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Dirty Data on Both Sides of  the Pond 

Findings of the GIRO Data Quality Working Party 
by  Robert Campbell, FCAS, FCIA, Louise Francis, FCAS, MAAA, Virginia 

Prevosto, FCAS, MAAA, Mark Rothwell, FIA, Simon Sheaf, FIA 
 

 
________________________________________________________________________ 

Motivation.  This paper takes a multi-faceted approach to quantifying the significance of data quality issues 
for property/casualty actuaries, addressing both the prevalence of data quality issues across areas of practice 
and the significance of those issues.  The conclusion gives some guidance to improve data quality. 
Method. This paper  
• describes some actual data quality disasters in non-insurance and insurance businesses; 
• presents the results of a data quality survey of practicing actuaries in the United States, Canada, Great 

Britain and Bermuda; 
• presents the results of a data quality experiment where data was altered to change its quality and the 

effect on analyses using the data was quantified; and 
• provides advice on what can be done to improve the state of data quality, including introducing some 

freeware that can be used to screen data. 
Results. Both the survey results and the data quality experiment suggest that data quality issues affect 
the accuracy and increases the uncertainty associated with actuarial estimates 
Conclusions. Data quality issues significantly impact the work of property/casualty insurance actuaries; 
and such issues could have a material impact on the results of property/casualty insurance companies.  
Availability. Excel spreadsheets containing the data used in the data quality experiment as well as the 
spreadsheet containing the bootstrap procedure will be available on the CAS web site. 
 
Keywords. Data, data quality, reserve variability, exploratory data analysis, data diagnostics 

             

1. INTRODUCTION 

“Poor data quality can be insidious. 
Insidious a. 1. Characterized by craftiness or slyness… 2. Operating in a slow, not easily apparent manner; 
more dangerous than seems evident.” 
—Redman, Data Quality: The Field Guide 
 

While the quality of data used in many insurance ratemaking analyses may be regarded as 
poor, little has been done to quantify the prevalence of poor data or its impact on analyses. 
In 2006, a paper was produced by the GIRO (General Insurance Research Organization) 
Data Quality Working Party and presented at the 2006 GIRO conference (Campbell et al., 
2006). The Working Party was formed because of the perception that data quality is an 
important issue that is given insufficient attention by the managements of insurance industry 
companies. The Working Party’s report presented several arguments to support applying 
increased resources to data quality including recounting of data quality “horror stories,” 
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presenting the results of a survey of actuaries and insurance professionals and an 
examination of the impact of data quality issues on an actuarial database. The authors of the 
2006 paper decided to continue their research.  In particular, the data quality survey that 
attempts to quantify the extent of data quality problems has been distributed to a 
considerably wider audience and the number of respondents has more than doubled. In 
addition, significant changes have been made to a data quality experiment that attempts to 
quantify the extent of data quality problems in property/casualty insurance, by simulating 
data quality problems in data used in an actuarial analysis. The authors also wished to present 
their results to North American as well as U.K. actuaries. 

Data quality is an important issue affecting all actuaries. Whether one is engaged in 
reserving, pricing, claims or premium fraud detection, or other actuarial applications, or 
whether one is using conventional actuarial techniques or more advanced data intensive 
techniques (e.g., predictive modeling), virtually all actuaries encounter data that is either 
incomplete or inaccurate. Recently enacted laws in both Europe (Basel II) and the United 
States (Sarbanes-Oxley) addressing record keeping issues would seem to justify more 
attention to data quality, but a general increase in concern about data quality is not obvious.   

1.1 Research Context 

In this section we review some of the literature addressing data quality issues in insurance.  

The U.K. General Insurance Reserving Task Force (GRIT) working party report 
recommended more focus on data quality (Copeman et al., 2006) and suggested that U.K. 
professional guidance notes incorporate standards from Actuarial Standards of Practice 23, 
Data Quality (ASOP 23.).  ASOP 23 provides a number of guidelines to actuaries when 
selecting data, relying on data supplied by others, reviewing and using data, and making 
disclosures about data quality.  The Casualty Actuarial Society Committee on Management 
Data and Information and the Insurance Data Management Association (IDMA) also 
produced a white paper on data quality (CAS Committee on Management Data and 
Information, 1997).  The white paper states that evaluating the quality of data consists of 
examining the data for validity, accuracy, reasonableness, and completeness. This CAS 
committee also promotes periodic calls for papers on data management and data quality, 
which are published by the CAS. 

More recently, the CAS Data Management and Information Educational Materials 
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Working Party (CAS DMIWP) has completed two papers relevant to data quality:  The first 
(CAS DMIWP, 2007) is a survey of data quality texts.  The survey is intended to provide 
guidance to actuaries who seek a more detailed and comprehensive exposure to data quality 
literature.  The texts reviewed in the paper are rated on a number of qualities, such as 
actuarial relevance and introductory versus advanced focus, which are intended to assist 
actuaries in selecting appropriate texts for their particular needs. 

The CAS DMIWP also completed the paper “Actuarial IQ” (CAS DMIWP, to be 
published in 2008) which distills and summarizes much of the current literature on data 
quality and data management as it relates to the assurance of the quality of information used 
by actuaries. 

In general, the literature on data quality and its effect on the insurance business is limited. 
In Section 2, we provide some background on the effect of poor data quality on businesses, 
but many of the studies cited only address the issue for non-insurance businesses. 

 

1.2 Objective 

The GIRO Data Quality Working Party was constituted to act as a catalyst to the 
profession and the industry to improve data quality practices. 

In this paper we will 

• Recount some anecdotes illustrating the real cost of poor data both in insurance 
and other ventures. 

• Present the results of a data quality survey of practicing actuaries in the United 
States, Canada, Great Britain, and Bermuda. 

• Present the results of a data quality experiment where data was intentionally 
altered to change its quality and the effect on analyses using the data was 
quantified. 

• Provide advice on what can be done to improve the state of data quality research. 

1.3 Disclaimer  

While this paper is the product of a GIRO working party, its findings do not represent 
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the official view of the General Insurance Research Organization. It also does not represent 
the views of the authors’ employers.  Moreover, while we believe the approaches we describe 
are good examples of how to address the issue of data quality, we do not claim they are the 
only acceptable ones.  

1.4 Outline 

The remainder of the paper proceeds as follows. Section 2 will review literature on the 
cost to business of poor data.  It will then provide a number of data quality “horror stories” 
in both non-insurance and insurance contexts.  Section 3 will present the result of a data 
quality survey that was distributed to actuaries on both sides of the “pond.”  Section 4 
presents the results of our data quality experiments that measure the effect of data quality on 
an actuarial analysis. First, a deterministic experiment is performed that introduces data 
quality problems into a dataset used to estimate loss reserves. For this dataset the “true” 
ultimate losses are known and can be used to evaluate the quality of the deterministic 
estimates.  Next, a stochastic data quality experiment using a bootstrap procedure is used to 
evaluate the effect of data quality problems.  In Section 5 we suggest a number of actions 
actuaries can take, including data quality advocacy, data quality measurement and routine 
screening of data before performing an analysis.  Software for screening data is also 
discussed. In section 6 we summarize our findings from the data quality survey and data 
quality experiment.  Appendix A describes the open source software ViSta and presents data 
screening graphs obtained from the software data used in our analysis is presented in 
Appendices B through D.  

2. BACKGROUND AND METHODS 

2.1 The Cost of Poor Data Quality 

In the literature on data quality there is a virtually universal agreement that poor data 
quality imposes a significant cost on companies and on the economy. For instance, Moore 
predicts that there is a significant likelihood that a data quality error will cause the downfall 
of at least one large corporation (Moore, 2006).  In this section we summarize some of the 
published findings with respect to the magnitude and cost of data quality problems.  

There are various rules of thumb found in the literature concerning the cost of poor data 
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quality. Both the IDMA and Olson cite an estimate that data quality problems cost 
companies 15% - 20% of operating profits.1 The IDMA value proposition2 also cites an 
estimate that poor data costs the U.S. economy $600 billion a year3.  The IDMA believes that 
the true cost is higher than these figures reflect, as they do not depict “opportunity costs of 
wasteful use of corporate assets.” (IDMA Value Proposition – General Information). 

According to Eckerson, in many customer databases 2% of records per month become 
obsolete because of deaths and address changes (Eckerson). This is in addition to data entry, 
merging data from different systems and other sources of errors.  Eckerson mentions that 
most organizations overestimate the quality of their data stating, “On one hand, almost half 
of the companies who responded to our survey believe the quality of their data is excellent 
or good.” Yet more than one-third of the respondent companies think the quality of their 
data is “worse than the organization thinks.” Eckerson also cites a study done by The Data 
Warehouse Institute that indicates that data quality is a leading cause of problems when 
implementing CRM (Customer Relationship Management) systems (46% of survey 
respondents to a 2000 survey selected it as a challenge). According to Wand and Wang 
(1996), 60% of executives from 500 medium-sized surveyed firms reported data quality 
problems. 

Poor data quality can also have credibility consequences and motivate regulatory 
intervention to curb the use of some information deemed important by corporations.  In 
property and casualty insurance in the United States, the use of credit information in 
underwriting and pricing insurance is a very controversial practice.  A key argument of 
consumer groups opposed to the use of credit is the poor quality of credit data.  Among 
actuaries who price and reserve small (self-insured or alternative market) accounts, there is a 
general belief that the quality of data from third-party administrators (TPA) is perhaps worse 
than that of insurance companies. Popelyukhin (1999) reviewed the loss runs of 40 TPAs 
and concluded that no TPA provided data that satisfied his data quality definition (similar to 
that in the CAS-IDMA White Paper above). 

In 2004, PricewaterhouseCoopers LLP (PricewaterhouseCoopers LLP, 2004) distributed 

                                                           
1 Olson, p9. 
2 This citation is apparently from a study done by The Data Warehouse Institute 
3 Based on information at econostats.com the 2006 gross domestic product of the U.S. was about $13,000 
billion. 
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a data management survey to executives at 450 companies in the U.S., U.K., and Australia. 
The following results were cited by PricewaterhouseCoopers: 

• Almost half of all respondents do not believe that senior management places 
enough importance on data quality. 

• Only 18% of  respondents whose organizations share data with third parties are 
very confident  in the quality of that data. 

• On average respondents thought data represented 37% of the value of their 
company (but only 15% actually measured the value of data to their company). 

• The survey indicated that when data improvement initiatives were undertaken and 
when their value was measured, significant returns on investment were realized. 

Note that while a number of surveys have been conducted to evaluate the extent of the 
data quality problem, there appears to be very little literature where an attempt has been 
made to quantify the impact of data quality problems on the accuracy and variability of 
financial quantities being computed.  In this paper we add to the results of prior surveys on 
data quality by conducting a survey of actuaries.  We also perform several experiments where 
the effect of data quality problems is measured on an actuarial database used for reserving. 

2.2 Data Quality Anecdotes 

2.2.1. Non-Insurance Industry Stories 

As the anecdotes below illustrate, data errors can result in very serious consequences.  In 
some cases the result is serious embarrassment. In other cases, the result is a large financial 
loss.  In yet other cases, loss of life results, demonstrating that data quality can be a matter of 
life and death.  Many of the most highly publicized data quality horror stories are from non-
insurance industries.  It should be noted that non-insurance industry errors sometimes have 
implications for insurance as they may result in errors and omissions or medical malpractice 
claims as in the first example below. 

• A 17-year old Mexican girl received a heart-lung transplant at Duke University 
Hospital in South Carolina.  She soon fell into a coma as it was discovered that the 
organs she received were of the wrong blood type (Archibald, 2003). Apparently 
none of the medical personnel at the hospital performing the transplant requested or 
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verified that proper documentation of a match in blood types was provided.  A 
subsequent transplant with organs of the correct blood type failed and the girl died. 

• The Web site www.iqtrainwrecks.com reports that surgery on the wrong site, i.e., 
removing the wrong kidney, occurs too frequently and is in large part preventable.  It 
is noted, that many wrong site surgeries occur as a result of reading x-rays from the 
wrong side.  They note that since most x-rays are produced digitally, it would be 
trivial to label the x-ray as to which side is which. 

• During the conflict in Bosnia, American pilots accidentally bombed the Chinese 
embassy in Belgrade as a result of faulty information. “It was the result of neither 
pilot nor mechanical error,” Cohen and Tenet stated.  “Clearly, faulty information 
led to a mistake in the initial targeting of this facility. In addition, the extensive 
process in place used to select and validate targets did not correct this original error.” 
(CNN, 1999a) 

• In Porter County, Illinois, a house worth a little over $100,000 was accidentally 
valued at $400 million.  This caused the county to bill the owner $8 million for what 
should have been a $1,500 real estate tax bill.  Due to the glitch, the county 
significantly overestimated its tax revenue and experienced significant budget 
shortfalls. 

• Statscan, the Canadian statistical agency, reported that it had understated the 
inflation rate for five years due to a software glitch. The effect was estimated to be 
one tenth of a point on average. (Infoimpact, 2006).  In addition, Statistics South 
Africa reported that, due to an error, it had greatly overstated inflation for five 
months, causing interest rates to be significantly higher than they would otherwise 
have been. (Data Quality Solutions, 2007) 

2.2.2 Insurance Industry Stories 

Although we contacted a number of insurance regulators, we are not at this time aware of 
any insolvency that resulted primarily from data quality errors.   On the other hand, there is a 
lot of sentiment that data quality often deteriorates badly after insolvency occurs and that it 
significantly impairs the quality of post-insolvency estimates of liabilities. It is possible that 
the role of data quality issues in insolvencies is obscured by other management issues. 
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2.2.2.a Reserving stories 

• In June 2001, The Independent went into liquidation and became the U.K.’s largest 
general insurance (i.e., property/casualty) failure. A year earlier, its market valuation 
had reached £1B. Independent’s collapse came after an attempt to raise £180M in 
fresh cash by issuing new shares failed because of revelations that the company faced 
unquantifiable losses. The insurer had received claims from its customers that had 
not been entered into its accounting system, which contributed to the difficulty in 
estimating the company’s liabilities.   

• The National Association of Insurance Commissioners4 stated that it often cannot 
rely on typical domiciliary country data when reviewing the condition of alien (non-
U.S.) insurers. However, they indicated that when they request data from the 
companies themselves, it is usually supplied. (Otis, 1977) 

• The Canadian federal regulator (the Office of the Superintendent of Financial 
Institutions, or OSFI for short) has uncovered instances of: 

o Inaccurate accident year allocation of losses and double-counted IBNR loss 
estimates (i.e., the actuary calculated IBNR from triangles that already 
included IBNR). 

o Claims reported after a company is insolvent and it is discovered that the 
original notices (sometimes from years before) were not properly recorded in 
the company’s systems. 

• In the U.S., actuaries providing statements of actuarial opinion to insurance 
regulators concerning the adequacy of reserves for an insurance company are 
required to supply an exhibit balancing totals from data used in their actuarial 
analysis to totals in the statutory financial statement.  A former regulator indicated 
this requirement is motivated by disclaimers in opinions letters (i.e., the data was 
supplied by the company and responsibility for its accuracy was deemed to be theirs) 
and concerns that invalid data would be used in the actuary’s reserve analyses.  

• It is widely believed by U.S. actuaries that the quality of an insolvent insurance 
company’s data declines after the company is declared insolvent. A report by the 

                                                           
4 An association of state insurance regulators in the United States 
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California Auditors Office on the California Conservation and Liquidation office 
found numerous data quality problems (Sonnett, 2005). For instance, due to manual 
processing of many bills, one employee retired without billing a reinsurer for 
$900,000.  The error was discovered months later only after the reinsurer inquired 
about the bill. A finding of the report (California Auditor’s Office, 2004) was that 
“the information technology controls were not sufficient to ensure the overall 
reliability and integrity of data.”5 

2.2.2.b. Ratemaking Stories 

Advisory organizations in the United States such as the National Council on 
Compensation Insurance (NCCI) for workers compensation and the Insurance Services 
Office, Inc. (ISO) for most of the remaining property/casualty lines of insurance devote 
significant resources to finding and correcting errors in data. 

The stories below are a just a few examples of data anomalies that have been faced by 
ISO over the years in its role as an advisory organization, along with other examples drawn 
from the consulting community.  These are cases where the anomaly was found during the 
rate-level experience review and caused extra expense to either correct the error or remove 
the data in error from the rate-level experience review.  It is not a complete list but rather 
gives a flavor of the data quality glitches that typically occur. 

• A company reported its homeowners exposure (the amount of insurance on the 
dwelling) in units of $10,000 instead of units of $1,000. Since the exposure was 
understated by a factor of 10, applying current manual base loss costs (or manual 
rates) and rating factors to the exposure would have resulted in greatly understated 
aggregate loss costs at current manual level (or aggregate premium at present rates). 
Therefore the experience loss ratio (= incurred losses/aggregate loss costs at manual 
level) and the statewide rate-level indication would have been overstated. 

• One of the ten largest insurers in a state reported all of its personal auto data under a 
miscellaneous coverage code. Since miscellaneous coverage code data are excluded 
from the rate-level review for the core coverages, this would have had a significant 
effect on ratemaking results if it had not been detected. 

• A company reported all its homeowners losses as fire in the state of Florida. It is 

                                                           
5 This finding is stated in the Executive Summary of the report. 
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evident what this error can do for any homeowners rate-level review especially when 
the experience period included the hurricane-heavy accident years of 2004 and 2005. 

• Another common error occurs when the premium and loss records for the same 
policy are not coded identically for the common fields.  For example, a company 
may record all their liability premium records as composite rated, but the 
corresponding liability loss records are recorded otherwise.  This is commonly 
known as a premium-loss mismatch error.  A recent occurrence of this type of 
anomaly in homeowners affected about 25% of a company’s book of business. 

3. DATA QUALITY SURVEY 

We conducted a brief survey of actuaries6 to verify that data quality issues have a 
significant impact on the work undertaken by general insurance actuaries.  The precise 
wording of the survey questions was as follows: 

• Based on the time spent by both you and your actuarial staff, what percentage of this 
effort is spent investigating and rectifying data quality issues? 

• What percentage of the project results are adversely affected by data quality issues?  
Adversely affected includes re-working calculations after data is corrected; or stating 
results/opinions/conclusions but allowing for greater uncertainty in results; or 
finding adverse runoff over time due to initial work based on faulty data; etc. 

In order to improve our response rate, we decided to adopt a targeted and personal 
approach.  Copies of the survey were sent to the following groups: 

• All original members of the GIRO Data Quality Working Party, including those who 
had subsequently chosen not to take part in our work 

• Members of the CAS Committee on Management Data and Information 

• Members of the CAS Data Management and Information Educational Materials 
Working Party 

                                                           
6 In some cases, other quantitative analysts and systems people who work with and support actuaries were 
included in the survey. 
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• A sample of attendees at a WRG7 Predictive Modeling Conference 

• A sample of attendees at the 2007 CAS Ratemaking Seminar 

• A sample of attendees at the 2007 CAS Reinsurance Seminar 

In addition, each member of the GIRO Data Quality Working Party contacted a handful 
of people to ask them to answer the survey questions.  This survey was carried out by phone. 

As a result of these efforts, we received 76 responses to the survey. 

The tables below summarize the results of the survey.  We have split the results between 
those actuaries who work for insurers or reinsurers, those who work as consultants, and the 
remainder.  The last category includes insurance and reinsurance brokers, rating agencies, 
and statistical agents, as well as those respondents who we were unable to categorize.  We 
show the highest and lowest responses to give an indication of the range of the responses. 

                                                           
7 World Research Group, March 2007 
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Question 1: Percentage of Time Spent on Data Quality Issues 
 

Employer 

Number 
of 

Responses Mean Median Minimum Maximum 
      
Insurer/Reinsurer 40 25.0% 20.0% 2.0% 75.0% 
Consultancy 17 26.9% 25.0% 5.0% 75.0% 
Other 17 29.6% 25.0% 1.0% 80.0% 
      
All 74 26.5% 25.0% 1.0% 80.0% 
 
 
Question 2: Percentage of Projects Adversely Affected by Data Quality Issues 
 

Employer 

Number 
of 

Responses Mean Median Minimum Maximum 
      
Insurer/Reinsurer 40 32.5% 20.0% 3.5% 100.0% 
Consultancy 17 37.6% 30.0% 5.0% 100.0% 
Other 17 35.4% 25.0% 1.0% 100.0% 
      
All 74 34.3% 25.0% 1.0% 100.0% 
 
 

The discrepancy between the total numbers of 76 responses received and the numbers of 
responses to the two questions arises because some respondents only provided quantitative 
answers to one of the two questions. 

The first point to make about these results is that they support the hypothesis that data 
issues have a significant impact on the work undertaken by general insurance actuaries.  The 
mean response to question 1 implies that actuarial staff spends about a quarter of their time 
on issues of data quality.  There was relatively little variation among employer groupings here 
with all three means covered by a span of less than five percentage points. 

The responses to the second question also indicate that data quality is a major issue for 
general insurance actuaries since about a third of projects are adversely affected by data 
issues among responders.  Again, there is relatively little variation among the means for the 
employer groupings with all three covered by a span of just over five percentage points.  
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For both questions, the mean and median for insurers and reinsurers are lower than the 
mean and median for other actuaries.  This may reflect that actuaries working for insurers 
and reinsurers will be more familiar with the data they are using than actuaries working for 
consultants, brokers or rating agencies. 

It is clear from the above tables that we received a wide range of responses, with answers 
to question 1 varying between 1% and 80%, and those to question 2 varying between 1% 
and 100%.  The range of responses was wide everywhere—of the two questions and three 
employer groupings, the narrowest range of responses was 70 percentage points.  The wide 
range of responses on the significance of data quality issues within each employer grouping 
suggests that there may be something driving differences in data quality within each 
employer category.  It could be that certain employers (or their designates) have been able to 
materially improve data quality over that of their peers. It should be noted that two 
responders attributed their low answers (<5% of projects adversely affected) to their 
companies’ data scrubbing efforts. 

Despite the wide variation in responses, data quality issues appear to be significant for 
most general insurance actuaries.  Only 14% of the responses to question 1 were below 10%, 
and only 38% were below 20%. Similarly, on question 2, only 12% of the responses were 
below 10% and only 39% were below 20%.  Only three respondents (4%) provided answers 
that were below 10% to both questions, and only 26% answered both questions with figures 
that were below 20%. 

These survey results support our initial hypothesis that data quality problems impose a 
significant cost on industry. 

4. DATA QUALITY EXPERIMENT 

  While some of the anecdotal information communicated in the data quality stories in 
Section 2 support the claim that data quality issues can have a significant effect on 
businesses, the working party also wanted to provide quantitative information based on 
research about data quality issues.   The data quality survey presents information on how 
actuaries and insurance professionals assess the severity of the problem, but is based on a 
limited sample. As a result, it is of only limited assistance in assessing the magnitude of the 
effect data quality problems have on the accuracy of estimates. In order to examine the 
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effect of data quality problems on critical financial quantities, the working party conducted a 
data quality experiment with actual data used for an actuarial application. This experiment 
was designed to examine the effect of incomplete and/or erroneous data on loss reserve 
estimates. Real loss triangle data was felt to be more persuasive than conducting the 
experiment on a simulated dataset8. Data of sufficient maturity were obtained—all years are 
fully developed and the true ultimate losses are known—and various methods were 
employed to estimate ultimate losses using the data as of past valuation dates.  

One of the data challenges that practicing actuaries frequently encounter relates to 
datasets that are severely limited with respect to the completeness of information provided.  
That is, the data may be limited with respect to the numbers of years of history (e.g., only 
five years of history for a long tail line where claims take 20 years to fully settle) or the types 
of data provided (e.g., only paid and incurred losses, but no reported claim count, closed 
claim count or exposure data). To simulate these situations, various projection methods were 
used on subsets of the original data to estimate the ultimate losses on the subsets.   

Another data quality challenge that we investigated is data accuracy. Modifications were 
intentionally introduced into the data to simulate data errors and data quality problems 
commonly encountered. The various estimates of ultimate losses, based both on error-
modified and unmodified datasets, were compared to the true ultimate losses to measure the 
accuracy of the estimates.  In addition, the bootstrapping technique was used to compute 
measures of uncertainty for the reserve estimates for complete, incomplete, and error-
modified data. 

We begin with a brief discussion of the methods used to project ultimate losses in 
subsection 4.1.  Subsection 4.2 summarizes the data. In subsection 4.3, we examine the 
impact of varying the size of the dataset by methodology. Subsection 4.4 discusses the 
modifications and errors introduced into the datasets and examines their impact on the 
estimates. Subsection 4.5 discusses a simple bootstrap analysis of the unmodified and error 
modified data. Finally, in subsection 4.6, we compare the results from the different estimates 
of the ultimate losses and we provide our observations and conclusions. 

                                                           
8 Note that a working party of the Casualty Actuarial Society is developing a database incorporating known 
underlying trends and patterns and ultimate claim amounts to be used in reserving and other actuarial research, 
but their simulated data base is not yet available 
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4.1 Projection Methods 

We restricted methodologies to mechanical approaches in order to filter out the effect of 
different actuaries making different subjective judgments.  However we attempted to address 
material violations of the underlying assumptions of the methods. For example, a typical 
assumption of actuarial methods such as the chain ladder method is that the patterns and 
trends in the historic data do not change over time.  As often happens in actual practice, our 
quick review of the loss-triangle data indicated that this assumption was not appropriate.  It 
is clear that closing rates (see Closing Rate Triangle, Appendix B) on the most recent 
diagonals of the triangle are significantly higher than those of earlier years.  Thus, looking at 
the 12-month development age, the closing rate for the most recent year, 1991, exceeds that 
of the earliest year, 1974, by a significant margin. A similar change in settlement rates over 
time can be observed through at least age 84 months.   To adjust for the effect on loss 
development patterns, we applied a Berquist-Sherman (B-S) settlement rate adjustment 
(Berquist and Sherman, 1977) to one of the methods, the paid chain ladder.  Note that the 
adjustment can only be applied if reported and closed claim counts are included in the data 
provided to the actuary for the reserve analysis. In addition, because the age-to-ultimate 
factors are very high (greater than 4.00) for the two most recent years, a Bornhuetter-
Ferguson (B-F) method was used in addition to the chain ladder method for the paid data.  
Note that exposure data was used in estimating the B-F a priori estimate9.  We believe the 
quality of the B-F estimate would be adversely affected if exposure data were unavailable. 

The selected approaches for estimating ultimate losses are:  (1) incurred chain ladder, (2) 
paid chain ladder, and (3) paid B-F and (4) paid chain ladder adjusted for accelerated closing 
rates using a B-S adjustment.  We also provide some results for incurred chain ladder 
adjusted for closing rates. Note that we also tested a claim count times severity method 
(where each component’s estimate is based on incurred data and the chain ladder method).  
Since the results were very similar to those of the incurred chain ladder, we chose not to 
report them.   

4.2 The Data 

A database with 18 accident years of data from accident years 1974 to 1991 was obtained. 
                                                           
9 Losses were trended at a rate of 7% per year and divided by exposures (earned vehicle years).  The trend rate 
was selected based on 1) our knowledge of the line of business during the 1980s and 2) testing of several trends 
to determine which seemed to perform best. An all-year average loss cost was selected as the B-F prior. 
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The triangles contain an accident year in each row with annual evaluations of the statistic in 
each column (e.g., the second column is the cumulative value of the statistic at two years or 
24 months of development).  The data are from primary, private passenger automobile 
bodily injury liability business from a single no-fault American state. The data are direct with 
respect to reinsurance and limited to policy limits written. Policy limits distributions 
remained somewhat constant during the experience period. Although the data have been 
slightly adjusted to guard against identification, they are reflective of an actual situation. The 
data include paid losses, outstanding losses, number of reported claims, number of claims 
closed with payment, number of open claims, and exposures. 

The “ultimate losses” were supplied by the provider of the triangles. However, because 
the original data were altered to hide the identity of the source, the “actual” ultimate losses 
do not exactly track the true actual numbers. The data are shown in Appendix B. 

4.3 Experiment 1:  Impact of Reduced Completeness of Data 

It is not uncommon for actuaries to perform analyses on sparse data sets containing only 
a few years of data and only a few types of information.  An example would be the actuary 
who is sent five accident years of incurred and paid loss data, including history for triangles, 
and is asked to estimate loss reserves. How much better would the estimate be if the actuary 
had 10 or 20 years of data, and had claim count and exposure data, as well as paid and 
incurred loss data? 

In order to evaluate the effect of lack of completeness, subsets of the data were analyzed. 
Subsets were created with (1) all years, (2) only accident years 1986 to 1991, and (3) the latest 
three diagonals of information. The loss development pattern selected for each dataset is the 
volume-weighted average of all years. Note that the inverse power curve (Sherman, 1984) is 
used to estimate the tail factor for the 1986 to 1991 dataset.  The ultimates estimated for 
each of the datasets is shown in Appendix C. 

Two overall measures of accuracy were used in the analysis: 1) bias, that is, whether the 
overall estimate is near the “true” estimate, and 2) variability, as measured by the standard 
error, is used to assess the dispersion of estimates around the “true” value. 

The projections based on paid loss triangle data are summarized in Figures 4.1 
(unadjusted data) and 4.2 (B-S adjusted data). In each graph, the solid line with no markers 
represents the actual answer known with the benefit of hindsight, whilst the lines with 
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markers show the results based on the three datasets.  
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Figure 4.1:  Estimated Ultimate Losses by Year Based on Unadjusted Paid Data 
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Figure 4.2:  Estimated Ultimate Losses by Year Based on Adjusted Paid Data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A brief inspection of the estimated ultimate losses arising from paid (Figure 4.1) chain 
ladder method indicates that the paid chain ladder estimated ultimate losses tend to be 
higher than the actual ultimate losses.  This is largely due to the impact of the 12-to-ultimate 
factor and to a lesser extent to the factors from other immature years. A more stable 
approach such as a B-F model is appropriate in this situation, but our implementation of the 
Bornhuetter–Ferguson required additional data, namely exposures.  Thus to improve on the 
paid chain ladder estimate, additional data beyond just paid and incurred loss aggregates was 
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required. As the exposures varied considerably over the historic period, the absence of this 
data would likely have significantly affected the quality of the estimates.  We note that the 
smaller datasets (3-diagonals and 1986-1991) performed better on the chain ladder paid 
ultimates than the all-year dataset. This reflects that these data were more responsive to 
recent changing patterns in the data. 

Figure 4.2 indicates that there is a significant improvement in the quality of the estimates 
when the B-S adjustment is used. The B-S adjustment adjusts the historic paid loss diagonals 
to match the claim closing rates of those diagonals to that of the latest diagonal.10  Such an 
adjustment requires data that is often not present in small datasets supplied to actuaries for 
reserving and pricing analyses.  For the adjusted data, the ultimate losses based on 1986-1991 
only are the least accurate, while the all-year and 3-year datasets perform about the same.  As 
with the unadjusted data, the B-F method performs better than the chain ladder method. 

                                                           
10 More advanced methods using regression modeling (Zehnwirth, 1994) and generalized linear models (Taylor, 
2004) might be applied by actuaries encountering dynamic patterns in their data.  For this analysis, the working 
party restricted itself to approaches that could be applied mechanically. 
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Figure 4.3:  Estimated Ultimate Losses by Year Based on Unadjusted Incurred Data 
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Figure 4.3 presents the results for estimated losses based on incurred loss data.  For 
comparison, the graph also displays the ultimate losses from the all years paid and adjusted 
paid techniques. It is clear from this graph that the estimated ultimate losses based on 
incurred loss data are considerably more accurate than the unadjusted paid chain ladder 
ultimate losses.  All the incurred loss datasets appear to provide reasonable estimates of 
ultimate losses. 

Some statistics from the data quality experiment are presented in Tables 4.1 and 4.2. The 
statistics presented are 1) the overall bias of the method, defined as the sum of the actual 
ultimate losses minus the sum of the estimates of the ultimate losses for the 
methods/datasets, and 2) the standard error of the estimate, which is the average of the 
squared deviations of actual ultimate losses from estimated ultimate losses: 

(4.1)  

   

 

 

Table 4.1:  Bias of Estimation Methods and Datasets 

 
All 

Years 
3-

Years 86 – 91 
All Year 

BF 
3-Year 

BF 
86 - 91 

BF 
Paid 188,759 62,011 98,353 97,019 24,140 44,377
Adjusted Paid 6,599 26,502 59,234 -13,401 1,552 16,571
Incurred 17,803 16,100 -9,490    
Adjusted Incurred -8,435 18,753 12,344    

 

Table 4.2:  Standard Error of Estimation Methods and Datasets 

 
All 

Years 3-Years 86 - 91 
All Year 

BF 
3-Year 

BF 
86 - 91 

BF 
Paid 5,460 2,197 3,137 2,525 765 1,098
Adjusted Paid 1,806 1,633 2,679 896 618 705
Incurred 1,003 1,048 566   
Adjusted Incurred 933 1,276 1,053   

 

Table 4.1 indicates that the unadjusted paid loss estimates have a significant bias that is 
somewhat mitigated by applying the B-F technique. The adjusted paid methods perform 
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significantly better, although the 3-year and 1986-1991 adjusted paid chain ladder methods 
still have significant bias. While the incurred chain ladder method has less bias than the paid 
chain ladder method, the size of the dataset does not appear to improve the overall bias of 
the estimates—indeed, the smallest bias for the incurred data (based on absolute values) is 
for the 1986-1991 dataset. For informational purposes we also show the results for the 
incurred method when the B-S adjustment is applied. The all-year incurred chain ladder 
method bias is improved by using data with the settlement rate adjustment. 

For the paid datasets, the standard error of the estimate (Table 4.2) is highest for the 
chain ladder method applied to the all-year unadjusted paid loss data.  It is least for the B-S 
adjusted data using the B-F method.  All the incurred loss estimates have relatively modest 
standard errors.  It is not clear that the size of the dataset significantly impacts the incurred 
ultimates. 

Observations: 

• The adjusted paid and the incurred methods produce reasonable estimates for all 
but the most immature points (however, these points contribute the most dollars 
to the reserve estimate). 

• The paid chain ladder method, which is based on less information (no case 
reserves, claim data or exposure information), produces worse estimates than the 
methods based on the incurred data or the adjusted paid data. 

• It is not clear from this analysis that datasets with more historical years of 
experience produce better estimates than datasets with fewer years of experience. 

4.4 Experiment 2: Impact of Reduced Data Accuracy 

4.4.1 Data Modifications to Simulate Data Quality Problems 

Based on actual experiences of members of the working party, we postulated various 
events that cause data glitches such as systemic misclassification of claims to the wrong 
accident year and erroneous entries escaping systems edits. The datasets were then modified 
to reflect the effects of such issues. The working party decided to introduce more than one 
error at a time to improve the realism of the scenario and to explore how the interaction of 
errors can affect estimates. 
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The error-modified triangles simulate the following data quality issues: 

1. Losses from accident years 1983 and 1984 have been misclassified as 1982 and 1983 
respectively. 

2. Approximately half of the financial movements from 1987 were processed late in 
1988. 

3. The incremental paid losses for accident year 1988 development period 12-24 has 
been overstated by a multiple of 10. This was corrected in the following 
development period. Similarly, an outstanding reserve for a claim in accident year 
1985 at the end of development month 60 was overstated by a multiple of 100 and 
was corrected in the following period. 

4. Data prior to the 1982 calendar year is not available. 

5. The paid losses in the latest diagonal are crude estimates rather than actual losses. 

6. From 1988 onwards, the definition of “reported claims” was changed to exclude 
claims closed without payment. 

The projections based on the modified data appear in Appendix D. 

For simplicity of presentation, results are presented only for the “all year” datasets. Again, 
all of the methods used to project the claims are mechanical:  there is no judgment involved. 
This means, for example, that in places where there is missing data, the development factors 
based on volume-weighted averages will be wrong because there is a mismatch between the 
numbers of years containing claims figures in the numerator and the denominator. In 
practice, an actuary may well spot this and correct the data glitches, but we wanted to use a 
mechanical approach and demonstrate the more extreme distortion caused by a failure to do 
so. 

Since analyzing data containing all the errors seems somewhat extreme, we also selected 
some “errors” to be applied to the data individually.  In order to keep the number of 
permutations of scenarios to a manageable level, only the first three “errors” were applied 
separately to the data.  Results are presented for each of error modifications 1 through 3 and 
for data reflecting all 6 modifications.   
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4.4.2 Results 

Figures 4.4 and 4.5 show the comparison of the actual ultimate losses to estimates of 
ultimate losses based on “clean” (unmodified) data and on data modified to introduce errors.  
The results shown are for chain ladder method applied to adjusted paid loss data (Figure 4.4) 
and to unadjusted incurred loss data (Figure 4.5).   

 

Figure 4.4:  Comparison of Actual and Estimated Ultimate Losses 

Based on Error-Modified Paid Loss Data 
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Figure 4.5:  Comparison of Actual and Estimated Ultimate Losses  

Based on Error-Modified Incurred Loss Data 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

The graphs indicate that some of the projections based on error-modified data are 
extremely volatile, particularly for reserve values based on paid losses. When compared to 
the unmodified or clean data, the results for the error-modified data show a large amount of 
both additional volatility and bias. In practice an actuary will likely spot many of the errors 
and try to correct for them. Nevertheless the actuary will often be unable to get back to the 
correct data and will be forced to compensate for the problem with a data adjustment. Thus 
some of the additional volatility and error will almost certainly remain. Indeed, in some 
cases, an attempt to correct the data may introduce additional volatility and bias. 

Table 4.3 presents the bias (i.e., the overall error between actual and estimated ultimates) 
for each of the error-modified datasets for four different methods of estimating ultimate 
losses.  In general, the error-modified data results in estimates that have a higher bias than 
the clean data, but there are a couple of exceptions.  The exceptions occur in the use of two 
of the paid methods on the data reflecting change 3 (an error in the 1988 paid losses at 24 
months and 1986 outstanding losses at 60 months). 
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Since positive and negative errors that offset each other could produce results that exhibit 
low bias overall, we also present the standard error of the estimates.  These are displayed 
graphically in Figure 4.6 for the adjusted paid estimation methods and Figure 4.7 for 
incurred data. 

 

Table 4.3 Bias of Estimation Methods and Datasets 

 Change 1 Change 2 Change 3 
All 

Changes Clean Data 
Paid 257,669 206,735 103,081 231,168 188,759
Adjusted Paid 38,862 15,994 -33,454 98,673 6,599
B-F Paid 126,833 104,716 63,857 108,220 97,019
Incurred 41,392 25,948 -61,542 173,703 17,803

 

 

Figure 4.6:  Standard Errors for Adjusted Paid Loss Data  

Modified to Incorporate Errors 
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Figure 4.7:  Standard Errors for Incurred Loss Data 

Modified to Incorporate Errors 

 

 

 

 

 

 

 

 

 

 

 

 

The error-modified data reflecting all changes results in estimates having a higher 
standard error than that for the clean data. From Table 4.3 and Figure 4.7 it is also clear that 
for incurred ultimate losses, the clean data has the lowest bias and lowest standard error. 

We suspect that some of the results for the paid loss data, especially results obtained for 
our analysis of reduced-size datasets, are a result of happenstance and the unique features of 
the dataset used in this analysis.  The accuracy of estimates is particularly sensitive to the 
instability of paid ultimate losses for a few recent accident years.  Thus the results may reflect 
the quirks of one particular dataset, which is itself a single realization of many possible loss 
scenarios. That is, process variance may be the source of unexpected results when 
comparing the accuracy of different datasets due to the happenstance of how particular 
random realizations affect ultimate estimates for a few key years.  A more representative 
assessment of the impact of data quality issues might be provided by a stochastic analysis, 
where many possible realizations are considered. 
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4.5 Bootstrapping 

When measuring the quality of different estimation procedures, actuaries often quantify 
their uncertainty by estimating a probability distribution for ultimate losses (or reserves).  In 
this section, the bootstrap approach is used to derive a probability distribution for estimated 
reserves for 1) clean data, 2) incomplete data, and 3) modified data containing errors.  

4.5.1 Description of Bootstrapping 

A limitation of the deterministic analyses we have performed is that they are based on 
single realizations of reported claim counts, closed counts, paid losses, and incurred losses 
from a distribution of potential outcomes. Other realizations would have resulted in 
different development factors and different ultimate loss estimates using the same estimation 
methods and based on the same underlying stochastic processes generating the data. In 
order to augment our analysis with information about a distribution of realizations for the 
development factors, the technique of bootstrapping was used. Bootstrapping is a 
computationally simple way of obtaining prediction errors and probability distributions of 
the predictions. In its simplest form, bootstrapping assumes that the empirical data supply a 
probability distribution that can be sampled to derive uncertainty measures of functions 
(such as means, sums, and projected ultimates and reserves) based on the data. For instance, 
one could randomly sample loss development factors from each column of a triangle of loss 
development factors and use these to randomly compute new estimates of ultimates. 
However, because the size of the sample for each factor is limited, particularly for more 
mature development periods, a bootstrap procedure that uses all the observations on the 
triangle for each sampling has become popular with actuaries. The procedure is based on 
sampling from deviations of observations from their means. A description of the procedure 
is provided by England and Verrall (1999, 2002). The procedure is widely used in quantifying 
the uncertainty of loss reserve estimates. 

We refer to the implementation of the bootstrapping technique used here as the chain 
ladder bootstrap method. The approach is based on recreating many realizations of the 
incurred and paid triangles by sampling from a distribution of standardized deviations of 
incremental triangle values. The method uses link ratios to estimate the “expected” amounts 
in each cell of the loss development triangle. It then computes the deviation of the actual 
incremental loss value for an accident year and development age from its expected value. 
The paid and incurred link ratio methods were used in the bootstrapping. Based on the 
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outperformance of the adjusted paid ultimates above, our paid bootstrap analysis was 
performed on adjusted data only.  

The original and error-modified data for both the paid and incurred losses were passed 
through a mechanical bootstrapping process. The process used a freeware Microsoft Excel 
bootstrapping spreadsheet that is currently being distributed at a Limited Attendance 
Seminar on Reserve Variability11. The following broad steps were followed in the calculation: 

• A link ratio model was fitted to derive the best estimate of the development 
pattern underlying the data. Link ratio selections were based on a weighted 
average of all years of data.  

• An “expected triangle” of data was derived by applying the development factors 
backwards from the latest values on the diagonal of the triangle. Thus, the current 
latest point of each origin year can be arrived at by following the derived fitted 
loss development pattern precisely. 

• A triangle of raw incremental residuals was calculated by subtracting the actual 
data from the expected incremental data triangle. 

• Pearson residuals were derived from the raw residuals. The Pearson residual is a 
generalization of the well known z-score or standardized residual.  For the 
Pearson residual, the raw residual is divided by the square root of the variance of 
the expected value, which is dependent on the distribution assumed.  Under the 
assumption of normality, the Pearson residual and the z-score are the same. The 
Pearson residual is a concept commonly used in the generalized linear models 
context12: 

(4.2)   

 

• 5,000 simulations were run on each set of data. During each simulation, the 
adjusted residuals were sampled and added to the expected triangle to generate a 

                                                           
11 The seminar was sponsored in 2006 and 2007 by the Casualty Actuarial Society.  In November of 2007, the 
U.K. Actuarial Profession will sponsor the seminar for its members.  Significant modification of the formulas 
in the spreadsheet was required to tailor it to the datasets and methods used in the data quality experiment. 
12 Following the procedures described by England and Verrall (England and Verrall, 1999), the variance is 
assumed to be proportional to the expected value. 
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new data triangle. The link ratio projection method was then applied to each of 
the generated data triangles to produce an estimate of the ultimate losses.  The 
estimated ultimate losses resulting from this process reflect parameter (i.e., 
estimation) variance, but not process variance. 

• During each simulation, a parametric distribution assumption (the gamma 
distribution) was applied to add process variance to the future realizations of 
incurred and paid losses (to “square” the triangle). 

It should be noted that underlying the chain ladder bootstrap method is the assumption 
that the chain ladder is an appropriate model for the data.  Venter (1997) describes a number 
of statistical and graphical tests that can be performed to test the assumptions of the chain 
ladder. For the purposes of this “experiment,” we assumed that the chain ladder model was 
appropriate and used the bootstrap to create random samples of possible triangles and 
“true” ultimate losses and then tested the impact of various data quality impairments on the 
accuracy of estimated reserves.   

Bootstrap results for the total reserves were generated based on each of the complete 
unmodified, reduced unmodified, and error-modified data.  In addition, the “true” ultimates 
and reserves were computed for each simulation. The deviations of estimated from “true” 
reserves was then computed. Percentiles were calculated from the bootstrapped results. 

4.5.2 Results 

Table 4.4 presents some summary statistics from the bootstrap analysis using the incurred 
method for selected datasets. The datasets displayed are 1) the complete (i.e., all 18 years of 
data) clean dataset, 2) the 1986-1991 dataset, no errors, and 3) the complete 18-year dataset 
containing all six errors. The table also presents the distribution of “true” reserves. 
Descriptive statistics from the bootstrap are presented at the top of the table followed by a 
display of the results at various percentiles of reserves from the selected datasets.  

The table indicates that reserve distributions based on small datasets and on error-
modified datasets have a lot more variation than those reserve distributions based on clean 
data that includes the entire sample.  Note that the distribution of “actual” reserves includes 
process variance, while the distribution of reserve estimates from the various samples 
includes only parameter variance, i.e., variability from the estimates in reserves, while not 
reflecting how far the reserves are from the “true” simulated ultimate and its “true” reserve.  
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Also, note that the bootstrap sample that generated the 1st percentile of the actual reserve 
distribution may be different from the sample that generated the 1st percentile of the 
modified data sample.  While Table 4.4 provides information regarding the variability of 
estimates from different datasets, our focus is actually on the deviation of actual needed 
reserve from estimated reserves (or alternatively, of estimated ultimate loss from true 
ultimate loss).   

Table 4.4:  Bootstrap Results Based on Incurred Chain Ladder Method 

 Incurred Incurred Incurred Incurred 
 Actual Clean 1986-1991 Modified 
 Reserve Data Data Data 

Mean        178,677        181,257        159,743         341,943 

standard dev          27,034          25,927          47,282           41,760 
     
Percentile     
1%        118,025        123,185          28,726         104,951 
5%        134,744        140,407          74,652         127,661 
10%        144,637        148,772          98,521         140,483 
20%        156,301        159,570        122,800         155,756 
30%        164,503        167,227        139,616         166,702 
40%        171,097        174,247        152,335         175,493 
50%        177,926        180,991        163,383         184,596 
60%        185,082        187,202        174,401         193,748 
70%        192,162        194,103        185,269         203,228 
80%        200,151        202,399        198,520         213,917 
90%        214,139        214,794        215,468         231,400 
95%        224,207        225,016        230,045         244,574 
99%        243,599        244,943        259,289         268,835 

 

From each bootstrap simulation the difference or “error” between the reserve estimate 
and the “true” reserve13 was tabulated. Figure 4.8 displays the cumulative distribution of 
errors from the bootstrap experiment for the complete and incomplete data sets.    

                                                           
13 Note that the “true” reserve was also a stochastic variable that varied for each bootstrap simulation. 
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Figure 4.8: Distribution of Reserve Estimation Errors for Datasets of Different Sizes 
 
 
 
 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
This graph indicates that the “errors” are much larger for both paid and incurred reserve 
estimates for the incomplete data, and are largest for the 1986-1991 datasets.  It can also be 
observed that the incomplete data is more variable than the complete data and that, at the 
extreme low and high percentiles, the incomplete 1986-1991 paid and incurred datasets show 
very large deviations from the “true” values.  
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For each dataset and method the average error was computed and is displayed for all 
bootstraps in Table 4.5. From Table 4.5, it is also apparent that the overall bias of the 
estimated reserves is greater for the incomplete and error-modified data.  The table indicates 
that the incurred reserves using all years of clean data have minimal bias while the incurred 
estimates computed with data containing all six errors have a mean error approximately 
equal to 100% of the “true” reserve value of $170,000.  

 

Table 4.5:  Bias in Estimated Reserve by Method and Dataset 

 Paid Incurred
 Estimates Estimates 

Unmodified Data  
All Year Clean 1,196 (94) 
3-Year 4,238 214 
86-91 11,774 (21,605) 
Modified Data  
Change 1 31,716 21,861 
Change 2 10,915 6,556 
Change 3 (39,678) (36,779) 
All Changes 99,552 163,266 

 

Figures 4.9 and 4.10 display the average error of the cumulative distribution of errors for 
the data modified to contain inaccuracies.  For both adjusted paid estimates (Figure 4.9) and 
incurred estimates (Figure 4.10) the reserves based on the clean data are clearly more 
accurate and less uncertain than the modified data. 

The distributions and statistics from the bootstrap analysis confirm our original 
hypothesis—the accuracy of ultimate loss estimates based on poor quality data is 
significantly worse than the accuracy of ultimate loss estimates based on accurate data, and 
that the variability is significantly higher. While actuarial estimates usually contain 
uncertainty, when estimating loss reserves using data not processed through a rigorous 
quality review process, the uncertainty is likely to be much greater, and therefore the 
magnitude of any under- or over-estimation is likely much higher than for data that have 
been screened. 
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Figure 4.9:  Distribution of Reserve Estimation Errors for Paid Ultimates  

Based on Modified Data 
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Figure 4.10:  Distribution of Reserve Estimation Errors for Incurred Ultimates 

Based on Modified Data 
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estimates included certain modifications to the methodology.  These modifications included 
a Berquist-Sherman adjustment for accelerated settlement rates and a Bornhuetter-Ferguson 
method applied to the two most recent accident years.  Both adjustments require additional 
types of data not contained in the incurred and paid triangles. 

The stochastic approach, based on applying the chain ladder bootstrap procedure to the 
incurred and paid data, produced more consistent results.  The bias of the reserve estimates 
increased and their precision decreased for both the reduced datasets and the datasets 
containing inaccuracies.  For the datasets with inaccuracies, the dataset containing all six 
errors produced estimates with a large bias and extreme volatility.  As this represents an 
extreme scenario, we selected some of the errors to model individually. Each of these 
individual errors had a significant impact on the quality of the estimated reserve. 

Our research is only a beginning in examining the consequences to insurance companies 
of data quality problems. It was limited to one relatively small dataset. A variety of datasets 
from a variety of lines of business would provide a more complete picture of the impact of 
data quality problems on loss reserve estimates. In addition, we examined the effect of data 
quality on only one kind of insurance application. We did not address the effect of data 
quality problems on other common actuarial analyses such as pricing and classification 
reviews.  Also as insurance companies continue to expand their use of predictive models, a 
very data-intensive activity, actuaries and predictive modelers must be aware of the impact 
on their work of errors in large corporate databases and in the other external datasets relied 
on in building the models.  

The data quality experiment supports the conclusion that more accurate and complete, 
error-free data yields more accurate results.  Consequently, we believe our research indicates 
that the most efficient way to mitigate the consequences is to minimize errors in the data by 
ensuring that quality data enters systems, that errors are corrected promptly, and that the 
systems and processes handling the data are error-free. 

5. DATA QUALITY ADVOCACY 

Because actuaries are typically heavy users of data and must frequently contend with poor 
quality data, we believe actuaries should become data quality advocates. In the next section, 
we describe some actions that can be taken by actuaries and insurance company 
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managements to improve data quality.  

