completely misses the inflection points where the market hardens (see 1987). 
The last two soft market corrections have been rather abrupt as can be observed on Exhibit 3 
below.  

UPM(t) = 0.84*UPM(t-1) - 0.364 * Inf(t) +0.911  R2 = 70% { 1951 - 2006 } 
 
 

t = 11.130 t = -2.285 

(4b)

                                            
3 One belief is that the first soft market was, in part, caused by cash-flow underwriting (a term that means writing 
business to a loss knowing that extremely high returns on bonds/assets would compensate for underwriting losses) . 
These high returns were caused in response to the high inflation experienced in the late 70s/early 80s. 
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Exhibit 3 – Graph of Equation #4b, which displays the actual and fitted underwriting profit 
margins.  

 
The R2 of the equation is reasonably good and the coefficient applied to the prior years’ UPM 

(0.84) shows a strong positive correlation. The t-values on each independent variable above are 
significant above the 95% level. The ability to model a proxy for the underwriting cycle has given us 
another indication that inflation and underwriting profits are negatively correlated (the negative 
coefficient in front of the inflation variable implies a negative correlation).  

Inflation is likely a second order type variable in terms of its impact on the UPM. The impact 
inflation has on Underwriting Profit Margins is likely to be obscured unless there’s a large spike as 
there was in the late 70s. A big increase could catch insurance companies flat-footed; especially 
because that would necessitate obtaining substantial rate increases in lines of insurance that may be 
heavily regulated. For longer tailed lines, delays in recognizing the inflationary trend could lead to 
significant underwriting losses and an inability to properly price their products. The next section 
speaks to inflations’ impact on specific lines of insurance. 
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Personal Auto 

Personal auto is the largest line of insurance and drives the overall industry result. It is a 
completely data-driven line and has been both profitable and predictable. At this point, industry 
trend factors lag only six months behind the closing date of claims so any inflationary spikes should 
be recognizable by insurers. Decisions these firms make not to file for rate increases (to ignore the 
loss cost trends) would be of a competitive nature. I believe the regulatory hurdles personal auto 
carriers face are much lower than in the early 80s since they have the data and wherewithal to file 
and support increases in rates. Massachusetts and New Jersey (whom historically had a hard time 
attracting carriers) have opened up due to some easing on regulatory restrictions. Given the time it 
takes to settle claims, there is some reserve risk facing personal auto insurers. In an inflationary 
environment, an outstanding reserve for $100,000 could grow to $120,000 in the 18 months it takes 
to settle. The threat inflation poses to this line is moderate in light of the reserve risk but lower than 
in the past due to carriers having the ability to read and react and lower regulatory hurdles. 

Property Coverage 

Property coverage already experienced an inflationary spike in the past year due to substantial 
increases in commodity costs and the high cost of gasoline and coal needed to transport building 
materials. The hurricane catastrophe models already build in “demand surge” since after big events 
scarcity drives up the cost of key materials. By considering such inflationary forces in the policies 
they sell, insurers should be better braced to respond to a significant inflationary spike. Many 
homeowners policies have a built-in inflation guard that automatically increases the amount of 
coverage purchased. One concern is that in certain jurisdictions, Homeowners is still a highly 
regulated line with rates that, even without inflationary pressures, are inadequate. The threat inflation 
poses to this line is moderate but the short time to settlement gives insurers the ability to react. 

Workers Compensation 

Workers compensation is particularly troubling from an inflationary perspective due to the 
absence of a  limit on medical coverage. Even without additional inflationary pressures, new 
expensive procedures and medications have increased costs at a pace much higher than the medical 
CPI. The additional danger for workers compensation is the effect of compounding inflationary 
increases due to the amount of time it takes to settle claims. There is also the indemnity (wage 
replacement) component of the workers compensation policy that has recently served to temper the 
inflationary impacts caused by the aforementioned medical increases. Even if wages were to increase 
at a higher pace, most states have caps based on the average weekly wage in the state. Workers 
compensation is highly regulated line and prices can be constrained by states. Generous changes in 
coverage can be applied retroactively without allowing companies financial recourse. The largest 
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market, California, had some coverage expansion in the mid-90s that resulted in high severity trends 
that took years to be properly implemented into the bureau’s rates. The threat inflation poses to 
workers compensation is high for the aforementioned reasons. 

Other Casualty 

Casualty lines of insurance such as professional and general liability along with umbrella are long-
tailed. The danger in assuming risk in these lines is that any trend shortfall in the pricing won’t be 
discovered or factored into policies until multiple renewals have ensued. Losses on policies written 
today may incur five years of higher than anticipated inflation. Underwriting losses for “other 
casualty” are typically realized at a later date when the reserves are adjusted to factor in these higher 
loss ratios. The reserve risk companies assume in writing long-tailed lines is due to the most 
common reserving methods’ reliance on initial expected loss ratios to determine IBNR. Following 
the last two soft markets, IBNR reserves were increased dramatically due to inadequate pricing. The 
risk posed by inflation is moderate to high depending on the specific circumstances of the line of 
business covered.  

Reinsurance 

Reinsurance companies can be exposed to significant inflation risk due to “trend leveraging” 
where more claims exceed a fixed retention and the increases above the retention are greater than 
the underlying ground-up inflation rate. One of the dangers in writing reinsurance is that these 
companies aren’t always privy to what is happening in the primary market so they can assume 
business without have the ability to properly gauge the underlying trends or primary rate changes. 
Reinsurance companies have many ways to limit the realized inflationary impact in the coverage they 
offer. Loss ratio caps, aggregate limits and limited reinstatements are all common treaty features that 
can insulate reinsurers from the impacts of inflation. On the plus side, reinsurers are not subject to 
the same regulatory constraints primary companies are. In particular, the ability to cancel a treaty 
indiscriminately or offer the primary carrier more restrictive coverage (than the underlying policies 
provide) can protect reinsurers from assuming inflationary risky business. In Europe, a response to 
dealing with inflation is a common treaty feature referred to as an index clause. This is an agreement 
to index the retention amount with an inflationary adjustment.4 This serves to keep the cost of 
reinsurance and the number of expected ceded claims in a layer flat over a number of years. The 
threat inflation poses to this line is high since any coverage response requires an awareness of 
changes at the primary level. 

                                            
4 Stephen D’Arcy mentioned that in response to the last inflation spike, General Re tried to negotiate index clauses in 
some U.S. contracts but these never gained traction. 
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INVESTMENT INCOME RETURNS (IIR)5 

Insurance companies can target low or even negative underwriting profit margins due to the 
income earned on their invested assets. However when inflation rates rise, their portfolios of bond 
assets lose value. Insurance companies have an incentive to own bonds since statutory accounting 
rules allow them to keep bonds at par value even if they have a significant unrealized loss position. If 
companies sell these bonds in an inflationary environment, they would realize a loss. Similar to the 
approach D’Arcy used with underwriting profit margins, he fitted insurance companies investment 
income returns (IIR) with inflation rates.  

IIR = -0.818*Inflation + [7.815]  R2 = 22.6% { 1951 - 1976 } (5)

Inflation vs. Investment Income Return (IIR)
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Exhibit 4 – Graph of Equation #5, which shows a negative correlation between inflation and 
investment income returns.  

This equation displays that investment income return and inflation are negatively correlated. 
Performing the same regression analysis on data from 1977-2006 resulted in the following. Note that 
the negative correlation still holds. 
                                            
5 Investment Income Return (IIR) is the total of income earned through dividends, interest, realized capital gains or 
losses for bonds and real estate, and both realized and unrealized gains and losses for stock. Unrealized capital gains or 
losses on bonds are not a factor in statutory investment profit or loss for insurers. 
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IIR = -0.297*Inflation + [14.333]  R2 = 14.5% { 1977 - 2006 } (6)

The limitation to utilizing statutory investment income for this study is that unrealized losses on 
bond portfolios are not captured in the investment returns. If the investment returns were to 
capture these unrealized losses, the likely result would be a stronger negative correlation. One 
observation about the 1977-2006 investment income returns is that they don’t fluctuate to the same 
extent as in the earlier period. Also, the R2 of Eq. (6) (R2 = 14.5% for 1977-2006) is significantly 
lower than Eq. (5) (R2 = 22.6% for 1951-1976) and could possibly be the result of insurance 
companies becoming more sophisticated in managing their portfolios of assets with respect to 
inflation and other sources of volatility. The amount of knowledge and use of financial instruments 
at these companies disposal is much greater today than in the past. One thing worth noting, as the 
insurance industry heads towards fair value accounting, unrealized losses on bond holdings will find 
their way into quarterly earnings and seemingly increase the impact inflation has on insurers’ returns. 
Assuming most insurers hold their bonds to maturity, there will be more volatility in earnings. The 
next section updates correlations performed on different classes of assets with inflation.  

Treasury Bills (T-Bills)6 

As we have entered this credit crisis, Treasury (T-Bill) yields have gone down dramatically due to 
the desire for safety over return. When yields fall, there are realized gains for those who already own 
them. T-Bills rise in value at times of economic uncertainty due to their short duration. An investor 
fearful of locking up capital in longer duration or riskier assets could invest in T-Bills until the 
uncertainty passes. In doing so, the investor typically sacrifices yield for security. The following 
equations display the positive correlations between government securities and the inflation rate. This 
relationship is the key to D’Arcy’s immunization strategy. 

                                            
6 Treasury Bills (or T-Bills) are government securities that mature in one year or less. Like zero-coupon bonds, they do 
not pay interest prior to maturity; instead they are sold at a discount of the par value to create a positive yield to 
maturity. Many regard T-Bills as the least risky investment available to U.S. investors. The data used for this study relied 
on average yields for 3-month T-Bill returns for data from 1977-2007. For the prior data (1926-1976), holding period 
returns on the shortest term bills not less than one month to maturity held for one month were used. 
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Inflation vs. Investment Income Return (IIR)
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Exhibit 5 – Graph of Equation #6, which shows a weak but negative correlation between 
inflation and investment income returns.  

T-Bill = 0.556*Inflation + [1.873]  R2 = 70.6% { 1951 - 1976 }  (7)

T-Bill = 0.770*Inflation + [3.177]  R2 = 47.0% { 1977 - 2006 }  (8)
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Inflation vs. T-Bill Returns
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Exhibit 6 – Graph of Equation #7, which displays a positive correlation between inflation 
and T-Bill returns.  

Long-Term Corporate Bonds 

Long-Term Corporate Bonds (LTCorp) show little correlation with inflation with R2 values close 
to 0%. It would be interesting to see how bonds from the less-cyclical sectors or companies with 
stronger ratings perform on relative basis against inflation since these may provide an alternative 
immunization source offering potentially higher yields for a portfolio.  

LTCorp = -0.084*Inflation + [3.929]  R2 = 0.1% { 1951 - 1976 }  (9)

LTCorp = 1.321*Inflation + [4.582]  R2 = 5.4% { 1977 – 2006 } (10)
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Exhibit 7 – Graph of Equation #8, which displays a positive correlation between inflation 
and T-Bill returns.  

Stocks 

Stock returns in the latest period show no correlation with inflation. In the past, significant 
negative correlations existed. There are sectors that are less sensitive to inflation shocks. Utility and 
health care stocks are considered by experts to be defensive. These may have a place in a portfolio 
looking for an effective hedge against inflation.  

Stock = -3.114*Inflation + [22.773]  R2 = 23.0% { 1951 - 1976 }  (11)

Stock = -0.087*Inflation + [13.183]  R2 = 0.0% { 1977 - 2006 }  (12)

THE STRATEGY  

D’Arcy recommended using T-Bills to immunize PC insurers against deteriorating profit margins 
as well as portfolio losses on bonds due to inflationary pressures. Based on the data since 1977, T-
Bills are still the most effective hedge. There are certainly questions as to how significant inflationary 
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effects are on insurer profit margins. In response to those questions, there are too many factors for 
profit margins not to be affected. The data over the past 20 years didn’t have the inflationary hurdles 
that would test the insurers’ success in immunizing their risk and asset portfolios.  

Inflation needs to be an element of concern for insurance companies. Primary companies need to 
be proactive in analyzing and selecting trend factors in order to keep prices and reserves adequate. 
Reinsurance companies need to consider the frequency of claims over fixed retentions and/or utilize 
treaty features to insulate their risk portfolios against the inflationary risks they face. 

As noted in the paper, insurers’ asset portfolio returns have been much more consistent than in 
the past and have significantly exceeded risk-free. Purchasing T-Bills to immunize an asset portfolio 
is like a form of insurance. It provides a hedge against inflation and economic uncertainty but a price 
is paid in terms of sacrificing yield (i.e.,  expected income). D’Arcy has regressed three different asset 
types but there are a slew of different hedges against inflation. Commodities, derivatives, treasury 
inflation protected securities (TIPS), real estate, and ETFs can all assist in diversifying the risk 
inflation poses.  

This paper was written in response to increased inflation risk observed in the summer of 2008. 
Between stocks, bonds, and derivatives, a large amount of capital has exited the industry over the 
past six months. The danger of inflation has been replaced with that of an economic depression. In 
his seminal paper, D’Arcy excludes the depression years from his analysis despite there being huge 
reductions in the cost of goods (negative inflation). Despite insurers’ abilities to save on losses in 
this environment, sharp premium declines resulted in high expense ratios and profit margins 
suffered.7 One asset class that has held up, especially on a relative basis, have been government 
securities. Currently, the yields on these securities are paltry thus making the cost of immunization 
higher than ever. In 2009, insurance carriers need to consider the impact of the U.S. government’s 
stimulus package, which involves huge deficit spending. In this highly volatile climate, finding assets 
that can immunize insurers against inflation is as critical a challenge for the industry as it was when 
D’Arcy wrote this paper some 30 years ago. 
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7 D’Arcy writes on page 118: “The pre-1933 period does not conform with the negative relations outline above. 
Underwriting profitability actually declined in 1930, 1931, and 1932 as price levels dropped substantially. One possible 
explanation for this atypical correspondence is the pervasive effect of the Depression. Despite price level reductions, 
economic conditions were so poor that insurance premium receipts declined, causing expense ratios to climb…The 
usefulness of this model will thus be restricted to inflationary conditions and would not necessarily apply to deflationary 
situations.” 
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APPENDIX A 

An Update to D’Arcy’s “A Strategy for Property-Liability Insurers in 
Inflationary Times” 
 

Inf — Inflation (CPI)  
UPM — Underwriting Profit Margin 
IIR — Investment Income Return 
IIR — Investment Income ReturnIns_Ret — Insurance 
Return [ = IIR + UPM ] 
T-Bill — Treasury Bills 
LTCorp – Longer Term Corporate Bonds 

 
 
 
Variable   1951-2006 1951-1976 1977-2006 

          
UPM   UPM = -0.163*Inf + [-2.658] UPM = -0.617*Inf + [2.955] UPM = 0.593*Inf + [-9.586] 
  R2  0.6% 27.7% 8.7% 
          
          
Ins_Ret   Ins_Ret = -0.422*Inf + [7.693] Ins_Ret = -1.434*Inf + [10.77] Ins_Ret = 0.296*Inf + [4.748]
  R2 5.2% 42.4% 3.4% 
          
          
IIR   IIR = -0.259*Inf + [10.351] IIR = -0.818*Inf + [7.815] IIR = -0.297*Inf + [14.333] 
  R2  2.1% 22.6% 14.5% 
          
          
LTCorp   LTCorp = -0.014*Inf + [6.067] LTCorp = -0.084*Inf + [3.929] LTCorp = 1.321*Inf + [4.582]
  R2  0.0% 0.1% 5.4% 
          
          
Stock   Stock = -1.192*Inf + [17.701] Stock = -3.114*Inf + [22.733] Stock = 0.087*Inf + [13.183] 
  R2  4.6% 23.0% 0.0% 
          
          
TBill   T-Bill = 0.743*Inf + [2.344] T-Bill = 0.556*Inf + [1.873] T-Bill = 0.77*Inf + [3.177] 
  R2  50.0% 70.6% 47.0% 
          
Adapt         
UPM    UPM = 0.84*UPM(-1)-0.364*Inf + [0.911] for the 1951 to 2006 Period 
  R2  69.1%     
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APPENDIX B 

An Update to D’Arcy’s  “A Strategy for Property-Liability Insurers in 
Inflationary Times”  
 

DInf - Change in Inflation (CPI) 
UPM - Underwriting Profit Margin 
Ins_Ret - Insurance Return [ = IIR + UPM ] 

 
Ins_Ret - Insurance Return [ = IIR + UPM ] 
Variable   1951-2006 1951-1976 1977-2006 

          
UPM   UPM = 0.59*DInf + [-3.273]   UPM = 1.528*DInf + [-6.855] 
  R2  3.0%   16.2% 
          
          
Ins_Ret   Ins_Ret = -0.551*DInf + [6.003] Ins_Ret = -1.441*DInf + [5.927] Ins_Ret = 0.783*DInf + [6.111]
  R2  3.5% 24.4% 6.8% 
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Abstract 

 
The modeling skills of actuaries and academicians have developed to the point of 
their seeking joint models for paid and incurred losses, i.e., models in which paid 
and incurred losses will inform each other so that their confidence intervals will 
narrow and the two sets of ultimate losses will be equal.  The key to such models 
is covariance; heteroskedastic models cannot serve the purpose.  Properly 
accounting for covariance in the linear statistical model will provide an exact, 
sound, and elegant solution to the problem.  Moreover, covariance is what 
distinguishes the same information from like information, and prevents the 
creation of information out of nothing. 
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1.  INTRODUCTION 
 
For setting the loss reserves of most casualty lines of insurance, actuaries must 

turn loss triangles into rectangles.  Until the mid-1990s this was largely a 

deterministic exercise, which involved selecting development factors – perhaps 

with certain adjustments and sensitivity testing.  Since then, business needs 

have demanded, and advances in theory and computing have allowed, 

probabilistic modeling of loss triangles.  Deterministic methods are waning as 

actuaries are increasingly asked to estimate statistical properties of loss 

reserves, especially their probability distributions.  However, attempts to answer 

this need are hampered by the duality (sometimes the multiplicity) of triangles for 

the same line of business.  Triangles usually come in pairs, one of paid losses 

and another of (case-) incurred losses, which ultimately must reach equality.  But 

when paid and incurred losses are modeled separately, any equality is 

accidental, and even then devoid of jointly statistical properties.  A crasis of 

models, however artful, is not science, despite appeals to actuarial judgment.1 

 

According to Gary Venter [2008, 348], “Formal modeling of paid and incurred 

simultaneously appears to have begun with Halliwell.”  But the idea received 

scant attention until a paper by Quarg and Mack [2004 and 2008], which spurred 

the Venter paper, as well as a yet unpublished paper by Zhang and Clark [2009].  

Unlike the Quarg and Mack approach, which “reduces the gap” between the 

                                                 
1 Actuarial judgment functions within actuarial science, not to the transcendence or out-guessing 
of science.   “Actuarial judgment is no antidote …, as if actuaries possessed some expertise or 
intuition to herd or prod methods into correctness.  … Actuaries must not presume to judge what 
they cannot scientifically model.” [Halliwell, 2007, footnote 5] 
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projections, the Halliwell [1997] approach offered an exact solution.  Moreover, 

Quarg and Mack sought the solution in the design matrix of their model, whereas 

the variance structure was the key for Halliwell.  We believe that Halliwell was on 

the right track, but with some flaws.  Our solution to the problem of modeling paid 

and incurred losses together improves on his variance approach, correcting its 

flaws.  Furthermore, it is easier to understand, simpler to program, as well as 

theoretically streamlined and elegant. 

 

In the next section we will introduce and comment upon Halliwell’s version of the 

linear statistical model.  In Section 3, while discussing basic properties of the 

model, we will introduce the distinction between statistical sameness and 

statistical similarity, which arises from differing variance structures and which 

ensures that information cannot be created ex nihilo.  Section 4 will apply this 

theory to a simple example of a joint model of paid and incurred loss triangles, 

and Section 5 will show a more elaborate application to industry Workers’ 

Compensation losses.  Appendix A will deepen insights into the ideas of Section 

3 by treating simultaneous equations as a subset of the linear statistical model.  

Finally, Appendix B will elaborate on permissible variance structures, viz., how 

with two random variables of known correlation a third may be correlated. 

 

2.  GENERAL FORMULATION OF THE LINEAR STATISTICAL MODEL 

Many writers present versions of the linear statistical model; however, the version 

found in Halliwell [1997], despite its initial complexity, is most versatile and 
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general.  Moreover, most presentations stop at the estimation of the parameter β.  

But in his version this is just an intermediate step; the focus is on predictions 

based on β and their prediction-error variances.  The basic form of the linear 

model is 111 ×××× +β= tkktt X ey .  It is the error term e that makes the model statistical 

(otherwise called probabilistic and stochastic); it is a random vector whose 

moments are: [ ] [ ] ttttt VarE ××× Φσ=Σ== 2
1 ,0 ee .  For those unfamiliar with 

multivariate means and variances, especially with the quadratic form 

[ ] [ ]AAVarAVar ′= ee  and with non-negative definite and positive definite matrices, 

the reader is advised to read Halliwell [1997; Appendix A], Healy [1986; Chapter 

7], and Judge [1988, Appendix A]. 

 

The matrix X is known as the design, or regressor, matrix; its columns are called 

regressor variables and independent variables.  The vector y is called the 

response variable and the dependent variable, and β is the parameter of the 

model.  But in this formulation, which emphases predictions rather than 

parameters, the t rows of the model are partitioned into t1 observations and t2 

predictions.  In matrix-partitioned form it is expressed: 

( )

( )

( )

( )

( )

( )
⎥
⎦

⎤
⎢
⎣

⎡
+β⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

×

×
×

×

×

×

×

12

11
1

2

1

12

11

2

1

2

1

2

1

t

t
k

kt

kt

t

t

X
X

e
e

y
y

, 

where: 

( )

( )

( )

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )
⎥
⎦

⎤
⎢
⎣

⎡
ΦΦ
ΦΦ

σ=⎥
⎦

⎤
⎢
⎣

⎡
ΣΣ
ΣΣ

=⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

××

××

××

××

×

×

×

×

×

×

2212

2111

2212

2111

2

1

2

1

2

1

2221

12112

2221

1211

12

11

1

1

12

11 ,
0
0

tttt

tttt

tttt

tttt

t

t

t

t

t

t VarE
e
e

e
e

. 

Modeling Paid and Incurred Losses Together

Casualty Actuarial Society E-Forum, Spring 2009 4



The noun ‘observations’ is imprecise.  What distinguishes observations from 

predictions is that predictions are missing, or blank, elements of y (which signals 

that predictions are desired), whereas “observations” are non-missing, real-

valued elements.  Usually, they happen to come from observation, such as with 

loss amounts.  However, the key to a joint model of paid and incurred losses is 

what we will call “tautologous observations,” i.e., elements of y that contain 

zeroes as the differences by exposure period of incurred ultimate losses from 

paid ultimate losses.  We do not actually need to observe their ultimate equality 

to know that it will obtain; this is information that we know a priori and of which 

we should make use.  The observed and predicted elements can appear in any 

order; the clearest presentation may not place all the observations in rows above 

those of the predictions; however, our software will reorder them.  Of course, 

since the variance structure is symmetric, the columns of Var[e] must likewise be 

reordered. 

 

The known, or specified, elements of the linear model are the entire2 design 

matrix X, the entire variance structure, whether in absolute form Σ or in relative 

form Φ, and the observed elements of y.  The modeler desires an estimate of y2, 

viz., 2ŷ .  However, that estimate will turn out to be in error by the vector 22 ŷy − , 

which we will call the prediction error.  The formulæ for an estimator of y2 and the 

variance of its prediction error, viz., 2ŷ  and [ ]22 ŷy −Var , are: 
                                                 
2 This conflicts with many linear models of loss triangles, in particular with the Quarg/Mack [2004 
and 2008] model, whose predictions two or more periods into the future depend on predictions of 
the previous periods.  The feedback loop ‘predictions → regressors → predictions’, which Judge 
[1988; Chapter 13] calls “Stochastic Regressors,” is undesirable for theoretical, numerical-
analytic, and æsthetic reasons, some of which Halliwell [2007; Section 5] discusses. 
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where ( ) 1
1

111
1

1
1

111
ˆ y−−− Φ′Φ′= XXXβ  and [ ] ( ) 1

1
1

111
2ˆ −−Φ′σ= XXVar β .  Or one may use the 

absolute-variance form, in which ‘σ2’ is omitted and ‘Σ’ replaces ‘Φ’.  This 

estimator algebraically reduces to a linear function of y1, and Halliwell [1997; 

Appendix C] gives a version of the Gauss-Markov theorem in proof that 2ŷ  is the 

best linear unbiased estimator (BLUE) of y2.3 

 

A few minor conditions need to be made explicit.  First, the variance structure (Σ 

or Φ) must be non-negative definite.  Otherwise some random variable consisting 

of a linear combination of the elements of e would have a negative variance.  At 

the very least this implies that that none of the diagonal elements of the variance 

structure is negative.  Second, Σ11 or Φ11 must be positive definite.  Being a 

block-diagonal part of the variance structure, it must be non-negative definite.  

