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Manually Adjustable Link Ratio Model for Reserving 

Emmanuel T. Bardis, FCAS, MAAA, Ph.D., Ali Majidi, Ph.D., Aktuar (DAV) 
and Daniel M. Murphy, FCAS, MAAA 

 
 

Abstract: The chain ladder method is very popular in General/Property-Casualty Insurance actuarial circles. 
Mack [1] expanded the deterministic algorithm to include calculations for the variance of the chain ladder 
projections. The assumptions underlying the chain ladder method are important in regards to the appropriateness 
of the deterministic projections; they are even more important in regards to the appropriateness of the stochastic 
results. The purpose of this paper is to introduce more statistical rigor to this popular method and help close the 
link between practice and statistical theory. We will discuss residual analysis and other statistical measures as they 
apply to the chain ladder method so that the appropriateness of its deterministic and stochastic results can be 
objectively measured based on statistically rigorous principles. We will also show how the regression approach of 
Murphy [2] can be expanded so that link ratios “selected judgmentally” can be seen as conforming to an 
underlying statistical model. 
  
Keywords: chain ladder; selection; residuals; Mack; Murphy 

1. INTRODUCTION 

A big part of the actuarial research in the last two decades is dedicated to reserving. While many 
statistical methods have been dedicated to this problem, none of them is broadly accepted by the 
practitioners. The aim of this paper is to reduce, or even to close, the gap between practice and 
theory by embedding this practice into a theoretical flexible framework. The most popular method 
to solve the central problem of reserving, namely to estimate an “expected value for the outstanding 
payments=Best Estimate,” is the chain ladder method. This is the reason of the popularity of the 
analysis of Mack [1], where the standard chain-ladder approach is discussed. Murphy [2] considers 
the more general question of “loss development method,” where the chain ladder method is treated 
as a special case of a more general linear regression approach. Zenwirth [3] calls this family the 
“extended link ratio family,” he criticizes its prediction power and suggests the “probability trend 
family” instead. However Zenwirth’s approach is not consistent with the traditional chain ladder 
method and the user input associated with this method. The incorporation of user judgement is a 
typical Bayesian problem, and the approach suggested from Verall [4] is a theoretical rigorous way to 
tackle the inflexibility of the previous methods. The necessity of the MCMC algorithm (Markov 
Chain Monte Carlo) in this method makes Verall’s approach hard to describe and the basic 
assumptions of prior distributions for the link ratios are not easily verified.  

The purpose of this paper is to present an appropriate model, which  

1. Is compatible with the way practitioners implement the chain ladder method and 
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2. Provides a statistical framework that will help test the underlying assumptions of the chain 
ladder method (for example for approval of an internal model1 in Solvency II-context, or the 
use of benchmarks for the reserving exercise). 

In the first section we will propose a model that is built around the regression interpretation of 
the chain ladder method similar to Murphy [2]. It turns out that a flexible formulation of the chain 
ladder method along the lines of a regression model satisfies the above-mentioned requirements. 
Furthermore we will demonstrate how this embedded statistical process can be used to test the 
appropriateness of the “actuarial selected link ratios” both visually and statistically. Finally we will 
suggest how to proceed if the approach taken is not appropriate and demonstrate with an example.   

2. THE LINK RATIO APPROACH  

We start with the usual notation, where the observed cumulative paid losses are denoted by the 
set { }iIjIiCD ij −+≤≤≤≤= 11 ,1| . A regression model equivalent to the chain ladder method 
is 

 2/
,,1
k
kikikikkik CCfC αεσ+=+  (1)  

 iIkIiki −+≤≤≤≤ℵ 11,1),1,0(~,ε  (2) 

Thereby the set { }iIkIiik −+≤≤≤≤ 11 ,1|ε  is assumed to be “noise” or independent 
identical distributed (i.i.d.) normal2 random variables with mean 0 and standard deviation 1. Making 
explicit the implicit assumption of the error term is crucial for assessing the appropriateness of a 
model because it provides a data set of residuals for model testing. Under these assumptions the 
least square estimate of the link ratio, given the set of observations D, can be calculated through 
weighted averages of the observed link ratios: 

The optimal solution of model (1), (2) is specified by the parameters )ˆ,ˆ,ˆ( ασf  
(the “model specification”) where the solution for the values of the αs is 
discussed below. 

2.1 Chain Ladder 

The model introduced in Mack [1] is a special case of the model (1), (2) with αk=1, k=1,…,I. 
Mack noted in this model the minimum variance estimator 

                                                 
1 “Proposal for a DIRECTIVE OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on the taking-up 
and pursuit of the business of Insurance and Reinsurance” 
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:52007PC0361:EN:NOT 
2 The normality assumption is made to assure that the chain ladder link ratios correspond to ML estimators. Other 
distributions can be assumed as well, but that might lead to an ML solution other than the least squares solution. 
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and derived estimators for uncertainty, popularly known as “The Mack Formula.”  In other words, if 
we specify a “variance assumption” by selecting the alpha parameter, then the link ratios in this 
model as well as the uncertainty of the estimators are also selected. This model embeds, by making 
these extensions, the traditional chain ladder method in a statistical framework.  

Hereby it is important to distinguish between a model and a method. A model is a mathematical 
description of an observation, phenomenon, etc. and produces “best-fitted” parameters based on 
the underlying data characteristics. A method, on the other hand, is an algorithm that makes certain 
assumptions and produces estimates based on a number of predetermined steps. Thus a method can 
always be used to calculate some estimates, whereas a model is based on assumptions that need to 
be tested, before the model is used. The traditional chain ladder method is “consistent” with many 
stochastic models that have been created around it, such as the Mack/Murphy Model or the over-
dispersed Poisson model. By “consistent” we mean that, given the model that is appropriate for the 
data on hand, the chain ladder method is a reasonable algorithm to produce reserve estimates that 
are similar to the estimates of these models. However, actuaries are used to selecting link ratio 
judgmentally because estimated link ratios by averaging methods can be inappropriate in cases when 
the stochastic component of the loss generation process is made complex by the influence of many 
unknown and unobserved parameters. An experienced actuary recognizes, for example, trends in the 
triangles and adjusts the link ratios manually, or uses benchmark pattern instead. There is no doubt 
that such a manual extension of the model makes sense, but no matter how experienced an actuary 
is, the appropriateness of his or her selection is always open to question. The model framework of 
this paper can be used to answer that question with more objective statistical tests.3 

2.2 Residuals and Model Selection 

In the traditional world, actuaries’ methods and selections are defended by their expertise and 
experience. However, mathematical and graphical tools can provide more objective ways to defend 
their selections and to communicate their answers. One of the most important diagnosis and 
validation tools are residuals, which are in general the difference between a “data set” and its 
“formulaic representation.” In the chain ladder case, the formulaic representation of the data is 
given by the specifications of the model parameters.  

                                                 
3 Furthermore, we mention here that the residuals are often used to simulate the distribution of the stochastic reserving 
process through the bootstrapping approach. The core of the bootstrapping method is the “independent identical” 
assumption in (2). The bootstrapping results will be wrong if this assumption is violated. 
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If we reformulate (1) with respect to ki ,ε , we obtain 

)/()( 2/
,1,
k
kikikkikki CCfC ασε −= + . 

This residual assumption can be validated with the data set.  

We define the “corresponding” residuals of a model specification )ˆ,ˆ,ˆ( ασf  by  

 )ˆ/()ˆ(:)ˆ,ˆ,ˆ(: 2/ˆ
,1,,

k
kikikkikkiki CCfCfrr ασασ −== + .  (4) 

We start by selecting the parameters in this model and proposing a certain estimate, which 
corresponds to a hypothesis for the future liabilities that leads to an estimate for the reserves. The 
question is now, how confident are we in that estimate? Taking (2) and (3) together our chosen 
estimates need to fulfill the hypothesis  

“The data set }{ ,kir looks like noise.” 

Although we have a subjective feeling for a data set looking like noise, we could hardly test it 
without further clarifications. However the hypothesis “i.i.d. normal distributed” can be tested 
through visual tests (e.g., QQ-Plots) as well as statistical tests (e.g., Shapiro-Francia-test for 
normality [5]).  

Now one can raise the question: What should we do if the test fails? We change the link ratios 
manually. Of course this is not new. Actuaries have always selected link ratios manually by 
employing experience, judgment, benchmarks, etc.  

Assuming we manually change the link ratios, the next question is: Is the new set of link ratios 
more appropriate than those selected initially? 

In the next sections we describe an approach to answer these questions and show how to use the 
approach to fine-tune the selected link ratios in a controlled work flow way.  

3. SELECTED LINK RATIO MODEL 

Consider the regression approach (1) to the chain ladder method. The problem with the common 
actuarial practice is that when the selected link ratios are not the volume weighted average, then they 
are not consistent with the best linear unbiased estimators calculated by the statistical models 
employed in stochastic reserving exercises. In particular non-volume-weighted-average selected link 
ratios are not proper estimators for kf  according to Mack’s model, and his associated uncertainty 
estimators employing such selections will be incorrect.4 A matter of a greater concern though is that 
the residual definition is not valid for the new model and thus the selected model cannot be tested. 

                                                 
4 In Mack’s 1999 paper he expanded his formulas to incorporate simple averages in addition to weighted averages. 
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Model 
Selection 

Parameter 
Selection 

Model 
Validation 

In the remainder of the paper we close this gap in a sense that for each “reasonably” selected link 
ratio set we provide a statistical model which has this set of selected link ratios as its best linear 
unbiased regression estimators. Using this tool, we are now able to incorporate a statistical work 
flow cycle into the reserving process: 

 

 

 

 

 

This diagram shows of course only the work flow assuming that the data is appropriate. However 
one major part of the reserving exercise is reviewing the underlying data.  We will see that the 
residuals can help the actuary identify outliers and trends.  

As actuaries select, evaluate, and re-select link ratios, they are implicitly reformulating the model 
(1) by “selecting” a different α parameter each time. This correspondence is established by the 
following two theorems that prove the existence of the α parameters that solve model (1) for 
selected link ratios that are reasonable. By reasonable selected link ratios we mean selected link ratios 
within the range produced from the various average link ratios based on the empirical data. 

3.1 Theorem (Link Ratio Function)  
 We consider for a given triangle the corresponding link ratio function as in (3) and denote the 

set of all reasonable link ratios with }|)({LR:)(LR ℜ∈=ℜ ααkk and kk ii max,min, , be the index of 
},max{},,min{ ,, knjCknjC kjkj −<−<  respectively. Then 

1. If )(, ℜ∈ kLRdc , then the whole interval )(],[ ℜ⊆ kLRdc  

2. )(,)(LR ,min
∞→→ αα kik F  

3. )(,)(LR ,max
−∞→→ αα kik F  

4. In particular, every value between the straight average link ratio, the weighted average link 
ratio and the link ratios corresponding to the minimum and maximum weight 

},max{},,min{ ,, knjCknjC kjkj −<−<  respectively, is reasonable.  

Figure 1: Actuarial validation loop 
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3.2 Theorem (Existence) 

Let }2;{ −≤ nkhk be a set of reasonable link ratios (as defined in 3.1) with 
2 ),(LR −≤ℜ∈ nkh kk . Then for each k there is at least one α  such that kh  is the ML-

estimator of (1). We define 

)})LR(|0max{)},LR(|0max(min{:ˆ ααααα =≤=>= kkk hh . 

Then kα̂  is well defined and can be calculated using a solver.5 In other words among all possible  
α   we take the one with smallest absolute value, and in cases, where two possible α  have exactly 
the same absolute value, we choose the positive. 

The proofs of both theorems are relegated to the appendix. 

The condition k≤n-2 is necessary because for the last development period (k=n-1) a regression 
type of approach is not useful as there is only one observation.  

Remark 1:  

In the original chain ladder method modeled in Mack (1993) the standard deviations of payments 
of all development periods is assumed to be proportional to the square root of payments of the 
previous development year. But why is it the square root, and why should this hold for all 
development years? Theorem 3.2 Theorem (Existence) relaxes this requirement. It shows that even 
with judgmentally selected link ratios an underlying statistical model exists such that the selected link 
ratios are the optimal parameters.6 

Although assumptions cannot be tested, residuals can, which enables us to find the appropriate 
chain ladder model that is consistent with the actuary’s link ratio selections. This underlines the 
thought that models offer “proposals” to understand the data structure. To cite George Box: 
“Essentially, all models are wrong, but some are useful.” 

4. EXAMPLES 

Example 1:  

We first consider the following triangle, which is discussed in Mack (1993) and in Zehnwirth (2004). 
The weighted averages link ratios are shown below: 

                                                 
5 For example the Newton-Algorithm with starting point 0. 
6 In fact in some cases there can be more than one kα̂  for the same link ratio. In other words, it is possible to have 
more than one standard deviation assumption associated with the same link ratio. 
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Table 1 

5,012 8,269 10,907 11,805 13,539 16,181 18,009 18,608 18,662 18,834
106 4,285 5,396 10,666 13,782 15,599 15,496 16,169 16,704 

3,410 8,992 13,873 16,141 18,735 22,214 22,863 23,466  
5,655 11,555 15,766 21,266 23,425 26,083 27,067  
1,092 9,565 15,836 22,169 25,955 26,180  
1,513 6,445 11,702 12,935 15,852  

557 4,020 10,946 12,314  
1,351 6,947 13,112   
3,133 5,395    
2,063     

Simple 
Average 

8.206  1.696  1.315  1.183  1.127  1.043  1.034  1.018  1.009  

Weighted 
Average  

2.999  1.624  1.271  1.172  1.113  1.042  1.033  1.017  1.009  

Although this triangle is quite well understood, we try to “analyze” it again.   

First we declare our goal, which is to find a model, which describes our data with a certain 
confidence. 

 Model Selection: We start with the link ratio model, which means that we believe 
2/

,,1
k
kikikikkik CCfC αεσ+=+ . 

 Parameter Selection: This means in our case, that we choose a set of link ratios and calculate the 
corresponding variance assumption. We start here with the simple averages. 

 Model Validation: Now we need to test the corresponding residuals. 
Table 2 

-0.5313 -0.7949 -0.7322 -0.5395 0.9132 1.3861 -0.1275 -0.7071 
2.6108 -0.9210 2.0882 1.6351 0.0653 -0.9937 1.0576 0.7071 

-0.4513 -0.3229 -0.4763 -0.3326 0.7867 -0.2809 -0.9301  
-0.4994 -0.6992 0.1083 -1.2187 -0.1807 -0.1115   
0.0448 -0.0850 0.2693 -0.1818 -1.5844   

-0.3198 0.2526 -0.6596 0.6376   
-0.0801 2.1662 -0.5977   
-0.2483 0.4040    
-0.5254     

The following plot graphs the residuals along the accident-year dimension and helps the 
practitioner to identify the existence, or absence, of any trends. The graph below suggests that the 
residuals are, for the most part, random. 
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Additionally we could test the data in several different other ways to make sure we are confident 
about the “noise hypothesis.” In particular the Shapiro-Francia P-Value is 2.6%, which suggests that 
the assumption of normality of the residuals is rejected at the 5.0% confidence level. This means we 
would need to go back to one of the previous steps.  

 Model (Re)Selection: With an exception of a few outliers, the model was acceptable, so we might 
still stay with the same model.  

 Parameter (Re)Selection: Obviously the first few link ratio “produces” outliers, so we might 
change the first three selected link ratios to be the volume-weighted ones. That means we would 
select: 

Selection 2.999 1.624 1.271 1.183  1.127  1.043  1.034  1.018  1.009  
alpha 1.000 1.000 1.000 2.000 2.000 2.000 2.000 2.000  

 Model Validation: The Shapiro Francia test delivers a P-Value of 12.0%, so dependent on our 
level of statistical confidence we could accept this model, the selected parameters (and the 
corresponding “best estimate” reserves, the standard deviation, etc.). By comparing Figure 2 and 
Figure 3, we see that the selected link ratio set is a much better approximation of the normal 
distribution than the simple average link ratios. 

Figure 2 The residuals for the first example with the selected simple average link ratios against the 
quantiles of the normal distribution (red line)

Normality Plot
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The Chain ladder link ratios, based on the volume weighted averages, deliver a P-Value of 23.4% for 
the Shapiro Francia test. 
2.999  1.624  1.271  1.172  1.113  1.042  1.033  1.017  1.009 

In other words the volume weighted link ratios are easily acceptable with our 5% level of 
confidence, but this demonstrates again that many models are “similarly wrong,” but good enough 
for this task. We have chosen this well known-example to demonstrate the different steps in Figure 
1. 

Example 2:  

We consider now the following triangle: 

Figure 3 The residuals for the first example with the selected link ratios against the 
quantiles of the normal distribution (red line)
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Table 3 

 Model Selection: We consider again the link ratio model.  

 Parameter Selection: Before selecting the parameters, we might want to look at the link ratios 
and probably try the “latest year averages” because of the possible trend in the most recent 
calendar years. 

29 97 216 388 580 764 930 1,119 1,322 1,526 1,657 1,720 1,739 1,748 1,752

30 102 227 403 631 849 1,046 1,270 1,518 1,703 1,820 1,877 1,894 1,901 

35 107 234 451 723 984 1,221 1,496 1,714 1,880 1,987 2,037 2,056  

34 112 268 526 850 1,162 1,447 1,689 1,888 2,037 2,134 2,178   

34 123 308 622 1,014 1,393 1,648 1,869 2,048 2,181 2,265    

42 152 373 745 1,216 1,555 1,786 1,984 2,145 2,265     

49 185 449 898 1,322 1,630 1,839 2,019 2,163      

58 217 537 939 1,319 1,594 1,779 1,938       

70 262 550 917 1,262 1,510 1,679        

88 261 518 846 1,154 1,379         

76 235 466 755 1,033          

68 207 411 673           

58 185 372            

53 167            

               

Figure 4 The link ratios for the first development period 
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 Model Validation: The following tables show the selected link ratios and the corresponding 
weights: 

Chain Ladder 
 VW All Years 

      

Link ratio 3.325 2.196 1.791 1.483 1.273 1.169 1.144 1.118 1.090 1.057 1.028 1.010 1.004 1.002
alpha 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
P Value 0.0054%              

               
VW Latest 5               
Link ratio 3.063 2.015 1.664 1.398 1.222 1.137 1.118 1.099 1.081 1.057 1.028 1.010 1.004 1.002
alpha 6.430 5.076 4.719 4.300 4.065 3.948 3.892 3.854 3.727 1.000 1.000 1.000 1.000 1.000
P Value 0.0058%              

               
VW Latest 3               
Link ratio 3.111 1.994 1.630 1.370 1.200 1.119 1.099 1.082 1.066 1.047 1.025 1.010 1.004 1.002
alpha 6.170 5.274 4.697 4.433 4.178 4.044 3.967 3.903 3.713 3.538 3.404 1.000 1.000 1.000
P Value 0.0016%              
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The test of normality rejected the assumption for all three types of selected link ratios. After 
these three loops of trying different levels of diagnosis, we might reconsider the model.  

 Model Selection: We might now consider a more complex model, for example: 
2/

,,1
k
kikikikkkik CCfgC αεσ++=+ . For this model we refer the reader to Murphy [2].  

The data might be even too complex for this model, but we demonstrate here the controlled way of 
actuarial work, which, of course, needs actuarial judgment, but also statistical tools to quantify the 
level of confidence for objective communication and assurance of quality (for example, for approval 
of an internal model in Solvency II-context).   
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5. CONCLUSION AND FURTHER RESEARCH 

As already mentioned before, an alternative approach to ours would be the Bayesian approach, 
which means one could define a priori for the kα and derive the a posteriori distribution for the 
variance assumption. 

 We have shown how to use the more flexible regression model (1) to reproduce the results of 
the traditional chain ladder methodology, which offers both consistency with the actuarial reserving 
work flow and statistical diagnostic tools. It is now quite obvious that the recursive formula of 
Mack/Murphy for the overall reserve uncertainty can be adapted to the selected link ratio model. In 
addition to that, a similar approach for the uncertainty of the BF method or Cape Cod method 
seems to be straight forward. We mention here also that any kind of bootstrapping can be done 
using the tested residuals. As we mentioned before, for bootstrapping purposes the residuals should 
be tested to assure proper results.  

Even though the approach we introduced here is much more flexible than just employing average 
link ratios, there are many cases, where the model is not capable of modeling the structure in an 
appropriate way (such that the residuals looks like noise). In these cases, taking a more complicated 
method with more prediction power is necessary. The most natural way of making another step 
towards flexibility is to use the regression model of Murphy [2] with an intercept. 

6. APPENDIX 

Proof of Theorem 3.1 (Link Ratio Function)  

1. If ℜ→ℜ:LR k  is a differentiable function and in particular continuous, its range is an interval 
in the set of real numbers. 

2. We first note for arbitraryα that 1
1 , =∑ −

=

kn

j kjwα . Without loss of generality we assume 

)(,,,min
knjCC kjki −≤< . It is now sufficient to prove ∞→→ αα  as  1,min kiw . This can be 

seen by rewriting the weight 
αααα )/(// ,,1

2
,

2
,1

2
,

2
,, minminminmin kjki

kn

j kjki

kn

j kjkiki CCCCCCw ⋅== ∑∑ −

=

−

=
−−

. 

Obviously all min,, ,1)/(
min

ijCC kjki ≠<⋅ , thus all terms converge to 0 except for minij = , so 

that we see ∞→→⋅∑ −

=
αα  as )/( 2

,,,1
2
, minmin kikjki

kn

j kj CCCC . 

3. Similar to 2, we can deduce −∞→→ αα  as 1,max kiw . 

4. The weighted average and the simple average correspond to )1(LR ),2(LR kk , respectively. 
This, with 1 above, proves the theorem. 
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Link Ratio Function
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The following example illustrates the function )(LR αk  with an example, where 

5.2,, maxmin
== kiki FF . This is a case, where for all link ratios, except for the minimum for 0=α , 

there are two different variance assumptions, which lead to the same link ratio.  Also the 
infinitesimal behavior of the function is stated in the following graph. 

 
Table 4: Link Ratio Example 

152 380 2.5000
185 449 2.4270
217 537 2.4747
250 550 2.2000
262 655 2.5000
235 466 1.9830
207 411 1.9855
185 372 2.0108

  
Simple Average: α=2 2.2601

VW Average: α=1 2.2563

quadratic  α=0 2.2559

 

 

 

 

 

Proof of Theorem 3.2  

Using Theorem 3.1 we observe that the set  )}LR(|{ αα =ℜ∈ kh  is not empty. Furthermore 

we note that 0)()LR(
1 1

1
,1,

2
, =−⋅⇔= ∑ ∑−

=

−

=
−

+
−kn

j

kn

i kikikjkk CCChh ααα , which can be solved with an 

appropriate numerical solver algorithm.  

Consider again the example in Table 4. Then we get two solutions for the link ratio 2.400: -21.4 
and 10.7, thus we set the variance estimation to max(-21.4, 10.7)=10.7. 
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_________________________________________________________________________ 
Abstract: Reserve ranges and risk capital requirements can be related to statistical interval estimates. While 
not all sources of uncertainty are readily incorporated into an interval estimate, such intervals give a lower 
bound on the size of the required interval. We discuss the calculation of interval estimates, for both the 
estimate of the mean and for the liability process itself, show how to tell if the model is a reasonable 
description of the data and show that when it is not, the interval estimates may sometimes be disastrously 
wrong.  
Many practitioners are now using probabilistic versions of standard actuarial techniques, sometimes 
employing quite sophisticated tools in their estimation. However, none of these developments avoid the 
need for stringent checking of the suitability of model assumptions, a necessity that is often overlooked.  
We discuss some of the statistical models underlying a variety of standard methods, construct a number of 
diagnostics for model assessment for several models and discuss how the underlying ideas carry over to 
many other methods for the estimation of liabilities. These tools are easy to implement and use. They allow 
practitioners to use the corresponding models with greater confidence, and gain additional information 
about the triangle. This information can have important consequences for the insurer. 
We illustrate that some popular approaches—the Mack chain ladder, the quasi-Poisson GLM—and 
consequently predictions based on them (both bootstrapped and otherwise) have structure not present in 
real triangles, and don’t describe some features of the data. Consequently their associated intervals fail to have 
the desired properties.  
We point out that many aspects of the reserving problem and the structure of real data lead us to model on 
the log scale. We briefly describe the Probabilistic Trend Family (PTF) models and its extension to the 
multivariate case (MPTF) and show that these model families can capture the patterns in real data and 
produce more reasonable prediction intervals.    

_________________________________________________________________________ 

INTRODUCTION 

It is important to distinguish between variability and uncertainty.  

Variability is the effect of chance and a function of the system. Additional data points don’t 
reduce the process variability. 

Uncertainty is a lack of knowledge about the parameters that characterize the physical system that 
is being modeled.  This may be reducible with additional information. 

While separate concepts, variability and uncertainty are not completely unrelated—in general, the 
uncertainty of a parameter estimate will be related to the variability. 

An interval for the mean is a form of confidence interval, based on the associated parameter 
uncertainty (and possibly including other sources of uncertainty).  
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An interval for a future payment (a prediction interval) must incorporate both the variability of 
the process and the uncertainty in the mean. 

A sum or even a linear combination of future payments will similarly incorporate process 
variability for each term, parameter uncertainty for each term, and parameter covariances between 
each pair of terms. If the model includes correlations between observations, process covariance will 
also come into the prediction intervals. 

The basic properties of confidence intervals and prediction intervals in regression models are 
presented in many standard statistical textbooks. See, for example, Wackerly, Mendenhall, and 
Schaeffer (2002). Many of the same principles encountered in the regression context apply more 
generally and form a useful basis for extending the discussion to intervals in the context of loss 
reserving and also calculation of risk capital requirements. 

SECTION 1: CONFIDENCE INTERVALS AND PREDICTION 
INTERVALS  

Consider the following simple motivating example. 

Suppose a fair coin is tossed 100 times and we count the number of heads (X). To draw a parallel 
with insurance, imagine you pay a dollar for each head. 

The mean number of heads (the mean of X) is 50. The standard deviation of X is 5. The 
binomial probability of each possible outcome of X (0, 1, 2,…100) is known. There is no 
uncertainty about the coin’s mean, its variability, nor any of the probabilities associated with each 
outcome. 

A 100% confidence interval for the mean is [50, 50]. However, the probability that X is equal to 
the mean of its distribution, 50, is approximately 0.08. A 95% prediction interval for the outcome X 
is [40, 60]. This prediction interval cannot be shortened without reducing the coverage probability. 
The inherent variability in the outcomes is termed process variability. 

Suppose now that we do not know the true probability of a head, p, perhaps because the coin, or 
the method by which it is tossed is in some way not fair. Before the coin is tossed 100 times, a 
preliminary observation is made: it is tossed 20 times to get an estimate of the probability p.   

Let’s say that 10 heads are observed. Now the estimate of the probability of a head in one toss 
(10/20 = 0.5) is just that—an estimate. It is uncertain.  
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We can create a confidence interval (CI) for p and also for the mean number of heads in 100 
tosses (100p). The CI is an interval around the estimated mean, 50. This confidence interval is not 
the same as a prediction interval for the outcome from 100 tosses.  

The risk you’re exposed to is the risk of the process, not the mean of the process (you don’t pay 
the mean). Hence, even when the model is known, adequate risk capital is derived from the process 
variability. However, estimated process variability is insufficient—because the parameters are 
unknown. Our estimates are not equal to the true values, so we must also account for parameter 
uncertainty.  

A prediction interval includes process variability and is therefore wider than a confidence interval. 
A confidence interval is an interval for a parameter, which is a constant (though unknown), while a 
prediction interval is for a random variable. The liability on a line of business is a random variable, 
not a parameter. 

Predictive variance (the average variation between the predicted value and the actual outcome) is 
the sum of process variance and the variance of the parameter estimate (parameter uncertainty).  

A 95% prediction interval for the number of heads in 100 tosses will be wider than [40, 60] 
(which accounts for process variability alone). For example, it might be, say [35, 65]. This interval 
could only be reduced to at best [40, 60] through additional sampling to reduce the parameter 
uncertainty.  But you cannot make a 95% prediction interval narrower than [40, 60] in this 
circumstance—only the parameter uncertainty can be reduced. 

Consider another situation with the same mean. A fair roulette wheel, numbered 0, 1, 2, 3,....., 
100 is spun only once, and let R be the random variable that represents the outcome. The mean of R 
is 50, and its standard deviation is about 29. There is no uncertainty about the variability in the 
outcome. The probability that R=50 is 1/101. 

A 100% confidence interval for the mean is [50, 50], as it was for the fair coin (no parameter 
uncertainty). A 95% prediction interval for the outcome R is [3, 98] (there are several such intervals of 
equal width). 

Each process (fair coin and balanced roulette wheel) has the same mean, or if you like the same 
“best estimate.” But the wheel requires more risk capital. 

Reserve Ranges 

In some countries, a “range” for reserving relates to uncertainty in the mean. As we have seen, a 
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confidence interval can be produced by considering the uncertainty in the mean arising from 
parameter uncertainty. In some other countries, reserve calculations will incorporate process 
uncertainty and consider predictive distributions. In some cases a one-sided interval may be 
required. More sophisticated approaches can formally incorporate several additional sources of 
uncertainty into either kind of interval, but consideration of these is beyond the scope of this paper. 
When some important components of uncertainty are not formally introduced into the calculations, 
the upper ends of ranges implied by the statistical intervals (whether confidence intervals or 
prediction intervals) would be lower bounds on the required endpoints (and conversely where lower 
ends of ranges are required). 

Risk Capital 

It is important to recognize that the insurer is exposed to the loss process itself, not its mean. 
That risk includes process risk, and in order to hold risk capital adequate to cover the risk faced, 
process risk must be included in calculations. This implies that prediction intervals, rather than 
confidence intervals, are the appropriate starting point. 

Reliance on Assumptions 

When the assumptions of the model are reasonable, the derived interval estimates will be suitable 
inputs to reserving and risk-capital calculations. Conversely, when model assumptions are not met, 
derived intervals may have nothing like the desired properties. It is important to see that the model 
for the past is a reasonable description, and that the model for the future contains any relevant 
information about how that may change.  

It is unfortunately the case that many models that have been used in loss reserving frequently fail 
to describe the data. We illustrate this problem by predicting the final calendar year (without using it 
in the estimation) and showing that the prediction intervals don’t behave as they should if the model 
was adequate. It would seem that being able to predict the past is at least a minimum requirement 
for a model. If we cannot predict the past, on what basis can we assert we are able to predict the 
future? 

SECTION 2: A BASIC PREDICTION PROBLEM 

The simplest prediction problem illustrates many of the issues. Consider the following example.  

We have n observations   Y1, ... Yn  ~ F(µ,σ2). 

Equivalently, Yi = µ + εi     εi ~ F(0, σ2). 
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The next 
observation 
might lie 
down here, or 
up here.

While for sufficiently large samples, the distribution may not be critical for a confidence interval, 
it becomes important in the case of prediction intervals, since the observation being predicted will 
come from that distribution. In order to deal with prediction, we either need to make a distributional 
assumption (and check it), or use some methodology—such as the bootstrap—that allows us to deal 
(at least approximately) with the distribution.  

Now we want to forecast another observation, Yn+1 ( = µ + εn+1).   

So we have: 

         Y^n+1 = µ^ + ε^n+1    ( ε
^

n+1 is the forecast of the error term) 

 = µ^ + 0  . 

That is, our best estimate of the next observation is exactly equal to our current estimate of the 
mean. 

Case (i): The mean, µ, is known: 

Y
^

n+1 = µ + 0. 

This is equivalent to the case where we knew the coin was fair. Even though we know everything 
about the process, in predicting Yn+1, we are predicting a random quantity. 

 

 

 

 

 

The variance of the prediction of Yn+1 is: 

Var(µ) + Var(εn+1) = 0 + σ2. 
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It is important to remember that the risk to the business is not simply from the uncertainty in the 
mean—for example, the value at risk is related to the amount you will actually pay, not its mean.  

Even when the mean is known exactly, there is still underlying process uncertainty (with 100 
tosses of a fair coin, might get 46 heads or 57 heads).  

It doesn’t really make sense to talk about a mean (or any other aspect of the distribution) in the 
absence of a probabilistic model—otherwise what distribution is it the mean of? Without some kind 
of model we cannot even be clear what we’re talking about. 

With loss modeling, you design a model to describe what’s going on with the data. Assumptions 
need to be explicit so that you can check that the distribution is consonant with the data. 

In our motivating example, you would not want to use the coin model if your data was actually 
coming from the roulette wheel. 

Given a suitable model, in practice we simply won’t know the mean or other relevant 
parameters—we only have a sample to tell us about them. (For simplicity we confine our attention 
to the mean in this discussion.) 

Case (ii): The mean, µ, is unknown. 

The best estimate for the next observation is still the mean, but we now have to estimate it. This 
estimate is based on past values and is not exactly equal to the actual underlying population mean — 
even with a perfect model due to the effects of random variation, the estimate will differ from the 
underlying value. 

While the estimate is uncertain, we can obtain an estimate of the uncertainty, if the model is a 
good description. So we will have an estimate of the mean and we’ll also be able to get a confidence 
interval for the mean. 

This interval is designed so that if we were able to re-run history (re-toss our coin, respin our 
roulette wheel), many times, the intervals we generate will include the unknown mean a given 
fraction of the time. 

If the model doesn’t describe the data, however, the confidence interval may not have anything 
close to required probability coverage. 
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Confidence interval for the mean of the coin model  

Again, we count how many heads in 100 tosses, but we have a small sample (20 tosses) with 
which to assess the probability of a head. As mentioned before, let’s assume that we observe 10 
heads (to keep the mean prediction unchanged). 

Obtaining 10 heads in 20 tosses yields p^ = ½.     µ^  = 100. p^  = 50. 

Var(µ^) = 1002 Var(p^ ) = 1002 ½. ½. /20 = 11.182. 

An approximate 95% CI for the mean, µ is 

µ^ ± 1.96 s.e.(µ^ )  ≈ (29, 71). 

Note that the interval here can be based on a normal approximation, due to the central limit 
theorem. (If the distribution is sufficiently skewed or heavy tailed, the sample may need to be larger 
for the normal approximation to be reasonable, but in the case of the binomial with p not too far 
from 0.5, a sample of 20 should be plenty). 

Now we again want to look at a prediction interval, but here with an estimated mean. 

We want to predict a random outcome where we don’t know the mean. (In this example we 
assume the variance is known. In many practical cases uncertainty in the variance does not greatly 
alter the limits of intervals.) 

To understand your business you need to understand the actual risk of the process, not just the 
risk in the estimate of the mean. 

Let’s revisit the simple model Yn+1 = µ  + εn+1: 

 Y
^

n+1 = µ^ + ε^ 
n+1 . 

Now µ is unknown. So Y^n+1  = µ^  + 0. 

Variance of forecast  

    = Var (µ^) + Var(εn+1)  

    =  σ2/n    +     σ2 . 

(In practice, σ2 is replaced by its estimate, of course. We are ignoring the parameter uncertainty in 
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the variance for the present discussion.) 

Now imagine that the distribution, F, is normal. The next observation might lie   

 

 

down here, or up here.  (While we’ve assumed normality here, the issues in the diagram apply 
more widely.) 

In the coin experiment, the predictive distribution is approximately normal.  

Yn+1 is the number of heads on our next run of 100 tosses. Its predictive variance is  

Var(Yn+1| µ =  µ^ )+Var(µ^) = 100  ½. ½ + 1002 ½. ½. /20 = 12.252 

So an approximate 95% CI for the forecast Yn+1 is  

  Y^n+1 ± 1.96 s.e.( Y^n+1)  ≈ (26,74). 

An alternative way to look at the predictive variance 

Here we derive the predictive variance as the variance of the prediction error. 

    Prediction error = Yn+1—Y
^

n+1.   

    Predictive variance   = Var(prediction error) 

 = Var(Yn+1— Y
^

n+1)  

 = Var(Yn+1 ) + Var(  Y^n+1)—2 Cov (Yn+1, Y
^

n+1)  

 = Var(Yn+1 ) + Var(  Y^n+1)—0 

 = Var(Yn+1 ) + Var(  Y^n+1)  

Distribution of µ used for CI  - relates to “range” for mean 
 

Fitted distribution   
 

Prediction interval for µ unknown – relates to “range” for   
                                                         future observed 
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 = process variability + parameter uncertainty. 

Note that this result only relies on the fact that Cov (Yn+1, Y
^

n+1) = 0, which, for example, occurs 
when observations are independent (since then the forecast Y

^
n+1 is a function of only past 

observations, while Yn+1 is a future observation, which will be independent of it) and the result 
follows. 

With more complex models the calculation of the variance of the estimate of the mean is more 
complicated, but the principle remains the same. 

Confidence intervals vs. Prediction intervals—a basic loss example 

Let’s look at some real long-tail data that has been inflation-adjusted and then normalized for a 
measure of exposure. This is the CTP data that was analyzed in Barnett and Zehnwith (2000).  

 

 

 

 

 

 

 

 

We see a clear runoff pattern against development year. In this instance the trends in the 
accident-year and calendar-year directions sufficiently small that we can ignore them for illustrative 
purposes. 

Note that in the figure above, the points have a tendency to “clump” just below the mean and be 
more spread out above the mean—the normalized data is skewed to the right. 

On the log-scale this skewness disappears, and the variance is pretty stable across years. The 
skewness is removed so the values appear much more symmetric about center and the spread looks 
fairly constant. 

 

Normalised vs Dev. Year

0 1 2 3 4 5 6 7 8

500

1,000

1,500

2,000

2,500

3,000



Meaningful Intervals 

Casualty Actuarial Society Forum, Fall 2008 25 
 

 

 

Consider a single development—say DY 3: 

AY Normalized Log 

1 1,489 7.306 

2 1,606 7.381 

3 1,087 6.991 

4 1,628 7.395 

5 1,178 7.072 

6 1,118 7.019 

7 1,761 7.474 

8 972 6.879 

 

The maximum likelihood estimates of µ and σ are 7.190 and 0.210, respectively. 

(NB: the MLE of σ is sn, the standard deviation with the n denominator, not the more common 
sn-1). 

Assuming a random sample from a process with constant mean, we would predict the mean for 
next value as 7.190. However, without some indication of its accuracy, this is not very helpful.  

A 95% confidence interval for µ is: (7.034, 7.345). 

Log-Normalised vs Dev. Year
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Prediction: 

Recall that the predictive variance is Var(µ^ ) + Var(εn+1)   

( = parameter uncertainty + process var).  

A 95% prediction interval for Yn+1 is (6.75,7.63). See the figure below. 

 

 

 

 

 

 

 

 

 

The intervals here are fairly wide. More data reduces parameter uncertainty (e.g., more than 20 
tosses of the coin in the earlier trial would make the intervals smaller). In some cases you can go 
back and get more loss data and eventually you’ll have another year of data. However, process 
variability doesn’t reduce with more data—it’s an aspect of the process. We can measure it more 
accurately, but the thing we’re measuring is not changing. 

Log-Normalized vs Dev Year
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As we can see in the figure below, nearby developments are related: if DY 3 was all missing, you 
could take a fair guess at where it was. 

 

 

 

 

 

 

 

So in this case we do have more data!  

To take full advantage of this, we need a model to relate the development years. Even just fitting 
line through DY2-4 has a reasonably large effect on the width of the confidence interval (the grey bars 
shift inward, to the black bars).   

 

 

 

 

 

 

 

However, it only changes the prediction interval by ~2%—so calculated VaR hardly changes. 

Note that so far this prediction interval is on the log scale. To take a prediction interval back to the 
normalized-dollar scale, we just back-transform the endpoints of the prediction interval. To produce 
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a confidence interval for the mean on the normalized-dollar scale is harder. We can’t just backtransform the 
limits on the confidence interval—that’s going to give an interval for the median, not the mean. 
However, we can scale the interval for the median to produce an interval for the mean. 

Further, to convert the interval for these scaled dollars to original dollars, we need to re-scale the 
interval for the inflation and exposures. 

There are some companies around for whom (for some lines of business) the process variance is 
very large—some have a coefficient of variation near 0.6 (so the standard deviation is > 60% of the 
mean). That’s just a feature of the data. You may not be able to control it, but you sure need to know 
it.  

Why take logs? 

Taking logs tends to stabilize variance. Multiplicative effects (percentage changes, including 
economic effects such as inflation) become additive. Exponential growth or decay becomes linear. 
Skewness is usually eliminated. Distributions tend to look near normal, making least squares 
reasonable. Using logs is a familiar way of dealing with many of these issues—indeed, it’s standard in 
many parts of finance. 

Note that for these benefits to work, we have to take logs of incremental figures (such as 
incremental paid), rather than cumulative paid or incurred losses. For example, inflation in the past 
period affects payments now, but not past payments—so cumulatives (which are also present in 
incurred figures) will contain a mix of payments across past rates. 

SECTION 3: DIAGNOSTIC DISPLAYS FOR CHAIN LADDER MODELS 

In this section we consider two models that reproduce chain ladder forecasts, the regression 
model (Mack model, Mack, 1993) and the quasi-Poisson GLM (Hachemeister and Stanard, 1975, 
and apparently independently by Renshaw and Verrall, 1994). 

Many common regression diagnostics for model adequacy relate to analysis of residuals, 
particularly residual plots. In many cases these work very well for examining many aspects of model 
adequacy. When it comes to assessing predictive ability, the focus should, where possible, shift to 
examining the ability to predict data not used in the estimation. In a regression context, a subset of 
the data is held aside and predicted from the remainder. Generally the subset is selected at random 
from the original data. However, in our case, we cannot completely ignore the time-series structure 
and the fact that we’re predicting outside the range of the data. Our prediction is always of future 
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calendar time. Consequently the subsets that can be held aside and assessed for predictive ability are 
those at the most recent time periods. 

This is common in analysis of time series. For example, models are sometimes selected so as to 
minimize one-step-ahead prediction errors. See, for example, Chatfield (2000). 

Out of sample predictive testing 

The critical question for a model being used for prediction is whether the estimated model can 
predict outside the sample used in the estimation. Since the triangle is a time series, where a new 
diagonal is observed at each calendar period, prediction (unlike predictions for a model without a 
time dimension) is of calendar periods after the observed data. To do out-of-sample tests of 
predictions, it is therefore important to retain a subset of the most recent calendar periods of 
observations for post-sample predictive testing. We refer to this post-sample-predictive testing as 
model validation (note that some other authors use the term to mean various other things, often 
related to checking the usefulness or appropriateness of a model). 

Imagine we have data up to time t. We use only data up to time t–k to estimate the model and 
predict the next k periods (in our case, calendar periods), so that we can compare the ability of the 
model to predict actual observations not used in the estimation. We can, for example, compute the 
prediction errors (or validation residuals), the difference between observed and predicted in the 
validation period. If these prediction errors are divided by the predictive standard error, the resulting 
standardized validation residuals can be plotted against time (calendar period most importantly, and 
also accident and development period), and against predicted values, (as well as against any other 
likely predictor), in similar fashion to ordinary residual plots. Indeed, the within-sample residuals and 
“post-sample” predictive errors (validation residuals) can be combined into a single display. 

One step ahead prediction errors are related to validation residuals, but at each calendar time step 
only the next calendar period is predicted; then the next period of data is brought in and another 
period is predicted. 

In the case of ratio models such as the chain-ladder, prediction is only possible within the range 
of accident and development years used in estimation, so out of sample prediction cannot be done 
for all observations left out of the estimation. The use of one step ahead prediction errors 
maximizes the number of out-of-sample cases that have predictions. Further, when reserving, the 
liability for the next calendar period is generally a large portion of the total liability, and the liability 
estimated will typically be updated once it is observed; this makes one-step-ahead prediction errors a 
particularly useful criterion for model evaluation when dealing with ratio models like the chain 
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ladder. 

For a discussion of the use of out of sample prediction errors and in particular one-step-ahead 
prediction errors in time series, see Chatfield (2000), chapter 6. 

For many models, the patterns in residual plots when compared with the patterns in validation 
residuals or one step ahead prediction errors appear quite similar. In this circumstance, ordinary 
residual plots will generally be sufficient for identifying model inadequacy.  

Critically, in the case of the Poisson and quasi-Poisson GLM that reproduce the chain ladder, the 
prediction errors and the residuals do show different patterns. 

Illustration: 

This data was used in Mack (1994). The data are incurred losses for automatic facultative business 
in general liability, taken from the Reinsurance Association of America’s Historical Loss 
Development Study. 

If we fit a quasi- (or overdispersed) Poisson GLM and plot standardized residuals against fitted 
values, the plot appears to show little pattern: 

StdRes vs Increm Fit
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However, if we plot one step ahead prediction errors (scaled by dividing the prediction errors by µ^ 
½ ) 

against predicted values, we do see a distinct pattern of mostly positive prediction errors for small 
predictions with a downward trend toward more negative prediction errors for large predictions: 
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Prediction errors above have not been standardized to have unit variance. The underlying quasi-
Poisson scale parameter would have a different estimate for each calendar-year prediction; it was felt 
that the additional noise from separate scaling would not improve the ability of this diagnostic to 
show model deficiencies. On the other hand, using a common estimate across all the calendar 
periods would simply alter the scale on the right-hand side without changing the plot at all, and has 
the disadvantage that for many predictions you’d have to scale them using “future” information. On 
the whole it seems prudent to avoid the scaling issue for this display, but as a diagnostic tool, such 
scaling is not a major issue. 

This problem of quite different patterns for prediction errors and residuals does not generally 
occur with the Mack formulation of the chain ladder, where ordinary residuals are sufficient to 
identify this problem: 

Wtd Std Res vs Fitted
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As noted in Barnett and Zehnwirth (2000), this downward trend is caused by a simple failure of 
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the ratio assumption—it is not true that E(Y|X) = βX, as would be true of any model where the 
next cumulative is assumed to be (on average) a multiple of the previous one. (For this data, the 
relationship between a cumulative and the previous cumulative does not go through the origin.) 

The above plot is against cumulatives because in the Mack formulation, that’s what is being 
predicted. (Note that the quasi-Poisson GLM residuals vs. cumulative fitted rather than incremental 
fitted still looks flat.) 

Why is the problem obvious in the residuals for the Mack version of the chain ladder model, but 
not in the plots of GLM residuals vs. fitted (either incremental or cumulative)?  

Even though the two models share the same prediction function, the fitted values of the two 
models are quite different. 

On the cumulative scale, if X is the most recent cumulative (on the last diagonal) and Y is the 
next (future) one, both models have the prediction-function E(Y|X) = βX.  

However, within the data, while the Mack model uses the same form for the fit—E(Y|X) = βX, 
the GLM does not—you can write it as E(Y) = βE(X), which seems similar enough that it might be 
imagined it would not make much difference, but the right-hand side involves “future” values not 
available to predictions. This allows the fit to “shift” itself to compensate, so you can’t see the 
problem in the fits. However, the out-of-sample prediction function is the same as for the Mack 
formulation, and so the predictions from the GLM suffers from exactly the same problem—once 
you forecast future values, you’re assuming E(Y|X) = βX for the future—and this assumption 
needs to be checked! It cannot be assessed using a within-data (residual) analysis of the GLM; it needs 
to be assessed by checking the actual assumption, whether via use of prediction residuals, or by 
checking Mack residuals. 

Adequate model assessment of quasi-Poisson GLMs therefore requires the use of some form of 
out-of-sample prediction, and because of the structure of the chain ladder, this assessment seems to 
be best done with one-step-ahead prediction errors. For many other models, such as the Mack 
model, this would be useful but not as critical, since we can identify the problem even in the 
residuals. 

SECTION 4: THE BOOTSTRAP 

The bootstrap is, at heart, a way to obtain an approximate sampling distribution for a statistic 
(and hence, if required, produce a confidence interval). Where that statistic is a suitable estimator for 
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a population parameter of interest, the bootstrap enables inferences about that parameter. In the 
case of simple situations the bootstrap is very simple in form, but more complex situations can also 
be dealt with. The bootstrap can be modified in order to produce a predictive distribution (and 
hence, if required, prediction intervals). 

It is predictive distributions that are generally of prime interest to insurers (because they pay the 
outcome of the process, not its mean). The bootstrap has become quite popular in reserving in 
recent years.  

The bootstrap does not require the user to assume a distribution for the data. Instead, sampling 
distributions are obtained by resampling the data.  

However, the bootstrap certainly does not avoid the need for assumptions, nor for checking 
those assumptions. The bootstrap is far from a cure-all. It suffers from essentially the same 
problems as finding predictive distributions and sampling distributions of statistics by any other 
means. These problems are exacerbated by the time-series nature of the forecasting problem—
because reserving requires prediction into never-before-observed calendar periods, model 
inadequacy in the calendar-year direction becomes a critical problem. In particular, the most popular 
actuarial techniques—those most often used with the bootstrap—don’t have any parameters in that 
direction, and are frequently mis-specified with respect to the behavior against calendar time. The 
bootstrap does not solve this problem. 

Further, commonly used versions of the bootstrap can be sensitive to overparameterization—and 
overparameterization is a common problem with standard techniques. 

A basic bootstrap introduction 

The bootstrap was devised by Efron (1979), growing out of earlier work on the jackknife. He 
further developed it in a book (Efron, 1982), and various other papers. These days there are 
numerous books relating to the bootstrap, such as Efron and Tibshirani (1994). A good introduction 
to the basic bootstrap may be found in Moore et al. (2003); it can be obtained online. 

The original form of the bootstrap is where the data itself is resampled, in order to get an 
approximation to the sampling distribution of some statistic of interest, so an inference can be made 
about a corresponding population statistic. 

For example, in the context of a simple model E(Xi) = µ, i = 1, 2, … , n, where the Xs assumed 
to be independent, the population statistic of interest is the mean, µ, and the sampling statistic of 
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interest would typically be the sample mean,⎯x .  

Consequently, we estimate the population mean by the sample mean (µ̂ =⎯x ) —but how good is 
that estimate? If we were to collect many samples, how far would the sample means typically be 
from the population mean? 

While that question could be answered if we could directly take many samples from the 
population, typically we cannot resample the original population again. If we assume a distribution, 
we could infer the behavior of the sample mean from the assumed distribution, and then check that 
the sample could reasonably have come from the assumed distribution.  

(Note that rather than needing to assume an entire distribution, if the population variance were 
assumed known, we could compute the variance of the sample mean, and given a large enough 
sample, we might consider applying the central limit theorem (CLT) in order to produce an 
approximate interval for the population parameter, without further assumptions about the 
distributional form. There are many issues that arise. One such issue is whether or not the sample is 
large enough—the number of observations per parameter in reserving is often quite small. Indeed, 
many common techniques have some parameters whose estimates are based on only a single 
observation! Another issue is that to be able to apply the CLT we assumed a variance—if instead we 
estimate the variance, then the inference about the mean depends on the distribution again. As the 
sample sizes become large enough that we may apply Slutsky’s theorem, then for example a t-
statistic is asymptotically normal, even though in small samples the t-statistic only has a t-distribution if 
the data were normal. Lastly, and perhaps most importantly when we want a predictive distribution, the 
CLT generally cannot help.) 

In the case of bootstrapping, the sample is itself resampled, and then from that, inferences about 
the behavior of samples from the population are made on the basis of those resamples. The 
empirical distribution of the original sample is taken as the best estimate of the population 
distribution. 

In the simple example above, we repeatedly draw samples of size n (with replacement) from the 
original sample, and compute the distribution of the statistic (the sample mean) of each resample. 
Not all of the original sample will be present in the resample—on average a little under 2/3 of the 
original observations will appear, and the rest will be repetitions of values already in the sample. A 
few observations may appear more than twice. 

The standard error, the bias and even the distribution of an estimator about the population value 
can be approximated using these resamples, by replacing the population distribution, F by the 
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empirical distribution Fn. 

For more complex models, this direct resampling approach may not be suitable. For example, in 
a regression model, there is a difficulty with resampling the responses directly, since they will 
typically have different means. 

For regression models, one approach is to keep all the predictors with each observation and 
sample them together. That is, if X is a matrix of predictors (sometimes called a design matrix) and y is 
a data-vector, for the multiple regression model Y = X β + ε , then the rows of the augmented 
design matrix [X|y] are resampled. (This is particularly useful when the Xs are thought of as 
random.) 

A similar approach can be used when computing multivariate statistics, such as correlations. 

Another approach is to resample the residuals from the model. The residuals are estimates of the 
error term, and in many models the errors (or in some cases, scaled errors) at least share a common 
mean and variance. The bootstrap in this case assumes more than that—they should have a 
common distribution (in some applications this assumption is violated).  

In this case (with the assumption of equal variance), after fitting the model and estimating the 
parameters, the residuals from the model are computed: ei = yi—ŷ i, and then the residuals are 
resampled as if they were the data.  

Then a new sample is generated from the resampled residuals by adding them to the fitted values, 
and the model is fitted to the new bootstrap sample. The procedure is repeated many times.  

Forms of this residual resampling bootstrap have been used almost exclusively in reserving, even 
when the other form of the bootstrap could be used. 

If the model is correct, appropriately implemented residual resampling works. If it is incorrect, 
the resampling scheme will be affected by it, some more than others, though in general the size of 
the difference in predicted variance is small. More sophisticated versions of this kind of resampling 
scheme, such as the second bootstrap procedure in Pinheiro et al. (2003) can reduce the impact of 
model misspecification when the prediction is, as is common for regression models, within the range 
of the data.  However, the underlying problem of amplification of unfitted calendar-year effects 
remains, as we shall see. 

For the examples in this paper we use a slightly augmented version of  Sampler 2 given in Pinheiro 
et al.—the prediction errors are added to the predictions to yield bootstrap-simulated predictive 
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values, so that we can directly find the proportion of the bootstrap predictive distribution below the 
actual values in one-step-ahead predictions. 

In the case of reserving, the special structure of the problem means that while often we predict 
inside the range of observed accident years, and usually also within the range of observed 
development years, we are always projecting outside the range of observed calendar years—precisely 
the direction in which the models corresponding to most standard techniques are inadequate.  

As a number of authors have noted, the chain ladder models the data using a two-way cross-
classification scheme (that is, like a two-way main-effects ANOVA model in a log-link). As 
discussed in Barnett et al. (2005), this is an unsuitable approach in the accident and development 
direction, but the issues in the calendar direction are even more problematic. Even the more 
sophisticated approaches to residual resampling can fail on the reserving problem if the model is 
unsuitable.  

Assessing bootstrap prediction intervals  

When calculating predictive distributions with the bootstrap, we can in similar fashion make plots 
of standardized prediction errors against predicted values and against calendar years. Of course, 
since the prediction errors are the same, the only change would be a difference in the amount by 
which each prediction error is scaled (since we have bootstrap standard errors in place of asymptotic 
standard errors from an assumed model); the broad pattern will not change, however, so the plot 
based on asymptotic results are useful prior to performing the bootstrap. 

Since we can produce the entire predictive distribution via the bootstrap, we can evaluate the 
percentiles of the omitted observations from their bootstrapped predictive distributions—if the 
model is suitable, the data should be reasonably close to “random” percentiles from the predictive 
distribution. This further information will be of particular interest for the most recent calendar 
periods (since the ability of the model to predict recent periods gives our best available indication if 
there is any hope for it in the immediate future—if your model cannot predict last year you cannot 
have a great deal of confidence in its ability to predict next year). 

We could look at a visual diagnostic, such as the set of predictive distributions with the position 
of each value marked on it, though it may be desirable to look at all of them together on a single 
plot, if the scale can be rendered so that enough detail can be gleaned from each individual 
component. It may be necessary to “summarize” the distribution somewhat in order to see where 
the values lie (for example, indicating 10th, 25th, 50th, 75th, and 90th percentiles, rather than showing 
the entire bootstrap density). In order to more readily compare values it may help to standardize by 
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subtracting the mean and dividing by the standard deviation, though in many cases, if the means 
don’t vary over too many standard deviations, simply looking at the original predicted values on 
(whether on the original scale or on a log scale) may be sufficient—sometimes a little judgment is 
required as to which plot will be most informative. 

SECTION 5: EXAMPLES 

Example 1 

ABC data is workers compensation data for a large company. This data was analyzed in some 
detail in Barnett and Zehnwirth (2000).  

In this example we actually use the bootstrap predictions discussed in the basic bootstrap 
introduction above, based on the second algorithm from Pinheiro et al. (2003). Below are the 
predictive distributions for the first two values (after DY0) for the last diagonal, for a quasi-Poisson 
GLM fitted to the data prior to the final calendar year, which was omitted. The brown arrows mark 
the actual observation that the predictive distribution is attempting to predict. 

ABC Predictive distribution for last diagonal - histograms 
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For the two distributions shown, the observed values sit fairly high. For a single observation, this 
might happens by chance, even with an appropriate model, of course. 

The runoff decreases sharply for this triangle, so most of this information in the histograms 
would be lost if we looked at them on a single plot. Consequently, for a more detailed examination, 
the bootstrap results are reduced to a five-number summary (in the form of a boxplot) of the 
percentiles:  
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ABC  Predictive distribution for last diagonal—box and whisker plots 
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The actual payments for the first seven development periods are all very high, but it’s a little hard 
to see the details in the last few periods. Let’s look at them on the log-scale: 
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Bootstrap Pred. Dist & Obs vs DY
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Now we can see that in all cases the observations sit above the median of the predictive 
distribution, and all but the last two are above the upper quartile. 

Below is a summary table of the bootstrap distribution for the final calendar year: 

ABC:  Bootstrap Predictive distributions for last calendar year 
DY Actual 10% 25% 50% 75% 90% % ≤obs 

0 496200             
1 590400 509620 525430 542150 562070 583270 93.9
2 375400 306580 315890 326600 337060 351080 99.6
3 190400 148750 155240 161520 169110 176290 98.9
4 105600 77760 81850 86220 91330 97340 99.2
5 82400 51050 54270 57740 61590 65730 100
6 51000 37440 40300 43360 46950 51380 89.3
7 38000 25490 27940 30770 33680 37110 92
8 27400 19430 21920 24540 27840 30970 72.9
9 18000 11930 14210 16460 19630 23450 63.9

10 12200             

So what’s going on? Why is this predicting so badly? 

We would see via one-step-ahead prediction errors that there’s a problem with the assumption of 
no calendar-period trend; alternatively, as we noted earlier, we simply can look at residuals from a 
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Mack-style model and get a similar impression: 

Wtd Std Res vs Cal. Yr
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There is a strong trend-change in the calendar-year direction. Consequently, predictions of the 
last calendar year will be too low. One major difficulty with the common use of the chain ladder in 
the absence of careful consideration of the remaining calendar-period trend is that there is no 
opportunity to apply proper judgment of the future trends in this direction. The practitioner lacks a 
context for seeking all the information relevant to scenarios for future behavior. 

Example 2—LR high 
As we have seen, we can look at diagnostics, which would have allowed us to assess before we try to 

produce bootstrap prediction intervals whether we should proceed. 

Here are the standardized residuals vs. calendar years from a Mack-style chain ladder fit. As you 
can see, there’s a lot of structure.  
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Wtd Std Res vs Cal. Yr
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There’s also structure in the quasi-Poisson GLM formulation of the chain ladder— residuals 
show there are strong trend changes in the calendar-year direction: 

 

However, as we described before, this residual plot gives the incorrect impression that the GLM 
is underpredicting. This impression is incorrect, as we see by looking at the validation (one step 
ahead predictions) for the last year: 
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 Predicted and Actual (CY:90) vs DY.
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It’s a little hard to see detail over on the right, so let’s look at the same plot on the log scale: 

 Predicted and Actual (CY:90) vs DY.
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The Mack-model residual plot gave a good indication of the predictive performance of the chain 
ladder (bootstrapped or not) for both the Mack model and the quasi- (overdispersed) Poisson GLM. 
It’s always a good idea to validate the last calendar year (look at one-step-ahead prediction errors), 
but a quick approximation of the performance is usually given by examining residuals from a Mack-
chain ladder model. 
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 St.Res vs DY.
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A further problem with the GLM is revealed by the plot of residuals vs. development year. The 
assumed variance function does not reflect what’s in the data—and hence the prediction intervals 
cannot be correct: 

 

Example 3 

The next example has been widely used in the literature relating to the chain ladder. Indeed, 
Pinheiro et al. (2003) referred to it as a “benchmark for claims reserving models.” The data come 
from Taylor and Ashe (1983).  

Here are the bootstrap predictive means and s.d.s for the last diagonal (i.e., with that data not 
used in the estimation) for a quasi-Poisson GLM, and the actual payments for comparison: 

DY: 1 2 3 4 5 6 7 8 
CL pred 931994 1000686 1115232 482991 325851 443060 231680 309629
mean: 958887 1021227 1114169 490137 328453 452636 242346 327365
stdev: 452285 331706 318026 195225 156289 200080 152170 227644
actual: 986608 1443370 1063269 705960 470639 206286 280405 425046

Firstly, there is an apparent bias in the bootstrap means. The chain ladder predictions sit below 
the bootstrap means, indicating a bias. Since, the ML for a Poisson is unbiased, if the model is 
correct, these predictions should be unbiased. This doesn’t necessarily indicate a bad predictive model, 
but is there anything going on?  

In fact there is, and we can see problems in residual plots.  
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Here is a plot of the residuals vs. calendar year from a Mack-type fit: 

Wtd Std Res vs Cal. Yr
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Strong calendar-period effects are evident in the last few years. The existence of a calendar-period 
effect was already noted by Taylor and Ashe in 1983 (who included the late calendar-year effect in 
some of their models), but it has been ignored by almost every author to consider this data since. If 
the trend were to continue for next year, the forecasts may be quite wrong. If we didn’t examine the 
residuals, we may not even be aware that this problem is present. 

Exactly the same effect appears when fitting a quasi-Poisson two-way cross classification with 
log-link: 
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There’s a benefit in examining Mack residuals before fitting a quasi-Poisson GLM—the residuals 
are a little easier to produce, and the plot of residuals vs. fitted has more information about the 
predictive ability of the model. 

Some other considerations 

All chain ladder-reproducing models (including both the quasi-Poisson GLM and the Mack 
model) must assume that the variance of the losses is proportional to the mean (or they will 
necessarily fail to reproduce the chain ladder). This assumption is found to be rarely tenable in 
practice—as we saw in example 2—and for an obvious reason. While it can make sense with claim 
counts—for example, when the counts are higher on average they also tend to be more spread but 
with lower coefficient of variation. If the counts happen to be Poisson-distributed, the variance will 
be proportional to the mean (in fact equal to it). Heterogeneity or  various forms of dependence in 
claim probabilities can make the Poisson untenable even for claim numbers. But with claim 
payments, the amount paid on each claim is itself a random variable, not a constant, and variable 
claim payments will make the variation increase faster than the mean. Simple variation in claim size 
(such as a constant percentage change, whether due to inflation effects or change in mix of business 
or any number of other effects) will make the variance increase as the square of the mean, while 
claim size effects that vary from policy to policy can make it increase still faster. Dependence in 
claim size effects across policies can make it increase faster again. Consequently the chain ladder 
assumption of variance proportional to mean must be viewed with a great deal of caution and 
carefully checked. 
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The chain ladder model is overparameterized. It assumes, for example, that there is no 
information in nearby development periods about the level of payments in a given development, yet 
the development generally follows a fairly smooth trend—indicating that there is information there, 
and that the trend could be described with few parameters. This overparameterization leads to 
unstable forecasts. 

Finally, in respect of the bootstrap, the sample statistic may in some circumstances be very 
inefficient as an estimator of the corresponding population quantities. It would be prudent to check 
that it makes sense to use the estimator you have in mind for distributions that would plausibly 
describe the data.  

SECTION 6: DEALING WITH OBSERVED MODEL INADEQUACY 

As we have seen, the chain ladder models considered so far don’t predict well with the data 
triangles we looked at—even though two of them are “standards” for illustrating ratio models.   

Calendar-period trend changes 

Pattern in the plot of residuals or prediction residuals vs. calendar period indicates calendar-
period trend changes. 

As we have seen, calendar-period trend changes do show up in real data. Further, because 
substantive changes don’t generally occur frequently (such as every year or two), but more 
occasionally, changed rates may sometimes be expected to continue for some period (though it 
depends on the cause of the change—for example, with the triangle ABC, the cause of the calendar-
period trend change was a known change in legislation, for which the higher identified rate was not 
expected to continue; in that case the projections of a ratio method will be too high after the rate 
drops back. It has sometimes been stated that ratio methods project at an average of past calendar-
period rates, but in fact it is not the case that there is a single rate at which future observations are 
being inflated. Even if it were true, whether the new rate is to continue or discontinue, an average 
rate would be unsuitable. 

Changing inflation can be modeled properly with calendar-year parameters. However, we must 
beware—the loglinear quasi-Poisson GLM cannot be readily modified in this way. That is, while it is 
possible to add calendar-year parameters to the GLM (it’s no longer chain ladder, of course), the 
new model is demonstrably unsuitable for inflated payment data. Imagine a triangle with no inflation 
that otherwise meets the assumptions of the loglinear quasi-Poisson GLM. Now construct a new 
triangle from the old that has constant nonzero inflation in the last four calendar periods—say 
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running at 10% per period. Note that Var(k.X) = k2.Var(X). The variance of the inflated 
observations increases as the square of the factor by which they are inflated. But the quasi-Poisson 
model requires that the variance increase proportional to the mean, so the model requires Var(k.X) 
= k.Var(X). Since there will be a different factor (“k”) for each calendar period in the inflating 
region, this model cannot be consistent with the data.  

Trend in the one-step-ahead prediction residuals vs. predicted plot 

When there are no changing calendar-period trends, trend in the plot of one-step-ahead 
prediction residuals vs. predicted values often occurs, and indicates a model inadequacy. In the case 
of the loglinear quasi-Poisson GLM, this pattern does not appear in the equivalent “within-data” 
plot—the plot of residuals vs. fitted values. 

In the case of the Mack model, if it is present in the plot of prediction residuals, it will generally 
also be seen in the corresponding residuals vs. fitted plot. In the case of the Mack model, it implies 
the need for an intercept term (see Barnett and Zehnwirth, 2000, or Murphy, 1994). There does not 
appear to be a simple modification of the quasi-Poisson GLM that is able to deal with this form of 
model inadequacy. And ordinary residual plots don’t reveal its presence. 

Because of the frequent presence of superimposed inflation (claims inflation at different rates to 
economic inflation), it is necessary to model incremental values. We believe that a log-transform is 
frequently beneficial both from the point of view of linearizing inflation effects, linearizing trend in 
the late developments (reducing the number of parameters required), and for stabilizing the variance 
in terms of the mean. 

The Probabilistic Trend Family of models 

When models better describe the characteristics of the data, the prediction intervals tend to have 
the required properties (such as including near to the anticipated proportion of future observations). 

The Probabilistic Trend Family (PTF) models consist of a model for the mean trends in the three 
directions of the triangle, and a model for the random variability about the trends. It is applied to 
log-incrementals, adjusted for exposures and economic inflation (where these are available). Many 
triangles are well described by a few parameters in the early developments (to capture the “run-off”), 
and where there are trend changes against the accident periods or calendar periods (indeed, in many 
cases the timing of these may be known in advance), parameters in those directions as well. Often 
the variability is constant on the log scale, though sometimes it exhibits a variance change against the 
development periods, requiring some modeling of the variance. The distribution of the inflation-
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adjusted and exposure normalized data is assumed to be independent lognormal—which implies 
normality on the log-scale. This assumption should be checked, but is in practice almost always a 
good description of the data. The observations are assumed to be independent. 

Accident-period parameters represent “levels,” while development and calendar-period 
parameters describe linear trends (in the logs). The Probabilistic Trend Family is described in more 
detail in Barnett and Zehnwirth (2000).  

Because of the simple form of these models, they may be represented pictorially by a 
decomposition of the model for the mean into trend changes in each direction and the model for 
the variability about it.  

For example, the figure below shows a display of a reasonable model for the ABC data of 
Example 1.  (This model includes treating the observation at 1982 delay five as an outlier and giving 
it zero weight in the estimation.) 
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Examination of diagnostic plots indicate that the model is a reasonable description of the data. 
For example, the next figure shows residuals, with prediction residuals for the final diagonal, against 
calendar year. The final calendar period is reasonably well predicted by the model, even though 
those observations are not included in the estimation.  
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All Wtd Std Residuals vs Cal. Yr

77 78 79 80 81 82 83 84 85 86 87

-2

-1.5

-1

-0.5

0

0.5

1

1.5

 

Standardized residuals and one step ahead prediction errors with approximate 90% confidence 
interval for the predictions.  

The final plot clearly shows that the lognormal assumption seems reasonable.  

Wtd Res Normality Plot

N = 65,  P-value is greater than 0.5,  R^2 = 0.9870
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Residuals against expected normal scores for all years  

Multivariate PTF 

Where related triangles are being analyzed, such as different subsets of a line of business (excess 
of loss layers, different territories, or different claim types), different lines within a single company, 
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or related lines across several business units, it is essential to be able to model the related triangles 
together. It may be that there are related trend changes across triangles and the errors about the 
models may be correlated. The PTF models may be extended by incorporating correlated error 
terms and the possibility of related parameters or changes in parameters. When the models are the 
same (in terms of where trend changes are located), these form generalized least squares (GLS) 
models. Where parameters are unrelated, these are seemingly unrelated regression (SUR) models. 

These models are especially useful for calculation of diversification effects, for example, in risk 
capital calculations or for reserving. 

By providing an adequate description of the ABC data, the identified model from the 
Probabilistic Trend Family is able to predict the final year (in the sense that the observations are 
reasonably consistent with the predictive distribution, as indicated by the validation residuals). As 
long as the model used to predict the future (which will be informed by the model for the past) is 
valid, confidence intervals and predictive intervals should have close to the right coverage 
probabilities, making them suitable inputs to the determination of the relevant ranges. 

SECTION 7: CONCLUSIONS 

Prediction intervals are important components of risk capital calculations, but such intervals rely 
on the model’s predictive assumptions. We frequently find that for commonly used models, those 
predictive assumptions are violated, and we find that the models often don’t predict the most recent 
data well. 

Consequently, when fitting a quasi-Poisson GLM, it’s important to check the one-step-ahead 
prediction errors in order to see how it performs as a predictive model—the residuals against fitted 
values don’t show you the problems. Alternatively, the Mack residuals can be useful approximate 
diagnostic tools for the predictive assumptions of the quasi-Poisson GLM. 

Predictive diagnostics should also be looked at before bootstrapping a model and once a 
bootstrap has been done, you should also validate at least the last year—that is, examine whether the 
actual values from the last calendar year could plausibly have come from the bootstrap predictive 
distribution standing a year earlier. 

The use of the bootstrap does not remove the need to check assumptions relating to the 
appropriateness of the model. Indeed, it is clear that there’s a critical need to check the assumptions. 
Use of the bootstrap does not avoid the fact that chain-ladder type models have no simple 
descriptors of features in the data. We show in several examples that there is much remaining 
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structure in the residuals. 

If it is the predictive behavior that is of interest, prediction errors are appropriate tools to use in 
standard diagnostics, and they can be analyzed in the same way as residuals are for models where 
prediction is within the range of the data. 

Checking the model when utilizing the bootstrap technique is achieved in much the same way as 
it is for any other model—via diagnostics—but they should be predictive diagnostics selected with a 
clear understanding of the problem, the model and the way in which the bootstrap works. 
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________________________________________________________________________ 

Abstract: This paper motivates the benefits of modeling trends, volatility and correlations through a study of 
real data triangles. 
We show that a model that is demonstrably unable to forecast the recent past of the historical triangle cannot 
be expected to tell us anything useful about the future of the same process. Naturally, the same basic model 
fitted by applying a more sophisticated tool will suffer the same fate.  The use of GLMs, bootstrapping, or 
Bayesian statistics cannot avoid the basic defects of traditional methods.  
With traditional techniques the parameters (e.g. age-to-age factors) are a function of the data. By contrast, in 
the Probabilistic Trend Family (PTF) modeling framework the model design as well as the parameters are a 
function of the data. We illustrate PTF modeling (e.g., Barnett and Zehnwirth, 2000) on a variety of real 
triangles.  
The PTF modeling framework is extended to the simultaneous modeling of multiple triangles. The 
multivariate modeling framework (MPTF), apart from describing the volatility in each triangle also describes 
correlations between them in two different ways.  
The MPTF modeling framework can be used in a number of innovative ways yielding useful information 
about the risk characteristics of the business. There are important implications for economic capital 
calculations and optimal retention. In order to compute economic capital for reserve risk and underwriting 
risk the correlations between lines of business need to be known. To assess the correlations accurately 
(whether from related trends or correlated errors), a model for each line that describes the trend structure and 
the volatility about the trend structure needs first to be identified. 

________________________________________________________________________ 

SECTION 1: RATIO MODELS AND THE CHAIN LADDER  

The intuitive basis of ratio models is simply that it is expected that if a known cumulative paid 
loss (or an incurred loss) in one period is high, that the corresponding figure for the next period will 
also tend to be high, and if it is low, it will subsequently tend to be low. The ratio assumption holds 
that the next value is expected to be in direct proportion to the current known figure.  

In what follows, we will drop the parenthetical reference to incurred losses, but the subsequent 
discussion will (with possibly minor but obvious alterations) continue to apply. 

Notation 

We label the accident years in the triangle i =1, … n, and the calendar years similarly, t =1, … n. 
For ease of notation, development year is taken as the delay between accident and payment year (j = 
t – i), and hence j = 0, 1, 2, …, n–1. Let the incremental amount be pij , and let the cumulatives total 
paid or incurred to date in an accident year be cij. Further, let yij be the logarithms of incrementals 
(possibly after adjusting for economic inflation or exposures). 
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Ratios 

If Cij is the figure for accident period i, development period j then an obvious way to record that 
intuitive expectation is  

 E(Cij | Ci,j-1 = c ) = βj c . (1) 

There are a variety of ways to estimate the ratio parameters, βj. Different estimators will 
correspond to different implicit assumptions about the remainder of the model. 

On a worldwide basis, ratio methods continue to be very popular, and the chain ladder is 
undoubtedly the most popular of the ratio methods in use. The standard chain ladder estimators 
correspond to assuming that the variance of the Cij is proportional to the mean (in the sense that the 
estimators and subsequent forecasts are optimal under that assumption; otherwise better estimators 
exist). 

These assumptions underly chain ladder forecasts. If we consider a particular accident year, i, and  
j-1 is the last observed development in that year, the chain ladder forecast of Cij (the first future 
cumulative payment in that year) follows equation (1).  

There are a number of models that reproduce the chain ladder. The approach of Mack (1993) and 
Murphy (1994)  reproduces chain ladder forecasts by combining equation (1) with the variance-
proportional-to-mean assumption. It is possible to derive predictive means and variances from that. 

The other widely used model that reproduces the chain ladder forecasts is the (quasi-) Poisson 
model with log-link and linear predictor corresponding to a two-way main-effects ANOVA. This 
Poisson model was introduced to actuaries by Hachemeister and Stanard (1975). The approach 
became popular in the 1990s after the paper by Renshaw and Verrall (1994). This model is now 
popularly referred to as the overdispersed Poisson model (ODP) – however the term 
“overdispersed” can be incorrect because the scale parameter φ, may (with some choices of scale, 
such as may occur if the data are measured in millions or billions of dollars) easily be less than 1, and 
therefore underdispersed. The term quasi-Poisson is more appropriate, since it applies irrespective 
of the size of the scale parameter. 

Within the data, this model has a different structure for the mean, which corresponds essentially 
to the assumption: 

 E(Cij ) =  βj E(Ci,j-1) .  (2) 

However, the forecasting function of this model has the same structure as (1) – as indeed it must in 
order to reproduce the chain ladder forecasts. For example, just as with the Mack model, for a given 
accident year, i, and  j-1 is the last observed development, the chain ladder forecast of Cij follows 
equation (1).  



Modeling with the Multivariate Probabilistic Trend Family 

Casualty Actuarial Society E-Forum, Fall 2008 40 

SECTION 2: ASSESSING THE CHAIN LADDER ASSUMPTIONS 

2.1 Chain ladder assumptions and diagnostics 

Since the primary interest for actuaries lies in the forecasting performance of these models (rather 
than the estimates within the data), it is crucial to test that the structure described by model (1) for 
ratio models in general; it is still necessary to assess within-data fit (such as via residual plots), but it 
is also necessary to assess the appropriateness of the prediction equation if the two differ. This is 
discussed in detail in Barnett, Zehnwirth, and Odell (2008), where one-step-ahead prediction errors 
are used to discover inadequacies of the predictive performance of the quasi-Poisson GLM, and it is 
shown that ordinary residuals do not indicate problems with the predictive properties of this model. 

For present purposes, it suffices to approximate the predictive performance of the quasi-Poisson 
GLM by looking at displays of the residuals from the Mack model as an adjunct to the residual 
analysis of the GLM fit. Mack residuals are a good approximation because the one-step-ahead 
prediction errors and the Mack residuals are based on the same estimates – but in the case of the 
quasi-Poisson GLM, on fewer observations (the Mack residuals use data from all available accident 
years for its residuals, while the GLM one-step-ahead predictions don’t use data from accident years 
later than the observation under consideration). In practice, simply using the Mack residuals is an 
effective way to assess the predictive performance of the two-way quasi-Poisson GLM with log-link. 

Consequently, for the present paper, unless otherwise noted, we will use residuals from a Mack-
style model (modified as indicated below) as an indicator of predictive performance of both of the 
popular chain-ladder-reproducing models. 

ELRF models 

In Barnett and Zehnwirth (2000), we expanded the framework of Murphy (who added intercepts) 
to construct diagnostic tests of ratio models, including the chain ladder, constructing the Extended 
Link Ratio Family of models (ELRF).  

We then analyzed a number of real data triangles using standard regression diagnostics in the 
ELRF framework and showed that the assumptions of ratio models failed for all of the data sets 
analyzed. In this paper, we have carried out a small study using such diagnostics on randomly chosen 
triangles (in section 3) to assess the suitability of the chain ladder for a variety of different triangles. 

2.2 Further issues with the chain ladder 

Barnett, Zehnwirth, and Dubossarsky (2005) describe the incremental chain ladder forecasts are 
the same whether cumulation and ratios are done across development years or down accident years. 
This property – that development and accident years are interchangeable – has some worrying 
implications for all chain ladder-reproducing models.  

These include:  
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(i) The fact that the accident and development directions are not distinguished by the model, 
despite the fact that we know them to behave quite differently; 

(ii) being fully parameterized (implicit or explicit) in both those directions – in spite of the fact 
that the development years and accident years may both be described with only a few parameters; 

(iii) Both directions exhibit clear relationships within themselves (though of different kinds), but 
the model doesn’t attempt to utilize this information.  

A second issue occurs in the case of the quasi-Poisson GLM, which we don’t believe has been 
noted elsewhere. It is possible to add calendar-period parameters to the quasi-Poisson model, and it 
has been suggested that this would be suitable for dealing with changing inflation. However, this is 
not the case, as can be seen by a simple argument.  

Imagine that the portfolio has been stable for many years, the shape of the runoff has remained 
unchanged, and that superimposed inflation has been zero. Then, for the most recent calendar year, 
superimposed inflation at 10% occurs. Clearly, the mean for each observation is 10% higher than 
the corresponding observation a year earlier, and – since Var(cX) = c2 Var(X) –  the standard 
deviation is also 10% higher. Yet if we model the calendar period changes with parameters in the 
quasi-Poisson model, the model asserts that the standard deviation will just under 5% higher. The 
model description of the variance is incorrect. Consequently, prediction intervals – including 
bootstrap prediction intervals – based on this model will be too narrow.  

Note that if the inflation is random, rather than constant, the induced variance will increase still 
faster. 

The bootstrap and Bayesian methods 

Refinements such as the bootstrap and the use of Bayesian methods don’t alter the adequacy or 
lack or adequacy of the mean and variance components of a given model – if the mean and variance 
of the data are not well described without them, the mean and variance will not be will described 
with them (unless those components of the model itself are altered). 

SECTION 3: THE CHAIN LADDER EXPERIMENT 

Design 

A random sample of 25 complete triangles from Schedule P data was taken. Either the Paid or 
Incurred triangle was used (60% chance of selecting paid, 40% chance of selecting incurred). 

For each such triangle, the suitability of the ratio (chain ladder-like) assumptions were tested 
according to a number of criteria 
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Criteria 

There were four primary diagnostic criteria on which the chain ladder assumptions were assessed. 

1) Do the lines relating incremental to previous cumulative need an intercept? 

2) Are the correlations between incremental and previous cumulative “small?” 

3) Do the residuals exhibit substantial changing trends against calendar periods? 

4) Do the residuals have trends against fitted values? 

If the answer to any of these questions is a clear yes, the chain ladder model does not hold. 

In addition, there was a fifth criterion: 

5) After removing a linear trend down the accident periods, are remaining linear correlations 
between incremental and previous cumulative “small?” 

The fifth criterion is to see whether there is an alternative explanation for a correlation between 
an incremental and the previous cumulative due to increases running down the accident years (which 
could be caused by increasing exposures or inflation). By fitting a simple linear accident trend, the 
chain ladder fails this criterion if for a substantive number of years the ratio is no longer a significant 
predictor. 

Because of the small sample sizes, the assessment is not always obvious graphically, so we 
perform this test in the regression by looking at the ratio fitted last to see if it still has explanatory 
power. 

The first two questions are assessed individually for pairs of adjacent developments (individual 
regressions), while the latter two questions are assessed globally (across all residuals). The final 
question is related to question 2 and again assessed on adjacent pairs of developments individually.  

When assessment is performed on individual pairs of developments, only the first six pairs of 
developments are considered (there are too few points after that for a reliable assessment). 

1) Zero intercept: Least squares line on graph of incremental vs. previous cumulative has intercept 
that is plausibly near origin; 68% of triangles failed on many years (3-6), (all triangles failed at least 
some years). 

2) Incremental significantly correlated with previous cumulative: 52% of triangles fail on many years (3-6), 
68% fail on several years. 

3) No CY trend changes: 64% of triangles display strong CY trends, 28% display moderate CY 
trends, and 8% display weak indication of (plausibly random) CY trends.  

4) No trend in residual vs. fitted: 32% show strong trends vs. fitted (linear or quadratic), 28% show 
moderate trends vs. fitted. 40% show little trend vs. fitted values. 
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Overall, 96% of triangles fail substantively (strong residual trends or fail on many years for the 
first pair of criteria) on at least one of these four criteria. Four percent show at least partial success 
for the chain ladder assumptions. 

5) Relationship not just a proxy for accident trends: 84% substantively fail (that is, the relationship 
between y and x is substantively accounted for by a simple increasing or decreasing trend in the 
accident period direction, which indicates that exposures or inflation should be brought into the 
model). A further 4% partially fail (relationship remains for a few periods). In 4% the relationship 
for several years is strongly quadratic (a failure of the chain ladder assumption of linearity). In 8% 
there is remaining linear correlation between incremental and previous cumulative after accounting 
for a simple AY trend in incrementals.  

Some of these criteria are plainly subjective (such as those based on appearance of diagnostic 
plots), but those effects classified as “strong” have deficiencies that are quite plain (though there’s 
no clear dividing line between strong and moderate effects, so some people may well classify some 
of the moderate effects as strong or vice-versa); there is also room in the moderate/weak borderline 
for disagreement. Nevertheless, even by extremely generous criteria, still only a fraction (far less than 
a quarter) of the triangles considered could be even remotely regarded as suitable for the chain 
ladder. 

If the results of this small study were to hold more generally, it seems that relatively few triangles 
will satisfy the basic assumptions about the mean for ratio models. Note that there are actually 
further assumptions required, such as variance assumptions – for the chain ladder, the assumption is 
that the variance is proportional to the mean. We have seen in other examples that these 
assumptions are not always tenable, so the proportion of triangles for which the model assumptions 
are plausible may be substantially lower than the present study might suggest.  

It seems the only prudent course is to assume that ratio models do not describe a triangle, unless 
it has been clearly established that the model is a plausible description of the data. 

SECTION 4: PROBABILISTIC TREND FAMILY MODELS 

The problems that are regularly identified in the ratio models lead us to try to solve them. 

i) We need to be able to deal with calendar-year trends (such as superimposed inflation) and to be 
able deal properly with the effect that multiplicative effects such as inflation have on the variance. 
This is one of many aspects that lead us to move from considering merely a log-link (as in the quasi-
Poisson model) to a model with variance proportional to the square of the mean (of course, variance 
assumptions should be checked for reasonableness, as with any other assumption). 

ii) The intercept term in the ELRF models is often necessary, but once calendar- and accident-
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year trends have been modeled, even in a very crude way, ratios rarely contribute anything further. 
This suggests that we should model the development year levels (corresponding to intercept terms) 
as well as effects in the calendar- and accident-years' directions. 

iii) The overparameterization issue suggests that we should take advantage of the smoothness 
typically seen in the development period direction by relating the levels. Similarly, the periods of 
constant inflation or stable accident year levels tend to be fairly long-lived and we should be able to 
take advantage of that fact. (Further, in the full version of the model it is possible to relate/smooth 
accident years in a more extensive way than presented here.) 

4.1 The basic model 

All of these issues together point us toward what we call the Probabilistic Trend Family of 
models (PTF), which has the suggested features. It models incremental payments on the log scale. 
This allows inflation to be modeled appropriately (inflation impacts current and future payments, 
not past payments; consequently, cumulative payments and incurred are unsuited to models dealing 
with inflation). These may be normalized for a measure of exposure and adjusted for inflation 
before taking logs. The model described here may be fitted in a regression package (even in Excel), 
but predictive distributions of aggregates is somewhat involved. 

The PTF approach models data as four components: 

 data = development trend + accident trend + calendar trend + random. (4.1) 

The first three components model the mean and the final component models the variability 
about the mean. 

(i) development trend: The structure for modeling the runoff in the development year direction is as 
follows: 

  δj =  γ1 + γ2 + … + γj  .  (4.2) 

The gamma parameters (γj) represent the shift in mean between the previous development and 
the current one. This allows models to adapt to shifts in level.  

Setting gamma parameters to be equal allows the efficient modeling of constant trends. In a 
particular case, the fitted development year trend (runoff), pδ̂ , looks like this: 
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Figure 1: Development year trends for the data CTP 
 

The level in development year zero is represented by a parameter alpha (α), and the gamma 
parameters represent (percentage) shifts to each development period after that. 

For a single accident year, the average log(payment) in development j is: 

 E(yj) = α + γ1 + γ2 + … + γj  . (4.3) 

In the case where there are no fitted trends in the mean in the other directions (accident year, 
calendar year), the model for the mean for the entire array can be of the same form: 

 E(yij) = α + γ1 + γ2 + … + γj  .  (4.4) 

 

Figure 2: CTP data vs. development year, showing the fitted trend of model type (4.4) 
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(ii) Accident trend: Changing accident-year trends are possible by allowing the level for the accident 
year to change. The level of development year 0 in accident year i is  αi . After fitting calendar trends, 
the accident period trends are often fairly stable for long periods of time. Consequently, consecutive 
α- (or level-) parameters may be set to be equal.  
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Figure 3: Accident year trends for the triangle ABC. Flat line segments show where consecutive 

parameters are equal. 

Note that we can’t show the fit to the data in this direction (because of effects in the other 
direction – development year effects are almost always present), unless we remove the effects of the 
other directions from the data (partial residuals). 

Further, it sometimes makes sense to allow non-adjacent accident years to have the same level. 
For example, it is desirable when there has been a temporary shift in the level of paid losses that 
then returns to the original level. 

(iii) Calendar trend: In real triangles we frequently find periods of stable, constant, or near-constant 
inflation, with sometimes abrupt changes. This can be modeled in similar fashion to the 
development period trend: 

  κt =  ι2 + ι3 + … + ιt  .  (4.5) 
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Figure 4: Calendar-year trends for the triangle ABC 

Multicollinearity and the projection of trends to adjacent directions 

Note that while it might sometimes be of interest to also have linear trends in the accident year 
direction (corresponding to periods constant growth in the accident year direction), it’s not possible 
to simultaneously estimate trends in all years in all three directions at once, due to multicollinearity. 

This is because of a fundamental property of triangles – trends in any of the directions project 
onto the adjacent direction(s). Consequently, it is necessary to restrict the potential to have a linear 
trend in one of the directions – in our case, the accident-year direction. A single linear trend in the 
accident year direction may be picked up by a trend in the calendar-year direction. 

(iv) Random component:  

The random component aims to describe everything of interest about the data not described by 
the mean. The distribution of the data about the mean (also called the distribution of the error term) is 
an essential part of the model. The errors are assumed to be independent, and by default the 
variance is taken to be constant on the log-scale (constant coefficient of variation).  

Combining the components 

This leaves the basic form of the Probabilistic Trend Family of models as: 

 yij = αi + δj + κi+j + εij  ;     εij  ~  (0, σ2), 

where each of the terms describing the mean has a particular structure in order to allow for the 
tendency for the trends or levels to be stable. This equation is of the form data = accident trend + 
development trend + calendar trend + random, as with equation 4.1. Each component is parameterized so 

iid
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as to be able to provide parsimonious descriptions of the trends typically seen in real data. 

An assumed error distribution is not required in order to estimate parameters, but estimation is 
via least squares, which is optimal in the case of normality. In order to calculate explicit predictive 
distributions, we make the assumptions that the εij are normal (that is, that the original  pij are 
lognormal), but this assumption should be checked (since if it’s implausible, the predictive 
distributions will not have the desired coverage probabilities). So we explicitly assume that εij  are 
normal, and so the original data are assumed to be lognormal. 

We summarize this model in terms of four pictures, representing the four components. This 
gives an instant visual understanding of what is going on in the model. When combined with 
residual plots, the practitioner is able to rapidly assess both the components of the model for the 
mean and the characteristics of the data about the mean. For example, here is a reasonable model 
for a particular set of data (ABC, analyzed in detail in Barnett and Zehnwirth, 2000): 
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Figure 5a: Model trends in the three directions and fitted variance. 
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The residuals from this model are below. 
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Figure 5b: Residuals vs. the three directions and against fitted values. 

There is some pattern remaining in the accident-year direction that is better captured with a 
model that smoothes the accident-year trends rather than one that adds further discrete parameters; 
the modest remaining movements don’t support separate parameters. 
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N = 65,  P-value is greater than 0.5,  R^2 = 0.9870
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

 
Figure 6: Assessment of the normality of the residuals. The lack of curvature indicates that the 

data are quite consistent with the assumption of normality. 

4.2 Does this model family fit the data? 

Being designed to describe features we regularly find in loss triangles, the model family includes 
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many models that describe some triangles well – but each triangle is different, so a particular model 
should be chosen to describe the data at hand. Model critique via diagnostic displays and statistics 
should always be carefully assessed. 

Indeed, the rich PTF model family includes in it a model whose linear predictor is identical in 
form to that of the quasi-Poisson GLM. Note that both the PTF models and the quasi-Poisson 
GLM are based on describing the mean on the log-scale, and that a PTF model with κt = 0 for all 
calendar years and with all αi and γj different has an identical description of the mean (that is, as a 
two-way cross classification structure in logs) as a quasi-Poisson GLM. Further, as noted in section 
2.2, the Mack-type chain ladder model also (necessarily) has parameters in the same places (though 
in that case, the accident-year parameters are implicit, being contained in the conditioning on the 
first development). Consequently, if there is a circumstance in which the PTF models fail to describe 
the mean, then a chain ladder-like model is also guaranteed to fail. On the other hand, it is frequently 
the case that a PTF model will succeed in describing the data where a ratio model fails. 

Numerous examples are given, for example, in Barnett and Zehnwirth (2000), where triangles 
that are not well described by a chain ladder or other ratio model are well captured by a PTF model. 

4.3 Extending the Basic Probabilistic Trend Family   

Modeling changes in variance: 

While the constant (log-scale) variance assumption is often tenable for many triangles, sometimes 
the variance is not constant. However, when it occurs, while the two are related, often the variance 
is seen to change more clearly with the development period than with the mean. When it is not 
reasonably constant, the variance is often relatively stable for a number of years, and so when 
necessary we allow the variance to change with development, while allowing adjacent variance 
parameters to be equal. 

As mentioned before, a more complex form of smoothing (a generalization of exponential 
smoothing) is sometimes used (notably in the accident-year direction) in the PTF framework, but we 
will not pursue details of that since it requires more specialized algorithms than the simple regression 
methods required for the model described here to implement. 

There are a variety of other ways in which this model can be extended. For example, the same 
structure on the mean could be used on count data in a GLM framework. 

In the remainder of the paper we describe an extension of the PTF framework to the analysis of 
multiple triangles (such as different types of claim – asbestos vs. non-asbestos, different territories, 
several excess of loss layers, or different lines of business. 
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SECTION 5: MULTIVARIATE PTF MODELS 

We relate PTF models by allowing for two different type of relationship between triangles: 

(i) Payments may be correlated about their overall trends (if one is higher than average, the other 
may be higher than average). 

(ii) The trends, or the differences in trends, may be related across triangles. For example, it is 
often the case with two related triangles that not only does superimposed inflation change in the 
same places in both, but the size of the change is similar in both triangles. 

Where the individual models have the same design (the same pattern of observations with identical 
parameter structure), the combined model for both triangles taken together is a generalized least squares 
model (GLS). In this case, the parameter estimates are not affected by the correlations between 
triangles, and the calculations may be performed in two stages (estimation in individual triangles 
followed by estimation of the between triangle correlation).  

While the correlations between triangles don’t affect the estimates in GLS, they do affect the 
distribution of the forecast of the aggregate (or, indeed, the difference or even other functions if 
they occur).  

More generally, the designs differ somewhat, and the combined model is a seemingly unrelated 
regression model (SUR). However, as noted in section 4.3, the models can actually get slightly more 
complicated than SUR.  

As with the discussion of PTF models, we will concentrate on an SUR approach in this paper. 
Packages are available that can estimate SUR models, for example, the free statistical package R 
(http://cran.r-project.org/) has an extension package called systemfit which can fit SUR models.  

SECTION 6: EXAMPLES  

6.1 Relationships between two lines of business (LOB1/LOB3) 

We consider a pair of triangles from two lines of business, which we label here as LOB1 and 
LOB3. They are full 10x10 triangles over the same period of time. 

Here is a simple model fit for LOB1 without setting any non-consecutive parameters to be equal 
(though the pair of peaks against accident years suggests that it might be  reasonable to pool 
information in that way).  
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Figure 7: Model display and residuals for LOB1   

We see this model provides a reasonable description of the data; it suggests that beginning in 
2000, there was a dramatic (0.2054) increase in calendar-period trend (about 23% p.a.). While you 
should note that there was a substantial drop in the accident-year level in 2000, both the increase in 
calendar-year trend and the drop against accident year appear to be required for a reasonable 
description of the data. 

It turns out that LOB3 has a major change in calendar- and accident-year trends that also occur 
in the same places as LOB1 (calendar-year 2000 and accident-years 2000 and 2001 respectively). 



Modeling with the Multivariate Probabilistic Trend Family 

Casualty Actuarial Society E-Forum, Fall 2008 53 

However, it is quite difficult to model LOB3 well, on its own. If we fit a reasonable model to the 
other directions, the accident year residuals appear as follows: 

Wtd Std Res vs Acc. Yr
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Figure 8: remaining trends in the accident year direction after removing trends in the other 

directions 

The above residual display indicates a need to capture two linear trends against accident years. 
There are a variety of ways to model that with this data. One approach is to allow the accident-year 
levels to increase until the change, as with the following model: 
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Figure 9a: An overparameterized model for LOB3 



Modeling with the Multivariate Probabilistic Trend Family 

Casualty Actuarial Society E-Forum, Fall 2008 54 

Wtd Std Res vs Dev. Yr

0 1 2 3 4 5 6 7 8 9

-2.5
-2

-1.5
-1

-0.5
0

0.5
1

1.5
2

Wtd Std Res vs Acc. Yr

94 95 96 97 98 99 00 01 02 03
L L L L L L

-2.5
-2

-1.5
-1

-0.5
0

0.5
1

1.5
2

Wtd Std Res vs Cal. Yr

94 95 96 97 98 99 00 01 02 03

-2.5
-2

-1.5
-1

-0.5
0

0.5
1

1.5
2

Wtd Std Res vs Fitted

-5.5 -5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5

-2.5
-2

-1.5
-1

-0.5
0

0.5
1

1.5
2

 
Figure 9b: Residuals from the above model. 

This particular formulation of the model is somewhat overparameterized – though not nearly as 
much as the chain ladder, and it yields a substantially better description of the data. For example, see 
the residuals from a chain ladder fit in the calendar-year direction: 
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Figure 10: LOB3 Chain ladder residuals vs. calendar years  

The graph shows distinct remaining calendar-year trends. Additionally, intercepts are necessary 
for several years (that is, ratios are inadequate). LOB1 shows similar uncaptured calendar-period 
trends when fitting ratios. 

There is a certain amount of difficulty in obtaining simple descriptions of the combined effect of 
the accident- and calendar-period effects in LOB3. However, when the triangles are modeled 
together, it becomes more straightforward. Let us model both triangles together: 
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Figure 11: Composite Model for LOB1(top) and LOB3 (bottom). The arrows indicate equal 

trends.  

In the model above, two development period trends (for overlapping periods of developments) 
and two concurrent calendar-period trends have been set to be equal. The accident-year level in the 
first and last accident years within LOB3 are also equal to each other. 

The fit for each of the two lines of business has borrowed strength from the other..  

This model has stabilized the estimates of trend very well, which has been particularly helpful for 
LOB3 – in fact (even when double-counting the common parameters), the number of parameters 
used to describe each array is smaller, yet the residuals are reasonable: 
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Figure 12: residuals for the composite model for LOB1 (top) and LOB3 (bottom) 

Somewhat better results can be obtained if the smoothing of accident year trend estimates is 
used, but the mathematics is beyond the scope of this paper. 

The estimated residual correlation between triangles is 0.39. This correlation can be seen in the 
moderate tendency for corresponding plots 

Forecasts: 

Note that the forecasts will be correlated in two ways: 

(i) Parameter correlation: both the fact that two parameters will be shared (one development and 
one calendar period) between triangles and the fact the remaining parameters will be correlated 
across triangles contribute to the parameter correlation;  

(ii) The model assumes that the data are correlated around the model. The estimate of the size of 
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this correlation is roughly 0.4. 

Let’s examine a table of aggregate forecasts for the two lines and their sum. 

Composite Model Forecast: Accident-Year Summary: 1 Unit = $1,000 

 Mean Reserve Ultimate Standard Dev. CV of Reserve 

LOB1 705,717 2,362,497 95,613 0.14 

LOB3 1,182,458 4,560,860 165,913 0.14 

Aggreg. 1,888,175 6,923,357 244,212 0.13 

The CV of the aggregate is smaller than the CV of the individual lines, as we would anticipate.  

By way of comparison, the figures for the individual models have slightly higher coefficients of 
variation; while the aggregate of the means for the models fitted individually is  almost identical 
(around half a percent smaller), the standard deviations are substantially reduced because of the 
better use of information (reducing the contribution of parameter uncertainty to risk capital). 

We can compute forecasts and standard deviations of aggregates, but in order to compute 
quantiles (such as for value at risk calculations or some risk capital calculations) it is necessary to 
simulate. 
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Figure 13: simulated distribution of aggregate of LOB1 and LOB3 based on 100,000 simulations. 

Rough grey line = simulated values, blue line is a kernel density estimate (smoothed simulated 
values), green curve = lognormal with the calculated mean and standard deviation, and purple = 
equivalent gamma density. 

The PALD simulations enable the computation of quantiles, either directly from the simulated 
values or from one of the smooth curves. 
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LOB 1 LOB 3:Composite          Reserve PALD Summary   
Selected Quantile Statistics and Value at Risk (Acc. Year: Total)   Unit = $1 Billion 

% Sample  Kernel  LogNormal  Gamma  

 Quantile 
# 

S.D.s VaR Quantile 
# 

S.D.s VaR Quantile 
# 

S.D.s VaR Quantile 
# 

S.D.s VaR 
90.0 2.205 1.298 0.317 2.208 1.308 0.319 2.209 1.312 0.321 2.207 1.306 0.319

95.0 2.313 1.738 0.424 2.316 1.751 0.428 2.315 1.746 0.426 2.307 1.715 0.419

98.0 2.443 2.271 0.555 2.446 2.284 0.558 2.440 2.259 0.552 2.423 2.190 0.535

99.0 2.532 2.638 0.644 2.536 2.653 0.648 2.527 2.616 0.639 2.502 2.515 0.614

99.5 2.616 2.981 0.728 2.619 2.993 0.731 2.609 2.953 0.721 2.576 2.818 0.688

99.9 2.796 3.717 0.908 2.805 3.755 0.917 2.788 3.685 0.900 2.734 3.462 0.845

Let’s compare those results with corresponding results where the process correlations are set to 
zero: 

LOB 1 LOB 3:Composite          Reserve PALD Summary   
Selected Quantile Statistics and Value at Risk (Acc. Year: Total)   Unit = $1 Billion 

% Sample  Kernel  LogNormal  Gamma  

 Quantile 
# 

S.D.s VaR Quantile 
# 

S.D.s VaR Quantile 
# 

S.D.s VaR Quantile 
# 

S.D.s VaR 

90.0 2.246 1.311 0.292 2.248 1.322 0.294 2.246 1.310 0.291 2.244 1.303 0.290

95.0 2.342 1.744 0.388 2.345 1.756 0.391 2.340 1.735 0.386 2.334 1.707 0.380

98.0 2.457 2.262 0.503 2.460 2.274 0.506 2.451 2.235 0.497 2.438 2.174 0.483

99.0 2.537 2.618 0.582 2.541 2.639 0.587 2.528 2.581 0.574 2.509 2.492 0.554

99.5 2.611 2.951 0.656 2.617 2.978 0.662 2.601 2.907 0.647 2.575 2.789 0.620

99.9 2.793 3.772 0.839 2.796 3.783 0.841 2.757 3.610 0.803 2.714 3.417 0.760

Compare, for example, the VaR at the 95th percentile for the fitted model with the estimated 
correlation is $424 million, whereas if the two triangles are assumed to have zero process correlation, 
the VaR is $388 million. If process correlation is not taken into account, the VaR is $36 million 
(8.5%) too small. Similar effects are seen with TailVar, though the effect (in percentage terms) is a 
little larger at a given level (due to looking further into the tail). Economic capital requirements are 
underestimated if the correlations between the predictions are not incorporated.  

6.2 Excess-of-loss type layers 

In this example we consider the relationships between two layers net of reinsurance (losses 
limited to 1M and losses limited to 2M), and the layer corresponding to the difference between 
them, (1M excess of 1M). If the analysis was done at the scale of the original dollars, the three arrays 
would be linearly dependent (the first and third should add to the second), but on the log scale this 
is no longer the case. 
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Figure 14a: model displays for layer 1M  
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Figure 14b: model displays for layer 2M 
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Figure 14c: model displays for layer 1M XS 1M 

We see that the model chosen for the two ground-up layers and for the excess layer are quite 
similar, but the calendar-year trend for the excess layer (the third model plot) has a large standard 
error (there is high uncertainty about the underlying value) – indeed we can’t be sure there’s a non-
zero trend there at all! On the other hand, if we’re projecting that trend out into the future, we don’t 
want to set it to zero; its estimate corresponds to an annual inflation of about 7.5% per annum. 

It would be useful if we could borrow trend information from the ground up layers to help 
estimate some of the trends, in which case the estimate of the calendar-period trend may be better 
estimated. 

As it turns out, a suitable combined multivariate model of the same form does exactly this. The 
difference in accident-year level from 1988 to 1989 is very close for the layer to 1M and for the next 
layer (and further, for the layer to 1M, the levels either side of the down-and-up bump are very close, 
though this has much less impact). If we borrow strength across the first two layers by setting that 
change in level to be equal, the standard error on the calendar-period trend comes down 
substantially, and the estimate is now extremely close to zero (0.0026), or about a quarter of a 
percent. With this model, it makes little difference to the forecasts whether or not the estimate of 
superimposed inflation for that layer is set to zero. 
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Figure 15: Model displays for combined model for layers 1M, 2M, and 1MXS1M. The arrow 
indicates a shift in accident-year level that is set equal across layers. 



Modeling with the Multivariate Probabilistic Trend Family 

Casualty Actuarial Society E-Forum, Fall 2008 62 

Here are the residuals from the above model 

Wtd Std Res vs Dev. Yr

0 1 2 3 4 5 6 7 8 9 10 11 12 13

-2.5
-2

-1.5
-1

-0.5
0

0.5
1

1.5

Wtd Std Res vs Acc. Yr

85 86 87 88 89 90 91 92 93 94 95 96 97 98
L

-2.5
-2

-1.5
-1

-0.5
0

0.5
1

1.5

Wtd Std Res vs Cal. Yr

89 90 91 92 93 94 95 96 97 98

-2.5
-2

-1.5
-1

-0.5
0

0.5
1

1.5

Wtd Std Res vs Fitted

9 10 11 12 13 14 15

-2.5
-2

-1.5
-1

-0.5
0

0.5
1

1.5

Wtd Std Res vs Dev. Yr

0 1 2 3 4 5 6 7 8 9 10 11 12 13

-2.5
-2

-1.5
-1

-0.5
0

0.5
1

1.5
2

Wtd Std Res vs Acc. Yr

85 86 87 88 89 90 91 92 93 94 95 96 97 98
L

-2.5
-2

-1.5
-1

-0.5
0

0.5
1

1.5
2

Wtd Std Res vs Cal. Yr

89 90 91 92 93 94 95 96 97 98

-2.5
-2

-1.5
-1

-0.5
0

0.5
1

1.5
2

Wtd Std Res vs Fitted

8 9 10 11 12 13 14 15

-2.5
-2

-1.5
-1

-0.5
0

0.5
1

1.5
2

 



Modeling with the Multivariate Probabilistic Trend Family 

Casualty Actuarial Society E-Forum, Fall 2008 63 

Wtd Std Res vs Dev. Yr

0 1 2 3 4 5 6 7 8 9 10 11 12 13

-2.5
-2

-1.5
-1

-0.5
0

0.5
1

1.5

Wtd Std Res vs Acc. Yr

85 86 87 88 89 90 91 92 93 94 95 96 97 98
L L

-2.5
-2

-1.5
-1

-0.5
0

0.5
1

1.5

Wtd Std Res vs Cal. Yr

89 90 91 92 93 94 95 96 97 98

-2.5
-2

-1.5
-1

-0.5
0

0.5
1

1.5

Wtd Std Res vs Fitted

9 10 11 12 13 14 15 16

-2.5
-2

-1.5

-1
-0.5

0

0.5
1

1.5

 
Figure 16: Residuals from the fitted composite model 

The residuals indicate a reasonable fit for this model. The residuals do tend to “move together 
(perhaps not surprisingly!), and this is reflected in the correlations, which are very high. 

Correlations between triangles: 

 1M:PL(I) 1MXS1M All 2M 
1M: 1 0.960 0.995 
1MXS1M: 0.960 1 0.982 
2M: 0.995 0.982 1 

These correlations can be seen by comparing corresponding residual displays across triangles. For 
example, in the residual displays below, the blue contours show multiples of standard deviations 
either side of the means by year. 
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Figure 17: Residuals vs. calendar year for 1M, 1MXS1M, and 2M. 

The “wiggles” in the blue lines are similar across each triangle, because of the high correlations 
between corresponding points. The tendency of the residuals to move up and down together is their 
correlation. 

Here is a summary of the results from the forecasts with this model: 

1M 1Mxs1M 2M:Composite Reserve Forecast Summaries: 
Accident Year Summary 1 Unit = $1M 

    CV 
 Mean Reserve Ultimate Standard Dev. Reserve Ultimate 
1M 454 692 92 0.20 0.13 
1MXS1M 244  421 47 0.21  0.11 
2M 677 1,113 138 0.20 0.12 
1M+1MXS1M 678 1,114 138 0.20 0.12 

Note that adding 1M and 1MXS1M gives essentially the same answer as 2M, as we would wish. 
This consistency is preserved across a variety of reasonable models for this data. 

The CV for the 2M and for the smaller layer 1M is almost the same.  

Moving from retaining losses below 2M to losses below 1M (reinsuring 1M XS 1M) doesn’t help 
the cedant’s CV at all! 
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6.3 Gross vs. Net data 

The following data is gross and net of Excess of loss-type reinsurance. Analysis of gross and net 
data  together can help to assess the value of the reinsurance, and aid the design of reinsurance 
better suited to the direct insurer’s needs. 

Here is a display of a good fitted model for the gross data. 
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Figure 18: Model display for the Gross data. 

There is smoothing of accident-period levels between 88 and 89 and between 92 and 93. The 
accident-year level for the 1988 (and earlier) mean is set equal to the 1990-1992 mean. Further note 
that the model has the level of variance of observations at developments 2-6 substantially lower than 
for the other years (heteroskedasticity). There’s a stable trend of around 7% per annum (e0.0674–1) in 
the calendar-year direction. 
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Figure 19: Residual plots for the model. The fit to the calendar- and accident-year directions is 

good; there is some lack of fit in the tail (where payments are very low). 

Now let’s model the Net data: 
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Figure 20a: Model display for the Net data 



Modeling with the Multivariate Probabilistic Trend Family 

Casualty Actuarial Society E-Forum, Fall 2008 67 

Wtd Std Res vs Dev. Yr

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

-2
-1.5

-1
-0.5

0
0.5

1
1.5

2
2.5

Wtd Std Res vs Acc. Yr

87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02
2 2

-2
-1.5

-1
-0.5

0
0.5

1
1.5

2
2.5

Wtd Std Res vs Cal. Yr

87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02

-2
-1.5

-1
-0.5

0
0.5

1
1.5

2
2.5

Wtd Std Res vs Fitted

-6 -5.5 -5 -4.5 -4 -3.5 -3 -2.5 -2

-2
-1.5

-1
-0.5

0
0.5

1
1.5

2
2.5

 
Figure 20b: Residuals for the Net data 

Here, the model is quite similar to the gross, but as we see, the estimated calendar-year trend is 
essentially zero (0.14% with a standard error of about 3%). The fit is again, reasonably good.  

The original insurer seems to be entirely ceding the growth (calendar-period inflation). While not 
particularly surprising, this is important information for both the cedant and the reinsurer. 

In Figure 21, below, the graph shows the relationship between residuals for the two triangles. 
The correlation between the residuals of these models is quite high (this is common with reinsurance 
data), at around 0.81, and the normality assumption is reasonable. 
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Figure 21: Plot of corresponding residuals from the two models, Net vs. Gross 
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Combined model: 
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Figure 22: Model display for the combined model for the Gross data 
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Figure 23:  Model display of combined model for Net data 

The first two development period trends had high uncertainties and have been set to be equal 
(they’re effectively percentage changes in level across development periods). 

Correlation in residuals is a little higher at around 83%, but otherwise the models are similar. The 
estimated trend for the calendar years for the Net data became even smaller (and less uncertain), and 
was set to zero (though it would make little difference if it was retained in this case, just as with the 
previous example). 
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Forecasting this combined model yields an interesting result: 

Comp N & G: Composite: Accident Year Summary 

    CV 
 Mean Reserve Ultimate Standard Dev. Reserve Ultimate 
:FAC ENG G:  101,705 216,641 15,450  0.15  0.07 
:FAC ENG N:  52,821 134,323   8,725  0.17 0.06 

The CV for the Net data (0.17) is slightly higher than for the Gross (0.15)! Even taking into 
account the fact that some of the trends will be less certain for the Net data (which can pull up the 
CV), this seems to suggest that the reinsurance is not achieving the goal of reducing the riskiness for 
the cedant. 

DISCUSSION 

These studies have some very important consequences for capital risk charges for both claims 
liability and underwriting. The forecast standard errors considered here include process variability, 
which is a major component of the risk, and which we cannot reduce below its inherent level; we 
can, however, reduce parameter uncertainty.  

The fact that (percentage) changes in trend are often closely related across related triangles means 
that we can estimate critical components, such as calendar-year trends with less uncertainty – and so 
predictive distributions can become more concentrated. At the same time, we must consider the 
impact of the relationships between the triangles – relationships between parameters (including 
equal trends or trend changes) mean that the forecasts are correlated, and then there is the 
contribution of the correlation of the error term across triangles. These correlations contribute to 
the estimate of risk and so are critical to the estimation of economic capital.  

Between some lines of business, after incorporating common trends, there’s often little residual 
correlation, but as we saw in section 6.1, we can certainly get substantial correlations – neither close 
to independent nor close to very high dependence—and this can make a substantive difference to 
required capital. Consequently, using either the assumption of independence or the assumption that 
the dependence attains its upper bound could lead to either a radical under- or over- assessment of 
the required risk capital. 
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Reserving with Incomplete Exposure Information 

David R. Clark, FCAS, MAAA 

________________________________________________________________________ 
Abstract. This paper outlines a reserving method that allows the actuary to use exposure information, 
such as onlevel premium, even if that information is only available for a limited number of years.  The 
method is a simple blending of methods already in wide use, but can be shown to be based on a common 
underlying statistical model.  The paper provides an overview of the Over-Dispersed Poisson model, and 
how it relates to Multiplicative LDF, Cape Cod, and Bornhuetter-Ferguson methods. 
Motivation. The reserving actuary may have reliable exposure information (e.g., onlevel premium) for 
only a few recent years of data, rather than for the full historical period for which reserves need to be set. 
Method. This incomplete exposure information can still be used, by implementing a hybrid reserving 
method equivalent to the Cape Cod method for the recent years and the Multiplicative LDF method for 
older years. 
Results. We show how common reserving methods can be derived from a single statistical model, and 
then show how these methods are best combined when partial information is available. 
Conclusions. This is a practical solution to the problem of stabilizing loss projections for recent accident 
years, incorporating available rate change information, and being responsive to actual loss emergence. 
 
Keywords. Reserving, GLM, Chain ladder, Cape Cod, Bornhuetter-Ferguson. 

________________________________________________________________________ 

1. INTRODUCTION 

The purpose of this paper is to outline a method for estimating a stable reserve for immature 

years on long-tailed lines of business. 

In order to bring more stability to these reserve estimates, it is helpful to bring in an exposure 

base that is proportional to expected loss by year.  Optimally, this exposure base would be 

something like payroll or sales, but more commonly only historical premium is available.  Historical 

premium is not directly applicable because of significant changes in rate adequacy over time – a 

phenomenon called the “insurance cycle.”  Instead we need to adjust the historical premium to an 

“onlevel premium” basis that is truly proportional to the expected losses by year.  Unfortunately, the 

rate level indices required to make this adjustment may only be available for a limited number of 

years. 

We will propose that even this limited information can be used in the reserve review in a 

straightforward way, with a method that is a combination of the Multiplicative LDF (a.k.a. Chain 

ladder ) and Cape Cod (a.k.a. Stanard-Bühlmann) methods to form a single unified method.  This 

unified method can be shown to be a best use of the available data and to be consistent with the 

other methods because they are all relying on the same underlying statistical model. 
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1.1 Research Context 

There have been several past papers surveying statistical models applied to insurance loss 

development (payment or reporting) patterns.  Recent examples are the CAS Working Party on 

Reserve Variability (2005), and the classification paper by Schmidt (2006).  This prior research has 

aided greatly in viewing the loss development phenomenon from a statistical viewpoint; and 

showing connections between various models. 

1.2 Objective 

We will not intend to break new ground from a theoretical standpoint.  Instead, we will build on 

the theory already established and draw some important practical implications.  Specifically, we will 

show how best to incorporate limited exposure information into a reserve review in a consistent 

manner.  By grounding this method in sound theory, we can show how it is consistent with current 

models and how it is an improvement over some popular techniques such as the Bornhuetter-

Ferguson method. 

What is new in this paper is the demonstration that a single unified method, which combines a 

Multiplicative LDF for older years and Cape Cod for more recent years, is built upon a single 

statistical model.  The result is that limited exposure information can be incorporated for the years 

in which it is available. 

1.3 Outline 

The remainder of the paper proceeds as follows. 

Section 2.1 will provide a description of the reserving problem faced for long-tailed business.  We 

will introduce a numerical example to illustrate this problem. 

Section 2.2 will give some basic definitions to set the groundwork for addressing the problem. 

Section 3.1 will describe the Over-Dispersed Poisson (ODP) model as the basic structure 

underlying all of the methods to be discussed. 

Section 3.2 will look at three methods in common use; and how they relate to the ODP model. 
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 Section 3.2.1 The Multiplicative LDF method (a.k.a., Chain ladder ) 

 Section 3.2.2 The Cape Cod method (a.k.a. Stanard-Bühlmann) 

 Section 3.2.3 The Bornhuetter-Ferguson method 

Section 3.3 will look at a unified method that combines the Multiplicative LDF and Cape Cod 

methods to incorporate limited exposure information. 

Section 4 gives further discussion of practical issues of the Unified method, including issues in 

creating an appropriate exposure index. 

2. PRELIMINARIES:  THE RESERVING PROBLEM 

We now proceed to give a more detailed description of the reserving problem to be addressed.  

2.1  A Realistic Example 

You are a reserving actuary reviewing the medical malpractice line of business.  You will be 

working with an eight-year development triangle of cumulative paid loss data as shown below.1 

Cumulative Paid Loss Triangle
AY 12 24 36 48 60 72 84 96

1999 257 1,143 2,402 3,478 4,456 5,080 5,284 5,481
2000 266 1,167 2,604 3,897 4,522 5,299 5,464
2001 347 1,400 2,839 3,984 5,131 5,427
2002 279 1,186 2,450 3,858 4,417
2003 245 992 2,508 3,047
2004 220 1,269 1,714
2005 214 829
2006 215  

This data shows a development pattern in which relatively little loss is paid in the first year.  As a 

benchmark, you calculate standard chain ladder  development factors, which confirm that only 

about 5.4% (=1/18.520 as shown below) of the loss would be paid as of the first twelve months—
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assuming that there is no tail beyond the eighth year.  Based on this, accident year 2006 seems too 

immature to expect the loss development method to yield a reliable result. 

 

Development Factors (age-to-age link ratios)
AY 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-Ult

1999 4.447 2.101 1.448 1.281 1.140 1.040 1.037
2000 4.387 2.231 1.497 1.160 1.172 1.031
2001 4.035 2.028 1.403 1.288 1.058
2002 4.251 2.066 1.575 1.145
2003 4.049 2.528 1.215
2004 5.768 1.351
2005 3.874

Wtd Avg 4.369 2.028 1.427 1.217 1.120 1.036 1.037
LDF 18.520 4.239 2.090 1.465 1.203 1.074 1.037 1.000  
In the past, reserves for immature years were often set using the Bornhuetter-Ferguson method, 

with a plan loss ratio used as the a priori expected value.  However, in researching old reserve 

reviews, you have found that the plan loss ratio has consistently been set at about a 60% ELR, plus 

or minus a few points.  By contrast, the actual experience has displayed a long-term cyclical pattern 

with a much wider range of loss ratios. 

 

Earned Latest Ultimate Loss
AY Premium Diagonal LDF Loss Ratio

1999 5,400 5,481 1.000 5,481 101.5%
2000 5,900 5,464 1.037 5,668 96.1%
2001 6,500 5,427 1.074 5,829 89.7%
2002 8,500 4,417 1.203 5,315 62.5%
2003 10,200 3,047 1.465 4,464 43.8%
2004 11,000 1,714 2.090 3,582 32.6%
2005 11,300 829 4.239 3,514 31.1%
2006 11,500 215 18.520 3,982 34.6%

Total 70,300 26,594 37,835 53.8%  
The 60% ELR might have been right for some periods (as Lewis Carroll observed: even a 

stopped clock is right twice a day…), but in general it has not proved to be an accurate number.  

                                                                                                                                                             
1 This triangle is based on a section of industrywide medical malpractice data, but has been modified.  The example is 
intended to be realistic, if somewhat better behaved than most accounts, but should not be used for any purpose other 
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Instead we have some evidence that the improving loss ratios from 1999 to 2006 were due in large 

part to significant rate increases.  We know that this information should be used in the analysis, but 

unfortunately we only have a reliable monitor for rate changes starting in 2002. 

 

What do we do? 

 

2.2  Laying the Groundwork for a Solution 

Before giving a detailed explanation of the models available to us and a proposed solution to the 

example above, it is worth carefully defining some key concepts.2 

Model =  A mathematical or empirical representation of a specified phenomenon 

Method =  A systematic procedure for estimating the unpaid claims 

The “Model” is a mathematical description of the form of the world that we are analyzing, 

though with simplifying assumptions, such as the assumption that all accident years have the same 

expected loss development pattern. 

The “Method” is the step-by-step procedure, or algorithm, that a person will follow to get from 

the original data to a final numerical result.  In our insurance example above, we applied the chain 

ladder  method to calculate our ultimate loss ratios. 

Some may ask: why bother defining a model at all?  Why not just select a method that seems 

reasonable and leave it there?  There are three reasons: 

1) A model gives criteria for deciding which of several possible methods is the “best” one 

(e.g., criteria of unbiasedness and minimum variance). 

2) A model forces us to make all of our assumptions explicit so that they can be tested (e.g., 

with residual plots and goodness-of-fit criteria). 

3) A model provides the theory for creating ranges around our reserve estimate (either 

                                                                                                                                                             
than illustrating the ideas in this paper. 
2 These two definitions come from Actuarial Standard of Practice No. 43; see Shapland (2007) for a more rigorous 
definition of these terms. 
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standard deviation or percentile distributions). 

 

The 2005 CAS Working Party on Reserve Variability gives a more complete explanation of these 

reasons for creating a model.  For the present paper, the primary purpose of introducing the 

mathematical model will be to show the “family relationship” of the methods presented. 

 

Two more concepts need to be introduced before we proceed with our model. 

Over-Parameterization  = when we have too few data points relative to the number of model 

parameters 

Model Constraints  = user-supplied information that sets parameters, or relationships 

between parameters, rather than having them  estimated from the 

data 

The concept of over-parameterization is sometimes referred to as over-fitting or responding to 

the noise in the data rather than the signal.  This can be a significant problem in the loss reserving 

context where we are working with data summarized into the triangle format.  Constraining the 

model parameters is one way of reducing the instability from over-parameterizing and will be key to 

understanding the differences in the methods that we discuss below. 

3. A FAMILY OF RESERVING MODELS AND METHODS 

We now turn to a model that provides a framework for all of the familiar reserving methods.  It 

points to a useful solution to our particular problem.  

3.1  The Over-Dispersed Poisson (ODP) Model 

The model presented here is derived from the theory of generalized linear models (GLM).  GLM 

theory is an expansion of the theory of linear regression that allows for a broader category of error 
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distributions beyond the normal Gaussian distribution, and also allows for the linear relationship of 

independent variables to be transformed by a “link function” in predicting the dependent variable.3 

The structure of our model will be a multiplicative combination of accident year ( y ) and 

development period ( d ) factors.  The dependent variable that we are attempting to fit will be the 

incremental loss for a given accident year in a given development period, and will be denoted dyc , .  

For our example, this will be referred to as incremental paid, but the theory could be equally applied 

to reported data. 

( ) dydydy ELRvcE βμ ⋅⋅== ,,  (3.1.1)

 

Within this formula, the parameter yv  is an exposure or volume measure by accident year that is 

proportional to ultimate loss.  This can be thought of as onlevel premium, though Section 4 of this 

paper will give a more detailed discussion as to how to create the measure.  The ELR  is an expected 

loss ratio, which represents the ratio of expected ultimate loss to the exposure measure.  Because the 

exposures yv  already vary by accident year in proportion to expected loss, we only need a single 

value for ELR.  The last parameter dβ  is the development period relativity and may be thought of 

as the percent paid during a given calendar year. 

This type of multiplicative combination of independent parameters indicates a log-link within 

GLM.  That is, we would need to take logarithms of each side of the equation in order to transform 

the problem into a linear form. 

Next, we will assume that the expected variance of an actual point from the expected value is in 

proportion to the expected value.  The variance-to-mean ratio is represented as a dispersion 

parameter φ . 

( ) ( ) dydydy cEc ,,,Var μφφ ⋅=⋅=  (3.1.2)

The GLM framework makes use of distributions within the exponential family for the error 

                                                           
3 See Mildenhall (1999) for a good introduction to GLM in general, or Renshaw & Verrall (1998) for the GLM directly 
corresponding to this reserving application. 
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function.  The assumption that the variance is proportional to the mean uniquely identifies the 

distribution as Poisson.  The Poisson distribution is defined on the positive integers, { }L,3,2,1,0 , 

with variance equal to its mean, but this is generalized to the over-dispersed Poisson (ODP) model 

to be defined on multiples of the dispersion parameter, { }L,3,2,1,0 φφφφ .4 

With this model defined, the maximum likelihood estimates for the parameters can be found.  

We can actually do this by maximizing the quasi-log-likelihood (QLL) function,5 a simplified version 

of the log-likelihood that does not depend on the dispersion parameter φ . 
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We maximize the quasi-log-likelihood by solving for the parameters that set all of the derivatives 

equal to zero.  For example: 

0=
∂
∂

d

QLL
β

      d∀  
(3.1.4)

Taking these derivatives guarantees that totals of the fitted losses in each column (development 

age) are equal to the actual losses.  The model may therefore be described as unbiased.6 
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4 Venter (2007) prefers to call this the Poisson-constant-severity (PCS) model rather than ODP, because it can be 
interpreted as a collective risk model in which the number of claims follows a Poisson distribution, and every claim 
amount is the same value.  However, there is no need to force this interpretation; we can simply view it as a discretized 
aggregate loss model for a given mean and variance. 
5 See Renshaw and Verrall (1998) for the full detail on this.  They also note “We find it easiest to retain the assumption 
that the data have a Poisson distribution at the moment, although in all that follows in this section it is only the form of 
the likelihood which is important.” 
6 The unbiasedness of row and column parameters as seen in “balancing” their totals may be familiar from the problem 
of classification ratemaking as described in Mildenhall (1999).  More rigorously, we define unbiasedness as a 
characteristic of an estimator whose expected value is equal to the expected value of the random variable.  That is, 
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ˆRL̂E β .  This means that the total of the fitted values corresponding to the 

observed payments will be unbiased; this does not mean that the estimated reserve for the future periods will also be 
unbiased (cf. Taylor 2003). 
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Depending on the further constraints on yv  and ELR, certain row totals will also have fitted 

values that equal the actual values.  Our choice of reserving method will depend on how we define 

these constraints. 

3.2  Common Methods – Based on Constraining the ODP Model 

Having defined the basic ODP model, we proceed to show how it is related to three familiar 

reserving methods. 

3.2.1 The Multiplicative LDF Method 

We begin with a fully unconstrained model, for which we assume that the vector of exposure 

measures  is not available and must be estimated from the data in the development triangle.  The 

exposure values yv  and ELR are therefore considered parameters to be estimated by the model.  We 

start by defining: 

ELR⋅= yy vα        (3.2.1)

Then we need to add a fitting criterion that the derivative of the QLL with respect to each yα  is 

set equal to zero. 

0QLL
=

∂
∂

yα
      y∀  

(3.2.2)

Taking these derivatives guarantees that the row totals of fitted and actual values are equal for 

every accident year. 

∑∑
−+

=

−+

=

⋅=
yn

d
dy

yn

d
dyc

1

1

1

1
, βα       y∀  

(3.2.3)

 

An easy way of estimating the α  and β  parameters for this model is to use the chain-ladder 

method of loss development factors.  The parameters yα  represent the ultimate loss by year; the 

parameters dβ  are a function of the weighted average LDFs. 
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AY Ult. Loss Incremental %
y (alpha) LDF % of Ult (beta)

1999 5,481 1.000 100.00% 3.59%
2000 5,668 1.037 96.41% 3.31%
2001 5,829 1.074 93.10% 10.00%
2002 5,315 1.203 83.10% 14.84%
2003 4,464 1.465 68.26% 20.41%
2004 3,582 2.090 47.85% 24.26%
2005 3,514 4.239 23.59% 18.19%
2006 3,982 18.520 5.40% 5.40%

Total of Betas: 100.00%  

A simple inspection of the actual and fitted incremental triangles will confirm that both the row 

and column totals are equal. 

Actual Incremental Payments
AY 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96

1999 257 886 1,259 1,076 978 624 204 197
2000 266 901 1,437 1,293 625 777 165
2001 347 1,053 1,439 1,145 1,147 296
2002 279 907 1,264 1,408 559
2003 245 747 1,516 539
2004 220 1,049 445
2005 214 615
2006 215

Total: 2,043 6,158 7,360 5,461 3,309 1,697 369 197  

Fitted Incremental Payments
AY 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96

1999 296 997 1,330 1,119 814 548 181 197
2000 306 1,031 1,375 1,157 841 566 188
2001 315 1,060 1,414 1,190 865 583
2002 287 967 1,289 1,085 789
2003 241 812 1,083 911
2004 193 652 869
2005 190 639
2006 215

Total: 2,043 6,158 7,360 5,461 3,309 1,697 369 197  

An important observation from this exercise is that we have set the tail factor at age 96  months 

equal to 1.000.  That is, we are assuming that there is no further development beyond the eighth 
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year.  In fact, this is merely done by convention – we can include any tail factor that we would like 

beyond the eighth year.  We include a tail factor by dividing all of our β  parameters by the selected 

96-ultimate LDF, and then also multiplying all of the α  parameters by the same amount.  The 

cross-product will produce fitted values equal to the model above. 

What this tells us is that the fully unconstrained model provides us with no information about 

development beyond the periods in the historical data.7 

A second observation from this unconstrained model is that, while we usually think of it in 

multiplicative terms, it can equivalently be considered an additive model: 

Ultimate Loss = (Paid Loss) × LDF 

Ultimate Loss = (Paid Loss) + (Expected Ultimate)×(1-1/LDF) 

   where Expected Ultimate = (Paid Loss)×LDF 

A final observation is that our example includes 36 actual data points, but those 36 data points 

are estimating 15 parameters (eight accident year factors plus seven development factors).  This 

gives us few data points per parameter and, therefore, should be described as an over-parameterized 

model. 

3.2.2 The Cape Cod Method 

As noted above, the fully unconstrained model that produces the chain-ladder method has a 

problem with over-parameterization.  We therefore move to a model that adds more constraints, by 

introducing an exposure measure that forces a relationship between the accident year ultimates. 

      ji
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(3.2.4)

Because the exposure or volume measures are supplied by the user, we only need to estimate the 

parameter ELR instead of the full vector of yα .  The Maximum Likelihood Estimator (MLE) for 

                                                           
7 One way to fit a tail factor to the data is to constrain the model by assuming that all of the β s follow a known 
development pattern form.  This is the model outlined in Clark (2003), but will not be addressed here. 
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the ELR is found by setting the derivative of the quasi-log-likelihood function (QLL) equal to zero. 
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This criterion results in a requirement that the sum of all the losses in the entire triangle is the 

same for fitted and actual values. 
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This does not add anything to our MLE criteria, since we had already required that column totals 

would be equal. 

The method for estimating model parameters is: 

1)  Estimate an incremental loss ratio dIncrLR  for each development period: 
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2)  Set the ELR as the sum of the incremental loss ratios:  
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3)  Set the development pattern parameters such that 1
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With this procedure, we accomplish the goal of having all of the column totals for the fitted 
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triangle match those of the actual triangle; therefore the results are the maximum likelihood 

estimates. 

We have been again assuming that there is no “tail” beyond the last age represented in the 

triangle.  As with the Multiplicative LDF method, this is only by convention, and we can introduce 

any tail factor we wish by re-scaling the β and ELR parameters. 

n

d
d LDF
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β → so that
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d
d

n
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1LDF
β

 
(3.2.10)

 

The original ELR is then multiplied by the selected tail nLDF  to produce a final ELR. 

( ) nOriginal LDFELRELR ⋅=  (3.2.11)

 

The key concept to note is that the ELR and tail nLDF  are interdependent.  If we change one of 

them, then the other will also need to change.  This concept will be critical when we examine the 

Bornhuetter-Ferguson method. 

In order to perform these calculations, we must first create an exposure index covering all of the 

accident years in the experience period.  We saw above that the ultimate loss ratios were not 

constant by year, and so we cannot assume that historical premium is a good measure of exposure.  

We will instead make use of an onlevel factor to adjust for changes in rate adequacy.  This way we 

can create a surrogate exposure base. 
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AY Earned Onlevel Exposures
y Premium Factor v y

1999 5,400 2.200 11,880
2000 5,900 2.050 12,095
2001 6,500 1.850 12,025
2002 8,500 1.400 11,900
2003 10,200 1.200 12,240
2004 11,000 1.100 12,100
2005 11,300 1.050 11,865
2006 11,500 1.050 12,075

Total 70,300 96,180  

The exposures yv  are estimated as the historical earned premium times the onlevel factor.  These 

exposures are now assumed to be proportional to the ultimate expected losses by accident year and 

can be used in formula 3.2.7 to estimate the preliminary development parameters. 

Actual Incremental Payments divided by Exposure
AY 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96

1999 2.16% 7.46% 10.60% 9.06% 8.23% 5.25% 1.72% 1.66%
2000 2.20% 7.45% 11.88% 10.69% 5.17% 6.42% 1.36%
2001 2.89% 8.76% 11.97% 9.52% 9.54% 2.46%
2002 2.34% 7.62% 10.62% 11.83% 4.70%
2003 2.00% 6.10% 12.39% 4.40%
2004 1.82% 8.67% 3.68%
2005 1.80% 5.18%
2006 1.78%

IncrLR: 2.12% 7.32% 10.19% 9.08% 6.91% 4.71% 1.54% 1.66%
Cumul: 2.12% 9.45% 19.63% 28.71% 35.62% 40.34% 41.88% 43.53%
Beta 4.88% 16.82% 23.40% 20.86% 15.87% 10.83% 3.54% 3.81%

Cumul: 4.88% 21.70% 45.10% 65.96% 81.83% 92.66% 96.19% 100.00%
LDF 20.495 4.609 2.217 1.516 1.222 1.079 1.040 1.000  

These numbers are calculated additively rather than via chain ladder link ratios but the 

calculations are still very straightforward.  The ELR to onlevel premium is calculated directly as 

43.53% by summing the preliminary incremental loss ratios.   

We can also calculate an LDF from the β s.  However, this development pattern is not exactly 

equal to that produced by the chain ladder  method.  The key reason for this difference is that we are 

now making use of more information.  For example, the 2006 year has loss as of 12 months of $215, 
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which would not affect the chain ladder  calculation (no link ratio is calculated from the 2006 year), 

whereas it does affect the result for the constrained model. 

The next step is to use these parameters to project the ultimate losses by year.  This is done with 

an additive formula. 