5.1 Data Quality Advocacy 

Currently, two organizations in the United States are working to increase the profile of 
data quality issues in the property/casualty insurance industry: 

o The CAS is sponsoring the Committee on Data Management and 
Information and the Data Management and Information Education Materials 
Working Party. The Working Party sponsors a number of activities, including 
presentations at seminars, and has authored two papers on data quality.  The 
Committee sponsors a Call Paper Program jointly with the IDMA on data 
management every other year. 

o The Insurance Data Management Association (IDMA) is an excellent source 
of information on insurance data quality. 

o The IDMA Web Site contains “value propositions” that describe the 
value of data quality from the perspective of various insurance 
stakeholders, e.g., senior management, claims, marketing, and actuaries. 

o The IDMA also sponsors an annual conference where data quality is 
typically a topic on the schedule and its Web site contains suggested 
readings on data quality. 

These are examples of data quality advocacy that can be undertaken by professional 
actuarial and industry organizations. More specific actions that can be taken to improve data 
quality within organizations are discussed next. 

5.1.1 Data Quality Measurement 

As a tool for promoting data quality improvement, a number of authors recommend 
regular measurement of an organization’s data quality (Dasu and Johnson, 2003; Redman, 
2001). Among the advantages of measurement noted by Redman14 are that measurement 
replaces anecdotal information with factual data, quantifies the severity of the problem, and 
identifies where the problems are so they can be acted upon. 

                                                           
14 Redman, p. 107 
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Some of the measures recommended by Dasu and Johnson quantify traditional aspects of 
quality data such as accuracy, consistency, uniqueness, timeliness, and completeness. Some 
capture systems-related aspects of data quality such as the extent of automation (sample 
some transactions, follow them through the database creation processes, and tabulate the 
number of manual interventions) and successful completion of end-to-end processes (count 
the number of instances in a sample that, when followed through the entire process, have 
the desired outcome). Yet others are intended to measure the consequences of data quality 
problems (measure the number of times in a sample that data quality errors cause errors in 
analyses, and the severity of those errors). Dasu and Johnson recommend that the different 
metrics be weighted together into an overall data quality index using business considerations 
and the analysts’ goals to develop weights. 

Redman points out that the most appropriate measure depends on the organization. An 
organization that is just beginning its data quality initiative probably only needs simple 
measures, while a more advanced organization might employ more sophisticated measures. 
Redman offers the following algorithm for implementing a simple data quality measure15: 

• determine who will take the action 

• select a business operation 

• select needed data fields 

• draw a small sample 

• inspect sampled records 

• estimate impact on business operation 

• summarize and present results 

• follow up 

5.1.2 Advocating Data Quality—Management Issues 

In this section we briefly summarize some of the recommendations in the data quality 
literature for implementing data quality programs.  

For data originating within one’s company, Redman suggests managing the information 

                                                           
15 Redman, p108 
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chain. Redman notes that most information is distributed horizontally. For instance, an 
information technology department programs and maintains a claims system that collects 
and stores claims data, and performs edits on data as they are entered. Claim adjusters record 
information into the claims system. Actuaries use the claims data, perhaps after aggregation 
by yet another department. The flow of this data is from department to department, not 
hierarchically. Redman notes that departments often do not communicate effectively with 
each other and this exacerbates data quality problems. He suggests that once departments 
understand the needs of the users of the data, they will be more motivated to satisfy those 
needs. Redman describes a formal program for information chain management including16  

• establish management responsibilities 

• describe information chain (information flow) 

• understand customer needs 

• establish measurement system 

• establish control and check performance 

• identify improvement opportunities 

• make improvements 

Redman suggests that some middle managers will resist data quality initiatives, thinking 
their jobs may be eliminated (because as data processes become more efficient fewer people 
are needed) and that managers should be assured that this will not occur. 

Redman advocates supplier management for data originating outside the company, 
stating, “The most difficult aspect of supplier management for most organizations is coming 
to the realization that they have contributed to the inadequate data quality they currently 
receive. They believe that these suppliers are simply incompetent, don’t care, don’t have 
enough good people or use old technology.”17  On the contrary, Redman suggests that 
organizations do not provide adequate communication and feedback to their data suppliers. 
Thus Redman suggests18 

• customers define for the supplier the quality of the data they need 
                                                           
16 Redman, p.162 
17 Redman, p. 154 
18 Redman, p.155 
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• the supplier measures baseline performance as to how well the requirements are 
met 

• the supplier and user agree on improvements 

• the supplier regularly remeasures performance 

5.2 Screening Data 

Even when data quality initiatives have been undertaken, actuaries and other analysts will 
need to screen their data. Moreover, a point made in the data quality literature (Redman and 
CAS DMIWP) is that everyone who uses data has a role in assuring its quality. A fairly 
extensive literature relevant to data quality exists in statistical journals and publications. This 
includes the tools of exploratory data analysis (EDA), pioneered by Tukey (Hartwig and 
Dearing, 1979 discuss Tukey’s contribution). Exploratory data analysis techniques are 
particularly useful for detecting outliers. While outliers, or extreme values, may represent 
legitimate data, they are often the result of data processing glitches and/or coding errors. 
The CAS DMIWP and Francis (CAS DMIWP, 2008; and Francis, 2005) describe a number 
of exploratory techniques useful for screening data and illustrate their application insurance 
data. Some of the EDA methods recommended include: 

• produce and examine descriptive statistics such as mean, median, minimum, 
maximum, and standard deviation of each numeric field 

• for categorical variables, tabulate the frequency of records in the database for 
each value of the categorical variable 

• tabulate the percentage of records with missing values for each variable 

• produce histograms of numeric fields (possibly on a log scale for loss amounts) 
and categorical variables 

• produce box-and-whisker plots of numeric fields (possibly on a log scale for loss 
amounts) 

• examine databases for records with duplicate values in fields which should be 
unique (such as claimant identifier) 

• apply multivariate techniques that screen multiple variables for outliers 
simultaneously or that screen for invalid combinations, e.g., state and ZIP Code.   
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5.2.1 Primer on Box-and-whisker Plots 

Simple summaries or descriptive statistics can be used to describe the basic characteristics 
of a database.  These statistics usually include the mean (either the arithmetic or geometric), 
median, mode, minimum, maximum, variance, and standard deviation. 

John Tukey introduced the box plot concept in 1977 as a visual tool for summarizing 
these descriptive statistics in a one dimensional chart.  A box plot (also known as a box-and-
whisker diagram or plot) is an easy-to-view, graphical way of depicting the five-number 
summary, which consists of the smallest observation, lower quartile (Q1), median, upper 
quartile (Q3), and largest observation.  The box plot also indicates which observations, if 
any, are considered unusual, or outliers.  Figure 5.1 compares the box plot against a 
probability density function for a normal N(0,1σ2) distribution and provides a pictorial for 
understanding the box plot.  The commonly used box-and-whisker plot incorporates a 
refinement of separately displaying outliers beyond the range of the “whiskers.”  The box-
and-whisker plot is a very useful graphical tool for EDA.  Appendix A shows an example of 
using it to screen data. 
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Figure 5.1: Schematic of the Box Plot from Wikipedia (www.wikipedia.org) 
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5.2.3.  Software for Screening Data 

The CAS DMIWP (CAS DMIWP, 2008) paper describes how to obtain many descriptive 
statistics and EDA graphs using Microsoft Excel.  In addition, a number of free open-source 
products, including the popular statistical language R, are available to analysts wishing to 
augment the capabilities of Microsoft Excel.  In this section we introduce a lesser known 
shareware software package, ViSta.  The ViSta software is an open source product with an 
exclusive focus on techniques for visualizing data.  Appendix A of this paper provides a brief 
introduction to ViSta and describes a procedure for importing data into the software.  The 
ViSta product is based on the XLisp language and the free statistical package XLisp-Stat. 
After data have been read by ViSta, it is relatively simple to create graphs using the 
software’s GUI menus.   

The book Visual Statistics (Young et al., 2006), which makes heavy use of the ViSta 
software, provides an excellent introduction to many graphs that are useful in EDA and in 
detecting data quality problems.  Other shareware software for visualizing data is also 
described by Young et al. (2006).  Appendix A also provides a number of examples of 
graphs useful for data screening that were created with ViSta. 

5.2.3.a Screening for duplicates 

The problem of redundant records (two records with identical values for a variable that 
should only have unique values in the database) is so widespread that at least one major 
statistical software vendor, SPSS, includes the capability of screening for duplicates in its 
base statistical package. An example of screening the claim sequence unique identifier 
variable from a database19 is presented below:  

 

                                                           
19 The data used in this example is also used in Appendix D and is described there. 
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Figure 5.7: Menu for Duplicate Screen/ Duplicate Report from SPSS 

 

 

 

 

 

 

  

 

 

 

 

Table 5.1: Indicator of Duplicate Case 
 

  Frequency Percent Valid Percent 
Cumulative 

Percent 
Duplicate Case 1 .1 .1 .1
Primary Case 1817 99.9 99.9 100.0

Valid 

Total 1818 100.0 100.0  
 

 

5.2.3.c Commercial software for automatically screening data 

SPSS recently began selling a Data Preparation add-on to its basic statistical software that 
performs many key data cleaning functions.  These include screening data for invalid values, 
identifying missing values and patterns of missing values, and identifying records with 
outlying (and possibly erroneous) values.   

While we are not aware of a similar package for the popular statistical software, SAS, 
Cody provides detailed recipes for programming data cleaning capabilities into SAS.  Some 
of his recipes make use of SQL, while others use some of SAS’s built-in procedures such as 
Proc Freq and Proc Univariate.  Here is a list of some common ones that can be used: 
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• Proc Compare is used for comparing the contents of two SAS datasets.   

• Proc Univariate is used to look for outliers in the output under the “Extreme 
Observations” section.   

• Proc Freq is used for finding duplicate records—essentially forming a “key” 
or concatenation of one or more fields on a record and then counting the 
number of observations in the dataset for each unique key.20 

• Proc Freq is also a descriptive as well as a statistical procedure that produces 
one-way to n-way frequency and crosstabulation tables. Frequency tables 
concisely describe your data by reporting the distribution of variable values.  
Crosstabulation tables, also known as contingency tables, summarize data for 
two or more classification variables by showing the number of observations 
for each combination of variable values. See Table 5.2 below for an Example 
of using Proc Freq to screen data. 

The availability of tools such SPSS Data Preparation and Cody’s data cleaning recipes can 
make the implementation of data screening procedures more efficient. In addition 
commercial availability of data screening tools likely raises general user awareness of the 
importance of data screening prior to an analysis. 

                                                           
20 See Cody, pg. 113 
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Table 5.2 Example of SAS’s Proc Freq for Age with Error 

 The FREQUENCY Procedure 
      
   Cumulative  Cumulative
 Age Frequency Percent Frequency Percent 
      
 0 1 0.06 1 0.06 
 14 1 0.06 2 0.11 
 16 2 0.11 4 0.23 
 17 7 0.4 11 0.62 
 18 4 0.23 15 0.85 
 19 12 0.68 27 1.53 
 20 20 1.13 47 2.66 
      
 75 1 0.06 1757 99.6 
 77 3 0.17 1760 99.77 
 81 3 0.17 1763 99.94 
 83 1 0.06 1764 100.00 

 

6. RESULTS AND CONCLUSIONS 

As discussed in Section 1, the GIRO Data Quality Working Party was formed because of 
the view that 

• data quality issues significantly impacted the work of general insurance actuaries 

• such issues could have a material impact on the results of general insurance 
companies 

The Working Party wants to encourage the insurance industry and the actuarial 
profession to improve practices for collecting and handling data and, in order to do so, 
much of our work was designed to test the accuracy of the statements in the two bullet 
points above. 

In Section 2, we highlighted a number of anecdotal incidents in which data errors had 
very serious repercussions.  

In Section 3, we discussed the results of a survey of general insurance actuaries that 
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demonstrated that data quality issues have a significant impact on the work they undertake. 
The survey indicated that, on average, about a quarter of the effort expended by actuarial 
teams is spent on data quality issues, and about a third of the projects they undertake are 
adversely affected by data quality issues. A wide range of responses was noted. One possible 
explanation for the wide range of responses within each area of practice is that, rather than 
being a sad fact of business, clients or actuaries or both can take action to improve the 
quality of the data actuaries use. 

In Section 4, we described an experiment we conducted in order to examine the impact 
of data issues on an insurer’s required claims reserves.  In order to test the effect of only 
having access to restricted information, we then created various subsets of the data that 
varied in their level of completeness. In addition, in order to test the effect of errors in the 
data, the dataset was modified to reflect the effect of various hypothetical data errors and 
various projections were repeated using the modified data.  From the results of this analysis, 
we drew the following conclusions: 

• There was some positive correlation between the number of historic evaluations 
in the dataset and the accuracy of the estimates although the strength of this 
relationship varied with the method used to project losses and the analytical 
approach (i.e., deterministic versus bootstrap). 

• Estimates based on unadjusted paid claims produced worse estimates than those 
based on incurred claims, presumably because they utilize less data (that is, the 
case reserve information is not used which particularly impacts immature years). 

• When data errors were introduced, the accuracy of the estimates deteriorated 
significantly. 

• When data errors were introduced, the volatility of the estimates increased. 

The outcome of the data experiment indicated that there is a significant increase in the 
uncertainty of results and a significant decrease in the accuracy of results when data quality 
problems are present. The errors resulting from poor data can significantly reduce the 
reliability of actuarial analyses, and this could have a direct effect on an insurer’s financial 
statements. 

Sections 2, 3, and 4 support the working party’s initial hypotheses that were stated at the 
start of this section, namely that  
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• data quality issues significantly impacted the work of general insurance actuaries. 

• data quality issues could have a material impact on the results of general insurance 
companies. 

It follows that, if insurers improved the quality of their data, it could have a number of 
highly beneficial effects: 

• profitability could increase 

• the accuracy and reliability of financial statements could increase 

• actuarial resources could be freed up (as well as resources in other areas such as 
finance and IT) to concentrate on other assignments that could add more value to 
the organization 

The GIRO Working Party believes that insurers should devote more time and resources 
to increasing the accuracy and completeness of their data by improving their practices for 
collecting and handling data. In particular, insurers would benefit from the investment of 
increased senior management time in this area. By taking such action, they could improve 
their efficiency and hence their profitability. 

The Working Party also believes that actuaries are well suited to be data quality advocates. 
In order to fulfill such a role, actuaries will need to familiarize themselves with the data 
quality literature, perhaps by reading one of the books recommended by the CAS Data 
Management Educational Materials Working Party or the IDMA. They will need to 
participate in data quality initiatives that manage data quality both from within their company 
and from external suppliers. Finally, even in the best of scenarios where both their internal 
and external suppliers initiate data quality programs, they will need to screen data for 
problems. Vigilance is never ending! 
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Supplementary Material 
Excel spreadsheets containing the data used in the data quality experiment as well as the spreadsheet 

containing the bootstrap procedure will be available on the CAS Web Site 
 
Appendix B:  Data for Experiment 

Appendix C:  Experiment Projections based on Unmodified Data 

Appendix D:  Experiment Projections based on “Erroneous” Data 
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Appendix A:  Exploratory Analysis Using The ViSta Visual Statistics System 

 
In this appendix we explain how to download and install the ViSta data visualization 

software.  We also alert potential users to some of ViSta’s limitations and unusual (and 
sometimes annoying) features. We then illustrate some graphs that are useful in data 
screening that can be obtained with ViSta. 

To download ViSta, go to http://forrest.psych.unc.edu/research/index.html.  You will 
see an image like one below: 

 

 
 

Going down the left side of the screen you will see several options offered including 
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“About ViSta,” “Download,” etc. Choose the download link. On the next screen, choose 
language (English, French, and Spanish) and an operating system (i.e., Windows, Macintosh, 
and Unix).  On the next screen, click download (for windows users, WinVista6.4). Then 
download the installation file to your hard drive. 

After downloading, run the ViSta installation file by clicking on it.  Once it is installed, 
visit the Users help screen on the ViSta Web Site and download the Users Guide which 
documents how to use the software.  ViSta also comes with a help menu that documents 
some of the system’s features.  As the documentation is somewhat sparse, a few key items 
are covered below. 

The first challenge to overcome is bringing data into ViSta.  Because ViSta is 
programmed in the XLisp language, it reads Lisp files.  However, it also has the capability of 
reading Excel files, text files and SAS files.  Since a lot of actuarial analyses are done in 
Excel, it is relatively easy to read data from Excel files once one becomes familiar with the 
actual procedure for performing this task.  Under the program menus for ViSta, there is an 
“Excel-ViSta” option similar to the drop-down shown below.  To get the drop down, click 
on your computer’s Start/All Programs menu items; then go to the ViSta6 option. When 
you place the mouse over “ViSta6”, you see the drop down. 

 

 
 
 

The first time the Excel-ViSta option is chosen, the user is asked to supply the location of 
the “Excel.exe” file.  This typically resides in the Program/Office directory, but its location 
should be identified by using the search option of Windows explorer before attempting to 
use Excel and ViSta together.  

Once the Excel-ViSta macros have been installed, the following procedure can be used to 
read data from Excel to ViSta: 
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• Launch ViSta. 

• In the ViSta Options tab at the top of the ViSta screen, select “Run Excel.” 

 
 

• When Excel is launched, make sure to enable macros. 

• From within Excel open the database you want to analyze. 

• Highlight all the data you want read into ViSta, while in Excel. 

• In Excel, click on the ViSta tab on the tool bars at the top of the worksheet, then 
click “Transfer Data to ViSta.” 
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• Wait a little while, until the ViSta screen appears. 

• Proceed with  your analysis. 

Graphs are typically created via the Data Menu in ViSta and then selecting Visualize Data. 

 

 
 

Data that is read into ViSta, whether in a text file or an Excel file, must be in a very 
specific format.  Any deviation from the format causes an error in attempting to read the 
data.  The first line must contain the word “Cells” in the left column and the variable names 
in subsequent columns.  The second line contains the word “Labels” in the left column and 
the variable type, either Category or Numeric, below the variable names. The left column is a 
record label or identifier.  The actual data begins in the third row. 
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Cells Attorney 

Involvement insurer 
Attorney involvement 

insured 
Primary 

Paid 
Labels Category Category Numeric 
37100360 Y N 250,000 
37100692 Y N 250,000 
39300680 Y N 300,000 
39400396 Y N 33,000 
39600234 Y N 40,000 
40100448 Y N 150,000 

 
 

A few other limitations of ViSta are: 

• Only up to 4 categorical variables are allowed in any one database, though the 
number of numeric variables does not seem to be limited 

• The categorical variables can have no more than 12 categories 

• After finishing the analysis on one Excel database, it is easiest to close ViSta and 
launch it again if you wish to use another Excel database.  However, multiple Lisp 
databases can be used without closing ViSta.  Once Excel data has been 
transferred to ViSta, it can be saved as a Lisp file. 

• We believe that ViSta will not perform well on very large databases.  We have 
used it on databases with up to 6,000 records. 

• To print a ViSta graph, it is necessary to first copy it (by clicking on it and typing 
control-C) to other software such as Microsoft Word. 

In addition, it can be helpful to join the ViSta users group (from the ViSta Web Site), as 
answers to user’s questions can be answered by another user. 

In summary, once initial challenges of using ViSta, especially those associated with 
transferring data to it, are overcome, ViSta provides some very useful visualization tools.  
We have provided only a cursory introduction to its graphical capabilities, which include 
dynamic graphs. A more thorough introduction to its capabilities is provided by Young et al. 
(2006). ViSta also provides some statistical functionality, including ANOVA, regression and 
principal components analysis. It has a number of limitations and does not appear to be 
suited for use on large databases. 
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Graphical examples 

Below we present a sample of graphs that are useful in data quality screening.  The graphs 
are based on publicly available closed claim data on work-related injuries from the Texas 
Department of Insurance Web Site.  Although some of the claims were closed without 
payment, most exceed a trigger of $10,000 that is used for collecting detailed information on 
a claim.  The fields available in the data include accident date, report date, settlement date, 
primary paid losses, total paid losses (all parties), claimant age, and injury type.   

To illustrate how these tools can be used to uncover potential data quality problems, 
errors were intentionally introduced into the data for some of the graphs.  A bold arrow 
points to the outliers or intentional errors.  We show illustrations for: 

•  Box-and-whisker Plots 

o Simple dot plots (Figure A.1) 

o Box Plots (Figure A.2) 

• Histogram-type Plots 

o Frequency Polygons (Figure A.3) 

o Histogram with smooth curve (Figure A.4) 

 Normal curve 

 Kernel smoothing21 

o Bar Plots (Figure5.6) 

                                                           
21 Kernel smoothing uses a non-parametric technique to fit a smooth curve to histogram data.  See Young et al. 
(2007) for a discussion of smoothing. 
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Figure A.1: Dot Plot for Claimant Age with Error 
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Figure A.2: Box-and-whisker Plot for Claimant Age with Error 
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Figure A.3: Frequency Polygon of Log of Primary Paid Losses – No Errors in Data
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Figure A.4: Histogram of Log of Primary Paid Losses – Errors in Data 
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Figure A.5. Bar Plot for Categorical Data  
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Appendix B
Cumulative Paid Losses

Accident Months of Development
   Year   12       24            36            48            60            72            84            96               108                  120                  132                  144                  156                  168                  180                  192                  204                  216         

1974 $267 $1,975 $4,587 $7,375 $10,661 $15,232 $17,888 $18,541 $18,937 $19,130 $19,189 $19,209 $19,234 $19,234 $19,246 $19,246 $19,246 $19,246
1975 310 2,809 5,686 9,386 14,884 20,654 22,017 22,529 22,772 22,821 23,042 23,060 23,127 23,127 23,127 23,127 23,159
1976 370 2,744 7,281 13,287 19,773 23,888 25,174 25,819 26,049 26,180 26,268 26,364 26,371 26,379 26,397 26,397
1977 577 3,877 9,612 16,962 23,764 26,712 28,393 29,656 29,839 29,944 29,997 29,999 29,999 30,049 30,049
1978 509 4,518 12,067 21,218 27,194 29,617 30,854 31,240 31,598 31,889 32,002 31,947 31,965 31,986
1979 630 5,763 16,372 24,105 29,091 32,531 33,878 34,185 34,290 34,420 34,479 34,498 34,524
1980 1,078 8,066 17,518 26,091 31,807 33,883 34,820 35,482 35,607 35,937 35,957 35,962
1981 1,646 9,378 18,034 26,652 31,253 33,376 34,287 34,985 35,122 35,161 35,172
1982 1,754 11,256 20,624 27,857 31,360 33,331 34,061 34,227 34,317 34,378
1983 1,997 10,628 21,015 29,014 33,788 36,329 37,446 37,571 37,681
1984 2,164 11,538 21,549 29,167 34,440 36,528 36,950 37,099
1985 1,922 10,939 21,357 28,488 32,982 35,330 36,059
1986 1,962 13,053 27,869 38,560 44,461 45,988
1987 2,329 18,086 38,099 51,953 58,029
1988 3,343 24,806 52,054 66,203
1989 3,847 34,171 59,232
1990 6,090 33,392
1991 5,451

Claims Closed with Payment

Accident Months of Development
   Year         12            24            36            48            60            72            84            96               108                  120                  132                  144                  156                  168                  180                  192                  204                  216         

1974 268 607 858 1,090 1,333 1,743 2,000 2,076 2,113 2,129 2,137 2,141 2,143 2,143 2,145 2,145 2,145 2,145
1975 294 691 913 1,195 1,620 2,076 2,234 2,293 2,320 2,331 2,339 2,341 2,343 2,343 2,343 2,343 2,344
1976 283 642 961 1,407 1,994 2,375 2,504 2,549 2,580 2,590 2,596 2,600 2,602 2,603 2,603 2,603
1977 274 707 1,176 1,688 2,295 2,545 2,689 2,777 2,809 2,817 2,824 2,825 2,825 2,826 2,826
1978 269 658 1,228 1,819 2,217 2,475 2,613 2,671 2,691 2,706 2,710 2,711 2,714 2,717
1979 249 771 1,581 2,101 2,528 2,816 2,930 2,961 2,973 2,979 2,986 2,988 2,992
1980 305 1,107 1,713 2,316 2,748 2,942 3,025 3,049 3,063 3,077 3,079 3,080
1981 343 1,042 1,608 2,260 2,596 2,734 2,801 2,835 2,854 2,859 2,860
1982 350 1,242 1,922 2,407 2,661 2,834 2,887 2,902 2,911 2,915
1983 428 1,257 1,841 2,345 2,683 2,853 2,908 2,920 2,925
1984 291 1,004 1,577 2,054 2,406 2,583 2,622 2,636
1985 303 1,001 1,575 2,080 2,444 2,586 2,617
1986 318 1,055 1,906 2,524 2,874 2,958
1987 343 1,438 2,384 3,172 3,559
1988 391 1,671 3,082 3,771
1989 433 1,941 3,241
1990 533 1,923
1991 339
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Cumulative Reported Claims

Accident Months of Development
   Year         12            24            36            48            60            72            84            96               108                  120                  132                  144                  156                  168                  180                  192                  204                  216         

1974 1,912 2,854 3,350 3,945 4,057 4,104 4,149 4,155 4,164 4,167 4,169 4,169 4,169 4,170 4,170 4,170 4,170 4,170
1975 2,219 3,302 3,915 4,462 4,618 4,673 4,696 4,704 4,708 4,711 4,712 4,716 4,716 4,716 4,716 4,716 4,717
1976 2,347 3,702 4,278 4,768 4,915 4,983 5,003 5,007 5,012 5,012 5,013 5,014 5,015 5,015 5,015 5,015
1977 2,983 4,346 5,055 5,696 5,818 5,861 5,884 5,892 5,896 5,897 5,900 5,900 5,900 5,900 5,900
1978 2,538 3,906 4,633 5,123 5,242 5,275 5,286 5,292 5,298 5,302 5,304 5,304 5,306 5,306
1979 3,548 5,190 5,779 6,206 6,313 6,329 6,339 6,343 6,347 6,347 6,348 6,348 6,348
1980 4,583 6,106 6,656 7,032 7,128 7,139 7,147 7,150 7,151 7,153 7,154 7,154
1981 4,430 5,967 6,510 6,775 6,854 6,873 6,883 6,889 6,892 6,894 6,895
1982 4,408 5,849 6,264 6,526 6,571 6,589 6,594 6,596 6,600 6,602
1983 4,861 6,437 6,869 7,134 7,196 7,205 7,211 7,212 7,214
1984 4,229 5,645 6,053 6,419 6,506 6,523 6,529 6,531
1985 3,727 4,830 5,321 5,717 5,777 5,798 5,802
1986 3,561 5,045 5,656 6,040 6,096 6,111
1987 4,259 6,049 6,767 7,206 7,282
1988 4,424 6,700 7,548 8,105
1989 5,005 7,407 8,287
1990 4,889 7,314
1991 4,044

Outstanding Claims

Accident Months of Development
   Year         12            24            36            48            60            72            84            96               108                  120                  132                  144                  156                  168                  180                  192                  204                  216         

1974 1,381 1,336 1,462 1,660 1,406 772 406 191 98 57 23 13 3 4 0 0 0 0
1975 1,289 1,727 1,730 1,913 1,310 649 358 167 73 30 9 6 4 2 2 1 1
1976 1,605 1,977 1,947 1,709 1,006 540 268 166 79 48 32 18 14 10 10 7
1977 2,101 2,159 2,050 1,735 988 582 332 139 66 38 27 21 21 8 3
1978 1,955 1,943 1,817 1,384 830 460 193 93 56 31 15 9 7 2
1979 2,259 2,025 1,548 1,273 752 340 150 68 36 24 18 13 4
1980 2,815 1,991 1,558 1,107 540 228 88 55 28 14 8 6
1981 2,408 1,973 1,605 954 480 228 115 52 27 15 11
1982 2,388 1,835 1,280 819 354 163 67 44 21 10
1983 2,641 1,765 1,082 663 335 134 62 34 18
1984 2,417 1,654 896 677 284 90 42 15
1985 1,924 1,202 941 610 268 98 55
1986 1,810 1,591 956 648 202 94
1987 2,273 1,792 1,059 626 242
1988 2,403 1,966 1,166 693
1989 2,471 2,009 1,142
1990 2,642 2,007
1991 2,366
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Outstanding Losses

Accident Months of Development
   Year         12            24            36            48            60            72            84            96               108                  120                  132                  144                  156                  168                  180                  192                  204                  216         

1974 $5,275 $8,867 $12,476 $11,919 $8,966 $5,367 $3,281 $1,524 $667 $348 $123 $82 $18 $40 $0 $0 $0 $0
1975 6,617 11,306 13,773 14,386 10,593 4,234 2,110 1,051 436 353 93 101 10 5 5 3 3
1976 7,658 11,064 13,655 13,352 7,592 4,064 1,895 1,003 683 384 216 102 93 57 50 33
1977 8,735 14,318 14,897 12,978 7,741 4,355 2,132 910 498 323 176 99 101 32 14
1978 8,722 15,070 15,257 11,189 5,959 3,473 1,531 942 547 286 177 61 67 7
1979 9,349 16,470 14,320 10,574 6,561 2,864 1,328 784 424 212 146 113 38
1980 11,145 16,351 14,636 11,273 5,159 2,588 1,290 573 405 134 81 54
1981 10,933 15,012 14,728 9,067 5,107 2,456 1,400 584 269 120 93
1982 13,323 16,218 12,676 6,290 3,355 1,407 613 398 192 111
1983 13,899 16,958 12,414 7,700 4,112 1,637 576 426 331
1984 14,272 15,806 10,156 8,005 3,604 791 379 159
1985 13,901 15,384 12,539 7,911 3,809 1,404 827
1986 15,952 22,799 16,016 8,964 2,929 1,321
1987 22,772 24,146 18,397 8,376 3,373
1988 25,216 26,947 17,950 8,610
1989 24,981 30,574 19,621
1990 30,389 34,128
1991 28,194
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Accident Earned TRUE
   Year   Exposures Ultimates

1974 11,000 19,256
1975 11,000 23,161
1976 11,000 26,400
1977 12,000 30,049
1978 12,000 31,991
1979 12,000 34,529
1980 12,000 35,984
1981 12,000 35,207
1982 11,000 34,418
1983 11,000 38,354
1984 11,000 37,175
1985 11,000 36,446
1986 12,000 46,777
1987 13,000 60,676
1988 14,000 75,418
1989 14,000 88,115
1990 14,000 90,938
1991 13,000 74,807

Closing Rates

Accident Months of Development
   Year         12            24            36            48            60            72            84            96               108                  120                  132                  144                  156                  168                  180                  192                  204                  216         

1974 0.278 0.532 0.564 0.579 0.653 0.812 0.902 0.954 0.976 0.986 0.994 0.997 0.999 0.999 1.000 1.000 1.000 1.000
1975 0.419 0.477 0.558 0.571 0.716 0.861 0.924 0.964 0.984 0.994 0.998 0.999 0.999 1.000 1.000 1.000 1.000
1976 0.316 0.466 0.545 0.642 0.795 0.892 0.946 0.967 0.984 0.990 0.994 0.996 0.997 0.998 0.998 0.999
1977 0.296 0.503 0.594 0.695 0.830 0.901 0.944 0.976 0.989 0.994 0.995 0.996 0.996 0.999 0.999
1978 0.230 0.503 0.608 0.730 0.842 0.913 0.963 0.982 0.989 0.994 0.997 0.998 0.999 1.000
1979 0.363 0.610 0.732 0.795 0.881 0.946 0.976 0.989 0.994 0.996 0.997 0.998 0.999
1980 0.386 0.674 0.766 0.843 0.924 0.968 0.988 0.992 0.996 0.998 0.999 0.999
1981 0.456 0.669 0.753 0.859 0.930 0.967 0.983 0.992 0.996 0.998 0.998
1982 0.458 0.686 0.796 0.875 0.946 0.975 0.990 0.993 0.997 0.998
1983 0.457 0.726 0.842 0.907 0.953 0.981 0.991 0.995 0.998
1984 0.428 0.707 0.852 0.895 0.956 0.986 0.994 0.998
1985 0.484 0.751 0.823 0.893 0.954 0.983 0.991
1986 0.492 0.685 0.831 0.893 0.967 0.985
1987 0.466 0.704 0.844 0.913 0.967
1988 0.457 0.707 0.846 0.914
1989 0.506 0.729 0.862
1990 0.460 0.726
1991 0.415
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Appendix C
Ultimate Losses - Incomplete Data

Ultimate Paid Losses
Paid Paid Paid BF Paid BF Paid BF Paid

Accident Ultimate Ultimate Ultimate Ultimate Ultimate Ultimate
   Year   All Years 3 Years 86 - 91 All Years 3 Years 86 - 91

1974 19,246       19,246     19,246     19,246           19,246          19,246         
1975 23,159       23,159     23,159     23,159           23,159          23,159         
1976 26,417       26,417     26,405     26,417           26,417          26,405         
1977 30,072       30,072     30,075     30,072           30,072          30,075         
1978 32,020       32,020     32,043     32,020           32,020          32,043         
1979 34,581       34,601     34,632     34,581           34,601          34,632         
1980 36,053       36,066     36,144     36,053           36,066          36,144         
1981 35,279       35,285     35,448     35,279           35,285          35,448         
1982 34,574       34,504     34,782     34,574           34,504          34,782         
1983 38,084       37,874     38,179     38,084           37,874          38,179         
1984 37,739       37,392     38,036     37,739           37,392          38,036         
1985 37,289       36,478     37,647     37,289           36,478          37,647         
1986 49,475       47,268     49,448     49,475           47,268          49,448         
1987 68,911       62,628     64,537     68,911           62,628          64,537         
1988 95,093       80,904     83,371     95,093           80,904          83,371         
1989 120,591     94,869     99,048     120,591         94,869          99,048         
1990 138,214     100,918   109,831   103,782         89,851          93,851         
1991 151,661     112,010   126,025   94,353           85,207          88,029         

Ultimate Adjusted Paid Losses
Adj Paid Adj Paid Adj Paid BF Paid BF Paid BF Paid

Accident Ultimate Ultimate Ultimate Ultimate Ultimate Ultimate
   Year   All Years 3 Years 86 - 91 All Years 3 Years 86 - 91

1974 19,246       19,246     19,246     19,246           19,246          19,246         
1975 23,159       23,159     23,159     23,159           23,159          23,159         
1976 26,417       26,417     26,393     26,417           26,417          26,393         
1977 30,072       30,072     30,046     30,072           30,072          30,046         
1978 32,012       32,010     31,991     32,012           32,010          31,991         
1979 34,554       34,553     34,550     34,554           34,553          34,550         
1980 35,996       35,997     36,026     35,996           35,997          36,026         
1981 35,231       35,221     35,291     35,231           35,221          35,291         
1982 34,433       34,425     34,579     34,433           34,425          34,579         
1983 37,775       37,762     38,041     37,775           37,762          38,041         
1984 37,185       37,175     37,774     37,185           37,175          37,774         
1985 36,470       36,453     37,219     36,470           36,453          37,219         
1986 46,967       47,097     48,564     46,967           47,097          48,564         
1987 60,881       61,689     63,395     60,881           61,689          63,395         
1988 76,147       78,056     80,216     76,147           78,056          80,216         
1989 78,998       84,925     87,181     78,998           84,925          87,181         
1990 77,709       88,184     92,645     79,397           84,345          87,230         
1991 103,048     103,760   122,619   81,361           82,649          85,370         

Ultimate Incured Losses
Incurred Incurred Incurred Adj Incurred Adj Incurred Adj Incurred

Accident Ultimate Ultimate Ultimate Ultimate Ultimate Ultimate
   Year   All Years 3 Years 86 - 91 All Years 3 Years 86 - 91

1974 19,246       19,246     19,246     19,246           19,246          19,246         
1975 23,162       23,162     23,162     23,162           23,162          23,162         
1976 26,450       26,450     26,364     26,450           26,450          26,450         
1977 30,077       30,074     29,910     30,077           30,074          30,074         
1978 31,997       32,001     31,747     32,020           32,031          32,031         
1979 34,548       34,538     34,211     34,583           34,596          34,596         
1980 35,982       35,978     35,548     36,030           36,043          36,043         
1981 35,181       35,210     34,665     35,260           35,258          35,258         
1982 34,344       34,411     33,805     34,484           34,483          34,483         
1983 37,780       37,856     37,206     37,976           37,980          37,980         
1984 36,821       37,053     36,301     37,229           37,227          37,227         
1985 36,183       36,637     35,778     36,709           36,821          36,821         
1986 46,069       47,092     45,959     47,005           47,281          47,163         
1987 59,577       61,020     59,731     60,692           61,307          61,108         
1988 74,101       74,995     73,507     73,655           75,356          75,112         
1989 87,227       84,445     82,575     79,835           83,423          82,907         
1990 97,147       92,393     88,169     81,257           90,445          89,432         
1991 91,612       93,242     82,327     85,596           97,272          92,953         
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Appendix D
Ultimate Losses - Modified Data

Ultimate Paid Losses
Paid Paid Paid Paid BF Paid BF Paid BF Paid BF Paid

Accident Ultimate Ultimate Ultimate Ultimate Ultimate Ultimate Ultimate Ultimate
   Year   Change 1 Change 2 Change 3 All Changes Change 1 Change 2 Change 3 All Changes

1974 19,246          19,246          19,246          19,246          19,246          19,246          19,246        19,246          
1975 23,159          23,159          23,159          23,127          23,159          23,159          23,159        23,159          
1976 26,417          26,417          26,417          26,397          26,417          26,417          26,417        26,417          
1977 30,072          30,072          30,072          30,070          30,072          30,072          30,072        30,072          
1978 32,020          32,020          32,020          32,035          32,020          32,020          32,020        32,020          
1979 34,581          34,590          34,581          34,576          34,581          34,590          34,581        34,590          
1980 36,053          36,065          36,053          36,065          36,053          36,065          36,053        36,065          
1981 35,279          35,288          35,279          35,287          35,279          35,288          35,279        35,288          
1982 72,471          34,600          34,574          72,411          72,471          34,600          34,574        34,600          
1983 37,486          38,099          38,084          37,446          37,486          38,099          38,084        38,099          
1984 -               37,789          37,739          -               -               37,789          37,739        37,789          
1985 37,414          37,353          37,289          41,679          37,414          37,353          37,289        37,353          
1986 50,083          49,636          49,475          63,723          50,083          49,636          49,475        49,636          
1987 70,906          69,419          68,911          95,852          70,906          69,419          68,911        69,419          
1988 99,986          96,302          95,093          146,063        99,986          96,302          95,093        96,302          
1989 131,146        123,191        120,591        26,622          131,146        123,191        120,591      123,191        
1990 158,013        143,701        65,422          124,043        110,507        105,534        76,153        105,534        
1991 183,037        159,489        138,776        206,227        99,707          95,636          88,821        95,636          

Ultimate Adjusted Paid Losses
Adj Paid Adj Paid Adj Paid Adj Paid BF Paid BF Paid BF Paid BF Paid

Accident Ultimate Ultimate Ultimate Ultimate Ultimate Ultimate Ultimate Ultimate
   Year   Change 1 Change 2 Change 3 All Changes Change 1 Change 2 Change 3 All Changes

1974 19,246          19,246          19,246          19,246          19,246          19,246          19,246        19,246          
1975 23,159          23,159          23,159          23,127          23,159          23,159          23,159        23,127          
1976 26,417          26,417          26,417          26,397          26,417          26,417          26,417        26,397          
1977 30,072          30,072          30,072          30,070          30,072          30,072          30,072        30,070          
1978 32,012          32,012          32,012          32,020          32,012          32,012          32,012        32,020          
1979 34,554          34,554          34,554          34,530          34,554          34,554          34,554        34,530          
1980 35,996          35,996          35,996          35,999          35,996          35,996          35,996        35,999          
1981 35,231          35,231          35,231          35,228          35,231          35,231          35,231        35,228          
1982 72,175          34,431          34,433          72,061          72,175          34,431          34,433        72,061          
1983 37,188          37,775          37,775          37,140          37,188          37,775          37,775        37,137          
1984 -               37,224          37,185          -               -               37,224          37,185        -               
1985 36,575          36,498          36,470          35,872          36,575          36,498          36,470        40,758          
1986 47,348          47,040          46,967          49,070          47,348          47,040          46,967        60,212          
1987 62,396          61,291          60,881          65,938          62,396          61,291          60,881        86,230          
1988 79,013          76,908          76,147          98,040          79,013          76,908          76,147        125,490        
1989 84,315          80,628          78,998          14,364          84,315          80,628          78,998        18,093          
1990 84,865          80,290          42,651          102,665        83,912          80,869          50,348        121,278        
1991 118,001        106,922        98,053          184,627        84,387          82,093          78,740        66,243          

Ultimate Incured Losses
Incurred Incurred Incurred Incurred

Accident Ultimate Ultimate Ultimate Ultimate
   Year   Change 1 Change 2 Change 3 All Changes

1974 19,246          19,246          19,246          19,246          
1975 23,162          23,162          23,162          23,130          
1976 26,450          26,450          26,450          26,430          
1977 30,077          30,077          30,077          30,075          
1978 31,997          32,001          31,997          32,015          
1979 34,548          34,546          34,548          34,528          
1980 35,982          35,981          35,982          35,982          
1981 35,181          35,172          35,181          35,172          
1982 72,196          34,345          34,344          72,087          
1983 37,041          37,761          37,780          36,966          
1984 -               36,815          36,821          -               
1985 36,220          36,172          36,183          40,695          
1986 46,031          46,065          46,069          59,299          
1987 59,897          59,651          32,221          79,368          
1988 75,538          74,519          69,942          118,947        
1989 89,341          87,952          82,331          50,573          
1990 102,929        99,297          62,892          124,885        
1991 105,256        96,438          82,932          174,007        
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Appendix B
Cumulative Paid Losses

Accident Months of Development
   Year   12       24            36            48            60            72            84            96               108                  120                  132                  144                  156                  168                  180                  192                  204                  216         

1974 $267 $1,975 $4,587 $7,375 $10,661 $15,232 $17,888 $18,541 $18,937 $19,130 $19,189 $19,209 $19,234 $19,234 $19,246 $19,246 $19,246 $19,246
1975 310 2,809 5,686 9,386 14,884 20,654 22,017 22,529 22,772 22,821 23,042 23,060 23,127 23,127 23,127 23,127 23,159
1976 370 2,744 7,281 13,287 19,773 23,888 25,174 25,819 26,049 26,180 26,268 26,364 26,371 26,379 26,397 26,397
1977 577 3,877 9,612 16,962 23,764 26,712 28,393 29,656 29,839 29,944 29,997 29,999 29,999 30,049 30,049
1978 509 4,518 12,067 21,218 27,194 29,617 30,854 31,240 31,598 31,889 32,002 31,947 31,965 31,986
1979 630 5,763 16,372 24,105 29,091 32,531 33,878 34,185 34,290 34,420 34,479 34,498 34,524
1980 1,078 8,066 17,518 26,091 31,807 33,883 34,820 35,482 35,607 35,937 35,957 35,962
1981 1,646 9,378 18,034 26,652 31,253 33,376 34,287 34,985 35,122 35,161 35,172
1982 1,754 11,256 20,624 27,857 31,360 33,331 34,061 34,227 34,317 34,378
1983 1,997 10,628 21,015 29,014 33,788 36,329 37,446 37,571 37,681
1984 2,164 11,538 21,549 29,167 34,440 36,528 36,950 37,099
1985 1,922 10,939 21,357 28,488 32,982 35,330 36,059
1986 1,962 13,053 27,869 38,560 44,461 45,988
1987 2,329 18,086 38,099 51,953 58,029
1988 3,343 24,806 52,054 66,203
1989 3,847 34,171 59,232
1990 6,090 33,392
1991 5,451

Claims Closed with Payment

Accident Months of Development
   Year         12            24            36            48            60            72            84            96               108                  120                  132                  144                  156                  168                  180                  192                  204                  216         

1974 268 607 858 1,090 1,333 1,743 2,000 2,076 2,113 2,129 2,137 2,141 2,143 2,143 2,145 2,145 2,145 2,145
1975 294 691 913 1,195 1,620 2,076 2,234 2,293 2,320 2,331 2,339 2,341 2,343 2,343 2,343 2,343 2,344
1976 283 642 961 1,407 1,994 2,375 2,504 2,549 2,580 2,590 2,596 2,600 2,602 2,603 2,603 2,603
1977 274 707 1,176 1,688 2,295 2,545 2,689 2,777 2,809 2,817 2,824 2,825 2,825 2,826 2,826
1978 269 658 1,228 1,819 2,217 2,475 2,613 2,671 2,691 2,706 2,710 2,711 2,714 2,717
1979 249 771 1,581 2,101 2,528 2,816 2,930 2,961 2,973 2,979 2,986 2,988 2,992
1980 305 1,107 1,713 2,316 2,748 2,942 3,025 3,049 3,063 3,077 3,079 3,080
1981 343 1,042 1,608 2,260 2,596 2,734 2,801 2,835 2,854 2,859 2,860
1982 350 1,242 1,922 2,407 2,661 2,834 2,887 2,902 2,911 2,915
1983 428 1,257 1,841 2,345 2,683 2,853 2,908 2,920 2,925
1984 291 1,004 1,577 2,054 2,406 2,583 2,622 2,636
1985 303 1,001 1,575 2,080 2,444 2,586 2,617
1986 318 1,055 1,906 2,524 2,874 2,958
1987 343 1,438 2,384 3,172 3,559
1988 391 1,671 3,082 3,771
1989 433 1,941 3,241
1990 533 1,923
1991 339
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Cumulative Reported Claims

Accident Months of Development
   Year         12            24            36            48            60            72            84            96               108                  120                  132                  144                  156                  168                  180                  192                  204                  216         

1974 1,912 2,854 3,350 3,945 4,057 4,104 4,149 4,155 4,164 4,167 4,169 4,169 4,169 4,170 4,170 4,170 4,170 4,170
1975 2,219 3,302 3,915 4,462 4,618 4,673 4,696 4,704 4,708 4,711 4,712 4,716 4,716 4,716 4,716 4,716 4,717
1976 2,347 3,702 4,278 4,768 4,915 4,983 5,003 5,007 5,012 5,012 5,013 5,014 5,015 5,015 5,015 5,015
1977 2,983 4,346 5,055 5,696 5,818 5,861 5,884 5,892 5,896 5,897 5,900 5,900 5,900 5,900 5,900
1978 2,538 3,906 4,633 5,123 5,242 5,275 5,286 5,292 5,298 5,302 5,304 5,304 5,306 5,306
1979 3,548 5,190 5,779 6,206 6,313 6,329 6,339 6,343 6,347 6,347 6,348 6,348 6,348
1980 4,583 6,106 6,656 7,032 7,128 7,139 7,147 7,150 7,151 7,153 7,154 7,154
1981 4,430 5,967 6,510 6,775 6,854 6,873 6,883 6,889 6,892 6,894 6,895
1982 4,408 5,849 6,264 6,526 6,571 6,589 6,594 6,596 6,600 6,602
1983 4,861 6,437 6,869 7,134 7,196 7,205 7,211 7,212 7,214
1984 4,229 5,645 6,053 6,419 6,506 6,523 6,529 6,531
1985 3,727 4,830 5,321 5,717 5,777 5,798 5,802
1986 3,561 5,045 5,656 6,040 6,096 6,111
1987 4,259 6,049 6,767 7,206 7,282
1988 4,424 6,700 7,548 8,105
1989 5,005 7,407 8,287
1990 4,889 7,314
1991 4,044

Outstanding Claims

Accident Months of Development
   Year         12            24            36            48            60            72            84            96               108                  120                  132                  144                  156                  168                  180                  192                  204                  216         

1974 1,381 1,336 1,462 1,660 1,406 772 406 191 98 57 23 13 3 4 0 0 0 0
1975 1,289 1,727 1,730 1,913 1,310 649 358 167 73 30 9 6 4 2 2 1 1
1976 1,605 1,977 1,947 1,709 1,006 540 268 166 79 48 32 18 14 10 10 7
1977 2,101 2,159 2,050 1,735 988 582 332 139 66 38 27 21 21 8 3
1978 1,955 1,943 1,817 1,384 830 460 193 93 56 31 15 9 7 2
1979 2,259 2,025 1,548 1,273 752 340 150 68 36 24 18 13 4
1980 2,815 1,991 1,558 1,107 540 228 88 55 28 14 8 6
1981 2,408 1,973 1,605 954 480 228 115 52 27 15 11
1982 2,388 1,835 1,280 819 354 163 67 44 21 10
1983 2,641 1,765 1,082 663 335 134 62 34 18
1984 2,417 1,654 896 677 284 90 42 15
1985 1,924 1,202 941 610 268 98 55
1986 1,810 1,591 956 648 202 94
1987 2,273 1,792 1,059 626 242
1988 2,403 1,966 1,166 693
1989 2,471 2,009 1,142
1990 2,642 2,007
1991 2,366
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Outstanding Losses

Accident Months of Development
   Year         12            24            36            48            60            72            84            96               108                  120                  132                  144                  156                  168                  180                  192                  204                  216         

1974 $5,275 $8,867 $12,476 $11,919 $8,966 $5,367 $3,281 $1,524 $667 $348 $123 $82 $18 $40 $0 $0 $0 $0
1975 6,617 11,306 13,773 14,386 10,593 4,234 2,110 1,051 436 353 93 101 10 5 5 3 3
1976 7,658 11,064 13,655 13,352 7,592 4,064 1,895 1,003 683 384 216 102 93 57 50 33
1977 8,735 14,318 14,897 12,978 7,741 4,355 2,132 910 498 323 176 99 101 32 14
1978 8,722 15,070 15,257 11,189 5,959 3,473 1,531 942 547 286 177 61 67 7
1979 9,349 16,470 14,320 10,574 6,561 2,864 1,328 784 424 212 146 113 38
1980 11,145 16,351 14,636 11,273 5,159 2,588 1,290 573 405 134 81 54
1981 10,933 15,012 14,728 9,067 5,107 2,456 1,400 584 269 120 93
1982 13,323 16,218 12,676 6,290 3,355 1,407 613 398 192 111
1983 13,899 16,958 12,414 7,700 4,112 1,637 576 426 331
1984 14,272 15,806 10,156 8,005 3,604 791 379 159
1985 13,901 15,384 12,539 7,911 3,809 1,404 827
1986 15,952 22,799 16,016 8,964 2,929 1,321
1987 22,772 24,146 18,397 8,376 3,373
1988 25,216 26,947 17,950 8,610
1989 24,981 30,574 19,621
1990 30,389 34,128
1991 28,194
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Accident Earned TRUE
   Year   Exposures Ultimates

1974 11,000 19,256
1975 11,000 23,161
1976 11,000 26,400
1977 12,000 30,049
1978 12,000 31,991
1979 12,000 34,529
1980 12,000 35,984
1981 12,000 35,207
1982 11,000 34,418
1983 11,000 38,354
1984 11,000 37,175
1985 11,000 36,446
1986 12,000 46,777
1987 13,000 60,676
1988 14,000 75,418
1989 14,000 88,115
1990 14,000 90,938
1991 13,000 74,807

Closing Rates

Accident Months of Development
   Year         12            24            36            48            60            72            84            96               108                  120                  132                  144                  156                  168                  180                  192                  204                  216         