However, a positive definite Σ11 or Φ11 has no variance degeneracy, which 

guarantees the existence of its inverse.  Third, X1 must be of full column rank, 

                                                 
3 This estimator is unbiased in that [ ] 22ˆ yy =E .  There are infinitely many linear-in-y1, unbiased 
estimators (LUE) of y2.  But according to the Gauss-Markov theorem, none of them is as good as 

2ŷ ; 2ŷ is the best (B).  This means that its prediction-error variance is less than theirs, in the 
sense that the difference of its prediction-error variance from theirs is positive definite.  To the 
philosophically inclined it is amazing for an estimator to exist that positive-definitely dominates in 
the linear unbiased universe.  It is no less amazing that this BLUE estimator is identical to the 
maximum-likelihood estimator under the assumption that the error terms are multivariate-normally 
distributed – an assumption not necessary to the linear statistical model.  Such feelings of 
amazement incline most mathematicians toward a Platonic belief that mathematics is discovered, 
rather than toward a formalist belief that it is invented.  Then again, in this abstruse realm what 
might be the difference between discovery and invention? 
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i.e., rank(X1) = k.  The second and third conditions together guarantee that 

( ) 1
1

1
111

−−Φ′ XX  exists. 

 

Usually the variance structure is known only to within a scale factor; most models 

posit relative, not absolute, variances.  In that case one must estimate σ2 as 

( ) ( ) ( )ktXX −−Φ
′

−= −
111

1
1111

ˆˆˆ ββσ yy2 , a matrix-weighted “sum of squared 

residuals” divided by the degrees of freedom.  Our software will display a 3×3 

matrix titled “SSCP,” which stands for “(matrix-weighted) sums of squares and 

cross products.”  Define the t1×3 partitioned matrix [ ]ββ ˆˆ
1111 XXV −= yy .  Then 

VV 1
11
−Φ′=SSCP , and ( )kt −= 133ˆ SSCP2σ .  Theorems of the linear model state 

that 332211 SSCPSSCPSSCP +=  and 0== 2332 SSCPSSCP .  SSCP22/SSCP11 is 

the portion of the observations that the model “explains.”4 

 

3.  BASIC PROPERTIES OF THE LINEAR STATISTICAL MODEL 

Before introducing the joint model of paid and incurred losses we must discuss 

some basic properties of the model and its predictions.  First consider the model: 
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One here wants just to predict the parameter ( β=2y ), so this is a check of the 

parameter of the model.  Applying the formulæ, we confirm: 

                                                 
4 Though we will call this a rho-square statistic, it differs from the commonly defined statistic that 
was devised for regression models containing an intercept and that strips away the explanatory 
power of the intercept.  Our definition is appropriate to our intercept-free models. 
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In fact, Halliwell [1997; 331] began with a “wordier” version of the solution and 

derived in this manner the streamlined version of the solution that employs β̂ . 

 

The second model is: 
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The observed part of this model has been transformed by matrix A.  The 

transformation affects even the error term, e1 → Ae1, and one purpose of this 

exercise is to sensitize the reader to the variance structure.  For in general, 

[ ] [ ]BACovBACov ′= 2121 ,, eeee .  If A is a nonsingular, or invertible, matrix: 
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At this point we’ve demonstrated that the parameter estimate is unaffected.  A 

similar cancellation of A with its inverse continues into the rest of the prediction, 

as the reader can verify.  Hence, a one-to-one transformation of the observations 

has no effect on the predictions.  A corollary to this is that incremental or 
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cumulative models of loss triangles will yield the same predictions, as long as the 

variance structure is correctly handled. 

 

Now consider a transformation of the predictions: 
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In this case: 

( )
( ){ }

( ) [ ]( ) ( )

( ) [ ]( ) ( )
[ ]BBVar

BXXVarXXB

BBBBXBBXVarXBBXBBVar

B
XXB

XBBXB

′−=

′
⎭
⎬
⎫

⎩
⎨
⎧ ΣΣΣ−Σ+

′
ΣΣ−ΣΣ−=

′ΣΣΣ−′Σ+
′

ΣΣ−ΣΣ−=⎥⎦
⎤

⎢⎣
⎡ −

=
−ΣΣ+=

−ΣΣ+=

−−−

−−−
∧

−

−
∧

22

12
1

1121221
1

112121
1

11212

12
1

1121221
1

112121
1

1121222

2

11
1

11212

11
1

112122

ˆ

ˆ

ˆ

ˆ

ˆˆ

ˆˆ

yy

yy

y
y

yy

β

β

ββ

ββ

 

So the BLUE of a linear combination of predictions is the linear combination of 

the BLUE of the predictions.  Note that here B, unlike the previous A, does not 

have to be invertible.  The most common linear combinations of loss-triangle 

cells are exposure-period subtotals, i.e., unpaid, IBNR, or even ultimate losses.  

When we care only for these subtotals, as in the Workers’ Compensation model 

of Section 5, this theorem allows us to bypass the extra time and space of cell-

by-cell prediction and to predict them directly. 

 

A special pair of models that will illustrate the effect of covariance is the following: 
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Here the prediction is like the observation, the solution being: 
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The prediction is like, because the variance of e2 is like that of e1, ‘like’ in the 

sense of identically distributed, but nonetheless uncovaried.  But changing the 

variance structure to ⎥
⎦

⎤
⎢
⎣

⎡
ΣΣ
ΣΣ

=⎥
⎦

⎤
⎢
⎣

⎡

1111

1111

2

1

e
e

Var  alters the solution drastically: 
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This version predicts not something like y1, but rather something identical to y1.  

Covariance is the key to distinguishing between likeness and sameness.5 

 

                                                 
5 Appendix A shows covariance to be the solution to the “paradox” of why writing data twice does 
not increase information.  It would increase, if it were like, or similar, information; just as repeated 
sampling of independent, identically-distributed random variables increases information.  But 
repetitions of the same information are perfectly correlated with the original, and provide nothing 
new, not even when the repetition is disguised by a linear transformation.  In matrix algebra, 
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e
e

, and the rank of this larger matrix is still equal to the 

rank of Σ.  If the off-block-diagonal elements were zero the rank would increase, depending on A, 
to as much as twice the rank of Σ. 
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And finally, we consider pooling two models.  For this purpose and for here only, 

the subscripts ‘1’ and ‘2’ identify the models (e.g., paid and incurred), rather than 

observations and predictions (here dismissed with a dot ‘•’).  We might be 

tempted to solve the “super” model: 
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However, the solution for the parameter is: 
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Hence, simply juxtaposing two (or more) models provides no additional 

information.6  There is no covariance between the two; they are “frictionless” and 

“like ships passing in the night.”  But if the off-block-diagonal variance were not 

zero, the combined model would not reduce to the separate submodels.  Judge 

[1988; Section 11.2] calls covariance-linked models “seemingly unrelated 

regression” (SUR) models, for they seem to be unrelated if one considers only 

the model design and ignores the variance structure.  The Zhang/Clark [2009] 

model is an SUR model, tying paid and incurred losses together with covariance; 

but it does not guarantee the equality of ultimate paid and incurred.  The Halliwell 

model [1997] also qualifies as SUR.  The model that we will present in the next 

section is not an SUR one; rather, tautologous equations will be the glue 

between paid and incurred, and the only tricky part will be the effect of these 

additional equations on the variance structure. 

 

4.  TAUTOLOGY AND A SIMPLE JOINT PAID-INCURRED MODEL 

The following example comes from Halliwell [1997; Exhibit 1].  It consists of 

incremental paid and incurred losses for three accident years at three years of 

development, development being complete at the third year: 

Paid Incurred
@1 @2 @3 @1 @2 @3

AY1 50 30 20 75 15 10
AY2 60 25 75 25
AY3 45 50  

                                                 
6 However, one caveat: The combined model in relative-variance format would invite the modeler 
to estimate an overall variance scale 2σ̂ , which would be an average of the scale estimates of 
the submodels weighted according to their respective degrees of freedom. 
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The AY exposures are equal, and the cells are homoskedastic.  The first accident 

year is mature, and both paid and incurred losses accumulate to 100.  The paid 

and incurred models have the same design matrix (viz., additive, cf. Halliwell 

[2007; 228]), and the parameter elements are pure premiums by loss type and by 

age or development period.  All cells have the same variance relativity and zero 

covariance.  In symbols, the model of the hijth cell is 

[ ] 1,1 2 ⋅σ=+β⋅= hijhijhjhij Var eey , where h ∈ {1 = Paid, 2 = Incurred}, i ∈ {1 = 

AY1, 2 = AY2, 3 = AY3}, and j ∈ {1 = Age1, 2 = Age2, 3 = Age3}.  If the accident 

years were not of equal exposure, the model would be 

[ ] ihijhijhjihij Var ξσ=+βξ= 2, eey , where ξi is the exposure of the ith accident year.  

In this simple, juxtaposed model one would estimate paid development at ages 2 

and 3 as 27.5 and 20, and incurred development likewise as 20 and 10.  The paid 

ultimate losses of AY2 and AY3 would be 95 and 92.5, as compared with incurred 

ultimate losses of 110 and 80. 

 

Exhibit 1 contains the joint model in the standard form: 
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The reader will recognize the y, X, and Φ matrices within the exhibit, and the 

dotted lines partition the matrices into observations and predictions.  Zeroes are 

present, but not shown.  Except for rows 13 and 14, marked ‘Diff’, and 

corresponding columns 13 and 14 of Φ, the model would consist of two, 

unrelated paid and incurred homoskedastic submodels.  The ‘1’s in the design 

matrix represent the unitary exposure slotted into the hjth column of X so as to 

interact with the hjth element of the model parameter β (implicit in the exhibit, but 

not shown). 

 

But it is the rows marked ‘Diff’ that join, or laminate, the paid and the incurred 

losses.  Although we have not observed six of the eighteen cells, we do know 

that total paid must equal total incurred by AY.  For AY2 the difference is: 
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{ }
[ ] { }Diff2
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+β−−−=
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So this tautology, or difference equation, is equivalent to a zero observation, the 

design [ ]111111 −−− , and error term that involves six other error terms.  

Because of heteroskedasticity, the variance of this error term is 6.  However, 

because these are same error terms, not like ones, [ ] [ ]hijhij VarCov eee ±=±,Diff2 .  

So the reader should now understand row 13 of the model, and similarly, row 14, 

the tautology for AY3.  We could have added a tautology for AY1; however, its 

variance structure involves no predictions.  It would add no new observation, and 

the resulting 15×15 matrix Φ11 would still be of rank 14 (see footnote 5) and thus 

non-invertible. 

 

In Exhibit 2 we solve for the estimates of β and σ, and derive the SSCP matrix, 

as explained in Section 2.  In the spreadsheet we simplified the notation by 

dropping subscripts (which are all ‘1’, pertaining to observations) and carets.  

Both paid and incurred total pure premiums equal 691.97 , which is the average 

of the stand-alone total pure premiums of paid 61.99 and incurred 6.96 . 

 

The predictions are estimated in Exhibit 3 according to the formulæ: 
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To help the reader who wishes to reproduce the results, in the bottom half of the 

exhibit are intermediate calculations.  The prediction and the variance of the 

prediction error are: 

Type AY Age
Paid 2 3 22.50 79.95 0 39.97 79.95 0 39.97
Paid 3 2 23.75 0 89.94 -29.98 0 29.98 29.98
Paid 3 3 17.50 39.97 -29.98 109.93 39.97 29.98 49.97
Incd 2 3 7.50 79.95 0 39.97 79.95 0 39.97
Incd 3 2 23.75 0 29.98 29.98 0 89.94 -29.98
Incd 3 3 12.50 39.97 29.98 49.97 39.97 -29.98 109.93

[ ]222 ˆˆ yyy −Var

 

Modeling Paid and Incurred Losses Together

Casualty Actuarial Society E-Forum, Spring 2009 14



In the topmost figure of the exhibit AY subtotals are formed and combined with 

the paid and incurred to date.  For example, the calculation of the prediction-error 

standard deviation of the AY3 IBNR is 93.10998.2998.2994.8983.11 +−−= .  

Although it may seem a wonder that the means and variances of the ultimate 

losses are identical whether one builds them from the paid to date or from the 

incurred, the model was constructed for this purpose.  The identity serves only to 

confirm that the model was solved without mistake. 

 

This technique is more general than the tautology of IncdPaid −=0 .  In addition 

to the observations y1 of the model ey +β= X , one may know by means other 

than observation that 11 33 ××× = tttt Q yz .   Hence: 
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Augmenting the model for the t3 new observations, we arrive at the form: 
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From the juxtaposed model the simple joint model will arise according to this 

form, if z is zero and: 
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It is a powerful extension of the linear statistical model; nevertheless, the same 

two questions inform every statistical model: “What is the equation for each row?” 

and “How does each row covary with itself and the other rows?” 7  Next we will 

apply the joint model to ten accident years of industry Workers’ Compensation 

losses. 

 

5.  TAUTOLOGY AND A JOINT WORKERS’ COMPENSATION MODEL 

Exhibit 4 contains net paid and case-incurred (incurred less bulk and IBNR) 

triangles for U.S. Worker’s Compensation, along with net earned premium and 

ultimate loss.  Ignoring the prior-to-1998 line, we have ten accident years at ten 

evaluations.  But we will project beyond the tenth evaluation (@120 months) to 

ultimate, our models assuming that at 120 months paid losses are 85.5% of 

ultimate and incurred are 95.0%.  So our model will work with two 10×11 

rectangles, each with fifty-five observations.  However, to save space we will not 

predict each future cell, but only the unpaid and IBNR totals by AY.  Thus, each 

of the paid and incurred submodels will have fifty-five observations and ten 

predictions. 

 

It is not necessary to do so, but we will use the same design matrix for both 

submodels, an additive design with pure premiums by age (cf. Halliwell [2007; 
                                                 
7 Halliwell’s solution [1997; Exhibit 14] differs from ours only in the prediction error variance, and 
there only because of a disagreement over the estimate of σ2: his 106.597 versus our 79.948.  And 
this is due to a difference of degrees of freedom, his six versus our eight (106.597/79.948 =  8/6).  
Halliwell [1997; 247-249] both constrained the variance structure and imposed constraints on β. 
This seems to have double-counted some observations and reduced the degrees of freedom.  
Our approach is more easily understood, stays closer to the empirical data, and does not require 
eigen-decompostion of variance matrices.  Moreover, it will not disturb the variance relativities of 
non-homoskedastic models. 
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Section 7 and Exhibits 7A and 7B]).  Because we have no exposure data, net 

earned premium will have to suffice.  However, due to the underwriting cycle, we 

must adjust it to a constant loss ratio.  Without rate-change information, we 

needed to develop the triangles to ultimate with standard deterministic methods.  

It’s not desirable, perhaps it even smacks of cheating; but frequently it’s a 

necessary evil, and its circularity does not seem to be vicious.  The adjusted, or 

on-level, premium summary appears in Exhibit 5.  The “Selected” losses are the 

simple average of the booked ultimates and four development methods.  The 

overall loss ratio is 71%, and “Adj Prem” is simply the selected losses divided by 

this loss ratio, which conserves total premium.  Since premium is the exposure 

base, our pure-premium betas are actually loss ratios. 

 

Recognizing that the volatility, or unit-variance, of the incremental losses varies 

by age, we must also derive variances, or at least variance relativities, for a 

heteroskedastic model.  We use the additive method on adjusted premium in 

Exhibits 6.  First we derive pure premiums by age in Exhibit 6.1.  The pure 

premium from 120 months to ultimate is calculated as: 

( )12012ult 11
β++β⎟

⎠
⎞

⎜
⎝
⎛ −=β K

m
, 

where m, the maturity at 120 months, is 0.855 for paid and 0.950 for incurred.  

We assume that variance is proportional to exposure, and the “Selected” rows of 

Exhibit 6.2 derive the paid and incurred unit variances with some judgmental 

smoothing and extrapolation.  The selected unit variances are then multiplied in 

Exhibit 6.3 by the adjusted premiums.  We will treat these as absolute variances, 

Modeling Paid and Incurred Losses Together

Casualty Actuarial Society E-Forum, Spring 2009 17



and the “Unpaid” and “IBNR” columns contain the sums of the variances of AY 

predictions. 

 

Exhibits 7.1 and 7.2 present the separate paid and incurred models.  As 

mentioned, they share the same design matrix.  The column marked ‘Σ’ contains 

the homoskedastic variances; the column header ‘Σ’, rather than ‘Φ’, signals our 

modeling software to take these as absolute variances.  Each model has sixty-six 

rows, fifty-five observations, ten predictions of AY totals, and one row marked 

‘Constraint’.  Since there is no observation beyond 120 months, the constraint 

(note its zero variance) allows for the estimation of βult.  In keeping with the two 

maturities, each constraint is ( )( ) ult1201210 β−β++β−= mm K . 

 

Part of the joint paid-incurred model appears in Exhibit 8.1.  A new column ‘Type’ 

identifies the paid and incurred submodels, which one can recognize in the block 

diagonal form.  To these one hundred thirty-two rows were added the 

tautologous observations, ‘Ult =’ for each accident year.  The negative exposure 

in the incurred half of these ten rows indicates that the zero ‘y’ values are the 

difference of incurred from paid (paid minus incurred).  The variance ‘Σ’ of each 

new row is the sum of all the paid and incurred variances of its AY.  However, the 

variance structure of the model at this point is the ‘Σ’ column distributed down the 

main diagonal of a 142×142 matrix.  Variance matrices, though large (sometimes 

exceeding the limit of 256 columns of a Excel spreadsheet) are often sparse.  

Our software allows us to specify only the columns of non-zero covariance, and 
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to treat the rest of the covariance as zero.  In Exhibit 8.2 we have specified how 

the last ten rows, the tautologous observations covary with all 142 rows.  Each 

column (e.g., the 1998 ‘Covariance’ column) records the ‘Σ’ values of its AY, 

except that ‘Type’ = ‘Incd’ rows must be negated, since incurred rows are 

subtracted in the tautology.  Let C be the 142×10 covariance matrix of this 

exhibit.  The software knows to insert C into the last ten columns and to insert C ′  

into the last ten rows of the 142×142 variance structure.  This completes the 

joining of the two types of losses.  The two modeling questions are answered: 

“What is the expected value of each row?” and “How does each row vary with 

itself and covary with the others?” 

 

Exhibit 9.1 presents some diagnostics.  The model had ( ) 101552122 ++=  

observations; however, two of these were constraints.  After transformation (see 

footnote 9), a model with 122 observations in 22 parameters becomes one with 

120 observations and 20 parameters.  Readers wishing to solve the model in 

Excel can do so by reformulating ‘@Ult’ predictions in terms of paid and incurred 

β12, … , β120 (if Excel will invert a 120×120 matrix).  Two paid observations, AY 

1998@12 and AY 2001@60, are more than two standard units away from 

expected.  This is apparent even from the paid residuals of Exhibit 6.2.  However, 

the diagnostics are not unusual, and we will focus on the estimates of β and y2, 

as found in Exhibit 9.2.  As for ‘Betahat’, the first eleven elements are paid, and 

the second eleven incurred.  They both sum to 0.696.  This pure-premium 

equality would not obtain, if the exposures were adjusted for inflation and 
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changes in claim processing; nonetheless, the ultimate AY equality would still be 

preserved.  The reader may verify that 12012
ˆˆ ββ K+  equals 0.855×0.696 for paid 

and 0.950×0.696 for incurred, as required by the constraints. 

 

The unpaid and IBNR predictions are transferred from Exhibit 9.2 to summary 

Exhibit 10.  The ‘Joint Paid-Incurred’ box shows agreement of ultimate loss and 

the standard deviation of its prediction error throughout the ten accident years 

and in total.  The total ‘Std Dev’ of ±1,196,054 equals the square root of the sum 

of the diagonal 11×11 blocks of the ‘VarPrdErr’ matrix of Exhibit 9.2.  We also ran 

separate paid and incurred models from Exhibits 7, and summarized them in the 

right side of Exhibit 10.  Not surprisingly, the joint model mediates between the 

separate models: 218,374,758 ∈ (217,725,562, 219,198,836).  This holds true by 

accident year except for AY 2000.  But the joint modeling produces second-

moment estimates that dominate those of the submodels, both in total and by 

accident year. 

 

6.  CONCLUSION 

In a footnote of the introduction we quoted, “Actuaries must not presume to judge 

what they cannot scientifically model.”  For a time science may endure competing 

theories, but eventually one will prevail.  Likewise, the ad hoc blending of models, 

especially those arising from paid and incurred data sources, is a stopgap.  For 

at some point it puts knowledge at the mercy of intuition at best, and of whim at 

worst.  Hence actuaries have begun to search for joint models.  Here we have 
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shown that the linear statistical model is versatile enough to satisfy the search.  

The key, as always, is to ask first what all the equations are and second how 

they covary with each other.  We may dub these the “first and second moment” 

questions.  Actuaries have made rapid progress on the first-moment question; we 

hope that this paper will spur progress on the second.8 

                                                 
8 Since 2000 the topic of generalized linear models (GLM) has received much attention from 
actuaries and academicians.  One is easily lulled into thinking that generalizing is only in one 
direction.  Consider a linear statistical model (LSM) [ ] )(, σ=+= diagVarXb eey , i.e., a 
heteroskedastic model.  GLM generalizes it with a link function and with a distributional form of e, 
for example as:  ( ) [ ] ( )Θ−+= − ondistributiEXbg ~,1 eeey  [Anderson, 2004; 13-14].  The 
LSM is a GLM whose link is the identity function and whose distribution is multivariate normal.  
Now the link function can be accommodated with a non-linear statistical model (Halliwell [1997; 
325-326] and Judge [1988; Chapter 12]).  Hence, many consider the advantage of GLM over 
LSM to reside in non-normal error terms.  However, the density of e is invariably assumed to be 
the product of the densities of the elements of e, which implies zero covariance.  GLM does not 
generalize the variance structure beyond heteroskedasticity.  Our linear model generalizes the 
LSM in a different direction from the one in which GLM generalizes it.  We do not wish to gainsay 
GLM; certainly, no one has a panacea.  However, to him whose only tool is a hammer everything 
looks like a nail.  Enthusiasm over GLM may distract actuaries from asking the second-moment 
question.  If covariance is key to the joint paid-incurred model, GLM will not provide an 
acceptable solution. 

Modeling Paid and Incurred Losses Together

Casualty Actuarial Society E-Forum, Spring 2009 21



REFERENCES 

 
Anderson, Duncan, Feldblum, Sholom, et al., “A Practitioner’s Guide to 
Generalized Linear Models,” 2004 Discussion Paper Program: Applying and 
Evaluating Generalized Linear Models, Casualty Actuarial Society, 2004, 1-116, 
www.casact.org/pubs/dpp/dpp04/04dpp1.pdf. 
 
Halliwell, Leigh J., “Conjoint Prediction of Paid and Incurred Losses,” 1997 Loss 
Reserving Discussion Papers, Casualty Actuarial Society, 1997, 241-379, 
www.casact.org/pubs/forum/97sforum/97sf1241.pdf. 
 
 “Chain-Ladder Bias: Its Reason and Meaning,” Variance, 1:2, 2007, 214-
247, www.variancejournal.org/issues/01-02/214.pdf. 
 
Healy, M. J. R., Matrices for Statistics, Oxford, Clarendon Press, 1986. 
 
Judge, George G., Hill, R. C., et al., Introduction to the Theory and Practice of 
Econometrics (Second Edition), New York, John Wiley & Sons, 1988. 
 
Quarg, Gerhard, and Mack, Thomas, “Munich Chain Ladder: A Reserving 
Method that Reduces the Gap between IBNR Projections Based on Paid Losses 
and IBNR Projections Based on Incurred Losses,” Variance, 2:2, 2008, 266-299, 
www.variancejournal.org/issues/02-02/266.pdf.  Reprinted from Blätter der 
Deutschen Gesellschaft für Versicherungs- und Finanzmathematik, 26:4, 2004, 
597-630. 
 
Venter, Gary G., “Distribution and Value of Reserves Using Paid and Incurred 
Triangles,” Casualty Actuarial Society E-Forum, Fall 2008, 348-375, 
www.casact.org/pubs/forum/08fforum/15Venter.pdf. 
 
Zhang, Yanwei, and Clark, David R., “A Bivariate Approach to Setting Reserves,” 
unpublished as of March 2009. 