  Ultimate Loss   =   (Paid Loss) + (Expected Ultimate)×(1-1/LDF) 

    where Expected Ultimate = Exposure × ELR 

 

AY Exposures Expected IBNR% Latest Final Final
y v y ELR Ultimate LDF 1-1/LDF Diagonal Ultimate L / R

1999 11,880 43.53% 5,172 1.000 0.00% 5,481 5,481 46.14%
2000 12,095 43.53% 5,265 1.040 3.81% 5,464 5,665 46.83%
2001 12,025 43.53% 5,235 1.079 7.34% 5,427 5,811 48.33%
2002 11,900 43.53% 5,181 1.222 18.17% 4,417 5,358 45.03%
2003 12,240 43.53% 5,329 1.516 34.04% 3,047 4,861 39.71%
2004 12,100 43.53% 5,268 2.217 54.90% 1,714 4,606 38.07%
2005 11,865 43.53% 5,165 4.609 78.30% 829 4,874 41.08%
2006 12,075 43.53% 5,257 20.495 95.12% 215 5,215 43.19%

Total 96,180 43.53% 41,871 26,594 41,871 43.53%  

We may note that this is the same calculation that is often thought of as the Bornhuetter-

Ferguson method, except that the ELR has been estimated from the data rather than from some a 

priori input. 

This method can be equivalently applied by showing the ELR as the ratio of the latest diagonal of 

loss divided by the exposure corresponding to the expected loss-to-date.  This is the format typically 

seen in the Cape Cod method, as shown below. 
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AY Exposures Expos Latest Ultimate
y v y LDF / LDF Diagonal L / R

1999 11,880 1.000 11,880 5,481 46.14%
2000 12,095 1.040 11,634 5,464 46.96%
2001 12,025 1.079 11,142 5,427 48.71%
2002 11,900 1.222 9,737 4,417 45.36%
2003 12,240 1.516 8,073 3,047 37.74%
2004 12,100 2.217 5,457 1,714 31.41%
2005 11,865 4.609 2,574 829 32.20%
2006 12,075 20.495 589 215 36.49%

Total 96,180 61,088 26,594 43.53% = 26,594 / 61,088  

This result is significant because it derives from the same underlying ODP model as we used for 

the Multiplicative LDF method.  The only difference is that we have added a constraint that forces a 

certain behavior in the expected ultimate losses. 

As with the Multiplicative LDF method, this Cape Cod method tells us nothing about 

development beyond the eight years in the historical data.  We can again introduce a tail factor to 

change all of our β  parameters, with an exact offsetting change to the ELR. 

3.2.3 The Bornhuetter-Ferguson (BF) Method 

As noted in the previous section, the Cape Cod method looks very much like a traditional 

Bornhuetter-Ferguson (BF) method, except that in the Cape Cod method the ELR is estimated 

from the data itself instead of being supplied by the analyst. 

The BF method was originally created as a means of enforcing stability in the IBNR loss reserve 

estimate.  As was stated in the original 1972 paper: 

The decision as to whether to develop the reserve as a direct function of case 
incurred losses or as a function of expected losses turns on the expected volatility of 
the data.  If the data are extremely thin, the presence or absence of several large 
losses will impact greatly on the IBNR reserves if the reserve is a function of the case 
incurred. 

This original quote implies an either/or decision: the IBNR reserve is either a function of case 

incurred losses or a function of expected losses.  The GLM framework allows us to incorporate 

both sources of information in a single consistent model.   We will start with the more general 
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model, which incorporates the ELR into a GLM, and then move on to how the BF method is 

traditionally applied in practice. 

For our example, let us suppose that the analyst has selected a 50% ELR for use in the BF 

method.  To calculate the β  parameters in this constrained model, we perform the same calculation 

as we used in the Cape Cod method, except that the denominator is the exposures times our 

selected 50% ELR. 

d
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(3.2.12)

The form shown in formula 3.2.12 is the same as the pattern recommended in Mack (2006) as 

most consistent with the BF method. 

Actual Incremental Payments divided by Exposure times ELR of 50%
AY 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96

1999 4.33% 14.92% 21.20% 18.11% 16.46% 10.51% 3.43% 3.32%
2000 4.40% 14.90% 23.76% 21.38% 10.33% 12.85% 2.73%
2001 5.77% 17.51% 23.93% 19.04% 19.08% 4.92%
2002 4.69% 15.24% 21.24% 23.66% 9.39%
2003 4.00% 12.21% 24.77% 8.81%
2004 3.64% 17.34% 7.36%
2005 3.61% 10.37%
2006 3.56%

Beta 4.25% 14.64% 20.38% 18.16% 13.82% 9.43% 3.08% 3.32%
Cumul: 4.25% 18.89% 39.27% 57.43% 71.25% 80.67% 83.75% 87.07%

LDF 23.539 5.293 2.547 1.741 1.404 1.240 1.194 1.149  

The β  parameters will all be in the same proportion to those estimated for the Cape Cod 

method.  However, we no longer have the freedom to introduce a tail factor to go from the 96-

month age to ultimate.  Instead, the data and our selected ELR have forced a tail factor upon us 

(again formula 3.2.10). 
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(3.2.10)
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AY Exposures Expected IBNR% Latest Final Final
y v y ELR Ultimate LDF 1-1/LDF Diagonal Ultimate L / R

1999 11,880 50.00% 5,940 1.149 12.93% 5,481 6,249 52.60%
2000 12,095 50.00% 6,048 1.194 16.25% 5,464 6,447 53.30%
2001 12,025 50.00% 6,013 1.240 19.33% 5,427 6,589 54.79%
2002 11,900 50.00% 5,950 1.404 28.75% 4,417 6,128 51.49%
2003 12,240 50.00% 6,120 1.741 42.57% 3,047 5,652 46.18%
2004 12,100 50.00% 6,050 2.547 60.73% 1,714 5,388 44.53%
2005 11,865 50.00% 5,933 5.293 81.11% 829 5,641 47.54%
2006 12,075 50.00% 6,038 23.539 95.75% 215 5,996 49.66%

Total 96,180 50.00% 48,090 26,594 48,090 50.00%  

This format is the same as for the Cape Cod method, except that the ELR has been fixed by the 

model user.  We may again note that the final ultimate loss ratio (relative to onlevel premium) is 

equal to the selected ELR.   

In this BF example, the selection of the 50% ELR results in an implied tail factor of 1.149.  We 

could have used the Cape Cod method instead, including a 1.149 tail factor, and produced the same 

results as the BF method.  The two methods are algebraically equivalent: either the ELR determines 

the tail factor or the tail factor determines the ELR. 

Method Values Supplied by User Estimated Parameters 
Multiplicative LDF 

nLDF  87654321 ,,,,,,, vvvvvvvv  

87654321 ,,,,,,, ββββββββ  
ELR  

Cape Cod 
87654321 ,,,,,,, vvvvvvvv  

nLDF  
87654321 ,,,,,,, ββββββββ  

ELR  
Bornhuetter-Ferguson 
         as a GLM 

87654321 ,,,,,,, vvvvvvvv  
ELR  

87654321 ,,,,,,, ββββββββ  

nLDF  
 

There may be objections at this point that we are not presenting the traditional BF method as 

found in the original 1972 paper.  In that paper, the development pattern (including the tail factor) is 

selected prior to and independent of the ELR; the ELR implied by the data is ignored and implicitly 

overwritten by user. 
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When model parameters are overwritten by the user, bias is introduced:  the fitted values for the 

triangle will no longer balance to the actual values.  This bias may remain unrecognized because the 

model assumptions underlying the BF selections are never made explicit and are therefore left 

untested. 

For this reason, we seek a method that keeps the stability of the traditional BF method, but is 

more responsive to the loss experience by balancing to the historical paid loss values. 

3.3  A Unified Method 

Having reviewed the three traditional methods used in a reserve review, we may note some 

limitations in each. 

• The Multiplicative LDF method is clearly over-parameterized. 

• The Cape Cod method is attractive but requires an exposure for every AY. 

• The traditional Bornhuetter-Ferguson method involves user-intervention, making it less 

responsive to the actual loss experience. 

Given these limitations, the most attractive option would be the Cape Cod method.  

Unfortunately, we may not have the full data to implement it.  This is where a combination  or 

unified method becomes most useful. 

We begin by slightly modifying our original model to have the ELR apply to a subset of years.  

For example, the most recent four years may be grouped together under the same ELR, with the 

older years being estimated separately.   We begin again with the general model. 

( ) dydydy vcE βμ ⋅⋅== ELR,,  (3.3.1)

The key concept is that the exposure values, yv , are not available for the older years and so must 

be estimated in the model just as was done for the Multiplicative LDF method.  We define a group 

of years, g , in which the exposures are available as containing the  indices for the more recent years 

2003-2006: { }8,7,6,5=g . 

If all of the years are part of the group, { }ng ,,2,1 L= , then the Unified method is equivalent to 
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the Cape Cod method.  On the other extreme, if only the most recent year is included in the group, 

{ }ng = , then the Unified method is equivalent to the Multiplicative LDF method. 

To solve for the Maximum Likelihood Estimates (MLE) of this model, we again have the 

condition that the fitted column totals must equal the actual column totals.  We also have a 

condition that the sum of all the rows in the subset of years, g, must balance between fitted and 

actual values.  This can be written using an indicator function, ( )gy∈δ , which is equal to unity for 

years in the group and zero otherwise. 
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For our eight-year example, this implies: 
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(3.3.3)

 

This method requires an iteration to solve for the maximum likelihood values, but it is not 

difficult.  The iteration finds the values for the dβ  and ELR parameters such that the column total 

and the grouped-row totals match the actual values. 

The result is the “best” model in that it uses all of the available information, produces an 

unbiased fit, and satisfies the maximum likelihood criteria. 

The concept of the Unified method may sound abstract at first, but a numerical example will 

show that the application is actually quite simple.8 

We first assume that the rate adequacy index is only available for the second half of the 

experience period.  The exposures for the earlier years are just placeholders and do not affect the 

                                                           
8 For an alternative discussion of this approach to reducing the number of parameters, see Venter (2007).  While he is 
reducing the number of development period parameters rather than the number of accident year parameters, the 
technique is the same. 
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final result. 

AY Earned Onlevel Exposures
y Premium Factor v y

1999 5,400 na 5,400
2000 5,900 na 5,900
2001 6,500 na 6,500
2002 8,500 na 8,500
2003 10,200 1.200 12,240
2004 11,000 1.100 12,100
2005 11,300 1.050 11,865
2006 11,500 1.050 12,075

Total 70,300

Separate Years

Grouped Years

 

The results of the Unified method can be displayed in the same format as was used for the other 

methods.9  The difference in this final version is that the ELR is the same for the recent years but 

different for the earlier years.  The expected loss for the earlier years is simply the result from the 

Multiplicative LDF method. 

AY Exposures Expected IBNR% Latest Final Final
y v y ELR Loss LDF 1-1/LDF Diagonal Ultimate L / R

1999 5,400 1.000 0.00% 5,481 5,481 101.50%
2000 5,900 1.037 3.59% 5,464 5,668 96.06%
2001 6,500 1.074 6.90% 5,427 5,829 89.68%
2002 8,500 1.203 16.90% 4,417 5,315 62.53%
2003 12,240 33.14% 4,057 1.465 31.74% 3,047 4,335 35.41%
2004 12,100 33.14% 4,011 2.104 52.47% 1,714 3,818 31.56%
2005 11,865 33.14% 3,933 4.293 76.71% 829 3,846 32.41%
2006 12,075 33.14% 4,002 18.745 94.67% 215 4,004 33.16%

Total 74,580 na na 26,594 38,296 51.35%

2003-2006 48,280 33.14% 16,002 2.757 5,805 16,002 33.14%  

As can be seen in this example, the Unified method is the Multiplicative LDF applied to the old 

years and the Cape Cod applied to the more recent years.  In order for this to be the maximum 

likelihood estimate, the development pattern and the ELR should be calculated simultaneously.  This 

                                                           
9 The results shown require a numerical iteration to find the MLE parameters, so the reader can verify that the numbers 
satisfy the balance for row and column totals but cannot easily re-derive the parameters.  A practical compromise is 
given in section 4.1. 
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requirement can be relaxed in practice, by having the analyst separately select the loss development 

pattern (see Section 4.1). 

This example also shows that the group of years for which the exposure base is available can be 

treated as a unit with an average LDF applied multiplicatively.  The average LDF is calculated as a 

harmonic average using the exposures as weights. 

⎟
⎠
⎞

⎜
⎝
⎛ +++

=

18.745
12,075

4.293
11,865

2.104
12,100

1.465
12,240

48,280      2.757  

We may summarize the relationship of this Unified method to the Multiplicative LDF and Cape 

Cod cases in the following chart. 

Method Values Supplied by User Estimated Parameters 
Multiplicative LDF 

nLDF  87654321 ,,,,,,, vvvvvvvv  

87654321 ,,,,,,, ββββββββ  
ELR  

Cape Cod 
87654321 ,,,,,,, vvvvvvvv  

nLDF  
87654321 ,,,,,,, ββββββββ  

ELR  
Unified 

8765 ,,, vvvv  

nLDF  
 

4321 ,,, vvvv  

87654321 ,,,,,,, ββββββββ  
ELR  

 

4. PRACTICAL ISSUES FOR THE “UNIFIED” METHOD 

Having outlined the general approach for applying a Unified method that combines 
Multiplicative LDF and Cape Cod methods, we now wish to address two practical issues. 

4.1  Separating the Selection of the Development Pattern 

As was noted in the description of the theory underlying the Unified method, it is necessary that 
the development pattern (viewed either as β s or LDFs) must be estimated simultaneously with the 
other parameters in order to have the maximum likelihood estimate for the reserves.  This may be 
unrealistic in practice, because the reserving actuary will often choose to smooth out the 
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development pattern by removing outlier points or giving more weight to more recent diagonals. 

All of these methods allow this step to be done separately.  What results is a model that is further 
constrained by the selection of the β  parameters.  For example, the Multiplicative LDF method 
now seeks to find the “best” (MLE) α  parameters, representing ultimate losses by accident year, 
given a selected development pattern.  Within the ODP model, the maximum likelihood estimate is 
found by applying the selected LDF to the latest diagonal of the cumulative loss triangle.  Likewise, 
for the Unified method, we simply apply the same method as outlined in section 3.3, using the 
selected LDFs. 

Having selected a loss pattern of β  parameters, either from the triangle or from external 
information, we apply this to the latest diagonal of account data: multiplicatively for the old years 
and additively (via Cape Cod) for the more recent years.  This is equivalent to a GLM with the β  
parameters constrained by the user and the ELR fit via MLE. 

 

Method Values Supplied by User Estimated Parameters 
Multiplicative LDF LDFn 87654321 ,,,,,,, vvvvvvvv  

87654321 ,,,,,,, ββββββββ  
ELR 

Cape Cod 
87654321 ,,,,,,, vvvvvvvv  

nLDF  
87654321 ,,,,,,, ββββββββ  

ELR 
Unified 

8765 ,,, vvvv  
LDFn 
 

4321 ,,, vvvv  

87654321 ,,,,,,, ββββββββ  
ELR  

Unified method with 
development pattern 
selected by user. 

8765 ,,, vvvv  

87654321 ,,,,,,, ββββββββ
LDFn 

4321 ,,, vvvv  
ELR 

 

Because of this result, we can also interpret the Unified method as a purely multiplicative 
approach.  In our example, we have grouped the latest four years together to apply the Cape Cod 
method.  The ultimate for that group of years can also be calculated by applying a single average 
LDF to the four-year block. 
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In other words, we take a weighted harmonic average of the development patterns for each year 
in the block, using the exposures as the weights.  This average factor then is applied to the four-year 
block itself.  The IBNR can be allocated back down to the individual years using the same Cape Cod 
method. 

The averaging approach accomplishes the same stabilizing goal that is the reason that many 
people now use the Bornhuetter-Ferguson method, but it better responds to the actual experience. 

We should also note that this concept is not original with this paper.  This averaging method is 
the same as would be used if you had a development pattern from accident quarters (AQ) and 
needed to estimate an accident year (AY) development factor.  You would perform an average as 
below. 
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=  

(4.1.2)

 

This is the same as our Unified group, with the assumption that exposures are uniform across 

quarters. 

4.2  Creating the Exposure Index 

A second practical problem is the need to create an appropriate onlevel factor.  As stated 

previously, the resulting exposure measure yv  should be proportional to the expected loss for 

accident year “y.” 

The starting point for this calculation should be changes in the underlying pricing, including the 

key components: 

• Changes to base rates and increased limits factors 

• Changes to discretionary pricing modifications 
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• Changes to terms and conditions (e.g., removal of exclusions) 

• Enforcement of underwriting standards (e.g., correct classifications, audits) 

We want to adjust for these components so as to remove the effects of the “insurance cycle.” 

The second component for the onlevel factor is an adjustment for inflation trend.  That is, we 

want to have each year’s premium adjusted to a common rate level, but at the loss cost level for the 

specific year.  We do this by adjusting the premium to a projected future level, reflecting rate 

changes and increases due to exposure inflation.  That adjusted premium is then de-trended based 

on loss inflation. 

Rate Exposure Loss Final
AY Earned Onlevel Trend Onlevel Trend Exposures Onlevel
y Premium Factor at 3.0% Premium at 6.0% v y Factor

A B C D E=B*C*D F G=E/F H=G/B

1999 5,400 2.690 1.230 17,863 1.504 11,880 2.200
2000 5,900 2.435 1.194 17,157 1.419 12,095 2.050
2001 6,500 2.136 1.159 16,092 1.338 12,025 1.850
2002 8,500 1.570 1.126 15,023 1.262 11,900 1.400
2003 10,200 1.308 1.093 14,578 1.191 12,240 1.200
2004 11,000 1.165 1.061 13,596 1.124 12,100 1.100
2005 11,300 1.081 1.030 12,577 1.060 11,865 1.050
2006 11,500 1.050 1.000 12,075 1.000 12,075 1.050  

Because this index involves estimates of inflation, as well as components of price adequacy that 

may be difficult to quantify, it is not an easy task to estimate it reliably for a long historical period.  

This is a practical argument for the Unified method to be applied rather than Cape Cod method. 

5. CONCLUSIONS 

This paper has outlined a “Unified” reserving method that is a combination of familiar 

Multiplicative LDF and Cape Cod methods.  This Unified method allows the reserving actuary to 

make use of exposure information even if it can only be compiled for a few recent periods.  This 

Unified method is based on the same statistical model that is common to both of these other 

methods. 
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This Unified method achieves the goal of stabilizing the reserves for immature periods, while also 

being more responsive to the actual loss payments than the traditional Bornhuetter-Ferguson 

method. 
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Abbreviations: 
BF Bornhuetter-Ferguson 
CL Chain ladder 
GLM Generalized Linear Model 
IBNR Incurred But Not Reported loss (all loss beyond the amounts in the historical triangle) 
LDF Loss Development Factor, also known as an “age-to-ultimate” factor 
ODP Over-Dispersed Poisson 
 
Reserving Model Notation: 

dyc ,    Actual incremental losses in accident year “y” and development period “d” 

dβ     Parameter for development period “d”;  can be thought of as the percent of ultimate loss paid during a 
given development period 

ELR  Expected Loss Ratio 

yv   Exposures or volume measure for accident year “y”; can be thought of as onlevel premium 

φ  Dispersion parameter for ODP model, φ = ratio of variance to mean 
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Abstract 

A variety of methods to measure the variability of property-liability loss reserves have been developed 
to meet the requirements of regulators, rating agencies and management.  These methods focus on nominal, 
undiscounted reserves, in line with statutory reserve requirements.  Recently, though, there has been a trend 
to consider the fair value, or economic value, of loss reserves.  Insurance regulators worldwide are starting 
to consider the economic value of loss reserves, which reflects how much needs to be set aside today to 
settle these claims, instead of focusing on nominal values.  If insurers switch to economic values for loss 
reserves, then reserve variability would need to be calculated on this basis as well.  This approach will add 
considerable complexity to reserve variability calculations.  This paper combines loss reserve variability and 
economic valuation.  Loss reserve ranges are calculated on a nominal and economic basis for a simplified 
insurer to illustrate the key variables that impact loss reserve variability.  Nominal interest rate and inflation 
volatility, interest rate-inflation correlation, and the relationship between claim cost and general inflation are 
key factors that affect economic loss reserve variability.  Actuaries will need to focus on measuring these 
values accurately if insurers adopt economic valuation of loss reserves.  

 
      The model used in this project is available for download at:  

http://www.business.uiuc.edu/~s-darcy/papers/LossReserveRangeModelv2.xls. 
 

Keywords: loss reserve ranges, economic value, stochastic simulation 
________________________________________________________________________________ 
 

1. INTRODUCTION 

Traditional loss reserving approaches in the property-liability field produced a single point 
estimate value.  Although no one truly expects losses to develop at exactly the stated value, the focus 
was on a single value for reserves that did not reflect the uncertainty inherent in the process.  As the 
use of stochastic models in the insurance industry grew, for Dynamic Financial Analysis (DFA), for 
Asset Liability Management (ALM) and other advanced financial techniques, loss reserve variability 
became an important issue.  McClenahan (2003) describes the history of interest in reserve variability 
and loss reserve ranges.  Hettinger (2006) surveys the different approaches used to establish reserve 
ranges.  The CAS Working Party on Quantifying Variability in Reserve Estimates (2005) provides a 
detailed description of the issue of reserve variability, including an extensive bibliography and set of 
issues that still need to be addressed.  The conclusions of this Working Party are that, despite 
extensive research on this area to date, there is no clear consensus within the actuarial profession as 
to the appropriate approach for measuring this uncertainty, and that much additional work needs to 
be done in this area.   All of the approaches described in this report and suggestions for future 
research focus on measuring uncertainty in statutory loss reserves.  Given recent attention to fair 
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value insurance accounting, future research should also focus on more accurate economic reserve 
ranges. 

The use of nominal values for loss reserves is sometimes justified as providing a safety load, or 
risk margin, over the true (economic) value of the reserves.  However, risk margins determined in 
this way would fluctuate with interest rates and vary by loss payout patterns.  A more appropriate 
approach, which is beyond the scope of this research, would be to establish risk margins based on 
the risks inherent in the reserve estimation process, such as determining the risk margin based on 
the difference between the expected economic value and a level such as the 75th percentile value. 

The Financial Accounting Standards Board (FASB) and the International Accounting Standards 
Board (IASB) have proposed an alternative approach to valuing insurance liabilities, including loss 
reserves.  This approach, termed Fair Value, proposes that loss reserves in financial reports be set at 
a level that reflects the value that would exist if these liabilities were sold to another party in an arms 
length transaction.  The relative infrequency with which these exchanges actually take place, and the 
confidentiality surrounding most trades that do occur, make this approach to valuation more of a 
theoretical exercise than a practical one, at least in the current environment.  However, Fair Value 
would reflect the time value of money, so the trend would be, if these proposals are implemented, to 
set loss reserves at their economic rather than nominal values.  The issues involved, and financial 
implications, in Fair Value accounting are covered extensively in the Casualty Actuarial Society 
report, Fair Value of P&C Liabilities:  Practical Implications (2004).  However, despite the 
comprehensive nature of the papers included in this report, little attention is paid to the impact the 
use of Fair Value accounting would have on loss reserve ranges.   If reserves are to be calculated on 
a fair value basis, then reserve ranges should also be based on this approach as well. 

A final impetus for this project is the recent criticism of the casualty actuarial profession over 
inaccurate loss reserves and the profession’s response to these attacks.   A Standard & Poor’s report 
(2003) blamed the reserve shortfalls the industry reported in 2002 and 2003 on actuarial “naivety or 
knavery.”  The actuarial profession responded strongly to this criticism, both with information and 
with investigation (Miller, 2004).  The Casualty Actuarial Society formed a task force to address the 
issues of actuarial credibility.  The report of this Task Force (2005) included the recommendation 
that actuarial valuations include ranges to indicate the level of uncertainty in the reserving process 
and that additional work be done to clarify what the ranges indicate.  Once again, the focus was on 
statutory loss reserve indications rather than the economic value. 
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 The critical problem with setting reserve ranges based on nominal values is the impact of 
inflation on loss development.  Based on relatively recent history (the 1970s) and current economic 
conditions (increasing international demand for raw materials, vulnerable oil supplies, the U.S. 
Federal Reserve’s response to the subprime credit crisis), increasing inflation has to be accorded 
some probability of occurring in the future by any actuary calculating loss reserve ranges.  As 
inflation will affect all lines of business simultaneously, the impact of sustained high inflation would 
be to cause significant adverse loss reserve development for property-liability insurers.  Loss reserve 
ranges based on nominal values would therefore include the high values that would be caused by a 
significant rise in inflation.  However, inflation and interest rates are closely related, as first observed 
by Irving Fisher (1930) and confirmed by economists consistently since.  The loss reserves impacted 
by high inflation would most likely be accompanied by high interest rates, so the economic value of 
those reserves would not be that much higher than the economic value of the point estimate for 
reserves.  Using economic values to determine reserve ranges could also lead to narrower ranges and 
provide a clearer estimate of the true financial impact of reserve uncertainty.   

This project utilizes realistic stochastic models for interest rates, inflation, and loss development 
to determine loss reserve distributions and ranges on both a nominal and economic basis, draws a 
comparison between the two approaches and explains why the appropriate measure of uncertainty is 
based on the economic value.  This work builds on prior work by Ahlgrim, D’Arcy, and Gorvett 
(2005) developing a financial scenario generator for the CAS and SOA as well as research on the 
interest sensitivity of loss reserves by D’Arcy and Gorvett (2000) and Ahlgrim, D’Arcy, and Gorvett 
(2004). 

This study measures the uncertainty in loss reserving that is based on process risk, the inherent 
variability of a known stochastic process.  In this analysis, both the distribution of losses and the 
parameters of the distributions are given.  Thus, unlike actual loss reserving applications, there is no 
model risk or parameter risk.  Setting loss reserves in practice involves more degrees of uncertainty, 
and would therefore lead to greater variability in the underlying distributions of ultimate losses and 
larger reserve ranges.  This study is meant to illustrate the difference between nominal and economic 
ranges, and starting with specified loss distributions more clearly demonstrates this effect.  

The remainder of the paper proceeds as follows. Section 2 reviews loss reserving methods. 
Section 3 discusses the importance of Asset Liability Management. Section 4 looks at current 
developments leading towards the use of economic values for loss reserving. Section 5 provides 
evidence of trends in inflation. Section 6 discusses the models used in the project. Section 7 address 
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the parameters used in the models. Section 8 describes how the model is run. Section 9 summarizes 
the results. Section 10 concludes this paper. 

2. REVIEW OF LOSS RESERVING METHODS 

A primary responsibility of insurers is to ensure they have adequate capital to pay outstanding 
losses.  Much research has been done on methods to evaluate and set these loss reserves.  Berquist 
and Sherman (1977) and Wiser, Cockley, and Gardner (2001) provide excellent descriptions of the 
standard approaches used to obtain a point estimate for loss reserves.  Loss reserve ranges became 
an issue in the past two decades, and has also been addressed in numerous papers.  For example, 
Mack (1993) presented the chain-ladder estimates and ways to calculate the variance of the estimate.  
Murphy (1994) offered other variations of the chain-ladder method in a regression setting.  Venter 
(2007) worked on improving the accuracy of these estimates and reducing the variances of the 
ranges.  Other contributors to loss reserve estimates and discussions on the strengths and 
weaknesses of various evaluation models include Zehnwirth (1994), Narayan and Warthen (1997), 
Barnett and Zehnwirth (1998), Patel and Raws (1998), and Kirschner, Kerley, and Isaacs (2002). 
These works typically deal with nominal undiscounted value of loss reserves in line with statutory 
reserve requirements.  Shapland (2003) explores the meaning of “reasonable” loss reserves, 
emphasizing the need for models to take into account the various risks involved along with 
“reasonable” assumptions.  His paper points out that reasonableness is subject to many aspects, 
such as culture, guidelines, availability of information, and the audience; as such the paper concludes 
that more specific input is needed on what should be considered “reasonable” in the actuarial 
profession.   

Traditional methods rely on imbedded historical inflation to produce the nominal reserves.  
Outstanding losses will be exposed to the impact of inflation until they are finally paid.  If the 
inflation rate during the experience period has been high, loss severity will be projected to increase 
significantly generating large loss reserves.  Similarly, after periods of low inflation, loss severity will 
be projected to increase more slowly, leading to lower loss reserves.  Because inflation and interest 
rates are correlated, an insurer with an effective Asset Liability Management (ALM) strategy for 
dealing with interest rate risk can alleviate some of the impact of changing inflation.   

There have been reserving techniques that attempt to isolate the inflationary component from the 
other effects, such as those proposed by Butsic (1981), Richards (1981), and Taylor (1977).  Butsic 
investigated the effect of inflation upon incurred losses and loss reserves, as well as the inflation 
effect on investment income.  For both increases and decreases in inflation, these components are 
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found to vary proportionally.  According to Butsic, as competitive pricing is dependent on a 
combination of both claim costs and investment income, insurers are to a large extent unaffected by 
unanticipated changes in inflation.  Richards provides a simplified technique to evaluate the impact 
of inflation on loss reserves by factoring out inflation from historical loss data.  Assumptions of 
future inflation can then be factored in to project possible values of future loss reserves.  Under the 
Taylor separation method, loss cost is divided into two components, the stationary claim delay 
distribution and exogeneous inflation.  This method assumes the inflation component affects all loss 
payments made in a given year to the same degree, regardless of the original accident year.  
Essentially, unpaid losses are not considered to be fixed in value over time but rather are fully 
sensitive to inflation.  An alternative to this assumption is proposed by D’Arcy and Gorvett (2000), 
which allows loss reserves to gradually become “fixed” in value from the time of the loss to the time 
of settlement.  Inflation would only affect the unpaid losses that have not yet become fixed in value. 
These two methods will be described in detail in the model section. 

3. ASSET LIABILITY MANAGEMENT 

Asset Liability Management (ALM) is a process in which organizations manage risk by 
considering the impact that an event would have on both their assets and their liabilities; risk is 
managed by using the offsetting effects to reduce aggregate risk to an acceptable level.  For example, 
the fall of the dollar against the euro might increase the cost of claims an insurer would have to pay 
on business written in Europe.  If the insurer held assets denominated in euros, then these would 
increase in value as the dollar fell, offsetting some, or all, of the increased claim costs.  Although 
ALM can be used to deal with any type of financial risk, in practice most insurers focus on interest 
rate risk.  In this context, if both assets and liabilities change by the same amount when interest rates 
rise or fall, there will be no interest rate risk for the firm.  However, if they respond differently, the 
firm will be exposed to interest rate risk.  Prior to the 1970s, mismatches between assets and 
liabilities were not a significant concern.  Interest rates in the United States experienced only minor 
fluctuations, making any losses due to asset-liability mismatch insignificant.  However the late 1970s 
and early 1980s were a period of high and volatile interest rates, making ALM a necessity for any 
viable financial institution.  If interest rates increase, fixed income bonds decrease in value and the 
economic value (the discounted value of future loss payments) of the loss reserves decreases.  The 
opposite occurs for both the assets and liabilities when interest rates decrease.  Ahlgrim, D’Arcy and 
Gorvett (2004) provide a detailed analysis of the effective duration and convexity of liabilities, for 
property-liability insurers under stochastic interest rates that shows how assets can be invested to 
reduce the impact of interest rate risk.   
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Insurers can employ an ALM program to reduce the impact of inflation on loss reserves and 
maintain their surplus despite changing interest rates.  This requires insurers with short effective 
duration liabilities to hold short-term assets.  Some insurers invest in longer duration assets that 
offer higher yields.  During periods of stable or declining interest rates, this approach will provide a 
higher return.  However, when interest rates rise this strategy can be costly.1   The effect of duration 
mismatching on loss reserves given expectations of future inflation volatility is a complicated issue, 
and is outside the scope of this paper.  As will be shown later, the higher the correlation between 
nominal interest rates and inflation, such as in the 1970s, the more important and significant ALM’s 
impact will be. 

4. ECONOMIC VALUE OF LOSS RESERVES 

Recent reports by the Financial Accounting Standards Board (FASB) and the International 
Accounting Standards Committee (IASC) have advocated Fair Value accounting measures.  The 
American Academy of Actuaries established the Fair Value Task Force to address this issue.  The 
fair value of a financial asset or liability is its market value, or the market value of a similar asset or 
liability plus some adjustments.  If a market does not exist, the asset or liability should be discounted 
to its present value at an appropriate capitalization rate depending on the risk components it 
encompasses.  The Fair Value report by AAA (2002) provides details on the valuation principles.  
The promotion of Fair Value accounting, which considers both risk and the time value of money, 
indicates a new trend towards economic valuation.   

The trend towards economic or market-value based measurement of the balance sheet replacing 
existing accounting measures is also seen in the European Union, where solvency regulation is 
currently under reform.  CEA (2007) describes how the new Solvency II project takes an integrated 
risk approach that will better account for the risks an insurer is exposed to than the current fixed 
standards under Solvency I.  Solvency II introduces the use of a market-consistent valuation of 
assets and liabilities and market consistent reserve valuation, much like those proposed under Fair 
Value accounting in the United States.  

                                                 
1 In late 2007 and early 2008, many banks suffered significant losses by following a similar mismatched strategy.  They 
used off-balance sheet Structured Investment Vehicles (SIV) that invested in long-term bonds, often tied to subprime 
mortgages, but financed the investments with short-term debt.  When the value of the assets fell and the credit markets 
froze up increasing short-term borrowing costs, the banks incurred significant losses which, in some cases, cost the 
CEOs their jobs (Hilsenrath, 2008).     
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Australian regulations have required ranges based on economic value since 1999.  The value of the 
insurer’s liabilities is generally assumed to be independent of the insurer’s underlying assets.  The 
Audit and Actuarial Reporting and Valuation (2006) and Institute of Actuaries of Australia 
Professional Standard 300 (2007) require loss reserves to be discounted by current observable 
market-based rates. These rates are based on characteristics of the future obligations, or derived 
from a yield of a replicating portfolio of low-risk securities.  The study mentions that appropriate 
allowance can be made for future claim escalation from inflation and superimposed inflation (e.g., 
social or legal costs), but no clear methodology is provided as to how inflation should be taken into 
account.  

Although there has been much discussion on the meaning of fair or economic value, both within 
and outside the United States, little attention has been given so far to the impact of economic value 
on loss reserve ranges.  This paper ties together the loss reserve ranges with the economic values to 
show the relationship between loss reserve ranges on a nominal and economic basis and to illustrate 
some of the issues involved in calculating reserve ranges on economic values.    

The economic value of an insurer’s liabilities is determined by discounting expected future cash 
flows emanating from the liabilities by their appropriate discount rate.  Butsic (1988) and D’Arcy 
(1987) explore discounting reserves using a risk-adjusted interest rate that reflects the risk inherent in 
the outstanding reserve.  Girard (2002) evaluates this using the company’s cost of capital.  Actuarial 
Standard of Practice No. 20 addresses issues actuaries should consider in determining discounted 
loss reserves.  This Standard suggests that possible discount factors could be the risk-free interest 
rate or the discount rate used in asset valuation. 

5. TRENDS IN INFLATION - LEVEL AND VOLATILITY 

Inflation as measured by the 12-month change in the Consumer Price Index has varied widely, 
from -11% to +20% over the period 1922 through 2007 (Figure 1).  Since the adoption of 
Keynesian economic policies in developed countries following World War II, the general trend has 
been to avoid deflation at the cost of persistent inflation.2   Rapid increases in oil prices in the 1970s 
and the early 21st century have increased inflation rates.  The steady depreciation of the dollar in 
recent years has also put additional inflationary pressures on the U. S. economy.  Recently, concern 
                                                 
2 There is some disagreement over how much of an impact Keynesian economic policies have had on inflation patterns.  
The impact of open market bond purchases by the Federal Reserve, particularly during full employment periods, could 
have a more significant impact on inflation.  Regardless, the United States has not experienced significant deflation since 
the 1950s, so that is the period used to determine the parameters calculated for the models in this work. 
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over the financial consequences of the subprime mortgage crisis and credit crunch has led the U. S. 
Federal Reserve to lower the discount rate to shield the economy from a housing slump and stabilize 
turbulence in the financial markets.  Lowering interest rates is likely to lead to an increase in future 
inflation.  Oil prices have risen sharply, the dollar has dropped to historical lows against the euro and 
gold prices have soared.  Falling prices of long-term government debt after the recent rate drop 
suggests investors concern over inflation.  Thus, the potential for inflation to increase must be 
incorporated into any financial forecast.   

Figure 1 
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Figure 2 

Figure 1 shows the inflation level and the inflation volatility (based on a ten-year moving average) 
since 1930.  Note the periods of deflation that occurred during the Depression and right after World 
War II, and the inflation spikes of the 1940s, 1950s, 1970s, and 1980s.  Inflation volatility has also 
experienced several spikes, most recently in the 1980s.  For the last decade, volatility has been at 
historic lows.  Figure 2 shows the same data from the past 10 years, where there appears to be a rise 
in both inflation and inflation volatility.  On this graph, inflation volatility is shown on a year-by-year 
basis to show the recent volatility more clearly.  With the current upward trend in inflation volatility, 
it is necessary to consider the possibility inflation volatility returning to the levels of the 1950s or the 
1980s.  Inflation volatility determines how accurately we are able to predict future inflation trends; 
the greater the volatility, the lower the ability to forecast future inflation, and thus, the greater 
uncertainty on its impact on loss reserves.  

6. THE MODELS 

The loss reserving model used in this research involves: a loss generation model for loss 
severity, a loss decay model for loss payout patterns, a two-factor Hull-White model for nominal 
interest rates, a Ornstein-Uhlenbeck model for inflation, adjustment for correlation between the 
nominal interest rate and inflation, adjustment for claims cost inflation, and a fixed claims model for 
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the impact of inflation on unpaid claims.  A sensitivity analysis worksheet is also built in to test the 
sensitivity of the parameters. 

6.1 Loss generation model 

The loss generation model generates aggregate claims based on the user’s input of the number of 
claims, choice of distribution of the claim severity, and the mean and standard deviation of severity.  
The number of claims is assumed to be known.  The severity of claims can follow a Normal, Log-
normal or Pareto distribution.       

6.2 Loss decay model 

These losses can be settled either at a fixed time or at a rate based on a decay model over a 
number of years.  If the claims are to be settled on a decaying basis, the decay model calculates the 
proportion of losses to be settled each year given a decay factor.  For simplicity, loss severity is 
assumed to be independent of time to settlement.  The decay model is of the following form: 

tt XX *)1(1 α−=+  (6.1)

where Xi is the number of claims settled in year i, and α is the decay factor or the proportion of 
claims settled each year. 

6.3 Nominal interest rate model 

A two-factor Hull-White model is used to generate nominal interest rate paths.  The Hull-White 
model uses a mean-reverting process with the short-term real interest rate reverting to a long-term 
real interest rate, which is itself stochastic and reverting to a long-term average level.   
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where t is the time, r is the short-term rate, l is the long-term rate, κ is the mean reversion speed, μ is 
the average mean reversion level, dt is the time step, σ is the volatility, and dz is a Weiner process.  
This model allows for negative values, which do not typically occur for nominal interest rates. We 
impose a minimum short-term and long-term rate of 0% to adjust for this.  
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6.4 Inflation model 

A one-factor Ornstein-Uhlenbeck model is used to generate inflation paths.  The Ornstein-
Uhlenbeck model uses a mean-reverting process with the current short-term inflation reverting to 
the long-term mean. 

rrtrrt dzdtdtidi σμκ +−= )(  (6.3)

where t is the time, i is the current inflation, κ is the mean reversion speed, μ is the long-term 
inflation mean, dt is the time step, σ  is the volatility, and dz is a Weiner process. 
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6.5 Correlated nominal and real interest rates 

The short-term nominal interest rate and inflation rates are correlated through their random 
shock components.  The random dz component is adjusted for a weighted average between a 
common correlated random component and an individual random component. 
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where ρ is the correlation factor between the short-term interest rate and inflation rate, and dz are 
Weiner processes. 

6.6 Masterson Claims Cost Index 

Claim costs do not simply grow at the rate of inflation.  The Masterson Claim Cost Index 
measures the rate at which claims costs are inflated over time by decomposing claim costs into its 
various components and inflating each part separately (Masterson, 1981; Masterson, 1987; Van Ark, 
1996; Pecora, 2005).  For this research, the Masterson Claim Cost Index is simplified to a linear 
projection of the general inflation rate. 

6.7 Fixed claims model 

Cash flows from unpaid claims are sensitive to inflation rate changes.  Under the Taylor 
separation model (1977), any claim that has not been settled is subject to the full inflation in that 
year.  If there is a car accident now and the claimant receives ongoing medical treatment for several 
years before the loss is settled, all medical costs are assumed to be impacted by inflation until the 
claim is paid.  D’Arcy and Gorvett (2000) propose a model that reflects a different relationship 
between unpaid losses and inflation.  Their model separates unpaid claims into portions that are 
“fixed” in value from those that are not.  These fixed claims, once determined, will not be subject to 
future inflation while the remaining unfixed claims continue to be exposed to inflation.  For example, 
medical treatment given over a period of time becomes fixed in value when the service is provided.  
If medical prices rise after some treatment has been provided, only future medical treatment will 
have this increased cost; medical treatment received before the price increase will have already been 
fixed.  Any pain and suffering compensation is generally determined at a later date.  This portion of 
the claim will likely continue to be affected by inflation until this claim is settled.  As a result of only 
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exposing partial loss segments to inflation, inflation’s impact on the loss is greatly reduced.  A 
representative function that displays these attributes is: 

})/)(1{()( nTtmkktf −−+=  (6.5)

where f(t) represents the proportion of the ultimate claims “fixed” at time t, k is the proportion of 
the claim that is fixed immediately, m is the proportion of the claim that will be fixed only when the 
claim is settled, and T is the time at which the claim is fully settled.   

The model (6.5) can be divided into three cases by the value of the exponent n: the linear case n 
= 1, when claim value is fixed uniformly up to its ultimate settlement; the convex case n > 1, when 
the rate of fixing the value of a claim increases over time, and the concave case n < 1, when the rate 
of fixing the value of a claim increases quickly initially but slows down as time approaches the 
ultimate settlement date. The larger the n, the more closely the fixed claim model will resemble the 
Taylor model. 

7. PARAMETERIZATION 

Based on the ten-year loss development data of the auto insurance industry from A. M. Best’s 
Aggregate and Averages over the period 1980-1996, approximately one-half of all remaining losses 
of the total loss value are settled each year up to the ultimate settlement year.  Assuming loss severity 
to be independent of time of settlement, we use a decay factor α  = 0.5 for the number of claims 
settled each year.  If loss severity is positively correlated with time of settlement, we would use a 
larger decay factor for the number of claims settled, but offset that by increasing the value of claims 
over time.  Calculating the decay factor based on total loss value adjusts for the assumption that 
claims severity is independent of time to settlement. 

Regressions were run against historical data to parameterize the Ornstein-Uhlenbeck inflation 
model and the two-factor Hull-White nominal interest rate model.  These parameters are tabulated 
below: 

Ornstein-Uhlenbeck 
inflation model 

Two-factor Hull-White nominal interest 
rate model 

κ μ σ κr μ σr κl σl 
0.23 4.12% 1.90% 0.06 6.69% 1.55% 0.07 0.96% 
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The Fisher formula is an equilibrium statement that, on average, nominal rates and inflation are 
linked.  Sarte (1998) has found that in an environment with stochastic inflation, the Fisher formula is 
still a reasonable approximation to its more complete counterpart in a dynamic endowment 
environment.  It is important to note that inflation is sometimes a matter of government policy and 
the model should be adjusted to match the current economic situation. 

The correlation between the three-month U. S. Treasury interest rates (the shortest securities 
issued) and percentage changes in the CPI index was determined for several periods as shown below.  
The relationship between inflation and interest rates hypothesized by Fisher applies to expected 
inflation and current interest rates.  There is no reliable measure of expected inflation, so the actual 
inflation rate for a recent period is used here instead.  The CPI is an estimate of a market basket of 
prices at a particular time; monthly changes include significant noise, as under or over-stated values 
in one month are adjusted the following month.  This leads to the lowest values for the correlations.  
Inflation rates calculated based on three- and six-month CPI changes are more highly correlated 
with interest rates.  The problem introduced by increasing the time period for determining the 
current inflation rate is that these rates may be less indicative of expected inflation.  To run the 
model, we selected the one-month inflation value over the more recent time period, or 45%.   

Correlation between 3-Month Treasury Bill Rate and Inflation 
Years   1934-2007 1934-1970 1971-2007 
One-Month Inflation Rates 0.241 0.007 0.459 
Three-Month Inflation Rates 0.317 0.006 0.556 
Six-Month Inflation Rates 0.364 0.011 0.615 
Twelve-Month Inflation Rates 0.414 -0.007 0.684 

Other values for this correlation are shown in the sensitivity tests. The Masterson claims cost 
index for auto insurance bodily injury from 1936 to 2004 was regressed against the historical 
inflation rate using a fixed intercept of 0.  The slope of the regression increases over time indicating 
that claim costs have been increasing more than CPI inflation benchmarks.  A slope of 1.6 was 
selected for this model; other values are illustrated in the sensitivity section. 

For the fixed claim model, we are using the linear case, with the parameter for k (portion of claim 
fixed at inception of claim) of 0.15 as suggested in D’Arcy and Gorvett (2000), but the parameter for 
m (portion of the claim fixed at settlement) at 0.5.  The sensitivity of these values is examined in a 
later section. 

8. RUNNING THE MODEL 
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This model is available on the lead author’s Web Site (http://www.business.uiuc.edu/~s-
darcy/papers/LossReserveRangeModelv2.xls) and will also be made available through the CAS Web 
Site so any interested reader can run the model to reproduce the results here or test alternative 
parameters.  The loss reserve model, which is designed in Microsoft Excel, begins with an input 
worksheet for the user to enter the parameters for each model used and the number of iterations to 
be made in the simulation.  For each iteration, the model generates a loss distribution, a nominal 
interest rate path and an inflation path that are used to produce the nominal and economic loss 
ranges.  An output worksheet collects the values from each iteration run and calculates the mean, 
standard deviation, and reserve ranges for both the nominal and economic value cases.  The 
summary sheet collects these key statistics, the parameters used, and the number of iterations in the 
simulation in side-by-side columns for comparison. 

The model is set to generate 1000 random log-normally distributed claims settled on a decaying 
basis over 10 years.  The mean and standard deviation of the losses are arbitrarily set to 1000 and 
500, respectively.  The decay model then calculates the proportion of these claims settled at each 
time step up to the 10th year. 

The generated losses are compounded at the inflation rate up to their time of settlement.  This is 
the nominal, undiscounted value of losses that insurers are statutorily required to have as a reserve.  
The interest rate model generates cumulative interest rate paths corresponding to each time period 
up to settlement.  The nominal values are then discounted back by this cumulative interest rate 
factor to obtain the economic value of losses. 

For a simplified example, assume a single claim of $1000 (based on the price level in effect when 
the loss occurred) is settled at the end of five years, and the annual nominal interest rate is 5%. Also 
assume that the inflation is equal to one-half of the nominal rate throughout the five years, i.e., 
(1+5%)0.5 -1 = 0.0247.  The nominal value of the loss reserve would be $1000 * (1+2.47%)5 = 
$1129.73.  This nominal value is discounted back by the interest rate over the five years to get the 
economic value $1129.73 * (1+5%)-5 = $885.17.  In economic terms, the amount that should be 
reserved for handling this loss in today’s dollars is $885.17.  Now consider what would happen if 
interest rates changed by 200 basis points up or down.  If the nominal rate is 7%, inflation will be 
(1+7%)0.5 -1 = 3.44%, and the nominal value and economic value will be $1184.30 and $844.39, 
respectively.  If the nominal rate is 3%, inflation will be (1+3%)0.5 -1 = 1.49%, and the nominal value 
and economic value will be $1076.70 and $928.77, respectively.  Thus, the nominal value range will 
be $1129.73 - $1076.70 = $53.03, and the economic value range will be $928.77 - $885.17 = $43.60.  
The economic value range is only 82% of the nominal value range.  This is a simplified example 
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illustrating three possible values of one claim, assuming inflation is proportional to the nominal rate.  
Under circumstances such as this, the reserve range based on economic values will be smaller than 
reserve ranges based on nominal values. 

Now consider a book of 1000 such claims and allow inflation to vary independently of nominal rates.  
The average nominal and economic values of these 1000 claims are determined based on the interest 
rate and inflation paths generated for that simulation.  This claims generation process is repeated for 
10,000 simulations, with each simulation generating a different interest rate and inflation path for the 
1000 claims of that iteration, and a distribution of nominal and economic loss reserves are generated.  
The mean, standard deviation, minimum, maximum, as well as the 5, 25, 75, and 95 percentile for 
both the nominal and economic loss ranges are determined and compared.  A confidence interval 
ratio is computed by dividing the economic range confidence interval by the nominal range 
confidence interval for both a 50 percent (ranging from the 25th percentile to the 75th percentile) 
and 90 percent (ranging from the 5th percentile to the 95th percentile) confidence interval.  These 
ratios will be used as an indicator of the difference in volatility between the economic loss ranges 
and nominal loss ranges. 

9. RESULTS 

To examine the effects of how the confidence interval is affected by changes in the assumptions, 
10,000 simulations were run for each of the following cases.  As the 50 percent and 90 percent 
confidence interval ratios turn out to be fairly close, only the 90 percent confidence interval ratios 
are shown here.  The complete results are available from the authors.  A monthly time step was 
chosen to provide a close approximation to continuous interest rate models, as inflation data are 
only available monthly.  
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9.1  Taylor Model versus Fixed Claim  

The first example is based on running the model with the following assumptions: 1) monthly 
time step, 2) a correlation factor of 45% between the nominal interest rate and inflation, 3) claims 
inflation rate of 1.6 times the general inflation rate, 4) the Taylor separation model.  This is Case A.  
Figure 3 shows the distributions for both the nominal and economic values; as would be expected, 
the economic values are lower than the nominal values; the economic reserve range turns out to be 
approximately 94% of the nominal loss reserve range.  Discounting does not reduce the ranges 
much.  The second example, Case B, incorporates the fixed loss model suggested by D’Arcy and 
Gorvett (2000).  In this case there is a significant decrease in the standard deviation of the nominal 
and economic reserves because losses are only partially exposed to inflation throughout its time to 
settlement.  (The portion of the claim that is fixed is no longer affected by future inflation.)  In this 
case the confidence interval ratio (the economic range divided by the nominal range) is 102%.  
Discounting reserves reduces the level of the reserves, but not the range.  We will treat Case B as the 
base case and examine additional changes in relationship to this case.  The mean values, standard 
deviations, 5th and 95th percentiles and the 90% confidence intervals are for both nominal and 
economic values for Case A and Case B are shown on Table 1.   

 

Figure 3 
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Percentiles 
Case Mean 

Standard 
Deviation 5th 95th 

90% Confidence 
Interval 

Confidence 
Interval Ratio

A - nominal 1097016.132 40241.05642 1033427.88 1165584.07 132156.19 94.15% 
A - economic 1052020.311 37895.67459 991242.95 1115669.17 124426.22  
B - nominal 1063890.967 28761.53405 1018485.77 1112663.88 94178.11 
B - economic 1021643.248 29192.93832 974956.77 1070811.09 95854.32 

101.78% 
 

 
Table 1 

 9.2 High Claims Cost Inflation 

The relationship between claims inflation and the general inflation rate has varied widely 
over the period 1936 through 2004, but claims inflation is consistently higher than overall inflation.  
One reason for this is that medical costs are a major component of auto insurance claims and these 
have consistently outpaced general inflation.  The third-party payer relationship also reduces 
resistance to cost increases, leading to higher inflation.  Recently, the relationship between claims 
cost and inflation has increased significantly; between 2001 and 2004, auto bodily injury costs 
increased 1.9 times the general inflation rate.  For Case C, the claim cost inflation factor will be 1.9 
and the standard deviation of the nominal range will be increased 1.9 times the original inflation 
volatility.  As the nominal range for loss reserves is the range of actual losses inflated by the claims 
cost, higher claims cost inflation will increase the nominal range and reduce the confidence interval 
ratio.  The distributions for both the Base Case and Case C are shown on Figure 4, and the key 
metrics of Case C are shown on Table 2.  For Case C the confidence interval ratio of the economic 
range to the nominal range drops to 97%. 
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Figure 4 

Standard Percentiles 90% Confidence Confidence 
Case Mean Deviation 5th 95th Interval Interval Ratio

C - nominal 1078069.12 33220.69 1025879.25 1134626.99 108747.74 96.89% 
C - economic 1034635.49 32372.86 983266.87 1088635.84 105368.97  

 
Table 2 

9.3 High Correlation between Inflation with Nominal Rates 

Inflation and nominal interest rates moved in tandem during the 1970s, with correlation reaching 
65% to 70%.  Based on a 12-month inflation rate, the correlation with interest rates over the period 
1970-2007 was 68%.   High correlation between inflation and nominal interest rates reduces the 
range of economic loss reserves.  For Case D the correlation factor was 70%.  Figure 5 shows how 
this increase in correlation has little impact on the nominal values of loss reserves, but does reduce 
the distribution of economic values.  In this case, the confidence interval ratio drops to 88%. 
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Figure 5 

Standard Percentiles 90% Confidence Confidence 
Case Mean Deviation 5th 95th Interval Interval Ratio 

D - nominal 1064157.75 28783.10 1018181.31 1112651.8 94470.49 88.40% 
D - economic 1021531.44 25496.24 980743.24 1064253.59 83510.35  

 
Table 3 

9.4 Periods of High and Volatile Inflation 

In the situation of high and volatile inflation, such as in the 1970s, the problem of using nominal 
loss reserves to determine reserve ranges is exacerbated.  For Case E, the current inflation rate is 
increased to 10% (from the base case 3.54%) and the inflation volatility is increased to 6% (from 
1.9%).  Figure 6 shows how this change increases the level and range of the distribution compared 
with the base case.  Table 4 provides the key metrics for Case E;  the confidence intervals are much 
wider and the confidence interval ratio is 88%.  
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Figure 6 

Standard Percentiles 90% Confidence Confidence 
Case Mean Deviation 5th 95th Interval Interval Ratio

E – nominal 1173532.64 97382.53 1036359.22 1351072.81 314713.59 87.50% 
E – economic 1121600.19 85091.77 1000580.60 1275965.70 275385.10  

Table 4 

9.5 Summary of Results 

Based on the many simulations run for this research, the economic mean is smaller than the 
nominal mean.  Under most circumstances, the economic value reserve ranges are slightly smaller 
than the nominal value ranges.  This is not always the case under the fixed-claim model.  The 
economic value range will be smaller than the nominal value ranges if claims cost inflation is very 
high relative to the CPI inflation, if correlation is high between the nominal interest rate and 
inflation, or if inflation becomes highly volatile. 
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9.6 Sensitivity Analysis 

Sensitivity tests for all the parameters used were run to determine the impact of changes of each 
parameter. Case B was used as the base case, and each parameter was changed in turn over the 
ranges shown in Table 5. The results of a series of 5000 simulations of 1000 claims are summarized 
in the table below. For example, the first line of Table 5 indicates that changing the long run mean 
value for inflation over the range from 2% to 12% had no significant effect on the confidence 
interval range; in all cases, the economic value range was approximately 100% of the nominal value 
range. The next line indicates that changing the speed of mean reversion for the inflation rate over 
the range 0.1 to 0.3 increased the confidence interval range, in a linear manner, from 96% to 105%.  
Based on these results, the factors that have the most effect on the relationship between the 
confidence interval range of economic loss reserves and nominal loss reserves are the inflation 
volatility, the volatility of the short-term nominal interest rate, the correlation between interest rates 
and inflation, and the slope of the regression of claim costs against general inflation.  These are the 
values that it is most important to measure accurately.  A detailed discussion of the results for each 
parameter is provided in the appendix. 

Model Parameter From To Increment Results (ratios) 90% CI Range Type 
Inflation Mean 2% 12% 2% No effect 98-101% N/A 
Inflation Speed 0.1 0.3 0.05 Increase 96-105% Linear 
Inflation Vol 1% 8% 1% Decrease 115-87% Concave
Nominal LT Mean 2% 10% 2% No effect 99-103% N/A 
Nominal LT Speed 0.02 0.10 0.02 No effect 100-102% N/A 
Nominal LT Vol 0.6% 1.2% 0.2% No effect 100-101% N/A 
Nominal ST Speed 0.02 0.10 0.02 No effect 100-103% N/A 
Nominal ST Vol 1% 5% 1% Increase 96-141% Linear 
Fixed Claim K 0.1 0.4 0.1 Increase 99-105% Linear 
Fixed Claim M 0.3 0.8 0.1 Decrease 106-98% Linear 
Fixed Claim N 0.5 2 0.5 No effect 99-102% N/A 
Loss SD 200 1000 200 No effect 98-101% Linear 
Decay Factor 0.2 0.8 0.1 Increase 92-102% Convex 
Correlation Correlation 0% 100% 20% Decrease 109-58% Convex 
Claim Cost Slope 0.4 2.0 0.4 Decrease 127-94% Linear 

Table 5 
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10. CONCLUSION 

Property-liability insurance companies have traditionally valued their loss reserves on a nominal 
basis due to statutory requirements.  These requirements do not reflect the economic value of the 
future payments and distort insurance company financial statements.  Nominal loss reserves 
overstate the impact of inflation on reserves, though only slightly under the current economic 
environment, as they ignore the relationship between inflation and nominal interest rates.  The 
economic impact on loss reserves of a change in inflation is commonly offset by a similar shift in the 
nominal interest rate and by the high claims cost inflation.  Loss reserve ranges based on nominal 
values accentuate this problem.  Recent proposals advocate the use of fair value accounting for loss 
reserves, which would replace nominal values with economic values.   In this study a loss reserve 
model was developed to quantify the uncertainty introduced by stochastic interest rates and inflation 
rates and to compare reserve ranges based on nominal and economic values.  The results 
demonstrate a variety of scenarios under which the reserve ranges based on economic values can be 
either smaller or larger than the nominal value ranges.  However, use of economic values for loss 
reserves would better serve the insurance industry and its regulators.  The key reason for 
encouraging the use of economic value ranges is that they properly reflect the true measure of the 
uncertainty involved in loss reserving.  An additional benefit is that the ranges are smaller in many 
circumstances, and the current economic environment seems to be moving toward those situations.  
Claim cost inflation and the level and volatility of inflation appear to have an upward trend.  
Economic value reserves would provide more credible values of the cost and uncertainty of future 
loss payments, and in the cases mentioned before, would have a smaller confidence interval range. 
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APPENDIX - SENSITIVITY ANALYSIS 

For any stochastic model, the number simulations run in a study is an important determinant of 
the consistency and accuracy of the results.  Running too few simulations can lead to widely varying 
results and erroneous conclusions.  Too many simulations on the other hand waste time and 
computer resources.  For simple models, statistical analysis can be used to determine the appropriate 
number of simulations to run.  However, in this project, which consists of five separate stochastic 
models, that approach is not feasible.  Instead, we ran the model multiple times for selected 
numbers of simulations and then calculated the variability of the 90% confidence interval ratio, the 
key variable used in this study.  (This value is the ratio of the 90 percent confidence interval based 
on the economic value of loss reserves to the 90 percent confidence interval based on the nominal 
value of loss reserves.)  For each number of simulations, the model was run eight times and the 
coefficient of variation of the confidence interval ratios was calculated.  The optimal number of 
simulations was the point where the coefficient of variation did not continue to decline when 
additional simulations were run.  The starting point was 1000 simulations, which generated a 
coefficient of variation of 2.83%. The number of simulations was increased, first to 2500, then 5,000 
and 7,500. The coefficient of variation gradually declined to 1.12%.  Running 10,000 simulations did 
not reduce the variability further, so this combination (10,000 simulations of 1000 claims) was used 
to run the individual cases (A through E) described in the paper.  

Due to limitation in computational power, a smaller number of simulations were used to run the 
sensitivity analyses.  As this required multiple runs for each variable over a range of feasible values, 
we used 5000 simulations and 1000 claims for this aspect of the project.  Although the coefficient of 
variation of the 50% confidence interval ratios was slightly higher for this combination, at 1.54%, 
this was still sufficient to show the general effect of changing each parameter over the relevant range.  
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No. of 

Simulation 
50% C.I. Range 

Ratio CV 
90% C.I. Range 

Ratio CV 90% C.I. Range Ratio 
1000 4.85% 2.83% 99.72% - 108.68% 
2500 1.91% 1.90% 98.07% - 103.71% 
5000 1.85% 1.61% 98.51% - 103.57% 
7500 1.54% 1.12% 100.42% - 103.10% 
10000 1.12% 1.15% 98.82% - 101.99% 

Table 1 - A 

Table 2-A shows the level of the variable changed and the corresponding 90% confidence 
interval ratio for each sensitivity test.  The long-term mean inflation rate was varied from 2% to 12%, 
but in each case the confidence interval ratio remained approximately 100%.  This value exhibited 
no trend over this range.  Varying the speed of mean reversion from 0.1 to 0.3 did impact the 
confidence interval ratio in a systematic manner, although the effect was not large.  The confidence 
interval ratio increased from 98% when the speed of mean reversion was 0.1, to 105% when the 
speed was increased to 0.3.  As discussed in the body of the paper, the greatest impact occurred 
when the inflation volatility parameter changed.  When this parameter was 1%, the confidence 
interval ratio was 115%.  As the inflation volatility parameter increases, the confidence interval ratio 
declines at first but then remains at approximately 88% when inflation volatility is 4% or higher.   

 Changes in the long-term mean of the nominal interest rate (2%-10%), the speed of mean 
reversion of the long-term mean (0.02-0.10), the volatility of the long-term mean (0.6%-1.2%), and 
the speed of mean reversion of the short-term mean (0.02-0.10) had no consistent effect on the 
confidence interval ratio. However, increasing the volatility of the short-term mean interest rate over 
the range of 1% to 5% had a significant effect, opposite to the effect of increasing the volatility of 
the inflation rate.  The confidence interval ratios increase as volatility increases. 

 Not much data are yet available to determine the appropriate parameters for the D’Arcy-
Gorvett fixed claim model, but the results of the sensitivity tests are as expected.  The higher the 
proportion of a claim that is fixed in value when the claim occurs (k), the higher the confidence 
interval ratio; the higher the proportion of the claim that is not fixed in value until the claim is 
settled (m), the lower the confidence interval ratio.  The rate of fixing a claim’s value (as n increases) 
had no consistent effect on the confidence interval ratio.  

 Losses were assumed to be log-normally distributed with a mean of 1000 and a standard 
deviation of 500.  Increasing the standard deviation of each claim, over the range of 200 to 1000, 
had no consistent effect on the confidence interval ratio.  Changing the decay factor representing 
what portion of unsettled claims were settled each year had a slight impact on the confidence 
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interval range; a higher decay factor led to a higher confidence interval range. Changing the 
correlation between the inflation rate and the nominal interest rate from 0% to 100% had a 
significant impact on the confidence interval ratio. The higher the correlation, the lower the 
confidence interval ratio.  Increasing the slope in the claim cost regression formula over the range of 
0.4 to 2.0 also decreased the confidence interval ratio. 

 The purpose of the sensitivity analysis is to indicate which of the many parameters used in 
this model have the greatest impact on the results and the conclusions of this paper.  In almost all 
cases, the conclusion that the use of economic values to determine loss reserves would lead to 
smaller reserve ranges is supported.  Attention should be focused on measuring the parameters with 
the greatest impact on determining loss reserves and their ranges under either nominal or economic 
values.  Thus, measures of interest rate and inflation volatility, the correlation between inflation and 
interest rates, and the relationship between claim costs and general inflation should be studied 
closely. 
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Inflation Model—Long-Term Mean       
Test Value 2.00% 4.00% 6.00% 8.00% 10.00% 12.00%   
90% C.I. Ratio 101.24% 99.79% 98.62% 97.78% 98.80% 100.36%   
         
Inflation Model—Mean-Reversion Speed      
Test Value 0.1 0.15 0.2 0.25 0.3    
90% C.I. Ratio 97.67% 95.76% 101.77% 101.53% 105.47%    
         
Inflation Model—Volatility       
Test Value 1.00% 2.00% 3.00% 4.00% 5.00% 6.00% 7.00% 8.00%
90% C.I. Ratio 114.82% 100.53% 92.95% 89.74% 88.84% 87.87% 88.57% 87.36%
         
Nominal Interest Rate Model—Long-Term Mean     
Test Value 2.00% 4.00% 6.00% 8.00% 10.00%    
90% C.I. Ratio 99.35% 100.78% 103.06% 100.94% 99.63%    
         
Nominal Interest Rate Model—Long-Term Mean-Reversion Speed   
Test Value 0.02 0.04 0.06 0.08 0.10    
90% C.I. Ratio 102.28% 100.74% 99.93% 100.96% 101.29%    
         
Nominal Interest Rate Model—Long-Term Volatility     
Test Value 0.60% 0.80% 1.00% 1.20%     
90% C.I. Ratio 99.95% 100.88% 100.76% 100.88%     
         
Nominal Interest Rate Model—Short-Term Mean-Reversion Speed   
Test Value 0.02 0.04 0.06 0.08 0.1    
90% C.I. Ratio 100.48% 102.70% 101.70% 99.78% 99.82%    
         
Nominal Interest Rate Model—Short-Term Volatility     
Test Value 1.00% 2.00% 3.00% 4.00% 5.00%    
90% C.I. Ratio 96.45% 105.61% 117.30% 125.39% 140.72%    
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Fixed Claim Model—Fixed Portion at time 0 (k)     
Test Value 0.1 0.2 0.3 0.4     
90% C.I. Ratio 99.35% 100.45% 101.11% 105.10%     
         
Fixed Claim Model—Portion unknown until settlement (m)    
Test Value 0.3 0.4 0.5 0.6 0.7 0.8   
90% C.I. Ratio 105.52% 106.42% 99.88% 98.00% 97.01% 97.73%   
         
Fixed Claim Model—Speed of fixed settlement (n)     
Test Value 0.5 1 1.5 2     
90% C.I. Ratio 100.66% 101.93% 99.37% 100.81%     
         
Loss Model—Standard Deviation       
Test Value 200 400 600 800 1000    
90% C.I. Ratio 101.12% 98.96% 98.20% 99.17% 99.07%    
         
Decay Model—Annual Decay Factor      
Test Value 0.2 0.3 0.4 0.5 0.6 0.7 0.8  
90% C.I. Ratio 92.47% 96.10% 98.73% 99.71% 101.48% 101.64% 101.44%  
         
Correlation—Correlation between Inf and Int. Rate     
Test Value 0% 20% 40% 60% 80% 100%   
90% C.I. Ratio 108.83% 107.28% 102.77% 95.08% 81.15% 58.15%   
         
Claim Cost Regression—Slope       
Test Value 0.40 0.80 1.20 1.60 2.00    
90% C.I. Ratio 126.52% 116.09% 109.97% 101.04% 94.42%    

Table 2-A 
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A Survival Model Approach to Non-Life Run-off  Triangle 
Estimation 

Brian A. Fannin, ACAS 
 
________________________________________________________________________ 
Abstract  

Motivation. Most standard loss reserving techniques do not explicitly consider the rate at which claims 
will close, or the expected amount of time that a claim will remain open.  Consideration of the time 
until closure allows one to calculate the amount of time until a block of claims will run-off.  Further, it 
allows one to take explicit assumptions with regard to interest and inflation into account. 

Method.  By observing the closure rates for claims by age, a survival function is produced.  This 
function can be used to determine the future lifetime of a claim at any age and the number of claims 
remaining open at any time. 

Results. The method applied to a set of sample data generates a complete picture of the future pattern 
of claim disposal. 

Conclusions.  The method presented here grounds the projection of future claim run-off in theory 
common to life actuaries and opens up the life toolset to the analysis of non-life data. 

Keywords. Reserving; Survival models. 
________________________________________________________________________ 

1. INTRODUCTION 

This paper will present a method to estimate the length of time that claims for a book of non-life 
insurance will remain open.  This method is based largely on theory common to life actuaries but 
rarely used in the non-life field.  This technique requires data presented in a manner slightly different 
than that with which non-life actuaries are accustomed to working.  Nevertheless, the concepts are 
straightforward and intuitive and the data storage and computation requirements are not onerous.  
Coupled with a standard technique to forecast the emergence of unreported claims, an estimate for 
the time required for the complete run-off of a portfolio is produced. 

1.1 Objective 

Loss development techniques have traditionally sought to produce an estimate of the total 
quantum of losses remaining to be paid, e.g., the total reserve position.  More recently, attention has 
been directed to consideration of the variance around both that estimate and the actual realized 
value of payments.  Timing of payments to be made or a statement about the total amount of time 
to run-off a reserve is not always considered.  When calculating the transfer price of a block of non-
life (re)insurance liabilities, or calculating the amount of capital required to support the run-off, this 
is highly relevant.  In those cases where a discounted value of reserves is needed, the standard 
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approach is to take the results of an analysis of a paid loss triangle.  Doing so doesn’t allow one to 
directly observe or consider the manner in which a typical claim settles. 

1.2 Outline 

The paper proceeds as follows: First, the survival model is briefly reviewed.  Next, the data 
required for the technique is described and the estimation of the survival model parameters is 
outlined. Results for a set of test data are shown and discussed.  The method is then compared with 
several well-known methods.  We conclude by addressing several unresolved issues and also by 
discussing some of the applications of this technique. 

2. BACKGROUND AND METHODS 

2.1 Review of Survival Model Mathematics 

2.1.1 The Survival Function 

A survival function, denoted S(x), measures the probability that a value will be greater than or 
equal to some threshold x.  When so stated, the function is easily seen to be equal to 1 minus the 
cumulative probability function or 

S(x) = 1 – F(x) (2.1)
This function follows the normal rules associated with probability distribution functions, with the 

additional requirement that x be non-negative.  So, S(0) = 1 and S(∞) = 0, or “the probability that a 
life will survive past age 0 is 1 and the probability that a life will survive to age infinity is zero.”  The 
terms “life” and “age” need not refer to an actual life, be it human or otherwise, but may refer to 
anything that has a well-defined temporal start and end point. 

Although S(x) can be defined continuously, the function is often given in a discrete form, using 
integral values for the age x.  For convenience, the notation apx, where x represents a starting age and 
a represents some future time period is often used.  This can be read as “the probability that a life 
aged x survives for an additional time period a.”  Note that this probability is conditional on having 
attained age x.  Mathematically, this is stated as follows: 
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The notation aqx represents the probability that a life aged x will terminate within time period a. 
This is the logical complement of the probability implied by apx (a life must either survive or 
terminate within a stated period of time) and is therefore equal to  

aqx = 1 - apx.   (2.3)
When a is omitted a time period of one year is assumed.  Given a set of factors for ages x 

through x+a-1, one can calculate the probability of survival for any duration a by multiplying 
successive factors as follows: 
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(2.4)

We use the random variable K(x) to describe the future lifetime for a life aged x. Its expectation 
and variance for discrete probabilities are as follows: 
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The derivation of the above formulae can be found in London [8] or Bowers [4]. 

2.1.2 Estimation of the Survival Function 

London describes two different types of studies that may be performed to estimate a survival 
function.  A longitudinal study examines a cohort of lives from age zero until the time of death.  A 
cross-sectional study examines a group of lives of various ages for a fixed period of time. 



A Survival Model Approach to Non-Life Run-off Triangle Estimation 
 

132  Casualty Actuarial Society E-Forum, Fall 2008 

For reasons that will be made clear below, the focus of this paper is a cross-sectional study.  
Here, a set of lives are observed between two points in time.  For each life, the quantities yi and zi 
represent the age at which the observation period begins and ends, respectively.  Note that the life 
may not survive until age zi.  For an age interval (x, x+1], the quantities x+ri and x+si are defined as 
the ages at which life i is scheduled to enter and exit that age interval.  For example, if one observed 
a group of lives between 1 January 2004 and 31 December 2005, a life with birth date 16 February 
1972 would have the following values: 

yi = 31.87 
zi = 33.87 
 
For age interval (31, 32) For age interval (32, 33) For age interval (33, 34) 

x+ri = 31.87 x+ri = 32.00 x+ri = 33.00 
x+si = 32.00 x+si = 33.00 x+si = 33.87 

 

For each age interval, the probability of death within one year, qx is estimated using the following 
estimator: 
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where n represents the number of observed lives and dx represents the number of observed 
deaths.  London shows that this estimator can be derived using the method of moments or 
maximum likelihood. 

In cases where the exact age is not known, si and ri are taken to be 1 and 0, respectively.  In this 
case, the estimate of qx is simply equal to: 

x

x
x n

dq =ˆ  (2.7)

 The estimated survival function is constructed by combining equations 2.3 and 2.4 as follows: 
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London makes two assumptions. 

(1) Each xp̂ is binomially distributed with mean px and variance 
x

xx

n
qp . 

(2) The xp̂ s are independent. 
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These two assumptions allow us to state the following about the sample estimate of the expected 
future lifetime: 
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In other words, the sample estimate of expected future lifetime is an unbiased estimate whose 
variance is independent of sample size. 

A number of other techniques exist to estimate the survival function.  Their implementation and 
appropriateness will not be explored in this paper. 

2.2 Survival Model Methods as Applied to Non-Life Run-Off  

A claim may be regarded as analogous to a life.  It begins and ends at a fixed point in time.  Its 
future remaining lifetime at any point is a random variable.  A group of homogenous claims will 
likely exhibit similar survival patterns in the same way that humans with common characteristics will 
exhibit similar mortality.  In the same way that human lifespans change over time, due to any 
number of factors such as nutrition, environment, changes in lifestyle, or advances in medicine, 
claim survival patterns may also change over time.  A number of factors may influence non-life 
survival characteristics: claim department practice, legislative changes, behavior of insureds or 
cedants, to name but a few. 

In general, a claim cannot be observed from time zero, the date of accident.  There is generally a 
lag between when a claim occurs and when the claim is reported to a (re)insurer.  This lag will vary 
depending on the characteristics of the claim and the type of coverage.  First-party primary claims 
will be reported more quickly than third-party excess claims.  This means that a claim may already be 
several years old when it can first be observed.  For this reason, claim survival functions can only be 
estimated using the cross-sectional study described above. 

2.2.1 The Data 

The data was taken from a transactional database, which showed a history of claim payments 
made in each year, the date the claim occurred, and the status of the claim.  Here, we define age as 
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the calendar year minus the accident (or underwriting or reporting) year, plus one.1  Note that when 
the age is so defined, the values for ri and si in equation (2.6) are 0 and 1, respectively.   

If no payment is made, a record is still kept to indicate that the claim remains open.  This allows 
one to determine whether or not the claim will remain open in the following year.2  So, for each 
payment year, for each age, one can calculate the total number of claims open as well as the number 
of claims that will terminate in the following year.  The figures were summed for all payment years. 
The results are shown in Appendix A. 

Note that this data may also be presented in a triangle format.  The resultant triangles would be 
the number of claims open and the incremental number of claims closed during the period.  These 
are shown as Appendices C and D. 

2.2.2 The Method 

With the data so arranged, the calculations proceed simply.  Refer to nx as the number of claims 
of age x and dx as the number of claims of age x which will close.  An estimator for the probability 
of claim closure for each age is given by formula 2.7. 

Note that if the data is given as a triangle, summing across payment years is equivalent to taking 
the sum of the accident year rows. 

At this point, a model has been developed for the expected value of the future life of all claims 
that have been reported. To forecast the emergence of new claims, a standard chain-ladder 
technique can be used.  This will yield projections of the number of claims with respective ages for 
all future time periods.  The same survival function can be applied to this set of IBNR claims. 

The future lifetime for the book is equal to the maximum of the future lifetimes for all claims.  
As will be seen below, this is not necessarily the same as the expected future lifetime for the 
youngest claim present in the sample.  The expected future lifetime is a quantity which depends on 
attained age.  For non-life claims, it is often true that the longer a claim has been open, the longer it 
can be expected to remain open.   

                                                           
1 Note that some authors refer to this quantity as “lag.” 
2 Note that for the most recent year, it is impossible to determine whether or not a claim will terminate. 
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3. RESULTS AND DISCUSSION 

3.1 Results 

The forecast method was applied to a set of data that includes, among other things, excess bodily 
injury claims.  The data has been randomly altered to conceal its identity, however the broad 
conclusions remain.  Claim payment records for over 40 years were available.  The earliest payment 
year includes information on currently open claims, so the oldest potential age can be, and indeed is, 
greater than 40 years.  The oldest age in the sample was 68 years. 

The chart below plots px against the age of a claim.  The shaded surface shows nx. 

 

The likelihood of a claim persisting for an additional year drops for claims of low age, but then 
raises to a relatively high and constant survival probability beyond 14 years.  Claims older than 14 
years are very likely permanent bodily injury claims that will last as long as the claimant remains 
alive.   

The fluctuation in probabilities beginning around age 38 is due to a reduction in sample data.  
Specifically, the number of observed claim closures drops below 10 at this age and is zero for some 
ages.  This is a worrisome result.  In effect, what it means is that one cannot truly know what’s 

0.000

0.200

0.400

0.600

0.800

1.000

1.200

0 10 20 30 40 50 60 70 80

Age

Px

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

N
x Nx

Px



A Survival Model Approach to Non-Life Run-off Triangle Estimation 
 

136  Casualty Actuarial Society E-Forum, Fall 2008 

happening to claims that have been open for a very long time.  That is to say that the likelihood that 
a very old claim will close in any given period of time is not easily estimable via statistical methods 
given this particular sample data. 

This is a situation with which casualty actuaries are familiar.  When reserving, one usually has the 
problem of how to estimate a tail factor.  There are a number of techniques discussed in the non-life 
literature as to how to go about this.  When revising a mortality table, one not only adjusts and 
extrapolates the estimates for high ages—the “tail” of the table—one smoothes the estimates for all 
ages.  This revision of sample estimates is referred to as “graduation.”  London [9] gives a useful 
introduction to several graduation methods used by life actuaries.  Contrast this with the typical non-
life approach where age-to-age and tail factors are each calculated and judgmentally adjusted 
individually. 

In this case, the sample estimate was adjusted by using the Whitaker-Henderson method of 
graduation.  This technique can be considered ad hoc.  The intent is to produce a revised set of 
estimates that represents a blend between smoothness and reproduction of the sample estimates.  
To do this, one minimizes the sum of the differences between the estimates and the squared 
difference between the sample estimates and revised values.  A parameter ε controls the relative 
weight one places on smoothness and reproduction of the sample. 

This quantity is given as follows: 
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where p´ is the revised estimate.  

In addition to smoothing the results, the technique can also be used to extrapolate beyond the 
maximum age in the sample.  In this case, 70 was selected as the maximum feasible age of a claim.  
A claim age of 70 would imply a claimant age of 70 plus the age of the claimant at the time of injury.  
This is well within a reasonable maximum for a human life for claimants of a very young age, but 
not claimants who make a claim later.  However, it is possible that beneficiaries or a claimant’s estate 
may also receive claim payments.  Further, the claimant may be a corporation or some other 
nonhuman entity.  In either case, the age of a claim could be greater than the feasible length of one 
human life. 

The chart below shows the results of the smoothing. 
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This is but one option.  One could also extrapolate the survival model or construct a parametric 
survival model.  An alternative would be to rely on a human mortality table.  This could be 
appropriate for lifetime bodily injury cases.  Diss and Sherman [5] use this method to estimate a tail 
factor for workers compensation business.  (Note that there has been some research into differences 
between the mortality for bodily injury claimants and the general population.  In particular, see 
Barnett [2] and Gillam [7].)   

Yet another alternative would be to replace the sample estimates with judgmentally derived 
survival probabilities, possibly determined in conjunction with the claims department.  Note that 
when speaking with non-actuaries it is likely far easier to pose the question “What is the likelihood 
that a claim that has been open for 40 years will stay open for another year?” than to ask “Is a tail 
factor of 1.025 at development year 40 reasonable?” 

The smoothed results are given in Appendix B, along with an estimate of the expected future 
lifetime for each age.  For this sample, the expected future lifetime is 20.3; it should take at least 
another 20 years for the business to completely run-off.  However, there is a possibility that it will 
take quite a while longer.  Assuming a normal approximation and using the standard deviation as 
given in formula 2.7, there is a 5% chance that this book could take 46.1 years to completely close—
a difference of over 25 years. 
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3.2 Comparison with Other Techniques 

Observation of the rate at which non-life claims close is not a new idea.  Although claim count 
information is used less often, several well-known papers present techniques for handling this data.  
Following are comments on how this method compares with others. 

Both Adler and Kline [1] and Berquist and Sherman [3] discuss a claims closure ratio.  This ratio 
is defined as the number of claims closed in a given development period divided by the number of 
ultimate claims.  Thus, the claims closure ratio depends on an estimate of the ultimate number of 
claims having already been made.  In both cases, they presume that the future ratio of closed claims 
to ultimate for any development period will be the same as the most recent calendar year.  Adler and 
Kline presume that the rate of claim closure is a stable figure that depends on the amount of claims 
remaining to be closed for a particular accident year.  Note that this is different than what is 
presumed here.  Here it is assumed that the survival of a particular claim is determined by the 
characteristics of the claim itself.  The implication of both Adler and Kline and Berquist and 
Sherman is that a claim has an expected lifetime, which is more or less fixed, and that its time of 
settlement can change only because of the workflow characteristics of the claim department. 

Fisher and Lange [6] describe a claims disposal ratio.  Here too, they calculate this as the ratio of 
claims disposed of in any particular year to the total number of claims.  Because they are working 
with report year data, the number of claims is known for each year and need not be estimated. 

Teng and Sherman [10] present a reserving technique that utilizes an estimate of claims closure 
ratios similar to what is presented here.  The closure ratio is calculated as the number of claims 
closed in any particular period to the number of claims reported up to the beginning of that period.  
Because closed claims will always remain in the population of claims reported to date, this quantity is 
not the same as the probability that a claim will terminate given that it survives to a particular 
development period.  In fact, what Teng and Sherman are estimating is 1 – S(x).  Because S(x) 
depends on the individual pxs, one could argue that the method presented here may be more 
appropriate given that it develops a specific estimate of the survival probability at each age. 

3.3 Enhancements 

There are a number of ways that this technique could be enhanced.  At present, no distinction is 
made as to the way in which a claim is closed.  If one were aware of certain effects, such as an active 
commutation strategy, or the influence of particular cedants or insureds, those claims could be 
removed from the sample.   
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The Whitaker-Henderson method is but one option for graduation of an empirical survival 
model.  One could also apply the standard battery of smoothing and trending methods.  As noted 
earlier, the use of a survival model does not obviate the need to select a tail factor.  However, unlike 
some techniques applied to triangle data, a survival model requires the actuary to posit an upper 
bound for the length of time that a claim will remain open and state the likelihood of attaining that 
age. 

It is commonly accepted that claim closure patterns change over time due to any number of 
influences.  Less common is an objective method to forecast those changes.  Life actuaries do 
attempt to project mortality trends into the future.  Adoption of those techniques may help shed 
light on the dynamics of non-life claim behavior. 

In order to convert this method into one for which an estimate of reserves could be calculated, as 
estimate of the size of prospective payments would have to be incorporated.  Among the advantages 
of constructing the reserving model in this way are that one can integrate estimates for future 
inflation explicitly.  This is effectively what Teng and Sherman have done.   

4. CONCLUSIONS 

The use of survival models, though understood in principle, is not common to non-life actuaries.  
The ability to examine data in this way opens up a number of interesting possibilities, including the 
use of techniques developed in the fields of population growth and demography.  In the view of this 
author, equally important is a philosophical shift away from triangulated data towards a more 
fundamental consideration of the dynamics of the claim.  Every actuary appreciates that the 
dynamics of claim generation and settlement are complex and change over time, but the methods 
currently available for the analysis of aggregate claim triangles do not easily lend themselves to taking 
these forces into account.  It is hoped that this approach will serve as a step towards changing that. 
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Appendix A 
Age N D qx px S(x)

1 985 8 0.008 0.992 0.992
2 2270 94 0.041 0.959 0.951
3 3522 309 0.088 0.912 0.867
4 4461 510 0.114 0.886 0.768
5 4636 659 0.142 0.858 0.659
6 4566 820 0.180 0.820 0.541
7 3958 699 0.177 0.823 0.445
8 3322 503 0.151 0.849 0.378
9 2927 438 0.150 0.850 0.321

10 2433 322 0.132 0.868 0.279
11 2126 242 0.114 0.886 0.247
12 1838 152 0.083 0.917 0.227
13 1715 133 0.078 0.922 0.209
14 1607 86 0.054 0.946 0.198
15 1575 119 0.076 0.924 0.183
16 1492 76 0.051 0.949 0.174
17 1459 77 0.053 0.947 0.164
18 1325 57 0.043 0.957 0.157
19 1331 66 0.050 0.950 0.150
20 1243 75 0.060 0.940 0.141
21 1172 67 0.057 0.943 0.132
22 1101 57 0.052 0.948 0.126
23 1003 42 0.042 0.958 0.120
24 961 59 0.061 0.939 0.113
25 875 59 0.067 0.933 0.105
26 796 41 0.052 0.948 0.100
27 744 41 0.055 0.945 0.094
28 686 35 0.051 0.949 0.090
29 631 37 0.059 0.941 0.084
30 588 34 0.058 0.942 0.079
31 515 31 0.060 0.940 0.075
32 435 20 0.046 0.954 0.071
33 389 31 0.080 0.920 0.066
34 314 26 0.083 0.917 0.060
35 249 16 0.064 0.936 0.056
36 226 11 0.049 0.951 0.054
37 188 12 0.064 0.936 0.050
38 151 3 0.020 0.980 0.049
39 133 6 0.045 0.955 0.047
40 115 9 0.078 0.922 0.043
41 92 4 0.043 0.957 0.041
42 79 1 0.013 0.987 0.041
43 69 3 0.043 0.957 0.039
44 60 0 0.000 1.000 0.039
45 60 1 0.017 0.983 0.038
46 46 0 0.000 1.000 0.038
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Age N D qx px S(x)
47 39 0 0.000 1.000 0.038
48 40 2 0.050 0.950 0.036
49 32 2 0.063 0.938 0.034
50 29 1 0.034 0.966 0.033
51 23 0 0.000 1.000 0.033
52 20 2 0.100 0.900 0.030
53 13 1 0.077 0.923 0.027
54 11 0 0.000 1.000 0.027
55 7 0 0.000 1.000 0.027
56 6 0 0.000 1.000 0.027
57 8 0 0.000 1.000 0.027
58 6 0 0.000 1.000 0.027
59 7 0 0.000 1.000 0.027
60 6 0 0.000 1.000 0.027
61 3 0 0.000 1.000 0.027
62 3 0 0.000 1.000 0.027
63 3 0 0.000 1.000 0.027
64 3 0 0.000 1.000 0.027
65 2 0 0.000 1.000 0.027
66 2 0 0.000 1.000 0.027
67 2 0 0.000 1.000 0.027
68 1 1 1.000 0.000 0.000
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Appendix B 
Age Empirical px Smoothed px Capped px S(x) (x)K̂  (x))KStd.Dev.( ˆ  95th

1 0.992 0.931 0.931 0.931 11.203 13.527 33.454
2 0.959 0.918 0.918 0.855 11.110 13.754 33.734
3 0.912 0.906 0.906 0.775 11.162 14.040 34.256
4 0.886 0.894 0.894 0.693 11.363 14.380 35.015
5 0.858 0.885 0.885 0.613 11.713 14.761 35.993
6 0.820 0.878 0.878 0.538 12.203 15.166 37.150
7 0.823 0.874 0.874 0.470 12.816 15.571 38.428
8 0.849 0.874 0.874 0.411 13.523 15.950 39.759
9 0.850 0.876 0.876 0.360 14.290 16.281 41.069

10 0.868 0.881 0.881 0.318 15.077 16.546 42.292
11 0.886 0.889 0.889 0.282 15.842 16.737 43.371
12 0.917 0.897 0.897 0.253 16.549 16.855 44.273
13 0.922 0.906 0.906 0.229 17.170 16.908 44.981
14 0.946 0.914 0.914 0.209 17.690 16.907 45.500
15 0.924 0.922 0.922 0.193 18.103 16.867 45.846
16 0.949 0.929 0.929 0.179 18.410 16.798 46.040
17 0.947 0.935 0.935 0.168 18.625 16.710 46.110
18 0.957 0.939 0.939 0.158 18.761 16.610 46.082
19 0.950 0.943 0.943 0.149 18.837 16.503 45.982
20 0.940 0.945 0.945 0.140 18.871 16.390 45.830
21 0.943 0.947 0.947 0.133 18.879 16.271 45.642
22 0.948 0.947 0.947 0.126 18.872 16.147 45.431
23 0.958 0.947 0.947 0.119 18.864 16.015 45.206
24 0.939 0.947 0.947 0.113 18.865 15.873 44.974
25 0.933 0.946 0.946 0.107 18.880 15.720 44.737
26 0.948 0.945 0.945 0.101 18.914 15.551 44.493
27 0.945 0.944 0.944 0.095 18.970 15.364 44.242
28 0.949 0.943 0.943 0.090 19.051 15.155 43.979
29 0.941 0.942 0.942 0.085 19.158 14.918 43.696
30 0.942 0.941 0.941 0.080 19.290 14.649 43.385
31 0.940 0.941 0.941 0.075 19.444 14.342 43.034
32 0.954 0.940 0.940 0.071 19.614 13.992 42.629
33 0.920 0.940 0.940 0.066 19.792 13.597 42.156
34 0.917 0.941 0.941 0.063 19.964 13.153 41.598
35 0.936 0.943 0.943 0.059 20.115 12.663 40.943
36 0.951 0.945 0.945 0.056 20.229 12.131 40.182
37 0.936 0.947 0.947 0.053 20.294 11.562 39.313
38 0.980 0.950 0.950 0.050 20.302 10.964 38.336
39 0.955 0.953 0.953 0.048 20.247 10.342 37.259
40 0.922 0.956 0.956 0.046 20.123 9.706 36.088
41 0.957 0.960 0.960 0.044 19.925 9.065 34.836
42 0.987 0.963 0.963 0.042 19.654 8.427 33.515
43 0.957 0.966 0.966 0.041 19.315 7.795 32.137
44 1.000 0.968 0.968 0.040 18.916 7.169 30.707
45 0.983 0.970 0.970 0.038 18.467 6.542 29.227
46 1.000 0.972 0.972 0.037 17.977 5.905 27.690
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Age Empirical px Smoothed px Capped px S(x) (x)K̂  (x))KStd.Dev.( ˆ  95th

47 1.000 0.973 0.973 0.036 17.452 5.250 26.087
48 0.950 0.974 0.974 0.035 16.889 4.573 24.411
49 0.938 0.976 0.976 0.034 16.277 3.887 22.670
50 0.966 0.979 0.979 0.034 15.600 3.223 20.901
51 1.000 0.984 0.984 0.033 14.842 2.640 19.184
52 0.900 0.989 0.989 0.033 13.990 2.229 17.656
53 0.923 0.997 0.997 0.033 13.036 2.096 16.484
54 1.000 1.005 1.000 0.033 12.036 2.096 15.484
55 1.000 1.013 1.000 0.033 11.036 2.096 14.484
56 1.000 1.019 1.000 0.033 10.036 2.096 13.484
57 1.000 1.024 1.000 0.033 9.036 2.096 12.484
58 1.000 1.025 1.000 0.033 8.036 2.096 11.484
59 1.000 1.021 1.000 0.033 7.036 2.096 10.484
60 1.000 1.010 1.000 0.033 6.036 2.096 9.484
61 1.000 0.991 0.991 0.032 5.083 2.048 8.451
62 1.000 0.961 0.961 0.031 4.250 1.912 7.395
63 1.000 0.919 0.919 0.029 3.536 1.722 6.369
64 1.000 0.863 0.863 0.025 2.938 1.502 5.408
65 1.000 0.793 0.793 0.020 2.444 1.268 4.529
66 1.000 0.708 0.708 0.014 2.038 1.028 3.730
67 1.000 0.610 0.610 0.008 1.701 0.778 2.981
68 0.000 0.503 0.503 0.004 1.393 0.488 2.197
69 0.000 0.393 0.393 0.002 1.000 0.000 0.000
70 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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Appendix C 
Number of open claims    

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1990 22 39 54 87 79 92 63 48 42 30 27 25 25 21 22 24
1991 13 24 44 57 61 71 40 35 31 27 26 20 18 17 16
1992 10 30 54 66 63 69 53 49 45 44 39 35 27 22 
1993 9 41 56 69 67 60 63 49 48 36 37 34 31  
1994 14 58 86 107 146 139 118 123 111 93 82 79   
1995 30 99 146 192 208 217 251 202 176 171 102   
1996 40 94 152 189 236 221 230 221 160 130   
1997 40 149 215 300 329 415 297 342 248   
1998 28 78 122 195 198 236 236 197   
1999 29 78 200 391 414 424 375   
2000 36 120 291 391 352 366   
2001 54 143 257 270 309   
2002 27 74 116 130    
2003 12 23 41     
2004 8 15      
2005 4       
 
Appendix D 
Incremental number of closed claims            
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1990 0 1 1 8 13 24 15 10 12 5 1 2 4 1 1 4
1991 0 0 0 5 9 20 16 10 8 6 2 6 0 4 6  
1992 0 0 7 8 9 14 9 9 7 3 7 4 6 4   
1993 0 0 4 7 14 8 9 13 7 1 7 9 12    
1994 0 2 5 13 20 31 18 19 22 14 19 24     
1995 0 3 16 18 26 34 48 34 30 59 26      
1996 1 4 16 20 47 33 38 42 48 36       
1997 0 2 5 19 30 88 48 85 67        
1998 0 0 8 14 27 42 69 62         
1999 0 3 9 60 72 106 93          
2000 0 1 22 43 84 125           
2001 0 7 12 44 87            
2002 0 4 16 30             
2003 0 2 12              
2004 0 4               
2005 0                
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Abbreviations and notations 
S(x), survival function apx, probability that a life aged x will survive for a years 
aqx, probability that a life aged x will die within the next a 
years 

K(X), the future lifetime of a life aged x 

ri, difference between the age when observation begins and 
the most recent integral age 

si, difference between the next integral age and the age at 
which the life exits observation 

dx number of deaths observed during a period of 
observation 

nx, number of lives at age x during the observation period 
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Hierarchical Growth Curve Models for Loss Reserving 

James Guszcza, FCAS, MAAA 
________________________________________________________________________ 
Abstract 

Hierarchical or multilevel modeling extends traditional GLM or non-linear models by giving certain of the model 
parameters their own probability sub-models.  Hierarchical modeling can be viewed as an extension of Bayesian 
credibility theory that allows one to build models for data that are grouped along a dimension containing multiple 
levels.  In particular, hierarchical modeling can be used to analyze longitudinal datasets containing multiple 
observations for each of several subjects.  A contention of this paper is that traditional loss reserving triangles are 
most naturally regarded as longitudinal datasets.  Non-linear hierarchical models – known also as non-linear 
mixed effects models – therefore provide a natural and flexible framework in which to model loss development 
across multiple accident years.  The use of non-linear growth curves together with multilevel modeling 
techniques allows one to build models that are at once parsimonious and easy to interpret.  Finally, because they 
incorporate growth curves, such models obviate the need to specify tail factors. 
 
Keywords: Stochastic loss reserving, hierarchical models, multilevel models, nonlinear mixed effects models, 
growth models, repeated measurements, longitudinal data, Bayesian credibility, shrinkage, R. 

             

1. INTRODUCTION 

Loss reserving theory and practice is undergoing a renaissance due to a recent proliferation of 
stochastic reserving techniques.  To cite but a few examples, recent authors have applied regression 
analysis (Barnett and Zehnwirth [1]), generalized linear models (England and Verrall [2]), loss 
development growth curves together with maximum likelihood estimation (Clark [3]), and Bayesian 
methods (Meyers [4]) to model loss development data.  Statistical modeling techniques are 
increasingly supplementing or supplanting spreadsheet-based projection methods for estimating 
ultimate losses. 

This paper will propose yet another statistical framework for modeling loss triangles:  nonlinear 
hierarchical models.  These models are also commonly known as nonlinear mixed effects [NLME] models.  
The contention of this paper is that this class of models provides a highly flexible and natural 
framework within which the loss development process can be analyzed.  The goals of this paper are 
twofold:  to introduce the concept of hierarchical models and to illustrate how hierarchical models 
can be used in loss reserving. 

Section 2 will sketch some of the basic theory of hierarchical models and also provide a 
hypothetical example illustrating how hierarchical modeling can be used to analyze longitudinal (or 
“repeated measurements”) data.  The relationship between hierarchical modeling and Bayesian 
credibility theory will also be discussed.  These topics are not specific to loss reserving in particular, 
but are discussed in order to set the stage for Section 3. 
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Section 3, the main section of the paper, will broaden the discussion of hierarchical models to 
include non-linear model forms.  Motivated by the very interesting presentation of Clark [3], our 
hierarchical models will incorporate the Weibull and Loglogistic “growth curve” functional forms.  
These models will be applied to the same loss triangle data analyzed by Clark and others.  Many such 
growth curves are possible, but the Weibull and Loglogistic are two natural options.  One way of 
understanding the loss reserving models proposed here is that they add “random effects” to the 
types of growth curve models introduced by Clark.   

No attempt will be made in this paper to estimate reserve variability, which is beyond the scope 
of this introductory paper.  This will be the subject of a future paper.  

2. HIERARCHICAL MODELS 

Generally speaking, hierarchical models are used when the data at hand are grouped in some 
important way.  Examples include: 

• The relationship between standardized test scores and prior grades of students from 
different high schools. 

• Performance of a state’s high schools, where schools are grouped into school districts. 

• Expected workers compensation claims for exposures with various NCCI class codes. 

• Expected loss ratio relativities for a personal auto carrier’s various state territories. 

• The growth of a collection of soybean plants, measured at various times since planting. 

The first two examples are typical of the examples discussed in the social science literature (e.g., 
Gelman and Hill [5]).  The third and fourth examples are classic problems of actuarial science, but 
are similar in form to the first two examples.   

The final example is typical of hierarchical modeling applications in such fields as biology (e.g., 
modeling the growth of plants and animals) and pharmacology (e.g., modeling the effect of a drug 
over time).  Many such examples are given in the book by Pinheiro and Bates [6].  In cases such as 
these, we have multiple measurements of each subject, performed at different points in time.  Such 
multilevel datasets are commonly referred to as “longitudinal,” “panel,” or “repeated measurements” 
datasets.  The primary goal of this paper is to convince the reader that loss reserving triangles can 
reasonably be regarded as longitudinal datasets, to which hierarchical modeling techniques naturally 
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apply. 

The central concept of hierarchical models is that certain model parameters are themselves 
modeled.  In other words, not all of the parameters in a hierarchical model are directly estimated 
from the data.  Rather, (some of) the model parameters are calculated from estimates of the model’s 
hyperparameters, which are in turn estimated from the data.  Model parameters that are themselves 
given models are sometimes referred to as “random effects.”  They are to be distinguished from 
“fixed effects,” which are not modeled, but are instead estimated directly from the data.  “Mixed 
effects models,” therefore, refer to models that contain both modeled and non-modeled parameters.   

A note on terminology:  this paper generally follows Gelman and Hill in favoring the language of 
hierarchical models over the “random/fixed/mixed effects” terminology.  However, the phrase 
“random effects” will occasionally be used as shorthand for model parameters that are given sub-
models.  Many authors, including Pinheiro and Bates [6], speak mainly in terms of “mixed effects 
models.”  Note that Pinheiro and Bates wrote the “nlme” R function that was used to fit the 
hierarchical models described in this paper. 

At this point an example might aid the discussion.  Consider a hypothetical company that sells 
personal auto insurance in each of eight roughly equal-sized regions.  We have data for the number 
of policies in force by region as of January 1, 2005, 2006, 2007, and 2008.  We thus have 8*4=32 
data points in all.  We would like to build a model that could be used to forecast the number of 
policies in force, by region, in the coming years. 

Using notation suggested by Gelman and Hill, let i denote the data point number and range from 
1 to 32; similarly let j denote the region number.  The term j[i] will denote the group to which data 
point i belongs. For example, j[5]=2 because the fifth data point is an observation from Region 2.  
Two modeling strategies immediately suggest themselves.   

Model 1 (complete pooling of data):  First, we could simply pool the data from all eight 
regions and regress PIF (policies in force) on time.   

εβα ++= tPIF  

where ε ~ N(0,σ2).  In this case the 32 data points would be used to estimate the three parameters 
{α, β, σ}.  Here we are effectively ignoring region. 

Model 2 (separate models by region):  Second, we could run eight separate regression models, 
one for each region. 
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{ } 8,...,2,1=++= j
jjj tPIF εβα . 

Note that each of these eight regression models is fit using only four data points. 

These models are plotted in the figure below.  The dotted lines represent Model 1 and are the 
same across all regions.  The dashed lines represent Model 2 and vary from region to region.  This 
plot illustrates why neither option is entirely satisfactory.  At one extreme, the “pooled” model 
clearly provides poor fits in, for example, regions 1 and 4.  At the other extreme, one might doubt 
that the data is sufficiently credible to support the fitting of eight region-specific models.  For 
example, the first data point in region 3 appears to exert too much leverage on that model’s 
parameters.  A slope closer to that of the “pooled” model might be more believable. 
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Model 3 (include region indicator variables):  Of course other conventional strategies are 

possible.  For example, one could fit a no-intercept model that includes a separate indicator variable 
for each of the eight regions: 

εβββ ++==++=== tregionregionPIF 981 )8(...)1( . 

This is a compromise between models 1 and 2.  Like Model 1, it is a single “pooled” model that is fit 
to all of the data.  Like Model 2, it allows us to capture region-specific aspects of the data.  This is an 
improvement, but perhaps is still not ideal.  We are still estimating 10 parameters – {β1, …, β8, β9, σ} 
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– using 32 data points.  We face the danger of building an over-parameterized model.  (Of course 
not all of the eight region indicators will necessarily be significant in the model.  One or more of the 
indicators might be dropped.)  The need to potentially add region/time interaction terms presents 
the possibility of further over-parameterization.  In the extreme case where we need a separate 
intercept term and interaction with time for each region, we would need to estimate a model eight 
different intercepts and eight different slopes.  This would essentially return us to Model 2.   

Model 4 (random intercepts):  Hierarchical modeling offers a different type of compromise.  
In this simple example, rather than estimate a separate “β” parameter for each region directly from 
the data, we specify a Gaussian sub-model of which eight region-specific intercept parameters {α1, …, 
α8} are random draws.  Therefore, unlike {β 1, …, β8} in Model 3, these so-called “random 
intercepts” {α1, …, α8} are not “estimated directly from the data.”  Rather, they are derived from the 
hyperparameters of the Gaussian sub-model.   

Explicitly, this “random intercepts” hierarchical model can be written: 

),0(~),(~... 22
81 σεσμαεβαα αα NandNwheretPIF j++++= . 

Or more compactly: 

),(~),(~ 22
][ αα σμασβα NwheretNPIF jiiji + . 

In some circles it is conventional to call such a model a “mixed effects” model.  The “slope” 
parameter β is called a “fixed effect,” while the {α1, …, α8} parameters are called “random effects.”  

This hierarchical model contains four hyperparameters which can be estimated using maximum 
likelihood or a related optimization technique: 

94.123ˆ13.81ˆ06.100ˆ0.2068ˆ ==== αα σσβμ . 

Compare this with the 10 parameters estimated from the non-hierarchical regression model with a 
separate indicator variable for each region. 

As noted above, the intercept “random effect” parameters {α1, …, α8} are derived using the 
model’s estimated hyperparameters.  Readers familiar with credibility theory might have anticipated 
that the formula used to do this is: 

2
2)1()(ˆ

α

α

σ
σ

μβα
+

=⋅−+−⋅=
j

j
jjjjjj

n

n
ZwhereZtyZ . 

In actuarial parlance, each random intercept αj is a credibility-weighted average of the region-
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specific intercept and the average (μα) of all of the region-specific intercepts.  The credibility factor 
Zj is determined in a familiar way using the number of observations for each region (nj), the variance 
of the region specific intercepts (σ2

α), and the residual variation σ2.   

Models 1 and 2, illustrated above, are special cases of this hierarchical model in a precise sense.  
As σ2

α  0, Z j  0 and the hierarchical model approaches Model 1.  As σ2
α  ∞, Zj  1 and the 

hierarchical model approaches Model 2 (Gelman and Hill [5] p. 258).   

As an aside, it should be apparent that Bühlmann’s credibility model is a specific instance of 
hierarchical models.  If we remove the time covariate t, Model 4 becomes 

),(~),(~ 22
][ αα σμασα NwhereNPIF jiji . 

And the credibility weighting expression becomes: 

2
2)1(ˆ

ασ
σ

μα
+

=⋅−+⋅≈
j

j
jjjjj

n

n
ZwhereZyZ . 

Frees [7 section 4.7] provides a helpful discussion of the ways in which several well-known 
credibility models are specific types of hierarchical models. 

In the figure below, the predicted values of Model 4 (solid line) are added to the predicted values 
of Models 1 and 2.  In certain cases (such as Regions 1 and 3) Model 4 appears to be an 
improvement over Model 2.  This is because the more parsimonious Model 4 is not seriously 
leveraged by these regions’ “2005” data points.  For regions 2 and 8, on the other hand, Model 2 
seems to fit the data better. 
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Model 5 (random slopes and intercepts):  Because of the seemingly suboptimal fit on the 

model in Regions 2 and 8, one might consider adding a “slope random effect” to model 4.  
Explicitly:  
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Model 5 contains six hyperparameters: {μα,μβ,σα,σβ,σαβ,σ}, two more than Model 4.  Because 
Models 4 and 5 are nested models, we can compare their expected predictive accuracy by comparing 
their log-likelihoods and Akaike Information Criterion [AIC] statistics.   

 
LL d.f. AIC

Model 4 -186.20 4 380.40
Model 5 -184.32 6 380.64  

 
Recall that AIC = -2*LL + 2*d.f., as can be confirmed from the above table.  In a phrase, AIC is 

log-likelihood penalized for the number of hyperparameters in the model.  The model with the 
lower AIC statistic is thought to make a better trade-off between complexity and goodness-of-fit, 
and is therefore expected to make more accurate predictions of future data. 

Adding the further “random effect” to vary the slopes (in addition to varying the intercepts) 
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results in an improved log-likelihood; but a slightly worse AIC.  This comparison suggests that it 
would be wise to favor the more parsimonious Model 4 above the slightly better fitting Model 5.  
The AIC comparison suggests that Model 5 might over-fit the data. 

General Observations:  Before turning to loss reserving, it is worth making a few general 
observations about the implications of hierarchical modeling for actuarial work.  First, the 
hierarchical/multilevel modeling framework is a generalization of current actuarial modeling practice 
in two important ways.   

• Actuaries often face a dilemma when faced with multilevel modeling situations.  For 
example, should one pool one’s data and build a single countrywide predictive model to 
be used in all states?  Or should one build separate models by state?  These options are 
analogous to Models 1 and 2 above.  In the light of the above discussion, it should be 
clear that these two options are extreme cases (as the variance of a hierarchical model’s 
random effects approach 0 and ∞, respectively) of a suitably specified hierarchical model. 

• Bayesian credibility models are specific types of hierarchical models.  Just as generalized 
linear models (GLMs) have provided a unifying framework for traditional minimum bias 
calculations, hierarchical modeling theory provides a unifying framework for Bayesian 
credibility modeling.  This is helpful both pedagogically and practically.  Pedagogically, it 
is helpful to understand the connection between Bayesian credibility and linear modeling.  
Practically, multilevel modeling packages can be used to perform Bayesian credibility 
calculations.  In the same way that GLM modeling is less cumbersome than performing 
minimum bias calculations, hierarchical modeling packages allow one to perform 
Bayesian credibility calculations with a minimum of ad hoc programming.  Furthermore, 
multilevel modeling packages make it easy to employ rigorous statistical methodology – 
such as graphical diagnostics and comparison of goodness-of-fit statistics – in one’s work.   

A second observation is that multilevel modeling potentially allows one to achieve a much better 
fit at the expense of adding only a few additional hyperparameters to a conventional GLM model.  
In the above example, Model 4 contains only one more hyperparameter than Model 1, but it 
provides a much better fit to the data.  This is because the “scoring equation” for Model 4 contains 
nine parameters {α1, …, α8, β} as opposed to Model 1’s insufficient {α, β} parameters.  In short, 
actuaries can consider specifying hierarchical GLM models (HGLMs) as an alternative to purely 
“fixed effects” GLM models. 
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A related point is that the hierarchical modeling framework works well even if one’s data contains 
a very large number of levels.  The above example could easily be modified to involve four years of 
PIF data in each of 1000 counties.  Model 4, with its four hyperparameters, or Model 5, with its six 
hyperparameters, would be no less applicable to this data.  By comparison a traditional, non-
hierarchical model would potentially need hundreds of indicator variables.  In short, the hierarchical 
modeling framework provides a natural way to handle “massively categorical” variables in one’s 
modeling work.  This is because hierarchical modeling implicitly allows one to perform Bayesian 
credibility weighting within a GLM model building context. 

These observations are not specific to loss reserving, but they set the stage for the hierarchical 
growth curve approach to loss reserving to be outlined in the next section. 

3. HIERARCHICAL MODELS FOR LOSS RESERVING 

The preceding section might have seemed like a long detour away from the topic of loss 
reserving.  But it reviewed some of the concepts needed to build a hierarchical model of the loss 
development process.  Consider a garden variety 10-by-10 loss triangle.  Each of the 55 non-missing 
cells contains cumulative losses (CL), indexed by accident year AY and development period dev.  
We will treat this loss triangle as a multilevel dataset, in which each of the 10 accident years is a 
separate level.  This will allow us to build a hierarchical model in which we “regress” cumulative 
losses CL on development period dev.  The major disanalogy with the illustrative example in the 
previous section is that we must replace the linear regression with a non-linear model.  

Pinheiro and Bates discuss three advantages of nonlinear hierarchical models, each of which 
apply in the context of loss reserving: 

• Interpretability.  The modeling approach to be outlined here requires that one explicitly 
model the loss development process in a specific functional form.  Judgment as well as 
background empirical or theoretical knowledge can be used to guide the choice of 
nonlinear functional form. 

• Parsimony.  A well-chosen nonlinear function can model a non-linear process with 
fewer parameters than  a linear model with multiple polynomial terms.  In addition, as 
illustrated in the previous section, the hierarchical modeling approach potentially allows 
one to replace a potentially large number of subject-specific indicator variables and 
interaction terms with a small number of hyperparameters. 
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• Validity beyond the observed range of the data.  Of course it is always dangerous to 
use a model to extrapolate beyond the data.  However, the approach to be outlined here 
at least offers a framework within which one can harness one’s background knowledge 
when specifying a model.  Such an approach is less likely to lead one astray than a less 
parsimonious or more atheoretical “curve-fitting” approach. 

 

Sample Dataset:  To illustrate, we will work with the sample loss reserving dataset analyzed by 
Clark [3].  For ease of viewing, the cumulative loss numbers in the table below numbers have been 
divided by 1,000.  These numbers are rounded only for the purpose of display; no rounding was 
done in performing the calculations.  

 
Cumulative Losses in 1000's

AY 12 24 36 48 60 72 84 96 108 120 reported est ult reserve
1991 358 1,125 1,735 2,183 2,746 3,320 3,466 3,606 3,834 3,901 3,901 3,901 0
1992 352 1,236 2,170 3,353 3,799 4,120 4,648 4,914 5,339 5,339 5,434 95
1993 291 1,292 2,219 3,235 3,986 4,133 4,629 4,909 4,909 5,379 470
1994 311 1,419 2,195 3,757 4,030 4,382 4,588 4,588 5,298 710
1995 443 1,136 2,128 2,898 3,403 3,873 3,873 4,858 985
1996 396 1,333 2,181 2,986 3,692 3,692 5,111 1,419
1997 441 1,288 2,420 3,483 3,483 5,672 2,189
1998 359 1,421 2,864 2,864 6,787 3,922
1999 377 1,363 1,363 5,644 4,281
2000 344 344 4,971 4,627

chain link 3.491 1.747 1.455 1.176 1.104 1.086 1.054 1.077 1.018 1.000 34,358 53,055 18,697
chain ldf 14.451 4.140 2.369 1.628 1.384 1.254 1.155 1.096 1.018 1.000
growth curve 6.9% 24.2% 42.2% 61.4% 72.2% 79.7% 86.6% 91.3% 98.3% 100.0%  

To provide a baseline for comparison, the results of a simple chain ladder calculation are 
displayed along with the raw data.  All data was used to calculate each of the link ratios; and the 
120 ultimate “tail factor” is assumed to be 1.0.  According to this calculation, the expected total 
outstanding losses are approximately $18.7M.  The implied “growth curve” is simply the reciprocal 
of the sequence of loss development factors.   

Clark’s Models:  The nine “growth curve” numbers resulting from the simple chain ladder 
exercise can be viewed as a piecewise linear approximation to a continuous growth curve.  Clark 
considers two such growth curves, the Weilbull and Loglogistic,  and integrates each of them into 
two models of the loss triangle data.  The Weilbull growth curve has the form: 

( )ωθθω )/(exp1),|( xxG −−= . 

The Loglogistic curve has the form: 
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Purely for illustration, we can fit each of these curves to the reciprocal of the chain ladder loss 

development factors (LDFs) displayed above.  The resulting curves are displayed below, together 
with the reciprocal of the nine chain ladder LDFs. 
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This plot confirms that both the Weibull and Loglogistic growth curves are plausible candidates 

for modeling the loss development process.  Each of the curves fits the reciprocal LDF pattern 
reasonably well.  Note that the Loglogistic growth curve has a “heavier tail” than the Weibull, 
implying a longer loss development process and higher estimated ultimate losses.  Note also that 
neither of the curves fits empirical development pattern perfectly.  The Loglogistic curve fits the 
earlier data points better; whereas the Weibull curve is a bit closer to the final data point.  In 
practice, one’s background knowledge of the likely length of the loss development process would be 
used to decide between these, or other, growth curves.  Following Clark, we fit sample models 
incorporating each of these growth curves and compare the results. 

Clark proposes two models of the loss data.  The first is called the “Loss Development Factor” 
(LDF) model, and can be expressed: 
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[ ]),|(1, θωdevGULTCL AYdevAY −= . 

The function G can be the Weibull, the Loglogistic, or any other suitable growth function.  The 
LDF model contains 12 parameters:  {ULT1991,…, ULT2000, ω, θ}.   

(Note that Clark in fact models incremental rather than cumulative losses, and therefore specifies 
a formula that differs accordingly.  Specifically, Clark’s formula is 

[ ]),|(),|(,; θωθω xGyULTIL AYyxAY −=  

where ILAY;x,y denotes the incremental losses in accident year AY between ages x and y.  This is 
advantageous in that random noise at age x will not be propagated through ages x+1, x+2, and so 
on.  For readability and ease of exposition, the models discussed in this paper are cast in terms of 
cumulative, rather than incremental, losses.  However, it is a simple exercise to recast these models, 
as done above, in terms of incremental losses.)   

Clark’s calls his second model a “Cape Cod” model.  Here the unknown parameters ULTAY are 
replaced with PREMAY·ELR:   

[ ]),|(1, θωdevGELRPREMCL AYdevAY −⋅= . 

PREMAY denotes on-leveled premium for accident AY (a known quantity).  This model incorporates 
the Cape Cod assumption of a constant expected loss ratio (ELR) across all accident years.  As a 
result, this model contains only three unknown parameters, {ELR,ω,θ}, as opposed to the LDF 
model’s 12.  The Cape Cod model is therefore less prone to overfitting the available data (in this 
illustration, 55 data points) than the LDF model.  Clark points out that the less parsimonious LDF 
model results in more parameter variance, in turn resulting in more variance around the estimated 
reserves. 

Baseline Hierarchical Model:  It is possible to build hierarchical counterparts to each of 
Clark’s models.  Let us begin with Clark’s LDF model.  Rather than estimate the 10 parameters 
{ULT1991,…, ULT2000} directly from the data, we can model them in hierarchical fashion.  Explicitly: 
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This will be our baseline model.  All of the alternate models to be discussed subsequently will be 
modifications of this baseline.  The baseline model contains five unknown hyperparameters that 
must be estimated from the data: {μULT, ω, θ, σULT, σ}. Specifying a sub-model of ULTAY in the 
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above fashion is analogous to replacing the region-specific indicator variables in the previous 
section’s PIF example with the “random intercepts” αj.   

Note that rather than assuming constant variance for each loss amount, we are assuming that the 
within-variance is proportional to the fitted value, where σ2 is the proportionality constant.  This 
corresponds to the over-dispersed Poisson assumption found in both England and Verrall [2] and 
Clark.  We will relax this assumption shortly. 

This model can easily be fit using the “nlme” (“non-linear mixed effects”) function in R.  (Please 
refer to the note at the end of this paper for information on how to obtain R and the nlme 
function.)   The R code needed to do this is quite straightforward:  

 
start.vals <- c(ult=5000, omega=1.4, theta=45) 
w1 <- nlme(cum ~ ult*(1 - exp(-(dev/theta)^omega)) 
  , fixed = list(ult~1, omega~1, theta ~ 1) 
            , random = ult ~ 1 | AY 
  , weights = varPower(fixed=.5) 
      , data=dat, start = start.vals) 
 

Note most stochastic reserving techniques, this one included, require that one organize one’s data 
in matrix rather than triangular form.  The appendix to this paper displays the data in the form that 
it is read in prior to submitting the above R code. 

We must supply starting values in order to estimate the parameters of a non-linear hierarchical 
model (starting values are not needed for linear hierarchical models).  Choosing the appropriate 
starting values is something of an art.  Still, in this particular case the model converges to the correct 
solution for a wide range of starting values.  For example, replacing the above starting values with 
{10000, 2.0, 100} does not change the resulting model.  However further changing the starting value 
of “ult” to 15000 causes the model not to converge.  Changing the starting value for “omega” to 3.0, 
on the other hand, causes the model to converge to an incorrect solution.  (A quick glance at a 
residual plot makes it clear that the solution is incorrect.)  In most cases it should be possible to 
select a workable set of starting values using the estimated ultimate losses and implied growth curve 
from a simple chain ladder analysis. 

Submitting the above R code yields the following estimates of the model’s five hyperparameters.  
The model runs in seconds. 

955.203.54364.46306.16.5306 ===== σσθωμ ULTULT  

This model’s AIC statistic is 725.76.  Also, the p-values associated with μ, ω, and θ are all less than 
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.0001. The parameter error associated with this model is therefore fairly low. 

We note in passing that the ω and θ parameter estimates for Clark’s Weilbull LDF model are 
1.297 and 48.885, respectively.  These are reasonably consistent with our results. 

The parameters and estimated ultimate losses and loss reserves resulting from the baseline model 
are displayed in the table below.  The model’s parameters (not hyperparameters) are listed in the 
omega, theta, and ULT columns.  Because they were not given “random effects,” omega and theta 
are the same for each accident year.  We will shortly investigate the effect of adding random effects 
to the ω and θ parameters.   

The key difference between this model and Clark’s LDF model, is that here the estimated 
ultimate losses in the ULT column are not estimated directly from the data.  Rather, they are derived 
from the estimates of the model’s hyperparameters.  Note that the average value of the ULT column 
is 5306.6, which is the same as the estimate of μULT.   

 
Parameters and Estimated Reserves - Baseline Model 

AY dev omega theta growth reported eval120 eval240 ULT reserves
1991 114 1.306 46.638 96.0% 3,901 3,943 4,073 4,074 172
1992 102 1.306 46.638 93.8% 5,339 5,239 5,412 5,413 74
1993 90 1.306 46.638 90.6% 4,909 5,207 5,379 5,380 470
1994 78 1.306 46.638 85.9% 4,588 5,423 5,602 5,603 1,015
1995 66 1.306 46.638 79.3% 3,873 4,777 4,935 4,936 1,062
1996 54 1.306 46.638 70.2% 3,692 5,052 5,219 5,220 1,528
1997 42 1.306 46.638 58.2% 3,483 5,512 5,694 5,695 2,212
1998 30 1.306 46.638 43.0% 2,864 5,850 6,043 6,044 3,180
1999 18 1.306 46.638 25.0% 1,363 5,255 5,429 5,430 4,067
2000 6 1.306 46.638 6.6% 344 5,101 5,270 5,271 4,927
total 53,066 18,708  

The baseline model’s estimate of the total outstanding losses is roughly $18.7M.  This is virtually 
identical to the chain ladder’s outstanding loss estimate displayed above.  However, this similarity is 
a coincidence.  The two models’ reserve estimates differ considerably by accident year.  For example, 
the chain ladder model’s estimate of accident year 1998’s outstanding losses is $3.92M, in contrast 
with the baseline hierarchical model’s estimate of $3.18M.   

Next we can inspect the standardized residuals and fitted values: 
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These diagnostic plots together indicate that the model fits the data reasonably well.  However, 

the model is not perfect.  The upper left two plots indicate that the standardized residuals are not 
quite normally distributed.  Still, the deviation from normality is perhaps within the realm of 
acceptability.  The “actual vs predicted” plot indicates a good fit.  Consistent with this, the “residuals 
vs predicted” plot indicates that most of the standardized residuals are less than 2.0 in absolute 
value.  A close inspection of this plot reveals an undulating pattern in the residuals:  the model has a 
slight but systematic tendency for the model to under-estimate cumulative losses in the range of 
$1M-$3M and over-estimate cumulative losses in the $3M-$4M range.  This suggests that the 
Weibull curve does not perfectly characterize the development of cumulative losses.   

The general conclusion while the model could perhaps be improved upon, the overall fit is good.  
Four points are worth emphasizing: 

• The model fits the data well despite the fact that it contains only five hyperparameters.  In 
contrast, Clark’s non-hierarchical LDF model contains 12 parameters; and the chain 
ladder analysis requires us to estimate nine link ratios (not including the arbitrary tail 
factor that must be added). 

• Unlike Cape Cod-type models (to be described below), it is not necessary to bring in 
premium data or assume a constant expected loss ratio across accident years. 
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• This five-parameter model can be used to project losses to their ultimate values (or any 
intermediate value) without the need for a tail factor. 

• The model’s parsimony is made possible both by the hierarchical modeling methodology 
as well as the use of a non-linear growth function G. 

Relating to this last point, another way to evaluate the model’s fit is to superimpose each accident 
year’s estimated growth curve on top of the cumulative loss observations.  In the plot below, the 
(identical) dotted curves represent the “fixed” Weibull curve implied by the hyperparameters {ω, θ, 
μULT}.  The solid curves are the accident year-specific Weibull curves implied by ω and θ as well as 
the derived parameters {ULT1991,…,ULT2000}. 
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These plots further support the conclusion that our baseline hierarchical growth model fits the data 
well.  In addition, they illustrate the basic intuition motivating the approach.  Following Clark, we are 
modeling loss development as a growth process, in much the same way that a biostatistician would 
model the growth of a group of trees or soybean plants.  In the latter cases, each “subject” is an 
individual tree or soybean plant and each observation is a measurement of size at various ages.  In 
loss reserving, each “subject” is the aggregate claims from an accident year and each observation is 
the aggregate cumulative losses at various development ages. 

Before continuing, it is worth commenting on the growth curve plots for accident years 1991 and 
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1998.  Note that the 1991 growth curve is different from the other year’s growth curves.  This is 
reflected the ULT1991 parameter of 4.074M, which is more than 20% lower than the average 
μULT=5.3066M.  However, we have 10 AY 1991 observations, all of which fall squarely on the 1991-
specific growth curve.  This suggests that the low value of ULT1991 is justified.   

In contrast, the estimated ultimate losses for 1998 are approximately 6.044M, 14% higher than 
average.  This is of course driven by only three data points, which have greater 12 24 and 24 36 
developments than their counterparts in other accident years.  The chain ladder method produces an 
even higher estimate of 1998 ultimate losses:  6.787M.  The hierarchical model’s estimate therefore 
falls between the global average μULT and the chain ladder estimate.  This is illustrative of the way in 
which the hierarchical model implicitly uses a type of “credibility weighting” to “shrink” the 
accident-year specific estimates towards the global mean.  The amount of “shrinkage” is more 
pronounced for more recent accident years.  The most extreme amount of shrinkage occurs for 
accident year 2000:  the estimated ultimate losses for this year are $5.271M, only a fraction of a 
percent lower than the global mean of $5.3066M.  Little credibility is given to the single data point 
for accident year 2000.        

Relaxing the Process Variance Assumption:  Recall that the baseline model contains the 
assumption that the within-variance is proportional to the fitted value.  We can replace this with the 
weaker assumption that: 

ςσε 2
,

2
, )ˆ()( devAYdevAY LCVar = . 

In other words, rather than pre-specify that ζ=0.5, we can introduce ζ as a further model 
hyperparameter to be estimated.  This means that our model will contain six, rather than five, 
hyperparameters.  (In R, this is achieved by simply removing the “fixed=0.5” from inside the 
“varPower” expression.) 

The resulting estimate is ζ≈0.37. Although not displayed here, the estimated loss reserves of this 
model are, in aggregate, only $100,000 (or 0.5%) less than that of the baseline model.  The residual 
plot indicated an improved residual histogram, but otherwise little difference in the goodness of fit.  
For simplicity we will therefore continue with the baseline model. 
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Random Shape Effect:  The baseline model incorporates the assumption that the different 
accident years’ ultimate losses vary randomly about a mean value:  ULTAY ~ N(μULT, σ2

ULT).  It also 
incorporates the assumption that the shape (ω) and scale (θ) characterizing the loss development 
process do not vary by accident year.  Just as we were able to vary slope – in addition to intercept – 
by region in the previous section’s PIF example, here we have the option of allowing ω and/or θ to 
vary by accident year.   

To illustrate, we expand our model to include varying shape parameters {ω1991,…, ω2000} by 
accident year.  Specifically: 
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. 

This model contains the two new hyperparameters σω and σω,ULT in addition to the baseline 
model’s five hyperparameters.  The resulting model parameters and associated loss reserve estimates 
are displayed below: 
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Model Parameters and Estimated Reserves
AY dev omega theta growth reported eval120 eval240 ULT reserves

1991 114 1.189 47.202 95.8% 3,901 3,907 4,101 4,105 203
1992 102 1.313 47.202 93.5% 5,339 5,281 5,462 5,463 124
1993 90 1.311 47.202 90.2% 4,909 5,259 5,440 5,441 532
1994 78 1.332 47.202 85.5% 4,588 5,491 5,667 5,668 1,080
1995 66 1.265 47.202 78.8% 3,873 4,744 4,933 4,935 1,061
1996 54 1.292 47.202 69.7% 3,692 5,052 5,236 5,238 1,546
1997 42 1.347 47.202 57.6% 3,483 5,662 5,835 5,835 2,352
1998 30 1.410 47.202 42.5% 2,864 6,368 6,525 6,525 3,661
1999 18 1.317 47.202 24.7% 1,363 5,325 5,504 5,505 4,142
2000 6 1.308 47.202 6.5% 344 5,229 5,410 5,411 5,067
total 54,126 19,768  

Note that the parameters in the “omega” column now vary by accident year.  The expected ultimate 
reserves are approximately $1M (5%) higher than those of the more parsimonious baseline model.  
It is interesting to note that nearly half of this increase comes from the increase in AY 1998 reserves 
from $3.18M in the baseline model to $3.661M here.  At the same time the ω shape parameter for 
AY 1998 is 1.410 – the highest of all accident years.  Allowing the shape parameter to vary by 
accident year therefore results in an accident year 1998 reserve estimate that is nearly as high as that 
of the chain ladder model’s estimate.   

 
Weibull Growth Curve Loss Development Model - Including Random Warp Effect
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The AY 1998 component of the above plot suggests that adding the random shape effect gives the 
most recent observation from AY 1998 more leverage over that accident year’s growth curve.  This 
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might be appropriate – perhaps accident year 1998’s claims are expected to be of higher ultimate 
severity.  We can also note that the random shape model’s AIC is 720.79, down from the baseline 
model’s 725.76.  This suggests that the random shape model offers a better tradeoff between 
complexity and goodness of fit. 

Of course, it is equally possible that the most recent 1998 observation is an outlier, in which case 
we would want to mitigate its leverage on the ultimate loss estimate.  Assuming the latter is correct, 
we would favor the baseline model over the random shape alternative model.  For simplicity, we will 
continue to work with the baseline model. 

Random Scale Effect:  We can similarly allow the scale parameter θ to vary by accident year.  
Doing so causes the AIC measure to deteriorate from 725.76 to 729.76.  Therefore on this dataset, 
allowing θ to vary by accident year does not offer a sufficient improvement in fit to justify the 
additional complexity.  It is interesting to note that the (θ, σθ) hyperparameters of this model are 
46.6375 and 0.0000094, respectively.  In other words the estimate of θ is nearly identical in the 
baseline and random scale models; and the estimated size of the random scale effect is negligible.   

To summarize, where Clark’s LDF model requires a separate ultimate loss parameter for each 
accident year, we allow ultimate loss (ULT) to randomly vary by accident year using a Gaussian sub-
model.  In addition, there is perhaps some justification for allowing the shape parameter (ω) to 
similarly vary by accident year.  But doing so heightens the danger of overfitting the data.  In the 
absence of compelling prior knowledge in support of including a random shape effect, one might be 
inclined to exclude it.  Finally, the data indicates that the scale parameter (θ) does not vary by 
accident year.  There is therefore no justification for including a random scale effect. 

Loglogistic Growth Curves:  Next, we can test the effect of replacing the Weibull growth curve 
with a Loglogistic growth curve:  G(x|ω,θ)=xω/(xω +θω).  This is achieved by changing a single line 
of our R code:  
start.vals <- c(ult=5000, omega=1.4, theta=45) 
l1 <- nlme(cum ~ ult*(dev^omega)/((dev^omega) + (theta^omega)) 
  , fixed = list(ult~1, omega~1, theta ~ 1) 
            , random = ult ~ 1 | AY 
  , weights = varPower(fixed=.5) 
      , data=dat, start = start.vals) 
 

As with the baseline Weibull model, we allow only the ULT parameter to vary by accident year – 
no random shape or scale effects are included.  The resulting hyperparameter estimates are:   

109.38.70214.49403.13.6898 ===== σσθωμ ULTULT . 
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Note in passing that Clark reports ω and θ parameter estimates of 1.434 and 48.63, respectively 
for his Loglogistic LDF model.   

Immediately we can see that the Loglogistic model will result in considerably higher loss reserve 
estimates than the Weibull model:  the μULT hyperparameter was 5306.6 for the Weibull model, 
compared with 6898.3 for the Loglogistic model.   

The residual plots suggest that the Loglogistic model also fits the data fairly well.  It is not clear 
from these plots that the Loglogistic model fits the data substantially better or worse than the 
baseline Weibull model.     
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The model parameters and expected loss reserves are displayed below: 
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Model Parameters and Estimated Reserves
AY dev omega theta growth reported eval120 eval240 ULT reserves

1991 114 1.404 49.135 76.5% 3,901 4,099 4,756 5,269 1,368
1992 102 1.404 49.135 73.6% 5,339 5,471 6,348 7,034 1,694
1993 90 1.404 49.135 70.0% 4,909 5,458 6,333 7,017 2,107
1994 78 1.404 49.135 65.7% 4,588 5,696 6,609 7,322 2,734
1995 66 1.404 49.135 60.2% 3,873 5,020 5,825 6,454 2,580
1996 54 1.404 49.135 53.3% 3,692 5,294 6,142 6,805 3,113
1997 42 1.404 49.135 44.5% 3,483 5,742 6,662 7,381 3,898
1998 30 1.404 49.135 33.3% 2,864 6,055 7,026 7,784 4,920
1999 18 1.404 49.135 19.6% 1,363 5,454 6,329 7,012 5,648
2000 6 1.404 49.135 5.0% 344 5,372 6,234 6,906 6,562
total 68,984 34,626  
 

Again, these results are broadly consistent with those reported by Clark.  As anticipated, the 
estimated reserve amount – $34.6M – is quite a bit higher than the $18.7 estimated by the baseline 
Weibull model.  But as Clark points out, one should be careful using a heavy-tailed model such as 
the Loglogistic to extrapolate too many years beyond the data.  If, following Clark, we compute the 
reserves using losses projected to 240 months (the “eval240” column in the table above), the 
resulting reserve estimate is $27.9M.  Again, this is broadly consistent with Clark’s result ($28.9M).  
This is more realistic than using the Loglogistic model to extrapolate the results “to infinity.”  
However, the result is still somewhat disconcerting:  the reserve estimate after arbitrarily truncating 
the Loglogistic growth curve at 240 months is still nearly 50% higher than the corresponding 
Weibull models’ reserve estimate. 

The moral is that much hinges on the form of the growth curve one chooses for one’s model.  
The advantage discussed by Pinheiro and Bates – validity of the model beyond the observed range 
of the data – is meaningful only to the extent that the model has been chosen wisely.   In practice 
the considerations one would use to choose a growth curve are similar to considerations that are 
used in choosing a tail factor.  The above display shows that, according to the Loglogistic model, the 
losses are only 76.5% developed as of 120 months. In contrast, the baseline Weibull model implies 
that the losses are 96% developed as of 120 months.  One’s general knowledge of how rapidly the 
types of claims being modeled develop should be considered when deciding which is the more 
appropriate growth curve, or whether additional growth curves should be investigated. 

“Cape Cod” Models:  If we have access to exposure information in addition to loss 
development data, it is easy to recast our hierarchical growth model into what might be called “Cape 
Cod” form.  In the Cape Cod method, one assumes that expected ultimate loss ratio is constant 
across accident years and either estimates it from the data or simply introduces it as a model 
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assumption.  In the hierarchical modeling framework, we can dispense with the assumption that loss 
ratio is common across accident years.  Rather, we can provide a sub-model for the various accident 
years’ loss ratios, just as we provided a sub-model for the various accident years’ ultimate losses in 
the baseline model.  Still, we are acting in the original spirit of the Cape Cod method in the sense 
that we include the average loss ratio across all accident years as a model hyperparameter.   

We will modify our original baseline Weibull model: 
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The “Cape Cod” counterpart is: 
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In other words, we replace the hyperparameters {μULT, σULT} with {μLR, σLR}. 

The corresponding modification of our R code is equally minor: 
 
prem <- seq(from=0, length=10, by=400) + 10000  
prem <- rep(prem, 10:1)   
start.vals <- c(lr=.5, omega=1.4, theta=45) 
cc.w1 <- nlme(cum ~ prem*lr*(1 - exp(-(dev/theta)^omega)) 
  , fixed = list(lr~1, omega~1, theta ~ 1) 
            , random = lr ~ 1 | AY 
  , weights = varPower(fixed=.5)  
      , data=dat, start = start.vals) 

 

(Note that the loss triangle analyzed by Clark and others was originally not accompanied by 
premium information.  Clark therefore assumed that the premium was $10M in 1991 and increased 
by $400,000 in each subsequent year.  This is done in the first two lines of code above.) 