1974 0.278 0.532 0.564 0.579 0.653 0.812 0.902 0.954 0.976 0.986 0.994 0.997 0.999 0.999 1.000 1.000 1.000 1.000
1975 0.419 0.477 0.558 0.571 0.716 0.861 0.924 0.964 0.984 0.994 0.998 0.999 0.999 1.000 1.000 1.000 1.000
1976 0.316 0.466 0.545 0.642 0.795 0.892 0.946 0.967 0.984 0.990 0.994 0.996 0.997 0.998 0.998 0.999
1977 0.296 0.503 0.594 0.695 0.830 0.901 0.944 0.976 0.989 0.994 0.995 0.996 0.996 0.999 0.999
1978 0.230 0.503 0.608 0.730 0.842 0.913 0.963 0.982 0.989 0.994 0.997 0.998 0.999 1.000
1979 0.363 0.610 0.732 0.795 0.881 0.946 0.976 0.989 0.994 0.996 0.997 0.998 0.999
1980 0.386 0.674 0.766 0.843 0.924 0.968 0.988 0.992 0.996 0.998 0.999 0.999
1981 0.456 0.669 0.753 0.859 0.930 0.967 0.983 0.992 0.996 0.998 0.998
1982 0.458 0.686 0.796 0.875 0.946 0.975 0.990 0.993 0.997 0.998
1983 0.457 0.726 0.842 0.907 0.953 0.981 0.991 0.995 0.998
1984 0.428 0.707 0.852 0.895 0.956 0.986 0.994 0.998
1985 0.484 0.751 0.823 0.893 0.954 0.983 0.991
1986 0.492 0.685 0.831 0.893 0.967 0.985
1987 0.466 0.704 0.844 0.913 0.967
1988 0.457 0.707 0.846 0.914
1989 0.506 0.729 0.862
1990 0.460 0.726
1991 0.415
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Appendix C
Ultimate Losses - Incomplete Data

Ultimate Paid Losses
Paid Paid Paid BF Paid BF Paid BF Paid

Accident Ultimate Ultimate Ultimate Ultimate Ultimate Ultimate
   Year   All Years 3 Years 86 - 91 All Years 3 Years 86 - 91

1974 19,246       19,246     19,246     19,246           19,246          19,246         
1975 23,159       23,159     23,159     23,159           23,159          23,159         
1976 26,417       26,417     26,405     26,417           26,417          26,405         
1977 30,072       30,072     30,075     30,072           30,072          30,075         
1978 32,020       32,020     32,043     32,020           32,020          32,043         
1979 34,581       34,601     34,632     34,581           34,601          34,632         
1980 36,053       36,066     36,144     36,053           36,066          36,144         
1981 35,279       35,285     35,448     35,279           35,285          35,448         
1982 34,574       34,504     34,782     34,574           34,504          34,782         
1983 38,084       37,874     38,179     38,084           37,874          38,179         
1984 37,739       37,392     38,036     37,739           37,392          38,036         
1985 37,289       36,478     37,647     37,289           36,478          37,647         
1986 49,475       47,268     49,448     49,475           47,268          49,448         
1987 68,911       62,628     64,537     68,911           62,628          64,537         
1988 95,093       80,904     83,371     95,093           80,904          83,371         
1989 120,591     94,869     99,048     120,591         94,869          99,048         
1990 138,214     100,918   109,831   103,782         89,851          93,851         
1991 151,661     112,010   126,025   94,353           85,207          88,029         

Ultimate Adjusted Paid Losses
Adj Paid Adj Paid Adj Paid BF Paid BF Paid BF Paid

Accident Ultimate Ultimate Ultimate Ultimate Ultimate Ultimate
   Year   All Years 3 Years 86 - 91 All Years 3 Years 86 - 91

1974 19,246       19,246     19,246     19,246           19,246          19,246         
1975 23,159       23,159     23,159     23,159           23,159          23,159         
1976 26,417       26,417     26,393     26,417           26,417          26,393         
1977 30,072       30,072     30,046     30,072           30,072          30,046         
1978 32,012       32,010     31,991     32,012           32,010          31,991         
1979 34,554       34,553     34,550     34,554           34,553          34,550         
1980 35,996       35,997     36,026     35,996           35,997          36,026         
1981 35,231       35,221     35,291     35,231           35,221          35,291         
1982 34,433       34,425     34,579     34,433           34,425          34,579         
1983 37,775       37,762     38,041     37,775           37,762          38,041         
1984 37,185       37,175     37,774     37,185           37,175          37,774         
1985 36,470       36,453     37,219     36,470           36,453          37,219         
1986 46,967       47,097     48,564     46,967           47,097          48,564         
1987 60,881       61,689     63,395     60,881           61,689          63,395         
1988 76,147       78,056     80,216     76,147           78,056          80,216         
1989 78,998       84,925     87,181     78,998           84,925          87,181         
1990 77,709       88,184     92,645     79,397           84,345          87,230         
1991 103,048     103,760   122,619   81,361           82,649          85,370         

Ultimate Incured Losses
Incurred Incurred Incurred Adj Incurred Adj Incurred Adj Incurred

Accident Ultimate Ultimate Ultimate Ultimate Ultimate Ultimate
   Year   All Years 3 Years 86 - 91 All Years 3 Years 86 - 91

1974 19,246       19,246     19,246     19,246           19,246          19,246         
1975 23,162       23,162     23,162     23,162           23,162          23,162         
1976 26,450       26,450     26,364     26,450           26,450          26,450         
1977 30,077       30,074     29,910     30,077           30,074          30,074         
1978 31,997       32,001     31,747     32,020           32,031          32,031         
1979 34,548       34,538     34,211     34,583           34,596          34,596         
1980 35,982       35,978     35,548     36,030           36,043          36,043         
1981 35,181       35,210     34,665     35,260           35,258          35,258         
1982 34,344       34,411     33,805     34,484           34,483          34,483         
1983 37,780       37,856     37,206     37,976           37,980          37,980         
1984 36,821       37,053     36,301     37,229           37,227          37,227         
1985 36,183       36,637     35,778     36,709           36,821          36,821         
1986 46,069       47,092     45,959     47,005           47,281          47,163         
1987 59,577       61,020     59,731     60,692           61,307          61,108         
1988 74,101       74,995     73,507     73,655           75,356          75,112         
1989 87,227       84,445     82,575     79,835           83,423          82,907         
1990 97,147       92,393     88,169     81,257           90,445          89,432         
1991 91,612       93,242     82,327     85,596           97,272          92,953         
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Appendix D
Ultimate Losses - Modified Data

Ultimate Paid Losses
Paid Paid Paid Paid BF Paid BF Paid BF Paid BF Paid

Accident Ultimate Ultimate Ultimate Ultimate Ultimate Ultimate Ultimate Ultimate
   Year   Change 1 Change 2 Change 3 All Changes Change 1 Change 2 Change 3 All Changes

1974 19,246          19,246          19,246          19,246          19,246          19,246          19,246        19,246          
1975 23,159          23,159          23,159          23,127          23,159          23,159          23,159        23,159          
1976 26,417          26,417          26,417          26,397          26,417          26,417          26,417        26,417          
1977 30,072          30,072          30,072          30,070          30,072          30,072          30,072        30,072          
1978 32,020          32,020          32,020          32,035          32,020          32,020          32,020        32,020          
1979 34,581          34,590          34,581          34,576          34,581          34,590          34,581        34,590          
1980 36,053          36,065          36,053          36,065          36,053          36,065          36,053        36,065          
1981 35,279          35,288          35,279          35,287          35,279          35,288          35,279        35,288          
1982 72,471          34,600          34,574          72,411          72,471          34,600          34,574        34,600          
1983 37,486          38,099          38,084          37,446          37,486          38,099          38,084        38,099          
1984 -               37,789          37,739          -               -               37,789          37,739        37,789          
1985 37,414          37,353          37,289          41,679          37,414          37,353          37,289        37,353          
1986 50,083          49,636          49,475          63,723          50,083          49,636          49,475        49,636          
1987 70,906          69,419          68,911          95,852          70,906          69,419          68,911        69,419          
1988 99,986          96,302          95,093          146,063        99,986          96,302          95,093        96,302          
1989 131,146        123,191        120,591        26,622          131,146        123,191        120,591      123,191        
1990 158,013        143,701        65,422          124,043        110,507        105,534        76,153        105,534        
1991 183,037        159,489        138,776        206,227        99,707          95,636          88,821        95,636          

Ultimate Adjusted Paid Losses
Adj Paid Adj Paid Adj Paid Adj Paid BF Paid BF Paid BF Paid BF Paid

Accident Ultimate Ultimate Ultimate Ultimate Ultimate Ultimate Ultimate Ultimate
   Year   Change 1 Change 2 Change 3 All Changes Change 1 Change 2 Change 3 All Changes

1974 19,246          19,246          19,246          19,246          19,246          19,246          19,246        19,246          
1975 23,159          23,159          23,159          23,127          23,159          23,159          23,159        23,127          
1976 26,417          26,417          26,417          26,397          26,417          26,417          26,417        26,397          
1977 30,072          30,072          30,072          30,070          30,072          30,072          30,072        30,070          
1978 32,012          32,012          32,012          32,020          32,012          32,012          32,012        32,020          
1979 34,554          34,554          34,554          34,530          34,554          34,554          34,554        34,530          
1980 35,996          35,996          35,996          35,999          35,996          35,996          35,996        35,999          
1981 35,231          35,231          35,231          35,228          35,231          35,231          35,231        35,228          
1982 72,175          34,431          34,433          72,061          72,175          34,431          34,433        72,061          
1983 37,188          37,775          37,775          37,140          37,188          37,775          37,775        37,137          
1984 -               37,224          37,185          -               -               37,224          37,185        -               
1985 36,575          36,498          36,470          35,872          36,575          36,498          36,470        40,758          
1986 47,348          47,040          46,967          49,070          47,348          47,040          46,967        60,212          
1987 62,396          61,291          60,881          65,938          62,396          61,291          60,881        86,230          
1988 79,013          76,908          76,147          98,040          79,013          76,908          76,147        125,490        
1989 84,315          80,628          78,998          14,364          84,315          80,628          78,998        18,093          
1990 84,865          80,290          42,651          102,665        83,912          80,869          50,348        121,278        
1991 118,001        106,922        98,053          184,627        84,387          82,093          78,740        66,243          

Ultimate Incured Losses
Incurred Incurred Incurred Incurred

Accident Ultimate Ultimate Ultimate Ultimate
   Year   Change 1 Change 2 Change 3 All Changes

1974 19,246          19,246          19,246          19,246          
1975 23,162          23,162          23,162          23,130          
1976 26,450          26,450          26,450          26,430          
1977 30,077          30,077          30,077          30,075          
1978 31,997          32,001          31,997          32,015          
1979 34,548          34,546          34,548          34,528          
1980 35,982          35,981          35,982          35,982          
1981 35,181          35,172          35,181          35,172          
1982 72,196          34,345          34,344          72,087          
1983 37,041          37,761          37,780          36,966          
1984 -               36,815          36,821          -               
1985 36,220          36,172          36,183          40,695          
1986 46,031          46,065          46,069          59,299          
1987 59,897          59,651          32,221          79,368          
1988 75,538          74,519          69,942          118,947        
1989 89,341          87,952          82,331          50,573          
1990 102,929        99,297          62,892          124,885        
1991 105,256        96,438          82,932          174,007        
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Abstract 
The capability for mortgage guaranty insurance companies to establish loss reserves conditioned on a 
dynamic risk characteristic, delinquency status, presents particular data issues. There is a need to collect, 
organize, warehouse, and analyze large data sets that contain loan-level detail over consecutive 
evaluation dates in order to measure the probability of claim, conditioned on delinquency status. The 
generally accepted methodology of reserving for mortgage guaranty insurance claim liabilities requires 
evaluation of dynamic risk characteristics because mortgage guaranty insurance companies need only 
reserve for loans currently delinquent, both known and IBNR. Because each loan’s delinquency status is 
usually revised monthly by the mortgage servicing company, the cohort of insured loans currently 
delinquent changes each month and therefore is dynamic with respect to time. Coincidentally, 
delinquency status has been found to be a strong predictor of future losses, so it is imperative for 
mortgage guaranty insurance companies to estimate reserves as a function of delinquency status, a 
dynamic risk characteristic. Maintaining historical economic factors in step with the historical 
delinquency and claim data can also enhance the reserving approach. 

________________________________________________________________________ 

1. INTRODUCTION 

The generally accepted methodology of reserving for mortgage guaranty insurance claim 
liabilities is to reserve for loans currently delinquent, both known and IBNR. Mortgage 
guaranty insurance companies do not reserve for loans insured but not delinquent [1]. 
Estimating reserves requires the evaluation of dynamic risk characteristics because each 
loan’s delinquency status is, typically, revised monthly by the mortgage servicing company. 
Therefore, the cohort of insured loans currently delinquent in a given month for which the 
mortgage guaranty insurance company needs to reserve changes each month and is dynamic 
with respect to time. Many delinquent loans do not result in a loss. However, the 
delinquency status of a loan is an established strong predictor of future losses [2], so it is 
imperative for mortgage guaranty insurance companies to estimate reserves as a function of 
delinquency status, a dynamic risk characteristic. 

The capability for mortgage guaranty insurers to establish loss reserves conditioned on 
delinquency status presents particular data issues. There is a need to collect, organize, 
warehouse, and analyze large data sets that contain loan-level detail over consecutive 
monthly evaluation dates in order to measure the probability of claim conditioned on 
delinquency status. When a loan becomes delinquent, it can maintain the same delinquency 
status, become progressively more delinquent, or move back and forth between delinquency 
stages before eventually resolving into one of two fates: it may become current in payments 
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and be considered cured, or it may remain in default and result in a claim.  There is then a 
need to track the eventual fate of each delinquency over consecutive monthly evaluations to 
its ultimate cure or claim.  

The ability to distinguish and quantify delinquency trips and subsequent fates for all 
delinquent loans and then aggregate that data along risk-characteristic dimensions to develop 
reserving factors requires data availability and storage over consecutive monthly evaluation 
dates. Otherwise, the capacity to track fates and calculate empirical conditional claim 
probabilities is lost in data uncertainties. The dynamic nature of loan delinquency status 
manifests itself in mortgage guaranty insurance reserving in two aspects: calculating 
conditional claim frequencies from historical delinquencies to create reserving factors and 
identifying the current cohort of delinquent loans that need reserves, both reported and 
unreported.  

2. BACKGROUND 

2.1 Mortgage Guaranty 

The Mortgage Guaranty Model Act of the NAIC defines mortgage guaranty insurance as 
insurance against financial loss by reason of nonpayment of principal, interest, or other sums 
agreed to be paid under the terms of any note or bond or other evidence of indebtedness 
secured by a mortgage, deed of trust, or other instrument constituting a lien or charge on 
real estate, providing the improvement on such real estate is designed for residential 
occupancy or industrial or commercial purposes [3]. 

The rationale for the existence of mortgage guaranty insurance is to disperse the credit 
risk of borrowers defaulting on their mortgages [4]. Lenders can offer borrowers mortgages 
more cheaply when the cost of mortgage insurance is factored in [4]. This is true because, 
like any insurable risk, the law of large numbers makes the variance around the mean smaller 
for more insured risks. Investors providing funds to the mortgage lenders (through several 
channels and ultimately the purchase of mortgage-backed securities) require lower returns 
when the credit enhancement of mortgage guaranty insurance is applicable and when this 
cost savings is more than the additional cost to the borrower [4]. In the end, the coupling of 
these phenomena allows more people to buy homes than would be able to otherwise. 

Mortgage guaranty insurance is considered a property and casualty line of business, but it 
has notable differences from more traditional property and casualty lines of business. 

The NAIC requires mortgage guaranty insurers to be monoline insurers. That is, in 
general, mortgage guaranty insurers are only allowed to underwrite mortgage guaranty 
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insurance and not other lines of business [5]. As a result, mortgage guaranty insurers 
generally diversify through geographic and temporal underwriting initiatives. Mortgage 
guaranty insurance losses are strongly correlated with macroeconomic events such as home 
price appreciation, unemployment, and interest rates [6]. Economic recessions tend to be 
concentrated regionally, so, to the extent a mortgage guaranty insurer is diversified 
geographically, the mortgage guaranty insurer’s performance should vary less. Further, 
because mortgage guaranty insurance losses are strongly correlated with macroeconomic 
events, loans insured over extended underwriting periods are affected. As a result, mortgage 
guaranty insurers benefit from having a portfolio of insured loans underwritten over an 
extended period of time because the houses of loans insured years ago tend to have 
appreciated more in home price than houses of loans insured recently. 

In contrast, traditional property and casualty insurers in general are allowed to underwrite 
multiple lines of business and often do so. A review of the 2006 annual statements for nearly 
3,100 U.S. property casualty insurance companies indicates that only 2% of the filed direct 
and assumed earned premium for calendar year 2006 was from monoline insurance 
companies as measured by Schedule P lines of business. 

Further, mortgage guaranty insurance policy terms are generally several years long and, 
depending on the amortization period of the mortgage, can be as long as 20 years. This is in 
contrast to traditional property and casualty policies with terms of one year or even six 
months. Additionally, the policies are generally noncancellable by the insurer except for 
nonpayment of premium. In other words, a policy can not be re-underwritten periodically as 
is common with traditional property and casualty lines of business. As a result, the premium 
rate schedule is stipulated at policy issuance. 

In general, mortgage guaranty insurers offer three types of premium payment: monthly, 
annual, and up-front. The majority of mortgage loan borrowers engage in policies requiring 
premium payment on a monthly basis. The mortgage loan borrower submits a payment to 
the mortgage loan servicer each month. Depending on the mortgage product, the monthly 
payment includes amounts for principal, interest, hazard insurance, property taxes, and 
mortgage guaranty insurance premium. The mortgage loan servicer then submits the 
mortgage guaranty insurance premium to the mortgage guaranty insurer on a monthly basis. 
The premium is earned immediately by the mortgage guaranty insurer, as there is not an 
unearned premium reserve affiliated with monthly policies. Much less frequently, the policy 
may call for annual premium payments instead of monthly and, depending on regulations 
and specifics, there may or may not be an unearned premium reserve. Finally, single up-front 
premium policies generally include a provision for an unearned premium reserve. 
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Another feature of mortgage guaranty insurance that differs from traditional property and 
casualty lines of business is the relationship between the beneficiary and the premium payer. 
In traditional property and casualty lines of business, the premium payer is also the 
beneficiary. For example, auto liability insureds pay premiums and are covered against 
liabilities against them. By contrast, in mortgage guaranty insurance, borrowers pay the 
premium, and in the event of default, the mortgagee is the beneficiary and is reimbursed by 
the mortgage guaranty insurance company. 

2.2 Reserving 

Property and casualty insurance companies are generally required to maintain loss and 
loss-expense reserves. Mortgage guaranty insurance companies are generally classified as 
property casualty insurance companies, so it follows that mortgage guaranty insurers must 
also maintain loss and loss-expense reserves (mortgage guaranty insurance is classified as line 
“S” Financial Guaranty/Mortgage Guaranty in Schedule P of annual statements for NAIC 
property and casualty insurance companies). 

The Mortgage Guaranty Model Act of the NAIC reads “A mortgage guaranty insurance 
company shall compute and maintain adequate case basis and other loss reserves which 
accurately reflect loss frequency and loss severity and shall include components for claims 
reported and for claims incurred but not reported, including estimated losses on: 

1. Insured loans which have resulted in the conveyance of property which remains 
unsold; 

2. Insured loans in the process of foreclosure; 

3. Insured loans in default for four months or for any lesser period which is defined as 
default for such purposes in the policy provisions; and 

4. Insured leases in default for four months or for any lesser period which is defined as 
default for such purposes in policy provisions.” 

As a note, mortgage guaranty insurance policy provisions generally stipulate that a loan is 
in default (a.k.a., delinquent) the moment one monthly payment is not made and until the 
time at which that payment and accrued interest have been repaid. 

The list of four items above presents particular data and projection issues for the actuary 
in estimating loss and loss-expense reserves. As mentioned previously, the delinquency status 
of the mortgage is a strong predictor of the likelihood of claim. Conveyance, foreclosure, 
and length of default indicate various delinquency statuses. Further, within default, the 
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duration in which the loan has been in default also provides information on the likelihood of 
a claim. In general, the longer a loan has been in default, the more likely the loan will not 
cure and potentially lead to a claim. As such, loans in default for three months tend to be 
more likely to cure than loans in default for nine months. To better estimate the reserve, it 
serves the actuary well to be able to differentiate the probability of claim between loans in 
default with various statuses (i.e., one month, two months, three months, etc.). In order to 
estimate the probability of claim conditioned on delinquency statuses, the actuary may want 
data on the resolution of historical delinquencies, given delinquency status. 

A reserving method commonly employed to estimate reserves consistent with the 
Mortgage Guaranty Model Act of the NAIC is a frequency-severity methodology. The 
frequency component of the method is incorporated by applying a probability of claim given 
that a loan is delinquent. In choosing the frequency factor (i.e., probability of claim 
conditioned on being delinquent), the reserving actuary will want to consider delinquency 
status, underwriting risk characteristics, and macroeconomic variables. Delinquency status 
can be based on the number of monthly payments missed or how long the loan has been 
consecutively delinquent. Potential underwriting risk characteristics include loan-to-value, 
borrower credit rating (e.g., FICO® Score), and property geography. Consideration for 
economic variables is addressed later in the article. 

The severity component of the frequency-severity method can be viewed either as one 
factor net of salvage/subrogation, or as two components: loss given default (before 
salvage/subrogation) and recovery (salvage/subrogation). As is typically assumed with the 
frequency-severity method, the severity factor is the estimate of loss given that a claim 
occurred. Because the severity factor is often conditioned on a claim having occurred, the 
actuary may not want the quantification of the severity factor to be a function of delinquency 
status, in which case the premise of challenges posed by a dynamic input variable is moot. 
However, to the extent the actuary wants to reflect the dynamic delinquency status as an 
input into the severity estimate, it would pose further challenges not addressed in this article. 
The challenge in particular is the need to track not only a binary result (i.e., cure or claim) 
but also a loss (potentially relative to a coverage amount) along a continuum with respect to 
the dynamic delinquency status from month to month. 

3. DATA ORGANIZATION 

There are two types of loan characteristics that must be stored: dynamic and static. Static 
characteristics are those that do not change over the lifetime of the loan.  The static 
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characteristics database will contain loan information that the actuary may want to use as 
dimensions in developing reserving factors.  Examples of static characteristics include 
original loan-to-value and borrower original FICO score.  The static characteristics can be 
stored in a single policy-record database that is updated as new policies are insured. 

Dynamic characteristics are those that can change monthly, such as delinquency status, 
and should be stored in a database that contains every monthly evaluation date.  The 
database of dynamic characteristics contains a record for every month of the loan’s lifetime 
and is compiled by appending the revised values each successive month.  The dynamic status 
needs to be stored for every monthly evaluation so that historical delinquency cohorts and 
their fates can be accurately reconstructed and analyzed. 

Size requirements and processing time may make it infeasible or impractical to store all 
attributes of all loans at every month, thus the segregation between the static and dynamic 
databases. Further, it is not necessary to store the static characteristics along with the 
dynamic fields. Consider the database size necessary to store monthly records of 100 fields 
for 100,000 loans for 156 months (a single book year of business over its lifetime) when only 
five of the 100 fields can change during the loan’s lifetime. Then repeat this to add five book 
years of business. Clearly the database size will grow rapidly. It suffices to have a unique 
primary key ID field in the two databases such that information from the databases can be 
merged one-to-many correctly. The field typically used for this purpose is the policy’s 
certificate number and is generally assigned by the mortgage guaranty insurer. 

Before data storage space became relatively abundant and inexpensive in recent years, 
historical performance data was frequently purged or overwritten. One result of this practice 
is a “data vacuum,” where information on prior delinquencies of a loan that cured is lost 
when the loan again becomes delinquent later on. In this instance, “prior delinquencies” for 
a particular mortgage guaranty insurance policy refer to all delinquencies except the most 
recent one. The absence of exhaustive historical performance data will almost always occur if 
only a single record with key status dates is kept for each insured loan policy, as opposed to 
storing delinquency information from every monthly evaluation date in the dynamic 
characteristics database. Overwriting key historical status dates, or purging, makes it 
impossible to reconstruct or analyze the delinquency behavior and exposure over time. 

Other data organizational challenges may occur if the mortgage guaranty insurance 
company does not keep delinquency and claims information in the same database 
environment because the two types of data are handled by different departments. This 
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makes it challenging to match delinquency cohorts and resolution fates, particularly if the 
separate departments store data with incompatible database systems or key ID fields. 

The preferred time window for collection and storage of loan-level data is, simply, as long 
as is possible. Data availability will determine, in part, the constraints of the analysis. 
Obviously, newer companies will have less performance data accumulated than older 
companies. At a minimum, to develop frequency and severity factors, there need to be 
enough consecutive months of complete data to observe a credible amount of delinquency 
resolutions. The more granular the reserving methodology, the more voluminous the data 
must be. 

The time window of delinquency performance data should be long enough to allow many 
historical cohorts of delinquent loans to fully resolve into cure or claim. Although data 
maintained only quarterly can be used for such analyses, it reduces both the amount of data 
available to build credibility for analysis and the resolution of the analysis. Quarterly interval 
data also requires the use of additional assumptions because a loan could cure and become 
delinquent again during the three-month interval comprising a quarter, resulting in decay of 
the resolution accuracy of delinquency performance. Also, the mortgage guaranty insurance 
company need only carry reserves when the loan is delinquent. 

Ideally, the historical time window the actuary considers for analysis should be long 
enough to capture an entire economic cycle, because delinquency, foreclosure, and claim 
rates are influenced by economic factors (e.g., unemployment rate) [6]. If the insurer’s 
volume or product mix is volatile or heterogeneous, the ideal time window would capture 
behavior changes that could result from these changes and shifts. Also, mortgage insurance 
policies have extended policy terms relative to other property and casualty insurance policies, 
so the time window also should be long enough to observe the claims development for 
several policy years of business from inception to ultimate resolution.  

Not only is the historical time period of data collection important, it is also imperative 
that the periods for which data are collected be contiguous. If there are “holes” where some 
months of delinquency activity are absent, it is impossible in many cases to determine the 
ultimate fate of any loan actively delinquent prior to and leading into the missing evaluation 
date. Further, the delinquency cohorts of the missing months cannot be used for data 
analysis. Data holes arise for various reasons. A loan-servicing company may not report to 
the mortgage guaranty insurer at every monthly evaluation date. Consultants have client 
relationships that may not be engaged in perpetuity, in which case the client would not 
provide data to the consultant when there is not an active engagement. If the client-
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consultant relationship re-engages, the performance data from the period of relationship 
inactivity may no longer be available in its entirety because it was purged by the client for 
storage reasons or because the client contractually cannot provide the consultant with data 
from that period.  

Despite the hole of historical performance data and its negative consequences, it may be 
possible to salvage information from the data. Although each data hole can lead to a 
significant loss in full information on many loans, depending on the number of policies in 
force, there may still be complete information on enough loans for credible analysis. The 
actuary will need to determine on a case-by-case basis whether enough information remains. 
Unfortunately, in addition to there being less information available to harvest from an 
incomplete historical data set, the amount of effort required to compensate for the 
inadequacies can also be far more than with a full data set. The actuary’s programming code 
may require more “do loops,” “if-then-else” conditions, and likely run-time. When there are 
data holes, there is less information on what has happened to a delinquency and, thus, there 
are more fate conditions or resolution possibilities to be considered. In some cases, it may be 
impossible to extract any information from the vicinity of the data hole.  

The desired data organization is comprised of two databases that have been maintained 
for a period long enough to contain a credible amount of resolutions on delinquent loans. 
Both databases have a unique or key ID field specific to each loan, typically loan number or 
certificate number. Further, the unique ID per loan should be the same across databases. 
One database contains a single record for each loan, sometimes called the master policy file, 
of static loan and borrower characteristics (e.g., underwriting characteristics) that do not 
change over the life of the loan or that identify when the loan became inactive (termination 
or claim). Records for newly issued insurance policies can be appended to this database as 
new policies are written. 

The second database is made up of dynamic loan characteristics that can change monthly 
and, therefore, it is updated monthly. However, just because it is updated monthly does not 
mean old information should be purged to make way for the new information. For each 
insured policy, the database of dynamic loan characteristics contains each evaluation date 
applicable to that policy and the dynamic status of each loan as of each of those dates. 
Specifically, the database of dynamic loan characteristics contains information on whether 
the loan is in force (an active policy) or not in force and the loan’s status (current, 
delinquent, claim) for each evaluation date. As a note, a current, or nondelinquent, loan that 
is no longer in force is a terminated loan that is no longer insured by the mortgage guaranty 
company. 
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3.1 Storage Considerations 

By including dynamic date and status fields in the master policy database, which would 
need to be updated monthly, accurate delinquency histories can be constructed from 
dynamic databases that contain only the delinquent loans from each evaluation date. Some 
additional fields needed for reconstruction are current delinquency status and the date the 
loan achieved current delinquency status. 

Warehousing only delinquent loans in the dynamic database requires more assumptions, 
merging, and date logic to program and process than using a dynamic database that tracks all 
loans ever written at every evaluation date; however, the decrease in data storage and 
program-processing-time requirements may make this organization more desirable than the 
“desired” organization described above. The design decision on how to organize the 
database will be based on the business requirements of the user and the hardware and 
software platforms that will support the data. If all loans ever written are included in the 
dynamic database, there is no ambiguity associated with an omitted loan. Examples of 
ambiguity include delinquency status as of evaluation dates and whether the loan is in force 
or terminated. By storing only delinquent loans as of each evaluation date, a loan may not 
appear at a given evaluation date for at least two reasons: the loan is no longer delinquent or 
there has been a data error. If all loans ever written are in the dynamic database, an omitted 
loan indicates a data error, either because the loan was accidentally omitted or because the 
loan did not belong to the mortgage guaranty insurance company and should be removed. 
However, depending on the size and age of the business, these files can rapidly become quite 
large. Clearly, warehousing only delinquent loans will use less storage than keeping a monthly 
status on all loans ever written. 

4. DATA PROCESSING 

A delinquency cohort is the group of all loans delinquent as of the reserving evaluation 
date. Consider the following table, which presents a simplistic example of five loans over six 
months. The group of all delinquent loans at each evaluation date comprises six delinquency 
cohorts. Note that a particular loan delinquent for, say, three consecutive months will be 
part of those three delinquency cohorts. Table 1 is an example of the record layout from a 
dynamic characteristics database with four fields added for processing the data. Columns 
A-D come from the dynamic characteristics database (column A is implicit and shown for 
explanatory purposes), whereas columns E-H are added on during the program processing. 
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Table 1.  

A B C D E F G H 
Record # Evaluation Date Loan ID Status* Delq Delq Trip Cure Claim 

1 Jan-06 1 0     
2 Jan-06 2 30     
3 Jan-06 3 90     
4 Jan-06 4 60     
5 Jan-06 5 0     
6 Feb-06 1 0     
7 Feb-06 2 30     
8 Feb-06 3 90     
9 Feb-06 4 0     
10 Feb-06 5 30     
11 Mar-06 1 30     
12 Mar-06 2 30     
13 Mar-06 3 120     
14 Mar-06 4 30     
15 Mar-06 5 60     
16 Apr-06 1 0     
17 Apr-06 2 30     
18 Apr-06 3 FCL     
19 Apr-06 4 60     
20 Apr-06 5 30     
21 May-06 1 30     
22 May-06 2 30     
23 May-06 3 FCL     
24 May-06 4 FCL     
25 May-06 5 0     
26 Jun-06 1 0     
27 Jun-06 2 30     
28 Jun-06 3 CLM     
29 Jun-06 4 CLM     
30 Jun-06 5 0     
* 0 = Current; 30, 60, 90, 120 = days past missed mortgage payment; FCL = foreclosure; CLM = claim 

 

(Note: Loans need not progress through delinquency categories consecutively or 
unidirectionally. For example, a loan can go from 90 days delinquent to 120 days delinquent 
to 30 days delinquent over three consecutive months. The jump backward from 120 days 
delinquent to 30 days delinquent in just one month can occur when the borrower makes up 
for several missed monthly mortgage payments at once).  

The goal in processing the data is to determine the fate of each loan for every month it is 
delinquent, while distinguishing delinquency trips, so that claim ratios can be calculated for 
each cohort of loans. Delinquency trips are important because if a loan cures, it no longer 
needs a reserve. If a loan cures on a given delinquency trip but then becomes delinquent and 
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results in a claim at a later date on a subsequent delinquency trip, the former delinquency trip 
should not result or tally as a claim. The earlier delinquency trip should get full credit for the 
cure because, as discussed earlier, mortgage guaranty insurance companies do not reserve on 
ultimate claims for all insured loans, but only for losses related to loans that are currently 
delinquent and will not cure before leading to the insurance loss. Once delinquency fates are 
determined, the empirical conditional probability of claim for each monthly delinquency 
cohort and each delinquency status can be calculated via aggregation. Tallies are summed by 
delinquency cohort and risk characteristics and then claim probability is calculated as 
number of claims divided by number of delinquencies. This process is illustrated later.  

Delinquency fates are determined by looking forward in time from each evaluation 
month to determine the resolution of each delinquency. Table 2 shows Table 1 condensed 
and tallied for Loan ID 3. 

Table 2. 

A B C D E F G H 
Record # Evaluation Date Loan ID Status* Delq Delq Trip Cure Claim 

3 Jan-06 3 90 1 1 0 1 
8 Feb-06 3 90 1 1 0 1 
13 Mar-06 3 120 1 1 0 1 
18 Apr-06 3 FCL 1 1 0 1 
23 May-06 3 FCL 1 1 0 1 
28 Jun-06 3 CLM 0 1 0 1 
* 0 = Current; 30, 60, 90, 120 = days past missed payment; FCL = foreclosure; CLM = claim; columns E-H 
quantified via binary 0/1 

 

Considering the delinquency cohort as of January 2006 (from record #3), Loan ID 3 is 90 
days past due. Loan ID 3 becomes progressively more delinquent until Loan ID 3 results in 
a claim in June 2006. Loan ID 3 has a single delinquency trip that results in a claim in June 
2006 (record #28). Therefore, for the delinquency cohort January 2006, delinquency 
category 90, Loan ID 3 results in a claim and is tallied as such in column H. Similarly, for 
delinquency cohort March 2006 (from record #13), delinquency category 120, Loan ID 3 
results in a claim and is tallied as such in column H. This does not mean there are multiple 
claims on Loan ID 3, but rather, it is affiliated with multiple delinquency cohorts. 

Alternatively, consider Table 3, condensed from Table 1, which highlights Loan ID 4. 
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Table 3. 

A B C D E F G H 
Record # Evaluation Date Loan ID Status* Delq Delq Trip Cure Claim 

4 Jan-06 4 60 1 1 1 0 
9 Feb-06 4 0 0 NA NA NA 
14 Mar-06 4 30 1 2 0 1 
19 Apr-06 4 60 1 2 0 1 
24 May-06 4 FCL 1 2 0 1 
29 Jun-06 4 CLM 0 2 0 1 
* 0 = Current; 30, 60, 90, 120 = days past missed mortgage payment; FCL = foreclosure; CLM = claim 

 

In delinquency cohort January 2006 (from record #4), Loan ID 4 is 60 days past due on 
its first delinquency trip and results in a cure. This is because Loan ID 4 becomes current on 
payments during February 2006 (from record #9). However, for the evaluation months and 
delinquency cohorts that follow, Loan ID 4 tallies fate as a claim because its resolution from 
delinquency trip 2 results in a claim. Note that the hindsight delinquency segregation, 
categorization, and tallying can only occur because there is a contiguous history of 
delinquency status and evaluation dates. As previously mentioned, in practice, the mortgage 
guaranty insurance company only needs to reserve for a loan whenever it is delinquent or 
during any of the monthly cohorts in the tables where Delq = 1 (column E).  
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For completeness, Table 4 presents all the fate tallies from the dynamic characteristics 
database presented in Table 1. 

Table 4. 

A B C D E F G H 
Record # Evaluation Date Loan ID Status* Delq Delq Trip Cure Claim 

1 Jan-06 1 0 0 NA NA NA 
2 Jan-06 2 30 1 1 0 0 
3 Jan-06 3 90 1 1 0 1 
4 Jan-06 4 60 1 1 1 0 
5 Jan-06 5 0 0 NA NA NA 
6 Feb-06 1 0 0 NA NA NA 
7 Feb-06 2 30 1 1 0 0 
8 Feb-06 3 90 1 1 0 1 
9 Feb-06 4 0 0 NA NA NA 
10 Feb-06 5 30 1 1 1 0 
11 Mar-06 1 30 1 1 1 0 
12 Mar-06 2 30 1 1 0 0 
13 Mar-06 3 120 1 1 0 1 
14 Mar-06 4 30 1 2 0 1 
15 Mar-06 5 60 1 1 1 0 
16 Apr-06 1 0 0 NA NA NA 
17 Apr-06 2 30 1 1 0 0 
18 Apr-06 3 FCL 1 1 0 1 
19 Apr-06 4 60 1 2 0 1 
20 Apr-06 5 30 1 1 1 0 
21 May-06 1 30 1 2 1 0 
22 May-06 2 30 1 1 0 0 
23 May-06 3 FCL 1 1 0 1 
24 May-06 4 FCL 1 2 0 1 
25 May-06 5 0 0 NA NA NA 
26 Jun-06 1 0 0 NA NA NA 
27 Jun-06 2 30 1 1 0 0 
28 Jun-06 3 CLM 0 1 0 1 
29 Jun-06 4 CLM 0 2 0 1 
30 Jun-06 5 0 0 NA NA NA 
* 0 = Current; 30, 60, 90, 120 = payment days past due; FCL = foreclosure; CLM = claim 

 

In practice, there are not 30 records for five loans to analyze, but potentially millions of 
records for hundreds of thousands of loans. At the end of 2006, the private mortgage 
insurance industry had nearly $800 billion of primary insurance in force [7]. This tallying 
procedure is executed with a programming language that can handle the logic of do loops 
and consecutive record comparison, so that key ID fields, delinquency statuses, and 
evaluation dates can be compared and processed. Two examples of programming languages 
that can accomplish these tasks are C++ and Visual Basic. For each record, tallies depend on 
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what happens in later records for the same certificate number and delinquency trip. 
Delinquency trip is determined by delinquency status and evaluation date, as was illustrated 
with Loan ID 4 in Table 3. 

Table 5 illustrates the aggregation of tallies and calculation of empirical claim rate for one 
delinquency cohort, March 2006. Column 3 shows three delinquent loans of status 30. These 
are Loan IDs 1, 2, and 4 from record numbers 11, 12, and 14. Loan ID 1 results in a cure, 
for a sum of 1 for cure, status 30, in column D. Loan ID 2 is still delinquent at the end of 
the time window under consideration. The empirical claim rate can only be calculated based 
on those loans whose fate, or resolution, is known. Therefore, unresolved loans should be 
excluded from the calculation. Loan ID 4 results in a claim, for a sum of 1 for claim, status 
30, in column E. Column G is calculated as the number of claims for the status divided by 
the number of resolved delinquencies, or the sum of cures and claims. 

Table 5. 

A B C D E F = D+E G = E/F 
Delinquency 

Cohort Status* Delqs Cures Claims Resolved Delqs
Claim Rate on Resolved 

Delinquencies 
Mar-06 30 3 1 1 2 50% 
Mar-06 60 1 1 0 1 0% 
Mar-06 90 0 0 0 0 NA 
Mar-06 120 1 0 1 1 100% 
Mar-06 FCL 0 0 0 0 NA 

*30, 60, 90, 120=payment days past due; FCL= foreclosure 

 

As a note, it may also be of interest to the reserving actuary to calculate the maximum 
possible claim rate for a delinquency category. In the previous example, the max claim rate 
would be 67% (two-thirds). The ratio is calculated by summing every claim plus unresolved 
delinquencies (assumes all unresolved loans with claim) divided by number of loans in the 
delinquency cohort (3). 

When fates are comprehensively tallied, the loan risk characteristics from the static 
database can be merged onto each record, such that resolution ratios (i.e., probability of 
claim versus probability of cure) for each cohort can be calculated along various risk 
dimensions. The fewer fields within each record to be processed, the more program run 
performance is optimized; therefore, record-by-record tallying is best done prior to merging 
the static characteristics. The risk dimensions that can or should be used depend on the 
robustness of the data and the judgment of the actuary (and are beyond the scope of this 
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discussion). Table 5 shows the most basic risk-dimension calculation based only on 
delinquency status and not including other characteristics. 

Table 6 presents an example of what summarized tallies might look like for a single 
delinquency cohort aggregated along the risk dimension loan-to-value (the ratio of loan 
amount to purchase price). In general, the higher the percentage of loan relative to the 
home’s value, the larger the likelihood of default and, similarly, claim. In general, higher 
loan-to-value ratios result in borrowers with less equity in the property and therefore less to 
lose in the case of default, versus borrowers with loans that have low loan-to-value. As 
mentioned previously, in general, the more severely a loan’s delinquency status has 
progressed along the spectrum of delinquency status (i.e., 30, 60, 90+, FCL), the higher 
likelihood of claim. The authors have observed exceptions to this, but even then, the anti-
intuitive empirical result is not significant. Table 6 is similar to Table 5 but with the addition 
of a second, albeit static, risk characteristic that allows the actuary to analyze the interaction 
of these two risk characteristics, delinquency status and loan-to-value.  

Table 6. 

A B C D E F = D+E G = E/F 
Status* Loan-To-Value Delqs Cures Claims Resolved Delqs Claim Rate 

30 90 1000 930 70 1000 7% 
 95 1200 1092 108 1200 9% 
 100 1400 1232 168 1400 12% 
60 90 800 720 80 800 10% 
 95 900 792 108 900 12% 
 100 1000 860 140 1000 14% 
90 90 600 528 72 600 12% 
 95 700 595 105 700 15% 
 100 800 664 136 800 17% 
120 90 300 240 60 300 20% 
 95 350 266 84 350 24% 
 100 400 288 112 400 28% 
FCL 90 100 65 35 100 35% 
 95 120 72 48 120 40% 
 100 140 77 63 140 45% 
*30, 60, 90, 120 = payment days past due; FCL = foreclosure 

 

Claim-rate frequency indications can be calculated using summary statistics of the 
actuary’s choice by using different groupings of delinquency cohorts. From these indications, 
along with other sources for consideration, the actuary can select frequency factors to be 
applied to the current, and potentially future, cohort of delinquent loans for loss-reserving 
purposes. 
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5. ECONOMIC VARIABLES 

As mentioned previously, mortgage guaranty insurance performance is strongly 
dependent on macroeconomic factors. Macroeconomic factors found to be predictive of 
mortgage default include home price appreciation, unemployment, and interest rates (this list 
is not exhaustive). As such, the actuary may choose to include a loss-reserving methodology 
dependent on forecasted macroeconomic factors such as these. 

Depending on the granularity of the modeling approach, the actuary may want to have 
available selected macroeconomic factors associated with historical mortgage loan defaults, 
loss given default, and recoveries. Collection of the corresponding macroeconomic variables 
is relatively easy. Generally, a high-speed Internet connection and time to gather and 
download the information is all that is required. The first pass at collecting all the historical 
information may require a fair amount of time up front, but updating the series periodically 
should be less onerous. 

For example, assume the actuary wishes to estimate loss reserves each month and 
incorporate interest rates, home price appreciation, and unemployment into the loss-
reserving process as leading factors. 

The actuary may want to estimate loss reserves as a function of forecasted market 
mortgage interest rates, in addition to the dynamic delinquency status and other static 
underwriting risk characteristics. One possibility is to collect Freddie Mac’s Primary 
Mortgage Market Survey® (PMMS) as a historical information source for mortgage interest 
rates. It provides a proxy for market mortgage rates for four mortgage products and also 
reports for the nation and five geographic regions. According to Freddie Mac, “Freddie 
Mac’s Primary Mortgage Market Survey surveys lenders each week on the rates and points 
for their most popular 30-year fixed-rate, 15-year fixed-rate, 5/1 hybrid amortizing 
adjustable-rate, and 1-year amortizing adjustable rate mortgage products.” Additionally, 
“Average rates and points (and margin for ARMs) for each product are reported for the 
nation and the five Freddie Mac regions.” 

The actuary can evaluate PMMS historical interest rates as predictors of claim probability, 
loss given default, and recovery rates. Possible models include logit models for default where 
the input variables include economic variables such as interest rate, as well as underwriting 
characteristics and delinquency status. Once a model relating interest rates as a leading 
indicator to mortgage loan default and mortgage insurance loss is developed, interest rates 
can be incorporated into the reserving process. Interest rates can be forecast using various 
interest rate models, or the actuary can rely on readily available deterministic estimates of 



Data Organization and Analysis in Mortgage Insurance: The Implications of Dynamic Risk Characteristics 

Casualty Actuarial Society E-Forum, Winter 2008 87 
 

future mortgage interest rates. Freddie Mac offers mortgage rate forecasts in its weekly 
“Economic and Housing Market Outlook.” The Mortgage Bankers Association (MBA) 
offers on its website an economic forecast of Treasury interest rates and unemployment in 
its “MBA Long-term Economic Forecast.” 

As mentioned earlier, home price appreciation and unemployment are other economic 
variables that can be collected and tested for significance of estimating loss reserves. Sources 
for historical home price appreciation data include the Office of Federal Housing Enterprise 
Oversight (OFHEO) House Price Index, Freddie Mac’s Conventional Mortgage Home Price 
Index (CMHPI) and the S&P/Case-Shiller® Home Price Indices. OFHEO’s House Price 
Index is published quarterly and geographically for the U.S. as a whole, nine U.S. Census 
divisions, state, and metropolitan statistical area (MSA). Freddie Mac’s CMHPI is also 
provided for the same geographic regions, while the S&P/Case-Shiller® Home Price Indices 
are only available for 20 large MSAs (and two composites), but broken out monthly. Finally, 
historical unemployment data can be obtained from the U.S. Department of Labor’s Bureau 
of Labor Statistics monthly and at the state level. 

Depending on the granularity of the historical economic data along dimensions of 
frequency and geography (i.e., monthly versus quarterly or state versus Census division), 
preparing it for mapping to the preferred reserving methodology may require additional 
consideration. Conceptually, this tends to be straightforward. For example, using loan-level 
performance data where each loan record contains a field for property state but historical 
Freddie Mac mortgage rates provide only geographic regions (where these geographic 
regions contain multiple states) would require mapping the states to Freddie Mac’s 
geographic regions. In practice, this requires another step in the approach and generally leads 
to fewer field categories (i.e., 50 states, Washington, D.C., and territories get aggregated into 
five geographic regions).  

Next, merging the collected historical economic data to test its predictive significance on 
default, loss given default, and recovery will require further effort. The actuary may want to 
test the historical economic variables with respect to the mortgage-loan performance at 
various time leads (e.g., one month, one quarter, or one year), and this adds another 
dimension to the considerations for historical economic data manipulation. 

6. CONCLUSIONS 

Mortgage guaranty insurance loss reserves are provisions for losses due to insured loans 
currently delinquent, both reported and unreported. Specifically, there need not be a 
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provision for losses due to loans insured but not delinquent. As a result, the status of 
whether a loan is delinquent or not is integral to the reserve estimate.  The extent of a loan’s 
delinquency has been found to have significance as a predictor of loan default and therefore 
insured loss. Because of the dynamic nature of each loan’s delinquency status over time, the 
reserving actuary will want a contiguous historical performance data set with enough 
information to reconstruct the month-by-month status of each insured loan so as to quantify 
the relationship between delinquency status (dynamic) and other characteristics (generally 
static but potentially dynamic, such as borrower’s current FICO® Score) to ultimate fate and 
claim loss. The ability to reconstruct this history requires monthly database updating, 
relational database fields with integrity (i.e., unique ID keys that can be referenced across 
different data sets) and maintenance without purging. 
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Length of default, time elapsed between evaluation date and accident month 
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ROOT: A Data Analysis and Data Mining Tool from 
CERN 

Ravi Kumar ACAS, MAAA, and Arun Tripathi, Ph.D. 
________________________________________________________________________ 
Abstract 

This note briefly describes ROOT, which is a free and open-source data mining tool developed by CERN, 
the same lab where the World Wide Web (WWW) was invented. Development of ROOT was motivated by 
the necessity to address the challenges posed by the new generation High Energy Physics experiments, 
which are expected to produce and analyze thousands of terabytes of very complex data every year. 

ROOT is an object-oriented data analysis framework, written in C++.  It contains several tools designed 
for statistical data exploration, fitting, and reporting. In addition, ROOT comes with powerful high-quality 
graphics capabilities and interfaces, including an extensive and self-contained GUI development kit that can 
be used to develop easy to use customized interfaces for the end users.  This note provides some simple 
examples of how ROOT can be used in an insurance environment. 

________________________________________________________________________ 

INTRODUCTION 
 

In this paper, we provide an introduction to some features of ROOT [1] by using it to 
simulate and analyze the simulated data. We also show some very basic, but necessary, first 
steps needed for one to become familiar with ROOT. Going through this process will 
hopefully give the reader a flavor of some of the analysis tasks that can be accomplished 
within ROOT.  Also, hopefully this will provide the reader enough of a familiarity and 
hands-on experience with ROOT so that they can start using its more advanced features, 
customized to their own needs.   

We want to emphasize that this is just a preview, intended for readers who might not be 
familiar with ROOT at all. The scope of various tasks that can be accomplished using 
ROOT is much more comprehensive. We will provide Web links and references at the end 
of this paper for the curious reader who wants to learn more about this tool. 

 ROOT is a free, open-source, object-oriented data analysis framework based on C++. 
This tool was developed at CERN [2], which is a particle physics lab located near Geneva, 
Switzerland. It is interesting to note that CERN is the same lab where the World Wide Web 
was born [3, 4]. 

Development of ROOT was motivated by the need to address the challenges posed by 
the experimental high-energy physics community, where scientists produce and analyze vast 
amounts of very complex data. For example, the ATLAS [5, 6] experiment at the Large 
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Hadron Collider (LHC) [7] at CERN will be generating over 1,000 terabytes of data per year. 
And this is just one of the experiments running at LHC. 

ROOT is being used widely by several experiments in high-energy physics, astrophysics, 
etc. [8]. In terms of the cost of these research projects, and the people involved, the ROOT 
user community comprises a multibillion dollar “industry,” with the labs and the users 
located pretty much across the whole planet. 

WHY ROOT? 

ROOT is a very appropriate tool for use by actuaries and other insurance analysts who 
do ad hoc data analysis and predictive modeling type work.   

ROOT is a framework that is specifically designed for large scale data analysis. ROOT 
stores data in a very efficient way in a hierarchical object-oriented database. This database is 
machine independent and highly compressed. If one loads a 1 GB text file into a ROOT file, 
it will take up much less disk space than the original text file. ROOT also has tools to 
interact with data in a very efficient way. It has built in tools to do multi-dimensional 
histograms, curve fitting, modeling and simulation. All these tools are designed to handle 
large volumes of data.  