Modeling Paid and Incurred Losses Together

Casualty Actuarial Society E-Forum, Spring 2009 22



 
Exhibit 1 

 
Joint Paid-Incurred Model

Paid Incd
1 2 3 1 2 3

Type AY Age y X Φ
Paid 1 1 50 1 1
Paid 1 2 30 1 1
Paid 1 3 20 1 1
Paid 2 1 60 1 1 1
Paid 2 2 25 1 1 1
Paid 3 1 45 1 1 1
Incd 1 1 75 1 1
Incd 1 2 15 1 1
Incd 1 3 10 1 1
Incd 2 1 75 1 1 -1
Incd 2 2 25 1 1 -1
Incd 3 1 50 1 1 -1
Diff 2 Ult 0 1 1 1 -1 -1 -1 1 1 -1 -1 6 1 -1
Diff 3 Ult 0 1 1 1 -1 -1 -1 1 -1 6 1 1 -1 -1
Paid 2 3 1 1 1
Paid 3 2 1 1 1
Paid 3 3 1 1 1
Incd 2 3 1 -1 1
Incd 3 2 1 -1 1
Incd 3 3 1 -1 1  
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Exhibit 2 
 

Solution of the Joint Paid-Incurred Model

X 'Φ−1y X 'Φ−1X
155 3 0 0 0 0 0 Type AY Age y Xβ e

56.25 0 2.25 0.25 0 -0.25 -0.25 Paid 1 1 50 51.666667 -1.666667
28.75 0 0.25 1.75 0 -0.25 -0.75 Paid 1 2 30 26.25 3.75

200 0 0 0 3 0 0 Paid 1 3 20 20 0
38.75 0 -0.25 -0.25 0 2.25 0.25 Paid 2 1 60 51.666667 8.3333333

1.25 0 -0.25 -0.75 0 0.25 1.75 Paid 2 2 25 26.25 -1.25
Paid 3 1 45 51.666667 -6.666667

β   (X 'Φ−1X )−1 Incd 1 1 75 66.666667 8.3333333
Paid1 51.666667 0.3333333 0 0 0 0 0 Incd 1 2 15 21.25 -6.25
Paid2 26.25 0 0.4583333 -0.041667 0 0.0416667 0.0416667 Incd 1 3 10 10 0
Paid3 20 0 -0.041667 0.7083333 0 0.0416667 0.2916667 Incd 2 1 75 66.666667 8.3333333
Incd1 66.666667 0 0 0 0.3333333 0 0 Incd 2 2 25 21.25 3.75
Incd2 21.25 0 0.0416667 0.0416667 0 0.4583333 -0.041667 Incd 3 1 50 66.666667 -16.66667
Incd3 10 0 0.0416667 0.2916667 0 -0.041667 0.7083333 Diff 2 Ult 0 0 0

Diff 3 Ult 0 0 0
Var[β]

26.649306 0 0 0 0 0 SSCP
0 36.642795 -3.331163 0 3.3311632 3.3311632 24868.75 24229.167 639.58333
0 -3.331163 56.629774 0 3.3311632 23.318142 24229.167 24229.167 0
0 0 0 26.649306 0 0 639.58333 0 639.58333
0 3.3311632 3.3311632 0 36.642795 -3.331163
0 3.3311632 23.318142 0 -3.331163 56.629774 100.0% 97.4% 2.6%

t 14
k 6
df 8
σ2 79.947917  
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Exhibit 3 
 

Prediction of the Joint Paid-Incurred Model

AY Paid Incd Unpaid IBNR Ultimate
1 100 100 0 ± 0 0 ± 0 100 ± 0
2 85 100 22.50 ± 8.94 7.50 ± 8.94 107.50 ± 8.94
3 45 50 41.25 ± 11.83 36.25 ± 11.83 86.25 ± 11.83

Total 230 250 63.75 ± 17.31 43.75 ± 17.31 293.75 ± 17.31

Type AY Age Std [PE] Var [Prediction Error]
Paid 2 3 22.50 ± 8.94 79.95 0 39.97 79.95 0 39.97
Paid 3 2 23.75 ± 9.48 0 89.94 -29.98 0 29.98 29.98
Paid 3 3 17.50 ± 10.48 39.97 -29.98 109.93 39.97 29.98 49.97
Incd 2 3 7.50 ± 8.94 79.95 0 39.97 79.95 0 39.97
Incd 3 2 23.75 ± 9.48 0 29.98 29.98 0 89.94 -29.98
Incd 3 3 12.50 ± 10.48 39.97 29.98 49.97 39.97 -29.98 109.93

X 2 - Φ21 Φ11
-1 X 1 Φ22 − Φ21 Φ11

-1Φ12

0 0 0.5 0 0 0.5 0.5 0 0 0.5 0 0
0 0.75 -0.25 0 0.25 0.25 0 0.75 -0.25 0 0.25 0.25
0 -0.25 0.75 0 0.25 0.25 0 -0.25 0.75 0 0.25 0.25
0 0 0.5 0 0 0.5 0.5 0 0 0.5 0 0
0 0.25 0.25 0 0.75 -0.25 0 0.25 0.25 0 0.75 -0.25
0 0.25 0.25 0 -0.25 0.75 0 0.25 0.25 0 -0.25 0.75

Φ21 Φ11
-1

0 0 0 -0.5 -0.5 0 0 0 0 0.5 0.5 0 0.5 0
0 0 0 0 0 -0.25 0 0 0 0 0 0.25 0 0.25
0 0 0 0 0 -0.25 0 0 0 0 0 0.25 0 0.25
0 0 0 0.5 0.5 0 0 0 0 -0.5 -0.5 0 -0.5 0
0 0 0 0 0 0.25 0 0 0 0 0 -0.25 0 -0.25
0 0 0 0 0 0.25 0 0 0 0 0 -0.25 0 -0.25

2ŷ
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Exhibit 4 
 

Industry Workers' Compensation Net Losses (000)

Cumulative Paid
AY EarnPrem @12 @24 @36 @48 @60 @72 @84 @96 @108 @120

1998 23,278,084 4,651,588 9,585,142 12,606,256 14,094,760 15,268,042 16,074,584 16,668,642 17,106,835 17,422,941 17,738,999
1999 21,555,421 4,211,880 9,632,480 12,750,495 14,618,989 15,637,068 16,221,974 16,753,957 17,200,779 17,557,257
2000 23,495,444 4,553,584 10,366,172 13,709,157 15,579,342 16,724,292 17,365,134 17,961,104 18,432,885
2001 25,864,065 4,556,995 10,343,323 13,761,573 15,619,782 16,358,074 16,800,979 17,289,118
2002 29,134,414 4,262,115 9,525,796 12,527,871 14,177,862 15,284,598 15,899,281
2003 32,391,860 4,274,440 9,451,725 12,390,213 14,138,206 15,283,538
2004 36,533,278 4,624,395 9,798,635 12,473,626 14,134,508
2005 39,208,849 4,865,363 9,946,876 12,789,801
2006 42,065,555 5,130,174 10,724,002
2007 40,220,014 5,211,936

Cumulative Case-Incurred
AY Ultimate @12 @24 @36 @48 @60 @72 @84 @96 @108 @120

1998 20,815,720 10,440,449 14,526,669 16,215,164 17,259,403 18,111,150 18,727,822 19,147,843 19,469,090 19,540,774 19,765,070
1999 21,107,246 10,104,076 14,366,317 16,374,957 17,641,331 18,407,246 18,857,403 19,336,715 19,548,265 19,812,936
2000 22,339,113 10,614,330 15,701,665 17,701,687 18,844,583 19,668,677 20,094,561 20,402,031 20,739,446
2001 21,958,321 11,104,926 15,846,924 17,963,819 18,932,871 19,179,055 19,484,216 19,811,447
2002 21,039,160 10,379,583 15,108,660 16,994,756 17,685,953 18,233,994 18,589,679
2003 21,658,869 10,932,703 15,324,420 16,898,562 17,695,675 18,314,350
2004 22,204,956 11,239,343 15,320,398 16,843,250 17,632,172
2005 23,445,324 11,978,411 15,632,319 17,221,257
2006 26,885,991 12,468,437 16,822,179
2007 27,906,944 12,931,177  
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Exhibit 5 
 

Comparison of Ultimates and On-Level Premium

AY EarnPrem Ultimate CL Paid CL Incd Add Paid Add Incd Selected
1998 23,278,084 20,815,720 20,747,367 20,805,337 20,226,368 20,881,833 20,695,325
1999 21,555,421 21,107,246 20,907,312 21,095,112 20,153,220 21,074,491 20,867,476
2000 23,495,444 22,339,113 22,380,335 22,271,937 21,614,963 22,286,578 22,178,585
2001 25,864,065 21,958,321 21,545,915 21,589,768 21,305,566 21,762,406 21,632,395
2002 29,134,414 21,039,160 20,472,774 20,661,071 21,107,195 21,042,136 20,864,467
2003 32,391,860 21,658,869 20,446,996 20,823,394 21,885,290 21,389,016 21,240,713
2004 36,533,278 22,204,956 20,265,744 20,762,892 23,064,618 21,607,790 21,581,200
2005 39,208,849 23,445,324 20,806,146 21,420,815 24,850,676 22,488,817 22,602,355
2006 42,065,555 26,885,991 22,848,638 23,395,295 28,090,567 24,939,425 25,231,983
2007 40,220,014 27,906,944 24,129,598 25,119,943 28,910,427 26,647,699 26,542,922

Total 313,746,984 229,361,644 214,550,827 217,945,563 231,208,890 224,120,191 223,437,423

AY Adj Prem Ultimate CL Paid CL Incd Add Paid Add Incd Selected
1998 29,060,019 89% 89% 89% 87% 90% 89%
1999 29,301,751 98% 97% 98% 93% 98% 97%
2000 31,142,788 95% 95% 95% 92% 95% 94%
2001 30,375,837 85% 83% 83% 82% 84% 84%
2002 29,297,526 72% 70% 71% 72% 72% 72%
2003 29,825,844 67% 63% 64% 68% 66% 66%
2004 30,303,950 61% 55% 57% 63% 59% 59%
2005 31,737,838 60% 53% 55% 63% 57% 58%
2006 35,430,317 64% 54% 56% 67% 59% 60%
2007 37,271,114 69% 60% 62% 72% 66% 66%

Total 313,746,984 73% 68% 69% 74% 71% 71%
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80%
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Exhibit 6.1 
 

Additive Projections with On-Level Premium

Incremental Paid
AY Adj Prem @12 @24 @36 @48 @60 @72 @84 @96 @108 @120 @Ult Ultimate LR

1998 29,060,019 4,651,588 4,933,554 3,021,114 1,488,504 1,173,282 806,542 594,058 438,193 316,106 316,058 2,924,110 20,663,109 71%
1999 29,301,751 4,211,880 5,420,600 3,118,015 1,868,494 1,018,079 584,906 531,983 446,822 356,478 318,687 2,948,434 20,824,378 71%
2000 31,142,788 4,553,584 5,812,588 3,342,985 1,870,185 1,144,950 640,842 595,970 471,781 358,902 338,710 3,133,685 22,264,182 71%
2001 30,375,837 4,556,995 5,786,328 3,418,250 1,858,209 738,292 442,905 488,139 460,466 350,063 330,369 3,056,512 21,486,528 71%
2002 29,297,526 4,262,115 5,263,681 3,002,075 1,649,991 1,106,736 614,683 540,138 444,120 337,636 318,641 2,948,009 20,487,825 70%
2003 29,825,844 4,274,440 5,177,285 2,938,488 1,747,993 1,145,332 617,774 549,878 452,129 343,725 324,387 3,001,170 20,572,601 69%
2004 30,303,950 4,624,395 5,174,240 2,674,991 1,660,882 1,071,056 627,677 558,692 459,376 349,235 329,587 3,049,279 20,579,410 68%
2005 31,737,838 4,865,363 5,081,513 2,842,925 1,841,463 1,121,735 657,376 585,128 481,113 365,759 345,182 3,193,561 21,381,119 67%
2006 35,430,317 5,130,174 5,593,828 3,580,408 2,055,705 1,252,242 733,858 653,204 537,087 408,313 385,342 3,565,110 23,895,269 67%
2007 37,271,114 5,211,936 6,503,618 3,766,430 2,162,510 1,317,302 771,986 687,141 564,991 429,527 405,362 3,750,337 25,571,140 69%

Pure Prem 0.148 0.174 0.101 0.058 0.035 0.021 0.018 0.015 0.012 0.011 0.101 217,725,562 69%

Incremental Case-Incurred
AY Adj Prem @12 @24 @36 @48 @60 @72 @84 @96 @108 @120 @Ult Ultimate LR

1998 29,060,019 10,440,449 4,086,220 1,688,495 1,044,239 851,747 616,672 420,021 321,247 71,684 224,296 1,015,137 20,805,337 72%
1999 29,301,751 10,104,076 4,262,241 2,008,640 1,266,374 765,915 450,157 479,312 211,550 264,671 226,162 1,023,581 21,093,787 72%
2000 31,142,788 10,614,330 5,087,335 2,000,022 1,142,896 824,094 425,884 307,470 337,415 179,484 240,372 1,087,893 22,272,950 72%
2001 30,375,837 11,104,926 4,741,998 2,116,895 969,052 246,184 305,161 327,231 295,330 175,064 234,452 1,061,102 21,596,099 71%
2002 29,297,526 10,379,583 4,729,077 1,886,096 691,197 548,041 355,685 374,902 284,846 168,850 226,129 1,023,434 20,678,323 71%
2003 29,825,844 10,932,703 4,391,717 1,574,142 797,113 618,675 430,571 381,663 289,983 171,895 230,207 1,041,889 20,861,756 70%
2004 30,303,950 11,239,343 4,081,055 1,522,852 788,922 652,563 437,473 387,781 294,631 174,650 233,897 1,058,590 20,855,966 69%
2005 31,737,838 11,978,411 3,653,908 1,588,938 1,015,906 683,441 458,173 406,129 308,573 182,914 244,964 1,108,680 21,601,428 68%
2006 35,430,317 12,468,437 4,353,742 2,114,552 1,134,100 762,954 511,478 453,379 344,473 204,195 273,464 1,237,667 23,811,342 67%
2007 37,271,114 12,931,177 5,309,716 2,224,415 1,193,022 802,594 538,052 476,935 362,370 214,804 287,672 1,301,970 25,621,849 69%

Pure Prem 0.358 0.142 0.060 0.032 0.022 0.014 0.013 0.010 0.006 0.008 0.035 219,198,836 70%  
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Exhibit 6.2 
 

Variances from Additive Method

Paid Residuals
AY 1/AdjPrem @12 @24 @36 @48 @60 @72 @84 @96 @108 @120 @Ult

1998 3.44E-08 359,234 -137,270 84,456 -197,589 146,191 204,630 58,299 -2,327 -18,793 0
1999 3.41E-08 -116,179 307,595 156,928 168,375 -17,556 -22,012 -8,233 2,638 18,793
2000 3.21E-08 -46,408 378,332 195,853 63,247 44,246 -4,209 21,812 -311
2001 3.29E-08 70,286 485,901 348,622 95,770 -335,305 -186,261 -71,879
2002 3.41E-08 -65,320 151,413 41,415 -49,883 71,250 7,852
2003 3.35E-08 -131,031 -27,171 -75,561 17,466 91,174
2004 3.30E-08 148,305 -113,643 -387,373 -97,386
2005 3.15E-08 177,478 -456,577 -364,340
2006 2.82E-08 -103,114 -588,580
2007 2.68E-08 -293,250

Zero check 0 0 0 0 0 0 0 0 0 0
WSSR 10,180 33,825 15,703 3,150 4,962 2,602 305 0 24 0

df 9 8 7 6 5 4 3 2 1 0
Unit Var 1,131 4,228 2,243 525 992 651 102 0 24
Selected 1,131 4,228 2,243 992 992 651 102 102 55 27 1,928

Incurred Residuals
AY 1/AdjPrem @12 @24 @36 @48 @60 @72 @84 @96 @108 @120 @Ult

1998 3.44E-08 48,816 -53,727 -45,865 114,048 225,970 197,156 48,158 38,710 -95,797 0
1999 3.41E-08 -373,998 87,856 259,853 328,446 134,933 27,152 104,356 -73,338 95,797
2000 3.21E-08 -522,084 650,673 141,358 146,037 153,467 -23,699 -91,045 34,628
2001 3.29E-08 242,767 414,597 304,004 -3,257 -407,927 -133,350 -61,469
2002 3.41E-08 -96,980 555,294 137,561 -246,596 -82,850 -67,259
2003 3.35E-08 267,218 142,669 -205,924 -157,591 -23,593
2004 3.30E-08 402,891 -236,105 -285,748 -181,086
2005 3.15E-08 629,211 -867,527 -305,240
2006 2.82E-08 -201,163 -693,730
2007 2.68E-08 -396,678

Zero check 0 0 0 0 0 0 0 0 0 0
WSSR 41,458 69,959 13,759 8,805 8,866 2,121 842 274 629 0

df 9 8 7 6 5 4 3 2 1 0
Unit Var 4,606 8,745 1,966 1,467 1,773 530 281 137 629
Selected 4,606 8,745 1,966 1,773 1,773 530 291 291 291 200 1,072  
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Exhibit 6.3 

 
Absolute Variances from Additive Method

Paid Variance
AY Adj Prem 12 24 36 48 60 72 84 96 108 120 @Ult Unpaid

1998 29,060,019 3.29E+10 1.23E+11 6.52E+10 2.88E+10 2.88E+10 1.89E+10 2.95E+09 2.95E+09 1.59E+09 7.97E+08 5.60E+10 5.60E+10
1999 29,301,751 3.31E+10 1.24E+11 6.57E+10 2.91E+10 2.91E+10 1.91E+10 2.98E+09 2.98E+09 1.61E+09 8.04E+08 5.65E+10 5.73E+10
2000 31,142,788 3.52E+10 1.32E+11 6.99E+10 3.09E+10 3.09E+10 2.03E+10 3.16E+09 3.16E+09 1.71E+09 8.55E+08 6.01E+10 6.26E+10
2001 30,375,837 3.44E+10 1.28E+11 6.81E+10 3.01E+10 3.01E+10 1.98E+10 3.08E+09 3.08E+09 1.67E+09 8.33E+08 5.86E+10 6.42E+10
2002 29,297,526 3.31E+10 1.24E+11 6.57E+10 2.91E+10 2.91E+10 1.91E+10 2.98E+09 2.98E+09 1.61E+09 8.04E+08 5.65E+10 6.49E+10
2003 29,825,844 3.37E+10 1.26E+11 6.69E+10 2.96E+10 2.96E+10 1.94E+10 3.03E+09 3.03E+09 1.64E+09 8.18E+08 5.75E+10 8.54E+10
2004 30,303,950 3.43E+10 1.28E+11 6.80E+10 3.01E+10 3.01E+10 1.97E+10 3.08E+09 3.08E+09 1.66E+09 8.32E+08 5.84E+10 1.17E+11
2005 31,737,838 3.59E+10 1.34E+11 7.12E+10 3.15E+10 3.15E+10 2.06E+10 3.22E+09 3.22E+09 1.74E+09 8.71E+08 6.12E+10 1.54E+11
2006 35,430,317 4.01E+10 1.50E+11 7.95E+10 3.52E+10 3.52E+10 2.30E+10 3.60E+09 3.60E+09 1.94E+09 9.72E+08 6.83E+10 2.51E+11
2007 37,271,114 4.22E+10 1.58E+11 8.36E+10 3.70E+10 3.70E+10 2.42E+10 3.78E+09 3.78E+09 2.05E+09 1.02E+09 7.19E+10 4.22E+11

Incurred Variance
AY Adj Prem 12 24 36 48 60 72 84 96 108 120 @Ult IBNR

1998 29,060,019 1.34E+11 2.54E+11 5.71E+10 5.15E+10 5.15E+10 1.54E+10 8.45E+09 8.45E+09 8.45E+09 5.81E+09 3.12E+10 3.12E+10
1999 29,301,751 1.35E+11 2.56E+11 5.76E+10 5.20E+10 5.20E+10 1.55E+10 8.52E+09 8.52E+09 8.52E+09 5.86E+09 3.14E+10 3.73E+10
2000 31,142,788 1.43E+11 2.72E+11 6.12E+10 5.52E+10 5.52E+10 1.65E+10 9.06E+09 9.06E+09 9.06E+09 6.23E+09 3.34E+10 4.87E+10
2001 30,375,837 1.40E+11 2.66E+11 5.97E+10 5.39E+10 5.39E+10 1.61E+10 8.83E+09 8.83E+09 8.83E+09 6.08E+09 3.26E+10 5.63E+10
2002 29,297,526 1.35E+11 2.56E+11 5.76E+10 5.19E+10 5.19E+10 1.55E+10 8.52E+09 8.52E+09 8.52E+09 5.86E+09 3.14E+10 6.28E+10
2003 29,825,844 1.37E+11 2.61E+11 5.86E+10 5.29E+10 5.29E+10 1.58E+10 8.67E+09 8.67E+09 8.67E+09 5.97E+09 3.20E+10 7.98E+10
2004 30,303,950 1.40E+11 2.65E+11 5.96E+10 5.37E+10 5.37E+10 1.61E+10 8.81E+09 8.81E+09 8.81E+09 6.06E+09 3.25E+10 1.35E+11
2005 31,737,838 1.46E+11 2.78E+11 6.24E+10 5.63E+10 5.63E+10 1.68E+10 9.23E+09 9.23E+09 9.23E+09 6.35E+09 3.40E+10 1.97E+11
2006 35,430,317 1.63E+11 3.10E+11 6.96E+10 6.28E+10 6.28E+10 1.88E+10 1.03E+10 1.03E+10 1.03E+10 7.09E+09 3.80E+10 2.90E+11
2007 37,271,114 1.72E+11 3.26E+11 7.33E+10 6.61E+10 6.61E+10 1.98E+10 1.08E+10 1.08E+10 1.08E+10 7.45E+09 4.00E+10 6.31E+11  
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Exhibit 7.1 
 

title:Paid Linear Model

@12 @24 @36 @48 @60 @72 @84 @96 @108 @120 @Ult
AY Age AdjPrem y X Σ

1998 12 29,060,019 4,651,588 29,060,019 3.29E+10
1998 24 29,060,019 4,933,554 29,060,019 1.23E+11
1998 36 29,060,019 3,021,114 29,060,019 6.52E+10
1998 48 29,060,019 1,488,504 29,060,019 2.88E+10
1998 60 29,060,019 1,173,282 29,060,019 2.88E+10
1998 72 29,060,019 806,542 29,060,019 1.89E+10
1998 84 29,060,019 594,058 29,060,019 2.95E+09
1998 96 29,060,019 438,193 29,060,019 2.95E+09
1998 108 29,060,019 316,106 29,060,019 1.59E+09
1998 120 29,060,019 316,058 29,060,019 7.97E+08
1999 12 29,301,751 4,211,880 29,301,751 3.31E+10
1999 24 29,301,751 5,420,600 29,301,751 1.24E+11
1999 36 29,301,751 3,118,015 29,301,751 6.57E+10
1999 48 29,301,751 1,868,494 29,301,751 2.91E+10
1999 60 29,301,751 1,018,079 29,301,751 2.91E+10
1999 72 29,301,751 584,906 29,301,751 1.91E+10
1999 84 29,301,751 531,983 29,301,751 2.98E+09
1999 96 29,301,751 446,822 29,301,751 2.98E+09
1999 108 29,301,751 356,478 29,301,751 1.61E+09
2000 12 31,142,788 4,553,584 31,142,788 3.52E+10
2000 24 31,142,788 5,812,588 31,142,788 1.32E+11
2000 36 31,142,788 3,342,985 31,142,788 6.99E+10
2000 48 31,142,788 1,870,185 31,142,788 3.09E+10
2000 60 31,142,788 1,144,950 31,142,788 3.09E+10
2000 72 31,142,788 640,842 31,142,788 2.03E+10
2000 84 31,142,788 595,970 31,142,788 3.16E+09
2000 96 31,142,788 471,781 31,142,788 3.16E+09
2001 12 30,375,837 4,556,995 30,375,837 3.44E+10
2001 24 30,375,837 5,786,328 30,375,837 1.28E+11
2001 36 30,375,837 3,418,250 30,375,837 6.81E+10
2001 48 30,375,837 1,858,209 30,375,837 3.01E+10
2001 60 30,375,837 738,292 30,375,837 3.01E+10
2001 72 30,375,837 442,905 30,375,837 1.98E+10
2001 84 30,375,837 488,139 30,375,837 3.08E+09
2002 12 29,297,526 4,262,115 29,297,526 3.31E+10
2002 24 29,297,526 5,263,681 29,297,526 1.24E+11
2002 36 29,297,526 3,002,075 29,297,526 6.57E+10
2002 48 29,297,526 1,649,991 29,297,526 2.91E+10
2002 60 29,297,526 1,106,736 29,297,526 2.91E+10
2002 72 29,297,526 614,683 29,297,526 1.91E+10
2003 12 29,825,844 4,274,440 29,825,844 3.37E+10
2003 24 29,825,844 5,177,285 29,825,844 1.26E+11
2003 36 29,825,844 2,938,488 29,825,844 6.69E+10
2003 48 29,825,844 1,747,993 29,825,844 2.96E+10
2003 60 29,825,844 1,145,332 29,825,844 2.96E+10
2004 12 30,303,950 4,624,395 30,303,950 3.43E+10
2004 24 30,303,950 5,174,240 30,303,950 1.28E+11
2004 36 30,303,950 2,674,991 30,303,950 6.80E+10
2004 48 30,303,950 1,660,882 30,303,950 3.01E+10
2005 12 31,737,838 4,865,363 31,737,838 3.59E+10
2005 24 31,737,838 5,081,513 31,737,838 1.34E+11
2005 36 31,737,838 2,842,925 31,737,838 7.12E+10
2006 12 35,430,317 5,130,174 35,430,317 4.01E+10
2006 24 35,430,317 5,593,828 35,430,317 1.50E+11
2007 12 37,271,114 5,211,936 37,271,114 4.22E+10