Recall that the parameter estimates for the baseline Weibull model are: 

955.203.54364.46306.16.5306 ===== σσθωμ ULTULT . 

In contrast the parameter estimates for the “Cape Cod” Weibull model are: 

977.20383.091.49317.14634.0 ===== σσθωμ LRLR . 
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It is comforting to note that the estimates of both process error (σ) and of the parameters 
determining the average shape of the loss development curve ({ω,θ}) are fairly consistent across 
both of these models.   

Although it will not be reproduced here, the residual plot for the “Cape Cod” model is virtually 
identical to that of the baseline model.  The various parameters and resulting loss reserve estimates 
for the Cape Cod Weibull model are displayed below: 

 
Model Parameters and Estimated Reserves -- Cape Cod Weibull Model

AY dev prem omega theta lr growth reported eval120 lr*prem reserves
1991 114 10,000 1.317 46.910 0.408 96.0% 3,901 3,952 4,082 181
1992 102 10,400 1.317 46.910 0.519 93.8% 5,339 5,229 5,401 62
1993 90 10,800 1.317 46.910 0.498 90.5% 4,909 5,208 5,380 470
1994 78 11,200 1.317 46.910 0.501 85.8% 4,588 5,433 5,611 1,023
1995 66 11,600 1.317 46.910 0.429 79.1% 3,873 4,818 4,977 1,103
1996 54 12,000 1.317 46.910 0.440 70.0% 3,692 5,114 5,283 1,591
1997 42 12,400 1.317 46.910 0.467 57.9% 3,483 5,608 5,792 2,309
1998 30 12,800 1.317 46.910 0.486 42.6% 2,864 6,016 6,215 3,350
1999 18 13,200 1.317 46.910 0.439 24.7% 1,363 5,613 5,798 4,435
2000 6 13,600 1.317 46.910 0.446 6.4% 344 5,871 6,064 5,720
total 54,604 20,245  
The total reserves estimate by this model is $20.2M:  about 8% higher than the baseline Weibull 

result.  Most of the additional $1.5M of estimated reserves come the increased reserve estimates for 
accident years 1998-2000.  This is an expected and sensible result.  The ultimate loss estimates for 
the earlier accident years, where more loss development information is available, are less affected by 
the premium information.  Conversely, the more recent the accident year, the less loss development 
data is available.  Therefore, the ultimate loss estimates depend more heavily on the model’s LR 
hyperparameter (the “Cape Cod” loss ratio estimate) together with the premium information.   

Recall that Clark’s Cape Cod model contains only three parameters (ω, θ, ELR) in contrast with 
his LDF model’s 11 parameters.  Because we are building hierarchical models there is not such a 
dramatic difference between our baseline model and its “Cape Cod” counterpart.  Each of these 
models contains five hyperparameters.   

Each of these models – the baseline and the Cape Cod variant – offers an advantage over its non-
hierarchical counterpart: 

• The hierarchical baseline model is less prone to overparameterization because it does 
require not a separate ultimate loss parameter for each accident year.  The parameters 
{ULT1991, …, ULT2000} are replaced with the {μULT,σULT} hyperparameters. 
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• The “Cape Cod” hierarchical model does not require one to assume a constant loss ratio 
across all accident years.  This hierarchical model approaches the Clark Cape Cod model 
as the hyperparameter σLR 0. 

We are not arguing that the hierarchical Cape Cod model is not an improvement on its baseline 
counterpart.  On the contrary, the Cape Cod hierarchical model is preferable because adding 
exposure information will typically yield improved ultimate loss estimates, especially for more the 
recent, data-sparse, accident years.  This, not greater parsimony, is the benefit it offers over the 
baseline hierarchical model. 

Reserve Variability:  Estimating the variability around a hierarchical growth model’s loss reserve 
estimates (reserve variability) will be the topic of a future paper.  For now a few brief comments 
must suffice.  The problem of estimating reserve variability is twofold:  we must estimate the 
variability resulting from the stochastic nature of the loss development process (process variance); 
and we must also estimate the variability resulting from the uncertainty around our models’ 
hyperparameters (parameter variance).  The future paper will outline a simulation-based approach to 
estimate the variability arising from both of these sources.  In particular, Markov Chain Monte Carlo 
(MCMC) simulation, a technique widely used in contemporary Bayesian statistics, will be used to 
estimate parameter variance. 

Of course, model risk – illustrated above by the dramatic effect that the choice of growth 
functions has on one’s ultimate loss estimate – will remain a serious issue even after process and 
parameter variance have been accounted for. 

4. CONCLUSION 

Hierarchical modeling in actuarial science is an idea whose time has come.  Hierarchical models 
encompass Bayesian credibility theory and therefore allow actuaries to perform credibility 
calculations within a statistical modeling framework.  Moreover, hierarchical models allow one to 
easily integrate credibility concepts into one’s GLM or non-linear modeling activities.  By 
incorporating sub-models of various model parameters, hierarchical models allow one to strengthen 
an estimate for a sparsely populated segment of one’s data by appropriately weighting it with the 
overall average estimate for the population as a whole.  This integrates the fundamental insight of 
Bayesian credibility into a statistical modeling framework.  For classification ratemaking and 
predictive modeling applications, actuaries can consider adding hierarchical structure to their 
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generalized linear models in order to account for the variation along such “massively categorical” 
dimensions as territory or class code. 

Turning to loss reserving, hierarchical modeling is useful in that it provides a natural way to 
analyze longitudinal (or “repeated measures”) datasets.  The point of view of this paper is that 
traditional loss reserving triangles can be viewed as longitudinal datasets in which each accident year 
is a “subject” and the cumulative or incremental losses at various development times constitute a 
series of repeated observations.   

Unlike ratemaking and other general insurance predictive modeling applications, loss reserving is 
best approached using non-linear models.  Following Clark, we have explored the use of the Weibull 
and Loglogistic growth curves for modeling the loss development process.  We have done this in a 
non-linear hierarchical modeling (or “non-linear mixed effects models” – NLME) context.  
Hierarchical modeling allows us to specify sub-models for one or more of the parameters that 
determine the loss development process.  The result is a natural and flexible framework in which to 
build parsimonious loss reserving models.  Furthermore, the use of growth curves eliminates the 
need to specify arbitrary tail factors. 

 

A Note Regarding Software 
All models discussed in this paper were fit using the freely available R statistical computing package.  R is available at 

http://www.r-project.org.  Once the base R package has been installed, the multilevel modeling packages “lmer” and 
“lme” can easily be added.  
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Appendix:  Raw Loss Triangle Data, as Imported into R 

 
AY dev cum
1991 6 357.848
1991 18 1124.788
1991 30 1735.33
1991 42 2182.708
1991 54 2745.596
1991 66 3319.994
1991 78 3466.336
1991 90 3606.286
1991 102 3833.515
1991 114 3901.463
1992 6 352.118
1992 18 1236.139
1992 30 2170.033
1992 42 3353.322
1992 54 3799.067
1992 66 4120.063
1992 78 4647.867
1992 90 4914.039
1992 102 5339.085
1993 6 290.507
1993 18 1292.306
1993 30 2218.525
1993 42 3235.179
1993 54 3985.995
1993 66 4132.918
1993 78 4628.91
1993 90 4909.315
1994 6 310.608
1994 18 1418.858
1994 30 2195.047
1994 42 3757.447
1994 54 4029.929
1994 66 4381.982
1994 78 4588.268
1995 6 443.16
1995 18 1136.35
1995 30 2128.333
1995 42 2897.821
1995 54 3402.672
1995 66 3873.311
1996 6 396.132
1996 18 1333.217
1996 30 2180.715
1996 42 2985.752
1996 54 3691.712
1997 6 440.832
1997 18 1288.463
1997 30 2419.861
1997 42 3483.13
1998 6 359.48
1998 18 1421.128
1998 30 2864.498
1999 6 376.686
1999 18 1363.294
2000 6 344.014  
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A Stochastic Framework for Incremental Average Reserve 
Models 

Roger M. Hayne, Ph.D., FCAS, MAAA 
 
________________________________________________________________________ 
Abstract 

Motivation. Chain ladder forecasts are notoriously volatile for immature exposure periods.  The Bornhuetter-
Ferguson method is one commonly used alternative but needs a priori estimates of ultimate losses.  Berquist and 
Sherman presented another alternative that used claim counts as an exposure base and used trended incremental 
severities to “square the triangle.”  A significant advantage of the Berquist and Sherman method is the 
simultaneous estimate of underlying inflation.  Though not the first to do so, this paper looks to extend the 
incremental severity method to a stochastic environment.  Rather than using logarithmic transforms or 
(generalized) linear models, used in many other approaches, we use maximum likelihood estimators, bringing to 
bear the strength of that approach avoiding limiting assumptions necessitated when taking logarithms.  
Method. Given that incremental severities can be looked at as averages over a number of claims, the law of large 
numbers would suggest those averages follow an approximately normal distribution.  We then assume the 
variance of the incremental payments in a cell are proportional to a power of the mean (with the constant of 
proportionality and power constant over the triangle).  We then use maximum likelihood estimators (MLEs) to 
estimate the incremental severities, along with the inherent claims inflation to “square the triangle.”  We also use 
properties of MLEs to estimate the variance-covariance matrix of the parameters, giving not only estimates of 
process but also of parameter uncertainty for this method.  Not only do we consider the model described by 
Berquist and Sherman, but we also set the presentation in a more general framework that can be applied to a 
wide range of potential underlying models. 
Results. A reasonably common and powerful method now presented in a stochastic framework allowing for 
assessment of variability in the forecasts of the method. 
Availability. The R script for these estimates appear on the CAS Web Site. 
 
Keywords. Stochastic reserving, maximum likelihood, normal-p, incremental severity method, PPCI 

             

1. INTRODUCTION 

The chain ladder method has long been recognized as leading to potentially volatile forecasts for 
immature exposure periods.  As a result, other methods that depended on information in addition to 
the amounts to date were soon used to augment the chain ladder method for less mature ages.  
These methods include the Bornhuetter-Ferguson method [1], incremental severity methods shown 
in Berquist and Sherman [2], and the operational time models from Wright [3], among others.  In 
effect, these approaches replace the multiplicative model inherent in the chain ladder with additive 
increments.  The Bornhuetter-Ferguson method looks to historical development and an a priori 
estimate of ultimate losses to derive these additive increments, while the incremental severity 
method considers incremental average costs per ultimate claim (or other unit of exposure) and a 
measure of inflationary trend to derive these increments.  In the discussion by Berquist and 
Sherman, the trend itself is estimated from the data. 
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Thus by adding a single parameter trend to be estimated from the data, Berquist and Sherman 
avoided assumptions about the relative adequacy of pricing or the need of deriving a priori ultimate 
loss estimates by exposure year.  Of course, they do require a measure of relative exposure, usually 
claim counts. 

There has been much published about stochastic generalizations of the chain ladder method.  
Verall and England [4] presents a very nice summary.  We will not touch on those here, but rather 
attempt to re-cast the incremental severity method in a stochastic light. 

In the present paper we first consider the incremental severity method in a stochastic framework.  
We note that the incremental severities are themselves averages over a number of observations and, 
as a result of the law of large numbers, would likely have a distribution that is asymptotically normal.  
This is a very significant observation and was made by Stelljes [5] and provides a bit of support to at 
least one answer to the question of what statistical model to use.  Stelljes assumes that the 
development pattern follows a mixed exponential over time and does not measure the trend 
inherent in the data.   

We however, start with the classic incremental severity model (allowing for different averages at 
each age) but measure the inflation inherent in the loss experience.  Not only does this allow for a 
broader range of runoff curves, it also allows for systematic negative incremental amounts, making it 
possible to model not only paid amounts (net of recoverable) but also incurred amounts.  In 
addition, rather than making somewhat restrictive assumptions about the underlying variance 
structure as present in Stelljes that allows the use of non-linear regression, we will take a somewhat 
more general approach of maximum likelihood estimators allowing more flexible assumptions 
regarding the underlying variance structure. 

 In this paper we not only derive parameter estimates for our model, including inherent trend, but 
also estimates of the standard deviation of those parameter estimates, often called the standard error 
of the parameters.  The standard error can be used to measure the significance of the parameter as 
well as the parameter uncertainty inherent in the forecasts of this model.  We also derive estimates 
of the distribution of outcomes for this model, not to be confused with the distribution of potential 
outcomes for the liabilities under review. 

1.1 Research Context 

In the context of reserves for a book of liabilities at a point in time, there is a wide range of 
possible outcomes, some of which may be more likely than others.  We call this entire range of 
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outcomes along with their likelihoods the “distribution of outcomes” for the liabilities under 
consideration.  This observation seems to have pervaded the analysis of reserves for decades.  
Traditional reserving approaches, although relying on deterministic methods, usually had the actuary 
applying a variety of those methods with the unstated goal of providing at least a subjective view of 
the distribution of outcomes, or at least the portion of that distribution that contained “reasonable 
estimates.” 

More recently, though, questions of just how “good” the “reasonable estimates” were led to 
consideration of stochastic methods to rigorously quantify that uncertainty.  Statements such as “My 
selection for unpaid liabilities is $a million.  In my view it is just as likely that the ultimate unpaid 
liabilities will be between $x million and $y million as outside that range and in addition, it is very 
unlikely that the ultimate unpaid liabilities will be below $w million or above $z million” provide 
much more useful information to a principal than “My best estimate is $a million and I believe a 
range of reasonable estimates is between $b million and $c million.”  Because of this there has been 
increased focus on models that will assist the actuary in estimating the distribution of outcomes. 

Just as no traditional reserve method completely captures all the complexities possible for all lines 
of business, it is not likely that any current stochastic model can capture all those complexities.  
Because of this, results presented here should not be interpreted as estimates of the distribution of 
outcomes, but rather the distribution of possibilities under the specific assumptions of the single 
model we present. 

1.2 Objective 

The incremental average cost method has long been a very powerful alternative to the chain 
ladder method that can be quite volatile for more immature exposure periods.  The Cape Cod and 
Bornhuetter-Ferguson methods are often used as alternatives that try to overcome this problem.  
There has been research setting all of these methods in stochastic frameworks.  Our objective is to 
take another powerful alternative to the chain ladder method, the incremental average loss method 
presented by Berquist and Sherman [2], and set it into a stochastic framework. 

One substantial contribution of the Berquist and Sherman approach is the estimation of trend in 
the averages from the averages themselves.  This is in contrast to the necessary external trend usually 
necessary in stochastic versions of both the Bornhuetter-Ferguson and Cape Cod methods. 

Another weakness of many stochastic generalizations of traditional methods is the necessity of 
assumptions about the form of the distributions used.  Because of the central limit theorem, 
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averages of independent samples from a distribution are asymptotically normal, thus suggesting a 
form for the distributions in the stochastic model. 

Another inherent limitation of most stochastic generalizations is the necessity of assuming all 
incremental amounts are positive.  This limits the generalization of those methods in the case of 
incurred losses, or in the case of consistent downward paid development.  The use of the normal 
distribution allows more flexibility in handling consistent negative incremental averages. 

The goal of this paper is to set the traditional incremental average method in a stochastic 
framework taking advantage of the ease of computation afforded by the normal distribution and 
ability to handle negative values.  In addition to moving the average cost method into a stochastic 
framework, this paper also shows the relative ease of moving to a completely non-linear 
environment, thereby avoiding the constraints inherent in linear or generalized linear methods, 
echoing the comments of Venter in several venues, including [7]. 

1.3 Outline 

In Section 2 we set out our stochastic generalization of the incremental average method 
presented in Berquist and Sherman [2].  Section 3 discusses the results of applying these methods to 
the adjusted paid automobile bodily injury liability data in that paper.  We present our conclusions in 
Section 4 with Appendix A showing the derivatives used in the estimation along with the R script 
that we used in the calculations. 

2. BACKGROUND AND METHODS 

Klugman, Panjer, and Willmot [6] present a very clear and concise discussion of maximum 
likelihood estimates (MLEs).  We will make use of that approach in this paper. 

For this paper Cij denotes payments made or the change in incurred losses (defined as payments 
plus case reserve estimates) for exposure (policy, accident, underwriting, etc.) period (year, quarter, 
month, etc.) i during development period j.  For convenience here we will assume the same 
frequency for both i and j, and hence the resulting development triangle will have the same number 
of rows as columns, denoted as n here.  Without loss of generality, we will talk in terms of accident 
and development years. 

For each accident year we have some measure of loss exposure, either an exposure count or an 
estimate of ultimate claim counts.  Exposure count, such as earned car years for automobile 
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coverages, generally does not require estimation.  The same cannot be said for claim counts that 
must be estimated and hence should be treated as random variables.  We will not make that 
generalization here but rather leave it as a future project.   

We do note that, just as there are a number of models that can be used to estimate ultimate loss 
amounts, there are a number of approaches that can be used to estimate the ultimate number of 
claims.  If the number of reported counts is deemed to be a reliable and stable base, that is, if there 
has been no change in the definition or nature of reported claims during the experience period 
under consideration, they often provide a measure of exposure that matures more quickly than 
losses and hence those estimates will likely have less inherent uncertainty, i.e., lower standard error, 
than losses.  It might well be that consideration of both chain ladder estimates and those of an 
incremental average frequency method, such as presented here applied to claim counts, using earned 
exposures as an exposure base, could provide reasonable estimate of ultimate reported counts for 
use here. 

In any event, we will denote this measure of relative exposure as Ei for accident year i.  We will 
thus focus on the incremental averages Aij defined by equation (2.1).  

 = .ij
ij

i

C
A

E
 (2.1) 

The traditional incremental severity method then “squares the triangle” with trended averages as 
in equation (2.2). 

 α τ= = = − +K K, 2, 3, , ; 2, , .i
ij jA i n j n i n  (2.2) 

We will effectively take this same approach to frame a stochastic model based on this method.  It 
is not unusual, see for example Venter [6], to assume that the variance of the incremental amounts is 
a power of their expected value.  We will take this same approach.  However, since we will allow the 
expected values to be negative we will, without loss of generality, we take the variance to be a power 
of the square of the mean.  Also we are taking the constant of proportionality among the variances 
as an exponential, thereby allowing the parameter to take on any value.  However, we note that the 
variance of the average of n items is inversely proportional to the number of items so we further 
adjust our assumed variances to reflect the potential for a different number of exposures or claims in 
the various accident years.  For this we let e denote the number of exposures or claims for the year.  
Following the notation in [6] we will assume the relationships in (2.3), suppressing subscripts for the 
moment. 
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 (2.3) 

Now, since the Aij are averages, the law of large numbers implies that they are asymptotically 
normal with parameters given in (2.4), again suppressing subscripts for the moment. 

 ( )κμ μ− 2~ N , .e pA e  (2.4) 

Since we are concerned with maximum likelihood estimates, the negative log likelihood for this 
distribution will be key to our analysis.  Since we have a normal distribution the likelihood function 
is relatively simple and given by (2.5). 
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This gives a negative log likelihood for a single variable given in (2.6). 
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 (2.6) 

We note the incremental amounts Aij under consideration are averages of a number of 
observations.  If we assume the observations are themselves independent, then the central limit 
theorem would imply that they have asymptotically normal distributions.   For this reason we will 
assume that the Aij variables are all independent and have normal distributions.  We generalize the 
incremental severity model with the parametric model shown in (2.7). 

 ( )( )κα τ α τ− 2
~ N , .i

pei i
ij j jA e  (2.7) 

With observations in a typical loss triangle we get the negative log likelihood function given in 
(2.8). 
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The set S in (2.8) denotes the set of all index pairs for which data are available.  If the data were 
available in a full triangle, with n rows and n columns then S would follow the form given in (2.9).   

 ( ){ }, 1, 2, , , 1, 2, , 1 .S i j i n j n i= = = − +K K  (2.9) 

However, we will not restrict ourselves to this regular case.  We also note in formula (2.8) the ei 
values are known constants (the natural logs of the number of exposures for accident year i, not 
parameters to be estimated. 

Once parameters that minimize the negative log likelihood function are determined, then it is 
straight-forward to obtain estimates of the distribution of outcomes under the assumption that this 
model and the resulting parameters completely describe the loss emergence phenomenon.  Let us 
denote these estimates by ˆkα , κ̂ , τ̂ , and p̂ .  Under our assumptions we can now conclude that the 
distribution of average future payments for each year is given by (2.10). 

 ( ) ˆ2ˆ

2 2

ˆ ˆˆ ˆ~ N , .κα τ α τ−

= − + = − +

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ ∑ i

n n pei i
i j j

j n i j n i
R e  (2.10) 

 This then gives the effect of process uncertainty on the total forecast incremental severity by 

accident year.  This does not, however, address the issue of parameter uncertainty.  Just as the 

standard error provides insight into parameter uncertainty in usual regression applications, the 

information matrix can be helpful in estimating the variance-covariance matrix of the parameters.  

For this, we first define the Fisher Information Matrix as the matrix of expected values of the 

Hessian of the negative log likelihood function.  That is, the matrix whose element in ith row and jth 

column is the second derivative of the negative log likelihood function, once with respect to the ith 

variable and once with respect to the jth.  We show these expectations, along with both the elements 

of the gradient and Hessian of the negative log likelihood function in the appendix to this paper.  

The inverse of the information matrix is then an approximation for the variance-covariance matrix 

for the parameters. 

Since the mean and variance for individual incremental averages are functions of the parameters, 

we elected to estimate the distribution of future amounts both by exposure period and in total using 

simulation.  For this we first selected the parameters from a multivariate normal distribution with 

expected values equal to the MLE estimates and variance-covariance matrix equal to the inverse of 

the information matrix.  Given those parameters, we then randomly selected future incremental 
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averages in each cell using the relationship in (2.7).  We added up the indications by exposure year 

and multiplied by the denominator (claim count or exposure count) to obtain a single observation 

for an exposure year and then added all those simulations together to get a single observation of the 

total future amount.   

At this juncture if we wished to assume that claim counts, instead of being deterministic, were 

themselves stochastic, but independent of the incremental severities, we could simulate the ultimate 

number of claims by exposure year at this juncture to add a provision for uncertainty in those 

estimates in the final forecast. 

3. RESULTS AND DISCUSSION 

As an example of this model, the top portion of Exhibit 1 shows the incremental averages based 
on automobile bodily injury liability data from Berquist and Sherman [2].  The last column is the 
forecast ultimate claim counts from Exhibit J of that paper.  The incremental severities are based on 
adjusted paid losses in Exhibit N divided by these claim count estimates. 

The bottom portion of Exhibit 1 shows the parameter estimates derived by minimizing the 
negative log likelihood function shown in (2.8).  Shown in the “standard error” row is the square 
root of the diagonal of the approximate parameter variance-covariance matrix. 

Exhibit 2 shows scatter plots of the standardized residuals from the fitted model, calculated as 
the ratio of the difference between the historical average minus the expected average from the 
model, divided by the estimated standard deviation by cell.  The first three charts show the residuals 
first by calendar year, then by accident year, and finally by development lag.  The last histogram 
shows the simulated range of forecasts from 25,000 simulations.  The line on that histogram 
presents the distribution assuming independence and the mean and variance by cell implied by the 
parameter estimates. 

Exhibit 3 shows the expected averages and related variances by cell indicated by the estimated 
parameters and the model shown in (2.7).  Exhibit 4 shows the indicated mean forecast and 
standard deviation by accident year and for all years combined.  Exhibit 4 also shows the forecasts 
for the next calendar year, both with and without parameter uncertainty.  These estimates can be 
used to assess how well emerging experience fits with what is forecast by the model, a critical test for 
the on-going application of just about any model. 
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Since the model in (2.7) assumes the incremental averages are independent, the future average 
forecast is simply the sum of the future indications by accident year, as is the variance for the future 
forecast, assuming process uncertainty only.  The resulting means and standard deviations, after 
multiplication by the number of claims are shown under the “Process Only” columns. 

The remaining columns summarize the results of the simulation.  We first randomly simulated a 
selection of parameters given the parameter estimates and the approximate variance-covariance 
matrix, using a multivariate normal distribution.  Given those parameters, we then randomly 
simulated individual incremental averages by cell using a normal distribution with the mean and 
standard deviation shown in (2.7).  We then totaled the results for one simulation to derive both the 
simulated future average estimates by accident year and then, after multiplying by claim counts, the 
total indicated future amounts.  The averages and standard deviations in the right portion of that 
exhibit represent the mean and standard deviation of the simulated amounts as are the fifth 
percentile and 95th percentile (the 90% probability interval) for the simulations.   These last columns 
thus present an estimate of the distribution of possible forecasts from this model, given the loss data 
in the top of Exhibit 1. 

As can be seen, parameter uncertainty clearly contributes substantially to the uncertainty in the 
forecasts for this model.  The standard deviation including parameter uncertainty is nearly three 
times that for process uncertainty only.  In addition, as one would expect there are correlations in 
the forecasts among accident years, particularly since the forecast for an accident year depends not 
only on the losses for that year but also on the losses and forecasts for previous years.  If the 
accident years were independent, then the standard deviation for the total would equal the square 
root of the sum of the squares of the standard deviations for the various years.  That calculation 
yields approximately 1.1 million, compared with the final 1.5 million shown in Exhibit 4.   

Although we do not show the results of the calculations, the model and estimation process reacts 
as one should expect with negative values.  A simple test would simply replace the incrementals in a 
column with their negatives.  When doing this all values of the parameters and variance-covariance 
matrix remain unchanged, except with a sign change in the parameter estimates and covariances 
related to the affected column. 

The R script used to derive these estimates are also shown in Appendix A.  Generally the 
approach is quite straight forward.  Key to deriving the estimates is the function R nlminb.  As with 
many optimization routines, this function requires a starting value.  In this case, we first selected a 
starting value for τ  as the trend in the averages for the first development period (unless that trend 
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generates an error, in which case we selected 1.03).  We then estimated the initial jα  values as the 
averages of the averages, discounted at the initial τ  estimate, and selected the initial values for κ  
and p as the natural logarithm of the largest exposure number and 1.5, respectively (somewhat 
arbitrarily). 

This R function also allows for different iteration increments for the various variables to be 
optimized.  Users should consult the documentation that accompanies R for this function.  We 
selected relative scaling among variables inversely proportional to the initial averages for the jα  
variables and five for the remaining three. 

4. CONCLUSIONS 

Although we focused on a very simple model of incremental averages, nothing in what we have 
done relies on the specific structure of the underlying model.  This is in contrast to many stochastic 
approaches that require non-negative incrementals, and the necessity of making additional 
assumptions about the distributions of the incremental amounts.  The framework we chose, along 
with the central limit theorem, suggests the normal distribution for the incremental averages.   

As shown in (2.8), this distribution leads to a rather convenient form for the negative log 
likelihood function.  Together with the ability to differentiate the assumed model for the average and 
resulting standard deviation makes this approach easily expandable to other models for the 
incremental averages.  Coupled with powerful, reasonably easy-to-use, and affordable statistical 
software such as the language R, actuaries now have quite flexible tools to use to expand the models 
used in estimating future losses, even beyond the simple model presented here. 

 

Supplementary Material 
The R script used for these calculations is stored electronically on the CAS Web Site. 

 
Appendix A 

In order to derive estimates of parameter uncertainty we need the matrix of second derivatives of 
the negative log likelihood function.  In this appendix we list those derivatives. 

 
Recall from (2.8) the negative log likelihood function is given by 
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Suppressing arguments and parameters we thus have the following first partial derivatives: 
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These then give the following second derivatives: 
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The information matrix then requires the expected values of these derivatives.  To this end recall 

that because of (2.7) we have the following relationships: 
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We can then derive the entries of the information matrix as follows: 
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The calculations in this paper made use of the following R script: 
 
library(mvtnorm) 
library(MASS) 
 
A0=matrix(c(178.73,361.03,283.69,264.00,137.94,61.49,15.47,8.82, 
  196.56,393.24,314.62,266.89,132.46,49.57,33.66,NA, 
  194.77,425.13,342.91,269.45,131.66,66.73,NA,NA, 
  226.11,509.39,403.20,289.89,158.93,NA,NA,NA, 
  263.09,559.85,422.42,347.76,NA,NA,NA,NA, 
  286.81,633.67,586.68,NA,NA,NA,NA,NA, 
  329.96,804.75,NA,NA,NA,NA,NA,NA, 
  368.84,NA,NA,NA,NA,NA,NA,NA),8,8,byrow=TRUE) 
dnom=c(7822,8674,9950,9690,9590,7810,8092,7594) 
 
# Input (A0) is a development array of incremental averages with a the  
# exposures (claims) used in the denominator appended as the last column.   
# Assumption is for the same development increments as exposure  
# increments and that all development lags with no development have #  
# been removed.  Data elements that are not available are indicated as  
# such.  This should work (but not tested for) just about any subset of  
# an upper triangular data matrix.  Another requirement of this code is  
# that the matrix contain no columns that are all zero. 
 
# Matrix shape, m rows, n columns 
m=(nrow(A0))[1] 
n=(ncol(A0))[1] 
 
# Generate a matrix to reflect exposure count in the variance structure 
logd=log(matrix(dnom,m,n)) 
 
# Set up matrix of rows and columns, makes later calculations simpler 
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r=row(A0) 
c=col(A0) 
 
 
# msk is a mask matrix of allowable data, upper triangular assuming same 
# development increments as exposure increments, msn picks off the first 
# forecast diagonal 
msk=(m-r)>=c-1 
msn=(m-r)==c-2 
 
# Negative loglikelihood function, to be minimized 
l.obj=function(a,A) { 
    e=outer(a[n+2]^(1:m),a[1:n]) 
    v=exp(a[n+1]-logd)*(e^2)^a[n+3] 
    t1=log(2*pi*v)/2 
    t2=(A-e)^2/(2*v) 
  sum(t1+t2,na.rm=TRUE)} 
 
# Gradient of the objective function 
l.grad=function(a,A) { 
    e=outer(a[n+2]^(1:m),a[1:n]) 
    v=exp(a[n+1]-logd)*(e^2)^a[n+3] 
    da=colSums(a[n+3]-(e*(A-e)+a[n+3]*(A-e)^2)/ 
      v,na.rm=TRUE)/a[1:n] 
    yy=1-(A-e)^2/v 
    dk=sum(yy/2,na.rm=TRUE) 
    dp=sum(yy*log(e^2)/2,na.rm=TRUE) 
    du=sum((a[n+3]*r/a[n+2])- 
      (r*e*(A-e)+a[n+3]*r*(A-e)^2)/(a[n+2]*v),na.rm=TRUE) 
  c(da,dk,du,dp)} 
   
 # Hessian of the objective function 
l.hess=function(a,A) { 
    e=outer(a[n+2]^(1:m),a[1:n]) 
    v=exp(a[n+1]-logd)*(e^2)^a[n+3] 
    daa=diag( 
          colSums((e^2+4*a[n+3]*e*(A-e)+ 
            a[n+3]*(2*a[n+3]+1)*(A-e)^2)/v-a[n+3], 
          na.rm=TRUE)/a[1:n]^2) 
    dak=colSums((e*(A-e)+a[n+3]*(A-e)^2)/v,na.rm=TRUE)/a[1:n] 
    dat=colSums((r*e^2+(4*a[n+3]-1)*r*e*(A-e)+ 
          2*a[n+3]^2*r*(A-e)^2)/v, 
          na.rm=TRUE)/(a[1:n]*a[n+2]) 
    dap=colSums(msk+(log(e^2)*e*(A-e)+ 
          (a[n+3]*log(e^2)-1)*(A-e)^2)/v,na.rm=TRUE)/a[1:n] 
    dkk=sum((A-e)^2/v,na.rm=TRUE) 
    dkt=sum((r*e*(A-e)+a[n+3]*r*(A-e)^2)/(a[n+2]*v),na.rm=TRUE) 
    dkp=sum(log(e^2)*(A-e)^2/(2*v),na.rm=TRUE) 
    dtt=sum((r^2*e^2+(4*r*a[n+3]-r+1)*r*e*(A-e)+ 
            (2*r*a[n+3]+1)*a[n+3]*r*(A-e)^2)/v-a[n+3]*r, 
            na.rm=TRUE)/a[n+2]^2 
    dtp=sum(r+(r*e*log(e^2)*(A-e)+ 
            (a[n+3]*r*log(e^2)-1)*(A-e)^2)/v,na.rm=TRUE)/a[n+2] 
    dpp=sum(log(e^2)^2*(A-e)^2/(2*v),na.rm=TRUE) 
    dm1=matrix(c(dak,dat,dap),n,3) 
    dm2=matrix(c(dkk,dkt,dkp,dkt,dtt,dtp,dkp,dtp,dpp),3,3) 
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  rbind(cbind(daa,dm1),cbind(t(dm1),dm2))} 
 
# Set up starting values, take trend from first column, unless it errors  
# out (because of 0 or negatives) in which case take 3% as a default 
tmp=na.omit(data.frame(x=1:m,y=log(A0[,1]))) 
trd=1.03 
trd=exp(coef(lm(tmp$y~tmp$x))[2]) 
a0=c(colSums(A0/(trd^c),na.rm=TRUE)/colSums(msk+0*A0,na.rm=TRUE),log(max(dnom))

,trd,1.5) 
 
max=list(10000,10000) 
names(max)=c("iter.max","eval.max") 
 
# Actual minimization 
mle= nlminb(a0,l.obj,gradient=l.grad,hessian=l.hess, 
  scale=c(abs(1/a0[1:n]),rep(5,3)),A=A0,control=max) 
 
# mean and var are model fitted values, stres standardized residuals 
mean=outer(mle$par[n+2]^(1:m),mle$par[1:n]) 
var=exp(mle$par[n+1]-logd)*(mean^2)^mle$par[n+3] 
stres=(A0-mean)/sqrt(var) 
 
# Calculate the information matrix using second derivatives of the 
# log likelihood function 
 
# Second with respect to alpha parameters 
aa=diag( 
  (2*mle$par[n+3]^2* 
    colSums(msk+0*A0,na.rm=TRUE)/ 
      mle$par[1:n]^2)+ 
    colSums((msk+0*A0)/ 
      outer(exp(mle$par[n+1]-log(dnom))*mle$par[n+2]^(2*(1:m)*(mle$par[n+3]-

1)), 
        (mle$par[1:n]^2)^mle$par[n+3]) 
      ,na.rm=TRUE) 
    )                                                      
 
# Second with respect to alpha and kappa 
ak=(mle$par[n+3]/mle$par[1:n])* 
  colSums(msk+0*A0,na.rm=TRUE) 
 
# Second with respect to alpha and tau 
at=(2*mle$par[n+3]^2/(mle$par[n+2]*mle$par[1:n]))* 
  colSums((msk+0*A0)*r,na.rm=TRUE)+ 
    colSums((msk+0*A0)*outer((1:m)/(exp(mle$par[n+1]-log(dnom))* 
      mle$par[n+2]^(2*(1:m)*(mle$par[n+3]-1))), 
        1/(mle$par[1:n]^2)^(mle$par[n+3]-1)), 
    na.rm=TRUE)/(mle$par[n+2]*mle$par[1:n])   
 
# Second with respect to alpha and p 
ap=(mle$par[n+3]*log(mle$par[1:n]^2)/mle$par[1:n])* 
    colSums((msk+0*A0),na.rm=TRUE)+ 
  (mle$par[n+3]*log(mle$par[n+2]^2)/mle$par[1:n])* 
    colSums((msk+0*A0)*r,na.rm=TRUE) 
 
# Second with respect to kappa 
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kk=sum((msk+0*A0),na.rm=TRUE)      
 
# Second with respect to kappa and tau 
kt=mle$par[n+3]*sum((msk+0*A0)*r,na.rm=TRUE)/mle$par[n+2] 
 
# Second with respect to kappa and p 
kp=sum((msk+0*A0)*log(outer(mle$par[n+2]^(2*(1:m)), 
  mle$par[1:n]^2)),na.rm=TRUE)/2 
 
# Second with respect to tau 
tt=2*mle$par[n+3]^2*sum((msk+0*A0)*r^2,na.rm=TRUE)/mle$par[n+2]^2+ 
  sum((msk+0*A0)* 
    outer((1:m)^2/(exp(mle$par[n+1]-log(dnom))*mle$par[n+2]^ 
        (2+2*((1:m)*(mle$par[n+3]-1)))), 
      1/(mle$par[1:n]^2)^(mle$par[n+3]-1)), 
    na.rm=TRUE) 
     
# Second with respect to tau and p 
tp=sum((msk+0*A0)*(r-1),na.rm=TRUE)/mle$par[n+2]+mle$par[n+3]*( 
  sum((msk+0*A0)*outer(1:m, 
    log(mle$par[1:n]^2)), 
    na.rm=TRUE)+ 
  sum((msk+0*A0)*r*log(mle$par[n+2]^(2*r)),na.rm=TRUE))/ 
  mle$par[n+2] 
 
# Second with respect to p 
pp=sum((msk+0*A0)*log(outer(mle$par[n+2]^(2*(1:m)), 
  mle$par[1:n]^2))^2,na.rm=TRUE)/2 
 
# Create information matrix in blocks 
m1=matrix(c(ak,at,ap),n,3) 
m2=matrix(c(kk,kt,kp,kt,tt,tp,kp,tp,pp),3,3) 
inf=rbind(cbind(aa,m1),cbind(t(m1),m2)) 
 
# Variance-covariance matrix for parameters, inverse of information     
# matrix 
vcov=solve(inf) 
 
# Initialize simulation array to keep simulation results 
sim=matrix(0,0,m+1) 
smn=matrix(0,0,m+1) 
 
# Simulation for distribution of future amounts 
# Want 10,000 simulations, but exceeds R capacity, so do 
# in batches of 5,000 
nsim=5000 
smsk=aperm(array(c(msk),c(m,n,nsim)),c(3,1,2)) 
smsn=aperm(array(c(msn),c(m,n,nsim)),c(3,1,2)) 
 
for (i in 1:5) { 
 
# Randomly generate parameters from multivariate normal 
spar=rmvnorm(nsim,mle$par,vcov) 
 
# Arrays to calculate simulated means 
ttoi=array(c(outer(spar[,n+2],1:m,"^")),c(nsim,m,n)) 
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alph=aperm(array(c(spar[,1:n]),c(nsim,n,m)),c(1,3,2)) 
esim=alph*ttoi 
 
# Arrays to calculate simulated variances 
ksim=array(exp(outer(spar[,n+1],log(dnom),"-")),c(nsim,m,n)) 
psim=array(spar[,n+3],c(nsim,m,n)) 
vsim=ksim*(esim^2)^psim 
 
# Randomly simulate future averages 
temp=array(rnorm(nsim*m*n,c(esim),sqrt(c(vsim))),c(nsim,m,n)) 
 
# Combine to total by exposure period and in aggregate 
# notice separate array with name ending in "n" to capture 
# forecast for next accounting period 
sdnm=t(matrix(dnom,m,nsim)) 
fore=sdnm*rowSums(temp*!smsk,dims=2) 
forn=sdnm*rowSums(temp*smsn,dims=2) 
 
# Cumulate and return for another 5,000 
sim=rbind(sim,cbind(fore,rowSums(fore))) 
smn=rbind(smn,cbind(forn,rowSums(forn))) 
} 
 
summary(sim) 
summary(smn) 
 
# Scatter plots of residuals & Distribution of Forecasts 
windows() 
par(mfrow=c(2,2)) 
plot(na.omit(cbind(c(r+c-1),c(stres))), 
  main="Standardized Residuals by CY",xlab="CY", 
  ylab="Standardized Residual",pch=18) 
plot(na.omit(cbind(c(r),c(stres))), 
  main="Standardized Residuals by AY",xlab="AY", 
  ylab="Standardized Residual",pch=18) 
plot(na.omit(cbind(c(c),c(stres))), 
  main="Standardized Residuals by Lag",xlab="Lag", 
  ylab="Standardized Residual",pch=18) 
proc=list(x=(density(sim[,m+1]))$x, 
    y=dnorm((density(sim[,m+1]))$x, 
      sum(matrix(c(dnom),m,n)*mean*!msk), 
      sqrt(sum(matrix(c(dnom),m,n)^2*var*!msk)))) 
truehist(sim[,m+1],ymax=max(proc$y), 
  main="All Years Combined Future Amounts",xlab="Aggregate") 
lines(proc) 
 
# Summary of mean, standard deviation, and 90% confidence interval from  
# simulation, similar for one-period forecast 
sumr=matrix(0,0,4) 
sumn=matrix(0,0,4) 
 
for (i in 1:(m+1)) { 

sumr=rbind(sumr,c(mean(sim[,i]),sd(sim[,i]),quantile(sim[,i],c(.05,.95))))  
sumn=rbind(sumn,c(mean(smn[,i]),sd(smn[,i]),quantile(smn[,i],c(.05,.95)))) 
  } 
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Exhibit 1

Incremental Adjusted Average Paid Losses Per Ultimate Claim
Berquist & Sherman Automobile Liability Data

Accident Months of Development Forecast
Year 12 24 36 48 60 72 84 96 Counts
1969 178.73 361.03 283.69 264.00 137.94 61.49 15.47 8.82 7,822
1970 196.56 393.24 314.62 266.89 132.46 49.57 33.66 8,674
1971 194.77 425.13 342.91 269.45 131.66 66.73 9,950
1972 226.11 509.39 403.20 289.89 158.93 9,690
1973973 263.0963.09 559.85559.85 44 .22.42 347.764 347.76 9,5909,590
1974 286.81 633.67 586.68 7,810
1975 329.96 804.75 8,092
1976 368.84 7,594

Estimates

α1 α2 α3 α4 α5 α6 α7 α8
Parameter 143.78 316.77 251.78 197.68 102.53 46.23 21.36 7.36
Std. Error 6.20 11.54 9.16 7.62 5.25 3.75 3.07 2.41

κ τ p
Parameter 8.5871 1.1265 0.5782
Std. Error 0.2321 0.0077 0.0303
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Exhibit 3

Incremental Adjusted Average Paid Losses Per Ultimate Claim
Berquist & Sherman Automobile Liability Data

Forecast Expected

Accident Months of Development
Year 24 36 48 60 72 84 96 Total
1969
1970 9.34 9.34
1971 30.54 10.52 41.06
1972 74.43 34.40 11.85 120.68
1973 185.96 83.84 38.75 13.34 321.90
1974 403.89 209.48 94.45 43.65 15.03 766.50
1975 579.48 454.96 235.97 106.39 49.17 16.93 1,442.91
1976 821.26 652.77 512.50 265.81 119.84 55.39 19.07 2,446.64

Forecast Variance

Accident Months of Development
Year 24 36 48 60 72 84 96 Total
1969
1970 8.19 8.19
1971 28.10 8.19 36.29
1972 80.84 33.11 9.65 123.60
1973 235.51 93.74 38.40 11.19 378.84
1974 709.12 331.88 132.10 54.11 15.77 1,242.97
1975 1,039.02 785.45 367.61 146.32 59.93 17.47 2,415.80
1976 1,657.07 1,270.62 960.54 449.55 178.93 73.29 21.36 4,611.37
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Exhibit 4

Incremental Adjusted Average Paid Losses Per Ultimate Claim
Berquist & Sherman Automobile Liability Data

Estimates of Accident Year Future Loss Forecasts

Process Only Including Parameter Uncertainty
Accident Standard Standard Percentile

Year Mean Deviation Mean Deviation 5% 95%
1969 0 0 0 0 0 0
1970 80,981 26,503 80,551 36,442 24,148 144,035
1971 408,500 63,754 407,019 82,070 274,928 545,616
1972 1,169,365 106,448 1,169,765 137,850 945,662 1,399,015
1973 3,087,023 172,060 3,086,394 233,709 2,702,457 3,476,160
19741974 5 986,986,335 216 225335 216,225 5,984 922984,922 344 212344,212 5 425 005 6 551 203,425,005 ,551,203
1975 11,676,044 307,380 11,671,230 549,685 10,783,705 12,583,860
1976 18,579,788 375,626 18,581,701 808,465 17,258,898 19,916,569
Total 40,988,036 572,742 40,981,581 1,513,557 38,528,696 43,485,373

Forecasts for Next Calendar Year

Process Only Including Parameter Uncertainty
Accident Standard Standard Percentile

Year Mean Deviation Mean Deviation 5% 95%
1969 0 0 0 0 0 0
1970 80,981 24,817 80,551 36,442 24,148 144,035
1971 303,859 52,742 302,553 68,934 192,431 418,164
1972 721,230 87,122 721,793 105,826 551,032 898,662
1973 1,783,372 147,171 1,783,236 172,967 1,502,286 2,075,631
1974 3,154,365 207,974 3,154,597 240,834 2,764,684 3,559,245
1975 4,689,180 260,836 4,686,348 309,909 4,179,644 5,204,351
1976 6,236,615 309,130 6,236,267 372,667 5,629,261 6,854,599
Total 16,969,602 489,384 16,965,345 652,968 15,893,889 18,045,385
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Revised Warranty Product 

Orin M. Linden, Ph.D., FCAS, MAAA, ARM 
James B. Kahn, FCAS, MAAA 

Brian Ko 
________________________________________________________________________ 
Abstract 

Motivation. Non-insurance companies are offering ever greater enhancements to their warranty 
programs, many times as a competitive tool to strengthen market position.  Yet, oftentimes very little 
analysis is performed to understand the cost of these changes.  This paper discusses how warranties are 
accrued for on a manufacturer’s balance sheet and offers examples of methods to estimate these costs. 
Method. Most of the paper’s discussion centers around projecting actual payments over time using an 
approach similar to an incremental loss development triangle approach, properly adjusted for exposure 
and inflation changes.  Other methods discussed include Bornhuetter-Ferguson, Average Age of 
Warranty Claim Times Annual Spend, Active Life, and Calendar Year Payments to Revenue 
Approaches.  
Results. The most appropriate projection method may depend on factors such as available data or the 
nature of the company’s product. 
Conclusions. Actuarial projections of warranty costs rooted in common actuarial reserving and pricing 
techniques are appropriate for estimating the future liabilities for the warranty liabilities. 
Keywords. Warranty/Service Contracts; Parts and Labor Cost; Reserving; Pricing. 

             

1. INTRODUCTION 

Quite simply put, if a company has a product, it will likely be offering warranties 

associated with it.  While warranty coverage for automobile mechanical breakdown has 

become more commonplace over the years, the latest technological explosions have led to 

more and more customers being offered a bewildering array of warranties for products 

ranging from most personal and home appliances to highly specific products such as jet 

engines. 

For the most part, history and the various state laws that deal with the appropriateness of 

items for their intended use have dictated that a manufacturer’s basic warranty would be in 

place for no additional charge to the customer.  However, many companies offer the 

consumer an opportunity to purchase an “extended” warranty or service agreement, which 

would provide for some combination of (1) additional years of coverage, or (2) coverage of 

additional costs, or both (1) and (2).  In addition, a manufacturer may offer a maintenance 

agreement that provides for maintaining a product according to a recommended 
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maintenance schedule.  Some manufacturers will guarantee coverage over the entire 

“lifetime” of a given product under the terms of their “lifetime” warranties.   

2. WHY WORRY? 

Warranties come in all types and shapes.  They may be implied (i.e., an expectation of 
fitness for the use intended) or expressed (actually stated orally or in writing).  They may 
cover a short period of time such as 30 days or the lifetime of a product, however defined.  
They may cover all or part of a product (e.g., a five-year bumper-to-bumper vs. a 10-year 
drivetrain auto warranty).  Some will cover parts only; others, labor as well.  Specific 
warranties may cover related costs such as a roofing tile company covering the cost of 
removal and dumping of the defective product.   

Some companies offer a basic warranty and nothing else.  The basic warranty may be 
simple (e.g., one year parts and labor) or quite complicated (e.g., auto warranties that have 
different life spans and coverages for different parts and may require servicing from other 
companies for purchased parts such as tires or radios).  Indeed, many companies offer a 
dazzling assortment of both products and warranty options.  Customers may receive a basic 
warranty automatically but the terms may vary by product.  When a manufacturer offers 
greater coverage through an extended warranty or service contract, these additional 
warranties are sold for a variety of purposes: to generate profit, to differentiate a product, or 
to underscore the inherent quality of a product.  The terms of an extending warranty can be 
just as puzzling as the standard or basic warranty.  They also may cover replacement parts, 
labor, and peripheral costs for differing time periods. 

To make matters more interesting, depending on the product and economic situation, 
warranties can often be used as competitive tools.  In such cases manufacturers may decide 
to extend the coverage offered by their basic or extended warranties for several purposes: 

 

 Showing a company’s belief in the inherent quality of their product; 

 Adding a differentiator where consumers view products as inherently similar; 

 Changing warranties to be similar to changes adopted by competitors; 
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 Encouraging product buyers to also purchase maintenance services from the 

manufacturer; 

 Encouraging sales of an existing product or a new product where the 

manufacturer may have had quality issues in the past; and 

 Encouraging sales from a new manufacturer or a new product without a history 

of product quality. 

 

The costs of providing warranties vary by manufacturer but are large overall.  One source 
we are familiar with put the industry reserve level at $39 billion for the third quarter of 
2006.1  Others sources estimate the total cost of warranty reserves as greater than 2% of 
revenue for manufacturers.  Such costs rival those paid by manufacturers for insuring their 
fortuitous risk exposure. Because most manufacturer warranties are short term, this likely 
approximates manufacturers’ annual spend for this exposure.  By contrast, the Insurance 
Information Institute puts the United States annual spend for workers compensation 
premium at approximately $42 billion, a similar amount. 

Funding for warranty accruals is required to be disclosed according to FASB 
Interpretation 452 which states that, among other things, a manufacturer is required to 
disclose the approximate terms of warranties, the accounting policy and methodology for 
funding, and the carried reserves for product warranties.  By their nature, warranty claims 
tend to have a very high frequency/low severity exposure and the law of large numbers 
generally works well.  These costs are generally able to be estimated by actuarial methods.  

The principal obstacles in performing such analyses tend to be data issues.  Simply put, 
many companies do not seem to code warranty claims in the level of detail that insurers code 
losses.  As a result, in performing the analysis of warranty claim costs, the greatest amount of 
time is usually spent scurrying around looking for data sources that could, with some 
preparation, be coded and thus be much more readily available to an analyst.  While such 
improvements in coding would be beneficial to manufacturers for accrual purposes, the 

                                                           
1 “Warranty Reserve Levels.” Warranty Week, 30 January 2007.  
http://www.warrantyweek.com/archive/ww20070130.html.  Accessed 30 January 2008.  
2 Financial Accounting Standards Board Interpretation No. 45 – Guarantor’s Accounting and Disclosure 
Requirements for Guarantees, Including Indirect Guarantees of Indebtedness of Others. 
http://www.fasb.org/pdf/fin%2045.pdf 
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authors believe that far greater benefits of better coding would appear in both the control of 
costs and in costing changes in the basic or extended warranties that companies consider 
routinely for competitive and cost control purposes.  Like insurance claims, a single calendar 
year brings in claims from sales in all prior revenue years in which warranties are still live.  
However, unlike insurance claims, the amounts are generally relatively small, paid quickly, 
and do not take a great deal of time to develop.  Thus, changes in coding will begin 
providing useful data almost immediately for all lengths of warranties.  In the cases of 
relatively inexpensive items sold in great bulk, such as tools, useful information may be 
available in as little as a week. 

While some warranties are sold by third parties who sell them as a business model, we 
will be focusing on the ultimate warranty cost associated with product manufacturers’ 
warranty programs.  Although warranty costs are not technically insurance costs, many of 
the same characteristics can apply to the warranty programs in explaining yearly cost 
emergence.  The CAS literature has a number of articles dealing with the insurance aspect of 
mechanical breakdown insurance.  There are much fewer publications dealing with the non-
insurance sector and general product warranty accruals.  

Generally speaking, warranty programs among industries and companies are rarely 
identical.  As such, it is important to be able to determine what general steps to take in 
modifying an existing warranty program.  Equally important, a manufacturer should consider 
carefully how to code their internal claims and information systems to be able to handle any 
changes for the warranty program in the future.  

3. WARRANTY BACKGROUND 

3.1 Warranty Characteristics 

As mentioned previously, specifics of company warranties are rarely identical to each 
other.  Some characteristics of warranty programs observed and worth noting are listed 
below: 
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• Mechanical breakdown coverage has historically been the most prevalent type of 

warranty with actuarial involvement.  Several companies have offered extended 

warranty coverage for automobiles for several decades. 

• Automobile mechanical breakdown losses are generally “back-end loaded” as 

manufacturer warranties often inure to the benefit of extended warranty coverages.  

Normal wear and tear of a vehicle usually results in mechanical breakdown after a 

period of several years.   

• Because of the propensity for mechanical breakdown losses to increase over the 

course of time, many companies earn their premium accordingly, often using 

methodologies like the reverse rule of 78s or something similar to approximate the 

true payment patterns over time and match the premium earnings accordingly.    The 

NAIC’s Statement of Actuarial Opinion requirement requires opining actuaries to 

mention the Unearned Premium Reserve component associated with “Long 

Duration Contracts.”  Many of these long duration contracts are warranty contracts.3    

Companies should be aware of profitability considerations to determine if any 

premium deficiency issues would need to be separately handled. 

• Many manufacturers have drags on earnings as a result of their warranty liabilities.  

Many of these difficulties have arisen from misestimation of ultimate liabilities 

involving the long tails of “back-end loaded” types of products.  

• Some types of warranties are offered for products that rarely have warranty events, 

whereas others are offered for products that companies expect to pay losses 

routinely.  In the latter case, an extended warranty is often bundled with a service 

contract to maintain the product.  Estimation of costs would obviously be quite 

different amongst the various products and types of warranties. 

• Companies offering “lifetime” warranties generally have a long tail of claims 

emergence.  It is also possible for products with lifetime warranties that historical 

cost emergence patterns may not be indicative of costs seen in the future.  There are 
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many reasons why this may be so.  For instance, product specifications may have 

been changed over time.  Secondly, distribution channels or locations may have been 

changing over the course of time, and may be distorting companies’ historical data.  

Additionally, a company’s data may only include a limited number of years.  It is 

certainly possible that expected lifetimes may be longer than the historical timeframe, 

but well within the bounds of time as specified in revised extended warranty periods.  

In such cases, it is important to try to identify external sources of data or internal 

company experts to help assess cost emergence for periods outside of the experience 

period.  

• Generally speaking, ALAE costs for warranty programs are either minimal or non-

existent.  Companies may want to consider ULAE costs involved with an internal 

claims department that handles their warranty claims. 

• There is usually a very short lag period between the reporting of a loss and the actual 

payment of loss by the company issuing the warranty.  As such, reserving for known 

claims is typically not a major issue.  Case reserves are not generally set up and 

funding may be part of the overall warranty accrual process. 

• It is not uncommon for companies issuing warranties to pay for losses that are 

outside the scope of coverage (either for cause of loss or time) as a “goodwill” 

measure especially in the first 12 months after sale.  Such payments may be made 

often enough to be routine and may be considerably larger than the true costs 

covered by the warranty.  Other times, they may be rare.  An understanding of how 

often an entity pays goodwill losses is necessary to fully understand the cost impact 

involved in the expansion of a company’s warranty program.  However, it is our 

experience that many companies do not keep track of these payments.  Nor do they 

have guidelines as to when they should be paid.  As a result, large costs may be 

incurred without the benefits anticipated.   

                                                                                                                                                 
3  National Association of Insurance Commissioners, “Instructions to the Annual Statement for 
Property/Casualty,”  www.naic.org. 
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3.2 Competitive Environment of Warranties 

Most companies consider what their competitors offer in the marketplace in establishing 
their warranties. Many companies that issue extended warranties routinely revise their 
existing programs based upon what their competitors have been offering.  Many times, 
salespeople are adamant that not providing warranties with as much coverage as the 
competitors (both in terms of covered perils as well as years of coverage) places the 
company at a competitive disadvantage, The perception in the marketplace is that the 
company in question does not “stand behind the quality of its product.”  The result is that 
companies, for fear of losing market share, are often proactive in either making revisions to 
their current program to be more in line with their competition, or offering their own 
broader warranty coverage before their competitors do.  The result of the competitive 
environment is that even in the cases where a company may offer a broader coverage than 
their competition in an attempt to gain market share, there is often a limited time period 
before their competitors begin to provide their own similar product essentially “leveling the 
playing field’ despite the company’s best efforts to differentiate themselves. 

Often revisions to existing warranty programs are made without adequate studies as to 
the immediate impact such revisions could have on a company’s financial statement.  Yet 
analysis can often be done to better understand the financial costs of such changes. The 
techniques discussed here in this paper are designed to estimate the additional costs 
associated with the broadening of coverage. 

3.3 External Regulation and Distribution of Warranties 

A recent example involving a warranty company (not a manufacturer) illustrates what can 
potentially go wrong given the current regulatory environment.  A warranty company, the 
majority of whose business pertained to used-car extended warranty business, recently ran 
into such high financial problem, that its reinsurer also runs the risk of becoming insolvent.  
By the time the state insurance department became involved, the company’s insurer, backing 
a portion of the warranties, was itself on the brink of insolvency.  According to one source, 
in the overall long list of creditors in such a case, it is fair to assume that the warranty 
policyholders themselves would be very low on the list of those who can make claims on the 
insurance company’s assets.  As it turned out, even though some state departments of 
commerce had denied the warranty company a license in their states, and had even issued a 
“cease and desist” order against selling these warranties in their states, thousands of warranty 
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policies continued to be issued, by auto dealers whose commissions exceeded as much as 
50% of the overall premium.4  

Thus, even in situations where state commerce departments have banned companies 
from doing business in a state, the many third-party agents selling warranty policies have 
made it difficult to effectively carry out such a ban.  It is easy to speculate that this 
phenomenon may become more and more prevalent especially as an increasing number of 
people begin to purchase personal electronics from some of the larger appliance stores.  In 
many of these cases warranty may not be issued by the manufacturer or the store, but rather 
by a third-party company whose performances may not be tied to the results of the warranty 
company itself.  These instances could lead to similar situations as the warranty companies 
may have exorbitant potential liabilities on the books without fully grasping the magnitude 
of their aggregate exposures to liability. 

4. DATA ISSUES 

As mentioned earlier, a company may choose to address expansion of their warranty in 
either a proactive or reactive manner in an attempt to differentiate themselves from their 
competition and increase sales.  It is possible, if not likely, that extensions of years of 
coverage may be made without immediately performing a formal actuarial cost analysis.  
However, some companies have had several extended warranty type products in the 
marketplace through many different attempts at broadening the options available for the 
consumer.  As such, with proper data coding of historical claims, there would be an 
opportunity to use this actual historical company cost emergence information to formally 
project the proposed cost changes to an existing warranty. 

4.1 Loss Coding 

As with any pricing or reserving project, costing and reserving for warranty exposures 
generally starts with historical information. The following list of issues should be considered 
in establishing a warranty database or refining an existing database.  The items below should 
be considered, though the list should not be limited to those noted: 

                                                           
4 Cummins, H.J., “Worthless Warranty,” Minneapolis Star Tribune, December 12, 2007, pages D1, D3. 
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• Type of Product – As historical loss information may be different by type 

of product, and as terms and conditions of warranties may have varied 

historically by type of product, this information should be properly coded 

within a company’s historical claims database.  To the extent that products 

are sold internationally, the warranty costs should be segregated both by 

geographic area and by currency so that differing geographical usage patterns 

and currency exchange rate fluctuations can be addressed.  Similar 

considerations will apply to revenue coding as well. 

• Date of Purchase, Shipment, or Installation – The date for when a 

product is purchased, shipped, or installed (whichever is the key date to start 

the beginning of the warranty) should be captured in the company’s claims 

database. 

• Date of Claim Occurrence – The date of claims occurrence, as defined by 

the company for the purposes of providing coverage, should be captured in 

the company’s claims database. 

• Date of Claim Report – The date a claim is first reported to the company 

or recorded on the company’s records, as defined by the company, should be 

captured in the company’s claims database.  As mentioned previously, the lag 

period for warranty coverage is usually not significantly long from the date of 

occurrence to the date of claim report. 

• Date of Claim Payment – The date or dates a claim is paid by the company 

should be recorded in the claims database.  Warranty costs are usually paid 

quickly after the claim is reported to the company. 

• Repair Type and Cost – The type of repair made, as defined by the 

company, should be captured in the company’s claims database.  In its 

simplest form, this may be a split between materials and labor costs.  This 

may be further sub-divided, sometimes significantly, at the company’s 

discretion. The amount paid for each type of claim category associated with a 
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given claim should also be captured in the company’s claims database.  If 

payment is made for costs that, in theory, should not have been paid for, 

these figures should also be tracked.  Companies should consider the level of 

detail in the coding of repair types and costs very carefully.  Generally, more 

detailed coding of these items should be encouraged as future changes in 

product design and production or changes to warranty programs may 

consider the explicit addition or deletion of various costs.   

• Location of Claim – The location of incident or repair for each type of 

claim should be captured in the company’s claims database.  This category 

could be important for several reasons.  For instance, it may be necessary to 

understand and segregate payments made as a result of catastrophes that led 

to claims being submitted under warranties.  For, example, a building 

product warranty may be tapped to cover damage in a hurricane.  

Additionally, frequency of claims, costs of repairs, or legal environment 

could vary significantly by location due to local weather and economic 

conditions.  Potentially, a company may ultimately decide for exclusions, 

pricing differences, or distributions of products in certain states depending 

upon the results of the observed history of claims emergence. 

• Basic vs. Extended Warranty – For losses that are coded by the company 

in their claims database, a distinction should be made as to which losses are 

associated with a historical basic warranty type, and which losses are 

associated with an extended warranty.  Warranties change from time to time.  

The exact warranty that was purchased should be coded along with the date 

of warranty purchase so that the exact terms of warranties can be analyzed. 

• Length of Warranty or Service Agreement – The term length of the 

warranty associated with a given claim should be captured by the company. 

• Cost of Labor by Geographical Area – To the extent that labor is a 

covered cost, and the associated rates vary by geographical area, the historical 

costs of labor and the associated repairs should be tracked.  If this 
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information is not immediately available, a reasonable approximation might 

be calculated for some procedures by using outside sources including the 

Internet. 

• Historical Pro Rata Percentages – Some warranties contain a provision 

where, for a certain number of initial years, warranty costs are covered at full 

cost.  Following this period, many cover some costs at a prorated percentage 

of the warranty policy.  Furthermore, some may cover some types of losses 

at a prorated percentage, but entirely exclude other types of coverage after 

this initial period.  To the extent that losses are coded, the company should 

also code the detail in their claims database as to the pro rata percentage that 

was historically paid for a given claim amount.   This would be valuable 

information to have, should the “full coverage” time allowance be amended 

in the future. 

4.2 Exposure and Revenue Coding 

Additionally, the following list of items should be monitored, but not necessarily in the 
same database that contains the claims information.  There should, however, be an 
appropriate way to group these figures to those captured in the claims database: 

 

• Number of Units Sold – The company should consider the number of 

units sold historically including an appropriate way to group these to track 

historical sales.  They should further track this information, if possible, as to 

what types of warranties were sold (or provided at sale) for each unit.  If 

possible, the company should consider coding the type of warranty 

purchased or provided by serial number so as to make matching warranty 

type to sales possible. 

• Revenue – The company should track the historical sales volume including 

an appropriate way to group this for appropriate tracking of exposure 

volume.  They should further track this information, if possible, as to what 

types of warranties were sold (or not sold) for each unit.  Revenue should 
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clearly delineate cost of product and cost of extended warranty by type of 

warranty and product. 

• Cost of Warranty Type Sold – The company should track the prices that all 

their different types of warranties have cost the consumer historically.   

• Commissions – The company should track the commission paid and who 

sold the warranties historically.  

• Rejection Database – The company should track claims that have been 

historically rejected and the reasons why they were rejected.  This could 

perhaps be tracked in conjunction with those that were paid “outside the 

scope” of the warranty policy.  A database such as this is a good way to track 

claims information should the company one day expand the terms of its 

warranty program to include types of loss that had not been covered 

historically.  It should be noted that, in such a situation, the company should 

be aware that the frequency of these types of losses may be understated from 

what they should expect to see with a broadening of coverage as the 

consumer may understand that these costs would not be covered under their 

warranty and as such not report the incident to the company. 

 

Unfortunately, the above mentioned items may not come from the same source or 
department from within a company.  In other cases, different users of data may carry it in 
varying levels of detail, causing reconciliation to be difficult. Companies may even have 
third-parties handle certain data items.  As a result, the task of matching revenue, product 
and warranty is not always a straightforward exercise.  Having a designated person from the 
company that can help in coordinating and providing the necessary data in a usable format in 
these situations can be vital.     

Database systems may vary widely from company to company but the actual data can 
usually be exported in a universally recognized format and imported into other platforms. 
Examples include commonly used database formats such as comma-delimited files (.csv) or 
text files (.txt).  However, conversions may cause a loss of information regarding data field 
types.  For example, fields that were originally formatted as a “date” value may be imported 
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as generic “text” by default, unless the user manually specifies otherwise.  Without such care, 
any subsequent operation that relies on the field being a “date” value would lead to 
difficulties.   

Data types are also important because of space considerations.  Designating a field that 
could suffice with an “integer” value (2 bytes) to be a “double-precision” value (8 bytes) 
results in using four times more space than is necessary.  Over multiple fields and millions of 
records, the volume of misallocated space can become quite large.  The size of the data file is 
an important factor in determining how smoothly the project proceeds.  While many data 
manipulation tasks may seem simple enough in theory, working with large files can require 
lengthy computer run-times, in addition to causing issues with software constraints.  For 
example, if the user does not have access to specialized data analysis software such as SAS, 
and elects instead to use a database management program with say a 2GB limit, the file can 
quickly reach the limit.  This, in turn, can cause the file to become corrupt and unusable or 
cause important information to be lost in conversion.  Taking the extra effort to correctly 
define data fields at the onset of a large undertaking is highly recommended as it will 
generally save great amounts of time throughout the rest of the project.    

In addition to the above, companies should consider whether other sources of payment 
may be available to the purchaser of a product and consider whether the warranty acquired 
or purchased is primary or secondary.  For example, a building owner may have property 
insurance that covers the failure of a building materials product such as siding in a 
windstorm.  The company needs to consider whether the warranty coverage will be primary 
or secondary to the other sources and state this explicitly. 

5. TECHNIQUES OF COST PROJECTION 

5.1 General Considerations 

Warranty cost projection can be viewed in a manner similar to pricing if it is prospective 
and similar to loss reserving for accrual purposes, with bodies of data grouped appropriately 
by year and with historical “warranty year” costs being observed and projected to ultimate.  
Although many exposure bases can be considered, such as number of units sold, 
methodologies can often be most easily applied by reviewing historical loss cost emergence 
as a percentage of sales figures where it can preliminarily be assumed that, with both costs 
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and revenue being inflation-sensitive, the overall ratio should not need to be significantly 
adjusted for changes in inflation over a reasonable time period.  Of course, it is highly 
recommended that yearly ratios be observed to see if an increasing annual trend is observed, 
signifying that overall costs may be increasing at a greater rate than revenue.  Adjustments 
should be considered in such a situation. 

As previously mentioned, report and payment lags for warranty policies are usually 
relatively short.  As such, future cost emergence of existing basic and extended warranties in-
force can be generally viewed as occurrences that have not yet happened but will ultimately 
give rise to warranty claims, as pipeline claims are usually small in total costs compared to 
the total warranty exposures.  Whoever performs a warranty analysis may consider 
performing further breakdowns of cost emergence between labor, parts, or any other type of 
cost payments, depending on the purpose of the analysis and the available data. 

Many warranty policies specify that no losses should be paid for any of the periods 
beyond the terms of the warranty agreement.  Any warranty costs paid beyond these periods 
should be quantified and properly denoted as either “goodwill” payments or some other 
appropriate notation.  A company should understand how often these types of payments are 
made, how much they cost, and adjust for this in any pricing or accrual exercises.  

For the purposes of a company establishing a warranty accrual on their balance sheet for 
future costs, a company may want to factor in the time value of money by establishing a 
discounting procedure, depending on their accounting requirements.  One assumption to 
consider would be an after-tax, risk-free discount rate based on something appropriate such 
as the latest year’s average Treasury bill rates.  A similar consideration exists for costing and 
pricing new warranties or making changes to existing programs. 

Depending on data availability and scope of analysis, it is sometimes better to perform an 
analysis on all the data of a particular product group, rather than on an individual type of 
product or model basis or any other classification deemed appropriate by the manufacturer 
or warranty issuer.  Such an analysis increases the volume of the data.  In such cases, if there 
is to be any further analysis by individual sub-line of products, loss costs should ultimately 
balance back to the overall total loss cost figures based on the latest year’s exposure 
distributions.  A normalization procedure should be incorporated not unlike off-balance 
factor calculations that are utilized in territorial rate filings for insurance companies. 
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Some companies allow warranties to be extended at any time, not just at product 
purchase.  In such cases, the analyst needs to consider whether there is an adverse selection 
process going on such that these buyers can be expected to have higher costs.  If so, the 
pricing of the warranty needs to consider this.  Similarly, some companies offer service 
contracts designed to maintain products in addition to extended or basic warranties.  In such 
cases, the analyst should attempt to understand whether the warranty costs are likely to be 
lower as the products are well maintained and/or that part failure may be prevented by 
replacement under the maintenance contract.  Such analyses are only possible if the company 
has implemented coding procedures that allow such issues to be tracked. 

Finally, we note that many times warranty coverage allows some sort of continuation of 
the warranty coverage as transfer of ownership or title takes place for a covered product.  
While warranties differ in terms of how they handle the transfer of ownership (either 
disallowing transfer entirely, allowing transfer in all cases, or allowing transfer for a limited 
number of times), any changes to the existing structure going forward should be reflected in 
the future analyses. 

5.2 A Costing Example: Expansion of Number of Years 

5.2.1 Yearly Emergence 

Perhaps the most common type of warranty expansion is allowing for coverage for an 
additional number of years.  In our example, we will assume that a company will be 
expanding the current basic program from three years of coverage to five years of coverage. 
The new basic warranty will cover the costs of parts and labor in the fourth and fifth years.  
In this case, we will consider that the company has offered extended warranties historically, 
and thus has their own claims experience for the fourth and fifth year after installation for 
the customers who have purchased extended warranties historically.  (We note that without 
actual data, one could consider other techniques such as curve fits or loss experience for 
similar products).  To complicate matters a little bit, we will also assume that historically the 
extended warranties upon which we are basing our cost estimates had labor costs covered 
only through year 3.  Additionally, the old program had covered parts/material costs at 
100% through year 3 and at a prorated percentage thereafter.  The new proposal will cover 
parts/material at 100% for years 4 and 5.  As such, historical data would show the cost in 
years 4 and 5 without the impact of labor and 100% part replacement in these time periods.  
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Calculations would thus need to quantify the amounts of labor cost and non-prorated part 
cost for these years in the determination of the new projections. 

To determine an estimate of additional cost emergence for all the changes, one can 
review the company’s database and group the cost emergence in subsequent 12-month 
intervals for each year of product sale.  This type of grouping and corresponding emergence 
will look like a policy-year loss development triangle but will consider at each evaluation 
warranty claims that occurred within successive 12-month periods from the date of sale of 
each item. Each corresponding policy year (year of sale) will not be fully “developed” for the 
first 12 months of emergence until the policy (sale) year is 24-months-old (as policies sold on 
the last day of the 12th month of a calendar year will be 12-months-old when the policy/sale 
year is 24-months-old).  There will also be some (usually) short time period in which the 
newest warranty claims are evaluated and settled. 

The data will now need to be adjusted to consider the impact of extending the non-
prorated period.  This will consist of two adjustments:  adjusting the claim value to 100% for 
calendar years 4 and 5 (after the end of the historical non-prorated periods), and putting in a 
provision for additional labor costs for years 4 and 5.  Adjustments can be made fairly easily 
by reading the company’s historical warranty policy to estimate the prorated percentage to 
apply to years 4 and 5.  They can be adjusted to 100% simply by dividing historical payments 
by these percentages.   

To estimate the provision for additional labor costs, we multiply the number of historical 
units repaired or replaced under warranty claims by the average cost of labor per unit.  If 
coding is available, such costs can be directly calculated based on historical payments.  
Otherwise, an estimate of these labor costs can be estimated by appropriate company 
personnel by geographical location, or an overall national basis.  It is possible, of course, that 
the overall national labor average may vary going forward if the company’s mix of 
geographical location changes over the course of time (or may have historical distortions if 
the mix has changed over time).  We note that in performing these calculations the average 
cost of labor utilized will generally vary by year due to inflation.  

The impact of extending the non-prorated period from three to five years would be 
estimated by subtracting the unadjusted calendar-year payments (as a percentage of revenue) 
for years 4 and 5 from the newly adjusted calendar-year payments (as a percentage of 
revenue) for years 4 and 5.  It is possible that prorated percentages after year 5 may change 
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as well.  Adjustments for such changes in percentage will need to be contemplated in such a 
situation.  The calculations will be similar to the adjustments already considered (excluding 
the cost of labor). 

If no pro rata percentage of losses existed in the old extended warranty program, and no 
additional charges for new coverages would be applied, this calculation would be nothing 
more than a simple addition of the estimated costs for years 4 and 5 (as a percentage of 
revenue).   

If projections are based on ratios of units sold, not as percentages of revenue, appropriate 
adjustments for inflation should be made as unit sales do not reflect inflation.  

As a final note, it may be necessary to consider the impact of yearly cost projections for 
periods where no data exists. For example, if a company is interested in expanding the 
warranty coverage period to 40 years but had no data beyond 10 years, one could estimate an 
annual decay percentage through year 10, and then project the yearly decline in coverage to 
year 40. Alternatively, other curve fits should be considered.  In such cases, the analyst 
should identify company engineers or product experts and discuss the results to determine 
whether such a pattern would truly make sense so many years into the future, or if the 
expected product lifetime is likely to alter yearly emergence after a given point in time.  Any 
additional information as to the characteristics of the product should be reflected 
appropriately.  

5.2.2 Percentage of First Year Costs 

Many companies cannot segregate their product sales revenue by type of warranty (basic 
or extended).  However, most companies can expect that basic warranty costs can be related 
to annual revenue as extended warranties almost surely contain terms at least as good as the 
basic warranty. Thus, if we are estimating the cost of adding more years to a basic warranty, 
another way to project future cost emergence involves making an overall determination of 
the ratio of the costs of the basic warranty in the first 12 months to total annual sales.  
Estimations can then be made as to relationships of future years’ emergence to emergence in 
the first year warranty costs for the basic warranty only by using the historical ratio from 
actual data. 
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5.3 Expansion of Covered Costs and Introduction of New Covered Perils 
A Costing Example: Expansion of Number of Years 

A company may look to expand the types of losses being covered by an extended 
warranty rather than solely the number of years.  Many different variations of this expansion 
may be considered:  (1) a company may consider paying for certain types of warranty costs 
during the same time that the basic warranty is in place, effectively providing broader 
coverage, (2) a company may consider providing for a coverage, which is currently being 
provided at full or pro rated value for some years, but not during a proposed expanded time 
period (for example, some companies include things like labor cost initially, but then only 
costs for materials after a certain point in time), and (3) a company may be considering 
adding coverage for a type of warranty cost that is not being provided in any current form. 

Depending on the type of data available for a company, one may wish to calculate 
expansion of covered costs either directly (by multiplying the expected number of incidents 
of coverage by an appropriate expected cost) or by taking differences of costs based on 
existing programs.   

In the first situation, one may be able to properly estimate frequency of incidence that 
would require the new type of coverage (or determining estimation during the appropriate 
future time period).  Such a frequency might be approximated in many ways.  Historical 
frequency of similar claims might be useful.  Alternatively, sampling or surveying the users of 
the product or internal personnel might be useful.  Finally, the rejection database might also 
give some indication of future frequency. 

The severity to apply to the expected incidents could be based on the average value of a 
claim observed historically, or based on some external proxy such as the average cost of 
repair.  With any inflation sensitive component such as labor rates, it is important to factor 
yearly cost of living adjustments into the appropriate calculations either by trending historical 
costs or by detrending the most recent information available.  Adding broader coverage 
during the basic warranty timeframe could consider using this approach as well. 

In the second situation involving differences in cost estimations, a company may have 
existing information for a program that includes the new coverage (even for a longer period 
of time than what is being proposed with the expansion).  Historical yearly cost emergence 
as a percentage of revenue including the new covered peril as well as the historical yearly 
cost emergence excluding the new peril might be tracked for each selected time period.  In 



Estimating the Ultimate Liability for a Non-Insurance Company’s Revised Warranty Product 
 

Casualty Actuarial Society Forum, Fall 2008  214 

such a case, a simple subtraction of the two data sets can be performed, with the difference 
being the new additional cost.  Any differences in the overall emergence between the two 
data segments should be accounted for and adjusted if necessary. 

6. METHODS FOR RESERVING 

Accounting guidance for warranties that are a part of a product purchase is provided by 
FASB Interpretation No. 455,  which clarifies that a liability for expected costs of a warranty 
must be recognized at the inception of the warranty.  Accounting guidance for extended 
warranties appears in FASB Technical Bulletin No. 90-1, Accounting for Separately Priced 
Extended Warranty and Product Maintenance Contracts6.  The situation is a bit different as 
it deals with revenue recognition and not expected costs.  The guidance notes: 

 

3. Revenue from separately priced extended warranty and product maintenance 
contracts should be deferred and recognized in income on a straight-line basis over 
the contract period except in those circumstances in which sufficient historical 
evidence indicates that the costs of performing services under the contract are 
incurred on other than a straight-line basis. In those circumstances, revenue should 
be recognized over the contract period in proportion to the costs expected to be 
incurred in performing services under the contract. 
 
4. Costs that are directly related to the acquisition of a contract and that would 
have not been incurred but for the acquisition of that contract (incremental direct 
acquisition costs) should be deferred and charged to expense in proportion to the 
revenue recognized. All other costs, such as costs of services performed under the 
contract, general and administrative expenses, advertising expenses, and costs 
associated with the negotiation of a contract that is not consummated, should be 
charged to expense as incurred. 
 
5. A loss should be recognized on extended warranty or product maintenance 
contracts if the sum of expected costs of providing services under the contracts 
and unamortized acquisition costs exceeds related unearned revenue. Extended 
warranty or product maintenance contracts should be grouped in a consistent 

                                                           
5 Financial Accounting Standards Board Interpretation No. 45 – Guarantor’s Accounting and Disclosure 
Requirements for Guarantees, Including Indirect Guarantees of Indebtedness of Others. 
http://www.fasb.org/pdf/fin%2045.pdf. 
6 Financial Accounting Standards Board Technical Bulletin No. 90-1 – Accounting for Separately Priced 
Extended Warranty and Product Maintenance Contracts.  http://www.fasb.org/pdf/ftb%2090-1.pdf. 
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manner to determine if a loss exists. A loss should be recognized first by charging 
any unamortized acquisition costs to expense. If the loss is greater than the 
unamortized acquisition costs, a liability should be recognized for the excess. 7 

 

We note that the reader should check with their accountants or other accounting experts 
for the exact treatment of warranty accruals. 

 The methodologies above are mainly utilized for estimating the cost of warranty covers.  
Following the accounting guidance above, the methodology for reserving may be based on 
these calculations or a simpler method can often be utilized so long as the revenue 
recognition for extended warranties follows expected costs.  In the following we will discuss 
the recognition of the loss cost portion itself.  This relates directly to establishing the reserve 
and runoff pattern of basic warranties included with the sale at no extra cost. Some 
additional work may be required for extended warranties to insure that the revenue 
recognition follows these expected loss costs and that expenses and any loss in excess of 
revenues are appropriately recognized.  In the particular case of extended warranties the 
analyst should also consider whether the costs of claims in the settlement process are 
significant enough to establish a separate reserve for pipeline claims in-transit. 

6.1 Bornhuetter-Ferguson Test A Priori 

Monitoring results, especially for the first time, is an important measure to be taken with 
a warranty program.  The methodologies listed previously contemplate expected emergence 
in a given calendar year.   Year-to-year fluctuations among actual results can be handled 
through a Bornhuetter-Ferguson methodology by using this expected cost emergence in a 
given year as an a priori together with the expected unpaid percentage of cost emergence.  
With this method, the calculations made to cost or price the existing coverages can be 
unwound as to year of expected costs as a percentage of revenue.  These percentages,  for 
the unexpired portion of the warranties in place can then be applied (often on a discounted 
basis) to revenue for the year of sale to create a reserve.  Revisions to yearly cost estimates 
can be made or, at the very least, differences between actual and expected cost emergence 
can be observed and studied.  A series of refinements to selected yearly costs can be made 

                                                           
7 Accounting  guidance for extended warranties appears in FASB Technical Bulletin No. 90-1, Accounting for 
Separately Priced Extended Warranty and Product Maintenance Contracts, Copyright © 1990, Financial 
Accounting Standards Board, Page 4.  
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appropriately going forward at least annually, if not quarterly. 8  

6.2 Average Age of Warranty Claim Times Annual Spend 

This is likely the simplest of all warranty accrual methods.  In this method one computes 
the average age of warranty claims in a given period of time.  This figure is then applied to 
the average annual expenditure on warranties (appropriately adjusted for inflation) to 
determine the increase in warranty reserve.  For example, if the average age of warranty 
claim is five years past the date of sale or installation and the average spend is $1 million per 
year, then for a period of five years of emergence, a reserve of $5 million (plus any 
adjustments for inflation) would be established. 

This methodology appears to work best where the volume and mix of product is similar 
year to year, the annual average cost of each specific warranty incident is not very variable 
and the average annual outlay for warranty claims is fairly constant.  Products such as tools 
and small electronics may often utilize this method successfully. 

6.3 Active Life Approach 

This methodology utilizes methods similar to those discussed in costing to come up with 
probabilities of a claim by report year under each type of warranty issued or sold.  These 
probabilities are multiplied by the number of products sold by warranty type, in a given time 
period, to arrive at an expected frequency by report year.  These are in turn multiplied by an 
expected cost (inflation adjusted) to arrive at a warranty reserve.  

This method is well suited for warranties of particularly long duration where probability 
of defects is fairly constant. 

6.4 Calendar-Year Payments to Revenue Approach 

This method is similar to the active life approach but much simpler to apply in practice.  
Actual warranty costs by year of product sale are accumulated for at least one and usually 
two or more years.  These costs are divided by either revenue or number of products sold in 
each year of sale.  Ratios of claim costs by age as a percentage of revenue (or average cost 
per product sold) are selected and the unexpired warranty year fundings are computed as the 

                                                           
8 Bornhuetter, Ronald L. and Ronald E. Ferguson., “The Actuary and IBNR”, PCAS LIX, 1972, pp. 181-195. 
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ratios by age times the revenue sold by year.  This method works well where warranty costs 
are fairly static as a percentage of revenue but the product line volume varies significantly by 
year. 

7. BUSINESS CONSIDERATIONS 

7.1 Warranty Language 

Many of the basics of standard insurance contracts are often overlooked in producing a 
warranty.  Unlike insurance, there is no industry-wide organization writing standardized 
warranty wording for companies to adopt or rewrite.  Warranties often vary greatly by type 
of product being serviced, oftentimes being in completely different types of industries. 
Moreover, warranty language may vary company to company for similar products and may 
even vary across similar warranties in the same company.   Because of this, it is often 
difficult to have universal, standard types of warranties in place. As a result, companies could 
conceivably find themselves paying more claim dollars than they otherwise would with 
universal, standard contracts.  

For instance, warranty language often does not include wording that would make their 
policy secondary to other sources of recovery such as homeowners insurance or any other 
sources of recovery.  As a result, the warranty writer may in effect pay for claims either 
instead of other recoveries, or even worse, in addition to other sources of recovery.  In 
contrast, it is common for other types of guarantees such as credit card companies to cover 
the collision damage to a rental vehicle.  In such cases, card issuers routinely make this 
coverage secondary to the renter’s own insurance policy. 

Finally, warranty policies many times omit language that would limit payment to some 
specified amount such as the value of a completely new replacement item that may very well 
be less than replacing individual parts for outdated products.  Some sort of limitation 
language would potentially be advantageous to both the warranty companies (that may pay 
fewer dollars of claims) as well as the customer (who may choose to get a cheaper, but more 
state-of-the-art model of product should they choose).  

7.2 Internal Operations 

Major companies who issue warranties often do not have staff fully dedicated to 
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monitoring the results of the warranty program.  It is likely that in the overall costs of such 
companies, warranty costs are a small (but meaningful) fraction of the overall cost measures 
of a company.  As such, devoting full-time staff for such tasks as fully estimating the cost of 
warranty policy revisions or estimating the quarterly accruals is often neglected (even though 
warranty policies involve many different segments such as marketing, claims, accounting, 
and other financial departments, to name a few).   

An interesting example mentioned previously concerns the potential payment of many 
claims as “goodwill” measures even though the warranty language may not allow for such 
coverage.  With poor internal communication as to how often goodwill claims are paid, and 
poor monitoring as to the actual dollars of payments by year that are effectively true 
goodwill claims, it will be difficult, if not impossible, to understand the true warranty costs 
and ultimately, the liability for balance sheet accruals.  As such, goodwill payments tend to be 
made without the benefit of a strategic plan and it is not always clear that these non-required 
payments have a benefit equal to their costs.  Further, companies do not always track the 
amount or payment detail of such payments and cannot always analyze whether these 
payments are actually undermining the company’s attempt to sell for-profit extended 
warranties. 

While many companies may want to focus their efforts solely on the external marketing 
of their extended warranty product, it is well worth the effort to monitor the amount of 
goodwill claims that have been routinely paid in the marketplace on their basic warranties.  
Those with a historically large preponderance of goodwill type claims that might be covered 
under extended warranties offered by the company may find it difficult to find purchasers of 
the extended warranty product.  Such loose standards may effectively dictate that consumers 
have been receiving extended warranty coverage for basic warranty cost. While this is not 
necessarily a terrible result, a company should be thoughtful in its use of such payments and 
integrate them into its strategic marketing plan for both basic and extended warranties. 

7.3 External Sales Force 

As mentioned earlier, products with corresponding warranties, many times have a third-
party agency force whose results are not dependent on the overall results of the warranty 
program.  Often, the third-party sales force finds themselves with commissions that may 
very well be in excess of half the warranty price itself.   
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In such circumstances, it is not difficult to imagine where conflicts of interest could exist 
between sales forces and the results of the warranty company.  As an example, let us look at 
the case where a salesperson may be allowed, if not encouraged, to sell a one-year service 
agreement several years after the one-year basic manufacturer’s warranty has expired.  
Should the consumer, based on their own observed experience, see that each of their last 
few years of experience has cost them more in repairs than the upcoming cost of the 
warranty, they would not be hesitant to purchase the policy.  This adverse selection practice 
may go on for several years if a company issuing the warranty does not adequately monitor 
the activity and subsequently change their contract wording, their pricing scheme, their 
agency force, or some combination of all. 

8. CONCLUSIONS 

Although there seems to be a growing market for extended warranties as competitive 
pressures continue to exist and new and complex products are brought to the market, it is 
fair to say that companies oftentimes do not devote enough resources to studying the 
financial impact brought on by either the introduction of a new warranty or the modification 
of an existing warranty.   

Interestingly, many companies have complex data systems already set up for monitoring 
historical warranty claims, and may need relatively few changes to internal coding to better 
monitor their perpetually changing programs.  Such changes are very likely to pay for 
themselves many times over in terms of providing data to make cost-effective decisions.  In 
today’s competitive marketplace, information is crucial and those companies who can access 
their data in detail have a clear competitive edge. 

Historically, many companies have found that their warranty accruals have been 
understated, sometimes resulting in large balance sheet corrections that catch the eye of 
financial analysts.  It is becoming increasingly important for companies to monitor their 
warranty results going forward both with revision of internal data coding as well as with 
actuarial type analyses involving cost projections.  Once projections have been 
contemplated, it is important that information continue to be monitored appropriately given 
all the potential sources of adverse selection (“goodwill” claims, third-party agency force, 
etc.).  
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Even the simplest of actuarial loss projection methods can prove invaluable in a 
company’s understanding of historical cost emergence, or more significantly, their future 
cost emergence.  In the competitive marketplace, the ability to quantify the potential impact 
competitors’ warranty changes on a company’s own book will allow for more informed 
business decisions and most importantly, more profitable financial results. 

 
Appendix A 

• Cost of Adding Widget Repair from 6 to 25 Years – EXHIBIT 1 
• Cost of Extending Full Value Warranty Period from 4 to 6 Years – EXHIBIT 2 
• Warranty Cost for First Five Years Based on Percentage of Year 1 (Basic 

Warranty) Costs – EXHIBIT 3 
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The Prediction Error of  Bornhuetter-Ferguson 

Thomas Mack 
________________________________________________________________________ 

Abstract: Together with the Chain Ladder (CL) method, the Bornhuetter-Ferguson (BF) method is one 
of the most popular claims reserving methods. Whereas a formula for the prediction error of the CL 
method has been published already in 1993, there is still nothing equivalent available for the BF 
method. On the basis of the BF reserve formula, this paper develops a stochastic model for the BF 
method. From this model, a formula for the prediction error of the BF reserve estimate is derived.  

Moreover, the model gives important advice on how to estimate the parameters for the BF reserve 
formula. For example, it turns out that the appropriate BF development pattern is different from the 
CL pattern. This is a nice add-on as it makes BF a standalone reserving method that is fully independent 
from CL. The other parameter required for the BF reserve is the well-known initial estimate for the 
ultimate claims amount. Here the stochastic model clearly shows what has to be meant with “initial.” 

In order to apply the formula for the prediction error, the actuary must assess his uncertainty about 
both sets of parameters, about the development pattern and about the initial ultimate claims estimates. 
But for both, much guidance can be drawn from the estimates themselves and from the run-off data 
given. Finally, a numerical example shows how the resulting prediction error compares to the one of the 
CL method. 

Keywords: Loss reserving, Bornhuetter-Ferguson, Stochastic model, Prediction error. 
________________________________________________________________________ 

1. INTRODUCTION 

For most insurance companies and their auditors, the use of the Chain Ladder method (CL) and of 
the Bornhuetter-Ferguson method (BF) has become a certain standard or benchmark in claims 
reserving. This means that these methods are applied in almost every case, and only if they seem to 
fail, one looks for other methods. Originally, these methods gave only a point estimate for the claims 
reserve. But this was not satisfactory because then one could not decide whether the estimates differ 
significantly or not. Moreover, for the calculation of risk-based capital and of premium loadings one 
needs to assess the prediction error of the estimate (i.e., the standard deviation of the true claims 
reserve from the point estimate). 

In 1993, a formula for the prediction error of the CL reserve estimate was published (Mack (1993) 
or the more comprehensive version Mack (1994)), which in the mean time is widely used. This 
formula gives an answer to the question of significant differences to other methods and measures 
the variability of the true reserves for business segments where CL is acceptable. But for BF, such a 
formula is still missing. This may seem strange because BF is even simpler than CL. But this 
simplicity is just the problem. The prediction error consists of two components, the process error 
and the estimation (or parameter) error. Whereas the estimation error basically always can be 
calculated via the laws of error propagation, for the process error a stochastic model of the claims 
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process is required. The latter was feasible in the CL case because the way in which the CL age-to-
age factors are estimated contains implicit information on the underlying stochastics. In the BF case, 
no clear procedure on how to estimate the parameters has been established. In such a situation, 
many models may seem admissible. 

The stochastic model for BF introduced in this paper is very similar in its structure to the CL model 
of Mack (1993) but adequately reflects the two fundamental differences between CL and BF. The 
first difference is the fact that the CL reserve is directly proportional to the claims amount known so 
far whereas the BF reserve does not depend at all on the known claims amount. This is reflected in 
an additional independence assumption of the BF model. The second difference is the fact that the 
BF reserve estimate includes the full tail of the claims development whereas the standard CL reserve 
(i.e., without additional tail factor) only considers the development until a given last development 
year. The latter fact implies that the parameter estimation for the BF model has also to consider the 
tail of the development where there is no data and some judgment is required. Therefore, we do not 
give a unique estimation formula for the tail parameters but discuss two alternative ways to cope 
with this problem. In any case, the development pattern suggested by the BF model turns out to be 
different from the well-known CL pattern. This makes BF to a really standalone reserving method. 
But still, the actuary may make his own selections regarding the development pattern, especially for 
the tail. 

In addition to the development pattern, the BF reserve formula requires another element, an initial 
estimate for the ultimate claims amount. Of course, the uncertainty of this estimate must have a high 
impact on the prediction error. As this estimate usually comes from outside (e.g., from pricing) or is 
simply set by the actuary on the basis of his knowledge of the business, its uncertainty must be 
assessed from outside of the run-off triangle, too. And an actuary who is able to set (or accept) a 
point estimate should also be able to quantify (or ask for quantification of) the uncertainty of this 
estimate. Moreover, from the stochastic model important advice can be derived for the assessment 
of these estimates and their uncertainty. Altogether, this means that the prediction error of the BF 
reserve estimate depends largely on the (more or less subjective) assessment of the actuary as it is 
already the case with the BF reserve estimate itself.  

Section 2 gives a short review of the BF method and of its connections and differences to the CL 
method. Section 3 describes the appropriate stochastic BF model. Section 4 shows two ways to 
estimate or select the model parameters. The estimation of the standard error of the parameters is 
discussed in Section 5 where also the formula for the prediction error and its components is derived. 
Section 6 gives a numerical example and Section 7 concludes. 
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2. THE BF METHOD 

Let Ci,k denote the cumulative claims amount (either paid or incurred) of accident year i after k years 
of development, 1 ≤ i, k ≤ n, and vi be the premium volume of accident year i where n denotes the 
most recent accident year. Then Ci,n+1-i denotes the currently known claims amount of accident year i. 
Let further Si,k = Ci,k – Ci,k-1 denote the incremental claims amount (with Ci,0 = 0) and Ui the 
(unknown) ultimate claims amount of accident year i. Then Ri = Ui – Ci,n+1-i is the (unknown true) 
claims reserve for accident year i. Let finally Si,n+1 = Ui – Ci,n be the incremental claims amount after 
development year n (tail development). 

Bornhuetter-Ferguson (1972) introduced their method to estimate Ri  in order to cope with a major 
weakness of the CL method. Therefore we first consider this weakness. CL uses link ratios (age-to-
age factors) kf̂  and a tail factor ∞f̂  in order to project the current claims amount Ci,n+1-i to ultimate, 
i.e., it estimates ∞−+−+ ⋅⋅⋅⋅= f̂f̂...f̂CÛ ninin,i

CL
i 21 , and therefore the CL reserve is  

( )1211 −⋅⋅=−= ∞−+−+−+ f̂...f̂CCÛR̂ inin,iin,i
CL
i

CL
i . 

This means that the reserve strongly depends on the current amount Ci,n+1-i, which can, for example, 
lead to a nonsense reserve CL

iR̂  = 0 for accident years where currently no claims are paid or 
reported, which is not unusual in excess-of-loss reinsurance for the most recent accident year(s).  

The BF reserve estimate avoids this dependency from the current claims amount Ci,n+1-i. It is 

( )ini
BF
i ẑÛR̂ −+−= 11  

where 
Ûi = i iˆv q  with a prior estimate iq̂  for the ultimate claims ratio qi = Ui/vi of accident year i, 

kẑ ∈ [0, 1] is the estimated percentage of the ultimate claims amount that is expected to be known 
after development year k. 

The term iq̂  is called ‘prior” (or “initial”) as opposed to the posterior estimate (Ci,n+1-i +
BF
iR̂ )/vi  for 

the ultimate claims ratio, which is based on the prior iq̂  and is different iff Ci,n+1-i ≠ iiin q̂vẑ −+1 , i.e., if 
the current claims amount deviates from its estimated expectation. The percentages z1, z2, ... 
constitute the expected cumulative development pattern and 1– inẑ −+1

  is therefore an estimate for 
the percentage of the expected outstanding claims of accident year i. 

Having already an estimate Ûi, the question may arise why BF does not simply use in,iii CÛR̂ −+−= 1  
as reserve estimate. In that case, the reserve estimate would become the higher, the smaller the 
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current amount Ci,n+1-i is and would again strongly depend on Ci,n+1-i.  With CL, the reserve estimate 
behaves just in the opposite way, i.e., is the smaller, the smaller Ci,n+1-i is. Here BF takes a neutral 
position: It does not care about the size of Ci,n+1-i at all, i.e., it considers the deviation between the 
observed amount Ci,n+1-i and the expected amount iin Ûẑ −+1  as purely random and by no means 
indicative for the future development. Altogether, the essential feature of the BF method is to avoid 
any dependency between Ci,n+1-i and BF

iR̂ . 

In order to apply the BF method, the actuary has to estimate the parameters qi and zk for all i and k. 
In practice, the ultimate claims ratios qi are estimated in various ways, mainly based on additional 
pricing and market information in such a way that any expected differences between the accident 
years are reasonably reflected. The zk are usually derived from the (selected) CL link ratios nf̂,...,f̂2  
together with a selected tail factor ∞f̂  in the following way: 

( ) ( ) 1

21

1

1
1 −

∞

−

∞−
−
∞ ⋅⋅⋅=⋅== f̂f̂...f̂ẑ...,,f̂f̂ẑ,f̂ẑ nnnn . 

The systematic use of the CL link ratios assumes that the outstanding claims part is a direct multiple 
of the already known part at each point of the development. This contradicts the basic BF idea of 
the independence between Ci,n+1-i and BF

iR̂ , i.e., between past and future claims, which was 
fundamental for the origin of the BF method. At least, with the use of the CL pattern, the BF 
method cannot really claim to be a standalone reserving method. Moreover, in the following we will 
see that the stochastic BF model suggests a different way to estimate the BF development pattern. 

3. A STOCHASTIC MODEL UNDERLYING THE BF METHOD 

From the BF reserve formula it is clear that the appropriate model for BF has to be cross-classified 
of the type 

E(Ci,k) = xizk or equivalently E(Si,k) = xiyk for 1 ≤ i ≤ n and 1 ≤ k ≤ n+1. 

Because of xiyk = (xia)(yk/a) for any a > 0, xi and yk are only unique up to a constant factor. Thus we 
can—without loss of generality—impose the restriction y1+…+yn+yn+1 = 1. This yields E(Ui) = E(Si,1 
+ … + Si,n+1) = xi and shows that xi can be considered to be a measure of volume for accident year i. 
We therefore will assume in addition that Var(Ui) is proportional to xi or Var(Ui/xi) proportional to 
1/xi. This is the usual assumption for the influence of the volume on the variance. Furthermore, the 
fundamental BF property of independence between past and future claims suggests to assume that 
all increments Si,k of the same accident year are independent – the independence of the accident 
years themselves being a standard assumption anyway. Note that the independence within the 
accident years does not hold in the CL model of Mack (1993). 
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Thus we work with the following model for the increments Si,k, 1 ≤ i ≤ n, 1 ≤ k ≤ n+1: 

(BF1) All increments Si,k are independent. 

(BF2) There are unknown parameters xi, yk with E(Si,k) = xiyk and y1+…+yn+1 = 1. 

(BF3) There are unknown proportionality constants 2
ks  with Var(Si,k) =

2
kisx . 

From these assumptions, we deduce 

E(Ri) = xi(yn+2-i + … + yn+1) = xi(1 – zn+1-i)   with  zk:= y1 + … + yk, 

which shows that the expected claims reserve has the same form as the BF reserve estimate. 
Furthermore, we have  

Var(Ui) = Var(Si1 + … + Si,n+1) = ( )2
1

2
1 +++ ni s...sx , 

which shows that Var(Ui) is proportional to xi as intended. 

This model is thought to be the most general model fitting to the philosophy of the BF method. 
Like with the CL model and as suggested by having an own parameter yk for the expectation in each 
column, it here, too, makes sense to assume that the variability constant 2

ks  is the same for all Si,k 
within each column k but differs from column to column. The simpler assumption Var(Si,k) =  cxiyk 
for all i, k seems to contradict to reality as has already been mentioned by Taylor (2002) because 
then “the coefficient of variation of the claim size is inversely related to the mean claim size,” which 
is “opposite of what one observes.” Moreover, this last variance assumption is just a special case of 
(BF3) and thus less general. Finally, this variance assumption would imply that all yk be > 0, which is 
not the case with (BF3), and which would prevent using the model for incurred claims amounts 
where negative incremental claims are not uncommon. 

Like with the CL model of Mack (1993), this model is heavily parametrized, especially for the late 
development years. But, of course, the actuary may—depending on the data—apply additional 
regression assumptions in order to reduce the number of parameters and to stabilize the estimates. 
This is shown in the numerical example below. 

From the above model, we deduce further 

Var(Ri) = ( )2
1

2
2 +−+ ++ nini s...sx . 

As background for the next section, we note that with x1, …, xn known,  
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1
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,     (1) 

is a linear minimum variance unbiased estimate of yk , 1 ≤ k ≤ n, and 

( )∑
−+

=

−
−

=
kn

i
ikik,ik xŷxS

kn
ŝ

1

1

22 1     (2) 

is an unbiased estimate of 2
ks , 1 ≤ k ≤ n-1. 

4. PARAMETER ESTIMATION FOR THE BF MODEL 

From the model above we clearly see what is meant with calling Ûi a “prior” or “initial” estimate: It 
has to be an estimate ix̂  for the unconditional (= prior, initial) expectation xi = E(Ui) and not for 
the “posterior” expectation E(Ui | Ci,n+1-i), given Ci,n+1-i. This shows that the claims amount Ci,n+1-i = 
Si,1 + …+ Si,n+1-i known so far should not be the main basis for the estimate ix̂ . For example, it 
would be wrong to use for ix̂  the posterior estimate )1(

,
ˆ −

− + nBF
iini RC  of last year’s reserving because 

this is an estimate for E(Ui | Ci,n-i) and not for E(Ui). Even a very large random claim that happened 
in accident year i and is already known must not change the estimate ix̂  as long as it fits the 
randomness assumed in the pricing model. As an extreme example, we might have an accident year 
where ix̂  < Ci,n+1-i. Thus, the estimate Ûi should be prior to making the known claims experience Ci,k 
of accident year i a decisive basis of the estimate. But this does not mean that the prior estimate ix̂  
cannot change during the claims development.  

To fix ideas, let us assume that ix̂  originally stems from pricing (which has taken place before the 
end of development year 1). Usually, the pricing is based on the (trended) claims experience of the 
preceding accident years (i.e., on the years i-1, i-2, …) and on assumptions on the future claims cost 
inflation. This basic information develops from year to year because the claims experience of the 
preceding years develops as well as the relevant inflation index. Thus, we can reprice the business of 
accident year i every later year and thus arrive at updated estimates for xi = E(Ui). We may even 
include the claims experience of the accident years i, i+1, … into this repricing of accident year i as 
long as it can be translated to the portfolio of accident year i. In any case, the own claims experience 
Ci,n+1-i  should only have a marginal influence on ix̂  otherwise we would rather estimate 
E(Ui | Ci,n+1−i). Thus, the estimate ix̂  may change over the years but normally not to a large extent, 
at least if the first estimate for xi came from a sound pricing. 

When the actuary does not have the result of a complete repricing available, he has at least the data 
{vi, Cik} of the run-off triangle. On basis of this data and some rather general information on rate 
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level changes, he may follow the procedure outlined in Mack (2006) which is not a full repricing but 
brings all accident years on about the same claims ratio level as basis for the calculation of the initial 
ultimate claims ratio iq̂ . 

After these clarifying remarks, we assume that the initial estimate Ûi of Section 2 fulfills the 
requirements for being an estimate of xi = E(Ui). Thus we write Ûi instead of ix̂  in the following. 
Having now an estimate iÛ  for E(Ui), we are only left with the task to estimate yk and 2

ks . The main 
problem here is the fact that we have only very few observations for the late development years. As 
we do not have any observations beyond development year n, we cannot estimate the tail ratio yn+1 
without further assumptions. An outside estimate may be gained from similar portfolios with more 
accident years where the claims experience of later development years than year n is available. 
Without such information, the actuary may arrive at an estimate 1+nŷ  by extrapolation from 

nŷ,...,ŷ1  (which are not available yet). Similarly, an estimate for 2
ns  cannot be obtained from the 

only available observation of column n alone but may be obtained by extrapolation, too. Therefore, 
in order to fix ideas for an iterative procedure, we first consider the situation where we have already 
reasonable estimates 1+nŷ , 22

1 nŝ,...,ŝ . Then we can get a weighted least squares estimate (i.e., with the 
weights inversely proportional to the variances) for y1, …, yn by minimizing 

( )∑ ∑
=

−+

=

−
=

n

i

in

k ki

kik,i

ŝÛ
ŷÛS

Q
1

1

1
2

2

 

under the constraint 11 1 +−=++ nn ŷŷ...ŷ . As starting values for the minimization we can use 

∑∑ −+

=

−+

=
=

kn

i i
kn

i k,ik ÛSŷ~ 1

1

1

1
,     (3) 

(see (1)) but these will usually not fulfill the constraint. 

In most cases the data will not be so stable that the resulting least squares estimates nŷ,...,ŷ1  seem 
reliable enough to leave them as they are (especially for k large). Therefore, the actuary will apply a 
smoothing procedure to select his own final *

n
*
n

* ŷ,ŷ,...,ŷ 11 +  (i.e., including a possible revision of the 
tail ratio in view of the other *

kŷ ) with 111 =+++ +
*
n

*
n

* ŷŷ...ŷ . 

On the basis of the fact that the actuary will in any case make some own selections due to the few 
data, he can dispense with the above exact minimization and just proceed as follows: He starts with 
the raw estimates ,nk,ŷ~k ≤≤1  as given in (3) and applies some manual smoothing and 
extrapolating in order to arrive at his final selection for *

n
*
n

* ŷ,ŷ,...,ŷ 11 +  fulfilling 
111 =+++ +

*
n

*
n

* ŷŷ...ŷ . In view of (2), he then estimates 2
ks  by 
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( )∑
−+
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−
−

=
kn

i
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*
kik,ik ÛŷÛS

kn
ŝ~

1

1

22 1 ,   1 ≤ k ≤ n-1,   (4) 

and again applies some smoothing in order to select his final *
n

* ŝ,...,ŝ 2
1

2
1 −  and an extrapolation to 

obtain *
nŝ2 . Note that *

nŝ2
1+  cannot be obtained in this way because it usually has to cover several 

development years as is the case for 1+nŷ , too. Therefore, *
nŝ2

1+  may be arrived at by interpolating a 
regression of  *

kŝ2  against *
kŷ  at the point *

nŷ 1+ . (Note that some kŷ  may be negative.) The whole 
estimation procedure is shown in the numerical example. 

A more formal way to estimate the parameters 2
kk s,y  (in case of rather stable data) would be as 

follows: On the basis of ,nk,ŷ~k ≤≤1  according to (3), we decide on the formula for a smoothing 
regression, e.g., ( ) kŷln k ⋅−= βα  for k above some k1 < n (assuming yk > 0 there), which then is 
extrapolated until some final development year k2 > n. Then we calculate 2

kŝ~  (according to (4) but 
using the smoothened kŷ  for k > k1). The resulting values 2

1
2

1 −nŝ~,...,ŝ~  are now kept fixed and used in 
the above constrained minimization of Q to obtain better values for βα ,,ŷ,...,ŷ k11  under the 
constraint 

( ) ( ) 1)1( 211 1
=−+++−+++ kexp...kexpŷ...ŷ k βαβα . 

Note that in Q we have to leave out the term for (i, k) = (1, n) because now we do not yet have a 
value for nŝ . This minimization yields our selections for all *

kŷ : The values for k = 1, …, k1 are 
obtained directly, those for k = k1+1, …, n  are taken from the smoothing regression and *

nŷ 1+  is 
obtained by adding up the extrapolated values of the regression up to development year  k2. Using 
these *

kŷ , we calculate new values 2
kŝ~  according to (4) and plot ( )2

kŝ~ln  for k > k1 against *
kŷ  or 

( )*
kŷln  in order to select appropriate values for *

kŝ2 , especially for k = n (over *
nŷ ) and k = n+1 

(over *
nŷ 1+ ). Of course, we could now apply another constraint minimization with these new values 

of *
kŝ2 , but usually this will not change much. Note that the values of *

kŝ2  for k > k1 will be 
overestimated a little as we did not change the degrees of freedom in formula (4) for 2

kŝ~  which 
would have been possible as the regression employs fewer parameters. 

As the result of each of these two estimation procedures we have selected *
n

*
n

* ŷ,ŷ,...,ŷ 11 +  and 
*

n
*

n
* ŝ,ŝ,...,ŝ 2

1
22

1 +  from which we estimate the BF claims reserve by 

( ) ( )*
ini

*
n

*
ini

BF
i ẑÛŷ...ŷÛR̂ −++−+ −=++= 112 1   with  *

k
**

k ŷ...ŷẑ ++= 1 . 

*
n

*
n

* ŝ,ŝ,...,ŝ 2
1

22
1 +  will be needed for the prediction error. 

The properties of the above estimators can be sketched as follows: 
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(a) *
n

*
n

* ŷ,ŷ,...,ŷ 11 +  are pairwise (slightly) negatively correlated as they have to add up to unity. 

(b) *
n

*
n

* ŷ,ŷ,...,ŷ 11 +  and therefore also *
n

* ẑ,...,ẑ 11 +  are practically independent from nÛ,...,Û1 as the 
latter do not really influence the size of any *ˆky  because these have to add up to unity in any case and 
because of selections and regressions used. 

(c) i
BF
i RR̂ and  are independent (due to BF1). 

(d) ( ) ( ) .ni,xUEÛE iii ≤≤== 1  

(e) ( ) 11 +≤≤= nk,yŷE k
*
k , and therefore ( ) .nk,zẑE k

*
k 11 +≤≤=  

(f) ( ) .nk,sŝE k
*

k 1122 +≤≤=  

In (d) – (f) we have simply assumed that the actuary’s selections are unbiased. 

The unbiasedness of the reserve estimate BF
iR̂  follows directly from these properties: 

( ) ( ) ( ) ( ) ( )iini
*

ini
BF
i REzxẑEÛER̂E =−=−= −+−+ 11 11 . 

Note that the raw estimates kŷ~  according to (3) are identical to the estimates kβ̂  in Mack (2006) 
which were shown there as being suggested directly by the BF reserve formula itself. In any case and 
even without any smoothing of kŷ~ , the resulting development pattern will turn out to be different 
from the CL pattern (see also the numerical example below). 

Now we are prepared to derive the formula for the prediction error.  

5. THE PREDICTION ERROR OF THE BF METHOD 

As one is interested in the future variability only, given the data observed so far, the mean squared 
error of prediction of any reserve estimate iR̂  is defined to be 

( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛ −= −+ in,i,iiii S,...,SRR̂ER̂msep 11

2
. 

According to (BF1), Ri = Si,n+2-i+…+Si,n+1 is independent from Si,1, …, Si,n+1-i. Also, the BF reserve 
estimate BF

iR̂  can be taken as being independent from Si,1, …, Si,n+1-i (as these play at most a marginal 
role when selecting Ûi  and *

n
*

in ŷ,...,ŷ 12 +−+ ), more precisely, Ri and BF
iR̂  are taken to be commonly 

independent from Si,1, …, Si,n+1-i. Thus we have 

( ) ( )( )2
i

BF
i

BF
i RR̂ER̂msep −=  
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      ( ) ( ) ( )( )2i
BF
ii

BF
i RER̂ERR̂Var −+−=  

      ( ) ( )iBF
i RVarR̂Var += , 

i.e., the mean squared error of prediction is the sum of the (squared) estimation error ( )BF
iR̂Var  and 

of the (squared) process error ( )iRVar .  

For the process error we simply have 

( ) ( ) ( ) ( )2
1

2
212 +−++−+ ++=++= ninin,iin,ii s...sxSVar...SVarRVar , 

which will be estimated by 

( ) ( )*
n

*
inii ŝ...ŝÛRarV̂ 2

1
2

2 +−+ ++= . 

For the estimation error of ( )*
ini

BF
i ẑÛR̂ −+−= 11 , we use the general formula  

( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )22 YEXVarYVarXVarYVarXEXYVar ++=  

for independent random variables X and Y and obtain 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )2*
1

*
1

*
1

2
ˆ1ˆˆˆˆˆˆ

iniiniini
BF
i zEUVarzVarUVarzVarUERVar −+−+−+ −++=  

        ( )( ) ( ) ( )( )2
1

*
1

2 1ˆˆˆ
iniinii zUVarzVarUVarx −+−+ −++= . 

Whereas we have already estimators iÛ  for xi and *
inẑ −+1  for zn+1-i, we still need estimates for 

( )iÛVar  and Var( *
inẑ −+1 ), i.e., we have to quantify the precision of Ûi and *

inẑ −+1 .  

The standard error ( )iÛ.e.s , i.e., an estimate for ( )iÛVar , cannot be obtained from the estimation 
error ( ))1( −nBF

iR̂.e.s  of last year’s reserving because this would ignore the variability of  
Ci,n-i, which has to be included into ( )iÛ.e.s . Like Ûi itself, ( )iÛ.e.s  is best be obtained from a 
repricing of the business. But one has to be cautious there. For example, the variability of the 
posterior claims ratio estimates n

post
n

post vÛ...,,vÛ 11  would underestimate ( )ii vÛ.e.s  because 
these estimates are positively correlated via the common estimates *

kẑ . Similarly, also the initial 
estimates Û1, …, Ûn will usually be positively correlated. Thus the formula  
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j vÛq̂

11
                 (5) 
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(which is analogous to (1), (2) for BF3) is applicable only if the initial estimates Ûj can be assumed to 
be uncorrelated. But even then, using the real premiums vj would include the market cycle of 
premium adequacy into ( )iÛ.e.s , which would overestimate ( )iÛ.e.s  in those situations where we can 
predict the market cycle rather well. Thus, we should remove the influence of the market cycle from 
(5) by using on-level premiums jv~ . In addition, we should correct for any positive correlation 
between the Ûis by replacing the term n − 1 of (5) with for example, n − n  for a constant 
correlation coefficient nˆ U

ij 1=ρ  between Ûi and Ûj or with (approximately) n − n2  for a  

decreasing correlation coefficient ( )jiˆ U
ij −+=ρ 11 ; the precise formula being ∑

++

ρ−
j,i

jiU
ij v

v
v
vn   

with ∑
=

+ =
n

i
ivv

1

. 

Usually, these standard errors s.e.( iÛ ) will not change much over the years. Of course, we will have 
slight changes as long as the Ûi change. But even at the end of the development, we will not know 
E(Ui) much more precisely than at the beginning. The actuary should examine the plausibility of the 
resulting values of s.e.( iÛ ), for instance in the following way: If we assume a normal distribution, 
then the interval ( ))(2)(2 iiii Û.e.sÛ,Û.e.sÛ ⋅+⋅−  will contain the true E(Ui) with 95% probability. 
Thus, if the size of the interval is plausible, then s.e.( iÛ ) is plausible, too. 

Next, we have to decide on how to estimate 

( )*
inẑVar −+− 11  = ( ) ( ) ( )*

n
*

in
*

in
**

in ŷ...ŷVarŷ...ŷVarẑVar 12111 +−+−+−+ ++=++= . 

From property (a) we see that we will be on the safe side when we replace ( )*
in

* ŷ...ŷVar −+++ 11  with 
( ) ( )*

in
* ŷVar...ŷVar −+++ 11 . But whereas the latter sum increases with each additional term, this is not 

the case with ( )*
in

* ŷ...ŷVar −+++ 11  as finally ( )*
n

* ŷ...ŷVar 11 +++  = Var(1) = 0. Therefore we replace 
( )*

kẑVar  = ( )*
kẑVar −1  for small k with ( ) ( )*

k
* ŷVar...ŷVar ++1  and for large k with 

( ) ( )*
n

*
k ŷVar...ŷVar 11 ++ ++ . More precisely, we replace—still being on the safe side—  
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n
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Therefore we estimate ( )*
kŷVar  by 

( )( )
∑ −+

=

= kn

j j

*
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k
Û

ŝŷ.e.s 1

1

2
2

,    1 ≤ k ≤ n.    (6) 

But the value of ( )*
nŷ.e.s 1+  must come from outside. Without this, a plausible choice is often 

( ) *
n

*
n ŷ.ŷ.e.s 11 50 ++ = , i.e., a coefficient of variation ( )*

nŷ.v.c 1+  = 50%, assuming a normal distribution 
with 95% probability within the interval (0; 2 *

1ˆ +ny ).  

Altogether, our estimate ( )( )2*
kẑ.e.s  for ( )*

kẑVar  is 

( )( ) ( )( ) ( )( ) ( )( ) ( )( )( )2
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1

2 *
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*
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*
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**
k ŷ.e.s...ŷ.e.s,ŷ.e.s...ŷ.e.sminẑ.e.s ++ ++++= .  (7) 

In any case, we have ( ) 0)1(1 ==+ .e.sẑ.e.s *
n . Of course, the actuary will check the plausibility of 

( )*
kẑ.e.s  similarly as s.e.( iÛ ) and, if necessary, manually adjust some of the resulting values. 

Thus we finally obtain the following estimator for the mean squared error of prediction: 

( ) ( ) ( )( )( ) ( )( ) ( )( ) ( )21
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1
222
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*
inii

*
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*
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BF
i ẑÛ.e.sẑ.e.sÛ.e.sÛŝ...ŝÛR̂sepm̂ −+−++−+ −+++++= . 

This is the formula one needs for risk-based capital and premium loading calculations as well as for 
the construction of a confidence interval for Ri. In order to check the significance of differences 
between alternative reserve estimates or to construct a confidence interval for E(Ui) one only needs 
the pure estimation error 

( )( ) ( )( )( ) ( )( ) ( )( ) ( )21
22

1
222

1 *
ini

*
inii

BF
i ẑÛ.e.sẑ.e.sÛ.e.sÛR̂.e.s −+−+ −++= . 

A closer analysis of this formula shows that  

( ) ( )*
ini

BF
i ẑ.e.sÛR̂.e.s −+≈ 1  for *

inẑ −+1  close to 1, 

( ) ( ) iii
BF
i ÛÛ.e.sÛR̂.e.s ≈  for *

inẑ −+1  close to 0, 

i.e., for the very green accident years, the uncertainty of the initial ultimate claims estimate is directly 
transferred to the reserve estimate. 

For the overall reserve R = R1 + … + Rn, we have the unbiased estimate BF
n

BFBF R̂...R̂R̂ ++= 1 . Its 
mean squared error of prediction is msep( BFR̂ ) = Var( BFR̂ ) + Var(R). For the process error we have 



The Prediction Error of Bornhuetter-Ferguson 

Casualty Actuarial Society E-Forum, Fall 2008 234 

Var(R) = Var(R1) + … + Var(Rn) due to the independence of the accident years (BF1) and thus get 
the estimate 

( )∑ = +−+ ++=
n

i
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n
*

ini ŝ...ŝÛRarV̂
1

2
1

2
2)( . 

The estimation error Var( BFR̂ ) is more involved because BF
n

BF R̂,...,R̂1  are positively correlated via 
the common parameter estimates *

kŷ  (and in addition via the Ûis). We have 
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For ( ) ( ))1()1( 11
*

jnj
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BF
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BF
i ẑÛ,ẑÛCovR̂,R̂Cov −+−+ −−=  we use the general formula 

Cov(XY, WZ) = Cov(X, W) E(Y) E(Z) + Cov(X, W) Cov(Y, Z) + E(X) E(W) Cov(Y, Z) 

for random variables X, Y, W, Z where the sets {X, W} and {Y, Z} are independent. We omit the 
term in the middle, which is of lower order, and obtain 
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with the correlation coefficients 
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z
ij ẑVarẑVarẑ,ẑCov −+−+−+−+ −−=ρ . 

Thus, we only have to estimate these correlation coefficients as we have estimates for all the other 
terms. If the actuary does not has the possibility to obtain data-based estimates for U

ijρ  (e.g., from 
repricing) and z

ijρ , he may simply use one of the two estimates U
ijρ̂  as given above (after (5)) and 
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  for i < j and *
n

* ẑ...ẑ 11 +≤≤ . 

The latter estimate stems from assuming a Dirichlet distribution (which is a generalization of the 
Beta distribution) for *

n
* ŷ,...,ŷ1 . Thus we finally get 
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with  
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i ÛÛẑ.e.sẑ.e.sˆẑẑÛ.e.sÛ.e.sˆR̂,R̂ovĈ )( )(11)()( 1111 −+−+−+−+ ρ+−−ρ= . 

6. NUMERICAL EXAMPLE 

The paid triangle of Exhibit A of Mack (2006), see also Table 0 below, with n = 13 is used as 
example and we keep the initial ultimate claims estimates iÛ  from there (Exhibit C, column (I)), see 
Table 2 below, second column. In a first approach, we also keep the development pattern *

kẑ  (= bk 
of Exhibit C, row (9), of Mack (2006)), see the row “selected z” in the first block of Table 1 below. 
This pattern can also be obtained—except for rounding differences—from the raw estimates kŷ~  
according to (3) by manually smoothing with the selections *ŷ8 = 8%, *ŷ9  = 5%, *ŷ10 =3.7%, 

*ŷ11 =2.1%, *ŷ12 =1.5%, *ŷ13 =1.4% and a tail ratio *ŷ14 =3.5%, see the second and third row of Table 1 
below. In Mack (2006), this tail ratio was based on the calculation for the incurred data. From the 
pattern and the initial iÛ  the reserve estimates ( ) ( )*

ini
*
n

*
ini

BF
i ẑÛŷ...ŷÛR̂ −++−+ −=++= 112

1 1  are 
calculated. These reserves, see the fourth column of Table 2, are thus the same as in Mack (2006) 
except for rounding differences.  

For the prediction error, we first select *
kŝ2 . For this purpose, we calculate the raw 2

kŝ~  according to 
(4) and plot ( )2

kŝ~ln  against *
kŷ  for the decreasing part k ≥ 4. We see that the plot looks reasonably 

smooth. Crucial cases are always 2
1−nŝ~  and 2

2−nŝ~ , which rely on very few data. Here (n=13), according 
to the plot, 2

2−nŝ~ = 21.8 and 2
1−nŝ~ = 19.5 seem to be rather small. Thus, we adjust these to **

n ŝŝ 2
11

2
2 =− = 

30, **
n ŝŝ 2

12
2

1 =− = 25, leave 2
kŝ~ , 1 ≤ k ≤ 10, as they are, i.e., 22

k
*

k ŝ~ŝ = ,  and manually select from the 
plot the missing values *ŝ2

13 = 20 (over *ŷ13 =1.4%) and *ŝ2
14 = 35 (over *ŷ14 =3.5%). With these 

selections for *
kŝ2 , we calculate ( )*

kŷ.e.s  for 1 ≤ k ≤ n = 13 according to (6) and find the resulting 
values and their coefficients of variation plausible. Then, we have to quantify our uncertainty on 

*ŷ14 = 3.5% and select it to be ( )*ŷ.e.s 14  = 1.5% assuming a 95%-range from 0.5% up to 6.5%. This 
fits well to the s.e. of *ŷ10 , which is close to *ŷ14 . Now we calculate ( )*

kẑ.e.s   according to (7). All 
estimates and selections are shown in the first block of Table 1, where a bold number indicates a 
pure selection or a change from the raw estimate.  

Finally, we have to select s.e.( iÛ ). In this example, we have an extreme premium cycle: The ultimate 
claims ratios Ûi/vi first decrease to 63%, then increase to 277%, then decrease again to 69% (see 
Mack (2006)). Thus, an application of equation (5) does not make sense. In Mack (2006), on-level 
premium factors ri

* were estimated which bring all accident years on about the same claims ratio  
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level. Then, the prior Ûi were chosen to be  

( )11 +++= n
**

iii ŷ~...ŷ~m̂rvÛ  

with kŷ~  according to (3) and a certain constant factor *m̂ . We can assume that the variability of 
**

i m̂r  is small compared to the one of  11 +++ nŷ~...ŷ~ . Then we have 

( ) ( ) ( ) ( ) ( ))()( 11
2

11
2

++ ++=++≈ n
**

iin
**

iii ŷ~Var...ŷ~Varm̂rvŷ~...ŷ~Varm̂rvÛVar  

because the kŷ~ s are fully independent due to BF1 as they do not have to add up to unity. As in the 
derivation of (6), we have  

( ) ∑ −+

=
≈

kn

j jkk Ûsŷ~Var 1

1
2 , i.e., we take ( ) ( ) ∑ −+

=
==

kn

j jk
*
kk Ûŝŷ.e.sŷ~.e.s 1

1
222

)()( . 

Finally, in order to get rid of the factor **
ii m̂rv , we consider the coefficient of variation and obtain 

( ) ( ) ( ) ( )
%76

)()(

11

2

1

2

1 .
ŷ~...ŷ~

ŷ~.e.s...ŷ~.e.s
Û

Û.e.sÛ.v.c
n

n

i

i
i =

++
++

≈=
+

+ . 

As we have ignored the variability of **
i m̂r  and have eliminated the full premium cycle (which 

probably would not have been achieved a priori), we deliberately increase this c.v. to ( )iÛ.v.c  = 10% 
for all accident years i. This is considered to be a rather high uncertainty for an estimate of E(Ui) for 
classical insurance business because, e.g., for Ûi/vi = 90%, this corresponds to a wide 95% 
confidence range of (72%; 108%)—note that this is the range for E(Ui) and not for Ui! 

Note further that this approach only works for prior estimates Ûi that were obtained in this specific 
way. It cannot be applied to estimates Ûi obtained differently, e.g., via repricing, because each 
approach to Ûi has its own uncertainties. Normally, c.v.(Ûi) will not be the same for all accident years 
but will be lower for years with higher volume. In our example, we leave c.v.(Ûi) = 10% constant (see 
the third column of Table 2) assuming the varying volume has essentially been caused by writing 
varying shares of the same treaties. With these selections, we obtain the error estimates shown in the 
block “Bornh/Ferg 1” of Table 2. 

We also may apply the alternative estimation procedure described in Section 4: Then, we do not use 
the pattern of Mack (2006) but start with the original raw kŷ~  according to (3) (see second row of 
Table 1) and select as last payment year k2 = 20. Looking at the plot of ( )kŷ~ln  against k, we select 
k1 = 3 and take an initial smoothing regression ln( kŷ ) = α–βk with α = −0.03874 and β = 0.3632 
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for k > k1. With the resulting initial values for kŷ , initial values for 2
1ŝ~ , …, 2

1−nŝ~  are calculated 
according to (4), which then are kept fixed during the following minimization of Q (without the 
term for i=1 and k=n=13). The minimum 79.98 is obtained at *ŷ1  = 0.65%, *ŷ2 = 4.7%, *ŷ3 =13.0%, 
α = -0.4003, and β = 0.2920, which leads to *ŷ14 = 3.9% by adding up the extrapolated values for kŷ  
from k=14 to k=20. For the other *

kŷ  (from the new regression) and the resulting *
kẑ  see the block 

“Alternative Estimates” of Table 1. Then the corresponding new 2
kŝ~  are calculated according to (4) 

and the resulting values ( )2
kŝ~ln  are plotted against *

kŷ  for k > k1. In view of this plot, we change 
2

12ŝ~ = 18.7 to *ŝ2
12 = 25 and select *ŝ2

13 = 23 and *ŝ2
14 = 36. Finally, we calculate ( )*

kŷ.e.s  according to (6) 
and select ( )*ŷ.v.c 14  = 50% which gives ( )*ŷ.e.s 14 = 1.93. The resulting reserves 2BF

iR̂ , see Table 2, 
block “Bornh/Ferg 2,” are slightly higher than 1BF

iR̂  for the old years and slightly lower for the new 
ones. The amounts (not the percentages) of the prediction error (using c.v.(Ûi) = 10% as before) are 
all a little bit higher. Using ( )jiˆ U

ij −+=ρ 11 , the overall reserve is 2BFR̂ = 875,497 with a prediction 
error of 72,940 consisting of an estimation error of 62,770 and a process error of 37,152. 

As comparison we apply the Chain Ladder method, too. All parameters used are given in the last 
block of Table 1. We have replaced the last four raw age-to-age factors with 1.04, 1.03, 1.02, 1.015, 
and selected a tail factor of 1.04. The latter is in accordance with the tail ratio of 3.5% - 3.9% used 
above. From the age-to-age factors we can derive the corresponding cumulative  development 
pattern kẑ  as described in Section 2. The resulting values shown in Table 1 are close to the z-
estimates of the two BF approaches but not identical. The implementation of the tail factor into the 
formulae for the prediction error has been done according to Mack (1999). The raw sigma-
parameters (see Mack (1993) or Mack (1999)) have been kept and were supplemented with 2

nσ̂ = 18 
and 2

1+nσ̂ = 40 on basis of a plot of ( )2
kˆln σ  against ( )1−kf̂ln . Finally, for the tail factor, ( )1+nf̂.e.s  = 

0.02 was assumed, i.e., a 95%-range from 1.00 to 1.08. This yields the results shown in the last block 
of Table 2. The CL reserves are close to the ones of BF except for the most recent years 2003 and 
2004: In 2003, the CL reserve is about half of the BF reserve, whereas in 2004 the CL reserve is 
more than twice the BF reserve. This higher volatility is reflected in the markedly higher prediction 
errors for i ≥ 1999, caused by a much higher process error. The CL and BF reserve estimates for 
1992–2002 are not significantly different (i.e., not different by more than ( )iR̂.e.s⋅2 ). But the 
reserves for 2003 are judged as being different by either method; the 2004 reserves are only different 
from the BF viewpoint whereas the CL estimation error is so large that the BF reserve is not judged 
to be different although it is less than 50% of the CL reserve. This is a good example for the fact 
that CL often cannot be reasonably applied in the standard way for new accident years in Excess 
business where almost nothing is paid in the first development year(s). 
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CONCLUSION 

On the basis of the BF reserve formula, this paper has developed a stochastic model for the BF 
method that incorporates the fundamental BF property of the independence between past and 
future claims amounts (see model assumption BF1). Model assumption BF2 is a direct consequence 
of the BF reserve formula too. Only assumption BF3 is not forced by the method itself but this 
assumption is rather general and is only needed to derive the formula for the prediction error. 
Already from assumptions BF1 and BF2 important consequences for a sound application of the 
method can be drawn. One is the fact that the appropriate BF development pattern should not be 
derived from the CL age-to-age factors but be calculated independently on basis of formula (3). This 
makes BF a fully standalone reserving method. Moreover, the stochastic model gives important 
advice on how to arrive and how not to arrive at the initial estimate for the ultimate claims amount. 
For example, it shows that a procedure that is often used in automated reserving systems is rather 
questionable: It is the use of last year’s posterior estimate as initial estimate for this year’s reserving. 
On the other hand, the model shows that the initial estimate for an individual accident year may 
change over time as the information that has led to the estimate develops. 

The independence assumption BF1 may seem more restrictive than the corresponding assumption 
of the CL model of Mack (1993). The required independence between the incremental amounts 
within every accident year may be violated, e.g., by changes in the reserving process or in the 
reporting behavior. In the CL model, this independence is not required, but a similar requirement 
can be deduced from the CL model: It is the fact that the individual development factors Ci,k+1/Cik 
must be uncorrelated within every accident year. This needs not be fulfilled in the BF model but can 
be violated by the same changes as mentioned before. As a consequence, we obtain a way of how to 
decide which model better suits the data by checking these independence/uncorrelatedness 
properties. Here we see the main advantage of having a model: It gives some guidance on how to 
estimate the parameters and allows various procedures (e.g., tests, plots) to see which model better 
suits the data. And, last but not least, it gives the possibility to quantify the reserve variability. 

Especially for the BF model, the guidance mentioned leaves enough room for the actuary to bring in 
his specific knowledge of the business as it was always the case with the BF method. He has to select 
the parameters (as before) and, in addition, must assess his uncertainty about his selections. The 
guidance given by the model makes this crucial task feasible. And as a reward, the actuary usually will 
obtain less volatile reserve results than with CL, especially for the most recent accident years (see the 
example above). This is a big advantage regarding risk modeling and premium loading calculations. 
Altogether, this paper gives BF a stochastic foundation equivalent to the one already available for 
CL. 
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Stochastic Loss Reserving with the Collective Risk Model 

Glenn Meyers, FCAS, MAAA, Ph.D. 
________________________________________________________________________ 
Abstract 
This paper presents a Bayesian stochastic loss reserve model with the following features. 

1. The model for expected loss payments depends upon unknown parameters that determine the expected loss 
ratio for the given accident years and the expected payment for each settlement lag. 

2. The distribution of outcomes is given by the collective risk model in which the expected claim severity 
increases with the settlement lag.  The claim count distribution is given by a Poisson distribution with its mean 
determined by dividing the expected loss by the expected claim severity. 

3. The parameter sets that describe the posterior distribution of the parameters in (1) above are calculated with 
the Gibbs sampler. 

4. For each parameter set generated by the Gibbs sampler in (3), the predicted distribution of outcomes is 
calculated using a Fast Fourier Transform (FFT).  The Bayesian predictive distribution of outcomes is a 
mixture of the distributions of outcomes over all the parameter sets produced by the Gibbs sampler. 

This paper concludes by applying this model to the problem of calculating risk margins for loss reserves using a cost of 
capital formula. 

Keywords 
Reserving Methods, Reserve Variability, Uncertainty and Ranges, Collective Risk Model, Fourier Methods, Bayesian 
Estimation 
_____________________________________________________________________________________ 

1. Introduction 

Over the years, there has been an increasing recognition that consideration of the random nature 

of the insurance loss process leads to better predictions of ultimate losses.  Some of the papers that 

led to this recognition include Stanard [11] and Barnett and Zehnwirth [1].  Another thread in the 

loss reserve literature has been to recognize outside information in the formulas that predict ultimate 

losses.  Bornhuetter and Ferguson [2] represents one of the early papers exemplifying this approach. 

More recently, papers by Meyers [7] and Verrall [12] have combined these two approaches with a 

Bayesian methodology.  This paper continues the development of the approach started by Meyers 

and draws from the methodology described by Verrall. 

As the actuarial profession improves its ability to describe the variability of its ultimate loss 

projections, there arises the question on how one should take this variability into account when 

setting loss reserves.  One proposal originated by the International Association of Insurance 

Supervisors (IAIS) calls for a risk margin to be added to the actuarial present value of the future loss 

payments.  This paper applies its loss reserve model to the calculation of risk margins. 
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A significant accomplishment of the Meyers paper cited above was that it made predictions of 

the distribution of future losses of real insurers, and successfully validated these predictions on 

subsequent reported losses.  To do this, it was necessary to draw upon data that, while generally 

available, comes at a price.  While this made a good case that the underlying model is realistic, it 

tended to inhibit future research on this methodology.  This paper uses simulated data so that 

readers can verify all calculations.  In addition, this paper includes the code that produced all results 

and, with minor modifications, it should be possible to use this code for other loss reserving 

applications. 