Conversely, relational databases (databases where the data is organized as tables and 
rows) were originally designed for transactional systems and not for data analysis. Thus a 
relational database is very good for use in a policy administration system, which looks at one 
policy at a time, or claim administration system, which looks at one claim at a time. But, 
when one is interested in segmenting the data across all the policies or across all the claims, a 
relational solution falls apart. In order to make the relational solution work for large scale 
data analysis, we use the brute force method. A typical brute force method will involve 
adding considerable computing power, adding sophisticated I/O capabilities such as cache, 
etc., adding numerous  indices to tables, creating additional summaries of the data (like 
OLAP cubes), and other similar techniques. If one loads a 1 GB text file into a relational 
database, it will take up multiple gigabytes to just store the data. When one further tweaks 
the database for performance with additional indices, pre-summaries and such, the original 1 
GB data would have exploded to something very large. Most (if not all) of the commercial 
software for data analysis is built for accessing data from relational databases. These 
commercial tools cannot overcome the fundamental flaw in the way data is stored (tables 
and rows) except by using brute force.   
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Some data analysis tools are very memory intensive. Some data analysis tools are very 
I/O intensive. Some data analysis tools are both memory intensive and I/O intensive (like 
most commercial business intelligence tools operating on relational databases). In these 
systems, even if the data grows on a linear scale, the performance of the system degenerates 
on an exponential scale. Thus, these systems are not easily scalable, whereas ROOT stores 
and retrieves data in an optimal way that is conducive for data analysis. It avoids most 
memory issues and I/O performance issues by seamlessly buffering the data between 
memory and storage. One can thus get a very reasonable throughput from ROOT even from 
a small PC (all the analysis reported in this paper was done on a PC). A laptop with ROOT 
as a data analysis tool may be able to give a better performance than a powerful mainframe 
using one of the commercially available data analysis tools. ROOT can thus be a solution 
adopted by one person in an insurance company. Once proven, it can be easily extended to 
an entire team of data analysts or as a corporate wide solution. A ROOT solution is very 
highly scalable.  

ROOT might be an appropriate solution even for smaller data sets. Typically, predictive 
modeling and ad hoc data analysis involve presenting the data in different graphical/tabular 
forms. These presentations are best done in a notebook device. This is one of the reasons 
why Excel is very popular among the actuaries. Using Excel, one can play with the data and 
once a story emerges from the data, it becomes easy to share the story with the rest of the 
team. This concept can be loosely termed as interactive computing. When one wants to do 
analysis on one column in an Excel spreadsheet, the entire spreadsheet must be read into 
memory. Like Excel, other technologies also suffer similar inefficiencies. When data is stored 
as tables and rows as in a relational database, subsets of the data cannot be accessed or 
modified in an efficient way without touching other parts of the data. The design of ROOT 
allows access to subsets of data without the need to touch the rest of the data. An entire 
ROOT file can be read sequentially if all the information must be processed. With no data 
explosion issues, a ROOT file can also be read randomly to process just a few attributes if 
that is what the analysis requires. ROOT is thus able to give us interactive computing 
capabilities where other solutions fail.   

There are many other reasons why ROOT is an appropriate tool for predictive 
modeling. But efficiency in storing and accessing the data is where ROOT stands out from 
any other tool that is in the market today. 
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HOW TO GET ROOT 

ROOT can be downloaded under GNU Lesser General Public License [9] from the 
ROOT download page [10]. Installation instructions are also provided there. A ROOT user’s 
guide [11], complete class reference [12], tutorials [13], and useful how-to’s [14] are also 
available online. A searchable ROOT user forum, called Root Talk [15], is a useful resource 
to find answers to several of the questions an average user might come up with.  

Any references in this paper to the ROOT user’s guide correspond to version 5.16, 
which is the current production version of ROOT as of the writing of this paper.  

Throughout this paper, we will sometimes provide the CPU time taken for a given 
analysis. These times were measured on a PC running Windows XP, with a 1.73 GHz Intel 
Pentium M processor, and 1 GB of memory.  Also, all these analyses were performed using 
CINT, the C interpreter provided by ROOT. See chapter 7 of the ROOT users guide to 
learn about CINT.   

STARTING ROOT 

If ROOT was installed correctly, a tree-shaped icon, shown in Figure 1, should 
automatically appear on your Windows desktop. 

 

 
 

Figure 1: The ROOT shortcut icon on Windows desktop. 

In order to start ROOT in Windows, just double-click on this icon.  This will start the 
ROOT console, which is shown Figure 2.   

In Unix/Linux environment, ROOT can be started by issuing the following command 
from the command line: 

$ROOTSYS/bin/root 

ROOTSYS is the environment variable pointing to the directory where ROOT was 
installed. If the directory containing the ROOT executable is already in the system path, then 
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one just needs to type “root” from command line to start ROOT.  Regardless of the 
operating system, the resulting ROOT console will appear the same (as shown in Figure 2). 

 

 
 

Figure 2: The ROOT console.  

LOADING DATA INTO ROOT 
 

ROOT provides TTree and TNtuple classes to store and access data efficiently. Chapter 
12 of the ROOT user’s guide provides a detailed discussion of ROOT Trees, why one 
should use them for storing data, and how to read data into a ROOT tree.  

ROOT trees are designed specifically to store large volumes of data very efficiently, 
resulting in much smaller files on disk. Also, since a tree stores data in hierarchical branches, 
each branch can be read independently from any other branch. This can make for a very fast 
access to the data, since only the necessary information is read from disk, and not necessarily 
the whole file.   

A very simple example of how to read data into a ROOT tree is given in appendix A.  
This example converts a space delimited file into a ROOT file, which can then be 
explored/manipulated further using ROOT.    

ROOT also provides interfaces using ODBC to relational databases such as ORACLE, 
MYSQL, etc.  

EXPLORING A ROOT FILE 

The TTreeViewer class [16] of ROOT provides a GUI for convenient exploration of 
data, once it has been converted into a ROOT tree. In order to illustrate some of its 



ROOT: A Data Analysis and Data Mining Tool from CERN 

Casualty Actuarial Society E-Forum, Winter 2008 95 

functionality, we will use the ROOT file generated by the sample data load program 
mentioned in the previous section. Chapter 12 of the ROOT user’s guide describes how to 
start a Tree Viewer.  

First, one has to start a ROOT object browser (TBrowser class [17]) from the ROOT 
console: 

root [] TBrowser b; 

Figure 3 shows a screen shot of the ROOT console, with this command. 

 
 

Figure 3: A screen shot of the ROOT console, with the command to start the ROOT browser. 

This will start the ROOT object browser, which looks like figure 4. 
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Figure 4: A screen shot of ROOT object browser. 

Now, one can use this object browser to open a ROOT file by using  
File->Open menu. In this case, we will navigate to the ROOT file generated by the sample 
data load program of Appendix A.  Using the File menu, open the root file called 
“SampleData.root”. Figure 5 shows a screen shot of the file selection dialog, used to open 
the file. 

 
Figure 5: Screen shot of the ROOT object browser and file selection window, after navigating to the ROOT 

file generated by the sample data load program.  
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After selecting the appropriate ROOT file, click the “open” button in the file selection 
dialog. This will close the file-selection window, and the object browser will again appear like 
Figure 4.  At this point, double-click the icon labeled “ROOT Files” in the right-hand panel 
of the object browser. After this action, the browser looks like Figure 6. 

 

 
 

Figure 6: Appearance of the ROOT browser after double-clicking on the “ROOT Files” icon.  

Notice that an icon representing the selected ROOT file appears in the right panel of 
the browser. The absolute path indicating the file name and location is also shown. Now, 
double-click on this ROOT file icon. The browser will now look like Figure 7. 

Notice that a tree icon appears in the right panel of the browser. This is the tree that we 
created using the sample data load program. One can create several ROOT trees in a single 
ROOT file, but in this case, we have just one.  

Now, right-click on the tree icon and a menu appears. From this menu, select 
“StartViewer”. A new Tree Viewer window will appear. A screen shot of this window is 
shown in Figure 8. 
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Figure 7: Appearance of the ROOT object browser, after double-clicking on ROOT file icon (shown in 
Figure 3). 

 
Figure 8: The ROOT tree viewer window, displaying the information contained in the sample data tree. 

Notice in Figure 8 the leaf shaped icons in the right panel of the tree viewer. These are 
the leaves of the ROOT tree we created in the sample data load program. Next to each leaf 
is the name of the corresponding variable. 
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The ROOT tree viewer is a powerful data exploration tool, which can be used for one-, 
two-, and three-dimensional data exploration, fitting, etc. In this section, we will just see how 
to quickly generate one- and two-dimensional histograms from this simple data.  

Suppose we want to see a histogram of all the states in our data set, which will show us 
the number of policies written in each state. In order to get this histogram, simply double-
click the leaf labeled “State” in the tree viewer.  A separate window (object of type TCanvas) 
appears with this histogram. A screen shot of this window is shown in Figure 9. We see that 
there are four policies in California, and two each in New York, Kansas, and Arizona; as 
expected from our input data. 

The TCanvas object itself is a very complex object, which allows the user to 
interactively explore the data, and customize the visual appearance of the graphics that 
appears on the canvas. See chapter 9 of the user’s guide for more details. 

 
Figure 9: A histogram of all the states in the data set used by the sample data load program. 

The histogram in Figure 9 can easily be saved to disk in various formats, e.g., gif, pdf, 
png, etc., by using File->Save (or Save As) menu in the menu bar at the top of the canvas. 

The reader is encouraged to explore this interactive canvas, all the objects on it, and the 
associated context menus. Right-click on different parts of the canvas, e.g., the title box, 
statistics box, the histogram area, the lines of the histogram, the axes, etc., and explore the 
large amount of interactive functionality available in the context menus.  
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Now, suppose we are interested in finding out the average premium collected in each 
state. We can do that in the following manner. In the tree viewer (Figure 8), drag the leaf 
labeled “TotalPremium” to the icon (in the same panel) labeled Y (which is empty by 
default). Then, drag the leaf labeled “State” to the icon labeled X. This tells the tree viewer 
to plot TotalPremium (Y-axis) vs. State (X-axis). Next, using the Options menu at the top 
menu bar in the tree viewer, set the drawing option to Profile (Options->2D Options-

>Profile). This tells the tree viewer to plot a profile histogram, which plots the average Y 
value for each bin on the X-axis. After these steps, the tree viewer window should look like 
Figure 10. 

  
Figure 10: The appearance of tree viewer window, after preparing it to plot average total premium in each 

state. 

In Figure 10, notice that the X icon says State next to it and the Y icon says 
TotalPremium next to it. Also notice that the Option is set to PROF in the small Option 
window, below the top menu bar. Now we are ready to produce the graph we want. Just 
click on the graphing icon near the bottom left corner of the panel, on the left of the icon 
labeled STOP.  Again, a new canvas pops up, with the desired graph. A screen shot of this 
canvas is shown in Figure 11. Notice how the average premium, as well as RMS (root mean 
square) is plotted for each state. This allows for a visual exploration of the relationships 
between any two variables quickly. One can also perform fits to this relationship. The reader 
is referred to the ROOT user’s guide to learn how to perform interactive fits to the data 
points on a canvas. For example, see chapter 5 of the ROOT user manual. 
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Figure 11: Graph of average premium vs. state. 

Now, suppose we want to apply filters to our data. The tree viewer allows us to do that 
easily. In order to illustrate how to do this, we will create the profile histogram of average 
total premium vs. state, but this time, we only want to look at the states of California and 
New York. 

There is a scissors shaped icon in the tree viewer, just below the “Z” icon (see Figure 
10). This is used to apply “cuts” or selection criteria to the data. The cut can be any valid 
C++ expression, involving one or more of the variables stored in the tree. This expression 
must first be defined, using the “E()” icons in the tree viewer. All these expressions are 
empty by default. 

In order to achieve our goal of looking at the average premium only in California and 
New York, double-click on the first “E()” icon in the tree viewer of Figure 10 (we will 
assume that the tree viewer is in the state shown in Figure 10; if not, follow the instructions 
above to bring it this state).  A dialog appears that allows us to type in the selection criterion 
and also give it a name.  Figure 12 shows the screen shot of the tree viewer after double-
clicking on the “E()” icon. 
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Figure 12: The tree viewer after double-clicking on the “E()” icon. Notice the dialog box at left-center of the 

tree viewer. 

Now, we can type in our selection criterion (a valid C++ statement, involving variables 
in the tree) in this box, and also assign it a name (alias). We just want to keep California and 
New York. So in the Expression dialog, we will type (State = = \”CA\”) || (State = = 
\”NY\”). Note that the double quotes are preceded by backslash, since the expression itself 
is a string, and within this expression we are comparing with a string. Also keep in mind that 
both C++ and ROOT are case-sensitive. 

In the alias box, we will give it the name “Cut1”. After these steps, the screen shot of 
the tree viewer is shown in Figure 13.  
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Figure 13: The tree viewer after typing in the selection criteria in the expression dialog. 

Now, click the “done” button in the selection expression dialog. This will close the 
selection expression dialog. The screen shot of the tree viewer after this step is shown in 
Figure 14. Notice how the appearance of the selection expression icon we just edited has 
now changed. It no longer shows “E()”, and it is no longer empty. Now it contains a valid 
selection criterion, which we can use to filter data. Notice how the scissors icon is still 
“empty”; meaning our selection criterion has not been activated yet. 

In order to activate this filter, simply drag this selection expression icon (Cut1) to the 
scissors icon. After this step, the tree viewer should look like Figure 15. 

Now we are ready to make the plot we need. Simply click on the drawing icon (near 
bottom left, just left to the “STOP” icon). The canvas will now show the updated plot, 
which is shown in Figure 16. Notice that only the states of California and New York appear 
on the X-axis now, according to our selection. One can apply any arbitrarily complex filter to 
the data in this manner.  
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Figure 14: Appearance of the tree viewer after editing the first selection (cut) expression. 

 

 
Figure 15:  Appearance of the tree viewer after activating the selection criterion (Cut1). 
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Figure 16: Plot of average total premium vs. State, after applying the state selection criterion. 

Finally, all steps we have performed so far in the tree viewer can easily be saved as a 
ROOT macro (which is basically a C++ function, using ROOT classes), which can be run 
from the ROOT console to quickly reproduce these steps at a later time. The reader is 
referred to the ROOT user’s guide to learn how to accomplish that. 

DATA SIMULATION 

Complex simulations are a significant part of research in a typical high-energy physics 
experiment, and ROOT provides tools to facilitate this process. 

For the purpose of this paper, we prepared some simulated “insurance-like” data. The 
code used for this simulation is provided in appendix B. For this study, we chose to simulate 
5 Million BOP policies. The loss ratio for each of these policies was generated based on five 
predictive variables:  

• Age of business: Number of years the business has been around. 
• Building Count: Number of buildings insured under the policy. 
• Credit score: The commercial credit score of the business. 
• Policy Age: Number of years the policy has been in force. 
• Total Building Insurance: The total amount of building insurance on the policy. 

First, for each observation, each of these variables was generated independently.  Age of 
Business, Building Count, and Total Building Insurance were generated using Landau 
distribution. Credit Score was simulated using a flat distribution (on a scale of 1-100), and 
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Policy Age was made to follow a linear distribution, subject to the condition that policy age 
must be less than or equal to the building age.  

In addition to these predictive variables, we also generated three random variables, 
called ran1, ran2 and ran3. These variables are uniformly distributed between 0-10. These 
variables don’t have any predictive power, by design. But we will include them in our list of 
predictive variables while searching for and ranking the most predictive variable. The tools 
being used to search for the predictive variable should be able to identify these random 
variables as non-predictive. This works as a sanity check of the tool.  

The loss ratio from the five predictive variables was generated using the following 
equation: 

LossRatio = 0.5  - 0.00053*AgeOfBusiness + 0.0025*BuildingCount  - 0.00057*CreditScore 
- 0.0227*PolicyAge + 0.0437*TotalBuildingInsurance (1) 

In addition, a random Gaussian noise is added to the LossRatio, with mean 0 and 
standard deviation of 0.04. Roughly speaking, this corresponds to smearing the true loss 
ratio by about 10%. 

Figure 17 shows histograms of all the five predictive variables, and the loss ratio. We 
have chosen, on purpose, to simulate only the “lossy” policies.  

We would like to point out one thing here. Since we simulated our data such that the 
relationship between the target variable (Loss Ratio) and the five predictive variables follows 
equation (1) above, we know exactly what results to expect from a correctly done regression 
analysis of this simulated data. The regression should give us back, within statistical 
uncertainties, the relationship defined in equation (1) above; otherwise something is wrong 
with the analysis.  
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Figure 17: Raw histograms of the five simulated predictive variables and the loss ratio. The figure titles show 

which figure corresponds to which variable. 

EXPLORATION OF SIMULATED DATA 

Figure 18 shows several profile histograms, plotting LossRatio vs. the five predictive 
variables. These profile histograms show the mean value of the loss ratio, for a given value 
of the X-axis. This is a useful way to visualize the relationship between the target and 
predictive variables. In our simulated data set, each of the five predictive variables is 
correlated, by design, with the target variable. Consequently, we should see a non-flat pattern 
in all these profile histograms, which we do. 

It may be useful to point out here the time taken to generate the 11 figures shown in 
Figures 17 and 18. Each of these figures was generated, as mentioned earlier, from the 
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simulated data set of 5 Million policies. It took a total of 50 CPU seconds to generate these 
11 figures.  

 

 

       
Figure 18: Profile histograms of LossRatio vs. various predictive variables. The Y-axis in each of these plots 

shows the average loss ratio for the corresponding value of the X-variable. 

SEARCHING FOR PREDICTIVE VARIABLES 

The first step in building a predictive model is to identify which variables to use as 
predictors. The TMVA [18, 19] package provides tools to facilitate this process. TMVA is an 
acronym for “Toolkit for Multivariate Data Analysis.” It provides several classification 
algorithms, mainly designed to tackle the task of separating signal from background in 
complex high-energy physics data. However, it can be used in any environment where 
classification of data is needed. TMVA already comes bundled with ROOT.   

Several of the algorithms in TMVA also provide the ranking of the predictive variables 
in terms of their discriminating power. These algorithms are: Likelihood, H-Matrix and 
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Fisher discriminants, Neural Network, Boosted Decision Trees, and RuleFit. The reader is 
referred to the TMVA user’s guide [18, 19] for more details of TMVA and the available 
classification algorithms. 

For our simulated data, we will use Fisher Discriminants, as an example, to find out the 
ranking of the discriminating power of the various variables. First, we need to determine the 
classification we are interested in. A natural classification of interest for us is based on loss 
ratio—we would like to use as predictors the variables that can effectively separate policies 
with low loss ratio from those with high loss ratio. Once we have identified the variables that 
are most effective in providing this kind of discrimination, then we can use them, for 
example, in multiple regression, to come up with the regression equation that will predict 
loss ratio from these predictive variables. 

For our analysis, we define (arbitrarily) policies with loss ratio less than 0.4 as “good 
policies” (signal), and those with loss ratio greater than 0.4 as “bad policies” (background). 
Our goal is to find the ranking of predictive variables, based on how well they can 
distinguish between these two kinds of policies.  Borrowing from high-energy physics 
terminology, we will use the words signal (loss ratio < 0.4) and background (loss ratio >= 
0.4) from now on to represent these two classes of data.   

We fed all the five predictive variables (shown in equation 1), and the three random 
variables (ran1, ran2, ran3) to the Fisher classifier. The random variables were included to 
test the effectiveness of the classifier—it should be able to identify these as the least 
predictive. The data sample used consisted of 100,000 observations of each type (signal and 
background, as defined above) for training and testing. So a total of 400,000 observations 
were used in this analysis.   

Rank Variable Discriminating Power 
1 PolicyAge 1.20E-01 
2 CreditScore 1.51E-02 
3 AgeOfBusiness 1.06E-02 
4 TotalBuildingInsurance 4.56E-05 
5 BuildingCount 2.24E-05 
6 ran3 7.15E-06 
7 ran2 8.95E-07 
8 ran1 1.36E-07 

 
Figure 19: The results of variable ranking using Fisher discriminant in TMVA. 

Figure 19 shows the results of this analysis. We can see that the classifier has correctly 
identified ran1, ran2, and ran3 as least predictive.  This is just a simple example of how 
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TMVA can be used to search for predictive variables.  The meaning of rankings can be 
found in the TMVA user’s guide. 

From now on, we will just keep the five predictive variables for fitting and discard the 
three random variables. 

FITTING  

Once we have identified the predictive variables we want to use to make the prediction, 
we need to perform a fit to the data using these variables to come up with the optimal 
relationship between the target variable and the predictive variables. In our case, we are 
interested in obtaining the relationship between LossRatio and the five predictive variables 
shown in equation 1.  Obviously, several techniques can be used to solve this problem, 
depending on the characteristics of the data at hand. ROOT provides several tools to 
achieve this, including least squares regression, method of maximum likelihood, neural 
networks, etc. In this section, we will show the results from using just a couple of these 
tools. 

 

10.1 The TLinearFitter Class 

We will use TLinearFitter [20] class in ROOT to fit LossRatio, with the five predictive 
variables mentioned above.  We used the first 1 million observations from our simulated 
data set for the purpose of this fit. The total CPU time taken for this analysis was 11 
seconds.   

Figure 20 below shows the values of the parameters obtained by the fit, and also their 
true value. Since we simulated the relationship between the target variable, and the predictive 
variables, we know exactly what the correct parameter estimates should be. This allows us to 
do an absolute end-to-end calibration/verification of the analysis/regression chain. 

Variable Name 
Parameter Estimate 

from the Fit 
True Value 

of the Parameter 
Intercept 0.50 0.5 
AgeOfBusiness -5.31E-4 -5.3E-4 
BuildingCount 2.47E-3 2.5E-3 
CreditScore -5.70E-4 -5.7E-4 
PolicyAge -2.27E2 -2.27E-2 
TotalBuildingInsurance 4.37E-08 4.37E-08 

Figure 20: Results of the fit to the simulated insurance data. Also shown are the true values of the 
parameters. 
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In Figure 20, if we compare the parameter estimates from the fit with their true values, 
we see that the two agree quite well. This comparison gives us confidence that our analysis 
chain used here, from data preparation to fitting, is correct. 

In order to test the performance of TLinearFitter on a much bigger data set, we used it 
to perform a fit on a data set consisting of 49 variables and 9 Million (9E6) observations. 
This analysis took 16.3 CPU Minutes, and 20.5 Real Minutes. 

10.2 Non-parametric Fitting: Neural Network 

In the previous section, we fit the simulated data using a linear relationship between the 
target variable (LossRatio) and the five predictive variables. This was appropriate, since the 
simulated data indeed follows such a linear relationship.  

In several real-life situations, we don’t know beforehand what the “true” functional 
form of the relationship between the target variable and the predictive variables is. In such 
situations, non-parametric fitting techniques might be more effective. 

In this section, we will use ROOT’s neural network package [21] to fit the data already 
simulated.   

The network used in this analysis consisted of five input nodes (the five predictive 
variables used to simulate the data), two hidden layers with 8 and 5 nodes respectively, and a 
single output node (LossRatio). The network was trained on 2000 data points from the 
simulated data set, over 300 epochs. All the input and output nodes were normalized so that 
they take on values between 0 and 1. 

Figure 21 shows the structure of the network, with the thickness of the connecting lines 
(synapses) being proportional to the corresponding weights. 
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Figure 21: The structure of the neural network obtained by training it on the simulated data set. The 

thickness of lines is proportional to the weight for the corresponding connection. 

Figure 22 shows a profile of the residuals for different values of the output (LossRatio) 
for the independent test data set.    

The optimized neural network can be automatically exported to a C++ class, to be used 
elsewhere, e.g., for implementation. 

 

 
 

Figure 22: Residual profile for various values of the neural network (NN) output (LossRatio) on the test 
data set. The Y-axis is the mean value of the NN output minus the true LossRatio, for a given value of the 

true LossRatio. The true loss ratio has been normalized, so that it takes on values between 0 and 1.  
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10.3 Other statistical analysis packages in ROOT 

The previous two examples use just two of the several statistical analysis classes 
available in ROOT.  Here we list some other classes that might be of interest to anyone 
interested in statistical analysis of data in ROOT.   

• The TMinuit [22] and TFumili [23] minimization packages can be used to do either 
least-squares or maximum likelihood fitting. Also see chapter 5 of the user’s guide. 

• The TPrincipal [24] class can be used for principal components analysis. 
• The TMultiDimFit [25] is another non-parametric fitting package, which can be used 

to approximate the relationship between target and predictive variables in terms of 
simple basis functions. 

• The TMath [26] class contains several useful mathematical functions. See chapter 13 
of the user’s guide. 

• In addition to some of the algorithms mentioned earlier in this note, the TMVA 
package [18, 19] provides several other algorithms for data classification. 

• The one-dimensional, two-dimensional, three-dimensional, and Profile histogram 
classes provide a convenient and interactive way to visualize, explore and fit data. See 
chapter 3 of the user’s guide for more detail.    

• The linear algebra package. See chapter 14 of the user’s guide. 

11. SOME OTHER USEFUL FEATURES OF ROOT 

Previous sections demonstrated, using simple simulated data, some simple application 
of ROOT.  In this section, we will list some more tools available in ROOT that might be 
relevant to us. 

• Animation facilities, which can again be used to generate animations of some of the 
analysis chain, to be used in presentations. 

• Efficient random number generators, with large periodicity = 219937-1. Also, one can 
easily generate random numbers either following any analytical distribution, or 
following any empirical distribution provided by the data. 

• A complete, self-contained GUI toolkit, including a GUI builder, which can be used 
to develop customized GUIs for specific tasks. See chapter 25 of the user’s guide. 

• ROOT comes with CINT, the C/C++-interpreter, which allows one to script an 
analysis in C++, and quickly execute it on the command line, without having to 
compile. This provides a quick way to prototype an analysis, which can later be 
compiled for better performance. See chapter 7 of the user’s guide for more details. 

• All the libraries available in standard C++, of course, can easily be used and 
integrated with a ROOT analysis. 

• Interfaces to Ruby and Python scripting languages. See chapter 19 of the user’s guide 
for details. 

• Parallel processing. See chapter 24 of the user’s guide for details. 
• Networking. See chapter 22 of the user’s guide. 
• Automatic HTML documentation generation. See chapter 27 of the user’s guide for 

details. 
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• Three-dimensional graphics package. 

12. SUMMARY AND CONCLUSIONS 

In this note, we have briefly introduced ROOT via some simple examples. Hopefully 
this will give the reader a feel of how to get started with using ROOT in insurance 
environment.  We have also provided links below that a curious reader can follow to get a 
more detailed and advanced understanding of this tool. The user’s guide, online tutorials, 
and the how-to’s pages provide a wealth of information and several working examples that 
one can leverage to get started with any kind of analysis. 
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Appendix A 

SAMPLE DATA LOAD PROGRAM 

Below is a simple data load program, which reads a tab-delimited text file, and stores 
them in a ROOT tree. This tree is then written to an output ROOT file. 

The contents of the file to be read are produced below. This is a simple, space-delimited 
file, which contains 10 records. Each record consists of a Policy Number, Policy Effective 
Year and Month, State, and the Total Premium collected. The purpose of this exercise is to 
give a simple example of how one can read data into ROOT. Note that any line starting with 
“#” is ignored by the ReadFile method, which we will use to read the sample data file below. 
Therefore, the first line in this sample data set is just for our convenience to tell us what the 
various fields are. 

 
#PolNum EffYear EffMonth State TotalPremium 
123456789  2006 10 CA 5000 
123456790 2007 01 NY 6000 
123456791 2005 12 KS 1500 
123456792 2007 08 CA 3500 
123456793 2007 05 AZ 2000 
123456794 2006 11 CA 3500 
123456795 2006 04 NY 5500 
123456796 2007 02 AZ 1850 
123456797 2006 12 CA 2560 
123456798 2007 03 KS 1250 

 

The Program to Read the Data 

This program reads in the above file, and stores its contents into a ROOT tree. This 
tree is then written to disk in a ROOT file. This ROOT file then can be use for data 
visualization, exploration, and analysis. 

This program is a ROOT macro, which means it can be executed from the ROOT 
window. It will not run as a stand-alone program, since it does not contain the “main()” 
code block. In order to see how to generate stand-alone, compiled ROOT code, refer to the 
ROOT user’s guide. 
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Assuming this program is saved under the name “C:/Documents and Settings/temp/ 
ReadSampleData.cpp” on disk, the user can run it by typing the following command from 
the ROOT window: 

.x C:/Documents and Settings/temp/ReadSampleData.cpp 

This command will execute the program, which will result in the input file being read, 
and saved as a ROOT tree on disk. The program is reproduced below. 

// Reads a simple data file 

#include <TFile.h> 

#include <TTree.h> 

#include <string> 

#include <iostream> 

using namespace std; 

void ReadSampleData() { 

  // Location of the directory for input and output files 

  string dirName = "C:/Documents and Settings/temp/" ; 

  // Name of the input and output files 

  string inFileName = dirName + "SampleData.txt" ; 

  string outFileName = dirName + "SampleData.root" ; 

  // Create a tree to store the data 

  TTree *tree = new TTree("dataTree","Sample Data"); 

  // Open the output file to write to 

  TFile *fout = new TFile(outFileName.c_str(),"RECREATE"); 

  fout->cd(); 

  // Read in the data from  the text file 

  int nentries =  tree->ReadFile(inFileName.c_str(), 
"PolNum/I:EffYear/I:EffMonth/I:State/C:TotalPremium/D"); 
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  cout << "Read " << nentries << " entries from the input file " << inFileName <<  
endl; 

  // Write the ROOT tree to output file 

  tree->Write(); 

  fout->Close(); 

  // Cleanup 

  delete tree; 

  delete fout; 

}  

Appendix B 

In this appendix, we reproduce the ROOT macro we used to generate the simulated 
data used in this paper. TNtuple class (http://root.cern.ch/root/html516/TNtuple.html) is 
used to store the simulated data. TNtuple class inherits from TTree class, and is useful when 
one is only storing numeric information. In order to run this macro, follow these steps: 

1. Copy the following program (see below), and save it on your computer. 

2. Change the value of variable Nloop (highlighted in bold face) to the number of 
observations you want to simulate. 

3. Change the value of the variable DirName (highlighted in bold face) to the name of 
folder where you saved this program. 

4. From ROOT console, type: 
.L  Progam-File-Name  (where Program-File-Name is the name of the file, 
including complete folder path, in which you saved this program). 

5. Next, still in the ROOT console, type: 
SimulateData() 

This will generate the chosen number of simulated observations. The resulting ROOT 
file (SimulatedData.root) will be written in the folder specified by DirName. 

Figure B1 below shows the screen shot of the ROOT console after executing the above 
steps. In this case, the name of the file containing the simulation code (reproduced below) 
was called SimulateData_Simple.cpp; and it was located in the folder C:/Documents and 
Settings/temp.  
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Figure B1: Screen shot of the ROOT console after executing the macro to generate 10,000 simulated 
observations.  

////////////////////// Beginning of the Data Simulation Code//////////////////////////////////// 
// This is a ROOT macro to generate simulated data for a simple model. 
// This model relates the loss ratio to five independent variables.  
 
#include "TRandom2.h" 
#include "TStopwatch.h" 
#include "TFile.h" 
#include "TNtuple.h" 
 
#include <string> 
 
using namespace std; 
 
// How many events do we want to generate 
Int_t Nloop = 10 000  ; 
 
// Directory where we will be writing to or reading from 
string DirName = "C:/Documents and Settings/temp/"; 
 
 
// Generate a random number from a Landau distribution  
Double_t GetRandomFromLandau(Double_t mean, Double_t sigma, Double_t 
xmin, Double_t xmax) { 
  Double_t x = -999.0; 
  while (( x < xmin) || (x > xmax)) {  
      x = gRandom->Landau(mean, sigma); 
  }  
  return x; 
} 
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// Generate a random number from a Uniform distribution  
Double_t GetRandomFromUniform(Double_t xmin, Double_t xmax) { 
  Double_t x = -999.0; 
  while (( x < xmin) || (x > xmax)) {  
      x = xmin + (gRandom->Rndm() * (xmax - xmin)); 
  }  
  return x; 
} 
 
 
// Generate a random number based on any formula   
Double_t GetRandomFromFormula(const char* formula, Double_t xmin, 
Double_t xmax) { 
  TF1 *f1 = new TF1("f1",formula, xmin, xmax); 
 Double_t xx = -999.0; 
  while ((xx < xmin) || (xx > xmax)) { 
    xx = f1->GetRandom(); 
  } 
 
  delete f1; 
  return xx; 
} 
 
 
 
void SimulateData() { 
 
  // Instantiate and start a stop watch 
 
  TStopwatch StopWatch; 
 
  StopWatch.Reset(); 
  StopWatch.Start(); 
 
  // First, open a file to output the data set 
  string OutFileName = DirName + "SimulatedData.root"; 
  TFile *fout = new TFile(OutFileName.c_str(),"RECREATE"); 
 
  if (!fout) { 
    cout << " Error opening input file" << endl; 
 return; 
  } 
 
  // Next, book an ntuple 
  TNtuple *nt = new TNtuple("nt"," 
","AgeOfBusiness:BuildingCount:CreditScore:PolicyAge:TotalBuildingInsur
ance:PolicyNumber:LossRatio:Premium:Loss:EventNum:ran1:ran2:ran3"); 
 
  // Create an array to store the simulated numbers 
  Float_t VarList[13]; 
 
  // Now start generating the variables. Loop desired number of times. 
  int counter = 0; 
  for (Int_t i = 0; i < Nloop; i++) { 
    counter++;  
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    if (counter%5000 == 0) cout << "Generating Event " << counter << 
endl; 
 
    VarList[0] = (Float_t) GetRandomFromLandau(10.0, 5.0, 0, 100) ;  
//AgeOfBusiness is based on Landau distribution 
    VarList[1] = (Float_t) GetRandomFromLandau(0.4, 0.1, 0, 100) ; 
//BuildingCount is based on Landau distribution 
    VarList[2] = (Float_t) GetRandomFromUniform(0, 100);            
//CreditScore is based on Uniform distribution 
    VarList[3] = (Float_t) GetRandomFromFormula("85.57-7.7948*x", 0, 10 
); //PolicyAge is based on a linear distribution 
 
    VarList[4] = (Float_t) GetRandomFromLandau(-3.3736e4, 5.4577e2 , 0, 
50000000); //TotalBuildingInsurance is based on Landau distribution 
    VarList[5] = counter;  //PolicyNumber 
    VarList[6] = (Float_t) 0.5 + VarList[0]*(-0.0053)*0.1 + 
VarList[1]*0.025*0.1 + VarList[2]*(-0.0057)*0.1  
                             + VarList[3]*(-0.0227) + 
VarList[4]*(0.0437)*(1.0e-6) +  gRandom->Gaus(0.0, 0.04);  //LossRatio 
is a linear combination of other variables plus an error term 
    VarList[7] = (Float_t) gRandom->Landau(5000, 500); //Premium 
    VarList[8] = (Float_t) VarList[7] * VarList[6]; //Loss  
    VarList[9] = (Float_t) counter; //EventNum 
 
    VarList[10] = (Float_t) 10.0*(gRandom->Rndm());  //ran1 is just a 
random number 
    VarList[11] = (Float_t) 10.0*(gRandom->Rndm());  //ran2 is just 
another random number 
    VarList[12] = (Float_t) 10.0*(gRandom->Rndm());  //ran3 is just 
another random number 
     
    nt->Fill(VarList); 
  } // End of loop over Nloop 
 
  // Write the ntuple to output file 
  fout->cd(); 
  nt->Write(); 
  fout->Close(); 
 
  // Stop the stop watch, and report the time taken to run this macro 
 
  StopWatch.Stop(); 
 
  cout << " Total CPU Seconds Consumed = " << StopWatch.CpuTime() << 
endl; 
  cout << " Total Real Seconds Consumed = " << StopWatch.RealTime() << 
endl; 
 
  // Clean up 
  delete fout; 
} 

 

////////////////////////// END of the Data Simulation Code //////////////////////////////////////// 
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________________________________________________________________________ 
Abstract 

In this paper, we describe a general process on how to integrate different types of predictive models within an 
organization to fully leverage the benefits of predictive modeling. The three major predictive modeling 
applications discussed in this paper are marketing, pricing, and underwriting models. These applications have 
been well applied and published over the past several years for the property and casualty (P&C) industry, but 
the literatures and discussions focused on their individual application. We believe that significant value can be 
realized if they are fully integrated, offering P&C companies the opportunity to take an enterprise wide view of 
managing their business through analytics. Therefore, the paper will discuss a general process on how they can 
be integrated and how the integrated result can assist insurance companies with managing the complex 
insurance business, such as minimizing the underwriting cycle and achieving profitable growth and reacting to 
external market forces faster than their competition. 

________________________________________________________________________ 

1. INTRODUCTION 

In recent years, predictive modeling has been widely used as a new strategic tool for P&C 
insurance companies to compete in the market place. Originally introduced in personal auto 
insurance to improve pricing precision [1], predictive modeling has been extended to homeowner’s 
and small commercial lines as well [2]. Predictive modeling and the use of generalized linear models 
(GLM) have been individually applied widely in three key areas of insurance operations: 
underwriting, pricing, and marketing. In this paper, we will discuss the value in integrating results 
from three traditionally distinct predictive modeling applications and the additional strategic and 
tactical benefits companies can achieve by taking an enterprise-wide view of predictive analytics. 
Through the integration of predictive modeling results across multiple business operations, 
insurance companies can maximize their benefit and differentiate themselves in a competitive 
market environment where everyone seems to be using predictive modeling in some fashion. For 
instance, the integration of predictive modeling could enable existing underwriting and marketing 
predictive model results to drive enhancements to pricing models and to align pricing with the 
underwriting market cycle.  

2. THREE TYPES OF P&C PREDICTIVE MODELING APPLICATIONS 
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In this section, we will discuss the similarities and differences as to how predictive models are 
built and applied to three different types of insurance business applications—underwriting, pricing, 
and marketing. We will also discuss the data and modeling issues associated with each application.  

2.1 Pricing Models 

In predictive models for pricing, the main focus is on predicting loss cost, determining premium 
to charge, evaluating rating adequacy, or determining rating class plan factors. One typical result 
developed from a pricing model is a rating plan, which displays the rating variables, factors, and loss 
cost relativities across the rating variables.  

In developing the rating plans, actuaries often use the standard GLM frequency and severity 
approach, where the Poisson distribution is used to fit frequency data and the Gamma distribution is 
used to fit severity data. Recently, it has become more popular to combine the frequency and 
severity models into a pure premium model, where the Tweedie distribution, a Poisson-Gamma 
compound distribution, is used to fit the pure premium data directly.  

For pricing models, the source data files used to build the models need to be set up at a detailed 
exposure level. For example, for private personal auto (PPA), a pricing predictive model is generally 
set up at the vehicle and coverage level (i.e., lowest form modeling data level).  

With regards to the rating variables, they are very different from one line of business to another, 
within the line of business, and can also differ from one coverage to another. Some complicated 
PPA rating plans may allow policy level variables across coverages and interaction between rating 
variables.  

Perhaps, the most significant development for personal lines rating plans in recent years is the 
usage of personal financial credit score [3]. Some states allow the usage of credit scores in class plans 
or tiering, others allow credit scores for underwriting or target marketing activities only, while few 
states completely ban the use of credit scores. In addition to credit scores, other regulatory 
restrictions for pricing models include using not-at-fault accidents, capping the factors for youthful 
drivers or economic disadvantage territories, or enforcing forgiveness rules of prior years’ loss and 
violation records, to name a few.  

In the past several years, there has been a wealth of research, literature, seminars, and training 
classes in the Casualty Actuarial Society (CAS) community on using GLM to build pricing models [4, 
5]. Therefore, we will not repeat these theoretical discussions for GLM pricing models. Instead, we 
would like to discuss, based on our past experience, several typical data and modeling issues that 
arise when building the pricing models. 
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• First, the commonly known data issues, such as missing data, miscoding information, 
information not captured in a insurance company data repositories, and unavailability of 
historical data due to purge, will hinder the development of predictive models. 

• Compared to personal lines data, commercial lines data posts an even greater challenge 
during the development of pricing models: 

o Due to less regulation and scrutiny of commercial lines business operations, 
commercial lines data typically has much more commonly known data issues, as 
stated above, than personal lines data with regards to missing information, 
miscoding, and information availability. 

o For personal lines, the exposure is well-defined and fairly homogeneous: car-month 
for auto and home-year for homeowners. On the other hand, the exposure base for 
commercial lines is less defined and can even vary within the same line of business. 
For example, for general liability (GL), some classes use sales and revenue for 
exposure, while other classes use payroll for exposure. Given the complexity 
associated with exposure, applying the pure premium approach for pricing within 
commercial lines is fairly difficult. 

o For commercial lines, their data structure is heavily driven by rating bureau 
requirements. Therefore, the data is typically kept at the “industry class code” level, 
not at the exposure level. For example, for a commercial auto policy with multiple 
classes and multiple vehicles, the premium and loss information may be coded at the 
class level but not at the vehicle coverage level.  

o For commercial lines, more data credibility issues exist than they do with personal 
lines. Even for a mid-size regional personal carrier, it is fairly easy to collect millions 
of records for building up personal auto and homeowner’s models. However, for 
commercial lines, there poses significant challenges regarding the availability of 
unique data points and it is very common that the data size is at least 10 times less 
than what is available with personal lines.  

• In general, some major pricing variables are excluded in a company’s analysis due to complex 
data structures, issues with data credibility, market competitiveness, or other business 
reasons. For example, “territory” and “vehicle symbol” are typically excluded from a 
modeling process of a PPA rating plan development. For these two variables, there exists 
many different values and therefore it is rare that a single company’s data can provide fully 
credible data to evaluate these two rating variables. Another example for commercial lines is 
that most of the business, such as commercial auto, GL, property, commercial multi-peril 
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(CMP), and workers compensation (WC), will follow the industry class loss cost by ISO or 
National Council on Compensation Insurance, Inc. (NCCI). There exist hundreds of 
industry classes for each line of business. One way to appropriately consider their impacts on 
the model results is to adjust the exposure or pure premium by their indicated relativity. 
Another way is to use the GLM offset options, and this approach is discussed in a separate 
paper [6].  

• One data issue that needs to be considered for pricing model development is catastrophic 
(CAT) losses for property lines, such as fire or hurricane loss, and extreme large losses for 
liability lines. Therefore, it is prudent to exclude CAT losses or cap large losses and then 
build the long-term estimates for large loss loads or CAT loads back to the modeling data 
set.  

• For property coverages, the losses are net of the deductible. For liability coverages, the losses 
are capped by the liability limit. Therefore, we do not have the “complete” loss information 
to establish the entire severity distribution curve. This is a challenge in building up the 
severity models. 

• Another issue for building up the severity models is that for some of the segments in pricing, 
the severity data can be very thin and the modeling results can be extremely volatile with a 
great deal of “noise.” The issue is significant for low-frequency and high-severity coverages, 
such as BI for PPA, and GL. This is why the pure premium models based on a Tweedie 
distribution have attracted more and more interest in recent years.  

2.2 Underwriting Models 

The major business objective of an underwriting model is to assess the risk quality for an insured 
on a prospective basis. One difference between underwriting models and pricing models is that 
pricing models focus on determining the final class rates, while underwriting models focus on 
evaluating risk quality beyond the class rating and the currently charged rate. The underwriting 
models can assist underwriters or product managers with their underwriting decision making, such 
as company placement, crediting or debiting, limitation of coverage, payment plan selection, new 
business acceptance or rejection, renewal business referral and cancellation, and customer service 
and marketing activities. Regarding the modeling design, one difference is that pricing models use 
the pure premium approach at the exposure and coverage level, while underwriting models use the 
loss ratio approach at a policy level.  

Ideally, if a perfect rating plan exists, all risks are priced at their adequate rate level and there is no 
need for underwriting models or even underwriting because, generally speaking, underwriting 
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models sit on top of pricing models and are designed to address pricing inadequacy through 
improved underwriting precision. However, ideal rating plans do not exist due to various internal 
and external restrictions, including regulatory constraint, dynamic changes in the external economic 
environment, long delays for filing approvals, inability of using certain variables in rating plans, and 
limitation on rating structure (e.g non-linear pattern, interaction between rating variables, interaction 
between exposures at a policy level, etc.). Therefore, underwriting models are used to evaluate the 
risk quality by identifying potential deficiencies in the rating plan.  

The information used by underwriters can vary widely and is sometimes highly subjective. Also, 
underwriting actions are not always truly risk-based, but instead are influenced by the market, 
subjective decision making and external competition. This issue of a “market-driven” price is a more 
prevailing concern for commercial lines than for personal lines. Therefore, predictive modeling can 
be used to build up objective underwriting models to assist underwriters with making consistent and 
fact-based underwriting actions each and every time and ensuring alignment with external market 
cycles.  

Another advantage of underwriting models is that the models can help insurance companies 
improve their underwriting efficiency. This is because the models can segment “good risks” versus 
“poor risks,” and with such segmentation, underwriters can spend their major time and effort on 
poor risks, while good risks can flow through the process with minimum underwriting touch. In 
addition, underwriting models can be used to segment good and bad risks within classes of business, 
which is a significant improvement over traditional pricing and underwriting decisions that are made 
on a class basis. 

In general, the target variable of an underwriting predictive model is the loss and allocated loss 
adjustment expense ratio. Since underwriting is mostly performed on a policy basis, the predictive 
variables and the data files used for developing an underwriting model are at the policy level. For 
predictive variables, there are many more candidate variables: rating versus non-rating, internal 
versus external, credit and territorial, among others. There is less restriction for underwriting models 
than pricing models. For example, there is a trend in the industry with using insured’s premium 
payment records from historical billing data, such as late payments and bad checks, as underwriting 
variables. The trend of using billing information makes logical sense, since an insured’s premium 
billing records are essentially a proxy for personal financial credit data and an insured’s ability to pay 
bills on time. 

For underwriting models, the potential data and modeling issues are as follows: 
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• Several data issues stated before for pricing model development are equally applicable to 
underwriting model development, such as data quality and data availability and data 
completeness issues. 

• Many candidate variables can be included in underwriting models that generally cannot be 
included in pricing models. Creating and selecting the candidate variables demands a look at 
the availability of the underlying information, internal or external, to insurance companies 
and the ease of implementing these variables and gaining underwriting acceptance on their 
use. Here are several examples:  

o While there is a trend with using billing information for underwriting models, some 
companies may purge their billing data on a frequent basis; therefore, such 
information is not available in the historical data. Over a long term, companies need 
to devise a master data quality initiative to maintain and update historical data in their 
corporate data repositories to support these underwriting models and devise 
mechanisms to ensure that these data elements are available to be extracted. The role 
of data quality and data governance as a key strategy to successfully maintaining and 
gaining value from predictive modeling applications is taking on even greater 
significance in the P&C industry as more companies seek new ways to differentiate 
themselves in today’s market. 

o Another example is that some underwriting information is kept on paper instead of in 
electronic files or in back-end data repositories. For example, for new business 
underwriting, while many insurance companies ask for prior loss experience or other 
external data, such as motor vehicle records (MVR) for commercial auto, rarely do 
they store this information in their back-end data repositories. Therefore, it is difficult 
to use such information during the development of underwriting models, even 
though it is common for underwriters to use prior loss information in underwriting 
new business.  

• When loss ratio is used as the target variable for modeling, we need to apply due actuarial 
consideration to adjust the data, such as rate on-leveling, loss development, and trending. By 
applying the appropriate actuarial adjustments, the underwriters can have a higher level of 
confidence so that when they use the underwriting model, the indicated results on the quality 
of the risk as derived from the model are based on up-to-date information with the 
appropriate longitudinal adjustments made.  

• Since underwriting models are constructed at the policy level, whether the results can be 
carried, or how the results can be carried, to the underlying pricing, is a difficult question. For 
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example, driver age is commonly used as an underwriting factor even though it is used for 
pricing already. If an underwriting model indicates that youthful driver policies are worse 
than average, it may not suggest that the underlying youthful pricing factors are wrong, but 
rather it may indicate the inadequacy of the pricing structure, such as purely multiplicative 
structure, or potential interaction of youthful drivers with other variables, such as vehicle 
type. The answer can be difficult to find without in-depth research and analysis. 

• Sometimes, underwriting is not only performed on a policy level, but also on an account 
level. For example, it is very common for personal line carriers to cross-sell auto and 
homeowner’s policies, and for commercial line carriers to cross-sell all the major small 
commercial lines of business, including BOP, commercial package, auto, and WC. Therefore, 
the full value of underwriting models may not be realized until they are built for all lines of 
business, for account-driven companies and underwriting models take a holistic view of 
assessing the quality of a risk.  

2.3 Marketing Models 

The earliest, classical business application for predictive modeling is for marketing and sale 
operations, such as mail solicitation and response models. In general, the purposes of marketing and 
sales predictive models include identifying prospective customers, increasing the hit rate for 
solicitation, and assisting with retaining existing customers [7]. This is not for the P&C industry 
alone but historically predictive modeling has been used for marketing and consumer business 
related applications across multiple industries. 

In general, the main focus of these marketing models is on the “success or failure” of converting 
or retaining a risk, so the target variable is typically a binary one. Whether the risk is profitable or not 
is not a consideration for these models but rather the probability that the risk will be acquired as a 
new policy or retained as a renewal policy.  

Depending on the final usage of the marketing and sales models for insurance, there is wide 
variation in the types of models with regards to the predictive variables and the design of the target 
variable. For insurance applications, the marketing and sales models can be grouped into four main 
categories: new business qualification and targeting, new business conversion, renewal business 
retention, and renewal business conversion models. The details for these four types of models are as 
follows: 

• For new business qualification and target models, the purpose is to identify a list of potential 
prospects for targeting. This list can be used for phone or mail solicitation campaigns. The 
data and variables used for the models are fairly limited, and are mostly from data sources 
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external to insurance companies. There are numerous data vendors who sell consumer 
databases, and insurance companies can use the data for these models. Since there is a cost 
associated with the solicitation campaign, such as phone call cost or mailing postage fee, it is 
important to measure the cost versus return benefit, that is, the response rate, after the 
models are implemented.  

• For new business conversion models, the key is to increase the new business hit rate when 
an insurance company has an opportunity to offer a quote to an insured. Insurance 
companies are very interested in knowing the overall hit (or conversion) rate, how the hit 
rate varies by different segments of the book (for new business), and how to increase the hit 
rate. Many insurance companies do capture certain information in their insurance quote files, 
such as name, address, number of quotes, quoted prices, etc. For the conversion models, we 
can expect that one critical, if not the most important, factor that will influence the hit rate is 
how competitive the company’s quoted price is compared to its competitors. The 
relationship between the hit rate and the quote price can be expressed through the “elasticity 
curve” commonly used for classical economic supply-demand theory. Without such price 
elasticity information, the value of new business conversion models will be significantly 
limited.  

• For renewal business retention models, the main purpose is to understand the probability of 
an existing insured to stay for the next renewal term [8]. The reason that an existing insured 
does not stay for the next renewal term may be due to the insured’s action, such as mid-term 
cancellation, non-response to renewal request, or non-payment of premium, or the insurer’s 
action, such as non-renewal. Therefore, the renewal retention models will focus on 
understanding how an insured’s characteristics correlate with the retention rate. 