Constraint 0 0.145 0.145 0.145 0.145 0.145 0.145 0.145 0.145 0.145 0.145 -0.855
1998 Unpd 29,060,019 29,060,019 5.60E+10
1999 Unpd 29,301,751 29,301,751 29,301,751 5.73E+10
2000 Unpd 31,142,788 31,142,788 31,142,788 31,142,788 6.26E+10
2001 Unpd 30,375,837 30,375,837 30,375,837 30,375,837 30,375,837 6.42E+10
2002 Unpd 29,297,526 29,297,526 29,297,526 29,297,526 29,297,526 29,297,526 6.49E+10
2003 Unpd 29,825,844 29,825,844 29,825,844 29,825,844 29,825,844 29,825,844 29,825,844 8.54E+10
2004 Unpd 30,303,950 30,303,950 30,303,950 30,303,950 30,303,950 30,303,950 30,303,950 30,303,950 1.17E+11
2005 Unpd 31,737,838 31,737,838 31,737,838 31,737,838 31,737,838 31,737,838 31,737,838 31,737,838 31,737,838 1.54E+11
2006 Unpd 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 2.51E+11
2007 Unpd 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 4.22E+11  
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Exhibit 7.2 
 

title:Case_Incurred Linear Model

@12 @24 @36 @48 @60 @72 @84 @96 @108 @120 @Ult
AY Age AdjPrem y X Σ

1998 12 29,060,019 10,440,449 29,060,019 1.34E+11
1998 24 29,060,019 4,086,220 29,060,019 2.54E+11
1998 36 29,060,019 1,688,495 29,060,019 5.71E+10
1998 48 29,060,019 1,044,239 29,060,019 5.15E+10
1998 60 29,060,019 851,747 29,060,019 5.15E+10
1998 72 29,060,019 616,672 29,060,019 1.54E+10
1998 84 29,060,019 420,021 29,060,019 8.45E+09
1998 96 29,060,019 321,247 29,060,019 8.45E+09
1998 108 29,060,019 71,684 29,060,019 8.45E+09
1998 120 29,060,019 224,296 29,060,019 5.81E+09
1999 12 29,301,751 10,104,076 29,301,751 1.35E+11
1999 24 29,301,751 4,262,241 29,301,751 2.56E+11
1999 36 29,301,751 2,008,640 29,301,751 5.76E+10
1999 48 29,301,751 1,266,374 29,301,751 5.20E+10
1999 60 29,301,751 765,915 29,301,751 5.20E+10
1999 72 29,301,751 450,157 29,301,751 1.55E+10
1999 84 29,301,751 479,312 29,301,751 8.52E+09
1999 96 29,301,751 211,550 29,301,751 8.52E+09
1999 108 29,301,751 264,671 29,301,751 8.52E+09
2000 12 31,142,788 10,614,330 31,142,788 1.43E+11
2000 24 31,142,788 5,087,335 31,142,788 2.72E+11
2000 36 31,142,788 2,000,022 31,142,788 6.12E+10
2000 48 31,142,788 1,142,896 31,142,788 5.52E+10
2000 60 31,142,788 824,094 31,142,788 5.52E+10
2000 72 31,142,788 425,884 31,142,788 1.65E+10
2000 84 31,142,788 307,470 31,142,788 9.06E+09
2000 96 31,142,788 337,415 31,142,788 9.06E+09
2001 12 30,375,837 11,104,926 30,375,837 1.40E+11
2001 24 30,375,837 4,741,998 30,375,837 2.66E+11
2001 36 30,375,837 2,116,895 30,375,837 5.97E+10
2001 48 30,375,837 969,052 30,375,837 5.39E+10
2001 60 30,375,837 246,184 30,375,837 5.39E+10
2001 72 30,375,837 305,161 30,375,837 1.61E+10
2001 84 30,375,837 327,231 30,375,837 8.83E+09
2002 12 29,297,526 10,379,583 29,297,526 1.35E+11
2002 24 29,297,526 4,729,077 29,297,526 2.56E+11
2002 36 29,297,526 1,886,096 29,297,526 5.76E+10
2002 48 29,297,526 691,197 29,297,526 5.19E+10
2002 60 29,297,526 548,041 29,297,526 5.19E+10
2002 72 29,297,526 355,685 29,297,526 1.55E+10
2003 12 29,825,844 10,932,703 29,825,844 1.37E+11
2003 24 29,825,844 4,391,717 29,825,844 2.61E+11
2003 36 29,825,844 1,574,142 29,825,844 5.86E+10
2003 48 29,825,844 797,113 29,825,844 5.29E+10
2003 60 29,825,844 618,675 29,825,844 5.29E+10
2004 12 30,303,950 11,239,343 30,303,950 1.40E+11
2004 24 30,303,950 4,081,055 30,303,950 2.65E+11
2004 36 30,303,950 1,522,852 30,303,950 5.96E+10
2004 48 30,303,950 788,922 30,303,950 5.37E+10
2005 12 31,737,838 11,978,411 31,737,838 1.46E+11
2005 24 31,737,838 3,653,908 31,737,838 2.78E+11
2005 36 31,737,838 1,588,938 31,737,838 6.24E+10
2006 12 35,430,317 12,468,437 35,430,317 1.63E+11
2006 24 35,430,317 4,353,742 35,430,317 3.10E+11
2007 12 37,271,114 12,931,177 37,271,114 1.72E+11

Constraint 0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 -0.95
1998 IBNR 29,060,019 29,060,019 3.12E+10
1999 IBNR 29,301,751 29,301,751 29,301,751 3.73E+10
2000 IBNR 31,142,788 31,142,788 31,142,788 31,142,788 4.87E+10
2001 IBNR 30,375,837 30,375,837 30,375,837 30,375,837 30,375,837 5.63E+10
2002 IBNR 29,297,526 29,297,526 29,297,526 29,297,526 29,297,526 29,297,526 6.28E+10
2003 IBNR 29,825,844 29,825,844 29,825,844 29,825,844 29,825,844 29,825,844 29,825,844 7.98E+10
2004 IBNR 30,303,950 30,303,950 30,303,950 30,303,950 30,303,950 30,303,950 30,303,950 30,303,950 1.35E+11
2005 IBNR 31,737,838 31,737,838 31,737,838 31,737,838 31,737,838 31,737,838 31,737,838 31,737,838 31,737,838 1.97E+11
2006 IBNR 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 2.90E+11
2007 IBNR 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 6.31E+11  
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Exhibit 8.1 
 

t itle:Joint Paid and Incurred Linear Model
@12 @24 @36 @48 @60 @72 @84 @96 @108 @120 @Ult @12 @24 @36 @48 @60 @72 @84 @96 @108 @120 @Ult

Type AY Age y X Σ
Paid 1998 12 4,651,588 29,060,019 3.29E+10
Paid 1998 24 4,933,554 29,060,019 1.23E+11
Paid 1998 36 3,021,114 29,060,019 6.52E+10
Paid 1998 48 1,488,504 29,060,019 2.88E+10
Paid 1998 60 1,173,282 29,060,019 2.88E+10
Paid 1998 72 806,542 29,060,019 1.89E+10
Paid 1998 84 594,058 29,060,019 2.95E+09
Paid 1998 96 438,193 29,060,019 2.95E+09
Paid 1998 108 316,106 29,060,019 1.59E+09
Paid 1998 120 316,058 29,060,019 7.97E+08
Paid 1999 12 4,211,880 29,301,751 3.31E+10
Paid 1999 24 5,420,600 29,301,751 1.24E+11
Paid 1999 36 3,118,015 29,301,751 6.57E+10
Paid 1999 48 1,868,494 29,301,751 2.91E+10
Paid 1999 60 1,018,079 29,301,751 2.91E+10
Paid 1999 72 584,906 29,301,751 1.91E+10
Paid 1999 84 531,983 29,301,751 2.98E+09
Paid 1999 96 446,822 29,301,751 2.98E+09
Paid 1999 108 356,478 29,301,751 1.61E+09
Paid 2000 12 4,553,584 31,142,788 3.52E+10
Paid 2000 24 5,812,588 31,142,788 1.32E+11
Paid 2000 36 3,342,985 31,142,788 6.99E+10
Paid 2000 48 1,870,185 31,142,788 3.09E+10
Paid 2000 60 1,144,950 31,142,788 3.09E+10
Paid 2000 72 640,842 31,142,788 2.03E+10
Paid 2000 84 595,970 31,142,788 3.16E+09
Paid 2000 96 471,781 31,142,788 3.16E+09
Paid 2001 12 4,556,995 30,375,837 3.44E+10
Paid 2001 24 5,786,328 30,375,837 1.28E+11
Paid 2001 36 3,418,250 30,375,837 6.81E+10
Paid 2001 48 1,858,209 30,375,837 3.01E+10
Paid 2001 60 738,292 30,375,837 3.01E+10
Paid 2001 72 442,905 30,375,837 1.98E+10
Paid 2001 84 488,139 30,375,837 3.08E+09
Paid 2002 12 4,262,115 29,297,526 3.31E+10
Paid 2002 24 5,263,681 29,297,526 1.24E+11
Paid 2002 36 3,002,075 29,297,526 6.57E+10
Paid 2002 48 1,649,991 29,297,526 2.91E+10
Paid 2002 60 1,106,736 29,297,526 2.91E+10
Paid 2002 72 614,683 29,297,526 1.91E+10
Paid 2003 12 4,274,440 29,825,844 3.37E+10
Paid 2003 24 5,177,285 29,825,844 1.26E+11
Paid 2003 36 2,938,488 29,825,844 6.69E+10
Paid 2003 48 1,747,993 29,825,844 2.96E+10
Paid 2003 60 1,145,332 29,825,844 2.96E+10
Paid 2004 12 4,624,395 30,303,950 3.43E+10
Paid 2004 24 5,174,240 30,303,950 1.28E+11
Paid 2004 36 2,674,991 30,303,950 6.80E+10
Paid 2004 48 1,660,882 30,303,950 3.01E+10
Paid 2005 12 4,865,363 31,737,838 3.59E+10
Paid 2005 24 5,081,513 31,737,838 1.34E+11
Paid 2005 36 2,842,925 31,737,838 7.12E+10
Paid 2006 12 5,130,174 35,430,317 4.01E+10
Paid 2006 24 5,593,828 35,430,317 1.50E+11
Paid 2007 12 5,211,936 37,271,114 4.22E+10
Paid Constraint 0 0.145 0.145 0.145 0.145 0.145 0.145 0.145 0.145 0.145 0.145 -0.855
Paid 1998 Unpd 29,060,019 5.60E+10
Paid 1999 Unpd 29,301,751 29,301,751 5.73E+10
Paid 2000 Unpd 31,142,788 31,142,788 31,142,788 6.26E+10
Paid 2001 Unpd 30,375,837 30,375,837 30,375,837 30,375,837 6.42E+10
Paid 2002 Unpd 29,297,526 29,297,526 29,297,526 29,297,526 29,297,526 6.49E+10
Paid 2003 Unpd 29,825,844 29,825,844 29,825,844 29,825,844 29,825,844 29,825,844 8.54E+10
Paid 2004 Unpd 30,303,950 30,303,950 30,303,950 30,303,950 30,303,950 30,303,950 30,303,950 1.17E+11
Paid 2005 Unpd 31,737,838 31,737,838 31,737,838 31,737,838 31,737,838 31,737,838 31,737,838 31,737,838 1.54E+11
Paid 2006 Unpd 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 2.51E+11
Paid 2007 Unpd 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 4.22E+11
Incd 1998 12 10,440,449 29,060,019 1.34E+11
Incd 1998 24 4,086,220 29,060,019 2.54E+11
Incd 1998 36 1,688,495 29,060,019 5.71E+10
Incd 1998 48 1,044,239 29,060,019 5.15E+10
Incd 1998 60 851,747 29,060,019 5.15E+10
Incd 1998 72 616,672 29,060,019 1.54E+10
Incd 1998 84 420,021 29,060,019 8.45E+09
Incd 1998 96 321,247 29,060,019 8.45E+09
Incd 1998 108 71,684 29,060,019 8.45E+09
Incd 1998 120 224,296 29,060,019 5.81E+09
Incd 1999 12 10,104,076 29,301,751 1.35E+11
Incd 1999 24 4,262,241 29,301,751 2.56E+11
Incd 1999 36 2,008,640 29,301,751 5.76E+10
Incd 1999 48 1,266,374 29,301,751 5.20E+10
Incd 1999 60 765,915 29,301,751 5.20E+10
Incd 1999 72 450,157 29,301,751 1.55E+10
Incd 1999 84 479,312 29,301,751 8.52E+09
Incd 1999 96 211,550 29,301,751 8.52E+09
Incd 1999 108 264,671 29,301,751 8.52E+09
Incd 2000 12 10,614,330 31,142,788 1.43E+11
Incd 2000 24 5,087,335 31,142,788 2.72E+11
Incd 2000 36 2,000,022 31,142,788 6.12E+10
Incd 2000 48 1,142,896 31,142,788 5.52E+10
Incd 2000 60 824,094 31,142,788 5.52E+10
Incd 2000 72 425,884 31,142,788 1.65E+10
Incd 2000 84 307,470 31,142,788 9.06E+09
Incd 2000 96 337,415 31,142,788 9.06E+09
Incd 2001 12 11,104,926 30,375,837 1.40E+11
Incd 2001 24 4,741,998 30,375,837 2.66E+11
Incd 2001 36 2,116,895 30,375,837 5.97E+10
Incd 2001 48 969,052 30,375,837 5.39E+10
Incd 2001 60 246,184 30,375,837 5.39E+10
Incd 2001 72 305,161 30,375,837 1.61E+10
Incd 2001 84 327,231 30,375,837 8.83E+09
Incd 2002 12 10,379,583 29,297,526 1.35E+11
Incd 2002 24 4,729,077 29,297,526 2.56E+11
Incd 2002 36 1,886,096 29,297,526 5.76E+10
Incd 2002 48 691,197 29,297,526 5.19E+10
Incd 2002 60 548,041 29,297,526 5.19E+10
Incd 2002 72 355,685 29,297,526 1.55E+10
Incd 2003 12 10,932,703 29,825,844 1.37E+11
Incd 2003 24 4,391,717 29,825,844 2.61E+11
Incd 2003 36 1,574,142 29,825,844 5.86E+10
Incd 2003 48 797,113 29,825,844 5.29E+10
Incd 2003 60 618,675 29,825,844 5.29E+10
Incd 2004 12 11,239,343 30,303,950 1.40E+11
Incd 2004 24 4,081,055 30,303,950 2.65E+11
Incd 2004 36 1,522,852 30,303,950 5.96E+10
Incd 2004 48 788,922 30,303,950 5.37E+10
Incd 2005 12 11,978,411 31,737,838 1.46E+11
Incd 2005 24 3,653,908 31,737,838 2.78E+11
Incd 2005 36 1,588,938 31,737,838 6.24E+10
Incd 2006 12 12,468,437 35,430,317 1.63E+11
Incd 2006 24 4,353,742 35,430,317 3.10E+11
Incd 2007 12 12,931,177 37,271,114 1.72E+11
Incd Constraint 0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 -0.95
Incd 1998 IBNR 29,060,019 3.12E+10
Incd 1999 IBNR 29,301,751 29,301,751 3.73E+10
Incd 2000 IBNR 31,142,788 31,142,788 31,142,788 4.87E+10
Incd 2001 IBNR 30,375,837 30,375,837 30,375,837 30,375,837 5.63E+10
Incd 2002 IBNR 29,297,526 29,297,526 29,297,526 29,297,526 29,297,526 6.28E+10
Incd 2003 IBNR 29,825,844 29,825,844 29,825,844 29,825,844 29,825,844 29,825,844 7.98E+10
Incd 2004 IBNR 30,303,950 30,303,950 30,303,950 30,303,950 30,303,950 30,303,950 30,303,950 1.35E+11
Incd 2005 IBNR 31,737,838 31,737,838 31,737,838 31,737,838 31,737,838 31,737,838 31,737,838 31,737,838 1.97E+11
Incd 2006 IBNR 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 2.90E+11
Incd 2007 IBNR 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 6.31E+11
Ult = 1998 0 29,060,019 29,060,019 29,060,019 29,060,019 29,060,019 29,060,019 29,060,019 29,060,019 29,060,019 29,060,019 29,060,019 -29,060,019 -29,060,019 -29,060,019 -29,060,019 -29,060,019 -29,060,019 -29,060,019 -29,060,019 -29,060,019 -29,060,019 -29,060,019 9.88E+11
Ult = 1999 0 29,301,751 29,301,751 29,301,751 29,301,751 29,301,751 29,301,751 29,301,751 29,301,751 29,301,751 29,301,751 29,301,751 -29,301,751 -29,301,751 -29,301,751 -29,301,751 -29,301,751 -29,301,751 -29,301,751 -29,301,751 -29,301,751 -29,301,751 -29,301,751 9.96E+11
Ult = 2000 0 31,142,788 31,142,788 31,142,788 31,142,788 31,142,788 31,142,788 31,142,788 31,142,788 31,142,788 31,142,788 31,142,788 -31,142,788 -31,142,788 -31,142,788 -31,142,788 -31,142,788 -31,142,788 -31,142,788 -31,142,788 -31,142,788 -31,142,788 -31,142,788 1.06E+12
Ult = 2001 0 30,375,837 30,375,837 30,375,837 30,375,837 30,375,837 30,375,837 30,375,837 30,375,837 30,375,837 30,375,837 30,375,837 -30,375,837 -30,375,837 -30,375,837 -30,375,837 -30,375,837 -30,375,837 -30,375,837 -30,375,837 -30,375,837 -30,375,837 -30,375,837 1.03E+12
Ult = 2002 0 29,297,526 29,297,526 29,297,526 29,297,526 29,297,526 29,297,526 29,297,526 29,297,526 29,297,526 29,297,526 29,297,526 -29,297,526 -29,297,526 -29,297,526 -29,297,526 -29,297,526 -29,297,526 -29,297,526 -29,297,526 -29,297,526 -29,297,526 -29,297,526 9.96E+11
Ult = 2003 0 29,825,844 29,825,844 29,825,844 29,825,844 29,825,844 29,825,844 29,825,844 29,825,844 29,825,844 29,825,844 29,825,844 -29,825,844 -29,825,844 -29,825,844 -29,825,844 -29,825,844 -29,825,844 -29,825,844 -29,825,844 -29,825,844 -29,825,844 -29,825,844 1.01E+12
Ult = 2004 0 30,303,950 30,303,950 30,303,950 30,303,950 30,303,950 30,303,950 30,303,950 30,303,950 30,303,950 30,303,950 30,303,950 -30,303,950 -30,303,950 -30,303,950 -30,303,950 -30,303,950 -30,303,950 -30,303,950 -30,303,950 -30,303,950 -30,303,950 -30,303,950 1.03E+12
Ult = 2005 0 31,737,838 31,737,838 31,737,838 31,737,838 31,737,838 31,737,838 31,737,838 31,737,838 31,737,838 31,737,838 31,737,838 -31,737,838 -31,737,838 -31,737,838 -31,737,838 -31,737,838 -31,737,838 -31,737,838 -31,737,838 -31,737,838 -31,737,838 -31,737,838 1.08E+12
Ult = 2006 0 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 35,430,317 -35,430,317 -35,430,317 -35,430,317 -35,430,317 -35,430,317 -35,430,317 -35,430,317 -35,430,317 -35,430,317 -35,430,317 -35,430,317 1.20E+12
Ult = 2007 0 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 37,271,114 -37,271,114 -37,271,114 -37,271,114 -37,271,114 -37,271,114 -37,271,114 -37,271,114 -37,271,114 -37,271,114 -37,271,114 -37,271,114 1.27E+12 
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Exhibit 8.2 
 

t itl e:Covariance of Joint Paid and Incurred Linear Model
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Type AY Age Σ Covariance
Paid 1998 12 3.29E+10 3.29E+10
Paid 1998 24 1.23E+11 1.23E+11
Paid 1998 36 6.52E+10 6.52E+10
Paid 1998 48 2.88E+10 2.88E+10
Paid 1998 60 2.88E+10 2.88E+10
Paid 1998 72 1.89E+10 1.89E+10
Paid 1998 84 2.95E+09 2.95E+09
Paid 1998 96 2.95E+09 2.95E+09
Paid 1998 108 1.59E+09 1.59E+09
Paid 1998 120 7.97E+08 7.97E+08
Paid 1999 12 3.31E+10 3.31E+10
Paid 1999 24 1.24E+11 1.24E+11
Paid 1999 36 6.57E+10 6.57E+10
Paid 1999 48 2.91E+10 2.91E+10
Paid 1999 60 2.91E+10 2.91E+10
Paid 1999 72 1.91E+10 1.91E+10
Paid 1999 84 2.98E+09 2.98E+09
Paid 1999 96 2.98E+09 2.98E+09
Paid 1999 108 1.61E+09 1.61E+09
Paid 2000 12 3.52E+10 3.52E+10
Paid 2000 24 1.32E+11 1.32E+11
Paid 2000 36 6.99E+10 6.99E+10
Paid 2000 48 3.09E+10 3.09E+10
Paid 2000 60 3.09E+10 3.09E+10
Paid 2000 72 2.03E+10 2.03E+10
Paid 2000 84 3.16E+09 3.16E+09
Paid 2000 96 3.16E+09 3.16E+09
Paid 2001 12 3.44E+10 3.44E+10
Paid 2001 24 1.28E+11 1.28E+11
Paid 2001 36 6.81E+10 6.81E+10
Paid 2001 48 3.01E+10 3.01E+10
Paid 2001 60 3.01E+10 3.01E+10
Paid 2001 72 1.98E+10 1.98E+10
Paid 2001 84 3.08E+09 3.08E+09
Paid 2002 12 3.31E+10 3.31E+10
Paid 2002 24 1.24E+11 1.24E+11
Paid 2002 36 6.57E+10 6.57E+10
Paid 2002 48 2.91E+10 2.91E+10
Paid 2002 60 2.91E+10 2.91E+10
Paid 2002 72 1.91E+10 1.91E+10
Paid 2003 12 3.37E+10 3.37E+10
Paid 2003 24 1.26E+11 1.26E+11
Paid 2003 36 6.69E+10 6.69E+10
Paid 2003 48 2.96E+10 2.96E+10
Paid 2003 60 2.96E+10 2.96E+10
Paid 2004 12 3.43E+10 3.43E+10
Paid 2004 24 1.28E+11 1.28E+11
Paid 2004 36 6.80E+10 6.80E+10
Paid 2004 48 3.01E+10 3.01E+10
Paid 2005 12 3.59E+10 3.59E+10
Paid 2005 24 1.34E+11 1.34E+11
Paid 2005 36 7.12E+10 7.12E+10
Paid 2006 12 4.01E+10 4.01E+10
Paid 2006 24 1.50E+11 1.50E+11
Paid 2007 12 4.22E+10 4.22E+10
Paid Constraint
Paid 1998 Unpd 5.60E+10 5.60E+10
Paid 1999 Unpd 5.73E+10 5.73E+10
Paid 2000 Unpd 6.26E+10 6.26E+10
Paid 2001 Unpd 6.42E+10 6.42E+10
Paid 2002 Unpd 6.49E+10 6.49E+10
Paid 2003 Unpd 8.54E+10 8.54E+10
Paid 2004 Unpd 1.17E+11 1.17E+11
Paid 2005 Unpd 1.54E+11 1.54E+11
Paid 2006 Unpd 2.51E+11 2.51E+11
Paid 2007 Unpd 4.22E+11 4.22E+11
Incd 1998 12 1.34E+11 -1.34E+11
Incd 1998 24 2.54E+11 -2.54E+11
Incd 1998 36 5.71E+10 -5.71E+10
Incd 1998 48 5.15E+10 -5.15E+10
Incd 1998 60 5.15E+10 -5.15E+10
Incd 1998 72 1.54E+10 -1.54E+10
Incd 1998 84 8.45E+09 -8.45E+09
Incd 1998 96 8.45E+09 -8.45E+09
Incd 1998 108 8.45E+09 -8.45E+09
Incd 1998 120 5.81E+09 -5.81E+09
Incd 1999 12 1.35E+11 -1.35E+11
Incd 1999 24 2.56E+11 -2.56E+11
Incd 1999 36 5.76E+10 -5.76E+10
Incd 1999 48 5.20E+10 -5.20E+10
Incd 1999 60 5.20E+10 -5.20E+10
Incd 1999 72 1.55E+10 -1.55E+10
Incd 1999 84 8.52E+09 -8.52E+09
Incd 1999 96 8.52E+09 -8.52E+09
Incd 1999 108 8.52E+09 -8.52E+09
Incd 2000 12 1.43E+11 -1.43E+11
Incd 2000 24 2.72E+11 -2.72E+11
Incd 2000 36 6.12E+10 -6.12E+10
Incd 2000 48 5.52E+10 -5.52E+10
Incd 2000 60 5.52E+10 -5.52E+10
Incd 2000 72 1.65E+10 -1.65E+10
Incd 2000 84 9.06E+09 -9.06E+09
Incd 2000 96 9.06E+09 -9.06E+09
Incd 2001 12 1.40E+11 -1.40E+11
Incd 2001 24 2.66E+11 -2.66E+11
Incd 2001 36 5.97E+10 -5.97E+10
Incd 2001 48 5.39E+10 -5.39E+10
Incd 2001 60 5.39E+10 -5.39E+10
Incd 2001 72 1.61E+10 -1.61E+10
Incd 2001 84 8.83E+09 -8.83E+09
Incd 2002 12 1.35E+11 -1.35E+11
Incd 2002 24 2.56E+11 -2.56E+11
Incd 2002 36 5.76E+10 -5.76E+10
Incd 2002 48 5.19E+10 -5.19E+10
Incd 2002 60 5.19E+10 -5.19E+10
Incd 2002 72 1.55E+10 -1.55E+10
Incd 2003 12 1.37E+11 -1.37E+11
Incd 2003 24 2.61E+11 -2.61E+11
Incd 2003 36 5.86E+10 -5.86E+10
Incd 2003 48 5.29E+10 -5.29E+10
Incd 2003 60 5.29E+10 -5.29E+10
Incd 2004 12 1.40E+11 -1.40E+11
Incd 2004 24 2.65E+11 -2.65E+11
Incd 2004 36 5.96E+10 -5.96E+10
Incd 2004 48 5.37E+10 -5.37E+10
Incd 2005 12 1.46E+11 -1.46E+11
Incd 2005 24 2.78E+11 -2.78E+11
Incd 2005 36 6.24E+10 -6.24E+10
Incd 2006 12 1.63E+11 -1.63E+11
Incd 2006 24 3.10E+11 -3.10E+11
Incd 2007 12 1.72E+11 -1.72E+11
Incd Constraint
Incd 1998 IBNR 3.12E+10 -3.12E+10
Incd 1999 IBNR 3.73E+10 -3.73E+10
Incd 2000 IBNR 4.87E+10 -4.87E+10
Incd 2001 IBNR 5.63E+10 -5.63E+10
Incd 2002 IBNR 6.28E+10 -6.28E+10
Incd 2003 IBNR 7.98E+10 -7.98E+10
Incd 2004 IBNR 1.35E+11 -1.35E+11
Incd 2005 IBNR 1.97E+11 -1.97E+11
Incd 2006 IBNR 2.90E+11 -2.90E+11
Incd 2007 IBNR 6.31E+11 -6.31E+11
Ult = 1998 9.88E+11 9.88E+11
Ult = 1999 9.96E+11 9.96E+11
Ult = 2000 1.06E+12 1.06E+12
Ult = 2001 1.03E+12 1.03E+12
Ult = 2002 9.96E+11 9.96E+11
Ult = 2003 1.01E+12 1.01E+12
Ult = 2004 1.03E+12 1.03E+12
Ult = 2005 1.08E+12 1.08E+12
Ult = 2006 1.20E+12 1.20E+12
Ult = 2007 1.27E+12 1.27E+12 
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Exhibit 9.1 
 