2. The Collective Risk Model 

This paper analyzes a 10 x 10 triangle of incremental paid losses organized by rows for accident 

years 1, 2, …, 10 and by columns for development lags 1, 2, …, 10.  We also have the premium 

associated with each accident year.  Table 1 gives the triangle that underlies the examples in this 

paper. 

Table 1 (000) 
 

AY Premium Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8 Lag 9 Lag 10
1 50,000 7,168 11,190 12,432 7,856 3,502 1,286 334 216 190 0
2 50,000 4,770 8,726 9,150 5,728 2,459 2,864 715 219 0
3 50,000 5,821 9,467 7,741 3,736 1,402 972 720 50 
4 50,000 5,228 7,050 6,577 2,890 1,600 2,156 592  
5 50,000 4,185 6,573 5,196 2,869 3,609 1,283  
6 50,000 4,930 8,034 5,315 5,549 1,891  
7 50,000 4,936 7,357 5,817 5,278  
8 50,000 4,762 8,383 6,568  
9 50,000 5,025 8,898  
10 50,000 4,824   

Our job is to predict the distribution of losses in the empty cells (AY + Lag >11) and to predict 

the distribution of the sum of losses in the empty cells. 
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Let us start by considering two models for the expected loss. 

Model 1 – The Cape Cod Model 

 ,E AY Lag AY AY LagLoss Premium ELR Dev⎡ ⎤ = ⋅ ⋅⎣ ⎦  (1) 

The unknown parameters in this model are ELRAY (AY = 1, 2, …, 10) and DevLag  (Lag = 1, 2, 

…, 10). The structure of the parameters is similar to the “Cape Cod” method discussed in Stanard 

[11] but, as we shall see, this paper’s method of parameterizing the model is different. 

Model 2 – The Beta Model 

In the Cape Cod model, set  

 ( ) ( )/10 | , ( 1) /10 | ,LagDev Lag a b Lag a b= β −β −  (2) 

where ( )| ,x a bβ is the cumulative probability of a beta distribution with unknown parameters a and 

b as parameterized in Appendix A of Klugman, Panjer and Willmot [5]. 

The Beta model replaces the ten unknown DevLag parameters in the Cape Cod model with the two 

unknown parameters a and b.  I chose these models as representatives of a multitude of possible 

models that can be used in this approach.  Other examples in this multitude include the models in 

Meyers [7], who uses a Cape Cod model with constraints on the DevLag parameters, and Clark [3], 

who uses the Loglogistic and Weibull distributions to project DevLag parameters into the future.  
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Let XAY,Lag be a random variable for the loss in the cell (AY,Lag).  We describe the distribution of 

XAY,Lag by the collective risk model, which can be described by the following simulation algorithm. 

Simulation Algorithm 1 
 

1. Select a random claim count, NAY,Lag from a Poisson distribution with mean ,AY Lagλ .   

2. For i = 1, 2, …, NAY,Lag, select a random claim amount, ZLag,i. 

3. Set
,

, ,
1

AY LagN

AY Lag Lag i
i

X Z
=

= ∑ , or if NAY,Lag = 0, then XAY,Lag = 0. 

This paper assumes that the claim severity distributions of ZLag are given.  In our example, we use 

the Pareto distribution with the cumulative distribution function: 

 ( ) 1F z
z

αθ⎛ ⎞= − ⎜ ⎟+ θ⎝ ⎠
. (3) 

We set α = 2 for all settlement lags.  θ will vary by settlement lag as noted in the following table. 

 Table 2 
 

Lag 1 2 3 4 5 6 7-10 

θ  (000) 10 25 50 75 100 125 150 

Note that the average severity increases with the settlement lag, which is consistent with the 

common observation that larger claims tend to take longer to settle. 

To summarize, we have two models (the Cape Cod and the Beta) that give E[XAY,Lag] in terms of 

the unknown parameters {ELRAY} and {DevLag}.  We also assume that the claim severity 

distributions of ZLag are known.  Then for any selected {ELRAY} and {DevLag}, we can describe the 

distribution of XAY,Lag by the following steps.  

1. Calculate   ,
,

E

E E
AY Lag AY AY Lag

AY Lag
Lag Lag

X Premium ELR Dev
Z Z

⎡ ⎤ ⋅ ⋅⎣ ⎦λ = =
⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

. 

2. Generate the distribution of XAY,Lag using Simulation Algorithm 1 above. 

3. The Posterior Distribution of Model Parameters 
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Let X denote the data in Table 1.  Let { } { }( )| ,AY LagELR DevXl  be the likelihood (or 

probability) of X given the parameters {ELRAY} and {DevLag}.  Note that defining a distribution in 

terms of a simulation algorithm does not lend itself to calculating the likelihood.  To do this we must 

resort to some math that is described in detail in Appendix B.  At this point, the reader should know 

that we are approximating the likelihood with something called the overdispersed negative binomial 

distribution.  

 The maximum likelihood estimator has been historically important and, as we shall see, will also 

be important in this paper.  Over the past decade or so, a number of popular software packages 

began to include flexible function-maximizing tools that will search over a space that includes a fairly 

large number of parameters.  Excel™ Solver is one such tool.  With such a tool, the software 

programs1 that accompany this paper calculate the maximum likelihood estimates for the Cape Cod 

and the Beta models. 

The Cape Cod program calculates the maximum likelihood estimate by searching over the space 

of {ELRAY} and {DevLag}, subject to a constraint that
10

1

1Lag
Lag

Dev
=

=∑ .  The Beta program feeds the 

results of Equation 2 into the likelihood function used in the Cape Cod program as it searches over 

the space of {ELRAY}, a and b.  Table 3 gives the maximum likelihood estimates for each model. 

                                                 
1 The programs are written in R, a freely downloadable statistical package.  See Meyers [6] for a review of this package. 
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Table 3 

 
 Cape Cod Beta 
 ELR Dev ELR Dev 

AY/Lag 
1 0.89090 0.16948 0.89205 0.15991 
2 0.65285 0.26864 0.65670 0.27295 
3 0.64448 0.23763 0.69949 0.24156 
4 0.55233 0.15539 0.51727 0.16661 
5 0.48569 0.07865 0.51696 0.09488 
6 0.57259 0.05524 0.53697 0.04410 
7 0.56411 0.01771 0.60935 0.01576 
8 0.58207 0.00581 0.53487 0.00378 
9 0.61922 0.00654 0.68940 0.00044 

10 0.52190 0.00491 0.63902 0.00001 
   a = 1.90742 
   b = 5.78613 

  

Let us now develop the framework for a Bayesian analysis.  The likelihood function 

{ } { }( )| ,AY LagELR DevXl  is the probability of X, given the parameters {ELRAY} and {DevLag}.  

Using Bayes’ Theorem, one can calculate the probability of the parameters {ELRAY} and {DevLag} 

given the data, X.   

 { } { }{ } { } { }( ) { } { }{ }Pr , , Pr ,AY Lag AY Lag AY LagELR Dev ELR Dev ELR Dev∝ ⋅X Xl . (4) 

A discussion of selecting the prior distribution { } { }{ }Pr ,AY LagELR Dev is in order.  This paper 

has the advantage that it is working with simulated (i.e., made up) “data” so it is editorially possible 

to select anything as a prior distribution.  However, I would like to spend some time to illustrate one 

way to approach the problem of selecting the prior distribution when working with real data. 

  Actuaries always stress the importance of judgment in setting reserves.  Actuarial consultants 

will stress the experience that they have gained by examining the losses of other insurers.  Meyers [7] 

formalizes this by examining the maximum likelihood estimates of the {DevLag} parameters from the 
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data of 40 large insurers.  In an effort to keep the examples in this paper as realistic as possible, I 

looked at the same data and selected the prior distribution as follows. 

Beta Model2: ( ), with 75 and 0.02a Γ α θ α = θ =�  (5) 

 ( ), with 25 and 0.20b Γ α θ α = θ =�  (6) 

Figure 1 shows the DevLag paths generated from a sample of fifty (a,b) pairs sampled from the 

prior distribution. 

 Figure 1 
 

 

 

 

 

 

 

For the Cape Cod model, I calculated the mean and variance of the DevLags simulated from a large 

sample of (a,b) pairs and selected the following parameters for the gamma distribution for each 

DevLag. 

Table 4 
 
Γ\Lag 1 2 3 4 5 6 7 8 9 10 

α 11.1010 64.6654 190.1538 34.9314 10.7284 4.4957 2.1298 1.0295 0.4574 0.1556
θ 0.0206 0.0041 0.0011 0.0040 0.0079 0.0101 0.0097 0.0073 0.0039 0.0009

 

                                                 
2 We will use the gamma (Γ) distribution as parameterized in Appendix A of Klugman, Panjer, and Willmot [5]. 
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Before discussing the prior distribution of each ELRAY, let us take a short side trip and look at 

the compound negative multinomial model3, described by the following simulation algorithm. 

Simulation Algorithm 2 

1. For each accident year, select χAY at random from a gamma distribution with mean 1 and 

variance c. 

2. For each accident year and settlement lag, select a claim count, NAY,Lag, at random from a 

Poisson with mean χAY⋅λAY,Lag.  (See the end of Section 2 for a description on how to 

determine the λAY,Lags.)  

3. For i = 1, 2, …, NAY,Lag, select a random claim amount, ZLag,i. 

4. For each accident year and settlement lag, set  
,

, ,
1

AY LagN

AY Lag Lag i
i

X Z
=

= ∑ . 

Note that for a given accident year, the XAY,Lags are correlated because of the common χAY that is 

in each Lag’s expected claim count.   

This paper uses the compound negative multinomial model for the losses XAY,Lag. At first glance, it 
might seem that this is different from the collective risk model described in Simulation Algorithm 1.  
But note that both the Cape Cod and the Beta models treat the ELRAYs as unknown parameters.  So 
by assigning a prior distribution to each ELRAY so that its coefficient of variation squared is equal to 
the c in the negative multinomial model, we are explicitly modeling a random accident-year effect.  
With this in mind I selected each   

 ELRAY  � Γ(α,θ) with α = 100 and θ = 0.007. (7) 

Note that the expected value of each ELRAY = α⋅θ = 0.70 and the coefficient of variation of 

each 1/ 0.1AYELR = α = .  

As we observe data points xAY,Lag in X, we gain information about the χAY in each accident year.  

As we shall see, treating each ELRAY as an unknown parameter allows us to use this information in 

predicting the outcomes of future lags. 

This paper uses the Gibbs sampler to generate random samples of the {ELRAY} and {DevLag} 

parameters that represent the posterior distribution.  Scollnik [10] introduced the Gibbs sampler to 

the CAS literature. Verrall [12] gives an application of it to a loss reserving problem.   

For the Cape Cod model, this paper implements the Gibbs sampler as follows. 
                                                 
3 The compound negative multinomial distribution was introduced to the CAS literature by Mildenhall [9]. 
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 Simulation Algorithm 3 

1. Given the data triangle X, calculate the maximum likelihood estimates Dev1,Lag for Lag = 1, 

…,10 and ELR1,AY for AY = 1,…,10.  Keep the maximum likelihood, ML, for future 

reference.  Set i = 1. 

2. Replace i by i+1, set Devi,Lag = Devi-1,Lag and set ELRi,AY = ELRi-1,AY. 

3. For Lag = 1 to 10: 

a. Replace Devi,Lag with a random number taken from the prior distribution of DevLag and 

calculate its likelihood L. 

b. Select a random number, u, from a uniform (0,1) distribution. 

c. If L/ML < u, then return to Step 3a, otherwise continue to the next step.  

4.  For AY = 1 to 10: 

a. Replace ELRi,AY with a random number taken from the prior distribution of ELRAY 

and calculate its likelihood L. 

b. Select a random number, u, from a uniform (0,1) distribution. 

c. If L/ML < u, then return to Step 4a, otherwise continue to the next step. 

5. Return to Step 2 until i is greater than a selected n.  

The intuition behind this algorithm is that a parameter “applies” to be included in the Gibbs 

sample in proportion to its prior probability.  Each applicant is “accepted” into the sample in 

proportion to its likelihood.  So the probability of a parameter being included in the sample is the 

product of the probability of applying times its likelihood, which in turn is equal to its posterior 

probability.  See Equation 4 above. 
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Figure 2 provides a graphic comparison between the prior distribution and the posterior 

distribution, as represented by the output of Simulation Algorithm 3.  The upper histograms are 

random samples of ELR1, taken from its prior and posterior distributions.  The lower graphs 

represent the paths taken from the prior and posterior {DevLag} distributions.  

Figure 2 
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For the Beta model, we implement the Gibbs sampler as follows. 

Simulation Algorithm 4 

1. Given the data triangle X, calculate the maximum likelihood estimates a1, b1 and ELR1,AY for 

AY = 1,…,10.  Keep the maximum likelihood, ML, for future reference.  Set i = 1. 

2. Replace i by i+1, set ai = ai-1, set bi = bi-1 and set ELRi,AY = ELRi-1,AY. 

3. For pi = ai and then bi: 

a. Replace pi with a random number taken from the prior distribution of p, calculate the 

associated Devi,Lags using Equation 2 and calculate the likelihood L. 

b. Select a random number, u, from a uniform (0,1) distribution. 

c. If L/ML < u, then return to Step 3a, otherwise continue to the next step.  

4.  For AY = 1 to 10: 

d. Replace ELRi,AY with a random number taken from the prior distribution of ELRAY 

and calculate the likelihood L. 

e. Select a random number, u, from a uniform (0,1) distribution. 

f. If L/ML < u, then return to Step 4a, otherwise continue to the next step. 

5. Return to Step 2 until i is greater than a selected n.  

  Each iteration is a step in a Markov chain of random transformations in the parameter space 

{ELRAY} and {DevLag}.  It is well know that Markov chains will converge to a limiting distribution 

and that, when executed as described in these simulation algorithms, the limiting distribution will be 

the posterior distribution.    

The random parameters generated by the first several iterations of the Gibbs sampler may not be 

distributed as the limiting distribution.  So it is a general practice to discard parameters that are 

generated early in the process.  By examining successive blocks of parameters in the examples in this 

paper, I concluded that using parameters generated after 250 iterations4 of Simulation Algorithms 3 

and 4 was sufficiently accurate for our purposes.  Table 5 shows some illustrative results that came 

out of Simulation Algorithm 4 being applied to the data in Table 1. 

 Table 5 

                                                 
4 One may find other sources that recommend thousands of iterations.  But these sources generally count one draw of a 
parameter from its prior distribution as one iteration.  When counting that way, 250 iterations of Simulation Algorithms 
3 and 4 represent 5,000 and 3,000 iterations respectively. 
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Iteration ELR1 ELR2 ELR3 ELR4 ELR5 ELR6 ELR7 ELR8 ELR9 ELR10 
251 0.75403 0.69942 0.62441 0.56447 0.51833 0.60362 0.61284 0.60487 0.66776 0.63434
252 0.84815 0.73598 0.64300 0.59662 0.50991 0.66961 0.63046 0.65861 0.78867 0.62436
253 0.82959 0.65535 0.62372 0.58285 0.54446 0.65939 0.62067 0.66337 0.77458 0.68514
254 0.82214 0.67833 0.72494 0.58108 0.59692 0.64186 0.64096 0.69660 0.63273 0.71884
255 0.85885 0.70338 0.65320 0.60643 0.57145 0.65768 0.74067 0.64207 0.61538 0.56273
256 0.82655 0.68402 0.71207 0.57685 0.50899 0.62291 0.68097 0.60459 0.73825 0.62867
257 0.86339 0.71486 0.62554 0.55949 0.54898 0.57494 0.63603 0.66952 0.68241 0.61616
258 0.81831 0.64761 0.73752 0.61186 0.63983 0.62646 0.61374 0.67133 0.64861 0.62245
259 0.80801 0.66089 0.70570 0.61823 0.57213 0.62688 0.58704 0.69212 0.62392 0.67231
260 0.81955 0.65917 0.61623 0.64292 0.56440 0.61969 0.61458 0.67270 0.74439 0.59132

           
           

Iteration Dev1 Dev2 Dev3 Dev4 Dev5 Dev6 Dev7 Dev8 Dev9 Dev10 
251 0.17353 0.26609 0.23075 0.16171 0.09592 0.04754 0.01863 0.00509 0.00072 0.00002
252 0.17373 0.26219 0.22815 0.16179 0.09773 0.04965 0.02012 0.00576 0.00087 0.00003
253 0.15662 0.25141 0.22857 0.16863 0.10601 0.05625 0.02396 0.00730 0.00119 0.00004
254 0.15514 0.24770 0.22656 0.16906 0.10796 0.05847 0.02559 0.00808 0.00139 0.00005
255 0.16275 0.25121 0.22557 0.16608 0.10487 0.05622 0.02435 0.00760 0.00130 0.00005
256 0.16274 0.24870 0.22378 0.16595 0.10596 0.05768 0.02550 0.00819 0.00145 0.00006
257 0.16549 0.25142 0.22449 0.16497 0.10422 0.05600 0.02436 0.00766 0.00132 0.00005
258 0.15983 0.24720 0.22401 0.16705 0.10721 0.05865 0.02607 0.00842 0.00151 0.00006
259 0.17049 0.25879 0.22734 0.16312 0.09993 0.05165 0.02138 0.00629 0.00099 0.00003
260 0.16584 0.26100 0.23092 0.16494 0.09979 0.05056 0.02034 0.00574 0.00085 0.00003
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One can often find interesting information about the uncertainty in the parameter estimates by 

examining tables of parameters generated by the Gibbs sampler.  Figure 3 below show the 

coefficients of variation (CV) of the loss ratio estimates taken from 2,500 additional iterations of the 

sample in Table 5.  This illustrates how we gain information about the ultimate loss ratio as we get 

more data from each accident year.  Wacek [13] gives another approach to estimating loss ratios as 

we gain information over time.  

Figure 3 
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4. The Predictive Distribution of Outcomes  

Now that we have the posterior distribution estimated from the data of Table 1, we now turn to 

the problem of predicting future outcomes, XAY,Lag, when AY + Lag > 11. 

 Table 1 (000)  (Repeated)  

AY Premium Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8 Lag 9 Lag 10
1 50,000 7,168 11,190 12,432 7,856 3,502 1,286 334 216 190 0
2 50,000 4,770 8,726 9,150 5,728 2,459 2,864 715 219 0 X2,10

3 50,000 5,821 9,467 7,741 3,736 1,402 972 720 50 X3,9 X3.10

4 50,000 5,228 7,050 6,577 2,890 1,600 2,156 592 X4,8 X4,9 X4,10

5 50,000 4,185 6,573 5,196 2,869 3,609 1,283 X5,7 X5,8 X5,9 X5,10

6 50,000 4,930 8,034 5,315 5,549 1,891 X6,6 X6,7 X6,8 X6,9 X6,10

7 50,000 4,936 7,357 5,817 5,278 X7,5 X7,6 X7,7 X7,8 X7,9 X7,10

8 50,000 4,762 8,383 6,568 X8,4 X8,5 X8,6 X8,7 X8,8 X8,9 X8,10

9 50,000 5,025 8,898 X9,3 X9,4 X9,5 X9,6 X9,7 X9,8 X9,9 X9,10

10 50,000 4,824 X10,2 X10,3 X10,4 X10,5 X10,6 X10,7 X10,8 X10,9 X10,10

 

While there are many statistics of interest that one could examine, I chose to examine the 

predictive distribution of the total reserve: 

 
10 10

,
2 12

AY Lag
AY Lag AY

R X
= = −

= ∑ ∑ . (8) 

Suppose we have a set of parameters {ELRAY} and {DevLag} calculated from several iterations of 

the Gibbs sampler.  Conceptually, the easiest way to calculate the distribution of outcomes is by 

repeated use of the following simulation algorithm. 
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Simulation Algorithm 5 
 
1. Select the parameters {ELRAY} and {DevLag} from a randomly selected iteration. 

2. For AY = 2, …, 10, do: 

a. For Lag = 12 – AY to 10, do: 

i. Set , E
AY AY Lag

AY Lag
Lag

Premium ELR Dev
Z

⋅ ⋅
λ =

⎡ ⎤⎣ ⎦
  

ii. Select N at random from a Poisson distribution with mean λAY,Lag. 

iii. If N > 0, for i = 1, …, N  select claim amounts, Zi,Lag, at random from the claim 

severity distribution for the Lag. 

iv. If N > 0, set , ,
1

N

AY Lag i Lag
i

X Z
=

= ∑ , otherwise set XAY,Lag = 0. 

3. Set 
10 10

,
2 12

AY Lag
AY Lag AY

R X
= = −

= ∑ ∑ . 

I expect that many actuaries will be satisfied with using this simulation algorithm to calculate the 

predictive distribution.  However, this paper uses a Fast Fourier Transform (FFT) to calculate the 

predictive distribution.  While it is very technical and harder to implement, it is faster and it 

produces more accurate results (relative to the model assumptions).  Appendix A describes how to 

implement the FFT for this paper’s application.  

Figure 4 plots the density functions for the predictive distributions derived from the data in Table 

1.  For each model, I ran 500 iterations of the Gibbs sampler and discarded the first 250 because 

they are less likely to represent the posterior distributions. 
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Figure 4 

  

The predictive means and standard deviations are: 

• 60,871,000 and 5,487,000 for the Cape Cod model; and  

• 67,183,000 and 5,605,000 for the Beta model. 

The difference in the predictive means for the two models is 5,982,000, illustrating the fact that 

we do face “model risk.”  If one wants to reflect model risk, one could modify Simulation Algorithm 
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5 by randomly selecting parameters from the {ELRAY} and {DevLag} lists provided by the Gibbs 

samples for each model. 

5. Risk Margins in Loss Reserves 

Now that we have demonstrated a method that quantifies the uncertainty in the estimates of 

future loss payments, we now turn to exploring how this information might be used to post a loss 

reserve on a financial statement.  The art of accounting has always had difficulty in dealing with 

uncertainty.  A common practice, when possible, is to value a liability at its market value.  When 

there is no active market, as is typically the case for loss reserves, the fallback position is to use a 

model to calculate the cost that an insurance market would “theoretically” charge to transfer the 

risky reserve.   

As this paper is being written, there is still active debate on whether and how to do this.  Meyers 

[8] provides some background and references on this subject.  This section only addresses the 

“how.”  

I should add that in preparing this section I immeasurably benefited from the discussions that led 

to the paper jointly written by Kaufman, Broughton, Buchanan, and Meyers [4].  That paper 

discusses a variety of methods to calculate risk margins for loss reserves, whereas this paper 

illustrates only one of those methods.    

The formula discussed here is called the Capital Cash Flow (CCF) risk margin.  In words, this 

formula assumes that investors in a reinsurer would need to put up (or allocate) capital to take on 

the loss reserve risk by a ceding insurer.  As claims are settled, the reinsurer expects to be able to 

release the capital over time.  The CCF risk margin is the profit that the reinsurer would need to be 

persuaded to take on this risky venture. 

We will now discuss the details.  Let: 

• i = Risk-free rate of return on investments. 

• r = Total rate of return demanded by the reinsurer for taking additional insurance risk. 

• Ct = Amount of capital required to (or allocated to) support an insurance portfolio at time t. 
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First look at the cash flow of the insurance transaction. 

• At the beginning of the first year, at time t = 0, investors contribute a sum of C0 to the reinsurer, 

which earns a risk-free rate of return, i, over the next year. 

• At time t = 0, the reinsurer collects MCCF from the ceding insurer and immediately transfers it to 

its investors.  Equivalently, one could say that the investor contributes C0 – MCCF to the 

reinsurer. 

• At time t = 1, the investors expect to keep C1 invested in the reinsurer, and they expect to 

receive a cash flow C0(1+i) – C1 at the end of year 1.  Since the loss the reinsurer is required to 

pay and C1 are uncertain, they discount the value of the amount returned at the risky rate of 

return r > i. 

• Continuing on to time t, the investors expect to keep Ct invested in the reinsurer, and they 

expect a cash flow of Ct-1(1+i) – Ct at the end of year t.  

Since the cash flows are uncertain, it is appropriate to discount the cash flow at the risky rate of 

return, r.  This leads to the following expression. 

 
( )
( )

1
0

1

1
1

t t
CCF t

t

C i C
C M

r

∞
−

=

+ −
= +

+
∑ . (9) 

This equation implies 
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 (10) 

The following table shows how to calculate Ct for the example in this paper fit with the Beta 

model. 
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 Table 6 (000) 
 

(1) (2) (3) (4) (5) (6) (7) (8) 
t Nom

tL  Nom
tLΔ  Disc

tL  TVaR Nom
t  TVaR Nom

tΔ  TVaR Disc
t  Ct 

0 67,183 27,103 61,224 80,617 28,086 72,373 11,149
1 40,080 18,847 36,993 52,531 21,984 47,799 10,805
2 21,233 11,391 19,809 30,547 14,167 28,033 8,224
3 9,843 5,978 9,270 16,380 8,224 15,129 5,859
4 3,864 2,653 3,671 8,156 4,315 7,570 3,899
5 1,211 940 1,160 3,841 2,075 3,581 2,422
6 271 237 261 1,766 856 1,659 1,398
7 34 33 33 909 803 877 845
8 1 1 1 106 106 103 102

 
 
(1) The time, t, after the liability is set. 

(2) The nominal expected value of future payments, 
10 10

,
2

E
t

Nom
AY Lag

AY t Lag AY

L X
= + =

⎡ ⎤= ⎣ ⎦∑ ∑ . 

(3) 1
Nom Nom Nom
t t tL L L +Δ = − . 

(4)  The discounted liability, 
( )

8

0.51 − +
=

Δ
=

+
∑t

Nom
Disc k

k t
k t

LL
i

, where i = 6%. 

(5) The nominal Tail-Value-at-Risk, i.e., the conditional expected value of the nominal random 

losses, 
10 10

,
2

AY Lag
AY t Lag AY

X
= + =
∑ ∑ , given that they exceed their 99th percentile.  The density functions 

for the nominal losses are plotted on Figure 5 for each t.  

(6) 1TVaR TVaR TVaRNom Nom Nom
t t t+Δ = − . 

(7) The discounted 
( )

8

0.5

TVaRTVaR
1 − +

=

Δ
=

+
∑

Nom
Disc k
t k t

k t i
. 

(8) The needed capital at time t is expected to be TVaR= −Disc Disc
t t tC L .  

Now that we have the Cts, we can then use Equation 10, with r = 10%, to calculate MCFF = 

1,368,000, which is 2.2% of the discounted liability, 61,224,000. 
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 Figure 5 (000) 

 Density Functions for the Nominal Losses as They Run Off 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• In the latter stages of the runoff, there are a small number of potentially large claims 

(limited to 1,000,000) that occasionally are paid.  Thus, you see the spikes at zero.  The 

density function was plotted for those loss amounts for which the cumulative distribution 

function was less than 0.999999.  
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The risk margin calculation above was based on the nominal TVaR for the insurer’s own 

losses.  This is tantamount to assuming that the reinsurer has no other business to diversify the 

losses.  If the liability is ever transferred, it will almost surely be transferred to a sizeable reinsurer 

with a diverse portfolio of losses.  Rather than specify the characteristics of the reinsurer, a good 

approximation to the reinsurer’s cost of capital would be to base the calculation of the distribution 

of the insurer’s uncertainty in the expected values, as generated by the {ELR} and the {Dev} 

parameters in the Gibbs sampler.  Table 7 calculates the risk margin under this assumption. 

 Table 7 (000) 
 

(1) (2) (3) (4) (5) (6) (7) (8) 
t Nom

tL  Nom
tLΔ  Disc

tL  TVaR Nom
t  TVaR Nom

tΔ  TVaR Disc
t  Ct 

0 67,183 27,103 61,224 76,583 29,581 69,488 8,264
1 40,080 18,847 36,993 47,002 21,079 43,202 6,208
2 21,233 11,391 19,809 25,923 13,294 24,092 4,283
3 9,843 5,978 9,270 12,629 7,270 11,850 2,580
4 3,864 2,653 3,671 5,359 3,514 5,076 1,405
5 1,211 940 1,160 1,845 1,381 1,763 603
6 271 237 261 464 397 447 186
7 34 33 33 67 65 65 33
8 1 1 1 3 3 3 2

 

The explanation of the columns is the same as for Table 6 except for Column 5. 

(5) The nominal Tail-Value-at-Risk at the 99% level, where the random element is the expected 

value of the Gibbs sample,  
10 10

2
AY AY Lag

AY t Lag AY

Premium ELR Dev
= + =

⋅ ⋅∑ ∑ .  The histograms of the 

sums calculated from the Gibbs sample are plotted on Figure 6 for each t. 

Now that we have the Cts, we can then use Equation 10, with r = 10%, to calculate MCFF = 

758,000 which is 1.2% of the discounted liability, 61,224,000. 
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 Figure 6 

 Histograms of the Expected Runoff Scenarios Taken from the Gibbs Sample   
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With the exception of workers compensation insurance, it is standard statutory accounting 

practice in the USA to post loss reserves at nominal, not discounted values.  A common justification 

for this practice is that it provides a cushion for the risk in the posted reserve.  In the above 

examples, the difference between the nominal and discounted expected values of the liability is 

67,183,000 – 61,224,000 = 5,959,000.  This difference is noticeably larger than the 1,368,000 and 

758,000 risk margins calculated in the examples above. 

Note that the CCF risk margin is sensitive to three factors that many consider when accessing 

risk: 

1. The volatility of the future payouts as quantified by Ct.  If desired, one can consider only 

parameter risk. 

2. How long the insurer is exposed to the risk, as quantified by how Ct decreases over time.   

3. The premium the market places on risk, as quantified by r – i. 

Note that proposals for risk margins based solely on statistics taken from a predictive 

distribution, such as percentiles, do not address (2) and (3) above.  The American practice of posting 

reserves at their nominal value does not address (1) and (3) above.   
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Appendix A. Collective Risk Model Mathematics with Fast Fourier Transforms 

This paper describes the collective risk model in terms of a simulation algorithm.  Given the 

speed of today’s personal computers, it is practical to actually do the simulations in a reasonable 

amount of time.  This appendix describes how to do many of the calculations to a higher degree of 

accuracy in a significantly shorter time using FFTs. 

The advantage to using FFTs is that the time-consuming task of calculating the distribution of 

the sum of random variables is transformed into the much faster task of multiplying the FFTs of the 

distributions.  Simulation Algorithms 1, 2, and 5 show that the collective risk model requires the 

calculation of the distribution of the sum of random claim amounts.  Furthermore, Simulation 

Algorithm 5 requires the calculation of the distribution of the sum of losses over different accident 

years and settlement lags. 

This appendix has three sections.  Since the FFTs work on discrete random variables, the first 

section shows how to discretize the claim severity distribution in such a way that the limited average 

severities of the continuous severity distribution are preserved.  The second section will show how 

to calculate the probabilities associated with the collective risk model.  The third section will show 

how to calculate the predictive distribution for the outstanding losses. 

A.1 Discretizing the Claim Severity Distributions 

The first step is to determine the discretization interval length h. Variable h, which depended on 

the size of the insurer, was chosen so the 214 (16,384) values spanned the probable range of annual 

losses for the insurer.  Specifically, let h1 be the sum of the insurer’s ten-year premium divided by 214.  

The h was set equal to 1,000 times the smallest number from the set 

{5, 10, 20, 25, 40, 50, 100, 125, 200, 250, 500, 1000} that was greater than h1/1000.  This last step 

guarantees that a multiple, m, of h would be equal to the policy limit of 1,000,000.     

The next step is to use the mean-preserving method (described in Klugman [5, p. 656] to 

discretize the claim severity distribution for each settlement lag.  Let pi,Lag represent the probability of 

a claim with severity h·i for each settlement lag.  Using the limited average severity (LASLag) function 

determined from claim severity distributions, the method proceeds in the following steps. 

1.  p0,Lag = 1 – LASLag(h)/h. 

2.  pi,Lag = (2·LASLag (h·i) – LASLag (h·(i – 1)) – LASLag (h·(i + 1)))/h for i = 1, 2, ..., m-1. 
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3. 
1

, ,
0

1
m

m Lag i Lag
i

p p
−

=

= − ∑ . 

4.  pik = 0 for i = m + 1, ..., 214 – 1. 

A.2 Calculating Probabilities for the Compound Poisson Distribution 

The purpose of this section is to show how to calculate the probabilities of losses defined by the 

collective risk model as defined in Simulation Algorithm 1.  The math described in this section is 

derived in Klugman [5, Section 6.91].  The calculation proceeds in the following steps. 

1. Set { }140, 2 1,
, ...Lag Lag Lag

p p
−

=p
r . 

2. Calculate the expected claim count, λAY,Lag, for each accident year and settlement lag using 

Equation 2, , ,E / EAY Lag AY Lag LagPaid Loss Z⎡ ⎤ ⎡ ⎤λ ≡ ⎣ ⎦ ⎣ ⎦ . 

3. Calculate the Fast Fourier Transform (FFT) of ( ), .Lag LagΦp p
r r  

4. Calculate the FFT of each aggregate loss random variable, XAY,Lag, using the formula 

( ) ( )( )1
,

Lag

AY Lag e Φ −
Φ =

pq
rr . 

This formula is derived in Klugman[5, Section 6.91]. 

5. Calculate ( )( )1
, ,AY Lag AY Lag

−= Φ Φq q
r r , the inverse FFT of the expression in Step 4 above. 

The vector , r ,AY Lagq , contains the probabilities of the discretized compound Poisson distribution 

defined by Simulation Algorithm 1.   
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A.3 Calculating Probabilities for the Predictive Distribution 

To calculate the predictive distribution of the reserve outcomes by the methods in this paper, one 

needs the {ELRAY,DevLag} parameter set that was simulated by the Gibbs sampler as described in 

Section 3 above.   

1. For each parameter set, denoted by i, and AY+Lag > 11, do the following. 

a. Calculate the expected loss, PremiumAY,i⋅ELRAY,i⋅DevLag,i. 

b. Calculate the FFT of the aggregate loss XAY,Lag,i, ( ), ,AY Lag iΦ qr as described in Step 4 in 

section A.2 above. 

2. For each parameter set, i, calculate the product ( ) ( )
10 10

, ,
2 12

i AY Lag i
AY Lag AY= = −

Φ ≡ Φ∏ ∏q qr r . 

3. Calculate the FFT of the mixture over all i, ( )
( )i

i

n

Φ
Φ =

∑ q
q

r

r , where n is the number of Gibbs 

samples. 

4. Invert the FFT, ( )Φ qr , to obtain the vector,qr , which describes the distribution of the of the 

reserve outcomes. 

Here are the formulas to calculate the mean and standard deviation of the reserve outcomes: 

• Expected Value = 
142 1

0
j

j

h j
−

=

⋅ ⋅∑ qr .       

• Second Moment = 
142 1

2 2

0
j

j

h j
−

=

⋅ ⋅∑ qr . 

• Standard Deviation = ( )2Second Moment First Moment− . 

Figure 4 has plots of the qr ’s for the Cape Cod and the Beta models. 
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Appendix B.  An Approximate Likelihood Calculation for the Collective Risk Model  

The goal of this appendix is to show how to calculate approximate likelihoods 

{ } { }( )| ,AY LagELR DevXl  for the Cape Cod model and { }( )| , ,AYELR a bXl for the Beta Model, 

where the distribution of each XAY,Lag is defined by Simulation Algorithm 1 above.   

This paper does not follow Meyers [7], which uses FFTs, as described in Appendix A to calculate 

the likelihood.  The reason for this is the speed of calculation.  While today’s computers can 

calculate a likelihood with the FFT in a fraction of a second, the use of the Gibbs sampler can 

require the calculation of millions of likelihoods.  My experience is that the approximate likelihood 

calculation described below cuts the computing time by a factor of 60. 

The general strategy for calculating the likelihood is to start by calculating the first two moments 

of the aggregate loss for each accident year and settlement lag in terms of the expected loss and the 

first two moments of the claim severity distribution.  The next step is to find an overdispersed 

negative binomial (ODNB) distribution that has the same first two moments. We then approximate 

the probability of the observed loss with its probability indicated by the ODNB distribution.  

The log-likelihood for a given triangle of data is then given by: 

( )( )
10 11

,
1 1

log ODNB
AY

AY Lag
AY Lag

x
−

= =
∑ ∑ . 

Here are the steps for calculating each ( )( ),log ODNB AY Lagx : 
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Step 1 – Calculate the first two moments of XAY,Lag. 

Let 2 and Lag lagμ σ  be the mean and variance of claim severity distribution for the given settlement 

lag.  Formulas for these moments are in Klugman [5].  Next calculate the expected claim count, 

, E
AY AY Lag

AY Lag
Lag

Premium ELR Dev
Z

⋅ ⋅
λ =

⎡ ⎤⎣ ⎦
. 

Then the variance of the compound Poisson distribution for XAY,Lag is given by 

( )2 2
, , AY Lag AY Lag Lag LagVar X⎡ ⎤ = λ ⋅ μ + σ⎣ ⎦ . 

Step 2 – Find an ODNB distribution with the same moments as that of XAY,Lag. 

We parameterize the negative binomial distribution so that the variance is equal to: 

2
,

,
,

AY Lag
AY Lag

AY Lag

λ
λ +

κ
. 

If each claim has a constant size of μAY,Lag, its variance is then equal to:  

2
,2

, ,
,

AY Lag
AY Lag AY Lag

AY Lag

⎛ ⎞λ
μ λ +⎜ ⎟⎜ ⎟κ⎝ ⎠

. 

Equating the variance from Step 1 with the above variance and solving for κ yields: 

2
,

, 2
AY Lag Lag

AY Lag
Lag

λ ⋅μ
κ =

σ
. 

Given the parameters ELRAY and DevLag, we approximate the log-likelihood of an observation 

xAY,Lag follows. 

1. Set nAY,Lag = xAY,Lag/μLag rounded to the nearest integer. 

2. Set ( )( ) ( )( ), , , ,log ODNB log Pr | ,AY Lag AY Lag AY Lag AY Lagx N n= = λ κ . 
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Appendix C.  Computer Code for the Algorithms. 

This appendix describes the code that implements the algorithms in this paper.  The code is 

written in R, a computer language that can be downloaded for free at www.R-Project.org5.  The code 

itself will be posted in a zip folder that accompanies this paper on the CAS Web Site. 

There is one feature of the code that is not described above.  Occasionally the Gibbs sampler 

admits a set of parameters with low likelihood.  The presence of such parameters causes subsequent 

parameters to have a high rejection rate with the result that the algorithm is “trapped.”  When this 

happens, the algorithm returns to a randomly selected parameter set that had been accepted earlier.  

Here is a description of the files in the zip folder. 

1. The Rectangle.csv – This is the triangle in Table 1 expressed in rectangular form so it fits into 

an R data frame. 

2. CRM CCod Posterior.r – This code reads The Rectangle.csv and implements the Gibbs 

sampler to produce an output file containing sampled {ELRAY} and {DevLag} parameters 

from the Cape Cod model.  

3. CRM CCod Posterior.csv – The output from a run of CRM CCod Posterior.r 

4. CRM Beta Posterior.r – This code reads The Rectangle.csv and implements the Gibbs 

sampler to produce an output file containing sampled {ELRAY} and {DevLag} parameters 

from the Beta model.  

5. CRM Beta Posterior.csv – The output from a run of CRM Beta Posterior.r.  Some of the 

records in this dataset are in Table 5. 

6. Predict Outcomes.r – This code takes the output from Files 3 and 5 above and calculates the 

predictive distribution.  It creates graphs like those in Figure 4. 

7. Risk Margin.r – This code takes File 5 and calculates the expected losses and TVaRs needed 

for the risk margin calculation. 

                                                 
5 Meyers [6] provides more information about the R programming language. 
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8. Risk Margin.xls – This spreadsheet takes the output of File 7 and produces Tables 6 and 7. 
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Combined Analysis of Paid and Incurred Losses 
 

B. Posthuma, E.A. Cator, W. Veerkamp, and E.W. van Zwet 
 

Abstract 

Motivation. The new solvency regimes now emerging, insist that capital requirements align with the 
underlying (insurance) risks. This paper explains how a stochastic model built on basic assumptions is 
used to monitor insurance risk in order to get a clear insight in the aligned economic capital including 
prudence margins for loss reserves. 
Method. The incurred loss of an insurer consists of payments on claims and reserves for claims that 
have been reported. As all claims are settled eventually, the cumulative paid and incurred losses for a 
given loss period become equal. Therefore, a joint model for the paid and incurred loss arrays is 
constructed, following a multivariate normal distribution, conditioned on equality of the total paid and 
incurred losses for a given loss period. A new class of functions is designed specifically to model 
development curves. 
Results. A simulation experiment proved that a joint model for both paid and incurred loss arrays as 
described under Method, leads to a more accurate prediction of loss reserves. While the standard way 
of estimating percentiles for the reserve is biased, the alternative method of bootstrapping will lead to 
more accurate outcomes.  
Conclusions. Modeling paid and incurred losses jointly leads to a considerable improvement in loss 
reserving in terms of accuracy of predictions, as well as specification of percentiles. 
Availability. This method is incorporated in software available from the authors. 

Keywords: Solvency II, loss reserves, joint model for paid and incurred loss arrays. 
 
 

1. INTRODUCTION 

The new risk based solvency regimes now emerging, such as the Solvency II rules to be 
implemented in Europe in 2009, insist that capital requirements align with the underlying (insurance) 
risks. This makes a stochastic loss reserving model a necessity. Such a model needs straightforward 
assumptions that will allow that: 

− risk for expired insurance contracts is integrated together with risk for future contracts, 
in order to get a complete insight into the risk of the insurance portfolio as a whole, and 
that 

− incomplete data – such as imperfect loss triangles due to varying period lengths or even 
incidental missing values – is still constructive to the model. 

Regression as a descriptive technique with basic probability assumptions often offers the 
possibility to efficiently create an appropriate stochastic framework. 

In short, an insurer will have to examine previous payments to make predictions about all future 
financial obligations. However, the company needs to know more than just how much money it 
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should expect to pay. The model’s stochastic ranges generate economic capital and prudence 
margins for reserves. Therefore, an adequate assessment of percentile ranges is crucial. 

Typically, an insurer will arrange his payments by loss period and development period in a 
rectangular loss array, which is also sometimes called a run-off table. Since some of the payments lie 
in the future, this array is not fully observed. The observed part is often referred to as a run-off 
triangle. We regard the unobserved part of the loss array as a collection of random variables and the 
goal is to determine their probability distributions as well as possible on the basis of the available 
data.  

Naturally, an extensive literature exists on this important problem. Perhaps the most widely used 
approach is the chain ladder. Renshaw and Verral (1998) identify the underlying assumptions and 
Mack (1993) and England and Verral (1999) present ways of estimating the standard error of the 
prediction. There are countless alternatives to the chain ladder and Schmidt (2007) has compiled a 
35-page bibliography on the subject of loss reserving!  

Much of the existing literature, however, concerns only a single array of payments—an exception 
is the Munich Chain Ladder introduced by Quarg and Mack (2004). Indeed, in most cases we have 
two arrays: an array of payments on settled claims and an array of reserves for claims that have been 
reported, but not yet settled. We refer to the sum of payments and reserves as “incurred loss.” 

In this paper, we aim to analyze the paid and incurred loss arrays jointly. As all claims are settled 
eventually, the reserves vanish and the cumulative paid and incurred loss for a given loss period 
become equal. On the basis of this observation, we construct a joint model. In our description, each 
array follows a multivariate normal distribution, conditioned on equality of the total paid and 
incurred losses for a given loss period.  

This paper is organized as follows. In the next section we present an overview of our multivariate 
normal model for the two arrays. We then proceed to give a more detailed description, defining a 
particular family of functions that is very useful for modeling development curves. In most cases, we 
observe only various aggregates of the arrays, but we show that this poses no difficulties. We discuss 
prediction and parameter estimation. To examine the advantage of our joint model we conducted a 
simulation experiment. We compared the results of the joint model to those obtained from using 
only a single array. We find that the joint model shows better results in terms of the mean squared 
prediction error. We report on these results in the final section. 
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2. MULTIVARIATE NORMAL MODEL 

Let )1(Ylk  and )2(
lkY denote the incremental paid and incurred losses for loss period Ll ,...,2,1=  in 

development period Kk ...,2,1= . Suppose that they are all independent normally distributed with 
means  

 
)1()1(

kllkEY Π= μ and  )2()2(
kllkEY Π= μ  

 
and variances 
 

)1(
k

)1(
lk

~)Yvar( Π=  and  )2()2( ~)var( klkY Π= . 
 

We assume 
 

1)2()1( =Π=Π ∑∑
k

k
k

k . 

 
It is of course sensible to assume a parametric form for the parameter vectors μ , )1(Π , )Π (2 , 

)1(~Π  and )2(~Π . For ease of presentation, we defer this issue to the next section. 

The assumed normal distribution of the entries of the loss arrays is often not appropriate. 
Occasional large claims result in distributions that are skewed to the right. To account for this 
skewness the entries are sometimes assumed to have the lognormal distribution. A disadvantage of 
such a model is the incompatibility of the log normal distribution with the negative values that do 
occur in practice in most arrays, and the incompatibility of the distribution when aggregating data 
(the sum of two lognormal random variables is not log normally distributed). Also, it will not be 
feasible to do what we are about to propose — that is, condition on the equality of the row sums of 
the loss arrays.  

We should point out that as a result of the Central Limit Theorem, aggregates of the data are 
more normally distributed than the individual entries. We feel that the advantages of the multivariate 
normal model outweigh those of the multivariate lognormal model.  
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Let 1Y(1)  and 1Y(2)  denote the row sums of the matrices (1)Y  and (2)Y . Also, we can stretch 
out (1)Y  and (2)Y  as length KL  vectors (1)y  and (2)y , respectively. 

Given the event { }1Y1Y (2)(1) = , the vectors (1)y and (2)y  have multivariate normal distributions. 
It is not difficult to determine the conditional mean and conditional covariance matrix. Refer to the 
Appendix for a general formulation.  

Because 1Y1Y (2)(1) EE = , the conditional mean of the vectors (1)y and (2)y  is the same as the 
unconditional mean. However they are of course no longer independent! 

Let 11Σ  denote the unconditional covariance matrix of the length KL2  vector ),( (2)(1) yyy −= . 

 

 ,
)(0

0)(
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

(2)

(1)

11 y
y

Σ
Cov

Cov
  (2.1) 

 
where )( (1)yCov  and )( (2)yCov  are the diagonal covariance matrices of (1)y and (2)y . We use (2)y−  

for convenience, since in that case the row sums add up to zero.  
Let 22Σ  denote the covariance matrix of 1YY (2)(1) )( − . Then  

 

IΣ 22 ⎟
⎠

⎞
⎜
⎝

⎛
Π+Π= ∑∑

k
k

k
k

)2()1(
)(

~~ , 

 
where I is the LL× identity matrix. 

Let 2112 ΣΣ ′= denote the covariance between y and 1YY (2)(1) )( − . 

The conditional covariance matrix of y  given the event { }01YY (2)(1) =− )(  is 

 
 21

1
221211 ΣΣΣΣΣ −−=  (2.2) 

 
This completes the global specification of our model. In the next section we give a more detailed 

description. 
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3. DETAILED SPECIFICATION OF THE MODEL 

In the previous section, we introduced vectors Lℜ∈μ and (1)Π , Kℜ∈(2)Π , to describe the 
expectations. Define 

 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
=

(2)

(1)

Π
Π

Π
. 

 
Mostly, we have a vector of “exposures” Lℜ∈W  representing a volume measure for each loss 

period, such as the total number of insurance policies. We choose an pL× matrix X  and a 
parameter vector pℜ∈β , and we model the expected total loss for loss period l  

 
 leWll

)(Xβ=μ   (3.1) 
 

We have 
 

)1()()1( )( kllk
leWYE Π= Xβ  and  )2()()2( )( kllk

leWYE Π= Xβ . 
 

This means that if we define for matrices A and B of equal size 
 

ijA
ij e=)exp(A   and  ijijij BA=)( BA o , 

 
then we can write 
 

ΠXβWy ⊗= ))exp(()( oE , 
 

where ⊗  denotes the tensor product between two vectors. 
Next, we recall the vectors (1)Π~ , K~ ℜ∈(2)Π , which represent the (unconditional) variances. 

Define their sums as 2
1σ  and 2

2σ  

 
2
1

1

)1(~ σ=Π∑
=

K

k
k  and 2

2
1

)2(~ σ=Π∑
=

K

k
k . 

 



Combined Analysis of Paid and Incurred Losses 

Casualty Actuarial Society E-Forum, Fall 2008 277 

Also define 
 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

(2)

(1)

Π

Π
Π ~

~
~

. 

 
We model the unconditional variances for loss period l  and development period k  as 
 

)1()()1()1( ~)(:~
k

X
llklk

leWYVarV Π== β  and  )2()()2()2( ~)(:~
k

X
llklk

leWYVarV Π== β . 
 

Note that we use the same X and β  as we did for the expectations. In matrix notation this becomes 
 

( )Δ⊗= ΠXβWy ~))exp(()( oCov . 
 

Here we denote the diagonal matrix with the vector v as its diagonal by Δv . This describes the 
unconditional distribution of the vector y . We can now use (2.2) to find the conditional distribution 
of y , which then completely specifies our model.  

3.1 Modeling the development curves  

For a sensible approach to the estimation problem, it is necessary to limit the number of 
parameters by assuming a parametric model for the development vectors (1)Π , (2)Π , (1)Π~ , and 

(2)Π~ . To explain our method, let us concentrate on one of the arrays, for example (1)Y . We suppose 
that in loss period l , we expect a total loss of lμ . Now suppose that the length of the loss period is 
T time units. The claims occurring in the small interval [ ]ttt Δ+, , have an effect on the expected 
loss in the time interval [ ] stsss ≤Δ+ ,,  equal to 

 

stsf
T

tl Δ−
Δ

)(θ
μ

, 

 
where θf  is a (possibly negative) function such that  
 

1dx)x(f
0

=∫
∞

θ  
 
 

for all possible choices of the parameter vector θ . 
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In the next section, we will describe a particular family of such functions, which possess some 
desirable properties. For now, let us note that the total loss over loss period l  equals lμ . Indeed, if 
[ ]Tt,t ll +  denotes the loss period l , 

 

lt

Tt

t l dsdttsf
T

l

l

μμ =−∫∫
∞+

)(1
θ . 

 
 

We are interested in the expected loss from loss period l  in development period k . Denote with 

kI  the interval corresponding to this development period. We see that  

 

[ )

[ )
.)(1

)(1

,0

,

dsdttsf
T

dsdttsf
T

tI

T

tIt

Tt

tk

k

kl

l

l

−=

−=Π

∫∫

∫∫

∞∩

∞∩⊕

+

θ

θ

 

 
Usually, the loss and development periods have the same length T . We can choose 1=T  so that 

[ ]kkI k ,1−= . We get  
 

 dsdttsf
t

)(
1

0

1

1 −=Π ∫ ∫ θ  (3.2) 
 

 .2,)(
1

0 1
≥−=Π ∫ ∫ −

kdsdttsf
k

kk θ  (3.3) 
 
If we define the survival function 
 

dyyfxS
x

)()( θθ ∫
∞

=  
 

and the function  
 

dyySxH
x

)()(
0 θθ ∫=  

 
 
then we can rewrite (3.2) as 
 

)1(1))1(1(
1

01 θθ HdttS −=−−=Π ∫ , 
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and (3.3) as 
 

)2()()1(2))()1((
1

0
−−−−=−−−−=Π ∫ kHkHkHdttkStkSk θθθθθ . 

 
We conclude that it is useful to choose the functions θf  in such a way that we can calculate θH  

explicitly. In the next section we will do just that. We conclude this section by mentioning that the 
development of the variances is modeled in a similar way. In that case we do need to make sure that 
the functions θf  are always positive. 

3.2 A parametric family of functions 

Now, we will introduce a parametric family of functions that meet the requirement of the 
previous section.  

 
{ }0,0,,:),,,;( ≥> μσγβσμγβxf , 

 
where [ )∞∈ ,0x , These functions all satisfy 
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• ))((),,,;( 22 ∞→+= −−−− xxoCxxf ββσμγβ  for some ℜ∈C , depending on the 

parameters. 
 

Furthermore, there exist analytic expressions for both the first and the second primitive of the 
function ),,,;.( σμγβf . Finally, for ),,,;.(,1 σμγβμ f>  will have a negative tail. 

We will use an auxiliary variable y to define our parametric family, and at first ignore the 
dependence on the scaling parameter σ . Define 
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where 
 

( ) dtt1t)b,a(Β 1b1

0

1a −− −= ∫  
 

is the incomplete regularized beta-function. Now define 
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Finally, we include the scale parameter σ so that 
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We will now describe the effect of the various parameters on the shape of the development 
function. The parameter μ is the most interesting parameter. If we choose 1≤μ , we get a positive 
density, whose left and right tail behavior is determined by γ  and β respectively. As μ approaches 
1, the bump around the mode becomes more pronounced. When 1>μ , the density “falls through” 
the x -axis, only to approach it again as ∞→x ; the tail behavior is still determined by γ  and β . See 
Figure 1. Note that from the previous section it follows that  

 

∫
∞

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−=
0 1

1),,,;( σ
γ

μσμγβ dxxxf  

 
The effect of the parameters β and γ  is similar to the behavior of these parameters in the 

parametric family of positive densities we get when we choose 0=μ . The parameter β determines 
the right tail of the density, whereas γ  determines the left-tail (near zero). In Figures 2 and 3 we 
chose 5=μ . 
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Figure 1: Behavior of the density when varying μ  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Behavior 

of the density 
when varying β  

 
 
 
 
 
 
 

 

Figure 3: Behavior of the density when varying γ  
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4.  AGGREGATE OBSERVATIONS 

Often we do not observe all the elements of the vector y  individually, but compounded in 
various aggregates. For instance, for certain years we may only have records of payments per 
quarter, while for other years payments per month are available. 

Suppose we observe J aggregates. If we assume that different aggregates never involve the same 
payments, we can introduce a zero-one matrix S  with pair-wise orthogonal rows, of size KLJ 2× . 
Observing various independent sums of the elements of the vector y  then corresponds to Syz = . 

Conditionally on { }01YY (2)(1) =− )( , z  has a multivariate normal distribution with mean ySE  
and covariance matrix, S'S∑  where Σ is given in (2.2). The advantage of choosing a multivariate 
normal model is very prominent here, since in this case it is still feasible to determine the likelihood 
of the data z . 

5.  ESTIMATION AND PREDICTION 

We can estimate the parameters of our model by maximizing the likelihood of the data. If we call 
the vector of parameters θ , then we maximize 

 
 ))|z(P)(lik 01YYzθ (2)(1)

θ =−== .  (5.1) 
 

 The parameter vector θ  is very high dimensional. Indeed, there are at least 16 parameters 
describing the (unconditional) means and variances of the )1(

lkY and )2(
lkY . Maximizing (5.1) is a 

delicate affair and must involve some iterative procedure. The speed and success will depend on the 
algorithm which is used and, perhaps even more importantly, on the starting point. The starting 
point should be some ad hoc estimator, which is relatively easy to compute but still reasonably close 
to the true maximum likelihood estimator. 

To evaluate the accuracy of our estimates we use standard theory for maximum likelihood 
estimation. That is, we use the Hessian of the log likelihood at the maximum likelihood estimate to 
approximate the Fisher information. 
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Typically, we are not so much interested in the parameters, as we are in a prediction of the 
reserve. Conditionally on the data and the equality of the row sums, the reserve has a multivariate 
normal distribution and we can use the conditional expectation as a prediction. The uncertainty in 
this prediction is a combination of the stochastic uncertainty of the model and the uncertainty in the 
parameter estimates. 

6.  SIMULATION 
To evaluate the effect of conditioning on the equality of the row-sums, we conduct a simulation 

experiment. We estimate the reserve with conditioning on equal row-sums, using the run-off tables 
simultaneously, as described in this paper. We refer to this approach as the joint method. For 
comparison, we also estimated the reserve without conditioning on the row-sums, essentially only 
using the paid table. We call this approach the marginal method. Of course, the marginal method is 
much easier, as it involves no conditioning. However, result in this section show that the more 
complicated joint method does produce better results. 

We carry out the following simulation experiment. We consider a set of actual insurance data 
that, for reasons of privacy, we have made anonymous by multiplying with some undisclosed factor. 
We fit a model using the parametric family of densities described in section 3 for the development 
curves of the expectation and variance of both the paid and the incurred table. This results in a 19 
dimensional parameter 0θ , which contained 

 
• 842 =× parameters for the two expectation development curves. 
• 842 =×  parameters for the two variance development curves. 
• Three parameters for the exposure )(β  to account for two regime changes. 

We define: R , the reserve as the sum of future payments and R̂ , the estimator for R . 

 For this data set we estimate the reserve 0R̂  for the paid table and its variance 0̂V  conditioned 
on the aggregated data and taking into account both the stochastic uncertainty and the parameter 
uncertainties. We find 24.5ˆ

0 =R  and 04.20̂ =V . 
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 Next, we simulate two entire tables (paid and incurred) from the multivariate normal model 
determined by the estimated parameter vector 0θ , and repeat this about 6000 times. By using the 
estimated parameter vector, we make sure that our simulated data resembles realistic data. Of 
course, for each simulated data set, we know the “true” reserve R , as the sum of total simulated 
future payments. Hereafter, the estimated reserve R̂  is based on the simulated data set of historical 
payments. The error in the estimated reserve, as the difference between R  and R̂ , is compared for 
the two methods.  

6.1 Reserve Estimation 

Denote R  as the true reserve in a given simulated data set, 1R̂  and 2R̂  as the estimates for the 
reserve for the joint and marginal methods, respectively. One of the most important measures for 
the quality of a prediction is the Mean Squared Error (MSE). Our simulation showed that 

 
18.2)ˆ( 2

1 =− RRE  
90.6)ˆ( 2

2 =− RRE . 
 

Clearly, by using both tables simultaneously we achieve superior performance. We remark here, 
that using more simulations would not have changed this conclusion. In Figure 4 we show the 
convergence of the average of the squared error for the joint method as the number of simulations 
increases. We see that the average has sufficiently stabilized towards the end. The convergence for 
the marginal method is very similar. 
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Figure 4: Convergence of the average mean squared error for method 1. 

 
The bias of the estimators is also important 

 
18.0)ˆ( 1 −=− RRE  

 
32.0)ˆ( 2 −=− RRE  

 
We note that the bias of both methods is very small compared to the MSE. It is not surprising 

that we find a similar bias for both methods, since the expectation structure in both models is the 
same. Recalling that the MSE consists of the estimator’s variance and its squared bias, we conclude 
that large MSE of the marginal method is an immediate consequence of its inability to correctly 
estimate this covariance structure. 

It is also interesting to see how well both methods do at determining the accuracy of the estimate. 
We have calculated a conditional variance of the estimated reserve, given the data, taking into 
account the uncertainty in the parameter estimates. This leads to 

 
63.1)ˆ( 1 =Vmedian  
28.4)ˆ( 2 =Vmedian . 
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Since the reserve estimates are almost unbiased, these values should be close to the mean-squared 
errors. This is not the case; both methods underestimate the variance. This is also clearly visible in 
Figure 5 where we plot the histogram of the estimated variances. The skewness indicates that we 
frequently underestimate the variance. This is a problem, when we want to estimate percentiles. We 
address this issue in the next sub-section. 

 

 
Figure 5: Histogram of the estimated variance for the joint method. 
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6.2 Estimating Percentiles 

For loss reserving it is typically not sufficient to only have a point estimate of the reserve; 
percentiles are also needed. In this sub-section we discuss why the standard approach to estimating 
the percentiles does not work well in our case. We also provide an alternative. 

The standard way of estimating percentiles is based on the following idea. When we estimate R  
by R̂ , and we estimate the variance by V̂ , we assume that the standardized residuals are 
approximately standard normal distributed. That is, 

 

).1,0(~
ˆ

ˆ
N

V

RR −  

 
Then we can use the percentiles of the standard normal to find approximate percentiles for the 

reserve. We used this method to estimate the 75% and the 95% percentiles. To verify the results, we 
look at the percentage of times the true (simulated) reserve was larger than the estimated percentile. 
This gives 

 
• 32.0)ˆ( 75 => qRP and 12.0)ˆ( 95 => qRP   for the joint method. 
• 36.0)ˆ( 75 => qRP and 19.0)ˆ( 95 => qRP   for the marginal method. 

 
Both methods seem to underestimate the percentiles, and we checked that this effect does not 

disappear as we increase the number of simulations. This is very troubling as it will lead to 
overoptimistic loss reserving. 

In Figure 6 we plot the histogram of the standardized residuals for the joint method, and note 
that the distribution is not standard normal at all! Not only is it skewed, but also its mean is 0.24 
instead of 0 and its variance is 1.49 instead of 1. This explains why the percentiles are not estimated 
accurately. The problem originates with the underestimation of the variance we discussed in the 
previous section, since having a small variance leads to a small percentile. 
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We conclude that the standard approach to estimating the percentiles does not work well. 
Therefore, we would like to suggest an alternative approach. The idea is simple: use the distribution 
of Figure 6 instead of the standard normal to calculate percentiles. This is essentially an application 
of the bootstrap. This would lead to a 75th percentile of 0.95, (instead of 0.67 for the standard 
normal) and a 95th percentile of 2.37 (instead of the familiar 1.65). For our original data set with 

24.5ˆ
0 =R  and 04.20̂ =V  this means that the percentiles for the reserve are given by 

 
• 60.6ˆ75 =q  and 62.8ˆ95 =q  using the bootstrap method. 
• 20.6ˆ75 =q  and 59.7ˆ95 =q  using the normal method. 
 

The relative difference between the two methods becomes more pronounced for higher 
percentiles, mainly because the relative contribution of the estimated reserve 0R̂  diminishes. 

Performing the many simulations needed to determine the distribution of the standardized 
residuals is a substantial computational burden. It took us four days to create Figure 6. In certain 
applications this is prohibitive. 

Although the distribution of Figure 6 is specific to our particular data set, it is certainly 
conceivable that similar distributions would result from other data sets. Indeed, for data sets 
concerning similar insurance products this seems plausible at least. This suggests the following 
approach. We perform the simulations for a number of different data sets with varying 
characteristics. Then, when confronted with a new data set, we choose the histogram that is most 
appropriate, and use it instead of the standard normal to calculate percentiles. 

Another suggestion to deal with this problem is judging the standardized residuals of the original 
loss triangle data set, given the parameter estimates. While the kurtosis of these residuals differs 
from the normality 3-value, the percentiles for loss reserves should be adjusted by taking these 
percentiles from a t-distribution, whereby the degree of freedom depends on the magnitude of the 
difference for the calculated kurtosis and the value 3.  
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Figure 6: Histogram of the standardized residuals for the joint method. 

 

7. CONCLUSION 

The incurred loss of an insurer consists of payments on claims and reserves for claims that have 
been reported. As all claims are settled eventually, the cumulative paid and incurred losses for a 
given loss period become equal. On the basis of this observation, we construct a joint model for the 
paid and incurred loss arrays. In our description, each follows a multivariate normal distribution, 
conditioned on equality of the total paid and incurred losses for a given loss period. On the basis of 
this model, we make predictions for future payments.  
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Figures 7 and 8: Histogram of the difference between the true and estimated reserve based on the 

joint model (top) and the marginal model (bottom) 
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A rather technical, but important feature of our model is the use of a new parametric family of 
functions that are ideally suited for modeling development curves. 

We have compared the performance of the joint model of the paid and incurred losses to an 
approach where we analyze only the paid table. In Figure 7 and 8 we present the results of a 
simulation study. These figures show histograms of the difference of the true and predicted reserves 
for both methods. While both methods are approximately unbiased, the one based on the joint 
model has much smaller variance. A more detailed discussion of this result is found in the previous 
section, but here we conclude that joint modeling is to be preferred over utilizing only the paid table.  

Since the practice of loss reserving also takes the distribution of the reserve into account, we have 
studied the estimation of percentiles as well. We noted that inference from the normal assumptions 
does not produce good results. In fact, the results would lead to over-optimistic assessment of 
economic capital and prudence margins, which is, of course, to be avoided. We have proposed an 
alternative approach based on the bootstrap. It entails performing many simulations, to replace the 
assumed standard normal distribution of the standardized residuals with a more accurate description. 
Carrying out this method requires substantial computational effort, which in practice is only feasible 
on a highly aggregated level. 

APPENDIX A 

For ease of reference, we recall a well-known fact about the multivariate normal distribution. 

 Consider a random vector X , which is distributed according to the multivariate normal 
distribution with mean vector μ  and covariance matrix Σ . Suppose we partition X  into two sub-
vectors 
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Correspondingly, we write 

 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

(2)

(1)

μ
μ

μ   and  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2221

1211

ΣΣ
ΣΣ

Σ . 

 
 

 Now, if 0)det( >22Σ , then the conditional distribution of (1)X  given (2)X  is multivariate 
normal with mean 
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)μ(XΣΣμ (2)(2)1

2212
(1) −+ −  

 
and covariance matrix 
 

21
1

221211 ΣΣΣΣ −− . 
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Loss Development in Workers Compensation in the Presence 
of  Legislative Reform 

Frank Schmid 
 
________________________________________________________________________ 

Motivation.  Legislative reforms affect loss development patterns in various ways.  Some legislative innovations 
may affect new policy (or accident) years only, while others have diagonal effects as they affect both new and 
existing claims.  Modeling these effects is critical for adequacy in ratemaking and reserving. 
Method.  Using a Bayesian state-space model, workers compensation triangles are developed subject to the 
applicable legislative stipulations.  Most importantly, this model is capable of accommodating the legislative 
environment as it evolves over time. 
Results.  The model is applied to an unidentified state, which experienced a reform cluster in the period 
1990/92.  The model shows how this reform cluster affects the ultimate loss and the 19th-to-ultimate tail factors. 
Conclusions.  Ultimate losses are not only dependent on the legislative environment at time of loss, but are also 
affected by how this legislative environment evolves over time.  The statistical model is capable of quantifying 
the effects of such legislative changes on the loss development pattern. 
Availability.  The model runs in OpenBUGS 2.2.0 (http://mathstat.helsinki.fi/openbugs/) within the R 
(www.r-project.org) package BRugs 0.3-3 (http://cran.r-project.org).  OpenBUGS is administered by the 
Department of Mathematics and Statistics of the University of Helsinki, Finland; R is administered by the 
Technical University of Vienna, Austria.  OpenBUGS and R are GNU projects of the Free Software Foundation 
and, hence, available free of charge. 
 
Keywords.  Workers Compensation, Trend and Loss Development, Reserving Methods. 

             

1. INTRODUCTION 

Workers compensation is a line of insurance that operates in a legal environment that is subject 
to frequent and (sometimes) sweeping changes.  Such legislative changes affect the loss development 
patterns in ratemaking and reserving in powerful and complex ways.  Traditional loss development 
models do not acknowledge the specific legal environment in which the losses have been observed, 
nor are these models capable of incorporating changes in the legal setting into the loss development 
pattern; as a consequence, these models are not capable of quantifying the impacts of changes to 
legal stipulations on the ultimate loss or tail factor. 

What follows is a Bayesian state-space model of loss development that explicitly accounts for the 
legal environment in which the losses of a given (indemnity or medical) triangle were observed.  
Accounting for the legal environment means translating legal stipulations into data inputs, which are 
then fed into the model.  The model is set up to accommodate a wide array of legal changes, among 
which are changes to the stipulated rates of escalation (for indemnity) and (any) factors that bear on 
the rate at which incremental payments decay in development net of the calendar-year effect. 
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1.1 Research Context 

A wide array of loss development models have been suggested, some of which are extensions of 
traditional actuarial methods (mostly related to the chain ladder; see, for instance, Mack [5]), while 
other models cast loss development into a time series framework (see, for instance, de Jong and 
Zehnwirth [2], de Jong [1], and Verrall [9]).  For overviews on loss development models, see 
England and Verrall [3] and Taylor [8].  Bayesian modeling of loss development using the software 
platform BUGS (Bayesian inference Using the Gibbs Sampler) has been pioneered by Scollnik [6,7].  
The model presented here draws on Scollnik [7]. 

1.2 Objective 

The objective of the loss development model introduced in this paper is to give the practicing 
actuary a framework for developing losses in a changing legal environment.  By acknowledging 
changes in pertinent legal stipulations, the model is capable of delivering values for the ultimate loss 
(and, hence, the tail factor) that are adequate for ratemaking and reserving.  Specifically, the model 
allows for quantification of reform impacts on the ultimate loss and the tail factor. 

1.3 Outline 

The following section first outlines the basic structure of the Bayesian state-space model of loss 
development and then, in a sub-section, applies this model to an unidentified state.  This application 
details how regulatory information is fed into the model and how the model quantifies the reform 
impact.  Section 3 presents the results of this empirical analysis.  Section 4 offers conclusions. 

2. BACKGROUND AND METHODS 

The Bayesian state-space model of loss development employed in the analysis of legislative 
reform treats incremental payments as a three-dimensional time series problem.  Specifically, the 
incremental payments are driven by three time processes, which are growth of the first payment, 
development, and the calendar-year effect; these processes are illustrated in Exhibit 1. 
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Exhibit 1: Time Processes in Loss Development 

Calendar Year Effect 

Development 

Growth of First Payment 

eta 

delta 

kappa 

 

The model fits to (the logarithms of) incremental payments and, at the same time, employs a 
stochastic cumulative sum (cusum) constraint to ensure that, for any development year, the sum of 
the estimated incremental payments for a given policy (or accident) year add up (approximately) to 
the observed cumulative payment for that policy (or accident) year. 

As an example, consider the stylized triangle displayed in Exhibit 2.  Let [ , ]y i j  be the (natural) 
logarithm of the incremental payment of policy (or accident) year i  in development year j , which 
materializes as a draw from a normal distribution with expected value [ , ]b i j .  Then, the expected 
value of the logarithm of the first payment in the first policy (or accident) year, [1,1]b , develops into 

[1,2] [1,1] [2] [1,2]b b delta kappa= + + , where [1,2]b  is the expected value of the logarithm of the 
second incremental payment in the first policy (or accident) year.  The parameter [2]delta  is the rate 
of decay (which is expressed as a logarithmic rate of growth) of the calendar-year effect-adjusted 
incremental payments from development year 1 to development year 2, whereas the term [1,2]kappa  
is the calendar-year effect (which, again, is expressed as a logarithmic rate of growth) from calendar 
year 1 to calendar year 2.  Note that the calendar-year effect is not restricted to be uniform along a 
given diagonal—for instance, [2,3]kappa  is allowed to differ from [3,2]kappa ; this is because 
different types of indemnity claims (which consist of Temporary Total [TT], Permanent Partials 
[PP], Permanent Totals [PT], and Fatals) may escalate at different rates and the fraction of the 
various types in the total may change across development years.  Finally, for the expected value of 
the logarithm of the first payment in the second policy (or accident) year, [2,1]b , we can write 
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[2,1] [1,1] [2]b b eta= + , where [2]eta  (which is again expressed as a logarithmic rate of growth) equals 
the change in expected values. 

Exhibit 2: Stylized Triangle 

1 2 3
1 y[1,1] y[1,2] y[1,3]
2 y[2,1] y[2,2]
3 y[3,1]
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The run-off rate (delta) is estimated using a smoothed random walk specification; the smoothing 
is obtained by scaling the innovation variance with a Gompertz function.  The rate of growth of the 
expected value of the first incremental payment (eta) is also estimated using a smoothed random 
walk; unlike the innovation variance of the run-off rate (which decreases as development 
progresses), the innovation variance of eta is constant.  (The smaller the innovation variance, the 
smoother is the estimated trajectory of growth rates.) 

The model draws on expert information in determining the prior for the calendar-year effect, 
which manifests itself in the growth rate kappa.  For indemnity benefits inflation, these expert priors 
are the rates of escalation as stipulated in the law; these stipulated rates of escalation may vary by 
type of claim. Additionally, the expert priors for the rates of escalation may vary by policy (or 
accident) years and development years.  The expert prior for medical benefits inflation is the rate of 
growth of the Medical Care component of the CPI (Consumer Price Index; www.bls.gov), M-CPI 
for short. 

The model develops future losses subject to the assumption that the expert priors for the 
(non-constant) rates of inflation follow random walks, starting at the final observed rates.  The 
purpose of these random walks is to incorporate uncertainty about the future rates of inflation.  The 
innovation variances of these random walks have to be determined by an expert based on the actual 
behavior of the applicable inflation series.  Due to the skewed, lognormal distribution of the 
incremental payments, greater uncertainty about future rates of inflation (that is, greater innovation 
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variances in the random walks) implies higher expected values of incremental payments and, all else 
being equal, a larger tail factor. 

The model assumes that beyond the final observed development year, the projected run-off rate 
is the minimum of the final estimated run-off rate (that is, the run-off rate that applies in the final 
observed development year) and a mortality-based run-off rate.  Starting with the final estimated 
logarithmic run-off rate, this logarithmic mortality-based run-off rate decreases linearly in every 
development year such that in development year 60, this rate equals the current official (logarithmic) 
mortality rate for age 80.  Beyond age 80 (development years 61 through 70), the (logarithmic) 
mortality-based run-off rate equals the (logarithm of the) official mortality rate for the applicable 
age.  The mortality information originates from the Social Security Administration (Periodic Life 
Table, www.ssa.gov).  Where indemnity benefits are not granted for life (due to an age limit or an 
otherwise stipulated restriction in the duration of benefits), the number of payments is reduced 
accordingly, as detailed in the following section. 

For details on the model, see Appendixes 2 and 3; Appendix 4 offers a list of variables.  The 
model was estimated using Markov chain Monte Carlo simulation; for introduction to this 
estimation technique see, for instance, Gilks, Richardson, and Spiegelhalter [4].  The equations were 
coded in BUGS and run in R (using BRugs [Version 0.3-3, which utilizes OpenBUGS 2.2.0 beta 
from February 2006]) with a burn-in of 40,000 iterations, followed by a sample of 40,000 iterations, 
of which every fourth draw entered the posterior distribution (to mitigate autocorrelation in the 
Markov chains). 

2.1 The Reform Impact of an Unidentified State 

This section presents an application of the loss development model for the purpose of studying 
the impact of legislative reform on the loss development pattern, and the tail factor in particular.  
The model is applied to a loss triangle of policy year data; the first report of payments of any given 
policy year comprises 24 months of experience.  The policy years in the loss triangle range from 
1980 through 2005.  The triangle, which is displayed in Exhibit A-1 in Appendix 1, is incomplete 
due to a missing upper left-hand side triangle, a missing upper right-hand side triangle, and a missing 
lower left-hand side (single-observation) triangle. 

The purpose of the analysis is to study the reform impact in an unidentified state; this state 
experienced major reforms in workers compensation in the years 1982, 1986, 1990 (effective 
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September 1), and 1992 (indemnity-related reforms effective May 18, and medical-related benefits 
reform effective November 1).  The 1982 and 1986 reforms are not broken out because the first 
diagonal in the triangle refers to the year 1988.  The reform impact of interest is the one of the 
1990/1992 reform cluster; for this purpose, we define the time window 1988-1989 as the pre-reform 
period, and the window 1993-2005 as the post-reform period.  Four of the most significant impacts 
of the 1990/1992 reforms were (1) the introduction of escalation of indemnity benefits at the rate of 
the CPI (regardless of the date of the injury) for PT disability claims and PP disability claims in May 
1991 (beyond 312 weeks of benefits; indemnity benefits for fatal claims had been escalating at a 
fixed rate of 4 percent since June 1986); (2) a limitation of the duration of TT disability claims to 52 
weeks; (3) closer scrutiny regarding continued eligibility of indemnity benefits; and (4) an indemnity 
retirement offset that is immediate for accidents past age 55 or, otherwise, sets in five years prior to 
the official retirement age.  Whereas the introduction of a cost-of-living adjustment is captured in 
the model as a calendar-year effect (as such adjustment started applying to claims of any maturity), 
the time limitation on TT claims, the increased scrutiny regarding continued eligibility, and the social 
security offset can be expected to bear on the run-off rate (delta).  The run-off rate (delta) picks up 
the effect of a social security offset to the extent that such offset kicks in for (older) claimants within 
the first 20 development years (as these are the development years covered by the data).  Yet, 
because the social security offset may not be fully captured by the run-off rate (due to there being 
[younger] claimants for whom the offset does not kick in within the 20 observed development 
years), the model assumes (as an approximation) a 50 percent reduction of the incremental 
indemnity payments past development year 40.  Note that the increased scrutiny regarding 
continued eligibility of indemnity benefits may spill over into medical benefits, thus causing medical 
claims to close faster.  Hence, we expect the 1990/1992 reform cluster to lead to a faster run-off not 
only in indemnity but also in medical incremental payments.  (Note that although the most 
significant impacts of the 1990/1992 reform cluster were the indemnity reforms mentioned above, 
the 1990/1992 reform cluster also included a medical reform in November 1992, as mentioned 
above.) 

Exhibit A-2 in Appendix 1 details the shapes of the pre-reform and post-reform triangles.  The 
area of the pre-reform triangle for which there is data is shaded gray; this area comprises all 
observations between (and inclusive of) the 1988 diagonal and the 1989 policy year.  The 
post-reform triangle is bordered by a solid line and consists solely of post-1992 diagonals.  Note that 
the model does not fit to (the six) observations between (and inclusive of) the 1990 policy year and 
the 1992 diagonal, although these observations are assigned to the pre-reform period for the 
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purpose of the post-reform estimation.  The pre-reform and post-reform loss development 
processes are estimated simultaneously.  The missing upper left-hand side triangle (diagonals 1980 
through 1987) is given its own trajectory of run-off rates, which is the same for both the pre-reform 
and the post-reform estimation.  Finally, for the post-reform estimation, the run-off rates that apply 
to the diagonals from 1988 through 1992 are allowed to differ from the estimated pre-reform 
run-off rates.   

Although the pre-reform triangle consists only of policy-year data prior to 1990, this triangle 
includes elements through the 2005 diagonal.  To the degree that the 1990/1992 reform cluster 
affected existing (instead of only new) claims (for instance, by accelerating their closure), the model 
may underestimate the impact of the reform cluster on the ultimate loss; however, the post-reform 
ultimate losses (and tail factors) would still be accurate, as argued below.  For the data set at hand, 
the pertinent (future) policy year for ratemaking is 2008. 

Unlike the pre-reform triangle, the post-reform triangle consists only of diagonals observed in the 
pertinent legislative environment.  Yet, only in the first column of the post-reform triangle do all 
observations fall into the post-reform regime.  As development time increases, the post-reform 
triangle phases in observations from the previous legislative setting, as indicated by the step function 
that defines the post-reform triangle in Exhibit A-2.  For instance, in the first development year, all 
13 incremental payments (of which the one for policy year 2005 is missing) are from the post-reform 
period.  In the second development year, there are again 13 incremental payments (of which none 
are missing), but only 12 originate in the post-reform regime; and so on.  The progressive phasing in 
of observations from the prior legislative regime rests on the premise that the run-off rates (but not 
necessarily the level of payments) of the post-reform regime approach the pre-reform run-off rates 
as development time advances; this is because the rates of decline of calendar-year effect-adjusted 
incremental payments deep in development may predominantly be driven by factors immune to the 
reforms, such as mortality.  (It is because the reform may affect the level of payments deep in 
development [due to its effect on the run-off rates early in development] that the pre-reform run-off 
rates in the post-reform estimation are allowed to differ from the pre-reform run-off rates in the 
pre-reform estimation.)  If the run-off rates (of the pre-reform policy years) deep in development are 
indeed immune to the reform, then the model estimates accurately both the pre-reform and 
post-reform ultimate losses.  If, on the other hand, the run-off rates (of the pre-reform policy years) 
deep in development are affected by the reform, then the model underestimates the reform impact 
(but still estimates the post-reform ultimate loss accurately because it is the post-reform 
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development pattern that materializes in the post-reform diagonals).  But then there is a third 
situation where the model is not able to quantify the post-reform ultimate loss (as well as the impact 
of the reform).  Such situation arises when the reform affects the run-off deep in development of 
new claims only, as is the case when a second-injury fund is eliminated.  Because the reform takes 
many years to play out in the data (that is, manifest itself in incremental payments of new claims 
deep in development), the model is incapable of quantifying such reform impact immediately. 

When estimating the loss development model, the pre-reform and post-reform triangles are 
estimated simultaneously, subject to the constraint that the two triangles have identical calendar-year 
effects, identical rates of growth of the expected value of the logarithm of the first payment, and 
identical variances in the measurement equations of the incremental payments.  For details on the 
model, see Appendices 2 and 3. 

3. RESULTS 

Odd-numbered charts exhibit the indemnity results, whereas even-numbered charts display the 
results for medical. 

Charts 1 and 2 show the indemnity and medical benefits estimated run-off rates (delta) along the 
development year axis—remember that the run-off rates are the rates of growth of the incremental 
payments, adjusted for the calendar-year effect.  As mentioned, the run-off rates beyond the final 
observed year of development incorporate mortality information.  Whereas the displayed run-off 
rates for medical benefits (Chart 2) describe the trajectory of the run-off rate as employed in the 
computation of the ultimate loss (and, hence, the tail factor), the run-off trajectory of the 
incremental indemnity payments (Chart 1) needs adjustment before inputting it into the 
computation of the ultimate loss or the tail factor; this is because indemnity benefits may not be 
granted for life, or there may be a social security offset.  (If there is an immediate social security 
offset that applies regardless of the age of the claimant, then such offset is captured by the trajectory 
of the run-off rate delta.)  In the unidentified state in question, effective May 1992, a social security 
offset applies to accidents that happen past age 55 or within five years of the legal retirement age.  
As a result of this legislative change, the incremental payments for development years 41 through 70 
(70 being the final development year) were reduced by 50 percent of what would be projected 
otherwise. 
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Charts 3 and 4 present the expert priors (lines with full circles) and the posteriors for the 
calendar-year effect in the second development year (which is the first year of escalation).  Due to 
this being a policy year triangle, the prior in the displayed second development year comprises 18 
months of inflation (which is the time difference between the mid-points of the first 24 months of 
experience and the subsequent 12 months of experience).  Note that, in general, a systematic 
difference between the expert prior for the calendar-year effect and the (unknown) workers 
compensation-specific rate of inflation factors into the run-off rate delta.  Specifically, if for all 
incremental payments the actual (logarithmic) rate of benefits inflation exceeds the expert prior by a 
constant c (which may be positive or negative), then such constant will be absorbed by the rate of 
decay (delta) of the calendar-year effect-adjusted incremental payments—in statistical terms, the 
parameter c is unidentified. 

Whereas the prior for medical inflation (Chart 4) is the M-CPI for all policy years, the prior for 
indemnity escalation (Chart 3) is a weighted average of the legally stipulated rates of escalation (of 
which the model accommodates two non-zero rates of escalation in addition to the zero rate [no 
escalation]).  For instance, for the second development year, the rate of escalation that applies to a 
given type of claim (for a given policy or accident year) is weighted by the fraction of (incremental) 
losses associated with the given type of claim in the first development year.  (Note that the fraction 
of incremental losses that applies to a given type of claim for a given development year is held 
constant for every policy (or accident) year, as such information is not available for every single 
policy or accident year.)  Before policy year 1984, there was no escalation of indemnity benefits.  
Then, in policy year 1984, the escalation of fatal claims (at 4 percent), as introduced in June 1986, 
shows up in the prior (to the extent that this policy year was affected by the legislative change).  The 
weight of such escalation increased in policy year 1985 before reaching (in policy year 1986) the level 
that corresponds to the fraction of Fatal (incremental) losses in the first development year.  This 
level of escalation then rose again in policy year 1989 when in May 1991 PT claims started escalating 
at the CPI rate of inflation.  This escalation of PT claims reached its full weight (at the fraction of 
PT incremental losses in the first development year) in policy year 1991.  Note that because CPI 
inflation varies over time, the expert prior for the escalation of indemnity claims shows time 
variation even after 1991 (as indicated by the slight bumps in the applicable line in Chart 3). 

Charts 5 and 6 displays the priors (lines with full circles) and the posteriors for the calendar-year 
effect of the latest observed diagonal; remember that there are no observations available for the final 
six values of the latest diagonal, which is why for these values the posterior equals the prior.  Again, 
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note that the first value on the diagonal comprises 18 months of inflation.  For medical benefits, the 
expert prior for the calendar-year effect (which is the M-CPI; Chart 6) is uniform along the diagonal, 
except for the first value, which comprises inflation of a longer time period.  For indemnity benefits, 
the expert prior for the rate of escalation (as determined by the pertinent legal stipulations) varies 
along the diagonal (beyond the initial change caused by switching from 18 months of inflation to 12 
months of inflation); this is because diagonals span several development years.  As a given set of 
indemnity claims develops, the proportions of incremental payments going to the various claim 
types (TT, PP, PT, and fatal) change; if these claim types escalate at different rates, then the expert 
prior for the escalation of the total of incremental payments within a given calendar year (diagonal) 
varies by development year.  As mentioned, fatal claims escalate at four percent and PT claims 
escalate at the rate of CPI inflation; because the fraction of these claims is small in the first 
development year, the expert prior for the rate of escalation embedded in the total incremental 
payments in the second development year is close to zero.  As development progresses, the fractions 
of incremental payments that apply to these two types of claim increases, as indicated by the rising 
line (full circles) in Chart 5 for development years 2 through 6.  After 312 weeks of benefits, PP 
claims start escalating at the rate of CPI inflation.  With TT claims having expired (or technically 
behaving like PT or PP claims), all claims escalate from development year 6 onward.  (Fatal claims 
keep escalating at the stipulated four percent, whereas all other claims escalate at the CPI rate of 
inflation.) 

Charts 7 and 8 show for $1 of initial (that is, first report) payment, kernel density estimates for 
the impact of the reform-induced change in the run-off rate (delta) on the ultimate loss for (the 
future) policy year 2008; remember that the first year comprises 24 months of development.  Note 
that the payments are adjusted for the calendar-year effect; otherwise, studying the reform-induced 
difference in the ultimate loss would require choosing a specific pre-reform reference year (because 
of the time variation of the rate of inflation).  Breaking out the reform impact on medical benefits is 
straightforward as for medical benefits, legislative reforms generally feed into the run-off rate delta.  
(Remember that any systematic difference between the workers compensation-specific medical 
inflation and M-CPI inflation are captured by the run-off rate delta; hence, any changes to the 
difference between these two inflation rates will be reflected in changes to delta.)  Breaking out the 
reform impact on the ultimate loss of indemnity is more demanding than isolating such impact on 
the ultimate loss of medical; this is because legislative changes may not only change the run-off rate 
but also affect the stipulated rate of escalation, age limit for benefits, duration of benefits, or social 
security offset.  The reform impact on the ultimate loss in indemnity, as depicted in Chart 7, is 
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adjusted for the calendar-year effect, which means that the legislative changes to the applicable rates 
of escalation are not captured.  Of course, the impact of the change in escalation can be broken out 
as well, but this requires choosing a specific reference year, as the CPI rate of inflation varies over 
time.  (Alternatively, the ultimate losses of the various policy years [per $1 of initial payment] could 
be presented in a chart similar to Charts 9 and 10, which display the tail factors by policy year, while 
fully accounting for reform impacts.)  As mentioned, to the extent that the 1990/92 reform cluster 
led to faster closing of existing claims and this way affected the run-off rates of post-1992 diagonals 
for pre-1990 policy years, the reform impact displayed in Charts 7 and 8 may be understated; this is 
because, even though the post-reform losses are accurately estimated, the “as-if-pre-reform” 
post-reform ultimate losses may be understated.  Most interestingly, Chart 8 shows that the 1990/92 
reform cluster indeed reduced the ultimate loss for medical (per $1 of initial payment), thus pointing 
to a faster run-off of medical payments due to increased scrutiny regarding continued eligibility for 
indemnity payments.  As mentioned, the 1990/1992 reform cluster pertained mainly to indemnity 
benefits, but there was also a medical benefits reform, which occurred in November 1992. 

Charts 9 and 10 exhibit the 19th-to-ultimate tail factors, differentiated by pre-reform and 
post-reform period; the post-reform period includes the future policy year (2008) of interest to 
ratemaking.  The displayed tail factors rest on two alternative concepts.  The first concept (“Tail 
Factors Based on b”) computes the tail factors based on the estimated data-generating process.  The 
second concept (“Tail Factors Based on y.hat”) computes the tail factor based on the estimated 
incremental payments.  Generally, for future policy (or accident) years, depending on the case, the 
two concepts generate the same number.  The tail factor trajectory that stretches over the entire 
analyzed time period offers actual pre-reform tail factors (to the left of the left-most vertical 
separator) and “as-if-pre-reform” post-reform tail factors (to the right of the right-most vertical 
separator).  The vertical differences between the “as-if-pre-reform” post-reform tail factors and the 
actual post-reform tail factors gauge the (full) reform impact.  As argued above, to the extent that 
the reform cluster affected post-1992 diagonals for pre-1990 policy years, the “as-if-pre-reform” 
post reform tail factor may be understated. 

Charts 11 and 12 offer a demonstration of how sensitive tail factors are to the rate of inflation 
that applies to the pertinent future policy year 2008.  For indemnity, this rate of inflation is the rate 
of growth of the CPI, which is the (post-reform) stipulated rate of escalation for PP claims (after 
312 weeks of benefits) and PT claims; the rate of escalation of fatal claims is kept at four percent.  
For medical, the rate of inflation is the M-CPI.  Note that, due to the convexity of the tail factor in 
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the rate of inflation, greater variability in the rate of inflation entails larger tail factors when averaged 
across policy years. 

Charts 13 through 18 are diagnostic tools.  These charts gauge how well the model has been 
calibrated; they display by policy year (Charts 13 and 14), development year (Charts 15 and 16) and 
calendar year (Charts 17 and 18) the difference between the log incremental payments predicted by 
the data-generating process (b) and the actual log incremental payments (y); the solid line indicates 
the median difference.  Early in development, the solid lines in Charts 15 and 16 must be close to 
zero; late in development, these lines may turn jagged as outliers (in the percentage difference 
between observed and predicted payments) become more likely.  The diagnostic Charts 13 through 
18 signify that the model is well calibrated (as the median differences [solid lines] show no persistent 
departure from the zero line); in particular, the calendar-year effect (Charts 17 and 18) is properly 
captured. 

Charts 19 and 20 are another set of diagnostic tools.  These charts inform about data outliers and 
may serve as data quality indicators.  The charts display by policy year the difference between the 
actual log cumulative payments (z) and the fitted log cumulative payments (z.hat) along the 
development year time axis.  Based on experience, values within the interval (-0.005; 0.005) indicate 
that the model is able to replicate the underlying data.  Values outside this interval but within the 
interval (-0.01; 0.01) have to be considered outliers.  Values outside the interval (-0.01; 0.01) must be 
considered data points of poor quality. 
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Chart 1: Indemnity: Trajectory for delta (Run-off Rate, Calendar-Year Effect-Adjusted); “9”: 
Pre-Reform; “8”: Post-Reform 
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Chart 2: Medical: Trajectory for delta (Run-off Rate, Calendar-Year Effect-Adjusted); “9”: 
Pre-Reform; “8”: Post-Reform 
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Chart 3: Indemnity: Calendar-Year Effect, Second Development Year 
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Chart 4: Medical: Calendar-Year Effect, Second Development Year 
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Chart 5: Indemnity: Calendar-Year Effect, Final Diagonal 
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Chart 6: Medical: Calendar-Year Effect, Final Diagonal 
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Chart 7: Indemnity: Reform Impact on the Ultimate Loss per $1 of First Report Payment (Adjusted 

for Calendar-Year Effect); Kernel Density Estimation 
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Chart 8: Medical: Reform Impact on the Ultimate Loss per $1 of First Report Payment (Adjusted 
for Calendar-Year Effect); Kernel Density Estimation 
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Chart 9: Indemnity: Tail Factor (Vertical Separators Border Reform Cluster) 
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Chart 10: Medical: Tail Factor (Vertical Separators Border Reform Cluster) 
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Chart 11: Indemnity: Sensitivity of Tail Factor to Official Rate of Inflation (CPI) for Policy Year 
2008 
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Chart 12: Medical: Sensitivity of Tail Factor to Official Rate of Inflation (M-CPI) for Policy Year 
2008 
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Chart 13: Indemnity: Difference between Actual Observations (y) and Estimated Process (b) by 
Policy Year, Post-Reform 
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Chart 14: Medical: Difference between Actual Observations (y) and Estimated Process (b) by Policy 
Year, Post-Reform 
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Chart 15: Indemnity: Difference between Actual Observations (y) and Estimated Process (b) by 
Development Year, Post-Reform 
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Chart 16: Medical: Difference between Actual Observations (y) and Estimated Process (b) by 
Development Year, Post-Reform 
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Chart 17: Indemnity: Difference between Actual Observations (y) and Estimated Process (b) by 
Diagonal (Calendar Year), Post-Reform 
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Chart 18: Medical: Difference between Actual Observations (y) and Estimated Process (b) by 
Diagonal (Calendar Year), Post-Reform 
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Chart 19: Indemnity: Actual Log Cumulative minus Predicted Log Cumulative Payments, 
Post-Reform 
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Chart 20: Medical: Actual Log Cumulative minus Predicted Log Cumulative Payments, Post-Reform 
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4. CONCLUSIONS 

A loss development model has been presented that explicitly accounts for the legislative 
environment that applies to the time period during which the losses have been observed.  Most 
importantly, the model accommodates changes in the legislative environment, which may be 
multi-faceted, having either diagonal (calendar year) or horizontal (policy year) effects (or both).  
The application of the model to an unidentified state demonstrates how, due to its high degree of 
flexibility, the model is capable of accommodating complex changes to loss development patterns.  
Further, the model is able to break out and quantify individual aspects of the legislative reform, such 
as calendar-year effects versus changes to the (calendar-year effect-adjusted) run-off. 

Most interesting to the practicing actuary is the ability of the model to incorporate expert 
information as Bayesian priors in the estimation process.  As shown, such expert priors may be 
legally stipulated rates of escalation (for indemnity) or information on medical price inflation at large 
(where more detailed information on the inflation embedded in medical benefits is unavailable). 
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Appendix 1 

Exhibit A-1: Loss Triangle Template, Indemnity and Medical 

 

Note: Available payments are shaded gray.  For the cells marked by the symbol ×, only cumulative (but no incremental) payments are 
available. 
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Appendix 1, cont.’d 

Exhibit A-2: Loss Triangle Template, Pre-Reform and Post-Reform 

 

Note: The payments constituting the pre-reform triangle are shaded gray; the payments forming the post-reform triangle are framed by a 
solid line.  For the cells marked by the symbol ×, only cumulative (but no incremental) payments are available. 
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Appendix 2: Pre-Reform Model (Model Type 9) 

2
9, , ,9

9

9

1,..., 1,  2,..., 1    
2,..., ,  2,...,                    

1,..., ,  2,..., 1  ~ N( , ) 
2,..., ,  1,..., 1              

,..., ,  1,.

σ

= − = − + − +
= = − +
= + = − + − +
= + = − +
= =

i j i j y

i rg j cg i cf i
i rf j cf i cf
i rf rh j cf i c iy b
i cf rh j c i
i rg rh j

 

.., 1                  

⎧
⎪
⎪⎪
⎨
⎪
⎪

− +⎪⎩ cf i

 (A2-1)

 

9, ,9 ,

9

, ,9

1,..., 1,  1,..., 1         
2,..., ,  2,...,                        

ˆ 1,..., ,   2,..., 1        for 
2,..., ,   1,..., 1     

.  

i j i j

i j

i rg j cg i cf i
i rf j cf i cf
i rf rh j cf i c iz z

i cf rh j c i
cs mean

= − = − + − +
= = − +
= + = − + − += −
= + = − +

9

, , ,9
9

       
               

,..., ,   1,..., 1                     

1,..., 1,  1,...,           
1,..., 1,  1,..., 1

        for
1,..., ,  1,..., 1    i j

i rg rh j cf i

i rg j cg i
i rf j cf c i

mv
i rg r j c iμ

⎧
⎪
⎪⎪
⎨
⎪
⎪

= = − +⎪⎩
= − = −
= − = + − +

=
= + = − +

                        

2,..., ,  2,...,              i r j c i c

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪ ⎧⎪ ⎪⎪ ⎪
⎪ ⎨
⎪ ⎪
⎪ ⎪ = = − +⎩⎩

 (A2-2)

 
2

, ,9 , ,9ˆ N( , ) , , 1,...,σ= =i j i j yy b i j c  (A2-3)

 

( ), ,9 , ,9
1

ˆˆ log exp  , , 1,...,
=

⎛ ⎞
= =⎜ ⎟⎜ ⎟

⎝ ⎠
∑

j

i j i k
k

z y i j c  (A2-4)

 

9 ,9 1~ N( , )μmv mv Ω  (A2-5)

 

,9 9 2~ N( , )μmv mv Ω  (A2-6)

 

, ,9 0 , , 1,...,i jcs i j c= =  (A2-7)

 

,9 9 1' ~ N( ', ) ,  1,...,i i r=cs cs.mean Ω  (A2-8)

 
2

,1,9 ,1,9 .~ N( , )σ
h hr r b initb y  (A2-9)
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,1,9 1,1,9 1,1,9 ,9 ,  1,..., 1+ += − Λ = −i i i hb b i r  (A2-10)

 

1,1,9 1 ,9 ,  1,..., 1η+ +Λ = = −i i hi r  (A2-11)

 
2

1~ N( , ) ,  3,...,ηη η σ− =i i i r  (A2-12)

 
2

2 ~ N(0, )ηη σ  (A2-13)

 

,1,9 1,1,9 ,1,9 ,9 ,  1,...,−= + Λ = +i i i hb b i r r  (A2-14)

 

,1,9 ,1 ,9 ,  1,...,ηΛ = = +i i hi r r  (A2-15)

 

, ,9 , 1,9 , ,9  ,  1,..., 1,  2,..., 1−= + Λ = − = − +i j i j i jb b i r j c i  (A2-16)

 

, ,9 ,9. , ,9 ,9 ,  1,..., 1,  2,..., 1δ κΛ = + = − = − +i j j pre i j g gi r j c i  (A2-17)

 

, ,9 ,9 , ,9 ,9 ,  1,..., 1,  2,..., 1δ κΛ = + = − = − + − +i j j i j g gi r j c i c i  (A2-18)

 

, ,9 ,9 , ,9 ,  ,..., ,  2,..., 1δ κΛ = + = = − +i j j i j gi r r j c i  (A2-19)

 
2

,9 ,2~ N( . , ) ,  2,3δδ δ σ =j jprior j  (A2-20)

 
2

,9 1,9 ,~ N( , ) ,  4,...,δδ δ σ− =j j j j cf  (A2-21)

 
2

,9 ,1~ N( , ) ,  1,...,δδ δ σ = +j cf j cf c  (A2-22)
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( 1)

2 2
, ,1 10  ,  4,..., ;  , , 0

γβα α
δ δσ σ α β γ

− ⋅ −− ⋅− + ⋅= ⋅ = >
jee

j j cf  (A2-23)

 
2 2

,2 . ,  largeδσ σ b init  (A2-24)

 
2

,1  smallδσ  (A2-25)

 
2

, ,~ N( , ) ,  1,..., ;  2,...,κκ μ σ = =i j i j i r j c  (A2-26)

 

, 1, 1, 2, 2, 1, 2,,  1,..., ;  2,..., ,  1μ λ π λ π λ λ+ += ⋅ + ⋅ = = + ≤i j j i j j i j j ji r j c  (A2-27)

 

where y , and ŷ  are the observed and estimated logarithmic incremental payments, respectively.  
For negative incremental payments, the corresponding values of y  are coded as missing values.  The 
indexes i  and j  indicate policy (or accident) and development years, respectively; =r c  signifies the 
number of years in the loss triangle.  The parameter fc  signifies the column with the final value for 
the cumulative (and incremental) payment in the first 1−fr  rows, where the first 1−fr  rows are 
those affected by the cut-off in reported development.  The parameter gc  signifies the first column 
that has a value for the cumulative payment in the first row; note that the first incremental payment 
in this row is located in column 1+gc .  The parameter ( )=g gr c  indicates the first row that has a 
value for the cumulative (and thus incremental) payment in the first column. 

The parameter ,9 ,9( )=g gr c  indicates the row (column) with the first pre-reform incremental 
payment in the first column (row).  If there was no structural break prior to the reform of interest, 
then ,9 ,9( ) ( )= = =g g g gr c r c .  Conversely, if there was such a possible structural break, then the 
parameter ,9 ,9( )=g gr c  indicates the first row (column) with an incremental payment in the first 
column (row) that belongs to the post-structural-break pre-reform period. 

Equation (A2-1) fits the observations of the logarithmic incremental payments to a normal 
distribution.  Equation (A2-2) defines the deviation of the estimated logarithm of the cumulative 
payment ( , ,9ˆ i jz , where the index 9 indicates pre-reform) in policy (or accident) year j  and 



Loss Development in Workers Compensation in the Presence of Legislative Reform 
 

Casualty Actuarial Society E-Forum, Fall 2008 322 

development year i  from and the observed logarithm of the cumulative payment ( ,i jz ); this 
deviation is denoted ,. i jcs mean , where cs  stands for cumulative sum.  Equation (A2-3) simulates 
the predicted values of the logarithmic incremental payments; these predicted values feed into the 
estimated logarithmic cumulative payments in Equation (A2-4).  Where such cumulative sum does 
not exist (to the right of the final diagonal, up to the final observed development year), ,. i jcs mean  is 
replaced by a draw from a multivariate distribution, , , ,9i jmv μ , as shown in Equation (A2-6).  
Specifically, the row vector ics.mean  comprises the differences between the predicted and observed 
logarithmic cumulative payments of row i  for those columns for which observed logarithmic 
cumulative payments are available; for all other columns, the elements of ics.mean  are taken from a 
vector of (expected) values that generates a multivariate normal distribution of the same variance as 
the one that ics.mean  is fitted to.  The covariance matrices 1

1,2
−Ω  are modeled on Wishart 

distributions.  Equations (A2-5) and (A2-6) generate a distribution the , , ,9i jmv μ  can be drawn from; 
the distributions of the observed and the generated values of ics.mean  share the same covariance 
matrix, 1

1
−Ω .  Equation (A2-7) stipulates that the observed differences between the logarithms of 

the observed and estimated cumulative payments be zero, on average.  Equation (A2-8) represents 
the cumulative sum (cusum) constraint.  This stochastic constraint ensures that, for every cell of the 
loss triangle, the sum of estimated incremental payments lines up (approximately) with the observed 
cumulative payment.  The cusum constraint also serves as a means of interpolating between 
incremental payments when there is a missing value (due to a negative incremental payment). 

Equation (A2-9) initializes for the upper-left hand side region (where no observations are 
available for the first incremental payment) the first logarithmic increment payment on the first 
logarithmic incremental payment of the first row for which such a payment is available (denoted as 
row hr ). 

Equations (A2-10-), (A2-11), and (A2-14) through (A2-19) describe the process displayed in 
Exhibit 1.  Equation (A2-12) describes the random walk of eta, and Equation (A2-13) its starting 
value.  Equation (A2-21) describes the random walk of delta, and Equation (A2-20) describes how 
the first two values of delta are estimated before the random walk sets in, whereas Equation (A2-22) 
details how delta is extrapolated into the future after the random walk ends with the final observed 
development year.  Equation (A2-23) describes a Gompertz function for the innovation variance of 
the random walk of delta; this innovation variance approaches the variance displayed in Equation 
(A-25).  The variance for estimating the first two values of delta (that is, before the random walk sets 
in) is shown in Equation (A2-24).  Finally, Equations (A2-26 and A2-27) detail how the calendar-
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year effect is estimated using an expert prior on the rate of escalation (indemnity) and inflation 
(medical). 

The model has two layers of noise, which implies that there are two predicted values (for 
each observed value of incremental payment).  First, there is the variable b , which aggregates the 
three processes (run-off in development, growth of expected value of first payment, and 
calendar-year effect).  Second, there is the variable .y hat , which is a draw from a normal 
distribution, the expected value of which is b .  Where there are no observations (the run-off triangle 
is squared, the tail is estimated, and future policy or accident years are forecast), the variable .y hat  
corresponds to the expected value, b .  The variable .y hat  gauges the ability of the model to 
replicate the observed incremental payments. 

The variables ,  ( 1,2)π =i j i  are expert priors for (logarithmic) rates of inflation, which may 
vary by policy (or accident) and development years.  (For policy years, the first prior in any given 
policy (or accident) year comprises inflation for a period of 18 months, this being the time difference 
between the mid-point of the initial 24 months of experience and the subsequent 12-month period.)  
The model accommodates two non-zero rates of inflation, differentiated by type of claim; this is 
important for indemnity claims (but irrelevant for medical claims).  Thus, the prior for the calendar-
year effect in any given development year, j , is a weighted average of three (one zero and two 
non-zero) expert rates of inflation, the weights being the fractions of dollars in incremental 
payments that apply to up to two differently inflating claim types in development year 1−j , 

, ,  1,2λ =k j k  (while a third claim type may inflate at a zero rate).  If there is only one claim type (as is 
the case for medical claims) or all claim types escalate at the same rate, then 2,π j  and 2,λ j  equal 
zero for all j , and 1,λ j  equals 1 for all j . 

Specifically, for indemnity, the expert prior for the (logarithmic) calendar-year effect equals 
the official (logarithmic) rate of inflation relevant to the cost-of-living adjustment, weighted by the 
fractions of incremental dollars that have been paid on escalating claims in the development year 

1−j , jλ .  The official rate of inflation pertinent to cost-of-living adjustment may be the rate of 
growth of the state-level average weekly wage (as measured by the Quarterly Census of Employment 
and Wages, QCEW, http://www.bls.gov) or the U.S. CPI (Consumer Price Index, 
http://www.bls.gov), depending on the applicable legislative provision; we apply an observation and 
implementation lag of 14 months.  The expert inflation prior for medical benefits is the 
(contemporaneous logarithmic) rate of growth of the Medical Care component of the U.S. CPI.  
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The QCEW average weekly wage is calculated as the ratio of the total wage bill for the calendar year, 
summed up over four quarterly values, and then divided by the average employment for the calendar 
year; this average employment for the calendar year is calculated from 12 monthly numbers.  The 
Medical Care component of the CPI is the published annual calendar year number. 

It is important to note that the rate of growth of the expected value of the first incremental 
payment (η ) is specified in nominal terms, which means that the rate of inflation is not broken out.  
As a consequence, the mentioned inflation modeling applies solely to the way the incremental 
payments inflate in development but has no bearing on the how the first incremental payment 
inflates from one policy (or accident) year to the next. 

The chosen set of hyper-parameters of the prior distributions has been calibrated to 
incremental payments, the logarithm of which fall into the range of 7 to 11; the incremental (and 
cumulative) payments of the loss triangle that is to be analyzed have to be normalized accordingly.  
With such normalization, the chosen set of hyper-parameters accommodates any sufficiently 
well-behaved triangle.  As a consequence, the final calibration of the model when applied to a loss 
triangle is done solely by choosing the three parameters of the Gompertz function, with one 
exception; this exception concerns the variance of the rate of growth of the expected value of the 
first payment, as exhibited in Equations (A2-12, 13).  For triangles with a high degree of variation in 
the rate of growth of the first incremental payment (such as percentage point differences in the 
higher double digits), a larger variance is needed.  Further, the parameters of the Gompertz function 
need to be chosen.  This Gompertz function serves the purpose of smoothing the run-off rate δ  by 
means of controlling the innovation variance of the random walk.  The Gompertz function 
accommodates convex, concave, and “S”-shaped trajectories of this variance.  The first parameter of 
the Gompertz function, α , determines the upper asymptote; the parameter β  is (roughly) a 
horizontal shift parameter, and the parameter γ  determines the rate of the growth (that is, the 
steepness and curvature).  The choice of the parameters β  and γ  is ultimately a matter of 
judgment, especially for small triangles.  Several diagnostic charts have been developed (as discussed 
in the body of the text) that assist in this choice. 

Note that the pre-reform and post-reform models have all variances in common; further, the 
two models have a common calendar-year effect and common rates of growth of the expected value 
of the first payment.  For all scalar variances in the model, there are gamma distributions used as 
priors. 
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Appendix 3: Post-Reform Model (Model Type 8) 

8 8

2
, , ,8

8

8

1,..., 1,  1,..., 1 
2,..., ,  2,...,                      

1,..., 1,  2,..., 1 ~ N( , ) 
2,..., ,  1,..., 1                 

,..., ,  

σ

= − = − + − +
= = − +
= + + = − + − +
= + = − +
=

i j i j y

i rg j cg i cf i
i rf j cf i cf
i rf cf j cf i c iy b
i cf rh j c i
i rg cf j

 

1,..., 1                    

⎧
⎪
⎪⎪
⎨
⎪
⎪

= − +⎪⎩ cf i

 (A3-1)
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1,..., 1,  1,..., 1   
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i rf j cf i cf
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= = − +
= + + = − + − += −
= + = − +

8
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, , ,8
8

     
    

,..., ,   1,..., 1                    

1,..., 1,  1,...,     
1,..., 1,  1,..., 1

              for
1,..., ,  1,..., 1    

2,..., ,  

i j

i rg cf j cf i

i rg j cg i
i rf j cf c i

mv
i rh r j c i
i r

μ

⎧
⎪
⎪⎪
⎨
⎪
⎪
= = − +⎪⎩
= − = −
= − = + − +

=
= + = − +
=

                     

2,...,             j c i c

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪ ⎧⎪ ⎪⎪ ⎪
⎪ ⎨
⎪ ⎪
⎪ ⎪ = − +⎩⎩

 (A3-2)

 
2

, ,8 , ,8ˆ N( , ) , , 1,...,i j i j yy b i j cσ= =  (A3-3)

 

( ), ,8 , ,8
1

ˆˆ log exp  , , 1,...,
j

i j i k
k

z y i j c
=

⎛ ⎞
= =⎜ ⎟⎜ ⎟

⎝ ⎠
∑  (A3-4)

 

8 ,8 1~ N( , )μmv mv Ω  (A3-5)

 

,8 8 2~ N( , )μmv mv Ω  (A3-6)

 

, ,8 0 , , 1,...,i jcs i j c= =  (A3-7)

 

,8 8 1' ~ N( ', ) ,  1,...,i i c=cs cs.mean Ω  (A3-8)
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2
,1,8 ,1,8 .~ N( , )σ

h hr r b initb y  (A3-9)

 

,1,8 1,1,8 1,1,8 ,8 ,  1,..., 1+ += − Λ = −i i i hb b i r  (A3-10)

 

1,1,8 1 ,8 ,  1,..., 1η+ +Λ = = −i i hi r  (A3-11)

 

,1,8 1,1,8 ,1,8 ,8 ,  1,...,−= + Λ = +i i i hb b i r r  (A3-12)

 

,1,8 ,8 ,  1,...,ηΛ = = +i i hi r r  (A3-13)

 

, ,8 , 1,8 , ,8  ,  1,..., 1,  2,..., 1−= + Λ = − = − +i j i j i jb b i r j c i  (A3-14)

 

, ,8 ,9. , ,9 ,9 ,  1,..., 1,  2,..., 1δ κΛ = + = − = − +i j j pre i j g gi r j c i  (A3-15)

 

, ,8 ,89 , ,9 ,9 ,8 ,  1,..., 1,  2,..., 1δ κΛ = + = − = − + − +i j j i j g g gi r j c i c i  (A3-16)

 

, ,8 ,89 , ,9 ,8 ,8 ,  ,..., 1,  2,..., 1δ κΛ = + = − = − +i j j i j g g gi r r j c i  (A3-17)

 

, ,8 ,8 , ,8 ,8 ,  1,..., 1,  2,..., 1δ κΛ = + = − = − + − +i j j i j g gi r j c i c i  (A3-18)

 

, ,8 ,8 , ,8 ,  ,..., ,  2,..., 1δ κΛ = + = = − +i j j i j gi r r j c i  (A3-19)

 
2

,8 ,2~ N( . , ) ,  2,3δδ δ σ =j jprior j  (A3-20)

 
2

,8 1,8 ,~ N( , ) ,  4,...,δδ δ σ− =j j j j cf  (A3-21)
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2
,8 ,1~ N( , ) ,  1,...,δδ δ σ = +j cf j cf c  (A3-22)

 

,8 ,9.  ,  4,...,δ δ δ= − =j j f jdiff j cf  (A3-23)

 
2

,. . ~ N( . , ) ,  4,...,δδ δ σ =j j jdiff z diff j cf  (A3-24)

 

. . 0 ,  4,...,δ = =jdiff z j cf  (A3-25)

 
2

, ,~ N( , ) ,  1,..., ;  2,...,κκ μ σ = =i j i j i r j c  (A3-26)

 

, 1, 1, 2, 2, 1, 2,,  1,..., ;  2,..., ,  1μ λ π λ π λ λ+ += ⋅ + ⋅ = = + ≤i j j i j j i j j ji r j c  (A3-27)

 

The parameter ,8 ,8( )=g gr c  indicates the row (column) of the first post-reform incremental 
payment in the first column (row).  Equations (A3-23, 24, and 25) define the convergence constraint 
for the run-off rates of the pre-and post-reform triangles; this constraint becomes tighter as 
development progresses.  Note that the pre-reform run-off rates of the post-reform triangle are 
allowed to differ from the run-off rates of the pre-reform triangle (except for the ,9.δ j pre  area).  For 
the definitions of the variables parameters, see Appendix 2.  Further, see Appendix 4 for a complete 
list of variables. 
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Loss Development in Workers Compensation in the Presence 
of  Legislative Reform 

Frank Schmid 
 
________________________________________________________________________ 

Motivation.  Legislative reforms affect loss development patterns in various ways.  Some legislative innovations 
may affect new policy (or accident) years only, while others have diagonal effects as they affect both new and 
existing claims.  Modeling these effects is critical for adequacy in ratemaking and reserving. 
Method.  Using a Bayesian state-space model, workers compensation triangles are developed subject to the 
applicable legislative stipulations.  Most importantly, this model is capable of accommodating the legislative 
environment as it evolves over time. 
Results.  The model is applied to an unidentified state, which experienced a reform cluster in the period 
1990/92.  The model shows how this reform cluster affects the ultimate loss and the 19th-to-ultimate tail factors. 
Conclusions.  Ultimate losses are not only dependent on the legislative environment at time of loss, but are also 
affected by how this legislative environment evolves over time.  The statistical model is capable of quantifying 
the effects of such legislative changes on the loss development pattern. 
Availability.  The model runs in OpenBUGS 2.2.0 (http://mathstat.helsinki.fi/openbugs/) within the R 
(www.r-project.org) package BRugs 0.3-3 (http://cran.r-project.org).  OpenBUGS is administered by the 
Department of Mathematics and Statistics of the University of Helsinki, Finland; R is administered by the 
Technical University of Vienna, Austria.  OpenBUGS and R are GNU projects of the Free Software Foundation 
and, hence, available free of charge. 
 
Keywords.  Workers Compensation, Trend and Loss Development, Reserving Methods. 

             

1. INTRODUCTION 

Workers compensation is a line of insurance that operates in a legal environment that is subject 
to frequent and (sometimes) sweeping changes.  Such legislative changes affect the loss development 
patterns in ratemaking and reserving in powerful and complex ways.  Traditional loss development 
models do not acknowledge the specific legal environment in which the losses have been observed, 
nor are these models capable of incorporating changes in the legal setting into the loss development 
pattern; as a consequence, these models are not capable of quantifying the impacts of changes to 
legal stipulations on the ultimate loss or tail factor. 

What follows is a Bayesian state-space model of loss development that explicitly accounts for the 
legal environment in which the losses of a given (indemnity or medical) triangle were observed.  
Accounting for the legal environment means translating legal stipulations into data inputs, which are 
then fed into the model.  The model is set up to accommodate a wide array of legal changes, among 
which are changes to the stipulated rates of escalation (for indemnity) and (any) factors that bear on 
the rate at which incremental payments decay in development net of the calendar-year effect. 
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1.1 Research Context 

A wide array of loss development models have been suggested, some of which are extensions of 
traditional actuarial methods (mostly related to the chain ladder; see, for instance, Mack [5]), while 
other models cast loss development into a time series framework (see, for instance, de Jong and 
Zehnwirth [2], de Jong [1], and Verrall [9]).  For overviews on loss development models, see 
England and Verrall [3] and Taylor [8].  Bayesian modeling of loss development using the software 
platform BUGS (Bayesian inference Using the Gibbs Sampler) has been pioneered by Scollnik [6,7].  
The model presented here draws on Scollnik [7]. 

1.2 Objective 

The objective of the loss development model introduced in this paper is to give the practicing 
actuary a framework for developing losses in a changing legal environment.  By acknowledging 
changes in pertinent legal stipulations, the model is capable of delivering values for the ultimate loss 
(and, hence, the tail factor) that are adequate for ratemaking and reserving.  Specifically, the model 
allows for quantification of reform impacts on the ultimate loss and the tail factor. 

1.3 Outline 

The following section first outlines the basic structure of the Bayesian state-space model of loss 
development and then, in a sub-section, applies this model to an unidentified state.  This application 
details how regulatory information is fed into the model and how the model quantifies the reform 
impact.  Section 3 presents the results of this empirical analysis.  Section 4 offers conclusions. 

2. BACKGROUND AND METHODS 

The Bayesian state-space model of loss development employed in the analysis of legislative 
reform treats incremental payments as a three-dimensional time series problem.  Specifically, the 
incremental payments are driven by three time processes, which are growth of the first payment, 
development, and the calendar-year effect; these processes are illustrated in Exhibit 1. 
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Exhibit 1: Time Processes in Loss Development 

Calendar Year Effect 
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Growth of First Payment 
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The model fits to (the logarithms of) incremental payments and, at the same time, employs a 
stochastic cumulative sum (cusum) constraint to ensure that, for any development year, the sum of 
the estimated incremental payments for a given policy (or accident) year add up (approximately) to 
the observed cumulative payment for that policy (or accident) year. 

As an example, consider the stylized triangle displayed in Exhibit 2.  Let [ , ]y i j  be the (natural) 
logarithm of the incremental payment of policy (or accident) year i  in development year j , which 
materializes as a draw from a normal distribution with expected value [ , ]b i j .  Then, the expected 
value of the logarithm of the first payment in the first policy (or accident) year, [1,1]b , develops into 

[1,2] [1,1] [2] [1,2]b b delta kappa= + + , where [1,2]b  is the expected value of the logarithm of the 
second incremental payment in the first policy (or accident) year.  The parameter [2]delta  is the rate 
of decay (which is expressed as a logarithmic rate of growth) of the calendar-year effect-adjusted 
incremental payments from development year 1 to development year 2, whereas the term [1,2]kappa  
is the calendar-year effect (which, again, is expressed as a logarithmic rate of growth) from calendar 
year 1 to calendar year 2.  Note that the calendar-year effect is not restricted to be uniform along a 
given diagonal—for instance, [2,3]kappa  is allowed to differ from [3,2]kappa ; this is because 
different types of indemnity claims (which consist of Temporary Total [TT], Permanent Partials 
[PP], Permanent Totals [PT], and Fatals) may escalate at different rates and the fraction of the 
various types in the total may change across development years.  Finally, for the expected value of 
the logarithm of the first payment in the second policy (or accident) year, [2,1]b , we can write 
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[2,1] [1,1] [2]b b eta= + , where [2]eta  (which is again expressed as a logarithmic rate of growth) equals 
the change in expected values. 

Exhibit 2: Stylized Triangle 
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The run-off rate (delta) is estimated using a smoothed random walk specification; the smoothing 
is obtained by scaling the innovation variance with a Gompertz function.  The rate of growth of the 
expected value of the first incremental payment (eta) is also estimated using a smoothed random 
walk; unlike the innovation variance of the run-off rate (which decreases as development 
progresses), the innovation variance of eta is constant.  (The smaller the innovation variance, the 
smoother is the estimated trajectory of growth rates.) 

The model draws on expert information in determining the prior for the calendar-year effect, 
which manifests itself in the growth rate kappa.  For indemnity benefits inflation, these expert priors 
are the rates of escalation as stipulated in the law; these stipulated rates of escalation may vary by 
type of claim. Additionally, the expert priors for the rates of escalation may vary by policy (or 
accident) years and development years.  The expert prior for medical benefits inflation is the rate of 
growth of the Medical Care component of the CPI (Consumer Price Index; www.bls.gov), M-CPI 
for short. 

The model develops future losses subject to the assumption that the expert priors for the 
(non-constant) rates of inflation follow random walks, starting at the final observed rates.  The 
purpose of these random walks is to incorporate uncertainty about the future rates of inflation.  The 
innovation variances of these random walks have to be determined by an expert based on the actual 
behavior of the applicable inflation series.  Due to the skewed, lognormal distribution of the 
incremental payments, greater uncertainty about future rates of inflation (that is, greater innovation 
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variances in the random walks) implies higher expected values of incremental payments and, all else 
being equal, a larger tail factor. 

The model assumes that beyond the final observed development year, the projected run-off rate 
is the minimum of the final estimated run-off rate (that is, the run-off rate that applies in the final 
observed development year) and a mortality-based run-off rate.  Starting with the final estimated 
logarithmic run-off rate, this logarithmic mortality-based run-off rate decreases linearly in every 
development year such that in development year 60, this rate equals the current official (logarithmic) 
mortality rate for age 80.  Beyond age 80 (development years 61 through 70), the (logarithmic) 
mortality-based run-off rate equals the (logarithm of the) official mortality rate for the applicable 
age.  The mortality information originates from the Social Security Administration (Periodic Life 
Table, www.ssa.gov).  Where indemnity benefits are not granted for life (due to an age limit or an 
otherwise stipulated restriction in the duration of benefits), the number of payments is reduced 
accordingly, as detailed in the following section. 

For details on the model, see Appendixes 2 and 3; Appendix 4 offers a list of variables.  The 
model was estimated using Markov chain Monte Carlo simulation; for introduction to this 
estimation technique see, for instance, Gilks, Richardson, and Spiegelhalter [4].  The equations were 
coded in BUGS and run in R (using BRugs [Version 0.3-3, which utilizes OpenBUGS 2.2.0 beta 
from February 2006]) with a burn-in of 40,000 iterations, followed by a sample of 40,000 iterations, 
of which every fourth draw entered the posterior distribution (to mitigate autocorrelation in the 
Markov chains). 

2.1 The Reform Impact of an Unidentified State 

This section presents an application of the loss development model for the purpose of studying 
the impact of legislative reform on the loss development pattern, and the tail factor in particular.  
The model is applied to a loss triangle of policy year data; the first report of payments of any given 
policy year comprises 24 months of experience.  The policy years in the loss triangle range from 
1980 through 2005.  The triangle, which is displayed in Exhibit A-1 in Appendix 1, is incomplete 
due to a missing upper left-hand side triangle, a missing upper right-hand side triangle, and a missing 
lower left-hand side (single-observation) triangle. 

The purpose of the analysis is to study the reform impact in an unidentified state; this state 
experienced major reforms in workers compensation in the years 1982, 1986, 1990 (effective 
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September 1), and 1992 (indemnity-related reforms effective May 18, and medical-related benefits 
reform effective November 1).  The 1982 and 1986 reforms are not broken out because the first 
diagonal in the triangle refers to the year 1988.  The reform impact of interest is the one of the 
1990/1992 reform cluster; for this purpose, we define the time window 1988-1989 as the pre-reform 
period, and the window 1993-2005 as the post-reform period.  Four of the most significant impacts 
of the 1990/1992 reforms were (1) the introduction of escalation of indemnity benefits at the rate of 
the CPI (regardless of the date of the injury) for PT disability claims and PP disability claims in May 
1991 (beyond 312 weeks of benefits; indemnity benefits for fatal claims had been escalating at a 
fixed rate of 4 percent since June 1986); (2) a limitation of the duration of TT disability claims to 52 
weeks; (3) closer scrutiny regarding continued eligibility of indemnity benefits; and (4) an indemnity 
retirement offset that is immediate for accidents past age 55 or, otherwise, sets in five years prior to 
the official retirement age.  Whereas the introduction of a cost-of-living adjustment is captured in 
the model as a calendar-year effect (as such adjustment started applying to claims of any maturity), 
the time limitation on TT claims, the increased scrutiny regarding continued eligibility, and the social 
security offset can be expected to bear on the run-off rate (delta).  The run-off rate (delta) picks up 
the effect of a social security offset to the extent that such offset kicks in for (older) claimants within 
the first 20 development years (as these are the development years covered by the data).  Yet, 
because the social security offset may not be fully captured by the run-off rate (due to there being 
[younger] claimants for whom the offset does not kick in within the 20 observed development 
years), the model assumes (as an approximation) a 50 percent reduction of the incremental 
indemnity payments past development year 40.  Note that the increased scrutiny regarding 
continued eligibility of indemnity benefits may spill over into medical benefits, thus causing medical 
claims to close faster.  Hence, we expect the 1990/1992 reform cluster to lead to a faster run-off not 
only in indemnity but also in medical incremental payments.  (Note that although the most 
significant impacts of the 1990/1992 reform cluster were the indemnity reforms mentioned above, 
the 1990/1992 reform cluster also included a medical reform in November 1992, as mentioned 
above.) 

Exhibit A-2 in Appendix 1 details the shapes of the pre-reform and post-reform triangles.  The 
area of the pre-reform triangle for which there is data is shaded gray; this area comprises all 
observations between (and inclusive of) the 1988 diagonal and the 1989 policy year.  The 
post-reform triangle is bordered by a solid line and consists solely of post-1992 diagonals.  Note that 
the model does not fit to (the six) observations between (and inclusive of) the 1990 policy year and 
the 1992 diagonal, although these observations are assigned to the pre-reform period for the 
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purpose of the post-reform estimation.  The pre-reform and post-reform loss development 
processes are estimated simultaneously.  The missing upper left-hand side triangle (diagonals 1980 
through 1987) is given its own trajectory of run-off rates, which is the same for both the pre-reform 
and the post-reform estimation.  Finally, for the post-reform estimation, the run-off rates that apply 
to the diagonals from 1988 through 1992 are allowed to differ from the estimated pre-reform 
run-off rates.   

Although the pre-reform triangle consists only of policy-year data prior to 1990, this triangle 
includes elements through the 2005 diagonal.  To the degree that the 1990/1992 reform cluster 
affected existing (instead of only new) claims (for instance, by accelerating their closure), the model 
may underestimate the impact of the reform cluster on the ultimate loss; however, the post-reform 
ultimate losses (and tail factors) would still be accurate, as argued below.  For the data set at hand, 
the pertinent (future) policy year for ratemaking is 2008. 

Unlike the pre-reform triangle, the post-reform triangle consists only of diagonals observed in the 
pertinent legislative environment.  Yet, only in the first column of the post-reform triangle do all 
observations fall into the post-reform regime.  As development time increases, the post-reform 
triangle phases in observations from the previous legislative setting, as indicated by the step function 
that defines the post-reform triangle in Exhibit A-2.  For instance, in the first development year, all 
13 incremental payments (of which the one for policy year 2005 is missing) are from the post-reform 
period.  In the second development year, there are again 13 incremental payments (of which none 
are missing), but only 12 originate in the post-reform regime; and so on.  The progressive phasing in 
of observations from the prior legislative regime rests on the premise that the run-off rates (but not 
necessarily the level of payments) of the post-reform regime approach the pre-reform run-off rates 
as development time advances; this is because the rates of decline of calendar-year effect-adjusted 
incremental payments deep in development may predominantly be driven by factors immune to the 
reforms, such as mortality.  (It is because the reform may affect the level of payments deep in 
development [due to its effect on the run-off rates early in development] that the pre-reform run-off 
rates in the post-reform estimation are allowed to differ from the pre-reform run-off rates in the 
pre-reform estimation.)  If the run-off rates (of the pre-reform policy years) deep in development are 
indeed immune to the reform, then the model estimates accurately both the pre-reform and 
post-reform ultimate losses.  If, on the other hand, the run-off rates (of the pre-reform policy years) 
deep in development are affected by the reform, then the model underestimates the reform impact 
(but still estimates the post-reform ultimate loss accurately because it is the post-reform 
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development pattern that materializes in the post-reform diagonals).  But then there is a third 
situation where the model is not able to quantify the post-reform ultimate loss (as well as the impact 
of the reform).  Such situation arises when the reform affects the run-off deep in development of 
new claims only, as is the case when a second-injury fund is eliminated.  Because the reform takes 
many years to play out in the data (that is, manifest itself in incremental payments of new claims 
deep in development), the model is incapable of quantifying such reform impact immediately. 

When estimating the loss development model, the pre-reform and post-reform triangles are 
estimated simultaneously, subject to the constraint that the two triangles have identical calendar-year 
effects, identical rates of growth of the expected value of the logarithm of the first payment, and 
identical variances in the measurement equations of the incremental payments.  For details on the 
model, see Appendices 2 and 3. 

3. RESULTS 

Odd-numbered charts exhibit the indemnity results, whereas even-numbered charts display the 
results for medical. 

Charts 1 and 2 show the indemnity and medical benefits estimated run-off rates (delta) along the 
development year axis—remember that the run-off rates are the rates of growth of the incremental 
payments, adjusted for the calendar-year effect.  As mentioned, the run-off rates beyond the final 
observed year of development incorporate mortality information.  Whereas the displayed run-off 
rates for medical benefits (Chart 2) describe the trajectory of the run-off rate as employed in the 
computation of the ultimate loss (and, hence, the tail factor), the run-off trajectory of the 
incremental indemnity payments (Chart 1) needs adjustment before inputting it into the 
computation of the ultimate loss or the tail factor; this is because indemnity benefits may not be 
granted for life, or there may be a social security offset.  (If there is an immediate social security 
offset that applies regardless of the age of the claimant, then such offset is captured by the trajectory 
of the run-off rate delta.)  In the unidentified state in question, effective May 1992, a social security 
offset applies to accidents that happen past age 55 or within five years of the legal retirement age.  
As a result of this legislative change, the incremental payments for development years 41 through 70 
(70 being the final development year) were reduced by 50 percent of what would be projected 
otherwise. 
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Charts 3 and 4 present the expert priors (lines with full circles) and the posteriors for the 
calendar-year effect in the second development year (which is the first year of escalation).  Due to 
this being a policy year triangle, the prior in the displayed second development year comprises 18 
months of inflation (which is the time difference between the mid-points of the first 24 months of 
experience and the subsequent 12 months of experience).  Note that, in general, a systematic 
difference between the expert prior for the calendar-year effect and the (unknown) workers 
compensation-specific rate of inflation factors into the run-off rate delta.  Specifically, if for all 
incremental payments the actual (logarithmic) rate of benefits inflation exceeds the expert prior by a 
constant c (which may be positive or negative), then such constant will be absorbed by the rate of 
decay (delta) of the calendar-year effect-adjusted incremental payments—in statistical terms, the 
parameter c is unidentified. 

Whereas the prior for medical inflation (Chart 4) is the M-CPI for all policy years, the prior for 
indemnity escalation (Chart 3) is a weighted average of the legally stipulated rates of escalation (of 
which the model accommodates two non-zero rates of escalation in addition to the zero rate [no 
escalation]).  For instance, for the second development year, the rate of escalation that applies to a 
given type of claim (for a given policy or accident year) is weighted by the fraction of (incremental) 
losses associated with the given type of claim in the first development year.  (Note that the fraction 
of incremental losses that applies to a given type of claim for a given development year is held 
constant for every policy (or accident) year, as such information is not available for every single 
policy or accident year.)  Before policy year 1984, there was no escalation of indemnity benefits.  
Then, in policy year 1984, the escalation of fatal claims (at 4 percent), as introduced in June 1986, 
shows up in the prior (to the extent that this policy year was affected by the legislative change).  The 
weight of such escalation increased in policy year 1985 before reaching (in policy year 1986) the level 
that corresponds to the fraction of Fatal (incremental) losses in the first development year.  This 
level of escalation then rose again in policy year 1989 when in May 1991 PT claims started escalating 
at the CPI rate of inflation.  This escalation of PT claims reached its full weight (at the fraction of 
PT incremental losses in the first development year) in policy year 1991.  Note that because CPI 
inflation varies over time, the expert prior for the escalation of indemnity claims shows time 
variation even after 1991 (as indicated by the slight bumps in the applicable line in Chart 3). 

Charts 5 and 6 displays the priors (lines with full circles) and the posteriors for the calendar-year 
effect of the latest observed diagonal; remember that there are no observations available for the final 
six values of the latest diagonal, which is why for these values the posterior equals the prior.  Again, 
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note that the first value on the diagonal comprises 18 months of inflation.  For medical benefits, the 
expert prior for the calendar-year effect (which is the M-CPI; Chart 6) is uniform along the diagonal, 
except for the first value, which comprises inflation of a longer time period.  For indemnity benefits, 
the expert prior for the rate of escalation (as determined by the pertinent legal stipulations) varies 
along the diagonal (beyond the initial change caused by switching from 18 months of inflation to 12 
months of inflation); this is because diagonals span several development years.  As a given set of 
indemnity claims develops, the proportions of incremental payments going to the various claim 
types (TT, PP, PT, and fatal) change; if these claim types escalate at different rates, then the expert 
prior for the escalation of the total of incremental payments within a given calendar year (diagonal) 
varies by development year.  As mentioned, fatal claims escalate at four percent and PT claims 
escalate at the rate of CPI inflation; because the fraction of these claims is small in the first 
development year, the expert prior for the rate of escalation embedded in the total incremental 
payments in the second development year is close to zero.  As development progresses, the fractions 
of incremental payments that apply to these two types of claim increases, as indicated by the rising 
line (full circles) in Chart 5 for development years 2 through 6.  After 312 weeks of benefits, PP 
claims start escalating at the rate of CPI inflation.  With TT claims having expired (or technically 
behaving like PT or PP claims), all claims escalate from development year 6 onward.  (Fatal claims 
keep escalating at the stipulated four percent, whereas all other claims escalate at the CPI rate of 
inflation.) 