• For renewal conversion models, the model will measure the probability of the policy to be 
converted to the next term at the point of renewal for the existing policy. Therefore, these 
models exclude the mid-term cancelled policies. Similar to the new business conversion 
models, the renewal price offered and how it compares to the competitors will play an 
important role on the outcome.  

Obviously, for renewal models, much more information, especially information from the 
company’s internal data sources, can be used. For new business models, the predictive variables are 
very limited, and sometimes the models may completely rely on external data sources. In the end, 
these marketing models may not be as accurate as underwriting and pricing models but they do offer 
an opportunity to improve resource allocation and efficiency in the sales process by allowing 
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insurance companies to focus their marketing and sales efforts on the risks that are most likely to be 
bound or retained. 

In the remaining sections of the paper, we will focus on the new business conversion models 
because they are the most challenging ones to build, and they are very critical for insurance 
companies to sustain long-term profitable growth. For the new business conversion models, 
predictive modeling techniques can be employed to find certain segments with a higher likelihood 
for responding to the quote (i.e., the response rate) and purchasing after taking quotes (i.e., the hit or 
conversion rate), as well as segments with a higher or lower sensitivity with respect to the price. 
Similar to underwriting models, the marketing models are often created on a policy level and 
sometimes even on a household or account level.  

As mentioned earlier, in order to analyze the response rate and hit rate, it is important to capture 
the price competitiveness for the quote, that is, the price differentiation between the company and 
its competitors. The competitors’ pricing information can be obtained in published rating manuals, 
company’s quote files, or industry competitive information vendors’ database. If the competitors’ 
prices are well captured in the quote files, the core information of the price elasticity curve can then 
be established for the models.  

The typical data issues for building up marketing and sales models are: 

• Since quote files are not required for financial reporting or bureau reporting, the quality of 
the files are much worse than other files and data sources. In addition, insurance companies 
often purge their quote files after one or two years, therefore little historical quote data is 
available for analysis. Once again this highlights the importance of corporate data quality and 
governance as a key strategy to maximize predictive modeling benefits 

• Typically, there is very limited information captured in the quote files and often only includes 
the following:  

o Name and address of an insured 

o Basic and key rating information 

o Agent information 

o Competitiveness information including prior carrier’s name and price 

Insurance companies rarely capture information other than the above and therefore the number 
of variables that can be derived is very limited.  

• For the renewal retention process, insurance companies rarely follow up their non-renewal 
risks and find out the reasons for their non-renewal decision, the new company they took 
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their business to, or the new price that they received from their new company. Without such 
competitive information, the value of the marketing and sales models will be significantly 
limited. It also minimizes a company’s opportunity to gain market intelligence and assess its 
own competitive position because there is valuable business insight that can be gained from 
understanding why a company’s customers are leaving. 

3. INTEGRATING THE THREE MODELS IN A COMPETITIVE 
MARKET ENVIRONMENT 

The U.S. insurance market is a highly regulated industry. There are more regulatory constraints 
for personal lines than for commercial lines. There is also a practical limitation for pricing due to 
long rate filings and the overall approval process. Therefore, underwriting and marketing models can 
be more flexible in assisting insurance companies in dealing with the dynamic external environment 
that they operate in. Another advantage, as mentioned earlier, is that with underwriting models in 
place, the subjective judgment by underwriters can be largely eliminated and the computer-generated 
model results can be consistently documented in the underwriting files for regulatory review.  

The U.S. insurance market is very complex, dynamic, and competitive. One significant challenge 
for insurance companies is how to effectively manage their business through the ups and downs of 
an underwriting cycle. For example, one typical approach when the market is turning soft (i.e., 
increasing profit and declining price) is to reduce rates or increase the credits offered to insureds 
across the board in order to maintain market share. However, a blanket approach of reducing rates 
or increasing credits assumes that the market competitiveness, rate adequacy, and sensitive of 
retention to price are the same across different segments of the market. In reality, we know that 
such assumptions mostly likely are not valid. Insurance companies should study and adjust the 
pricing as well as underwrite based on how price elasticity, pricing, and underwriting interact with 
each other [6]. Therefore, integrating the three predictive modeling solutions can assist insurance 
companies in dealing with the dynamic market conditions effectively.  

The following is an approach to how the three models can be integrated: 

• The first step of the integration process is to develop an “adequate” rating plan using the 
standard GLM approach. The GLM rating plan would assume that the rate is adequate with 
regards to the rating variables and the structure of the rating plan.  

• The second step after the completion of the GLM rating plan is to develop a new business 
conversion model by studying the sensitivity of how insurance buyers react to price 
difference, such as the price elasticity curve in Chart 1. In Chart 1, the graph is based on the 
quote file described before, and is used to link the price level and the conversion rate. In the 
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chart, we can see that the overall conversion rate is between 0 and 50%. This means that no 
matter how low the company’s price is, the maximum conversion rate is 50%, and if the 
company’s price is too high, the chance to get new business is 0. Also, the conversion rate 
will change in the S-shape region when the company’s price is between 30% below and 10% 
above the competitors’ price. It is in this S-shape region that the conversion rate is most 
sensitive to the price change. The graph can be generated across the whole book, or it can be 
further broken down by different segments of the book, such as by age group, household 
profiles, territory, etc. With such elasticity information at hand, the company will know not 
only the trade-offs between the price change and conversion rate, but also where it will get 
the most benefit in new business growth from the price change.  

. 

Chart 1
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• The third step, now that we have identified the key range for the rate adjustment-conversion 
rate relationship, is to use the results to adjust the GLM rating plan so that the parameters 
can be re-optimized with different adjustments. This step can be tedious and involves an 
iterative process but the benefits can be significant. At this step, the company’s historical data 
is employed in the pricing model development. At the same time the marketing information 
is used along with the pricing information to improve the overall performance for the 
company’s operation by striking a balance between profitability and growth.  

• The last step is to build the underwriting models on top of the pricing and marketing models. 
There are several reasons that the underwriting model is important to use along with the 
pricing and marketing models.  
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First, the GLM pricing model may still be far from addressing the overall rate adequacy because 
many significant variables are not used in the pricing models. Such information may include agent’s 
performance data, credit score, and demographic and territorial information on a more refined level. 
A great deal of non-rating information can be used to enhance the segmentation of an insured’s 
profitability.  

Our experience indicates that for commercial lines, such underwriting models are very important, 
since most of the commercial line carriers follow the bureau loss cost and rate structures for most of 
the major lines of business. They do not have their own GLM-based pricing models.  

The second reason is that, as the result of adjustments for the rating plan are due to conversion 
consideration, it is likely that some segments can turn unprofitable because of the trade off for 
growth and retention. The decrease in profitability can be minimized with additional underwriting 
information. For example, if it is determined that youthful policyholder factors need to be tempered 
to increase the conversion rate, the potential profitability impact can be minimized through the 
application of the underwriting models by allowing profitable agents to write more youthful risks 
than unprofitable agents write (i.e., offsetting the risk of youthful risks by focusing on youthful risks 
with favorable credit scores).  

Finally, it is very important to note that, when developing the underwriting models, the 
underlying premium should be based on the final pricing structures and rating factors. All historical 
premium data should be adjusted to the final selected pricing level. 

When these three applications are integrated, modelers should be conscientious about the data 
and modeling issues and problems described in previous sections for each application. In addition, 
there exist unique, challenging data and modeling issues during the integration process. 

• The first unique challenge is due to the fact that the data levels are different between the 
pricing model and the underwriting and marketing models. Therefore, how to “accurately” 
profile the policies identified by the conversion model and link the model results to the 
subsequent pricing model is a challenge. For example, a youthful policy may have all of or 
part of its drivers as youthful drivers. When the marketing model profiles youthful driver 
policies to be targeted or not targeted, it needs to be very specific in defining whether the 
profile is partial (if partial, the percentage of youthful drivers on the policy) or all youthful 
driver policies. In other words, how to “roll up” exposure-based pricing information from 
the pricing model to the policy level information for the underwriting and marketing models 
needs to be prudently considered.  

• Another challenge for integration is that the marketing application is “forward-looking” 
while the pricing and underwriting applications are based on “historical” information. Due 
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to constant changes associated with the internal and external environments for insurance 
operation, the historical data distribution and composition may not serve well for the 
forward-looking integration application. For example, if a national insurance company would 
like to expand its business in certain a geographic region, such as in the northeast, it is 
possible that the northeast risks behave differently than the risks in other regions. Therefore, 
modelers need to make extra efforts as to how to prepare the data for the integration 
analysis, and, for this example, may want to use data in the northeast region only. Other 
considerations include the distribution change in industry class, affinity programs, or 
premium size. 

• As discussed in the previous sections, different applications may have different data available. 
In general, data is more sparsely available for the marketing application than for the 
underwriting or pricing applications. For example, driver and vehicle details are fairly 
populated in the pricing and underwriting data sources, but not for the marketing data 
sources. When the details are available in the marketing data sources, it is possible that they 
are more available for certain regions, branch offices, agents, or programs than for others. 
The inconsistency in data availability may lead to “bias” in the analysis results.  

• By combining a comprehensive underwriting model with a pricing model, a company can 
more accurately estimate loss cost and profitability than by using the pricing model alone. 
Previously, we illustrate how to use the pricing model and the marketing model together first, 
and then develop an underwriting model second. In theory, there is no limitation for the 
sequence of integration, and the underwriting model can be used alone with the pricing 
model to fine-tune the marketing model. Of course, the challenge for this approach is that 
the underwriting model is on the policy level, while the pricing model is on the exposure 
level. 

4. SUMMARY 

Several years ago, merely using predictive models in some fashion to support underwriting, 
pricing, and marketing gave insurance companies a competitive edge. However, in today’s 
competitive market, predictive modeling is not limited to just personal lines but is used widely in 
commercial lines as well. Therefore the first mover advantage no longer exists and insurance 
companies must find new ways to maximize the benefits of their predictive modeling investment 
and stay ahead of their competition. 

Our paper illustrates the strategic and tactical approach of taking an enterprise-wide view of 
predictive modeling and integrating the results from pricing, underwriting, and marketing models to 
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support business decisions across multiple business operations. In today’s market, companies that 
will succeed are the ones that incorporate analytics as a core business strategy and align multiple 
business operations with a single unified view of analytics. 

From a tactical perspective, our approach to integrating pricing, underwriting, and marketing 
predictive models is a four step integration process as outlined below: 

Step 1: Develop the GLM-based rating plan and pricing model. 

Step 2: Develop retention or conversion models to study the price elasticity behavior of 
insurance buyers. 

Step 3: Adjust the rating plan and class plan factors based on the retention and conversion 
models to strike a balance between rate adequacy and conversion rate. 

Step 4: Build up a series of underwriting rules based on underwriting models in conjunction 
with the pricing and market models to maintain the overall competitiveness. 

By integrating the three types of predictive models seamlessly, insurance companies can gain two 
major benefits. First, instead of adjusting their rates across the broad for growth, insurance 
companies can “target” the segments to gain a high return on growth with minimum price changes. 
Second, the potential profitability issue associated with rate cutting for growth can be minimized 
with underwriting models. We believe that with such integration, the full value of predictive 
modeling can be realized. It can provide insurance companies with an effective way to deal with the 
key business challenges of achieving profitable growth and minimizing the impact of the 
underwriting cycle. History tells us that companies that are successful and regarded as market leaders 
are the ones that can process information and make sound business decisions faster than their 
competition can. The P&C insurance industry should be no different and an integrated approach to 
predictive modeling gives P&C companies an opportunity to realize the full value of their predictive 
modeling investment and stay a step ahead of the competition. 
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Abstract:  

Motivation. Provide an introduction to data quality and data management directed at actuaries. 

Method. Expand on the concepts in Actuarial Standard of Practice No. 23 (Data Quality), then introduce practical 

methods that actuaries, actuarial analysts, and management can apply to improve their situation, with references for 

more information. 

Results. Information quality is about more than coding data:  processes affect quality.  There are many principles 

and practices an actuarial department can employ immediately to improve the quality of the information it deals with.  

Actuaries have a unique role to play in the bigger arena of improving their organizations’ information for decision 

making and it is in their interests to do so. 

Conclusions. What every actuary should know about data quality and data management. 

Availability. Code for creating Box Plots in Excel is a link with this paper at 

http://www.casact.org/pubs/forum/08wforum/. 

Keywords. Actuarial Systems; Data Administration, Warehousing and Design; Data Quality; Data Visualization; 

Exploratory Data Analysis; Software Testing. 

               

1. INTRODUCTION 

Data quality is a significant concern for most actuaries. In Britain, a GIRO Data Quality working 
party survey [1] found that about 25% of actuaries’ time is expended on data quality issues. The 
survey also found that about 30% of actuarial analyses are adversely affected by data quality 
problems. Poor data quality is sometimes viewed as an inescapable fact of life by actuaries and other 
insurance industry analysts. However, actuaries, as both key consumers and providers of 
information, are uniquely well-positioned to deal with the pervasiveness of poor data quality in 
insurance. 

Some think data quality is merely the accuracy of data. This paper identifies and discusses other 
characteristics (such as completeness and timeliness) and then broadens the perspective to 
information quality, which considers the broader picture of how information is processed and 
communicated.  This includes not only data accuracy but other pitfalls that can result in users 
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misunderstanding information.  Strategically, data quality is more important today, given easy access 
to an unprecedented level of detail and the proliferation of new tools and analysis techniques.  
Consequently, actuaries can add value by broadening how they think about data: 

1. Data is a corporate asset that needs to be managed and actuaries have a role to play.   

2. Data needs to be appropriate for all of its intended uses, not just the analysis at hand. 

This paper contains tools, concepts, and references to support and facilitate this expanded 
perspective in order to help actuaries transform data into more useful information to make better 
decisions.   

1.1 Research Context 

The actuarial literature on data quality is relatively sparse.  In North America, the Actuarial 
Standards Board (ASB) Actuarial Standard of Practice No. 23 on Data Quality (ASOP No. 23) [2] 
provides guidelines to actuaries when selecting data, relying on data supplied by others, reviewing 
and using data, and making disclosures about data quality.   

The Casualty Actuarial Society (CAS) Committee on Management Data and Information and the 
Insurance Data Management Association (IDMA) produced a white paper on data quality [3].  This 
CAS committee also promotes periodic calls for papers on data management and data quality which 
are published in the CAS Forum.  The CAS online database (DARE) taxonomy can help users 
narrow their searches to papers on specific topics such as actuarial systems, data organization, and 
exploratory data analysis. 

In response to one such call for papers, Francis [4] provided guidance for specific techniques 
which can be used to screen data for quality errors.  Francis pointed out that 80% or more of time 
spent on large modeling projects is spent on data issues. However, the focus of the paper was on 
detecting errors after the fact, and not on techniques for preventing them. 

The subject of data quality is also of interest internationally.  A working party of the UK General 
Insurance Research Organization (GIRO) developed recommendations for improving the quality of 
reserve estimates. The Reserving (GRIT) working party report [5] recommended more focus on data 
quality and suggested that UK professional guidance notes incorporate standards from ASOP No. 
23. Furthermore, the GRIT survey found that many respondents expressed concern over data 
quality.   

In researching this paper, the working party reviewed seven books recommended by the IDMA, 
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as well as two more recommended by a working party member.  Many books talk about data 
management as a means to achieve data quality, and some deal specifically with data quality.  
However, these books tend to be written for information technology professionals to apply to any 
organization.  Since our goal is an introduction for actuaries, these texts are only cited occasionally.  
The collection of reviews of these books was published in the Winter 2007 CAS Forum [6].  

1.2 Objective 

ASOP No. 23 sets standards for data quality that address a number of key areas but there are 
times when an actuary might want to go further.  For example, if a reasonableness check reveals 
some data shortcomings, ASOP No. 23 outlines the ramifications for the analysis at hand. However, 
the actuary may be in a position to prevent data quality issues in source databases from arising by 
advocating improvements in data management and data quality practices.  This paper discusses some 
of the practices and options available. 

Other papers published by the CAS tend to focus on particular data management subjects:  there 
is no broad introduction to the subject.  Conversely, it is difficult for actuaries to apply nonactuarial 
texts on data management and data quality since these texts often presume the reader has a working 
knowledge of related IT concepts and unrestricted access to an organization’s data centers.  

This paper is a data quality introduction and reference for actuaries and actuarial analysts.  As 
such it attempts to bridge the gap between ASOP No. 23 and the literature available for people in 
the actuarial profession who want or need more information.  It is also the authors’ hope that 
actuaries and actuarial analysts will become advocates for information quality once they see the 
business value information quality provides in: 

• More accurate analyses (and hence smaller margins of error), 

• Ability to focus on higher value activities once significant data issues are resolved, 

• Increased impact of their analyses by increasing transparency and legibility of results. 

1.3 Disclaimer  

While this paper is the product of a CAS working party, its findings do not represent the official 
view of the Casualty Actuarial Society or the employers of the authors. Nor is anything in this paper 
intended as a standard of practice nor an interpretation or guidance of existing standards.  Moreover, 
while we believe the approaches we describe provide sound guidance on how to address the issue of 
information quality, we do not claim they are the only acceptable ones.  Similarly, we believe the 
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textbooks and papers cited here are good sources of educational material on data management and 
data quality issues, but we do not claim they are the only appropriate ones.  Finally, we have 
illustrated various concepts and methods with examples.  The particular software used to illustrate 
examples is not necessarily the only or the best software for the purpose. 

1.4 Outline 

Section 2 will discuss concepts, whereas section 3 will focus on techniques.  In brief, section 2 
discusses the motivation for data quality and describes characteristics of quality data.  It then 
expands the scope to a discussion of metadata and a common example of metadata in property and 
casualty insurance:  statistical plans.  Section 3 begins with techniques for improving the quality of 
data (exploratory data analysis and data audits) then turns to information quality in processing 
(models and presentations).  It concludes with a discussion of the organizational and management 
issues:  data quality measurement (as a tool to track improvement), improvement strategies, and data 
management.  Section 4 reiterates the main topics of the paper. 

2. BACKGROUND AND THEORY 

Quality issues have come to forefront recently due to several key developments: 

• (Unprecedented) level of detail. Computerization and cheap data storage along with 
changes in regulatory requirements have led to extraordinary amounts of data being 
captured, stored, and provided to actuaries. Consequently, enormous amounts of data can 
amass enormous numbers of errors and inconsistencies. 

• Availability of new tools. Recent years have seen the proliferation of powerful data 
analysis packages and technologies: from XML-enhanced data exchange to object-
oriented databases to servers enabled with On Line Analytical Processing. 

• Competition. Competition encourages pricing techniques to be more and more precise – 
witness the growth of predictive modeling. In this environment, requirements for quality 
of data used in pricing algorithms grow immeasurably. 

• The growing data management skill set of actuaries. Modern actuaries are more 
technically prepared for the challenges of dealing with huge amounts of data using 
contemporary tools and techniques. They should be able to tackle data quality issues with 
aplomb. 
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In their work, actuaries rely on vast amounts of data: claims loss runs, premium bordereaux, 
interest rates, and industry statistics, just to name a few. All of these data originate outside of 
actuarial reach and their collection and accumulation generally occur without actuarial control. 
Before it reaches actuaries, every piece of data passes through several stages: data are collected by a 
TPA, MGA, or some other source; then they get transferred to the insurance company system; and, 
after that, they  can be grouped, accumulated, and mapped to a suitable structure. At each of these 
stages, data are processed and modified by people of different professions and qualifications who 
inevitably introduce errors into the data.  The longer the data pipeline, the more errors accumulate 
and can compound one another.  Multiple data sources also tend to multiply data problems.  

As data progresses from input to information to decisions, the actuary’s role changes from 
consumer to provider. This position is almost unique in the insurance data life cycle: indeed, as 
information providers for decision makers, actuaries are held to the highest standards of work 
quality; but, as consumers, actuaries depend on someone else. Better than any other professionals in 
the insurance industry, actuaries can become data quality protectors: they have knowledge of the 
data content, expertise to develop sophisticated data testing tools, and high stakes in the quality of 
the data. 

Whereas ASOP No. 23 focuses on data’s suitability for a particular actuarial analysis, we will 
present a broader introduction to data and information quality. A schematic overview of the 
development and usage of insurance data with respect to actuarial work is provided by Figure 2.0.1.  
The schematic outlines the data life cycle for insurance.  The goal of each major step and the 
function within the organization most responsible are given.  These are followed by some examples 
of the types of errors that can be introduced in each step.  The “Topics” column identifies the 
sections in this paper most pertinent to each step.  As such, the figure is a helpful roadmap 
identifying where to find more information in this paper and providing the general context.  Note 
that metadata (section 2.3), data quality measurement (section 3.5), data quality improvement 
strategies (section 3.6), and data management (section 3.7) considerations permeate the entire 
process.  The multiple references to actuaries illustrates actuaries’ broader opportunity to improve 
information quality not just for the analysis at hand, but for better decision making in the 
organization as a whole. 
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2.1 What is Data Quality? 

Generally speaking, something is of high quality if it is particularly appropriate for its purpose.  
According to ASOP No. 23, “for purposes of data quality, data are appropriate if they are suitable 
for the intended purpose of an analysis and relevant to the system or process being analyzed” ([2], 
page 2). ASOP No. 23 advises the actuary to obtain a definition of data elements in the data, to 
identify questionable values and to compare data to the data used in a prior analysis.  The actuary is 
also advised to judge whether the data is adequate for the analysis, requires enhancement or 
correction, requires subjective adjustment, or is so inadequate that the analysis cannot be performed.  
In making this judgment, ASOP No. 23 lists six things actuaries should consider when selecting data 
(discussed in section 2.2 below).  ASOP No. 23 is often considered only with respect to the analysis 
at hand.  However, if the analysis is repeated periodically or the same data is used for multiple 
purposes, it may be advantageous to address some of the recurring data quality issues.  

A key component of this bigger picture is the concept of metadata.  “Metadata” is simply 
information about data.  As such, it helps determine if particular data are suitable for a particular 
purpose and insures that it is used appropriately.  Metadata can help identify invalid entries, 
facilitates transferring data among systems, can improve the interpretation of analyses, and can 
prevent blunders due to misinterpretation of data.  It is described more fully in section 2.3. 

The key idea is that quality data is appropriate for its intended purpose.  Note that this makes 
quality a relative, not absolute, concept:  data may be of adequate quality for one analysis while being 
inappropriate for another purpose.  For example, data that is appropriate for an annual overall rate 
adequacy study may not be appropriate for a relativity analysis or even for a midyear overall rate 
indication.  This is particularly an issue in predictive modeling, where the analyst attempts to find 
better predictors (of losses, for example):  promising variables may not have been coded or 
processed with the intent of using them for this purpose. 

2.1.1 Data quality versus information quality 

Everyone has heard the well known IT adage “garbage in – garbage out”:  it says that poor 
quality inputs will lead to poor quality outputs.  Put another way, it says that processing  or analysis 
cannot completely correct bad input.  This consideration of processing distinguishes information 
quality from data quality.  Dasu and Johnson [7] talk about “end-to-end-data-quality.”  That is, there 
are many stages in the data assembly process where data quality needs to be monitored and 
improved, such as during data collection, transformation and aggregation, data storage, and data 
analysis.  Their equation: 
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DATA + ANALYSIS = RESULTS 

highlights that quality results depend not only on quality data, but also on quality analysis.  The 
quality of the final product is not only affected by the quality of the data itself, but also by how the 
data is processed (e.g., how it is transformed, aggregated, analyzed and presented). 

This consideration of processing leads to a larger concept of metadata:  the initial definition of 
metadata could be restricted to a particular database, but it can also be expanded to integrate 
information across applications, as new data is created with each application.  Metadata is discussed 
more fully in section 2.3. 

Information quality does not have a commonly accepted definition.  It is used in this paper to 
remind readers that data quality is about more than just correct coding:  quality is affected by how 
data is stored, processed, and analyzed, and how results are presented.   

From a data manager’s perspective, it also includes what facts are captured as data and how they 
are captured.  

2.2 Principles of Data Quality 

When evaluating the quality of a dataset for a particular analysis, ASOP No. 23 advises actuaries 
to “select the data with due consideration of the following”: 

• Appropriateness for the intended purpose of the analysis, including whether the data are 
sufficiently current; 

• Reasonableness and comprehensiveness of the necessary data elements, with 
particular attention to internal and external consistency; 

• Any known, material limitations of the data; 

• The cost and feasibility of obtaining alternative data, including the availability to obtain 
the information in a reasonable time frame; 

• The benefit to be gained from an alternative data set or data source as balanced against 
its availability and the time and cost to collect and compile it; and 

• Sampling methods, if used to collect the data. ([2], page 3) 

Similarly, the CAS Management Data and Information Committee “White Paper on Data 
Quality” [3] states that evaluating the quality of data consists of examining the data for: 
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• Validity:  “the value of a given data element is one of all allowable ones” ([3], page 155) 

• Accuracy:  “each data transaction record or code is a true and accurate representation of 
what it’s intended to represent” ([3], page 156) 

• Reasonableness:  “is the data reasonable compared to our prior and current 
knowledge?” ([3], page 157), and 

• Completeness:   each record contains all the data necessary for business needs and every 
step in data collection and processing handles it correctly, without duplication. 

The white paper goes on to note that there are three levels of accuracy for usable data:   

• Absolute:  data is 100% correct for every data element and every transaction,  

• Effective:  there are some errors but they should have no material impact on the 
results of the analysis, 

• Relative:  data is “inaccurate but consistent over time” ([3], page 158). 

2.2.1 Validity versus accuracy 

One misconception is that if data is valid, then it is accurate.  To see why this is not true, 
consider, for example, the ZIP Code.  The recorded ZIP Code may be one of the possible ZIP 
Codes in the state (valid) but it may not be the correct one associated with the particular risk’s 
address. Standalone edits in policy administration systems can check the validity of the data while 
more complex relationship edits and audits can be used to check for accuracy.   

2.2.2 Data quality through data management 

Now that data quality is defined, how is it achieved?  Section 3 describes a number of options 
actuarial analysts can pursue to improve their information quality, but the most holistic way is by 
good data management.  This is because good data management broadens the point of view from 
the data for the analysis at hand to the entire process that gave rise to the data as well as other 
potential applications and users of the data.  There are some additional data quality principles from 
this broader perspective. 

Various authors of data quality literature describe the dimensions of data quality.  A 
comprehensive list is provided in Data Management: Databases and Organization [8], by Richard T. 
Watson. Watson defines eighteen dimensions of data quality.  Some of these dimensions are the key 
principles described above.  Others describe ways of storing data such as: 
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Dimension Conditions for high quality data 
Representational 
consistency 

Values for a particular data attribute have the same representation 
across all tables (e.g., dates) 

Organizational consistency There is one organization-wide table for each data element or entity 
and one organization-wide data domain for each data attribute 

Record consistency The values in a record are internally consistent (e.g., a home phone 
number’s area code is consistent with a city’s location) 

Flexibility  The content and format of presentations can be readily altered to 
meet changing circumstances 

Precision Data values can be conveniently formatted to the required degree 
of accuracy (e.g., in cents or in thousands) 

Granularity  Data are represented at the lowest level necessary to support all 
uses (e.g., hourly sales) 

Table 2.2.1 
 

Notice how these dimensions support the key principles of validity, accuracy, reasonableness, and 
completeness. 

Watson’s list goes beyond data characteristics to processing and management principles, such as: 

   

Dimension Conditions for high quality data 

Stewardship Responsibility has been assigned for managing data 

Sharing Data sharing is widespread across organizational units 

Timeliness 
A value’s recentness matches the needs of the most time critical 

application requiring it.  Values remain up to date. 

Interpretation  Clients correctly interpret the meaning of data elements 

Table 2.2.2 
 

Other key concerns for data managers are the proprietary nature of data and the privacy issues.  
An insurer's data contains much information about its business:  who it insures, the premium it 
charges, the claim it has paid.  Many insurers consider this information to be a trade secret.  As such, 
data managers and the users of the data (e.g., actuaries) must be careful to protect the data of their 
employer or client from being divulged to their competitors.  Likewise, insurance data may contain 
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data elements about an individual person, such as their social security number, FICO scores, and 
health records that from an ethical and legal perspective should remain confidential. 

Data management is discussed more fully in section 3.7 below.  The next section, metadata, is the 
key to the interpretation dimension. 

2.3 Metadata 

2.3.1 What is metadata? 

Metadata is a term used by data management and data quality professionals to denote the data 
that describes the data, e.g., the documentation of the contents of a database. In addition to 
information about the data itself, metadata contains information about business rules and data 
processing.  Examples of metadata in insurance are the ISO and NCCI statistical plans. 

Good metadata serves as a roadmap to the business processes of the entire organization and as 
such needs to be shared with the entire organization.  As a result, actuaries should take an active role 
in understanding and developing metadata.  The actuary’s role in metadata will be discussed in 
section 2.3.2 and the sharing of metadata across an organization will be discussed more in section 
2.3.3. 

At a minimum, metadata will include a listing of all data elements in a database, along with a 
description of what is contained in each data element.  Each data element listed should be defined 
clearly, and the data that is in the data element described.  For example, the data element 
"pol_eff_date" may be defined to contain the policy effective date and should contain only date 
values.  Furthermore, the date format may be specified, such as mm/dd/yyyy.  The permissible 
ranges of the values (e.g., 1/1/2000 to present) should be specified.  Any default values (e.g., 
1/1/2000) should be documented.  Similarly, metadata should define the values in categorical data.   

Metadata should also identify when and how a data element is processed.  As an example, Table 
2.3.1 shows seven values in the data for the marital status data element, including a value for the case 
when marital status is missing. If multiple sources of data are used to populate a database, then the 
source of the data should be listed.  Any transformations done to the data need to be documented as 
well.  The documentation should also describe how frequently the data is updated from the sources.  
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Marital Status Value Description 

1 Married, data from source 1, straight move of field ms_code 

2 Single, data from source 1, straight move of field ms_code 

4 Divorced, data from source 1, straight move of field ms_code 

D Divorced, data from source 2, straight move of mstatus 

M Married, data from source 2, straight move of mstatus 

S Single, data from source 2, straight move of mstatus 

Blank Marital status is missing 

Table 2.3.1 
 

Metadata can also exist on the compilation or extraction processes.  It should include information 
on such items as fiscal period definitions and how evaluation dates are determined. 

Ideally, metadata should also include business rules, such as how reported claims are defined.  It 
should also document interdependencies with other data elements.  For example, the date of birth 
for a driver should be at least 15 years earlier than the date the driver received their license.   

The inclusion of documentation on the quality of data can enhance the metadata.  For example, 
to really understand the data, a general narrative on the quality checks and controls of the data is 
necessary.  Other useful metadata include a data quality matrix for each data element.  This would 
describe the quality checks done on the data element, how frequently the checks are done, and 
where in the process the check occurs. 

Better process documentation can also enhance metadata.  For example, a high-level data process 
flow diagram that shows each initial data feed (source) and any data stores (databases) associated 
with the data will give users and developers better insight into the processing.  Another example of 
enhanced process documentation is a glossary of terms that provides definitions specific to the data 
and systems under consideration.  

Finally, some sort of versioning is helpful to identify when changes take place.  For example, 
when did the claims department change the average reserves?  When did rating territory begin being 
derived from zip code instead of input?  When did a new product or alternative distribution channel 
go live? 
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A complete description of the contents of a database is important for the appropriate use of the 
data.  Good metadata will assist the analyst in avoiding misunderstandings that result in revisions of 
the analysis when the contents of a data element or variable are discovered to be other than what it 
was assumed to be.  As a result, metadata is an important tool for actuaries to use when planning 
their analyses.  Problems can arise for actuaries when metadata is either nonexistent or is 
inaccessible to actuaries.  Metadata that is incomplete, inaccurate, or out of date can also lead to 
problems. 

Creating quality metadata at an organizational level is a large undertaking and really requires 
commitment from all levels of the organization.  The next section talks about the actuary’s role in 
metadata and some suggestions that can be used in any organization to get started and perhaps build 
the necessary commitment. 

2.3.2 The actuary’s role in creating and sharing metadata 

Maintenance of adequate documentation describing data can help avoid problems associated with 
relying exclusively on people’s memories of what is contained in the data.  As actuaries, we can help 
persuade our business and data management partners that system documentation is vital to the 
actuarial work product.  

At the same time, we can employ the same standards of metadata and documentation to the 
actuarial work product.  After all, actuarial work is a source of data and information for others in the 
insurance industry, so it follows that the same principles of metadata should be applied.  Metadata 
from actuarial projects can be shared with appropriate data management and system colleagues to 
ensure that the data is being properly used.  Sharing of metadata within the user community 
(actuarial, data management, finance, etc.) is a vital activity for the organization.  To quote the 
Corporate Information Factory ([9], page 170):  “Metadata is the glue that holds the architecture together.  
Through metadata, one component of the architecture is able to interpret and make sense of what 
another component is trying to communicate.” 

Documenting anything from a basic actuarial project to a complex information system can be a 
daunting task.  The following sets of considerations can be used to help test existing metadata or get 
started on putting together new metadata. 

Minimum considerations: 

• Are all the data elements listed? 
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• Has the source of each data element been provided? 

• Is there a special value that is used to indicate missing data? 

• Are any transformations being applied to data?  (Note: data cleanup such as filling in 
missing values should be considered a data transformation.) 

More advanced considerations: 

• Have the contents and use of each data element been properly described? 

• Have all the categorical values of each data element been properly described? 

• In the case of numeric data, has the range of possible values for each data element been 
provided? 

• Has the valuation date of all data been provided? 

• Has a schedule of planned updates to the data been provided? 

• Has the business process changed during the experience period? 

• Have any of the data definitions changed during the experience period?  

As was noted above, a good place to start is with our own actuarial work product.  In many 
instances, we may produce or maintain databases that underlie our analyses.  How well documented 
are these systems?  How well understood are the sources that feed the actuarial systems?  Once the 
actuarial systems are understood, one can start to drill back into the source systems.  Along the way, 
missing metadata can be identified.  The benefits and costs of producing the metadata can be 
weighed and ownership could be assigned. 

As metadata is developed, it needs to be shared across the organization.  That is the topic of the 
next section. 

2.3.3 Sharing metadata across an organization 

Actuaries can also face the problem of access to metadata (or at least to the most up-to-date 
metadata).   Just like data, metadata can exist in multiple forms, such as word processing documents, 
printed documents, spreadsheets, and databases.  It can also be stored in multiple locations, 
including file servers, paper files and within the documented system itself.  Keeping track of and 
sharing all that metadata can be difficult. 

Technology can provide answers to these types of collaboration issues.  It is worthwhile for 
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actuaries to be plugged into the collaboration technologies that are available within their 
organizations.  Examples include intranets, quick places, hyperlinks, comment boxes, and the 
emerging wiki technologies. 

The Corporate Information Factory [9] addresses this issue by introducing the concept of autonomous 
versus shared metadata.  The key issue is that “metadata has a need to be shared, and a propensity to 
be managed and used in an autonomous manner.  Unfortunately, these propensities are in direct 
conflict with each other” ([9], page 170).  Consequently, each component of a system, such as a table 
or database, should have its own metadata and metadata should be split into autonomous and shared 
groups.  Autonomous metadata is only used (or applicable) within the component.  “Sharable 
metadata must be able to be replicated from one architectural component to another” ([9], page 
174).  Splitting metadata into these groups need to be mutually exclusive and exhaustive.  The rule of 
thumb is that “very commonly used metadata needs to be shared” ([9], page 175). 

At the end of the day, access to metadata is as simple (and as difficult) as building and 
maintaining good relationships between the actuarial and data management communities. 

2.4 Statistical Plans 

Some of the most widespread examples of metadata are the statistical plans used for the 
collection of property-casualty insurance statistical data. Regulators in the various jurisdictions are 
charged with ensuring that rates meet statutory standards – that rates are not inadequate, excessive, 
or unfairly discriminatory.  One of the tools the regulators use to fulfill this function is the collection 
of data by line of insurance by statistical agents that aggregate the data and report it to regulators. A 
statistical agent is an organization that helps insurers satisfy legal requirements for reporting data to 
regulators.  The statistical agent processes data submitted by insurers, performs data quality checks 
on the data, consolidates the data across insurers, and provides aggregate data compilations to state 
insurance departments on the behalf of the insurers. The well-known statistical agents in the United 
States are: 

• The four that collect data for the major property/casualty lines of insurance, except 
workers compensation and health.  These include the American Association of Insurance 
Services ("AAIS"), the ISO Data, Inc.™ (a wholly owned subsidiary of Insurance Services 
Office, Inc. or ISO), the Independent Statistical Services ("ISS"), and National 
Independent Statistical Services ("NISS"). 

• For workers compensation, the dominant statistical agent is the National Council on 
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Compensation Insurance (“NCCI”).  In some US jurisdictions, workers compensation 
data is collected by an independent state bureau such as the New York Compensation 
Insurance Rating Board ("NYCIRB"). 

Other statistical agents exist in the United States for more specialized lines of business such crop-
hail (National Crop Insurance Services) and surety (Surety & Fidelity Association of America) 
insurance.  In addition there are some state-specific/line-of-insurance-specific agencies that collect 
industry data.  An example of this is the Texas Insurance Checking Office ("TICO") which collects 
data for private passenger automobile, residential property, and farm and ranch insurance in Texas 
under Texas Department of Insurance ("TDI") statistical plans. 

Among these statistical agents, numerous statistical plans have been developed in each of the US 
jurisdictions.  Statistical plans also exist outside of America.  In general, the statistical plans are 
organized around one or more lines of insurance.  For example, the ISO has three statistical plans1  
– the personal auto statistical plan (“PASP”), the personal lines statistical plan (other than auto) 
("PLSP(OTA)") and the commercial statistical plan (“CSP”).  Each of these plans then has subparts 
or modules devoted to a particular line of insurance.  For workers compensation, the underwriting 
experience (premiums and losses) is collected through the unit statistical plan (“USP”).  Additional 
unique data collection requirements exist for workers compensation.  For a more complete 
discussion of workers compensation see the study note “NCCI Data Collection Calls and Statistical 
Plans” by Richard Moncher [10]. 

In general, the statistical plans contain information or metadata – general reporting requirements 
and specific, detailed definitions for each data element – that describe the information to be 
collected.  In the sections below, these items are explained further, followed by an example of these 
instructions and definitions excerpted from the homeowners module of the ISO personal lines 
statistical plan (other than auto). 

2.4.1 Reporting instructions 

Reporting instructions describe the overall scope of the plan such as: 

• To which jurisdictions the plan applies, 

• To which lines of business the plan applies,  

                                                           
1 ISO also has separate plans for those companies with very limited market share in a line of insurance. 
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• Instructions on specific situations such as mid-term endorsements to policies and 
cancellations. 

 

 

Table 2.4.1 
 

2.4.2 Data element definitions 

Each element to be collected on the premium and loss records needs to be defined.  In some 
cases the same data elements are collected on both the premium and loss records.  These definitions 
cover multiple dimensions, including: 

• A text description of the element to be collected, 

• Field length or field position on the record, 

• Valid codes or attributes for the data element, 

2. Transaction Type Code (Field: Position 5)
Report the appropriate Transaction Type Code. 

1. GENERAL REPORTING REQUIREMENTS 

A. Premiums 

Premiums must be reported separately for each policy and each unique set of codes in the Coding 

Section of this module. 
When a policy insures more than one dwelling, each dwelling must be reported separately. 
When Water Back-Up Damage coverage is attached to a policy, this coverage must be reported 

separately. 
When a policy includes additional coverage which requires coding under a separate module of this 

Plan, the premium and amount of insurance reported under this module must not be increased.
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• Record layouts that show the exact position and field length on the statistical plan record, 

• Examples of coding and interpretations of the coding, 

• Due dates for reporting to the statistical agent, 

• Quality requirements. 

Quality requirements for the submission would address the error tolerances that may be allowed. 

For more information on statistical plans in the United States, the reader should refer to 
“Statistical Plans for Property/Casualty Insurers,” by Virginia R. Prevosto [11], published in the 
1997 Casualty Actuarial Society Discussion Paper Program and the study notes by Richard Moncher 
and Virginia R. Prevosto on the NCCI [10] and the ISO [12] statistical plans, respectively. 

3. TECHNIQUES AND APPLICATIONS 

Section 2 introduced key concepts of information quality.  In this section, we present procedures 
and processes designed to improve information quality.  

3.1 Exploratory Data Analysis 

A common approach to detecting data quality problems in a dataset is to perform a preliminary 
screening of the data elements.  These data elements are treated as variables for the purpose of 
statistical analysis.  Exploratory data analysis (“EDA”) is a family of techniques that use graphs and 
descriptive statistics to explore the structure of a dataset and to identify outliers.  (Data errors are 
often found by detecting outliers and then investigating the outliers for validity.)  These techniques 
were pioneered and the practice given its name by John Tukey (see “exploratory data analysis” at 
www.wikipedia.org).  These techniques are widely accepted in the statistical community as a key 
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activity within any statistical project, and they are widely implemented in statistical software. 

Data quality problems can take several forms including:  

• Missing data and null values, which impair the analyst’s ability to use the affected 
variables and may render some variables useless for analyses, 

• Data errors such as a paid amount of $1,000 coded as $1,000,000 or the state NY coded 
as NJ, 

• Default values may be coded rather than actual values (e.g., for convenience), and 

• Duplicate transactions:  it is not uncommon for duplicates of the same claim, same 
transaction, etc. to be in a database. 

  Being mindful of the sources of data errors, one can detect, remediate, and most importantly, 
prevent them. Dasu and Johnson [7], whose book on data quality and data cleaning is considered a 
key reference by data mining professionals, detail many mishaps affecting data that create quality 
problems.  Some of the sources of data quality problems are: unreported changes in layout, 
unreported changes in measurement, and temporary reversions to defaults, missing values, 
inappropriate default values, and gaps in time series. 

The following subsections introduce several EDA techniques to deal with data quality issues in a 
given dataset.  For more information, see Francis [4] or Dasu and Johnson [7]. 

3.1.1 Data cubes 

A data cube is a one-way or multiway summarization of key statistics for the variable(s).   Cross-
tabulations and pivot tables are examples of data cubes.  For instance cross-tabulations or two-way 
tabulations of the frequencies for two variables are widely used in statistics and most statistical 
software such as SAS, S-PLUS, SPSS, and Access have the capability of quickly producing cross-
tabulations.   

For example, one can tabulate the frequency of records in the data containing each value of a 
categorical variable.  Table 3.1.1 displays the frequencies of injuries for each of the 6 injury codes in 
a Massachusetts Private Passenger Auto database.1 The table was created using Microsoft Excel’s 
pivot table capability. Note that there are two codes where only a small number of records contain 

                                                           
1 The data was supplied by the Automobile Insurers Bureau of Massachusetts and is from a database used to do 
fraud research. 



Actuarial IQ 

CAS E-Forum Winter 2008 www.casact.org 155 

the code. The results from pivot table summaries need to be compared to a document defining 
which codes are valid values for the data element. These tabulations can be performed over multiple 
dimensions at once, although it is most common to perform one dimensional (variable by variable) 
frequency analysis. 

 

Massachusetts Auto PIP 

Injury Type Code Count of Injury Type Code 

1 793

2 197

3 2

4 250

5 151

6 7

Grand Total 1400

Table 3.1.1 

3.1.2 Identifying missing data 

As noted by Francis [4], missing data is the rule rather than the exception in large insurance 
databases.   Missing data complicates an analysis by reducing the number of data records with 
completely valid information.  At a minimum, the uncertainty about parameter estimates will be 
increased, even when measures can be taken to adjust the data elements containing missing values.  
It is not uncommon for the majority of data records to be missing data on variables that are 
presumably in the database and available to the analyst.  If a sufficient percentage of records on a 
given variable are missing values, that variable may have to be discarded from the analysis.  In some 
extreme circumstances, the missing data problem may be so severe that an analysis cannot be 
undertaken. Tabulations of missing values should be compiled for each variable in the database.  

Analysts must also be alert to missing values they create by their data manipulations.  For 
instance, division by zero will create a missing or not available value that can affect further analyses 
if not detected. Most statistical software produces a log which records the history of calculations 
completed and their results.  Cody [13] recommends reviewing the logs of the statistical software for 
statements that missing values are being created as a result of transformations performed.   
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Data cubes can be used in the detection of missing values and in screening categorical variables 
for data glitches ([7] page 74).  Table 3.1.2 presents an example of a report that can be produced 
within most statistical packages.  The report displays number of valid, invalid, and missing records 
for each variable specified:  

 

 Age
Model 

Year 
Incurred 
Losses

Gender
Marital 
Status

Valid   41,000        35,000            50,000  45,000           46,000 

Invalid 100 1,000 - 500 1,200

Missing     9,000        15,000  -      5,000             4,000 

Table 3.1.2 
Note that it is not uncommon for missing values to be recorded as blanks. This situation will not 

be detected by procedures summarizing missing values.  However, procedures used to tabulate all 
the values of a variable (e.g., data cubes, Microsoft Excel’s AutoFilter) can be used to summarize the 
number of blanks on these variables.  This is shown in Table 3.1.3: 

 

Value Gender

M   25,000 

F   20,000 

 5,000 

Total  50,000 

Table 3.1.3 
 

Descriptive statistics can also be used to identify the presence of null values in numeric data. 

3.1.3 Descriptive statistics 

Descriptive statistics include such statistics as the mean, median, minimum, maximum, and 
standard deviation.  Table 3.1.4 displays descriptive statistics, produced with the Microsoft Excel 
Analysis ToolPak, for an illustrative sample of general liability claims.  The descriptive statistics 
summarize key information about the paid allocated expenses in the data.  Looking at the minimum 
and maximum values can quickly inform us as to whether any values appear to be outliers or to have 
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unusual values.  In this example, the minimum paid expense is a negative value.  The table also 
indicates that the second smallest value is also negative.  Both of these numbers indicate data 
records that may need to be reviewed further before using in any analysis.  

 

Allocated Loss Adjustment Expenses 

Mean               1,323 

Standard Error                  252 

Median               611  

Mode                   0  

Standard Deviation               8,217 

Sample Variance       67,513,031 

Kurtosis                  207 

Skewness                   13 

Range           170,668 

Minimum                  (19)

Maximum           170,649 

Sum         1,411,246 

Count               1,067 

Largest(2)             99,206 

Smallest(2)                  (11)

Table 3.1.4 

3.1.4 Box and whisker plots 

A box and whisker plot is a one dimensional visualization of the distribution of a variable.   The 
box plot, a predecessor of the box and whisker plot, can be programmed into Microsoft Excel.  It 
displays a 5-point summary of a variable’s distribution.  The 5 points are: minimum, 25th percentile, 
median, 75th percentile, and maximum. A box is placed around the edges encompassing the 25th 
through 75th percentiles and lines extend from the box to the minimum and maximum values.  The 
box and whisker plot modifies the box plot by displaying lines from the box to a specified distance 
(e.g., two standard deviations from the mean) from the box and by individually displaying 
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observations outside these lines. 
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Fig. 3.1.1 

Figure 3.1.1 displays a box and whisker plot.  The top and bottom of the box are defined by the 
75th and 25th percentiles of the distribution plotted.  A line through the middle of the box denotes 
the 50th percentile (i.e., median) value.  The width of the box carries no meaning.  Lines extend 
from both the top and bottom of the box.  These lines are referred to as the whiskers.  For this 
graph, the lines denote the points 1.5 interquartile ranges1 above and below the box edges. Points 
beyond this boundary are individually displayed (the circles with lines through them).  These points 
may be considered outliers; they depict data records that the analyst might want to investigate.  

Figure 3.1.2 displays the box and whisker plot for data containing an intentionally introduced 
error (the first number was replaced with ten times its value): 

 

 

 

 

 

                                                           
1 The interquartile range is the difference between the 75th and 25th percentile 
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Fig. 3.1.2 

In this paper we provide only a basic introduction to the methods of exploratory data analysis. A 
number of excellent references are available on this topic for those wanting a more thorough 
exposure to the topic.  Hartwig and Dearing [14] provide an easy-to-understand introduction to the 
methods of exploratory data analysis, and Dasu and Johnson [7] introduce EDA within the context 
of its application to data cleaning. 

3.2 Auditing Data 

Whereas EDA cleans a dataset, auditing influences the process that generates the data.  As such, 
auditing for data quality is a tool to help both assess and monitor data quality.  While ASOP No. 23 
does not require actuaries to audit data ([2], sections 1.2 and 3.6), knowing how audits are conducted 
can improve actuarial practice in at least two ways: 

• First, it produces a more informed basis to assess what kind of reliance should be placed 
on audited versus unaudited data, and 

• Second, the procedures and concepts used in auditing can be applied to resolve data 
issues without having to do a full-scale audit. 

The main idea of data auditing is to compare the data intended for use to its original source(s), 
such as policy applications or notices of loss.  This is done using both top-down and bottom-up 
approaches.  The top-down approach is reconciliation:  checking that totals from one source match 
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the totals from another (usually more reliable) source.  These totals are usually dollars, but counts 
and records can also be reconciled.  Auditors will often not only do their own reconciliations, but 
also review an organization’s reconciliation procedures.  Obviously, making sure totals match is one 
way to assess the reasonableness and comprehensiveness of a data set, so reconciliation can be 
useful to actuaries both on its own as well as when it is part of an audit.  

The bottom-up approach takes a sample of input records and follows them through all the 
processing to the final report.  Any good sampling textbook should provide the theoretic basis to 
address sampling issues.  One such book is Elementary Survey Sampling by Scheaffer, Mendenhall and 
Ott [15].   Defining accuracy ratios can make results comparable from one audit to the next.  An 
example of an accuracy ratio is the number of occurrences a given data element is correct divided by 
the number of occurrences reviewed.  The number, type and rigor of these statistics are determined 
by the intended use of the data.  Note that ratios of record counts can provide different information 
than dollar ratios, so sometimes it can be helpful to include both for phenomena of particular 
interest.   

The following summary of major steps in a data quality audit is based on ISO’s Strength in Numbers 
pamphlet [16]: 

1. Test the preparation of the data:  Measure how correctly and completely data is coded.  
Also measure how current it is. 

2. Test the data entry and data transfers:  How much of the data reaches its final 
destination intact?  How much of this takes place in an acceptable period of time? 

3. Test the program controls:  Measure the extent that “only authorized data is entered 
for processing and that data is processed completely, accurately, and in a controlled 
environment” ([16], page 6).  A controlled processing environment will have procedures 
and checks to ensure that computer jobs are run in the right order, computer jobs are not 
accidentally run twice, total outputs equal total inputs, users are aware when software 
programs end abnormally and so forth. 

4. Test the output controls:  Measure the accuracy, timeliness and correct distribution of 
reports. 

5. Test error procedures:  Measure the extent that the system detects and corrects errors in 
a timely manner. 

 “Performing periodic [data] audits will indicate: 
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• The accuracy and completeness of the picture… [which the] data gives of the insured 
risks, 

• The timeliness of data processing, 

• Any differences between statistical and other insurance data to be reconciled, 

• Problems or potential problems related to collecting, coding, and reporting your data” 
([16], page 3). 

More information on data audits can be found in the Insurance Services Office’s (ISO) Quality of 
Data Audit Guide [17].  Accounting professional organizations may also publish information on 
auditing. 