Joint Paid and Incurred Linear Model: Diagnostics
TYPE AY AGE y1 Fitted Resid Student Cnstrnd SSCP TTy1 Fitted Resid
Paid 1998 12 4,651,588 4,295,141 356,447 2.06 0 TTy1 21797.28 21712.24 85.03434
Paid 1998 24 4,933,554 5,081,187 -147,633 -0.44 0 Fitted 21712.24 21712.24 0
Paid 1998 36 3,021,114 2,939,870 81,244 0.34 0 Resid 85.03434 0 85.03434
Paid 1998 48 1,488,504 1,689,312 -200,808 -1.27 0 rhosq 100.0% 99.6% 0.4%
Paid 1998 60 1,173,282 1,034,360 138,922 0.89 0 df 120 20 100
Paid 1998 72 806,542 612,055 194,487 1.57 0 s2hat 181.644 1085.612 0.850343
Paid 1998 84 594,058 538,316 55,742 1.18 0 s2sel 1
Paid 1998 96 438,193 444,117 -5,924 -0.13 0
Paid 1998 108 316,106 337,302 -21,196 -0.74 0
Paid 1998 120 316,058 320,133 -4,075 0/0 0
Paid 1999 12 4,211,880 4,330,869 -118,989 -0.69 0
Paid 1999 24 5,420,600 5,123,455 297,145 0.89 0
Paid 1999 36 3,118,015 2,964,325 153,690 0.64 0
Paid 1999 48 1,868,494 1,703,364 165,130 1.04 0
Paid 1999 60 1,018,079 1,042,964 -24,885 -0.16 0
Paid 1999 72 584,906 617,146 -32,240 -0.26 0
Paid 1999 84 531,983 542,793 -10,810 -0.23 0
Paid 1999 96 446,822 447,812 -990 -0.02 0
Paid 1999 108 356,478 340,107 16,371 0.57 0
Paid 2000 12 4,553,584 4,602,979 -49,395 -0.28 0
Paid 2000 24 5,812,588 5,445,363 367,225 1.07 0
Paid 2000 36 3,342,985 3,150,575 192,410 0.78 0
Paid 2000 48 1,870,185 1,810,387 59,798 0.37 0
Paid 2000 60 1,144,950 1,108,494 36,456 0.23 0
Paid 2000 72 640,842 655,922 -15,080 -0.12 0
Paid 2000 84 595,970 576,897 19,073 0.39 0
Paid 2000 96 471,781 475,948 -4,167 -0.09 0
Paid 2001 12 4,556,995 4,489,622 67,373 0.38 0
Paid 2001 24 5,786,328 5,311,260 475,068 1.40 0
Paid 2001 36 3,418,250 3,072,986 345,264 1.41 0
Paid 2001 48 1,858,209 1,765,803 92,406 0.57 0
Paid 2001 60 738,292 1,081,195 -342,903 -2.16 0
Paid 2001 72 442,905 639,769 -196,864 -1.56 0
Paid 2001 84 488,139 562,690 -74,551 -1.55 0
Paid 2002 12 4,262,115 4,330,245 -68,130 -0.39 0
Paid 2002 24 5,263,681 5,122,716 140,965 0.42 0
Paid 2002 36 3,002,075 2,963,898 38,177 0.16 0
Paid 2002 48 1,649,991 1,703,119 -53,128 -0.34 0
Paid 2002 60 1,106,736 1,042,814 63,922 0.41 0
Paid 2002 72 614,683 617,057 -2,374 -0.02 0
Paid 2003 12 4,274,440 4,408,332 -133,892 -0.77 0
Paid 2003 24 5,177,285 5,215,093 -37,808 -0.11 0
Paid 2003 36 2,938,488 3,017,345 -78,857 -0.32 0
Paid 2003 48 1,747,993 1,733,831 14,162 0.09 0
Paid 2003 60 1,145,332 1,061,619 83,713 0.53 0
Paid 2004 12 4,624,395 4,478,997 145,398 0.83 0
Paid 2004 24 5,174,240 5,298,691 -124,451 -0.37 0
Paid 2004 36 2,674,991 3,065,713 -390,722 -1.60 0
Paid 2004 48 1,660,882 1,761,624 -100,742 -0.63 0
Paid 2005 12 4,865,363 4,690,929 174,434 0.97 0
Paid 2005 24 5,081,513 5,549,408 -467,895 -1.35 0
Paid 2005 36 2,842,925 3,210,773 -367,848 -1.48 0
Paid 2006 12 5,130,174 5,236,686 -106,512 -0.56 0
Paid 2006 24 5,593,828 6,195,043 -601,215 -1.66 0
Paid 2007 12 5,211,936 5,508,761 -296,825 -1.54 0
Paid Constraint 0 0 0 0.00 1
Incd 1998 12 10,440,449 10,388,110 52,339 0.15 0
Incd 1998 24 4,086,220 4,135,376 -49,156 -0.10 0
Incd 1998 36 1,688,495 1,735,893 -47,398 -0.21 0
Incd 1998 48 1,044,239 928,957 115,282 0.55 0
Incd 1998 60 851,747 618,070 233,677 1.12 0
Incd 1998 72 616,672 413,144 203,528 1.82 0
Incd 1998 84 420,021 365,835 54,186 0.67 0
Incd 1998 96 321,247 273,968 47,279 0.62 0
Incd 1998 108 71,684 157,407 -85,723 -1.25 0
Incd 1998 120 224,296 198,262 26,034 0.79 0
Incd 1999 12 10,104,076 10,474,522 -370,446 -1.06 0
Incd 1999 24 4,262,241 4,169,776 92,465 0.19 0
Incd 1999 36 2,008,640 1,750,333 258,307 1.15 0
Incd 1999 48 1,266,374 936,684 329,690 1.55 0
Incd 1999 60 765,915 623,211 142,704 0.68 0
Incd 1999 72 450,157 416,581 33,576 0.30 0
Incd 1999 84 479,312 368,878 110,434 1.37 0
Incd 1999 96 211,550 276,247 -64,697 -0.84 0
Incd 1999 108 264,671 158,716 105,955 1.54 0
Incd 2000 12 10,614,330 11,132,639 -518,309 -1.44 0
Incd 2000 24 5,087,335 4,431,764 655,571 1.33 0
Incd 2000 36 2,000,022 1,860,307 139,715 0.60 0
Incd 2000 48 1,142,896 995,536 147,360 0.68 0
Incd 2000 60 824,094 662,368 161,726 0.75 0
Incd 2000 72 425,884 442,755 -16,871 -0.15 0
Incd 2000 84 307,470 392,055 -84,585 -1.03 0
Incd 2000 96 337,415 293,604 43,811 0.56 0
Incd 2001 12 11,104,926 10,858,477 246,449 0.69 0
Incd 2001 24 4,741,998 4,322,623 419,375 0.86 0
Incd 2001 36 2,116,895 1,814,493 302,402 1.32 0
Incd 2001 48 969,052 971,019 -1,967 -0.01 0
Incd 2001 60 246,184 646,056 -399,872 -1.88 0
Incd 2001 72 305,161 431,851 -126,690 -1.11 0
Incd 2001 84 327,231 382,400 -55,169 -0.68 0
Incd 2002 12 10,379,583 10,473,012 -93,429 -0.27 0
Incd 2002 24 4,729,077 4,169,174 559,903 1.17 0
Incd 2002 36 1,886,096 1,750,080 136,016 0.60 0
Incd 2002 48 691,197 936,549 -245,352 -1.16 0
Incd 2002 60 548,041 623,121 -75,080 -0.36 0
Incd 2002 72 355,685 416,521 -60,836 -0.54 0
Incd 2003 12 10,932,703 10,661,870 270,833 0.77 0
Incd 2003 24 4,391,717 4,244,357 147,360 0.30 0
Incd 2003 36 1,574,142 1,781,639 -207,497 -0.91 0
Incd 2003 48 797,113 953,438 -156,325 -0.73 0
Incd 2003 60 618,675 634,358 -15,683 -0.07 0
Incd 2004 12 11,239,343 10,832,779 406,564 1.14 0
Incd 2004 24 4,081,055 4,312,393 -231,338 -0.48 0
Incd 2004 36 1,522,852 1,810,199 -287,347 -1.26 0
Incd 2004 48 788,922 968,721 -179,799 -0.84 0
Incd 2005 12 11,978,411 11,345,353 633,058 1.75 0
Incd 2005 24 3,653,908 4,516,442 -862,534 -1.74 0
Incd 2005 36 1,588,938 1,895,852 -306,914 -1.32 0
Incd 2006 12 12,468,437 12,665,306 -196,869 -0.52 0
Incd 2006 24 4,353,742 5,041,899 -688,157 -1.32 0
Incd 2007 12 12,931,177 13,323,337 -392,160 -1.01 0
Incd Constraint 0 0 0 0.00 1
Ult = 1998 0 -2,019 2,019 0.00 0
Ult = 1999 0 -2,035 2,035 0.00 0
Ult = 2000 0 -2,163 2,163 0.00 0
Ult = 2001 0 -2,110 2,110 0.00 0
Ult = 2002 0 -2,035 2,035 0.00 0
Ult = 2003 0 -2,072 2,072 0.00 0
Ult = 2004 0 -2,105 2,105 0.00 0
Ult = 2005 0 -2,205 2,205 0.00 0
Ult = 2006 0 -2,461 2,461 0.00 0
Ult = 2007 0 -2,589 2,589 0.00 0  
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Exhibit 9.2 
 

Joint Paid and Incurred Linear Model: Predictions
TYPE AY AGE y2hat StdPrdErr VarPrdErr VarPrdErr VarPrdErr VarPrdErr VarPrdErr VarPrdErr VarPrdErr VarPrdErr VarPrdErr VarPrdErr VarPrdErr VarPrdErr VarPrdErr VarPrdErr VarPrdErr VarPrdErr VarPrdErr VarPrdErr VarPrdErr VarPrdErr
Paid 1998 Unpd 2,999,915 ± 142,339 2.03E+10 3.9E+08 5.28E+08 5.95E+08 6.3E+08 8.06E+08 1.12E+09 1.43E+09 2.04E+09 3.23E+09 2.03E+10 3.9E+08 5.28E+08 5.95E+08 6.3E+08 8.06E+08 1.12E+09 1.43E+09 2.04E+09 3.23E+09
Paid 1999 Unpd 3,398,227 ± 158,471 3.9E+08 2.51E+10 2.53E+09 2.43E+09 2.34E+09 2.60E+09 2.88E+09 3.27E+09 4.21E+09 5.59E+09 3.9E+08 2.51E+10 2.53E+09 2.43E+09 2.34E+09 2.60E+09 2.88E+09 3.27E+09 4.21E+09 5.59E+09
Paid 2000 Unpd 3,804,647 ± 177,631 5.28E+08 2.53E+09 3.16E+10 3.96E+09 3.77E+09 4.09E+09 4.37E+09 4.85E+09 6.08E+09 7.67E+09 5.28E+08 2.53E+09 3.16E+10 3.96E+09 3.77E+09 4.09E+09 4.37E+09 4.85E+09 6.08E+09 7.67E+09
Paid 2001 Unpd 4,227,840 ± 186,625 5.95E+08 2.43E+09 3.96E+09 3.48E+10 4.60E+09 4.95E+09 5.22E+09 5.73E+09 7.08E+09 8.71E+09 5.95E+08 2.43E+09 3.96E+09 3.48E+10 4.60E+09 4.95E+09 5.22E+09 5.73E+09 7.08E+09 8.71E+09
Paid 2002 Unpd 4,662,500 ± 192,377 6.3E+08 2.34E+09 3.77E+09 4.60E+09 3.70E+10 5.45E+09 5.71E+09 6.24E+09 7.64E+09 9.26E+09 6.3E+08 2.34E+09 3.77E+09 4.60E+09 3.70E+10 5.45E+09 5.71E+09 6.24E+09 7.64E+09 9.26E+09
Paid 2003 Unpd 5,421,105 ± 220,945 8.06E+08 2.60E+09 4.09E+09 4.95E+09 5.45E+09 4.88E+10 7.87E+09 8.50E+09 1.02E+10 1.19E+10 8.06E+08 2.60E+09 4.09E+09 4.95E+09 5.45E+09 4.88E+10 7.87E+09 8.50E+09 1.02E+10 1.19E+10
Paid 2004 Unpd 6,568,927 ± 272,535 1.12E+09 2.88E+09 4.37E+09 5.22E+09 5.71E+09 7.87E+09 7.43E+10 1.25E+10 1.46E+10 1.67E+10 1.12E+09 2.88E+09 4.37E+09 5.22E+09 5.71E+09 7.87E+09 7.43E+10 1.25E+10 1.46E+10 1.67E+10
Paid 2005 Unpd 8,692,524 ± 320,964 1.43E+09 3.27E+09 4.85E+09 5.73E+09 6.24E+09 8.50E+09 1.25E+10 1.03E+11 1.92E+10 2.15E+10 1.43E+09 3.27E+09 4.85E+09 5.73E+09 6.24E+09 8.50E+09 1.25E+10 1.03E+11 1.92E+10 2.15E+10
Paid 2006 Unpd 13,144,841 ± 403,064 2.04E+09 4.21E+09 6.08E+09 7.08E+09 7.64E+09 1.02E+10 1.46E+10 1.92E+10 1.62E+11 3.07E+10 2.04E+09 4.21E+09 6.08E+09 7.08E+09 7.64E+09 1.02E+10 1.46E+10 1.92E+10 1.62E+11 3.07E+10
Paid 2007 Unpd 20,392,908 ± 549,291 3.23E+09 5.59E+09 7.67E+09 8.71E+09 9.26E+09 1.19E+10 1.67E+10 2.15E+10 3.07E+10 3.02E+11 3.23E+09 5.59E+09 7.67E+09 8.71E+09 9.26E+09 1.19E+10 1.67E+10 2.15E+10 3.07E+10 3.02E+11
Incd 1998 IBNR 973,844 ± 142,339 2.03E+10 3.9E+08 5.28E+08 5.95E+08 6.3E+08 8.06E+08 1.12E+09 1.43E+09 2.04E+09 3.23E+09 2.03E+10 3.9E+08 5.28E+08 5.95E+08 6.3E+08 8.06E+08 1.12E+09 1.43E+09 2.04E+09 3.23E+09
Incd 1999 IBNR 1,142,547 ± 158,471 3.9E+08 2.51E+10 2.53E+09 2.43E+09 2.34E+09 2.60E+09 2.88E+09 3.27E+09 4.21E+09 5.59E+09 3.9E+08 2.51E+10 2.53E+09 2.43E+09 2.34E+09 2.60E+09 2.88E+09 3.27E+09 4.21E+09 5.59E+09
Incd 2000 IBNR 1,498,084 ± 177,630 5.28E+08 2.53E+09 3.16E+10 3.96E+09 3.77E+09 4.09E+09 4.37E+09 4.85E+09 6.08E+09 7.67E+09 5.28E+08 2.53E+09 3.16E+10 3.96E+09 3.77E+09 4.09E+09 4.37E+09 4.85E+09 6.08E+09 7.67E+09
Incd 2001 IBNR 1,705,511 ± 186,625 5.95E+08 2.43E+09 3.96E+09 3.48E+10 4.60E+09 4.95E+09 5.22E+09 5.73E+09 7.08E+09 8.71E+09 5.95E+08 2.43E+09 3.96E+09 3.48E+10 4.60E+09 4.95E+09 5.22E+09 5.73E+09 7.08E+09 8.71E+09
Incd 2002 IBNR 1,972,102 ± 192,377 6.3E+08 2.34E+09 3.77E+09 4.60E+09 3.70E+10 5.45E+09 5.71E+09 6.24E+09 7.64E+09 9.26E+09 6.3E+08 2.34E+09 3.77E+09 4.60E+09 3.70E+10 5.45E+09 5.71E+09 6.24E+09 7.64E+09 9.26E+09
Incd 2003 IBNR 2,390,298 ± 220,945 8.06E+08 2.60E+09 4.09E+09 4.95E+09 5.45E+09 4.88E+10 7.87E+09 8.50E+09 1.02E+10 1.19E+10 8.06E+08 2.60E+09 4.09E+09 4.95E+09 5.45E+09 4.88E+10 7.87E+09 8.50E+09 1.02E+10 1.19E+10
Incd 2004 IBNR 3,071,266 ± 272,536 1.12E+09 2.88E+09 4.37E+09 5.22E+09 5.71E+09 7.87E+09 7.43E+10 1.25E+10 1.46E+10 1.67E+10 1.12E+09 2.88E+09 4.37E+09 5.22E+09 5.71E+09 7.87E+09 7.43E+10 1.25E+10 1.46E+10 1.67E+10
Incd 2005 IBNR 4,261,067 ± 320,964 1.43E+09 3.27E+09 4.85E+09 5.73E+09 6.24E+09 8.50E+09 1.25E+10 1.03E+11 1.92E+10 2.15E+10 1.43E+09 3.27E+09 4.85E+09 5.73E+09 6.24E+09 8.50E+09 1.25E+10 1.03E+11 1.92E+10 2.15E+10
Incd 2006 IBNR 7,046,664 ± 403,064 2.04E+09 4.21E+09 6.08E+09 7.08E+09 7.64E+09 1.02E+10 1.46E+10 1.92E+10 1.62E+11 3.07E+10 2.04E+09 4.21E+09 6.08E+09 7.08E+09 7.64E+09 1.02E+10 1.46E+10 1.92E+10 1.62E+11 3.07E+10
Incd 2007 IBNR 12,673,667 ± 549,291 3.23E+09 5.59E+09 7.67E+09 8.71E+09 9.26E+09 1.19E+10 1.67E+10 2.15E+10 3.07E+10 3.02E+11 3.23E+09 5.59E+09 7.67E+09 8.71E+09 9.26E+09 1.19E+10 1.67E+10 2.15E+10 3.07E+10 3.02E+11

Betahat StdBeta VarBeta VarBeta VarBeta VarBeta VarBeta VarBeta VarBeta VarBeta VarBeta VarBeta VarBeta VarBeta VarBeta VarBeta VarBeta VarBeta VarBeta VarBeta VarBeta VarBeta VarBeta VarBeta
0.148 ± 0.002 3.59E-06 -5.2E-08 -3.5E-08 -2E-08 -2.7E-08 -2.8E-08 -7E-09 -1.2E-08 -1.3E-08 -1.7E-08 5.74E-07 1.5E-08 3.5E-08 0 1.6E-08 2.6E-08 1.4E-08 1.5E-08 2.8E-08 5.8E-08 1.07E-07 1.7E-08
0.175 ± 0.004 -5.2E-08 1.48E-05 -2.93E-07 -1.49E-07 -1.82E-07 -1.61E-07 -3.7E-08 -5.9E-08 -6E-08 -7.4E-08 2.33E-06 6.6E-08 7.11E-07 1.75E-07 1.82E-07 2.25E-07 9.5E-08 8.2E-08 1.37E-07 2.68E-07 4.74E-07 1.27E-07
0.101 ± 0.003 -3.5E-08 -2.93E-07 8.96E-06 -1.68E-07 -1.89E-07 -1.51E-07 -3.1E-08 -4.6E-08 -4.3E-08 -5.1E-08 1.35E-06 4.4E-08 3.97E-07 2.52E-07 2.44E-07 2.72E-07 1E-07 7.4E-08 1.11E-07 1.97E-07 3.26E-07 1.06E-07
0.058 ± 0.002 -2E-08 -1.49E-07 -1.68E-07 4.6E-06 -1.5E-07 -1.14E-07 -2.2E-08 -3.1E-08 -2.7E-08 -3.1E-08 6.6E-07 2.5E-08 1.89E-07 1.16E-07 2.14E-07 2.3E-07 7.9E-08 5.5E-08 7.6E-08 1.26E-07 1.96E-07 6.9E-08
0.036 ± 0.002 -2.7E-08 -1.82E-07 -1.89E-07 -1.5E-07 5.28E-06 -1.94E-07 -3.6E-08 -4.8E-08 -4.1E-08 -4.4E-08 7.41E-07 3.5E-08 2.1E-07 1.23E-07 2.24E-07 4.18E-07 1.39E-07 9.2E-08 1.21E-07 1.89E-07 2.82E-07 9.6E-08
0.021 ± 0.002 -2.8E-08 -1.61E-07 -1.51E-07 -1.14E-07 -1.94E-07 4.13E-06 -4.3E-08 -5.5E-08 -4.4E-08 -4.6E-08 5.58E-07 3.5E-08 1.65E-07 8.9E-08 1.59E-07 2.94E-07 1.72E-07 1.1E-07 1.39E-07 2.08E-07 2.96E-07 8.8E-08
0.019 ± 0.001 -7E-09 -3.7E-08 -3.1E-08 -2.2E-08 -3.6E-08 -4.3E-08 8.35E-07 -1.5E-08 -1.2E-08 -1.2E-08 1.05E-07 0 3.4E-08 1.7E-08 2.8E-08 5.2E-08 3E-08 3.2E-08 3.9E-08 5.7E-08 7.8E-08 2E-08
0.015 ± 0.001 -1.2E-08 -5.9E-08 -4.6E-08 -3.1E-08 -4.8E-08 -5.5E-08 -1.5E-08 1.11E-06 -2.2E-08 -2.1E-08 1.35E-07 1.6E-08 4.8E-08 2.1E-08 3.5E-08 6.3E-08 3.6E-08 3.8E-08 7.2E-08 1.03E-07 1.38E-07 3E-08
0.012 ± 0.001 -1.3E-08 -6E-08 -4.3E-08 -2.7E-08 -4.1E-08 -4.4E-08 -1.2E-08 -2.2E-08 9.17E-07 -2.3E-08 1.07E-07 1.7E-08 4.5E-08 1.8E-08 2.7E-08 4.8E-08 2.7E-08 2.8E-08 5.4E-08 1.13E-07 1.5E-07 2.8E-08
0.011 ± 0.001 -1.7E-08 -7.4E-08 -5.1E-08 -3.1E-08 -4.4E-08 -4.6E-08 -1.2E-08 -2.1E-08 -2.3E-08 9.14E-07 1.01E-07 2.1E-08 5.2E-08 1.8E-08 2.7E-08 4.6E-08 2.6E-08 2.7E-08 5E-08 1.06E-07 1.95E-07 3E-08
0.101 ± 0.001 5.74E-07 2.328E-06 1.35E-06 6.6E-07 7.41E-07 5.58E-07 1.05E-07 1.35E-07 1.07E-07 1.01E-07 1.13E-06 4.8E-08 3.2E-07 1.43E-07 1.96E-07 2.84E-07 1.22E-07 9.3E-08 1.4E-07 2.42E-07 3.8E-07 1.04E-07
0.357 ± 0.004 1.5E-08 6.6E-08 4.4E-08 2.5E-08 3.5E-08 3.5E-08 0 1.6E-08 1.7E-08 2.1E-08 4.8E-08 1.47E-05 -4.4E-08 0 -2E-08 -3.3E-08 -1.8E-08 -1.8E-08 -3.5E-08 -7.3E-08 -1.35E-07 7.51E-07
0.142 ± 0.006 3.5E-08 7.11E-07 3.97E-07 1.89E-07 2.1E-07 1.65E-07 3.4E-08 4.8E-08 4.5E-08 5.2E-08 3.2E-07 -4.4E-08 3.04E-05 -2.93E-07 -2.81E-07 -3.1E-07 -1.11E-07 -8E-08 -1.17E-07 -2.04E-07 -3.31E-07 1.51E-06
0.060 ± 0.003 0 1.75E-07 2.52E-07 1.16E-07 1.23E-07 8.9E-08 1.7E-08 2.1E-08 1.8E-08 1.8E-08 1.43E-07 0 -2.93E-07 7.95E-06 -1.89E-07 -1.98E-07 -6.5E-08 -4.2E-08 -5.4E-08 -8.2E-08 -1.19E-07 3.63E-07
0.032 ± 0.003 1.6E-08 1.82E-07 2.44E-07 2.14E-07 2.24E-07 1.59E-07 2.8E-08 3.5E-08 2.7E-08 2.7E-08 1.96E-07 -2E-08 -2.81E-07 -1.89E-07 8.12E-06 -3.7E-07 -1.19E-07 -7.4E-08 -9.1E-08 -1.3E-07 -1.77E-07 3.51E-07
0.021 ± 0.003 2.6E-08 2.25E-07 2.72E-07 2.3E-07 4.18E-07 2.94E-07 5.2E-08 6.3E-08 4.8E-08 4.6E-08 2.84E-07 -3.3E-08 -3.1E-07 -1.98E-07 -3.7E-07 9.21E-06 -2.22E-07 -1.36E-07 -1.64E-07 -2.29E-07 -3E-07 3.81E-07
0.014 ± 0.002 1.4E-08 9.5E-08 1E-07 7.9E-08 1.39E-07 1.72E-07 3E-08 3.6E-08 2.7E-08 2.6E-08 1.22E-07 -1.8E-08 -1.11E-07 -6.5E-08 -1.19E-07 -2.22E-07 3.42E-06 -8E-08 -9.5E-08 -1.3E-07 -1.68E-07 1.27E-07
0.013 ± 0.002 1.5E-08 8.2E-08 7.4E-08 5.5E-08 9.2E-08 1.1E-07 3.2E-08 3.8E-08 2.8E-08 2.7E-08 9.3E-08 -1.8E-08 -8E-08 -4.2E-08 -7.4E-08 -1.36E-07 -8E-08 2.34E-06 -9.9E-08 -1.36E-07 -1.74E-07 7.9E-08
0.009 ± 0.002 2.8E-08 1.37E-07 1.11E-07 7.6E-08 1.21E-07 1.39E-07 3.9E-08 7.2E-08 5.4E-08 5E-08 1.4E-07 -3.5E-08 -1.17E-07 -5.4E-08 -9.1E-08 -1.64E-07 -9.5E-08 -9.9E-08 3.06E-06 -2.58E-07 -3.29E-07 9.6E-08
0.005 ± 0.002 5.8E-08 2.68E-07 1.97E-07 1.26E-07 1.89E-07 2.08E-07 5.7E-08 1.03E-07 1.13E-07 1.06E-07 2.42E-07 -7.3E-08 -2.04E-07 -8.2E-08 -1.3E-07 -2.29E-07 -1.3E-07 -1.36E-07 -2.58E-07 4.44E-06 -6.94E-07 1.32E-07
0.007 ± 0.002 1.07E-07 4.74E-07 3.26E-07 1.96E-07 2.82E-07 2.96E-07 7.8E-08 1.38E-07 1.5E-07 1.95E-07 3.8E-07 -1.35E-07 -3.31E-07 -1.19E-07 -1.77E-07 -3E-07 -1.68E-07 -1.74E-07 -3.29E-07 -6.94E-07 5.6E-06 1.67E-07
0.035 ± 0.000 1.7E-08 1.27E-07 1.06E-07 6.9E-08 9.6E-08 8.8E-08 2E-08 3E-08 2.8E-08 3E-08 1.04E-07 7.51E-07 1.51E-06 3.63E-07 3.51E-07 3.81E-07 1.27E-07 7.9E-08 9.6E-08 1.32E-07 1.67E-07 2.08E-07  
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Exhibit 10 
 