Charts 7 and 8 show for $1 of initial (that is, first report) payment, kernel density estimates for 
the impact of the reform-induced change in the run-off rate (delta) on the ultimate loss for (the 
future) policy year 2008; remember that the first year comprises 24 months of development.  Note 
that the payments are adjusted for the calendar-year effect; otherwise, studying the reform-induced 
difference in the ultimate loss would require choosing a specific pre-reform reference year (because 
of the time variation of the rate of inflation).  Breaking out the reform impact on medical benefits is 
straightforward as for medical benefits, legislative reforms generally feed into the run-off rate delta.  
(Remember that any systematic difference between the workers compensation-specific medical 
inflation and M-CPI inflation are captured by the run-off rate delta; hence, any changes to the 
difference between these two inflation rates will be reflected in changes to delta.)  Breaking out the 
reform impact on the ultimate loss of indemnity is more demanding than isolating such impact on 
the ultimate loss of medical; this is because legislative changes may not only change the run-off rate 
but also affect the stipulated rate of escalation, age limit for benefits, duration of benefits, or social 
security offset.  The reform impact on the ultimate loss in indemnity, as depicted in Chart 7, is 
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adjusted for the calendar-year effect, which means that the legislative changes to the applicable rates 
of escalation are not captured.  Of course, the impact of the change in escalation can be broken out 
as well, but this requires choosing a specific reference year, as the CPI rate of inflation varies over 
time.  (Alternatively, the ultimate losses of the various policy years [per $1 of initial payment] could 
be presented in a chart similar to Charts 9 and 10, which display the tail factors by policy year, while 
fully accounting for reform impacts.)  As mentioned, to the extent that the 1990/92 reform cluster 
led to faster closing of existing claims and this way affected the run-off rates of post-1992 diagonals 
for pre-1990 policy years, the reform impact displayed in Charts 7 and 8 may be understated; this is 
because, even though the post-reform losses are accurately estimated, the “as-if-pre-reform” 
post-reform ultimate losses may be understated.  Most interestingly, Chart 8 shows that the 1990/92 
reform cluster indeed reduced the ultimate loss for medical (per $1 of initial payment), thus pointing 
to a faster run-off of medical payments due to increased scrutiny regarding continued eligibility for 
indemnity payments.  As mentioned, the 1990/1992 reform cluster pertained mainly to indemnity 
benefits, but there was also a medical benefits reform, which occurred in November 1992. 

Charts 9 and 10 exhibit the 19th-to-ultimate tail factors, differentiated by pre-reform and 
post-reform period; the post-reform period includes the future policy year (2008) of interest to 
ratemaking.  The displayed tail factors rest on two alternative concepts.  The first concept (“Tail 
Factors Based on b”) computes the tail factors based on the estimated data-generating process.  The 
second concept (“Tail Factors Based on y.hat”) computes the tail factor based on the estimated 
incremental payments.  Generally, for future policy (or accident) years, depending on the case, the 
two concepts generate the same number.  The tail factor trajectory that stretches over the entire 
analyzed time period offers actual pre-reform tail factors (to the left of the left-most vertical 
separator) and “as-if-pre-reform” post-reform tail factors (to the right of the right-most vertical 
separator).  The vertical differences between the “as-if-pre-reform” post-reform tail factors and the 
actual post-reform tail factors gauge the (full) reform impact.  As argued above, to the extent that 
the reform cluster affected post-1992 diagonals for pre-1990 policy years, the “as-if-pre-reform” 
post reform tail factor may be understated. 

Charts 11 and 12 offer a demonstration of how sensitive tail factors are to the rate of inflation 
that applies to the pertinent future policy year 2008.  For indemnity, this rate of inflation is the rate 
of growth of the CPI, which is the (post-reform) stipulated rate of escalation for PP claims (after 
312 weeks of benefits) and PT claims; the rate of escalation of fatal claims is kept at four percent.  
For medical, the rate of inflation is the M-CPI.  Note that, due to the convexity of the tail factor in 
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the rate of inflation, greater variability in the rate of inflation entails larger tail factors when averaged 
across policy years. 

Charts 13 through 18 are diagnostic tools.  These charts gauge how well the model has been 
calibrated; they display by policy year (Charts 13 and 14), development year (Charts 15 and 16) and 
calendar year (Charts 17 and 18) the difference between the log incremental payments predicted by 
the data-generating process (b) and the actual log incremental payments (y); the solid line indicates 
the median difference.  Early in development, the solid lines in Charts 15 and 16 must be close to 
zero; late in development, these lines may turn jagged as outliers (in the percentage difference 
between observed and predicted payments) become more likely.  The diagnostic Charts 13 through 
18 signify that the model is well calibrated (as the median differences [solid lines] show no persistent 
departure from the zero line); in particular, the calendar-year effect (Charts 17 and 18) is properly 
captured. 

Charts 19 and 20 are another set of diagnostic tools.  These charts inform about data outliers and 
may serve as data quality indicators.  The charts display by policy year the difference between the 
actual log cumulative payments (z) and the fitted log cumulative payments (z.hat) along the 
development year time axis.  Based on experience, values within the interval (-0.005; 0.005) indicate 
that the model is able to replicate the underlying data.  Values outside this interval but within the 
interval (-0.01; 0.01) have to be considered outliers.  Values outside the interval (-0.01; 0.01) must be 
considered data points of poor quality. 
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Chart 1: Indemnity: Trajectory for delta (Run-off Rate, Calendar-Year Effect-Adjusted); “9”: 
Pre-Reform; “8”: Post-Reform 
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Chart 2: Medical: Trajectory for delta (Run-off Rate, Calendar-Year Effect-Adjusted); “9”: 
Pre-Reform; “8”: Post-Reform 
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Chart 3: Indemnity: Calendar-Year Effect, Second Development Year 
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Chart 4: Medical: Calendar-Year Effect, Second Development Year 
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Chart 5: Indemnity: Calendar-Year Effect, Final Diagonal 
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Chart 6: Medical: Calendar-Year Effect, Final Diagonal 
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Chart 7: Indemnity: Reform Impact on the Ultimate Loss per $1 of First Report Payment (Adjusted 

for Calendar-Year Effect); Kernel Density Estimation 
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Chart 8: Medical: Reform Impact on the Ultimate Loss per $1 of First Report Payment (Adjusted 
for Calendar-Year Effect); Kernel Density Estimation 
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Chart 9: Indemnity: Tail Factor (Vertical Separators Border Reform Cluster) 
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Chart 10: Medical: Tail Factor (Vertical Separators Border Reform Cluster) 
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Chart 11: Indemnity: Sensitivity of Tail Factor to Official Rate of Inflation (CPI) for Policy Year 
2008 

0.00 0.02 0.04 0.06 0.08 0.10

1.
02

1.
04

1.
06

1.
08

1.
10

Official Rate of Inflation (0.01 Equals 1 Percent)

Ta
il 

Fa
ct

or

0.0
35

 ,  
1.0

23

1

1.
09

2

1.
08

3

1.
07

5

1.
06

7

1.
06

1

1.
05

5

1.
04

9

1.
04

5

1.
04

1.
03

7

1.
03

3

1.
03

1.
02

7

1.
02

5

1.
02

3

1.
02

1

1.
01

9

1.
01

7

1.
01

6

1.
01

4

1.
01

3

1.
01

2

1.
01

1

1.
01

Tail Factors for Alternative
Rates of Inflation 

Tail Factor for Final Observed
Official Rate of Inflation 

 

Chart 12: Medical: Sensitivity of Tail Factor to Official Rate of Inflation (M-CPI) for Policy Year 
2008 
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Chart 13: Indemnity: Difference between Actual Observations (y) and Estimated Process (b) by 
Policy Year, Post-Reform 

-0
.5

0.
0

0.
5

1.
0

Policy Year

D
iff

er
en

ce
 b

et
w

ee
n 

b 
an

d 
y

5 10 15 20 25

1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16 17 18 19 20 21 22 23 24 25  

Chart 14: Medical: Difference between Actual Observations (y) and Estimated Process (b) by Policy 
Year, Post-Reform 
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Chart 15: Indemnity: Difference between Actual Observations (y) and Estimated Process (b) by 
Development Year, Post-Reform 
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Chart 16: Medical: Difference between Actual Observations (y) and Estimated Process (b) by 
Development Year, Post-Reform 
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Chart 17: Indemnity: Difference between Actual Observations (y) and Estimated Process (b) by 
Diagonal (Calendar Year), Post-Reform 
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Chart 18: Medical: Difference between Actual Observations (y) and Estimated Process (b) by 
Diagonal (Calendar Year), Post-Reform 
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Chart 19: Indemnity: Actual Log Cumulative minus Predicted Log Cumulative Payments, 
Post-Reform 
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Chart 20: Medical: Actual Log Cumulative minus Predicted Log Cumulative Payments, Post-Reform 
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4. CONCLUSIONS 

A loss development model has been presented that explicitly accounts for the legislative 
environment that applies to the time period during which the losses have been observed.  Most 
importantly, the model accommodates changes in the legislative environment, which may be 
multi-faceted, having either diagonal (calendar year) or horizontal (policy year) effects (or both).  
The application of the model to an unidentified state demonstrates how, due to its high degree of 
flexibility, the model is capable of accommodating complex changes to loss development patterns.  
Further, the model is able to break out and quantify individual aspects of the legislative reform, such 
as calendar-year effects versus changes to the (calendar-year effect-adjusted) run-off. 

Most interesting to the practicing actuary is the ability of the model to incorporate expert 
information as Bayesian priors in the estimation process.  As shown, such expert priors may be 
legally stipulated rates of escalation (for indemnity) or information on medical price inflation at large 
(where more detailed information on the inflation embedded in medical benefits is unavailable). 
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Appendix 1 

Exhibit A-1: Loss Triangle Template, Indemnity and Medical 

 

Note: Available payments are shaded gray.  For the cells marked by the symbol ×, only cumulative (but no incremental) payments are 
available. 
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Appendix 1, cont.’d 

Exhibit A-2: Loss Triangle Template, Pre-Reform and Post-Reform 

 

Note: The payments constituting the pre-reform triangle are shaded gray; the payments forming the post-reform triangle are framed by a 
solid line.  For the cells marked by the symbol ×, only cumulative (but no incremental) payments are available. 
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Appendix 2: Pre-Reform Model (Model Type 9) 
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9
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2

, ,9 , ,9ˆ N( , ) , , 1,...,σ= =i j i j yy b i j c  (A2-3)

 

( ), ,9 , ,9
1

ˆˆ log exp  , , 1,...,
=

⎛ ⎞
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⎝ ⎠
∑

j

i j i k
k
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9 ,9 1~ N( , )μmv mv Ω  (A2-5)

 

,9 9 2~ N( , )μmv mv Ω  (A2-6)

 

, ,9 0 , , 1,...,i jcs i j c= =  (A2-7)

 

,9 9 1' ~ N( ', ) ,  1,...,i i r=cs cs.mean Ω  (A2-8)

 
2

,1,9 ,1,9 .~ N( , )σ
h hr r b initb y  (A2-9)
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,1,9 1,1,9 1,1,9 ,9 ,  1,..., 1+ += − Λ = −i i i hb b i r  (A2-10)

 

1,1,9 1 ,9 ,  1,..., 1η+ +Λ = = −i i hi r  (A2-11)

 
2

1~ N( , ) ,  3,...,ηη η σ− =i i i r  (A2-12)

 
2

2 ~ N(0, )ηη σ  (A2-13)

 

,1,9 1,1,9 ,1,9 ,9 ,  1,...,−= + Λ = +i i i hb b i r r  (A2-14)

 

,1,9 ,1 ,9 ,  1,...,ηΛ = = +i i hi r r  (A2-15)

 

, ,9 , 1,9 , ,9  ,  1,..., 1,  2,..., 1−= + Λ = − = − +i j i j i jb b i r j c i  (A2-16)

 

, ,9 ,9. , ,9 ,9 ,  1,..., 1,  2,..., 1δ κΛ = + = − = − +i j j pre i j g gi r j c i  (A2-17)

 

, ,9 ,9 , ,9 ,9 ,  1,..., 1,  2,..., 1δ κΛ = + = − = − + − +i j j i j g gi r j c i c i  (A2-18)

 

, ,9 ,9 , ,9 ,  ,..., ,  2,..., 1δ κΛ = + = = − +i j j i j gi r r j c i  (A2-19)

 
2

,9 ,2~ N( . , ) ,  2,3δδ δ σ =j jprior j  (A2-20)

 
2

,9 1,9 ,~ N( , ) ,  4,...,δδ δ σ− =j j j j cf  (A2-21)

 
2

,9 ,1~ N( , ) ,  1,...,δδ δ σ = +j cf j cf c  (A2-22)
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( 1)

2 2
, ,1 10  ,  4,..., ;  , , 0

γβα α
δ δσ σ α β γ

− ⋅ −− ⋅− + ⋅= ⋅ = >
jee

j j cf  (A2-23)

 
2 2

,2 . ,  largeδσ σ b init  (A2-24)

 
2

,1  smallδσ  (A2-25)

 
2

, ,~ N( , ) ,  1,..., ;  2,...,κκ μ σ = =i j i j i r j c  (A2-26)

 

, 1, 1, 2, 2, 1, 2,,  1,..., ;  2,..., ,  1μ λ π λ π λ λ+ += ⋅ + ⋅ = = + ≤i j j i j j i j j ji r j c  (A2-27)

 

where y , and ŷ  are the observed and estimated logarithmic incremental payments, respectively.  
For negative incremental payments, the corresponding values of y  are coded as missing values.  The 
indexes i  and j  indicate policy (or accident) and development years, respectively; =r c  signifies the 
number of years in the loss triangle.  The parameter fc  signifies the column with the final value for 
the cumulative (and incremental) payment in the first 1−fr  rows, where the first 1−fr  rows are 
those affected by the cut-off in reported development.  The parameter gc  signifies the first column 
that has a value for the cumulative payment in the first row; note that the first incremental payment 
in this row is located in column 1+gc .  The parameter ( )=g gr c  indicates the first row that has a 
value for the cumulative (and thus incremental) payment in the first column. 

The parameter ,9 ,9( )=g gr c  indicates the row (column) with the first pre-reform incremental 
payment in the first column (row).  If there was no structural break prior to the reform of interest, 
then ,9 ,9( ) ( )= = =g g g gr c r c .  Conversely, if there was such a possible structural break, then the 
parameter ,9 ,9( )=g gr c  indicates the first row (column) with an incremental payment in the first 
column (row) that belongs to the post-structural-break pre-reform period. 

Equation (A2-1) fits the observations of the logarithmic incremental payments to a normal 
distribution.  Equation (A2-2) defines the deviation of the estimated logarithm of the cumulative 
payment ( , ,9ˆ i jz , where the index 9 indicates pre-reform) in policy (or accident) year j  and 
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development year i  from and the observed logarithm of the cumulative payment ( ,i jz ); this 
deviation is denoted ,. i jcs mean , where cs  stands for cumulative sum.  Equation (A2-3) simulates 
the predicted values of the logarithmic incremental payments; these predicted values feed into the 
estimated logarithmic cumulative payments in Equation (A2-4).  Where such cumulative sum does 
not exist (to the right of the final diagonal, up to the final observed development year), ,. i jcs mean  is 
replaced by a draw from a multivariate distribution, , , ,9i jmv μ , as shown in Equation (A2-6).  
Specifically, the row vector ics.mean  comprises the differences between the predicted and observed 
logarithmic cumulative payments of row i  for those columns for which observed logarithmic 
cumulative payments are available; for all other columns, the elements of ics.mean  are taken from a 
vector of (expected) values that generates a multivariate normal distribution of the same variance as 
the one that ics.mean  is fitted to.  The covariance matrices 1

1,2
−Ω  are modeled on Wishart 

distributions.  Equations (A2-5) and (A2-6) generate a distribution the , , ,9i jmv μ  can be drawn from; 
the distributions of the observed and the generated values of ics.mean  share the same covariance 
matrix, 1

1
−Ω .  Equation (A2-7) stipulates that the observed differences between the logarithms of 

the observed and estimated cumulative payments be zero, on average.  Equation (A2-8) represents 
the cumulative sum (cusum) constraint.  This stochastic constraint ensures that, for every cell of the 
loss triangle, the sum of estimated incremental payments lines up (approximately) with the observed 
cumulative payment.  The cusum constraint also serves as a means of interpolating between 
incremental payments when there is a missing value (due to a negative incremental payment). 

Equation (A2-9) initializes for the upper-left hand side region (where no observations are 
available for the first incremental payment) the first logarithmic increment payment on the first 
logarithmic incremental payment of the first row for which such a payment is available (denoted as 
row hr ). 

Equations (A2-10-), (A2-11), and (A2-14) through (A2-19) describe the process displayed in 
Exhibit 1.  Equation (A2-12) describes the random walk of eta, and Equation (A2-13) its starting 
value.  Equation (A2-21) describes the random walk of delta, and Equation (A2-20) describes how 
the first two values of delta are estimated before the random walk sets in, whereas Equation (A2-22) 
details how delta is extrapolated into the future after the random walk ends with the final observed 
development year.  Equation (A2-23) describes a Gompertz function for the innovation variance of 
the random walk of delta; this innovation variance approaches the variance displayed in Equation 
(A-25).  The variance for estimating the first two values of delta (that is, before the random walk sets 
in) is shown in Equation (A2-24).  Finally, Equations (A2-26 and A2-27) detail how the calendar-
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year effect is estimated using an expert prior on the rate of escalation (indemnity) and inflation 
(medical). 

The model has two layers of noise, which implies that there are two predicted values (for 
each observed value of incremental payment).  First, there is the variable b , which aggregates the 
three processes (run-off in development, growth of expected value of first payment, and 
calendar-year effect).  Second, there is the variable .y hat , which is a draw from a normal 
distribution, the expected value of which is b .  Where there are no observations (the run-off triangle 
is squared, the tail is estimated, and future policy or accident years are forecast), the variable .y hat  
corresponds to the expected value, b .  The variable .y hat  gauges the ability of the model to 
replicate the observed incremental payments. 

The variables ,  ( 1,2)π =i j i  are expert priors for (logarithmic) rates of inflation, which may 
vary by policy (or accident) and development years.  (For policy years, the first prior in any given 
policy (or accident) year comprises inflation for a period of 18 months, this being the time difference 
between the mid-point of the initial 24 months of experience and the subsequent 12-month period.)  
The model accommodates two non-zero rates of inflation, differentiated by type of claim; this is 
important for indemnity claims (but irrelevant for medical claims).  Thus, the prior for the calendar-
year effect in any given development year, j , is a weighted average of three (one zero and two 
non-zero) expert rates of inflation, the weights being the fractions of dollars in incremental 
payments that apply to up to two differently inflating claim types in development year 1−j , 

, ,  1,2λ =k j k  (while a third claim type may inflate at a zero rate).  If there is only one claim type (as is 
the case for medical claims) or all claim types escalate at the same rate, then 2,π j  and 2,λ j  equal 
zero for all j , and 1,λ j  equals 1 for all j . 

Specifically, for indemnity, the expert prior for the (logarithmic) calendar-year effect equals 
the official (logarithmic) rate of inflation relevant to the cost-of-living adjustment, weighted by the 
fractions of incremental dollars that have been paid on escalating claims in the development year 

1−j , jλ .  The official rate of inflation pertinent to cost-of-living adjustment may be the rate of 
growth of the state-level average weekly wage (as measured by the Quarterly Census of Employment 
and Wages, QCEW, http://www.bls.gov) or the U.S. CPI (Consumer Price Index, 
http://www.bls.gov), depending on the applicable legislative provision; we apply an observation and 
implementation lag of 14 months.  The expert inflation prior for medical benefits is the 
(contemporaneous logarithmic) rate of growth of the Medical Care component of the U.S. CPI.  
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The QCEW average weekly wage is calculated as the ratio of the total wage bill for the calendar year, 
summed up over four quarterly values, and then divided by the average employment for the calendar 
year; this average employment for the calendar year is calculated from 12 monthly numbers.  The 
Medical Care component of the CPI is the published annual calendar year number. 

It is important to note that the rate of growth of the expected value of the first incremental 
payment (η ) is specified in nominal terms, which means that the rate of inflation is not broken out.  
As a consequence, the mentioned inflation modeling applies solely to the way the incremental 
payments inflate in development but has no bearing on the how the first incremental payment 
inflates from one policy (or accident) year to the next. 

The chosen set of hyper-parameters of the prior distributions has been calibrated to 
incremental payments, the logarithm of which fall into the range of 7 to 11; the incremental (and 
cumulative) payments of the loss triangle that is to be analyzed have to be normalized accordingly.  
With such normalization, the chosen set of hyper-parameters accommodates any sufficiently 
well-behaved triangle.  As a consequence, the final calibration of the model when applied to a loss 
triangle is done solely by choosing the three parameters of the Gompertz function, with one 
exception; this exception concerns the variance of the rate of growth of the expected value of the 
first payment, as exhibited in Equations (A2-12, 13).  For triangles with a high degree of variation in 
the rate of growth of the first incremental payment (such as percentage point differences in the 
higher double digits), a larger variance is needed.  Further, the parameters of the Gompertz function 
need to be chosen.  This Gompertz function serves the purpose of smoothing the run-off rate δ  by 
means of controlling the innovation variance of the random walk.  The Gompertz function 
accommodates convex, concave, and “S”-shaped trajectories of this variance.  The first parameter of 
the Gompertz function, α , determines the upper asymptote; the parameter β  is (roughly) a 
horizontal shift parameter, and the parameter γ  determines the rate of the growth (that is, the 
steepness and curvature).  The choice of the parameters β  and γ  is ultimately a matter of 
judgment, especially for small triangles.  Several diagnostic charts have been developed (as discussed 
in the body of the text) that assist in this choice. 

Note that the pre-reform and post-reform models have all variances in common; further, the 
two models have a common calendar-year effect and common rates of growth of the expected value 
of the first payment.  For all scalar variances in the model, there are gamma distributions used as 
priors. 
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Appendix 3: Post-Reform Model (Model Type 8) 
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The parameter ,8 ,8( )=g gr c  indicates the row (column) of the first post-reform incremental 
payment in the first column (row).  Equations (A3-23, 24, and 25) define the convergence constraint 
for the run-off rates of the pre-and post-reform triangles; this constraint becomes tighter as 
development progresses.  Note that the pre-reform run-off rates of the post-reform triangle are 
allowed to differ from the run-off rates of the pre-reform triangle (except for the ,9.δ j pre  area).  For 
the definitions of the variables parameters, see Appendix 2.  Further, see Appendix 4 for a complete 
list of variables. 
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________________________________________________________________________ 
Abstract: Since the implementation at year-end 2004 of requirements under the Sarbanes-Oxley Act of 2002, 
many publicly traded property/casualty insurance companies have benefited from improved corporate 
governance surrounding the loss reserving process. However, the degree of improvement and resultant benefit 
has varied widely by company. While some have embraced the value of having stronger controls, others have 
viewed these requirements as resulting in significant additional process with only minimal benefit. The authors 
believe there are significant benefits to having strong corporate governance surrounding the loss reserving 
process. This paper defines key principles surrounding a well-controlled loss reserving process, and provides an 
evaluation framework to identify and prioritize opportunities for improvement. The areas addressed in this paper 
go beyond reserving approaches and data quality to consider the role of management, oversight by the board of 
directors and audit committee, documentation surrounding the reserve setting process, and financial statement 
disclosures.  

Keywords: Governance, loss reserves, data quality, Sarbanes-Oxley, SOX, Model Audit Rule, Section 404, ASOP 
41, ASOP 43, audit committee, controls, gold standard, framework. 

             

1. INTRODUCTION 

Pursuant to the Sarbanes-Oxley Act of 2002, publicly held insurance companies are required to have 
processes and controls surrounding the financial reporting function. U.S. statutory reporting is expected 
to be subject to a similar requirement in the near future under the Model Audit Rule.  

For property/casualty insurers, the estimating and recording of unpaid losses and loss expenses 
represents a significant part of the financial reporting process. Over the past several years, some 
insurance companies have taken great strides toward establishing a well-controlled environment 
surrounding their loss reserving process. Other companies have implemented a lesser degree of control, 
although generally sufficient to accomplish the requirements for management’s Section 302 and Section 
404 certifications and to receive an unqualified external audit opinion. 

The authors have experience dealing with many types of companies, including large multinational 
insurance and reinsurance companies. Based on our experiences, we have developed a set of key 
principles that define a well-controlled reserving process. We have also described a continuum to 
measure a company’s process and overall maturity for each of these key elements relative to an ideal and 
well-controlled reserving process.  

The key principles and maturity framework examples described in this paper are not intended to be 
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exhaustive in nature. Rather, these principles and examples are intended to be illustrative, designed to 
encourage readers and company management to think more broadly about the issues surrounding their 
reserving function. 

1.1 Research Context 

Based on our review of the CAS Research Taxonomy, the focus areas of the casualty actuarial science 
that this paper is addressing is I. Actuarial Applications and Methodologies, subtitles A. Accounting and 
Reporting, and I. Reserving. Since this paper focuses on the corporate governance and controls 
surrounding the loss reserving and financial reporting process, we have not assigned this paper to 
further subcategories under these areas. 

In addition, based on our experiences and based on our viewing of the CAS Web Site for papers 
related to corporate governance and loss controls, we identified the following paper as existing literature 
that is relevant to this topic: “Sarbanes-Oxley Section 404 Internal Controls and Actuarial Processes,” by 
Leslie R. Marlo and G. Chris Nyce in Casualty Actuarial Society Discussion Paper Program, 2006. While that 
paper addresses the requirements under Sarbanes-Oxley Section 404, the focus of this paper is on 
strengthening the corporate governance and control environment beyond the basic requirements of 
Section 404 to that of an optimal or ideal framework. 

1.2 Objective 

While Sarbanes-Oxley implemented significant additional requirements, the extent to which 
companies have developed sound processes and controls around their loss reserving process has varied 
significantly. This paper will describe the benefits of embracing a strong corporate governance model. In 
addition, we will define, in principle, best practices associated with a loss reserving process and a 
framework by which a loss reserving process can be measured using specific considerations to identify 
and prioritize opportunities for improvement. 

1.3 Outline 

This paper contains the following sections:  

Section 2 describes at a high level the basic steps related to loss reserve controls that companies are 
required to take under Sarbanes-Oxley, the importance of corporate governance surrounding the loss 
reserving process, and the value of striving to have a best practices reserving process. 

Section 3 defines a best practice, or “gold standard,” reserving process, i.e., the characteristics of a 
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company that has a best practices process for each of the fundamental elements of a reserving process.  

Section 4 describes a framework for measuring the development or maturity of a reserving process 
for a company against the Gold Standard described in Section 3.  

2. SARBANES-OXLEY AND GOVERNANCE SURROUNDING LOSS 
RESERVES 

For many publicly held insurance companies in the United States, the Sarbanes-Oxley Act of 2002 
was effective beginning year-end 2004, initiating a new era in management’s obligations surrounding the 
financial reporting process.  

2.1 Processes and Key Controls 

This section provides a brief overview of the basic elements of a controlled loss reserving 
environment. Marlo and Nyce [1] provide a more detailed description of the requirements under 
Sarbanes-Oxley Section 404.  

There are several key steps that management of a company complete when assessing their loss 
reserving process and control framework. These steps include (1) documenting the loss reserving 
process, typically including a narrative accompanied by a flowchart, (2) identifying significant risks 
within the loss reserving process, (3) identifying or implementing appropriately designed “key controls” 
to mitigate those risks, and (4) evaluating and testing the key controls to ensure they are designed 
appropriately and are operating effectively. The overarching goal of these steps is to ensure that 
appropriate controls exist over the financial statement balances. 

Documentation of the reserving process includes the key steps that are used by management 
throughout the entire process, from the retrieval of raw system data for use in actuarial methods to the 
reserve amounts recorded on the financial statements. These steps would typically include the retrieval 
of claims data, the reconciliation of that data to financial records, the development of actuarial estimates, 
management’s review and approval of recorded amounts considering the actuarial estimates, and the 
recording of the approved amounts in the financial statements. Many loss reserving processes have 
several subprocesses; each of these needs to be documented as well. 

Once the loss reserving process is described in a comprehensive manner, the next step is for 
management to identify risks inherent in that process. These risks include, but are not limited to, the 
following: 
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• Claim data is inaccurate or incomplete or both 

• Reserving methods or assumptions or both are inappropriate or unreasonable 

• Spreadsheet errors are not identified 

• Recorded amounts are not reflective of management’s best estimate 

Once the risks are identified, management then identifies or implements appropriately designed key 
controls to mitigate the risk of financial statement errors that could be caused by the identified risks. 
Such key controls may include the following: 

• Reconciliation of claim data to financial records of company 

• Peer review of actuarial methods and assumptions 

• Technical review of analysis and spreadsheets  

• Management review and approval of recorded reserve amounts 

Once the key controls are established, management routinely tests the key controls for operating 
effectiveness (i.e., that the control is operating as intended). The effectiveness in the design and 
operation of these key controls is the cornerstone to having a well-controlled loss reserving process. 

2.2 Documentation 

Documentation plays an important role in a well-controlled loss reserving process in a number of 
ways.  

Consistent with Actuarial Standard of Practice 41, “Actuarial Communications,” (ASOP 41), 
actuaries are required to maintain documentation of their work in a manner that is sufficient for another 
actuary practicing in the same field to have the ability to evaluate the methods, assumptions, and 
judgments used in the loss reserving process. 

Documentation also plays an important role in evidencing that a key control was executed. Clear and 
comprehensive documentation further allows management, their auditor, or another party to evaluate 
whether the control was executed as intended, i.e., to assess the operating effectiveness of that key 
control. 

Documentation also is maintained to support that the amounts recorded in the financial statements 
reflect management’s best estimate, particularly in cases when management’s best estimates differ from 
actuarial estimates. 
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2.3 Our Observations 

Based on our experiences supporting external audits under the requirements of Sarbanes-Oxley, we 
believe there is significant value in embracing a strong corporate governance model surrounding the loss 
reserving process. Some of the benefits include the following: 

• Greater efficiency in operation, allowing for more efficient internal reserve reviews and reduced 
disruption from staff rotation and turnover  

• Greater understanding by senior management, the audit committee, and the board of directors of 
the reserving process 

• Reduced risk of reserve misstatement and decreased likelihood of reserve surprises 

• Few or no deficiencies in controls 

• Smoother interaction with external parties, facilitating a more effective and more efficient external 
audit and regulatory exam 

Companies that operate with a minimum level of controls tend to struggle more often in the areas 
listed above. Turnover of staff in the loss reserving area tends to cause significant inefficiencies, 
disruption, and risk. Unexpected loss reserving issues tend to happen more frequently, in some cases 
each quarter, which leads to frustrated senior management and board members. External audits and 
regulatory exams tend to be more inefficient, time-consuming, and costly. 

3. DEFINING A “BEST PRACTICES” RESERVING PROCESS 

What does it mean to have a strong corporate governance model surrounding the loss reserving 
process? For purposes of describing this we have organized the loss reserving process into eight key 
elements: 

1. Management and board involvement 

2. Actuarial staffing and expertise 

3. Data quality and reliability 

4. General reserving approach 

5. Reserving methodology 

6. Documentation of reserving process 
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7. Use of external actuaries 

8. Financial statement disclosures 

For each of these key elements, we describe below a high-level summary of the characteristics that a 
best practices, or “gold standard,” company would likely have. The examples cited are intended to be 
illustrative in nature, designed to encourage readers and company management to think more broadly 
about the issues surrounding the reserving function. 

3.1 Management and Board Involvement 

Gold standard companies have senior management and audit committees that are strongly 
committed to the loss reserving process, including the associated financial reporting. Senior 
management’s commitment is demonstrated by the following: 

• Prioritizing and committing necessary resources to the reserving process (e.g., staffing, computer 
systems, etc.);  

• Minimizing potential conflicts of interest; (e.g., ensuring sufficient segregation of duties between 
the reserving and pricing actuaries); 

• Understanding the reserving approaches, methods and key assumptions, and challenging these as 
warranted; and  

• Proactively monitoring changes in reserve estimates and understanding the reasons for those 
changes through internal management reporting.  

Senior management formalizes its oversight of the loss reserve process by initiating a reserve 
committee or equivalent management group. The reserve committee is comprised of key management 
stakeholders in the reserving process (e.g., finance, underwriting, claims), and is collectively responsible 
for determining the recorded reserve levels. As such, the committee is governed by a formalized process 
including a committee charter, and conclusions of the committee are documented and executed (see 
Section 3.7, Documentation of Reserving Process, for further discussion). 

The lead reserving actuary presents the internal reserve package to the reserve committee on a 
quarterly basis or more frequently. The package includes supporting information sufficient for the 
reserve committee to make informed judgments and draw conclusions (e.g., support for key reserving 
assumptions, documentation of changes to key reserving assumptions, changes in indicated ultimate 
losses by class of business, schedules of loss reserve runoff/accuracy of prior estimates). The package 



Corporate Governance and the Loss Reserving Process 

Casualty Actuarial Society E-Forum, Fall 2008  335 

also includes internal or industry benchmarks, some of which are “traditional” to actuarial work, while 
others may be common to financial reporting or investor analyst research.  

The audit committee actively oversees the reserve-setting process by monitoring and evaluating the 
policies and principles surrounding reserve setting, the internal controls over the reserving process, and 
the transparency of related disclosures. In this oversight role, the audit committee meets regularly with 
internal actuaries, reserve committee members, external actuaries, and the external auditors. For a more 
detailed discussion of what information audit committees could reasonably expect to receive from their 
actuaries, refer to the report published in September 2007 by the American Academy of Actuaries’ 
Committee on Property and Liability Financial Reporting, titled “An Overview for Audit Committee 
Members of P/C Insurers: Effective Use of Actuarial Expertise.”  

3.2 Actuarial Staffing and Expertise 

With regard to the internal actuarial loss reserving function, gold standard companies have the 
following qualities: 

• The loss reserving function is staffed by credentialed professionals (e.g., members of the Casualty 
Actuarial Society and American Academy of Actuaries) who adhere to continuing education 
requirements. The actuarial staff is encouraged to participate in relevant professional meetings 
and seminars, and a program supporting professional advancement (e.g., actuarial student 
program) exists.  

• Staffing levels are of sufficient quantity and quality to allow for comprehensive, timely review of 
the relevant reserving components, and duties are segregated such that separate actuarial 
individuals are responsible for the primary analysis function, technical review, and supervisory 
peer review. 

• Reserving personnel are independent of those responsible for underwriting and pricing the 
business; nevertheless, the reserving personnel consider key metrics evaluated in the pricing 
department (e.g., pricing or rate monitoring processes, expected loss ratios) and relevant items 
from other departments (e.g., changes in the mix of business, changes in claims settlement 
objectives, changes in emphasis on legal challenges). 

• Reserving personnel have the requisite experience in the specific classes of business assigned to 
them. In addition, reserving personnel understand the financial reporting standards related to 
reserves and recognize the specific areas of the reserve process external auditors are required to 
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evaluate. 

• The lead reserving actuary takes ownership over all reserve estimates, even for areas where the 
primary analysis may not reside in the actuarial department (e.g., asbestos and environmental, 
catastrophe reserves).  

• Inefficiencies from staffing turnover in the actuarial department are minimized by a loss 
reserving process that is well organized, comprehensively documented, and properly executed. 
Documentation allows individuals new to the company’s reserving process to understand the 
reserving methods, key assumptions, and historical conclusions. 

 

3.3 Data Quality and Reliability 

With respect to actuarial data, there are several consistent themes with companies exhibiting best 
practices: 

• Loss, premium and other actuarial data are usable for estimation purposes as they are captured 
and contained in the company’s systems, facilitating the reconciliation of data used in actuarial 
analysis to information published in financial statements. 

• Computer systems are capable of capturing data in sufficient quality and detail needed for 
actuarial review. While highly complex claims or unusual coverages present a greater challenge in 
this regard, the difficulty in estimating liabilities for such exposures makes this capability that 
much more important. 

• Manual data processing, which is subject to backlogs and higher error rates, is minimal or 
nonexistent. Where manual processing is necessary, adequately documented and controlled 
procedures are in place to ensure the accuracy and completeness of manual entries. 

• The data for actuarial analysis are available in a timely manner for actuarial review and 
management consideration in the current period’s financial results. 

• Managing general agent (MGA) and third-party administrator (TPA) interfaces are well 
controlled and regularly monitored to ensure that data is properly and timely incorporated into 
the loss reserving process. 

• As needed, computer systems permit functional currencies to be accurately recorded and 
translated at historical or constant exchange rates, as appropriate, for aggregation with other data 
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for actuarial analysis. 

In summary, a company following the Gold Standard has system-generated data directly usable in the 
actuarial estimation process, and such data is captured in the detail necessary for an actuary to apply a 
wide variety of actuarial methods. 

3.4 General Reserving Approach 

Best practices surrounding the general reserving approach involve a number of items such as the 
frequency of reviews, gross/ceded/net analyses, reasonableness checks and the use of software. 

With regard to frequency of actuarial evaluation, there are several key themes of gold standard 
companies: 

• For companies adhering to quarterly reporting requirements, the actuarial reserve evaluation 
process is performed and finalized on a quarterly basis and in a timely manner before final 
management decisions are made as to reserves and other financial statement items. 

• For relatively straightforward classes of business (i.e., short-tail classes that lend themselves to 
traditional actuarial methods), full reviews are completed each quarter using data evaluated as of 
the quarter-ending date (i.e., not on a quarterly lag). For companies with classes of business 
where the size, complexity and/or long-tail nature of the exposures prohibit a comprehensive 
review in this time frame, reserve reviews are completed with one quarter lag and are coupled 
with a rigorous actual-versus-expected analysis for the most recent quarter. 

• For nontraditional exposures that may not be suited to traditional actuarial methods (e.g., 
asbestos, pollution or directors and officers coverages), full reviews are completed at least once 
per year, with key monitoring statistics using current data considered during the quarterly 
reporting process. 

Gold standard companies have the same rigor of analyses for the reserves prepared gross of 
reinsurance as they do on a net of reinsurance basis. Further, gross and net analyses, or another 
combination such as gross and ceded analyses, are prepared concurrently and the results compared for 
reasonableness. The impact the reserving process has on other financial statement items associated with 
actuarially determined processes (e.g., reinsurance recoverable, adjustable ceding commissions, 
additional premiums) is also considered concurrently at this point in the process. 

If reserves reflect a discount for the time value of money, the key approaches and assumptions used 
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to calculate such discounted amounts are consistent with the actuarial analysis underlying the selection 
of the ultimate undiscounted amounts.  

Standard outputs from the reserve estimation process include reasonability checks and analytical or 
diagnostic metrics. These metrics may include loss ratios by accident year, various frequency and severity 
statistics, or other measures that are helpful to facilitate an understanding of the key drivers of the 
reserve estimates. 

Gold standard companies use consistent and standardized reserving software that has been 
developed either internally or externally. Such software is well controlled (e.g., protected from 
inadvertent changes, planned modifications are thoroughly tested and documented, data inputs are 
separate from calculation modules) but typically contains sufficient flexibility to allow users to apply new 
methods, if desired. Ad hoc spreadsheets are rare exceptions, but are used with appropriate end-user 
controls when the flexibility of such a tool is necessary to improve the quality of the estimates. Further, 
the reserving software facilitates the actuary’s documentation of their considerations for assumptions or 
judgments that deviate from a guideline. Manual hand-offs/transfers (e.g., “copy, paste, value”) are 
negligible to the process. 

3.5 Reserving Methodology 

Actuaries following the Gold Standard prepare their reserve estimates in a manner consistent with 
guidance provided by Actuarial Standard of Practice No. 43, “Property/Casualty Unpaid Claim 
Estimates” (ASOP 43). ASOP 43 provides guidance for many topics surrounding the loss reserve 
estimation process. 

In addition, a gold standard reserving process uses the most suitable methods available for a given 
circumstance, not just those that are the easiest to apply. Key assumptions are vetted among claims, 
underwriting, and actuarial management to ensure an appropriate level of exchange of approaches and 
viewpoints. Further, where multiple business units and/or multiple locations are involved, dedicated 
teams are built to form a broader or global approach to evaluating consistent parameters of reserving 
models (e.g., development tail factors, loss trend rates, reserve positions taken on special complex 
claims) or for exposures that tend to be insured and reinsured globally (e.g., directors and officers, 
catastrophe reinsurance, high excess clash covers, aviation, etc.).  

Finally, the reserving actuaries interact closely with underwriters and pricing actuaries to obtain 
appropriate price monitoring information as inputs into the reserve estimation process. Considerations 
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should include an evaluation of how a company establishes rate level adequacy, the quality of systems, 
reports, and documentation of policies regarding the level of discretionary pricing available to the 
underwriter, the degree of data accuracy and completeness within the price monitoring reports, and the 
extent of exposure analysis and pricing evaluations within the underwriting audit process.  

3.6 Documentation of Reserving Process 

Gold standard companies document their reserving process, from the data used in the actuarial 
analysis, which is reconciled to the financial records of the company, through the compilation and 
actuarial analysis, and, ultimately, to management’s review and approval of amounts recorded in the 
financial statements. The documentation contains supporting analysis and calculations in sufficient detail 
for another actuary practicing in the area to follow, consistent with ASOP 41. Additional documentation 
exists to demonstrate the execution and operating effectiveness of peer review and other controls. 

Companies following the Gold Standard record management’s best estimate and appropriately 
document it as such. The recorded amount may or may not equal the internal actuarial indication (or 
third-party actuarial indication, if there is no internal actuarial indication). In circumstances where the 
recorded amount equals the actuarial indication, then a record is made by management actively 
supporting the actuarial indication is its best estimate. In circumstances where the recorded amount does 
not equal the actuarial indication, then a record is made by management that qualitatively and 
quantitatively supports, as appropriate, why the recorded amount represents a better amount than the 
actuarial indication. Further, care is taken to ensure that the recorded amount is still considered to be a 
reasonable actuarial estimate. Management’s record supporting the recorded amounts is both 
understandable and consistent in principle across reporting periods. 

3.7 Use of External Actuaries 

Gold standard companies periodically engage third-party actuaries to perform corroborative reserve 
analyses. Company management understands that the third-party is typically independent and, therefore, 
is expected to provide a more objective assessment. In addition, third-party actuaries often provide 
unique information and expertise that may not otherwise be available to company employees, especially 
with respect to unusual exposures (e.g., asbestos and environmental ground-up reserve analyses). 

Company management is engaged throughout the third-party review to understand the reserving 
methodologies and key assumptions. Companies that do not employ internal reserving actuaries will 
review the third-party reserve indications, appropriately challenge these indications, consider the results 
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in the reserve-setting process, and document the resulting conclusions even if no changes are made to 
recorded amounts. For companies that employ internal reserving actuaries but also engage a third-party 
reserving actuary, the third-party indications are reviewed, meaningful differences between the internal 
and external indications are understood and documented, and management considers these differences 
in its reserve setting process with appropriate documentation on the conclusions reached. 

The frequency and breadth of third-party reserve analyses depends upon the nature of the liabilities 
(i.e., long-tail versus short-tail, level of complexity), the perceived value of an independent estimate, and 
the additional information and/or expertise that the third-party can bring. Companies with more 
complex exposures have third-party reviews completed no less frequently than once per year. 
Appropriate controls exist over the data provided to the third-party for analysis. 

In addition, input and related advice are regularly sought from the external auditor’s actuaries, 
including but not limited to views on reserve adequacy, effectiveness of controls over the reserving 
process, and ideas on how to improve efficiency in the reserving process and effectiveness of the 
financial reporting disclosures. 

3.8 Financial Statement Disclosures 

Gold standard companies continuously benchmark their financial statement and Management's 
Discussion and Analysis of Financial Condition and Results of Operations (MD&A) disclosures with the 
SEC’s evolving views on financial statement transparency. In particular, such companies provide clear 
and understandable disclosures regarding: 

• The process management undertakes to determine its recorded reserves; 

• The description of management’s process for adjusting the liability for unpaid claims and claim 
adjustment expenses to an amount that is different than the actuarial indication, including the 
method used to determine the adjustment, the amount of the adjustment and the specific reasons 
why the adjustment is necessary; 

• Either reserve ranges or other key reserve sensitivity metrics or both that provide transparency as 
to the uncertainty in the estimates, with adequate characterization of the range or metrics 
provided; 

• Presentations of accident year data that are consistent with the underlying actuarial analysis and 
management’s best estimates, regardless of whether the underlying data were analyzed on an 
accident year, report year, policy year, underwriting year, or calendar year basis;  
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• Explanations regarding the amounts and reasons for prior period development, even if increases 
(or decreases) are offset with decreases (or increases) in other lines. Further, the amounts of 
development attributable to true claims development, premium development, accretion of 
discount or foreign exchange are determined, presented separately, and appropriately 
characterized; 

• Other information that may useful (e.g., global loss development triangles); 

With each of the above items, gold standard companies have controls in place and documentation 
supporting their disclosures in the same amount of rigor as for the financial statement amounts for loss 
reserves. 

4. MEASURING A LOSS RESERVING PROCESS USING THE 
MATURITY FRAMEWORK 

From our experience, we believe most companies do not operate at the optimal level defined in 
Section 3, at least not in all of the eight components. Further, we believe that many companies are at 
different levels of “maturity” as it relates to the individual eight components described above. For 
example, a company may be very strong with Management and Board Involvement, but not as strong 
with Data Quality. 

4.1 Maturity Framework 

To compare each component of a company’s process relative to the optimal level defined in Section 
3, we consider a maturity framework, in which we assess if the company’s process is operating at one of 
four levels: minimal, developing, accomplished, or optimal. These levels are defined as follows: 

Minimal—operating near or at the minimum level needed for management to complete their 
attestation and for its external auditors to complete their audit. 

Developing—reserving process not well standardized, significant changes exist from period to period—
the process runs smoothly some of the time but is inefficient or ineffective at other times; numerous 
gaps and shortcuts exist. 

Accomplished—reserving process is well standardized—generally smooth, efficient, and timely; 
however, some gaps and shortcuts still exist, which are noticeable on occasion. 

Optimal—the component operates near or at the optimal level described in Section 3. 
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After performing an unbiased, objective assessment of a reserving process, the actuaries, 
management, and the audit committee could work together to identify specific opportunities to improve 
current processes and then develop appropriate action plans to achieve a stronger corporate governance 
model.  

4.2 Measuring the Loss Reserving Process 

To measure a component of the loss reserving process against the maturity framework’s levels 
described above, one approach would be to ask simple questions and develop answers that would 
correspond to a given maturity level. Several examples of these questions and answers are provided 
below. 

4.2.1 Question - Management and Board Involvement 

How committed is senior management to maintaining strong corporate governance over the loss 
reserving process? 

Minimal Senior management voices commitment, but their actions are vague. 
Personnel resources tend to be overwhelmed. Systems are often either old  
outdated or both. Management challenges actuarial results occasionally, but 
generally only when results are unfavorable. 

Developing Senior management voices commitment and its actions are clear in certain 
spots. Typically, resources are moderately strained and there is room for 
improvement. Management challenges results at times – favorable or 
unfavorable – but is not consistent in its method and process. 

Accomplished Senior management voices commitment and its actions are clear in most 
areas. Resources are at acceptable levels in all but isolated spots. 
Management challenges results regularly and understands the process but 
does not attempt to understand the details. 

Optimal Senior management strongly committed to loss reserving processes; regularly 
demonstrated by prioritizing and committing necessary resources, by 
minimizing potential conflicts of interest, by ensuring they understand and 
challenge reserving approaches, methods, and key assumptions, as warranted.
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4.2.2 Question—Actuarial Staffing and Expertise 

Are appropriate staffing levels supporting the loss reserving process? 

Minimal Staffing levels allow for only annual or semi-annual review; detailed for some 
lines, high-level review for others. The same individuals often have multiple 
functions; e.g., one individual might be responsible for the primary analysis 
function, a self-technical review, and self-peer review. 

Developing Staffing levels allow for quarterly review in some areas but are stretched in 
others—only semi-annual or annual reviews are completed in these areas. 
Reserve reviews are typically detailed in nature, with some exceptions. Duties 
are more segregated, although some control functions, such as formal 
technical review, might not exist. 

Accomplished Staffing levels, roles, and responsibilities are sufficient in quality and quantity 
in most areas; however, several gaps still exist, often in highly specialized 
areas. 

Optimal Staffing levels are of sufficient quantity and quality to allow for 
comprehensive, timely review of the relevant reserving components, and 
duties are segregated such that separate individuals are responsible for the 
primary analysis function, technical review, and supervisor peer review. 

4.2.3 Question - Data Quality and Reliability 

Many large and complex companies have data quality issues and system limitations; how do these 
limitations affect the reserving process? 

Minimal Actuarial data (e.g., loss, premium) is not captured in sufficient detail for 
purposes of actuarial analysis for many lines of business, creating difficulties 
in directly reconciling actuarial data to the financial statements. Complexities 
of the business have outgrown system capabilities or systems tend to be 
outdated. Manual “work-arounds” are relatively routine, some of which have 
effective controls. 

Developing Actuarial data is not captured in sufficient detail for purposes of actuarial 
analysis for some lines of business. Certain systems may be outdated, but the 
problem is not pervasive. Manual processing with effective controls is 
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common. 

Accomplished Actuarial data may not be captured in all cases in sufficient detail for 
purposes of actuarial analysis, but the problem is generally isolated. System 
limitations are minor. 

Optimal Actuarial data is captured in sufficient detail for purposes of actuarial 
analysis, allowing for relatively easy reconciliation of the actuarial data to the 
financial statements. Systems capabilities dovetail with actuarial needs; 
manual processing is minimal or non-existent. 

4.2.4 Question - Documentation of Reserving Process 

How complete and comprehensive is the documentation surrounding the actuarial loss reserve 
estimation process? 

Minimal No consolidated report or standard process exists. Actuarial calculations are 
part of the documentation, and are sometimes accompanied with a 
memorandum describing the methods and assumptions. Analyses are 
performed by multiple departments and are not summarized at the reporting 
segment and/or consolidated level. 

Developing No consolidated report exists, although the reserving process is reasonably 
standardized. Actuarial calculations in final form exist, and typically include 
an explanatory memorandum as part of the documentation. Analyses are still 
performed by multiple departments and might be summarized at a high level 
at the reporting segment or consolidated level or both. 

Accomplished While no consolidated, stand-alone report exists, such reports do exist for 
certain divisions within the company/segment. Results are summarized in 
some form at the reporting segment or consolidated level or both. Written 
documentation adequately describes the process, key assumptions, and 
findings. 

Optimal Documentation is standardized and self-contained in a report and clearly 
leads from the data used in the actuarial analysis (reconciled to the financial 
records), through the compilation and decision-making process and, 
ultimately, to the amounts recorded in the financial statements. 
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4.2.5 Question - Financial Statement Disclosures 

Are disclosures in publicly available information describing the company’s loss reserving process and 
uncertainty in reserves effective? 

Minimal The disclosures regarding the reserve estimation process are vague and do 
not represent clearly the underlying process. The disclosures related to 
uncertainty surrounding the recorded reserves are overly simplistic and do 
not explain the relationship of the uncertainty in the actuarial estimates to 
the resulting risk of reserve variability. 

Developing The disclosures related to reserve estimation generally represent the process 
used by the company to establish reserves. The disclosures related to the 
reserve range are understandable, yet rather general and only minimally 
address the company’s particular risks and variability. 

Accomplished The disclosures accurately and clearly describe the process used to establish 
reserves. If ranges or other metrics are provided, the information is 
meaningful and generally relates to the company’s particular characteristics.

Optimal The disclosures are clear on the process used to establish reserves and why 
management chose its particular estimate. Significant differences between 
recorded amounts and internal actuarial indications, if any, are provided and 
the reasons for such differences are appropriately described. Reserve ranges 
or other quantitative measures of variability are provided and described in an 
understandable manner to a non-actuary. 

5. CONCLUSIONS 

There are significant advantages to having a strong corporate governance environment and an 
optimally controlled reserving process. Loss reserves are typically the most significant and uncertain item 
on a property/casualty insurance company’s balance sheet. A reserving process functioning at an 
optimal level has strong internal controls with few or no deficiencies, reduced risk of reserve 
misstatement, high-quality documentation of the actuarial analysis, and appropriate management support 
for the recorded amounts. These factors result in a more effective and efficient external audit, as well as 
a significantly reduced likelihood of issues arising from the audit of the recorded amounts or testing of 
internal controls. The benefits go beyond financial reporting, as a strong control environment allows 
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senior management and the audit committee to make better informed company decisions on 
underwriting, capital allocation, and other business decisions. 

Although some companies have a general sense of opportunities to improve upon current practices, 
few companies have systematically studied the whole actuarial reserving process to assess their current 
practices in relation to an ideal, best practices reserving process. A complete assessment would identify 
opportunities and facilitate management’s prioritization of key areas to help their company reap the 
rewards of a stronger corporate governance model. 
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Distribution and Value of  Reserves Using Paid and 
Incurred Triangles 

Gary G. Venter, FCAS, MAAA 

________________________________________________________________________ 

Abstract  

Many loss reserving models are over-parameterized yet ignore calendar-year (diagonal) effects. Venter [1] illus-
trates techniques to deal with these problems in a regression environment. Venter [2] explores distributional ap-
proaches for the residuals. Gluck [3] shows that systematic effects can increase the reserve runoff ranges by more 
than would be suggested by models fitted to the triangle data alone. Quarg and Mack [4] show how to get more 
information into the reserve estimates by jointly using paid and incurred data.  
 
This paper uses the basic idea and data from [4] and the methods of [1] to build simultaneous regression models 
of the paid and incurred data, including diagonal effects and eliminating non-significant parameters. Then alter-
native distributions of the residuals are compared in order to find an appropriate residual distribution. To get a 
runoff distribution, parameter and process uncertainty are simulated from the fitted model. The methods of 
Gluck [3] are then applied to recognize further effects of systematic risk.  
 
Once the final runoff distribution is available, a possible application is estimating the market value pricing of the 
reserves. Here this is illustrated using probability transforms, as in Wang [5]. 
 
Keywords. Reserving Methods; Reserve Variability; Uncertainty and Ranges, Fair Value, Probability Transforms, 
Bootstrapping and Resampling Methods, Generalized Linear Modeling. 

             

1 INTRODUCTION 

Actuaries have used many methods for reconciling reserve estimates from paid and incurred tri-

angles for decades, but formal modeling of paid and incurred simultaneously appears to have begun 

with Halliwell [6]. His approach was to fit regression models to both data triangles with constraints 

on the coefficients of both models. More recently Quarg and Mack [4] argue that a high paid-to-

incurred ratio for an accident year/lag combination is suggestive of higher-than-average incurred 

development and lower-than-average paid development in the next period. For instance, some paid 

factors compared to incurred/paid ratios from 

http://www.actuaries.org/ASTIN/Colloquia/Zurich/Mack_presentation.pdf are reproduced in 

Figure 1. In [4] the development factors for paid and incurred are adjusted using these ratios. The 

formulas are available in Mack [7], who also provides a comparable adjustment for multiplicative 

cross-classified models. 

Verdier and Klinger [8] suggest a modified scheme that recognizes that the impact of the in-

curred/paid ratios reduces in later stages of development. They also calculate the variance of the re-
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sult, and suggest a multi-line extension. Jedlicka [9] studies alternative estimation procedures, and 

outlines a model of paid and unpaid losses instead of paid and incurred, where unpaid = incurred – 

paid. 

Figure 1 – Individual Paid Development Factors as a Function of Incurred/Paid Ratio 

The current paper models paid and incurred triangles using a regression framework, but does not 

fix the explanatory variables in advance. Rather it is left to the modeler to decide, based on regres-

sion diagnostics, which variables best explain each triangle’s observations.  The regressions are set 

up with incremental losses as the dependent variable, since these are the new elements that need ex-

planation at each lag. Previous incurred, paid, and unpaid losses, cumulative or incremental, are al-

lowed as independent variables for both triangles. Also diagonal dummies are allowed, in case there 

are diagonal (i.e., calendar year) effects in the triangles. None of the papers cited above include cal-

endar-year effects, although these are common in development triangles. 

Regression modeling is both an art and a science. It is not a model, but a way to build models. 

Here it is applied to building models of loss development triangles, but many of the issues are more 

general. The key issue in building regression models is what variables to include. With generalized 

linear models, another issue becomes what distribution best describes the residuals, and non-linear 

functions of the regression result become possible. 

One criterion for evaluating regression models is the significance of the variables. Typically sig-

nificance at the 5% level is sought, which is often close to requiring that the estimate be at least 
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twice its standard error. Sometimes this is relaxed a bit, perhaps to the 10% level. Another useful 

statistic is the standard error of the regression. That incorporates a penalty for additional parameters, 

so can increase when insignificant variables are added. Usually variables significant at even the 10% 

level will improve the standard error. The adjusted-R2 is similarly penalized but it can be difficult to 

tell if a slight increase is worthwhile. Also there seems to be some ambiguity as to how it is defined 

for no-constant regressions, which are common in reserve analysis. 

These ideas are used to build and apply regression models for reserves when both paid and in-

curred triangles are available. The data for the continuing example for this paper consists of Tables 1 

and 2 from Quarg and Mack [4], and Table 3, which is their difference. 

Table 1 – Paid Cumulative Losses 

Acc. / Dev 0 1 2 3 4 5 6 

0 576 1804 1970 2024 2074 2102 2131 
1 866 1948 2162 2232 2284 2348  
2 1412 3758 4252 4416 4494  
3 2286 5292 5724 5850  
4 1868 3778 4648  
5 1442 4010  
6 2044   

 

Table 2 – Incurred Cumulative Losses 

Acc. / Dev 0 1 2 3 4 5 6 

0 978 2104 2134 2144 2174 2182 2174 
1 1844 2552 2466 2480 2508 2454  
2 2904 4354 4698 4600 4644  
3 3502 5958 6070 6142  
4 2812 4882 4852  
5 2642 4406  
6 5022   

Quarg and Mack suggest that using paid and incurred triangles together can help reconcile their 

differences and improve the reserve estimates from both. In his discussion at the 2003 ASTIN Col-

loquium in Berlin, Mack suggested that this could also be done in a regression setting, where both 

the paid and incurred losses could be used in the regressions for either. This paper follows up on 

that suggestion, also incorporating the methods of Venter [1] to eliminate statistically insignificant 

variables and to incorporate any diagonal effects that may be in the data. Alternative distributions 
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for the residuals are also fit. These are the topics of section 2. 

Table 3 – Losses Estimated to Be Unpaid at Year-End  

Acc. / Dev 0 1 2 3 4 5 6

0 402 300 164 120 100 80 43
1 978 604 304 248 224 106  
2 1492 596 446 184 150   
3 1216 666 346 292    
4 944 1104 204     
5 1200 396      
6 2978       

 

Section 3 addresses the issue of runoff ranges arising from the models developed in section 2. 

Section 4 widens the runoff ranges to include systematic risk, as discussed by Gluck [3]. Section 5 

discusses uses for the resulting distribution, and in particular proposes a method to use the runoff 

distribution to estimate the value of the reserves. 

2 BUILDING MODELS 

2.1 Exploratory Analysis 
To paraphrase Yogi Berra, you can see a lot about your data just by observing it. The starting 

point of building a regression model is to explore the relationships that may be in the data. This is 

what makes this approach difficult to reduce to a strict algorithm, however. Some of the steps that 

can be used in looking at paid and incurred development triangles are outlined below. 

Modeling paid losses as a function of paid and incurred could also include using unpaid losses as 

an explanatory variable, as unpaid is just the difference between incurred and paid. The first step in 

this analysis is to look at the data and explore relationships that may exist. 

One thing that stands out in the unpaid triangle is that the lag 0 loss for the most recent year is 

more than double that of any previous year. The incurred is also at an unprecedented level, but the 

paid is not. That raises a question as to whether or not the latest year represents a significant increase 

in exposure, or is just an unusual fluctuation. The paid chain ladder estimate for ultimate for year 6 is 

6128, compared to 8429 for incurred development, or a difference of 2301. Usually an analyst would 

know more about the business reasons for such a difference. For instance, there could have been a 

significant increase in premium volume, or a major loss event, or, on the other hand, a change in 
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reserving methodology that does not affect paid losses. Without such background, only historical 

data patterns can be used on this point, even though it is quite a bit out of the range of historical 

observations. 

The paid losses could be modeled as a function of the previous incurred, paid, or outstanding, or 

some combination of those. Here the incremental paid losses at each lag are modeled, as that is the 

new information at that lag. To start the analysis, the correlations of the paid losses with the previ-

ous unpaid and the previous cumulative paid and incurred for the continuing example are shown in 

Table 4. 

Table 4 – Correlation % for Incremental Paid Losses with Previous Cumulative Losses 

Incremental Paid at Lag with: Incurred Paid Unpaid

Paid at Lag 1 88 84 70
Paid at Lag 2 68 57 92

Table 4 shows that the lag1 incremental paids correlate most strongly with the previous in-

curreds, while at lag 2, the correlation is strongest with previous unpaid. At later lags (not shown) 

the unpaid continue to be strong predictors of the next incremental payments, and interestingly 

enough, after a few years the percentage of unpaid that is paid in the next year is fairly steady, as 

shown in Table 5, which is calculated as the sum of paid divided by the sum of previous unpaid col-

umn by column. The high factor at lag 1 reflects the continuing reporting of claims after lag 0. The 

similar factors after lag 2 suggest that only one parameter will be needed for the later lags. 

Table 5 – Average Paid at Each Lag as Factor Times Previous Unpaid (Sum/Sum) 

Lag 1 2 3 4 5 6

Percent 1.95 0.67 0.33 0.33 0.28 0.36
Since unpaid losses are a strong predictor of the next period’s paid losses, a model for projecting 

future unpaid is needed to fill out the triangles. Unpaid can be calculated from models for incurred 

and paid losses, or could be modeled directly, say by expressing expected unpaid as a factor times 

previous unpaid.  

In the continuing example, the unpaid losses at lags 1 and 2 have a stronger correlation with pre-

vious cumulative paid losses than with previous incurred losses (61% vs. 52% for lag 1 and 47% vs. 

42% for lag 2). Preliminary regressions indicated that for lag 1, current incremental paid was signifi-

cant, but not for lag 2. Also a constant term was significant for lag 1. 

For the later lags, the fairly constant ratio of paid to previous unpaid would suggest the same for 
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unpaid to previous unpaid. Due to changing incurred development, this was fairly noisy, however. 

Table 6 shows the unpaid losses at each later lag as a percentage of the unpaid at the previous lag. 

There is no clear trend, so it may work to model these all as a single constant percentage, especially 

given that pattern for paid losses. 

Table 6 – Unpaid Losses as a Percent of Previous Unpaid 

Acc. / Dev 3 4 5 6

0 73 83 80 54
1 82 90 47  
2 41 82   
3 84    

2.2 Regression Analysis 
The entire triangle can be set up as a single large regression analysis, either for paid or unpaid 

losses. This is in effect a series of regressions combined into a single error structure. As an example, 

for paid losses, the dependent and independent variables for a trial regression are shown in Table 7. 

This is to explore the structure of the data, but depending on the patterns in the residuals other re-

gressions may be needed to find better models. A reasonable starting point is ordinary multiple re-

gression, which assumes constant variance of the residuals (homoscedasticity). Even though the re-

siduals are not likely to be constant here, as the small increments at the end of the triangle will 

probably have smaller residuals, such heteroscedasticity usually does not affect the regression coeffi-

cients much, although it does affect the overall predictive error distribution.  

The coefficients for the three variables in this regression are: 0.818, 0.696, and 0.325, with stan-

dard errors of 0.033, 0.131, and 0.264. Thus the first two variables are significant but the third is not. 

Even though all the lags have similar ratios of paid to previous unpaid on average, the individual ra-

tios are enough different to reduce the significance.  
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Table 7 – Dependent and Independent Variables for Paid Regression 

Paid Increments Previous Incurred Previous Unpaid Previous Unpaid 

1228 978 0 0 
1082 1844 0 0 
2346 2904 0 0 
3006 3502 0 0 
1910 2812 0 0 
2568 2642 0 0 

166 0 300 0 
214 0 604 0 
494 0 596 0 
432 0 666 0 
870 0 1104 0 
54 0 0 164 
70 0 0 304 

164 0 0 446 
126 0 0 346 
50 0 0 120 
52 0 0 248 
78 0 0 184 
28 0 0 100 
64 0 0 224 
29 0 0 80 

There are also diagonal effects in the residuals. The jth diagonal is the one with row number plus 

column number = j. It also has j elements. The sum of the residuals by diagonal and number of 

positive residuals are in Table 8. The residuals by diagonal are graphed in Figure 2. Each diagonal 

can be seen to be quite biased. 

Table 8 – Sum of Residuals and Number of Positive Residuals by Diagonal  

Diagonal 1 2 3 4 5 6
Sum 427.5 −470.2 −236.8 200.9 −437.3 532.8
# > 0 1 0 1 3 1 5 

There appear to be strong diagonal effects, coming in pairs of years, so offsetting each other over 

time. Dummy variables can be put in to model diagonal effects. Putting in dummies that are 0 or 1 

would give additive effects for each diagonal – essentially adding or subtracting a positive constant 

for each cell on the diagonal. However, because the incremental paids are of such different sizes, 

some scaling of diagonal effects would be desirable. For modeling calendar-year effects, it is often 

more convenient to work with logs of losses, so the effects are automatically multiplicative, as in 

Barnett and Zehnwirth [10].  
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Figure 2 

Paid Regression Residuals by Diagonal
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Here another method was used to create scaling in the diagonal effects. Since there is only one 

positive independent observation for each dependent observation in Table 7, and the independent 

and dependent variables all scale in a similar way, setting the dummy for each dependent variable 

equal to the positive independent variable would have a scaling effect. Also making a single dummy 

for each pair of diagonals, with opposite signs on the two diagonals, would reduce the number of 

variables, possibly without harming the goodness of fit. The matrix of dependent and independent 

variables for this is in Table 9. 

For instance, the variable “d 6 – 5” is the dummy variable for diagonals 5 and 6. The observations 

in that column consist of the value of the independent variable for diagonal 6, its negative for diago-

nal 5, and 0 elsewhere. The (positive) coefficient for this variable will thus produce a reduction in the 

fitted values for diagonal 5 and an increase in the values for diagonal 6. This will not be an additive 

constant, but will be to a large extent scaled to the value of the increment being fitted. The other 

diagonal dummies work the same way. 

The coefficients (not shown) come out quite similar to those for the regression with no diagonal 

elements, but now all are significant. The standard error of the regression has gone down from 206.6 

for the regression without the diagonals to 73.4 with the diagonal dummies. The standard error is 

penalized for the number of variables, so is a good test to see if adding a variable is helpful. Some-

times regression modelers will keep in a variable that is only weakly significant if it improves the 
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overall standard error. 

Table 9 – Dependent and Independent Losses for Paid Regression with Diagonal Pairs 

Paid Incurred Unpaid Unpaid d 6 - 5 d 4 - 3 d 1 - 2
1228 978 0 0 0 0 978
1082 1844 0 0 0 0 -1844
2346 2904 0 0 0 -2904 0
3006 3502 0 0 0 3502 0
1910 2812 0 0 -2812 0 0
2568 2642 0 0 2642 0 0

166 0 300 0 0 0 -300
214 0 604 0 0 -604 0
494 0 596 0 0 596 0
432 0 666 0 -666 0 0
870 0 1104 0 1104 0 0
54 0 0 164 0 -164 0
70 0 0 304 0 304 0

164 0 0 446 -446 0 0
126 0 0 346 346 0 0
50 0 0 120 0 120 0
52 0 0 248 -248 0 0
78 0 0 184 184 0 0
28 0 0 100 -100 0 0
64 0 0 224 224 0 0
29 0 0 80 80 0 0
Separating the diagonal dummies into individual variables for each diagonal did not help the 

standard error except in the case of diagonals 1 and 2. Putting in individual diagonal elements for 

them dropped the overall standard error to 63.3. The coefficients are in Table 10. The coefficients 

for diagonals 1 and 2 can be seen to be quite different in magnitude, so combining them into a single 

variable gives a worse fit.  

Table 10 – Paid Regression Model 

Parameter Estimated St dev t Pr(>|t|)
Incurred 0 0.8286 0.0107 77.341 0.0000

Unpaid 1 0.6619 0.0406 16.309 0.0000
Unpaid 2 - 5 0.3342 0.0808 4.1340 0.0012

Diagonal 6 – 5 0.1378 0.0155 8.9102 0.0000
Diagonal 4 – 3 0.0326 0.0138 2.3682 0.0341

Diagonal 2 -0.2384 0.0355 -6.7189 0.0000
Diagonal 1 0.4270 0.0656 6.5056 0.0000

Without going into so much detail, a similar process for fitting a model to the unpaid losses led 

to a regression with independent variables the previous cumulative paid and current paid for lag 1 

(with a constant term). Just previous cumulative paid was the explanatory variable for lag 2, and a 
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single variable of previous unpaid was used for the later lags. This means that for lags beyond 2, the 

expected unpaid was modeled as a constant percentage (here estimated as 66.15%) of the previous 

unpaid.  

The only significant diagonal is diagonal 3, which was modeled with a dummy variable similar to 

those in Table 9. The problem is that lag 1 itself is a multiple regression with two explanatory vari-

ables, so to define the diagonal dummy the rule used for any row was to give it the largest value 

among the explanatory variables in that row if the row is on diagonal 3, and zero otherwise. The 

overall standard error of the regression is 77.0. Dropping the diagonal 3 dummy increases the stan-

dard error to 92.6, so the dummy helps a good deal. The coefficients and other statistics are in Table 

11. Diagonal 4 is not significant but improves the standard error slightly to 76.7. In the end this was 

not included in the model.  

In this model, the high incurred losses for accident year 6 at development 0 will affect the pro-

jected paid at development 1, which will go into the estimated unpaid at development 2 and so on. 

However this is not as dramatic an effect as in the chain ladder, where the high incurred losses in the 

lower left corner would be multiplied by a large cumulative factor. 

Table 11 – Unpaid Regression Model  

Parameter Est value        St dev   t student Prob(>|t|)
Paid Cum 0 0.8215 0.1036 7.9316 0.0000

Paid Incrm 1 -0.5436 0.0864 -6.2889 0.0000
Constant 1 522.68 96.860 5.3963 0.0001

Paid Cum 1 0.0766 0.0098 7.8092 0.0000
Unpaid 2 - 5 0.6615 0.0983 6.7315 0.0000

Diagonal 3 0.0800 0.0281 2.8501 0.0128

2.3 Distribution of Residuals 
Various distributions can be fit to the selected models by MLE. Typically the distributions are pa-

rameterized so that the mean is one of the parameters, and for each cell that is fit as a function of 

the covariates. All the other parameters of the distribution are constant across all the cells. However 

for many distributions it can work just as well if some parameter not the mean is a function of the 

covariates, and the other parameters are still constant.  

Typically in generalized linear models, the residuals are modeled as members of the exponential 

family. These distributions are characterized by expressing the variance of each cell as a function of 

its mean, often as proportional to the pth power of the cell’s mean. However the skewness of the dis-
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tributions also grows with p, which is not always in accord with the data. In Appendix 1, several dis-

tributions are discussed which give the variance of each cell as a multiple of the pth power of the 

cell’s mean by making p one of the parameters of the distribution. Then even with the same value of 

p, the different distributions can still have heavier or lighter tails, as indicated for instance by skew-

ness.  

The Weibull can be used as well, but it is more difficult to adjust its mean-variance relationship as 

it involves gamma functions, so a p-version was not fit. But the Weibull is an interesting possible 

residual distribution as it can be fairly heavy-tailed or lighter tailed than the normal, or even nega-

tively skewed, depending on the parameters. It is most easily expressed by its survival function 1 – 

F(x) = S(x) = exp[–(x/b)c ], and E[X j ] = b j (j/c)!, where y! is short for Γ(1+y). The skewness is nega-

tive for c above about 3.6. The variance is proportional to the square of the mean, so p is always 2. 

The regression fit the b for each cell, not the mean. 

Table 12 shows the results of fitting several distributions to the paid model. For this data, moving 

to less skewed distributions increases p and at the same time improves the fit (as measured by log-

likelihood, which is equivalent to any of the information criteria such as AIC as all the distributions 

have the same number of parameters, except the Weibull, which has one fewer but has the best fit 

anyway). The Weibull, with c = 7.437 has skewness of -0.50.  

Table 12 – Paid Model Distribution Fits 

 p – Ln L Skew 
Lognormal-p 1.50 111.94 > 3CV 
Gamma-p 1.57 111.23 2CV 
ZMCSP-p 1.60 110.52 CV 
Normal-p 1.61 109.88 0 
Weibull 2 108.76 -0.50 

The similar, somewhat abbreviated, results for the model of unpaid losses are in Table 13. That 

Weibull has c = 6.037 and skewness -0.38. These two models will be used to project paid and unpaid 

losses. This does not imply that the Weibull is better in general. Other data could give quite different 

distributions. 

Table 13 – Unpaid Model Distribution Fits 

 p –Ln L Skew 
ZMCSP-p 1.96 113.30 CV 
Normal-p 2.03 112.93 0 
Weibull 2 111.88 -0.38 
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With a different distribution of residuals, the coefficients for previous unpaid, etc. change a bit 

from the usual regressions. For the Weibull, the larger cells have higher variances, so higher residuals 

are not penalized so much there, but the fits are now closer for the smaller cells. For the paid regres-

sion this ends up with the diagonal 6 – 5 and diagonal 4 – 3 parameters almost the same. Forcing 

these to be the same reduces the number of parameters by one but barely affects the loglikelihood, 

so this change was made. This is done by making a single dummy variable that is the sum of the d 6 

– 5 and d 4 – 3 variables in Table 9. As mentioned above, the Weibull fit was for the b parameter, 

not the mean, so the coefficients have to be multiplied by (1/c )! to get their effect on the mean. Ta-

ble 14 shows the resulting coefficients for the two models. 

Table 14 – Weibull Models’ Estimated Covariate Parameters 

Paid Parameter Estimate Unpaid Parameter Estimate
Incurred 0 0.7811 Paid Cum 0 0.7358

Unpaid 1 0.6854 Paid Incr 1 -0.4275
Unpaid 2 - 5 0.3306 Constant 1 388.41

Diagonal 6–5+4–3 0.0339 Paid Cum 1 0.0908
Diagonal 2 -0.1873 Unpaid 2 - 5 0.7234
Diagonal 1 0.3971 Diagonal 3 0.0525

The projected mean incurred in Table 15 agrees closely in total with Quarg and Mack [4] except 

for year 6, for which they are about 1000 higher. Their model seems to give more emphasis to the 

incurred value for that year than to the paid. This model leans more toward believing the paid, but 

still ends up higher than year 3, which had more paid at 0. The average of the paid and incurred CL 

estimates is 7279,  halfway between this model and [4]’s. 

Table 15 – Completing the Square 

Incurred 0 1 2 3 4 5 6
0 978 2104 2134 2144 2174 2182 2174
1 1844 2552 2466 2480 2508 2454 2460
2 2904 4354 4698 4600 4644 4652 4658
3 3502 5958 6070 6142 6158 6169 6177
4 2812 4882 4852 4863 4871 4877 4881
5 2642 4406 4646 4665 4679 4690 4697
6 5022 6182 6656 6685 6707 6722 6733

3 RUNOFF RANGES 

The sum of the Weibull estimates in the bottom triangle may be close to being normally distrib-
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uted, but simulation is usually required to get a good handle on the actual distribution of the runoff 

losses. The simulation can be divided into parameter risk and process risk components. Distribu-

tions for the regression coefficients and the Weibull cs can be estimated by either the Fisher infor-

mation matrix or the bootstrap, as detailed below. Here the information matrix method was used. 

Parameters can be simulated from the estimated distributions of the parameters, and then the runoff 

losses can be simulated from the Weibull distributions for each cell. 

At the parameter values that maximize the likelihood function, the derivative of the negative log-

likelihood (NLL) with respect to each parameter should be zero, but the second derivatives should 

be positive. This just means that the likelihood surface is flat at the minimum NLL but is curved 

upwards, which is usual for a minimum value. The mixed second partial derivatives could be any-

thing, however. As detailed in the actuarial exams, the Fisher information matrix is the matrix of all 

the second derivatives and mixed second partials of the NLL with respect to the parameters. Thus if 

there are n parameters, it is an nxn matrix. Its matrix inverse is an estimate of the covariance matrix 

of the parameters. 

Bootstrapping could be done by resampling with replacement from the normalized residuals of 

the fitted triangles to generate new triangles, and refitting the models. Each resampled triangle would 

give a new set of fitted parameters for the paid and unpaid models. The table of parameters that re-

sults from doing this many times would be the estimated empirical parameter distribution. For these 

models this would probably give some correlation to some of the parameters across the paid and 

unpaid models, which are uncorrelated under the information matrix method since they come from 

different models. Also the dependent and independent variables would change with each resam-

pling, which could end up with more parameter diversity as well. 

In Tables 7 and 9, label the dependent variables yj for j = 1, …, 21, and label the corresponding 

independent variables xi,j. In the final models i ranges from 1 to 6. Call the covariate parameters βi, i 

= 1, …, 6. The Weibull b parameter for each dependent variable is bj = ∑ =

6

1 ,i jii xβ . Then the deriva-

tive of bj with respect to βi is just xi,j. Thus, the derivative of NLL = –Σjln f(yj) with respect to βi is 
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These give the parameter standard deviations and correlation matrices in Tables 16 - 19. 

 

Table 16 – Paid Parameters and Standard Deviations 

Paid        Inc 0   Unpd 1 Unpd 2-5 Diag 6543    Diag 2    Diag 1 c 
Parameters 0.832 0.730 0.352 0.036 -0.200 0.423     7.427 
Standard dev 0.050 0.052 0.016 0.014 0.069 0.176 1.392 
Ratio 16.70 14.08 22.31 2.49 -2.87 2.40 5.33 

 

Table 17 – Unpaid Parameters and Standard Deviations 

Unpaid Pd Cum 0 Pd Inc 1      Const Pd Cum 1    Unpd 2-5 Diag 3 c 
Parameters 0.793 -0.461 418.5 0.098   0.780 0.057    6.037 
Standard dev 0.145 0.100 102.9 0.008   0.042 0.022 1.148 
Ratio 5.48 -4.62 4.07 11.64   18.55 2.52 5.26 

 



Distribution and Value of  Reserves Using Paid and Incurred Triangles 

Casualty Actuarial Society E-Forum, Fall 2008 362 

Table 18 – Paid Correlation Matrix 

1 0.17 0.00 -0.12 -0.24 -0.28 0.11
0.17 1 0.00 -0.19 -0.62 -0.05 0.14
0.00 0.00 1 0.19 0.01 0.00 0.26

-0.12 -0.19 0.19 1 0.13 0.03 -0.03
-0.24 -0.62 0.01 0.13 1 0.07 -0.08
-0.28 -0.05 0.00 0.03 0.07 1 -0.03
0.11 0.14 0.26 -0.03 -0.08 -0.03 1

Table 19 – Unpaid Correlation Matrix 

1 -0.86 0.00 0.02 0.01 -0.03 0.06
-0.86 1 -0.49 0.00 -0.01 -0.05 -0.03
0.00 -0.49 1 -0.02 -0.01 0.07 -0.03
0.02 0.00 -0.02 1 0.07 -0.29 0.29
0.01 -0.01 -0.01 0.07 1 -0.04 0.22

-0.03 -0.05 0.07 -0.29 -0.04 1 -0.09
0.06 -0.03 -0.03 0.29 0.22 -0.09 1

Two simulation steps were done with these parameters. First the parameters were simulated, then 

the Weibull losses were simulated for each cell in the projected lower triangles.  

To simulate the parameters, MLE parameters are asymptotically multivariate normal with the de-

rived correlation matrices. However with small samples like these, the normal approximation might 

not hold. Simulation experiments have found that lognormal distributions are more realistic for 

small samples. As one example, the simple Pareto shape parameter, given a known location parame-

ter, is inverse gamma distributed. This gets normal-like for large samples, but is heavier-tailed, as is 

the lognormal, for small samples. For the lognormal assumption, the absolute value of negative pa-

rameters could be assumed to be lognormal. One advantage of the lognormal over the normal is that 

the simulated parameters will not change signs from the mean parameter, even for remote points in 

their distributions.  

For these reasons the lognormal was used here. To simulate the multivariate lognormal, the cor-

relation matrices were input into a normal copula, and then lognormal marginal distributions ap-

plied. This maintains the Kendall’s tau and rank correlation, but not the linear correlation, of the 

parameters. The needed reserve position, calculated as ultimate incurred less current incurred, from 

the mean parameters is 6212. 10,000 simulations had mean runoff of 6203, with a standard deviation 

of 801. This gives a CV of 13%. The coefficient of skewness is 3.4%, which is closer to a normal 
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distribution than the 26% for a gamma with the same CV. Thus, the normal might provide a reason-

able approximation in this case. 

4 OTHER SYSTEMATIC RISK 

Loss reserves are subject to inflation and trends in the lawsuit environment that happen between 

occurrence and payment. Some degree of such trend may be built into the accident year level 

changes, but this is hardly a full reflection of the risk. The average level of future inflation built into 

the projections could be off, and in addition there are likely to be year-to-year changes in inflation, 

perhaps correlated one year to the next. Usually the data in the triangle itself is not sufficient to es-

timate these systematic risks, so they have to be superimposed afterwards.  

An internal study of historical variability in trends and actual runoff, based on U.S. annual state-

ment data for a number of companies and inflation variability, suggested that there is quite a bit 

more variability in actual runoff than standard reserving models would predict. Also Wright [11] 

found in a simulation test that runoff ranges from typical methods tend to be too narrow. Gluck [3] 

proposes ways to incorporate systematic risk elements into insurer financial models in general and 

loss reserve runoff risk in particular. The model used below is roughly consistent with his approach 

but the numerical values are for illustration only.  

In a single simulation of the runoff, the simulated value for losses paid in accident year w at lag d, 

and thus in calendar year w+d, is multiplied by a simulated factor Hw,d given by: 

  Hw,d = BDw+d–nEw+d , where: 

B is a mean 1 factor for all calendar years that can be thought of as frequency risk; a normal dis-

tribution with a standard deviation of 10% is assumed in the example.  

D is a lognormal mode 1 draw for all calendar years in the simulation to represent an overall 

trend error that compounds; n is the last diagonal in the data; a standard deviation of 2% is used for 

D.  

Ew+d is generated from an AR-1 model, to represent (ii). The process for E is as follows: The Xis 

are independent N(0, σ2) random draws, and ρ ∈ [0,1] is the autocorrelation coefficient. Let t1 = X1, 

and ti+1 = ρti+Xi+1. Then ⎟⎟
⎠
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exp . The values σ = 2.5% and ρ = 70% are used in the 
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numerical example. 

Using lognormal mode 1 factors gives an increase in the mean reserve. Actually something similar 

happens in just multiplying normal mean 1 factors that are positively correlated. This is justified in a 

few ways. First, an error in trend would compound and the effects on each year would be correlated. 

Second, new claim types and other superimposed changes tend to have an upward drift. Third, many 

reserve models, including this one, do not project ongoing calendar-year trends, but these often do 

affect open claims from previous years. 

In a sense, this approach incorporates a degree of model risk, in addition to process and parame-

ter risk. For instance, it is difficult in the fitting to distinguish calendar-year trends from upward and 

downward individual calendar-year gyrations. This is a model-risk issue. Even if the fitted model has 

calendar-year trends in it, there is still a question of which trend to project going forward. Thus put-

ting trends into the model does not automatically solve the model-risk problem, and systematic pro-

jection risk still needs to be incorporated. The simulated distributions, with annual discount factor 

0.96 (a rate of 4 1/6 %), are in Table 20. 

Table 20 – Simulated Moments and Percentiles of Runoff Distribution 

Probability Model + Systematic Discounted
0.4% 4,089 3,766 3,507
1.0% 4,359 4,054 3,760
5.0% 4,881 4,614 4,289

10.0% 5,174 4,930 4,586
25.0% 5,665 5,506 5,119
50.0% 6,203 6,186 5,746
75.0% 6,734 6,941 6,441
90.0% 7,228 7,663 7,107
95.0% 7,515 8,101 7,507
99.0% 8,078 9,056 8,396
99.6% 8,389 9,714 8,924
Mean     6,203     6,258     5,808 

Std. Dev.         801     1,076       991 
CV         0.13       0.17      0.17 

Skewness           0.03       0.40      0.38 

Including systematic risk at this level slightly increased the mean, but approximately doubled the 

variance, increasing the spread both upward and downward. Even the discounted losses with sys-

tematic risk were higher than the original model above the 95th percentile. Both systematic risk dis-

tributions were slightly more skewed than the gamma with the same CV, which would have skew-
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ness of about 0.34, but were less skewed than the lognormal or inverse Gaussian. Possible distribu-

tional assumptions that could match these distributions are discussed in Appendix 2. 

If several lines are being modeled, it would be reasonable to assume that the systematic risk ele-

ments were highly correlated across lines, since they arise largely from external influences. Thus even 

if the development patterns themselves are not highly correlated, including systematic risk could 

produce a higher correlation. 

5 VALUE OF RESERVES 

Once a distribution of reserves has been estimated, what do you do with it? One application is to 

estimate the financial value of the reserves, which could be useful for market-value accounting or 

valuation of the entire company. There are a few alternatives for how to do this. For instance, in 

Australia insurers post the 75th percentile of the distribution as the balance-sheet value. To try to get 

to a market value, there are two prevailing financial theories: the capital asset pricing model (CAPM) 

and its generalizations, and arbitrage-free pricing. Typically CAPM-like approaches price only the 

systematic risk, while arbitrage-free pricing looks at the whole distribution of possible outcomes. 

There are also traditional actuarial pricing methods, like mean plus a percentage of standard devia-

tion. 

Balance-sheet items need to be additive, as users of financial statements like to add and subtract 

assets and liabilities. If there really were a market for reserve risk, prices would be additive also. Oth-

erwise traders could buy risk, pool it, and sell it for no-risk profits. Arbitrage-free and CAPM prices 

are additive, and standard deviation loads can be made additive, as shown below. These methods can 

be subdivided at will and still maintain additivity. Lines can be allocated by state and accident year, 

and summed to by-state totals, etc. Here only methods that use the entire distribution will be used, 

but having a model for systematic risk would allow using CAPM-type approaches as well. 

Arbitrage-free pricing uses probability transforms of possible events, putting more weight on ad-

verse outcomes, and takes the transformed mean as the price. This is where having a distribution of 

reserve runoff could be applied. One well-known transform is the Wang [5] transform. This trans-

form applies to the survival function S(x) = 1 – F(x) to produce a transformed survival function 

S*(x). In its original form it just translated normal percentiles, so S*(x) = Φ[λ+Φ−1(S(x))], where Φ 

is the standard normal distribution function. A bit different form, first suggested by John Major, is 
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S*(x) = Qν[λ+Φ−1(S(x))], where Qν is the t distribution with ν degrees of freedom. This puts more 

weight into the tails of the distribution.  

The original normal-normal version will be called the NN transform here. The NN transform 

moves the probability away from the lower percentiles towards the higher percentiles. The Wang 

transform generally does this as well, but the heavier t tails can also put more probability into the 

extreme left tail, even after translating by λ. This is a stronger effect with lower values of ν, because 

the t approaches the normal for high value of ν. In this transform ν does not have to be an integer, 

as the beta distribution can be used to calculate the t even for non-integer degrees of freedom. Using 

the function betadist as defined in Excel, the calculation is Qν(x) = ½ + ½ 

sign(x)betadist[x2/(ν+x2), ½, ν/2]. 

Once the transformed events probabilities are calculated, the value of the reserves are estimated 

as the transformed mean. The mean of each accident year can be calculated with the same trans-

formed probabilities. Then the resulting accident-year values add up to the total value. If several 

lines are being done simultaneously, the transform is done on the aggregate loss probabilities. That 

gives probabilities for each simulated scenario, then they are applied to the losses for each line and 

accident year in that scenario. Thus, any correlations gets into the overall value and the individual 

line values reflect the correlations. 

Another transform with theoretical and empirical support (for example, see Venter [12]) is the 

Esscher transform. While the Wang transform is defined on the aggregate distribution, the Esscher 

transform is defined on the density or discrete probability function. For density g(x), the trans-

formed density with parameter c is defined by g*(x) = g(x)exp(cx/EX)/ E[exp(cX/EX)]. This trans-

form depends on the distribution being transformed, as the transform at x depends on x. The Wang 

transform, on the other hand, depends only on S(x). Thus with given parameters ν and λ, any simu-

lation of 10,000 equally-likely events will get the same transformed probabilities. 

Since the Wang transform is done on the survival function, a couple of steps are needed to apply 

it to the scenario probabilities from a simulation. Some of these are a bit arbitrary. The survival 

function at the kth simulation here is calculated as k/10,001. This keeps the survival function in the 

range (0,1), although there are other ways to do that. Then S* has to be translated back to individual 

scenario probabilities. To do this, the lowest point was considered to represent the range from zero 

to half the way, in probability, between it and the second lowest point. Thus, it was assigned prob-
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ability 1 – [S*(x1)+S*(x2)]/2. Then the next point gets the average between the next two midpoints, 

or [S*(x3) – S*(x1)]/2, etc. Finally the last point gets [S*(x10,000)+S(x9999)]/2. This forces the probabili-

ties to sum to 1. 

The standard deviation loading can be allocated with the Euler method. This method was used by 

Patrik, Burnegger, and Rüegg [13] for capital allocation and Venter, Major, and Kreps [14] used it for 

allocation of risk measures, and showed the steps needed to apply Euler’s work to random variables. 

The use for risk measures can be used to allocate standard deviation loading as well. The general ap-

proach for a risk measure ρ(Y), where Y = X1+…+Xn is to allocate to Xk r(Xk) = 

ε
ερρ

ε

)()(lim
0

kXYY −−
→

.  

The numerator is the reduction in the risk measure from ceding a quota share of ε of Xk. Then 

r(Xk) is the reduction in ρ(Y) from an incremental reduction in Xk scaled up by ε. Basically it is treat-

ing every increment of Xk as the last in. The result of Euler is that the sum of the allocations over all 

the Xs is the whole risk measure ρ(Y) in the case ρ is homogeneous of degree 1, i.e., ρ(aY) = aρ(Y). 

When ρ(Y) = standard deviation(Y), the allocation is shown in [13] to be r(Xk) = Cov(Xk,Y)/ρ(Y). 

This is not based on the standard deviations of each component, but rather the component’s contri-

bution to the standard deviation of Y. 

Even a loading based on a percentile of the distribution can be allocated in this manner. The pth 

percentile can be expressed as E[Y|F(y) = p]. Then the marginal allocation is shown in [13] to be 

E[Xk|F(y) = p]. In a simulation, this would be the value of Xk for the simulation where the probabil-

ity of Y is p. However this is not a very stable allocation, and in practice the average of simulations 

for a range around that simulation is used. This is then not truly an allocation of the percentile but 

an allocation of a range around it, sometimes called blurred value of risk.  

All of the pricing measures discussed have a free parameter or two which have to be set to some-

thing. In practice some market benchmarking can help establish this. Unlimited portfolio transfers 

are not usually available, but a limit of twice the mean may be. That is over the 99.99th percentile for 

this simulation, so may be a good approximation for unlimited. An internal study a few years ago 

found that many reinsurance treaties are priced at the mean plus one-third to one-half of a standard 

deviation. Taking the Wang parameters of ν = 10 and λ = 0.47 gives a loading of close to half a 

standard deviation, with a discounted market value of 6303.8. This is the 70.7th percentile of the dis-
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counted distribution, so would produce a profit slightly more than 70% of the time. Another 

benchmark is how much capital above the premium could be kept at return of 15%, and the prob-

ability level of that capital. In this case, with a profit load of 495, that would be 2807 of capital, 

which with the premium would get to the 99.93rd percentile. That would be a fairly safe capital level. 

Thus this is a reasonable value by some benchmarks. Whether or not it is reasonable, in fact, would 

require more benchmarking against actual deals, however. 

The same price would come from an Esscher transform with c = 2.6612. The resulting values for 

the individual accident years from each methodology are shown in Table 21. 

Table 21 – Value of Discounted Reserves by Accident Year for Several Methodologies 

 1 2 3 4 5 6 total
Esscher transform 106.2 154.8 311.0 220.5 658.7 4,852.6 6,303.8
Wang transform 106.3 154.9 311.1 221.4 662.3 4,847.6 6,303.8
Standard dev. 106.2 154.6 310.6 220.1 657.4 4,854.9 6,303.8
Percentile alloc  107.1     156.4     316.3   218.4      646.1     4,859.4     6,303.8
Mean discnted 102.1 147.9 294.9 208.8 620.7 4,434.0 5,808.5
Mean undiscnted 112.4 164.6 330.9 235.8 694.9 4,718.9 6,257.7
Cov Disc w total 8,039 13,230 31,058 22,325 72,840 834,834 982,326
Cor Disc w total 43% 40% 43% 42% 50% 97% 100%
The allocations are all quite similar, but the percentile allocation is slightly different than the oth-

ers. The Esscher and standard deviation values are closest overall. The percentile allocation is actu-

ally the average of 101 simulations centered at the actual percentile value adjusted slightly to balance 

to the mean. 

The ratios of transformed to actual probabilities for the Esscher and Wang transforms are 

graphed in Figure 3, along with the NN version of the Wang transform, which matches the trans-

formed mean by setting λ = 0.485. 

The Wang transform strengthens both tails, but with ν as high as 10, the left tail strengthening is 

not great. It also strengthens the right tail quite a bit. For the Esscher, Wang, and NN transforms, 

the ratios at the second to highest value are 8.4, 13.8, and 5.3. For most of the range, however, the 

transforms are fairly similar. 

The additive methods reviewed here give similar allocations in this case. When some components 

are more heavy-tailed, there can be greater differences. The importance is in using some kind of ad-

ditive approach. Further benchmarking would be necessary to see which make most market sense. 
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Figure 3 – Ratios of Transformed to Actual Probabilities 
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6 SUMMARY AND FURTHER POSSIBILITIES 

A growing body of research is finding that paid and incurred losses can help predict each other. 

Here a regression approach was used to model paid and unpaid losses, with earlier paid, incurred, or 

unpaid losses all available as independent variables. It is not asserted that the best possible regression 

was found. Using paid-to-incurred ratios as independent variables could potentially be useful, for 

instance. In fact, after the first few lags, unpaid losses were significant in predicting future paid and 

unpaid, consistent with the suggestion of Jedlicka [9]. Coefficient and overall standard errors were 

the key regression diagnostics used for evaluating models. Barnett and Zehnwirth [10] recommend 

residual plots as well, which can be useful but sometimes require regression experience to evaluate.  

Once a reasonable regression model was found, MLE was used to evaluate other residual distri-

butions. This requires a non-linear optimization routine. Weibull residuals with slight negative skew-

ness and variance proportional to the mean squared maximized the likelihood. This is a bit surpris-
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ing, as if you think of the cells as compound frequency-severity processes, positive skewness and 

variance proportional to a lower power of the mean would be more anticipated.  

Once in the world of non-linear optimization, other models become possible as well. For in-

stance, the cell means could be linear functions of independent variables times diagonal effects times 

some power of the paid-to-incurred ratio, possibly with the power declining for later lags as in Ver-

dier and Klinger [8], plus an additive residual. However this kind of modeling would not readily be 

able to take advantage of the ease of linear regression software for exploratory analysis. If the obser-

vations are all positive, as would be likely with paid and unpaid data, the regression steps could be 

done in logs, then a multiplicative model with additive residuals fit later if needed for a good residual 

distribution. Another modeling approach worth pursuing is the idea of Mack [7] to look and paid 

and incurred development in cross-classified multiplicative models. 

The information matrix from MLE was used to estimate parameter uncertainty, with the selec-

tion of a lognormal distribution of parameters due to the small sample sizes. Bootstrapping is cer-

tainly an alternative here, and may be preferable in that it can pick up possible correlations among 

the parameters of the two different models. In fact Liu and Verrall [15] have already used bootstrap-

ping for the model of Quarg and Mack. Bootstrapping for the model here would be a bit more 

computationally intensive than usual, due to the non-linear multivariate optimization at each step, 

but would have another advantage in that the choice of normal vs. lognormal parameter errors 

would not be needed. 

Systematic risk, including model risk, is clearly an issue in reserve modeling, and historical loss 

development volatility has been substantial, with even more variability than standard models might 

suggest. This was reflected here with selected distributions, but should be studied in a more formal 

way. Similarly, reserve value was illustrated with some rough benchmarks, but more research into the 

market value of loss reserve risk is called for. The methods of transformed distributions and Euler 

for producing additive market-values were illustrated. In this case they were not so different, once an 

overall market value was established. 
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Appendix 1 – p-Distributions 
In Venter [2] parameters are added to standard distributions to specify the relationship of vari-

ance and mean when used with covariates. Typically a distribution will be re-parameterized so that 

the mean is a parameter, and that parameter will be a function of the covariates. The other parame-

ters will be constant for all the observations. Many distributions can be parameterized so that the 

variance of each observation will be proportional to any desired power of the mean. That power pa-

rameter can then be estimated by MLE to get an idea of how the residuals’ variances relate to their 

means for a given data set. Not all the distributions below are in [2], and some are parameterized a 

bit differently here. Although they can each produce a variance proportional to any desired power of 

the mean, they differ in other shape features, such as skewness. Sometimes the over-dispersed Pois-

son (ODP) is defined as any distribution where the variance is proportional to the mean. Under that 

definition, any of these distributions can be an ODP just by taking p=1. However they will differ in 

other shape characteristics. The distributions below are by increasing skewness. 

Normal-p 

The normal distribution is typically parameterized with mean μ and variance σ2. Introducing two 

new parameters k and p, it can be re-parameterized just by setting σ2 = kμp. It then has log density 

ln f(x) = –½ln(2πkμp) – (x – μ)2/(2kμp). With k and p constant across all observations, each obser-

vation’s variance will just be k times its mean raised to the p. The skewness is 0. 

ZMCSP-p  

The zero-modified continuous scaled Poisson, as discussed in Venter [2] and Mack [15], is the 

Poisson distribution function extended to the positive reals, plus a scaling factor, with the probabil-

ity at 0 set to the value needed to bring the entire probability to 1. It has variance close to propor-

tional to the mean and skewness close to the coefficient of variance (CV), which is the ratio of stan-

dard deviation to mean. It is a continuous form of ODP that retains much of the shape of the Pois-

son distribution. The density can be written as: 

( ) ( )ppkxpk kxkkexf
pp −−−− +Γ=

−− 112 1/)(
12

μμμ
μμ . 

For large means, the mean, variance, and skewness are very close to μ, μp/k, and CV. For smaller 

means, a small adjustment is needed. See [2] for details. 
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Tweedie 

The Tweedie distribution has p between 1 and 2, and the skewness is pCV. It is actually a special 

case of the Poisson-gamma aggregate distribution with the frequency and severity means coordi-

nated. Starting with a Poisson in λ and a gamma in θ and α, introduce new parameters p, μ, and k 

with p = 1+1/(α+1), λ = kμ2–p, and the severity mean αθ = μp–1/k . Then the aggregate mean is μ. 

Since α is positive, p is between 1 and 2, so both the frequency and severity means are increasing 

functions of μ. Thus a higher overall mean in a cell is a combination of a higher frequency mean 

with a higher severity mean. The aggregate variance turns out to be μp/[(2 – p)k]. Fitting by MLE is 

discussed in [2]. 

Gamma-p 

The gamma distribution is usually parameterized F(x,θ,α) = Γ(x/θ; α) with the incomplete 

gamma function Γ. This has mean αθ and variance αθ2. To get the mean to be a parameter, set 

F(x,μ,α) = Γ(xα/μ; α). Then the variance is μ2/α and μ is still a scale parameter. For the gamma-p, 

take F(x;μ,k,p) = Γ[x/(kμp–1); μ2–p/ k], which has mean μ and variance kμp, with skewness = 2CV.  

Lognormal-p  

The usual parameterization of the lognormal is: ⎟
⎠
⎞

⎜
⎝
⎛ −

=
σ

μσμ )ln(),;( xNxF . This has mean 

2/2σμ +e and variance ( )1
222 −+ σσμ ee . Now reparameterize with three parameters p, m and s: 

 

This has mean m, variance s2mp, and skewness 3CV+CV3, where CV = smp/2 – 1. Here μ has been re-

placed by ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+ −221
ln

pms
m  and σ2 by ln(1+s2mp – 2). 

Appendix 2 – Possible Distributions for Simulations 
Some of the work on loss reserve risk is on moments only, so having simulated distributions can 

provide a test of different parameterized distributions. In this case there are three simulated distribu-
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tions: the original model, that plus systematic risk, and that discounted. The CV for the first is 13% 

and for the other two is 17%. The skewnesses are 3%, 40%, and 38%, respectively. For two-

parameter distributions, the CV and skewness are often determined by only one of the parameters, 

so they become functions of each other as well. The skewness for CVs of 13% and 17% for a few 

common distributions is shown in Table A2-1. 

Table A2-1 – Skewness for CVs of 13% and 17% 

Distribution  CV: 13.0% 17.0% 

Normal 0 0 
Weibull -45.6% -60.1% 
Poisson 13.0% 17.0% 
Gamma 26.0% 34.0% 
Inverse Gaussian 39.0% 51.0% 
Lognormal 39.2% 51.5% 

 

The skewness for the original model is closest to, but higher than, that of the normal. For the 

other models, it is closest to but somewhat higher than that of the gamma.  

A convenient distribution for matching three moments is the shifted gamma. X – a is gamma in 

θ and β, so EX = a + θβ, VarX = θ2β, and skewness = 2β–½ . For a positively skewed distribution 

it is always possible to solve for the three parameters in terms of these moments, but the shift can be 

negative, giving positive probability to negative values of X. If the skewness is 2 or greater, the 

gamma has its mode at zero, and the density declines from there, which may not be a realistic shape 

in some cases. Then perhaps a shifted-lognormal or power-transformed beta or gamma may work 

better. In terms of the moments the parameters are: β = (2/skw)2; then θ = Var/β = stdev*skw/2; 

and a = mean – θβ. The parameters for the three distributions simulated are in Table A2-2. 

Table A2-2 – Shifted gamma parameters for simulated distributions 

 Model +Systematic Discounted

a -41,581.7 910.01 580.25
θ 13.424 216.58 187.89
β 3559.6 24.69 27.83

 

The parameters for the original model look strange, but in fact the probability of a negative result 

is less than 10–15. The shifted-gamma probabilities for selected percentiles of the simulated distribu-
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tions are shown in Table A2-3. 

Table A2-3 – Shifted gamma probabilities for simulated percentiles 

Probability Model +Systematic Discounted
0.40% 0.38% 0.30% 0.32%
1.00% 1.00% 0.93% 0.92%
5.00% 4.84% 4.94% 4.96%

10.00% 9.88% 9.94% 10.01%
25.00% 25.19% 25.28% 25.30%
50.00% 50.23% 50.02% 49.99%
75.00% 74.75% 75.05% 75.09%
90.00% 89.92% 89.84% 89.92%
95.00% 94.84% 94.67% 94.73%
99.00% 98.98% 98.96% 99.02%
99.60% 99.65% 99.72% 99.69%

 

The fits are fairly good between 1% and 99%, with a little fading off in both far tails. This is not a 

given from matching three moments, because other distributions matching the same moments could 

have fairly different shapes. The shifted gamma may or may not fit as well to other development 

triangle runoff distributions. 
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Robustifying Reserving 
Gary G. Venter, FCAS, MAAA, and Dumaria R. Tampubolon, Ph.D. 

________________________________________________________________________ 

Abstract  

Robust statistical procedures have a growing body of literature and in actuarial applications have been 
applied in loss severity fitting. Here an introduction of robust methods is made for loss reserving. In 
particular, following Tampubolon [1], reserve models for a development triangle are compared based on 
the sensitivity of the reserve estimates to changes in individual data points. This is then related to the 
generalized degrees of freedom used by the model at each point. 
 
Keywords. Loss reserving; regression modeling; robust, generalized degrees of freedom. 

             
 

All models are wrong, but some are useful. 
Christian Dior (or maybe George E. P. Box) 

0 INTRODUCTION 

The idea of this paper is simple: for models of a loss development triangle, look at the derivative 

of the loss reserve with respect to each data point. All else being equal, models that are highly 

sensitive to a few particular observations are less preferred than ones that are not. This is supported 

by the fact that individual cells can be highly unstable. This general approach, based on Tampubolon 

[1], is along the lines of robust statistics, so some background into robust statistics will be the 

starting point. Published models on three data sets will be tested by this methodology. For two of 

them, unsuspected problems with the previously best-fitting models are found, leading to improved 

models.  

The sensitivity of the reserve estimate to individual points is related to the power of those points 

to pull the fitted model towards them. This can be measured by what Ye [2] calls generalized degrees 

of freedom (GDF). For a model and fitting procedure, the GDF at each point is defined as the 

derivative of the fitted point with respect to the observed point. If any change in a sample point is 

matched by the same change in the fitted, the model and fitting procedure are giving that point full 

control over its fit, so a full degree of freedom is used. GDF does not fully explain the sensitivity of 

the reserve to a point, as the position of the point in the triangle also gives it more or less power to 

change the reserve estimate, but it adds some insight into that. 

Section 1 provides some background into robust analysis and section 2 shows some previous 
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applications to actuarial problems. These help to place the current proposal into perspective in that 

literature. Sections 3, 4, and 5 apply this approach to some published development models. Section 6 

concludes. 

1 ROBUST METHODS IN GENERAL 

Classical statistics takes a model structure and tries to optimize the fit of data to the model under 

the assumption that the data is in fact generated by the process postulated in the model. But in many 

applied situations, the model is a convenient simplification of a more complex process. In this case 

the optimality of estimation methods like maximum likelihood (MLE) may no longer hold. In fact a 

few observations that do not arise from the model assumptions can sometimes significantly distort 

the estimated parameters when standard techniques are used. For instance, Tukey [3] gives examples 

where even small deviations from the assumed model can greatly reduce the optimality properties. 

Robust statistics looks for estimation methods that in one way or another can insulate the estimates 

from such distortions. 

Perhaps the simplest such procedure is to identify and exclude outliers. Sometimes outliers clearly 

arise from some other process than the model being estimated, and it may even be clear when 

current conditions are likely to generate such outliers, so that the model can then be adjusted. If the 

parameter estimates are strongly influenced by such outliers, and the majority of the observations are 

not consistent with those estimates, it is reasonable to exclude the outliers and just be cautious about 

when to use the model.  

An example is provided by models of the US one-month Treasury bill rates at monthly intervals. 

Typical models postulate that the volatility of the rate is higher when the rate itself is higher. Often 

the volatility is proposed to be proportional to the pth power of the rate. The question is – what is p? 

One model, the CIR or Cox, Ingersoll, Ross model, takes p = ½. Other models postulate p as 1 or 

even 1.5, and others try to estimate p as a parameter. An analysis by Dell’Aquila et al. [4] found that 

when using traditional methods, the estimate of p is very sensitive to a few observations in the 1979-

82 period, when the US Federal Reserve bank was experimenting with monetary policy. Including 

that period in the data, models with p=1.5 cannot be rejected, but excluding that period finds that p 

= ½ works just fine. That period also experienced very high values of the interest rate itself, so their 

analysis suggests that using p = ½ unless the interest rate is unusually high would make sense. 

A key tool in robust statistics is the identification of influential observations, using the influence 
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function defined by Hampel [5]. This looks at statistics calculated from a sample, such as estimated 

parameters, as functionals of the random variables that are sampled. The influence function for the 

statistic at any observation is a functional derivative of the statistic with respect to the observed 

point. In practice, analysts often use what is called the empirical influence. For instance, Bilodeau [6] 

suggests calculating that at each sample point as the sample size times the decrease (which may be 

negative) in the statistic from excluding the point from the sample. That is, the influence is n times 

[statistic with full sample minus statistic excluding the point]. If the statistic is particularly sensitive 

to a single or a few observations, that calls its accuracy into question. The gross error sensitivity 

(GES) is defined as the maximum absolute value of the influence function across the sample. 

The effect on the statistic of small changes in the influential observations is also a part of robust 

analysis, as these effects should not be too large either. If each observation has a substantial 

randomness to it, the random component of influential observations would be having a 

disproportionate impact on the statistic. The approach used below in the loss reserving case is to 

identify observations for which small changes have large impacts on the reserve estimate. 

Exclusion is not the only option for dealing with outliers. Estimation procedures that use but 

limit the influence of the outliers are also an important element of robust statistics. Also finding 

alternative models that are not dominated by a few influential points and estimating them by 

traditional means can be an outcome of a robust analysis. In the interest rate case, a model with one 

p parameter for October 1979 through September 1982 and another elsewhere does this. Finding 

alternative models with less influence from a few points is what we will be attempting in the reserve 

analysis. 

2 ROBUST METHODS IN INSURANCE 

Several papers on applying robust analysis to fitting loss severity distributions have appeared in 

recent years. For instance, Brazauskas and Serfling [7] focus on estimation of the simple Pareto tail 

parameter α assuming that the scale parameter b is known. In this notation the survival function is 

S(x) = (b/x)α. They compare several estimators of α, such as MLE, matching moments or 

percentiles, etc. One of their tests is the asymptotic relative efficiency (ARE) of the estimate 

compared to MLE, which is the factor which when applied to the sample size would give the sample 

size needed for MLE to give the same asymptotic estimation error. Due to the asymptotic efficiency 

of MLE, these factors are never greater than unity, assuming the sample is really from that Pareto 
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distribution. 

The problem is, however, that the sample might not be simple Pareto. Even then, however, you 

would not want to identify and eliminate outliers: whatever process is generating the losses would be 

expected to continue, so no losses can be ignored.1 The usual approach to this problem is thus to 

find alternative estimators that have low values of the GES and high values of ARE. Brazauskas and 

Serfling [7] suggest estimators they call generalized medians (GM). The kth generalized median is the 

median of all MLE estimators of subsets of size k of the original data. That can be fairly calculation-

intensive, however, even with k = 3, 4, or 5.  

Finkelstein et al. [8] define an estimator they call the probability integral transform statistic (PITS) 

which is quite a bit easier to calculate but not quite as robust as the GM. It has a tuning parameter t 

in (0,1) to control the trade-off between efficiency and robustness. Since (b/x)α is a probability, it 

should be distributed uniform [0,1]. Thus (b/x)tα should be distributed like a uniform raised to the t 

power. The average of these over a sample is known to have expected value 1/(t+1), so the PITS 

estimator is the value of β for which the average of (b/x)tβ over the sample is 1/(t+1). This is a 

single-variable root-finding exercise. Finklestein et al. give values of the ARE and GES for the GM 

and PITS estimators, shown in Table 1. A simulation suggests that the GES for MLE for α = 1 is 

about 3.9, and since its ARE is 1.0 by definition, PITS at 0.94 ARE is not worthwhile in this context. 

In general the generalized median estimators are more robust by this measure. 

Other robust severity studies include Brazauskas and Serfling [9] who use GM estimation for 

both parameters of the simple Pareto, Gather, and Schultze [10] who show that the best GES for 

the exponential is the median scaled to be unbiased, but this has low ARE, and Serfling [11] who 

applies GM to the lognormal distribution. 

Table 1: Comparative efficiency and robustness of two robust estimators of Pareto α 
ARE GM-k PITS-t GM-GES PITS-GES

0.88 3 0.531 2.27α 2.88α
0.92 4 0.394 2.60α 3.54α 
0.94 5 0.324 2.88α 4.08α 

                                                 

1 A related problem is contamination of large losses by a non-recurring process. The papers on robust severity also 

address this, but it is a somewhat different topic than fitting a simple model to a complex process. 
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3 ROBUST APPROACH TO LOSS DEVELOPMENT 

Omitting points from loss development triangles can sometimes lead to strange results, and not 

every development model can be automatically extended to deal with this, so instead of calculating 

the influence function for development models, we look at the sensitivity of the reserve estimate to 

changes in the cells of the development triangle, as in Tampubolon [1]. In particular, we define the 

impact of a cell on the reserve estimate under a particular development methodology as the 

derivative of the estimate with respect to the value in the cell. We do this for the incremental 

triangle, so a small change in a cell affects all subsequent cumulative values for the accident year. 

This seems to make more sense than looking at the derivative with respect to cumulative cells, 

whose changes would not continue into the rest of the triangle. 

If you think of a number in the triangle as its mean plus a random innovation, the derivative with 

respect to the random innovation would be the same as that with respect to the total, so a high 

impact of a cell would imply a high impact of its random component as well. Thus models with 

some cells having high impacts would be less desirable. One measure of this is the maximum impact 

of any cell, which would be analogous to the GES, but we will also look at the number of cells with 

impacts above various thresholds in absolute value. 

This is just a toe in the water of robust analysis of loss development. We are not proposing any 

robust estimators, and will stick with MLE or possibly quasi-likelihood. Rather we are looking at the 

impact function as a model selection and refinement tool. It can be used to compare competing 

models of the same development triangle, and it can identify problems with models that can guide a 

search for more robust alternatives. This is similar to finding models that work for the entire history 

of interest rate changes and are not too sensitive to any particular points. 

To help interpret the impact function, we will also look at the generalized degrees of freedom 

(gdf) at each point. This is defined as the derivative of the fitted value with respect to the observed 

value. If this is near 1, the point’s initial degree of freedom has essentially been used up by the 

model. The gdf is a measure of how much a point is able to pull the fitted value towards itself. Part 

of the impact of  a point is this power to influence the model, but where it appears in the triangle 

also can influence the estimated reserve. Just like with the impact function, high values of the gdf 

would be a detriment. 

For the chain ladder (CL) model, some observations can be made in general. All three corners of 
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the triangle have high impact. The lower left corner is the initial value of the latest accident year, and 

the full cumulative development applies to it. Since this point does not affect any other calculations, 

its impact is the development factor, which can sometimes be substantial. The upper right corner 

usually produces a development factor which, though small, applies to all subsequent accident years, 

so its impact can also be substantial. When there is only one year at ultimate, this impact is the ratio 

of the sum of all accident years not yet at ultimate, developed to the penultimate lag, to the 

penultimate cumulative value for the oldest accident year. The upper left corner is a bit strange in 

that its impact is usually negative. Increasing it will increase the cumulative loss at every lag, without 

affecting future incrementals, so every incremental-to-previous-cumulative ratio will be reduced. The 

points near the upper right corner also tend to have high impact, and those near the upper left tend 

to have negative impact, but the lower left point often stands alone in its high impact. 

The GDFs for CL are readily calculated when factors are sums of incrementals over sums of 

previous cumulatives. The fitted value at a cell is the factor applied to the previous cumulative, so its 

derivative is its previous cumulative times the derivative of the factor with respect to the cell value. 

But that derivative is just the reciprocal of the sum of the previous cumulatives, so the gdf for the 

cell is its previous cumulative over the sum. Thus these GDFs sum down a column to unity, so each 

development factor uses up a total gdf of 1.0. Essentially each factor uses 1 degree of freedom, 

agreeing with standard analysis. The average gdf in a column is thus the reciprocal of the number of 

observations in that column. Thus the upper right cell uses 1 gdf, the previous column’s cells use ½ 

each on average, etc. Thus the upper right cells have high GDFs and high impact. 

We will use ODP to refer to the cross-classified development model in which each cell mean is 

modeled as a product of a row parameter and a column parameter, the variance of the cell is 

proportional to its mean, and the parameters are estimated by quasi-likelihood. It is well known that 

this model gives the same reserve estimate as CL. Thus if you change a cell slightly, the changed 

triangle will give the same reserve under ODP and CL. Thus the impacts of each cell under ODP 

will be the same as those of CL. The GDFs will not be the same, however, as the fitted values are 

not the same for the two models. The CL fitted value is the factor times the previous cumulative, 

whereas the ODP cumulative fitted values are backed down from the latest diagonal by the 

development factors, and then differenced to get the incremental fitted. It is possible to write down 

the resulting GDFs explicitly, but it is probably easier to calculate them numerically. 

It may be fairly easy to find models that reduce the impact of the upper right cells. Usually the 
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development factors at those points are not statistically significant. Often the development is small 

and random, and is not correlated with the previous cumulative values. In such cases, it may be 

reasonable to model a number of such cells as a simple additive constant. Since several cells go into 

the estimation of this constant, the impact of some of them is reduced. Alternatively the factors in 

that region may follow some trends, linear or not, that can be used to express them with a small 

number of parameters. Again this would limit the impact of some of the cells.  

The lower left point is more difficult to deal with in a CL-like model. One alternative is a Cape 

Cod-type model, where every accident year has the same mean level. This can arise, for instance, if 

there is no growth in the business, but also can be seen when the development triangle consists of 

on-level loss ratios, which have been adjusted to eliminate known differences among the accident 

years. In this type of model, all the cells go into estimating the level of the last accident year, so the 

lower left cell has much less impact. This reduction in the impact of the random component of this 

cell is a reason for using on-level triangles. 

The next three sections illustrate these concepts using development triangles from the actuarial 

literature. The impacts and GDFs are calculated for various models fit to these triangles. The 

impacts are calculated by numerical derivatives, as are the GDFs except for those for the CL, which 

have been derived above. 

4 A DEVELOPMENT-FACTOR EXAMPLE 

4.1 Chain Ladder 
Table 2 is a development triangle used in Venter [12]. Note that the first two accident years are 

developed all the way to the end of the triangle, at lag 11. Table 3 shows the impact of each cell on 

the reserve estimate using the usual sum/sum development factors. In the CL model an explicit 

formula can be derived for these impacts, but it is easier to do the derivatives numerically, simply by 

adding a small value to each cell separately and recalculating the estimated reserve to get the change 

in reserve for the derivative. 
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Table 2: Incremental  Loss Development Triangle 
L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 

11,305 18,904 17,474 10,221 3,331 2,671 693 1,145 744 112 40 13 
8,828 13,953 11,505 7,668 2,943 1,084 690 179 1,014 226 16 616 
8,271 15,324 9,373 11,716 5,634 2,623 850 381 16 28 558  
7,888 11,942 11,799 6,815 4,843 2,745 1,379 266 809 12   
8,529 15,306 11,943 9,460 6,097 2,238 493 136 11   

10,459 16,873 12,668 9,199 3,524 1,027 924 1,190   
8,178 12,027 12,150 6,238 4,631 919 435   

10,364 17,515 13,065 12,451 6,165 1,381   
11,855 20,650 23,253 9,175 10,312   
17,133 28,759 20,184 12,874   
19,373 31,091 25,120    
18,433 29,131     
20,640      
 

Table 3: Impact of CL 
 L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11

AY0 -1.21 -0.34 0.04 0.39 0.73 1.10 1.48 1.85 2.46 3.35 4.61 7.31
AY1 -1.21 -0.34 0.04 0.39 0.73 1.10 1.48 1.85 2.46 3.35 4.61 7.31
AY2 -1.17 -0.29 0.08 0.44 0.78 1.14 1.53 1.89 2.51 3.39 4.66 
AY3 -1.15 -0.27 0.10 0.46 0.80 1.16 1.55 1.91 2.53 3.41  
AY4 -1.14 -0.27 0.11 0.46 0.80 1.17 1.56 1.92 2.54  
AY5 -1.10 -0.23 0.15 0.50 0.84 1.21 1.59 1.96  
AY6 -1.07 -0.20 0.18 0.53 0.87 1.24 1.62  
AY7 -1.03 -0.16 0.22 0.57 0.91 1.28  
AY8 -0.95 -0.08 0.30 0.65 0.99  
AY9 -0.73 0.14 0.52 0.87  
AY10 -0.31 0.57 0.95   
AY11 0.70 1.58    
AY12 4.95     

 

As discussed, the impacts are highest in the upper right and lower left corners, and the upper left 

has negative impact. The impacts increase moving to the right and down. The last four columns and 

the lower left point have impacts above 2, and six points have impacts above 4. Table 4 shows the 

GDFs for the chain ladder using the formula previous cumulative /sum previous cumulatives 

derived in Section 3. L0’s GDFs are shown as identically 1.0. Like the impact function, these 

increase going to the right after lag 0. Within each column the sizes depend on the volume of the 

year. 
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Table 4: GDFs of CL 
 L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 

AY0 1.0 0.080 0.093 0.114 0.133 0.151 0.177 0.201 0.245 0.306 0.394 0.581 
AY1 1.0 0.063 0.070 0.082 0.097 0.110 0.128 0.145 0.174 0.221 0.285 0.419 
AY2 1.0 0.059 0.073 0.079 0.103 0.124 0.147 0.167 0.202 0.250 0.321  
AY3 1.0 0.056 0.061 0.076 0.089 0.106 0.128 0.148 0.177 0.223   
AY4 1.0 0.061 0.073 0.086 0.104 0.126 0.149 0.168 0.202    
AY5 1.0 0.074 0.084 0.096 0.113 0.130 0.149 0.170     
AY6 1.0 0.058 0.062 0.077 0.089 0.106 0.123      
AY7 1.0 0.074 0.086 0.098 0.123 0.146       
AY8 1.0 0.084 0.100 0.134 0.149        
AY9 1.0 0.122 0.141 0.158         
AY10 1.0 0.138 0.156          
AY11 1.0 0.131           
AY12 1.0            
 

Figure 1 graphs the impacts by lag along the diagonals of the triangle. After the first four lags, the 

impacts are almost constant across diagonals.  

Figure 1: Impact of Chain Ladder by Diagonal 

4.2 Regression Model 
Venter [12] fit a regression model to this triangle, keeping the first five development factors but 

including an additive constant. The constant also represents development beyond lag 5. By 

stretching out the incremental cells to be fitted into a single column Y, this was put into the form of 
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a linear model Y = Xβ + ε, which assumes a normal distribution of residuals with equal variance 

(homoscedasticity) across cells. X has the previous cumulative for the corresponding incrementals, 

with zeros to pad out the columns, a column of 1’s for the constant. There were also diagonal 

(calendar year) effects in the triangle. Two diagonal dummy variables were included in X, one with 

1s for observations on the 4th diagonal and 0 elsewhere, and one equal to 1 on the 5th, 8th, and 10th 

diagonals, -1 on the 11th diagonal, and 0 elsewhere. The diagonals are numbered starting at 0, so the 

4th is the one beginning with 8,529 and the 10th starts with 19,373. The variance calculation used a 

heteroscedasticity correction. This model with eight parameters fit the data better than the 

development factor model with 11 parameters. Here we are only addressing the robustness 

properties, however.  

Table 5 gives the impact function for this model. It is clear that the large impacts on the right side 

have been eliminated by using the constant instead of factors to represent late development. The 

effects of the diagonal dummies can also be seen, especially in the right of the triangle. Now only 1 

point has impact above 2, and above 4. 

Table 5: Impact of Regression Model 
 L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11

AY0 -1.36 0.02 0.42 0.67 0.10 0.87 1.35 1.35 0.97 1.35 0.97 1.73
AY1 -1.56 0.22 0.66 -0.04 0.67 1.28 1.35 0.97 1.35 0.97 1.73 1.35
AY2 -1.53 0.52 -0.39 0.38 1.02 1.27 0.97 1.35 0.97 1.73 1.35 
AY3 -0.51 -0.64 0.15 0.78 1.07 0.90 1.35 0.97 1.73 1.35  
AY4 -1.24 -0.31 0.45 0.76 0.64 1.27 0.97 1.73 1.35  
AY5 -1.38 0.11 0.47 0.32 1.00 0.89 1.73 1.35  
AY6 -1.61 0.22 0.18 0.80 0.68 1.66 1.35  
AY7 -0.89 -0.36 0.35 0.24 1.34 1.25  
AY8 -1.34 0.00 -0.12 0.87 0.94  
AY9 0.29 -0.44 0.61 0.57  
AY10 -0.18 0.66 0.43   
AY11 1.11 1.04    
AY12 4.31     

 

Table 6 shows the GDFs for the regression model. For regression models the GDFs for the 

observations in the Y vector are known to be calculable as the diagonal of the “hat” matrix, where 

hat = X(X’X)-1X’, e.g., see Ye [2]. However in development triangles, changing an incremental value 

also changes subsequent cumulatives, so the X matrix is a function of lags of Y. This requires the 

derivatives to be done numerically. The total of these, excluding lag 0, is 8.02, which is a bit above 
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the usual number of parameters, due to the exceptions to normal linear models. Compared to the 

CL, the GDFs are lower for lag 6 onward, but are somewhat higher along the modeled diagonals. 

They are especially high for diagonal 4, which is short and gets its own parameter. 

Table 6: GDFs of Regression Model 
 L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11

AY0 1.0 0.071 0.089 0.127 0.352 0.195 0.034 0.034 0.055 0.034 0.055 0.076
AY1 1.0 0.047 0.056 0.305 0.107 0.099 0.034 0.055 0.034 0.055 0.076 0.034
AY2 1.0 0.046 0.299 0.084 0.098 0.123 0.055 0.034 0.055 0.076 0.034 
AY3 1.0 0.297 0.067 0.058 0.074 0.107 0.034 0.055 0.076 0.034  
AY4 1.0 0.064 0.056 0.072 0.120 0.128 0.055 0.076 0.034   
AY5 1.0 0.062 0.073 0.110 0.118 0.149 0.076 0.034   
AY6 1.0 0.040 0.067 0.061 0.095 0.140 0.034   
AY7 1.0 0.082 0.075 0.118 0.182 0.172   
AY8 1.0 0.077 0.134 0.212 0.207   
AY9 1.0 0.198 0.239 0.246   
AY10 1.0 0.245 0.253    
AY11 1.0 0.192     
AY12 1.0            

 

Figure 2: Impact of Regression Model by Diagonal 

Figure 2 graphs the impacts. Note that due to the diagonal effects, diagonal 11 has higher impact 

than diagonal 12 after the first two lags. 
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4.3 Square Root Regression Model 
As a correction for heteroscedasticity, regression courses sometimes advise dividing both Y and X 

by the square root of Y, row by row. This makes the model Y½ = (X/Y½)β + ε, where the ε are IID 

mean zero normals. Then Y = Xβ + Y½ ε, so now the variance of the residuals is proportional to Y. 

This sounds like a fine idea, but it is a catastrophe from a robust viewpoint. Table 7 shows the 

impact function. There are 12 points with impact over 2, 7 with impact over 4, 5 with impact over 

10, and 3 with impact over 25.  

Table 7: Impact of Square Root Regression Model 
 L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11

AY0 -0.94 -0.08 0.16 0.68 0.15 0.56 0.01 0.00 0.01 0.38 4.57 15.61
AY1 -1.06 -0.10 0.28 -0.30 2.19 1.86 0.01 0.15 0.00 0.15 10.21 0.01
AY2 -0.58 0.12 -0.09 0.20 0.68 0.39 0.01 0.03 28.26 3.09 0.02 
AY3 -0.20 -0.50 0.13 0.66 0.69 0.27 0.00 0.11 0.00 32.67  
AY4 -0.90 -0.15 0.33 0.41 0.59 0.56 0.03 0.14 37.14  
AY5 -1.28 -0.36 0.17 0.37 2.05 2.87 0.00 0.00  
AY6 -1.20 -0.09 0.01 0.77 0.71 2.34 0.02  
AY7 -1.02 -0.18 0.36 0.23 0.76 1.97  
AY8 -0.86 -0.07 -0.01 1.23 0.46  
AY9 -0.91 -0.06 0.59 1.02  
AY10 -0.45 0.48 0.89   
AY11 0.50 1.46    
AY12 4.56     

 

Part of the problem is that the equation Y = Xβ + Y½ ε is not what you would really want. The 

residual variance should be proportional to the mean, not the observation. This setup gives the small 

observations small variance, and so the ability to pull the model towards them. But the observations 

might be small because of a negative residual, with a higher expected value. So this formulation gives 

the small values too much influence. 

Table 8 shows the related GDFs. It is unusual here that some points have GDFs greater than 1. 

A small change in the original value can make a greater change in the fitted value, but due to the 

non-linearity the fitted value is still a ways from the data point. The sum of the GDFs is 13.0, which 

is sometimes interpreted as the implicit number of parameters. 

4.4 Gamma-p Residuals 
Venter [13] fits the same regression model, but by maximum likelihood with gamma-p residuals. 

The gamma-p is a gamma distribution, but each cell is modeled to have the variance proportional to 
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the same power p of the mean. This models the cells with smaller means as having smaller variances, 

but the effect is not as extreme as in the square root regression, where the variance is proportional 

to the observation, not its expected value.  

Table 8: GDFs of Square Root Regression Model 
 L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11

AY0 1.0 0.082 0.078 0.129 0.697 0.074 0.000 0.000 0.000 0.010 0.356 1.102
AY1 1.0 0.071 0.076 0.230 0.227 0.175 0.000 0.004 0.000 0.011 0.720 0.000
AY2 1.0 0.053 0.287 0.031 0.074 0.042 0.000 0.001 2.199 0.218 0.000 
AY3 1.0 0.201 0.045 0.081 0.064 0.025 0.000 0.008 0.000 0.906  
AY4 1.0 0.051 0.077 0.061 0.066 0.061 0.002 0.010 1.030   
AY5 1.0 0.076 0.102 0.089 0.252 0.322 0.000 0.000   
AY6 1.0 0.073 0.045 0.104 0.072 0.221 0.001   
AY7 1.0 0.069 0.103 0.053 0.106 0.249   
AY8 1.0 0.075 0.051 0.246 0.068   
AY9 1.0 0.117 0.193 0.208   
AY10 1.0 0.145 0.166    
AY11 1.0 0.144     
AY12 1.0            
 
Table 9: Impact of Gamma-p Residual Model 

 L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11
AY0 -0.59 -0.07 0.24 0.59 -0.03 1.47 1.37 1.37 1.23 1.25 -1.45 7.97
AY1 -0.90 -0.05 0.28 0.10 0.90 1.11 1.30 0.77 1.37 0.91 6.73 1.36
AY2 -0.46 0.08 -0.07 0.56 0.94 1.43 1.22 1.45 -5.62 4.33 1.35 
AY3 -0.29 -0.58 0.21 0.47 1.31 1.37 1.21 0.98 1.47 0.10  
AY4 -0.68 -0.15 0.19 0.51 0.94 1.48 1.24 1.96 0.02   
AY5 -1.04 -0.18 0.20 0.49 0.96 1.07 1.43 1.38   
AY6 -1.00 0.09 0.22 0.45 1.28 1.13 1.41   
AY7 -1.02 -0.18 0.50 0.50 0.95 1.17   
AY8 -0.71 -0.12 0.12 0.66 0.96   
AY9 -0.85 -0.02 0.80 0.86   
AY10 -0.44 0.48 0.88    
AY11 0.46 1.45     
AY12 4.43            
 

In this case, p was found to be 0.71. The impacts are shown in Table 9 and graphed in Figure 3. 

It is clear that these are not nearly as dramatic as the square root regression, but worse than the 

regular regression, and perhaps comparable to the chain ladder. Diagonals 10 and 11 can be seen to 

have a few significant impacts. These are at points with small observations that are also on modeled 

diagonals. Even with the variance proportional to a power of the expected value, these points still 

have a strong pull. The GDFs are in Table 10. 
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Figure 3: Impact of Gamma-p Residual Model 
 
Table 10: GDFs of Gamma-p Residual Model 

 L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 
AY0 1.0 0.082 0.078 0.129 0.697 0.074 0.000 0.000 0.000 0.010 0.356 1.102

AY1 1.0 0.071 0.076 0.230 0.227 0.175 0.000 0.004 0.000 0.011 0.720 0.000
AY2 1.0 0.053 0.287 0.031 0.074 0.042 0.000 0.001 2.199 0.218 0.000 
AY3 1.0 0.201 0.045 0.081 0.064 0.025 0.000 0.008 0.000 0.906  
AY4 1.0 0.051 0.077 0.061 0.066 0.061 0.002 0.010 1.030   
AY5 1.0 0.076 0.102 0.089 0.252 0.322 0.000 0.000   
AY6 1.0 0.073 0.045 0.104 0.072 0.221 0.001   
AY7 1.0 0.069 0.103 0.053 0.106 0.249   
AY8 1.0 0.075 0.051 0.246 0.068   
AY9 1.0 0.117 0.193 0.208   
AY10 1.0 0.145 0.166    
AY11 1.0 0.144     
AY12 1.0            

 

Again this is less dramatic than for the square root regression, but the small points on the 

modeled diagonals still have high GDFs. The total of these is 11.3, which is still fairly high. This is 

somewhat troublesome, as the gamma-p model fit the residuals quite a bit better than did the 
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standard regression. The fact that the problems center on small observations on the modeled 

diagonals suggests that additive diagonal effects may not be appropriate for this data. They do fit 

into the mold of a generalized linear model, but that is not too important when fitting by MLE 

anyway. As an alternative, the same model but with the diagonal effects as multiplicative factors was 

fit. The multiplicative diagonal model can be written: 

EY = X[,1:6]β[1:6]∗β[7]X[,7]∗β[8]X[,8], 

which means that the first six columns of X are multiplied by the first six parameters, which includes 

the constant term, and then the last two diagonal parameters are factors raised to the power of the 

last two columns of X. These are now the diagonal dummies, which are 0, 1, or –1. Thus the same 

diagonals are higher and the same lower, but now proportionally instead of by an additive constant. 

It turns out that this model actually fits better, with a negative loglikelihood of 625, compared to 630 

for the generalized linear model. This solves the robustness problems as well. The impacts are in 

Table 11, the GDFs in Table 12, and the impacts are graphed in Figure 4. 

Table 11: Impact of Gamma-p Multiplicative Model 
 L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 

AY0 -0.94 -0.03 0.22 0.58 0.09 1.16 1.43 1.43 1.42 1.36 0.55 2.31
AY1 -1.02 0.00 0.32 0.17 0.56 1.02 1.43 1.26 1.43 1.30 2.14 1.43
AY2 -0.74 0.15 -0.46 0.39 0.98 1.30 1.42 1.42 -0.78 1.82 1.42 
AY3 -0.25 -0.50 -0.02 0.46 0.97 1.26 1.43 1.33 1.43 0.69  
AY4 -0.68 -0.39 0.23 0.51 0.83 1.26 1.39 1.50 0.64   
AY5 -1.09 -0.10 0.33 0.26 0.93 0.69 1.43 1.43   
AY6 -1.02 0.05 0.00 0.45 0.79 1.12 1.42   
AY7 -0.72 -0.37 0.31 0.29 1.11 1.07   
AY8 -0.81 -0.01 -0.21 0.92 0.99   
AY9 -0.76 -0.25 0.85 0.88   
AY10 -0.58 0.56 0.94    
AY11 0.35 1.50     
AY12 4.34      

 

Diagonal 11 still has more impact than the others, but this barely exceeds 2.0 at the maximum. 