3.3 Information Quality in Models 

We now turn our attention from a strict focus on data to broader information quality issues.  
With the broader perspective of information quality, it becomes clear that actuaries are active 
participants in the data life cycle of an organization. They take data as an input, analyze it, and 
produce output that is used in decision making. The quality of this analytical step is thus a crucial 
contributor to the overall quality of information used in the company.   

Analysis is about building models to explain or predict phenomena.  As such, analysis behaves 
like software in some respects:  it is a set of steps to manipulate data.  Software quality is a function 
of design, implementation and testing. Good design decisions may improve not only the 
functionality and usefulness of the application, but also simplify quality assessment and ensure easy 
modifications and updates. Testing, especially if integrated with implementation, may improve the 
quality of the resulting software product. Any actuary involved in design or modification of 
spreadsheets and other analytical applications will clearly benefit from knowing the main principles 
of good software design. 

3.3.1 Quality design 

To use a manufacturing metaphor, the quality of actuarial work products depends on the choice 
and quality of the tools actuaries use to process incoming data. The tools should be good and 
suitable: the actuarial methods used should be appropriate for the data at hand. Quality of the 
method relies heavily on 1) model selection and validation, 2) model’s parameters estimation and 3) 
model’s verification (see [18], chapter 2.9 for detailed explanation). To understand the difference 
between validation and verification one should consider two questions: “did I use the right model?” 
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versus “did I use the model right?” 

Some actuarial methods are designed only for data with particular properties, i.e., it is assumed 
that the data satisfy some preliminary conditions. Thus, before applying an actuarial method to a set 
of data, it would be prudent to test the method’s assumptions on that specific dataset. 

Failed assumptions may either indicate inappropriateness of this particular method or uncover 
hidden data problems. In this sense, assumption testing may also serve as data quality tests. 

An aspect of an analysis’s quality is model performance. Many actuarial methods for pricing and 
reserving predict some events that can be observed. Comparison of predicted and actual values may 
lead to method improvements, recalibration, or even rejection.  Note that any of these outcomes 
leads to improvements in the model’s quality. 

3.3.2 Implementation (software) quality 

In the actuarial toolbox, the spreadsheet occupies a special, quite dominant place. However, while 
tomes are written about C++ or VBA programming techniques and SQL optimizations, it is very 
hard to find practical advice on effective spreadsheet design.  

The deceptive simplicity of a spreadsheet’s grid makes many users think of a spreadsheet as a 
single user’s ad hoc advanced calculator that can also chart and print. Users don’t even think there 
could be design recommendations and do not look for them. Indeed, a spreadsheet created by a user 
for a single use is quite disposable, but if there are multiple users or repetitive usage, spreadsheets 
become applications and should be treated as such.  

An application is a part of the data flow of an organization and therefore subject to quality 
control. It has to be well-designed and documented to simplify 1) usage, 2) testing and 3) 
modification. What can be done on this front? Experience shows that one of the most effective 
techniques is separation of data and algorithms. Calculations (formulae and VBA code) should be 
stored in one file or spreadsheet tab (called the template), while data should be loaded from an 
external source (e.g., spreadsheet tab, file, or database). In practice, actuaries usually realize that input 
data like loss triangles, premiums and industry factors do not belong in a calculation template. What 
they rarely realize is that output data such as predicted ultimates or fitted distribution parameters do 
not belong in the template either: results have to be stored outside just like inputs. 
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Fig. 3.3.1 
Such a setup 1) brings consistency to calculations, 2) simplifies housekeeping, 3) allows 

versioning, and (combined with access rights) 4) improves control over modifications. An additional 
benefit for quality pursuers is the fact that separation of data and algorithms facilitates checking 
calculations with different data samples, thus enormously improving the quality of testing. 

Another useful technique which extends the notion of separation is layering. Both users and 
designers may benefit when data (input placeholders), reconciliation, calculation, user interface 
(scenarios, selections, and assumptions), and presentation (results and charts) layers are located on 
separate spreadsheet tabs or worksheets. Such a layout not only simplifies navigation, it also 
shortens the learning curve for users, allows designers to better understand workflow and provides 
better documentation. 
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For example, below is a hypothetical layering scheme for a rate review application: 

Fig. 3.3.2 
Good documentation is a centerpiece of quality design.  Every application should have a 

"header" identifying inputs, outputs, purpose, and contacts.  Spreadsheets also generally provide 
adequate facilities for file versioning, VBA code commentaries and cell comments.  As noted in [29], 
one can use built-in document properties or create custom ones and link them to cells inside 
spreadsheets.  The trick is to remember to update documentation with every modification or 
improvement made to a template. 

3.3.3 Testing 

Testing is critical to the good design of successful applications. Indeed without testing, a 
spreadsheet (or query or notebook) may never become an application (i.e., a reusable tool) – there 
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would be no assurance that it could handle different situations correctly. Once an application 
becomes successful, thus widely used, testing becomes even more important.  

The majority of books on testing deal with higher languages (C++ and the like):  very few 
publications give practical advice on spreadsheet development. Some of the main thoughts from 
these books, however, will be of interest to actuaries.  

Testing, according to Edward Kit’s Software Testing in the Real World [19] should start with 
specifications, end with final product evaluation, and should be performed by an independent 
party. The main testing techniques are verification and validation, i.e., checking the code and 
examining final product outcomes. In the actuarial paradigm, examples of the final product could be 
Excel spreadsheets, Mathematica notebooks or Oracle stored procedures. Similarly, specifications 
could be a reserve test or pricing method, and the “code” could be formulae in cells, VBA 
subroutines or SQL statements.   

Some of Kit’s verification testing techniques can be applied to spreadsheets.   For example, 
checking programming code against a list of common mistakes applies mostly to those who use 
Visual Basic.  However, the recent addition of “Formula Evaluation” and “Watch Window” tools 
make Excel much friendlier for debugging.  These tools allow users to validate formulae placed in 
cells by displaying results of all intermediate calculations and by monitoring values in “watched” 
cells.  They bring debugging power previously available behind the scenes (to VBA coders) to the 
forefront (to cell formulae designers). 

The most common testing technique is validation:  checking that calculations produce expected 
results for different (and not necessarily correct) data. Validation treats an algorithm as a black box, 
feeding it with different inputs and observing results. On the one hand, validation checks algorithm 
limitations (e.g., whether it can work with negative amounts, strings, missing values).  On the other 
hand, it also checks the accuracy of calculations on the datasets with known results. In either case, 
validation feeds the algorithm with different datasets so this process may benefit from separating 
data from calculations as described above. Indeed, using Excel’s “scenarios” functionality, one can 
create a library of test datasets and recall them by selecting the corresponding scenario. Similarly, 
with assumption sets, if they are separated from the rest of the application, then it is easier to test 
algorithm results against various assumption sets. 

Testing is very repetitive by nature, so it makes sense to accumulate testing tools for future reuse. 
It is very easy to build libraries of “bad” and “benchmark” datasets for testing actuarial methods. 
Testing routines and functions could also be accumulated into a library available to every tester or 
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designer. 

Kit’s suggestions that 1) testing should be an integral part of development, and 2) testing should 
be performed by people outside of the development team should definitely be implemented for any 
application that is part of a company’s data flow. 

In conclusion, the keys to quality models are: 

• Good design,  

• Accurate implementation, and 

• Thorough testing of everything: from methods and assumptions to auditing 
spreadsheet formulae and query results. 

3.4 Data Presentation (Reports) Quality 

If data reaching the presentation stage are accurate, reasonable, complete, and have been analyzed 
in a high quality model, what can go wrong with the presentation? Unfortunately, a lot:  

• Data can be mislabeled or incompletely labeled. “Total Loss” may refer to “loss 
net of recoveries” or “loss and ALAE net of reinsurance” or “unlimited loss before 
deductibles.” 

• Data can be incorrectly related to other information, producing wrong 
calculations. Date mismatches in losses and premiums may produce erroneous loss 
ratios. 

• Data may be arranged in such a way that the essential information it is supposed to 
convey may be overlooked. A good report should emphasize the message and 
guide the reader to the most important information. 

• Data can be misinterpreted and the message they deliver may be misunderstood. 
It is not unusual to witness confusion and misuse of such notions as reserve range, 
expected shortfall, confidence interval, or risk transfer. 

To avoid costly mistakes from wrong decisions based on poor data presentation, crucial reports 
should be prepared with the involvement of someone who understands the data (e.g., an actuary). 
Therefore actuaries should be familiar with some tools and techniques to improve the quality of 
reports.  

There is an enormous variety of reporting tools of different capabilities and complexities, but the 
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most versatile, familiar, and readily available is a spreadsheet. Modern spreadsheets provide enough 
features for building quality reports. 

Appendix A contains some practical solutions to address:  

• Unambiguous labeling, 

• Consistent calculations, 

• Focusing attention, and 

• Minimizing misinterpretation. 

3.5 Measuring Data Quality 

The first four subsections of section 3 addressed individual steps of the data life cycle (Fig. 2.0.1).  
The remaining three subsections of section 3 address general issues that apply to the entire life cycle. 

Many data quality authors (e.g., Redman [20], Dasu and Johnson [7]) are strong proponents of 
measuring data quality. These authors believe that in order to motivate improvements in data quality, 
it is imperative that data quality be measured, even when the measures are somewhat subjective.  
The following is a brief introduction. 

A key concept in measuring data quality is the data’s “conformance to constraints.”  Dasu and 
Johnson describe both static and dynamic constraints ([7], page 131). Static constraints relate to 
properties of the data itself, such as its validity. For example, for the constraint “value should be 
present and be only from a fixed list of correct values,” the corresponding measure would be “the 
number or percentage of missing or invalid values in a variable.”  Dynamic constraints relate to the 
processes used in the flow of data from its source to the different databases.  Examples of dynamic 
constraints would be 1) “a reserve change is added to prior cumulative reserves (not to cumulative 
losses)” and 2) “incurred losses can never be less than the sum of the amount paid.”  Thus, dynamic 
constraints capture business rules. 

Some of the key data quality measures recommended by Dasu and Johnson ([7], pages 131 - 134) 
are: 

1. Extent of automation: sample some transactions, follow them through the database creation 
process, and tabulate the number of manual interventions 

2. Successful completion of end-to-end process:  the number of processes that have the 
outcome they are expected to have.  For instance, a sample of claims can be followed through 
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closure and it can be determined how soon after the final payment is made that the claim is 
closed. 

3. Impact on analyses:  measure how many errors in analyses result from errors in the data.  Using 
sampling, the number of analyses adversely affected by data quality problems can be tabulated.  
Both the frequency and severity of the problems should be measured. 

4. Accessibility:  how easily can the data be accessed?  For example, the time between a request for 
data and access to the data can be measured. 

5. Interpretability:  how understandable is the data?  The quality of the metadata determines how 
interpretable the data is to users.  The interpretability of data should be based on 1) the 
availability of metadata and 2) the extent to which the data adheres to the definitions in the 
metadata. 

6. Conformance to business rules:  how well does the data adhere to insurance business rules?  
For instance, how often are negative paid losses recorded in lines where losses should always be 
positive (i.e., no salvage and subrogation)? 

7. Conformance to structure:  Select important constraints that the data must follow and measure 
how well the data conforms to those constraints. 

8. Accuracy:  what proportion of the data contains valid values?  This can be expensive to measure, 
so measures based on samples or based on proxies such as complaints or surveys are 
recommended. 

9. Consistency:  how often do databases at different points in time or data in different databases 
and tables within the company agree with one another? 

10. Uniqueness:  certain data elements should only have one observation in the dataset.  For 
instance, a claimant level database should have only one record for each claimant.  Measuring this 
amounts to identifying duplicates, which is discussed in section 3.1. 

11. Timeliness:  how often is the data updated and what proportion of it is available on schedule?  
Dasu and Johnson also mention that data should have an accurate time stamp. 

12. Completeness:  to what extent does the data contain all the data elements relevant to the 
analyses and reports a company undertakes?  Thus, a database that is accurate and timely may be 
of low quality because it contains only a few variables or only a few years of history.   

The different metrics are weighted together into an overall data quality index using business 
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considerations and the analysts’ goals to develop weights.  For example, if improvement in the 
database itself is considered most important, the static measures (e.g., accuracy, completeness, 
timeliness) might be given greater weight than dynamic measures (e.g., successful completion of 
end-to-end processes).  

Table 3.5.1 illustrates a simple data quality measurement for a company beginning a data quality 
initiative (i.e., these are simple not comprehensive measures). All audits, sample findings, and survey 
results have been converted into scores between one and ten, where one is low and ten is high.  
Weights have been assigned subjectively.  

 

Measure Score Weight

Extent of Automation 4 0.1

Accuracy 3 0.2

Glitches in Analyses 3 0.2

Completeness 6 0.2

Interpretability 7 0.3

Total 4.9 

Table 3.5.1 
The data quality variables can be measured periodically after a data quality initiative is undertaken.  

Over time, the score should improve.  Dasu and Johnson note that when used as a tool for quality 
improvement, it is the direction of the data quality measure over time that is of interest ([7], page 
134).  A number of other authors (e.g., Loshin [21], Redman [20]) offer additional advice as well as 
some alternative measures of data quality. 

3.6 Data Quality Improvement Strategies 

Two strategies to improve data quality are data cleansing and re-engineering. The objective of the 
first strategy is to take defective data and correct, reformat, consolidate, and standardize it so that 
standards are met and maximum value can be achieved from the data. The objective of re-
engineering is to proactively eliminate the causes of poor quality data by changing processes. Note 
that data cleansing is an ongoing cost-added process. The overall objective is to eliminate the need 
to perform error correction, but the most effective approach is to couple data cleansing with re-
engineering. While the former attacks specific defects in the data, the latter focuses on the root 
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causes of the defects.  Note, however, that the profiling process advocated by Olsen would often 
require process changes such as a full-time team dedicated to data quality, as well as recommended 
changes resulting from the team’s investigations. 

What follows are some alternative strategies based on Data Quality, the Accuracy Dimension [22] and 
Improving Data Warehouse and Business Information Quality [23]. Note that the costs of applying a 
particular data improvement technique need to be weighed against the benefits. For example, it may 
be too expensive to correct lost, missing, or incorrect data if the source data is not readily accessible.  

3.6.1 Data cleansing 

  The objective of data cleansing is to improve the data quality in existing files to maximize its 
value and to minimize the cost due to poor quality information.  This includes correcting wrong 
data, standardizing nonstandard data values, filling in for missing data, and consolidating duplicate 
occurrences.   

In Data Quality, the Accuracy Dimension, Olsen introduces a proactive data quality assurance 
program for detecting and addressing data inaccuracies throughout the many databases used by an 
organization. The system has two basic approaches, denoted inside out (a ground up, detailed, data-
dependent approach) and outside-in (essentially an outcomes-based, business-driven approach  

The inside-out approach can be summarized as follows: 

1. Build the organization’s metadata to have a complete and correct set of rules that define 
data accuracy for a particular dataset, 

2. Gather inaccurate data evidence, i.e., collect facts about data shortcomings, 

3. Aggregate the inaccurate data evidence into issues, 

4. Analyze the issues to determine the external impact, 

5. Set the priority of each issue based on its external impact, and then 

6. Rectify the issues. 

The inside-out approach can detect many data inaccuracies that are routinely missed by users 
working with aggregated data. 

In contrast, the outside-in method “identifies facts that suggest that data quality problems are 
having an impact on the business” ([22], page 73).  Such facts might be reworks, returned 
merchandise, or customer complaints, for example. The facts are then evaluated to determine the 
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degree of culpability attributable to defects in the data.  The advantage of the outside-in approach is 
that it automatically focuses on issues that have a noticeable external impact.  One of its 
disadvantages is that it may miss issues with still larger, but unnoticed, impacts.  That is, by using the 
outside-in approach alone, only those data quality problems that have already manifested as business 
issues will be detected. It is also less likely to discover the full scope of related issues that interact to 
produce the observed impact.  This approach requires the participation of business analysts along 
with a dedicated data quality analyst. Olsen’s recommendation is that both approaches need to be 
applied.  

The outside-in approach can be summarized as follows: 

1. Identify information indicating a data quality problem 

a. investigate customer complaints 

b. investigate business user complaints 

c. interview users of data to assess their level of satisfaction 

2. Determine the extent to which data accuracy issues contribute to the problem.  

The following chart summarizes the two approaches to data quality improvement programs: 
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Inside-out workflow                                                          Outside-in workflow 

 
Fig. 3.6.1 

 

For comparison, English’s general steps for data cleansing are outlined in Appendix B.  

3.6.2 Re-engineering, a.k.a. process improvements 

This strategy improves business processes by eliminating the causes of poor quality data.1  It is a 
proactive method that analyzes the cause of problems and eliminates them.  The rationale is that it is 
much less expensive in the longer term to prevent errors than to repeatedly screen for them and 
repair them in different databases every period.  Therefore the long-term solution to data quality is 
not to fix the data but to fix the processes that produce the defective data. Data cleansing fixes the 
problems after they have occurred, whereas process improvements eliminate the causes. English 
([23], pp. 285-310) also provides a data defect prevention approach, which is described in Appendix 
C. 

3.7 Actuarial Data Management 

Actuaries are among the most prominent users of an organization's data.  Thus, they have a 
natural vested interest in ensuring that their organization's data is of the highest quality.  Over time, 
data management has evolved as a unique specialty within the actuarial community.  In some 
insurers, though, the role of data manager is not held by an actuary, but by a person trained in this 
field that understands the data needs of the actuary and other users of data. 

In performing any analysis, the actuary must consider many things, but the starting point for the 
analysis is the historical premium, exposure, loss and expense experience for the type of insurance 
under review.  “This experience is relevant if it provides a basis for developing a reasonable 
indication of the future.  Other relevant data may supplement historical experience.  These other 

                                                           
1 Note that the data cleansing process as describes by Olsen [22] and Redman [20] is intended to also affect the 
processes generating the errors once the errors are uncovered and thus may entail some re-engineering. 
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data may be external to the company or to the insurance industry and may indicate the general 
direction of trends in insurance claim costs, claim frequencies, expenses, and premiums” ([24], page 
7). 

The data management actuary provides a bridge between those who are responsible for the 
collection and repository of the organization's data and the pricing or reserving actuary who will use 
the data in analyses.  Thus, two critical areas for the actuarial data manager are: 

• The appropriateness of the collected data elements for the analysis to be done, and  

• The quality of the collected statistical experience for the analysis to be done.  

 Some of the activities performed by the data management actuary include: 

• Reviewing the various data compilations for reasonableness.  This includes comparing the 
current data compilation against the previous data compilation to ensure that the change 
in the data for overlapping years is as expected.  For example, the losses as of 24 months 
versus as of 12 months have grown as expected for the line of business under review. 

• Reviewing the growth patterns by year within a compilation. 

• Reviewing the distribution of data within a data element.  For example, reviewing the 
written premium distribution by geographic location to make sure it accurately reflects 
the book of business in the compilation and that it has not been erroneously coded to 
one location. 

• Ensuring that any definitional changes in the data elements are accounted for and 
notifying the actuary who will use the report of this situation. 

• Reviewing the data compilation for completeness – that is, only the data that was 
supposed to be included is included and it is included only once. 

As data management actuaries grow in responsibility, they should also take a more proactive role 
in understanding the data processing stream from source through transformations, data base 
repositories, and data extraction and compilation; ensuring that the organization is following data 
management best practices at every step in the process.  Thus, they will have a complete 
understanding of the data that has been extracted and will ensure its proper use in analyses done by 
themselves or another actuary to whom they  are supplying the data. 

The insurance data management profession has established a set of guiding principles and best 
practices for data management [25].  Some of these key principles and practices are listed in bold 
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below, followed by further explanation and where appropriate, a cross-reference to ASOP No. 23 
[2].   

1. Data must be fit for the intended business use.  This principle is in sync with ASOP No. 23 
that states "For purposes of data quality, data are appropriate if they are suitable for the intended 
purpose of an analysis and relevant to the system or process being analyzed" ([2], page 2).  Data 
should be collected in the level of detail (breadth and depth of the data elements) and at a level 
of quality that are sufficient for the intended applications or analyses to be performed. 

2. Data should be obtained from the authoritative and appropriate source.  Data should flow 
from the underlying business process, whether it is the underwriting and rating of the risk or 
other processes such as claim reserving, accounting of payments received or claim paid out, or 
litigation metrics.  For example, insurance statistical data for a risk related to the premiums 
charged should be collected in a level of detail consistent with how the risk is underwritten and 
rated.  That is, which data elements are collected and the depth of the detail (or attributes) within 
the data elements should be consistent with how the risk is underwritten or rated.  The actuary 
using data received from others is required by ASOP No. 23 to "take into account the extent of 
any checking, verification, or auditing that has already been performed on the data, the purpose 
and nature of the assignment, and relevant constraints" ([2], page 4).  It is also important that data 
be supplied by a source that understands the data.  For example, detailed data regarding the 
nature of an injury should be supplied by the health care provider who understands the nature of 
the injury rather than a claims coder.  

3. Common data elements must have a single documented definition and be supported by 

documented business rules.  As ASOP No. 23 notes "The actuary should make a reasonable 
effort to determine the definition of each data element used in the analysis" ([2], page 4). 

4. Metadata must be readily available to all authorized users of the data.  The actuarial data 
manager should ensure that data, systems, and reporting mechanisms are designed and 
maintained in a manner that promotes good data management and data quality.  This includes a 
robust, comprehensive business data dictionary that provides a clear, unambiguous definition of 
each data element that is consistent with the underlying business process. 

5. Data standards are key building blocks of data quality. To promote consistency in the data 
collected, increase efficiency of the data collection process, and maximize utility of the data, 
organizations must foster the development and adoption of data standards and data quality 
standards.  Industry standards must be consulted and reviewed before a new data element is 
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created.  

6. Data should have a steward responsible for defining the data, identifying and enforcing the 
business rules, reconciling the data to the benchmark source, assuring completeness, and 
managing data quality. 

7. Data should be input only once and edited, validated, and corrected at the point of entry.  
Data quality should be managed as close to the source as possible. This includes defining the data 
quality standards for the data to be collected.  Processing steps between the data source and the 
data capture increase the likelihood there will be errors and often increase the cost of correcting 
those errors.   

8. Data should be captured and stored as informational values, not codes.  For example, if 
age of driver is a desired date element, the birth date of the driver should be captured and stored 
rather than the driver’s age.  By following this principle, misinterpretation of the data will be 
reduced, and serious errors in business decisions can be avoided.  The data will also be more 
complete and more likely to be useful in answering unanticipated questions.  Following this 
principle also facilitates reviews of the data for reasonableness and consistency. 

9. Data must be readily available to all appropriate users and protected against 

inappropriate access and use.  Insurance statistical data is the life blood of the property-
casualty insurance industry and much of the data is considered a trade secret or is highly personal 
in nature (see 2.2.2).  Data managers must balance access to data against inappropriate access or 
use.  The actuarial data manager should ensure the actuaries’ repository data base meets current 
and future business and analytical needs by partnering with the IT professionals in designing it. 

For more information regarding data management best practices, see the Insurance Data 
Management Association website, http://idma.org/productsDMBestPractices.htm. 

4. CONCLUSIONS 

Data quality is a core issue affecting the quality and usefulness of the actuarial work product. 
Data quality is often perceived as a mundane issue with less recognition and attention devoted to it 
than other issues, such as actuarial models and methodologies.   However, data exists to fulfill a 
need: the need for optimal decisions.  To the authors’ knowledge, this is the first paper to provide a 
general introduction to data quality and data management directed specifically at actuaries since the 
CAS Committee on Data Management and Information White Paper of 1997.   
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4.1 Pragmatically 

Figure 2.0.1 outlines the steps in the insurance data life cycle, the kinds of errors that can occur in 
each, and references to relevant sections of this paper.  As such, figure 2.0.1 forms a handy reference 
both to trace where a particular error may be occurring and which section of this paper may be most 
relevant. 

Several tools to help actuaries improve their information quality are: 

1. Exploratory data analysis to identify outliers and explore the structure of a dataset (3.1), 

2. Improving the quality of actuarial models (3.3), 

3. Improving actuarial presentations and reports (3.4), 

4. Measuring data quality to track progress (3.5) and awareness of quality audits (3.2) 

5. Strategies to improve data quality (3.6), and 

6. Guiding principles and best practices (3.7). 

Each section has references to books and/or CAS papers for readers who need more 
information. 
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4.2 Conceptually 

We began by drawing attention to the increased importance of data quality given easy access to 
an unprecedented level of detail and the proliferation of new tools and techniques to analyze such 
data.  The actuarial frame of reference (2.1) was broadened beyond the scope of ASOP No. 23 in 
three ways: 

1. Data is a corporate asset that needs to be managed and actuaries can play a role.  

Actuaries have the ability and motivation to influence the processes that give rise to the data 
they use (3.7) 

2. Data needs to be appropriate for all of its intended uses.  Actuaries have a unique role to 
play in achieving this goal here too:   actuaries can expand their concerns for data beyond the 
analysis at hand.  Finally 

3. Expansion of data quality principles (2.2 and 2.3) to support these broader perspectives. 

4. It should be noted that these expansions are those of the working party; not interpretations of 
the standard. 

Data quality is not just about how data is coded:  we have coined the phrase “information 
quality” to emphasize the impact of processes on the quality of the final product(s).  Metadata (2.3), 
information about the data, is critical to actuaries correctly interpreting their data and the glue that 
holds an organization’s data structures together.  Statistical plans (2.4) were introduced as a form of 
metadata.  Data management best practices (3.7) embrace and support all of the above. 

Ultimately, empowering actuaries to improve the quality of information in their organizations can 
increase the efficiency, effectiveness and impact of actuaries on their organizations by turning data 
into more useful information to make better decisions. 
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Code for creating Box Plots in Excel (described in section 3.1.4) can be found at www.data-mines.com. 
Presentation template with live charts (described in Appendix A, section 4) can be downloaded from 

www.casact.org/research/drmwp/DRM%20presentation.ppt. 
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AY\Age 12 24 36 48 60
1994 112,605$ 100,406$ 107,847$ 115,288$ 124,592$    
1995 111,644$ 113,215$ 110,271$ 112,562$ 
1996 115,551$ 106,665$ 104,029$ 
1997 111,442$ 108,581$ 
1998 105,647$ 

<State>:  CT
<LOB>:     WC
...
Shape -->    Triangle
Amount-->   Losses
Cumulative- True

Appendix A:  Practical solutions for addressing some problems with presentation quality 

(expansion on section 3.4) 

 

1. Practical solutions: unambiguous labeling 
Unambiguous labeling requires first  that the label is consistent with the content and, second, that 

the label is descriptive enough to avoid ambiguity. 

Consistency of labels and content can be achieved by examining every transformation1, transfer2, 
and calculation data goes through while keeping track of data sources and formulae applied to the 
data. Spreadsheets provide some assistance with this: a table created by importing external data 
keeps query information available for examining and editing. This SQL text helps to identify sources 
and clarify the nature of the extracted data. A spreadsheet’s ability to name ranges gives users an 
ability to create readable and, thus, traceable calculations. The next logical step in readability is to use 
labels within formulas.  The “using labels in formulas” feature allows the user to create a quite 
traceable expression like “=Case Reserves + IBNR” using field names “Case Reserves” and “IBNR” 
in the formula for “Reserves.” Another useful facility in spreadsheets is “commenting:” a descriptive 
tag attached to an upper left corner of the triangle will “travel” with the data during copy and paste 
operations and will help the user to avoid obvious errors, such as making sure that paid losses 

wouldn’t end up in a calculation intended for claim counts. 

The second type of labeling problem, which we will call “disambiguation of labels,” presents a 
different challenge. Readability and aesthetics considerations advocate short labels, while the need 
for quality and precision requires labels to be quite detailed and relatively long. The solution seems 
to be in hiding less necessary details until needed.  The user would still need to be able to display the 

                                                           
1 Data transformation step – edits, rearrangements and conversions from one format to another. 
2 Data transfer step – extraction from one system, transportation and upload to another system. 
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detailed labels on demand. Spreadsheet “comments” satisfy such design requirements: they are 
hidden until the computer’s mouse moves over a cell with a label in question. This technique, while 
convenient, is not very reliable because it doesn’t firmly relate short and long labels. More reliable, 
but much more involved, is SmartTag technology that allows a spreadsheet to recognize certain 
labels, lookup for their longer descriptions in the metadata table, and display long labels on demand. 
SmartTags may ensure enterprise-wide label consistency, but may not help in the creation of an ad-
hoc report with the new labels. Another hide-display technique available to spreadsheet users is the 
use of an outline. Short labels can be placed on a higher outline level and additional (clarifying) 
meta-information can be placed on a lower outline level and collapsed. A collapsible outline view is a 
convenient arrangement for other meta-information regarding reports: for example, lists of formulae 
used in reports or lists of data sources and analysis methods.  

2. Practical solutions: calculation consistency 

It is very hard to prevent users from adding “doctors” to “hospital beds” to obtain “total 
exposure,” but some precautions could be made to prevent embarrassing mistakes. One can borrow 

an idea from programming languages that enforce so-called “strong typing”: every piece of data has 
a type associated with it and no operations between incongruent types are allowed. To mimic 
“strong typing” in a spreadsheet situation one has to keep “type” information associated with data 
elements, bring it (“type” information) to the report along with the data and use it for “type 
checking” in the formulae. For example, the formula for a loss ratio should first check that both the 
numerator and denominator belong to the same year and the same kind of year in order to avoid 
“underwriting year” vs. “accident year” mismatch. Spreadsheets don’t have built-in “typing” 
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enforcement tools; however, they provide mechanisms that may help avoid some simple errors. In a 
columnar report, one can write formulae with column labels rather than with nondescriptive cell 
references. Assuming that labels correspond to column content, this is a much more reliable way to 
refer to particular data.  Additional information on this topic and implementation ideas can be found 
in [26]. 

More accurate solutions would involve storing results of the actuarial analysis in a well-designed 
relational database and creating reports from it. Assuming that database integrity is intact, the 
database engine would ensure proper relationships between data elements from different tables. 

3. Practical solutions: focusing attention 

There are many techniques for attracting a report reader’s attention to important information. We 
will mention just three of them: adaptive reporting, visualization, and alarm systems. All three are 
within a reach of any spreadsheet user and can be used to improve the informational value of 
reports (see [27]). 

Adaptive or data-driven are reports whose size, shape, and format adapts to the data. Placing 
these reports in an interactive environment such as a spreadsheet allows the user to interact 
dynamically with the report (effectively creating a whole family of reports rather than a single one), 
shaping it to the level of detail that suits the user. 

A partial list of data-driven implementations found in spreadsheets includes:  

• Filtering (reduces amount of data displayed). 

• Outlining (hierarchically organizes data with an ability to hide and display data on 
different levels of the hierarchy).  
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• Sorting (does not reduce amount of data displayed, but brings the most important 
information to the top or bottom). 

• Conditional Formatting (defines color, font, size and other formatting attributes 
of a cell as a function of the values in it or in other cells). 

• OLAP-enabled tools (provide an ability to display cross-sections or aggregations 
of multi-dimensional data in 2-D). OLAP-enabled tool (such as Excel’s Pivot 
Table) is the ultimate adaptive reporting mechanism which supports filtering, 
sorting, outlining and conditional formatting and as such should become a 
preferred choice for any report designer. 

Alarm system is a technological solution whose purpose is to warn about undesired 
development. Alarm system usually triggers some action when the problem is found. The actions 
range from passive (paint some cells differently in the report) to interactive (display a warning dialog, 
send an e-mail requiring a response) to autonomous (launch a software program to fix the problem). 
At different stages of the data workflow, alarm messages can be aimed at different recipients: data 
integrity issues could be addressed to data managers, model’s assumption test failures should be 
directed to actuaries, and sudden reserve increases should be presented to the management. 
Correspondingly, determination of which events under what conditions trigger an alarm is up to 
professionals responsible for the information quality on every given stage. In particular, actuaries 
should define what is acceptable and (on the other hand) what constitutes error or warning for data 

Comment [d1]: Should be bold?
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suitability testing, actuarial analysis and presentation of actuarial results. 

Visualization is the process of exploring, transforming, and viewing data as images to gain 
understanding and insight into the data. Images have unparalleled power to convey information and 
ideas. Consequently, visualization is a primary tool for communicating complex and/or voluminous 
information. 

There exist a multitude of visualization approaches: mapping scalars to colors, contouring (iso-
surfaces), glyphs (arrows of different color, length, direction), warping (display of different stages in 
the motion), displacement plots, time animations, streamlines (particle traces), and tensor algorithms. 
For the majority of actuaries, the most convenient and familiar visualization tool is a chart. From a 
presentation quality perspective, the report designer should be most concerned with the chart type, 
axis scaling, and the clarity and accuracy of the legend.  

While there are numerous chart types available in spreadsheets, their add-ins, and other 
reporting packages, only a few are usually suitable for displaying each particular type of data. 
Percentages and shares are best presented by a pie chart, while XY-scatter is better suited for 
dependencies or comparisons (i.e., “Risk vs. Return”). Discrete values (i.e., “Total Premium per 
year”) are easy to present as a bar chart, while continuous variables (i.e., “Payment pattern”) are 
better displayed as lines. One shouldn’t use stacked bars for nonadditive values (i.e., “Incurred Loss” 
stacked on top of “Paid Loss”) or radar chart other than for comparison of several sets of data in 
multiple categories (criteria). 

Axis scaling is very important for the readability of the chart, especially when displaying several 
data series. Sometimes in situations when one set of data (i.e., “Premium in dollars”) dwarfs another 
(i.e., “Exposure in number of cars”) it is necessary to create a second axis (with different scale) for 
the second set of data. Choosing an axis to be “time-scaled” automatically adds a capability to 
display monthly and annual aggregations of the data by selecting corresponding axis step (so called 
“axis base unit”). Occasionally, automatic scaling provided by a spreadsheet makes a wrong guess or 
is not as illustrational as desired. Sometimes data are better viewed in a logarithmic scale or in 
reverse order or with preset maximum and minimum. For example, displaying “Inception-to-date 
payments” on a chart with the maximum preset to “Aggregate Limit” could be more informative 
than just using automatically scaled axis1. 

                                                           
1 To set up Maximum Value for the Axis click on the chart, right-click on the Axis and select “Format Axis…” 
menu option. In the “Format Axis” dialogue on the “Scale” tab uncheck “Maximum” checkbox and type desired 
value in the corresponding edit box. 
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The importance of clarity and accuracy of the chart title and legend cannot be overstated. Even 
the most primitive chart needs a precise description of the data displayed. Even more important, the 
user should provide accurate axes definitions and data series descriptions for the charts with 
multiple data series, dual axes, or of mixed types (i.e., bar and line on one chart). Without that, a 
chart may become a source of confusion instead of being a source of information. 

4. Practical solutions: fighting misinterpretation 

Actuaries deal with more and more sophisticated notions that are easy to misinterpret, 
misunderstand, and misuse. Three of the most difficult notions (as identified in [28]) for decision 
makers, regulators, accountants, and auditors are uncertainty, development, and multidimensional 
ranking. Attempts to explain and illustrate these concepts can result in confusion and wrong 
decisions. The problem is fundamental, given that accountants, performance measurers, and 
lawmakers operate with numbers rather than with distributions of random values. For example, an 
attempt to represent the distribution of possible aggregate losses with just one (“Reserve”) or two 
(“Reserve Range”) numbers inevitably leads to shortcuts in understanding and may create the 
impression that any value within a range is equally probable. The misinterpretation may be 
reinforced by a chart with reserve ranges shown as solid bars.  

 

Fig. A.4.1 
In reality, aggregate losses are not uniformly distributed and deserve more sophisticated graphical 

representation.  
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Fig. A.4.2 
Some visual cues like gradients1 or properly shaded areas should assist in visualizing uncertainty. 

Indeed, vanishing color is supposed to emphasize diminishing probabilities of extreme outcomes. 
Thus, Fig. A.4.3 may give better representation of the reserve ranges than Fig. A.4.1. 

                                                           
1 To set up chart attributes such as gradient and borders, right-click on the chart element (i.e., bar), choose “Format 
%chart element%...” menu option and select tab “Pattern”. For gradient click on “Fill Effects…” button in the 
“Area” section, for borders make proper selections in the “Borders” section of the dialog. 
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Fig. A.4.3 
Another hurdle for the end users of reports to overcome is the concept of development. 

Combined with uncertainty (which itself changes over time), it creates a lot of opportunities for 
misunderstanding. Numbers in a spreadsheet or on a printed page do little to demystify trends, while 
standard chart options produce misleading results. With some effort, however, it is possible to 
illustrate development of random values in a spreadsheet chart (for example, charts on the Fig. A.4.4 
below utilize vertical dimension (width of the curve in one case and height of the line in another) to 
illustrate the size of uncertainty which changes over time).  

 
Fig. A.4.4 

Decision makers rarely have their options conveniently ranked for them in one numeric 
dimension (i.e., “Net Profit”); they usually have to take into account multiple considerations (i.e., 
“Profit vs. Risk”), attempting to do multidimensional ranking. Geometrically speaking, their 
challenge is to say which one of the several points on the 2-D plane is “the best” one. 
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Fig. A.4.5 
If the decision maker can formalize his preferences and express them as a so-called “goal 

function” (i.e., “the goal is to maximize risk to return ratio”), then display of the data can be 
optimized for that goal-seeking purpose. Taking a cue from a geographical map, the report designer 
may draw isolines (where goal function remains constant) and shade areas in between differently (for 
different values of these constants).  

Fig. A.4.6 
Placing 2-D points on such a map may significantly assist in selecting “the best” option. 
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Fig. A.4.7 
Fig. A.4.7 places points from the Fig A.4.5 on the grid of iso-lines from Fig. A.4.6. With a visual 

cue from the gradient (reddish areas are bad, yellowish areas are better) it is evident that lower right 
point labeled “LOB3” should be ranked #1 for a given choice of goal functions. 

While use of visualization techniques requires some effort from the report designers and some 
training for the report readers, the payoff in interpretation quality (and, consequently, in decision 
accuracy) is considerable. 

 

Appendix B:  Data cleansing steps (addendum to section 3.6.1) 

The following is based on Improving Data Warehouse and Business Information Quality ([23], pp. 237-
282). 

1. Identify data sources and select the most authoritative source (i.e., company policy database, 
company claims database, company bill review database, etc.).  Note that this may not be as easy 
as selecting a single file: the most reliable version of different data elements could come from 
different files.  Similarly, different sources may be more authoritative for a single data element in 
different circumstances. Best data are coming from the sources and processes that have the 
largest stake in the correctness of data (e.g., the accounting department may treat payments info 
more accurately than their claims management colleagues and vice versa for the case reserves 
data).  Frequency and timeliness of updates may also serve as indicator of reliability (more 
recently updated data probably has been looked at and corrected, so it could be more accurate).  
Metadata (2.3) can help to identify the most authoritative files. 

2. Extract and analyze source data for anomalies. 
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a. Analyze the meaning of the data with source data subject matter experts.  For example, 
confirm that “AccDate” is indeed a date of the accident and find out what 
“GrossNetPrem” means. 

b. Document the definitions, domain value sets, and business rules for each data element as 
used in its source file. 

c. Extract a representative data sample and analyze it to confirm that the actual data is 
consistent with its definition and to discover any anomalies in how the data was used and 
what these incorrect entries mean. The objective is to discover undocumented values and 
their meanings. 

3. Standardize the contents of data attributes: the definition and domain value sets for each 
standardized data attribute become the authoritative enterprise definition. Format 
nonstandardized data into standardized data elements with standardized domain value sets.  
For example, if certain files were using “2” for “married” but the enterprise definition is “M” 
for “married,” then replace the “2”s with “M”s. 

4. Correct and Complete Data. Improve the quality of the existing data by correcting 
inaccurate or nonstandard data values and finding and capturing missing data values. The 
objective is to improve the quality of the data to the highest level. 

a. Identify missing data and obviously incorrect or suspect data (using, for example, EDA 
techniques described in 3.1)  

b. Prioritize data to be cleansed based on value of correct data compared to correction 
costs.  

c. Determine how to handle suspect data. The most efficient approach for simple but 
massive cleansing is to use automated transformation routines that can modify data 
according to business rules.  However, where the suspect data is critical and the 
investigation is economically feasible, the best handling of suspect data is investigation 
and request for correct data from the source.  Alternatives:   

i. Reject the data. 

ii. Accept the data without change. 

iii. Accept the data without change but document that it is suspect. 

iv. Accept the data but estimate the correct or approximate values based on other 
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related attributes. In this case, make sure that data are flagged as “estimated” and 
that impact on the intended use of data is tolerable.  

v. The best handling of suspect data is investigation and request for correct data 
from the source. 

d. Implement the selected approach(s) for cleansing. 

e. Document what was done and why. 

5. Eliminate duplicates. 

a. Establish criteria to identify duplicate data records. 

b. Determine impact of incorrectly consolidating multiple different records into one. 

c. Determine matching techniques to use. 

d. Look for intra-file duplicate records. 

e. Look for inter-file duplicate records. 

f. Investigate duplicates to make sure they are in fact duplicate records. 

g. Document the matching and merge rules in the data map of source to target. 

h. Establish a control mechanism to cross-reference duplicate occurrences in multiple files 
when primary key cannot be kept identical across files. 

i. Examine and re-relate data related to the old records being consolidated to the new 
record. 

j. Maintain an archive of the original source data for an appropriate length of time for 
error recovery purposes. 

6. Analyze data for patterns of errors. The objective here is to leverage the knowledge of the 
data cleansing work to discover patterns of data errors and eliminate the most significant 
problems caused by data errors, as well as the most significant causes of errors. Analyze 
results to understand the kinds of errors, frequencies, and the cost impacts of the errors on 
the business. 

a. List and analyze examples of various kinds of data anomalies. 

b. List two or three representative examples of each type of data defect. 

c. Categorize the information quality problems and patterns. 
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d. Estimate the frequency of each information quality problem. 

e. Estimate the relative costs or impacts of each information quality problem, if possible. 

f. Summarize the impact by data defect type. 

7. Map the corrected data into its data file. Prepare the data for loading into the warehouse or 
target database, and include converting or formatting the cleansed consolidated data into the 
new data architecture. This step requires: 

a. Cleansed and standardized data. 

b. Data from external information sources for integration with internal data. 

c. Business rules governing the source data. 

d. Business rules governing the target data warehouse data. 

e. Transformation rules governing the transformation process. 

8. Optimize data warehouse performance by determining and storing derived data (like 
triangles or other pre-aggregations) for the most frequently asked queries requiring complex 
calculations. 

9. Audit and control data extraction, transformation, and loading. Update these procedures as 
necessary.  Once the above steps are completed, this step is a matter of implementing 
procedures to assure the processes are performed as specified and kept up to date.  See 3.2 
for more information on data audits. 

 

 

Appendix C:  Data defect prevention (addendum to section 3.6.2) 

The following is based on Improving Data Warehouse and Business Information Quality ([23], pp. 285-
310).  The systematic approach for preventing data defects from recurring contains 6 organizational 
steps: 

0. Analysis and identification of all data processes and procedures in the company with particular 
focus on those processes associated with defective data. 

1. Selecting a particular process for improvement. 

2. Brainstorming and developing an improvement plan. 
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3. Implementing improvements in a controlled manner and confirming that improvements do solve 
a real problem. 

4. Evaluation of impact against preset success criteria. 

5. Rollout of improvement through the entire company along with training and documentation. 

As an example, consider a process of building loss triangles for actuarial analysis of a company’s 
reserves using accurate data. 

Step 1 would first involve identifying and selecting those processes associated with the most 
significant payoff based on the impact of the data errors. Then identify the data sources (company’s 
warehouse) and data owners (data management team) along with data consumers (reserving 
actuaries). This step ends with an assignment of improvement project sponsor and a team 
accountable for process changes. 

Step 2 is the essence of the defect prevention activity. It requires identification of the root of the 
problem (for example, miscoding of “Line of Business” attribute), a feasible technical solution 
(integrity check, link to line-subline table, update of incorrect values), a plan to implement a solution 
(build line-subline table, write SQL queries, test on a sample of data, deploy), a measure of success 
(% of incorrect records) and costs associated with fixing the problem versus not fixing it 
(programming time versus errors in reserves and insolvency). 

Step 3 includes not just implementation itself but also testing, documentation of the changes, and 
training of the personnel. 

Step 4 consists of measurement of success defined in Step 2 or analysis of failure with possible 
repeat of Steps 2 and 3. 

Step 5 involves generalization of the improvement with an attempt to apply it to all applicable 
areas in the company (fixing triangles used for pricing). 

Making improvements in a systematic rather than haphazard manner will help to prevent more 
errors more effectively and more successfully with less effort and lower cost. 
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Abbreviations and Glossary 
 

ASB, Actuarial Standard Board  GIRO, General Insurance Research Organization 
ASOP, Actuarial Standard of Practice GRIT, General insurance Reserving Issues Taskforce 
ASOP No. 23, Actuarial Standard of Practice No. 23 IDMA, Insurance Data Management Association 
CAS, Casualty Actuarial Society  IT, Information Technology 

ISO, Insurance Services Office, Inc. 
MDDB, Multi-dimensional Database 
MGA, Managing General Agency 

Categorical data, (as opposed to numerical data) data 
whose values correspond to a specific category or label.   
Examples include alphanumeric data such as claimant state 
or NCCI injury code. NAII, National Association of Independent Insurers 

NCCI, National Council on Compensation Insurance Data attribute is a characteristic of an object or an 
observation. Data attribute consists of a name and a value 
and is usually stored in a field in a data record. For example, 
attribute’s name: “Date of Accident”, value: “January 1, 
2000”. 

OLAP, On-Line Analytical Processing, a mechanism for 
efficient analytical queries. OLAP heavily relies on data 
cubes as data structure and pre-aggregations as a way to 
speed up queries. 

Data cube: a multi-dimensional representation of the data.  
Dimensions are usually constructed from the categorical 
data, while cube content is usually some aggregate function 
(sum, count, max) of numerical data.  For example, Excel’s 
pivot table is a 2-dimensional projection of the data cube. 

Regulator, Insurance is regulated by state insurance 
departments. Financial statements, rates, licenses to write 
business, etc. are monitored by regulators, including 
actuaries, who work for insurance departments. 

Data domain, the set of values valid for a given data 
element. For example, data domain for the “Gender” data 
element is a pair {“Male”; “Female”}. 

SQL, Structured Query Language, a computer language to 
retrieve (place and modify) information from a (relational) 
database. 

Data element or data entity, the smallest unit of data 
record that has meaning to a knowledgeable worker. Data 
element is usually a value of a data attribute or a reference to 
another record in a (more detailed) table. For example, a 
loss record may contain the following data elements: values 
of the “Date of Accident” and “Line of Business” attributes 
and “Policy ID” reference to a record in “Policies” table. 

Statistical Agent, an organization that helps insurers satisfy 
legal requirements for reporting data to regulators.  The 
statistical agent processes data submitted by insurers, 
performs data quality checks on the data, consolidates the 
data across insurers, and provides aggregate data 
compilations to state insurance departments on the behalf 
of the insurers. 
TPA, Third Party Administrator, a company managing 
insurance claims, one of main sources of actuarial data. 

Data record or database record is a (structured) row in a 
database table that represents a single object or observation 
as a collection of related data elements (stored as fields).  
For example, a record for insurance policy may consist of 
“Policy ID,” “Inception Date,” “Expiration Date,” and 
“Premium” data elements. 

VBA, Visual Basic for Applications, a programming 
language implemented in many applications, most notably in 
Microsoft Office. 

EDA, Exploratory Data Analysis 
Field, a column in a database table that stores a value of a 
single data attribute or a reference (key) to a record in 
another table. 

XML, eXtensible Markup Language, a language that 
combines text with descriptive information about that text. 
For example, XML would store Excel’s cell value along with 
the formula that generated that value.  
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Capital Allocation by Percentile Layer 

Neil M. Bodoff, FCAS, MAAA 
 
________________________________________________________________________ 
Abstract 

Motivation. Capital allocation can have substantial ramifications upon measuring risk adjusted profitability as 
well as setting risk loads for pricing. Current allocation methods that emphasize the tail allocate too much capital 
to extreme events; “capital consumption” methods, which incorporate relative likelihood, tend to allocate 
insufficient capital to highly unlikely yet extremely severe losses. 
Method. In this paper I develop a new formulation of the meaning of holding capital equal to the Value at Risk. 
The new formulation views the total capital of the firm as the sum of many percentile layers of capital. Thus 
capital allocation varies continuously by layer and the capital allocated to any particular loss scenario is the sum of 
allocated capital across many percentile layers. 
Results. Capital allocation by percentile layer produces capital allocations that differ significantly from other 
common methods such as VaR, TVaR, and coTVaR. 
Conclusions. Capital allocation by percentile layer has important advantages over existing methods.  It highlights 
a new formulation of Value at Risk and other capital standards, recognizes the capital usage of losses that do not 
extend into the tail, and captures the disproportionate capital usage of severe losses. 
Availability. To discuss further, please contact the author at neil.bodoff@willis.com or neil_bodoff@yahoo.com 
 
Keywords. Capital Allocation; Percentile Layer of Capital; Value at Risk; Enterprise Risk Management; Risk 
Load; Risk Adjusted Profitability 

             

1. REQUIRED CAPITAL, REQUIRED RATE OF RETURN, AND 
CAPITAL ALLOCATION 

How much capital should an insurance firm hold? And what rate of return must the firm achieve 
on this capital? While these questions are of critical importance to the firm, external forces in the 
operating environment often dictate the answers. For example, regulators and rating agencies greatly 
influence the amount of capital the firm must hold; in addition, investors influence both the amount 
of capital the firm holds and the required rate of return on this capital. Therefore, the issues of the 
amount of capital and the required rate of return on capital are often ultimately beyond the decision 
making power of the company; rather, they are demands that the operating environment imposes 
upon the firm.  

Given that a firm must hold a certain amount of capital, the firm essentially incurs a firm-wide 
“overhead” cost related to the required rate of return on this capital. Management often desires to 
allocate this cost, like other overhead costs, to subsets of the firm such as subsidiaries, business 
units, and product lines. How should the firm allocate the cost of required return on capital? This is 
the question of “capital allocation”. 
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1.1 Why is Capital Allocation Important? 

How a firm allocates capital, similar to other cost allocation decisions, can significantly affect the 
measured profitability of a particular line of business. Moreover, allocating capital can affect target 
pricing margins and the volume of business the company writes in each line of business and product 
type. As a result, the topic is critically important and often the subject of contentious debate among 
the heads of the firm’s various business units. 

1.2 Defining the Scope of the Problem 

We will restrict our discussion to the situation of a publicly traded insurance company that writes 
property catastrophe business, both insurance and reinsurance, covering several perils around the 
world; we will exclude long tail casualty business in an attempt to simplify our discussion to a single 
year time horizon problem. We will assume that investors require that the firm holds capital based 
upon the Value at Risk (VaR) at the 99th percentile and that the required return can be expressed as 
an annual percentage rate of return on this amount of capital. The issue we grapple with here relates 
only to allocation. 