Summary of Linear Models

Joint Paid-Incurred Paid Case-Incurred
AY EarnPrem Paid CaseIncd Unpaid Std Dev IBNR Std Dev Ultimate = Ultimate Std Dev Ultimate Std Dev

1998 23,278,084 17,738,999 19,765,070 2,999,915 ± 142,339 973,844 ± 142,339 20,738,914 TRUE 20,663,109 ± 239,110 20,780,207 ± 177,147
1999 21,555,421 17,557,257 19,812,936 3,398,227 ± 158,471 1,142,547 ± 158,471 20,955,484 TRUE 20,824,378 ± 244,026 21,062,679 ± 209,846
2000 23,495,444 18,432,885 20,739,446 3,804,647 ± 177,631 1,498,084 ± 177,630 22,237,532 TRUE 22,264,182 ± 257,624 22,247,195 ± 248,293
2001 25,864,065 17,289,118 19,811,447 4,227,840 ± 186,625 1,705,511 ± 186,625 21,516,958 TRUE 21,486,528 ± 262,929 21,577,395 ± 268,263
2002 29,134,414 15,899,281 18,589,679 4,662,500 ± 192,377 1,972,102 ± 192,377 20,561,781 TRUE 20,487,825 ± 265,436 20,667,840 ± 282,302
2003 32,391,860 15,283,538 18,314,350 5,421,105 ± 220,945 2,390,298 ± 220,945 20,704,643 TRUE 20,572,601 ± 310,529 20,860,557 ± 317,408
2004 36,533,278 14,134,508 17,632,172 6,568,927 ± 272,535 3,071,266 ± 272,536 20,703,435 TRUE 20,579,410 ± 367,486 20,871,758 ± 408,036
2005 39,208,849 12,789,801 17,221,257 8,692,524 ± 320,964 4,261,067 ± 320,964 21,482,325 TRUE 21,381,119 ± 424,534 21,630,036 ± 491,580
2006 42,065,555 10,724,002 16,822,179 13,144,841 ± 403,064 7,046,664 ± 403,064 23,868,843 TRUE 23,895,269 ± 547,487 23,858,441 ± 597,042
2007 40,220,014 5,211,936 12,931,177 20,392,908 ± 549,291 12,673,667 ± 549,291 25,604,844 TRUE 25,571,140 ± 709,931 25,642,727 ± 867,816

Total 313,746,984 145,061,325 181,639,713 73,313,433 ± 1,196,054 36,735,050 ± 1,196,055 218,374,758 TRUE 217,725,562 ± 1,572,984 219,198,836 ± 1,866,883  
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APPENDIX A 
 

The Effect of Covariance in a Simple Model 
 
 
This appendix will present variations of an elementary model so as to illustrate 

the effect of covariance.  The top part of Exhibit A.1 shows the basic form (Model 

1).  Eight quantities are observed (Obs 1–8), and two predictions are desired 

(Pred 1–2).  The model for each y, whether observed or predicted, is iii x ey +β= .  

Except for Pred 2, all x and φ values are one; Pred 2 is like a doubling of Pred 1, 

which makes its variance relativity four.  Zeroes in the variance structure are not 

shown.  This is a heteroskedastic model (homoskedastic in the observed part).  

The formulæ of the linear statistical model were explained in Section 2. 

 

In the middle of the exhibit is shown the estimate of the parameter: 

074.2875.97ˆ ±=β .  Those unfamiliar with this formulation of the linear model 

should at least recognize that Model 1 is equivalent to the simple average.  At the 

bottom of the exhibit are various diagnostics (left side) and weighted sums of 

squares and crossproducts (“SSCP”, right side).  The diagonal elements of the 

3×3 SSCP matrix must satisfy the equation 321 ddd += , and the fit accounts for 

99.7% of d1.  Eight (unrelated) observations and one parameter make for seven 

degrees of freedom, and the estimate of the variance scale is 

411.347/875.240ˆ ==2σ . 
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The estimator of β linearly depends on the error terms of the observations.  

Because the error terms of the predictions do not covary with those of the 

observations, nether do they covary with β̂ .  Hence: 

[ ] [ ][ ]
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(We explain the model in this manner for the benefit of those unfamiliar with 

matrix algebra and multivariate statistics; nevertheless, we encourage them to 

study these fields until they become natural.  See references.)  We conclude 

Model 1 by saying that Pred 2 is like Pred 1, but on twice the scale.  The 

covariance between the two predictions is solely due to their reliance on the 

estimate of β; it has to do with parameter variance or uncertainty. 

 

Model 2 of Exhibit A.2 is identical to Model 1 except that the variance relativity of 

Obs 4 is zero, rather than one.  The column ‘Constrnd’ signals a variance 

degeneracy with a ‘1’ for this observation.  Whether this be unrealistic, it is at 

least instructive as a limiting case.  The model says that in one observation we 

were able to see β without the obfuscation of an error term.  So 096ˆ ±=β , plain 

and simple.  The error terms readjust, and according to the formulation of our 

software9 there are seven (stochastic) observations and zero estimated 

                                                 
9 It would take us too far afield to detail how our software solves the linear statistical model when 
the variance of the observations Σ11 is not positive definite.  But briefly, it eigen-decomposes the 

Modeling Paid and Incurred Losses Together

Casualty Actuarial Society E-Forum, Spring 2009 39



parameters, which again makes for seven degrees of freedom.  In this model it is 

easier to see that Pred 2 is like Pred 1, but on twice the scale.  If, in addition, the 

variance of any other observation were set to zero, the resulting two equations 

would be inconsistent. 

 

Things become very interesting with Model 3 (Exhibit A.3), in which Obs 2 and 

Obs 6 covary, as well as Obs 7 and Pred 2.  Both covariances imply perfect 

positive correlations.  In the latter case, we show non-negative definiteness by: 
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So the error term of Pred 2 equals (with probability one) the error term of Obs 7.  

It is not like twice the error term of Obs 7; rather, it is the same as twice the error 

term.  And because its dependent variable is twice that of Obs 7, Pred 2 is not 

like twice Obs 7; it is twice Obs 7.  Without even estimating β we know Pred 2 to 

be 0180902 ±=⋅ .  Covariance makes the difference between like and same.   

 

But within the observations themselves is a variance degeneracy.  Though all the 

observation error terms are alike, the error term of Obs 7 is that of Obs 3.  The 

‘Cnstrnd’ column indicates with ‘0.5’ the dependency of the two observations.  In 

effect, it says that the same observation is written twice, and should be counted 

                                                                                                                                                 
observations, and treats the once-transformed rows whose eigenvalues are zero as constraints 
on β.  Then it transforms constrained β-space into a lower-dimensional, unconstrained γ-space.  
The twice-transformed model (cf. “TTy1” in SSCP, where “TT” stands for “twice-transformed”) is 
solved, and transformed back.  It is a theorem that the solution of a linear model is invariant to 
any invertible, or one-to-one, transformation of the observations, i.e., 111 ey AAXA +β= , for any 
nonsingular A.  But one must not forget to transform the covariances: Σ12 → AΣ12 and Σ21 → Σ21A'. 
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once.  Thus instead of eight observations, there are really seven, which with one 

parameter estimated makes for six degrees of freedom.  When covariance is 

properly considered, one cannot create information ex nihilo, i.e., by repeating 

the same observation.  One cannot fool the model even by repeating a linear 

combination of observations, for ⎥
⎦

⎤
⎢
⎣

⎡
′ΣΣ

′ΣΣ
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1111

1

1

y
y

 contains no more 

information than Σ11 contains.  Note that although Obs 2 and Obs 6 are 

redundant, they are consistent.  If they were not both 93, they would be 

inconsistent equations. 

 

Lastly, Model 4 in Exhibit A.4 is a mixture of Models 2 and 3.  The reason for 

changing Obs 6 from 93 to 94 will soon appear.  Similarly to Model 3: 
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i.e., [ ] 1012Prob 62 ==− ee , or simply, 26 2ee = .  But here Obs 2 and Obs 6 are not 

redundant.  Nevertheless, they are equivalent to three equations in three 

variables: 

26

6

2

2
94
93

ee
e
e

=
+β=
+β=

, 

whose solution is 2,1,92 62 ===β ee .  In Model 2 β was like a gem lying on the 

surface; here we had to pan a little for it.  So 092ˆ ±=β .  If we had not changed 

Obs 6, the equations still would have been consistent, but the error terms would 

have both been zero – a much less interesting result.  The ‘Cnstrnd’ column 
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indicates the variance degeneracy between the two observations; but their 

counting as one observation is apportioned inversely according to their 1:4 

variance relativities. 

 

Granted, the behavior of Models 2–4 depends on perfect correlation, and is akin 

to imagining relativistic effects at the speed of light.  As long as Σ11 has no 

variance degeneracy, i.e., is positive definite, the observations consist of t1 

consistent equations in kt +1  variables.  They comprise a system of equations 

that can be solved only probabilistically.  However, these limiting cases confirm 

the conservation of information.  Just as there is no magic, just illusion, so too 

only by trickery can someone produce information out of nothing. 

 

Consequently, to include in a joint paid-incurred model tautologous observations 

for completely observed exposure periods, correctly accounting for covariance, 

will furnish no additional information.  For it’s simply a linear combination of old 

information.  Moreover, for numerical-analytic reasons it’s dangerous, since the 

software must decide when small eigenvalues should be treated as zeroes.  

Without these redundant equations the joint model will be of full rank. 
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Exhibit A.1 
 

Model 1

ID y X Φ
Obs 1 106 1 1
Obs 2 93 1 1
Obs 3 99 1 1
Obs 4 96 1 1
Obs 5 105 1 1
Obs 6 93 1 1
Obs 7 90 1 1
Obs 8 101 1 1
Pred 1 1 1
Pred 2 2 4  

 
 
 

ID y2hat StdPrdErr VarPrdErr VarPrdErr
Pred 1 97.875 6.222 38.712 8.603
Pred 2 195.750 12.444 8.603 154.848

Betahat StdBeta VarBeta
97.875 2.074 4.301  

 
 
 

ID y1 Fitted Resid Student Cnstrnd SSCP TTy1 Fitted Resid
Obs 1 106 97.875 8.125 1.48 0 TTy1 76877 76636.13 240.875
Obs 2 93 97.875 -4.875 -0.89 0 Fitted 76636.13 76636.13 0
Obs 3 99 97.875 1.125 0.21 0 Resid 240.875 0 240.875
Obs 4 96 97.875 -1.875 -0.34 0 rhosq 100.0% 99.7% 0.3%
Obs 5 105 97.875 7.125 1.30 0 df 8 1 7
Obs 6 93 97.875 -4.875 -0.89 0 s2hat 9609.625 76636.13 34.41071
Obs 7 90 97.875 -7.875 -1.44 0 s2sel 34.41071
Obs 8 101 97.875 3.125 0.57 0  
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Exhibit A.2 
 

Model 2

ID y X Φ
Obs 1 106 1 1
Obs 2 93 1 1
Obs 3 99 1 1
Obs 4 96 1 0
Obs 5 105 1 1
Obs 6 93 1 1
Obs 7 90 1 1
Obs 8 101 1 1
Pred 1 1 1
Pred 2 2 4  

 
 
 

ID y2hat StdPrdErr VarPrdErr VarPrdErr
Pred 1 96 6.199 38.429 0
Pred 2 192 12.398 0 153.714

Betahat StdBeta VarBeta
96 0 0  

 
 
 

ID y1 Fitted Resid Student Cnstrnd SSCP TTy1 Fitted Resid
Obs 1 106 96 10 1.61 0 TTy1 269 0 269
Obs 2 93 96 -3 -0.48 0 Fitted 0 0 0
Obs 3 99 96 3 0.48 0 Resid 269 0 269
Obs 4 96 96 0 0.00 1 rhosq 100.0% 0.0% 100.0%
Obs 5 105 96 9 1.45 0 df 7 0 7
Obs 6 93 96 -3 -0.48 0 s2hat 38.42857 0 38.42857
Obs 7 90 96 -6 -0.97 0 s2sel 38.42857
Obs 8 101 96 5 0.81 0  
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Exhibit A.3 
 

Model 3

ID y X Φ
Obs 1 106 1 1
Obs 2 93 1 1 1
Obs 3 99 1 1
Obs 4 96 1 1
Obs 5 105 1 1
Obs 6 93 1 1 1
Obs 7 90 1 1 2
Obs 8 101 1 1
Pred 1 1 1
Pred 2 2 2 4  

 
 
 

ID y2hat StdPrdErr VarPrdErr VarPrdErr
Pred 1 98.571 6.380 40.707 0
Pred 2 180 0 0 0

Betahat StdBeta VarBeta
98.571 2.256 5.088  

 
 
 

ID y1 Fitted Resid Student Cnstrnd SSCP TTy1 Fitted Resid
Obs 1 106 98.571 7.429 1.34 0 TTy1 68228 68014.29 213.7143
Obs 2 93 98.571 -5.571 -1.01 0.5 Fitted 68014.29 68014.29 0
Obs 3 99 98.571 0.429 0.08 0 Resid 213.7143 0 213.7143
Obs 4 96 98.571 -2.571 -0.47 0 rhosq 100.0% 99.7% 0.3%
Obs 5 105 98.571 6.429 1.16 0 df 7 1 6
Obs 6 93 98.571 -5.571 -1.01 0.5 s2hat 9746.857 68014.29 35.61905
Obs 7 90 98.571 -8.571 -1.55 0 s2sel 35.61905
Obs 8 101 98.571 2.429 0.44 0  
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Exhibit A.4 
 

Model 4

ID y X Φ
Obs 1 106 1 1
Obs 2 93 1 1 2
Obs 3 99 1 1
Obs 4 96 1 1
Obs 5 105 1 1
Obs 6 94 1 2 4
Obs 7 90 1 1
Obs 8 101 1 1
Pred 1 1 1
Pred 2 2 4  

 
 
 

ID y2hat StdPrdErr VarPrdErr VarPrdErr
Pred 1 92 8.586 73.714 0
Pred 2 184 17.171 0 294.857

Betahat StdBeta VarBeta
92 0 0  

 
 
 

ID y1 Fitted Resid Student Cnstrnd SSCP TTy1 Fitted Resid
Obs 1 106 92 14 1.63 0 TTy1 516 0 516
Obs 2 93 92 1 0.12 0.8 Fitted 0 0 0
Obs 3 99 92 7 0.82 0 Resid 516 0 516
Obs 4 96 92 4 0.47 0 rhosq 100.0% 0.0% 100.0%
Obs 5 105 92 13 1.51 0 df 7 0 7
Obs 6 94 92 2 0.12 0.2 s2hat 73.71429 0 73.71429
Obs 7 90 92 -2 -0.23 0 s2sel 73.71429
Obs 8 101 92 9 1.05 0  
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APPENDIX B 

 
Correlation Constraints among Three Random Variables 

 
 
Our solution to the joint model involved the addition of tautologous observations 

which covary with certain of the paid and incurred observations.  Often the loss 

observations are not inter-correlated.  According to statistical and econometric 

terminology (e.g., Judge [1988], Chapter 9), the variance structure of such 

observations is homo- or heteroskedastic, as opposed to autocorrelated.  In our 

simple example they were homoskedastic; in the Workers’ Compensation 

example they were heteroskedastic.  If z be a tautologous observation that 

involves loss observation x (so that [ ] 0, ≠xzCov ; in our models, 

[ ] [ ]xVarxzCov ±=, ), and x does not covary with any other loss observation, then 

we may assume that z does not secondarily covary with any other loss 

observation.  But in general, for z to covary with x and for x to covary with y 

places a transitive tendency for z to covary with y.  Ignoring secondary 

covariance may lead one to create models whose variance structure is not non-

negative definite.  Such models would be defective, because a variance structure 

is legitimate if and only if it is non-negative definite.   

 

So our task here is to solve an interesting problem: If the correlation between two 

random variables is ρ, what are legitimate values of x and y, the correlations of a 

third random variable with the first two?  Mathematically expressed, for what 
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values of x and y is 
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 non-negative definite?  To express the problem as 

correlation is simpler and no less general than to express it as covariance. 

 

First, because the correlation coefficient is bounded, 1,,1 ≤ρ≤− yx .  Hence, 

regardless of ρ, allowable pairs (x, y) must be on or within the square whose four 

corners are (±1, ±1).  And second, it is a theorem of matrix algebra that a matrix Σ 

is non-negative definite if and only if it has a “square root,” i.e., a real-valued 

matrix W such that WW ′=Σ .  The Cholesky decomposition yields a suitable 

square W that is lower-triangular (i.e., zero above the main diagonal).10 

 

The Cholesky decomposition of the correlation matrix is: 
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where: 
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++=
ρ−+ρ=  

Hence, the correlation matrix is non-negative definite if and only if real values of a 

and b exist that solve these two last equations (in which ρ, x, and y are given). 

 

                                                 
10 Cf. Halliwell [1997; Appendix A], Healy [1986; 54f], and Judge [1988; 961]. 
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Of course, 01 2 ≥ρ− .  If 01 2 =ρ− , y must equal ρx, and a may be any real 

number.  Setting a to zero in this case gives the most leeway for b to be real.  

Hence, a Cholesky decomposition exists if and only if 02 ≥b .  With this 

information we derive the inequality: 

( ) ( )
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Therefore, the correlation matrix is non-negative definite if and only if 

( )222 12 ρ−≤+ρ− yxyx . 

 

Legitimate (x, y) points satisfy the equation ( )222 12 ρ−≤+ρ− yxyx .  The region of 

these legitimate points is symmetric about the two lines xy ±= . In fact, it is an 

ellipse whose axes are on those lines, its half lengths along the lines being 

ρ±1  respectively.  Here is a graph is of the ellipse when 8.0=ρ : 
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Interior points of the ellipse, i.e., ( )222 12 ρ−<+ρ− yxyx , produce positive definite 

matrices; boundary points indicate a linear dependence among the three random 

variables.  If 0=ρ , the ellipse becomes the unit circle.  In the case that 1±=ρ , 

the ellipse degenerates into the respective lines xy ±= , as expected.  The origin 

is always a legitimate candidate for (x, y), since for any two random variables 

there exists a third uncorrelated with either one of them. 

 

The area of the ellipse is 21 ρ−π .  That this is maximized for 0=ρ  means that 

one may accommodate new random variables most freely into a universe of 

uncorrelated random variables.  We can integrate the area of ellipse(ρ) over ρ: 

22
1

21

1

2 π
=

π
π=ρρ−π∫

−

d .  From this we conclude that the probability of constituting 

a legitimate correlation structure by randomly sampling ρ, x, and y from a 

Uniform [ ]1,1−  distribution is %7.61
4
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11 The legitimacy equation has the three-way symmetric form 12222 ≤−++ xyzzyx , as well 

as the determinant form 0
1

1
1

≥
zy

zx
yx

.  However, non-negative (positive) definiteness means 

more than a non-negative (positive) determinant.  A symmetric n×n matrix is non-negative 
(positive) definite if and only if all its subdeterminants, of which there are 2n–1, are ≥ 0 (> 0).  
However, as a test of definiteness this is much less efficient than the Cholesky decomposition. 
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The Cost of  Risk: A COTOR-VALCON1 Discussion 

John A. Major, ASA, MAAA 
 
________________________________________________________________________ 

This note is a summary of a COTOR-VALCON discussion on the relationship between an insurer’s risk 
and cost of capital.  The focus is two fold: on the applicability of the capital asset pricing model 
(CAPM), and on the effects of financial frictions.   
 
Keywords. CAPM; cost of capital; financial frictions; shareholder value; financial economics. 

             

1. INTRODUCTION 

A central concern of insurance company management is knowing whether, and how, they are 
creating value for shareholders.  This leads to finance questions like, “What is our cost of capital?” 
and “What rate of profit distinguishes a division or line of business that creates value from one that 
does not?”  The actuarial profession has spent over a century quantifying profit and loss in this 
inherently tricky business, what with its randomness, uncertainty, and delayed revelation of ultimate 
reality.  But grappling with the relationship between the balance sheet and the stock ticker is a 
relatively recent challenge for actuaries. 

In 2006, members of the COTOR-VALCON discussion group held a four month long on-line 
exchange of ideas concerning these issues.  This note is a summary of some of that discussion.  
Section 2 introduces the basic elements: cost of capital, the capital asset pricing model (CAPM), and 
financial frictions.  Section 3 explores CAPM more deeply, examining whether non-market risk 
might be priced in the capital markets.  Section 4 addresses the sources and role of financial 
frictions.  Section 5 summarizes the “emerging view” of the nature of shareholder value in the 
insurance firm. 

2. IT ALL STARTED WITH THAT SWISS RE PAPER 

“The Economics of Insurance: How Insurers Create Value for Shareholders” (Hancock, et al. 
2001) was received warmly by most of the group.  “Good meat and potatoes stuff” and “I'm 100% 
on-board” were some of the initial reactions.  The essence of that article is the statement:  

...an insurer's opportunity cost of capital is the return that shareholders could otherwise 
achieve by investing their risk capital directly themselves plus additional compensation 
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for various frictional costs that are specific to insurers. 

But what does this mean? 

Insurance companies are often compared to closed-end mutual funds (investment trusts) because 
their assets are primarily financial assets.  The performance of a mutual fund is transparent: it is the 
sum of the performance of its investments, less a small amount of overhead expense.  More 
specifically, insurers are compared to levered mutual funds.  The issuance of policies creates a cash 
flow into the investments for a period of time before claims take cash back out, and this is 
analogous to the issuance of bonds.  In the case of a levered fund, the analysis of performance is 
quite straightforward because all of its assets and liabilities have market values – and returns – that 
can be observed every trading day.  That mix of assets and liabilities leads to a specific hurdle rate of 
return on equity that the firm is expected to make.  That hurdle rate depends on, among other 
things, the systematic risk of returns, i.e. their correlation with the returns of the capital markets as a 
whole.  Measuring systematic risk by a stock’s “beta” is the basis of the Capital Asset Pricing Model 
(CAPM).  More complex versions of CAPM, using higher moments (asymmetry and “fat tails”), or 
more than one priced factor, have also been developed. 

If an investment trust’s returns persistently fell short of the hurdle rate, say through poor stock-
picking or mismanagement of expenses, then the market capitalization of the firm (the sum of its 
share values on the market) could be lower than its book value (the value of assets minus value of 
liabilities) and shareholders would rightly feel that they could have done better investing directly in 
the assets themselves.  On the other hand, if returns are persistently higher, then market cap could 
be higher than book value – a situation where the difference, called franchise value, is positive.  
Possessing franchise value justifies the existence of the firm; the shareholders do not think that they 
could have done better by themselves. 