The sum of the GDFs is 8.67. There are eight parameters for the cell means but two more for the 

gamma-p. It has been a question whether or not to count those two in determining the number of 

parameter used in the fitting. The answer to that from the gdf analysis is basically to count each of 

those as 1/3 in this case. Here the robust analysis has uncovered a previously unobserved problem 

with the generalized linear model, and lead to an improvement. 
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Table 12: GDFs of Gamma-p Multiplicative Model 
 L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11

AY0 1.0 0.079 0.087 0.125 0.323 0.136 0.034 0.033 0.038 0.040 0.093 0.074
AY1 1.0 0.063 0.069 0.191 0.210 0.132 0.034 0.048 0.033 0.046 0.066 0.034
AY2 1.0 0.053 0.410 0.079 0.085 0.068 0.038 0.035 0.175 0.050 0.034 
AY3 1.0 0.361 0.105 0.070 0.071 0.063 0.033 0.044 0.031 0.101  
AY4 1.0 0.107 0.070 0.067 0.111 0.084 0.040 0.034 0.106   
AY5 1.0 0.079 0.094 0.158 0.185 0.276 0.030 0.033   
AY6 1.0 0.066 0.106 0.081 0.104 0.117 0.035   
AY7 1.0 0.143 0.093 0.127 0.108 0.200   
AY8 1.0 0.080 0.200 0.220 0.102   
AY9 1.0 0.355 0.281 0.208   
AY10 1.0 0.316 0.196    
AY11 1.0 0.163     
AY12 1.0            

  

Figure 4: Impact of Gamma-p Multiplicative Model 
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A multiplicative fixed-effects model is one where the cell means are products of  fixed factors 
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section 3, where there is a factor for each row, interpreted as estimated ultimate, a factor for each 

column, interpreted as fraction of ultimate for that column, and the variance of each cell is a fixed 

factor times its mean. This model if estimated by MLE gives the same reserve estimates as the chain 

ladder and so the same impacts for each cell, but the GDFs are different, due to the different fitted 

values.  

The triangle for this example comes from Taylor-Ashe (1983) and is shown in Table 13. The CL 

= ODP impacts are in Table 14 and are graphed in Figure 5. 

Table 13: Incremental Triangle Taylor-Ashe (1983) 
Lag 0 L1 L2 L3 L4 L5 L6 L7 L8 L9 
357,84 766,940 610,542 482,940 527,32 574,39 146,34 139,95 227,22 67,94
352,11 884,021 933,894 1,183,28 445,74 320,99 527,80 266,17 425,04
290,50 1,001,79 926,219 1,016,65 750,81 146,92 495,99 280,40
310,60 1,108,25 776,189 1,562,40 272,48 352,05 206,28  
443,16 693,190 991,983 769,488 504,85 470,63  
396,13 937,085 847,498 805,037 705,96  
440,83 847,631 1,131,39 1,063,26  
359,48 1,061,64 1,443,37  
376,68 986,608   
344,01    

 
Table 14: Impact of CL = ODP on TA 

 L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 
AY0 -3.11 -1.62 -1.01 -0.45 0.01 0.51 1.16 2.27 4.54 12.59
AY1 -2.87 -1.38 -0.77 -0.20 0.25 0.76 1.40 2.51 4.78 
AY2 -2.43 -0.93 -0.33 0.24 0.69 1.20 1.85 2.95  
AY3 -2.21 -0.72 -0.11 0.45 0.91 1.41 2.06  
AY4 -1.95 -0.46 0.15 0.71 1.17 1.67  
AY5 -1.67 -0.18 0.43 0.99 1.45  
AY6 -1.25 0.25 0.85 1.42  
AY7 -0.14 1.35 1.96  
AY8 2.07 3.57   
AY9 13.45    
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Figure 5: Impact of CL = ODP on TA 

Because the development factors are higher, the impacts are higher than in the previous example. 

Even though it is a smaller triangle, 14 points have impacts with absolute values over 2, 4 are over 4, 

and 2 are over 12. The CL GDFs are in Table 15. These sum to 9, excluding the first column, and 

are fairly high on the right where there are few observations per column. The ODP GDFs are in 

Table 16. These sum to 19, and are fairly high near the upper right and lower left corners. 

Table 15: GDFs of CL on TA 
 L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 

AY0 1.0 0.108 0.110 0.115 0.120 0.153 0.208 0.272 0.423 1.0 
AY1 1.0 0.106 0.121 0.144 0.182 0.211 0.258 0.365 0.577  
AY2 1.0 0.087 0.126 0.147 0.175 0.222 0.259 0.363   
AY3 1.0 0.093 0.138 0.146 0.204 0.224 0.275   
AY4 1.0 0.133 0.111 0.141 0.157 0.189   
AY5 1.0 0.119 0.130 0.145 0.162   
AY6 1.0 0.132 0.126 0.161   
AY7 1.0 0.108 0.139   
AY8 1.0 0.113    
AY9 1.0     
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Table 16: GDFs of ODP on TA 
 L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 

AY0 0.154 0.261 0.273 0.295 0.229 0.224 0.253 0.301 0.459 1.0 
AY1 0.186 0.295 0.308 0.333 0.276 0.281 0.325 0.400 0.612  
AY2 0.187 0.300 0.312 0.338 0.278 0.282 0.324 0.398  
AY3 0.188 0.304 0.317 0.344 0.280 0.282 0.323  
AY4 0.184 0.309 0.322 0.348 0.275 0.271  
AY5 0.197 0.331 0.346 0.374 0.293  
AY6 0.221 0.375 0.391 0.423  
AY7 0.284 0.498 0.519   
AY8 0.370 0.747    
AY9 1.0     

 

The GDFs can be used to allocate the total degrees of freedom of the residuals of n – p. The n is 

allocated 1 to each observation, and the p can be set to the gdf of each observation. This would give 

a residual degree of freedom to each observation which could be used in calculating a standardized 

residual that takes into account how the degrees of freedom vary among observations. 

Venter [12] looked at reducing the number of parameters in this model by setting parameters 

equal if they are not significantly different, and using trends, like linear trends between parameters. 

Also diagonal effects were introduced. The result was a model where each cell mean is a product of 

its row, column, and diagonal factors. There are six parameters overall. For the rows there are three 

parameters, for high, medium, and low accident years. Accident year 0 is low, year 7 is high, year 6 is 

the average of the medium and high levels, and all other years are medium. There are 2 column 

factors: high and low. Lags 1, 2,  and 3 are high, lag 4 is an average of high and low, lag 0 and lags 5 

to 8 are low, and lag 9 is 1 minus the sum of the other lags. Finally there is one diagonal parameter c. 

Diagonals 4 and 6 have factors 1+c, lag 7 has factor 1 – c, and all the other diagonals have factor 1. 

 With just six parameters this model actually provides a better fit to the data than the 19 

parameter model. The combining of parameters does not degrade the fit much, and adding diagonal 

effects improves the fit. An improved fit over that in Venter [12] was found by using a gamma-p 

distribution with p = ½ so the variance of each cell is proportional to the square root of its mean. 

The impacts and GDFs of this model are shown in Tables 17 and 18, and the impacts are graphed in 

Figure 6, this time along accident years. 
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Table 17: Impact of 6-Parameter Gamma-½ on TA 
 L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 

AY0 0.65 -0.82 -1.08 -2.07 -0.87 0.97 -0.32 0.33 0.53 12.06
AY1 1.45 -0.02 0.68 0.60 -0.25 1.90 1.40 1.61 1.57
AY2 1.64 0.75 -0.19 0.84 0.90 1.93 1.66 1.36
AY3 1.26 0.43 -0.21 0.97 -0.36 1.70 1.71
AY4 1.62 0.08 0.67 0.37 0.63 1.35
AY5 1.19 -0.11 0.57 0.51 1.17
AY6 2.56 1.19 0.91 1.13 
AY7 2.18 1.27 1.49  
AY8 1.72 0.92   
AY9 1.59    
 
Table 18: GDFs of 6-Parameter Gamma-½ on TA 

 L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 
AY0 0.046 0.152 0.211 0.288 0.150 0.017 0.248 0.095 0.082 0.938
AY1 0.044 0.031 0.057 0.155 0.014 0.115 0.018 0.051 0.043
AY2 0.055 0.041 0.134 0.027 0.102 0.114 0.046 0.049
AY3 0.045 0.078 0.062 0.028 0.181 0.052 0.064
AY4 0.078 0.057 0.026 0.119 0.011 0.037
AY5 0.037 0.147 0.083 0.032 0.026
AY6 0.254 0.200 0.095 0.100 
AY7 0.111 0.527 0.250  
AY8 0.047 0.031   
AY9 0.047    
 
Figure 6: Impact of Gamma-½ on TA 
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The impacts are now all quite well contained except for one point – the last point in AY0. 

Possibly because AY0 gets its own parameter, lag 9 influences the level of the other lags’ parameters, 

and this is a small point with a small variance, this model only slightly reduces the high level of 

impact that point has in ODP. The same thing can be seen in the GDFs as well, where this point 

has slightly less than a whole gdf. The points on AY7 and the modeled diagonals also have relatively 

high GDFs, as do some small cells. The total of the GDFs is 6.14. There are six parameters affecting 

the means, plus one for the variance of the gamma. That one can affect the fit slightly, so counting it 

as 1/7th of a parameter seems reasonable.  

In an attempt to solve the problem of the upper-right point, an altered model was fit: lag 9 gets 

half of the paid in the low years. This can be considered a trend to 0 for lag 10. Making the lags sum 

to 1.0 now eliminates a parameter, so there are five. The NLL is slightly worse, at 722.40 vs. 722.36, 

but that is worth saving a parameter. The robustness is now much better, with only two impacts 

above 2.0, the largest being 2.35. 

6 PAID AND INCURRED EXAMPLE 

Venter [15], following Quarg and Mack [16], builds a model for simultaneously estimating paid 

and incurred development, where each influences the other. The paid losses are part of the incurred 

losses, so the separate effects are from the paid and unpaid triangles, shown in Tables 19 and 20.  

First the impacts on the reserve (7059.47) from the average of the paid and incurred chain ladder 

reserves is calculated, where the paids at the last lag are increased by the incurred-to-paid ratio at 

that lag. Tables 21 and 22 show the impacts of the paid and unpaid triangles, and Tables 23 and 24 

show the GDFs. 

Table 19: Quarg-Mack Paid Increments 
 L0 L1 L2 L3 L4 L5 L6

AY0 576 1228 166 54 50 28 29
AY1 866 1082 214 70 52 64  
AY2 1412 2346 494 164 78   
AY3 2286 3006 432 126    
AY4 1868 1910 870     
AY5 1442 2568      
AY6 2044       
 

Table 20: Quarg-Mack Unpaid 
 L0 L1 L2 L3 L4 L5 L6

AY0 402 300 164 120 100 80 43
AY1 978 604 304 248 224 106  
AY2 1492 596 446 184 150   
AY3 1216 666 346 292    
AY4 944 1104 204     
AY5 1200 396      
AY6 2978       
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Table 21: Average Reserve Impact of Paid 
 L0 L1 L2 L3 L4 L5 L6 

A0 -0.68 -.02 0.32 0.86 2.32 5.95 13.99
A1 -0.45 0.20 0.54 1.08 2.54 6.17
A2 -0.41 0.24 0.58 1.12 2.59 
A3 -0.36 0.30 0.64 1.18  
A4 -0.32 0.33 0.67   
A5 -0.20 0.46    
A6 1.37     
 
Table 23: Average Reserve GDF of Paid 

 0 L1 L2 L3 L4 L5 L6
A0 1 0.068 0.109 0.140 0.233 0.476 1
A1 1 0.102 0.117 0.153 0.257 0.524
A2 1 0.167 0.227 0.301 0.509 
A3 1 0.271 0.319 0.406  
A4 1 0.221 0.228   
A5 1 0.171    
A6 1     

 

Table 22: Average Reserve Impact Unpaid 
L0 L1 L2 L3 L4 L5 L6 

-0.29 -0.15 -0.26 -0.72 -1.76 -4.01 14.99
-0.29 -0.15 -0.26 -0.72 -1.76 3.57 
-0.29 -0.15 -0.26 -0.72 1.77  
-0.29 -0.15 -0.26 1.08   
-0.29 -0.15 0.82   
-0.29 0.68   
0.84   

 
Table 24: Average Reserve GDF Unpaid 

 0 L1 L2 L3 L4 L5 L6
A0 1 0.067 0.106 0.139 0.232 0.464 1
A1 1 0.126 0.129 0.160 0.269 0.536
A2 1 0.198 0.219 0.306 0.499 
A3 1 0.239 0.300 0.395  
A4 1 0.192 0.246   
A5 1 0.180   
A6 1   

The impacts of the lower left are not great, mostly because the development factors are fairly low 

in this example. The impacts on the upper right of both paid and unpaid losses are quite high, 

however. The unpaid losses not on the last diagonal have a negative impact, because they lower 

subsequent incurred development factors, but do not have factors applied to them. The GDFs are 

similar to CL in general. 

The model in Venter [15] used generalized regression for both the paid and unpaid triangles, 

where regressors could be from either triangle or from the cumulative paid and incurred triangles. 

Except for the first couple of columns, the previous unpaid losses provided reasonable explanations 

of both the current paid increment and the current remaining unpaid. The paid and unpaid at lags 3 

and on were just multiples of the previous unpaid, with a single factor for each. That is, expected 

paids were 33.1%, and unpaids 72.3%, of the previous unpaid. Since these sum to more than 1, there 

is a slight upward drift in the incurred. The lag 2 expected paid was 68.5% of the lag 1 unpaid. The 

best fit to the lag 2  expected unpaid was 9.1% of the lag 1 cumulative paid. For lag 1 paid, 78.1% of 

the lag 0 incurred was a reasonable fit. Lag 1 unpaid was more complicated, with the best fit being a 

regression, with constant, on lag 0 and lag 1 paids. There were also diagonal effects in both models. 

The residuals were best fit with a Weibull distribution. Tables 25 – 28 show the fits. 
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Table 25: Weibull Model Impact of Paid 
 L0 L1 L2 L3 L4 L5 L6

A0 0.09 -0.18 -1.58 4.38 0.38 7.67 5.45
A1 0.04 0.26 0.59 1.90 2.75 2.32  
A2 -.37 0.33 0.42 0.57 -0.28   
A3 -.13 0.17 0.67 1.26    
A4 -.02 0.20 0.31     
A5 -.94 0.70      
A6 1.25       
 
Table 27: Weibull Model GDF of Paid 

 0 L1 L2 L3 L4 L5 L6
A0 1 0.938 0.725 0.235 0.268 0.125 .143
A1 1 0.451 0.057 0.052 0.066 0.065  
A2 1 0.192 0.347 0.377 0.290   
A3 1 0.137 0.250 0.145    
A4 1 0.094 0.277     
A5 1 0.269      
A6 1     

 

Table 26: Weibull Model Impact Unpaid 
L0 L1 L2 L3 L4 L5 L6
0.06 0.67 -1.02 -1.45 -1.82 0.51 4.14

-0.17 -0.44 -1.80 -0.73 0.52 2.56  
-0.20 -0.16 0.47 -1.17 3.63   
-0.09 -0.32 -1.17 2.51    
-0.10 -0.34 1.89     
-0.32 1.47      
0.65       

 
Table 28: Weibull Model GDF Unpaid 

 0 L1 L2 L3 L4 L5 L6
A0 1 0.824 0.172 -0.058 0.015 .072 .054
A1 1 0.357 0.700 -0.044 0.115 .052  
A2 1 0.152 0.465 -0.173 0.113   
A3 1 0.050 0.136 0.123    
A4 1 0.507 0.089     
A5 1 0.687      
A6 1   

The two highest impacts for the average of paid and incurred are 14 and 15. For the Weibull they 

are 7.7 and 5.5. The average has two other points with impacts above 5, whereas the Weibull has 

none. Below 5 the impacts are roughly comparable. Since the Weibull has variance proportional to 

the mean squared, small observations have lower variance, and so a stronger pull on the model and 

higher impacts. In total, excluding the first column, the GDFs sum to 9.9, but including the 

diagonals (see Venter [15] for details) there are 12 parameters plus two Weibull shape parameters. 

The form of the model apparently does not allow the parameters to be fully expressed. The Weibull 

model still has more high impacts than would be desirable, but it is a clear improvement over the 

average of the paid and incurred. The reserve is quite a bit lower for the better-fitting Weibull model 

as well: 6255 vs. 7059.  

7 CONCLUSION 

Robust analysis has been introduced as an additional testing method for loss development 

models. It is able to identify points that have a large influence on the reserve, and so whose random 

components would also have a large influence. Through three examples, customized models were 

found to be more robust than standard models like CL and ODP, and in two of the examples, even 

better models were found as a response to the robust analysis. 
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A Model to Test for and Accommodate Reserving Cycles 

Thomas S. Wright, MA, CStat, FIA 
 
________________________________________________________________________ 
Abstract 

In recent years several commentators have noted evidence for a “reserving cycle” linked to the underwriting 
cycle. It seems that in many classes of non-life insurance, when premium rates are relatively low, claim 
development patterns tend to be longer-tailed than when premium rates are high. If this is the case, then 
traditional reserving methods based on an assumption that the development pattern is the same for all origin 
years will tend to overstate reserves for periods where premium rates were high, and understate reserves for 
periods where premium rates were low. The present paper reviews the evidence for a reserving cycle and 
discusses possible causes. A mathematical model is then proposed that accommodates the main possible causes. 
The purpose of this model is three-fold: (a) to test for the existence of reserving cycle effects, (b) to help identify 
the causes, and (c) to produce improved reserve estimates. An example analysis is presented using the proposed 
model. The evidence for the existence of reserving cycles is now sufficiently strong that, in the author’s opinion, 
it is important for reserving actuaries to be aware of the possibility of cyclical effects, to investigate evidence for 
such effects in any reserving exercise, and (where there is strong evidence) to adjust reserve estimates 
accordingly. The model proposed in the present paper can be implemented in Excel and will often be a useful 
tool for these purposes.  
Keywords. Reserving cycle, underwriting cycle, development patterns, curve fitting, least squares, premium rate 
indices. 

             

1. INTRODUCTION 

1.1 Research Context 

1.1.1 Bob Conger’s presentation at GIRO 2002 

The idea of a “reserving cycle” was first given prominence by Bob Conger (then CAS President) 
in his keynote presentation to the 2002 GIRO Convention in the UK. For all classes of US 
property/casualty insurance combined, and for workers compensation alone, he showed the ratio of 
initial estimated ultimates (at end of the first development year) to the latest estimated ultimates (at 
end of 2001) for each of the previous 20 accident years. When plotted against time, this ratio 
appeared, in both cases, to show a cyclical pattern of under- and over-reserving. This cycle appeared 
to be in phase with the underwriting cycle over the nearly two complete cycles of the years 1980 to 
2001. Initial reserve estimates were consistently too low in both of the “soft market” periods when 
premium rates were relatively low (the mid 1980s and the late 1990s), and were consistently too high 
in the intervening “hard markets” (when premium rates were relatively high).  

The most obvious explanation is that when setting reserves soon after writing the business, 
insurers tend to under-estimate the magnitude of the underwriting cycle. History shows that at the 
lowest point of the underwriting cycle, insurers often write business at loss-making rates. But 
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presumably they don’t do this deliberately: it is only human to hope and believe that the business 
they recently wrote will ultimately prove profitable, and to set the initial reserves accordingly. At the 
other extreme of the underwriting cycle, when premium rates are buoyant, even relatively cautious 
(high) initial reserves may show a fairly good profit. Management might privately believe that they 
could reasonably set the initial reserves lower and show an even higher profit. But with a choice 
between declaring a very high profit now, with the possibility that this will deteriorate, and declaring 
a more moderate (but still healthy) profit now, with the expectation that this will allow further good 
news to be released as the claims run-off,  it is easy to see the attraction of the latter. 

If this were the whole explanation for the reserving cycle, then the actuarial profession could rest 
easy. If we as actuaries provide objective, unbiased estimates for the reserves, and senior 
management chooses to depart from these estimates for reasons such as those described above, then 
that is their responsibility not ours. 

However, we need to be sure that actuarial reserve estimates are as good as they can be. Could it 
be that actuarial reserving methods are partly to blame for the reserving cycle? 

1.1.2 Working party report at GIRO 2003 

Bob Conger’s presentation at GIRO 2002 prompted the formation of a working party tasked 
with investigating the existence and possible causes of a reserving cycle in the UK. This working 
party was chaired by Nick Line, and presented its report [3] at the 2003 GIRO convention. The 
working party concluded that: 

(a) A reserving cycle did also exist in the UK. 

(b) Standard actuarial reserving methods are probably a contributory cause of the reserving 
cycle. 

(c) There was some (inconclusive) evidence that development patterns vary with the 
underwriting cycle, tending to be longer-tailed when premium rates are low. 

(d) There was clear evidence that Lloyd’s premium rate indices had tended to understate the 
true magnitude of the underwriting cycle. 

Conclusion (a) is based on UK industry reserves (from regulatory returns) over the period 1985 
to 2001 inclusive. This is a shorter period than that considered by Bob Conger, and covers little 
more than one complete underwriting cycle (including the soft market of the mid to late 1980s and 
the next soft market of the late 1990s). The working party looked at the non-life insurance market as 
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a whole, and some individual classes, and concluded that the reserving cycle exists for several major 
classes (motor, property and liability) and that the cycles for these classes are in phase with one 
another.  

The reserves analyzed by the working party in support of conclusion (a) were obtained from 
regulatory returns, and as such show booked reserves as opposed to actuarial estimates. Conclusion 
(b) was based on an investigation of the extent to which standard actuarial reserving methods (chain 
ladder (CL) and Bornheutter-Ferguson (BF)) produce cyclical under- and over-reserving if applied 
mechanistically. This was investigated by applying these methods to the run-off data from regulatory 
returns, and comparing early estimates to actual ultimates. For some (but not all) classes of 
insurance, the results showed a clear cyclical pattern closely following that observed in the regulatory 
reserves. This was clearest for long-tail liability classes. 

The working party then tried to explain why these standard actuarial methods tend to give a 
cyclical pattern of under- and over-reserving. They postulated two main causes: the points labeled (c) 
and (d) above.  The apparent variation in development patterns with the underwriting cycle (point 
(c)) violates the basic assumption of the CL and BF methods: that the development pattern is the 
same for all origin periods. The working party found some evidence of more rapid paid 
development for origin years in the “hard” part of the underwriting cycle. The paid chain ladder 
method would clearly tend to overstate reserves at the top of the cycle and understate at the bottom 
of the cycle if this is the case. 

The tendency for premium-rate indices to understate the amplitude of the underwriting cycle 
(point (d) above) exacerbates the reserving error produced by the BF method: if the softness of a 
soft market is understated, then the prior expected loss ratio will also be understated, leading to an 
initial under-estimation of the ultimate.  

[Note that if both (c) and (d) apply, their effects on paid BF reserves will be in the same 
direction, rather than offsetting each other. The paid BF reserve is (1-F)*(prior ultimate), where F is 
the expected proportion of ultimate development obtained by the chain ladder method. The CL 
method gives a value for F that is an average for all origin years in the run-off array. If development 
is quicker than average when premium rates are high (point (c)), then this will be lower than the 
expected proportion developed for accident years where premium rates are high, so the factor (1-F) 
will be too high for these years. Assuming the other factor of the BF reserve (the prior ultimate) is 
calculated in the usual way (as premium multiplied by average ULR divided by premium index) this 
factor will be too high if the premium index is too low when premium rates are high (point (d)). 
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Conversely, both factors of the paid BF reserve will be too low for origin years where premium rates 
are low.]  

The 2003 GIRO working party also suggested some possible reasons why the run-off pattern 
might depend on the level of premiums (that is, possible explanations for point (c)). They came up 
with the following possible causes of longer paid development patterns in soft markets. (Note that 
the working party did not look for direct evidence that any of these actually occur: these points were 
merely suggested as possible causes.) 

• When premium rates are low, insurers might be more reluctant to pay claims, leading to more 
protracted negotiations and longer payment delays. 

• In soft markets, insurers might compete by including additional cover and relaxing terms and 
conditions (as well as by reducing premiums). This might result in more disputes over 
coverage, tending to lengthen development patterns. (Presumably tightening of terms and 
conditions in hard markets might equally lead to disputes, but the difference is that in this 
case, disputes are less likely to delay payments.) 

• If upper policy limits are increased in soft markets, this would also tend to lengthen 
development patterns. (On the other hand, if insurers reduce deductibles in soft markets, this 
would tend to shorten development patterns because deductibles would be exhausted 
sooner.)  

• If more multi-year policies are written in soft-markets, these would tend to lengthen 
development patterns of under-writing year cohorts (but this should not affect accident year 
run-off patterns).  

The above four points relate to paid development. In addition, the working party noted that 
incurred development patterns would be longer-tailed in soft markets if insurers adopt more 
optimistic case-reserving practices when premium rates are low.  

 

1.1.3 General Insurance Reserving Issues Taskforce (GRIT) 

At the beginning of 2004, the UK actuarial profession created the General Insurance Reserving 
Issues Taskforce (GRIT). Of five specific issues given in the terms of reference for GRIT, one was 
“to consider the actions which the profession should take in relation to the observations made in the 
Reserving Cycle Working Party paper presented at GIRO 2003.” GRIT produced its final report 
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(after a consultation process within the UK profession) in March 2006 [2]. Section 7 of the GRIT 
report, entitled “Improving our Methods,” is mostly concerned with reserving cycles. This topic is 
also mentioned in Sections 1.1.6, 1.1.7, 1.8.2-1.8.5, 2.6.4, 9.2 and 9.9 of the GRIT report. 

GRIT carried out basically the same analysis as the 2003 working party, but using Lloyd’s data 
where the previous working party had used insurance company data (from regulatory returns). Like 
the working party, GRIT applied the CL and BF methods mechanically to historical run-off triangles 
for different classes of business, and compared early forecasts produced by these methods to actual 
outcomes. Like the working party, GRIT concluded that these methods do produce a cyclical 
pattern of under and over reserving, and that this pattern is in phase with the underwriting cycle. 

As a possible way forward, GRIT suggested (Section 7.5 of [2]) fitting cumulative Weibull 
distribution curves to cumulative paid development data, and allowing the scale parameter to vary 
cyclically. The equation for the cumulative development pattern proposed in [2] is: 

Claims(t) = A * [ 1 – exp{-(b/t)c}] (1)
Here, t is development time, A is ultimate, b is a scale parameter, and c is a shape parameter. 

[Note that c has to be negative in order for this to be a valid cumulative development pattern: if c is 
positive, then Claims(t) tends to zero as t tends to infinity. The Weibull curve is usually specified 
using t/b instead of b/t so that the shape parameter c takes positive values: we then have Claims(t) 
tending to the ultimate A as t tends to infinity.]  

1.1.4 Other prior research on the reserving cycle 

In the UK, GRIT was replaced (following publication of its final report in 2006) by the General 
Insurance Reserving Oversight Committee (GI ROC). GI ROC initiated four working parties that 
would report to future GIRO conventions. One of these is the working party on “Implications of 
the underwriting and reserving cycles for reserving.” By the time of GIRO 2007 this working party 
had not made significant progress.  

Perhaps surprisingly, considering that it was Bob Conger (then president of the CAS) who first 
highlighted this issue, there seems to be no published research in this area by US actuaries. (At least, 
a search of the CAS Web Site yields nothing new.)  

1.2 Objectives of the Present Paper 

The present paper develops the idea (suggested in the 2006 GRIT report [2]) of fitting curves to 
cumulative development data in a way that allows for the possibility of cyclical variation of 
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development patterns.  

The GRIT paper suggested using a cumulative Weibull distribution function (see Equation 1) for 
this purpose. In the present paper, Weibull, Burr, and Inverse Burr distribution functions are used.  

Any distribution function is by definition an increasing function. In practice, cumulative incurred 
run-off patterns often do not increase at all stages of development, so cumulative probability 
distribution functions would not provide a good fit. The present paper develops a family of curves 
that does have the flexibility to accommodate typical cumulative incurred development patterns. 
This family of curves is derived by modeling both reporting and payment delays using cumulative 
probability distribution functions. This produces two linked families of cumulative curves: one for 
paid, the other for incurred. By fitting these simultaneously to paid and incurred run-off data, a 
single ultimate is estimated for each origin year from all available data. This avoids the common 
problem of having one ultimate estimated from paid data and another ultimate estimated from 
incurred data, then having to combine the two somehow. 

Parameters of the fitted curves are linked to a premium rating index so that both paid and 
incurred run-off curves are allowed to vary with the underwriting cycle. This is done in a way that 
allows for the possibility that the premium rating index might understate the true amplitude of the 
underwriting cycle (as found to be the case in [3]). 

The paper is not concerned with directly looking for evidence of each the possible causes of 
cyclically varying run-off patterns discussed in Section 1.1.2. Instead, the mathematical model is 
developed in such a way that it will accommodate these possible causes if they exist. The model also 
accommodates other possible factors, such as variation in reporting delay with the underwriting 
cycle. It will not always be possible to distinguish the true cause using the results of fitting the 
proposed model.  

2. CYCLICAL CURVE-FITTING METHOD 

2.1 Principles of curve-fitting to claims development data 

In Section 2, a model is introduced that can be used to test for the presence of cyclical 
development patterns, to distinguish some of the main cyclical effects, and to estimate ultimates in 
the presence of these effects. Initially it is assumed that the only data available are the usual 
aggregate cumulative paid and incurred run-off arrays, and a premium rate index. Later (Section 2.4) 
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the use of premium or other exposure information is also considered.   

The method is basically a curve-fitting method as suggested in the GRIT report [2]. When curve-
fitting is used for reserving, it is common to assume that the run-off pattern is the same for all origin 
years. If this is not the case, origin years can sometimes be grouped so that it is approximately the 
case in each group. The GRIT paper suggested classifying origin years into two categories according 
to their position in the underwriting cycle (hard or soft). Instead of doing this, the method 
introduced in the present paper uses a premium rate index to allow continuous graduation between 
hard and soft market run-off curves.  

Reserving methods have previously been developed that allow run-off patterns to gradually 
change across origin years: for example, the method described in Wright [4]. That method allows for 
trend changes in development patterns but not for cyclical changes. It is also quite complex because 
it is a full stochastic method which gives predictive standard errors as well as best estimates. A 
limitation of that method is that it requires mainly positive increments in the run-off data, so it often 
cannot be applied directly to incurred data without first adjusting the data in some way. 

What we need now is a method that can be applied to both paid and incurred data, preferably 
making use of premium development data too, and which allows for cyclical changes in run-off 
patterns. The top priority is to develop such a method that gives good point estimates in the 
presence of underwriting and reserving cycles. A lower priority is rigorous assessment of standard 
errors: this is not considered in the present paper. 

If the run-off pattern is not assumed to be the same for all origin years, then the model 
necessarily has more parameters than where the run-off pattern is assumed to be constant. It is a 
well-established statistical principle that as the number of estimated parameters increases, their 
reliability (when estimated from a given volume of data) generally decreases. Therefore, it is 
advisable to use as much relevant data as possible when estimating parameters. For this reason, the 
proposed method fits run-off curves to both paid and incurred data simultaneously. This also avoids 
the problem (met with most other reserving methods) of having one set of reserve estimates 
obtained from paid data and a different set of estimates obtained from incurred data, then having to 
combine into a single set of final estimates. In order to allow fitting to incurred data as well as paid, 
the family of run-off curves must allow for negative increments as these often exist in incurred data. 
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2.2 Model for a single origin year 

2.2.1 Cumulative paid and incurred development curves 

In this sub-section we consider the run-off of a single origin year. The model is generalized for 
multiple origin years in later sub-sections. 

FP(t) is used to denote a cumulative paid run-off pattern (where t is continuous development 
time). This is a function that starts at 0 when t = 0, and increases to 1 as t tends to infinity. For paid 
data, although there may be occasional decreases due to salvage and subrogation, the underlying 
pattern is assumed to be strictly increasing. FP(t) is therefore a cumulative distribution function: its 
derivate fP(t) = dFP(t)/dt, can be regarded as the probability density function for the delay to payment 
of each dollar that is ultimately paid.  

For modeling incurred run-off patterns, we need to consider reporting delays. We use FR(t) to 
denote the cumulative distribution function of reporting delays (in respect of  each dollar that is 
ultimately paid). Since every claim must be reported before it is paid, we should have FR(t) ≥ FP(t) at 
all development times t. Exhibit 1 shows typical curves FR(t) and FP(t) for a single origin year. (The 
curves in Exhibit 1 are Weibull distributions with mean values of 1 year and 3.6 years respectively.)  

Note that FR(t) is not the cumulative incurred development pattern: it is the distribution function 
of reporting delays in respect of each dollar that is ultimately paid. For example, consider an accident 
year with an ultimate paid amount of $100,000. Suppose the first claim is reported mid-way through 
accident year zero (at time t = 0.5), and that this claim ultimately settles for $1,000. Since this is 1% 
of the total ultimate for the accident year, FR(t) increases from 0 to 0.01 at t = 0.5. The incurred 
development pattern will usually differ from this. For example, suppose that when this first claim is 
reported the initial case reserve is set at $2,000. Since this is 2% of the total ultimate for the accident 
year, the incurred development pattern increases from 0 to 0.02 at t = 0.5. (Of course, none of these 
development patterns is known with certainty until the accident year concerned is fully developed.)   

To model incurred development, we assume that when a claim is reported a case reserve is set up, 
and the amount of the case reserve (on average, in the period between reporting and eventual 
payment) is b-dollars for each dollar that is ultimately paid. If case reserves are set conservatively 
(perhaps more likely during hard markets) we will have b > 1. In soft markets, case reserves are more 
likely to be set optimistically so b may take lower values, and we might have b <1.  

Under the above assumptions, for each dollar of ultimate, the expected cumulative amount paid 
by development time t is FP(t) and the expected amount outstanding at time t is b.{FR(t) – FP(t)}. So 
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if we use FI(t) to denote the expected cumulative incurred run-off pattern then (from the definition 
of incurred as paid plus outstanding) we have: 

FI(t) = FP(t) + b.{ FR(t) – FP(t)} 
= b. FR(t) + (1- b). FP(t). 

(2)

This last equation can be interpreted by noting that incurred increases by the amount b when the 
claim is reported (and the case reserve set up), then increases by the amount (1- b) (which is usually 
negative) when the claim is paid.  

Because of the possibility that b > 1, the function FI(t) is not in general a probability distribution 
function because it is not strictly increasing. Both FR(t) and FP(t) are strictly increasing (from 0 to 1) 
but if b > 1, FI(t) will show the usual incurred run-off shape: increasing rapidly then decreasing 
towards ultimate. This is illustrated in Exhibit 2, which shows typical run-off patterns for the case b 
= 1.5 (that is, case reserves are on average 50% higher than what is ultimately paid in respect of the 
reported claims).  

Suppose we have cumulative paid and cumulative incurred run-off data. If we assume some 
parametric family of curves for FP(t) and FR(t), Equation 2 then implies a parametric family for FI(t). 
The parameters can be estimated by fitting the curve FP(t) to the cumulative paid data, and the curve 
FI(t) to the incurred data. Note that b is one of the parameters that will be estimated from the data. 
Some suitable parametric distributions for FP(t) and FR(t) are considered in the next sub-section.  

The bias factor b need not necessarily be assumed to take a constant value across development 
time (within each single origin year). It seems likely that the accuracy of case reserves might 
sometimes improve with time. This possibility can be allowed for by using a model of the form: 

bt = exp{β0 + β2.max(0, t0-t)}/ (2a)
Instead of a single constant parameter b, this form of model has three parameters β0, β2 and t0. (A 

further parameter, β1, is introduced in Section 2.3.2.) The exponentiation ensures that the bias factor 
bt is always positive. The expression max(0, t0-t) allows bt to change between development times t=0 
and t=t0. At later development times, max(0, t0-t) is zero so the bias factor  bt settles at exp{β0}.  

 2.2.2 Suitable parametric distribution families 

When selecting a family of curves to fit to paid claims development data, in principle any analytic 
family of probability distribution functions could be tried: for example Log-Normal, Pareto, 
Gamma, Weibull, etc. However, in this paper we restrict attention to distribution families that have 
the following properties: 
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• The cumulative distribution function is mathematically simple. This is desirable so that curve-
fitting can be carried out quickly and easily in a spreadsheet.   

• Ability to accommodate a wide range of values for the ratio of mode to mean. In particular, 
the distribution family should include distributions with mode equal to zero as well as 
distributions with mode greater than zero. [Recall that the mode of a distribution is the point 
where the density function takes its maximum value, or equivalently, where the slope of the 
cumulative distribution function is greatest.] This is desirable so that the same family of 
distributions can reasonably be used for reporting delays and for payment delays (which is 
merely convenient, not strictly necessary). In some classes of insurance, reporting delays tend 
to be very short for the majority of claims so that the mode is close to zero. For payment 
delays, the mode is invariably greater than zero.   

The Log-Normal distribution (for example) is not used in this paper because it does not satisfy 
either of these criteria. The Log-Normal cumulative distribution function can be calculated from the 
Normal distribution function (which is available in popular spreadsheet software) but it is relatively 
complex and slow to calculate compared to some simpler distribution functions. The mode and 
mean of a Log-Normal distribution (using the usual μ and σ parameterization) are respectively 
exp(μ) and exp(μ + σ2/2), so the ratio of mode to mean is exp(-σ2/2). Although this can take any 
value between zero and one, a mode of zero is not possible.   

Based on the above criteria, three distribution families have been selected for use in the present 
paper to model development patterns. Other distribution families could be used within the 
framework developed here, and some might prove to be more suitable than the selected three. 
These three distribution families have been chosen for convenience, on the basis that we have to 
start somewhere, and because they are probably as good as any for illustrating the principles of the 
proposed method.  

The three distribution families used in this paper are the Weibull, the Burr, and the Inverse Burr. 
Table 1 gives the cumulative distribution function F(t) and the mean and the mode of these 
distributions. (The penultimate column gives conditions for the mode to be greater than zero, and 
the final column gives the formula for the mode when it is greater than zero.) Г(.) denotes the 
Gamma function, which can be evaluated in Excel® as EXP(GAMMALN(x)). 
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Table 1: Formulas for analytic delay distributions 

 F(t) Mean Mode>0 if Mode (if > 0) 

Weibull 1 – exp{-(t/s)c} s.Г(1+1/c) c > 1 s.(1-1/c)1/c 

Burr 1 – 1/{1+(t/s)c}a s.Г(1+1/c).Г(a-1/c) / Г(a) c > 1  s.{(c-1).(ac+1)}1/c 

Inv Burr 1/{1+(s/t)c}a s.Г(a+1/c).Г(1-1/c) / Г(a) ac > 1 s.{(ac-1).(c+1)}1/c 

In all three cases, F(t) increases monotonically from 0 when t=0, towards 1 as t tends to infinity. 
The parameter s is a scale parameter; the parameters a and c are shape parameters. The Weibull 
family has just one shape parameter; the Burr and Inverse Burr families each have two shape 
parameters. The additional shape parameter means that the Burr and Inverse Burr families are much 
larger and more flexible then the Weibull family. The Burr and Inverse Burr families have some 
well-known sub-families. The Pareto is the sub-family of the Burr family obtained by setting c to 1. 
The Inverse Pareto is the sub-family of the Inverse Burr obtained by setting c to 1. The Log-Logistic 
is the sub-family of both Burr and Inverse Burr families obtained by setting a to 1. Each of these 
sub-families has one shape parameter, so in that sense, is as large as the Weibull family. 

Although we use all three of these distribution families in Section 3 of this paper, in the 
remainder of Section 2 we use the Weibull distribution for both payment delays and reporting 
delays. The Weibull is used because it is a relatively simple distribution, and it serves to illustrate the 
principles of the proposed modeling method. No implication is intended that the Weibull is superior 
to any other distribution family for this purpose. As already noted, any analytic distribution family 
could be used within the framework developed in Section 2.2.1, and using the same principles as are 
illustrated below using the Weibull distribution. There is also no reason in principle why two 
different distribution families should not be used; one to model reporting delays FR(t), and another 
to model payment delays FP(t), (provided FR(t) ≥ FP(t) for all values of t). 

2.2.3 Model for single origin year based on Weibull distributions 

Here the Weibull distribution is used to model both reporting and payment delays.  Subscripts R 
and P are used to distinguish parameters of the reporting and payment delay distributions. The 
symbol ^ is used to denote exponentiation, that is: (t/s)^c = (t/s)c.  

For the reporting and payment delay distributions we have: 

FR(t) = 1 – exp{-(t/sR)^cR} (3)
FP(t) = 1 – exp{-(t/sP)^cP} (4)
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So from Equation 2, the incurred development pattern is: 

FI(t) = 1 – b.exp{-(t/sR)^cR} – (1-b).exp{-(t/sP)^cP} (5)
The above equations for FP(t) and FI(t) specify a model for the paid and incurred run-off patterns 

for each dollar of ultimate. If U denotes the ultimate paid (which is what we aim to estimate), then 
the expected amounts paid and incurred by development time t are respectively U.FP(t) and U.FI(t). 

From Equations 3 and 4, the requirement FR(t) ≥ FP(t) (for all values of t) is equivalent to 
(t/sR)^cR ≥ (t/sP)^cP, which in turn is equivalent to t^(cR- cP) ≥ (sR^cR)/(sP^cP). If cR is not equal to cP, 
then the left side of this inequality takes all values between zero and infinity as t varies between zero 
and infinity. So the only way this inequality can be true for all positive values of t is by having cR 
equal to cP (so the left side is equal to 1 for all t) and sR less than sP (so the right side is less than 1). 
However, in practice, it is of little consequence if FR(t) is less than FP(t) for high values of t (that is, 
where both FR(t) and FP(t) are very close to 1). So we will not insist on the constraint cR = cP. Instead, 
it is proposed to check that the fitted curves are reasonable by viewing them graphically. This is 
illustrated by Exhibit 1, in which both curves are Weibull distributions, with parameters sR = 1, cR = 
1, sP = 4, cP = 3. These parameters give FR(t) ≥ FP(t) for t ≤ 8, but FR(t) < FP(t) for t > 8. Since both 
curves reach 99.97% development at t = 8, it is of no practical consequence that FR(t) < FP(t) for t > 
8.  

2.3 Model for multiple origin years 

2.3.1 Variation of parameters across origin years 

In Section 2.2 we developed a model for paid and incurred development patterns of a single 
origin year. If the Weibull distribution is used for both reporting and payment delays (as in 2.2.3), 
then the model has six parameters for each origin year: U, b, sR, cR, sP, cP. This is clearly too many 
parameters to attempt to estimate separately for each origin year. For the latest origin year we usually 
have only two data values: one paid, one incurred (although there may be more if sub-annual 
development periods are used). 

The total number of parameters needs to be reduced. To achieve this, we could try assuming 
initially that some of the parameters take a single constant value across all origin years. For example, 
we might assume that sR, cR and cP take the same values for all origin years, so that only the 
parameters U, b and sP vary across origin years. Setting sR and cR to values that are constant across all 
origin years is appropriate if reporting delays have the same distribution FR(t) across all origin years. 
For some datasets this might turn out to be a reasonable assumption. (We discuss later how this 
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assumption can be tested. Applications of the model presented in this paper to actual datasets have 
shown evidence that reporting delays do sometimes vary with the underwriting cycle: possible causes 
are discussed in Section 4.1.3.) 

By allowing b to vary across origin years, we allow for the possibility that case reserves are set up 
more or less conservatively at different points in the underwriting cycle. This possibility is suggested 
in the existing literature discussed in Section 1. By allowing the scale parameter sP of the payment 
delay distribution to vary, we allow for variation in the speed of claim settlement. Previous research 
has found evidence that such variation does occur with the underwriting cycle (see Section 1). 
Clearly, the ultimate U must also be allowed to take a different value for each origin year as this is 
what we aim to estimate. 

In the remainder of this paper, parameters that are allowed to vary across origin years have a 
subscript j to label the origin year. So in the Weibull model, if parameters U, b and sP are allowed to 
vary, these are denoted Uj, bj, sPj. 

2.3.2 Allowing for cyclical development patterns 

To allow for underwriting cycle effects, parameters of the run-off curves that are not held 
constant across all origin years can be linked to a known premium rate index. Interpretation of 
model parameters is simplified if the premium rate index (denoted Qj for origin year j) is scaled so 
the mean value across all origin years is 1. We can then use equations of the form: 

bj = exp{β0 + β1.(Qj-1)} (6)
sPj = exp{σ0 + σ1.(Qj-1)} (7)

Here, β0, β1, σ0 and σ1 are parameters (to be estimated from the run-off data) that are assumed to 
take the same values for all origin years. The subtraction of 1 from the premium rate index further 
simplifies interpretation of the parameters: for example, exp{β0} represents the value of b for an 
average year in which Qj = 1. The exponentiation ensures that parameters bj and sPj are always 
positive (which is necessary to produce valid development curves). Note that this form of model for 
bj and sPj allows for the possibility that the known index Qj may understate the true amplitude of the 
underwriting cycle. Previous research (see Section 1) suggests that this is often the case with 
premium rate indices. If this is the case, the parameters β1 and σ1 estimated from the run-off data 
will simply take higher values than they would if Qj correctly reflected the amplitude of the reserving 
cycle. The number of parameters to be estimated from the paid and incurred run-off data is now 
reasonable. We have: 
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• Seven parameters each assumed to take a single constant value across all origin years (sR, cR, 
cP, β0, β1, σ0 and σ1), plus 

• One parameter taking a different value for each origin year (the ultimate Uj). 

If there are more than eight development periods, the basic chain ladder model has more 
parameters than this.  

If the possibility that bias factors change with development time is allowed for as described in 
Section 2.2.1 (Equation (2a)) then Equation (6) becomes: 

bt = exp{β0 + β1.(Qj-1) + β2.max(0, t0-t)} (6a)

2.3.3 Estimation of parameters by least squares 

The parameters of the paid and incurred development curves can be determined by the method 
of least-squares. The following notation is used in this section: 

• FPj(t) denotes the cumulative paid development curve for origin year j. Using the Weibull 
model, this is given by Equation 4, with scale parameter sP replaced by sPj from Equation 7. 

• FIj(t) denotes the cumulative incurred development curve for origin year j. Using the Weibull 
model, this is given by Equation 5, with scale parameter sP replaced by sPj from Equation 7, 
and the case-reserve redundancy-factor b replaced by bj from Equation 6 (or Equation 6a). 

• Pjd denotes the actual cumulative paid for origin year j and development period d. 

• Ijd denotes the actual cumulative incurred for origin year j and development period d.    

The residual sum of squares is defined as the sum of squared differences between actual and 
expected values. This can be calculated separately for paid and incurred: 

RSSP = Σ {Pjd – Uj.FPj(t)}2 
RSSI = Σ {Ijd – Uj.FIj(t)}2 (8)

Summation is over all origin years j and development periods d in the run-off arrays. In the case 
of annual development data, d denotes the development year. We use the convention that the origin 
year itself is development year 0, so d takes the values 0, 1, 2, etc. In the fitted curves (FPj(t) and 
FIj(t)), t denotes continuous development time. Ideally this would be the exact elapsed time from the 
date of loss occurrence. However, since claims in a particular origin year cohort do not usually all 
have exactly the same date of loss occurrence, t is set to an approximate average delay from the date 
of loss occurrence until the end of the corresponding development period d. Table 2 gives 
appropriate values of t for each development year d, for both accident year and underwriting year 



A Model to Test for and Accommodate Reserving Cycles 
 

Casualty Actuarial Society Forum, Fall 2008  414 

cohorts. These approximations are based on assumptions that accidents occur uniformly in time and 
policies incept uniformly. Further details are given in Appendix B.  

Similar approximations can be used for sub-annual development periods. Approximations such 
as these tend to be relatively crude for early development periods: this is discussed further in Section 
2.5.3. 

 

Table 2: Approximate mean delay in each development year 

Development year (d) 0 1 2 3 4 5+ 

Accident year mean delay (t) 0.5 1.5 2.5 3.5 4.5 d+0.5

Underwriting year mean delay (t) 0.333 1 2 3 4 d 

Given values for the parameters of the development curves (in the case of the Weibull model: sR, 
cR, cP, β0, β1, σ0 and σ1) and a value for the ultimate Uj of each origin year, the “expected” values 
Uj.FPj(t) and Uj.FIj(t) can be calculated corresponding to each cell (j,d) of the run-off array. From 
these, the residual sums of squares RSSP and RSSI can be calculated (Equation 8). The least squares 
estimation method is to search for the values of the parameters (sR, cR, cP, β0, β1, σ0, σ1 and Uj for each 
origin year) that minimize the residual sums of squares. Note that ultimates Uj can be treated as 
parameters of the model and estimated by least squares along with the other parameters. However 
for early origin years, the ultimate may already be known with some precision. If, for a particular 
origin year all reported claims have been settled and further claims are considered unlikely, then 
there is no need to estimate the ultimate Uj by least squares, and a better model will usually be 
obtained by using the known value of this quantity. Usually this applies only for the earlier origin 
years: for origin years that are not fully developed the ultimate is estimated by least squares. 

2.3.4 Combining paid and incurred by weighted least squares 

It is clearly possible (provided the number of data-points exceeds the number of parameters) to 
carry out least squares estimation separately for paid and incurred. However, the paid and incurred 
models have parameters in common. (In the case of the Weibull model of Section 2.3.2, the 
following parameters feature in both the paid and incurred models: cp, σ0, σ1 and the ultimate Uj of 
each origin year.) If least squares estimation is carried out separately for paid and incurred, the paid 
data will yield one set of estimates for these parameters, and the incurred data will yield another set 
of values for the same parameters. This can be avoided by carrying out the least squares procedure 
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just once based on the total residual sum of squares RSSP + RSSI. 

This raises the question of relative weighting between paid and incurred: is it correct to give RSSP 
and RSSI equal weight by just adding them? An alternative would be to find the parameter values 
that minimize RSSP+w.RSSI where w is a predefined weighting factor. To increase the influence of 
the incurred data relative to the paid data, we would choose a value for w that is greater than 1, and 
to give more influence to the paid data we would choose a value less than 1.  

One way to justify a relative weighting on theoretical grounds would be to develop a full 
stochastic model that treats each value Pjd and Ijd as a random variable and gives an expression for 
the variance of each one. The basic theoretical justification for the least squares method is two-fold: 

• The Gauss-Markov theorem states that, in linear models, weighted least squares estimates 
have the smallest variance of all linear unbiased estimates. 

• Quasi-likelihood theory shows that weighted least squares estimates are asymptotically 
unbiased and efficient (that is, have minimum possible variance) even in non-linear models. 

In both Gauss-Markov and quasi-likelihood theory, the weights that give optimal least squares 
estimates are inversely proportional to the variances of the corresponding random variables. In 
addition, if some of the random variables are correlated, then the residual sum of squares that is 
minimized should include cross terms with weights depending on the covariance between the 
corresponding variables. 

In the present application, it is clear that the observations (Pjd and Ijd) are not all mutually 
independent. Since incurred is paid plus outstanding, any reasonable stochastic model would indicate 
a positive covariance between the values Pjd, Ijd with the same values of j and d. Furthermore, since 
these are cumulative values, it is likely that there is serial correlation between successive values of Pjd 
as the development period d increases in each fixed origin year j. For this reason, a full stochastic 
model would indicate that the optimum “residual sum of squares” to be minimized should include 
cross terms such as {Pjd – Uj.FPj(t)}.{Ijd – Uj.FIj(t)} as well as pure squared terms such as {Pjd – 
Uj.FPj(t)}2. A full stochastic model would also indicate the optimum relative weighting of every term 
in the residual sum of squares.  

Development of a full stochastic model is not attempted in this paper because it would be 
mathematically complex and probably contentious (as it would require many assumptions about the 
nature of the stochastic variation in paid and incurred run-off data). Instead, the aim is to produce a 
method that is simple enough to be widely useful if applied intelligently. To this end, it is proposed 
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to ignore the clear correlation that will exist between the observed values of Pjd and Ijd by including 
no cross-terms in the residual sum of squares. We also take no account of differing variances among 
the Pjd (and among the Ijd) by giving every term equal weight in RSSP (and in RSSI). The remaining 
question is: should we take this cavalier approach one step further by giving equal weight to both 
RSSP and RSSI ? 

2.3.5 Empirical determination of relative weighting of paid and incurred 

At this point, it is proposed to allow for the possibility that one of the two datasets (either paid or 
incurred) may appear to be more reliable than the other. The theory (Gauss-Markov and quasi-
likelihood) suggests that the two terms (RSSP and RSSI) should be weighted in inverse proportion to 
the mean variance of paid and incurred data-points. That is, instead of minimizing RSSP+RSSI we 
should minimize (RSSP/σ2

P)+(RSSI/σ2
I), where σ2

P and σ2
I are typical variances of individual paid and 

incurred observations. This is equivalent to minimizing the following total weighted sum of squares:  

 Weighted sum of squares = RSSP+ wI .RSSI  where wI = σ2
P/σ2

I. (9)
Instead of using a stochastic model to determine the relative magnitudes of σ2

P and σ2
I, a purely 

empirical approach can be used in which their relative magnitudes are estimated from the residuals. 
Standard theory suggests the variance of a paid observation be estimated as:  

σ2
P = RSSP/(nP – pP) (10)

where nP is the number of paid observations, and pP is the number of parameters estimated from 
these observations. If variances are estimated in this way we will have (RSSP/σ2

P) = (nP – pP) and 
(RSSI/σ2

I) = (nI – pI), so the total weighted sum of squares (RSSP/σ2
P)+(RSSI/σ2

I) will be (nP + nI) – 
(pP + pI).  An iterative fitting procedure is necessary to achieve this. It is also necessary to divide the 
total parameter count into the two components pP and pI. Each parameter that features in the fitted 
curves of both paid and incurred (for example, the ultimates Uj) makes a fractional contribution to 
both pP and pI. What is believed to be a reasonable pragmatic approach is proposed for this purpose. 
(This is discussed further in Section 2.5.1, but no rigorous theoretical justification is claimed.) 

For example, suppose we have annual paid and incurred run-off arrays for 10 origin years, so that 
nP = nI = 55. Suppose we are using the Weibull model described in Section 2.3.2. The paid 
development curves depend on 13 parameters: cP, σ0, σ1 and U1, U2…U10. The incurred development 
curves depend on 17 parameters: the same 13 as in the paid model, plus sR, cR, β0 and β1. If we count 
a parameter that features in both paid and incurred models as half a parameter in each model, we 
have: pP = 6.5 and pI = 10.5, which gives the correct total number of distinct parameters: pP + pI = 
17. (A more refined method of counting parameters is discussed in Section 2.5.1.)   
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On the first iteration, we estimate the parameters by minimizing RSSP+RSSI (that is, using equal 
weights initially). Suppose this produces parameter values that give RSSP = 100 and RSSI = 300, so 
the total minimized residual sum of squares is 400. Initial estimates of the mean variances for paid 
and incurred are then: σ2

P = 100/(55–6.5) = 2.06 and σ2
I = 300/(55–10.5) = 6.74  (If we had reason 

to believe that σ2
P and σ2

I were equal, we would estimate the value as 400/(110–17) = 4.30.) σ2
I being 

so much higher than σ2
P indicates that the model does not fit the incurred data as closely as it fits the 

paid data. The incurred data are therefore less reliable than the paid for the purpose of projecting 
run-off patterns, and so should be given less weight than paid in fitting the model. So for the next 
iteration, instead of minimizing RSSP+RSSI, we minimize (RSSP/2.06)+(RSSI/6.74). Multiplying by 
2.06, we see that this is equivalent to minimizing RSSP + 0.31 * RSSI. Minimizing this might result in 
RSSP = 95 (that is, a closer fit to the paid data than on the first iteration) and RSSI = 350 (a poorer 
fit to the incurred data than on the first iteration). These figures give the following revised estimates 
of variances: σ2

P = 95/(55–6.5) = 1.96 and σ2
I = 305/(55–10.5) = 7.87. So on the third iteration, we 

minimize RSSP + 0.25 * RSSI. Continuing in this way, convergence usually occurs after a few 
iterations.  

If the model is set up in Excel®, the Excel solver can be used to search for the parameter values 
that minimize the required weighted sum of squares in each iteration. Note however, that since the 
fitted curves are non-linear functions of the parameters, solver does not guarantee to find the global 
minimum. It is advisable to try several sets of starting values if there is any doubt about the solution 
found by the Excel solver.   

2.4 Use of premium and exposure data 

2.4.1 Estimated ultimate for latest origin year 

In the model described so far, no use has been made of premium or other exposure data. For the 
latest origin year (j = J say), the ultimate UJ is estimated purely by fitting curves to development 
patterns, and assuming that changes in the parameters of these curves from one origin year to the 
next are linked to changes in the underwriting cycle (through equations such as 6 and 7). The latest 
origin year has one free parameter of its own (the ultimate UJ), and (assuming annual paid and 
incurred development data) two data-values: the actual paid and incurred amounts at the end of the 
zeroth development year PJ0 and IJ0. 

This latest origin year contributes just two terms to the weighted sum of squares: 

{PJ0 – UJ.FPJ(t)}2 + w.{IJ0 – UJ.FIJ(t)}2
   (11)
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 Here, t = ½ for accident year cohorts, or 1/3 for underwriting year cohorts: see Table 2. 

Since UJ does not appear in any other terms of the total sum of squares, it can be adjusted to 
minimize the sum of the above two terms. Elementary calculus shows that this gives: 

UJ = {PJ0.FPJ(t) + w.IJ0.FIJ(t)}/ {FPJ(t)2 + w.FIJ(t)2} (12)
 If we write UPJ and UIJ for the ultimates projected from the latest paid or incurred separately 

(that is UPJ = PJ0 / FPJ(t) and UIJ = IJ0 / FIJ(t) ), then we have: 

UJ = {UPJ.FPJ(t)2 + w.UIJ.FIJ(t)2}/ {FPJ(t)2 + w.FIJ(t)2} (13)
This shows that UJ is a weighted average of UPJ and UIJ with weights FPJ(t)2 and w.FIJ(t)2.  

For example, suppose paid and incurred amounts for the latest origin year are PJ0 = $200 and IJ0 
= $1000, and suppose the fitted development curves imply that these figures are respectively 20% 
and 110% of ultimate, that is: FPJ(t) = 0.2 and FIJ(t) = 1.1. Then projecting paid and incurred 
separately to ultimate gives the estimates: UPJ = $200/0.2 = $1000 and UIJ = $1000 / 1.1 = $909. 
Suppose further that the analysis described in Section 2.3.3 indicates that incurred sums of squares 
should receive a weight of 0.2 relative to paid (that is, w = 0.2), then we have : FPJ(t)2 = 0.04 and 
w.FIJ(t)2 = 0.24. Equation 13 then gives a combined estimated ultimate:  UJ = (0.04 * $1000 + 0.24 * 
$909) / 0.28 = $922. 

Note that in practice, the model can be set up in Excel, and least-squares estimation carried out 
using the Excel solver. It is not necessary to evaluate the formulas given above: the estimated 
ultimates are parameters of the model that are found by the Excel solver. 

2.4.2 Model for ultimate in terms of premium or other exposure information 

From Equation 12, it is clear that the estimated ultimate for the final origin year will be sensitive 
to the values of the two observations PJ0 and IJ0. The sensitivity of the estimate to these values can be 
reduced (hence the reliability of the estimated ultimate increased) if total premium or some other 
measure of exposure can be obtained. A measure of exposure other than premium is more valuable 
than premium, because to make use of premium, we also have to use the estimated premium rate 
index for the latest year (QJ) and this is already used in FPJ(t) and FIJ(t) (through equations such as 6 
and 7). Premium and exposure data will clearly also be useful for other origin years, but it is for the 
latest few origin years that this additional information is most valuable. 

First we consider using a measure of exposure other than premium. This might be, for example, 
gross tonnage in a marine account, or total payroll in workers compensation. The exposure for 
origin year j is denoted Xj. If there are no cycles or trends in the ultimate loss per unit of exposure, 
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then we have: 

Uj = r.Xj + random error. (14)
Here, the parameter r represents the mean ultimate loss per unit of exposure. 

However, it could be that there is a trend in ultimate loss per unit of exposure. We should at least 
expect an inflationary trend if the exposure measure is not in dollars. In this case, we could try a 
model of the form rj = exp(ρ0 + ρ1.j) (where ρ0 and ρ1 are parameters assumed to take constant 
values across all origin years). We can also allow for the possibility that the ultimate loss per unit of 
exposure varies with the underwriting cycle: 

rj = exp(ρ0 + ρ1.j + ρ2.Qj ). (15)
Using this model, Equation 14 becomes: 

Uj = Xj.exp(ρ0 + ρ1.j + ρ2.Qj ) + random error. (16)
In the event that the only measure of exposure available is premium (denoted Premj) then 

underwriting cycle effects need to be removed from this by using Xj = Premj / Qj in the above. The 
possibility that the premium rate index understates the true amplitude of the underwriting cycle is 
accommodated (approximately) by the inclusion of Qj in the exponential factor: in this case the 
parameter ρ2 will be lower than it would be if Qj correctly reflected the amplitude.  

Another possibility is to remove the exponentiation from Equation 16 (so any inflationary trend 
is approximated as linear) to give: 

Uj = Premj.( ρ2 + ρ1.j/Qj + ρ0/Qj ) + random error. (17)
If premium takes several years to develop to ultimate (as is often the case in London market 

business because of profit-sharing, reinstatement premiums, retrospective experience rating, end-of-
term exposure adjustments, etc.), then Premj could be obtained by applying a simple projection 
method (such as chain ladder) to the premium development array.  

In all the above equations the “random error” term reflects real variation in loss experience from 
one origin year to another. As a first approximation, it is probably reasonable most of the time to 
assume that the variance of this is proportional to the expected ultimate Uj and to approximate this 
as being proportional to Premj/Qj. Proportionality of variance to expected value implies that the 
coefficient of variation is inversely proportional to the square-root of the expected ultimate, 
reflecting the diversification benefit of large portfolios.  

2.4.3 Use of exposure information in curve-fitting 

To make use of the premium (or other exposure) information in curve-fitting by least-squares, we 
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need to add a further term to the sum of squares that is minimized (see Section 2.3.3). From 
Equation 17, and the above assumption on the approximate variance of the random error term, the 
additional sum of squares in respect of exposure is given by: 

RSSX = Prem0.Σj {Uj - Premj.( ρ2 + ρ1.j/Qj + ρ0/Qj ) }2 .Qj / Premj. (18)
Here, summation is over all origin years j. Prem0 represents the mean value of Premj across all 

origin years (or some other suitable value, e.g., Prem0 = PremJ). This factor is included to offset the 
factor Qj/Premj applied to each term in the sum: it ensures that RSSX is in units of “dollars-squared” 
and of the same order of magnitude as RSSP and RSSI. The total sum of squares to be minimized 
becomes RSSP + wI.RSSI + wX.RSSX, where RSSP and RSSI are given by Equations 8 and 9, and 
appropriate values for the weights wI and wX can be determined iteratively using the principles 
described in Section 2.3.3. 

For example, consider again the case of annual paid and incurred run-off arrays for 10 origin 
years, so that nP = nI = 55. We now have ten additional pieces of information: the estimated ultimate 
premiums Premj, denoted by nX = 10. Once again using the Weibull model described in Section 
2.3.2: the paid development curves depend on 13 parameters (cP, σ0, σ1 and U1, U2…U10), the 
incurred development curves depend on 17 parameters (the same 13 as in the paid model plus sR, cR, 
β0 and β1) and the exposure model depends on 13 parameters (the ten ultimates and the three rho-
parameters of Equation 17). Parameters that feature in more than one of the three components can 
be counted in proportion to the number of data-points in each component. For example, as the 
parameter U1 is determined using all 120 data-points, it is counted as 55/120 of a parameter in the 
paid model, 55/120 of a parameter in the incurred model, and 10/120 of a parameter in the 
exposure model. On this basis we have: pP = 10 * 55/120 + 3 * 55/110 = 6.08, pI = 10 * 55/120 + 3 
* 55/110 + 4 = 10.08, and pX = 10 * 10 / 120 + 3 = 3.83, which gives the correct total number of 
distinct parameters: pP + pI + pX = 20. (A more refined method of counting parameters is proposed 
and discussed in Section 2.5.1.)  

On the first iteration, we estimate the parameters by minimizing RSSP+RSSI+RSSX (that is, using 
equal weights initially). Suppose this produces parameter values that give RSSP = 102 and RSSI = 
308 and RSSX = 50, so the total minimized residual sum of squares is 460. (Note that RSSP and RSSI 
are necessarily higher than they were when RSSX was not considered.) Initial estimates of the 
variances are then: σ2

P = 102/(55–6.08) = 2.09 and σ2
I = 308/(55–10.08) = 6.86  and σ2

x = 50 / (10 
– 3.83) = 8.1. 

For the second iteration, we minimize (RSSP/2.09)+(RSSI/6.86)+(RSSX/8.1), which is equivalent 
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to minimizing: RSSP + 0.304 * RSSI + 0.258 * RSSX. The values of RSSP, RSSI and RSSX given by 
minimizing this weighted sum are then used to calculate revised estimates of σ2

P, σ2
I and σ2

X, and the 
weights for the third iteration calculated using wI = σ2

P/σ2
I and wX = σ2

P/σ2
X. Convergence usually 

occurs after a few iterations.  

2.4.4 Effect of exposure information on projected ultimate for latest origin year 

In Section 2.4.1 we considered the estimated ultimate for the latest origin year (UJ) obtained using 
just two pieces of information for that origin year: PJ and IJ. We now consider the estimate of UJ 

obtained by, in addition, using the premium data as described in 2.4.3.  

This latest origin year now contributes three terms to the weighted sum of squares: 

{PJ0 – UJ.FPJ(t)}2 + wI.{IJ0 – UJ.FIJ(t)}2 + wX.{UJ – PremJ.RJ}2 .QJ.Prem0 /PremJ   (19)
 (Here RJ denotes (ρ2 + ρ1.J/QJ + ρ0/QJ), which can be regarded as the expected ultimate loss 

ratio for the latest origin year.)  

Since UJ does not appear in any other terms of the total sum of squares, it can be adjusted to 
minimize the sum of the above three terms. It is easily proved that this gives: 

UJ = {PJ0.FPJ(t) + wI.IJ0.FIJ(t) + wX.RJ.QJ.Prem0}/ {FPJ(t)2 + wI.FIJ(t)2 + wX.QJ.Prem0/PremJ}. (20)
 If we write UPJ, UIJ and UXJ for ultimates estimated respectively from paid, incurred and 

premium data separately (that is UPJ = PJ0 / FPJ(t), UIJ = IJ0 / FIJ(t) and UXJ = PremJ.RJ), then we have: 

UJ = {UPJ.FPJ(t)2 + wI.UIJ.FIJ(t)2
 + wX.UXJ.QJ.Prem0/PremJ}  

/{FPJ(t)2 + wI.FIJ(t)2 + wX.QJ.Prem0/PremJ}. 
(21)

This shows that UJ is now a weighted average of UPJ, UIJ and UxJ. 

For example, suppose paid and incurred amounts for the latest origin year are PJ0 = $200 and IJ0 
= $1000, and suppose the fitted development curves imply that these figures are respectively 20% 
and 110% of ultimate, that is: FPJ(t) = 0.2 and FIJ(t) = 1.1. Then projecting paid and incurred 
separately to ultimate gives the estimates: UPJ = $200/0.2 = $1000 and UIJ = $1000 / 1.1 = $909. In 
addition, suppose we have PremJ = $1100 and, from the fitted loss-ratio model, RJ = 104%, so that 
UXJ = $1144. Suppose further that the analysis described in the previous section converges to wI = 
0.29 and wX = 0.24. If the latest origin year is believed to be at the mid-point of the underwriting 
cycle (so QJ = 1) and we have used the normalizing factor Prem0 = PremJ, then we have: FPJ(t)2 = 
0.04, wI.FIJ(t)2 = 0.35 and wX.QJ.Prem0/PremJ = 0.24. The above formula then gives a final estimate:  
UJ = (0.04 * $1000 + 0.35 * $909 + 0.24 * $1144) / 0.63 = $1004. 

For earlier origin years, the influence of the exposure information will be lower because the 
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number of terms in the sum of squares relating to paid and incurred development data is higher for 
earlier years, while the number of terms relating to exposure data remains at one for each origin year.  

2.5 Parameter Counts and Significance Tests 

2.5.1 Parameter counts 

In the examples of Sections 2.3.3 and 2.4.3, the total parameter count was apportioned between 
the different sub-sets of data (paid, incurred and exposure data) in proportion to the number of 
data-points. The example of Section 2.3.3 has an equal volume of paid and incurred data (55 paid 
and 55 incurred observations) and no exposure data, so each parameter that features in both paid 
and incurred models was counted as half a parameter in each of these models. The example of 
Section 2.4.3 has 10 exposure observations in addition to the 55 paid and 55 incurred observations. 
Each parameter that contributes to all three parts of the model was counted as 10/120 of a 
parameter in the exposure part, and 55/120 in each of the paid and incurred parts.  

The rationale for splitting parameter counts in this way is that it approximately reflects the 
relative influence of each type of data in determining the value of the parameter. This can be further 
refined by taking account of the relative weights used in the total weighted sum of squares that is 
minimized. For example, if we have just 55 paid and 55 incurred observations (no exposure data), 
and the incurred data is given a weight of 0.5 relative to the paid data (that is, wI = 0.5), then each 
incurred observation has (on average) only half the influence of each paid observation in 
determining parameter values. On this basis, a parameter whose value is determined from both paid 
and incurred data would be counted as 2/3 determined from paid data and 1/3 from incurred data.  

In general using this method, each parameter contributes to pP, pI, and pX in proportion to nP, 
wI.nI, and wX.nX. Each parameter must have a total count of one, so for a parameter estimated from 
all three data sources, the contributions to pP, pI, and pX are respectively: 

   nP / (nP + wI.nI + wX.nX),   wI.nI / (nP + wI.nI + wX.nX),   wX.nX /(nP + wI.nI + wX.nX). 

For a parameter that is not estimated from all three sources, the corresponding term(s) must be 
omitted from the denominator of these expressions so that the total is always one for each 
parameter. No rigorous theoretical justification is claimed for this method of counting parameters: it 
is proposed as a reasonable pragmatic approach. 

The method for counting parameters used in Sections 2.3.3 and 2.4.3 is as above but with the 
weights wI and wX omitted. Including these weights in the parameter counts slightly complicates the 
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fitting process because the relative weights (estimated from the residual sums of squares as described 
in Sections 2.3.3 and 2.4.3) change at each iteration, so the parameter counts will also change at each 
iteration.   

To illustrate this, consider again the example of Section 2.4.3. For the first iteration, we use wI = 
wX = 1. Therefore the parameter counts are initially as in Section 2.4.3: pP = 6.08, pI = 10.08, pX = 
3.83 (giving a total parameter count of 20). Estimates of variances obtained from the first iteration 
are then (exactly as in Section 2.4.3): σ2

P = 102/(55–6.08) = 2.09 and σ2
I = 308/(55–10.08) = 6.86  

and σ2
x = 50/(10–3.83) = 8.1. 

For the second iteration, the relative weights become wI = 2.09 / 6.86 = 0.304, and wX = 2.09 / 
8.1 = 0.258, so we minimize RSSP + 0.304 * RSSI + 0.258 * RSSX (which again, is exactly as in 
Section 2.4.3). However, unlike in Section 2.4.3, the parameter counts used in estimating variances 
from the results of the second iteration should now factor in the weights used in the second 
iteration. Parameter counts that factor in these weights are: 

pP = 3 * {55 / (55 + 0.304 * 55)} + 10 * {55 / (55 + 0.304 * 55 + 0.258 * 10)}, 

pI = 0.304 * pP + 4, 

pX = 10 * {0.258 * 10 / (55 + 0.304 * 55 + 0.258 * 10)} + 3. 

These evaluate to pP = 9.70, pI = 6.95, pX = 3.35. (As a check, we see that the total of these 
parameter counts is still 20.) Estimates of variances from the second iteration are then: 
σ2

P = RSSP/(55 – 9.70),  σ2
I = RSSI/(55 – 6.95) and σ2

x = RSSX / (10 – 3.35).  
These give weights wI and wX for the third iteration, and hence parameter counts used in estimating 
variances from the results of the third iteration.  

2.5.2 Statistical significance tests 

When an additional parameter is introduced into a model, the minimized residual sum of squares 
is inevitably smaller than it was before the new parameter was introduced. (This is because the 
model without the additional parameter is equivalent to a model in which the additional parameter is 
set to zero. When the new parameter is introduced, it is no longer constrained to take the value zero. 
When non-zero values are allowed in minimizing the residual sum of squares, it is extremely unlikely 
that the minimum will occur at exactly the value zero.) So by introducing an increasing number of 
parameters, the quality of fit (as measured by the residual sum of squares) can be progressively 
improved until the number of parameters is equal to the number of observations: when this occurs a 
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perfect fit is possible and the residual sum of squares becomes zero.  

Clearly we should try to avoid over-fitting: that is, we should try to avoid including parameters 
that reflect only the random variation of the particular dataset rather than genuine underlying effects. 
The purpose of statistical significance tests is to avoid over-fitting: parameters are included in a 
model only if they are statistically significant.  

In least squares estimation, an appropriate significance test is based on the size of the decrease in 
the minimized residual sum of squares (RSS) when a new parameter is introduced. If the minimized 
RSS reduces only slightly, then the new parameter may not be statistically significant. To judge 
whether a decrease in the minimized RSS is statistically significant, it should be compared to the 
mean RSS per “degree of freedom.”   

To illustrate, consider again the example of Section 2.3.3 based on 55 paid observations and 55 
incurred observations. Suppose that initially we fit a model with 17 parameters and that we give 
equal weight to incurred and paid data so parameters are estimated by minimizing RSSP + RSSI. 
Suppose (as in Section 2.3.3) that the minimized value is 400.0. Now suppose that an additional 
parameter is introduced into the model (this might, for example, be the parameter β1 of Equation 6), 
and that the minimized RSS with this new parameter included is 397.0.  Is the new parameter 
statistically significant?  

To answer this, we note that the new parameter caused a decrease of 3.0 in the minimized RSS. If 
this is judged to be a large decrease, then we conclude that it is unlikely to have been caused purely 
by chance and therefore that the new parameter is statistically significant. To judge whether the 
decrease of 3.0 is large (statistically significant) or small (insignificant) we need to compare it to 
something else. At first sight, it might seem that a suitable quantity to compare this decrease to is the 
mean-squared residual. There are 110 residuals in total (equal to the number of data-points) so the 
mean-squared residual is 397/110 (= 3.61) when the new parameter is included, and 400/110 
(=3.64) when it is not included. Clearly the mean-squared residual decreases as the number of 
parameters increases. To allow for this, the denominator used in calculating the mean needs to be 
adjusted for the number of parameters in the model. Instead of dividing by the number of 
observations, we should divide by the number of “degrees of freedom”, which is defined as the 
number of observations less the number of fitted parameters. The number of parameters was 17 
before then new parameter was introduced and 18 afterwards, so the numbers of degrees of 
freedom are respectively 93 and 92. The mean-squared residual per degree of freedom is therefore 
400/93 (= 4.30) before the new parameter is introduced and 397/92 (=4.32) after. To judge whether 
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the new parameter is statistically significant, we should compare the change in the RSS of 3.0 to the 
mean value 4.32. Since the change in the RSS is less than the mean RSS per degree of freedom, the 
new parameter is not statistically significant.  

Note that the change in the RSS is compared to the mean obtained from the more general model 
(4.32 in this example) not the mean obtained from the model excluding the parameter (4.30 in this 
example). This is because, if a parameter is statistically significant, the mean RSS from the model 
with the parameter excluded would be wrongly inflated by the exclusion.  

If the decrease in the RSS obtained by introducing an additional parameter is less than the mean 
RSS per degree of freedom after the parameter has been introduced (as in the above example), then 
the additional parameter is not statistically significant. However, a change in the RSS that exceeds 
the mean RSS per degree of freedom is not necessarily conclusive evidence of statistical significance. 
Clearly, the greater the ratio of change in RSS to RSS per degree of freedom, the greater the 
statistical significance of the new parameter. (In the above example, this ratio is 3.0/4.32 = 0.69.) 
This ratio is known as the “F-ratio” and, to help judge its statistical significance, it can be compared 
to a theoretical F-distribution. In idealized circumstances, the theoretical F-distribution is the 
probability distribution of an F-ratio under the hypothesis that the additional parameter is equal to 
zero. Although this is not exactly the case in practice, the theoretical F-distribution remains a useful 
tool in judging the statistical significance of F-ratios. If an F-ratio is in the extreme right tail of the 
theoretical F-distribution, this is evidence against the hypothesis that the true value of the parameter 
is zero. In other words, the parameter is statistically significant. In our example, the appropriate 
theoretical F-distribution is that with 1 and 92 degrees of freedom (1 because one additional 
parameter has been introduced, 92 because after introducing the additional parameter, the RSS has 
92 degrees of freedom, that is, 110 - 18). The 95th percentile of the theoretical F distribution with 1 
and 92 degrees of freedom is 3.95. This means that if the true value of the new parameter is zero, 
there is only a 5% chance that the F-ratio would be as high as 3.95. So an F-ratio in excess of 3.95 is 
strong evidence that the true value of the parameter is non-zero. An F-ratio above the 95th percentile 
is usually judged to be statistically significant. A value above the 90th percentile (2.77 in this example) 
would also usually be regarded as statistically significant, but with a lower degree of confidence. Any 
F-ratio greater than 1 provides some evidence that the parameter is in fact non-zero, but clearly the 
lower the F-ratio, the weaker the evidence.  

In carrying out F-tests on weighted sums of squares, it is important to ensure that the weights are 
the same in both the numerator and denominator of the F-ratio. It would be wrong to compare a 
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change in RSSP + wI.RSSI to a mean value of RSSP + wI'.RSSI  unless  wI' is equal to wI. If the weights 
are not equal, then we are not comparing like with like and the F-ratio is meaningless.  

In the present paper, a model is fitted iteratively (with the number of parameters fixed) until the 
relative weight wI converges (as described in 2.3.3). Additional parameters should then be 
introduced, initially with no change in wI in order to carry out a valid F-test. If the F-test shows the 
additional parameters to be statistically significant, further iterations can then be carried out with the 
additional parameters included until wI converges to a new value. 

2.5.3 Extra parameters for first few development years 

When fitting theoretical run-off curves to discrete aggregate development data, it often happens 
that the fit is relatively poor for the first one or two development years. This occurs because the first 
development year contains a mixture of actual delays from the accident date to the end of the 
development year (depending on the distribution of accident occurrence dates in the accident year). 
In the case of underwriting year cohorts, the situation is further complicated by the range of possible 
policy inception dates within the underwriting year. These effects are approximately taken into 
account by using the average values of t given in Table 2 (Section 2.3.3). These approximations are 
often poor for the first one or two development years. The accuracy of these approximations 
increases in later development years because the variation in accident dates within the first year is 
proportionately a smaller part of the total delay.  

This phenomenon was observed in Wright (1989) where it was accommodated by introducing 
some additional parameters for the first few development periods. The same refinement can easily 
be introduced in the present model. It is usually only the first two development years that are 
significantly affected. To allow for these, up to four additional parameters are required: two for paid 
development and two for incurred development.   

In the model of Section 2.3.2 (Equations 8 and 9) the paid and incurred expected values are 
modeled respectively as Uj.FPj(t) and Uj.FIj(t).  Here, j is the origin year, t is the average development 
delay (given by the approximations in Table 2), FPj(t) and FIj(t) are the run-off curves given by 
Equations 4, 5, 6, and 7, and Uj is the ultimate for origin year j. 

We now introduce additional parameters θP0, θP1, θI0, θI1. The subscripts 0 and 1 indicate that these 
parameters apply to development years 0 and 1. For these two development years, the expected 
cumulative paid values are modeled as exp(θP0).Uj.FPj(t) (where t = 0.5 for accident years, 0.333 for 
underwriting years) and exp(θP1).Uj.FPj(t) (where t = 1.5 for accident years, 1.0 for underwriting 
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years), and similarly for cumulative incurred. Note that with this form of model: 

• Each θ-parameter may take any real value (positive or negative). 

• The value zero for a θ-parameter corresponds to the case where no adjustment is 
necessary (the factor exp(θ) is then one so can be omitted). 

• The θ-parameters can be determined in the same was as any other parameter of the 
model: by least squares estimation.  

• Statistical hypothesis tests can be carried out (as described in 2.5.2) to determine whether 
or not these additional parameters are necessary. 

3. EXAMPLE ANALYSIS 

3.1 Data 

To illustrate the methods described in Section 2, they are applied to the development data given 
in Appendix A. This is based on actual data, covering underwriting years 1993 to 2006. The class of 
business and other details are not given here to preserve confidentiality. The numbers of paid and 
incurred data-points are nP = nI = 105, giving a total of 210. The premium rate index (given in 
Section A.1.4. of the appendix) is an estimate obtained by applying conventional projection methods 
to the triangles to find estimated ultimate premiums and claims. The premium rate index was then 
calculated as the ratio of estimated ultimate premiums to estimated ultimate claims. This was 
adjusted by a constant factor so the mean value of the index Qj over the 14 underwriting years is 
one. (The reliability of this method of calculating a premium rate index is discussed in Section 4.2.)   

3.2 Weibull model 

3.2.1 Constant development pattern 

First we fit the Weibull model with all parameters fixed at constant values across all origin years. 
In other words, we assume initially that the run-off pattern is the same for all origin years with no 
dependence on the underwriting cycle. This model has a total of 19 parameters: sP, cP, sR, cR, b, and 
U1…U14. First estimates of the parameters are given by minimizing the un-weighted total residual 
sum of squares RSSP+RSSI. (This is Equation 9 in the case wI = 1, where RSSP and RSSI are given by 
Equation 8.) Allocating the 19 parameters between paid and incurred data as described in Section 
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2.5.1 gives pP = 8, pI = 11.  

Results are shown in the second column (iteration number 1) of Table 3. The residual sums of 
squares are in millions. Initial estimates of typical paid and incurred variances from Equation 10 are: 
σ2

P = 276.7/97 = 2.85 and σ2
I = 351.3/94 = 3.74. The fact that σ2

I is higher than σ2
P indicates that 

the Weibull curve does not fit as closely to the incurred data as to the paid data. This gives a weight 
for the second iteration of wI = 2.85/3.74 = 0.763. Parameter counts (using the method described in 
2.5.1) are then: 

pP = 16 * 105 / (105 + 0.763 * 105) = 9.07  and  pI = 3 + 0.763 * pP = 9.93.  

Results of minimizing the weighted residual sum of squares are given in the corresponding 
column (iteration number 2) of Table 3. These results give new estimates: σ2

P = 263.4/95.93 = 2.75, 
σ2

I = 366.6/95.07 = 3.86 hence wI = 2.75 / 3.86 = 0.712 for the third iteration. Continuing in this 
way, convergence occurs in five iterations. Using the formula for the mean of a Weibull distribution 
(see Section 2.2.2), the final values of the Weibull parameters imply a mean reporting delay of 1.8 
years and a mean payment delay of 2.7 years. The final column of Table 3 shows the ratio of the 
ultimates from the converged Weibull model to the basic chain ladder ultimates obtained from just 
the incurred data. 
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Table 3:  Weibull curves with constant parameters 

Iteration 1 2 3 4 5 Uj as % of ICL 
wI 1 0.763 0.712 0.699 0.700  
pP 8 9.07 9.35 9.42 9.41  
pI 11 9.93 9.65 9.58 9.59  
RSSP 276.7 263.4 260.2 260.2 260.2  
RSSI 351.3 366.6 370.9 370.9 370.9  
RSSP+wI.RSSI 628.0 543.2 524.3 519.6 520.0  
sP 3.00 3.01 3.02 3.02 3.02  
cP 1.41 1.40 1.40 1.40 1.40  
sR 2.01 1.93 1.91 1.91 1.91  
cR 1.24 1.24 1.24 1.24 1.24  

b 0.98 0.89 0.87 0.87 0.87  
U1     13,913      13,927     13,930     13,930     13,930 102.7% 
U2     19,130      19,165     19,174     19,174     19,174 101.2% 
U3     11,200      11,217     11,221     11,221     11,221 99.6% 
U4     10,995      10,980     10,976     10,976     10,976 101.8% 
U5     12,982      12,960     12,954     12,954     12,954 93.8% 
U6     26,159      25,838     25,755     25,755     25,755 89.2% 
U7     68,255      68,256     68,257     68,257     68,257 94.8% 
U8   142,745    143,104   143,197   143,197   143,197 98.1% 
U9   128,173    128,703   128,841   128,841   128,841 101.6% 

U10     65,742      65,949     66,003     66,003     66,003 92.4% 
U11       4,445        4,377       4,359       4,359       4,359 92.0% 
U12       4,440        4,458       4,463       4,463       4,463 103.1% 
U13       7,422        7,180       7,112       7,112       7,112 86.5% 
U14     24,784      24,252     24,093     24,093     24,093 81.2% 
ΣUj 540,385 540,365 540,334 540,334 540,334 96.4% 

 

3.2.2 Varying bias factor 

Next some of the parameters are allowed to vary with the underwriting cycle using the model of 
Equations 6 and 7. First we allow just the parameter b to vary, so instead of a single parameter b, we 
now have two parameters β0 and β1 (see Equation 6). The additional parameter relates to incurred 
data only so pI increases by 1 giving: pP = 9.41, pI = 10.59.    
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Table 4: Weibull curves with varying b-parameter 

 Iteration 1 2 

wI 
0.700 

 
0.697 

pP 9.41 9.43 
pI 10.59 10.57 
RSSP 260.3 260.3 
RSSI 368.7 368.7 
RSSP+wI.RSSI 518.5 517.4 
sP 3.02 3.02 
cP 1.40 1.40 
sR 1.90 1.90 
cR 1.24 1.24 
β0 -0.053 -0.053 
β1 0.191 0.191 
ΣUj 537,411 537,411 

 

The second column (iteration 1) of Table 4 shows least squares results obtained using the same 
value wI = 0.700 as used in the model with b constant. The additional parameter β1 causes the 
weighted RSS to fall from 520.0 to 518.5. An approximate test of statistical significance of the 
additional parameter is the F-test described in Section 2.5.2. This is based on the ratio of the 
decrease in the weighted RSS per additional parameter (which is 1.5 in this case, as there is only one 
additional parameter) to the mean RSS per degree of freedom in the model with 20 parameters, 
which is 518.5 / (210 – 20) = 2.7. If the additional parameter (β1) is actually zero, then this ratio has 
approximately an F-distribution with 1 and 190 degrees of freedom, so a value in the extreme right-
tail of the F-distribution would be evidence against the hypothesis that β1 is zero. In this case, the 
ratio (1.5/2.7) is less than 0.5, which is not an extreme value compared to an F-distribution, so the 
parameter β1 is not statistically significant. Nevertheless, β1 being positive (0.191) is weak evidence 
that case estimates are strengthened in harder markets. 

3.2.2 Varying paid development time-scale parameter 

Since the F-test indicates no strong evidence that b varies with the underwriting cycle, we next try 
a model in which b is constant, but the paid-development scale parameter (sP) is allowed to vary as in 
Equation 7. We start (iteration 1) with wI = 0.700 as in Table 3, so the additional parameter 
contributes 1/1.700 to pP and 0.700/1.700 to pI, to give pP = 10.00, pI = 10.00. The weighted RSS 
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becomes 510.3, which is a decrease of 9.7. This gives the F-ratio 9.7/(510.3/190) = 3.6, which is 
high, indicating that the additional parameter is statistically significant this time. σ1 being less than 
zero (-0.199) indicates that sPj decreases as the premium index Qj increases, that is, payment delays 
tend to be shorter in harder markets. Three further iterations are necessary for convergence as 
shown in Table 5.  

Table 5: Weibull curves with varying payment delay parameter 

Iteration 1 2 3 4
wI 0.700 0.665 0.656 0.653
pP 10.00 10.21 10.27 10.28
pI 10.00 9.79 9.73 9.72
RSSP 248.5 246.2 245.6 245.6
RSSI 373.8 377.2 378.1 378.1
RSSP+wI.RSSI 510.3 497.0 493.5 492.6
σ0 1.015 1.015 1.015 1.015
σ1 -0.199 -0.201 -0.201 -0.201
cP 1.40 1.39 1.39 1.39
sR 1.63 1.63 1.62 1.62
cR 1.26 1.26 1.26 1.26
b 0.66 0.65 0.65 0.65

 

Next we try a model in which both b and sP are allowed to vary (as in Equations 6 and 7). 
Although it seemed that β1 was not statistically significant when sP was held constant, it is possible 
that when both b and sP are allowed to vary, both are statistically significant. With the weight wI fixed 
at 0.653, the additional parameter (β1) causes a decrease in the weighted RSS from 492.6 to 485.7, a 
decrease of 6.9.  The F-ratio is 6.9 / (485.7/189) = 2.7, which is close to the 89th percentile of the 
corresponding F-distribution. Since this is not an extremely high percentile, the statistical 
significance of the parameter is not clear. In this case, we continue with this model for now, and re-
test the significance of the β1 parameter at a later stage. Note that the final column of Table 6 (ratio 
of cyclical ultimates to incurred CL ultimates) now shows a fairly clear cyclical pattern. 
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Table 6: Weibull curves with varying payment delay and b parameters 

Iteration 1 2 Uj as % of incurred CL
wI 0.653 0.655 
pP  10.27 
pI  10.73 
RSSP 243.8 243.9 
RSSI 370.4 370.2 
RSSP+wI.RSSI 485.7 486.4 
σ0 0.986 0.986 
σ1 -0.251 -0.251 
cP 1.40 1.40 
sR 1.70 1.70 
cR 1.25 1.25 
β0 -0.098 -0.097 
β1 0.513 0.513 
U1     13,598      13,598 100.2%
U2     19,057      19,056 100.6%
U3     11,056      11,056 98.2%
U4     10,792      10,793 100.1%
U5     12,804      12,804 92.7%
U6     25,661      25,664 88.9%
U7     68,454      68,455 95.1%
U8   145,666    145,662 99.8%
U9   128,080    128,076 101.0%
U10     63,611      63,610 89.1%
U11       3,343        3,344 70.6%
U12       3,223        3,224 74.5%
U13       5,815        5,817 70.7%
U14     18,283      18,284 61.6%
ΣUj 529,443 529,444 94.5%

 

Table 7 shows the implied variation of sP and b across the origin years: these values are calculated 
from Equations 6 and 7 using the parameter estimates given in Table 6. Comparing the hard market 
of 2003-2004 to the soft market of 1998-2001 these results imply: 

• Approximately a one-third reduction in payment delays in the hard market (sP decreases from 
about three in the soft market to about two in the hard market). 

• More than doubling of case estimates in the hard market (b increased from 0.7 in the soft 
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market to about 1.7 in the hard market conditions). However, the statistical significance of 
the β1 parameter was questionable so that this apparent cyclical effect might in fact be caused 
by random variation: results presented in the next sub-section suggest that this is in fact the 
case. 

 

Table 7:  Weibull curves with varying payment delay and b parameters 

Origin year (j) Qj - 1 sP b
1993 0.17 2.57 0.99
1994 -0.32 2.90 0.77
1995 -0.18 2.81 0.83
1996 -0.19 2.81 0.82
1997 -0.32 2.90 0.77
1998 -0.47 3.01 0.71
1999 -0.49 3.03 0.70
2000 -0.60 3.11 0.67
2001 -0.42 2.98 0.73
2002 -0.25 2.86 0.80
2003 1.14 2.02 1.63
2004 1.34 1.92 1.81
2005 0.18 2.56 1.00
2006 0.41 2.42 1.12

 

3.2.2 Use of Premium data 

We could now test whether there is any evidence that reporting delays also vary with the cycle by 
using a model like Equation 7, but for the scale parameter of reporting delay sR. However, before 
doing this, we test the effect of using premium data as described in Section 2.4.3. The number of 
ultimate premium data-points is 14 so the total number of data-points increases to 224. First we try 
just one additional parameter, ρ0 (that is, we use Equation 17 with parameters ρ1 and ρ2 set to zero). 
Convergence occurs in four iterations as shown in Table 8. The value 1.066 (or 106.6%) for ρ0 
represents the mean ultimate loss ratio on the assumption that, after on-leveling premiums using the 
premium rate index Qj, the mean ultimate loss ratio is the same for all origin years.   
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Table 8: Weibull curves with varying payment delay and b parameters, using premium data 

Iteration 1 2 3 4
wI 0.655 0.701 0.726 0.737
wX 1 1.606 1.884 2.005
 9.64 9.08 8.82 8.71
 10.32 10.36 10.40 10.42
 2.04 2.57 2.78 2.87
RSSP 255.6 263.0 266.4 266.4
RSSI 362.3 357.5 355.6 355.6
RSSX 19.9 16.6 15.5 15.5
RSSP+wI.RSSI + wx.RSSx 512.9 540.2 553.7 559.6
σ0 1.029 1.038 1.041 1.041
σ1 -0.155 -0.132 -0.125 -0.124
cP 1.40 1.41 1.41 1.41
sR 1.85 1.90 1.92 1.92
cR 1.24 1.24 1.24 1.24
β0 -0.048 -0.016 0.000 0.000
β1 0.310 0.261 0.246 0.246
ρ0 1.065 1.066 1.066 1.066
ΣUj 535,711 535,997 536,064 536,064

 

Since the statistical significance of the β1 parameter was unclear when the model was calibrated 
using just the paid and incurred claims data, we next test the significance of this parameter when the 
premium data is also used in calibration. If the β1 parameter is set to zero and least squares 
estimation carried out using the same weights as above (wI = 0.737, wX = 2.005), the effect is to 
increase the minimized RSS from 559.6 to 561.3. This increase is not statistically significant (F-ratio 
= 1.7 / (559.6 / (224 -22)) = 0.61), implying there is no clear evidence that β1 is non-zero. Table 9 
shows results for the model in which payment scale parameter sP varies with the underwriting cycle, 
but the parameter b is the same across all underwriting years. 

Including parameters ρ1 and ρ2 (with weights wI = 0.751 and wX = 2.294 as in Table 9) causes the 
weighted RSS to reduce from 570.4 to 569.7, which is clearly not a statistically significant reduction. 
Including a parameter that allows the reporting delay to vary with the underwriting cycle reduces the 
weighted RSS from 570.4 to 568.7, which again is not statistically significant (F-ratio = (570.4 – 
568.7) / (568.7 / 202) = 0.60). 
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Table 9: Weibull curves with varying payment delay parameter only, using premium data 

Iteration 1 2 3 4 Uj as % of ICL 
wI 0.737 0.743 0.749 0.751  
wX 2.005 2.199 2.268 2.295  
pP 8.71 8.60 8.54 8.52  
pI 9.42 9.39 9.40 9.40  
pX 2.87 3.02 3.06 3.08  
RSSP 268.6 270.3 271.0 271.3  
RSSI 358.8 358.0 357.6 357.4  
RSSX 14.1 13.6 13.4 13.3  
RSSP+wI.RSSI + wx.RSSx 561.3 566.2 569.2 570.4  
σ0 1.054 1.056 1.056 1.056  
σ1 -0.106 -0.102 -0.101 -0.101  
cP 1.40 1.40 1.40 1.40  
sR 1.79 1.80 1.81 1.81  
cR 1.24 1.24 1.24 1.24  
b 0.77 0.78 0.78 0.78  
ρ0 1.070 1.070 1.070 1.070  
U1     13,734      13,730     13,729     13,728 101.2% 
U2     19,064      19,058     19,056     19,055 100.5% 
U3     11,128      11,126     11,125     11,125 98.8% 
U4     10,823      10,818     10,816     10,816 100.4% 
U5     13,109      13,122     13,127     13,129 95.0% 
U6     25,984      26,002     26,013     26,017 90.2% 
U7     68,561      68,568     68,572     68,573 95.3% 
U8   143,808    143,746   143,723   143,713 98.5% 
U9   128,143    128,080   128,056   128,046 101.0% 
U10     66,568      66,659     66,687     66,698 93.4% 
U11       4,513        4,520       4,523       4,524 95.5% 
U12       3,839        3,839       3,839       3,839 88.7% 
U13       7,969        7,971       7,971       7,972 96.9% 
U14     20,748      20,747     20,747     20,747 69.9% 
ΣUj 537,993 537,987 537,984 537,982 96.0% 

 

The results now show a smaller (and more plausible) amount of variation in mean payment delays 
with the underwriting cycle: compare Table 10 to Table 7. Table 10 also shows the implied mean 
payment delay in years (from the formula given in Table 1). The mean reporting delay is 1.63 years 
(the same for all origin years). 
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Table 10: Weibull curves with varying payment delay parameter only, using premium data 

Origin year (j) Qj - 1 sP mean (years)
1993 0.17 2.83 2.57
1994 -0.32 2.97 2.70
1995 -0.18 2.93 2.67
1996 -0.19 2.93 2.67
1997 -0.32 2.97 2.70
1998 -0.47 3.01 2.75
1999 -0.49 3.02 2.75
2000 -0.60 3.05 2.78
2001 -0.42 3.00 2.73
2002 -0.25 2.95 2.69
2003 1.14 2.56 2.34
2004 1.34 2.51 2.29
2005 0.18 2.82 2.57
2006 0.41 2.76 2.51

 

3.3 Burr model 

Using Burr distributions for both paid and reporting delays gives higher residual sums of squares 
than using the Weibull model, indicating that Burr curves provide a poorer fit to this particular 
dataset.  

3.4 Inverse Burr model 

To compare the quality of fit of the Inverse Burr and Weibull models, we fit an Inverse Burr 
model using the same values of the weights as in Table 8: wI = 0.737 and wX = 2.005. The minimized 
weighted RSS is 538.7 (see Table 11) which is 20.9 lower than obtained using the Weibull model 
(Table 8). The Inverse Burr model has two additional parameters (there are two shape parameters 
instead of one for both reporting and payment delays), so the decrease is 10.5 for each additional 
parameter. Comparing this to the RSS per degree of freedom (538.0 / 200 = 2.7) the decrease 
appears to be statistically significant. (Note that a formal F-test is not strictly valid here because the 
two models are not nested.) We conclude that the Inverse Burr model fits this particular dataset 
better than the Weibull model. Convergence occurs in six iterations as shown in Table 11 
(intermediate results are not shown for all six iterations).  
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Table 11: Inverse Burr curves with varying payment delay and b parameters, using premium data 

Iteration 1 6
wI 0.737 0.544
wX 2.005 1.520
pP 9.29 10.60
pI 11.85 10.77
pX 2.87 2.62
RSSP 230.0 215.8
RSSI 379.1 395.8
RSSX 15.1 17.1
RSSP+wI.RSSI + wx.RSSx 538.7 457.3
σ0 1.406 1.405
σ1 -0.141 -0.148
aP 0.27 0.26
cP 4.00 4.12
sR 2.76 2.82
aR 0.31 0.29
cR 3.29 3.44
β0 -0.035 -0.011
β1 0.237 0.257
ρ0 1.063 1.056

 

If the β1 parameter is set to zero and least squares estimation carried out using the same weights 
as above (wI = 0.544, wX = 1.520), the minimized RSS increases from 457.3 to 459.0. This increase is 
not statistically significant (F-ratio = 1.7 / (457.3 / 200) = 0.74), implying (as for the Weibull model) 
that there is no clear evidence that β1 is non-zero. After convergence, the final parameter values 
imply (using the formula for the mean of an Inverse Burr distribution from Section 2.2.2) that the 
mean reporting delay is 1.72 years. The mean payment delay varies with the underwriting cycle as 
shown in Table 13. 

Including parameters ρ1 and ρ2 (with wI and wX as in Table 12) causes the weighted RSS to reduce 
from 461.2 to 460.3, which is clearly not a statistically significant reduction. Including a parameter 
that allows the reporting delay to vary with the underwriting cycle reduces the weighted RSS from 
461.2 to 459.3, which again is not statistically significant (F-ratio = 1.9 / (459.3 / 200) = 0.83). 
Including additional parameters as described in Section 2.5.3 shows that these are statistically 
significant for this dataset, but for reasons of space, further results are not given here.  
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Table 13: Inverse Burr curves with varying payment delay parameter only, using premium data 

Origin year (j) Qj - 1 sP mean (years)
1993 0.17 4.03 2.51
1994 -0.32 4.29 2.67
1995 -0.18 4.22 2.62
1996 -0.19 4.22 2.63
1997 -0.32 4.29 2.67
1998 -0.47 4.37 2.72
1999 -0.49 4.39 2.73
2000 -0.60 4.45 2.77
2001 -0.42 4.35 2.70
2002 -0.25 4.26 2.65
2003 1.14 3.56 2.22
2004 1.34 3.47 2.16
2005 0.18 4.02 2.50
2006 0.41 3.91 2.43

 

4. CONCLUSIONS 

4.1 Commonly seen cycle dependencies 

4.1.1 Variation of payment delays with the underwriting cycle 

The example analysis of Section 3 shows evidence of payment delays lengthening in soft market 
origin years. The model described in this paper has been applied to several actual datasets for 
different classes of business and the finding that payment delays are longer in soft markets occurs 
consistently. This concurs with the findings of previous research described in Section 1 of the 
present paper. Possible causes are listed in Section 1.1.2. 

4.1.2 Variation of case reserve strength with the underwriting cycle 

Although there is no clear evidence that the case estimate bias factor varies with the underwriting 
cycle in the example analysis of Section 3, application of the model to other datasets has in many 
cases shown clear evidence that case reserves are set at higher levels in origin years with higher 
premium rates.  
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4.1.3 Variation of reporting delays with the underwriting cycle 

Applications of the model to other datasets have shown, in some cases, evidence that reporting 
delays tend to be shorter in hard markets. This is not something that has been explicitly suggested in 
previous research. Some possible reasons why reporting delays might be extended in soft markets 
are discussed here. First we should note that what we actually measure as “reporting delay” is the 
time between the accident date and a case reserve being created on the insurer’s claim administration 
system. This is the sum of two main components: (a) the true reporting delay (between loss 
occurrence and time when the insured, or broker, reports the loss to the insurer), and (b) the time 
between the claim being reported to the insurer and the initial case reserve being created. It is 
possible that the second component becomes longer in soft markets. Indeed there has been a recent 
high profile case in the UK in which senior insurance company executives were jailed for concealing 
reported claims. Having acknowledged that increased delays in this second component are possible, 
we now focus on reasons why the true reporting delay might increase in soft markets. There are 
several possibilities: 

• In soft markets, insureds (and/or brokers) might be aware that they got a good deal on their 
insurance, and be concerned that on renewal the premium is likely to increase. For this 
reason, they might deliberately delay reporting valid claims until after renewal negotiations 
have been completed. This would border on fraudulent behavior by the insureds, but 
nevertheless is clearly possible. 

• If cover is extended by relaxing terms and conditions in a soft market, insureds might 
genuinely fail to realize initially that they can claim for certain types of loss. 

• If periods of cover have been extended beyond the usual one year in soft markets, it is 
possible that this is not correctly allowed for when compiling the aggregate run-off arrays. 
For example, when all policies run for one year, it would be correct to assume that if the 
accident date does not fall in the year the policy was written, then the loss should be 
allocated to the following accident year. However, if this method of allocating losses to 
accident years is continued when some policies run for more than one year, then 
development delays will appear (wrongly) to be extended.  

 

4.2 Accuracy of premium rate index 

In the example analysis, we used the reciprocal of estimated ULRs instead of a premium index. 
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Clearly this is not ideal. The ultimate ULR varies with claims experience, not just premium rate 
variation. A high ULR is not necessarily indicative of a soft market: it might occur simply because of 
unusually high loss experience. Although the results appear to show longer development tails in 
softer markets, could it be that in fact all we are seeing is longer development patterns when losses 
are exceptionally high? The results could partly reflect this, but the fact that the estimated ULRs do 
broadly follow a cyclical pattern (rather than just random variation) suggests that most of the 
variation in ULRs reflects variation in premium rates with the underwriting cycle.  

Where the models show significant cyclical variation in run-off patterns, the estimated reserve for 
the latest year will clearly be sensitive to the value of the premium rate index for that year, and this is 
the most difficult year to get an accurate fix on. A worthwhile area for future research would be to 
predict premium rate variation of the underwriting cycle. For example, we might expect premium 
rates next year to be related to measurable quantities such as the number of new insurance company 
start-ups this year, or the amount of new capital in the insurance industry. If the underwriting cycle 
can be predicted from such quantities (even if only one year ahead), then the accuracy of reserves 
could be improved by using these quantities directly in the reserving model instead of (or as well as) 
the estimated premium rate index Qj. There is a substantial literature on the underwriting cycle and 
its causes: this could point to suitable alternative variables to use instead of Qj. 
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APPENDIX A – DATA FOR EXAMPLE 

A.1.1 Paid claims 
1993 1,051 3,093 6,251 9,490 12,341 12,738 13,246 13,267 13,319 13,346 13,412 13,441 13,443 13,551
1994 1,102 6,112 10,284 14,047 15,690 16,505 17,539 18,071 18,457 18,729 18,676 18,679 18,917
1995 824 2,467 3,938 7,311 8,538 9,537 10,849 11,016 11,078 11,111 11,117 11,132 
1996 726 2,876 4,817 7,279 8,783 9,694 9,782 10,006 10,283 10,508 10,548  
1997 443 2,293 5,113 7,381 10,016 10,684 11,102 12,453 12,868 13,084   
1998 383 5,169 12,181 16,846 17,852 19,817 20,974 21,331 22,193   
1999 3,705 17,901 27,656 40,224 51,593 61,108 62,227 63,858   
2000 6,839 30,329 55,327 86,931 112,799 127,208 133,792   
2001 5,048 29,082 56,406 83,434 101,096 111,152   
2002 2,936 10,127 22,969 42,236 54,467   
2003 73 517 1,593 2,328   
2004 127 747 2,012    
2005 115 711     
2006 559      

 

A.1.2 Incurred claims 
1993 2,609 6,730 9,659 12,084 12,801 13,458 13,569 13,552 13,414 13,461 13,471 13,481 13,584 13,569
1994 5,556 10,517 13,594 15,635 16,988 17,436 18,065 18,204 18,571 18,799 18,747 18,751 18,973
1995 1,461 5,481 7,258 8,731 9,739 10,478 11,006 11,056 11,088 11,121 11,121 11,161 
1996 1,697 5,772 7,496 9,178 10,080 10,846 11,011 11,127 10,700 10,670 10,668  
1997 1,474 4,189 7,621 10,210 11,752 12,657 13,011 13,314 13,640 13,684   
1998 1,664 12,524 22,283 24,423 24,959 25,788 26,771 26,844 28,454   
1999 4,633 28,059 45,391 51,533 62,706 64,962 67,509 69,657   
2000 13,853 49,104 82,185 117,950 129,088 137,329 138,833   
2001 10,311 47,971 80,236 103,794 113,943 117,873   
2002 4,602 18,402 36,267 53,627 63,363   
2003 231 1,659 3,323 3,757   
2004 582 1,690 2,634    
2005 543 3,024     
2006 2,752      

 

A.1.3 Premium 
1993 9,206 12,421 14,247 14,591 14,401 14,572 14,628 14,634 14,634 14,634 14,616 14,616 14,617 14,618
1994 4,966 9,290 11,293 11,593 11,491 11,812 11,967 11,967 11,967 11,968 11,968 11,968 11,913
1995 4,023 8,167 9,164 8,358 8,259 8,281 8,285 8,286 8,286 8,286 8,288 8,419 
1996 3,513 8,283 8,208 8,015 8,029 8,028 8,044 8,041 8,041 8,046 8,045  
1997 2,956 6,897 8,586 8,677 8,609 8,646 8,656 8,674 8,661 8,668   
1998 3,935 8,984 13,778 13,757 13,366 13,381 13,378 13,381 13,281   
1999 14,593 29,079 32,777 33,364 33,268 33,307 33,266 33,316   
2000 16,428 47,209 52,678 53,624 53,673 53,541 53,499   
2001 28,913 63,532 65,714 66,977 66,763 67,086   
2002 22,951 46,264 48,791 48,835 48,814   
2003 5,563 8,918 9,394 9,143   
2004 3,889 6,630 8,301    
2005 4,893 7,919     
2006 11,643      
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A.1.4 Premium rate index 
  Basic Chain Ladder Ultimates

Year Q Paid Incurred Premium
1993 1.170 13,551 13,569 14,618
1994 0.682 19,069 18,952 11,914
1995 0.816 11,305 11,261 8,402
1996 0.814 10,724 10,777 8,059
1997 0.684 13,317 13,813 8,680
1998 0.533 22,852 28,859 13,303
1999 0.507 67,323 71,977 33,313
2000 0.402 145,197 145,963 53,535
2001 0.581 126,142 126,812 67,199
2002 0.745 69,064 71,432 49,075
2003 2.136 3,682 4,737 9,153
2004 2.341 4,893 4,328 8,380
2005 1.184 3,257 8,225 8,847
2006 1.405 12,207 29,675 27,248
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APPENDIX B – MEAN DELAYS BY DEVELOPMENT YEAR 

This appendix derives the approximations given in Table 2 (Section 2.3.3) which is reproduced 
below for convenience.  The values in the table are approximate mean delays (in years) from loss 
occurrence to end of development year. For accident year cohorts, development year 0 is the year in 
which the loss occurs. For underwriting year cohorts, development year 0 is the year of policy 
inception (that is, the year in which the cover provided by a policy commences).   

Table 2: Approximate mean delay in each development year 

Development year (d) 0 1 2 3 4 5+ 

Accident year mean delay (t) 0.5 1.5 2.5 3.5 4.5 d+0.5

Underwriting year mean delay (t) 0.333 1 2 3 4 d 

 

The figures in Table 2 for accident year cohorts follow immediately from an assumption that 
losses occur uniformly throughout the accident year. The mean delay until the end of development 
year zero (which is the accident year itself) is then obviously half a year. The other values in the table 
are equally obvious for accident years.  

For underwriting years it is assumed that: 

(a) Policies incept uniformly throughout the year. 

(b) Policies are in force for one year. 

(c) Accidents occur uniformly throughout the year of cover provided by each policy. 

For development year 1 we aim to find the mean delay between the accident date and the end of 
development year 1. Development year 1 is the year following the underwriting year. By 
assumptions (a) and (b) policies expire uniformly throughout development year 1, and all covered 
losses will have occurred by end of development year 1. By assumptions (b) and (c) the mean 
accident date on a policy is half a year after policy inception. By assumption (a) the mean point of 
policy inception is midway through the underwriting year. Therefore, over all policies, the mean 
accident date is one year after the start of the underwriting year, that is, at the end of development 
year zero. So the mean delay since accident occurrence at the end of development year 1 is t = 1. 
Clearly, for all later development years (d > 1) the mean delay to end of development year d is t = d.   
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For development year 0 the situation is more complex because only half of all covered losses are 
expected to have occurred by the end of development year 0 (because, by assumption (a), the mean 
policy inception date is 0.5 years before the end of development year zero). Because of this, the 
expected proportion of ultimate U that will be paid by end of development year zero is 
approximately 0.5 * FP(t) (instead of FP(t) for other development years) where t is the mean delay 
between accident date and end of development year 0 for the 50% accidents that occur before the 
end of development year 0.  

Instead of explicitly including the factor 0.5 in the model for underwriting year cohorts, a factor 
is estimated by least squares as described in Section 2.5.3. 

To find the mean delay t for the 50% of accidents expected to occur before the end of 
development year 0, we use s to denote the inception date of a policy: s = 0 corresponds to an 
inception date at the start of the underwriting year, and s = 1 corresponds to an inception date at the 
end of the underwriting year.  

Since all policies are in force immediately before the end of the underwriting year, a delay t = 0 is 
possible on all policies regardless of the value of s. At the other extreme, a delay t = 1 is possible 
only on policies incepting at the start of the underwriting year (that is, on policies with s = 0). In 
general, for t between 0 and 1, a delay t is possible only on policies with s < (1-t). So the mean delay 
is the weighted average of all values of t from 0 and 1, with weights proportional to (1-t). That is:  

Mean(t) = ∫ t.(1-t).dt / ∫ (1-t).dt     where both integrals are from t = 0 to t = 1. 

Evaluating these integrals gives: Mean(t) = (1/6)/(1/2) = 1/3. 
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Abbreviations and notations 
The table below gives an alphabetical list of all abbreviations and notation used in the paper. Items marked * in the 
second column are items of data. All other quantities are calculated from the data items. The final column shows 
subscripts that are sometimes applied to the symbol given in the first column:  

• P/R means a subscript is used to distinguish parameters relating to payment and reporting delays. 
• I/P/X means a subscript is used to distinguish quantities relating to incurred, paid, and exposure data. 
• j means this subscript is sometimes applied to distinguish values relating to different origin years. 

 
Symbol Data Represents Subscripts 
a  shape parameter of cumulative development curve P/R and j 
α0, α1  parameters linking a to Qj (as in Equations 6 and 7) P/R 
b  mean case reserve bias factor  j 
β0, β1  parameters linking b to Qj (see Equation 6)  
β2  parameter linking b to development time (see Equation 6a)  
BF  abbreviation for Bornheutter-Fergusson  
c  shape parameter of cumulative development curve P/R and j 
γ0, γ1  parameters linking c to Qj (as in Equations 6 and 7) P/R 
CL  abbreviation for chain ladder  
d * development period in run-off array: d = 0, 1, 2…  
FI(t)  cumulative incurred run-off curve j 
FP(t)  cumulative paid run-off curve j 
FR(t)  cumulative distribution of reporting delays j 
θ0, θ1   adjustments to cumulative development in years 0 and 1 (Section 2.5.3) I/P 
Г(.)  the Gamma function of mathematics  
Ijd * cumulative incurred development data  
j * origin year: j = 1, 2, …J  
J * number of origin years in run-off array  
nI * number of observations in incurred run-off array (Ijd)  
nP * number of observations in paid run-off array (Pjd)  
nX * number of origin years with known exposure (Xj or Premj)  
pI  number of parameters estimated from incurred data (Iid)  
pP  number of parameters estimated from paid data (Pid)  
pX  number of parameters estimated from exposure data (Xj or Premj)  
Pjd * cumulative paid development data  
Premj * ultimate premium for origin year j  
Qj * premium rate index for origin year j  
r  expected ultimate loss per unit of exposure j 
R  expected ultimate loss ratio (i.e., ultimate loss per unit of premium) j 
ρ0, ρ1, ρ2  parameters in model for r and R (see Equation 14)  
RSS  residual sum of squares (that is, sum of squared residuals) I/P/X 
s  scale parameter of cumulative development curve P/R and j 
σ0, σ1  parameters linking s to Qj (see Equation 7) P/R 
σI

2  typical variance of a cumulative incurred observation (Ijd)  
σP

2  typical variance of a cumulative paid observation (Pjd)  
σX

2  ratio of variance to mean for an ultimate loss amount (Uj)  
t  continuous development time  
Uj  ultimate cumulative loss for origin year j  
ULR  abbreviation for ultimate loss ratio  
wI  weight of incurred RSS relative to paid RSS in least squares estimation  
wX  weight of exposure RSS relative to paid RSS in least squares estimation  
Xj * exposure for origin year j  
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Grouping Loss Distributions by Tail Behavior

Part I: Discrete Families
Dan Corro

National Council on Compensation Insurance
Spring 2008

Abstract: This three part paper addresses the task of modelling the right
hand tail of a severity distribution. In Part I the excess ratio function is
used to de�ne a discrete sequence of loss distributions with related moments and
similar tail behavior. Part II extends this to continuous one-parameter families
and provides some examples. Part III provides the main result: that under
some reasonable conditions, each such family has a limiting distribution which
is exponential. The paper then exploits this to 1) group loss distributions based
on tail behavior and 2) promote the choice of (mixed) exponentials to model tail
behavior.

1 Background

Even a large claim database may not su¢ ce to give an accurate picture of the
(far) right hand tail of the severity distribution of the expected losses. Con-
sider the approach in which a distribution is built from empirical data for the
more common loss amounts but is then truncated and a theoretical distribution
spliced on to model the tail, where there are few actual observations. This
approach has considerable appeal because most of the �bumps�of the expected
loss severity are (or are believed to be) at lower loss amounts where the behavior
is revealed in the observed losses. Conceptually, the expected tail should not
be subject to such bumps, but rather re�ect a stable pattern (i.e., if there are
still bumps, you have not gone far enough to enter the �tail�). A direct mea-
sure of �bumpiness� is the presence of local modal values, or points where the
derivative of the density function changes sign. �Higher order bumps�are where
higher order derivatives change sign. The mathematical concept of monotonal-
ity captures this. Ideally, the tail behavior should be less bumpy, i.e., more
monotone, than the overall severity distribution. The task arises, then, given
a severity distribution to �nd a related distribution with similar behavior but
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one that is more monotone. Here we describe such a related distribution,
what we call the �coderived� distribution. The process of constructing the
coderived distribution can be repeated, and this paper is especially interested
in describing the resulting sequence of distributions. These sequences emerge
as canonically related families of loss distributions. This suggests an organiza-
tional scheme for continuous loss distributions and provides an alternative to the
more conventional organization of loss distributions into �families�according to
the arithmetic form of the density function.
The ratio of losses in excess of a given loss limit x to total losses de�nes a

function R(x) that formally resembles a survival function. The loss distribution
de�ned by that survival function is the �coderived�distribution. Conceptually,
the coderived distribution provides a �preview� into the tail. The coderived
distribution is shown to exhibit (right hand) tail behavior and moments that
are very closely related to those of the original loss distribution. However,
the coderived distribution has a simpler, more �monotone�, shape than the
original, in a sense de�ned in the paper. There is no information lost, as
the coderived distribution completely determines the original. Repeating this
process of �coderiving� loss distributions yields (Part I) a discrete sequence
of loss distributions that are observed (Part II) to fall within a continuous
one-parameter collection of loss distributions. Such collections all have tails
of the same ultimate settlement rate, again as de�ned later. We then (Part
III) consider a simple approach to ordering loss distributions according to the
�thickness�of their tails. Finally, we use these concepts to relate thickness with
monotonality and ultimate settlement rate. A key �nding is that the asymptotic
behavior of the hazard rate function provides a natural bridge between these
two perspectives. Another �nding reveals a unique ��xed point� role played
by the exponential class of loss distributions. Assuming a tail behavior that
is su¢ ciently �simple�, we show that the (mixed) exponential distribution has
properties that favor it as a choice to �t the tail of the distribution.

2 Notation and Terminology

In this paper we consider �smooth loss distribution functions�or SLDFns, by
which we mean:

De�nition 1 A function F : [0;1)! [0; 1] is a loss distribution function,
or LDFn, provided that

� F (0) = 0

� lim
x!1

F (x) = 1

� F is nondecreasing.

2
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We often use the standard symbol �)�as an abbreviation for �implies�and
more generally:

) implies
, if and only if
)( contradiction.

De�nition 2 The minimum loss of F denoted �F 2 R is uniquely deter-
mined by

x < �F ) F (x) = 0 and x > �F ) F (x) > 0:

De�nition 3 The maximum loss of F denoted !F 2 R [ f1g is uniquely
determined by

x < !F ) F (x) < 1 and x > !F ) F (x) = 1:

De�nition 4 F is a smooth loss distribution function, or SLDFn, pro-
vided F is in�nitely di¤erentiable on (�F ; !F ); continuous on [0;1) and the
limit

lim
x!!F

� d (ln (1� F ))
dx

2 R [ f1g .

Notation 5 For any SLDFn F , we denote the corresponding density [PDF]
as f and have f(x) = dF (x)

dx for x 2 (�F ; !F ) and f(x) = 0 otherwise. We
occasionally denote the corresponding expectation of a real valued function g
de�ned on (�F ; !F ) as

E [g (X)] =

Z !F

�F

g (x) f(x)dx =

Z 1

0

g (y) f(y)dy:

The survival function of F is denoted S = 1� F and the mean as

� =

Z 1

0

ydF (y) =

Z 1

0

yf(y)dy = E [X] :

We say F has �nite mean provided � <1. For any c 2 R, we set

�(c) =

Z 1

0

ycf(y)dy = E [Xc] :

So �(0) = 1 and �(1) = � and we call �(c) the c-th moment of F: Provided
0 < � <1, the excess ratio function of F is given by

R(x) =

R1
x
(y � x)f(y)dy

�

and we denote by bS the function
bS(x) = R1x yf(y)dy

�

3
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for x � 0. We denote the hazard rate function by

�(x) =
f(x)

S(x)

for x 2 (0; !F ). We let

L(t) =

Z 1

0

e�tyf(y)dy =

Z !F

�F

e�tyf(y)dy = E
�
e�tX

�
denote the Laplace transform of F and M(t) = L(�t) the moment generating
function. When F has �nite mean we denote the standard deviation as

� =

sZ 1

0

(y � �)2f(y)dy =
p
�(2) � �2

and the coe¢ cient of variation as CV = �
� :We use subscripts on fF , EF , SF ,

�F , �
(c)
F , RF , bSF , �F , CVF , �F , LF , and MF when necessary to indicate

dependence on F .

Note that for any SLDFn F , the requirement that lim
x!1

F (x) = 1 forces

f(a) > 0 for some a > 0 and so �(c) > 0 for every c 2 R.

De�nition 6 For any SLDFn F , the ultimate settlement rate is

�F = lim
x!!F

�F (x).

Note that for any SLDFn F we have for all x 2 (0; !F ) that S(x) > 0 and
by the chain rule

�d (ln (1� F ))
dx

= �d(lnS(x))
dx

= � 1

S(x)

dS(x)

dx
=

1

S(x)

dF (x)

dx
=
f(x)

S(x)
= �(x)

and so, by our de�nition of SLDFn, �F is well de�ned.

Example 7 The function

F (x) =

(
1� e

x(x�2)
(x�1)2 0 � x � 1
1 1 � x

)

is an SLDFn that is in�nitely di¤erentiable on (0;1) with !F = 1 and �F =1:

We begin by noting that SLDFns are determined by their hazard rate func-
tions:

Proposition 8 For any SLDFn F :

SF (x) = e
�
R x
0
�F (t)dt for every x 2 [0; !F ):

4
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Proof. We have noted that for any z 2 (0; !F )
d(lnS(x))

dx
= ��(x)

holds for all x 2 (0; z). We see that �(x) is integrable on [0; z]. But then S(x)
and T (x) = e�

R x
0
�(t)dt are two continuous functions with the same logarithmic

derivative on (0; z). It follows that

0 =
d(lnT (x)� lnS(x))

dx
=
d(ln T (x)S(x) )

dx

) ln
T (x)

S(x)
= c is constant on (0; z)

) T (x)

S(x)
= ec is constant on (0; z)

) T (x) = ecS(x) for every x 2 (0; z):

But then

S(0) = 1 = e0 = e�
R 0
0
�(t)dt = T (0)) ec = 1

) S(x) = T (x) = e�
R x
0
�(t)dt for every x 2 [0; z):

Since z 2 [0; !F ) was arbitrary,

SF (x) = e�
R x
0
�F (t)dt

for every x 2
[

z2[0;!F )

[0; z) = [0; !F )

as required.
We will have occasion to consider the case when the hazard rate function is

increasing or decreasing. This can often be readily determined, as in:

Proposition 9 For any SLDFn F with �F di¤erentiable on (�F ; !F ) = (0;1) :

d�F
dx

= �2F +
dfF
dx

SF
= �F

�
�F +

d ln fF
dx

�
:

Proof. From the de�nition of � = �F

d�

dx
=

d

dx

�
f

S

�
=
S df
dx � f

dS
dx

S2

=
S df
dx � f (�f)

S2
=
S df
dx

S2
+
f2

S2

=

�
f

S

�2
+

df
dx

S
= �2 +

df
dx

S

= �2 +
df
dxf

fS
= �2 + �

df
dx

f

= �2 + �
d ln f

dx
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as required.
The following proposition expresses the excess ratio function in terms of S

and bS:
Proposition 10 For any SLDFn F with �F <1;

RF (x) = cSF (x)� xSF (x)
�F

; for every x � 0:

Proof. From the de�nition of R(x) we have

R(x) =
1

�

Z 1

x

(y � x)f(y)dy

=
1

�

�Z 1

x

yf(y)dy � x
Z 1

x

f(y)dy

�
=

1

�

�Z 1

x

yf(y)dy � xS(x)
�

= bS(x)� xS(x)
�

:

as required.

Proposition 11 For any SLDFn F and a; b; c 2 R with a � b � 0 and �(c)F <
1, and further provided either c � 0 or a > b, we have (with the convention
that 00 = 1):

c

Z 1

a

(y � b)c�1 SF (y)dy =
Z 1

a

(y � b)c fF (y)dy � (a� b)c SF (a):

Proof. The case c = 0 reduces to the identity

0 =

Z 1

a

f(y)dy � (1)S(a) = S(a)� S(a):

So assume c 6= 0. The result follows from integration by parts

u = S(y) v = (y � b)c

c

Z 1

a

(y � b)c�1 S(y)dy =

Z 1

a

S(y)
�
c (y � b)c�1

�
dy

=

Z 1

a

udv = uv]1a �
Z 1

a

vdu

= (y � b)c S(y)]1a �
Z 1

a

(y � b)c (�f(y)) dy

=

�
lim
y!1

(y � b)c S(y)
�
� (a� b)c S(a) +

Z 1

a

(y � b)c f(y)dy

6
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Now clearly
c < 0) lim

y!1
(y � b)c S(y) � lim

y!1
S(y) = 0

and for y > b+ 1 and c > 0

(y � b)c S(y) � ycS(y) = yc
Z 1

y

f(x)dx

=

Z 1

y

ycf(x)dx �
Z 1

y

xcf(x)dx

it follows that

0 � lim
y!1

(y � b)c S(y)

� lim
y!1

Z 1

y

xcf(x)dx = 0 since
Z 1

0

xcf(x)dx = E[Xc] <1

) 0 = lim
y!1

(y � b)c S(y)

and we conclude that

c

Z 1

a

(y � b)c�1 S(y)dy = � (a� b)c S(a) +
Z 1

a

(y � b)c f(y)dy

and the result follows.

Corollary 12 If either a > b or c > 0, then:Z 1

a

(y � b)c�1 SF (y)dy <1,
Z 1

a

(y � b)c fF (y)dy <1:

Proof. Clear since under the conditions we must have (a� b)c S(a) <1:

Corollary 13 For any SLDFn F and c 2 R with �(c)F <1 :

�
(c)
F =

8>>><>>>:
lim

a!0;a>0

�
acSF (a) + c

R1
a
yc�1SF (y)dy

�
c < 0

1
c = 0

c
R1
0
xc�1SF (x)dx c > 0

9>>>=>>>; :
Proof. Suppose �rst that c < 0. Letting a > b = 0 in Proposition 11

�(c) =

Z 1

0

ycf(y)dy

= lim
a!0;a>0

Z 1

a

ycf(y)dy

= lim
a!0;a>0

�
acS(a) + c

Z 1

a

yc�1S(y)dy

�
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as asserted. The result is apparent for c = 0. For c > 0 the result follows by
letting b = 0 and a > 0 go to 0 in Proposition 11

�(c) =

Z 1

0

ycf(y)dy = lim
a!0

Z 1

a

ycf(y)dy = lim
a!0

�
acS(a) + c

Z 1

a

yc�1S(y)dy

�
= lim

a!0
acS(a) + lim

a!0

�
c

Z 1

a

yc�1S(y)dy

�
= lim

a!0
ac + c lim

a!0

Z 1

a

yc�1S(y)dy

=
�
lim
a!0

a
�c
+ c

Z 1

0

yc�1S(y)dy

= c

Z 1

0

yc�1S(y)dy

as asserted.
The existence of �(c)F for large positive c is typically discussed in terms of

the existence of �(n)F for large n 2 N = f1; 2; : : :g and with �(n)F termed a higher
moment. And it is often noted that the existence of higher moments is suggestive
of a thin right hand tail. We will see how to make that mathematically precise
below. The above corollary suggests that the existence �(c)F for negative c is more
subtle and we will see later that this relates with the analytic character of the
distribution function, more speci�cally its degree of monotonality (alternating
sign of higher order derivatives).
To any SLDFn F we will associate other SLDFns whose moments are closely

related to those of F . The simplest case comes from the observation that the

function bS(x) = R1
x
yf(y)dy

� resembles a survival function.

De�nition 14 For any SLDFn F we set bF = 1� cSF :
Proposition 15 For any SLDFn F with �nite mean, bF is an SLDFn with

f bF (x) =
xf(x)

�
, � bF = �F , ! bF = !F ,

� bF = �F �
1

!F
for �nite !F

� bF = �F for !F =1

and �
(c)bF =

�
(c+1)
F

�F
for every c 2 R.

Proof. We have

bF (0) = 1� bS(0) = 1� R10 yf(y)dy

�
= 1� �

�
= 1� 1 = 0

and
d bF
dx

=
d
�
1� cSF�
dx

= �d
cSF
dx

=
�1
�

d
R1
x
yf(y)dy

dx
=
xf(x)

�
� 0
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which clearly implies that bF is in�nitely di¤erentiable on (�F ; !F ) and contin-
uous and nondecreasing on [0;1). Also

1 > � =

Z 1

0

yf(y)dy = lim
x!1

Z x

0

yf(y)dy +

Z 1

x

yf(y)dy

= lim
x!1

Z x

0

yf(y)dy + lim
x!1

Z 1

x

yf(y)dy = �+ lim
x!1

Z 1

x

yf(y)dy

) lim
x!1

Z 1

x

yf(y)dy = 0

whence

lim
x!1

bF (x) = 1 � lim
x!1

bS(x) = 1� 1
�
lim
x!1

Z 1

x

yf(y)dy

= 1� 0
�
= 1

and we see that bF is an SLDFn. It is clear that bF has PDF
f bF (x) = d bF

dx
= �d

bS
dx

= � d
dx

 R1
x
yf(y)dy

�

!
=
xf(x)

�

We will make frequent use of the observation that F being an SLDFn implies
that the PDF f = fF is continuous on (0; !F )[ (!F ;1). In particular, we have

x < !F ) F (x) < 1

)
Z 1

x

f(y)dy = S(x) > 0

) there exists some z > x; � > 0 such that fjw � zj < �) f(w) > 0g

) bS(x) = R1x yf(y)dy

�
> 0

) bF (x) < 1
moreover

x > !F ) F (x) = 1

)
Z 1

x

f(y)dy = S(x) = 0

) f(w) = 0 for every w > x

) bS(x) = R1x yf(y)dy

�
= 0

) bF (x) = 1
9
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which establishes ! bF = !F . Similarly
x < �F ) f(x) = 0

) bF (x) = R x0 yf(y)dy
�

=

R x
0
y(0)dy

�
= 0

moreover

x > �F )
Z x

0

f(y)dy = F (x) > 0

) there exist z; � 2 R such that 0 < z < x; � > 0 such that fjw � zj < �) f(w) > 0g

) bF (x) = R x0 yf(y)dy
�

> 0

which establishes � bF = �F . Alternatively, since f bF (x) > 0 , f(x) > 0 it is
clear that � bF = �F and ! bF = !F . Fist assume that !F is �nite, then by
l�Hbopital:

� bF = lim
x!!F

� bF (x) = lim
x!!F

xf(x)

�bS (x) = lim
x!!F

x dfdx + f(x)

�d
bS
dx

= � lim
x!!F

x dfdx + f(x)

�f bF (x) = � lim
x!!F

x dfdx + f(x)

xf(x)

= � lim
x!!F

 
df
dx

f(x)
+
1

x

!
= � lim

x!!F

 
df
dx

f(x)

!
� 1

!F

= � lim
x!!F

�
f(x)

�S(x)

�
� 1

!F
= lim

x!!F
(�F (x))�

1

!F

= �F �
1

!F

as required. The same argument shows that � bF = �F for !F =1. Finally
�
(c)bF =

Z 1

0

ycf bF (y)dy =
Z 1

0

yc
�
yf(y)

�

�
dy =

1

�

Z 1

0

yc+1f(y)dy =
�
(c+1)
F

�F

completing the proof.

Remark 16 The distribution of bF is sometimes referred to as the time-biased
distribution. It has application to sampling theory when the probability of selec-
tion increases with time of exposure or attained age.

It is easy to generalize the time-biased distribution:

De�nition 17 For any SLDFn F and c 2 R with �(c)F <1, we denote by bF [c]
the SLDFn with PDF

f bF [c] (x) =
xcf(x)

�(c)
.
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Proposition 18 For any SLDFn F and c; d 2 R with �(c)F <1:

! bF [c] = !F and �(d)bF [c]
=
�
(c+d)
F

�
(c)
F

:

Proof. As before we see that

x < !F ) F (x) < 1

)
Z 1

x

f(y)dy = S(x) > 0

) there exist z > x; � > 0 such that fjw � zj < �) f(w) > 0g

) S bF [c](x) =

R1
x
ycf(y)dy

�(c)
> 0

) bF [c](x) < 1
and we have

x > !F ) F (x) = 1

)
Z 1

x

f(y)dy = S(x) = 0

) f(w) = 0 for every w > x

) S bF [c](x) =

R1
x
ycf(y)dy

�(c)
= 0

) bF [c](x) = 1
whence ! bF [c] = !F and also

�
(d)bF [c]

=

Z 1

0

ydf bF [c](y)dy =

Z 1

0

yd
�
ycf(y)

�(c)

�
dy

=
�(c+d)

�(c)

Z 1

0

yc+df(y)

�(c+d)
dy =

�
(c+d)
F

�
(c)
F

as asserted.
Analogous to this construction (actually �dual�in a sense to be made precise

below), we observe that the mean of any SLDFn F with �nite mean can be
expressed in terms of its survival function as � =

R1
0
S(x)dx. Therefore the

function ef(x) = S(x)
� is the PDF of another related SLDFn, which we denote aseF .

De�nition 19 For any SLDFn F with �nite mean, the coderived distribu-
tion of F , which we denote by eF , is the distribution function with PDF

ef(x) = f eF (x) = S(x)

�
.

11
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Remark 20 Observe that

d ef(x)
dx

=
1

�

dS(x)

dx
=
�f(x)
�

) f(x) = ��d
ef(x)
dx

and the PDF of the SLDFn F is obtained by di¤erentiation, or �derived�, from
that of eF . Back in the days of category theory, mathematicians liked to assign
the �co-� pre�x when reversing arrows. So eF is �coderived� from F , which
prompts the name assigned to eF .
Klugman [5] relates the right hand tail behavior of the original distribution

with that of the coderived distribution, which he terms the �equilibrium distri-
bution�. In particular, he considers the asymptotic behavior of the hazard rate
functions of the two distributions. We will pursue that somewhat further in
this paper. We begin with the observation that the excess ratio is the survival
function of the coderived distribution:

Proposition 21 If F is an SLDFn with �nite mean, survival function S and
excess ratio function R, then:

� eF = 0; ! eF = !F and R(x) =

R1
x
S(y)dyR1

0
S(y)dy

=

Z 1

x

ef(y)dy = S eF (x); for x � 0:
Proof. Let F have PDF f = fF , since ef(0) = 1

� > 0 is continuous at 0, clearly
� eF = 0. We also have

x < !F ) F (x) < 1

) � ef(x) = Z 1

x

f(y)dy = S(x) > 0

) eS(x) = Z 1

x

ef(y)dy > 0
) eF (x) < 1

and moreover
x > !F ) F (x) = 1

)
Z 1

x

f(y)dy = S(x) = 0

) ef(w) = S(w)

�
= 0 for every w > x

) eS(x) = Z 1

x

ef(w)dw = 0
) eF (x) = 1
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which establishes ! eF = !F . Now from Proposition 11 we haveZ 1

x

S(y)dy =

Z 1

x

yf(y)dy � xS(x)

= �x
Z 1

x

f(y)dy +

Z 1

x

yf(y)dy

=

Z 1

x

(y � x)f(y)dy;

Thus

R(x) =

R1
x
(y � x)f(y)dy

�
=

R1
x
S(y)dyR1

0
S(y)dy

=

Z 1

x

S(y)

�
dy =

Z 1

x

ef(y)dy:
as required.