1.3 Allocating Capital to Users of Capital 

Mango [4] has stressed that the entire capital of the firm is available to pay the claim of any single 
policy. Thus, the required rate of return on capital is a cost that accrues on the total firm level, and 
Kreps [1] has clarified that capital allocation is really the allocation of the required rate of return on 
capital. Mango [3] also has highlighted the connection between allocating capital and broader issues 
of cost allocation. Therefore, similar to other cost allocation situations, we want to connect the firm-
wide cost of capital to those subsets of the firm which require the company to incur this cost: 
essentially, to match the expenditure to its source. Namely, we desire to allocate the cost of capital to 
those business units, products, perils, reinsurance contracts, and individual insurance policies that 
contribute to the loss scenarios that “use” capital. 

1.4 So Who “Uses” Capital? Investigating Value at Risk (VaR) and Tail Value 
at Risk (TVaR) 

In our situation, the company must hold capital based upon Value at Risk (VaR) at the 99th 
percentile. The traditional view of this requirement is that the firm is holding capital in order to pay 
for a catastrophically bad scenario (the 99th percentile loss), but is not concerned with other loss 
scenarios that are either greater than or less than this VaR (99%) scenario. Thus Kreps [1] and 
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Venter [5] describe (and critique) the VaR approach as allocating capital only to those components 
that contribute to one particular loss scenario (e.g. the 99th percentile loss) but not to scenarios that 
are either greater than or less than the selected VaR percentile. Similarly for Tail Value at Risk 
(TVaR), the traditional view is that the company holds capital “for the average loss event given that 
it is (at least) a catastrophic scenario”; thus, according to this view, we allocate capital to a line of 
business only to the extent of its contribution to loss events greater than or equal to the 99th 
percentile loss (or other selected threshold). Again, loss scenarios that are less than the TVaR 
threshold percentile receive no capital allocation. 

Intuitively, this characterization of the VaR (and TVaR) capital requirement seems unsatisfying; 
to clarify what is bothersome, we will use a thought experiment with simplified numbers. 

1.5 Thought Experiment #1 

Assume we are dealing with two perils: 

1) Wind   20% chance of 99M loss, else zero 

2) Earthquake (EQ)     5% chance of 100M loss, else zero 

Assume the perils are independent. Thus, the possible scenarios for portfolio loss are: 

1) 76% probability that neither peril occurs, loss = 0 

2) 19% probability that only Wind occurs, loss of 99M 

3)   4% probability that only EQ occurs, loss of 100M 

4)   1% probability that both Wind and EQ occur, loss of 199M 

Using VaR (99%) as our capital requirement, we hold 100M of capital to pay for 99% of the loss 
events; only the rare, 1% chance of a Wind event plus an EQ event will exceed the capital. 

Many current approaches to allocation have serious drawbacks.  

Method #1 (“coVaR”): If we say that using VaR to set the capital requirement means that we 
allocate capital to the events that generate the VaR scenario of 100M, then does that mean we 
should only allocate capital to the EQ peril (which causes the potential loss event of 100M) – yet the 
Wind peril that can cause a loss event of “only” 99M receives zero capital allocation?   

Method #2 (“alternative coVaR”): Another approach might be to use all events ≥ VaR to 
allocate. Then we allocate 80% [=4%/(4%+1%)] to the EQ event and 20% [=1%/(4%+1%)] to the 
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“Wind + EQ” event; using Kreps’s “co-measures” approach, we can then further allocate the capital 
for the “Wind + EQ” event to its components: Wind [ = 49.75% = 99 / (100 + 99)] and EQ [ = 
50.25% = 100 / (100+ 99)]. In total EQ would receive approximately 90% [=80% + 50.25% * 20%] 
and Wind would receive roughly 10% [=49.75% * 20%]. But again, the substantial possibility of a 
standalone Wind event of 99M has no significance?  

Method #3 (“coTVaR”): Another approach might be to use the TVaR measure for loss events ≥ 
100M to allocate. Then the EQ event receives allocation proportional to 80% * 100M and the 
“Wind + EQ” event receives allocation proportional to 20% * 199M. Using Kreps’s co-measures 
again, ultimately EQ receives 83.5% and Wind 16.5%; but again, we will allocate zero capital based 
upon the “Only Wind” event of 99M, which is much more likely to use capital and nearly as large of 
a loss as the “EQ only” event!  

It seems intuitively clear that Wind is not receiving the appropriate capital allocation in this 
situation. More broadly, tail based methods in general have been criticized for ignoring loss 
scenarios below the tail threshold (e.g., Wang [7]). 

2. REFORMULATING AND CLARIFYING VALUE AT RISK (VAR) 

It therefore seems appropriate to reformulate and clarify what it means for a firm to hold capital 
at the 99th percentile, or VaR (99%). While the prior formulation suggests that the firm holds 
sufficient capital “for the 99th percentile loss”, I believe that a better formulation of the meaning of 
the VaR capital requirement is that the firm holds sufficient capital “even for the 99th percentile 
loss”. Once we focus on VaR requiring sufficient capital “even for the 99th percentile loss”, we can 
see that this capital amount is intended to also cover losses at lower percentiles as well; thus, we 
must allocate capital and its cost even to loss events that fall below the VaR threshold. 

We can use an analogous argument to reformulate TVaR as well. Specifically, using TVaR (99%) 
to set capital means we are holding capital “even for the average loss beyond the 99th percentile”, 
but not “only for” these events.  Beyond VaR and TVaR, the same line of reasoning may be 
appropriate when interpreting other capital benchmarks as well. 

2.1 Ramifications of New Formulation of VaR 

What are some of the ramifications of our formulation that holding capital equal to VaR (99%) 
means holding sufficient capital “even for a 99th percentile loss”?  
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It would appear to follow that we need to think about capital allocation by percentile layer. In 
other words, why does the firm hold capital equal to the 99th percentile loss rather than the lower 
amount of the 98th percentile loss? The difference between the required capital amounts at these 
two percentile losses can be attributed solely to those loss events that outstrip the 98th percentile. 
Similarly, the difference between the amount of capital at the 98th percentile loss and the 97th 
percentile loss can be attributed solely to those losses that exceed the 97th percentile. And so on… 

Therefore, allocation of capital to loss scenarios would appear to require calculations that vary by 
layer of capital. 

3. DEFINING A “PERCENTILE LAYER OF CAPITAL” 

Thus, we can define a “Percentile Layer of Capital” as follows. Define percentile α, increment j, 
and percentile α + j on the interval [0, 1]. Then 

 

Percentile Layer of Capital (α, α + j) = Required Capital at percentile (α + j) – 
Required Capital at percentile (α) (3.0)

 

We can also define a “Layer of Capital” as follows. Define amounts a and b, then 

 

Layer of Capital (a, a + b) = Capital equal to amount (a + b) –  Capital equal to 
amount (a) (3.1)

 

For example, assume we have simulated 100 discrete loss events and the 78th loss (ordered from 
smallest to largest) is 59M and the 77th loss is 47M, then the percentile layer of capital (77%, 78%) 
= 59M – 47M = 12M. 

3.1 Refining the Percentile Layer of Capital 

Note that we can set Capital (α) = any function of (VaR (α)). For example, if we want a 99th 
percentile loss to consume no more than 50% of capital, then  

VaR (99%) = 50% * Capital (99%) and 

Capital (99%) = 2 * VaR (99%) 
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For ease of use, we will assume that the capital required at a loss percentile will equal that loss 
amount:  

Capital (α) = VaR (α) = loss percentile (α) 

Also, we will assume that j, which equals the “width” or “increment” of a layer’s percentiles 
between lower and upper bounds, equals 1/n, where n = number of available discrete values. For 
example, if we have 100 simulation outputs, then the layer increment j = 1%, and if we have 1000 
simulated values, then j = 0.1%. 

3.2 Allocating a Percentile Layer of Capital to Loss Events 

We can see that each layer of capital is potentially used or depleted (or “consumed” in Mango’s 
[4] terminology) by loss events that exceed the lower bound of the layer, but not by loss scenarios 
that fall short of the lower bound of the layer (i.e., those losses that do not penetrate or “hit” the 
layer). Thus, it is desirable to allocate each layer of capital only to those events that penetrate the 
layer. Another critical consideration is that some of the losses that penetrate the layer are more likely 
to do so than others. Therefore, each event (i) that penetrates the layer of capital receives an 
allocation based upon its conditional exceedance probability.  

Conditional Exceedance Probability for event (i) = Probability of event (i) that penetrates the 
layer of capital / Probability of all events that penetrate the layer of capital 

Thus, for any layer of capital, we take the amount of capital (or the “width” of the layer), we 
allocate this amount of capital only to loss events that penetrate the layer, and we calculate the 
allocation percentages based upon each loss event’s conditional probability of penetrating the layer. 
The allocation percentages, by definition, sum to 100% on any layer.   

After performing the allocation of each layer of capital (from zero up to the required VaR capital 
amount - but not beyond it), we will have allocated 100% of the capital to loss events. 

Many loss scenarios will penetrate several different percentile layers of capital and therefore 
receive varying allocations of capital from many layers of capital. The total capital allocated to any 
particular loss event is simply the total, summed over all layers of capital that the loss event 
penetrates, of the capital allocated on each individual layer. As an example, take the 83rd percentile 
loss event. On each layer of capital (from zero up to the 83rd percentile layer of capital but not 
beyond) it receives varying amounts of allocated capital; sum across all of these layers to calculate 
total capital allocated to this event. Of course, each loss “event” or “scenario” may be an 
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accumulation of losses from several business units, policies, and/or perils. But as Kreps [1] has 
shown, once we have the total allocated capital for a loss scenario, we can then allocate to the 
subcomponents based upon their contributions to the total. 

3.2.1 Applying Capital Allocation by Percentile Layer to Thought Experiment #1 

In this section we will apply the procedure of capital allocation by percentile layer to the 
simplified numbers of Thought Experiment #1. 

In Thought Experiment #1, there are 4 potential scenarios: 

1) 76% neither peril occurs, loss = 0 

2) 19% only Wind occurs, loss of 99M 

3) 4% only EQ occurs, loss of 100M 

4) 1% both Wind and EQ occur, loss of 199M 

We hold capital equal to VaR (99%) = 100M. The layer of capital of 1M x 99M can only be 
penetrated (or “depleted” or “consumed”) by event #3 or #4. Event #3, the “Only EQ” event, has 
a conditional exceedance probability of 80% [4% / (4%+1%)]. Event #4, the “Wind and EQ” 
event, has conditional exceedance probability of 20%. Therefore, we allocate the 1M in layer capital 
(100M – 99M) as follows:  

• 80% for EQ event,  

• 20% for Wind + EQ event 

•   0% for Wind only event 

The next layer of capital, 99M x 0, can be used by all 3 loss events. 

• “Only Wind” event has conditional exceedance probability of 79% [19% / (19%+4%+1%)] 

• “Only EQ” event has conditional exceedance probability of 17% [4% / (19%+4%+1%)] 

• “Wind and EQ” event has conditional exceedance probability of 4% [1% / (19%+4%+1%)] 

Therefore, the allocation of 99M in capital (99M – 0) is 

• 79% for Wind 

• 17% for EQ 
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•   4% for Wind + EQ 

The total capital allocation to loss event across both layers (namely, 1M x 99M and 99M x 0) is then 

• “Only Wind” = 79% x 99M = 78.4M 

• “Only EQ” = 17% x 99M + 80% x 1M = 17.3M 

• “Wind + EQ” event = 4% x 99M + 20% x 1M = 4.3M 

The total allocated capital = 78.4 + 17.3 + 4.3 = 100 = VaR(99%) 

The loss event of “Wind + EQ” can then be allocated further to the underlying perils that 
contribute to the loss event (per Kreps [1]) as follows. In a “Wind + EQ” event, which receives a 
4.3M allocation, Wind contributes 99M and EQ contributes 100M.  Therefore, Wind % = (99/199) 
= 49.75%, EQ = (100/199) = 50.25%. The total allocation to peril is therefore 

• Wind = 78.4M + 49.75% x 4.3M = 80.5M 

• EQ = 17.3M + 50.25% x 4.3M = 19.5M 

Comparing results of different methods at the 99th percentile, we see that 

• Capital allocation by percentile layer =  Wind  80.5%,  EQ  19.5% 

• coTVaR for all events ≥ 100M =   Wind  16.5%,  EQ  83.5% 

Thus, capital allocation by percentile layer creates a completely different allocation than coTVaR. 

3.2.2 Thought Experiment #2 

In Thought Experiment #1, capital allocation by percentile layer produced allocations that are 
essentially proportional to the perils’ average loss. So does this imply that the procedure will always 
result in such an allocation? After all, it would seem problematic to always allocate capital in 
proportion to the average loss; catastrophic perils with the capability to produce severe losses should 
receive a greater allocation of capital, regardless of the “average” outcome. Thought Experiment #2 
shows that capital allocation by percentile layer will respond appropriately in such a situation. 

Again assume we are dealing with two perils: 

1) Wind   20% chance of 50M loss, else zero 

2) Earthquake (EQ)     5% chance of 100M loss, else zero 

Note that for Wind the average loss = 10M and for EQ the average loss = 5M. 
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Assume the perils are independent. Thus, the possible scenarios for portfolio loss are: 

1) 76% probability that neither peril occurs, loss = 0 

2) 19% probability that only Wind occurs, loss of 50M 

3)   4% probability that only EQ occurs, loss of 100M 

4)   1% probability that both Wind and EQ occur, loss of 150M 

Using VaR (99%) as our capital requirement, we hold 100M of capital to pay for 99% of the loss 
events; only the rare, 1% chance of a Wind event plus an EQ event will exceed the capital. Applying 
capital allocation by percentile layer to the 50M x 50M layer of capital as well as the 50M x 0 layer of 
capital, we obtain the following allocation: 

• Capital allocation by percentile layer =  Wind  44%,  EQ  56% 

• Allocation in proportion to average loss =  Wind  67%,  EQ  33% 

This example shows that capital allocation by percentile layer can produce unique allocations that are 
proportional neither to the average loss, nor to probability of occurrence, nor to standalone VaR. 

4. GRAPHICAL DESCRIPTION OF CAPITAL ALLOCATION BY 
PERCENTILE LAYER - DISCRETE 

Let us view the “size of loss” distribution in graphical format to further clarify the approach; we 
will use sample numbers for simplicity. We will use “Lee Diagrams” (see Lee [2]), namely graphs 
where the loss scenario number (ordered in increasing size) is plotted on the X-axis and the loss 
amount is plotted on the Y-axis: 
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In this example (Exhibit 1) there are 20 loss scenarios; why is it that the firm needs to hold 360M 
of capital rather than just 100M of capital? It appears that loss scenarios 1 through 10, which are all 
less than or equal to 100M, do not require this “layer of capital”.  In contradistinction, loss scenarios 
11 through 20, which exceed 100M, clearly do utilize this layer of capital in excess of 100M. 
Examining in further detail, we see that all of scenarios 11 through 20 utilize the 1M x 100M layer, 
but not all of them require the 1M x 200M layer, and even fewer require the 1M x 300M layer. 

Thus, we must allocate each individual layer of capital to the loss events that penetrate the layer 
in proportion to the relative usage of the layer of capital; i.e., in proportion to the relative 
exceedance probability, as per Exhibit 2: 

 
Exhibit 1: "Lee Diagram"
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Numerical example: 

• Loss scenario #19 is one of 2 events (scenarios 19 and 20) that require the 35M x 325M 
layer of capital. 

o Thus scenario #19 receives 1/2 allocation of this 35M of capital. 

• Loss scenario #19 also is one of 5 events (scenarios 16 through 20) that require the firm 
to hold the 30M x 225M layer of capital. 

o Thus it receives 1/5 allocation of this 30M of capital. 

• Apply the procedure to all layers; allocate to all loss events that exceed the lower bound 
of the layer via conditional exceedance probability. 

Note that a loss event tends to receive a larger percentage allocation in the upper layers than in 
the lower layers for 2 reasons: 

1) In the upper layers, we are allocating a full layer of capital to fewer loss events (i.e., the 
exceedance probability decreases as the loss amount increases); therefore, each event gets a 
larger share of the “overhead” of the total layer of capital. 

Exhibit 2: "Lee Diagram"
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2) In the upper layers, we are allocating a wider layer of capital because the severity of each loss 
event tends to outstrip the prior loss event by a greater amount (i.e., the percentile layer of 
capital tends to widen as the loss amount increases). This behavior will depend, however, on 
the particular shape of the size of loss distribution. 

5. GENERALIZATION OF CAPITAL ALLOCATION BY PERCENTILE 
LAYER TO DISCRETE LOSS EVENTS 

Let VaR(k) = total required capital = Σ [x(α+j) – x(α)] 

• x(α) is the loss amount at percentile α  

• j is selected percentile increment 

• α sums from zero to (k - j) 

Allocation of capital for each percentile layer of capital, across loss events 

• A Layer of Capital = [x(α+j) – x(α)] 

• Allocation of capital on layer [x(α+j) – x(α)] to loss event x(i) =  

o [x(α+j) – x(α)] * Probability ( x = x(i) ) / Probability ( x > x(α) ) 

• Sum across all loss events x(i) such that i > α 

For an equivalent view, we can also look at the allocation of capital for each loss event, across 

all percentile layers of capital =  

• A Layer of Capital = [x(α+j) – x(α)] 

• Allocation of capital on layer [x(α+j) – x(α)] to loss event x(i) =  

o [x(α+j) – x(α)] * Probability ( x = x(i) ) / Probability ( x > x(α) ) 

• Sum across all layers of capital such that α ≥ 0, (α+j) ≤ min(i, k) 

• Note the min(i, k) restriction. For any loss event, we sum across all layers of capital up to 
the amount of the given loss event, but not if the loss event exceeds the VaR threshold. 
In such a case, the loss beyond the VaR threshold does not generate additional allocated 
capital to the loss event. 
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E xhibit 3:  Inverse of C umulatve D istribution Function 
aka "Lee D iagram"
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6. GENERALIZATION OF CAPITAL ALLOCATION BY PERCENTILE 
LAYER TO CONTINUOUS LOSS FUNCTION 

We can take the formulas for discrete loss events and generalize them into continuous versions. 

First, we will define the inverse function of F(x), a function that accepts a percentile as input and 
returns the loss amount as output. 

Inverse function of F(x) = F-1(α) = F-1(F(x)) = x 

Derivative of F-1(F(x)) = dF-1(F(x)) / dF(x) = dx / dF(x) = 1 / f(x) 

Incremental change in loss amount = dx 

Incremental change in percentile = dF(x) 

In Exhibit 4, each horizontal bar is a layer of capital.  

The length of the layer of capital, by definition, is 1.0.   

The infinitesimally small width of each layer of capital = dx.   
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Each vertical bar represents a loss event.   

The length = the loss amount = x.   

The infinitesimally small width = dF(x) = f(x)dx. 

6.1 Two Alternative Views of Capital Allocation by Percentile Layer 

We can view the capital allocation as a “horizontal procedure” which takes each layer of capital 
and allocates to all loss events which penetrate the layer. 

We can also view the allocation as a “vertical procedure” which takes each loss event and 
allocates capital to it for all layers that it penetrates. 

Exhibit 4: Inverse of Cumulatve Distribution 
Function aka "Lee Diagram"
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6.2 Approach #1:  Horizontal then Vertical 

Let x represent the loss amount and let y represent the capital. 

First take an infinitesimally small layer of capital (y, y+dy) and allocate it across loss events. 

Integrate across all loss events x which penetrate the layer, from x = y to x = ∞  

 

∫
∞=

=

−
x

yx

dxyFxf ))(1/()(  (6.0)

 

The allocation weights sum to 1 on each layer. 

Then perform this procedure for all layers of capital: 

 

∫ ∫
=

=

∞=

=

−
%)99(

0

))(1/()(
VaRy

y

x

yx

dydxyFxf  (6.1)

 

Because capital is based upon the 99th percentile, there are no “layers of capital” above the 99th 
percentile to allocate, so we integrate y only up to VaR(99%). 

The total allocated capital equals the total amount of capital, which is VaR(99%). 

6.3 Approach #2:  Vertical then Horizontal 

Let x represent the loss amount and let y represent the capital. 

Each loss event uses capital on many layers of capital (y, y+dy). 

Allocate to a loss event across each layer of capital: 
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Integrate y across all layers of capital less than or equal to the loss amount x.   

If the loss amount x exceeds VaR(99%), we do not allocate additional layers of capital beyond 
VaR(99%); in such a case when x>VaR(99%), we integrate as follows: 

 

∫
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Then perform allocation across all loss events x: 
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6.4 Formula for Allocating Capital to a Loss Event 

The “vertical view” can provide some insight into the capital allocation to each loss event.   

As we saw previously (equation (6.2)), for any loss event with amount x (assuming x is below the 
VaR threshold and therefore the allocated capital is not capped in any way), the Allocated Capital to 
loss event x = AC(x) =  

∫
=

=

−=
xy

y

dyyFxfxAC
0

))(1/()()(  (6.5)

 

Because we are integrating y, we can move f(x) outside the integral and rewrite the formula: 
Allocated Capital to loss event x = AC(x) = 
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For completeness, also recall that if the loss event is in the tail, namely x>VaR(99%), then 
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According to equation (6.6), the procedure of capital allocation by layer says that any loss event’s 
allocated capital depends upon: 

1) The probability of the event occurring (i.e., f(x)). 

2) The severity of the loss event, or the extent to which the loss event penetrates layers of 
capital (i.e., the upper bound of integration is x, the loss amount). 

3) The loss event’s inability to share the burden of its required capital with other loss events 
(i.e., ∫ 1 / (1-F(y)) dy). We can think of this factor as the extent to which a loss event 
“sticks out” or is dissimilar in severity to other loss events. 

6.4.1 The Derivative of the Allocated Capital to Loss Event 

We can also use equation (6.6) to obtain the derivative of Allocated Capital to loss event with 
respect to the loss amount x: 
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∫
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We can understand formula (6.10) as saying that as the loss amount x under consideration 
increases, 2 factors simultaneously affect the allocated capital: 

1) The allocated capital increases to the extent that the loss amount receives allocation from 
an additional layer of capital based upon conditional probability [= f(x) / (1 – F(x))]. 

2) The allocated capital changes (usually decreases) to the extent that the loss amount is less 
likely to occur and thus receives a lower allocation on the lower layers of capital [= d/dx 
(f(x)) * ∫ 1/ (1-F(y)) dy]. 

Two observations about these 2 factors: 

1) Usually, the derivative of f(x) is negative, so item #2 is usually negative, but can be 
positive when the derivative of f(x) is positive. 

2) When dealing with simulation output of n discrete events, each discrete event has 
likelihood of 1/n and thus is equally likely; therefore, the allocated capital to each larger 
event increases only with respect to factor #1, whereas factor #2 will equal zero. 

6.4.2 Utility Function 

Equation (6.6) also shows how we can use capital allocation by percentile layer to describe the 
disutility, or “pain”, given a particular loss event x. 

 Let r = required % rate of return on capital. Then the cost of capital associated with loss event x 
=  
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The cost of capital of an event, given the loss event, is then 
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And the total cost, given the event, equals the loss amount x plus the cost of capital =  
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Equation (6.13) shows the disutility as an additive loading to the loss amount x. Rearranging 
terms, we can also show the disutility as a multiplicative factor as well: 
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7. INTERPRETATION, COMMENTS, AND EXTENSIONS 

The procedure for capital allocation by percentile layer outlined above generates allocations that 
are different than many other methods, with ramifications for measuring the relative risk and 
profitability of various lines of business. Some methods, such as coTVaR, tend to allocate the 
overwhelming amount of capital only to perils that contribute to the very worst scenarios; capital 
allocation by percentile layer, however, recognizes that when the firm holds capital even for an 
extremely catastrophic scenario, some of the capital also benefits other, more likely, more 
moderately severe downside events. On the other hand, some other methods (e.g., Mango’s “capital 
consumption”, XTVaR, etc.) allocate capital to a broader range of loss events that consume capital; 
the allocation varies proportionately based upon conditional probability. Because these methods 
fully account for relative probability, however, they may allocate insufficient capital to severe yet 
unlikely events. The potentially extreme loss of such events causes firms to hold an amount of 
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capital that far outstrips the amount required by other loss events; although the actual occurrence of 
one of these events is very unlikely, the cost of holding precautionary capital is quite definite. Capital 
allocation by percentile layer appropriately allocates more capital cost to those unlikely, severe events 
that require the firm to hold additional capital. 

Capital allocation by percentile layer as delineated above assumes that required capital is based 
upon VaR, but a similar model can also apply to TVaR.  In other words, we can view TVaR as 
saying we want to hold enough capital “even for {the 99th percentile loss + the average amount by 
which losses above the 99th percentile tend to exceed the 99th percentile}”.  In such a case, capital 
allocation by layer would be nearly the same, allocating capital up to the 99th percentile.  The only 
additional step would then be to allocate one additional layer of capital (i.e., TVaR – VaR) to the 
losses that exceed the TVaR threshold.  Consistent with TVaR’s meaning as well as the layer 
allocation approach, this additional layer of capital should be allocated to loss events in proportion 
to each event’s average amount of loss excess of the TVaR threshold. 

7.1 Additional Areas of Application 

The application highlighted here focuses on property catastrophe risk, but the reformulation of 
the meaning of VaR should have similar ramifications to other sources of risk as well.  Specifically, 
risk and capital for risky assets such as equities and fixed income securities have traditionally been 
defined based upon VaR metrics; as a result, methods that allocate capital among various asset 
classes and operating units may benefit from implementing capital allocation by percentile layer. 

Capital allocation by percentile layer may also be germane when the firm’s total capital does not 
reside in one “indivisible bucket of equity capital” but rather is split into multiple tranches of capital.  
Because these tranches sustain capital depletion in a predetermined sequential order and, as a result, 
carry different cost of capital rates, it would seem appropriate to allocate capital with a procedure 
that explicitly accounts for the varying layers of capital and their costs. In addition, alternative forms 
of capital that apply on a “layered” basis (e.g., excess of loss reinsurance) and their costs (e.g., the 
amount of “risk load” or “margin” in the reinsurance price) would also appear to be candidates for 
capital allocation by percentile layer. 

7.2 Implementation 

In many situations in which we want to implement capital allocation by percentile layer, we will 
be dealing with discrete output from a simulation model. By using the previously derived discrete 
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formulas we can program a spreadsheet and achieve numerical results.  Once capital amounts are 
allocated to each simulated loss event, we can then (per Mango, Kreps) further allocate the capital 
for the total loss to those individual components that contributed to the total. 

7.2.1 Contributions to Capital 

The main focus of the analysis until now has been on the allocation of capital with respect to loss 
without considering premium. When measuring the allocated cost of capital for a business unit or 
peril or individual contract, one must also recognize that the associated premium (net of expenses) is 
essentially a contribution to capital or “offset” to allocated capital. As a result, one should subtract 
collected premium net of expenses from the allocated capital before multiplying by the cost of 
capital rate. 

8. IMPLICATIONS FOR RISK LOAD 

The discussion until now has related to a retrospective situation, when the price that the firm has 
charged for a certain transaction is a historical fact; the only question the firm asks is how to allocate 
capital costs in order to measure profitability. But what should the company do in a prospective 
situation? How does capital allocation affect what price the firm should charge? What does capital 
allocation by percentile layer imply about calculating risk load and determining the premium? 

For the purposes of our discussion, we will ignore any provisions in the premium for expenses, 
parameter uncertainty, winner’s curse, or other loadings. Thus we will define 

 

Premium net of expenses = expected loss + cost of capital (8.0)
 

Let: 

P = premium net of expenses 

E[L] = expected loss 

r = required % rate of return on capital 

Then 
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P = E[L] + r * (allocated capital – contributed capital) (8.1)
 

Let: 

Contributed capital = premium net of expenses.  

Then 

P = E[L] + r * (allocated capital – P) 

Rearranging terms, we derive: 

P (1+r) = E[L] + r * (allocated capital) 

P = 1/ (1+r) * E[L] + r/(1+r) * allocated capital 

Let 1/ (1+r) = (1+r-r)/(1+r) = [(1+r)/(1+r)-(r/(1+r))] = [1-r/(1+r)]. Then 

P = (1 - r/(1+r)) * E[L] + r/(1+r) * allocated capital.  

Then 

 

P = E[L] + r/(1+r) * (allocated capital - E[L]) (8.2)

 

For any given loss event x (given it is below the VaR threshold), allocated capital is given by 
Equation (6.6) and E[L] = x * f(x). 

Then the Premium for any loss event x =  
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Rearranging terms, we derive 
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Equation (8.4) shows that the disutility function given loss event x, after taking into account its 
premium’s contribution to capital, equals  
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We can also rearrange equation (8.3) to produce a multiplicative factor, 
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Equation (8.6) highlights that the required premium associated with loss event x is the expected 
value x*f(x) multiplied by an adjustment factor. We can view the adjustment factor as either 

1) an adjustment to the loss amount x 

2) an adjustment to the probability f(x) 

8.1 Properties of the Risk Load 

Equation (8.5) shows that given a loss event, the additive risk load amount = 

 

]))(1/(1)[1/(
0
∫
=

=

−−+
xy

y

xdyyFrr  (8.7)

 



Capital Allocation by Percentile Layer 
 

Casualty Actuarial Society E-Forum, Winter 2008 219 

Equation (8.7) and its derivatives show that the risk load increases with respect to the loss amount x 
at an increasing rate. It also shows that even for very small values of the loss event x the risk load is 
strictly positive. This result suggests that capital allocation by percentile layer as applied above, in 
contradistinction to many common methods, requires that even small loss events that are less than 
the portfolio’s mean receive an allocation of capital and a positive risk load. 

Why should a loss event that is less than the average loss require an allocation of capital? In 
order to clarify this issue, we turn to thought experiment #3. 

8.1.1 Thought Experiment #3 

Again assume we are dealing with two perils: 

1) Wind   20% chance of 5M loss, else zero 

2) Earthquake (EQ)   5% chance of 100M loss, else zero 

Assume the perils are independent. Thus, the possible scenarios for portfolio loss are: 

1) 76% probability that neither peril occurs, loss = 0 

2) 19% probability that only Wind occurs, loss of 5M 

3)   4% probability that only EQ occurs, loss of 100M 

4)   1% probability that both Wind and EQ occur, loss of 105M 

Note that the average loss for Wind = E[Wind] = 1M and E[EQ] = 5M. The two perils are 
independent so the portfolio expected loss = 6M. For simplicity assume that the premium for each 
peril equals the mean. 

Now what happens when there is a “Wind only” loss of 5M? The Wind loss of 5M exceeds its 
1M of premium, so it clearly needs capital. Yet overall, the portfolio has 6M of premium available 
and so the firm can use this money to pay the “Wind only” loss of 5M. Where, however, does this 
6M of premium come from? While 1M comes from Wind, the majority, 5M, comes from the 
premium inflow from EQ. Thus it is clear that when a “Wind only” event occurs, the Wind subline 
“uses” or “consumes” capital, and the EQ subline “provides” capital by contributing its premium.  

Therefore, this numerical example shows that even a loss event (e.g., Wind loss of 5M) that is 
less than the portfolio’s mean loss (e.g. 6M) can consume capital and deserves allocation of capital. 
As a result, many common methods, which only allocate capital to loss events that exceed the mean, 
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may generate skewed allocations. 

9. FINAL NUMERICAL EXAMPLE 

Take the following situation involving 3 independent lines of business (LOB), corresponding to 3 
perils 

• LOB A: (e.g., Fire) 

o 25% chance of a loss;  

o If there is a loss, the amount is exponentially distributed 

 Exponential Mean = 4M 

• LOB B: (e.g., Wind)  

o 5% chance of loss; 

o If there is a loss, the amount is exponentially distributed 

 Exponential Mean = 20M 

• LOB C: (e.g., EQ) 

o 1% chance of loss; 

o If there is a loss, the amount is exponentially distributed 

 Exponential Mean = 100M 

Each line of business has an annual average loss amount of 1M, but some lines have losses that 
are more infrequent and extreme than others. 

We will run 10,000 simulations, set required capital equal to VaR(99%), and use capital allocation 
by percentile layer in order to calculate the allocated capital for each simulated loss event. Then we 
will take the amount of capital assigned to each loss event and allocate to the contributing perils; 
each peril will receive an allocation based upon the contribution of its loss to the total event loss. 
Finally, we will take allocated capital and subtract the amount of the mean loss (as a proxy for the 
contribution to capital from premium) from the allocated capital. 
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9.1 Final Numerical Example – Allocation Results 

 

 Line of Business 

Method A B C 
Standalone TVaR @99th percentile 10% 30% 60% 
coTVaR allocation @99th percentile 0% 24% 76% 
coTVaR allocation @95th percentile 10% 42% 48% 
coTVaR allocation @90th percentile 21% 39% 40% 
coTVaR allocation @breakeven percentile 29% 35% 36% 
Capital Allocation by Percentile Layer, VaR@99% 17% 53% 30% 

 

Note that all of the tail-based methods such as VaR, TVaR, coTVaR, etc. allocate the greatest 
amount of capital to the severe yet extremely unlikely EQ event. Only capital allocation by percentile 
layer assigns the most capital to the more likely Wind event.  

10. CONCLUSIONS 

Capital allocation by percentile layer has several advantages, both conceptual and functional, over 
existing methods for allocating capital. It emerges organically from a new formulation of the 
meaning of holding Value at Risk capital; allocates capital to the entire range of loss events, not only 
the most extreme events in the tail of the distribution; tends to allocate more capital, all else equal, to 
those events that are more likely; tends to allocate disproportionately more capital to those loss 
events that are more severe; renders moot the question of which arbitrary percentile threshold to 
select for allocation purposes by using all relevant percentile thresholds; produces allocation weights 
that always add up to 100%; explicitly allocates the entire amount of the firm’s capital, in contrast to 
other methods that allocate based upon the last dollar of “marginal” capital; and provides a 
framework for allocating capital by layer and by tranche. 

Capital allocation by percentile layer has the potential to generate significantly different 
allocations than existing methods, with ramifications for calculating risk load and for measuring risk 
adjusted profitability. 
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Appendix A:  Calculating Results for an Exponential Distribution 

If the loss distribution follows an exponential distribution, F(x) = 1 – exp (-x / theta), we can 
solve formula (6.6) to derive a formula for allocated capital for loss event x (assuming x < VaR) 
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We can also use formula (6.10) to calculate the derivative of allocated capital (x) for an 

exponential distribution =  
 

)/exp()/1()}({/ θθ xxACdxd −=  (A.3)

 
= a positive number, confirming that allocated capital increases as the loss amount x gets larger. 

However, the second derivative is negative, so the rate of increase is decreasing. 
 
We can also solve formula (6.13) to calculate the total cost (the loss amount plus the cost of 

allocated capital) given loss amount x = 
 

)1)/(exp( −+ θθ xrx  (A.4)

 
We can also solve formula (6.14) to express the total cost given loss amount x as the product of 

the loss amount x and a multiplicative loading factor = 
 

)]1)/)(exp(/1(1[ −+ θθ xxrx  (A.5)
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Abstract 

This paper proposes a methodology to calculate the credibility risk premium based on the uncertainty on the risk 
premium, as estimated by the standard deviation of the risk premium estimator. An optimal estimator based on the 
uncertainties involved in the pricing process is constructed.  

The methodology is then applied to pricing layers of excess-of-loss reinsurance, and the behaviour of the credibility 
factor as a function of layer excess is analysed. Results are obtained for both the general case and the significant 
special case where the severity distribution is the same for all clients, for which it is proved that credibility is broadly 
constant across the reinsurance layers. A real-world application to pricing motor reinsurance is also discussed. 
 
Although the methodology is especially useful when applied to reinsurance, the underlying ideas are completely 
general and can be applied to all contexts where the uncertainties in the pricing process can be calculated. 
 

Keywords. uncertainty-based credibility, pricing horizon, excess-of-loss reinsurance pricing, market heterogeneity, error 
propagation analysis 
             

1. INTRODUCTION 

The experience-based calculation of the risk premium for an insurance or reinsurance account is 
affected by several sources of uncertainty, the most obvious – and perhaps the best understood – of 
which is the limited size of the historical database of losses of the client.  

To make up for such uncertainty the analyst may use average, or typical, information from the 
market (the market risk premium) to replace or complement the client risk premium.  The problem 
with this is that the market experience is not fully relevant to a particular client. This is usually 
captured by the spread, or heterogeneity, of the client risk premiums around the standard market 
rate. As an added complication, although the market rate is typically computed from a larger data set 
than that of a client, it, too, is based on a loss database of limited size and is therefore affected by 
the same type of uncertainty. 

The considerations above apply both to direct insurance and to reinsurance, but the problems are 
felt more acutely with excess-of-loss (XL) reinsurance, as the data on large losses are scarcer. The 
existence of a layer structure adds one obvious difficulty to the pricing process: the accuracy with 
which we price each layer will typically decrease rapidly as a function of the layer excess. This is a 
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consequence of relying on data from bottom layers to build a model that will be used to price the 
higher layers, beyond the limit for which our experience is relevant.  

Given the scant supply of data that is typical of reinsurance, resorting to the market for an 
indication of rates is even more important. However, even at the market level the experience on 
large losses is limited and insufficient to price the higher layers of reinsurance accurately. Above a 
given layer excess the effect of uncertainty on the market reference rate may be comparable to the 
effects due to market heterogeneity. 

The standard way to combine client and market information is credibility. The credibility risk 
premium is the convex combination of the client risk premium and the market risk premium:  

Credibility risk premium = Z x Client risk premium+ (1-Z) x Market risk premium 

where Z is a real number between 0 and 1, reflecting the relative weight that we give to the 
client’s experience. 

The idea of this paper is to use the standard deviation of the client risk premium estimator ( cσ ) 
as a measure of (lack of) credibility, weighting this against the market heterogeneity ( hσ ) and the 
standard deviation of the market risk premium estimator ( mσ ). Furthermore, since the risk premium 

of the market is calculated based on data from the whole market, including in general the client 
itself, the two estimators for the market and the client are correlated ( cm,ρ ). The resulting formula 

for the credibility factor (Proposition 1): 

cmcmcmh

cmcmmhZ
σσρ−σ+σ+σ

σσρ−σ+σ
=

,
222

,
22

2
 

 
(1.1)

can be easily generalised to be used for XL reinsurance pricing, by considering the value of the 
parameters  for a specific layer (formula (4.1)). As a consequence, the credibility factor will depend 
on the layer. However, in the important special case where the severity distributions of the different 
clients can be assumed to be the same, the credibility factor defined as above is broadly constant 
across the layers (Propositions 2 and 3).  

This methodology was applied to pricing UK motor XL reinsurance, which can be performed by 
modelling the frequency of large losses as Poisson and the loss amounts above a certain threshold as 
a Generalised Pareto distribution (GPD). For this application, a hybrid approach to credibility was 
found to be adequate, using the general uncertainty-based credibility for the lower layers and a 
single-severity distribution model for the higher layers. 



Uncertainty-Based Credibility and its Application to Excess-of-Loss Reinsurance 
 

Casualty Actuarial Society E-Forum, Winter 2008 226 

1.1 Research Context and Objective 

This paper presents a credibility methodology that we think is particularly appropriate for excess-
of-loss reinsurance pricing, as it takes into account the uncertainty of the client and the market for 
different layers of  reinsurance. 

The modern approach to credibility – which stems from the works of Bühlmann and Straub (see 
Bühlmann [4]; Bühlmann & Straub [6] and the comprehensive book by Bühlmann & Gisler [5]) does 
not explicitly take the uncertainty on the market price into account in the formula for the credibility 
factor (see, e.g., theorem 3.7 in Bühlmann & Gisler [5], which gives results for both inhomogeneous 
and homogeneous credibility). 

On the other hand Boor [3], who uses (as we do) uncertainty as a base for credibility, displays a 
credibility factor that contains an extra term for market uncertainty. This paper, however, focuses on 
a two-samples model (client v rest of the market) and attempts no analysis of the overall market 
heterogeneity/spread. 

Credibility for excess-of-loss reinsurance was first examined by Straub [17]. This was extended by 
Patrik & Mashitz [13]. An implementation of this approach has been carried out by one of us for the 
UK motor reinsurance market [2].  

All these works restrict their attention to the credibility of claim counts rather than considering 
aggregate losses, which are the real item of interest when pricing a reinsurance excess cover. 
Furthermore, these efforts have focused on the Poisson/Gamma credibility model applied to claim 
frequency.  

An attempt to extend the ideas in [17] and [13] to provide a credibility formula for claim 
aggregate loss rather than claim frequency was made by Cockroft [7]. Cockroft provides a complex 
analytical solution involving infinite summations for the special case where the number of claims is 
Poisson with a Gamma prior distribution for the Poisson rate and the claim amounts are distributed 
according to a Pareto with a Gamma prior distribution for the power-law exponent. 

Thus far, a simple general solution for calculating credibility for excess-of-loss reinsurance has 
not been provided in the literature. This paper argues that by using uncertainty as the main driver for 
credibility one is able to produce an intuitive and general method to calculate the credibility 
premium, which can be used both in insurance and in reinsurance. 
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1.2 Outline 

Section 2 introduces a measure of uncertainty and outlines the various ways in which it can be 
calculated. Section 3 illustrates the methodology of uncertainty-based credibility in a general context, 
proving the basic result (Proposition 1) that gives the optimal value for the credibility factor. Section 
4 illustrates the application of this result to reinsurance. Section 5 describes a real-world application 
of uncertainty-based credibility to pricing motor reinsurance. A detailed comparison with other 
methods is presented in Section 6. The limitations of the methodology are given in Section 7. 
Section 8 draws the conclusions. 

2. THE RISK PREMIUM AND ITS UNCERTAINTY  

2.1 Risk premium – definition and calculation 

The risk premium ϕ  is given by 
w
SE )(

=ϕ  where )(SE  is the expected aggregate loss in a given 

period and w  is the expected exposure in that same period.  
Using the collective risk model assumption, the losses to an insurer in a given period can be 

modelled as a stochastic process ∑
=

=
N

i
iXS

1

 where N  represents the number of losses in the period 

and NXX ,...1  represent their amounts. Both the number of losses and their amounts are random 
variables. The claims amounts NXX ,...1  are i.i.d. and independent of N . 

Using the collective risk model, )(SE  can be written as )()()( XENESE =  where )(NE  is the 
expected number of claims and )(XE  is the expected claim amount.  To derive )(NE  and )(XE , 

we need to know the underlying frequency and severity distributions with their exact parameter 
values (e.g., )(~ wPoiN λ , )(~ μExpX   wSE λμ=)( , λμ=ϕ ). 

However, the model is usually not so straightforward, since it is not always possible to express 
)(SE  in a simple analytical form. This may be due to policy modifications (excesses, limits, 

reinstatements…) and to the effect of settlement delay and discounting. Therefore, )(SE  will 

usually be appraised by a stochastic simulation or by an approximate formula. 

2.2 Risk premium – sources and measures of uncertainty  

In practice, we will only have an estimate of )(SE  and therefore of the risk premium. This 

estimate will be affected by several sources of uncertainty: the models for frequency and severity will 
not replicate reality perfectly (model uncertainty); the values of the model parameters will only be 
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known approximately (parameter uncertainty); the data themselves are often reserve estimates rather 
than known quantities (data uncertainty).  

Parameter uncertainty is the most important contribution to uncertainty and the one we will 
focus on in this paper. It depends on the fact that we only have a limited sample from which to 
estimate the parameters of the model. Data uncertainty has the effect of increasing parameter 
uncertainty; its effects, which can be studied by inspecting the IBNER distribution, will be analysed 
elsewhere [12]. Model uncertainty is difficult to quantify and will be usually dealt with in a low-
profile fashion, by making sure that our models pass appropriate goodness-of-fit tests.  

We will use the standard deviation as a measure of the uncertainty of an estimator. Although the 
standard deviation of an estimator is commonly denoted as “standard error”, we will stick to the 
expression “standard deviation of the estimator” to avoid the ambiguity surrounding the term 
“standard error” in the literature1.  

We will refer to the standard deviation of the risk premium as shorthand for “the standard 
deviation of the estimator for the risk premium”. In general, the standard deviation of the risk 
premium will therefore depend on the process by which the risk premium is estimated. Notice that 
the standard deviation of the risk premium estimator should not be confused with the standard 
deviation of S/w, the aggregate loss per unit of exposure! 

Section 3.4.2 will give examples of how the standard deviation of the risk premium estimator can 
be calculated in practice. 

3. UNCERTAINTY-BASED CREDIBILITY 

Let cϕ  be the “true” risk premium of the client. This is simply given by 
c

c
c w

SE )(
=ϕ   where 

)( cSE  is the expected aggregate loss in a year and cw   is the exposure in the same year. According 
to the collective model, )( cSE  can be written as )()()( ccc XENESE =  where )( cNE  is the 
expected number of claims and )( cXE  is the expected claim amount.  However, we will only have 

                                                           
1 As an example, “standard error” is used as “standard deviation of the estimator” or “estimated standard deviation 

of the estimator” depending on the author.  
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an estimate of )( cSE . The goodness of this estimate will be affected by data uncertainty, parameter 

uncertainty and model uncertainty.  
 

Let  cϕ̂  be the estimated risk premium of the client. This will typically be obtained by estimating 

the parameters of the frequency and severity distribution and by calculating the average frequency 
and severity based on those estimates. E.g., if frequency is a Poisson distribution: )(~ cwPoiN ⋅λ  
and severity is an exponential distribution with (true) mean μ : )(~ μExpX , then the risk premium 
is given by μ⋅λ=ϕ ˆˆˆ c , where λ̂  is the estimated rate per unit of exposure and μ̂  is the estimated 

mean of the exponential distribution. 

We can also define mϕ  (true risk premium) and mϕ̂  (estimated risk premium) for the market. 
The estimated risk premium mϕ̂  will be obtained in a similar fashion to cϕ̂  but it will use data from 
all participating clients, including the data used to calculate cϕ̂ . 

Credibility is a standard technique by which the estimated risk premium of the client, cϕ̂ , and the 
estimated risk premium for the market, mϕ̂ , are combined to provide another estimate ϕ̂ , called the 
credibility estimate, of the client’s risk premium cϕ , via a convex combination: 

mc ZZ ϕ⋅−+ϕ⋅=ϕ ˆ)1(ˆˆ  (3.1)
where ]1,0[∈Z  is called the credibility factor.  

In this section, we provide a means to calculate the credibility factor Z based on the uncertainty 
of the estimates cϕ̂ , mϕ̂  and on the heterogeneity of the market. To do this we need an uncertainty 

model, i.e. a set of assumptions on how uncertainty affects the estimates.  

 

3.1 The uncertainty model – Assumptions  
1. The estimated risk premium of the market is described by a random variable mϕ̂ with expected 

value mϕ  (the true risk premium for the overall market) and variance 2
mσ . For readability, we 

write this as  

mmmm εσ+ϕ=ϕ̂  (3.2)

where mε  is a random variable with zero mean and unit variance: 0)( =εmE , 1)( 2 =εmE . 
Notice that mϕ  is not viewed as a random variable here. Despite the terminology above, which 
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resembles that used for Gaussian random noise, no other assumption is needed on the shape of 
the distribution of mε .  

2. The true risk premium cϕ  of the client is described by a random variable  with mean 

mcE ϕ=ϕ )(  (the true market risk premium) and variance 2)( hcVar σ=ϕ . In other terms, 

hhmc εσ+ϕ=ϕ  (3.3)

where hσ  measures the spread (or heterogeneity) of the different clients around the mean 
market value, and 0)( =εhE , 1)( 2 =ε hE . 

3. The estimated risk premium of the client, cϕ̂ , given the true risk premium, cϕ , is described by a 
random variable with mean cccE ϕ=ϕϕ )|ˆ( , 2)|ˆ( cccVar σ=ϕϕ . In other words, 

)ˆ(|ˆ cchhmcccccc εσ+εσ+ϕ=ϕεσ+ϕ=ϕϕ  (3.4)

where cε  is another random variable with zero mean and unit variance: 0)( =εcE , 1)( 2 =εcE . 
Again, no other assumption is made on the distribution of cε . Notice that in this case both cϕ̂  
and cϕ  are random variables. 

4. Assume that hε   is uncorrelated to both mε  and  cε : 0)( =εε hmE , 0)( =εε hcE .  

 

We are now in a position to prove the following result. 

 

Proposition 1. Given assumptions 1-4 above, the value of Ζ that minimises the mean squared error 
( )( ) ( )( )2

,,
2

,, ˆ)1(ˆˆ cmchcmchcm ZZEE ϕ−ϕ⋅−+ϕ⋅=ϕ−ϕ , where the expected value is taken on the joint 
distribution of ,,, hcm εεε  is given by  

 

cmcmcmh

cmcmmhZ
σσρ−σ+σ+σ

σσρ−σ+σ
=

,
222

,
22

2
  

(3.5)

  

where cm,ρ  is the correlation between εm and εc . 

Proof. The result is straightforward once we express cϕ−ϕ̂ in terms of hcm εεε ,,  only. The 

mean squared error is given by  
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( )( ) ( )( )( )( )
( ) ( ) cmcmcmh

ccmmhhhcmcmchcm

ZZZZ

ZZEZZE

σσρ−−σ+σ+σ−=

εσ⋅+εσ−εσ−=ϕ−ϕ⋅−+ϕ⋅

,
22222

2
,,

2
,,

)1(21                                                     

1ˆ)1(ˆ
. 

where )(, cmcm E εε=ρ . By minimising with respect to Z one obtains equation (3.5). 1 

The following sections will go into more detail as to the meaning of the assumptions and of this 
result. 
 

3.1.1 Explaining the assumptions 

Assumption 2 tries to capture market heterogeneity: different clients will have different risk 
premiums, reflecting the different riskiness of the accounts. This is similar to the risk factor in 
Bayesian and Buhlmann’s approach to credibility. We do not need to know what the prior 
distribution of the risk premiums is, as long as we know its variance. In practice, this will be 
determined empirically.  

Assumptions 1 and 3 try to capture the uncertainty inherent in the process of estimating the risk 
premium. The quantities mσ  and cσ  should not be confused with the standard deviation of the 

underlying aggregate loss distribution for the market and the client.  

The random variable hε  gives the prior distribution of the client price around a market value, 
whereas cm εε ,  are parameter uncertainties on the market and the client. Therefore, assumption 4 
( 0)( =εε hmE , 0)( =εε hcE ) is quite sound. The correlation between mε  and cε , however, cannot 

be ignored. The reason for this is that the estimated risk premium of the market is based on data 
collected from different clients, including client c.  
 

3.2   Is ϕ̂  an unbiased estimator for cϕ ? 

It is important to notice that the expected value ( )( )2
,, ˆ chcmE ϕ−ϕ  is also taken over the 

distribution of  hε . As a consequence, the mean squared error is not necessarily minimised for each 
individual client, but only over all possible clients.  

For a given client c, ϕ̂  is in general a biased estimator for cϕ  .  The bias is given by 

hhcmcccmc ZZEbias εσ−−=ϕ−ϕ−=ϕ−ϕϕ=ϕϕ )1())(1()|ˆ()|ˆ( , . The expected value is in this 
case taken over the joint distribution of mε  and cε . Averaging over hε ,  the bias disappears: 

0))|ˆ(( =ϕϕ ch biasE . 
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Notice how the quest for an estimate ϕ̂  of cϕ  that is collectively unbiased is a common feature of 

credibility theory (see for example Bühlmann’s approach as described in the book by Klugman et al. 
[10]). 