Getting back to the quote from Hancock et al., that hurdle rate of return on equity, the “return 
that shareholders could otherwise achieve,” is known as the base cost of capital. 

But insurers are not levered investment trusts.  Their liabilities are not (all) bonds.  Their business 
is issuing insurance policies.  This brings a few complications to the analysis. 

First, insurance policies are not traded on an exchange, so do not have a market value.  The 
problem of valuation of insurance liabilities is and has been a major concern of actuaries for a long, 
long time.  In more recent decades, however, the increasing sophistication of financial markets has 
created pressure for market consistent, or so-called fair valuation of liabilities.  
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The second complication is what Hancock et al. refer to as frictions.  This is a term used in finance 
theory (which of course borrowed it from physics).  The idea can be traced back to the famous 
Modigliani-Miller (1963) Irrelevance Theorems that state that under the following conditions, 
neither capital structure, dividend policy, nor profit volatility (and by implication risk management) 
matter to the value of a firm (Ng and Varnell 2003): 

• Financial markets are arbitrage-free 
• Taxes are neutral (i.e. the same tax rate applies to all profits and losses) 
• There are no transaction costs 
• There are no distress costs (costs incurred when the firm goes bankrupt or is threatened with 

bankruptcy) 
• There are no agency costs (costs incurred due to the fact that management and ownership of 

the firm are separated) 
• Changes in financial structure or dividend policy do not convey new information about future 

profits. 

Because capital structure, dividend policy, volatility, and risk management manifestly do affect the 
value of the firm, it must be because one or more of these requirements is not met.  The failure of 
these conditions are known as financial frictions.  Since failure brings negative contributions to firm 
value, those contributions are known as frictional costs. 

Repeating the Hancock et al. quote in full, with added emphasis, “…an insurer's opportunity cost 
of capital is the return that shareholders could otherwise achieve by investing their risk capital 
directly themselves plus additional compensation for various frictional costs that are specific to insurers.”  In 
pseudomathematical shorthand, we might say: COST = CAPM + FRICTION. 

Thus we see two areas where deeper understanding is needed in order to determine the cost of 
capital of an insurance firm.  One is the valuation of liabilities consistent with financial economics; 
the other is the valuation of the impact of frictions, or, loosely, the estimation of frictional costs. 

3. CAPM: IS NONSYSTEMATIC RISK PRICED IN THE MARKET? 

Since its introduction in the 1960s, the Capital Asset Pricing Model (CAPM) has been a staple of 
market valuation. The insurance industry has been reluctant to use it, however. One problem is that 
its distributional assumptions are inconsistent with the “heavy tails” encountered in some lines of 
insurance. Fama and French (1992) report another problem with CAPM: other factors besides 
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covariance are priced. In particular, larger companies, and companies with high market-to-book 
ratios, tend to have lower returns. Chung, Johnson and Schill (2006), following the work of Hung, 
Shackleton, and Xu (2004), find that the Fama-French phenomenon can be explained away if 
enough higher co-moments (up to 10) are included in a CAPM-style formula.  Levy and Roll (2008) 
suggest that estimation methods may be to blame for the apparent inadequacies of CAPM. Despite 
these complexities, the unaugmented CAPM explains enough to be the bedrock stock pricing 
formula even today. 

If insurance liabilities behaved like stocks and bonds, if they were traded in fluid markets or could 
be hedged by securities that were so traded, then their “market consistent” valuation would not be 
controversial.  But they don’t and they aren’t and they can’t, so it is.  The discussion group analyzed 
several “thought experiments” and traded several papers that hinted at the breadth of this 
controversy.  A few are recounted here. 

3.1 Hole In One Insurance 

The Hole-In-One Insurance example has been around for a while.  (And there actually are 
companies that provide such insurance!)  But its value as a thought experiment lies in its simplicity. 
The discussant who introduced the topic described it this way: 

Let's say that I have set up my own “Lloyds Syndicate” to provide hole-in-one insurance. 
The local golf course is my only policyholder, and pays me $50 of premium for the 
following coverage: If anyone hits a hole-in-one during the year, I pay that person $1,000 
(but that's the aggregate policy limit, and thus the maximum loss). If nobody hits one, I 
pay nothing. The coverage period is from 1/1 to 12/31 (we golf year-round in Texas!). I 
estimate that the probability of a hole-in-one during the year is 5% (this is a tough 
course). I also contribute $1,000 of capital “funds” to my Lloyds Syndicate. The 
premium + capital (total of $1,050) is invested in a one-year bank CD at 3%. There are 
no underwriting or loss adjusment expenses.  There is no IBNR, so I can easily 
determine my annual ROE on the following 1/1. There is a 95% chance that my return 
on the $1,000 investment will be 8.15%, and a 5% chance that it will be -91.85%. Thus, 
my expected return is 3.15%. Is this a good deal for me? 

According to the canon of financial economics, it is a good deal.  There are no sources of friction 
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and the random outcome is independent of the financial markets.2   But would you accept this sort 
of deal?  Most people would not.  The risk is substantial, and even though it is not “systematic,” i.e., 
correlated with the financial markets, most people would want a higher return than the additional 
0.15% over the risk-free rate for bearing this risk.  According to financial economics, non-systematic 
(also known as “idiosyncratic”) risk, because it is diversifiable, should have a price of zero in the 
financial markets.  Does this mean financial economics is wrong?  Or is there something else going 
on? 

3.2 Corporate Bond Spreads 

A good place to look for real-world departures from theory is the phenomenon of corporate 
bond spreads.  Here you have the relatively “pure” world of interest rate risk, copiously represented 
by risk-free, that is to say, credit-risk-free, government bonds, plus the risk of default on the part of 
the issuing corporation.  Spreads between corporate bond yields and the corresponding government 
yields measure the market’s pricing of the default risk; typically it is several times the actuarial value.  
Does correlation with the market (i.e., CAPM beta and all that) explain these spreads? 

Amato & Remolona (2003) address this puzzle and conclude that the problem lies in the inability 
to properly diversify credit risk.  That is, the CAPM principle does not apply because its assumptions 
cannot be met. 

Elton et al. (2001) also address the credit spread issue, with extensive data analysis.  They 
conclude that correlation between default and overall stock market returns is an adequate 
explanation for credit spreads, so the CAPM principle does apply. 

So which is it? 

3.3 Who Is The Investor? 

Look at the finance argument for hole-in-one insurance again.  If you have a well-diversified 
portfolio, and you consider whether to add this “investment” to it, you will find that it will improve 
the risk/return characteristics of your portfolio.  So why not do it? 

There is a stream of research known as “behavioral finance” that explores the psychological side 
of risk-taking and investment.  You can watch an ongoing experiment in behavioral finance weekly, 

                                                           
2 And let’s not quibble about the estimated 5% probability of a hole-in-one.  It could be high, it could be low.  All we 
require is that it be an unbiased estimate. 
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on television (Post et al. 2006).  Examples of more scientific studies are (Shiv et al. 2005) and 
(Wakker et al. 1997).  This research finds that most investors, being human, are not nearly the 
rational actors that economic theory builds its models upon.  Perhaps more importantly, (and this is 
emphasized in Modigliani & Miller’s 1963 paper), even though investors may be rational, they do not 
necessarily assume that other investors are, too – and this itself can lead to what appears to be 
“irrational” behavior (like bubbles). 

How many rational investors does it take to make the finance argument fly?  If the hole-in-one 
premium were higher and the expected return were, say, 6%, there would likely be many people 
vying for the opportunity to write it – so the premium would be bid down.  Would it be bid down 
all the way to 3.15%?   

And how long would it take?  Much of financial economic theory is about equilibrium – that 
mythical state of affairs when everything has settled down after all those nasty random disturbances 
finally stop.  Ask a bunch of day-traders about the relevance of CAPM, beta, and equilibrium 
economics and they just might tear themselves from their screens for a few seconds to laugh at you.  
For them, it’s all about the short term, hedging and arbitrage, taking a position, and finding an edge.  
The eventual trends in pricing will matter to them, but not much.  On the other hand, a buy-and-
hold investor whose planning horizon goes out for decades will not be overly concerned with 
current market turbulence, but rather with the relationship between current and expected future 
prices. 

So which perspective rules?  That is hard to say.  Price formation is not a function of all 
investors, it is a function of the so-called marginal investors – the investors at the margin, the ones 
who are ready to trade next.  If an investor who is rational and holds a diversified portfolio knows 
about the hole-in-one opportunity and is in a position to act upon it, then a 3.15% expected return 
will be attractive and this will be the marginal investor.  But what if no such investors are available?  
This appears to be the case for some types of investments.  For example, Gabaix et al. (2007) discuss 
mortgage-backed securities where it seems the available marginal investors are specialists who hold 
overweighted (not well-diversified) portfolios.  As a consequence, returns are higher than they would 
be according to CAPM-type arguments.  This could well be happening to catastrophe insurers, too. 

4. FRICTIONS AND FRICTIONAL COSTS 

As one discussant put it, “There’s more to financial theory than systematic covariance with a 
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market portfolio of all risky assets.”  And a lot of that “more” seems to be covered under the 
heading of “frictions.” 

Recall that the Modigliani-Miller Irrelevance Theorems apply when certain conditions are met; 
when they are not, we refer to the reasons they are not as “frictions.”  Most relevant to the 
discussion group were the financial frictions experienced by insurance companies. 

By negating the premises of M&M, we can construct a list of potential frictions: 

• Barriers in the financial markets, such as institutional restrictions on trading 
• Tax asymmetry and nonlinearity 
• Transaction costs 
• Distress costs and counterparty credit sensitivity 
• Agency effects 
• Information asymmetry 
• Signaling 

Some of these are fairly straightforward to quantify, such as direct tax and transaction costs.  
Some are a bit trickier, like tax nonlinearities.  Some are wholly mysterious, such as agency effects – 
which are fundamentally psychological phenomena. 

Generally, the impact of frictions can be seen as taking place on a continuum of the amount of 
risk capital held.  Too much risk capital, and some frictions, such as the tax cost of holding capital, 
dominate.  Too little risk capital and another set of frictions, such as distress costs and credit 
sensitivity, dominate instead.  The art of managing frictions involves, among other things, finding 
the optimal level of capital to hold. 

4.1 Too Much Capital 

Feldblum (2006) argues that the main frictional cost that bears on the question of fair value 
accounting is the tax on investment income that risk capital earns.  According to financial theory 
(basically, going back to M&M again), whatever risk capital is invested in, its rate of return would be 
sufficient for investors – as long as they got it all in their returns from the insurer.  But they don’t 
(usually) because the IRS takes about 35% of it.3   Investors need to be compensated for that tax 
loss, so premiums need to be higher by an amount sufficient to raise those funds.  To make a level 
playing field in the capital markets, policyholders need to pay that tax on risk capital – not just once, 
                                                           
3 That is, in the USA.  Bermuda-based firms, on the other hand, face approximately zero tax. 
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but twice, because the higher profits resulting from the higher premiums are themselves taxed, 
before they can flow to the investors! 

While Feldblum acknowledges “principal agent problems” as another cost of holding capital, he 
writes, “[T]hey are rarely large, and they are not easily measured. We ignore them in this paper.”  
(Neither does he address the costs of holding too little capital.) 

Jensen & Meckling (1976) started the whole discussion of agency costs of holding capital.  They 
were coming from the perspective of the typical industrial firm, where capital was about funding 
new, positive net-present-value projects – that is, projects that will earn profits higher than the 
required capital market hurdle rate.  A firm that holds a bunch of cash evidently doesn't know what 
to do with it.  While the firm is holding it, in government bonds, say, it is indeed earning an 
appropriate rate (taxes aside).  But what happens when management decides to spend it on an ill-
advised acquisition or other negative NPV project?  What if management plays it safe and doesn’t 
embark on certain risky but profitable ventures that investors would approve of?  What if 
management decides to spend the money on an upgrade to the corporate jet fleet or other perks?  
That capital is at risk, and investors would rather get it back than trust management to eventually 
invest it in good, new projects.  As a result, certain costs, which mostly go under the heading of 
“monitoring and bonding” are incurred to avoid these outcomes.  Jensen & Meckling recognize the 
difficulty of quantifying this sort of risk.  They state (p. 346),  

Before proceeding further, we point out that the issue regarding the exact shapes of the functions 
drawn in fig. 5 and several others discussed below [agency costs vs. financial leverage] is essentially 
an open question at this time.  In the end the shape of these functions is a question of fact and can 
only be settled by empirical evidence. 

4.2 Too Little Capital 

Why would an insurance firm hold too much capital?  To avoid the adverse effects of holding 
too little capital.  For the industrial firm, too little capital means flirting with the possibility of 
bankruptcy and the costs that financial distress brings (lawyers, management distractions, raising 
capital) and missed opportunities for investing in positive NPV projects.  For the financial firm, it 
also means disapproval from ratings agencies and potential action by regulatory authorities.   

At heart, this reflects more than the distress and bankruptcy costs facing an industrial firm; it 
reflects a significant amount of counterparty credit risk, or, more specifically, customer 
(policyholder) risk aversion.  Policyholders buy insurance to protect themselves from certain adverse 
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contingencies – like property damage, bodily injury, medical expense, and death – they cannot easily 
“diversify away.”  Being offered coverage with a material probability of not paying off (call it 
“probabilistic insurance”) is not going to satisfy customers’ desire for certainty in removing the risk.  
Wakker et al. cite survey data suggesting that people will pay much less in premiums than the 
actuarial cost of bearing the residual credit risk, perhaps twenty times less. 

Looked at from the opposite perspective, customers are willing to pay more for the service of 
having certain risks transferred away from them than the actuarial value of those risks.  That’s what 
supports underwriting and claim expenses and even, sometimes, underwriting profits.  Holding too 
little capital threatens the profitability of the insurance firm – not just probabilistically, but 
immediately. 

5. THE EMERGING VIEW 

The emerging view of the insurer’s financial predicament (Harrington & Danzon 1994, Staking & 
Babbel 1995, Doherty 2000, Froot et al. 2004, Babbel & Merrill 2005, Epermanis & Harrington 
2006, Panning 2006, Mango & Major 2007, Froot 2007, Major 2008, Yu et al. 2008) centers on its 
need to protect and enhance its franchise value.  Recall, franchise value is defined as the difference 
between market capitalization and book value.  If the firm earns only enough to cover its cost of 
capital, then (in theory) there will be no franchise value.  As Babbel & Merrill (2005) explain it, 

The franchise value stems from what economists call “economic quasi-rents.” It is the present 
value of the “quasi-rents” that an insurer is expected to garner because it has scarce resources, scarce 
capital, charter value, licenses, a distribution network, personnel, reputation, and so forth. It includes 
renewal business. Franchise value is dependent on firm insolvency risk. The less insolvency risk 
there is, the more likely the firm is to remain solvent long enough to capture all the available 
economic rents arising from its renewal business, its distribution network, its reputation, and so 
forth. 

As we saw earlier, threats to surplus can translate into threats to profitability.  This means, 
therefore, threats to franchise value as well.  Mathematically, MARKET CAP = BOOK VALUE + 
FRANCHISE VALUE.  If franchise value is positive, but erodes when book value is too low 
(distress and credit frictions) or too high (tax and agency frictions), then the market value vs book 
value curve (which Froot et al. call the “M-Curve”) will be concave, not linear.  Thus, increased 
volatility in book value will translate into decreased expectations for future market value.   
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The source of that volatility does not matter; it can be systematic or idiosyncratic.  Either way, it 
will have an impact on the value of the firm.  So, a risk management program (e.g., investment 
hedges, reinsurance, cat bond, strategic changes to the business mix, etc.) that protects a million 
dollars of surplus, but appears to do so at greater than actuarial cost, may be worth engaging if it also 
protects a substantial amount of franchise value as well. 
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Quantifying Uncertainty In Reserve Estimates 

Zia Rehman, FCAS, MAAA, and Stuart Klugman, Ph.D., FSA 
________________________________________________________________________ 
Abstract  

Property/casualty reserves are estimates of losses and loss development and as such will not match 
the ultimate results.  Sources of error include model error (the methodology used does not accurately 
reflect the development process), parameter error (model parameters are calibrated from the data), 
and process error (future development is random).  This paper provides a comprehensive and 
practical methodology for quantifying risk that includes all three sources.  The key feature is that 
variability is captured by examining historical changes in ultimate values rather than examining the 
underlying claim distribution.  We present both the conceptual framework as well as practical 
examples.  

________________________________________________________________________ 

1. THE VARIABILITY PROBLEM 

The Challenge of Reserving 

The Property/Casualty business model relies on the accurate measurement of risk. Of 
relevance to this paper is the measurement of reserving risk. Accurate actuarial loss reserving is 
one of the regulatory requirements in measuring solvency. Consequently, one of the most 
important tasks for an actuary is to estimate the proper amount of reserves to be set aside to meet 
future liabilities of current in-force business. 

Because the stated reserve is an estimate and not the true number, there is error and it is 
important to measure this error. Quantifying the potential error allows for setting ranges around a 
best estimate, allows for measures of risk, and can assist in the setting of risk based capital 
requirements. Recent papers such as Hayne [8] and Shapland [11] make the importance of this 
issue clear. 

In this paper we propose a method for measuring the total risk involved in reserve estimates. 
It is simple to apply and uses data that is almost always available from the reserve setting 
process. A key feature is that our measure of reserve variability does not depend on the method 
used to determine the reserves. 

Literature Review 

There are many papers regarding different loss reserving techniques, some deterministic, 
some stochastic. For a comprehensive review of existing deterministic methods the reader is 
referred to Wiser [17] and Brown and Gottlieb [2]. For an excellent overview of a wide range of 
stochastic reserving methods in general insurance, the reader is referred to England and Verrall 
[5]. Other references of interest include Bornhuetter and Ferguson [1], Finger [6], and Taylor 
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[12]. 

While the traditional chain ladder technique provides only a point estimate of the total 
reserve, it has become evident recently that actuaries also need a measure of variability in loss 
reserving estimation. Sound methodologies that quantify risks related to the balance sheet are 
important for attracting and retaining capital in the firm. Standard and Poor’s ratings as well as 
investors are very interested in the value at risk (VaR) measurements.  The NAIC and state 
regulators are interested in monitoring the reserve variability in the form of reserve ranges. 
Variability and sometimes the entire distribution of the loss reserving estimation are important 
for risk management purposes. Questions such as what is the 95th percentile of losses or the cost 
of loss portfolio transfer are important in managing and assessing risk. These questions can be 
properly addressed with a thorough analysis of the variability of the reserve estimate. 

Over the last thirty years many researchers have made significant contributions to the study of 
the variability of reserving methods. The 2005 CAS working party paper [3] presents a 
comprehensive review that brings all of the important historical research together. A 
representative, but not exhaustive, list would include the following: Taylor and Ashe [13] 
introduced the second moment of estimates of outstanding claims. Hayne [7] provided an 
estimate of statistical variation in development factor methods when a lognormal distribution is 
assumed for these factors. Verrall [15] derived unbiased estimates of total outstanding claims as 
well as the standard errors of these estimates. Mack [10] used a distribution-free formula to 
calculate the standard errors of chain ladder reserve estimates. England and Verrall [5] presented 
analytic and bootstrap estimates of prediction errors in claims reserving. De Alba [4] gave a 
Bayesian approach to obtain predictive distribution of the total reserves. Taylor and McGuire 
[14] applied general linear model techniques to obtain an alternative method in cases where the 
chain ladder method performs poorly. Verrall [16] implemented Bayesian models within the 
framework of generalized linear models that led to posterior predictive distributions of quantities 
of interest. 

However, the CAS 2005 working party [3] ultimately concluded, “there is no clear preferred 
method within the actuarial community.” Actuaries need to select one or several methods that are 
considered appropriate for the specific situation. When it comes to the final decision, judgment 
still overrules. 

The Risk Measurement Problem 

The 2005 CAS working party report [3] notes that the sources of uncertainty in the reserve 
estimate come from three types of risk: process risk, parameter risk and model risk. Model risk is 
the uncertainty in the choice of model. Parameter risk is the uncertainty in the estimates. Process 
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risk is the uncertainty in the observations given the model and its parameters. 

Shapland [11, p.124] highlights the importance of all the risks: 

Returning to the earlier definition of loss liabilities … all three types or risk … 
should be included as part of the calculated expected value. Alternatively, some or 
all of these types of risk could be included in a ‘risk margin’ as defined under 
ASOP No. 36. 

These three risks are intertwined and thus hard to separate. In particular, process risk is 
usually calculated as if the model and parameters were correct and parameter risk is calculated as 
if the model were correct.   

In this paper the three risks will not be separately measured nor directly treated1. Often, when 
model risk is discussed it is in the context of the chosen model versus the true model or in the 
context of the chosen model versus alternative models. Rather, we capture the total risk from all 
three sources underlying the reserve estimate. The reserving model (or ultimate loss selection if 
no specific method is used) will be considered fixed and any errors measured will be a 
consequence of that choice. 

From a risk management perspective this is appropriate. Now that the reserves have been 
established, what is the potential error that may result, given the current reserve review? 

A Summary of Our Approach 

Most approaches to risk measurement rely on the statistical properties of the data as reflected 
by the model selected for calculating the reserve. Those approaches attempt to capture the 
underlying distribution of losses. This will capture process error, but not model or estimation 
error. That is because any calculations will be done assuming the model and its estimated 
parameters are correct. In this setting, process error can be estimated using statistical measures 
such as Fisher information. We choose to look at the reserves (as reflected in the estimated 
ultimate losses) themselves as they evolve over time. This provides a way to reflect all the 
sources of error. Each reserve set in the past is an estimate of its distribution and thus its errors 
can be estimated from the historical errors made in the estimations. Because the ultimates will 
converge to the true value, the errors made along the way reflect all sources of error.  

Our methodology will be introduced within a stable context. In particular, we assume that the 
underlying loss development processes have not changed over time and that the same reserving 
methodology has also not changed. Further, we assume we are working with indicated reserves 
that are the result of a specific methodology. Our method does not depend on the particular 
                                                 
1 The model presented will capture the parameter and model risk in the actuary’s estimate but will not measure the 
parameter uncertainty due to its own estimate. 
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methodology selected, just that it be consistently applied. After working through this situation 
we will discuss modifications that can allow our methods to be applied in more general settings. 

Note that we model indicated reserves instead of held reserves. This is because indicated 
reserves do not have management or other ad hoc adjustments.  Therefore, indicated reserves are 
more stable and thus easier to model. What is interesting about held reserves is where they fall 
within the probability distribution of the unknown true reserve. This can provide an indication of 
the degree to which held reserves are conservative or aggressive. 

Because the method presented here is free of the choice of the reserving method used, it is not 
necessary to even have a specific method. The only requirement is a history of ultimate loss 
selections. Thus we rely on the actual error history of the reserving department. 

We make a theoretical and practical case for the lognormal distribution for the errors in 
aggregate reserves, line or total. The focus on the aggregate distribution also removes the need to 
choose individual size of loss distributions.  

Each of the following sections will take one step through the development of the risk 
measure.  An example will be followed throughout to illustrate the formulas. 

2. RESERVING PROCESS AND DATA 

The reserve review process generates reserves based on raw data analysis. The indicated 
ultimate losses are selected by line using perhaps several methods as well as judgment. These 
line ultimates are then added to yield total indicated reserve. 

Management adjustments called margins may be applied to the total reserve. These margins 
may then allocated by line and by accident year to the indicated ultimate losses and reported in 
Schedule P Part2. As noted earlier, our method does not work with these reserves. 

There are three issues of interest relating to measuring reserve variability: 

• The distribution of the true (but unknown) ultimate losses by line and in aggregate. 
This shows the volatility and the bias in the actuarial selections. 

• The held reserves that are reported in Schedule P Part2 as a percentile on the 
distribution of reserves. 

• A procedure to allocate the margin by line & accident year such that ultimate losses 
for all years are at a constant percentile. 

It is instructive to understand several aspects of indicated reserves: 
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Indicated reserves are the actuary’s best estimates based on the data and exclude management 
adjustments. Therefore errors are due only to actuarial selections, methods, or randomness in the 
data. 

Data triangles used for reserve reviews can be quarterly or annual. Generally most companies 
like to have consistency in the indicated reviews as it is easier to update spreadsheets for each 
review if they are the same size. Also most companies like to track development to ultimate and 
prefer complete triangles if data is available. 

Reserve reviews are done on a net and or direct basis and the underlying triangles are based 
on the relevant data. They are definitely conducted annually to report Annual Statement reserves 
but many companies do them quarterly. 

Reserving actuaries refer to lines of business as “segments” as they can be custom defined by 
the actuary for reserve reviews. These can be different than the usual lines of business such as 
those defined in Schedule P.  For consistency of notation in this paper, we will call reserve 
segments as lines of business. The methodology will be the same in both cases. 

Generally the DCC (Defense & Cost Containment) reserve review (indicated reserves) is done 
using data where they are either a part of the loss triangle (loss + DCC) or are treated separately 
(DCC only). In the first case we treat DCC as part of the losses and in the latter case as another 
data segment (if broken out separately). In this paper loss shall mean whatever appears in the 
analysis being evaluated. 

The variability for ULAE reserves is outside the scope of the paper and will not be discussed. 
For most companies ULAE reserves are a relatively small part of the total reserves. 

Scope of Model  

The approach presented in this paper is generic and applies to any type of triangle such as  

Paid or incurred 

Count or Severity 

Accident year, policy year, or report year 

Quarterly or annual. 