Corollary 22 Under the assumptions of the Proposition:

dR

dx
(x) =

�S(x)
�

= � ef(x), for every x � 0.
Proof. By the Fundamental Theorem of Calculus

dR

dx
=
d

dx

 R1
x
S(y)dy

�

!
=
�S(x)
�

= � ef(x):
as required.
Let F be an SLDFn with �nite mean. Observe that eF is again an SLDFn

and so provided � eF < 1 we can repeat the process to get eeF . More precisely,
we can recursively construct the sequence of LDFns

eF [0] = FeF [1] = eFeF [n] = êF [n�1] for n = 2; 3; 4; ::.provided � eF [n�1] <1.

and refer to eF [n] as the n-th forward coderived LDFn of F . It is clear that
! eF [n] = !F for n = 2; 3; 4; ::.provided � eF [n�1] <1.
We will soon see (Proposition 27) that quite generally the existence of an

n-th forward coderived LDFn is equivalent to having a �nite n-th moment

eF [n] exists , �(n) <1:

The PDF of the coderived loss distribution is continuous and nonincreasing and
so a mode of any such coderived distribution is at x = 0 where its PDF takes
its maximum value of 1� . Conversely, if F is an SLDFn with nonincreasing PDF

f , then it is easy to verify that G (x) = f(0)�f(x)
f(0) is an SLDFn with coderived

13

Grouping Loss Distributions by Tail Behavior Part I: Discrete Families

Casualty Actuarial Society E-Forum, Fall 2008 460



distribution eG = F . It is also worth noting that because the survival curve
completely determines the distribution, the coderived distribution completely
determines the original distribution. And indeed for any n, the n-th forward
coderived LDFn, should there be one, completely determines the original LDFn.
We conclude this section with a rather general observation on the existence of
moments.

Proposition 23 If F is an SLDFn with �nite mean, then there exist unique
a; c 2 R [ f1g such that:

(0; 1) � (a; c) =
n
b 2 R� fa; cg j�(b)F <1

o
:

Proof. Set A =
n
b 2 Rj�(b)F <1

o
. We claim that A is a connected subset of

R. To see this, note that

a; c 2 A)
Z 1

0

yaf(y)dy;

Z 1

0

ycf(y)dy <1

)
Z 1

0

yaf(y)dy;

Z 1

1

yaf(y)dy;

Z 1

0

ycf(y)dy;

Z 1

1

ycf(y)dy <1:

So suppose a < b < c with a; c 2 A, then we have

0 < y < 1) ya > yb > yc )1 >

Z 1

0

yaf(y)dy >

Z 1

0

ybf(y)dy

1 < y ) ya < yb < yc )
Z 1

1

ybf(y)dy <

Z 1

1

ycf(y)dy <1

) �(b) =

Z 1

0

ybf(y)dy =

Z 1

0

ybf(y)dy +

Z 1

1

ybf(y)dy <1

) b 2 A:

And it follows that A is connected, as claimed. Now since F has �nite mean,
we clearly have

�(0) =

Z 1

0

y0f(y)dy =

Z 1

0

1f(y)dy = 1 <1) 0 2 A

�(1) =

Z 1

0

y1f(y)dy =

Z 1

0

yf(y)dy = � <1) 1 2 A

and since the connected subsets of R are exactly the intervals, the result follows.

Example 24 For the usual families of loss distributions (beta, Pareto, burr,
Weibull, gamma,...) the set

�
c 2 Rj�(c) <1

	
is an open interval. The fol-

lowing example, provided by Derek Scha¤, shows that is not always the case for

14
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loss distributions. De�ne

g(x) =

�
0 x � 2�
1

x ln x

�2
x > 2

�
)

Z 1

0

ycg(y)dy =

Z 1

2

ycg(y)dy

=

Z 1

ln 2

e(c�1)u

u2
du

�
<1 c � 1
1 c > 1

�
where we used the change of variable u = ln y, noting that for c � 1 the integral
is dominated by the convergent integral

R1
0

du
u2 while for c > 1 l�Hbopital shows

that the integrand does not even go to 0 as u!1:We see that

fF (x) =
g(x)R1

0
g(y)dy

) fc 2 RjE [Xc] <1g = (�1; 1]:

3 Moments and the Coderived Distribution

The discussion leading to the de�nition of a coderived loss distribution together
with Proposition 10 gives the �rst two Items of:

Proposition 25 For any SLDFn F with �nite mean � and all x � 0 :

1. f eF (x) = SF (x)
�

2. S eF (x) = RF (x) = bSF (x)� xf eF (x)
3. SF (x) > 0) � eF (x) =

�
�
bSF (x)
SF (x)

� x
��1

> 0

4. SF (x) > 0) � eF (x) =
R1
0
f(x+z)dzR1

0
zf(x+z)dz

:

Proof. Items 1 and 2 have been established. For Item 3, we have seen that

SF (x) > 0

) S eF (x) > 0 and f eF (x) = SF (x)

�
> 0

and so by Items 1 and 2

0 < � eF (x) = f eF (x)
S eF (x) =

�
S eF (x)
f eF (x)

��1
=

 bSF (x)� xf eF (x)
f eF (x)

!�1

=

 bSF (x)
f eF (x) � x

!�1
=

 bSF (x)
SF (x)
�

� x
!�1

=

 
�
bSF (x)
SF (x)

� x
!�1

15
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as required. And then Item 4 follows from de�nitions and the change of variable
z = y � x

� eF (x) =
 
�bSF (x)
SF (x)

� x
!�1

=

 R1
x
yf(y)dyR1

x
f(y)dy

� x
!�1

=

 R1
x
yf(y)dy � x

R1
x
f(y)dyR1

x
f(y)dy

!�1
=

R1
x
f(y)dyR1

x
yf(y)dy �

R1
x
xf(y)dy

=

R1
x
f(y)dyR1

x
(y � x) f(y)dy

=

R1
0
f(x+ z)dzR1

0
zf(x+ z)dz

completing the proof.
As was noted, the coderived distribution determines the original:

Proposition 26 For any two SLDFns with �nite means F and G

F = G , eF = eG:
Proof. Trivially, F = G) eF = eG. Conversely

eF = eG) SF (x)

�F
= f eF (x) = f eG(x) = SG(x)

�G

and letting x = 0 we have

1

�F
=

SF (0)

�F
=
SG(0)

�G
=

1

�G
) �F = �G

) 1� F = SF = SG = 1�G
) F = G

as asserted.
The moments of coderived distributions are readily obtained from those of

the original distribution:

Proposition 27 If F is an SLDFn and n 2 N, then:

�
(n)
F <1) �

(k)eF =
�
(k+1)
F

(k + 1)�F
<1 for k = 0; 1; 2; :::; n� 1:

Proof. For k = 0 we have �(0)eF = 1 = �
� =

�
(1)
F

(1)�F
. More generally, from

Proposition 23 we know that

�
(n)
F <1) �

(k)
F <1 for k = 0; 1; 2; :::; n
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and from Corollary 13

�
(k)eF =

Z 1

0

xkf eF (x)dx =
Z 1

0

xk
S(x)

�
dx =

1

(k + 1)�

Z 1

0

xk+1f(x)dx =
�
(k+1)
F

(k + 1)�F

as required.
We see that

F has n �nite moments �(k)F , k = 1; 2; 3; :::; n

, eF has n� 1 �nite moments �(k)eF , k = 1; 2; 3; :::; n� 1:

Taking the coderived distribution can remove the existence of a higher moment.
The ultimate settlement rate �F is a useful measure of the tail behavior

of a loss distribution. Our �rst signi�cant result is that the tail behavior of
the coderived loss variables has �F in common with the original, i.e., �F is a
�invariant:

Proposition 28 If F is an SLDFn with �(n)F <1 , then:

�F = � eF [k] ; 0 � k � n:

Proof. Note that by Proposition 25 and Corollary 22

� eF = lim
x!!F

� eF (x)
= lim

x!!F

f eF (x)
S eF (x)

=
1

�
lim
x!!F

S(x)

R(x)

and since lim
x!!F

S(x) = 0 = lim
x!!F

R(x) we may invoke l�Hbopital
� eF =

1

�
lim
x!!F

dS
dx
dR
dx

=
1

�
lim
x!!F

�f(x)
�S(x)
�

=
�

�
lim
x!!F

f(x)

S(x)

= lim
x!!F

�F (x) = �F

and since �(n)F < 1 ) �
(k)
F < 1, 1 � k � n, the result for n � 2 follows by

repeated application

�F = � eF = � eF [1] = � eF [2] = � � � = � eF [n]
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Coderived Hazard Functions

0.5

0.55

0.6

0.65

0.7

0.75

0 1 2 3 4 5 6 7 8 9 10

h h1 h2 h3 h4 h5 h6 h7 h8 h9

completing the proof.
Perhaps the easiest way to understand coderived distributions is to look at

their hazard rate functions. In the chart below

h = �F with �F =
1

2
and hx = � eF [x] ; 1 � x � 10:

The chart illustrates how the higher coderived distributions �anticipate the tail�,
converging faster to the constant �F :

Another way to see that the coderived variable shares tail behavior is to
compare the survival curve of the coderived variable with that of conditional
survival excess of a particular loss amount c. More precisely, we make the:

De�nition 29 Let F be an SLDFn and c be a positive constant such that
F (c) < 1. The over c residual loss variable, denoted F>c is the SLDFn

18
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determined from

F>c(x) = 1� SF (x+ c)
SF (c)

for every x � 0

() SF>c =
SF (x+ c)

SF (c)
for every x � 0.

The following shows that the tail behavior of a residual variable is also akin to
that of the original loss variable and that there is a simple relationship between
this residual and the coderived variables:

Proposition 30 If F is an SLDFn and c is a positive constant such that
SF (c) > 0 ,then:

1. !F>c = !F � c

2. fF>c(x) = fF (x+c)
SF (c)

for every x � 0

3. d � 0 such that SF (c+ d) > 0) (F>c)
>d
= F>c+d

4. �F>c(x) = �F (x+ c) for every x � 0

5. �F>c = �F

6. eF>c = gF>c
7. �F <1) �F>c = �F

S eF (c)
SF (c)

=
S eF (c)
f eF (c) =

1
� eF (c)

8.
� eF [n]�>c = gF>c[n] for every n 2 N:

Proof. Note that SF (c) > 0 ) F (c) < 1 ) c � !F ) !F � c � 0. Item 1 is
obvious

x < !F � c) x+ c < !F ) F (x+ c) < 1

) S(x+ c) > 0

) F>c(x) = 1� SF (x+ c)
SF (c)

< 1

and
x > !F � c) x+ c > !F ) F (x+ c) = 1

) S(x+ c) = 0

) F>c(x) = 1� SF (x+ c)
SF (c)

= 1:
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Item 2 follows from the chain rule

fF>c(x) =
d

dx

�
F>c(x)

�
=
d

dx

�
�SF (x+ c)
SF (c)

�
=

�1
SF (c)

d

dx
(SF (x+ c)) =

�1
SF (c)

d (SF (x+ c))

d (x+ c)

d (x+ c)

dx

=
�1
SF (c)

(�fF (x+ c)) =
fF (x+ c)

SF (c)
:

For Item 3

S(F>c)>d(x) =
SF>c(x+ d)

SF>c(d)
=

SF ((x+d)+c)
SF (c)

SF (d+c)
SF (c)

=
SF (x+ (c+ d))

SF (c+ d)
= SF>c+d(x)

)
�
F>c

�>d
= F>c+d

Item 4 is immediate from Item 2

�F>c(x) =
fF>c(x)

SF>c(x)
=

fF (x+c)
SF (c)

SF (x+c)
SF (c)

=
fF (x+ c)

SF (x+ c)
= �F (x+ c)

and Item 5 is immediate from Item 4

�F>c = lim
x!1

�F>c(x) = lim
x!1

�F (x+ c) = lim
x!1

�F (x) = �F :

Observe next that letting G = F>c we have the PDF

f eG(x) = SG(x)

�G
=
SF>c(x)

�G
=

SF (x+c)
SF (c)

�G
=
SF (x+ c)

�GSF (c)

while by Item 2 we also have the PDF

f eF>c(x) =
f eF (x+ c)
S eF (c) =

SF (x+c)
�F

S eF (c) =
SF (x+ c)

�FS eF (c)
which implies that the two PDFs are proportional, whence equal

SF (x+ c)

�GSF (c)
= f eG(x) = f eF>c(x) =

SF (x+ c)

�FS eF (c)
) gF>c = eG = eF>c

which proves Item 6. For Item 7 just note that from the above equation with
x = 0

SF (0 + c)

�GSF (c)
=

SF (0 + c)

�FS eF (c)
) �F>c = �G = �F

S eF (c)
SF (c)

=
S eF (c)
SF (c)
�F

=
S eF (c)
f eF (c) =

1
f eF (c)
S eF (c)

=
1

� eF (c) :
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Finally, Item 8 is a straightforward induction on n using Item 6; indeed, case
n = 1 is Item 6, and then

� eF [n+1]�>c = �geF [n]�>c = ^� eF [n]�>c = ĝF>c[n] = gF>c[n+1]
which completes the induction and the proof.
This provides a perspective on the coderived survival curve of an SLDFn,

inasmuch as the coderived survival is to the original survival probability in the
same proportion as the mean residual life is to the overall mean lifetime

S eF (c)
SF (c)

=
�F>c

�F
:

And the hazard rate function for the coderived distribution is the reciprocal of
the mean residual life

� eF (c) = 1

�F>c

:

This perspective leads to a relationship between �F and � eF :
Proposition 31 If F is an SLDFn with �nite mean, then whenever �F is in-
creasing (nondecreasing, decreasing, nonincreasing) on (0; !F ) =

�
0; ! eF �, then

so too is � eF :
Proof. Suppose � is increasing and �x any z > 0, then for y + z < !F

d

dy

�
S (y + z)

S (y)

�
=
S (y) d

dy (S (y + z))� S (y + z)
d
dy (S (y))

S (y)
2

=
S (y) (�f (y + z)) + S (y + z) f(y)

S (y)
2

=
S (y + z) f(y)� S (y) (f (y + z))

S (y)
2

=
S (y + z)

S(y)
�(y)� S (y + z)

S(y)

f (y + z)

S (y + z)

=
S (y + z)

S(y)
�(y)� S (y + z)

S(y)
�(y + z)

=
S (y + z)

S(y)
(�(y)� �(y + z)) < 0:

And so S(y+z)
S(y) is a a decreasing function of y. It follows that

x < y ) S (x+ z)

S (x)
>
S (y + z)

S (y)
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) �F>x =

1Z
0

SF>x (z) dz =

1Z
0

S (x+ z)

S (x)
dz >

1Z
0

S (y + z)

S (y)
dz =

1Z
0

SF>y (z) dz = �F>y

) � eF (x) = 1

�F>x

<
1

�F>y

= � eF (y)
and � eF is also increasing, as required. The case of � nondecreasing follows
similarly, simply by changing strict inequalities to inequalities. The cases of �
decreasing and nonincreasing follow by reversing inequalities.

Proposition 32 If F is an SLDFn with �nite mean and c ia a positive constant
such that �F (c) > 0 ,then:

�F nondecreasing ) � eF (c) � �F (c)
�F increasing ) � eF (c) > �F (c)

�F nonincreasing ) � eF (c) � �F (c)
�F decreasing ) � eF (c) < �F (c) :

Proof. Suppose � is nondecreasing. For any z > 0

S (c+ z) = e

�

c+zZ
0

�(t)dt

S (c+ z)

S (c)
= e

cZ
0

�(t)dt�

c+zZ
0

�(t)dt

= e

�

c+zZ
c

�(t)dt

:

And since � is nondecreasing

t 2 (c; c+ z)) � (t) � � (c)

)
c+zZ
c

�(t)dt �
c+zZ
c

�(c)dt = � (c) z

) �
c+zZ
c

�(t)dt � �� (c) z

) S (c+ z)

S (c)
= e

�

c+zZ
c

�(t)dt

� e��(c)z:

And we have

0 <
1

� eF (c) =
1Z
0

S (c+ z)

S (c)
dz �

1Z
0

e��(c)zdz =

�
e��(c)z

��(c)

�1
0

=
1

� (c)

) � eF (c) � � (c)
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as required. The case of � increasing follows by making the inequalities strict.
The case of � nonincreasing/decreasing follows similarly, reversing inequalities.

Proposition 33 If F is an SLDFn with �nite mean and �F > 0, then �
(n)
F <1

for every n 2 N:

Proof. We �rst show that �F > 0) � eF <1: Observe that f eF (x) = S(x)
� > 0

for every x < !F = ! eF . By Proposition 28
lim
x!!F

f eF (x)
S eF (x) = lim

x!!F
� eF (x) = � eF = �F > 0

) 0 < lim
x!!F

S eF (x)
f eF (x) =

1

�F
<1:

This entails that there exist constants M and b > 0 such that

S eF (x)
f eF (x) � b for every x 2 (M;!F )

) S eF (x) � bf eF (x) for every x 2 (M;!F ) :
Whence

� eF =

Z 1

0

S eF (x)dx
=

Z M

0

S eF (x)dx+
Z !F

M

S eF (x)dx
�

Z M

0

1dx+

Z 1

M

bf eF (x)dx
� M + b <1

as claimed. But then, again by Proposition 28, we must have that � eF [n] < 1
for every n 2 N. The proof is completed by induction on n, the case n = 1 being
clear. So assume the result holds for k � n. Note that � eF = �F > 0:Then we
have, by induction applied to eF and Proposition 27

�
(n+1)
F = (n+ 1)�

(n)eF �F <1

completing the induction and the proof.

Remark 34 The lognormal density shows that the converse does not hold.

Proposition 35 If F is an SLDFn with 0 < �F <1 , then lim
c!!F

�F>c = 1
�F
:

Proof. We have from l�Hbopital
lim
c!!F

�F>c = lim
c!!F

Z 1

0

SF>c(x)dx = lim
c!!F

Z 1

0

SF (x+ c)

SF (c)
dx
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= lim
c!!F

R1
0
SF (x+ c)dx

SF (c)
= lim

c!!F

R1
c
SF (x)dx

SF (c)

= lim
c!!F

d
dc

R1
c
SF (x)dx

d
dcSF (c)

= lim
c!!F

�SF (c)
�fF (c)

= lim
c!!F

1

�F (c)
=

1

lim
c!!F

�F (c)
=

1

�F

as claimed.

Proposition 36 If F is an SLDFn with �nite mean and 0 < �F <1 , then:

lim
x!!F

S eF (x)
SF (x)

=
1

�F �F
:

Proof. From the above propositions

lim
x!!F

S eF (x)
SF (x)

= lim
x!!F

�F>x

�F
=

lim
x!!F

�F>x

�F
=

1
�F

�F
=

1

�F �F

as claimed.

Proposition 37 If F is an SLDFn with �nite mean and 0 < �F <1 , then:

lim
x;c!!F

SgF>c(x)

SF>c(x)
= 1:

Proof. From the above

lim
c;x!!F

SgF>c(x)

SF>c(x)
= lim

c!!F

�
lim
x!!F

SgF>c(x)

SF>c(x)

�

= lim
c!!F

1

�F>c�F>c

= lim
c!!F

1

�F>c�F

=
1

�F
lim
c!!F

1

�F>c

=
1

�F

1

lim
c!!F

�F>c

=
1

�F

1
1
�F

=
1

1
= 1

as claimed.

Proposition 38 For any SLDFn F such that �(n)F <1 for every n 2 N:

L eF (t) = 1� LF (t)
�t

for t > 0

and if F has a moment generating function, then so does eF with

M eF (t) = MF (t)� 1
�t

for t > 0.
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Proof. We have, from Proposition 27, for every t > 0

L eF (t) =
1X
k=0

(�1)k�(k)eF tk

k!

=
1X
k=0

(�1)k
�
�
(k+1)
F

(k+1)�

�
tk

k!

=
1

�

1X
k=0

(�1)k�(k+1)F tk

(k + 1)!

=
1

�t

1X
k=0

(�1)k�(k+1)F tk+1

(k + 1)!

) ��tL eF (t) =
1X
k=0

(�1)k+1�(k+1)F tk+1

(k + 1)!

=

1X
j=1

(�1)j�(j)F tj
j!

= LF (t)� 1

) L eF (t) = 1� LF (t)
�t

:

And so if MF (t) exists, it follows that

M eF (t) = L eF (�t) = 1� LF (�t)
��t =

LF (�t)� 1
�t

=
MF (t)� 1

�t

as required.
A straightforward integration by parts, however, provides the stronger result:

Proposition 39 For any SLDFn F :

L eF (t) = 1� LF (t)
�t

for t > 0:
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Proof. Fix t > 0, we have

L eF (t) =

Z 1

0

e�txf eF (x)dx
=

Z 1

0

e�tx
S(x)

�
dx

=
1

�

Z 1

0

udv where u = S(x) and v = �e
�tx

t

=
1

�

�
[uv]

1
0 �

Z 1

0

vdu

�
=

1

�

��
�e

�txS(x)

t

�x!1

x=0

�
Z 1

0

�
�e

�tx

t

�
(�f(x)) dx

�
=

1

�t

�
1�

Z 1

0

e�txf(x)dx

�
=

1

�t
(1� LF (t))

as required.
Another relationship between the moments of the original and the coderived

distributions is:

Proposition 40 For any SLDFn F

�
(n)
F <1) � eF [k] =

�
(k+1)
F

(k + 1)�
(k)
F

for k = 0; 1; 2; :::; n� 1:

Proof. Note that by Proposition 23

�
(n)
F <1) �

(k)
F <1 for k = 0; 1; 2; :::; n

so our assumption is inductive. For k = 0 the assertion is

�F = � eF [0] =
�
(1)
F

(1)�
(0)
F

=
�F
1 � 1

which is vacuous. For k = 1 the assertion is just

� eF = � eF [1] =
�
(2)
F

2�
(1)
F

which holds by Proposition 27. We proceed by induction, invoking the case n�1
for G = eF , which is indeed an SLDFn with �(n�1)eF <1. Invoking Proposition
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27 twice more

� eF [k] = � eG[k�1]

=
�
(k)
G

k�
(k�1)
G

=
�
(k)eF

k�
(k�1)eF

=

 
�
(k+1)
F

(k + 1)�F

!
�
 
k

 
�
(k)
F

k�F

!!

=
�
(k+1)
F

(k + 1)�
(k)
F

completing the induction and the proof.

Corollary 41 For any SLDFn F and positive constant c with SF (c) > 0 :

�
(n)
F <1)

S eF [k](c)

SF (c)
=
�
(k)
F>c

�
(k)
F

for k = 0; 1; 2; :::; n:

Proof. The proof is by induction. Case k = 1 follows from Item 7 of Proposition
30. Combining Items 7 and 8 of that same Proposition, together with Proposition
40 and the induction hypothesis

S eF [k+1](c)

SF (c)
=

SgeF [k]
(c)

S eF [k](c)

S eF [k](c)

SF (c)
=
�( eF [k])

>c

� eF [k]

�
(k)
F>c

�
(k)
F

=
�gF>c

[k]

� eF [k]

�
(k)
F>c

�
(k)
F

=

�
(k+1)

F>c

k+1

�
(k+1)
F

k+1

=
�
(k+1)
F>c

�
(k+1)
F

completing the induction and the proof.
The following result will come in handy later when we relate the concept of

coderived distribution with ultimate settlement rates and tail �thickness�.

Proposition 42 If F is an SLDFn and n 2 N with �(n)F <1 , then:

lim
x!!F

fF (x)

f eF [m](x)
=
�mF �

(m)
F

m!
for m = 0; 1; 2; :::; n:

Proof. Note that

x < !F = ! eF [m�1] ) f eF [m](x) =
S eF [m�1](x)

� eF [m�1]
> 0
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assures that we are not dividing by 0. For m = 0; 1 we have

lim
x!!F

fF (x)

f eF [0](x)
= lim

x!!F

fF (x)

fF (x)
= lim

x!!F
1 = 1 = �

(0)
F (�F )

0

lim
x!!F

fF (x)

f eF [1](x)
= lim

x!!F

fF (x)

f eF (x) = lim
x!!F

fF (x)
SF (x)
�F

= �F lim
x!!F

fF (x)

SF (x)
= �F lim

x!!F
�F (x) = �

(1)
F �F

and the formula holds for m = 0; 1. Proceed by induction on m noting that
Proposition 23 assures that our hypothesis is inductive. Invoking the casem = 1
and the induction hypothesis

lim
x!!F

fF (x)

f eF [m+1](x)
= lim

x!!F

fF (x)

f eF [m](x)

f eF [m](x)

fgeF [m]
(x)

= lim
x!!F

fF (x)

f eF [m](x)
lim
x!!F

f eF [m](x)

fgeF [m]
(x)

=
�mF �

(m)
F

m!
� eF [m]� eF [m]

And then by Propositions 40 and 28

lim
x!!F

fF (x)

f eF (m+1)(x)
=
�mF �

(m)
F

m!

�
(m+1)
F

(m+ 1)�
(m)
F

�F =
�m+1F �

(m+1)
F

(m+ 1)!

completing the induction and the proof.

Corollary 43 If F is a non-vanishing SLDFn with 0 < �F <1 , then:

for every m;n 2 N, lim
x!1

f eF [n](x)

f eF [m](x)
=
�m�nF n!�

(m)
F

m!�
(n)
F

:

Proof. By Proposition 33 �(k)F < 1 for every k 2 N and so the proposition
gives

lim
x!1

f eF [n](x)

f eF [m](x)
= lim

x!1

f eF [n](x)

fF (x)
lim
x!1

fF (x)

f eF [m](x)

=
n!

�nF�
(n)
F

�mF �
(m)
F

m!
=
�m�nF n!�

(m)
F

m!�
(n)
F

as asserted.
Proposition 42 suggests that the series of higher coderived SLDFns F; eF ; eF [2]; eF [3]; :::

share a similar right hand tail behavior and that it may sometimes be viable to
approximate the right hand tail of an SLDFn F with that of a higher coderived

loss distribution eF [m], adjusted by the scalar �mF �(m)
F

m! . Generalizing Proposition
40 yet one step further, we see that all the moments of all coderived distributions
are readily obtained from those of F :
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Proposition 44 If F is a non-vanishing SLDFn such that for every n 2 N we
have �(n)F <1 , then:�

j + k

k

�
�
(k)eF [j]

=
�
(j+k)
F

�
(j)
F

for every j; k 2 N [ f0g:

Proof. The case j = 0 is just
�
k
k

�
�
(k)
F = �

(k)
F =

�
(k)
F

�
(0)
F

which is certainly true for

all integers k � 0. For the case j = 1, Proposition 27 gives�
k + 1

k

�
�
(k)eF [1]

= (k + 1)�
(k)eF = (k + 1)

 
�
(k+1)
F

(k + 1)�F

!
=
�
(k+1)
F

�
(1)
F

and so the result again holds for all integers k � 0. The proof is by induction
on j. Let G = eF [j�1]. By Proposition 27

�
(k)eF [j]

= �
(k)eG

=
�
(k+1)
G

(k + 1)�G

=
�
(k+1)eF [j�1]

(k + 1)� eF [j�1]
:

Invoking induction on the numerator and Proposition 40 on the denominator,
we have

�
(k)eF [j]

=

�
(j�1+k+1)
F

�
(j�1)
F�

j�1+k+1
k+1

�
(k + 1)

�
�
(j�1+1)
F

(j�1+1)�(j�1)F

�

=

�
(j+k)
F

�
(j�1)
F�

j+k
k+1

�
(k + 1)

�
�
(j)
F

j�
(j�1)
F

�
=

(k + 1)!(j + k � (k + 1))!j�(j+k)F

(j + k)! (k + 1)�
(j)
F

=
(k + 1)! (j � 1)!j�(j+k)F

(j + k)!(k + 1)�
(j)
F

=
k!j!�

(j+k)
F

(j + k)!�
(j)
F

=

�
j + k

k

��1
�
(j+k)
F

�
(j)
F

completing the induction and the proof.
We next present a series of straightforward results on coderived loss distri-

butions.
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Proposition 45 If F is an SLDFn such that for every n 2 N we have �(n)F <
1, then

for every n 2 N; and t > 0; L eF [n](t) =
n!

�
(n)
F

1X
k=0

(�1)k�(n+k)F tk

(n+ k)!
:

And if F has a moment generating function, then so does eF [n] with
M eF [n](t) =

n!

�
(n)
F

1X
k=0

�
(n+k)
F tk

(n+ k)!
.

Proof. We need only verify the assertion for the Laplace transform, since that
clearly implies the formula for the moment generating function. For n = 1 the
assertion becomes

L eF (t) = 1

�

1X
k=0

(�1)k�(k+1)F tk

(k + 1)!
=
�1
�t

1X
k=0

(�1)k+1�(k+1)F tk+1

(k + 1)!

=
�1
�t

1X
j=1

(�1)j�(j)F tj
j!

=
�1
�t

0@ 1X
j=0

(�1)j�(j)F tj
j!

� 1

1A
=
�1
�t
(LF (t)� 1) =

1� LF (t)
�t

which is known to hold by Proposition 38. The proof is by induction on n. For
n > 1 we again have by Proposition 38, induction, and Proposition 40

L eF [n](t) =
1� L eF [n�1](t)

� eF [n�1]t

=
1

� eF [n�1]t

 
1� (n� 1)!

�
(n�1)
F

1X
k=0

(�1)k�(n+k�1)F tk

(n+ k � 1)!

!

=
1

�
(n�1+1)
F

(n�1+1)�(n�1)F

t

 
� (n� 1)!
�
(n�1)
F

1X
k=1

(�1)k�(n+k�1)F tk

(n+ k � 1)!

!

=
1

�
(n)
F

n�
(n�1)
F

t

 
� (n� 1)!
�
(n�1)
F

1X
k=1

(�1)k�(n+k�1)F tk

(n+ k � 1)!

!

=
n�

(n�1)
F

�
(n)
F

 
(n� 1)!
�
(n�1)
F

1X
k=1

(�1)k�1�(n+(k�1))F tk�1

(n+ (k � 1))!

!

=
n!

�
(n)
F

0@ 1X
j=0

(�1)j�(n+j)F tj

(n+ j)!

1A
completing the induction and the proof.
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Proposition 46 For any SLDFn F and for every n 2 N:

1. �(n)F <1) f eF [n](x) =
n
R1
x
(y�x)n�1fF (y)dy

�
(n)
F

2. �(n)F <1) S eF [n](x) =
R1
x
(y�x)nfF (y)dy

�
(n)
F

3. �(n)F <1) � eF [n](x) =
n
R1
x
(y�x)n�1fF (y)dyR1

x
(y�x)nfF (y)dy for every x < !F

4. m;n 2 N; �(n)F <1; 0 � m � n) dmS eF [n]
dxm =

(�1)mn!�(n�m)
F S eF [n�m]

(n�m)!�(n)F

5. (CVF )
2
= 2

�
� eF
�F

�
� 1

6. CVF = 1, �F = � eF
7. CVF < 1, �F > � eF
8. CVF > 1, �F < � eF

Proof. The proof of Item 1 is by induction on n. For n = 1 the assertion
reduces to

f eF (x) =
R1
x
(y � x)0 fF (y)dy

�F
=

R1
x
fF (y)dy

�
=
SF (x)

�

and for n = 2 the assertion is

f eF [2](x) =
2
R1
x
(y � x)fF (y)dy
�
(2)
F

=

1
�

R1
x
(y � x)fF (y)dy

�
(2)
F

2�

=
RF (x)

�
(2)
F

2�

=
S eF (x)
� eF

and both hold by Proposition 25. Then we have, for n > 1, from Propositions
25 and 40, and induction

f eF [n](x) =
S eF [n�1](x)

� eF [n�1]

=

R1
x
f eF [n�1](z)dz

�
(n)
F

n�
(n�1)
F

=
n�

(n�1)
F

�
(n)
F

Z 1

x

(n� 1)
R1
z
(y � z)n�2 fF (y)dy
�
(n�1)
F

dz

=
n (n� 1)
�
(n)
F

Z 1

x

Z 1

z

(y � z)n�2 fF (y)dydz
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=
n (n� 1)
�
(n)
F

Z 1

x

Z y

x

(y � z)n�2 fF (y)dzdy

=
n (n� 1)
�
(n)
F

Z 1

x

fF (y)

Z y

x

(y � z)n�2 dzdy

=
n (n� 1)
�
(n)
F

Z 1

x

fF (y)

"
� (y � z)

n�1

n� 1

#z=y
z=x

dy

=
n (n� 1)
�
(n)
F

Z 1

x

fF (y)

 
(y � x)n�1

n� 1

!
dy

=
n
R1
x
(y � x)n�1 fF (y)dy

�
(n)
F

completing the proof of Item 1. Item 2 follows from Item 1. Indeed, for n = 1
the assertion reduces to

S eF (x) =
R1
x
(y � x) fF (y)dy

�
= RF (x)

which holds by Proposition 25. Then we have from Item 1

S eF [n](x) =

Z 1

x

f eF [n](z)dz

=

Z 1

x

 
n
R1
z
(y � z)n�1 fF (y)dy

�
(n)
F

!
dz

=
n

�
(n)
F

Z 1

x

Z 1

z

(y � z)n�1 fF (y)dydz

=
n

�
(n)
F

Z 1

x

Z y

x

(y � z)n�1 fF (y)dzdy

=
n

�
(n)
F

Z 1

x

fF (y)

Z y

x

(y � z)n�1 dzdy

=
n

�
(n)
F

Z 1

x

fF (y)

�
� (y � z)

n

n

�z=y
z=x

dzdy

=
1

�
(n)
F

Z 1

x

fF (y) (y � x)n dy

completing the proof of Item 2. Item 3 follows from Items 1 and 2 and the
fact that ! eF [n] = !F . Item 4 follows from Item 2 by di¤erentiating under the
integral

dmS eF [n]

dxm
(x) =

dm
� R1

x
(y�x)nfF (y)dy

�
(n)
F

�
dxm

32

Grouping Loss Distributions by Tail Behavior Part I: Discrete Families

Casualty Actuarial Society E-Forum, Fall 2008 479



=
1

�
(n)
F

�Z 1

x

dm

dxm
((y � x)n fF (y)) dy

�
=

1

�
(n)
F

�Z 1

x

(�1)m n!
(n�m)! (y � x)

n�m
fF (y)dy

�

=
(�1)m n!

(n�m)!�(n)F

�Z 1

x

(y � x)n�m fF (y)dy
�

=
(�1)m n!�(n�m)F

(n�m)!�(n)F

 R1
x
(y � x)n�m fF (y)dy

�
(n�m)
F

!

=
(�1)m n!�(n�m)F S eF [n�m] (x)

(n�m)!�(n)F

which establishes Item 4. Note that

(CVF )
2
=

�
(2)
F � �2F
�2F

=
�
(2)
F

�2F
� 1

=
2

�F

 
�
(2)
F

2�F

!
� 1 = 2

�F

�
� eF �� 1

which establishes Item 5. Since Items 6, 7 and 8 follow immediately from Item
5, this completes the proof.
A simple but useful observation is that taking the coderived distribution

commutes with a change of scale:

De�nition 47 Let F be a SLDFn and a > 0 be any positive constant; the
SLDFn Fa is de�ned as

Fa(x) = F (ax):

Proposition 48 For every a; c > 0 and for every n 2 N [ f0g :

1. !Fa = a!F

2. SFa(x) = SF (ax)

3. fFa(x) = afF (ax)

4. �Fa(x) = a�F (ax)

5. �(c)Fa =
�
(c)
F

ac

6. d(Fa)[c] = � bF [c]�
a

7. g(Fa)[n] = � eF [n]�
a

33

Grouping Loss Distributions by Tail Behavior Part I: Discrete Families

Casualty Actuarial Society E-Forum, Fall 2008 480



8. S(ac) > 0) (Fa)
>c
= (F>ac)a

Proof. Items 1 and 2 are obvious, Item 3 follows from the chain rule

fFa(x) =
dFa
dx

=

�
dF

dz
jz=ax

�
dz

dx
= (fF (z)jz=ax) a = afF (ax):

and Item 4 is then an immediate consequence

�Fa(x) =
fFa(x)

SFa(x)
=
afF (ax)

SF (ax)
= a�F (ax):

For Item 5, use Item 3 and the change of variable z = ay

�
(c)
Fa

=

Z 1

0

ycfFa(y)dy =

Z 1

0

ycafF (ay)dy

=

Z 1

0

�z
a

�c
fF (z)dz =

R1
0
zcfF (z)dz

ac

=
�
(c)
F

ac
:

Item 6 now follows from

fd(Fa)[c](x) =
xcfFa(x)

�
(c)
Fa

=
xcafF (ax)

�
(c)
F

ac

= a

 
(ax)

c
fF (ax)

�
(c)
F

!
= af bF [c](ax)

= f( bF [c])
a

(x):

For item 7, note �rst that this holds vacuously for n = 0

g(Fa)[0] = Fa = � eF [0]�
a

and for n = 1

ffFa(x) =
SFa(x)

�Fa
=
SF (ax)
�F
a

= af eF (ax) = f eFa(x)
) g(Fa)[1] = fFa = eFa = � eF [1]�

a

and now Item 7 follows by induction

g(Fa)[n+1] = ĝ(Fa)[n] = ^� eF [n]�
a
=
�̂ eF [n]�

a

=
� eF [n+1]�

a
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Finally, from Item 2 we have

S(Fa)>c(x) =
SFa(x+ c)

SFa(c)
=
SF (a (x+ c))

SF (ac)

=
SF (ax+ ac)

SF (ac)
= SF>ac(ax) = S(F>ac)a

(x)

completing the proof.
Since the coderived distribution relates with the excess ratio, the following

result for mixed distributions is no surprise:

Proposition 49 Given m 2 N, SLDFns F1; :::; Fm all with �nite means, and
any real weights wi � 0 with 1 =

Pm
i=1 wi, for the weighted mixture SLDFn

F =
Pm

i=1 wiFi with PDF fF =
Pm

i=1 wifFi , we have:

f eF =
mX
i=1

uiffFi and eF = mX
i=1

ui eFi,
where ui =

wi�Fi
�F

and 1 =
mX
i=1

ui:

Proof. This is again a straightforward veri�cation, from Proposition 25

f eF (x) =
SF (x)

�F
=

Pm
i=1 wiSFi(x)

�F

=

Pm
i=1 wi�Fi

�
SFi (x)

�Fi

�
�F

=
mX
i=1

uiffFi(x)

) S eF (x) =
mX
i=1

uiSfFi(x)
and since clearly

�F =

mX
i=1

wi�Fi

)
mX
i=1

ui =
mX
i=1

wi�Fi
�F

=

Pm
i=1 wi�Fi
�F

=
�F
�F

= 1

the result follows fromeF (x) = 1� S eF (x)
= 1�

mX
i=1

uiSfFi (x) =
mX
i=1

ui �
mX
i=1

uiSfFi (x)

=
mX
i=1

ui

�
1� SfFi (x)

�
=

mX
i=1

ui eFi (x) :
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So while taking the coderived distribution does not �commute�with con-
structing a mixture, the coderived distribution of a mixture is nevertheless a
mixture of the coderived distributions, but one in which the frequency weights
of the original mix are replaced with loss weights for the coderived mix. We will
�nd that this simple observation can prove surprisingly instructive. We will
also require the:

Corollary 50 With the notation and assumptions of Proposition 49

�Fi � �fFi 1 � i � m) �F � � eF .
Proof. Proceed by induction on m. Withou tloss of generality we may order
so that:

�F1 � �F2 � �F3 � ::: � �Fm :

The case m = 1 is clear. Let G be the mixture of F2; :::; Fm in which:

Fi has weight
wiPm
i=2 wi

.

Then G has PDF

fG =

Pm
i=2 wifFiPm
i=2 wi

=

Pm
i=2 wifFi
1� w1

and we have:

�F1 � �F2 � �G � �Fm
) �G � �F1 .

Then by induction � eG � �G and so
�F = w1�F1 + (1� w1)�G

� eF =
w1�F1�fF1 + (1� w1)�G� eG

�F

�
w1�

2
F1
+ (1� w1)�2G
�F

=

�
w1�F1
�F

�
�F1 +

�
(1� w1)�G

�F

�
�G

= (w1 � �)�F1 + (1� w1 + �)�G

in which w1�F1
�F

= w1 � �
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and we �nd that

� = w1 �
w1�F1
�F

= w1

�
1�

�F1
�F

�
= w1

�
�F � �F1
�F

�
= w1

�
w1�F1 + (1� w1)�G � �F1

�F

�
= w1

 
(1� w1)

�
�G � �F1

�
�F

!
� 0

) � � 0:
We see that

� eF � (w1 � �)�F1 + (1� w1 + �)�G
= w1�F1 + (1� w1)�G + �

�
�G � �F1

�
= �F + �

�
�G � �F1

�
� �F

completing the proof

Corollary 51 With the notation and assumptions of Proposition 49

CVFi � 1; 1 � i � m) CVF � 1.

Proof. Clear from Corollary 50 and Proposition 46.
We next show how the coderived distributions of an SLDFn F �make up a

part of the tail�of F . We begin with

Lemma 52 For any two SLDFns F and G with w 2 [0; 1] and c � 0 with
SF (c)SG(c) > 0 :

(wF + (1� w)G)>c = vF>c + (1� v)G>c

where v =
wSF (c)

wSF (c) + (1� w)SG(c)
:

Proof. We have

1� (wF + (1� w)G)>c (x) =
SwF+(1�w)G(x+ c)

SwF+(1�w)G(c)

=
wSF (x+ c) + (1� w)SG(x+ c)

wSF (c) + (1� w)SG(c)

=
wSF (c)

SF (x+c)
SF (c)

+ (1� w)SG(c)SG(x+c)SG(c)

wSF (c) + (1� w)SG(c)

= v
SF (x+ c)

SF (c)
+ (1� v)SG(x+ c)

SG(c)

= vSF>c(x) + (1� v)SG>c(x)
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and it follows that

(wF + (1� w)G)>c = 1�
�
1� (wF + (1� w)G)>c

�
= 1� (vSF>c + (1� v)SG>c)

= v � vSF>c + (1� v)� (1� v)SG>c

= v (1� SF>c) + (1� v) (1� SG>c)

= vF>c + (1� v)G>c

as asserted.

Lemma 53 For any SLDFn F with �nite mean and 0 < �F , there exists c � 0
and w 2 (0; 1) and SLDFn G with !G = !F>c and

F>c = w
� eF�>c + (1� w)G

= wgF>c + (1� w)G:
Proof. We have

0 < �F = lim
x!!F

�F (x)

which implies that

there exist c; � with � > 0; 0 � c < !F

and f�F>c(x) = �F (x+ c)jx 2 (0; !F � c)g � (�;1) :
Let w =Min

�
1
2 ; ��F>c

�
. Then we have �F>c > 0 and

w

�F>c

� �

) w

�F>c

< �F>c(x) for every x 2 (0; !F � c)

) w

�F>c

<
fF>c(x)

SF>c(x)
for every x 2 (0; !F � c)

) wfgF>c(x) =
wSF>c(x)

�F>c

< fF>c(x) for every x 2 (0; !F � c)

Make the de�nition

g(x) =
fF>c(x)� wfgF>c(x)

1� w > 0 for x 2 (0; !F � c) ;

then
fF>c(x) = wfgF>c(x) + (1� w) g(x) for every x 2 (0; !F � c)

whence g is a C1 PDF on (0; !F � c) and the result follows by setting G(x) =
xZ
0

g(z)dz:
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Proposition 54 If n 2 N and F is an SLDFn with �(n)F < 1 and 0 < �F ,
then there exist c � 0, w 2 (0; 1), and an SLDFn G with

!G = !F>c and

F>c = w
� eF [n]�>c + (1� w)G = wgF>c[n] + (1� w)G:

Proof. The proof is by induction on n, the case n = 1 being covered by the
second lemma. By induction there exists c1 � 0 and w1 2 (0; 1) and SLDFn G1
so that

F>c1 = w1

� eF [n]�>c1 + (1� w1)G1:
Again by the second lemma there exists c2 � 0 and w2 2 (0; 1) and SLDFn G2
so that� eF [n]�>c2 = w2�geF [n]�>c2 + (1� w2)G2 = w2 � eF [n+1]�>c2 + (1� w2)G2:
It now follows from the �rst lemma that there exist u; v 2 (0; 1)

F>c1+c2 =
�
F>c1

�>c2
=

�
w1

� eF [n]�>c1 + (1� w1)G1�>c2 =
= u

�� eF [n]�>c1�>c2 + (1� u)G>c21

= u
� eF [n]�>c1+c2 + (1� u)G>c21

= u

�� eF [n]�>c2�>c1 + (1� u)G>c21

= u

�
w2

� eF [n+1]�>c2 + (1� w2)G2�>c1 + (1� u)G>c21

= u

�
v
� eF [n+1]�>c1+c2 + (1� v)G>c12

�
+ (1� u)G>c21

= uv
� eF [n+1]�>c1+c2 + (1� uv)G3

and setting w = uv 2 (0; 1) and c = c1 + c2 completes the induction and the
proof.
We have seen, Proposition 26, that the coderived distribution determines

the original. So it makes sense to ask, given an SLDFn F , is there an SLDFn
G (necessarily uniquely determined with �nite mean) such that eG = F . This
prompts:

De�nition 55 Let G be an SLDFn with �nite mean and F= eG. The SLDFn G
is called the backward coderived loss distribution function of F . We set,
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recursively

eF [�1] = GeF [�n] = êF [�n+1][�1] , êF [�n] = eF [�n+1]for n = 2; 3; 4; ::..
If the LDFn eF [�n] exists for some integer n > 0, then eF [�n] is called the n-th
backward coderived loss distribution of F .

Quite generally, for any loss distribution F with di¤erentiable PDF f(x)
such that dfdx � 0, we could de�ne the backward coderived loss distribution
to be the distribution with survival function equal to T (y) = f(y)

f(0) . Suppose F

and G are loss variables with G = eF [�1]the backward coderived distribution of
F . Of course, the mean of G is

�G =

Z 1

0

SG(y)dy =

Z 1

0

T (y)dy =

R1
0
fF (y)dy

fF (0)
=

1

fF (0)

and for the PDF of eG we have, as one would expect

f eG(y) =
SG(y)

�G
=

fF (y)
fF (0)

1
fF (0)

= fF (y)

) eG = F:
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Grouping Loss Distributions by Tail Behavior

Part II: Continuous Families
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Abstract: This three part paper addresses the task of modelling the right
hand tail of a severity distribution. In Part I the excess ratio function is
used to de�ne a discrete sequence of loss distributions with related moments and
similar tail behavior. Part II extends this to continuous one-parameter families
and provides some examples. Part III provides the main result: that under
some reasonable conditions, each such family has a limiting distribution which
is exponential. The paper then exploits this to 1) group loss distributions based
on tail behavior and 2) promote the choice of (mixed) exponentials to model tail
behavior.

Remark 56 This is Part II of a three part paper. We assume familiarity with
Part I and continue our numbering from Part I.

4 Continuous Families of Distributions

While we introduced taking the coderived distribution as a discrete process, we
use Proposition 46 to generalize our de�nitions:

De�nition 57 For any SLDFn F and positive c 2 R with �(c)F < 1, the c-
th coderived loss distribution function of F is the LDFn G with survival
function

SG(x) =

R1
x
(y � x)c fF (y)dy

�
(c)
F

which we denote as G = eF [c]. For c < 0, the c-th coderived loss distribution
function of F is the LDFn G, if such exists, satisfyingeG[�c] = F:
The set eF [R] = n eF [c]jc 2 R such that �(c)F <1

o
is called the coderived orbit

of the loss distribution function F .
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Remark 58 It follows from this calculation or from Proposition 46 that this
agrees with the earlier de�nition of coderived loss distribution when c 2 Z. In-
deed, under either de�nition we trivially have, for any loss SLDFn F;eF [0] = FeF [1] = eF
and geF [c] = eF [c+1] for every c 2 R:
For any SLDFn F and c > 0, the c-th coderived SLDFn eF [c]exists , �

(c)
F <1.

This is consistent with the original construction S eF (x) = SF (x)
�F

. Consequently
we chose to use the formulation

S eF [c](x) =

R1
x
(y � x)c fF (y)dy

�
(c)
F

in the de�nition. For c < 0 it is sometimes useful to try the following formula

S eF [c](x) = lim
M!1

RM
x
(y � x)c fF (y)dyRM
0
ycfF (y)dy

:

For example in the case that F is a mixture of exponentials, �(c)F <1 only for
c > �1, but eF [c] exists for every c 2 R and in that special case the latter formula
works for every c 2 R.

Proposition 59 For any SLDFn F and positive constants a; c 2 R with �(c)F <
1 :

1. S eF [c](x) =
R1
0
zcfF (x+z)dz

�
(c)
F

=
c
R1
x
(y�x)c�1SF (y)dy

�
(c)
F

=
c
R1
0
zc�1SF (x+z)dz

�
(c)
F

2. f eF [c](x) =
c
R1
x
(y�x)c�1fF (y)dy

�
(c)
F

=
c
R1
0
zc�1fF (x+z)dz

�
(c)
F

3. � eF [c](x) =
R1
x
(y�x)c�1fF (y)dyR1

x
(y�x)c�1SF (y)dy

=
R1
0
zc�1fF (x+z)dzR1

0
zc�1SF (x+z)dz

Proof. The substitution z 7! x� y will be used routinely to change the lower
limit of integration between y = x and z = 0. By Proposition 11 we haveZ 1

x

(y � x)c fF (y)dy = c
Z 1

x

(y � x)c�1 SF (y)dy

and the rest is straightforward calculation. For Item 1

S eF [c](x) =

R1
x
(y � x)c fF (y)dy

�
(c)
F

=
c
R1
x
(y � x)c�1 SF (y)dy

�
(c)
F

:
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For Item 2 we di¤erentiate under the integral

f eF [c](x) = �
dS eF [c]

dx
(x)

= � d
dx

 R1
x
(y � x)c fF (y)dy

�
(c)
F

!

= �
 R1

x
d
dx ((y � x)

c
) fF (y)dy

�
(c)
F

!

=
c
R1
x
(y � x)c�1 fF (y)dy

�
(c)
F

and Item 3 follows from Items 1 and 2.
Letting B denote the beta function; we will make use of the following results

from calculusZ b

a

(x� a)p (b� x)q dx = (b� a)p+q+1B(p+ 1; q + 1) where p > �1,q > �1 and b > a

�(c)�(1� c) =
�

sin c�
where 0 < c < 1.

Proposition 60 If F is a nonvanishing SLDFn and c 2 (0; 1), then:

�
(c)
F �

(�c)eF [c]
=

c�

sin c�
and SF (x) =

R1
x
(y � x)�c f eF [c](y)dy

�
(�c)eF [c]

:

Proof. Let G = eF [c],so that eG[�c] = F . We haveR1
x
(y � x)�c fG(y)dy

�
(�c)
G

=

R1
x
(y � x)�c f eF [c](y)dy

�
(�c)
G

=

R1
x
(y � x)�c

�
c
R1
y
(z � y)c�1 fF (z)dz

�
dy

�
(c)
F �

(�c)
G

=
c

�
(c)
F �

(�c)
G

Z 1

x

Z 1

y

(y � x)�c (z � y)c�1 fF (z)dzdy

=
c

�
(c)
F �

(�c)
G

Z 1

x

Z z

x

(y � x)�c (z � y)c�1 fF (z)dydz

Letting B denote the beta function and noting that c 2 (0; 1) ) �c > �1 and
c� 1 > �1R1
x
(y � x)�c fG(y)dy

�
(�c)
G

=
c

�
(c)
F �

(�c)
G

Z 1

x

fF (z)

�Z z

x

(y � x)�c (z � y)c�1 dy
�
dz

43

Grouping Loss Distributions by Tail Behavior Part II: Continuous Families

Casualty Actuarial Society E-Forum, Fall 2008 490



=
c

�
(c)
F �

(�c)
G

Z 1

x

fF (z)
�
(z � x)�c+(c�1)+1B(�c+ 1; (c� 1) + 1)

�
dz

=
cB(1� c; c)
�
(c)
F �

(�c)
G

Z 1

x

fF (z)
�
(z � x)0

�
dz

=
cB(1� c; c)
�
(c)
F �

(�c)
G

Z 1

x

fF (z)dz

=
c �
sin c�

�
(c)
F �

(�c)
G

Z 1

x

fF (z)dz

=
c�SF (x)

�
(c)
F �

(�c)
G sin c�

and letting x = 0 in the equality, it follows that

1 =

R1
0
y�cfG(y)dy

�
(�c)
G

=
c�SF (0)

�
(c)
F �

(�c)
G sin c�

=
c�

�
(c)
F �

(�c)
G sin c�

) �
(c)
F �

(�c)eF [c]
= �

(c)
F �

(�c)
G =

c�

sin c�

and further that for every x 2 [0;1)

SF (x) = S eG[�c](x) =

R1
x
(y � x)�c fG(y)dy

�
(�c)
G

=

R1
x
(y � x)�c f eF [c](y)dy

�
(�c)eF [c]

as required.
The following result generalizes Proposition 44 and shows that with the

exception of instances when the coderived distribution fails to exist, the additive
group of reals acts on the set of SLDFns under this de�nition. This vindicates
our use of the term �orbit� and gives credence to the view that this is the
�correct� way to extend the de�nition of coderived variable from discrete to
continuous.

Proposition 61 For any SLDFn F and positive constants c; d 2 R with �(c+d)F <
1, letting B denote the beta function:

1. �(d)eF [c]
=

(c+d+1)B(d+1;c+1)�
(c+d)
F

�
(c)
F

2. geF [c][d] = eF [c+d]
3. � eF [c] =

�
(c+1)
F

(c+1)�
(c)
F

4.
�
CV eF [c]

�2
=

2(c+1)�
(c)
F �

(c+2)
F

(c+2)
�
�
(c+1)
F

�2 � 1
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Proof. Note �rst that by de�nition

�
(c+d)
F S eF [c+d](x) =

Z 1

x

(y � x)c+d fF (y)dy:

On the other hand, we have

�
(d)eF [c]
SgeF [c]

[d](x) =

Z 1

x

(y � x)d f eF [c](y)dy

=

Z 1

x

(y � x)d
 
c
R1
y
(z � y)c�1 fF (z)dz

�
(c)
F

!
dy

=
c

�
(c)
F

Z 1

x

Z 1

y

(y � x)d (z � y)c�1 fF (z)dzdy

=
c

�
(c)
F

Z 1

x

Z z

x

(y � x)d (z � y)c�1 fF (z)dydz

=
c

�
(c)
F

Z 1

x

fF (z)

�Z z

x

(y � x)d (z � y)c�1 dy
�
dz

=
c

�
(c)
F

Z 1

x

fF (z)
�
(z � x)c+dB(d+ 1; c)

�
dz

=
cB(d+ 1; c)

�
(c)
F

Z 1

x

(z � x)c+d fF (z)dz

=
�(d+ 1)c�(c)

�
(c)
F �(c+ d+ 1)

Z 1

x

(z � x)c+d fF (z)dz

=
�(d+ 1)�(c+ 1)

�
(c)
F �(c+ d+ 1)

Z 1

x

(z � x)c+d fF (z)dz

=
(c+ d+ 1)�(d+ 1)�(c+ 1)

�
(c)
F (c+ d+ 1)�(c+ d+ 1)

Z 1

x

(z � x)c+d fF (z)dz

=
(c+ d+ 1)�(d+ 1)�(c+ 1)

�
(c)
F �(c+ 1 + d+ 1)

Z 1

x

(z � x)c+d fF (z)dz

=
(c+ d+ 1)B(d+ 1; c+ 1)

�
(c)
F

Z 1

x

(z � x)c+d fF (z)dz:

Letting x = 0 we have

�
(d)eF [c]

= �
(d)eF [c]
SgeF [c]

[d](0) =
(c+ d+ 1)B(d+ 1; c+ 1)

�
(c)
F

Z 1

0

zc+dfF (z)dz

=
(c+ d+ 1)B(d+ 1; c+ 1)

�
(c)
F

�
(c+d)
F
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which proves Item1. For Item 2 the above equations imply

�
(d)eF [c]
SgeF [c]

[d](x) =
(c+ d+ 1)B(d+ 1; c+ 1)

�
(c)
F

Z 1

x

(z � x)c+d fF (z)dz

=
(c+ d+ 1)B(d+ 1; c+ 1)

�
(c)
F

�
�
(c+d)
F S eF [c+d](x)

�
which by Item 1 gives

SgeF [c]
[d](x) =

(c+ d+ 1)B(d+ 1; c+ 1)�
(c+d)
F S eF [c+d](x)

�
(d)eF [c]
�
(c)
F

= S eF [c+d](x)

) geF [c][d] = eF [c+d]:
And since

B(2; c+ 1) =
�(2)�(c+ 1)

�(c+ 3)
=

�(c+ 1)

(c+ 2)�(c+ 2)

=
�(c+ 1)

(c+ 2) (c+ 1)�(c+ 1)
=

1

(c+ 2) (c+ 1)

we see that Item 3 is just the case d = 1 of Item 1

� eF [c] = �
(1)eF [c]

=
(c+ 2)B(2; c+ 1)�

(c+1)
F

�
(c)
F

=
(c+ 2)�

(c+1)
F

(c+ 2) (c+ 1)�
(c)
F

=
�
(c+1)
F

(c+ 1)�
(c)
F

:

Finally, we have by Proposition 46 and Part 3

�
CV eF [c]

�2
= 2

��geF [c]

� eF [c]

�
� 1 = 2

�
� eF [c+1]

� eF [c]

�
� 1

= 2

0B@ �
(c+2)
F

(c+2)�
(c+1)
F

�
(c+1)
F

(c+1)�
(c)
F

1CA� 1
=

2 (c+ 1)�
(c)
F �

(c+2)
F

(c+ 2)
�
�
(c+1)
F

�2 � 1
and the proof is complete.

Proposition 62 For any non-vanishing loss SLDFn F and positive constant c
with �(c)F <1 :

�F = � eF [c] :
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Proof. We have from l�Hbopital
lim
x!1

SF (x)

S eF [c](x)
= lim

x!1

�fF (x)
�f eF [c](x)

= lim
x!1

fF (x)

f eF [c](x)

whence

1 =

�
lim
x!1

SF (x)

S eF [c](x)

��
lim
x!1

fF (x)

f eF [c](x)

��1
=

�
lim
x!1

SF (x)

S eF [c](x)

� 
lim
x!1

�
fF (x)

f eF [c](x)

��1!

=

�
lim
x!1

SF (x)

S eF [c](x)

��
lim
x!1

f eF [c](x)

fF (x)

�

= lim
x!1

SF (x)

S eF [c](x)

f eF [c](x)

fF (x)

= lim
x!1

SF (x)

fF (x)

f eF [c](x)

S eF [c](x)

= lim
x!1

� eF [c](x)

�F (x)

) �F = lim
x!1

�F (x) = lim
x!1

� eF [c](x) = � eF [c]

as required.
The relation

F � G , there exists c 2 R such that G = eF [c] , G 2 eF [R]
de�nes an equivalence relation on the class of SLDFns

F = eF (0) ) F � F

F � G) there exists c 2 R such that G = eF [c] ) F = eG[�c] ) G � F

F � G;G � H ) there exist c; d 2 R such that G = eF [c];H = eG[d]
) H = eG[d] = �̂ eF [c]�d = eF [c+d] ) F � H:

We just observed that the real-valued mapping F 7! �F is constant on
equivalence classes, i.e., orbits. In this regard we make the:

De�nition 63 For any SLDFn F and real number c set

�F (c) = lim
x!!F

R1
x
(y � x)c�1 fF (y)dy

SF (x)
:
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Remark 64 Note that for the exponential distribution F (x) = 1� e�x we have

�F (c) = lim
x!!F

R1
x
(y � x)c�1 e�ydy

e�x
= lim

x!1

Z 1

x

(y � x)c�1 e�(y�x)dy

= lim
x!1

Z 1

0

zc�1e�zdz = lim
x!1

�(c) = �(c)

which helped prompt the choice of notation.

Proposition 65 For any SLDFn F and positive constants a; c 2 R with �(c)F <
1 :

1. L eF [c](t) =
c�

(c�1)
F

t�
(c)
F

�
1� L eF [c�1](t)

�
2. � eF [c�1] =

�
(c)
F

c�
(c�1)
F

3. �Fa = a�F

4. �Fa(c) = a
1�c�F (c):

Proof. For Item 1

L eF [c](t) = E eF [c]

�
e�tX

�
=

Z 1

0

e�txf eF [c](x)dx

=

Z 1

0

e�tx

 
c
R1
x
(y � x)c�1 fF (y)dy

�
(c)
F

!
dx

=
c

�
(c)
F

Z 1

0

e�tx
�Z 1

x

(y � x)c�1 fF (y)dy
�
dx

=
c

�
(c)
F

Z 1

0

udv

where

u =

Z 1

x

(y � x)c�1 fF (y)dy = �(c�1)F S eF [c�1] and v = �
e�tx

t

and so du = ��(c�1)F f eF [c�1] :

We have

L eF [c](t) =
c

�
(c)
F

�
[uv]

1
0 �

Z 1

0

vdu

�
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=
c

�
(c)
F

 �
�e

�tx

t

Z 1

x

(y � x)c�1 fF (y)dy
�1
0

� �
(c�1)
F

t

Z 1

0

e�txf eF [c�1](x)dx

!

=
c

�
(c)
F

 
1

t

Z 1

0

yc�1fF (y)dy �
�
(c�1)
F

t
L eF [c�1](t)

!

=
c

�
(c)
F

 
�
(c�1)
F

t
� �

(c�1)
F

t
L eF [c�1](t)

!

=
c�
(c�1)
F

t�
(c)
F

�
1� L eF [c�1](t)

�
For Item 2, invoke Item 1 and Proposition 39 applied to the LDFn eF [c�1], noting
that for any LDFn G, 0 < LG(1) < 1

L eF (t) =
1� LF (t)

�t
for t > 0

c�
(c�1)
F

t�
(c)
F

�
1� L eF [c�1](t)

�
= L eF [c](t) =

1

t� eF [c�1]

�
1� L eF [c�1](t)

�

) c�
(c�1)
F

�
(c)
F

=
1

� eF [c�1]

) � eF [c�1] =
�
(c)
F

c�
(c�1)
F

:

Item 3 follows from Proposition 48

�Fa = lim
x!!Fa

�Fa(x) = lim
x!a!F

a�F (ax) = a lim
x!!F

�F (x) = a�F :

And for Item 4

�Fa(c) = lim
x!!Fa

R !Fa
x

(y � x)c�1 fFa(y)dy
SFa(x)

= lim
x!a!F

R a!F
x

(y � x)c�1 afF (ay) dy
SF (ax)

= lim
x!a!F

a1�c
R a!F
x

(ay � ax)c�1 fF (ay) ady
SF (ax)

= a1�c lim
ax!!F

R !F
ax

(z � ax)c�1 fF (z)dz
SF (z)

= a1�c lim
y!!F

R !F
y

(z � y)c�1 fF (z)dz
SF (z)

= a1�c�F (c)

as required.
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Proposition 66 If F is an SLDFn with 0 < �F < 1 and a any positive
constant, then:

Fa 2 eF (R) , a = 1:

Proof. The ( direction is trivial. For )

Fa 2 eF (R) ) �F = �Fa = a�F

0 < �F <1) a = 1

as required.
What really prompted the notation are Items 5 and 6 of the following:

Proposition 67 For any non-vanishing SLDFn F with �nite mean and c 2 R
with �(c)F <1 :

1. �F (1) = 1

2. �F > 0) �F (2) =
1
�F

3. �F (c) = lim
x!1

R1
0
zc�1fF (z+x)dz

SF (x)

4. � eF (c) = �F (c)
5. �F�F (c+ 1) = c�F (c)

6. �F > 0 and c 2 Z) �F (c) = �
1�c
F �(c)

Proof. We clearly have

�F (1) = lim
x!!F

R !F
x

(y � x)0 fF (y)dy
SF (x)

= lim
x!!F

R !F
x

fF (y)dy

SF (x)
= lim

x!!F

SF (x)

SF (x)
= lim

x!!F
1 = 1

verifying Item 1. When �F > 0, we have from l�Hbopital and Proposition 22
�F (2) = lim

x!!F

R !F
x

(y � x)1 fF (y)dy
SF (x)

= lim
x!!F

�FRF (x)

SF (x)

= �F lim
x!!F

RF (x)

SF (x)
= �F lim

x!!F

�SF (x)
�F

�fF (x)

= lim
x!!F

SF (x)

fF (x)
= lim

x!!F

1

�F (x)
=

1

�F

proving Item 2. For Item 3, just use the change of variable z = y� x. For Item
4, we have, using Item 3

� eF (c) = lim
x!!F

R !F
0

zc�1f eF (z + x)dz
S eF (x)

= lim
x!!F

R !F
0

zc�1 SF (z+x)�F
dz

RF (x)
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=
1

�F
lim
x!!F

R !F
0

zc�1SF (z + x)dz

RF (x)

=
1

�F
lim
x!!F

d
dx

R !F
0

zc�1SF (z + x)dz
d
dxRF (x)

=
1

�F
lim
x!!F

R !F
0

zc�1 d
dx (SF (z + x)) dz
�SF (x)
�F

= lim
x!1

�
R1
0
zc�1fF (z + x)

d(z+x)
dx dz

�SF (x)

= lim
x!!F

R !F
0

zc�1fF (z + x)dz

SF (x)

= �F (c)

which establishes Item 4. For Item 5 we have

�F (c)�F (c+ 1) = � eF [c]�F (c+ 1)

= lim
x!!F

� eF [c](x)�F (c+ 1)

= lim
x!!F

f eF [c](x)

S eF [c](x)
�F (c+ 1)

= lim
x!!F

c
R !F
x

(y � x)c�1 fF (y)dyR !F
x

(y � x)c fF (y)dy
lim
x!!F

R !F
x

(y � x)c fF (y)dy
SF (x)

= c lim
x!!F

R !F
x

(y � x)c�1 fF (y)dyR !F
x

(y � x)c fF (y)dy

R !F
x

(y � x)c fF (y)dy
SF (x)

= c lim
x!!F

R !F
x

(y � x)c�1 fF (y)dy
SF (x)

= c�F (c):

And �nally, for Item 6 note that the formula holds for c = 1 and c = 2. by
Items 1 and 2. De�ne ��(c) = � c�1F �F (c);then by Item 5

��(c+ 1) = � c+1�1F �F (c+ 1)

= � cF
c�F (c)

�F
= c� c�1F �F (c)

= c��(c)

and so �� and � satisfy the same recurrence formula and agree on 1 and 2,
whence �� = � on Z, as required.

Corollary 68 If F and G are SLDFns with �nite means and �F �G > 0, then

�F (c) = �G (c) for every c 2 Z , �F = �G:

51

Grouping Loss Distributions by Tail Behavior Part II: Continuous Families

Casualty Actuarial Society E-Forum, Fall 2008 498



Corollary 69 If F is an SLDFn with �nite mean and �F > 0, then

�F = 1, �F (n) = n! for every n 2 N:

Proposition 70 If F is a non-vanishing SLDFn, then for any c > 1 such that
�
(c�1)
F <1, we have:

�F (c) = (c� 1) lim
x!!F

Z !F

0

zc�2
�
SF (x+ z)

SF (x)

�
dz:

Proof. By Proposition 11 we haveZ !F

x

(y � x)c�1 fF (y)dy = (c� 1)
Z !F

x

(y � x)c�2 SF (y)dy

from which we �nd that

�F (c) = lim
x!!F

R !F
x

(y � x)c�1 fF (y)dy
SF (x)

= lim
x!!F

(c� 1)
R !F
x

(y � x)c�2 SF (y)dy
SF (x)

= (c� 1) lim
x!!F

Z !F

x

(y � x)c�2
�
SF (y)

SF (x)

�
dy

= (c� 1) lim
x!!F

Z !F

0

zc�2
�
SF (x+ z)

SF (x)

�
dz

as required.

Proposition 71 If F is a non-vanishing SLDFn with �F > 0 and is such that
for every c > 0 we have �(c)F <1 , then:

lim
x!1

f eF [c](x)

fF (x)
=
�F (c+ 1)

�
(c)
F

for every c > 0:

Proof. We have

f eF [c](x) =
c
R1
x
(y � x)c�1 fF (y)dy

�
(c)
F

which implies that

f eF [c](x)

fF (x)
=

c
R1
x
(y�x)c�1fF (y)dy

�
(c)
F

fF (x)

=

c
R1
x
(y�x)c�1fF (y)dy

SF (x)

�
(c)
F

fF (x)
SF (x)

=

c
R1
x
(y�x)c�1fF (y)dy

SF (x)

�
(c)
F �F (x)
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and recalling the de�nition �F (c) = lim
x!1

R1
x
(y�x)c�1fF (y)dy

SF (x)
, we �nd from Propo-

sition 67 that

lim
x!1

f eF (c)(x)

fF (x)
=

c

�
(c)
F

lim
x!1

R1
x
(y�x)c�1fF (y)dy

SF (x)

�F (x)

=
c

�
(c)
F

lim
x!1

R1
x
(y�x)c�1fF (y)dy

SF (x)

lim
x!1

�F (x)

=
c�F (c)

�
(c)
F �F

=
�F�F (c+ 1)

�
(c)
F �F

=
�F (c+ 1)

�
(c)
F

as required.

Proposition 72 If F is an SLDFn with �nite mean, then there exist unique
a; b; c 2 R [ f1g ; a � b � 0; 1 � c such that:

(a; c) =
n
x 2 R� fa; cg j there exists SLDFn G such that G = eF [x]o

(b; c) =
n
x 2 R� fb; cg j�(x)F <1

o
:

Proof. It is clear from the above that both sets are connected subsets of R
containing (0; 1) and that they share a right hand endpoint c. It is also clear
from what has been shown that a � b. The rest follows from Proposition 23.

Proposition 73 For any SLDFns F and G with �(n)F , �(n)G < 1 for every
n 2 N and �F �G > 0, letting B denote the beta function:

G = fFa[c]for some positive constants a; c 2 R
,

a =
�G
�F

and there exists c > 0 such that �kG�
(k)
G =

�kF (c+ k + 1)B(k + 1; c+ 1)�
(c+k)
F

�
(c)
F

for every k 2 N:

Proof. Suppose that G = fFa[c]for some positive constants a; c 2 R, then
G =

�fFa�[c] = � eF [c]�
a

) �G = �fFa[c] = �( eF [c])
a

= a� eF [c] = a�F

) a =
�G
�F

and we have for every k 2 N

�
(k)
G = �

(k)fFa[c] =
(c+ k + 1)B(k + 1; c+ 1)�

(c+k)
Fa

�
(c)
Fa
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=
ac(c+ k + 1)B(k + 1; c+ 1)�

(c+k)
F

ac+k�
(c)
F

=
(c+ k + 1)B(k + 1; c+ 1)�

(c+k)
F

ak�
(c)
F

=
(c+ k + 1)B(k + 1; c+ 1)�

(c+k)
F�

�G
�F

�k
�
(c)
F

) �kG�
(k)
G =

�kF (c+ k + 1)B(k + 1; c+ 1)�
(c+k)
F

�
(c)
F

for every k 2 N

which establishes the ) direction. Conversely, letting a = �G
�F
> 0 those same

equations imply that

�kG�
(k)
G =

�kF (c+ k + 1)B(k + 1; c+ 1)�
(c+k)
F

�
(c)
F

for every k 2 N

) �
(k)
G = �

(k)fFa[c] for every k 2 N
) LG = LfFa[c] ) G = fFa[c] = eF [c]a

and the proof is complete.
This suggests that one way to decompose the set of all SLDFns F with

0 < �F < 1 is into disjoint �invariant subsets of �coordinated half planes�of
the form

(0;1) eF [R] = �(a; c) ! fFa[c]ja 2 (0;1); c 2 R� :
Such a plane is akin to an orbit under the a¢ ne-like action of the direct product
(0;1)�R of the multiplicative group of positive reals by the additive group of
reals (subgroup of a Borel subgroup of SL2(R)). The above Proposition provides
one approach for determining when two SLDFns �lie on the same plane�. Note
that while there are in�nitely many equations to check, mathematical induction
should often apply to make this doable. Also, you may need to swap roles of F
and G to deal with the possibility of c < 0. From knowledge of moments �(c)F
as c varies for some empirical data, the above formulas show how to pick (a; c)
to match the �rst two moments (�rst solve for c to match the CV

2 (c+ 1)�
(c)
F �

(c+2)
F

(c+ 2)
�
�
(c+1)
F

�2 =
�
CV eF [c]

�2
+ 1 =

�
(2)eF [c]�

�
(1)eF [c]

�2
and then determine a as the scalar adjustment to match the mean). We will
soon see how to quantify the di¤erence in the thickness of the tail between any
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two elements of such a plane. We will see that for loss variables F and G in
di¤erent planes, we need only be able to compare one pair of representatives
from the two planes to be able to compare any two elements in the union of the
two planes, including, of course, F and G.
The real-valued mapping F 7! �F de�ned on the set of SLDFns is constant

on equivalence classes, i.e., orbits. The main result of this paper is to specify
the possible structures for eF [R] as they relate with the ultimate settlement rate
�F and other metrics for the �thickness�of the tail, as that concept is de�ned
later. This part of the paper concludes with some examples. In the next and
�nal part we will see that the structure of eF (n) becomes more �monotone�,
�smooth�, and �tail-like�as n increases and make mathematically precise what
that statement means.

5 Examples

This section presents some simple examples.

Example 74 Uniform density: let F be uniformly distributed on the �nite in-
terval [a; b] where 0 � a < b:The following are well-known and readily veri�ed

F (x) =

8<:
0 x � a
x�a
b�a a � x � b
1 b � x

9=;
fF (x) =

8<:
0 x < a
1
b�a a < x < b

0 b < x

9=;
SF (x) =

8<:
1 x � a
b�x
b�a a � x � b
0 b � x

9=;
�F (x) =

8<:
0 x < a
1
b�x a < x < b

1 x � b

9=;
�F = a !F = b

�F =
b+ a

2

MF (t) =
ebt � eat
(b� a) t t > 0

Propositions 25, 38, and 46 lead to

f eF (x) =
8<:

2
a+b x < a

2(b�x)
b2�a2 a � x � b
0 x > b

9=;
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S eF (x) =
8><>:

a+b�2x
a+b x � a
(b�x)2
b2�a2 a � x � b
0 x � b

9>=>;
M eF (t) = 2e

bt � eat � (b� a)t
(b2 � a2) t2 t > 0

Observe that

MF (t) =
ebt � eat
(b� a) t =

P1
k=0

(bt)k�(at)k
k!

(b� a) t

=
1X
k=0

�
bk � ak

�
tk�1

(b� a) k!

=
1X
k=1

�
b(k�1)+1�a(k�1)+1
((k�1)+1)(b�a)

�
tk�1

(k � 1)!

=
1X
k=0

�
bk+1�ak+1
(k+1)(b�a)

�
tk

k!

) �
(k)
F =

bk+1 � ak+1
(k + 1) (b� a) =

Pk
j=0 b

jak�j

k + 1

And so from Propositions 27 and 40

�
(k)eF =

�
(k+1)
F

(k + 1)�F
=

bk+2�ak+2
(k+2)(b�a)

(k + 1)
�
b+a
2

�
= 2

bk+2 � ak+2
(k + 2) (k + 1) (b2 � a2)

� eF [k] =
�
(k+1)
F

(k + 1)�
(k)
F

=

bk+2�ak+2
(k+2)(b�a)

(k + 1)
�
bk+1�ak+1
(k+1)(b�a)

� = bk+2 � ak+2
(k + 2) (bk+1 � ak+1) :

In particular

� eF = b3 � a3
3 (b2 � a2) :
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Notice that for a > 0

� eF [k] =
bk+2 � ak+2

(k + 2) (bk+1 � ak+1)

=
b
�
b
a

�k+1 � a
(k + 2)

��
b
a

�k+1 � 1�
=

b
��

b
a

�k+1 � 1�+ b� a
(k + 2)

��
b
a

�k+1 � 1�
=

b

k + 2
+

b� a
(k + 2)

��
b
a

�k+1 � 1�
) lim
k!1

� eF [k] = 0

and we see that as k increases, the LDFns eF [k] become concentrated at the
value 0. On the other hand, if b is the maximum loss, then S eF [k](b� �) > 0 for
every k 2 N; � > 0. More generally we have:

Example 75 Consider the case when the PDF has �nite support and is bounded
away from 0, i.e., there exist a; b; �; � 2 R with 0 � a < b and 0 < � � � such
that fF (x) = 0 for x =2 [a; b] and � � fF (x) � � x 2 [a; b]. In this case we have,
for c > 0

�
�
bc+1 � ac+1

�
c+ 1

= �

bZ
a

xcdx � �(c)F � �
bZ
a

xcdx =
�
�
bc+1 � ac+1

�
c+ 1

) � eF [c] =
�
(c+1)
F

(c+ 1)�
(c)
F

�
�(bc+2�ac+2)

c+2

(c+ 1)
�
�(bc+1�ac+1)

c+1

�
=

�

� (c+ 2)

bc+2 � ac+2
bc+1 � ac+1

=
�

� (c+ 2)

a+ b

a+ b

bc+2 � ac+2
bc+1 � ac+1

=
� (a+ b)

� (c+ 2)

bc+2 � ac+2
bc+2 � ac+2 + ab(bc � ac)

<
� (a+ b)

� (c+ 2)

bc+2 � ac+2
bc+2 � ac+2

=
� (a+ b)

� (c+ 2)

57

Grouping Loss Distributions by Tail Behavior Part II: Continuous Families

Casualty Actuarial Society E-Forum, Fall 2008 504



) lim
c!1

� eF [c] = 0

and again, as one would expect from the uniform density example, we see that
as c increases the LDFns eF [c] become concentrated at the value 0.
Example 76 Exponential Distribution: Let F have an exponential density with
mean � > 0. We have:

�F = �F = � CVF = 1 �F = 0; !F =1; �F =
1

�
= �F

�
(k)
F = �kk! LF (t) =

1

1 + �t
, t > � 1

�

f eF (x) = SF (x)

�
=

�
1

�

�
e�

x
� = fF (x)

) eF = F ) eF [n] = F for every n 2 N:

The converse also holds

eF = F

) g(F�) = eF� = F�:
Letting G = F�, we have G = eG and �G = �F� =

�F
� = 1. De�ne g(x) =

SG(�x) for x < 0, then

dg

dx
=

d (SG(�x))
dx

=
dSG
d(�x)

d(�x)
dx

= (�fG (�x)) (�1)

= fG (�x) = f eG (�x) = SG(�x)
�G

= SG(�x) = g(x)

dg

dx
= g(x); g(0) = 1) g(x) = ex

) SG(�y) = g(y) = ey

) SF (x) = SG 1
�

(x) = SG

�
x

�

�
= g

�
�x
�

�
= e�

x
�

and F has an exponential density with mean � > 0: More generally we have for
c > 0

SF (x) = e
� x
�

) S eF [c](x) =

R1
x
(y � x)c fF (y)dy

�
(c)
F
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=

R1
0
zcfF (z + x)dz

�
(c)
F

=

R1
0
zc e

� z+x
�

� dz

�
(c)
F

=
e�

x
�
R1
0
zc e

� z
�

� dz

�
(c)
F

=
e�

x
��

(c)
F

�
(c)
F

= e�
x
� = SF (x)

) eF [c] = F:
We have established

SF (x) = e
� x
� , eF [R] = fFg:

Note too that for any c � 0

F>c(x) = 1� SF (x+ c)
SF (c)

= 1� e
� x+c

�

e�
c
�
= 1� e

� c
� e�

x
�

e�
c
�

= 1� e�
x
� = F (x)

) F>c = F

with the converse again being true, i.e., this too characterizes the exponential
distribution. Indeed for any SLDFn G :

G>c = G for every c � 0

) !G = !G>1 = !G � 1) !G =1

) 1� SG(x) = G(x) = G>c(x) = 1�
SG(x+ c)

SG(c)
for every x; c � 0

) SG(x) =
SG(x+ c)

SG(c)
for every x; c � 0

) SG(x+ y) = SG(x)SG(y) for every x; y � 0

) fG(x+ y) = �
dSG(x+ y)

dy
= �dSG(x)SG(y)

dy

= SG(x)fG(y) + SG(y) � 0 = SG(x)fG(y) for every x; y � 0

) fG(x) = SG(x)fG(0)

) 1 =

1Z
0

fG(x)dx = fG(0)

1Z
0

SG(x)dx = fG(0)�G

fG(0) = SG(x)fG(0) =
1

�G

) fG(x) = SG(x)fG(0) =
SG(x)

�G
= f eG(x)

) G = eG) G = 1� e�
x
�G :
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Finally, we have as noted above

�F (c) = lim
x!1

R1
x
(y � x)c�1 e

� y
�

� dy

e�
x
�

= lim
x!1

Z 1

x

�1�c
�
y � x
�

�c�1
e�(

y�x
� ) dy

�

= lim
x!1

�1�c
Z 1

0

zc�1e�zdz

= lim
x!1

�1�c�(c) = �1�c�(c):

As a consequence of this example:

Proposition 77 Suppose F is an SLDFn with (�F ; !F ) = (0;1) ; �(k)F < M <

1 for every k 2 N; and for which eF [1] = lim
n!1

eF [n]exists as a pointwise limit
function and where the convergence is uniform on (0;1). Then for all x > 0 :eF [1](x) = 1� e��F x:

Proof. Let G = lim
n!1

eF [n], uniform convergence implies that G is an SLDFn

with �nite mean �G �M <1. We have

�G = lim
n!1

� eF [n] = lim
n!1

�F = �F

and eG = ^
lim
n!1

eF [n] = lim
n!1

geF [n] = lim
n!1

eF [n+1] = lim
n!1

eF [n] = G:
And so by the exponential example

G(x) = 1� e�
x
�G

) �F = �G =
1

�G
) G(x) = 1� e��F x

as required.
In practice, one would expect that far enough into the tail of a distribution

the hazard function �F would be bounded and stabilized at least to being either
nonincreasing or nondecreasing. And in that event, the hazard functions of the
higher coderived distributions eF [n] are squeezed to the constant �F . Accord-
ingly, when �F > 0, as n increases we would expect the eF [n] to converge to the
exponential density of mean � = 1

�F
. This points toward a special role for the

exponential density when �tting the tail of a loss distribution. More precisely,
we have:

Proposition 78 Suppose F is an SLDFn with �F either nonincreasing or non-
decreasing and with 0 < �F <1. Then for any x > 0 :eF [1](x) = lim

n!1
eF [n](x) = 1� e��F x:
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Proof. By Proposition 33, the assumption 0 < �F < 1 assures all moments
are �nite. Since �F is either nondecreasing or nonincreasing, Propositions 31

and 32 imply that either � � e� � ee� � :::or � � e� � ee� � :::. In either event, we
have pointwise convergence on (0; !F ) = (0;1) of the hazard function sequence
�; e�; ee�; ::: to a �invariant hazard function. As in the proof of the previous

Proposition, this entails uniform convergence of �; e�; ee�; ::: to the constant �F on
the interval [x;1), which then entails that eF [n] (y) converge to 1 � e��F y as
n!1 for any y � x, and the result follows.
Similarly, recall from Proposition 37 that lim

x;c!!F

S gF>c (x)
SF>c (x)

= 1 where F is any

SLDFn with �nite mean and 0 < �F <1. Then the idea is again that the �far
tail�of F is captured as G = F>c for c large and where we have

lim
x!!G

S eG(x)
SG(x)

= 1

) G t eG t 1� e��Gx = 1� e��(F>c)x = 1� e��F x:
This suggests that quite generally, when 0 < �F ; �F < 1, the exponential
density of mean 1

�F
appears as a natural way to model the structure of the far

tail of the distribution. We will see in the next section that analytic properties of
exponentials, and more generally mixed exponentials, again make them a natural
choice for modeling tail behavior. This strengthens the theoretical justi�cation
for the methodology used to �t tails when calculating ELFs in [2] which also
derives some general formulas for splicing tails on loss distributions.

Example 79 Pareto Density: Let F = �(�; �) have the Pareto density with
parameters � and � :

F (x) = �(�; �;x) = 1�
�

�

x+ �

��
!F =1

SF (x) =

�
�

x+ �

��

fF (x) =
���

(x+ �)
�+1 �F (x) =

���

(x+�)�+1�
�

x+�

�� =
�

x+ �
�F = 0

k 2 N and k < �) �
(k)
F =

�kk!

(�� 1) � � � (�� k)

Fa(x) = F (ax) = 1�
�

�

ax+ �

��
= 1�

 
�
a

x+ �
a

!�
= �(�;

�

a
;x)
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F>c(x) = 1� SF (x+ c)
SF (c)

= 1�

�
�

x+c+�

��
�

�
c+�

��
= 1�

�
� + c

x+ (� + c)

��
= �(�; � + c;x)

) �(�; �)>c = �(�; � + c)

f eF (x) =
�

�
x+�

��
�

(��1)
=

(�� 1) ���1

(x+ �)
(��1)+1 = f�(��1;�)(x)

) e�(�; �) = �(�� 1; �)
) for every k 2 Z, e�[k](�; �) = � �(�� k; �) k < �

@ k � �

�
:

More generally we have for c > 0

S eF [c](x) =

R1
x
(y � x)c fF (y)dyR1
0
ycfF (y)dy

=

R1
0
zcff (z + x)dzR1
0
ycfF (y)dy

=

R1
0
zc ���

(z+x+�)�+1
dzR1

0
yc ���

(y+�)�+1
dy

=

�
��

(x+�)�

� R1
0
zc �(x+�)�

(z+x+�)�+1
dz

�c�(c+1)�(��c)
�(�)

=

�
�

x+�

��
(x+�)c�(c+1)�(��c)

�(�)

�c�(c+1)�(��c)
�(�)

=

�
�

x+ �

���c

) for every c 2 R, e�(c)(�; �) = � �(�� c; �) c < �
Does not exist c � �

�
and we see that in this case the natural parametrization of the orbit eF [R]relates
linearly with the � parameter of the usual arithmetic formula and with an orbit
corresponding to a �xed value of the � parameter

eF [R] =
n eF [r]jr 2 R such that �(r)F <1

o
= f�(�� r; �)jr 2 (0; �)g
= f�(s; �)js > 0g :
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Note too that for a > 0
F (x) = �(�; �;x)

) Fa(x) = F (ax) = 1�
�

�

ax+ �

��
= 1�

 
�
a

x+ �
a

!�
= �

�
�;
�

a
;x

�

) �(�; �)a = �

�
�;
�

a

�
and we see that the �half plane� (0;1) eF [R] �invariant subset here more resem-
bles a �quadrant�and corresponds to the Pareto density �family�of distributions

(0;1)�̂(�; �)
[R]
= (0;1) eF [R] = f�(s; t)js > 0; t > 0g :

Example 80 Lognormal Density: Let F = �(�; �) have the Lognormal density
with F (x) = �

�
ln x��
�

�
. In this case:

!F =1; �F = 0 and �(n)F = en�+
n2�2

2 <1 for every n 2 N

) eF [n] exists for every n 2 N:
We see from Proposition 40 that

� eF [n] =
�
(n+1)
F

(n+ 1)�
(n)
F

=
e(n+1)�+

(n+1)2�2

2

(n+ 1) en�+
n2�2

2

=
e�+

(2n+1)�2

2

n+ 1

) lim
n!1

� eF [n] = 0:

Also, the mode of F is e���
2

> 0) @ eF [�1].
Perhaps the most useful example for the practical application of these ideas

is:

Example 81 Mixed Exponential Distribution: Let F be a mixture of exponen-
tial densities. More precisely, for some m, 1 � m � 1; and for any real weights
wi > 0 with 1 =

Pm
i=1 wi and parameters �i > 0 ordered so that �i < �i+1 and

with
Pm

i=1 wi�i < 1. Then consider the weighted mixture SLDFn variable F
= j(m; hwii ; h�ii)

j(m; hwii ; h�ii ;x) = F (x) = 1�
mX
i=1

wie
� x
�i :

SF (x) =
mX
i=1

wie
� x
�i :
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Then we have, by Proposition 49

�F =
mX
i=1

wi�i <1

S eF (x) =

Pm
i=1 wi�ie

� x
�i

�F

and generally

S eF [n](x) =

Pm
i=1 wi�

n
i e
� x
�iPm

i=1 wi�
n
i

for every n 2 Z such that
mX
i=1

wi�
n
i <1:

Proposition 9 can be used to verify that �F is decreasing provided m > 1. Indeed

m > 1)

1

�1
=
1

�1

SF (x)

SF (x)
=
1

�1

Pm
i=1 wie

� x
�i

SF (x)

=

Pm
i=1

wi
�1
e
� x
�i

SF (x)
>

Pm
i=1

wi
�i
e
� x
�i

SF (x)
=
fF (x)

SF (x)
= �F (x)

>

Pm
i=1

wi
�m
e
� x
�i

SF (x)
=

1

�m

Pm
i=1 wie

� x
�i

SF (x)
=

1

�m

SF (x)

SF (x)
=

1

�m

) 1

�1
> �F (x) >

1

�m

and similarly we �nd that

� df
dx

S(x)
=

Pm
i=1

wi
�2i
e
� x
�i

S(x)
>

1
�1

Pm
i=1

wi
�i
e
� x
�i

S(x)
=
1

�1

f(x)

S(x)
=
1

�1
�(x) > �(x)2

) 0 > �(x)2 +
df
dx

S(x)
=
d�

dx

) �F is decreasing

as asserted. Note also that Corollary 51 implies that the CVF � 1 for any mixed
exponential. In fact

m > 1) CVF > 1) � eF [n] < � eF [n+1] for every n 2 Z:

When 1 < m <1 we clearly have

mX
i=1

wi�
n
i <1 for every n 2 Z
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and it follows that eF [R] �= R as ordered sets, with no �rst or last element. From
Proposition 49 we see that

lim
n!1

� eF [n] = �m and lim
n!1

� eF [�n] = �1

and we see that for mixed exponentials there are readily identi�ed limiting dis-
tributions equal to exponential distributions

^j(m; hwii ; h�ii)
[1]

= lim
n!1

^j(m; hwii ; h�ii)
[n]

= j(1; 1; �m)

^j(m; hwii ; h�ii)
[�1]

= lim
n!1

^j(m; hwii ; h�ii)
[�n]

= j(1; 1; �1)

This also illustrates what was just established more generally for the case of
decreasing hazard functions.

The next example generalizes the mixed exponential and illustrates a con-
struction that is �dual�to that of the coderived distribution:

Example 82 Let G = G(w) be a (not necessarily continuous) LDFn with PDF

g(w) =
dG

dw

and �nite mean �G <1. As above, there is the related LDFn bG with PDF

bg(w) = wg(w)

�G

bG(w) = Z w

0

bg(z)dz = R w0 zg(z)dz
�G

which conforms with our earlier notation and as before we set

bG = bG[1]
bG[k] = \bG[k�1] for k 2 N and � bG[k�1] <1

� bG[k] =
�
(k+1)
G

�
(k)
G

:

This relates with the mixed exponential coderived distribution via a Laplace-like
transformation. De�ne

LG(x) =

Z 1

0

e�xwdG =

Z 1

0

e�xwg(w)dw

) LG(0) =

Z 1

0

g(w)dw = 1
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and the function LG resembles a survival function of a mixed exponential dis-
tribution. We set

L�(G) = 1� LG

L�(G)(x) = 1�
Z 1

0

e�xwg(w)dw

which associates with the LDFn G another LDFn F = L�(G). Now observe
that, di¤erentiating under the integral

fF (x) =
dL�(G)
dx

= �
Z 1

0

d

dx

�
e�xw

�
g(w)dw

= ��G
�G

Z 1

0

�
e�xw

�
(�w) g(w)dw

= �G

Z 1

0

e�xwbg(w)dw
= �G

�
1� L�( bG)(x)� :

Let H = L�( bG), we have for the PDF of eH = L̂�( bG)
f eH =

SH
�H

=
1�H
�H

=
�G (1�H)
�G�H

=
�G

�
1� L�( bG)�
�G�H

=
fF
�G�H

:

Now since both f eH and fF are PDFs of the LDFns eF and L( bG), respectively, it
follows that

1 =

1Z
0

f eH(x)dx =
1Z
0

fF (x)

�G�H
dx =

1Z
0

fF (x)dx

�G�H
=

1

�G�H

) �G =
1

�H
=

1

�L�( bG) ) �L�( bG) = 1

�G

) f eH = fF
) L�(G) = F = eH = L̂�( bG):
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This may be summarized in the commutative diagram:

G
L��! F

^ # "�bG L��! H

which illustrates that the rather trivially �derived� construction G ! bG of the
time-biased distribution is �dual�under L� to determining a coderived or equi-
librium distribution or equivalently to determining the excess ratio curve. We
have

L�( bG) = ^
L�
�bbG� = ^L�

� bG[2]�

) L�(G) = L̂�( bG) = ^ 
^L�
� bG[2]�! = ^L�

� bG[2]�[2]
and by induction

L�(G) = ^L�( bG[1])[1] = ^L�
� bG[2]�[2] = ::: = ^L�

� bG[n]�[n] for every n 2 N
) L̂�(G)

[�n]
= L�

� bG[n]� for every n 2 Z:

Example 83 Gamma Density: Let F = �(�; �) have the Gamma density:

fF (x) =

�
x
�

��
e�

x
�

x� (�)

�
(k)
F = �k (�+ k � 1) � � �� for � � < k 2 Z:

We see from Proposition 40 that

� eF [n] =
�
(n+1)
F

(n+ 1)�
(n)
F

=
�n+1 (�+ n) � � ��

(n+ 1) �n (�+ n� 1) � � �� =
� (�+ n)

n+ 1

) lim
n!1

� eF [n] = �:

Letting
G = eF [1] = lim

n!1
eF [n]

we have eG = G and �G = � ) G = j(1; h1i ; h�i)
and the limiting distribution is independent of � and is recognized as exponential
of mean �. Finally, observe that

L�(F )(x) = 1�
Z 1

0

e�xwfF (w)dw = 1�
Z 1

0

e�xw
�
w
�

��
e�

w
�

w� (�)
dw
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= 1�
Z 1

0

w��1e�
w
� �xw

��� (�)
dw = 1�

Z 1

0

w��1e�w(x+
1
� )

��� (�)
dw

= 1�
Z 1

0

�
u

x+ 1
�

���1
e�u�

x+ 1
�

�
��� (�)

du where u = w

�
x+

1

�

�

= 1�
�
x+ 1

�

���
��

Z 1

0

u��1e�u

� (�)
du

= 1� 1�
x+ 1

�

��
��
= 1�

�
1

�x+ 1

��
= 1�

� 1
�

x+ 1
�

��
= �(�;

1

�
;x)

and we have that L�(F ) = �(�; 1� ). And so for � > 1

f bF (x) = xfF (x)

�F
=

�
x
�

��
e�

x
�

��� (�)
=

�
x
�

��+1
e�

x
�

x�(�+ 1)
= f�(�+1;�)(x)

) bF = �(�+ 1; �)
�(�;

1

�
) = L�(F ) = L̂�( bF ) = ^L�(�(�+ 1; �)) =

^
�(�+ 1;

1

�
)

as had already been observed in Example 79 above.

Example 84 Weibull: Let F =W (� ; �) have the Weibull density:

F (x) =W (� ; �;x) = 1� e�( x� )
�

!F =1

fF (x) =
�
�
x
�

��
e�(

x
� )

�

x

�F (x) =
fF (x)

SF (x)
=
�
�
x
�

��
e�(

x
� )

�

xe�(
x
� )

�

=
�

x

�x
�

��
=
�x��1

��

�F =

8<: 0 � < 1
1
� � = 1
1 � > 1

9=;
�
(k)
F = �k�

�
1 +

k

�

�
, k > �� :
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Recall the de�nition of the incomplete gamma function:

� (�;x) =

Z x

0

t��1e�t

� (�)
dt

and de�ne

G(x) = 1� �
�
1 +

1

�
;
�x
�

���
+

xe�(
x
� )

�

��
�
1 + 1

�

�
then

dG

dx
= �
��
�
x
�

��(1+ 1
� ) e�(

x
� )

�

x�
�
1 + 1

�

� +
�x �(

x
� )

�
e
�( x� )

�

x + e�(
x
� )

�

��
�
1 + 1

�

�
=
�
�
x
�

��+1
e�(

x
� )

�

x�
�
1 + 1

�

� +
��
�
x
�

��
e�(

x
� )

�

+ e�(
x
� )

�

��
�
1 + 1

�

�
=
�
�
x
�

��
e�(

x
� )

�

��
�
1 + 1

�

� +
��
�
x
�

��
e�(

x
� )

�

+ e�(
x
� )

�

��
�
1 + 1

�

�
=
�
�
x
�

��
e�(

x
� )

�

� �
�
x
�

��
e�(

x
� )

�

+ e�(
x
� )

�

��
�
1 + 1

�

�
=

e�(
x
� )

�

��
�
1 + 1

�

� = SF (x)

�F
= f eF (x)

) G = eF = Ŵ (� ; �):
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Abstract: This three part paper addresses the task of modelling the right
hand tail of a severity distribution. In Part I the excess ratio function is
used to de�ne a discrete sequence of loss distributions with related moments and
similar tail behavior. Part II extends this to continuous one-parameter families
and provides some examples. Part III provides the main result: that under
some reasonable conditions, each such family has a limiting distribution which
is exponential. The paper then exploits this to 1) group loss distributions based
on tail behavior and 2) promote the choice of (mixed) exponentials to model tail
behavior.

Remark 85 This is the �nal part of a three part paper. We assume familiarity
with Parts I and II and continue our numbering from those earlier parts.

6 Orbits and Tail Behavior

We have seen that the orbit eF [R] of an SLDFn F says something about the
existence of moments and the �invariant �F . In this section we investigate
the structural possibilities for the orbits eF [R] and relate it to analytic behavior
naturally associated with tail behavior. We make the following:

De�nition 86 A C1 function T : [0;1) ! R is monotone of degree n
provided

(�1)k d
kT

dxk
(x) � 0 for k = 0; 1; 2; :::; n and for every x 2 (0;1):

T is completely monotone provided T is monotone of degree n for every
n 2 N:
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Note that while the concept of monotone of degree n is peculiar to this paper,
this is the standard de�nition of completely monotone (sometimes called totally
monotone). As an immediate consequence of this de�nition we have:

Proposition 87 For any SLDFn F :

eF [�n] exists for n 2 N, SF is monotone of degree n, S eF is monotone of degree n+1eF [�n] exists for every n 2 N , SF is completely monotone.

Proof. Clear from the de�nition of the backward coderived LDFn.

Example 88 The survival function SF (x) =
Pm

i=1 wie
� x
�i for a mixture of

exponentials is completely monotone.

Proposition 89 If T (x) =
R1
0
e�xtg(t)dt for some integrable function g : (0;1)!

[0;1), then T is completely monotone:

Proof. This follows from di¤erentiation under the integral

dnT

dxn
(x) =

dn
R1
0
e�xtg(t)dt

dxn
=

Z 1

0

dng(t)e�xt

dxn
dt

=

Z 1

0

g(t)
dne�xt

dxn
dt = (�1)n

Z 1

0

tng(t)e�xtdt

) (�1)n d
nT

dxn
(x) =

Z 1

0

tng(t)e�xtdt � 0

completing the proof.

Remark 90 A theorem of Bernstein establishes the converse; and we will soon
make use of that theorem.

Example 91 Consider the survival function SF (x) = e�
p
x. In this case we

have ([1], #29.3.83, p. 1026)

SF (x) = e
�
p
x =

Z 1

0

e�xtg(t)dt where g(t) =
e�

1
4t

2
p
�t3

and so SF is completely monotone. Observe that we also have

fF (x) = �
dSF
dx

(x) =
e�

p
x

2
p
x

�F (x) =
1

2
p
x

) �F = 0:
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Note too that the SLDFn F has all �nite moments by Proposition 40, since

�
(n)
F = n

Z 1

0

xn�1SF (x)dx = n

Z 1

0

xn�1e�
p
xdx

= n

Z 1

0

u2n�2e�u2udu where u =
p
x; x = u2; dx = 2udu

= 2n

Z 1

0

u2n�1e�udu = 2n (2n� 1)! <1:

The following generalizes an earlier observation on mixed exponentials:

Proposition 92 For any SLDFn F , if the survival function SF (x) has the form

SF (x) =

Z 1

0

e�xtg(t)dt

for some integrable function g : (0;1)! [0;1), then CVF � 1:

Proof. Note �rst that

1 = SF (0) =

Z 1

0

g(t)dt:

and so by Schwartz�Z 1

0

g(t)

t
dt

�2
=

 Z 1

0

p
g(t)

p
g(t)

t
dt

!2

�
Z 1

0

�p
g(t)

�2
dt

Z 1

0

 p
g(t)

t

!2
dt

=

Z 1

0

g(t)dt

Z 1

0

g(t)

t2
dt =

Z 1

0

g(t)

t2
dt:

Observe next that for any �xed t > 0, from what has been observed for the
exponential distribution of parameter � = 1

t (example 76)

1 =

Z 1

0

e�
x
�

�
dx = t

Z 1

0

e�xtdx

)
Z 1

0

e�xtdx =
1

t

� =

Z 1

0

x
e�

x
�

�
dx = t

Z 1

0

xe�xtdx

)
Z 1

0

xe�xtdx =
�

t
=
1

t2
:
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Now we compute, using Fubini

�F =

Z 1

0

SF (x)dx =

Z 1

0

Z 1

0

e�xtg(t)dtdx

=

Z 1

0

Z 1

0

e�xtg(t)dxdt =

Z 1

0

g(t)

Z 1

0

e�xtdxdt

=

Z 1

0

g(t)

t
dt:

Similarly, from Proposition 27

�
(2)
F = 2

Z 1

0

xSF (x)dx = 2

Z 1

0

x

Z 1

0

e�xtg(t)dtdx

= 2

Z 1

0

g(t)

Z 1

0

xe�xtdxdt = 2

Z 1

0

g(t)

t2
dt:

Now it follows that
�2F + �

2
F = �

(2)
F

) CV 2F + 1 =
�2F
�2F

+ 1 =
�
(2)
F

�2F

=
2
R1
0

g(t)
t2 dt�R1

0
g(t)
t dt

�2 � 2
) CV 2F � 1) CVF � 1

as required.
We noted in the examples that the �xed points under the coderived loss

construction are exactly the exponential densities. In fact, by a theorem of Serge
Bernstein, we have the following characterization of the exponential survival
curve that we will �nd useful and that may even be of some independent interest:

Proposition 93 For any C1 function T : (0;1)! R:8>>>>>>>>>><>>>>>>>>>>:

T is completely monotone

1 =
R1
0
T (x)dx

There exists some m 2 N such that
(�1)m dmT

dxm (x) = T (x) for every x 2 (0;1)

9>>>>>>>>>>=>>>>>>>>>>;
, T (x) = e�x:

Proof. () Clear.
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)) We have already noted that the case m = 1 holds, so assume m > 1.
Letting f = �dTdx (x) we clearly have

1 =

Z 1

0

T (x)dx) lim
x!1

T (x) = 0 and so f(x) � 0 with 1 =
Z 1

0

f(x)dx

and f = fF is the PDF for an SLDFn F for which T = SF : As per Proposi-
tion 87, since T = SF is completely monotone we have the series of backward
coderived loss variables

S eF [�1](x) =
f(x)

f(0)
=
�dTdx (x)
�dTdx (0)

=
dT
dx (x)
dT
dx (0)

S eF [�2](x) =
� d
dx

�
S eF [�1]

�
(x)

� d
dx

�
S eF [�1]

�
(0)

=
d2T
dx2 (x)
d2T
dx2 (0)

...

S eF [�k](x) =
� d
dx

�
S eF [�k+1]

�
(x)

� d
dx

�
S eF [�k+1]

�
(0)

=
dkT
dxk

(x)
dkT
dxk

(0)

Let G = eF [�m]. We have
SG = S eF [�m] =

dmT
dxm

dmT
dxm (0)

=
T

T (0)
= SF

) G = F

) eG[k] = ^� eF [�m]�[k] = eF [k�m]; for every k 2 Z:
Now Bernstein�s theorem implies that since T; dTdx ;

d2T
dx2 ,...are all completely monotone,

we can represent each of the S eF [k] as a Laplace transform, as in Proposition 92
from which we conclude from Proposition 92 that CV eF [k] � 1 for every k 2 Z:
But then by Proposition 46

�F � � eF � � eF [2] � ::: � � eF [m] = �F

) � eF [k] = �F =

Z 1

0

T (x)dx = 1; for every k 2 Z:

We claim that �(k)F = k! for every k 2 N. We verify this by induction. Indeed we
just observed the case n = 1 and by Proposition 40 and the induction hypothesis

1 = � eF [k] =
�
(k+1)
F

(k + 1)�
(k)
F

=
�
(k+1)
F

(k + 1) k!
=
�
(k+1)
F

(k + 1)!

) �
(k+1)
F = (k + 1)!:
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It only remains to observe that

�
(k)
F = k! for every k 2 N [ f0g ) LF (t) =

1

1 + t
= Lj(1;h1i;h1i)(t)

) F = j(1; h1i ; h1i)

) T = SF = Sj(1;h1i;h1i) = e
�x

completing the proof.

Lemma 94 If c > 0 is a �xed irrational number and g : [0;1) ! R is a con-
tinuous function satisfying

g(n) � g(n+ 1) for every n 2 N and g(x) = g(x+ c) for every x 2 [0;1);

then g is constant, i.e., g(x) = g(0) for every x 2 [0;1):

Proof. Consider the equivalence relation � on [0;1) de�ned by

x � y , x� y
c
2 Z:

Note that because g(x) = g(x + c) for every x 2 [0;1), the function g is a
continuous function well-de�ned on the equivalence classes of [0;1). Note that

x � x1 and y � y1

) x� x1
c

= z 2 Z and y � y1
c

= w 2 Z

but then
(x+ y)� (x1 + y1)

c
= z + w 2 Z

) x+ y � x1 + y1

and
(x� y)� (x1 � y1)

c
= z � w 2 Z

) x� y � x1 � y1:

We claim that the sequence A = fnjn 2 N; n 2 [0; c)g of equivalence class rep-
resentatives is dense in [0; c). Assume given d 2 [0; c) and 0 < �1 < c� d. We
have

for every n;m 2 N; n � m 6= n) 0 6= m� n
c

= z 2 Z) c =
m� n
z

2 Q, a contradiction)(

) sequence A has distinct numbers in compact set [0; c]

) A has a cluster point.

Since there is a cluster point and the elements of A are distinct, it follows that

there exist m;n 2 N such that m > n; m; n 2 [0; c) and jm� nj < �1
4
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) there exists l 2 N such that
lX

k=1

(m� n) 2 (d� �1; d+ �1) � [0; c)

but
lX

k=1

(m� n) =
lX

k=1

(m� n) = l (m� n)

l (m� n) 2 N) � 6= A \ (d� �1; d+ �1) \ [0; c)

and so A is dense in [0; c) as claimed. Now since g is continuous

A dense in [0; c)

) g(A) dense in fg (x) jx 2 [0; c)g = fg (x) jx 2 [0;1)g = Im(g):

Note that since g is continuous on the compact set [0; c], we know that g has a
maximum. But then by our assumptions, the sequence fg(n)jn 2 Ng is nonde-
creasing and bounded above. So we can set

lim
n!1

g(n) = � <1:

Now assume given any �2 > 0, it follows that

there exists M 2 N such that g(n) 2 (�� �2; �] for every n > M

g periodic) g(n) 2 (�� �2; �] for every n 2 N

fg(n)jn 2 Ng dense in Im(g)) Im(g) � (�� �2; �]:

But since �2 > 0, was arbitrary, we have

fg(n)jn 2 Ng �
\
n2N

(�� 1
n
; �] = [�; �]

fg(n)jn 2 Ng dense in Im(g)) Im(g) � fg(n)jn 2 Ng � [�; �] = [�; �]

Im(g) � [�; �] =) g(x) = � = g(0) for every x 2 [0;1)

and the proof is complete.

Theorem 95 For any SLDFn F with �nite mean, the following are equivalent:

1. there exists r 2 R; r > 0 such that F = eF [r]
2. SF (x) = e

� x
�

3. eF [R] = fFg
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Proof. Suppose F = eF [r] for some r > 0 We �rst claim that !F =1. Indeed,
if !F = b <1. then clearly �(k)F <1 for every k 2 N and by the intermediate
value theorem

there exist ak 2 (0; b] such that a1 = �F = �
(1)
F

and �(k+1)F =

bZ
0

xk+1fF (x)dx =

bZ
0

x
�
xkfF (x)

�
dx

= ak

bZ
0

xkfF (x)dx = ak�
(k)
F

) � eF [k] =
�
(k+1)
F

(k + 1)�
(k)
F

=
ak�

(k)
F

(k + 1)�
(k)
F

=
ak

(k + 1)
� b

(k + 1)

) lim
k!1

� eF [k] = 0

But F = eF [r] ) � eF [kr] = �F > 0 for all k 2 N. Since the function m(c) = � eF [c]

is evidently continuous, we have

0 = lim
k!1

� eF [k] = lim
c!1

� eF [c]

= lim
k!1

� eF [kr] = lim
k!1

�F = �F > 0 )(=

This contradiction implies that !F =1 and SF : (0;1)! R is a C1 function.
We now prove that SF (x) = e

� x
� . Consider �rst the case r = m 2 N. Assume

that F = eF [R] and let G = F�: Then by Proposition 48 and the fact that
eG[m] = g(F�)[m] = � eF [m]�

�
= F� = G

) eG[�m] = G
) SG = S eG[�m] :

Since SG is clearly completely monotone, it follows from the same CV argument
as in the proof of Proposition 93 that

1 = �G = � eG[k] for every k 2 Z
) f eG[k](0) = 1 for every k 2 Z

) SG = S eG[�m] =
(�1)m dmSG

dxm

f eG[�m+1](0)
= (�1)m d

mSG
dxm

:
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and so the characterization of that lemma implies that

SG(y) = e�y

F = G 1
�

) SF (x) = SG 1
�

(x) = SG

�
x

�

�
= e�

y
� :

This completes the proof for m 2 N. Consider next the case r 2 Q let r = n
m ;

with m;n 2 N.and F = eF [r] We claim that

F = eF [ knm ] for every k 2 N:
This is a simple veri�cation by induction, for k = 1 this reduces to F = eF [ nm ],
which is true, and then

F = eF [ knm ]
) eF [ (k+1)nm ] = eF [ (k+1)nm ] = eF [ knm + n

m ] = eF [ knm +r]

= êF [ knm ][r] = eF [r] = F
completing the induction. But then it follows that

F = eF [mn
m ] = eF [n] for n 2 N) SF (x) = e

� x
�

by the case r = m 2 N, completing the proof in the rational case. Finally,
consider next the case r 2 R with r irrational. As above, the assumptions imply
that we can represent each of the S eF [c] as a Laplace transform, as in Proposition
92 from which we conclude that CV eF [c] � 1 for every c 2 R We clearly have
� eF [c] <1 for every c � 0 so we de�ne

g(c) = � eF [c] for c � 0:

Then g is continuous on [0;1) and by Proposition 46

g(c) = � eF [c] � �geF [c]
= � eF [c+1] = g(c+ 1)

g(c+ r) = � eF [r+c] = �geF [r]
[c] = � eF [c] = g(c):

And so the lemma implies that

� eF [c] = g(c) = g(0) = � eF [0] = �F = � for every c � 0:

We claim that �(k)F = k!�k for every k 2 N. We verify this by induction. Indeed
the case n = 1 being apparent. By Proposition 40 and the induction hypothesis

� = � eF [k] =
�
(k+1)
F

(k + 1)�
(k)
F

=
�
(k+1)
F

(k + 1) k!�k
=

�
(k+1)
F

(k + 1)!�k
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) (k + 1)!�k+1 = �
(k+1)
F

completing the induction. It only remains to observe that

�
(k)
F = k!�k for every k 2 N [ f0g ) LF (t) = Lj(1;h1i;h�i)(t)

) F = j(1; h1i ; h�i)

) T (x) = SF (x) = Sj(1;h1i;h�i)(x) = e
� x
� :

We have shown�
there exists some r 2 R; r > 0 such that F = eF [r]�) �

SF (x) = e
� x
�

�
but clearly �

SF (x) = e
� x
�

�
)
� eF [R] = fFg�

and
� eF [R] = fFg�) �

there exists r 2 R; r > 0 such that F = eF [r]�
and the result follows.
We observe that, except when eF [R] = fFg is the singleton orbit of an ex-

ponential, once we have selected an SLDFn G 2 eF [R] the elements H 2 eF [R]
are uniquely expressible in the form H = eG[c] in the sense c = c(H) is uniquely
determined. It is most natural to just take G = F . This enables us to describe
the possibilities for the structure of the orbit eF [R] as related to a subset of R,
an interval actually, via the bijection


: eF [R] ! 

� eF [R]� � R where 


� eF [c]� = c 2 R:
In e¤ect, this is a canonical 1-dimensional continuous parametrization of the
orbits eF [R] of non-exponential SLDFns F: We summarize this observation in:
Proposition 96 For any SLDFn F 6= j(1; h1i ; h�F i) with �nite mean, [0; 1] �


� eF [R]� and the possibilities for 
� eF [R]� and �F are:
1. there exist c; d 2 R with 


� eF [R]� 2 f[c; ; d]; [c; d); (c; d]; (c; d)g ; �F = 0
,there exists n 2 N such that �(n)F = 1 and SF is not completely
monotone.

2. there exists c 2 R with 

� eF [R]� 2 f[c;1); (c;1)g ; c � 0; �F 2 [0;1]

, �
(n)
F <1 for every n 2 N and SF is not completely monotone.

3. there exists d 2 R with 

� eF [R]� 2 f(�1; d]; (�1; d)g ; d > 0; �F = 0

,there exists n 2 N such that �(n)F =1 and SF is completely monotone.
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4. 

� eF [R]� = (�1;1); �F 2 (0;1)
, �

(n)
F <1 for every n 2 N and SF is completely monotone.

With all possibilities actually occurring. Indeed we have:

1. Let F (x) = x2

1+x2 . We have

SF (x) =
1

1 + x2

�F =
�

2
<1

fF (x) =
2x

(1 + x2)
2

�
(a)
F = 2

1Z
0

xa+1

x4 + 2x2 + 1
dx <1

) a+ 1 < 3) a < 2

) d � 2
dfF
dx

= 2
1� 3x2

(1 + x2)
3 ) there exists a mode at

1p
3
> 0

) c > �1:

2. Lognormal or any loss distribution with �nite support and mode > 0:

3. Pareto.

4. Mixed Exponential.

The following is also clear from the above:

Proposition 97 

� eF [R]� = (1;1) ,there exists LDFn G with F = L�(G)

and �(n)G <1 for every n 2 N:

7 Ordering Loss Distributions

In this section we introduce a way to order SLDFns based on di¤erences be-
tween hazard rate functions. We then relate this with the orbit structure of the
previous section.

Proposition 98 For any SLDFns F and G with !F = !G :

lim
x!!F

fF (x)

fG(x)
= lim

x!!F

SF (x)

SG(x)
= e

R !F
0 (�G��F )(t)dt
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Proof. All but the last equality is clear from l�Hbopital, but then
lim
x!!F

SF (x)

SG(x)
= lim

x!!F

e�
R x
0
�F (t)dt

e�
R x
0
�G(t)dt

= lim
x!!F

e�
R x
0
�F (t)dt+

R x
0
�G(t)dt

= lim
x!!F

e
R x
0
(�G��F )(t)dt

= e
lim

x!!F

R x
0
(�G��F )(t)dt

= e
R !F
0 (�G��F )(t)dt

as required.

De�nition 99 For two SLDFns F and G set

�(F;G) = e
RMin(!F ;!G)
0 (�G��F )(t)dt:

Provided �(F;G) exists, de�ne the relations thicker than and strictly thicker
than by

F � G, !F � !G or (!F = !G and �(F;G) � 1)
F � G, !F > !G or (!F = !G and �(F;G) > 1) :

Remark 100 Note that

!F = !G =1 and �F < �G )
Z !F

0

(�G � �F ) (t)dt =1) �(F;G) = e1 =1 > 1

) F � G.

Example 101 Let F (x) = 1� (x+ 1) e�x. We have

SF (x) = (x+ 1) e
�x

fF (x) = �
dSF
dx

(x) = �
�
(x+ 1) e�x (�1) + e�x

�
= xe�x

�F (x) =
fF (x)

SF (x)
=

xe�x

(x+ 1) e�x
=

x

x+ 1
) �F = 1

�F =

Z 1

0

xfF (x)dx =

Z 1

0

x2e�xdx = 2

f eF (x) = SF (x)

�F
=
(x+ 1) e�x

2

�(F; eF ) = lim
x!1

fF (x)

f eF (x) = lim
x!1

xe�x

(x+1)e�x

2

= 2 lim
x!1

x

x+ 1
= 2 > 1

) F � eF :
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Example 102 Let F (x) = 1� e�x

x+1 . We have

SF (x) =
e�x

x+ 1

fF (x) = �
dSF
dx

(x) = �
 
(x+ 1) e�x (�1)� e�x

(x+ 1)
2

!
=
(x+ 2) e�x

(x+ 1)
2

�F (x) =
fF (x)

SF (x)
=

(x+2)e�x

(x+1)2

e�x

x+1

=
x+ 2

x+ 1
) �F = 1

�F =

Z 1

0

SF (x)dx =

Z 1

0

e�x

x+ 1
dx =

Z 1

1

e�u+1

u
du

= e

Z 1

1

e�u

u
du < e

Z 1

1

e�udu = e
�
�e�u

�1
1
=
e

e
= 1

f eF (x) = SF (x)

�F
=

e�x

x+1

�F

�(F; eF ) = lim
x!1

fF (x)

f eF (x) = lim
x!1

(x+2)e�x

(x+1)2

e�x
x+1

�F

= �F lim
x!1

x+ 2

x+ 1
= �F < 1

) F � eF :
Proposition 103 Given SLDFns F and G with !F = !G and constants a; b >
0 such that the limit �F (

a
b ) = lim

x!!F

SF (
a
b x)

SF (x)
exists. Then

�(Fa; Gb) = �F (
a

b
)�(F;G)

Proof. We have

�(Fa; Gb) = lim
x!!F

SFa(x)

SGb
(x)

= lim
x!!F

SF (ax)

SG (bx)

= lim
x!!F

SF
�
a(xb )

�
SG
�
b(xb )

� = lim
x!!F

SF
�
(ab )x

�
SG (x)

= lim
x!!F

SF ((
a
b )x)

SF (x)

SF (x)

SG (x)

= lim
x!!F

SF ((
a
b )x)

SF (x)
lim
x!!F

SF (x)

SG (x)

= �F (
a

b
)�(F;G)

as required.
Recall the following from set theory:
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De�nition 104 Given a set A with relation >; A is partially ordered under
> provided for every a; b; c 2 A

1. (re�exive) a > a

2. (antisymmetric) (a > b and b > a) ) a = b

3. (transitive) (a > b and b > c) ) a > c

It is straightforward to verify that � de�nes a partial order relation on the
equivalence classes of SLDFns modulo the equivalence relation

F � G, !F = !G and �(F;G) = 1:

As usual, the case in which the hazard function is either increasing or de-
creasing is especially easy:

Proposition 105 If F is any SLDFn with �nite mean and �F > 0, then for
all m < n 2 N:

�F increasing ) eF [m] � eF [n]
�F decreasing ) eF [n] � eF [m]:

Proof. Clear from Propositions 33 and 32. Observe that �F increasing or
decreasing implies that �F > 0 on (�F ; !F ). Now, all moments are �nite, soeF [n] exists and so the assertion at least makes sense. We have

�F increasing ) � eF [m] increasing

) � eF [n] = � êF [n�1]
> � eF [n�1] � � eF [m] on (�F ; !F )

)
Z !F

�F

�
� eF [n] � � eF [m]

�
(t)dt > 0

) �( eF [m]; eF [n]) = eR !F�F
(� eF [n]�� eF [m])(t)dt > e0 = 1

) eF [m] � eF [n]
as asserted. The result for �F decreasing follows similarly, reversing inequalities.

Proposition 106 For any SLDFns F and G with !F = !G =1

� = �(F;G) <1
) for every � > 0 there exists an M such that jSF (x)� �SG(x)j < � for every x > M:
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Proof. Clear. Given � > 0

!G =1) SG(x) > 0 for every x � 0

0 = lim
x!1

SG(x)

) there exists M1 such that 0 < jSG(x)j <
p
� for every x > M1

� = �(F;G) = lim
x!1

SF (x)

SG(x)
<1

) there exists M2 such that 0 �
����SF (x)SG(x)

� �
���� < p� for every x > M2:

Then setting M = max(M1;M2) we have

x > M

) jSF (x)� �SG(x)j = jSG(x)j
����SF (x)SG(x)

� �
���� < p�p� = �

as required.

Proposition 107 For any SLDFns F and G with !F = !G =1 and for which
0 � �F ; �G � 1 :

0 < �(F;G) <1) �F = �G:

Proof. Set lim
x!1

fF (x)
fG(x)

= lim
x!1

SF (x)
SG(x)

= �

1 = �
1

�
= lim

x!1

fF (x)

fG(x)
lim
x!1

SG(x)

SF (x)
= lim

x!1

fF (x)

fG(x)

SG(x)

SF (x)

= lim
x!1

fF (x)

SF (x)

SG(x)

fG(x)
= lim

x!1
�F (x)

1

�G(x)
:

Consider �rst the case 0 < �F ; �G <1

1 = lim
x!1

�F (x)
1

lim
x!1

�G(x)
= �F

1

�G
) �F = �G:

We have
1 = lim

x!1
�F (x)

1

lim
x!1

�G(x)
and so

0 = �F = lim
x!1

�F (x)) 0 = lim
x!1

�G(x) = �G:

and by the same token

1 = lim
x!1

�F (x)
1

lim
x!1

�G(x)
and so

1 = �F = lim
x!1

�F (x))1 = lim
x!1

�G(x) = �G

and the result follows.
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Example 108 The converse is false:

�F (x) = 1; �G(x) = 1 +
1

x

)
Z 1

0

(�G � �F ) (t)dt =
Z 1

0

dt

t
=1

) �F = �G = 1 with �(F;G) =1:

Proposition 109 For any SLDFns F and G with !F = !G =1 and for which
F � G:

c > 0 such that �(c)F <1) �
(c)
G <1:

Proof. We have
F � G

) � = �(F;G) = lim
x!1

SF (x)

SG(x)
� 1:

Consider �rst the case � > 1

there exists M1 such that SF (x) > SG(x); for every x > M1

) �
(c)
G = c

Z 1

0

xc�1SG(x)dx

= c

Z M1

0

xc�1SG(x)dx+ c

Z 1

M1

xc�1SG(x)dx

� cM c�1
1 M1 + c

Z 1

M1

xc�1SF (x)dx

� cM c
1 + c�

(c)
F <1:

So now consider the case � = 1

lim
x!1

SG(x)

SF (x)
=
1

�
= 1

) there exists M2 such that SF (x) > 0 and

����SG(x)SF (x)
� 1
���� < 1

2
; for every x > M2

) SG(x)

SF (x)
<
3

2
; for every x > M2

) SG(x) <
3

2
SF (x); for every x > M2

) �
(c)
G = c

Z 1

0

xc�1SG(x)dx

= c

Z M2

0

xc�1SG(x)dx+ c

Z 1

M2

xc�1SG(x)dx
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� cM c�1
2 M2 + c

Z 1

M2

xc�1
3

2
SF (x)dx

� cM c
2 +

3c

2

Z 1

0

xc�1SF (x)dx � cM c
2 +

3

2
�
(c)
F <1

and the proof is complete.

Proposition 110 For any SLDFns F and G with !F = !G =1 :

0 � �F < �G ) F � G:

Proof. This is straightforward:

�F < �G

) there exist M; � > 0 such that �F (x) < �G(x)� � for every x > M

)
Z 1

M

(�G � �F ) (t)dt �
Z 1

M

�dt =1:

But thenZ 1

0

(�G � �F ) (t)dt =

Z M

0

(�G � �F ) (t)dt+
Z 1

M

(�G � �F ) (t)dt

=

Z M

0

(�G � �F ) (t)dt+1 =1

) lim
x!1

SF (x)

SG(x)
= e

R1
0
(�G��F )(t)dt = e1 =1 > 1

) F � G
as asserted.
Given any two SLDFns F and G and assuming �F and �G are known, the

comparative thickness reduces to evaluating the limit �(F;G) when �F = �G.
But we know that the set of SLDFns F for which �F is a speci�ed constant is
acted on by the additive group R via taking the coderived distributions (when
they exist) and is thus decomposed into orbits eF [R]under that action. The
structure of those orbits was described in the previous section and we can orient
ourselves within an orbit as to the �more or less tail-like� the distribution is
in the �analytic� sense that eF [c] is more tail-like than eF [d]exactly when c > d
(here �more tail like�means higher degree of monotonality. And we have seen
that one may sacri�ce the existence of moments to achieve that). The next
result �nally draws together the two perspectives of the paper and shows how
the structure of those orbits relates with �thickness�:

Proposition 111 If F and G are SLDFns with !F = !G and 0 < �F = �G <
1 , then:

for every m;n 2 N; �
� eF [m]; eG[n]� = � (F;G) m!�n�mF �

(n)
G

n!�
(m)
F

:
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Proof. From the Corollary 43

lim
x!1

f eF [n](x)

f eF [m](x)
=
�m�nF n!�

(m)
F

m!�
(n)
F

whence

�
� eF [m]; eG[n]� = lim

x!!F

f eF [m](x)

f eG[n](x)
= lim

x!!F

f eF [m](x)

fF (x)

fF (x)

fG(x)

fG(x)

f eG[n](x)

= lim
x!!F

f eF [m](x)

fF (x)
lim
x!!F

fF (x)

fG(x)
lim
x!!G

fG[0](x)

f eG[n](x)

=

�
lim
x!!F

fF [0](x)

f eF [m](x)

��1
� (F;G)

�n�0G (0!)�
(n)
G

n!�
(0)
G

=

 
�mF �

(m)
F

m!

!�1
� (F;G)

�nG�
(n)
G

n!

= � (F;G)
m!

�mF �
(m)
F

�nG�
(n)
G

n!
= � (F;G)

m!

n!

�n�mF �
(n)
G

�
(m)
F

as required.

Corollary 112 For any SLDFns F and G with !F = !G and 0 < �F = �G <
1 : eF [m] � eG[n] , � (F;G)

m!�n�mF �
(n)
G

n!�
(m)
F

� 1:

Corollary 113 For any SLDFn F with 0 < �F <1 :

eF [m] � eF [n] , m!�n�mF �
(n)
F

n!�
(m)
F

� 1:

Corollary 114 For any SLDFn F with 0 < �F <1 :

eF [m] � F , m! � �mF �
(m)
F :

Corollary 115 For any SLDFn F with 0 < �F <1 :

there exists k � 0 such that eF [m] � F for every m � k:

Proof. Observe that for all x; t > 0:

0 < e�tx < 1

and so the integral

L(t) =

Z 1

0

e�txf(x)dx =

Z 1

0

��e�txf(x)�� dx � Z 1

0

jf(x)j dx = 1
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is absolutely convergent. We have for any x > 0:

e�F x =
1X
k=0

(�Fx)
k

k!
=

1X
k=0

����� (�1)k �kFxkk!

�����
and the power series expansion

e��F x =
1X
k=0

(��Fx)k

k!
=

1X
k=0

(�1)k �kFxk
k!

is absolutely convergent and so can be integrated term by term:

LF (�F ) =

Z 1

0

e��F xf(x)dx =

Z 1

0

1X
k=0

 
(�1)k �kFxkf(x)

k!

!
dx

=

1X
k=0

  
(�1)k �kF

k!

!Z 1

0

xkf(x)dx

!

=

1X
k=0

(�1)k �(k)F �kF
k!

:

Since the terms of any convergent series must converge to 0:

there exists k � 0 such that �
(m)
F �mF
m!

=

����� (�1)m �(m)F �mF
m!

����� < 1 for every m � k:

And by the previous corollary:

eF [m] � F for every m � k

as required.

Proposition 116 If F is an SLDFn for which the orbit eF [R] has a last element
then: eF [m] � eF [n] , m � n:

Proof. Let eF [l] be the last element of eF [R];
� eF [R]� = (�1; l]. Suppose �rst
that eF [m] � eF [n], in this case, we have

l � m; l � n

) l �m = highest �nite moment of eF [m]
) l � n = highest �nite moment of eF [n]

but then from Proposition 109

eF [m] � eF [n] and �(l�m)eF [m]
<1
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) �
(l�m)eF [n]

<1
) l �m � l � n
) �m � �n
) m � n

establishing one direction. For the converse, suppose that m � n, and by way of
contradiction that eF [m] � eF [n] is false. Then since by Proposition 42 the limit
�
� eF [m]; eF [n]� exists, we must have

�
� eF [m]; eF [n]� < 1

) �
� eF [n]; eF [m]� = 1

�
� eF [m]; eF [n]� > 1

) eF [n] � eF [m]
above direction) n � m and n 6= m

) n > m )(
and this contradiction completes the proof.

Proposition 117 If F is the SLDFn of a mixed exponential density, then for
all k; n 2 N: eF [k] � eF [n] , k � n:

Proof. Let F be a mixture of exponential densities. More precisely, for some
m, 1 � m � 1; weights wi > 0 with 1 =

Pm
i=1 wi and parameters �i > 0

ordered so that �i < �i+1 and with
Pm

i=1 wi�i <1 set

F = j(m; hwii ; h�ii)

with survival function

SF (x) =
mX
i=1

wie
� x
�i :

Then we have, by Proposition 49

�F =
mX
i=1

wi�i <1

S eF (x) =
Pm

i=1 wi�ie
� x
�i

�F
=

mX
i=1

uie
� x
�i where ui =

wi�i
�F

:

And it follows that

SF (x)

S eF (x) =
Pm

i=1 wie
� x
�iPm

i=1 uie
� x
�i

=
e

x
�m

Pm
i=1 wie

� x
�i

e
x
�m

Pm
i=1 uie

� x
�i

89

Grouping Loss Distributions by Tail Behavior Part III: Ordering Distributions

Casualty Actuarial Society E-Forum, Fall 2008 536



=

Pm
i=1 wie

x
�m

� x
�iPm

i=1 uie
x
�m

� x
�i

=
wm +

Pm�1
i=1 wie

�
�i��m
�i�m

�
x

um +
Pm�1

i=1 uie

�
�i��m
�i�m

�
x

�i � �m < 0; 1 � i � m� 1

) lim
x!1

SF (x)

S eF (x) = lim
x!1

wm +
Pm�1

i=1 wie

�
�i��m
�i�m

�
x

um +
Pm�1

i=1 uie

�
�i��m
�i�m

�
x

=
wm + lim

x!1

Pm�1
i=1 wie

�
�i��m
�i�m

�
x

um + lim
x!1

Pm�1
i=1 uie

�
�i��m
�i�m

�
x
=
wm + 0

um + 0
=
wm
um

=
wm
wm�m
�F

=
�F
�m

< 1

) eF � F
and then by transitivity. eF [k�n] � F , and the result follows by replacing F with
. eF [n], which also has a mixed exponential density.
As one would expect, there are continuous analogues for many of these �mo-

mentous�observations:

Proposition 118 For any SLDFns F and G with 0 < �F = �G < 1 and
positive c; d 2 R:

�
� eF [d]; eG[c]� = � (F;G) �(d+ 1)� c�dF �

(c)
G

�(c+ 1)�
(d)
F

:

Proof. This is clear from Proposition 71

�
� eF [d]; eG[c]� = lim

x!1

f eF [d](x)

f eG[c](x)
= lim

x!1

f eF [d](x)

fF (x)

fF (x)

fG(x)

fG(x)

f eG[c](x)

= lim
x!1

f eF [d](x)

fF (x)
lim
x!1

fF (x)

fG(x)
lim
x!1

fG(x)

f eG[c](x)

=

�
lim
x!1

fF (x)

f eF [d](x)

��1
� (F;G)

� cG�
(c)
G

�(c+ 1)
=

 
�dF�

(d)
F

�(d+ 1)

!�1
� (F;G)

� cY �
(c)
G

�(c+ 1)

= � (F;G)
�(d+ 1)

�dF�
(d)
F

� cG�
(c)
G

�(c+ 1)
= � (F;G)

�(d+ 1)

�(c+ 1)

� c�dF �
(c)
G

�
(d)
F

as required.

Corollary 119 For any SLDFns F and G with 0 < �F = �G <1 and positive
c; d 2 R: eF [d] � eG[c] , � (F;G)

�(d+ 1)� c�dF �
(c)
G

�(c+ 1)�
(d)
F

� 1:
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Corollary 120 For any SLDFn F with 0 < �F <1 and positive c; d 2 R:

eF [d] � eF [c] , �(d+ 1)� c�dF �
(c)
F

�(c+ 1)�
(d)
F

� 1:

Corollary 121 For any SLDFn F with 0 < �F <1 and positive d 2 R:

eF [d] � F , �(d+ 1) � �dF�
(d)
F :

We conclude this section with a couple more examples.

Example 122 Consider the Pareto density F = �(�; �):

SF (x) =

�
�

x+ �

��
@S

@�
=

�
�

x+ �

��
ln

�
�

x+ �

�
� 0

@S

@�
= ��

�
�

x+ �

���1�
1

x+ �

�2
= ��� (x+ �)

���1
> 0

which suggests that, all else equal, F gets �thicker�as � increases or � decreases.
Now let F = �(�; �) G = �(�; #) be two Pareto densities, �; �; �; # 2 (0;1).
Then !F = !G =1 and �F = �G = 0 with

�(F;G) = e
R1
0
(�G��F )(t)dtZ 1

0

(�G � �F ) (t)dt =
Z 1

0

�
�

t+ #
� �

t+ �

�
dt

= [� ln (t+ #)� � ln (t+ �)]t=1t=0 =
h
ln
�
(t+ #)

�
�
� ln (t+ �)�

it=1
t=0

=

"
ln

 
(t+ #)

�

(t+ �)
�

!#t=1
t=0

= lim
t!1

"
ln

 
(t+ #)

�

(t+ �)
�

!#
� ln

 
#�

��

!