The meaning of the formula for the bias, hhc Zbias εσ−−=ϕϕ )1()|ˆ( , is that when credibility is 
close to 1, the credibility estimate for the risk premium will be close to the client estimated price, 

cϕ̂ , and the bias will be close to zero. On the other hand, if the credibility is close to 0, the 
credibility estimate of the risk premium will be close to mϕ̂ , and the bias will be about hhεσ  – i.e., 
the credibility estimate will be distributed randomly around the market risk premium with a standard 
deviation equal to hσ  – which is exactly what we expect to happen. 

 

3.3 The effect of correlation 
• In case the data for client c are not included in the market data set the correlation between mε  

and cε  can be assumed to be zero. In this case the credibility factor simplifies to  

222

22

cmh

mhZ
σ+σ+σ

σ+σ
=   

(3.6)
which is more intuitive than (3.5). This also suggests an alternative way to carry out the 
credibility calculations: for each client, first remove the client’s data from the market database 

and then calculate ϕ̂  as cmc ZZ −ϕ⋅−+ϕ⋅=ϕ ˆ)1(ˆˆ , where 222

22

'
'

ccmh

cmhZ
σ+σ+σ

σ+σ
=

−

−  (notice how the 

market heterogeneity itself, hσ , has to be recalculated). However, this methodology is more 

lengthy and awkward than that implied by (3.5), as the rest-of-the-market parameters need to be 
recalculated for each client. 

The effect of a positive correlation between mε  and cε  is to increase the credibility factor. This 

makes sense intuitively, as a larger correlation indicates a larger participation of the client in the 
market loss database. As a consequence, the market data will provide less useful information to that 
client. 

• Note that the condition 1≤Z  can be translated into 1, ≤
σ
σ

ρ
c

m
cm . As 1, ≤ρ cm , this is 

automatically satisfied if 1≤
σ
σ

c

m , which will hold under non-pathological circumstances as it is 

normally the case that cm σ<<σ , the market estimate being based on a far larger sample. 



Uncertainty-Based Credibility and its Application to Excess-of-Loss Reinsurance 
 

Casualty Actuarial Society E-Forum, Winter 2008 233 

• Note also that if 
⎭
⎬
⎫

⎩
⎨
⎧

σσ
σ+σ+σ

σσ
σ+σ

<ρ
cm

chm

cm

hm
cm 2

,min
22222

,  the credibility factor is guaranteed to be 

positive. Under non-pathological circumstances, cm σ<σ  (the market has a larger sample than 
the client) and hc σ<σ  (the uncertainty on the risk premium is smaller than the spread of 

prices across the market, otherwise it would make no sense to use the client risk premium at all). 
Therefore, both ratios inside the bracket are larger than 1 and the inequality above is 
automatically satisfied. 

3.4 Practical considerations 

In practice, the standard deviations hσ , mσ , cσ  and cm,ρ  are not known and they must be 

estimated from the data. Therefore the credibility factor can also be written as: 

cmcmcmh

cmcmmh

ssrsss
ssrss

Z
,

222
,

22

2−++

−+
≈  

 
(3.7)

where hs  is the estimated market heterogeneity, cmr ,  is the estimated correlation between the market 

and the client,  ms  and cs  are the estimated standard deviations of the estimators for the market and 

client risk premiums. 

3.4.1 Estimating market heterogeneity 

Market heterogeneity can be estimated as the empirical variance of the risk premium for all 
available clients. This may be done in a weighted or in a non-weighted fashion. If the market 
premium is calculated by collecting all data from all clients, larger clients will inevitably weigh more, 
and the weighted version of the variance will have to be used for consistency: 

( )∑
∑∑

∑
ϕ−ϕ

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

c
mcc

c
c

c
c

c
c

h W

WW

W
s 2

2
2

2 ˆˆ  

 
 
(3.8)

where ∑=
j

j
cc wW  is the cumulative exposure of client c over all years j considered in the analysis.  

3.4.2 Estimating the standard deviation of the risk premium estimator 

As mentioned in Section 2.2, the standard deviation on the risk premium depends on the 
process by which the risk premium is calculated. This is best explained with the following simple 
example. 
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Suppose the frequency distribution is modelled as a Poisson process whose estimated rate is cwλ̂  
and the severity distribution is modelled as an exponential distribution whose estimated mean is μ̂ . 
The estimated risk premium will then be μλ=ϕ ˆˆˆ . The standard error on ϕ̂  will depend on the 
standard deviation of the estimators λ̂  and μ̂ : in this case we have the exact result 

22222 )ˆ()ˆ(
)ˆ()ˆ(

)ˆ(
)ˆ(

)ˆ(
)ˆ(

)ˆ(
)ˆ(

μλ
μλ

+
μ

μ
+

λ
λ

=
ϕ

ϕ
EE
VarVar

E
Var

E
Var

E
Var . The values of )ˆ(λVar  and  )ˆ(μVar  depend in turn 

on how the distribution parameters are calculated, and the expected values in the denominators will 
usually be approximated by their estimated value: 22 ˆ)ˆ( ϕ≈ϕE , etc.  E.g., if the mean of the 
exponential distribution is calculated by MLE based on the data sample },...{ 1 nXX , then 

n

X
n

i
i∑

==μ 1ˆ  and 
n

Var est
2ˆ

)ˆ( μ
=μ   (there are two approximations here: one is the replacement of μ  

with μ̂  in the formula and the fact that this formula is only true asymptotically). 
Usually, we cannot find an exact formula for )ˆ(ϕVar . This may happen for two reasons. 

• Except for very simple cases such as that illustrated above, the formula linking ϕ̂  to the 
severity and frequency parameters will be too complex to propagate the uncertainties on the 
parameters exactly. In this case the standard deviation of  ϕ̂  can be estimated by drawing at 
random from the distribution of the parameters, which in the case of MLE is asymptotically 
known to be normal (or rather, multivariate normal). The correlations between the 
parameters must be taken into account. See Section 5.2  for a detailed example of how this is 
achieved. 

• There might not even exist an analytical formula for ϕ̂ . This will often be the case when 
there are payment and settlement delays, complicated structures (excesses, limits, premium 
adjustments, premium reinstatements after a claim (reinsurance), etc). In this case ϕ̂  may 
have to be estimated by a stochastic simulation. The stochastic simulation will then have to 
be run for different values of the parameters, according to the parameter distribution. As a 
consequence, the estimation of the standard deviation of ϕ̂  will have a far larger 
computational complexity. 

3.4.3 Estimating the correlation 

How the correlation between the uncertainty on the client and on the market is calculated 
depends on the exact process to calculate the risk premium. The following is a simple example 
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assuming that the risk premium is calculated in a burning cost fashion. This works by dividing the 
estimated total losses over a base period (typically, at least 10 years of data for long-tail business such 
as liability) by the total exposure over that period. The estimated total losses over the base period are 
corrected for inflation, IBNR, IBNER, etc. 

Notice that we are interested in calculating the correlation between the uncertainty on mϕ  and cϕ , 

therefore we can assume that mϕ  and cϕ  are fixed. Let mT̂  be the total losses for the market, and 

cT̂  the total losses for the client. Since the client is part of the market, we shall have 

cmcm TTT −+= ˆˆˆ  where cmT −
ˆ  represents the losses of the rest of the market. The risk 

premium for the market and the client are defined respectively as 
∑

=ϕ

j

j
m

m
m w

T̂ˆ  and 
∑

=ϕ

j

j
c

c
c w

T̂ˆ , 

where j
cw  and j

mw  are respectively the client and market exposures in year j, the year index ranging 

over the base period.  If we assume that2 0)ˆ,ˆ( =−cmc TTCov , then 
∑∑
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r = . In the case of a compound Poisson distribution, this translates into:  
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(3.9)

Even when the risk premium is not obtained by the burning cost approach, this formula is still a 
good guidance as to the degree of correlation one may expect. 

3.4.4 Updating the market statistics 

Generally speaking, the client risk premium will have to be calculated at different times for 
different clients. Furthermore, once all contributors to the market have been priced there will still be 
a time lag between when the data for all clients are available and when the market-related statistics 

                                                           
2 Notice that we are assuming mϕ  and cϕ  to be given (see Assumptions 1 and 3 of the credibility model in  Section 
3.1), therefore we can ignore the correlation of the aggregate losses of the client v the rest of the market, which of course 
exists (and motivates the credibility approach). We are focusing here on the correlation between the residual variations 
that exist because of parameter uncertainty.  
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(heterogeneity, uncertainty) are calculated. Typically, we will be comparing last year’s market 
statistics with this year’s clients. Therefore, the comparison will not be exactly like-for-like. At the 
very least, we will have to correct the market results for residual inflation. 

4. APPLICATION TO REINSURANCE 

In the case of excess-of-loss reinsurance, the quantity to be estimated will be LD
c

,ϕ , the “true” 
risk premium for layer ),( LDD + . Equation (3.1) can be rewritten as: 

LD
m

LDLD
c

LDLD ZZ ,,,,, ˆ)1(ˆˆ ϕ⋅−+ϕ⋅=ϕ , where: 

• LD
c

,ϕ̂ , LD
m

,ϕ̂  are the expected losses per unit of exposure for layer ),( LDD +  for the client 

and the market respectively; 

• ]1,0[, ∈LDZ  is the credibility factor for the client for layer ),( LDD + . 

The problem here is to determine the value of LDZ ,  that 
minimises ( )( ) ( )( )2,,,,,2,, ˆ)1(ˆˆ LD

c
LD

m
LDLD

c
LDLD

c
LD ZZEE ϕ−ϕ⋅−+ϕ⋅=ϕ−ϕ . By the same expansion of 

the mean squared error shown in the proof of Proposition 1, it is straightforward to show that the 
credibility factor for the layer (D, D+L) is 

( ) ( )
( ) ( ) ( ) LD

c
LD

m
LD
cm

LD
c

LD
m

LD
h

LD
c

LD
m

LD
cm

LD
m

LD
hLDZ

,,,
,

2,2,2,

,,,
,

2,2,
,

2 σσρ−σ+σ+σ

σσρ−σ+σ
=  

 
 
(4.1)

where ]1,0[, ∈LDZ .  

The crucial question about credibility applied to reinsurance is the behaviour of the credibility 
risk premium – and therefore of LDZ , – as a function of the layer’s characteristics. Since the most 
important dependency is that on the layer excess, D, the dependency on the layer limit can be 
removed by considering either infinitesimal layers ( LD

L
D ZZ ,

0
0, lim +→

= ) or infinite layers 

( LD
L

D ZZ ,
 

, lim ∞→
∞ = ). 

The behaviour of LDZ ,  as a function of D and L depends on a combination of factors including: 

a) The relative size of uncertainty for market and client; 

b) The asymptotic behaviour of market severity v client severity; 

c) How the market heterogeneity LD
h

,σ depends on D, L.  
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The effect of this combination is quite complex and must in general be investigated empirically, 
as a general analytical expression will not always be available. Furthermore, estimating market 
heterogeneity for the highest layers is difficult, because market heterogeneity for a given layer is 
calculated from the expected aggregate losses of each client to that layer (as in (3.8)), and these are 
themselves affected by a large error. There is, however, a special case that is significant for the 
practitioner for which this behaviour simplifies. This is illustrated in the next section. 

4.1 The “single severity” model 

An important special case is obtained under the hypothesis that – although the frequency of large 
losses depends on the risk profile of the insurance company (e.g. age, sex), the severity distribution is 
unaffected by it, and the market severity curve can be used instead. As a consequence, market 
heterogeneity will be mostly due to heterogeneity in frequency. Empirical evidence supports this 
hypothesis for some kinds of portfolio, e.g. for the motor reinsurance portfolio, at least above a 
certain threshold (see Section 5). This also reflects general reinsurance practice where a market 
reference curve is used for most lines of business to price the higher layers. 

The basic result (Proposition 2) is for the case where the market severity curve is known with 
infinite accuracy. Proposition 3 will then consider the amendments in the case where the market 
severity curve is known with limited accuracy. 

Proposition 2 – Basic single severity model. . Let LD
c

,ϕ , LD
c

,ϕ̂ , LD
m

,ϕ̂  and LD,ϕ̂  be as above. 

Assume the validity of the collective risk model, and  that: 

i. The severity curve is the same for all clients (i.e., the market severity curve) above a threshold μ ; 

ii. the severity distribution of the market is known with infinite accuracy 

Then the credibility factor LDZ ,  is independent of the layer ),( LDD +  and is equal to: 

( ) ( )
( ) ( ) ( ) λλλλλλ

λλλλλ

σσρ−σ+σ+σ

σσρ−σ+σ
=

mccmcmh

mccmmhZ
,

222
,

22

2
 

 
(4.2)

where λσh  measures the heterogeneity of clients’ frequencies; λσm  and λσc are the standard deviations of the estimators 

of the market and the client frequency respectively;  λρ cm,  is the correlation between the estimator of mλ  and that of 

cλ . 

Proof. We need to calculate LD
m

,σ , LD
c

,σ , LD
h

,σ  and LD
cm
,
,ρ  in general formula (4.1). Under the 

collective risk model applied to the losses for layer ),( LDD + , the mean aggregate loss is 
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)()()( ,,, LDLDLD XENESE =  where )( ,LDNE  is the expected number of losses to the layer  
),( LDD +  and )( ,LDXE  is the expected loss amount to the layer ),( LDD +  given that a loss to that 

layer has occurred. As it is well known (see, e.g., [10]), )(Prob)()( , LDXDNENE LD +<≤⋅=  and 

)(Prob
)())(()( ,

LDXD
DXELDXEXE LD

+<≤
∧−+∧

= , where ),min(: aXaX =∧ ; )(NE  is the expected 

number of losses above μ ; )(XE  is the expected amount of those losses above μ . One can then 
write ( ))())(()()( , DXELDXENESE LD ∧−+∧⋅= . The risk premium for layer ),( LDD +  can 
then be written as LDLD U ,, ⋅λ=ϕ , where wNE )(=λ  is the expected frequency per unit of 
exposure above D≤μ , and  

∫
+

=∧−+∧=
LD

D

LD dxxSDXELDXEU )()()(,  
 
(4.3)

Since the severity curve above D≤μ  is the same for the client and the market, the risk premium 
of the client and the market can be expressed respectively as LD

c
LD

c U ,, ⋅λ=ϕ  and 
LD

m
LD

m U ,, ⋅λ=ϕ . The estimated risk premium for the client (the market) can be 

expressed as LD
c

LD
c U ,, ˆˆ ⋅λ=ϕ  ( LD

m
LD

m U ,, ˆˆ ⋅λ=ϕ  ) respectively, where cλ̂  ( mλ̂ ) is the estimated 

client (market) frequency. 
The severity distribution is known with infinite accuracy. Therefore,  
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(4.4)

and ( )2,LDU can be removed from both the numerator and the denominator of (4.1), yielding (4.2).  

             1 
 

Discussion of the assumptions. The collective risk model is a standard assumption. The 
assumption (i) of a single severity curve for all clients above a certain threshold underlies common 
reinsurance practice for the pricing of high layers. This does not mean that it is always reasonable, 
and should be tested against available data when possible. In Section 5 the validity of this 
assumption will be illustrated in the case of UK motor reinsurance.  

Assumption (ii) is not realistic as the severity curve of the market is always estimated based on a 
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finite set of data and therefore it is affected by model, data and parameter uncertainty.  However, 
Assumption (ii) is often a useful approximation when the uncertainty for the market severity is small 
– i.e., for all but the top layers. Even if this assumption only holds approximately, it shows that 
when all clients follow the same single severity curve, the credibility factor is broadly independent of 
the specific layer being priced. 

The following proposition explores what happens when Assumption (ii) is dropped and the 
inaccuracy of the market severity curve is taken into account. 

 

Proposition 3 – Single severity model with “inaccurate” severity distribution. Let LD
c

,ϕ , 
LD

c
,ϕ̂ , LD

m
,ϕ , LD

m
,ϕ̂ , LD,ϕ̂ , cλ̂ , mλ̂  and LDU ,  be as in Proposition 2 and in its proof. Also, let LDU ,ˆ  bet the 

estimate of LDU , . Assume the validity of the collective risk model, and assume that the severity curve is the same for 
all clients (i.e., the market severity curve) above a threshold D≤μ . 

Then the credibility factor LDZ ,  is equal to: 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )( )λλλλλλλλλλλ

λλλλλλλλλ

σσρ−σ+σ+λλ−λ+λ+σσρ−σ+σ+σ

σσρ−σ+λλ−λ+σσρ−σ+σ
=

mhcmcmcmcmLD

LD

mccmcmh

mhcmmcmmLD

LD

mccmmh

U
U

U
U

Z

,
2222

2,

,

,
222

,
22

2,

,

,
22

)ˆ(Var2

)ˆ(Var

 

 
 
(4.5)

where )ˆ(Var ,LDU  is the variance of the estimator LDU ,ˆ  for LDU , , and λσh , λσ m , λσc , λρ cm,   are as in 
Proposition 2.    
 
Proof (outline). The proof goes as for Proposition 2, but remembering the relationship 

))(1))((1()(1 222 YCVXCVXYCV ++=+  (CV(X) being the coefficient of variation of X) when 

expanding ( ) ( ) ( )2,2,2, ,, LD
h
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m σσσ : e.g., 
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.  

Furthermore, it should be noticed that  

( ) )ˆ,ˆ(Cov)()ˆ,ˆ(Cov)ˆVar()ˆ,ˆ(Cov 2,,,,
cm

LD
cmcm

LDLD
c

LD
m UU λλ⋅+λλ+λλ=ϕϕ , 

 which is different from zero even when 0, =ρλ
cm .                1 

 
Comments on Proposition 3.  
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• When 
( )

1)ˆ(Var
2,

,

<<
LD

LD

U

U  (bottom layers) the credibility factor will be roughly as predicted by 

Proposition 2.  

• However, when the standard error on the estimator of the risk premium for a layer is 
comparable with the risk premium itself for that layer, the credibility factor is distorted. In the 

limit for which 
( )

∞→2,

, )ˆ(Var
LD

LD

U

U , the credibility factor will tend to a limit independent of 

frequency heterogeneity: ( )
( ) ( ) λλλλλ

λλλλ
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→
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2222

,
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, . The exact value 

of this limit is of little significance. What is important about this is the practical message that 
beyond a certain value D* of the excess, which might arbitrarily be set to that for which 

( )20*,0*, )ˆ( DD UUVar =  (we call this the pricing horizon), the uncertainty of both the client and the 
market estimates becomes overwhelming and the credibility estimate is of little relevance.   

• As for Proposition 1, the credibility factors of Proposition 2 and 3 are theoretical credibility 
factors, and in practice the values of λσh , λσ m , λσc , λρ cm,  mλ , cλ , LDU ,  will have to be replaced 

by their estimated counterparts: λ
hs , λ

ms , λ
cs , λ

cmr ,  mλ̂ , cλ̂ , LDU ,ˆ . The estimation of λ
hs , λ

ms , 
λ
cs , λ

cmr ,  proceeds as explained in Section 3.4.1 to 3.4.3. Specifically, the correlation can be 

written as 
∑
∑
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λ
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j
mm

j

j
cc

cm w

w
r ˆ

ˆ

, : notice how the term related to the average severity has 

disappeared. 
 

4.2 Hybrid models 

In many cases, a hybrid model will be needed, which uses a full uncertainty model (as per 
Proposition 1) for the bottom layers and a single-severity model (Proposition 2 and 3) for the higher 
layers. There is no conceptual difficulty in doing this, but it is crucial to deal adequately with how the 
transition from one method to the other affects the uncertainties. 

Specifically, assume the severity distribution of a client is given by 

( )⎩
⎨
⎧
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xxFFF
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where )(xFc  is the cumulative distribution which is specific to the client and )(xFm  is the market 
severity curve, defined above 'μ  and such that 0)'( =μmF , 1)( =∞mF . 

When this is the case, the risk premium for the layer ),( LDD +  with 'μ≥D  is given by 
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(4.7)

where μ≥λ  is the frequency above μ  and 'μ≥λ  is the frequency above 'μ  (both per unit of 

exposure). As a consequence, the uncertainty on the risk premium LD
c

,ϕ  depends on the uncertainty 
on μ≥λ  and on the uncertainty on the parameters of both )(xFc  and )(xFm . The compound effect 

of these uncertainties is best estimated by stochastic simulation, except in the most trivial cases. 
 

5. A REAL-WORLD APPLICATION: PRICING MOTOR REINSURANCE 
IN THE UK 

We have applied the uncertainty-based credibility methodology to pricing motor reinsurance in 
the UK, based on a sample of 25 clients (about 70% of the UK market share in terms of premium). 

5.1 The pricing process 

Losses were first revalued according to an appropriate claim inflation rate (see, e.g., the study by 
Swiss Re [18]). Pricing was then carried out by considering a collective risk model where the 
frequency is a Poisson process and the severity is a Generalised Pareto distribution (GPD), with a 
cumulative distribution function equal to ( ) ξ−σμ−ξ+−=

1
)(11)( xxF . The choice of the GPD as 

the distribution for modelling severity is justified by the Pickands-Balkema-de Haan theorem ([14], 
[1]), according to which under broad conditions the losses above a certain threshold converge in the 
distribution sense to a GPD. 

Using this model, the risk premium for layer ),( LDD +  is 
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where wNE )(=λ  is the expected frequency per unit of exposure above D≤μ . This can be easily 

proven by writing ∫
+

−⋅λ=ϕ
LD

D

LD
c dxxF ))(1(,  as in the proof of Proposition 3 and setting 

( ) ξ−σμ−ξ+=−
1

)(1)(1 xxF .  

5.2 Calculating the uncertainties 

Determining an estimate λ̂  of the Poisson rate, λ, is quite complex as motor insurance has a 
long-tail component (bodily injury claims) and the number of claims above a certain threshold for a 
given year is known accurately only after all claims for that year have been settled. As a consequence, 
claim count projection techniques such as chain ladder or Bornhuetter-Fergusson must be used. The 
uncertainty on λ,  λσ , depends on the errors of the chain ladder estimates (Mack [11]; Renshaw & 

Verrall [15]) for each individual year and on the errors involved in the regression analysis to fit the 
results for the different years. The distribution of λ̂  can be roughly considered normal 
( ),(~ˆ

λσλλ N ) although positive-definite distributions such as Gamma may be more appropriate. 

The values of ξ, σ  for the GPD can be estimated using maximum-likelihood based on the 
revalued losses database. The uncertainties are (asymptotically) normally distributed: 

 ),),,((~)ˆ,ˆ( Σσξσξ N  where the covariance matrix can be estimated as 
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(5.2)

n being the size of the loss database (Smith [16]; Embrechts et al. [8]). Notice that the 
uncertainties on ξ and σ are (negatively) correlated.  

By drawing random instances of σξλ ˆ,ˆ,ˆ  from the distributions above, we obtain the (indirect) 
sampling distribution for LD

c
,ϕ̂  and we can estimate the standard deviation LD

c
,σ of the risk 

premium estimator. (There are other uncertainties, such as that on claim inflation, that are not client-
specific and are best addressed by sensitivity analysis.) 

In practice, one finds that both the frequency estimation and the severity estimation are subject 
to very large parameter uncertainty  and contribute significantly to the overall value of LD

c
,σ . One 

also finds that the distribution of LD
c

,ϕ̂  is approximately normal for the bottom layers and 

significantly skewed for the higher layers. 

5.3 Credibility pricing 

A hybrid model for credibility pricing was adopted, which: 
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- uses the client severity distribution up to £2m, modelled as a GPD (using the GPD model is 
not critical in that region, and simpler models such as the single-parameter Pareto distribution 
can be also used); 

- uses the market severity distribution above £2m, again modelled as a (different) GPD.  

The rationale behind this model is described below. Notice that these results reflect the situation 
in 2007, with loss data from the latest 10 years. 

The hypothesis that there is a single severity curve (the market severity curve) that fits the 
empirical data of all clients was tested for data above different thresholds: £1m, £2m, £3m. 
Goodness of fit was tested using the two-sample Kolmogorov-Smirnov test for each client. This test 
calculates the K-S distance between the empirical distribution of a client and the empirical 
distribution of the whole market after removing the client’s data, and compares this distance with 
the critical value for a chosen confidence value (see, e.g., Gibbons & Chakraborti [9]). The results of 
this test are summarised in Table 1. 

 
 
 
 

Table 1 – The number of data sets failing the two-sample KS test as compared to the  total number of samples in the 
set. Notice that the total number of samples varies with the analysis level as for some of the clients the reporting 
level is too high for an analysis level of, say, £1m to be possible. 

The results indicate that while the severity curve of different clients differ significantly above 
£1m, the single severity curve hypothesis is valid for a threshold of £2m or above.  

This hybrid approach recognises that in the UK motor reinsurance market there are, broadly 
speaking, three regions of behaviour:  

I. A “bottom” region (from the lowest excess up to £2m) where clients are quite different as to 
frequency and severity, and credibility generally decreases with the layer excess (assuming 
infinitesimal layers). 

II. A “middle” region (from £2m to the market pricing horizon) where clients are assumed to 
have different frequencies but the same severity distribution. In this region, which extends 
up to the market pricing horizon (~£20-30m), credibility is broadly independent of excess. 

Analysis Level (£M) No. of datasets failing test No. of datasets in test
1 5 18
2 2 21
3 2 23
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III. A “top” region that lies beyond the market pricing horizon. In this region, little can be said 
about the client price, except perhaps providing a broad upper bound to it, and credibility is 
of little help because both the client price and the market price are far too inaccurate to gain 
much accuracy by their combination. 

5.4 Practical issues 

In practice, since motor liability is a long-tail business for which bodily injury claims are reported 
and settled with considerable delay, the risk premium will usually be amended to take into account 
the time value of money. Specifically, 
 losses are usually discounted to take into account the return on investment on the technical 

reserves between the accident date and the payment/settlement of claims; 
 layers’ excesses and limits are usually indexed by earnings inflation. This mechanism is 

commonly used by reinsurers to avoid excessive gearing effects due to claims inflation. 

The effect of these modifications will usually have to be assessed by running a stochastic model, 
as an exact formula such as (5.1) will not be available. However, the modified risk premium LD

c
,~ϕ can 

be well approximated (errors of 2-5% using standard values of earnings inflation and investment 
discount rates for a typical reinsurance structure) by the following analytical formula:   
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(5.3)

      where: λ is the Poisson rate, ξ, σ, μ are the GPD parameters, ( ) XiXIC FI
11)( τ−τ+=  is the 

layer level after full indexation with future inflation, FIi  is the expected future (earnings) inflation, 

INVr  is the investment discount rate, τ  is the mean settlement time , whereas 0τ  and 1τ  are offset values 

that depend on specific assumptions of the algorithm. This formula is an approximation in the sense 
that it assumes that all claims that happen at time t will be settled with a single payment at time 

τ+t . This approximation is useful because it allows calculating the standard deviation of the 
estimator for the risk premium without running a stochastic simulation for every draw of the 
parameters, thereby reducing the computational complexity of determining credibility. A similar 
approximation can be used for the market risk premium, LD

m
,~ϕ . Notice that the mean settlement 

time of the market and of the client may differ, which has some (minor) effect on the behaviour of 
the credibility factor as a function of D, L. 
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Except for using LD
c

,~ϕ  and LD
m

,~ϕ  instead of LD
c

,ϕ  and LD
m

,ϕ , the calculation of credibility for the 

UK motor reinsurance market is a standard application of the methods described in Section 4 – 
specifically, it is a hybrid model which uses the market severity curve above £2m. Other adjustments 
(aggregate deductible/limit, reinstatements) are not usually implemented in the UK motor 
reinsurance market and were therefore ignored in our study. 

6. RELATIONSHIP WITH PREVIOUS WORK  

We are now in a position to discuss at more length the considerations already touched upon in 
Section 1.1 on the relationship with other research. 

The method is formally similar to other methods, in particular to the classical Bühlmann  and 
Bühlmann-Straub methods [4][5][6]. By rearranging the formula for the Bühlmann credibility factor, 

avn
nZ

/+
=   ( ))(( θμ= Vara  is the variance of the means of the different clients; ))(( θ= vEv  is 

the mean of the variances for each client; n is the number of years of experience), one obtains 

nva
aZ

/+
= , which has the same form as formula (3.5), by interpreting nv  as a measure of the 

standard deviation cσ  of the estimator of the risk premium, and by assuming that the corresponding 
quantity for the market, mσ , is zero.  

Analogous considerations apply to the Bühlmann-Straub methodology [5][6]. The key difference 
between the Bühlmann method and the Bühlmann-Straub method is that the latter takes exposure 
into account – it gives more weight to years with greater exposure. In our case, this is taken into 
account implicitly, as the standard deviation of the estimator depends crucially on the overall 
exposure over all years of past experience.  

Another similarity to the methods above is the use of a collectively unbiased estimator for the 
credibility premium (see discussion in Section 3.2). 

A work that is closer in spirit to ours is that by Boor [3], where the two estimators X1, X2 of the 
same random variable Y representing losses are credibility-weighted according to their accuracy and 
to the difference between them ( 21 XX − ), to produce the credibility estimate 21 )1( XZXZ ⋅−+⋅ . 

The general formula for the credibility factor is then 
))((2)))(())(())((( 2

12
2

12
2

1
2

2 XXEXXEYXEYXEZ −−+−−−= . When applied to the case 
of producing a rate for a subgroup α  (n elements) of a large group β∪α=Γ  (n+m elements – 
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ideally, the whole market), this produces the following credibility estimate: βα μ⋅−+μ⋅=ϕ )1( ZZ , 

where  

22'2'

22'

)(//

)(/

βα

βα

μ−μ+σ+σ

μ−μ+σ
=

mn

m
Z

mn

m
 

 
(5.4)

and βα μμ ,  are the estimated means for α  and β . This has the same structure as formula (3.6), 

which holds when the client is compared to the rest of the market: 

• mm /2'σ  and nn /2'σ  in (5.4) are central-limit theorem approximations for the quantities 2
mσ  

and 2
cσ  in (3.6); 

•  2)( βα μ−μ  is used rather than the spread of the market, 2
hσ . Obviously, 2

hσ  can be seen as 

the average value of 2)( βα μ−μ  over all clients except. α  

Apart from this, the two models are different: [3] uses a two-samples model, whereas we use a 
collective model where a single measure of the market spread is used for all clients and the 
correlation between each client and the market is explicitly used.  

– o – 

Credibility for excess-of-loss reinsurance was first examined by Straub [17]. This was extended by 
Patrik & Mashitz [13]. An implementation of this approach has been carried out by Bonche [2] for 
the UK motor reinsurance market. All these efforts have focused on the Poisson/Gamma credibility 
model applied to claim frequency. The key idea in [17] is that the credibility factor for the 

Poisson/Gamma model, which is 
bk

kZ
+

=  in the Bühlmann case (no excess of loss), becomes 

)(
)(

DXPbk
kDZ

>+
=  when applied to excess layers, with )( DXP >  being the exceedance 

probability, which depends on the severity distribution. The best linear estimate of λ (the Poisson 

rate) in this context is therefore )())(1(
)(

)()( 1)1( DXP
b
aDZ

k

Dn
DZD

k

j
j

CRED >−+=>λ
∑

=  where 

)(Dn j  is the number of claims above D in year j for the client. Notice that Z(D) decreases as D 

increases – a property which conforms to the intuition that the client’s experience can be trusted to a 
lower degree for the higher layers.  
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Patrik & Mashitz [13] extended this work to the case where )( DXP >  is not assumed to be 

known with certainty, thus recognising the need to take account of severity uncertainty (see Section 
2.3.2 in their paper). This brings to a modified  estimate of the credibility frequency, with the 
credibility factor becoming  

)))(()(1(1))(((

)(

2DXPCVaDXPE
bk

kDZ

>++>
+

= . 

In this formula, ))(( DXPE >  and ))(( DXPCV >  are the expected value and the coefficient 
of variation of )( DXP > . In [13], ))(( DXPCV >  is selected so as to incorporate both parameter 
uncertainty and the subjective beliefs in the a priori estimates of the parameters of the severity 
distribution. Interestingly, in this case Z(D) is not guaranteed to decrease in D. Whether or not this 
is the case depends on the degree to which the increase in the term containing the coefficient of 
variation compensates the decrease in the expected value of the survival probability. 

The main difference between our work and that by Straub [17] and Patrik & Mashitz [13] is that 
these authors have restricted their attention to claim counts rather than considering the uncertainties 
on aggregate loss, which is (to borrow an expression from Patrik and Mashitz) the real item of 
interest when pricing a reinsurance excess cover. 

The other obvious difference emerges in the special case where we assume that all clients have 
the same severity distribution, that of the market. In our single-severity model the credibility factor is 
broadly constant across the layers, whereas the credibility factor decreases as a function of layer 
excess in the work of Straub, Patrik and Mashitz (ignoring for the moment the problem of the 
inaccuracy of the severity distribution).  The underlying reason for this difference is that in the 
Straub-Patrik-Mashitz approach the client frequency above threshold D is taken as the empirical 

mean above that threshold: 
k

Dn
k

j
j )(

1
∑

= , and as such it is less credible if D increases; in our approach 

the credibility factor is constant, but the client rate above D is based not on the empirical frequency 
measured separately for each excess, but on the empirical frequency cλ at the lowest excess level (μ ) 
projected according to the severity distribution: )( DXPc >⋅λ .  

This explains the difference in the behaviour of Z. Our preference is for an approach that gives 
an approximately constant credibility factor because, if we really believe that the severity distribution 
is known with certainty, it is more accurate to use as an initial estimate of the number of losses 
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above μ>D  the quantity )()( DXPD cc >⋅λ=>λ  rather than 
k

Dn
k

j
j )(

1
∑

= , as the latter approach 

deliberately disregards the information below D. 
 

The comparison becomes of course more complicated when the picture is completed considering 
errors in the severity curve. It is interesting to notice that both our work and [13], despite using 
different models, reach the conclusion that the uncertainty on the severity distribution ultimately 
corrupts the behaviour of the credibility estimate and does not guarantee a priori that the client will 
have decreasing credibility. 

 
Cockroft [7] has extended the ideas in [17] and [13] to provide a credibility formula for claim 
aggregate loss rather than claim frequency. The formula for the credibility factor is still in the form 

bk
kZ
+

= , with b calculated analytically in terms of infinite series summations. Overall, Cockroft’s 

solution is at this stage quite complex and relies on the assumption that the number of claims is 
Poi( λ ) with a Gamma prior distribution for λ , and that the claim amounts are distributed according 

to a Pareto (
α

⎟
⎠
⎞

⎜
⎝
⎛

θ+
θ

−=
x

xF 1)( ) with a Gamma prior distribution for α . 

7. LIMITATIONS AND FUTURE RESEARCH 

We now look into the limitations of this work and areas for improvement. 
- The credibility estimate relies on second-order statistics only. This may not always be 

appropriate when errors on the parameters are large and the standard deviation may not in itself 
characterise the distortions on the risk premium in a sufficiently accurate way. More general 
estimates can be obtained by replacing the mean-squared error minimisation criterion used in 
Proposition 1 with more sophisticated criteria, perhaps based on the quantiles or the higher 
moments of the aggregate loss distribution. Further research is needed to explore these different 
criteria.  

- In order to get sound results for the credibility factor a good knowledge of the pricing process 
and its uncertainties is required. Consider, however, that it is part of the actuary’s job to acquire 
a sufficiently thorough knowledge of the uncertainties of the pricing process anyway. If this 
knowledge is available, the credibility estimate is simply a byproduct.  
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- For the method to work it is critical that the process by which the uncertainties are computed be 
fully automated and that its computational complexity be kept at bay, identifying the variables 
that have real financial significance. This is especially important if an analytical formula for the 
price is not available. 

- Specifically for reinsurance:  
o the credibility premium is calculated for each different layer in isolation, as if the 

reinsurance of each layer were bought/sold separately for each layer (this may or may 
not be the case). As a consequence, the credibility premium – the sum of the credibility 
premiums of the different layers – is in general not additive, in the sense that 

211121 ,,, LLDLDLDLLD ++++ ϕ+ϕ≠ϕ . The overall credibility premium paid for a reinsurance 
programme may in general depend on the details of the proposed layer structure. Further 
research is needed to understand what happens when additivity or other regularity 
conditions are imposed on the credibility premium. Notice that this problem only arises 
under the general uncertainty-based model, whereas additivity is automatically satisfied 
for the exact single-severity model (Proposition 2) and approximately satisfied for the 
single-severity model with inaccurate severity curve (Proposition 3); 

o the credibility estimate does not give sensible results beyond the pricing horizon of the 
market. This, however, is not strictly a limitation of the method – it is rather the natural 
consequence of the intrinsic lack of adequate market experience about very high layers; 

o the empirical calculation of market heterogeneity for the higher layers is quite difficult, 
due to the large errors involved (see introductory part in Section 4). This reduces the 
reliability of the credibility premium for those layers. One solution is to produce a 
realistic model for the behaviour of market heterogeneity as a function of layer excess, 
rather than relying on the empirical estimate only, much in the same way as we replace 
the empirical severity distribution with a continuous parametric distribution. We have 
carried out some preliminary work on this, which has shown that in the case where 
market heterogeneity becomes negligible in the limit ∞→D , then – under quite general 
conditions – the credibility factor goes to zero. However, further evidence and research 
is needed to verify whether this “vanishing heterogeneity” hypothesis is realistic and 
supported by empirical evidence for some insurance classes. Incidentally, this hypothesis 
is at odds with the single severity hypothesis, which is strongly supported by empirical 
evidence in the case of motor XL reinsurance and is quite promising for other lines of 
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business, too. 

8. CONCLUSIONS 

This paper has presented a novel approach to calculating the credibility premium, called 
uncertainty-based credibility because it uses the standard deviation of the estimator of the risk 
premium (for both the client and the market) as the key to calculating the credibility factors.  

This approach is especially useful for pricing XL reinsurance, where the balance of client 
uncertainty, market uncertainty and market heterogeneity is different for each layer of reinsurance. It 
has been used for pricing motor reinsurance in the UK market. 

The methodology is in itself quite general and can be applied to many different problems, 
essentially to all situations where it is possible to compute the uncertainties of the pricing process 
and the heterogeneity of the market. Other examples include experience rating in direct insurance 
(possibly with different excesses) and combining exposure rating (as calculated by using exposure 
curves) and experience rating in property and liability reinsurance.  
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Consideration of  Bias in Chain Ladder Estimates 
Rajesh Sahasrabuddhe, FCAS, MAAA 

             
Abstract 
The chain ladder method may be the most commonly used and well‐known approach for 
estimating ultimate claims. As it is most often employed, the same development pattern 
is  used  to  project  each  accident  year  and  its  results  are  generally  considered  by 
practitioners to be valid for each accident year.  It  is the author’s contention  that, under 
this application, the chain ladder method will produce biased projections of the ultimate 
claims  for  a  single  accident  year.  This  paper  identifies  the  sources  of  the  bias  and 
provides the actuary with a tool to understand and compensate for a portion of the bias. 

             

Part 1:  Notation, Properties and Relationships 

This paper utilizes the following notation: 

Claims 

Yi,j The  random variable  representing  the  incremental  claims  for accident period  i 
and development interval j.  

For  example,  a  triangle  of  incremental  claims  may  be  represented  by  the 
following: 

  Development Interval 

Accident 
Period  1  2  3  4  5  6 

1  Y1,1  Y1,2  Y1,3  Y1,4  Y1,5  Y1,6 

2  Y2,1  Y2,2  Y2,3  Y2,4  Y2,5   

3  Y3,1  Y3,2  Y3,3  Y3,4     

4  Y4,1  Y4,2  Y4,3       

5  Y5,1  Y5,2         

6  Y6,1           

 

∑
j

jiY ,   Cumulative claims for accident period i as at the end of development interval 

j. 

μ(y)i,j  The mean of the distribution Yi,j. 
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ε(y)i,j  The  random  error  term  for  observed  claims  for  accident  period  i  and 
development interval j. 

Incremental Claims Development 

Fi,j  The  random  variable,  typically  referred  to  as  the  “observed  incremental 
development  factor,”  representing  the  percentage  increase  in  cumulative 
claims during interval j for accident period i.  

fi,j  The quantity that actuaries will typically refer to as the “selected incremental 
claims development  factor.” We  include  the  subscript  for accident period  i; 
however we recognize that, in practice, the selected development factor rarely 
differs  by  accident  period. We  also  assume  that  this  factor  is  determined 
based  on  an  examination  of  Fi,j  and  various  arithmetic  averages  of  those 
observations.  

μ(f)i,j  The mean of the distribution fi,j.  

ε(f)i,j  The random error term for the development factor for accident period  i and 
development interval j. 

Cumulative Claims Development 

Ci,j  The  quantity  that  actuaries  will  typically  refer  to  as  the  “cumulative 
development  factor”  evaluated  at  the  end  of  interval  j.  We  include  the 
subscript  for  accident period  i; however we  recognize  that,  in practice,  the 
selected claims development factor rarely differs by accident period.  

Projections of Ultimate Claims 

Ui  The random variable representing the ultimate claims for accident period i. 

Di,j  The development method projection of ultimate claims  for accident period  i 
as of the end of interval j.  

As a result, we have the following properties and relationships: 

Claims 
(1.1) E [Yi,j ] = μ(y)i,j 

(2.1) Yi,j = μ(y)i,j + ε(y)i,j 

(3.1) ( )∑∑∑ +=
j

ji
j

ji
j

ji yY εμ ,,,  

Claims Development 

(4.1) fi,j is an estimator of μ(f)i, 

(5.1) Fi,j = μ(f)i,j + ε(f)i,j 

(6.1) ∏∞

+= 1 ,, j jiji fC  
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Estimated Ultimate Claims 

(7.1) Di,j is an estimator of Ui 

(8.1) ∑×=
j

jijiji YCD ,,,  

(8.2) ⎟
⎠
⎞

⎜
⎝
⎛ +×= ∑∑

j
ji

j
jijiji yCD )( ,,,, εμ  

(8.3) ∑∑ ×+×=
j

ji
j

jijijiji yCCD )( ,,,,, εμ  

(8.4) ∑∑ ∏∏ ×+×= ∞

+

∞

+
j

ji
j

j jijij jiji yffD )( ,1 ,,1 ,, εμ  

Part 2:  Bias in the Chain Ladder Method 

We should now recognize the following properties of the chain ladder method: 

» From 3.1, we recognize  that cumulative claims are a  function of  the expectation of 
incremental claims for prior periods and the cumulative observed random errors in 
those  prior  periods.  That  is,  cumulative  claims  are  a  function  of  all  prior 
observations of  incremental claims. From experience, we should recognize  that  the 
incremental  error  terms  tend  to  be  correlated.  That  is,  years  in which  claims  are 
developing adversely or favorably tend to continue to develop in the same manner. 

More  specifically,  through  summation  of  the  correlated  incremental  error  terms, 
there  is  correlation  between  the  successive  observations  of  cumulative  claims. 
Therefore, we  should  now  recognize  that  the  development  factors,  Fi,j, within  an 
accident year,  are  correlated. As  a  result,  they  are highly unlikely  to be unbiased 
with  respect  to μ(f)i,j as  that would  require  the  sum of  the  error  terms  to have an 
expectation of 0. Although  this may be  true across multiple years, our  experience 
shows that this is unlikely for a single accident period. This is demonstrated in Part 
3 of this paper where we present an example that illustrates what most practitioners 
observe  regularly:  that  certain  accident  years  have  “longer  than  average” 
development while  others  have  “shorter  than  average” development. This  occurs 
because of the correlation of the error terms produces actual development, Fi,j, that 
are consistently greater or  less  than  the expectation of development, μ(f)i,j. Finally, 
since Fi,j is typically used to estimate fi,j, it is unlikely that fi,j is an unbiased estimate 
of μ(f)i,j.  

» Equation 8.4, provides the mathematical representation of Di,j. In order for Di,j to be 
unbiased,  the underlying  estimators  in  8.4 must  also be unbiased. The discussion 
above provides the rationale for fi,j being considered biased. 

Moreover,  leaving aside  the  issue of bias  in  the development  factors,  for  the chain 
ladder method  to  be  unbiased,  it would  require  the  latest  diagonal  of  observed 
losses to be “all signal, no noise.” This has the following important implications: 
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> The expectation of the sum of ε(y)i,j, for accident year  i would have to equal 0. Even if we relax 
this requirement and allow the sum of ε(y)i,j to be “small,” we should know from experience and 
the discussion above that this is often not true. 

What we  should  now  recognize  is  that  implementation  of  the  chain  ladder method 
ignores a fundamental truth of the claims emergence process, specifically: 

1. the existence of correlations within an accident year, and 
2. that the chain ladder method is almost certainly biased.  

 
However, there is a method for consideration (though not elimination) of bias resulting 
from  (1)  the presence of  error  terms  and  (2)  the  correlation  of  error  terms within  an 
accident year. This method is the subject of the third part of this paper. 

In  the discussion above, readers should recognize  that we have not yet even explored 
the  impact  of  environmental  factors  on  both  μ(f)i,j  and  μ(y)i,j.  These  factors  would 
include unexpected  inflation,  changes  in  limits,  changes  in  case  reserving,  changes  in 
payment practices and numerous other  influences.  It  is hoped  that  readers  recognize 
that real‐world  influences result  in  the virtual  impossibility  that development method 
estimators are unbiased1. 

It  is  therefore  incumbent  on  practitioners  to  evaluate  whether  its  convenience  is  a 
sufficiently significant benefit to overcome its shortcomings. While this is true of other 
reserving methods  as well,  the  goal  of  this  paper  is  to  raise  the  awareness  of  one 
particular shortcoming of the chain ladder method. 

Part 3:  Partial Correction for Bias 

Correction  for  bias  in  the  development  factors  is  beyond  the  scope  of  this  paper. 
However, we do have a mechanism for (partially) addressing the bias created by both 
the  presence  and  the  correlation  of  (cumulative)  error  terms  (the  rightmost  term  of 
Equation  8.4). These  conditions  have  the  result  that  individual  years will  experience 
longer  (more)  or  shorter  (less)  development  than  that  implied  by  the  selected 
development  pattern. Additionally,  also  as  demonstrated  in  Equation  8.4,  the  chain 
ladder method  indiscriminately develops both  the signal and noise component of  the 
observed claims value. To address these issues we need to (1) use a tool that separates 
the “signal” from the “noise” and (2) employ a methodology that tracks the  impact of 
the correlation. 

                                                           
1 To correct for the bias resulting from changes in environmental factors, we would need to incorporate 
adjustment factors that would offset these biases. The author recognizes that it is likely not possible to 
calculate adjustment factors for all such changes regardless of the actuarial method selected. However, a 
frequency‐severity method probably best allows for such adjustments as the parameters of that method 
(i.e. no of claims and value of claims) are specified at the same level of detail that the underlying changes 
would be expected to influence. 
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Regression is the typical tool used to isolate the signal from a series of observations of a 
random variable. We now turn to the question of how to apply principles of regression 
within the chain ladder method so as to also assess the bias created by the correlation of 
error  terms. To do  this, we  should  recognize  that we need not apply  the  cumulative 
development  factor  solely  to  the  last  diagonal  of  the  triangle. We  can  also  apply 
development  factors  to all prior diagonals as well. We refer  to  this series of projected 
ultimate claims as the “retrospective estimates of ultimate claims.”  

Benefits of Regression 

Use of regression in this context has multiple benefits: 

(1) Fitting  a  regression  model  to  the  series  of  projected  ultimate  claims  will 
(partially) differentiate between  the predictive component of Di,j  (the  first  term 
on the right side of Equation 8.4) and the “noise” (the second term on the right 
side of Equation 8.4). This will, in effect, reduce the impact of the error terms and 
therefore partially correct for the bias in the Di,j that results from the noise / error 
terms. 

(2) Testing of  the significance of  the  regression parameters will provide additional 
insight  on  the  development  applicable  for  any  particular  year.  That  is,  the 
regression coefficient will be greater  than 0  for years where  the ultimate claims 
estimate  is  increasing;  the  regression  coefficient will  be  less  than  0  for  years 
where  the ultimate claims estimate  is decreasing. More specifically, coefficients 
that are significant and greater than 0 would indicate that the development for a 
particular year was “longer”  than average. Stated differently  it would  indicate 
the error terms, ε(y)i,j, were positive. Conversely, coefficients that are significant 
and  less  than 0 would  indicate  that  the  error  terms,  ε(y)i,j   were negative. The 
value  of  the  coefficient  would  also  be  an  indicator  of  the  strength  of  the 
correlation of incremental errors. 

(3) Finally,  we  could  also  create  a  statistic  used  to  measure  “net  bias”  for  the 
development pattern. For example, regression coefficients significant and greater 
than 0 would  contribute +1  to  this  statistic and  coefficients  significant and  less 
than  0 would  contribute  ‐1  to  the  statistic.  This would  allow  us  to measure 
whether our development pattern was too  long or too short with respect to the 
claims portfolio under review. 

Description of Exhibits 
These calculations are demonstrated on the attached exhibits.  

Exhibit 1  ‐ The data used  in  this example  is based on  the General Liability excluding 
Mass  Torts  (combined  treaty  and  facultative)  claims  data  as  compiled  by  the 
Reinsurance Association of America. This data is presented on Exhibit 1. We also show 
the selected incremental claims development factors on this exhibit. For simplicity, this 
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presentation  assumes  that  (1)  the  selected  incremental  factors  are  based  on  volume 
weighted averages and (2) there is no need for a tail factor. 

Exhibit 2 – Exhibit 2 presents the triangle of retrospective estimate of ultimate claims. 
Each of the entries in the triangle is calculated as the product of the observed claims and 
appropriate claims development factor. 

Exhibit 3 – Exhibit 3 presents the results of a regression model applied to the last five 
observations of the retrospective ultimate claims triangle. For simplicity we have used a 
linear regression model  in order  to conceptually demonstrate  the approach. However, 
reader  should  recognize  that  alternative  regressions  (such  as  exponential  or 
logarithmic) could also be used as the shape of the curve warranted. 

Exhibit  4  –  Exhibit  4  presents  estimates  of  ultimate  loss  as  fitted  by  the  regression 
model. 

Exhibit 5 – Exhibit 5 presents a graphical presentation of  this model  for accident year 
1995. 

Part 4:  Conclusions 

Readers should now realize that the chain ladder method is not simply an application of 
an  algorithm  to  yield  a  deterministic  result. Rather,  it  is  a method  that  has  implicit 
statistical underpinnings. With this knowledge, we can now turn to an evaluation of the 
methods from a statistical basis. With this analysis, it becomes apparent that the chain 
ladder as it is currently applied in practice is not unbiased. Unbiasedness is one of the 
qualities  that  we  typically  desire  in  statistical  estimators  –  yet  practitioners  have 
(implicitly) chosen to ignore this property of the chain ladder method. 

The  paper  then  identifies  the  two  primary  sources  of  bias  that  result  from  the 
correlation  of  error  terms  in  the  cumulative  observations  of  claims:    (1)  bias  in  the 
development  factor estimators and  (2)  the bias created by  the error  terms  themselves. 
The first is beyond the scope of the paper. For the latter, the paper provides a discussion 
of  the use of retrospective estimates of ultimate claims and regression  techniques  that 
may be used  to address  the bias. However, even with  these  tools, we are not able  to 
completely eliminate its impact. 
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