Each of these triangles eventually leads to the appropriate ultimate losses. Depending on the 
choices made above and the selected reserve methodology, the distribution of errors will differ. 
For example if only the paid loss development method is used and we track its history of 
ultimate losses over time then the resulting reserve distribution will pertain to the paid loss 
development method. If several methods are used and the actuary finally selects reserves based 
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on several indications (typically this is the case) then the triangle history of final selected 
ultimate losses will provide the distribution of the selected reserves. 

An interesting point is that the method can even be applied to the raw data. This is equivalent 
to treating the data as the selected ultimate loss. In this case the resulting distribution will pertain 
to the data itself (paid or incurred losses etc). This essentially creates a new reserving method. 
However, the purpose of this paper is not to promote a new way of calculating reserves, rather to 
develop a method for determining the distribution of the indicated reserves resulting from 
actuarial selections. 

Reasonable estimates 

A standard assumption that is in line with Actuarial Standards of practice (ASOP) on reserves 
is that the reserve ranges are set around reasonable estimates. This is partly achieved by using 
indicated ultimate reserves instead of held reserves as these do not have management 
adjustments.  

Cases where the indicated ultimate losses are unreasonable are outside the scope of this paper. 
This does not necessarily mean that the model will not apply but rather that the authors have not 
given consideration for such cases in this paper.  

3. A MODEL FOR ERRORS 

Measuring the error from the data 

The notation will be illustrated with an example that will be carried through the paper. 
Suppose for a particular line we believe that losses are fully developed after 10 years. There have 
been twelve reserve reviews completed and in each year an ultimate loss has been estimated. For 
notation, let 

k
iU  - the estimated ultimate loss as of calendar year k  for accident year i. 

The results for an example block of business are in Table 1. Note that the available data has i 
and k range from 1 through 12 but, for example the AY 1 losses were fully developed by CY 10. 
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AY(i) 

/CY(k) 

1  2  3  4  5  6  7  8  9  10  11  12 

1  148,741  103,058  100,010  98,001  96,280  95,579  95,176  95,161  95,150  95,113     

2    186,087  120,444  113,083  109,097  108,443  107,934  107,836  107,814  107,907  107,860   

3      139,092  94,318  89,032  86,552  85,584  85,532  85,557  85,655  85,626  85,650 

4        58,441  52,585  52,136  51,375  51,501  51,799  51,870  51,914  51,933 

5          22,738  30,670  32,948  33,986  34,363  34,329  34,467  34,642 

6            24,134  37,035  42,981  42,688  42,894  43,052  43,533 

7              26,695  51,849  57,143  57,817  58,200  58,647 

8                57,397  67,688  74,995  75,793  76,736 

9                  94,537  94,281  98,453  98,055 

10                    93,784  104,539  100,257 

11                      116,443  124,781 

12                        172,224 

Table 1 – Indicated ultimate losses from 12 calendar year valuations. 
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For example, the value 42,894 is the indicated ultimate loss estimated at the end of calendar 
year 10 for losses incurred in accident year 6. We are interested in the errors made in the 
estimates of the ultimate losses. Some of those errors can be determined from Table 1. We will 
use the logarithm of the ratio for the errors, for reasons to be explained later. 

For example, the ultimate value for accident year 3 was estimated at the end of calendar year 
11 (development year 8) to be 85,626. A year later, the actual value of 85,650 was known. The 
error is ln(85,650/85,626) = 0.00028. We cannot calculate the error for later accident years 
because they have not yet been fully developed. The errors we care about are 9ln( / )k i k

i i ie U U+=  
where i + 9 > k. The numerator is the fully developed ultimate loss and the denominator is the 
estimate as of CY k. For our example we are currently at k = 12 and so are concerned with the 
errors made in estimates from AY 4 onward. 

In order to gather more information about errors from this information, begin with an error 
that is not immediately useful. Consider * 1ln( / )j j j

i i ie U U+=  where available. This represents the 
error realized as the estimated ultimate value is updated one calendar year later. Here is one 
reason for using logarithms – the errors are additive. In fact, 
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In this notation, the development year of the denominator value is d = j – i + 1.  The 
advantage of this approach is that the available data in our example provides many estimated 
values as presented in Table 2. 
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AY(i)\DY(d)  1  2  3  4  5  6  7  8  9 

1  ‐0.36691  ‐0.03003  ‐0.02029  ‐0.01772  ‐0.00731  ‐0.00423  ‐0.00016  ‐0.00012  ‐0.00039 

2  ‐0.43503  ‐0.06306  ‐0.03589  ‐0.00601  ‐0.00471  ‐0.00090  ‐0.00021  0.00086  ‐0.00044 

3  ‐0.38846  ‐0.05768  ‐0.02825  ‐0.01125  ‐0.00061  0.00029  0.00114  ‐0.00034  0.00028 

4  ‐0.10559  ‐0.00858  ‐0.01470  0.00245  0.00577  0.00137  0.00085  0.00037   

5  0.29925  0.07165  0.03102  0.01103  ‐0.00099  0.00401  0.00506     

6  0.42824  0.14889  ‐0.00684  0.00481  0.00368  0.01111       

7  0.66386  0.09722  0.01173  0.00660  0.00765         

8  0.16492  0.10251  0.01058  0.01237           

9  ‐0.00271  0.04330  ‐0.00405             

10  0.10857  ‐0.04182               

11  0.06916                 

Table 2 – year-to-year error values, *j
ie  
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There is another interpretation of these errors. Regardless of the reserving method, a factor 
representing the ultimate development can be inferred. Suppose we are looking at accident year i 
and calendar year j. The factor is /j j j

i i iu U L=  where j
iL  is the paid loss for that accident year at 

the end of year j.  One year later the factor is 1 1 1/j j j
i i iu U L+ + += . These represent age to ultimate for 

two different development years. The ratio, 1/j j
i iu u +  represents how losses were expected to 

develop while 1 /j j
i iL L+  is how they actually developed. The ratio of actual to expected is 

1 /j j
i iU U+  which is the error measurement we have been using. 

Now that the key data values have been calculated it is time to construct a model. 

The Model 

We propose that the error random variables have the normal distribution, and in particular, 

( ).,~ 2*
1

*
1

*
+−+− ijij

j
i Ne σμ  

Note that the mean and variance are constant for a given development year. The rest of this 
section is devoted to justifying these assumptions. It should be noted that justifying the 
assumptions through data analysis is not sufficient. If this method is to be useful regardless of the 
loss reserving method used, the justification must be based on our beliefs about the loss 
development and reserving processes and not any particular models or empirical evidence. 

Normal distribution 

After the ultimate loss is estimated at a particular time, what factors will cause it to change 
when it is re-estimated one year later? Day by day during that year a variety of events may take 
place. Among them are2: 

Economic forces such as inflation and changes in the legal environment will alter the amounts 
paid on open claims or those newly reported. 

The rate at which claims develop may change. 

Purely random events may affect individual open claims. 

Actuary’s opinion on IBNR may change depending on the adequacy of case reserves. 

These factors will tend to act proportionally on the current estimate of the ultimate loss. 
Because there are many such factors happening many times in the course of a year, it is 
reasonable to assume we are looking at the product of a variety of random variables, most with 
values near 1. The Central Limit Theorem indicates that the result is a lognormal distribution and 

                                                 
2 At this point in the paper we focus on lognormality as a consequence of unchanging development processes. We 
relax this assumption later in the paper. 
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thus measuring the error in the logarithm will produce values with a normal distribution. 

Normal approximation 

The above arguments relating to the central limit theorem apply to a fictitious accident year 
with infinite claims. This accident year need not be evaluated infinitely many times but the 
changes at each valuation should be driven by infinite reasons underlying infinite claims.  

In practice a finite subset of this hypothetical accident year is available. The reasons causing 
the change in the ultimate loss are finite and not infinite and thus the distribution is 
approximately normal3. The approximation can be improved by increasing the number of reasons 
driving the change in ultimate losses. This can be done in the following ways:  

Increase the valuation time (example once a year rather than four times a year) 

Increase the claim count (large volume line) 

The claim count required for a good normal approximation in turn depends on the skewness 
of the underlying size of loss distribution. As a practical matter the model will work well even 
for a modest claim count. 

Reserve valuations conducted less frequently (example once a year rather than four times a 
year) will allow greater “reasons” for changes and thus help with the normal approximation. The 
tradeoff is the loss of accuracy in ultimate loss estimation and consequential bias. Also note that 
both the parameters of the distribution and its shape (to which extent it is lognormal) will change 
depending on the frequency of reserve review.   

A subtle point concerns the later development intervals. In these intervals the changes are 
usually driven by a handful of claims (few reasons) and thus violate the normality assumption. 
However at those valuations the aggregate errors are often close to zero with small volatility 
(constants) and thus departure from the normality has little impact on the total distribution for the 
entire accident year.   

Mean 

At first it may seem that the mean should be zero. There are two reasons that is not so. First, 
consider the expected revised ultimate loss given the current estimate: 

* *2
1 1 / 21( / ) j i j ij j

i iE U U eμ σ− + − +++ = . 

For the reserve estimate to be unbiased, it is necessary that * *2
1 10.5j i j iμ σ− + − += −  and not zero. 

                                                 
3 Technically, the distribution remains approximately normal even for the infinite claim accident year but the 
distribution is closer to normal than in the finite case.  
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In addition, it is possible that the reserving method is biased. This may be a property of the 
method selected and may even be a deliberate attempt by the reserving actuary to adjust the 
reserves based on knowledge that is outside the data. 

Having the mean be constant from one accident year to the next is a consequence of the 
assumptions that were made at the beginning. That is, there is no change in the underlying 
development process or reserving method. 

Having the mean depend on the development year seems reasonable. As the development year 
increases any systematic bias is likely to be reduced in the expectation that the ultimate value 
will not be much different from the current value. In addition, we expect the variance of the 
errors to decrease and if the ultimate loss estimates are unbiased, the means will then also 
decrease (in absolute value). 

Complete Triangle of Errors 

For at least one accident year we need the losses to be fully developed. Even better would be 
to have a few fully developed years so there would be more data available for computing 
covariances and variances. There is a tradeoff in that older fully developed accident years that 
are not part of the in-force book may be less predictive and may not reflect the current prevailing 
business environment. 

The opposite concern is when there are not enough accident years available to obtain fully 
developed losses. This can happen for relatively new companies or lines of business. Note that 
tail errors generally result from estimation errors of pending court cases or simply absence of 
data due to a new line. Since we are dealing with a year in aggregate, these errors are usually 
close to zero and therefore contribute less to the variance than earlier development intervals.  

4. PARAMETER ESTIMATION 

Return to the continuing example and recall Table 2. The numbers in this table are percentage 
changes (errors) of the estimated ultimate losses and have been assumed to have been drawn 
from six normal distributions. The upper half of the triangle is fixed and known and our goal is 
to obtain the normal means and variances for the yet-to-be observed errors in the lower right part 
of the table. 
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Estimation of the mean 

We choose to calculate an initial estimate of the mean by calculating the sample mean, 
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where d is the development year, the sum is taken over all accident years for which errors 
were available.4 

The results for our example are in Table 3. 

DY(d)  1  2  3  4  5  6  7  8  9 

mu‐hat  0.0396  0.0262  0.0063  0.0003  0.0005  0.0019  0.0013  0.0002  0.0002 

mu‐hat 

(Selected) 

0.0396  0.0262  0.0063  0.0003  0.0005  0.0019  0.0013  0.0002  0.0002 

Table 3 – Estimated means by development year 

However, there are reasons why the sample mean may not be the appropriate choice. The 
results may be biased due to model risk. The estimate of the mean affects the estimate of the 
expected ultimate loss. 

For example if 
2

2σμ −< then the estimated ultimate loss will be less than the indicated 
ultimate showing redundancy in resulting reserves. The opposite is true if the inequality is 
reversed. Thus any value of mean that is different than 

2

2σ
− should be justified.   

The estimation of the mean can effectively result in taking a position that the actuarial 
estimate is biased. This is not trivial and there should be careful analysis before making that 
assertion. We discuss the mean selection in greater detail under distribution reviews later in the 
paper. 

Estimation of the Variance 

The variance parameter measures the risk historically faced by the book in force. For very 
long tailed lines this would mean that it will capture the changes in reserving methods and other 
changes that have taken place.  

The variance estimate is the usual unbiased estimate. The equation is, 

                                                 
4 An alternative is to use a weighted average where the weights are the indicated ultimate values for that accident 
year.  This allows more weight to be placed on those accident years in which there is more data. 
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Note that the estimated mean must be the sample mean. 

For our data the estimated standard deviations by development year are given in Table 4. As 
expected, for the most part, the standard deviations decrease by lag. 

DY(d)  1  2  3  4  5  6  7  8  9 

sd‐hat  0.3502  0.0762  0.0213  0.0108  0.0055  0.0052  0.0022  0.0005  0.0004 

Table 4 – Standard deviations by development year 

Correlations 

For a given accident year, it is likely that the errors for one development year are correlated 
with those from other development years. These must be estimated. A formula for the covariance 
is 
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Where d > d’ represent two different development years and each sample mean is based only 
on the first 10 – d observations. 

The matrix of covariances is given in Table 5. 
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d  1  2  3  4  5  6  7  8  9 

1  0.12261  0.02379  0.00664  0.00356  0.00178  0.00175  0.00062  0.00000  0.00000 

2  0.02379  0.00581  0.00122  0.00070  0.00027  0.00040  0.00011  0.00000  0.00000 

3  0.00664  0.00122  0.00045  0.00020  0.00005  0.00006  0.00005  0.00000  0.00000 

4  0.00356  0.00070  0.00020  0.00012  0.00004  0.00004  0.00002  0.00000  0.00000 

5  0.00178  0.00027  0.00005  0.00004  0.00003  0.00002  0.00000  0.00000  0.00000 

6  0.00175  0.00040  0.00006  0.00004  0.00002  0.00003  0.00001  0.00000  0.00000 

7  0.00062  0.00011  0.00005  0.00002  0.00000  0.00001  0.00000  0.00000  0.00000 

8  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000 

9  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000 

Table 5 – Covariances 

The total variance for any given accident year can now be calculated from Table 5. For 
example the variance for AY 12 will be the sum of the values in the table (shown as 0.46129 in 
the table 6 below).  

5. THE ERROR DISTRIBUTION FOR A GIVEN ACCIDENT YEAR 

Now that we have a model for the errors from one calendar year to the next, we need to return 
to the error we care about. Recall that 
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From the assumptions made previously, this error has a normal distribution and its mean 
depends only on the latest development year, k – i + 1. 
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These quantities can be estimated by adding the respective mean, variance, and covariance 
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estimates. 

For our example, we now have estimates of the distribution of the error in the ultimate loss as 
estimated from the data available at the end of calendar year 12. They are given in Table 6. 

AY  mean  sd 

4  ‐0.000181  0.000401 

5  0.000013  0.000303 

6  0.001352  0.002243 

7  0.003294  0.006727 

8  0.003791  0.010914 

9  0.004077  0.021106 

10  ‐0.002222  0.040233 

11  0.024019  0.113210 

12  0.063590  0.460129 

Table 6 – Means and standard deviations by accident year 

6. THE ERROR DISTRIBUTION FOR ALL ACCIDENT YEARS 
COMBINED 

While we have been using logarithms to measure the error, when all is done we are interested 
in the ultimate losses themselves. To make the formulas easier to follow, rather than allow 
arbitrary values, we will follow the example and assume we are at the end of CY 12 and losses 
are fully developed after 10 years. In particular, we care about 

13 21
4 12 .U U U= + +L  

Recall from the notation that the terms on the right hand side represent the fully developed 
losses at a time in the future when the ultimate results are known. Rewrite this expression as 
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Here V is the estimated ultimate loss as of CY 12 for all open years and the weights are the 
relative proportion in each accident year. This indicates that the ultimate loss is a weighted 
average of lognormal random variables. This can be painful to work with (though not hard to 
simulate). Because the error random variables are usually close to zero and will vary about their 
mean, consider the following Taylor series approximations. 
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The approximate log-ratio has a normal distribution and thus U has an approximate lognormal 
distribution. The moments of the normal distribution are: 
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For the example, V = 760,808, μ = 0.01927, σ2 = 0.01123, and then the expected ultimate loss 
is 779,978 and the standard deviation is 82,892. 

7. EXTENSION TO MULTIPLE LINES OF BUSINESS 

Suppose there are two lines of business. Each can be analyzed separately using the method 
previously outlined. However, it is likely that the results for the lines are not independent. One 
approach would be to model the correlation structure between error values from the two lines. 
The problem with that approach is that there may not be corresponding cells to match and also 
the number of parameters may become prohibitive5. 

An alternative is to combine the data from the two lines into a single triangle and analyze it 
using the methods of this paper.  When finished, there will be a distribution for each line 
separately and for the combined lines.  Usually, only the total reserve is of importance and thus 
only the combined results are needed.  The individual line results will be useful for internal 
analyses and also if it is desired to allocate the reserves back to the lines. 

To illustrate this idea, we add a second line of business.  The same analysis gives: V = 
244,537, μ = -030759, σ2 = 0.008933, and then the expected ultimate loss is 180,593 and the 
standard deviation is 17,107. 

Combining the two lines creates a single table with the totals from each.  An analysis of these 
tables produces V = 1,005,376, μ = -0.02674, σ2 = 0.009582, and then the expected ultimate loss 
is 983,520 and the standard deviation is 96,506. 

8. ALLOCATION OF ULTIMATE LOSSES 

From the previous examples there is an interesting situation. If the two lines were 
independent, the standard deviation of the total would be 

 
2 282,892 17,107 84,638+ =  

Which is less than the standard deviation from the combined lines, which was 96,506.  There 
is thus a positive correlation between the lines and when setting reserves and then allocating 
them to the lines, something needs to be done. 

                                                 
5 Combining distributions also requires the multivariate normality assumption. This is hard to test but is often made 
in practice.  
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Allocation of reserves 

Suppose we set reserves with a margin for conservatism based on the results of the previous 
section. For example, suppose we set ultimate losses to be at the 95th percentile. That is, 

 

1,005,376exp( 0.02674 1.645 0.009582) 1,149,833.− + =  

where the mean and standard deviation are for the corresponding normal distribution.   

We also want to set ultimate losses for each line of business such that they add to 1,149,833. 
However, this cannot be achieved by setting each line at its 95th percentile. A reasonable 
approach is set each line at the same percentile, using the percentile that makes the sum work 
out. It turns out that if each line is set at the 96.28th percentile, the ultimate estimates will be 
937,025 and 212,808. 

9. MODEL EXTENTION TO PRACTICAL SETTINGS  

Distribution reviews 

Once the reserving actuary has completed the reserve review the distribution review should 
follow. The actuary will remember the considerations for selecting the ultimate losses. These 
include data considerations, coverage changes, mix changes etc. All of these can now be factored 
in the bias (mean parameter) estimation of resulting reserve distribution.   

The distribution review allows the actuary to consider the possibility of estimation bias in the 
current reserve estimate. For example if the historical errors of the selected ultimate losses for a 
line are positive and the actuary has not changed the selection approach then the current estimate 
will likely have  a positive error (too low an estimate). 

The reserve diagnostics are particularly important in evaluating such errors as the past is not 
always indicative of the future. For example a sign of case reserve weakening should lead to a 
higher IBNR all else being equal.  

These mechanisms of monitoring errors allow early warning signs for future potential reserve 
deficiencies.  

Finally note that changes in conditions do not invalidate the lognormal property.  However, 
changes in conditions will change the lognormal parameters, thereby increasing the degree of 
difficulty for projection accuracy. 

Volatility measurement under changing conditions  

While the distribution reviews and the resulting mean parameter will account for changes in 
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reserve adequacy, the volatility parameter reflects historical data and is therefore slow to respond 
to changes in the errors. Thus if the reserving methods change abruptly or the reserving actuary 
is replaced, the volatility will change slowly as the data emerges. Such cases are handled in the 
following ways: 

In many cases it is wise to let data lead the way as it may be pre-emptive to conclude about 
the volatility of the new process. This is especially relevant in light of the fact that processes 
themselves usually change slowly over time (such as experience of reserving actuary etc).  

In rare cases, the change in reserve methodology is driven by an abrupt decision such as 
outsourcing the reserve review to a consultant. In that case, the historical error data will have to 
be restated with the new process. 

10. APPLICATIONS 

We now present a few applications of the previous results.   

Loss estimation method 

The chain ladder estimate is biased for long tailed lines partly due to the fact that the 
covariance by development intervals is not incorporated in its estimate. Using the parameter 
estimation technique presented in this paper (including the variance covariance matrix of a 
triangle) the expected ultimate loss for an accident year 
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U = Ultimate loss, oU  = Incurred or paid loss, 2σ  = sum of variance covariance matrix (the 
number of terms depend on the age of the accident year). 

Claim Commutations 

Claim commutations involve transfer of reserves from a ceding carrier to an acquiring carrier. 
The risk to the acquiring company is that the indicated reserves may not be sufficient to pay all 
claims. One complication is that the agreed to reserve value may not be the same as that used in 
the determination of the reserve distribution. Let H be this arbitrary reserve value. A reasonable 
fair transaction price is this reserve plus the value of expected excess reserve cost above H. Let C 
be this cost. The total price is then given by H C+ . The formula for C is: 

( ) ( )RH
C x H f x dx

∞
= −∫  

where, R is the random true reserve. Let P be the amount paid and as before U is the random, 
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true, ultimate loss. Then, R U P= −  and so 
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The second line is a change of variable using .R U P= −  

The same concept applies in situations where one company acquires or merges with another 
company or a re-insurer acquires the reserve of the ceding carrier (Loss Portfolio Transfer).  

Insurance market segmentation  

The expected excess cost formula gives an insight into insurance economics. The assuming 
carrier will pool the assumed reserves into existing homogenous reserve segments. If the pooling 
decreases the total risk, captured in the estimated 2σ  for the line, the assuming carrier’s 
expected excess cost will be lower than ceding carrier’s. This assumes that the reserve adequacy 
of the reserve segment is estimated identically by both parties. 

The above argument explains insurance market segmentation. Companies grow their business 
in a given line and continue to acquire business from smaller companies in the same line because 
they face different total risks. Unlike other businesses, the volatility of losses underlying 
estimates drives decisions to acquire and grow an existing business segment. This is also the 
reason why low risk (short tailed, fast developing) lines are seldom ceded to other companies. 

Net and Direct Reserve Distributions 

We can quantify the reserve distribution net of reinsurance and/or recoveries using the method 
explained in the paper. This is possible because we are following the net reserve reviews and 
simply measuring the uncertainty in the estimates.  

One caveat when dealing with net distributions is that the true mean can be harder to estimate 
especially if treaties have changed recently. As stated earlier quarterly error triangles are more 
helpful in such cases as they are more responsive to changes. In other cases, the current actuary’s 
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estimate can be taken to be unbiased until further history is developed under the new treaty. 

In many where reinsurance has a relatively small impact on total reserve a change in treaty 
provisions will not change the resulting net error distribution significantly. For examples quota 
share reinsurance on a loss occurring basis on a line with large claim count per accident year will 
not necessarily lead to a lower variability of the net aggregate error distribution (emphasis 
added). The reserving actuary will see proportionally lower losses for new accident years but this 
may not impact net error distribution.  

Another example is casualty excess of loss coverage that attaches at a high layer. If the 
ground up claim count is large enough the change of reinsurance treaty many have very little 
impact on the net error distribution as few losses out of the total will be ceded in that layer.  

In some cases especially for low frequency & high severity lines such as personal umbrella 
excess of loss coverage, the impact of a change in treaty can be significant and the error history 
will not be relevant to the current treaty. This will require the actuary to conduct net historical 
reserve reviews based on the new treaty. This can be time consuming should be done if the line 
forms a significant part of the total reserve. 

Net distributions result in net reserve ranges and net reserving capital. These are relevant from 
a solvency, regulatory and company rating standpoint. 

Regulatory & Rating Agency Applications 

Regulators and rating agencies are interested in quantifying reserve ranges, percentiles, and 
reserving capital in order to monitor the solvency of the company. The regulator, in particular is 
interested in measuring the performance of the held reserve, shown in Schedule P. 

Once the distribution of the reserves is known we can state the percentile of the held reserves. 
Note that the management bias will now make a difference as it will position the held reserves to 
the right or left of the true mean.  

We can also calculate the reserving risk capital as the difference between a selected cutoff 
value (say 95th percentile) of the indicated reserves and the held reserves. The resulting reserving 
risk capital can be used to modify the RBC reserving risk charge. Note that the NAIC tests of 
reserve development to surplus ratios suggest comparing dollar ultimate loss errors to company 
surplus. This is very similar to our approach of measuring reserve uncertainty. Thus, the 
reserving risk charge measured using the method outlined in this paper would be consistent with 
the current annual statement and NAIC practices. 
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11. CONCLUSION 

The paper presents a shift in paradigm from loss distributions of the underlying losses to 
distributions of the company’s estimates. This represents a new way of measuring reserving risk. 
By being able to quantify risk both by line and for the company, effective management of 
capital, reinsurance, and other company functions becomes feasible.  

We provide a framework for assessing reserve review accuracy as well as measuring the 
distribution of the current reserve review. This is done using a “distribution review” immediately 
after a reserve review using the same segments and models currently used by the reserving 
department.  

Given the current complex reserving environment where reserving is both an art and a science 
there is no statistical formula to set reserves or its distribution. Rather we present a rigorous 
framework that involves the same considerations and process as the underlying reserve review 
itself. 
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