= ln

 
lim
t!1

 
(t+ #)

�

(t+ �)
�

!!
+ ln

�
��

#�

�

= ln

�
lim
t!1

�
t+ #

t+ �

��
(t+ #)

���
�
+ ln

�
��

#�

�
= ln

�
lim
t!1

1� (t+ #)
���

�
+ ln

�
��

#�

�
= ln

�
lim
t!1

(t+ #)
���

�
+ ln

�
��

#�

�
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=

8><>:
+1 � > �

ln
��

�
#

���
� = �

�1 � < �

9>=>; :
We see that

�(F;G) = e
R1
0
(�G��F )(t)dt =

8<:
+1 � > ��
�
#

��
� = �

0 � < �

9=;
and that

�(�; �) � �(�; #), �(F;G) � 1

, � > � or (� = � and � � #)

and
�(�; �) � �(�; #), �(F;G) > 1

, � > � or (� = � and � > #)

which conforms to what was suggested before.

Example 123 Let F = �(�; �) and G(x) = x2

1+x2 :

�F (x) =
�

� + x
) �F = 0

�G(x) =
fG(x)

SG(x)
=

2x
(1+x2)2

1
1+x2

=
2x

1 + x2
) �G = 0Z 1

0

(�G � �F ) (t)dt =
Z 1

0

�
2t

1 + t2
� �

� + t

�
dt

=
�
ln
�
1 + t2

�
� � ln (� + t)

�t=1
t=0

= lim
t!1

�
ln
�
1 + t2

�
� ln (� + t)�

�
+ � ln (�)

= lim
t!1

�
ln

�
1 + t2

(� + t)
�

��
+ ln (��) = ln

�
lim
t!1

�
1 + t2

(� + t)
�

��
+ ln (��)

= ln

"
lim
t!1

 
2t

� (� + t)
��1

!#
+ ln (��)

=

(
+1 � � 1

ln
h
lim
t!1

�
2

�(��1)(�+t)��2

�i
+ ln (��) � > 1

)

=

8><>:
+1 � � 1

1 + ln (��) � = 2

ln
h

2
�(��1) limt!1

�
(� + t)

2��
�i
� ln (��) � > 1; � 6= 2

9>=>;
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=

8>>>><>>>>:
+1 � � 1

ln(1) + ln
�
�2
�

� = 2

ln
h

2
�(��1) (+1)

i
+ ln (��) = +1 1 < � < 2

ln
h

2
�(��1) (0)

i
+ ln (��) = �1 � > 2

9>>>>=>>>>;
=

8<:
+1 � < 2

ln
�
�2
�
� = 2

�1 � > 2

9=;
�(F;G) = e

R1
0
(�G��F )(t)dt =

8<:
+1 � < 2

�2 � = 2
0 � > 2

9=;
� < 2) �(F;G) =1 > 1) F � G
� > 2) �(F;G) = 0 < 1) G � F

� = 2; � > 1) �(F;G) > 1) F � G
� = 2; � = 1) �(F;G) = 1) F � G
� = 2; � < 1) �(F;G) < 1) G � F:

8 Conclusion

For a given continuous loss distribution F with �nite mean, we have seen that
the ratio of losses in excess of a given loss limit x to total losses de�nes a func-
tion R(x) that formally resembles a survival function. The loss distribution
de�ned by that survival function was de�ned to be the �coderived� distribu-
tion eF . This coderived distribution was shown to exhibit (right hand) tail
behavior and moments that are very closely related to those of the original loss
distribution (Propositions 27 and 28). Moreover, this coderived distribution
has a simpler, more �monotone�, structure than the original (Proposition 87).
We observed that this coderived distribution completely determines the original
distribution (Proposition 26). Repeating this process yields a discrete sequence

of loss distributions F; eF ; eeF ; :::within a continuous, one-parameter collection of
loss distributions (Remark 58). Such collections all have tails with the same ul-
timate settlement rate �F = � eF = � eeF (Proposition 28). We described a simple
approach to ordering loss distributions according to the �thickness�of their tails
(De�nition 99) and related thickness with monotonality and ultimate settlement
rate (Proposition 111). A key �nding is that the asymptotic behavior of the
hazard rate as captured by the ultimate settlement rate �F = lim

x!!F
�F (x); pro-

vides a natural bridge between these two perspectives. We observed that if the
hazard rate function is increasing or decreasing, then the sequence of coderived
distributions converges to an exponential loss distribution (Proposition 78). We
conclude that when modeling loss severity (where the hazard rate function is
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reasonably well-behaved, e.g. with only �nitely many turning points, and where
there is no cap), there is a uniquely determined exponential distribution with
canonical properties that favor it as a choice to splice onto to the model as the
right hand tail. If it is impractical to go far enough out into the tail to make the
tail close to monotone (near constant hazard rate), one should consider �tting
a mixed exponential. The reader is invited to consult [2] for both a discussion
of tail-splicing and as a case study of this approach.
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Modelling The Claims Development Result  

For Solvency Purposes 
Michael Merz, Mario V. Wüthrich 

 
________________________________________________________________________ 
Abstract 
 
We assume that the claims liability process satisfies the distribution-free chain-ladder model assumptions. 

For claims reserving at time I  we predict the total ultimate claim with the information available at time I  

and, similarly, at time 1+I  we predict the same total ultimate claim with the (updated) information 

available at time 1+I . The claims development result at time 1+I  for accounting year ( ]1, +II  is 

then defined to be the difference between these two successive predictions for the total ultimate claim. In 

[6, 10] we have analyzed this claims development result and we have quantified its prediction uncertainty. 

Here, we simplify, modify and illustrate the results obtained in [6, 10]. We emphasize that these results 

have direct consequences for solvency considerations and were (under the new risk-adjusted solvency 

regulation) already implemented in industry. 

 
Keywords. Stochastic Claims Reserving, Chain-Ladder Method, Claims Development Result, Loss 

Experience, Incurred Losses Prior Accident Years, Solvency, Mean Square Error of Prediction. 

 
             
 
1. INTRODUCTION 
 
We consider the problem of quantifying the uncertainty associated with the development of 

claims reserves for prior accident years in general insurance. We assume that we are at time 

I  and we predict the total ultimate claim at time I  (with the available information up to 

time I ), and one period later at time 1+I  we predict the same total ultimate claim with the 

updated information available at time 1+I . The difference between these two successive 

predictions is the so-called claims development result for accounting year ( ]1, +II . The 

realization of this claims development result has a direct impact on the profit & loss (P&L) 

statement and on the financial strength of the insurance company. Therefore, it also needs to 

be studied for solvency purposes. Here, we analyze the prediction of the claims development 

result and the possible fluctuations around this prediction (prediction uncertainty). Basically 

we answer two questions that are of practical relevance: 
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(a) In general, one predicts the claims development result for accounting year ( ]1, +II  

in the budget statement at time I  by 0. We analyze the uncertainty in this prediction. 

This is a prospective view: “how far can the realization of the claims development result 

deviate from 0?” 

Remark: we discuss below, why the claims development result is predicted by 0. 
 

(b) In the P&L statement at time 1+I  one then obtains an observation for the claims 

development result. We analyze whether this observation is within a reasonable range 

around 0 or whether it is an outlier. This is a retrospective view. Moreover, we discuss 

the possible categorization of this uncertainty. 

 
So let us start with the description of the budget statement and of the P&L statement, for an 

example we refer to Table 1. The budget values at Jan. 1, year I , are predicted values for the 

next accounting year ( ]1, +II . The P&L statement are then the observed values at the end 

of this accounting year ( ]1, +II . 

 

Positions a) and b) correspond to the premium income and its associated claims (generated 

by the premium liability). Position d) corresponds to expenses such as acquisition expenses, 

head office expenses, etc. Position e) corresponds to the financial returns generated on the 

balance sheet/assets. All these positions are typically well-understood. They are predicted at 

Jan. 1, year I  (budget values) and one has their observations at Dec. 31, year I  in the P&L 

statement, which describes the financial closing of the insurance company for accounting 

year ( ]1, +II . 
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 budget values 

at Jan. 1, year I
P&L statement 

at Dec. 31, year I  

a)   premiums earned 4’000’000 4’020’000 

b)   claims incurred current accident year -3’200’000 -3’240’000 

c)   loss experience prior accident years 0 -40’000 

d)   underwriting and other expenses -1’000’000 -990’000 

e)   investment income 600’000 610’000 

income before taxes 400’000 360’000 

 
Table 1: Income statement, in $ 1’000 

 

However, position c), “loss experience prior accident years”, is often much less understood. 

It corresponds to the difference between the claims reserves at time It =  and at time 

1+= It   adjusted for the claim payments during accounting year ( ]1, +II  for claims with 

accident years prior to accounting year I . In the sequel we will denote this position by the 

claims development result (CDR). We analyze this position within the framework of the 

distribution-free chain-ladder (CL) method. This is described below. 

 

 

Short-term vs. long-term view 
 
In the classical claims reserving literature, one usually studies the total uncertainty in the 

claims development until the total ultimate claim is finally settled. For the distribution-free 

CL method this has first been done by Mack [7]. The study of the total uncertainty of the 

full run-off is a long-term view. This classical view in claims reserving is very important for 

solving solvency questions, and almost all stochastic claims reserving methods which have 

been proposed up to now concentrate on this long term view (see Wüthrich-Merz [9]). 

However, in the present work we concentrate on a second important view, the short-term view. 

The short-term view is important for a variety of reasons: 
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• If the short-term behaviour is not adequate, the company may simply not get to the 

“long-term”, because it will be declared insolvent before it gets to the long term. 

 
• A short-term view is relevant for management decisions, as actions need to be taken 

on a regular basis. Note that most actions in an insurance company are usually done 

on a yearly basis. These are for example financial closings, pricing of insurance 

products, premium adjustments, etc. 

 
• Reflected through the annual financial statements and reports, the short-term 

performance of the company is of interest and importance to regulators, clients, 

investors, rating agencies, stock-markets, etc. Its consistency will ultimately have an 

impact on the financial strength and the reputation of the company in the insurance 

market. 

 
Hence our goal is to study the development of the claims reserves on a yearly basis where we 

assume that the claims development process satisfies the assumptions of the distribution-

free chain-ladder model. Our main results, Results 3.1-3.3 and 3.5 below, give an improved 

version of the results obtained in [6, 10]. De Felice-Moriconi [4] have implemented similar 

ideas referring to the random variable representing the “Year-End Obligations” of the 

insurer instead of the CDR. They obtained similar formulas for the prediction error and 

verified the numerical results with the help of the bootstrap method.  They have noticed that 

their results for aggregated accident years always lie below the analytical ones obtained in [6]. 

The reason for this is that there is one redundant term in (4.25) of [6]. This is now corrected, 

see formula (A.4) below. Let us mention that the ideas presented in [6, 10] were already 

successfully implemented in practice. Prediction error estimates of Year-End Obligations in 

the overdispersed Poisson model have been derived by ISVAP [5] in a field study on a large 

sample of Italian MTPL companies. A field study in line with [6, 10] has been published by 

AISAM-ACME [1]. Moreover, we would also like to mention that during the writing of this 

paper we have learned that simultaneously similar ideas have been developed by Böhm-

Glaab [2]. 
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2. METHODOLOGY 
 
2.1 Notation 
 
We denote cumulative payments for accident year { }Ii ,,0 K∈  until development year 

{ }Jj ,,0 K∈  by jiC , . This means that the ultimate claim for accident year i  is given by 

JiC , . For simplicity, we assume that JI =  (note that all our results can be generalized to the 

case JI > ). Then the outstanding loss liabilities for accident year { }Ii ,,0 K∈  at time It =  

are given by 

iIiJi
I
i CCR −−= ,, ,         (2.1) 

and at time 1+= It  they are given by 

         1,,
1

+−
+ −= iIiJi

I
i CCR .         (2.2) 

Let 

  { }IiIjiCD jiI ≤≤+=  and ;,         (2.3) 

denote the claims data available at time It =  and 

 

     { } { }IiCDIiIjiCD iIiIjiI ≤∪=≤+≤+= +−+ ; and 1; 1,,1                   (2.4) 

 
denote the claims data available one period later, at time 1+= It . That is, if we go one step 

ahead in time from I  to 1+I , we obtain new observations { }IiC iIi ≤+− ;1,  on the new 

diagonal of the claims development triangle (cf. Figure 1). More formally, this means that we 

get an enlargement of the σ -field generated by the observations ID  to the σ -field 

generated by the observations 1+ID , i.e. 

( ) ( )1+→ II DD σσ .         (2.5) 

 
 
 
2.2 Distribution-free chain-ladder method 
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We study the claims development process and the CDR within the framework of the well-

known distribution-free CL method. That is, we assume that the cumulative payments jiC ,  

satisfy the assumptions of the distribution-free CL model. The distribution-free CL model 

has been introduced by Mack [7] and has been used by many other actuaries. It is probably 

the most popular claims reserving method because it is simple and it delivers, in general, very 

accurate results. 
 

 

accident development year j  accident development year j  

year i  0 K  j  K  J  year i  0 K  j  K  J  

0      0      

M   ID     M   1+ID    

i       i       

M       M       

I       I       

  

Figure 1: Loss development triangle at time It =  and 1+= It  

 

 

Model Assumptions 2.1 
 

• Cumulative payments jiC ,  in different accident years { }Ii ,,0 K∈  are independent. 

 
• ( )

0, ≥jjiC  are Markov processes and there exist constants 0>jf , 0>jσ  such that 

for all Jj ≤≤1  and Ii ≤≤0  we have  

 

[ ] 1,11,, −−− = jijjiji CfCCE ,          (2.6) 
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          ( ) 1,
2

11,, −−− = jijjiji CCCVar σ .        (2.7) 

           □ 

Remarks 2.2 

• In the original work of Mack [7] there were weaker assumptions for the definition of 

the distribution-free CL model, namely the Markov process assumption was replaced 

by an assumption only on the first two  moments (see also Wüthrich-Merz [9]). 

 
• The derivation of an estimate for the estimation error in [10] was done in a time-

series framework. This imposes stronger model assumptions. Note also that in (2.7) 

we require that the cumulative claims jiC ,  are positive in order to get a meaningful 

variance assumption. 

 

Model Assumptions 2.1 imply (using the tower property of conditional expectations) 

[ ] ∏
−

−=
−=

1

,,

J

iIj
jiIiIJi fCDCE  and [ ] ∏

−

+−=
+−+ =

1

1
1,1,

J

iIj
jiIiIJi fCDCE  .    (2.8) 

This means that for known CL factors jf  we are able to calculate the conditionally expected 

ultimate claim JiC ,  given the information ID  and 1+ID , respectively. 

Of course, in general, the CL factors jf  are not known and need to be estimated. Within the 

framework of the CL method this is done as follows: 

 
1. At time It = , given information ID , the CL factors jf  are estimated by 

 

I
j

jI

i
ji

I
j S

C
f

∑
−−

=
+

=

1

0
1,

ˆ ,         where       ∑
−−

=

=
1

0
,

jI

i
ji

I
j CS .       (2.9) 

 
 

2. At time 1+= It , given information 1+ID , the CL factors jf  are estimated by 
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1
0

1,
1ˆ

+

−

=
+

+
∑

= I
j

jI

i
ji

I
j S

C
f ,         where       ∑

−

=

+ =
jI

i
ji

I
j CS

0
,

1 .     (2.10) 

 
This means the CL estimates 1ˆ +I

jf  at time 1+I  use the increase in information about the 

claims development process in the new observed accounting year ( ]1, +II  and are therefore 

based on the additional observation 1, +− jjIC . 

Mack [7] proved that these are unbiased estimators for jf  and, moreover, that m
jf̂  and m

lf̂  

( Im =  or 1+I ) are uncorrelated random variables for lj ≠  (see Theorem 2 in Mack [7] 

and Lemma 2.5 in [9]). This implies that, given iIiC −, , 

 
   I

j
I
j

I
iIiIi

I
ji fffCC 12,,

ˆˆˆˆ
−−−−= L            (2.11) 

 
is an unbiased estimator for [ ]Iji DCE ,  with iIj −≥  and, given 1, +−iIiC , 

 
1

1
1
2

1
11,

1
,

ˆˆˆˆ +
−

+
−

+
+−+−

+ = I
j

I
j

I
iIiIi

I
ji fffCC L       (2.12) 

 
is an unbiased estimator for [ ]1, +Iji DCE  with 1+−≥ iIj . 

 

Remarks 2.3 

 

• The realizations of the estimators I
J

I ff 10
ˆ,,ˆ

−K  are known at time It = , but the 

realizations of 1
1

1
0

ˆ,,ˆ +
−

+ I
J

I ff K  are unknown since the observations JJII CC ,11, ,, +−K  

during the accounting year ( ]1, +II  are unknown at time I . 
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• When indices of accident and development years are such that there are no factor 

products in (2.11) or (2.12), an empty product is replaced by 1. For example, 

iIi
I

iIi CC −− = ,,
ˆ  and 1,

1
1,

ˆ
+−

+
+− = iIi

I
iIi CC . 

 
• The estimators 1

,
ˆ +I

jiC  are based on the CL estimators at time 1+I  and therefore use 

the increase in information given by the new observations in the accounting year 

from I  to 1+I . 

 

 

2.3 Conditional mean square error of prediction 
 
Assume that we are at time I , that is, we have information ID  and our goal is to predict the 

random variable JiC , . Then, I
JiC ,

ˆ  given in (2.11) is a ID -measurable predictor for JiC , . At 

time I , we measure the prediction uncertainty with the so-called conditional mean square 

error of prediction (MSEP) which is defined by 

 

        ( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ −= I

I
JiJi

I
JiDC DCCECmsep

IJi

2

,,,
ˆˆ

,
                    (2.13) 

 
That is, we measure the prediction uncertainty in the [ ]( )IDPL ⋅2 -distance. Because I

JiC ,
ˆ  is 

ID -measurable this can easily be decoupled into process variance and estimation error: 

 

( ) ( ) [ ]( )2

,,,,
ˆˆ

,

I
JiIJiIJi

I
JiDC CDCEDCVarCmsep

IJi
−+= .    (2.14) 

 
This means that I

JiC ,
ˆ  is used as predictor for the random variable JiC ,  and as estimator for 

the expected value [ ]IJi DCE ,  at time I . Of course, if the conditional expectation 

[ ]IJi DCE ,  is known at time I  (i.e. the CL factors jf  are known), it is used as predictor 
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for JiC ,  and the estimation error term vanishes. For more information on conditional and 

unconditional MSEP’s we refer to Chapter 3 in [9]: 

 

 
 
2.4 Claims development result (CDR) 
 
We ignore any prudential margin and assume that claims reserves are set equal to the 

expected outstanding loss liabilities conditional on the available information at time I  and 

1+I , respectively. That is, in our understanding “best estimate” claims reserves correspond 

to conditional expectations which implies a self-financing property (see Corollary 2.6 in [8]). 

For known CL factors jf  the conditional expectation [ ]IJi DCE ,  is known and  is 

therefore used as predictor for JiC ,  at time I . Similarly, at time 1+I  the conditional 

expectation [ ]1, +IJi DCE  is used as predictor for JiC , . Then the true claims development 

result (true CDR) for accounting year ( ]1, +II  is defined as follows. 

 

Definition 2.4 (True claims development result) 

 
The true CDR for accident year { }Ii ,,1K∈  in accounting year ( ]1, +II  is given by 

 
( ) [ ] [ ]( )1

1
1,1 +

+
+− +−=+ I

I
iiIiI

I
ii DREXDREICDR      (2.15) 

        [ ] [ ]1,, +−= IJiIJi DCEDCE , 

 
where iIiiIiiIi CCX −+−+− −= ,1,1,  denotes the incremental payments. Furthermore, the true aggregate is given 

by 

( )∑
=

+
I

i
i ICDR

1
1 .                           (2.16) 

 
Using the martingale property we see that 
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       ( )[ ] 01 =+ Ii DICDRE .       (2.17) 

 
This means that for known CL factors jf  the expected true CDR (viewed from time I ) is 

equal to zero. Therefore, for known CL factors jf  we refer to ( )1+ICDRi  as the true 

CDR. This also justifies the fact that in the budget values of the income statement position 

c) “loss experience prior accident years” is predicted by $0 (see position c) in Table 1). 

The prediction uncertainty of this prediction 0 can then easily be calculated, namely, 

 

       ( ) ( ) ( )( ) [ ]
iIi

iIiI
IJiIiDICDR C

f
DCEDICDRVarmsep

Ii
−

−−
+ =+=

,

22
2

,1 10
σ

.    (2.18) 

For a proof we refer to formula (5.5) in [10] (apply recursively the model assumptions), and 

the aggregation of accident years can easily be done because accident years i  are 

independent according to Model Assumptions 2.1. 

 

Unfortunately the CL factors jf  are in general not known and therefore the true CDR is not 

observable. Replacing the unknown factors by their estimators, i.e., replacing the expected 

ultimate claims [ ]IJi DCE ,  and [ ]1, +IJi DCE  with their estimates I
JiC ,

ˆ  and 1
,

ˆ +I
JiC , 

respectively, the true CDR for accident year i  ( )Ii ≤≤1  in accounting year ( ]1, +II  is 

predicted/estimated in the CL method by: 

 

Definition 2.5 (Observable claims development result) 

 
The observable CDR for accident year { }Ii ,,1K∈  in accounting year ( ]1, +II  is given by 

 
( ) ( ) 1

,,1,
ˆˆˆˆ1ˆ 1 +

+− −=+−=+ + I
Ji

I
Ji

D
iiIi

D
ii CCRXRIRDC II ,     (2.19) 
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where ID
iR̂  and 1ˆ +ID

iR  are defined below by (2.21) and (2.22), respectively. Furthermore, the observable 

aggregate CDR is given by 

    ( )∑
=

+
I

i
i IRDC

1
1ˆ .       (2.20) 

 
Note that under the Model Assumptions 2.1, given iIiC −, , 

   iIi
I
Ji

D
i CCR I

−−= ,,
ˆˆ      ( )Ii ≤≤1 ,      (2.21) 

 
is an unbiased estimator for [ ]I

I
i DRE  and, given 1, +−iIiC , 

1,
1

,
ˆˆ 1

+−
+ −=+

iIi
I
Ji

D
i CCR I      ( )Ii ≤≤1 ,     (2.22) 

 
is an unbiased estimator for [ ]1

1
+

+
I

I
i DRE . 

 

 

Remarks 2.6 

 
• We point out the (non-observable) true claims development result ( )1+ICDRi  is 

approximated by an observable claims development result ( )1ˆ +IRDC i . In the next 

section we quantify the quality of this approximation (retrospective view). 

 
• Moreover, the observable claims development result ( )1ˆ +IRDC i  is the position that 

occurs in the P&L statement at Dec. 31, year I. This position is in the budget 

statement predicted by 0. In the next section we also measure the quality of this 

prediction, which determines the solvency requirements (prospective view). 

 
• We emphasize that such a solvency consideration is only a one-year view. The 

remaining run-off can, for example, be treated with a cost-of-capital loading that is 
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based on the one-year observable claims development result (this has, for example, 

been done in the Swiss Solvency Test). 

 

 
 
3. MSEP OF THE CLAIMS DEVELOPMENT RESULT 
 
Our goal is to quantify the following two quantities: 

 

 ( ) ( ) ( )( ) ⎥⎦
⎤

⎢⎣
⎡ −+=

+ IiDIRDC DIRDCEmsep
Ii

2

1ˆ 01ˆ0 ,       (3.1) 

          ( ) ( )( ) ( ) ( )( ) ⎥⎦
⎤

⎢⎣
⎡ +−+=++ IiiiDICDR DIRDCICDREIRDCmsep

Ii

2

1 1ˆ11ˆ .      (3.2) 

 
• The first conditional MSEP gives the prospective solvency point of view. It 

quantifies the prediction uncertainty in the budget value 0 for the observable claims 

development result at the end of the accounting period. In the solvency margin we 

need to hold risk capital for possible negative deviations of ( )1+ICDRi  from 0. 

 
• The second conditional MSEP gives a retrospective point of view. It analyzes the 

distance between the true CDR and the observable CDR. It may, for example, 

answer the question whether the true CDR could also be positive (if we would know 

the true CL factors) when we have an observable CDR given by $ -40’000 (see Table 

1). Hence, the retrospective view separates pure randomness (process variance) from 

parameter estimation uncertainties. 

 
In order to quantify the conditional MSEP’s we need an estimator for the variance 

parameters 2
jσ . An unbiased estimate for 2

jσ  is given by (see Lemma 3.5 in [9]) 

∑
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C
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σ .     (3.3) 
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3.1 Single accident year 
 
In this section we give estimators for the two conditional MSEP’s defined in (3.1)-(3.2). For 

their derivation we refer to the appendix. We define 
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and 

 
         I

Ji
I
i

I
Ji

I
Ji ,,,

ˆˆˆˆ Φ≥Ψ+Φ=Γ .       (3.7) 

 
We are now ready to give estimators for all the error terms. First of all the variance of the 

true CDR given in (2.18) is estimated by 

 

  ( )( ) ( ) I
i

I
JiIi CDICDRraV Ψ=+ ˆˆ1ˆ

2

, .        (3.8) 

 
The estimator for the conditional MSEP’s are then given by: 
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Result 3.1 (Conditional MSE estimator for a single accident year) 

 
We estimate the conditional MSEP’s given in (3.1)-(3.2) by 

 

( ) ( ) ( ) ( )I
Ji

I
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I
JiDIRDC Cepsm

Ii ,,
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,1ˆ
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ˆˆˆ1ˆˆ Δ+Φ=+

+
.     (3.10) 

 

This immediately implies that we have 

 
       ( ) ( ) ( ) ( )( ) ( )( )IiiDICDRDIRDC DICDRraVIRDCepsmepsm

IiIi
1ˆ1ˆˆ0ˆ 11ˆ +++= ++

 

( ) ( )( )1ˆˆ 1 +≥ + IRDCepsm iDICDR Ii
.      (3.11) 

 
Note that this is intuitively clear since the true and the observable CDR should move into 

the same direction according to the observations in accounting year ( ]1, +II . However, the 

first line in (3.11) is slightly misleading. Note that we have derived estimators which give an 

equality on the first line of (3.11). However, this equality holds true only for our estimators 

where we neglect uncertainties in higher order terms. Note, as already mentioned, for typical 

real data examples higher order terms are of negligible order which means that we get an 

approximate equality on the first line of (3.11) (see also derivation in (A.2)). This is similar to 

the findings presented in Chapter 3 of [9]. 

 

 

3.2 Aggregation over prior accident years 
 
When aggregating over prior accident years, one has to take into account the correlations 

between different accident years, since the same observations are used to estimate the CL 

factors and are then applied to different accident years (see also Section 3.2.4 in [9]). Based 

on the definition of the conditional MSEP for the true aggregate CDR around the 

aggregated observable CDR the following estimator is obtained: 
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Result 3.2 (Conditional MSEP for aggregated accident years, part I) 

 
For aggregated accident years we obtain the following estimator 
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For the conditional MSEP of the aggregated observable CDR around 0 we need an 

additional definition. 
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Result 3.3 (Conditional MSEP for aggregated accident years, part II) 

 
For aggregated accident years we obtain the following estimator 
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Note that (3.15) can be rewritten as follows: 
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Hence, we obtain the same decoupling for aggregated accident years as for single accident 

years. 

 

 

Remarks 3.4 (Comparison to the classical Mack [7] formula) 

 

In Results 3.1-3.3 we have obtained a natural split into process variance and estimation error. 

However, this split has no longer this clear distinction as it appears. The reason is that the 

process variance also influences the volatility of 1ˆ +I
jf  and hence is part of the estimation 

error. In other approaches one may obtain other splits, e.g. in the credibility chain ladder 

method (see Bühlmann et al. [3]) one obtains a different split. Therefore we modify Results 

3.1.-3.3 which leads to a formula that gives interpretations in terms of the classical Mack [7] 

formula, see also (4.2)-(4.3) below. 

 

 

 

 

 

Result 3.5  
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For single accident years we obtain from Result 3.1 
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For aggregated accident years we obtain from Result 3.3 
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We compare this now to the classical Mack [7] formula. For single accident years the 

conditional MSEP of the predictor for the ultimate claim is given in Theorem 3 in Mack [7] 

(see also Estimator 3.12 in [9]). We see from (3.17) that the conditional MSEP of the CDR 

considers only the first term of the process variance of the classical Mack [7] formula 

)( iIj −=  and for the estimation error the next diagonal is fully considered )( iIj −= but 

all remaining runoff cells )1( +−≥ iIj  are scaled by 1/ 1
, ≤+

−
I
jiIi SC . For aggregated 

accident years the conditional MSEP of the predictor for the ultimate claim is given on page 

220 in Mack [7] (see also Estimator 3.16 in [9]). We see from (3.18) that the conditional 

MSEP of the CDR for aggregated accident years considers the estimation error for the next 

accounting year )( iIj −= and all other accounting years )1( +−≥ iIj  are scaled by 

1/ 1
, ≤+

−
I
jiIi SC . 

Hence we have obtained a different split that allows for easy interpretations in terms of the 

Mack [7] formula. However, note that these interpretations only hold true for linear 

approximations (A.1), otherwise the picture is more involved. 
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4. NUMERICAL EXAMPLE AND CONCLUSIONS 
 
For our numerical example we use the dataset given in Table 2. The table contains 

cumulative payments jiC ,  for accident years { }8,,1,0 K∈i  at time 8=I  and at time 

91 =+I . Hence this allows for an explicitly calculation of the observable claims 

development result. 

 

 

Table 2: Run-off triangle (cumulative payments, in $ 1’000) for time 8=I  and 9=I  

 0=j  1 2 3 4 5 6 7 8

0=i  2’202’584 3’210’449 3’468’122 3’545’070 3’621’627 3’644’636 3’669’012 3’674’511 3’678’633

1=i  2’350’650 3’553’023 3’783’846 3’840’067 3’865’187 3’878’744 3’898’281 3’902’425 3’906’738

2=i  2’321’885 3’424’190 3’700’876 3’798’198 3’854’755 3’878’993 3’898’825 3’902’130  

3=i  2’171’487 3’165’274 3’395’841 3’466’453 3’515’703 3’548’422 3’564’470   

4=i  2’140’328 3’157’079 3’399’262 3’500’520 3’585’812 3’624’784    

5=i  2’290’664 3’338’197 3’550’332 3’641’036 3’679’909     

6=i  2’148’216 3’219’775 3’428’335 3’511’860      

7=i  2’143’728 3’158’581 3’376’375       

8=i  2’144’738 3’218’196        

I
jf̂  1.4759 1.0719 1.0232 1.0161 1.0063 1.0056 1.0013 1.0011  

1ˆ +I
jf  1.4786 1.0715 1.0233 1.0152 1.0072 1.0053 1.0011 1.0011  

2ˆ jσ  911.43 189.82 97.81 178.75 20.64 3.23 0.36 0.04  
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Table 2 summarizes the CL estimates I
jf̂  and 1ˆ +I

jf  of the age-to-age factors jf  as well as 

the variance estimates 2ˆ jσ  for 7,,0 K=j . Since we do not have enough data to estimate 

2
7σ  (recall JI = ) we use the extrapolation given in Mack [7]: 

       { }2
5

4
6

2
5

2
6

2
7 ˆˆ,ˆ,ˆminˆ σσσσσ = .      (4.1) 

Using the estimates I
jf̂  and 1ˆ +I

jf  we calculate the claims reserves ID
iR̂  for the outstanding 

claims liabilities I
iR  at time It =  and 1ˆ

1,
+++−

ID
iiIi RX  for 1

1,
+

+− + I
iiIi RX  at time 1+= It , 

respectively. This then gives realizations of the observable CDR for single accident years and 

for aggregated accident years (see Table 3). Observe that we have a negative observable 

aggregate CDR at time 1+I  of about $ -40’000 (which corresponds to position c) in the 

P&L statement in Table 1). 

 

i  ID
iR̂  1ˆ

1,
+++−

ID
iiIi RX  ( )1ˆ +IRDC i  

0 0 0 0 

1 4’378 4’313 65 

2 9’348 7’649 1’698 

3 28’392 24’046 4’347 

4 51’444 66’494 -15’050 

5 111’811 93’451 18’360 

6 187’084 189’851 -2’767 

7 411’864 401’134 10’731 

8 1’433’505 1’490’962 -57’458 

Total 2’237’826 2’277’900 -40’075 

 
Table 3: Realization of the observable CDR at time 1+= It , in $ 1’000 

 

The question which we now have is whether the true aggregate CDR could also be positive 

if we had known the true CL factors jf  at time It =  (retrospective view). We therefore 
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perform the variance and MSEP analysis using the results of Section 3. Table 4 provides the 

estimates for single and aggregated accident years. 

On the other hand we would like to know, how this observation of $ -40’000 corresponds to 

the prediction uncertainty in the budget values, where we have predicted that the CDR is $ 0 

(see position c) in Table 1). This is the prospective (solvency) view. 

We observe that the estimated standard deviation of the true aggregate CDR is equal to $ 

65’412, which means that it is not unlikely to have the true aggregate CDR in the range of 

about $ ± 40’000. Moreover, we see that the square root of the estimate for the MSEP 

between true and observable CDR is of size $ 33’856 (see Table 4), this means that it is likely 

that the true CDR has the same sign as the observable CDR which is $ -40’000. Therefore 

also the knowledge of the true CL factors would probably have led to a negative claims 

development experience. 

Moreover, note that the prediction 0 in the budget values has a prediction uncertainty 

relative to the observable CDR of $ 81’080 which means that it is not unlikely to have an 

observable CDR of $ -40’000. In other words the solvency capital/risk margin for the CDR 

should directly be related to this value of $ 81’080.  
 

i  ID
iR̂  21ˆraV  ( ) 21ˆˆ RDCepsm

IDCDR  ( ) 21
ˆ 0ˆ

IDRDCepsm  21
Mackmsep  

0 0  

1 4’378 395 407 567 567

2 9’348 1’185 900 1’488 1’566

3 28’392 3’395 1’966 3’923 4’157

4 51’444 8’673 4’395 9’723 10’536

5 111’811 25’877 11’804 28’443 30’319

6 187’084 18’875 9’100 20’954 35’967

7 411’864 25’822 11’131 28’119 45’090

8 1’433’505 49’978 18’581 53’320 69’552

21cov   0 20’754 39’746 50’361

Total 2’237’826 65’412 33’856 81’080 108’401

 
Table 4: Volatilities of the estimates in $ 1’000 with: 
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ID
iR̂     estimated reserves at time It = , cf. (2.21) 

21ˆraV     estimated std. dev. of the true CDR, cf. (3.8) 

( ) 21
ˆ

ˆˆ RDCepsm
IDRDC  estimated 21msep  between true and observable CDR, cf. 

(3.10) and (3.12) 
( ) 21

ˆ 0ˆ
IDRDCepsm  prediction std. dev. of 0 compared to ( )1ˆ +IRDC i , cf. (3.9) 

and (3.15) 
21

Mackmsep    21msep  of the ultimate claim, cf. Mack [7] and (4.3) 

 

Note that we only consider the one-year uncertainty of the claims reserves run-off. This is 

exactly the short term view/picture that should look fine to get to the long term. In order to 

treat the full run-off one can then add, for example, a cost-of-capital margin to the 

remaining run-off which ensures that the future solvency capital can be financed. We 

emphasize that it is important to add a margin which ensures the smooth run-off of the 

whole liabilities after the next accounting year. 

Finally, these results are compared to the classical Mack formula [7] for the estimate of the 

conditional MSEP of the ultimate claim JiC ,  by I
JiC ,

ˆ  in the distribution-free CL model. The 

Mack formula [7] gives the total uncertainty of the full run-off (long term view) which 

estimates 
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see also Estimator 3.16 in [9]. Notice that the information in the next accounting year 

(diagonal 1+I ) contributes substantially to the total uncertainty of the total ultimate claim 

over prior accident years. That is, the uncertainty in the next accounting year is $ 81’080 and 
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the total uncertainty is $ 108’401. Note that we have chosen a short-tailed line of business so 

it is clear that a lot of uncertainty is already contained in the next accounting year. Generally 

speaking, the portion of uncertainty which is already contained in the next accounting year is 

larger for short-tailed business than for long-tailed business since in long-tailed business the 

adverse movements in the claims reserves emerge slowly over many years. If one chooses 

long-tailed lines of business then the one-year risk is about 2/3 of the full run-off risk. This 

observation is inline with a European field study in different companies, see AISAM-ACME 

[1]. 

 

APPENDIX A. PROOFS AND DERIVATIONS 
 
Assume that ja  are positive constants with ja>>1  then we have 
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where the right-hand side is a lower bound for the left-hand side. Using the above formula 

we will approximate all product terms from our previous work [10] by summations. 

 

 

Derivation of Result 3.1. We first give the derivation of Result 3.1 for a single accident 

year. Note that the term I
Ji,Δ̂  is given in formula (3.10) of [10]. Henceforth there remains to 

derive the terms I
Ji,Φ̂  and I

Ji,Γ̂ . 

For the term I
Ji,Φ̂  we obtain from formula (3.9) in [10] 
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reserving data. 

For the term I
Ji,Γ̂  we obtain from (3.16) in [10] 
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Henceforth, Result 3.1 is obtained from (3.8), (3.14) and (3.15) in [10]. 

   

□ 

Derivations of Results 3.2 and 3.3. We now turn to Result 3.2. All that remains to derive 

are the correlation terms. 

We start with the derivation of I
Jk ,Λ̂  (this differs from the calculation in [6]). From (4.24)-

(4.25) in [6] we see that for ki <  the cross covariance term of the estimation error 
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is estimated by resampled values jf̂ , given ID , which implies 
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Note that the last two lines differ from (4.25) in [6]. This last expression is now equal to (see 

also Section 4.1.2 in [6]) 
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Next we use (A.1), so we see that the last line can be approximated by 
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Hence plugging in the estimators for jf  and 2

jσ  at time I  yields the claim. 

Hence there remains to calculate the second term in Result 3.2. From (3.13) in [10] we again 

obtain the claim, using that 
( )

iIi

I
iIiI

C
f

−

−−>>
,

22 ˆˆ
1

σ
 for typical claims reserving data. 

So there remains to derive Result 3.3. The proof is completely analogous, the term 

containing I
Ji,Λ̂  was obtained above. The term I

Ji,Ξ̂  is obtained from (3.17) in [10] 

analogous to (A.3). 

This completes the derivations. 
   

□ 
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Principles of the Chain-Ladder “Method” 
Selecting and Updating Claims Development Factors 

Rajesh Sahasrabuddhe, FCAS, MAAA 

Abstract 
There has been significant discussion recently regarding the roles of “models”1 and “methods” in 
actuarial practice. I believe that much of this discussion is misguided as it is based on an 
imprecise and arbitrary distinction. I believe that “methods” are more appropriately considered to 
be a subclass of “models,” rather than a wholly different class of estimation procedures. More 
specifically,as with “models”, I believe that there are statistical assumptions underlying 
“methods.”  

If we accept this conclusion, then it becomes incumbent on actuaries to apply statistical theory 
when using methods. The most common method is the chain-ladder method. In this paper, as 
an example, I re-examine the process of selecting and updating claim2 development factors 
under this new paradigm. 

1. Methods versus Models 
In the Fall 2005 CAS Forum, the CAS Working Party on Quantifying Variability in Reserve 
Estimates published The Analysis and Estimation of Loss & ALAE Variability: A Summary 
Report. This paper proposed the following definitions: 

Method: A systematic procedure for estimating future payments for loss and allocated 
loss adjustment expense. Methods are algorithms or series of steps followed to 
determine an estimate; they do not involve the use of any statistical assumptions that 
could be used to validate reasonableness or to calculate standard error. Well known 
examples include the chain-ladder (development factors) method or the Bornhuetter-
Ferguson method. Within the context of [the Working Party]  paper, “methods” refer 
to algorithms for calculating future payment estimates, not methods for estimating model 
parameters. (emphasis added) 

Model: A mathematical or empirical representation of how losses and allocated loss 
adjustment expenses emerge and develop. The model accounts for known and inferred 
properties and is used to project future emergence and development. An example of a 
mathematical model is a formulaic representation that provides the best fit for the 
available historical data. Mathematical models may be parametric (see below) or non-
parametric. Mathematical models are known as “closed form” representations, meaning 
that they are represented by mathematical formulas. An example of an empirical 
representation of how losses and allocated loss adjustment expenses emerge and 
develop is the frequency distribution produced by the set of all reserve values generated 
by a particular application of the chain ladder method. Empirical distributions are, by 

                                                           
1
 The use of quotation marks is intended to indicate usages of the terms “models” and “methods” that the author 

believes to be incorrect. 
2
 In this paper, we use the terms “claims” instead of “loss” in order to be consistent with Actuarial Standard of 

Practice (ASOP) No. 43, Property/Casualty Unpaid Claim Estimates. 
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construction, not in “closed form” as there is no underlying requirement that there be an 
underlying mathematical model.3  

It should be noted that these definitions were restricted to a specific context and that they were 
presented in a non-refereed paper. Despite this circumstance, the Actuarial Standards Board 
adopted these definitions in Actuarial Standard of Practice (ASOP) No. 43, Property/Casualty 
Unpaid Claim Estimates. ASOP No. 43 includes the following definitions: 

2.5 Method—A systematic procedure for estimating the unpaid claims. 

2.6 Model—A mathematical or empirical representation of a specified phenomenon.4 

In addition, the ASOP document includes the following comment and response related to these 
definitions: 

Section 2.5, Method and 2.6, Model 

Comment One commentator stated, “There are definite differences between 
‘methods’ and ‘models’ that are much more substantial and fundamental than” what is in 
the proposed standard. The commentator suggested that more complete definitions be 
taken from the CAS Working Party paper on reserve variability. 

Response  The definitions in the standard are abbreviated versions of what is in the 
referenced Working Party paper. The reviewers believe that further elaboration is 
unnecessary, although reference to various CAS publications has been added to 
appendix 1. 5 

I believe that this was an unfortunate decision by the Actuarial Standards Board. These 
definitions appear to reinforce the notion that “methods” and “models” are actually different. The 
acceptance of these definitions within a binding document might also result in a de facto 
acceptance of these definitions without being subject to a refereed process. 

“Methods” are defined as algorithms without statistical assumptions whereas “models” are 
defined as mathematical representations. The definition and cited examples imply that only an 
understanding of algebra and arithmetic are necessary to use “methods.” In contrast, “models” 
appear to require more advanced statistical skills. These definitions are misguided. The 
definitions are also somewhat dangerous as a layperson would (rightly) question whether the 
training of an FCAS is required to use “methods.”  

For the “methods” crowd, this definition has the unfortunate result that they are not forced to 
statistically evaluate their estimation methodologies. After all, statistical tests cannot be 
performed in the absence of statistical assumptions. For the profession, this has a dangerous 
consequence as it devalues the skills required to perform actuarial calculations. 

                                                           
3
  CAS Working Party on Quantifying Variability in Reserve Estimates. The Analysis and Estimation of Loss & ALAE 

Variability: A Summary Report. Casualty Actuarial Society Forum (Fall 2005), 29-146. (Page 38) 
4
 Actuarial Standards Board of American Academy of Actuaries, “Actuarial Standard of Practice No. 43, 

Property/Casualty Unpaid Claim Estimates (Doc. No. 106),” 2007. (Page 3) 
5
Ibid,  Page 15 
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I believe that it is more appropriate to consider “methods” as a type or subclass of “models.” Let 
us consider the plain-English definition of Model: 

a simplified version of something complex used in analyzing and solving problems or 
making predictions6 

Cleary, the chain-ladder and Bornhuetter Ferguson methods, which are listed as examples of 
“methods,” would also be considered models under this definition. Consider that the paid claims 
development method for estimating unpaid claim amounts may also be presented as: 

��� = �� × (� �	�)
�

− 1 

where: U = Unpaid Claims 

 P = Paid Claims 

 fj = the estimated incremental claims development factor between j and j + 1 

and i = the age of an accident period. 

Under the definitions proposed by the Working Party and adopted by the Actuarial Standards 
Board, would this be considered a “method” or would it be considered a “model?” We should 
now see that the distinction is arbitrary. 

I believe that it would have been more useful to focus on types or classes of models such as, 
but not limited to: 

� arithmetic 
� stochastic 
� parametric 
� deterministic 
� empirical 
� non-parametric 

With this paradigm, we can better analyze deterministic models  such as chain-ladder and 
Bornhuetter-Ferguson. An example of this analysis focused on the selection of the incremental 
claims development factors is presented in this paper. Other analyses, such as a review of the 
quality of the models themselves and correlations between development columns are beyond 
the scope of this paper – but they become possible under the new paradigm. 

2. Review of the Properties of Statistical Estimato rs 
We should now consider “selected incremental claims development factors” as estimators of the 
parameters of a model. We then consider the following properties of estimators in evaluating the 
quality of our claims development factors: 

� Unbiasedness – An estimator (�) is considered unbiased if its expected value is equal to 
the true value of the parameter (). That is: 

���� =   

A somewhat more relaxed constraint is that the estimator be asymptotically unbiased. 
That is: 

                                                           
6
 Encarta dictionary 
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����→∞���� =   

� Efficiency – An estimator is considered efficient if its sampling distribution has a 
relatively small standard deviation. 

� Consistency – An estimator is considered consistent if it is more likely to be close to its 
true value when the sample size is increased. 

� Sufficiency – An estimator is considered sufficient if it uses all of the information in the 
sample. 

� Robustness / Resistance – An estimator is considered resistant or robust if it is relatively 
unaffected by outliers.  

3. Comparisons of Common Methods of Selecting Claim s Development Factors 
We now consider four common methods of selecting claims development factors: (i) all-year 
averages (weighted, or unweighted) (ii) averages of recent observations (iii) Ex hi/low averages 
and (iv) judgment. For purposes of this discussion, we should assume that there are no 
distorting influences on the data. 

Table 1 
Common Estimators of Claims Development Factors 

 Estimator  

Property  All-Year Average Average of 
Recent 

Observations 

Ex-Hi/Low 
Averages 

Judgment 

Unbiasedness Yes Yes Yes Unknown 

Efficiency Unknown Unknown Unknown Unknown 

Consistency Yes Not Applicable 
(Fixed sample 

size) 

Yes Unknown 

Sufficiency Yes No No Unknown 

Robustness / 
Resistance 

Unknown Unknown Yes Probably 

The conclusion that we should draw from this table is that, under current commonly used 
methods for estimating claims development factors, we understand very little about the quality 
of those factors. This situation is further exacerbated when we consider that the typical basis for 
selected claims development factors is “actuarial judgment” based on a review of various 
averages. This leads us to the unfortunate conclusion that we understand relatively little about 
the quality of the resulting estimates of ultimate claims. 

4. Statistical Estimation Methods 
We now consider two alternative statistical methods for estimating claims development: 
maximum likelihood and regression. We use the 12-24 month General Liability Excluding Mass 
Torts development experience published by the Reinsurance Association of America as our test 
data. The results of the estimation considering both of these methods and a comparison to the 
traditional techniques listed above are presented in Exhibit A.  

I do not intend to imply that these are the only available statistical tools that may be used to 
estimate claims development factors. They are presented here as two possible examples. A 
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discussion of the advantages and disadvantages between maximum likelihood, regression and 
alternative parameter estimation methodologies is beyond the scope of this paper. 

Furthermore, I recognize that these estimation methods do not always have all of the desired 
properties listed in the prior section. For example, the maximum likelihood estimator is not 
always unbiased. However, what is important is that we realize where these methods fall short 
as compared to the (almost complete) lack of knowledge associated with traditional estimators.  

Most importantly, the knowledge that we have about these estimators will allow us to update the 
development factors only when appropriate. That is, I believe that, too often, unpaid claim 
estimates are impacted by differences in judgments applied year-to-year or quarter-to-quarter. 
This (understandably) reduces the confidence that stakeholders have in actuarial work product. 

4.1. Maximum Likelihood Estimators 
The advantage of maximum likelihood estimators (MLE) is that they are: (i) asymptotically 
unbiased (ii) asymptotically efficient, (iii) consistent and, (iv) for large samples, the MLE is 
normally distributed. The principal difficulty with maximum likelihood estimation is that the 
procedure requires the assumption of a model form. However, this does provide a benefit in that 
we would then expect the MLE to be robust / resistant. 

There are three steps to develop the MLE for claims development factors. First, we must 
determine the appropriate distribution form for the claims development factors. Then, using this 
distribution, we must formulate the maximum likelihood function. Finally we must determine the 
parameters that maximize the likelihood function.  

In the attached example we assume the following distributional form: 

(claims development factor − 1)~LogNormal (µ, σ) 

The likelihood functions and log-likelihood functions may then be, respectively, written as: 

L= � �(�; �, �)   

ln ! = ∑ ln �(�; �, �),: 

We then can use numerical methods to solve for the parameters that maximize the likelihood or 
equivalently maximize the log-likelihood7. 

4.2. Regression (Least Squares Estimator) 
We can also use regression techniques to estimate the claims development. For convenience, 
we will refer to the resulting estimator as the “regression estimator” (RE). Under the 
assumptions of chain ladder method that claims at a given age are proportional to the claims at 
the prior age, the RE will be unbiased. Heuristically, we would also expect it to be asymptotically 
efficient, consistent, sufficient and robust. 

REs are developed by solving for the X-coefficient of the following regression equation: 

# = �$ +  & 

This is the equation for regression through the origin (intercept=0). Y and X are the claims at 24 
and 12 months, respectively. The X coefficient, m = Y / X, represents the estimate of the claims 
development factor. 

                                                           
7
 In this particular example it is well known that the MLE for the µ and σ parameters of the lognormal distribution 

are the mean and standard deviations of the logarithms of the data. 
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5. Updating Claims Development Factors 
A significant benefit of defining a model in terms of statistical estimators is that it provides 
valuable guidance in updating the model. That is, it removes the arbitrariness associated with 
updates to development factors determined using traditional methods. 

For example, assume that with the RAA-GL data presented in the example, we had observed a 
development factor of X in the next period. The question then becomes: should we revise our 
estimator of the claims development factor? Too often, that question is answered “yes” without 
thought. In fact, “yes” may be the only possible answer if our claims development factor is 
based on a “traditional approach.” The answer should be: “Only if our new observation results in 
an updated estimator that is statistically significantly different from the prior estimator.” We can 
use hypothesis testing to determine whether a change in the claims development factor is 
warranted. 

5.1. Maximum Likelihood Estimators 
In the example presented, we use the Likelihood Ratio test to determine whether a development 
factor estimator developed using maximum likelihood should be updated. That is, we test the 
null hypothesis that there should be no change to the estimator. The alternative hypothesis is 
that, the estimator should be updated.  

The Likelihood Ratio test statistic is calculated as 2 times the difference in the log-likelihood 
values. This test statistic has a chi-square distribution with degrees of freedom equal to the 
number of parameters. The log-likelihoods are calculated including the new data.  

Furthermore, it should be noted that there is no restriction on the data used in the calculation of 
the test statistic. That is, even if the initial parameters are calculated using all available 
observations, we are free to test for whether an update is required using, for example, only the 
most recent five observations. Stated differently, the decision as to the data used in the 
estimation process is independent of the hypothesis test. 

Exhibits B1 and B2 present examples where the new observation does not support and does 
support, respectively, a change to the claims development factor estimator. 

5.2.  Regression (Least Squares Estimator) 
Similarly, we can use hypothesis testing to determine whether a development factor estimator 
developed using regression should be updated. We perform this test by calculating the 
predicted Y values using the following relationship: 

#� = �$ 

We then fit the following regression line to the predicted-Y values: 

# − #� = '# +  &  

We can then test for significance of the regression coefficient. If the regression coefficient is 
significant, we then reject the null hypothesis. Exhibits C1 and C2 present examples where the 
new observation does not support and does support, respectively, a change to the claims 
development factor estimator. 
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Exhibit A

RAA
General Liability Excluding Mass Torts
Selecting Claims Development Factors
Reported Incurred Claims

(1) (2) (3) (4) (5) (6) (7)
(3) / (2) ln [ (4) ‐ 1 ] ln [ (6) ]

Statistics for Maximum Likelihood

Accident Year at 12 mos. (A ) at 24 mos. (B ) Observed (X ) Y = ln(X  ‐ 1) f(y; μ, σ)
Log‐

Likelihood

1989 49,997 139,166 2.7835 0.578570442 0.620243308 ‐0.477643445
1990 70,104 201,662 2.8766 0.629467965 0.801247311 ‐0.221585627
1991 79,614 208,748 2.6220 0.483660668 0.307094784 ‐1.180598835
1992 56,265 190,867 3.3923 0.872249604 0.850514412 ‐0.161913922
1993 68,133 199,866 2.9335 0.65931547 0.895211433 ‐0.110695351
1994 68,530 241,658 3.5263 0.9267596 0.661954402 ‐0.412558604
1995 69,055 253,640 3.6730 0.983206773 0.461090693 ‐0.774160524
1996 102,320 295,607 2.8890 0.636070974 0.823202378 ‐0.194553205
1997 115,360 330,745 2.8671 0.624369451 0.783933695 ‐0.243430835
1998 138,160 468,526 3.3912 0.871788697 0.851967055 ‐0.160207421
1999 151,311 565,163 3.7351 1.006171101 0.386360609 ‐0.950984125
2000 178,943 562,916 3.1458 0.763504918 1.050062421 0.048849611
2001 187,203 671,424 3.5866 0.950347825 0.576352116 ‐0.551036493
2002 183,601 692,642 3.7725 1.019763639 0.34516186 ‐1.063741814
2003 149,925 494,121 3.2958 0.831076094 0.963885674 ‐0.036782587

Estimator Value
Traditional Estimators
All‐Year Weighted Average 3.3064
Five Year Weighted Average 3.5092
X‐Hi/Low Average 3.2381

Statistical Estimators
Maximum Likelihood
Model Form assumes LDF‐1 is lognormally distributed

μ 0.7891
σ 0.175177205
LDF 3.2014

Log‐Likelihood ‐6.491043178

Regression through the origin
Rgression Model B  = m*A + ε
Coefficient (m ) 3.3743
Standard Error of Coefficient SE (m ) 0.0896
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Exhibit B1

RAA
General Liability Excluding Mass Torts
Selecting Claims Development Factors
Reported Incurred Claims

(1) (2) (3) (4) (5) (6) (7) (8) (9)
(3) / (2) ln [ (4) ‐ 1 ] ln [ (6) ] ln [ (7) ]

Statistics for Maximum Likelihood

Accident Year at 12 mos. (A ) at 24 mos. (B ) Observed (X ) Y = ln(X  ‐ 1) f(y; μ0, σ0) f(y; μa, σa) Log‐Likelihood Log‐Likelihood

H0 Ha H0 Ha

1989 49,997 139,166 2.7835 0.578570442 0.609738605 0.558088576 ‐0.49472493 ‐0.583237591
1990 70,104 201,662 2.8766 0.629467965 0.805137803 0.747959337 ‐0.216741832 ‐0.290406665
1991 79,614 208,748 2.6220 0.483660668 0.285169761 0.255255323 ‐1.254670623 ‐1.365490968
1992 56,265 190,867 3.3923 0.872249604 0.873308617 0.895304603 ‐0.135466272 ‐0.11059128
1993 68,133 199,866 2.9335 0.65931547 0.908646836 0.852297506 ‐0.095798779 ‐0.159819627
1994 68,530 241,658 3.5263 0.9267596 0.6702392 0.706931176 ‐0.400120615 ‐0.346821965
1995 69,055 253,640 3.6730 0.983206773 0.456795588 0.497404281 ‐0.78351928 ‐0.698352141
1996 102,320 295,607 2.8890 0.636070974 0.829189261 0.771901938 ‐0.18730685 ‐0.25889776
1997 115,360 330,745 2.8671 0.624369451 0.786225562 0.729238497 ‐0.240511553 ‐0.315754444
1998 138,160 468,526 3.3912 0.871788697 0.874878068 0.896706774 ‐0.133670753 ‐0.109026367
1999 151,311 565,163 3.7351 1.006171101 0.378578156 0.417908939 ‐0.971332738 ‐0.87249172
2000 178,943 562,916 3.1458 0.763504918 1.086090261 1.059350837 0.082584332 0.057656303
2001 187,203 671,424 3.5866 0.950347825 0.57879619 0.618480075 ‐0.546804867 ‐0.480490303
2002 183,601 692,642 3.7725 1.019763639 0.335822123 0.373795744 ‐1.091173654 ‐0.98404577
2003 149,925 494,121 3.2958 0.831076094 0.995671493 1.000599101 ‐0.004337902 0.000598921
2004 New Obseravtion 3.7000 0.993251773 0.421722988 0.461945273 ‐0.863406607 ‐0.772308852

Statistical Estimators 0.000650999 0.000682683 ‐7.337002925 ‐7.289480228
Maximum Likelihood
Model Form assumes LDF‐1 is lognormally distributed

Hyothesis Testing
H0 Ha

μ 0.7891 0.8018
σ 0.169237259 0.171153501
LDF 3.2014 3.2297

Log‐Likelihood ‐7.337002925 ‐7.289480228
Change in Log_likelihood 0.047522697
Likelihhod Ratio Test Statistic 0.095045395
Critical Value 5.991464547 Chi‐Square (2 d.f.)

Accept H0
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Exhibit B2

RAA
General Liability Excluding Mass Torts
Selecting Claims Development Factors
Reported Incurred Claims

(1) (2) (3) (4) (5) (6) (7) (8) (9)
(3) / (2) ln [ (4) ‐ 1 ] ln [ (6) ] ln [ (7) ]

Statistics for Maximum Likelihood

Accident Year at 12 mos. (A ) at 24 mos. (B ) Observed (X ) Y = ln(X  ‐ 1) f(y; μ0, σ0) f(y; μa, σa) Log‐Likelihood Log‐Likelihood

H0 Ha H0 Ha

1989 49,997 139,166 2.7835 0.578570442 0.609738605 0.526960015 ‐0.49472493 ‐0.640630606
1990 70,104 201,662 2.8766 0.629467965 0.805137803 0.611993102 ‐0.216741832 ‐0.491034267
1991 79,614 208,748 2.6220 0.483660668 0.285169761 0.35433519 ‐1.254670623 ‐1.037511951
1992 56,265 190,867 3.3923 0.872249604 0.873308617 0.680420218 ‐0.135466272 ‐0.385044704
1993 68,133 199,866 2.9335 0.65931547 0.908646836 0.654525535 ‐0.095798779 ‐0.42384468
1994 68,530 241,658 3.5263 0.9267596 0.6702392 0.606929497 ‐0.400120615 ‐0.499342644
1995 69,055 253,640 3.6730 0.983206773 0.456795588 0.511158897 ‐0.78351928 ‐0.671074784
1996 102,320 295,607 2.8890 0.636070974 0.829189261 0.621970701 ‐0.18730685 ‐0.474862293
1997 115,360 330,745 2.8671 0.624369451 0.786225562 0.604091376 ‐0.240511553 ‐0.504029808
1998 138,160 468,526 3.3912 0.871788697 0.874878068 0.680931052 ‐0.133670753 ‐0.384294223
1999 151,311 565,163 3.7351 1.006171101 0.378578156 0.469315257 ‐0.971332738 ‐0.756480547
2000 178,943 562,916 3.1458 0.763504918 1.086090261 0.734687447 0.082584332 ‐0.308310113
2001 187,203 671,424 3.5866 0.950347825 0.57879619 0.568643622 ‐0.546804867 ‐0.564501365
2002 183,601 692,642 3.7725 1.019763639 0.335822123 0.444295045 ‐1.091173654 ‐0.811266421
2003 149,925 494,121 3.2958 0.831076094 0.995671493 0.717284422 ‐0.004337902 ‐0.332282833
2004 New Obseravtion 5.6000 1.526056303 3.90759E‐05 0.006127827 ‐10.15000459 ‐5.094915038

Statistical Estimators 6.03201E‐08 1.54664E‐06 ‐16.62360091 ‐13.37942628
Maximum Likelihood
Model Form assumes LDF‐1 is lognormally distributed

Hyothesis Testing
H0 Ha

μ 0.7891 0.8351
σ 0.169237259 0.242228661
LDF 3.2014 3.3052

Log‐Likelihood ‐16.62360091 ‐13.37942628
Change in Log_likelihood 3.244174636
Likelihhod Ratio Test Statistic 6.488349272
Critical Value 5.991464547 Chi‐Square (2 d.f.)

Reject H0
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Exhibit C1

RAA
General Liability Excluding Mass Torts
Selecting Claims Development Factors
Reported Incurred Claims

(1) (2) (3) (4) (5) (6) (7)
(3) / (2) (3) / (1) (5) * (2) (6) ‐ (3)

Accident Year at 12 mos. (A ) at 24 mos. (B ) Observed (X ) Estiamtor H0 Predicted B Residuals

1989 49,997 139,166 2.7835 3.3743 168,703 29,537
1990 70,104 201,662 2.8766 3.3743 236,550 34,888
1991 79,614 208,748 2.6220 3.3743 268,639 59,891
1992 56,265 190,867 3.3923 3.3743 189,853 ‐1,014
1993 68,133 199,866 2.9335 3.3743 229,899 30,033
1994 68,530 241,658 3.5263 3.3743 231,239 ‐10,419
1995 69,055 253,640 3.6730 3.3743 233,010 ‐20,630
1996 102,320 295,607 2.8890 3.3743 345,255 49,648
1997 115,360 330,745 2.8671 3.3743 389,256 58,511
1998 138,160 468,526 3.3912 3.3743 466,189 ‐2,337
1999 151,311 565,163 3.7351 3.3743 510,564 ‐54,599
2000 178,943 562,916 3.1458 3.3743 603,802 40,886
2001 187,203 671,424 3.5866 3.3743 631,673 ‐39,751
2002 183,601 692,642 3.7725 3.3743 619,519 ‐73,123
2003 149,925 494,121 3.2958 3.3743 505,887 11,766
2004 175,000 647,500 3.7000 3.3743 590,497 ‐57,003

Statistical Estimators
Regression through the origin

Hyothesis Testing
H0 Ha

LDF 3.3743 3.4141
Test Statistic ‐0.020898502
Standard Error 0.024561098
t Statistic ‐0.850878164
d.f. 15
Critical Value at 5% 2.131449536

Accept H0
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Exhibit C2

RAA
General Liability Excluding Mass Torts
Selecting Claims Development Factors
Reported Incurred Claims

(1) (2) (3) (4) (5) (6) (7)
(3) / (2) (3) / (1) (5) * (2) (6) ‐ (3)

Accident Year at 12 mos. (A ) at 24 mos. (B ) Observed (X ) Estiamtor H0 Predicted B Residuals

1989 49,997 139,166 2.7835 3.3743 168,703 29,537
1990 70,104 201,662 2.8766 3.3743 236,550 34,888
1991 79,614 208,748 2.6220 3.3743 268,639 59,891
1992 56,265 190,867 3.3923 3.3743 189,853 ‐1,014
1993 68,133 199,866 2.9335 3.3743 229,899 30,033
1994 68,530 241,658 3.5263 3.3743 231,239 ‐10,419
1995 69,055 253,640 3.6730 3.3743 233,010 ‐20,630
1996 102,320 295,607 2.8890 3.3743 345,255 49,648
1997 115,360 330,745 2.8671 3.3743 389,256 58,511
1998 138,160 468,526 3.3912 3.3743 466,189 ‐2,337
1999 151,311 565,163 3.7351 3.3743 510,564 ‐54,599
2000 178,943 562,916 3.1458 3.3743 603,802 40,886
2001 187,203 671,424 3.5866 3.3743 631,673 ‐39,751
2002 183,601 692,642 3.7725 3.3743 619,519 ‐73,123
2003 149,925 494,121 3.2958 3.3743 505,887 11,766
2004 175,000 980,000 5.6000 3.3743 590,497 ‐389,503

Statistical Estimators
Regression through the origin

Hyothesis Testing
H0 Ha

LDF 3.3743 3.6462
Test Statistic ‐0.116444321
Standard Error 0.049658948
t Statistic 2.34488095
d.f. 15
Critical Value at 5% 2.131449536

Reject H0
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 Risk Margins in Fair Value Loss Reserves:  
Required Capital for Unpaid Losses and its Cost  

Michael G. Wacek, FCAS, MAAA 
 

Abstract  
There is a general consensus that, in the absence of a trading market for loss reserves, a reasonable 
estimate of the “fair value” of unpaid losses is the risk-free present value of an unbiased estimate of 
those losses plus a market-based risk margin. If the risk margin is defined as the risk-free present value 
of the market-clearing cost of the capital required to support the unpaid losses during the run-off 
period, the size of the risk margin depends on the amount of required capital. Existing literature shows 
how to calculate the risk margin in cases where the amount of required capital is specified exogenously. 
However, the European Solvency II directive defines the capital requirement as of any given date as an 
endogenous variable equal to the amount needed to ensure solvency over a one-year time horizon with 
99.5% confidence. This paper derives and illustrates an integrated framework for quantifying the 
required capital, the implied cost-of-capital-based risk margin and the fair value reserve from the 
expected volatility, payment and other characteristics of an unpaid loss portfolio consistent with the 
Solvency II standard. The conceptual framework presented has application to both fair value reserving 
and economic capital modeling. 
 
Keywords. Economic capital, fair value loss reserve, hindsight loss reserve estimate, risk margin, 
Solvency II, stochastic loss reserve modeling 

 

1. INTRODUCTION  

In a 2007 Casualty Actuarial Forum paper entitled “Consistent Measurement of Property-
Casualty Risk-Based Capital Adequacy” [6], Wacek included formulas for calculation of the 
transfer value (or “fair value”) of unbiased reserves for unpaid losses. His underlying 
premise was that the risk margin embedded in the fair value reserve is based on the market 
cost of the capital required to support the unpaid losses as they run off1. The risk margin 
formulas derived in that paper are easily applied in cases where the amount of required 
capital has already been explicitly specified. However, the paper provided no guidance on 
how to proceed in cases where required capital is defined indirectly as a function of potential 
loss reserve outcomes, e.g., in terms of the one-year Expected Policyholder Deficit (EPD), 
Value-at-Risk (VaR) or Tail Value-at-Risk (TVaR) at some specified target confidence level.   

This paper partially fills the gap in [6] by presenting formulas and a procedure for 
determining the fair value of unpaid losses in the case where the capital requirement is based 
                                                 
1 This is the Solvency II definition, which, according to PricewaterhouseCoopers, is intended to be “a market-

consistent ‘economic’ approach to valuation of assets and liabilities.” This approach is also “conceptually in 
line with proposals for a revised IFRS for insurance contracts.” For more background on Solvency II and its 
implications, see PWC’s 2007 paper, “Gearing up for Solvency II” [4].  The quotes included here are from 
that paper. IFRS refers to “International Financial Reporting Standards.” 
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on a target VaR measure instead of on pre-specified capital-to-reserve ratios. In addition, it 
incorporates more realistic assumptions about interest rates, in particular, that rates can vary 
by maturity and over time. The focus here is on VaR, because the capital adequacy standard 
embedded in the European Solvency II directive is based on a Value-at-Risk measure at the 
99.5% confidence level ( %5.99VaR ).  

Other authors have explored the issue of risk margins in fair value reserves. In a 2004 
research project partially funded by the Casualty Actuarial Society, Tillinghast actuaries 
Conger, Hurley and Lowe and PricewaterhouseCoopers actuaries Gutterman, Littmann, 
Tarrant and Thomas estimated market-based risk margins using various approaches [1] [5]2. 
Conger, Hurley and Lowe estimated historical risk margins without reference to capital.  
Gutterman et al included a cost-of-capital method among the four approaches they modeled. 
In a 2006 paper Feldblum [3] discussed a cost-of-capital approach to determining risk 
margins. However, like Wacek [6], both Feldblum and Gutterman et al treated the amount 
of required capital in their cost-of-capital models as an exogenous variable. In contrast, in 
this paper we model required capital as an endogenous variable. We show how to use the 
characteristics of the unpaid loss portfolio itself to determine the amount of capital implied 
by the Solvency II %5.99VaR  standard, the risk margin based on the cost of that capital and, 
ultimately, the fair value of the unpaid losses. 

The paper comprises four main sections including this introduction, plus two appendices. 
In Section 2, using the Solvency II conceptual framework, we derive the key formulas and a 
recursive procedure for the calculation of required capital, risk margins and fair value 
reserves for unpaid losses. While that section includes a number of formulas, some of which 
look daunting, the fact is that the mathematics does not go beyond basic algebra and 
probability concepts. In Section 3 we illustrate a detailed practical application of the formulas 
and procedure presented in Section 2. In Section 4 we briefly summarize the key points and 
implications of the paper, and identify some areas for further research. Appendix A 
describes how to determine forward interest rates from the standard yield curve. Appendix B 
presents the derivation of a formula used in Section 2. A complete list of abbreviations and 
notations appears after the appendices followed by a list of references. 

The terminology and notation used in this paper are generally consistent with [6]3. That 
paper used the term “transfer value” rather than “fair value” but the meaning of both terms 

                                                 
2 We provide separate references to these two self-contained papers published together in one volume. 
3 Familiarity with that paper is assumed, especially with the contents of sections 1, 2 (particularly 2.2 and 2.3) 

and Appendix B. 
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with respect to loss reserves is the same. Because “fair value” has become the more popular 
term, we adopt that usage in this paper. 

2. DETERMINING THE FAIR VALUE OF UNPAID LOSSES 

Conceptually, the fair value loss reserve is intended to be the price at which the loss 
reserve liability could be irrevocably transferred to a third party4. Because loss reserves are 
not normally traded, it is impossible to observe market prices directly. Instead, the fair value 
reserve must be determined indirectly as the risk-free present value of unpaid losses plus a 
risk margin reflecting the market-clearing cost of the capital required to minimize the risk of 
insolvency over a one-year time horizon due to loss reserve inadequacy.  

In formula terms the fair value )( nLT 5 of unpaid losses  Ln  at time n is the sum:  

         nnn R)L(PV)L(T ′+= ,          (2.1) 

where )( nLPV  is the risk-free present value sum of the future loss and   ′ R n  is the loss 
reserve risk margin, both as of time n.   

2.1 The Present Value )L(PV n  

The calculation of )( nLPV  requires knowledge of the amounts and timing of the 
expected future loss payments knnnn PPPP ++++ ,,,, 321 K 6, where k represents the number of 
future loss payments, as well as an assumption about the risk-free yield curve. If we assume a 
flat yield curve, i.e., that the risk-free rate is the same irrespective of the time to maturity, we 
can use a single rate r in our present value analysis. In that case, if we assume that all loss 
payments are made at the midpoint of each payment year, then the value of )( nLPV  is 
given by the formula: 

    k
knnnnn vPrvPrvPrvPrLPV ⋅⋅+++⋅⋅++⋅⋅++⋅⋅+= ++++ )1()1()1()1()( 2

13
32

12
22

1
12

1 K    

)()1( 3
3

2
212

1 k
knnnn vPvPvPvPr ⋅++⋅+⋅+⋅⋅+= ++++ K ,       (2.2) 

                                                 
4 Our use of the term “loss” should be understood to include claim adjusting and defense costs as well as the 

administrative expenses associated with managing a portfolio of claims. Those costs would be assumed by a 
third party in the case of an irrevocable transfer.  

5 We retain the notation )( nLT  to represent the fair value of unpaid losses in order to remain consistent with 
[6], where the equivalent term “transfer value” was used instead of “fair value”. 

6 This definition of inP + , for 11 −≤≤ ki , as an expected value as of time n of a future loss payment matches the 
one used in Appendix B of [6].  The reader should be aware that in the body of [6], inP +  refers to the actual 
payment in the year ending at time n+i.  
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where 1)1( −+= rv  and r2
11 +  is the adjustment factor required to reflect our assumption 

that loss payments are made at the midpoint of each year. The flat yield curve assumption 
allows us to factor r2

11 +  out of each term. 

However, because our intent is to develop a practical framework that can be applied in 
the real world, where interest rates typically vary by maturity, we assume that risk-free 
interest rates can display that kind of variation. That requires us to introduce notation that 
differentiates between rates for different maturities.   

Let mr  represent the annual yield to maturity as of time n on the risk-free fixed income 
instrument maturing in m years7. 1)1( −+= mm rv  is the corresponding one-year discount 
factor. mr  is also known as the “spot” rate. The standard yield curve is sometimes called the 
“spot rate curve” to distinguish it from other curves, including the “forward rate” curve. 

The forward rate   rf : m  as of time n is the annual yield, between time n+f and n+f +m, on 
risk-free fixed income instruments maturing at or after time n+f +m. For a discussion of how 
forward rates can be derived from the spot rate curve, see Appendix A.  

Having introduced the necessary notation, we can now generalize Formula (2.2) to allow 
for risk-free rates that vary by maturity: 

   
k
kknkn

nnn

vPrvPr

vPrvPrLPV

⋅⋅+++⋅⋅++

⋅⋅++⋅⋅+=

+−+

++

)1()1(

)1()1()(

5.0:5.02
13

335.0:5.22
1

2
225.0:5.12

1
115.0:5.02

1

K
            (2.3) 

where 5.0:5.0r  is the six-month forward rate for six-month risk-free money, and, in general for 
integer     0 ≤ j ≤ k −1,     r j +0.5:0.5 is the j-year + six-month forward rate for six-month risk-free 
money. The factor 50502

11 .:.jr ++  in each term adjusts the loss payment assumption from year-
end to mid-year.   

Formula (2.3) accords with an insurer investment policy of buying a set of risk-free zero 
coupon securities at time n to fund the payment of losses plus interest at each year-end. In 
order to be in a position to meet each expected mid-year loss payment obligation, the insurer 
simultaneously enters into a set of forward sales of six-month risk-free zero coupon 
securities, whose par values match the par values of the purchased zeroes.  

For example, in accordance with that policy, at time n the insurer would purchase a one-
year risk-free zero-coupon security having par value 150502

11 +⋅+ n.:. P)r(  (and market value 

115.0:5.02
1 )1( vPr n ⋅⋅+ + ) and at the same time enter into a six-month forward sale of a six-

month risk-free zero-coupon security with par value 15.0:5.02
1 )1( +⋅+ nPr  (and forward price of 

                                                 
7 Note that m does not have to be an integer. 
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    Pn +1). That combination of purchase and matching forward sale would guarantee proceeds of 

    Pn +1 at time     n + 1
2 , which the insurer could use to make the expected loss payment due at 

that time8. The second year’s loss payment would be funded by the purchase, also at time n, 
of two-year risk-free zeroes with par value 25.0:5.12

1 )1( +⋅+ nPr  and the simultaneous eighteen-
month forward sale of six-month risk-free zeroes with the same par value. The funding of 
the third and subsequent years’ loss payments would be addressed in a similar way. 

In general, the present value )( inLPV +  of the expected unpaid loss  Ln + i  as of time n+i is 
given by: 

     
k

kiknkiini

iiniiiniin

vPrvPr

vPrvPrLPV

:5.0:5.02
13

3:35.0:5.22
1

2
2:25.0:5.12

1
1:15.0:5.02

1

)1()1(

)1()1()(

⋅⋅+++⋅⋅++

⋅⋅++⋅⋅+=

+−+++

+++++++

K
      (2.4) 

for integers     0 ≤ i ≤ k −1, where   vi : m  represents the i-year forward one-year discount factor as 
of time n for m-year risk-free money. 

2.2 The Risk Margin nR ′  

The risk margin   ′ R n  is the second component of the fair value )( nLT  of unpaid losses  Ln  
at time n. It is the risk-free present value sum of expected future risk charges based on the 
market cost of the capital required at time n and beyond to support the unpaid losses as they 
run off.   

Let   Cn
R  represent the amount of capital required at time n to support the unpaid losses 

  Ln  for the next year (to time n+1). It is expected that after the passage of a year the unpaid 
loss amount will be 1+nL  and that the amount of capital required at time n+1 for the 
following year will be R

nC 1+ . In general, based on the sequence of expected unpaid loss 
amounts       Ln , Ln +1 , Ln +2 ,L , Ln +k−1

9 at times n, n+1, n+2, …, n+k-1, respectively, we can 
anticipate that a sequence of expected capital amounts    Cn

R ,Cn +1
R ,Cn +1

R ,L ,Cn +k−1
R  will be 

needed to support the unpaid losses as they run off.   

We assume that the capital provider demands the market-clearing annualized after-tax 
return on equity of roe for each year the capital is exposed. Assuming a constant market 

                                                 
8 An equivalent alternative, of course, would be simply to buy a six-month zero-coupon instrument. Indeed, we 

could have expressed Formula (2.3) in terms of discount factors corresponding to an initial maturity six 
months out and at annual intervals thereafter. However, for the purposes of our presentation it is helpful to 
arrange for all cash flows to occur at the end of each year. 

9 This definition of inL + , for 11 −≤≤ ki , as an expected value as of time n of a future unpaid loss amount 
matches the one used in Appendix B of [6].  The reader should be aware that in the body of [6], inL +  refers 
to the actual unpaid loss amount at time n+i. 

 

Casualty Actuarial Society E-Forum, Fall 2008 584



 Risk Margins in Fair Value Loss Reserves 

   

return on equity requirement and given a market-clearing tax rate of tax, the annual pre-tax 

return requirement on the required capital is 
tax

roeroePT −
=

1
, a portion of which will be 

provided by the risk-free interest earned on the capital itself. For example, if 1r  is the one-
year risk-free rate as of time n, then the portion of the required rate of return on capital  Cn

R  
between time n and time n+1 that must come from the underwriting assets set aside to fund 
unpaid losses is 1rroePT − . The cost of the capital required to support the unpaid losses  Ln  
for this first year of the run-off is R

nPT Crroe ⋅− )( 1 .  

The comparable expected rate of return on   Cn +1
R  between times n+1 and n+2 is 

1:1rroePT − , where     r1:1  is the one-year forward rate as of time n for one-year money. We use 
the forward rate     r1:1 in order to match the expected deployment of   Cn +1

R  at time n+1. The use 
of the forward rate mimics the effect of entering into a one-year forward contract at time n 
to invest     Cn +1

R  in a one-year zero-coupon security at time n+1. The cost of the capital 
required to support the expected remaining unpaid losses 1+nL  for this second year of the 
run-off is R

nPT Crroe 11:1 )( +⋅− .  

The annual costs, expected as of time n, related to the capital to support unpaid losses 
over the entire the run-off period are represented by the sequence R

nPT Crroe ⋅− )( 1 , 
R
nPT Crroe 11:1 )( +⋅− , R

nPT Crroe 21:2 )( +⋅− , …, R
knkPT Crroe 11:1 )( −+− ⋅− , where 1:ir  is the i-year 

forward rate as of time n for one-year money and   0 ≤ i ≤ k −110.  

We are now in a position to express  ′ R n  as the following present value sum:  

       
k
k

R
knkPT

R
nPT

R
nPT

R
nPTn

vCrroe

vCrroevCrroevCrroeR

⋅⋅−++

⋅⋅−+⋅⋅−+⋅⋅−=′

−+−

++

11:1

3
321:2

2
211:111

)(

)()()(

K
           (2.5) 

where       v1 , v2 , v3 ,K , vk  are the one-year risk-free discount factors implied by the yields at 
time n on fixed income instruments maturing in one, two, three, …, and k years, 
respectively11.  

  ′ R n  can also be expressed recursively in terms of the risk margin   ′ R n +1 associated with the 
expected unpaid losses 1+nL  at time n+1:  

      ))(( 111 +′+⋅−⋅=′ n
R
nPTn RCrroevR ,               (2.6) 

where  

                                                 
10 Because the zero-year forward rate as of time n for one-year money is the same as the “spot” rate, we can use 

the notation     r0:1  and     r1  interchangeably. 
11 1

11 )1( −
++ += ii rv  for integer 10 −≤≤ ki . 
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1:11:31:21:111:11:31:21:131:3

1:21:121:21:111:11

)()(

)()(

−−+−+

+++

⋅⋅⋅⋅−++⋅⋅⋅⋅−+

⋅⋅⋅−+⋅⋅−=′
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R

knkPT
R
nPT

R
nPT

R
nPTn

vvvvCrroevvvCrroe

vvCrroevCrroeR
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See Appendix B for a derivation of Formula (2.6). 

If the sequence of expected required capital    Cn
R ,Cn +1

R ,Cn +1
R ,L ,Cn +k−1

R  is known, whether 
from the application of prescribed capital factors or through some other means, we can use 
Formula (2.5) or (2.6) to first determine  ′ R n   and then Formula (2.1) to determine )( nLT 12.  

In general, the risk margin   ′ R n + i  associated with the expected unpaid losses   Ln + i  at time 
n+i can be expressed in terms of the risk margin   ′ R n + i +1 associated with the expected unpaid 
losses     Ln + i +1 one year later at time n+i+1: 

   ))(( 11:1: ++++ ′+⋅−⋅=′ in
R

iniPTiin RCrroevR ,         (2.7) 

where     0 ≤ i ≤ k −1. 

2.3 Funding Assets 1+nS  and Funding Need 1+nt  

Let’s assume that the required capital sequence has not been directly specified, and that 
instead the capital requirement has been described in the form of the objective to ensure that 
the one-year probability of insolvency due to fair value loss reserve inadequacy is no more 
than α1 − . In Value-at-Risk terms that implies capital calibration at the α confidence level 
and a time horizon of one year13.  

Specifically, that objective establishes the required capital R
nC  at time n as the amount 

needed in addition to assets equal to the fair value )( nLT  of the unpaid losses   Ln  to ensure 
(with a probability of α ) adequate funding of those unpaid losses  Ln  one year out (at time 
n+1). The total funding assets available at time n+1, including accumulated interest at the risk-
free rate 1r , will be the amount defined by )1())(( 11 rCLTS R

nnn +⋅+=+ .   

The funding need at time n+1 will be the amount equal to the fair value of the one-year 
hindsight estimate of   Ln . The term one-year hindsight estimate of  Ln  is a succinct way of 
referring to the unpaid losses remaining at time n+1 plus the losses paid during the 
preceding year. It can be represented at time n by the random variable 111 +++ += nnn plh , 
where 1+nl  and 1+np  are also random variables defined as of time n that correspond to the 
unpaid and paid loss components, respectively, of the hindsight estimate.   

                                                 
12 We assume that all other parameters needed for Formulas (2.1) and (2.5) or (2.6) are known. 
13 Under Solvency II, α =99.5%. 
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Let )( 11 ++ = nn hTt  represent the random variable, defined as of time n, for the fair value 
of the one-year hindsight estimate of  Ln  at time n+1. The fair value of the one-year 
hindsight estimate is the sum of the fair values of the unpaid and paid loss components14. 
The fair value of the time n+1 unpaid loss estimate is the sum of its present value and the 
associated risk margin. Because paid losses require no capital support, the fair value of the 
paid component as of time n+1 simply reflects an interest adjustment. Putting all of this 
together allows us to express     t n +1  as: 

     )()( 111 +++ += nnn pTlTt  

      )1()()( 5.0:5.02
1

1111 rplRlPV nnnn +⋅+′+= ++++       (2.8) 

where )( 11 ++′ nn lR  is the random variable for the required risk margin associated with the 
unpaid loss component     ln +1. We can recombine the terms in (2.8) involving 1+nl  and 1+np  to 
express     t n +1  more succinctly as: 

      )()( 1111 ++++ ′+= nnnn lRhPVt ,        (2.9) 

where )1()()( 5.0:5.02
1

111 rplPVhPV nnn +⋅+= +++  represents the random variable for the 
present value of the one-year hindsight estimate of  Ln  as of time n+1. 

If we assume that the relationship between the risk margin 1+′nR  associated with the 
expected unpaid loss 1+nL  at time n+1 and the present value )( 1+nLPV  of that unpaid loss, 

embodied in the ratio 
)( 1

1

+

+′

n

n

LPV
R , is representative of the general relationship between the 

risk margin and the present value of the associated unpaid loss at time n+1, then we can 
express )( 11 ++′ nn lR  as follows: 

)(
)()(

1

1
111

+

+
+++

′
⋅=′

n

n
nnn LPV

RlPVlR            (2.10) 

and we can then rewrite Formula (2.9) as: 
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)()(
1

1
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+
+++
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n

n
nnn LPV

RlPVhPVt        (2.11) 

                                                 
14 See Section 2.2 or 2.3 of [6]. 
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2.4 Solving for R
nC  

We can express the one-year solvency objective in terms of the relationship between the 
funding need and the funding assets at time n+1 in the following alternative, but equivalent, 
ways: 

  α1)(Pr 11 −≤≥ ++ nn Stob ,                        (2.12) 

       α1

0 11 ≥∫
+

++
nS

nn dtt         (2.13) 

                  1
1
11α )α()( +

−
++ ≤= nnn STtVaR ,              (2.14) 

where )( 1α +ntVaR  refers to the Value-at-Risk with respect to   t n +1  at the α  confidence level 
and     Tn +1

−1  represents the inverse distribution function of   t n +1 , both of which define the 
funding need at the α  confidence level. 

The value of R
nC  that satisfies the following equilibrium relationship between the funding 

need at the α  confidence level at time n+1 and the available funding assets at that time 
represents the amount of capital required at time n to support unpaid losses of   Ln : 

   )1())(()( 11α rCLTtVaR R
nnn +⋅+=+        (2.15) 

Solving for R
nC , we arrive at: 

      )()( 1α1 nn
R
n LTtVaRvC −⋅= + ,        (2.16) 

where 1
11 )1( −+= rv  represents the one-year risk-free discount factor as of time n. 

Using Formula (2.6) to expand Formula (2.1) we obtain the following formula for )( nLT  
in terms of   Cn

R  and     ′ R n +1: 

    ))(()()( 111 +′+⋅−⋅+= n
R
nPTnn RCrroevLPVLT ,      (2.17) 

Substituting the Formula (2.17) expression for )( nLT  into (2.16) and isolating R
nC , we 

obtain a revised formula for required capital at time n: 

)(1
))(()(

11

111α1

rroev
RvLPVtVaRvC

PT

nnnR
n −⋅+

′⋅+−⋅
= ++    

      
PT

nnn

roe
RrLPVtVaR

+
′++⋅−

= ++

1
))1()(()( 111α          (2.18) 

As a fair value quantity the α-quantile funding need )( 1α +ntVaR  includes an embedded 
risk margin, which we can isolate using Formula (2.11): 
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n
nnnn LPV

R
hPVVaRLPVhPVVaRtVaR     (2.19) 

where ))(( 1α +nhPVVaR  represents the time n+1 present value of the one-year hindsight loss 
estimate at the α  confidence level and ))((|( 1α1 ++ nn hPVVaRLPV  represents the time n+1 
present value of the unpaid loss component of ))(( 1α +nhPVVaR 15.  

We can see from Formula (2.19) that the α-quantile  funding need at time n+1 
contemplates funding for not only the run-off of the unpaid losses but also for the risk 
margin needed to cover the cost of the capital required to support the unpaid losses during 
the run-off period.  

If we substitute the Formula (2.19) expression of )( 1α +ntVaR  into Formula (2.18) and 
rearrange the terms in the numerator, we obtain the following formula for R

nC : 
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where  

       )1()())(( 11α1 rLPVhPVVaRF nnn +⋅−= ++       (2.21) 

defines the additional amount needed at time n+1 to bring present value loss funding up to 
the α  confidence level, and  

1
)(

)))((|(

1

1α1
1 −=

+

++
+

n

nn
n LPV

hPVVaRLPV
f       (2.22) 

                                                 
15 The notation )))((|( 1α1 ++ nn hPVVaRLPV is intended to convey the idea that the random variable )( 1+nlPV  

collapses to a single present value unpaid loss amount when conditioned on the specific present value 
hindsight estimate ))((( 1α +nhPVVaR  and that that present value unpaid loss amount is the one included 
within ))((( 1α +nhPVVaR . 
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is the percentage by which the time n+1 present value unpaid losses embedded in the one-
year hindsight estimate at the α  confidence level exceed the expected time n+1 present 
value unpaid loss amount.  

The general formula for the anticipated future capital R
inC +  required to support the 

expected unpaid losses   Ln + i  at time n+i, for   0 ≤ i ≤ k −1, is given by: 

       

    
PT

inininR
in roe

RfFC
+

′⋅+
= ++++++

+ 1
111         (2.23) 

where  

)1()())(( 1:1α1 iininin rLPVhPVVaRF +⋅−= +++++       (2.24) 

 

          1
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1

1α1
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++

++++
++

in

inin
in LPV

hPVVaRLPV
f          (2.25) 

2.5 Recursive Procedure for R
nC and nR ′   

The expected unpaid loss amount knL +  at time n+k is zero. At that point and beyond, 
the capital requirement R

knC +  and the risk margin knR +′  also are zero. At time n+k-1, because 
the terms depending on knR +′  drop out, Formulas (2.23) and (2.6) simplify to: 

          
  
Cn +k−1

R =
Fn +k

1+ roePT

              (2.26) 

and 

      R
knknPTknkn CrroevR 11:11:11 )( −+−+−+−+ ⋅−⋅=′           (2.27) 

By working recursively backward from time n+k-1, it is possible to determine the 
required capital and risk charges at any time from n through n+k-1. This can be achieved by 
the executing the following procedure, the first four steps of which do not rely on recursive 
relationships: 

1) Tabulate risk-free spot rates mr  for km ≤≤0  and the implied forward rates for one-year 
maturities based on Formula (A.2)16. 

2) Calculate and tabulate )( inLPV +  for 10 −≤≤ ki  using Formula (2.4). 

                                                 
16 We suggest U.S. Treasury rates, but we acknowledge that others may prefer a different risk-free benchmark. 

Casualty Actuarial Society E-Forum, Fall 2008 590



 Risk Margins in Fair Value Loss Reserves 

   

3) Model )1()()( 1:2
1

111 iininin rplPVhPV +⋅+= ++++++  for 10 −≤≤ ki  and tabulate 
))(( 1α ++inhPVVaR  and ))((|( 1α1 ++++ inin hPVVaRLPV 17.   

4) Calculate and tabulate 1++inF  for 10 −≤≤ ki  using Formula (2.24). 

5) Calculate and tabulate 1++inf for 10 −≤≤ ki  using Formula (2.25). 

6) Calculate R
knC 1−+  and 1−+′ knR  using the following recursive procedure: 

a) First calculate R
knC 1−+  using Formula (2.26) and then 1−+′ knR  (a function of R

knC 1−+ ) 
using (2.27).  

b) Calculate R
knC 2−+  (a function of 1−+′ knR ) and 2−+′ knR  (a function of 1−+′ knR  and R

knC 2−+ ), 
in that order, using Formulas (2.23) and (2.7), respectively, with the formula 
subscript i replaced in every case by k-2.  

c) Similarly, calculate R
knC 3−+  and 3−+′ knR , in that order, using Formulas (2.23) and (2.7), 

respectively, with the formula subscript i replaced in every case by k-3. 

d) Continue stepwise in this fashion by decrementing the subscript by one and 
calculating the values of R

inC +  and inR +′ , in that order, using Formulas (2.23) and 
(2.7), respectively, with the formula subscript i chosen to reflect the decremented 
subscript for the step. Repeat until R

nC  and nR ′  have been calculated, and then stop. 
The required capital and the required risk margin as of time n have been determined.  

7) Calculate and tabulate required capital ratios to unpaid losses in
R

inin LCc +++ = /  for 
10 −≤≤ ki . (Optional) 

8) Use Formula (2.1) to calculate the fair value of unpaid losses  T( Ln )  as of time n. 

3. ILLUSTRATION 

In this section we present a realistic illustration of the procedure described in Section 2.5 
using unpaid loss and volatility patterns based mainly on Schedule P data reported by a 
diversified U.S. insurer as of December 31, 200718.  

For purposes of illustration we make the following assumptions: 

1) n=2007 corresponds to the valuation date of December 31, 2007. 

2) The unbiased unpaid loss estimate as of December 31, 2007 is 000,10$2007 =L . 

                                                 
17 Discussion about how to perform this modeling is beyond the scope of this paper. For one approach, see 

Appendix C of [6]. Another alternative is to fit distributions to historical one-year hindsight loss relationships. 
18 The derivation and discussion of those patterns is beyond the scope of this paper. 
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3) The applicable risk-free rates are the U.S. Treasury rates as of December 31, 2007 
as shown in Table 119. 

4) The unpaid losses as of December 31, 2007 run off over ten years (k=10) as 
shown in Table 2. 

5) The market-clearing pre-tax return on equity is a constant %75.18=PTroe , based 
on market-clearing %15=roe and %20=tax 20. 

6) Required capital is calibrated to  VaRα  with %5.99α =  over a one-year time 
horizon. 

7) Forward interest rates for six-month and one-year money maturing on the same 
date are equal: 1:5.0:5.0 jj rr =+  for 10 −≤≤ kj 21. 

We illustrate the eight steps of the procedure by constructing a series of eight 
corresponding tables, each of which contains the key inputs and outputs of the respective 
step. In addition, we provide two additional tables which illustrate the cash flows associated 
with the fair value reserve run-off (Table 9) and the adequacy of the required capital to 
ensure fair value funding at the 99.5% confidence level (Table 10). 

Table 1 summarizes the risk-free interest rates used in this illustration. The spot rates 
comprising the U.S. Treasury yield curve as of December 31, 2007 have been tabulated in 
Column (2) by the number of years m to maturity. For example, the one-year spot rate was 
3.34% and the spot rate for the two-year maturity was 3.05%. The m-1 year forward rates for 
one-year money, derived from the December 2007 spot rates using Formula (A.2) from 
Appendix A, appear in Column (3). For example the one-year forward rate for one-year 
money was 2.76%, which was calculated using Formula (A.2) with f=1 and m=1 as follows: 

%76.21
0334.1

)0305.1(1
1

)1( 2

1

2
2

1:1 =−=−
+

+
=

r
rr  

The one-year forward discount factors for one-year money are shown in Column (4). 
They were calculated from the forward rates in Column (3) using the formula 

    
vm−1:1 =

1
1+ rm−1:1

, where     1≤ m ≤ 10. For example, the one-year forward one-year discount 

factor is 97.31%, which was calculated as 
%76.2+1

1
=

+1
1

=
1:1

1:1 r
v . 

                                                 
19 We assume that U.S. Treasury rates are reasonable proxies for risk-free rates. Note that some researchers 

dispute that notion.  That debate is beyond the scope of this paper. 
20 These return on equity and tax rate assumptions are merely illustrative, but are not unrealistic.  
21 The purpose of this assumption is merely to avoid having to introduce of an additional set of forward rates. 
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TABLE 1 

 Risk-Free Interest Rate Summary 
As of December 31, 2007 

 
(1) (2) (3) (4) 

 

 Number 
of Years  

 

Spot Rate

m-1 Year 
Forward 

One-Year 
Rate 

m-1 Year 
Forward 

One-Year 
Discount 

Factor 

m  mr
1 1:1−mr

2 1:1−mv 3 

1 3.34% 3.34% 96.77% 

2 3.05% 2.76% 97.31% 

3 3.07% 3.11% 96.98% 

4 3.25% 3.79% 96.35% 

5 3.45% 4.25% 95.92% 

6 3.57% 4.17% 96.00% 

7 3.70% 4.48% 95.71% 

8 3.81% 4.58% 95.62% 

9 3.92% 4.80% 95.42% 

10 4.04% 5.13% 95.12% 
1 Source: U.S. Treasury website; spot rates shown for 4-

year, 8-year and 9-year maturities are interpolated values. 
2 Formula (A.2) (Appendix A) 
3 Formula (A.3) (Appendix A) 

 

Table 2 shows the expected run-off pattern of the unpaid losses as of December 31, 
2007. Column (2) shows initial unpaid losses of $10,000 as of December 2007 and the 
expected remaining unpaid losses at successive December valuation dates through 2017, at 
which time all losses are expected to have been paid. The expected loss payments are shown 
in Column (3). The first payment of $2,839 is expected to be made during 2008, and the last 
payment of $160 is expected to be made in 2017. Column (4) shows the present value of the 
expected unpaid losses as of December 31, 2007 and the expected present values of the 
expected unpaid losses at successive December valuation dates. The December 2007 present 
value 148,9$=)( 2007LPV  was calculated from the expected losses payments in Column (3) 
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using Formula (2.3) and the risk-free rates tabulated in Table 122. Following the expected loss 
payment of $2,839 during 2008, the remaining unpaid losses as of December 31, 2008 are 
expected to be $7,161. The expected present value )( 2008LPV  as of December 2008 of that 
expected unpaid loss amount is $6,566, which was calculated using Formula (2.4) and 
forward rates derived from Table 123.  

 

TABLE 2 

 Unpaid Loss Reserve and Expected Run-off 
As of December 31, 2007 

 
(1) (2) (3) (4) 

Year 
Ending 

12/07+ i 

Expected 
Unpaid 
Losses 

Expected 
Paid 

Losses 

Expected 
PV of 

Unpaid 
Losses 

n+i 1 inL +  inP +  )( inLPV +
2 

2007 $10,000 n/a $9,148  

2008 $7,161  $2,839 $6,566  

2009 $5,105  $2,055 $4,664  

2010 $3,568  $1,538 $3,247  

2011 $2,467  $1,100 $2,249  

2012 $1,717  $750 $1,579  

2013 $1,206  $511 $1,123  

2014 $752  $454 $709  

2015 $442  $310 $425  

2016 $160  $283 $156  

2017 $0  $160 $0  
1 n=2007, value of   0 ≤ i ≤ k = 10  implied by valuation year 
2 Formula 2.4, using Column (3) and forward discount rates 

based on Table 1 

                                                 
22 For the mid-year loss payment adjustment we used the simplifying assumption that the forward rates for six-

month and one-year money having the same maturity date are the same: 1:05.:5.0 jj rr =+  for 10 −≤≤ kj .  
23 The actual present value of unpaid losses as of December 31, 2008 can vary from the expected due to a 

change in interest rates and/or a change in the unpaid loss estimate.  
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TABLE 3 

Present Value Hindsight Statistics One Year Out 
99.5% Confidence Level   

At Successive Annual Valuation Dates through 2017 
Expected as of December 31, 2007 

(1) (2) (3) (4) (5) 

Year 
Ending 

12/07+ i 

Expected 
PV of 

Unpaid 
Losses 

PV of 
Expected 
Hindsight  
One Year 

Out 

PV of 99.5% 
Hindsight  
One Year 

Out 

PV of  
Unpaid in 

99.5% 
Hindsight  
One Year 

Out 

n+i 1 )( inLPV +
2 )( inLPV +

)1( 1:ir+⋅  
%5.99VaR  

))(( 1++inhPV 3
4 

2007 $9,148  $9,453  $11,067  $7,840  

2008 $6,566  $6,748  $8,186  $5,847  

2009 $4,664  $4,809  $6,189  $4,294  

2010 $3,247  $3,370  $4,857  $3,359  

2011 $2,249  $2,345  $3,427  $2,395  

2012 $1,579  $1,645  $2,591  $1,797  

2013 $1,123  $1,173  $1,819  $1,125  

2014 $709  $742  $1,257  $668  

2015 $425  $445  $803  $241  

2016 $156  $164  $292  $0  

2017 $0  $0  $0 $0 
1 n=2007, value of   0 ≤ i ≤ k = 10  implied by valuation year 
2 Table 2, Column (4) 
3 From stochastic hindsight loss analysis 
4 ))((|( 1α1 ++++ inin hPVVaRLPV  from stochastic hindsight loss analysis 

 

Table 3 summarizes the key results needed from the modeling of the one-year hindsight 
loss estimate represented by the random variable 12007 ++ih  for   0 ≤ i ≤ k = 10. The details 

underlying that analysis are beyond the scope of this paper, but let us assume that we know 
the values of ))(( 12007%5.99 ++ihPVVaR  and ))((|( 12007%5.9912007 ++++ ii hPVVaRLPV , which we 

have tabulated in Columns (4) and (5) respectively. Column (3) shows the expected present 
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value one-year hindsight estimate )1()( 1:2007 ii rLPV +⋅+  as of December 2007+i+1, which 

provides a useful baseline comparison for the 99.5% quantile hindsight estimate in Column 
(4). Column (2) shows the present value )( 2007 iLPV +  as of December 2007+i in order to 

provide context for the entries in Column (3). 

For example, as of December 31, 2007 the present value of unpaid losses is 
148,9$=)( 2007LPV , as shown in Column (2). Reflecting interest at a rate of %34.3=1r , the 

expected value of that $9,148 one year out on December 31, 2008 is $9,453. That amount, 
shown in Column (3), is also the present value of the expected hindsight estimate as of that 
date. The present value as of December 31, 2008 of the one-year hindsight estimate at the 
99.5% confidence level ))(( 2008%5.99 hPVVaR  is shown in Column (4) as $11,067, which is 

17% higher than the baseline value of $9,453. As the loss portfolio runs off, the gap between 
the 99.5% quantile present value hindsight estimate and the baseline estimate is expected to 
increase. For example, the expected 99.5% level present value hindsight estimate of 
December 2011 unpaid losses of 427,3$=))(( 2012%5.99 hPVVaR  is 46% higher than the 

baseline of $2,345. By December 2016 the gap is expected to widen further to 78% ($292 vs. 
$164). This pattern is a manifestation of the expectation of increasing one-year volatility in 
the unpaid loss estimates as the portfolio ages.  

Column (5) shows the expected present value one year out from each valuation date of 
the portion of the one-year hindsight estimate that is expected to remain unpaid as of that 
date. For example, as of December 31, 2007 the expected December 31, 2008 present value 
of the unpaid portion of the one-year hindsight estimate of $11,067 is $7,840, expressed 
formally as: 840,7$=)067,11$=)((|( 2008%5.992008 hPVVaRLPV .  

Table 4 illustrates the calculation of 12007 ++iF  for   0 ≤ i ≤ k = 10, which represents the 
additional amount needed one year out from each valuation date December 2007+i to bring 
present value loss funding up to the 99.5% confidence level. Columns (2) and (3), both taken 
from Table 3, represent the expected and the 99.5% confidence level present value hindsight 
estimates one year out, respectively. For example, as of December 31, 2007 the expected 
present value of the one-year hindsight estimate one year out is $9,453. That amount, shown 
in Column (2), meets the present value loss funding requirement as of December 31, 2008, if 
the loss payments in 2008 and beyond follow the expected pattern. However, at the 99.5% 
quantile, the present value one-year hindsight estimate one year out is $11,067, shown in 
Column (3), which implies that an additional amount of 614,1$2008 =F  is needed to ensure 
full present value loss funding one year out at the 99.5% quantile. The additional required 
funding amounts one year out, shown in Column (4), generally decline as the portfolio runs  
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TABLE 4 

Additional Loss Funding Need One Year Out 
99.5% Confidence Level   

At Successive Annual Valuation Dates through 2017 
Expected as of December 31, 2007 

(1) (2) (3) (4) 

Year 
Ending 

12/07+ i 

PV of 
Expected 
Hindsight  
One Year 

Out 

PV of 99.5% 
Hindsight  
One Year 

Out 

Additional 
Loss Funding 

Need One 
Year Out at 

99.5% 

n+i 1 
)( inLPV +

)1( 1:ir+⋅  
%5.99VaR  

))(( 1++inhPV 3 1++inF 4 

2007 $9,453  $11,067  $1,614  

2008 $6,748  $8,186  $1,439  

2009 $4,809  $6,189  $1,381  

2010 $3,370  $4,857  $1,487  

2011 $2,345  $3,427  $1,082  

2012 $1,645  $2,591  $946  

2013 $1,173  $1,819  $646  

2014 $742  $1,257  $515  

2015 $445  $803  $358  

2016 $164  $292  $128  

2017 $0  $0 $0 
1 n=2007, value of   0 ≤ i ≤ k = 10  implied by valuation year 
2 Table 3, Column (3) 
3 Table 3, Column (4) 
4 Formula 2.24: (4)-(3) 
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off, reaching 128$2017 =F  as of December 31, 2016. The additional funding requirement one 
year out from December 31, 2017 is 0$2018 =F , because the final loss payment is expected to 
occur during 2017. 

Table 5 illustrates the calculation of 12007 ++if  for   0 ≤ i ≤ k −1= 9. 12007 ++if  is the amount 
by which the present value of the unpaid loss component of the 99.5% quantile one-year 
hindsight estimate of the unpaid loss iL +2007  as of December 2007+i+1 exceeds the 
expected present value of the unpaid loss at that same valuation date, expressed as a ratio to 
the latter. The expected present values of unpaid losses one year out )( 12007 ++iLPV  appear in 
Column (2). The values of ))((|( 12007%5.9912007 ++++ ii hPVVaRLPV , representing the present 
value unpaid loss components of the 99.5% quantile hindsight estimates, are shown in 
Column (3). Column (4) shows the values of 12007 ++if , which are calculated from the entries 
in Columns (2) and (3) using Formula (2.25). For example, in the row corresponding to the 
December 31, 2007 valuation date, the entry for 2008f  in Column (4) of 19.4% is the ratio of 
the Column (2) entry of $7,840 to the Column (3) entry of $6,566, less one. The value 

    f2008 = 19.4%  tells us that the expected present value unpaid loss amount one year out 
840,7$=))((|( 2008%5.992008 hPVVaRLPV  embedded in the 99.5% quantile present value 

one-year hindsight estimate 067,11$=))(( 2008%5.99 hPVVaR  of the December 31, 2007 
unpaid loss 000,102007 =L  is 19.4% higher than the expected present value loss 

566,6$)( 2008 =LPV  as of December 31, 200824. That in turn implies a 19.4% higher risk 
margin requirement as of December 31, 2008 at the 99.5% confidence loss level than at the 
expected loss level. As of December 31, 2016 the risk margin top-up factor one year out is 
treated as %02017 =f . Both the expected and 99.5% quantile present value hindsight 
estimates one year out from December 31, 2016 are zero, which implies that the risk margin 

0$2017 =′R . 

Table 6 summarizes the recursive calculation of R
iC +2007  and iR +′2007  for     0 ≤ i ≤ k = 10. 

Columns (2) and (4) are retabulations of   Fn + i +1 and 1++inf  from Tables 4 and 5, respectively. 
Column (3) shows the expected risk margin one year out. This is a retabulation of the risk 
margins shown in Column (7), shifted by one row. For example, as of December 2007 the 
expected risk margin one year out shown in Column (3) is 009,1$2008 =′R , which is also the 
amount shown in Column (7) as the expected risk margin as of December 2008. The 
expected risk margin one year out as of December 2016 is 0$2017 =′R , because the unpaid 
loss amount as of December 2017 is zero, which implies no further capital or risk margin 
requirement.  

                                                 
24 See Table 3, Column (4) for 067,11$=))(( 2008%5.99 hPVVaR  and Table 2, Column (2) for 000,102007 =L . 
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TABLE 5 

Growth in Risk Margin Need One Year Out  
99.5% Confidence Level   

At Successive Annual Valuation Dates through 2017 
Expected as of December 31, 2007 

(1) (2) (3) (4) 

Year 
Ending 

12/07+ i 

Expected PV 
of Unpaid 

Losses One 
Year Out 

PV of  
Unpaid in 

99.5% 
Hindsight  
One Year 

Out 

Additional 
Risk Margin 
Need One 

Year Out at 
99.5% 

n+i 1 )( 1++inLPV 2 3 
1++inf

4 

2007 $6,566  $7,840  19.4% 

2008 $4,664  $5,847  25.4% 

2009 $3,247  $4,294  32.2% 

2010 $2,249  $3,359  49.3% 

2011 $1,579  $2,395  51.7% 

2012 $1,123  $1,797  60.1% 

2013 $709  $1,125  58.6% 

2014 $425  $668  57.2% 

2015 $156  $241  55.1% 

2016 $0 $0  0.0% 
1 n=2007, value of   0 ≤ i ≤ k − 1 = 9 implied by valuation year 
2 Table 3, Column (2) one row down 
3 Table 3, Column (5) 
4 Formula 2.25:  (3)/(2)-1 
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TABLE 6 

Required Capital and Risk Margins 
Calibrated to 99.5% Confidence Level 

At Successive Annual Valuation Dates through 2017 
Expected as of December 31, 2007 

 
(1) (2) (3) (4) (5) (6) (7) 

Year 
Ending 

12/07+ i 

Additional 
Loss 

Funding 
Need One 
Year Out 
at 99.5% 

Expected 
Risk 

Margin 
One Year 

Out 

Additional 
Risk 

Margin 
Need One 
Year Out 
at 99.5% 

Required 
Capital 

Annual 
Pre-Tax 
Cost of 
Capital 

(Paid One 
Year Out) 

Expected 
Risk 

Margin 

n+i 1 1++inF 2     ′ R n + i +1
3 1++inf

4 R
inC +

5 6   ′ R n + i
7 

2007 $1,614  $1,009  19.4% $1,524  $235  $1,204  

2008 $1,439  $815  25.4% $1,386  $222  $1,009  

2009 $1,381  $632  32.2% $1,334  $209  $815  

2010 $1,487  $441  49.3% $1,435  $215  $632  

2011 $1,082  $309  51.7% $1,045  $152  $441  

2012 $946  $191  60.1% $893  $130  $309  

2013 $646  $114  58.6% $601  $86  $191  

2014 $515  $54  57.2% $460  $65  $114  

2015 $358  $14  55.1% $308  $43  $54  

2016 $128  $0  0.0% $108  $15  $14  

2017 $0 $0  0.0% $0  $0  $0  
1 n=2007, value of     0 ≤ i ≤ k = 10  implied by valuation year 
2 Table 4, Column (4) 
3 Column (7) one row down 
4 Table 5, Column (4) 
5 Formula 2.23: [(2)+(4)×(3)]/ )1( PTroe+ ; )1/( taxroeroePT −= ; with  roe =  15% and =tax 20% 
6 R

iniPT Crroe +⋅− )( 1 ; 1:ir  from Table 1, Column (3) with i=m-1; R
inC +  from Column (5) 

7 Formula 2.7: 1:iv × [(6) × (5)+(7) one row down]/ )1( PTroe+ ; 1:iv  from Table 1, Column (4) with i=m-1 
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In accordance with step 6(a) of the procedure described in Section 2.5, we start with the 
last year-end valuation date before the expected final loss payment in 2017, which is 
December 31, 2016. Because 0$2017 =′R , Formula (2.23) simplifies to Formula (2.26) and the 
required capital RC 2016  at that date is a function only of   F2017 and PTroe . Given 

%75.18%)201/(%15 == -PTroe  and the value of 128$=2017F  shown in Column (2), 
application of Formula (2.26) results in 108$=1875.1/128$=2016

RC , which appears in 
Column (5). Next, because 0$2017 =′R , Formula (2.7) simplifies to Formula (2.27), which 
defines 2016R′  simply as the cost of capital R

PT Crroe 20161:9 )( ⋅−  payable on December 31, 2017 
(tabulated in Column (6)), discounted back to December 31, 2016 at the forward rate 1:9r . 
Using     r9:1 = 5.13%  and %12.951:9 =v  from Table 1 together with %75.18=PTroe  and 

108$=2016
RC  in Formula (2.27), 14$108$%)13.5%75.18(%12.952016 =⋅⋅=′ -R , which 

appears in Column (7). This completes step 6(a). 

Continuing with step 6(b), we back up one year to December 31, 2015. Formulas (2.23) 
and (2.7) yield requirements 308$1875.1/)14$%1.55358($2015 =⋅+=RC  (Column (5)) and 

54$)14$43($%42.95]14$308$%)80.4%75.18[(%42.952015 =+⋅=+⋅⋅=′ -R  (Column (7)). 

In step 6(c), again using Formulas (2.23) and (2.7), now with   n + i = 2014, the implied 
requirements are 460$1875.1/)54$%2.57515($2014 =⋅+=RC , shown in Column (5), and 

114$)54$65($%62.95]54$460$%)58.4%75.18[(%62.952014 =+⋅=+⋅⋅=′ -R , shown in 
Column (7). 

In accordance with step 6(d), we continue in this fashion to populate Table 6 by working 
backward one year at a time until reaching the December 31, 2007 valuation date, at which 
point RC 2007  and 2007R′  are calculated as 524,1$1875.1/009,1$%4.19614,1$2007 =⋅+=RC  and 

204,1$)009,1$235($%77.96]009,1$524,1$%)34.3%75.18[(%77.962007 =+⋅=+⋅−⋅=′R . 

While the ultimate objective of steps 6(a-d) is to determine the risk margin     ′ R 2007  as of 
December 31, 2007, valuable byproducts of the recursive procedure summarized in Table 6 
are the expected required capital     C2007+ i

R  and risk margin   ′ R 2007+ i  at each successive December 
valuation date during the run-off period. 

Table 7 summarizes the required capital as a ratio to the expected unpaid losses as of 
December 2007 and at successive December valuation dates through 2016. It shows that the 
unpaid loss run-off and volatility patterns used in this illustration imply a required capital 
ratio that starts at 15% of unpaid losses at December 2007 and can be expected to rise 
during the run-off period, peaking at 70% as of December 2015. We do not know whether 
that pattern of generally increasing required capital ratios as a run-off portfolio ages is a 
general phenomenon or a unique result arising from the data used in this illustration. It 
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seems plausible that the one-year volatility of unpaid loss estimates generally increases as a 
loss portfolio ages, and it seems likely that, in turn, that would lead to a higher capital 
requirement for a loss portfolio in run-off. However, further study would be required to 
determine a definitive answer to that question. 

 

TABLE 7 

Ratios of Required Capital to Unpaid Loss 
Calibrated to 99.5% Confidence Level   

At Successive Annual Valuation Dates through 2017 
Expected as of December 31, 2007 

(1) (2) (3) (4) 

Year 
Ending 

12/07+ i 

Expected 
Unpaid 
Losses 

Required 
Capital 

Required 
Capital 
Ratio 

n+i 1 inL +
2 R

inC +
3  c n + i

4 

2007 $10,000  $1,524  15% 

2008 $7,161  $1,386  19% 

2009 $5,105  $1,334  26% 

2010 $3,568  $1,435  40% 

2011 $2,467  $1,045  42% 

2012 $1,717  $893  52% 

2013 $1,206  $601  50% 

2014 $752  $460  61% 

2015 $442  $308  70% 

2016 $160  $108  68% 

2017 $0 $0  n/a 
1 n=2007, value of   0 ≤ i ≤ k = 10  implied by valuation year 
2 Table 2, Column (2) 
3 Table 6, Column (5) 
4   c n +i = Ln +i /C n +i

R : (3)/(2) 
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TABLE 8 

Fair Value Reserves  
Capital Calibration at 99.5% Confidence Level 

At Successive Annual Valuation Dates through 2017 
Expected as of December 31, 2007 

(1) (2) (3) (4) (5) (6) (7) 

Year 
Ending 

12/07+ i 

Expected 
Unpaid 
Losses 

Expected 
PV of 

Unpaid 
Losses 

Expected 
Risk 

Margin 

Fair 
Value 

Reserve 

Risk Margin 
Ratio to PV 
of Unpaid 

Losses 

Fair 
Value 

Reserve 
Ratio to 
Unpaid 
Losses 

n+i 1 inL +
2 )( inLPV +

3
 ′ R n + i

4 )( inLT +
5

)( in

in

LPV
R

+

+′  
in

in

L
LT

+

+ )(

2007 $10,000  $9,148  $1,204  $10,351 13.2% 1.04  

2008 $7,161  $6,566  $1,009  $7,575  15.4% 1.06  

2009 $5,105  $4,664  $815  $5,479  17.5% 1.07  

2010 $3,568  $3,247  $632  $3,879  19.5% 1.09  

2011 $2,467  $2,249  $441  $2,691  19.6% 1.09  

2012 $1,717  $1,579  $309  $1,888  19.6% 1.10  

2013 $1,206  $1,123  $191  $1,314  17.0% 1.09  

2014 $752  $709  $114  $823  16.1% 1.09  

2015 $442  $425  $54  $479  12.8% 1.08  

2016 $160  $156  $14  $170  9.0% 1.06 

2017 $0 $0  $0  $0  0.0% n/a 
1 n=2007, value of     0 ≤ i ≤ k = 10  implied by valuation year 
2 Table 2, Column (2) 
3 Table 2, Column (4) 
4 Table 6, Column (7) 
5 Formula (2.1) generalized for n+i: (3)+(4) 

 
Table 8 summarizes the calculation of the fair value of unpaid losses as of December 31, 

2007 and subsequent December valuation dates. The fair value reserves are tabulated by 
valuation date in Column (5). These fair value estimates are based on capital calibration to 
the 99.5% confidence level combined with a market-clearing return on equity of 15% and 
market-clearing tax rate of 20% (corresponding to a pre-tax return PTroe  of 18.75%). The 

Casualty Actuarial Society E-Forum, Fall 2008 603



 Risk Margins in Fair Value Loss Reserves 

   

fair value of the unpaid losses as of December 31, 2007 is $10,351, which is 4% higher than 
the unpaid loss estimate as of that date. As the loss portfolio runs off, the ratio of the fair 
value reserve to unpaid losses can be expected to rise from 1.04 as of December 2007 to a 
peak of 1.10 as of December 2012 and then gradually decline to 1.06 in December 2016. 
These ratios are shown in Column (7).  Column (6) shows the ratio of the risk margin 
component of the fair value reserve to the present value of the unpaid losses at each 
valuation date. 

In our illustration the fair value reserve is much more sensitive to changes in interest rates 
than it is to changes in the pre-tax return requirement PTroe . If the spot rate curve as of 
December 31, 2007 had been one hundred basis points lower at each point, the fair value 
reserve would have been $10,658 rather than $10,351, which corresponds to shift in the ratio 
of the fair value reserve to unpaid losses from 1.04 to 1.07. On the other hand, if PTroe  had 
been 17.75% instead of 18.75%, a decline of one hundred basis points, the fair value reserve 
would have declined from $10,351 to $10,273, which corresponds to a decline in the ratio of 
the fair value reserve to unpaid losses from 1.04 to 1.03. The change in fair value due to a 
one hundred basis point change in the risk free rate is about four times the change in fair 
value resulting from a one hundred basis point change in the required pre-tax return PTroe 25! 
Note also that a reduction in the risk-free rate increases the fair value reserve, while a 
reduction in PTroe  reduces it. 

Table 9 shows the expected cash flows associated with the runoff of the fair value reserve 
of $10,351 as of December 31, 2007. Column (2) shows the underwriting assets 
corresponding to the fair value reserves as of December 31, 2007 and at successive 
December 31 valuation dates. Implicit in the fair value reserve calculations is the assumption 
that the fair value reserve amount will be invested in interest bearing assets consistent with 
the valuation formulas. Accordingly, the entries in Column (2) should be interpreted as 
invested asset amounts equal to the fair value reserves at each valuation date. Columns (3), 
(4) and (5) show the expected paid losses, net interest earned and cost of capital incurred 
during the one-year period following each valuation date. Column (6) shows the assets 
remaining at the end of each one-year period. Those ending amounts match the ending fair 
value reserve amounts shown in Column (7). 

 

                                                 
25 (10,658-10,351)/(10,273-10,351)=-3.94 
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For example, the December 31, 2007 underwriting assets of $10,351 corresponding to the 
fair value reserve of the same amount are expected to be reduced over the following year by 
paid losses of $2,839 (Column (3)) and cost of capital $235 (Column (4)) and increased by 
$298 of net interest earned (Column (5)), resulting in a balance of $7,575 after one year 

TABLE 9 

Fair Value Reserve Expected Run-off Cash Flows 
As of December 31, 2007 

 
(1) (2) (3) (4) (5) (6) (7) 

Year 
Ending 

12/07+ i 

Expected 
Beginning 

U/W 
Assets 

Expected 
Paid 

Losses in 
Next 
Year 

Expected 
Net 

Interest 
Earned in 
Next Year

Expected 
Cost of 

Capital in 
Next 
Year 

Expected 
Ending 
U/W 
Assets 

Expected 
Ending 

Fair Value 
Reserve 

n+i 1 )( inLT +
2 1++inP 3 4 5 6 )( 1++inLT 7

2007 $10,351  ($2,839) $298 ($235) $7,575 $7,575 

2008 $7,575  ($2,055) $181 ($222) $5,479 $5,479 

2009 $5,479  ($1,538) $146 ($209) $3,879 $3,879 

2010 $3,879  ($1,100) $126 ($215) $2,691 $2,691 

2011 $2,691  ($750) $99 ($152) $1,888 $1,888 

2012 $1,888  ($511) $68 ($130) $1,314 $1,314 

2013 $1,314  ($454) $49 ($86) $823 $823 

2014 $823  ($310) $31 ($65) $479 $479 

2015 $479  ($283) $16 ($43) $170 $170 

2016 $170  ($160) $5 ($15) $0 $0 

2017 $0  $0 $0 $0  $0  $0  
1 n=2007, value of     0 ≤ i ≤ k = 10  implied by valuation year 
2 Equal to fair value reserve: Table 8, Column (5) 
3 Table 2, Column (3) one row down, expressed as negative number      
4 ((2)+0.5×(3))× 1:ir , 1:ir from Table 1, Column (3) 
5 Table 6, Column (6), expressed as negative number 
6 (2)+(3)+(4)+(5) 
7 Table 8, Column (5) one row down  
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(Column (6)). That balance matches the fair value reserve amount as of December 31, 2008 
of $7,575 shown in Column (7). 

Table 10 illustrates the adequacy of the required capital to ensure fair value funding of 
unpaid losses at the 99.5% confidence level over each successive one-year time horizon. 
Columns (2) through (5) are analogous to the same columns of Table 9, and, in fact, for the 
year beginning December 31, 2007 the entries in Columns (2) and (5) are identical.  
However, the paid loss amount shown in Column (3) is the paid loss portion of the 99.5% 
confidence level hindsight estimate one year out (rather than the expected value amount 
shown in Table 9) and the net interest earned shown in Column (4) reflects that higher paid 
loss amount. Column (6) shows the accumulated value of the capital assets after one year.  
Column (7) shows the year-end value of the combined underwriting and capital assets.  
Column (8) shows the fair value of the unpaid losses embedded in the 99.5% confidence 
level hindsight estimate.  

For example, in the year beginning December 31, 2007 the paid loss portion of the 99.5% 
confidence level one-year hindsight estimate is $3,174 (vs. the $2,839 in the expected case). 
Interest earned is slightly lower due to the higher loss payment ($293 vs. $298). The cost of 
capital is the same $235 as in the expected case. The value of the capital assets at the end of 
the year is $1,809 ($1,524 × 1.1875). The ending value of the combined underwriting and 
capital assets after one year is $9,045, which matches the fair value of the unpaid loss portion 
of the 99.5% confidence level hindsight estimate as of December 31, 2008, which is shown 
in Column (8). 

Table 10 shows that at each successive valuation date through December 31, 2016, the 
combined underwriting and capital assets are adequate to meet the fair value funding 
requirement at the 99.5% confidence level. In practical terms that means that sufficient 
assets are available to fund both the 99.5% confidence level loss obligations as they become 
payable and the cost of the capital required to support the unpaid losses at that level 
throughout the run-off period. Because the fair value reserve includes a risk margin 
sufficient to pay the market cost of capital, the insurer should be able to raise additional 
capital, if necessary, or, alternatively, a regulator should be able to arrange for a transfer of 
the unpaid losses to a third party reinsurer with spare capital. 
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TABLE 10 

Adequacy of Capital to Ensure Fair Value Reserve Funding 
99.5% Confidence Level 

Expected as of December 31, 2007 
 

(1) (2) (3) (4) (5) (6) (7) (8) 

Year 
Ending 

12/07+ i 

Expected 
Beginning 

U/W 
Assets 

Expected 
Paid 

Losses in 
99.5% 
Level 

Hindsight

Expected 
Net 

Interest 
Earned in 

Next 
Year 

Expected 
Pre-Tax 
Cost of 

Capital in 
Next 
Year 

Expected 
Ending 
Capital 
Assets 

Expected 
Ending 
U/W + 
Capital 
Assets 

99.5% 
Level 

Ending 
Fair 

Value 
Reserve

n+i 1 )( inLT +
2 1++inP 3 4 5 6 7 8 

2007 $10,351  ($3,174) $293  ($235) $1,809  $9,045  $9,045 

2008 $7,575  ($2,307) $177  ($222) $1,646  $6,870  $6,870 

2009 $5,479  ($1,866) $141  ($209) $1,585  $5,130  $5,130 

2010 $3,879  ($1,470) $119  ($215) $1,704  $4,018  $4,018 

2011 $2,691  ($1,011) $93  ($152) $1,241  $2,863  $2,863 

2012 $1,888  ($778) $63  ($130) $1,061  $2,103  $2,103 

2013 $1,314  ($679) $44  ($86) $713  $1,306  $1,306 

2014 $823  ($575) $25  ($65) $546  $753  $753  

2015 $479  ($549) $10  ($43) $366  $263  $263  

2016 $170  ($284) $1  ($15) $128  $0  $0  
1 n=2007, value of     0 ≤ i ≤ k = 10  implied by valuation year 
2 Equal to fair value reserve: Table 8, Column (5) 
3 Paid loss component of 99.5% confidence level one-year hindsight estimate:  
  [Table 4, Column (3) – Table 5, Column (3)] / (1 + 0.5 × Table 1, Column (3)), expressed as negative number   
4 ((2)+0.5×(3))× 1:ir , 1:ir from Table 1, Column (3) 
5 Table 6, Column (6), expressed as negative number 
6 Table 7, Column (3) × 1.1875: ( )1( PT

R
in roeC +×+ ) 

7 (2)+(3)+(4)+(5)+(6) 
8 Table 5, Column (3) × (1 + Table 8, Column(6) one row down) 
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4. SUMMARY AND CONCLUSIONS 

In this paper we have derived and illustrated a comprehensive framework for the 
determination of the fair value reserve for unpaid losses that is consistent with a capital 
requirement established with the objective of ensuring adequate loss and cost-of-capital 
funding at the α  confidence level for each successive year of the run-off period. That 
framework supports the consistent quantification of the required capital, the implied cost-of-
capital-based risk margin and the fair value reserve from the expected volatility, payment and 
other characteristics of an unpaid loss portfolio. 

Because the fair value reserve at time n is a function of capital, which in turn is a function 
of the sequence of expected fair value reserves in the run-off period, which are functions of 
future required capital, and so on, it is necessary to determine the required capital and the 
fair value reserve using an integrated recursive procedure. The key ingredients required for 
execution of that procedure are 1) the market-clearing cost of capital, and 2) α-quantile 
estimates from the distribution of the one-year hindsight loss estimate at each run-off period 
annual valuation date, as well as knowledge of the time n risk-free yield curve and the 
expected unpaid loss run-off pattern. 

In our illustration we used a market-clearing pre-tax cost of capital PTroe  of 18.75%, 
reflecting an after-tax return on equity assumption of 15% and a tax rate of 20%. Further 
research is needed on the question of the true market-clearing cost of capital in this context. 
Conceptually, it is appealing to seek to infer the required after-tax return on equity from 
observed market returns. However, there are at least two issues which complicate such an 
analysis.  

First, in response to demands by reinsurance buyers for high quality security, active 
reinsurers have historically held capital far beyond the regulatory minimum level. We suspect 
that the reinsurance market does not compensate reinsurers for holding that additional 
capital at the same rate as for the base capital tranche corresponding to the regulatory 
requirement. If that is true, then unadjusted cost of capital estimates inferred from market 
returns on held capital will understate the actual cost of capital on the basic Solvency II 
capital tranche, unless a way can be found to determine and correct for differential market 
returns by capital tranche. 

A second complication relates to the market-clearing tax rate. U.S. reinsurers face a 35% 
statutory rate, while off-shore reinsurers face much lower statutory rates. However, U.S. 
reinsurers often pay less than the statutory rate and off-shore reinsurers often pay more. For 
example, Bermuda reinsurers, subject to a statutory rate of zero at home, typically pay 
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income and excise taxes on some of their U.S. business. The key issue is the effective tax rate. 
The Economist magazine has reported U.S. and OECD-average effective corporate tax rates 
of 24% and 20%, respectively [2]. However, the Economist-cited study did not examine the 
effective rates specifically applicable to reinsurers, and those rates might differ from the 
corporate average. Clearly, further research on the market-clearing tax rate is warranted. 

Discussion of how to model the behavior of the successive one-year hindsight loss 
estimates of unpaid losses throughout the run-off period is beyond the scope of this paper. 
Clearly, results from such modeling are critical to the application of the framework we have 
presented and further research in that area would be welcome.  

For our illustration, in order to estimate plausible one-year hindsight loss estimate 
distributions, we analyzed the historical volatility and correlation of one-year loss 
development by Annual Statement Schedule P line of business and by age reported by the 
insurer selected for this example. After selecting volatility and correlation parameters, we 
modeled the one-year development behavior of the illustrative insurer’s reserves for all lines. 
There are other and perhaps better ways of estimating one-year loss reserve development 
distributions26. 

Fair value reserves are an essential component of insurance company economic capital 
modeling. As we have shown in this paper, economic capital is also an essential component 
of fair value reserving. The two are inextricably linked.  

An insurer’s available economic capital is the difference between its actual fair value 
assets and its fair value liabilities. Its required economic capital is the amount consistent with 
a target such as that embedded in the Solvency II directive, where the total capital 
requirement addresses the risks arising not only from unpaid losses but all other balance 
sheet and underwriting risks as well. While the focus of this paper has been on the amount 
of capital required to support fair value loss reserves in isolation, the concepts presented 
here clearly have application to the economic capital requirements arising from those other 
risks and indeed the entire insurance enterprise.  

 
APPENDIX A 

Deriving Forward Rates from the Spot Rate Curve 

We can identify the set of required forward rates by decomposing the yield curve into 
forward rate components. For example, the two-year spot rate   r2  as of time n is an average 

                                                 
26 For example, see Appendix C of [6]. 
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rate for the two-year period to maturity, comprising a rate of   r1 for the first year and a rate of 

1
1

)1(

1

2
2

1:1 −
+

+
=

r
rr  for the second year.   r1:1  is the one-year forward rate implied by the spot 

rate curve as of time n for the one-year maturity. Likewise, the three-year spot rate 3r  as of 

time n can be decomposed into three discrete one-year rates   r1 ,   r1:1 , and 1
)1(
)1(

2
2

3
3

1:2 −
+
+

=
r
rr  

corresponding to the first, second and third years, respectively, of the three year term to 

maturity. In general, 1
)1(
)1( 1

1
1: −

+

+
=

+
+

f
f

f
f

f r
r

r  is the f-year forward rate implied by the time n 

yield curve for the one-year maturity. 

The discount factor 1)1( −+= m
m
m rv  implied by the m-year maturity (m an integer) rate mr  

can also be expressed in terms of forward discount factors for the one-year maturity:  

      vm
m = v1 ⋅ v1:1 ⋅ v2:1 ⋅ ⋅ ⋅ vm−1:1         (A.1) 

Generally, we can determine any f-year forward rate implied by the time n yield curve for 
any m-year maturity (including non-integer values of f and m) as follows: 

1
)1(
)1(

/1

: −⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

+
=

+
+

m

f
f

mf
mf

mf r
r

r          (A.2) 

For example, using Formula (3.2) we can decompose the one-year rate     r1  into the six-

month rate     r0.5  and the six-month forward six-month rate 1
)1(

1
2

5.0
5.0

1
5.0:5.0 −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

+
=

r
rr . In 

similar fashion we can also determine forward rates   r1.5:0.5,   r2.5:0.5,   r3.5:0.5,…,     rk−0.5:0.5. Note that, 
in practice, we don’t always have rates for maturities at odd intervals such as     r1.5 ,     r2.5 ,   r3.5 ,…, 

    rk−0.5  and, in such cases, interpolation is necessary to obtain estimates of such rates. 

We can also determine forward rates for multi-year maturities from the forward rates for 
one-year maturities.  For example, given the one-year and two-year forward rates     r1:1  and   r2:1 
for the one-year maturity, we can determine the one-year forward rate for the two-year 
maturity as ( ) 2/1

1:21:12:1 )1()1( rrr +⋅+= .  Similarly, the one-year forward discount factor can 
be expressed in terms of the one-year and two-year forward discount factors for the one-
year maturity:     v1:2

2 = v1:1 ⋅ v2:1 .  In general, the formula for the f-year forward discount factor 
for the m-year maturity (m an integer) can be expressed as: 

    v f : m
m = v f :1 ⋅ v f +1:1 ⋅ v f +2:1 ⋅ ⋅ ⋅ v f +m−1:1 
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APPENDIX B 

Proof of Formula (2.6): ))
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 If we replace the multi-year risk-free discount factors    v2
2 , v3

3 , v4
4 ,K , vk

k  with equivalent 
factors based on forward rates for one-year money, we can rewrite Formula (2.5) as:                  
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Factoring out the one-year discount factor   v1 from all of the terms, we obtain:  
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and, finally: 
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1+′nR  can be characterized as the time n estimate of the present value risk charge required 
at time n+1.  In general, inR +′ , the time n estimate of the present value risk charge required at 
time n+i , can be expressed for 11 −≤≤ ki  as: 

      

′ R n + i =
roe

1− tax
− ri :1
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or, more succinctly, as 
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Abbreviations and Notations 

α   = confidence level (probability) that insolvency can be avoided 

nc   = ratio of required capital to unpaid losses at time n : n
R
n LC /  

R
nC   = nn Lc ⋅ = required capital at time n  

f  = subscript denoting the time (years) to a forward contract delivery date  

1+nf   = fraction by which the time n+1 unpaid losses embedded in the one-year 
hindsight estimate at α  confidence level exceeds the expected time n+1 one-
year hindsight estimate 1+nh   = 11 ++ + nn pl  = random variable, at time n, for 
one-year hindsight losses as of time n+1, given  Ln 

i  = integer subscript denoting a number of years beyond the initial valuation 
date at time n, 10 −≤≤ ki  

k  = integer number of years of loss payments beyond time n 

  Ln   = unpaid losses at time n 

1+nl   = random variable, at time n, for unpaid losses as of time n+1, given   Ln  

11 ++ + nn PL   = one year hindsight estimate of  Ln  at time n+1 

m = integer subscript denoting the time (years) to maturity of a bond  

n  = integer subscript denoting the first of a sequence of annual loss reserve 
valuation dates (time n+i is i years later)  

1+nP   = paid losses between time n and n+1 

1+np   = random variable, at time n, for paid losses between time n and n+1, given 

  Ln  

Prob )(⋅  = probability operator  

)(⋅PV  = risk-free present value operator  

)( 1+nhPV   = )1()( 2
1

11 rpLPV nn +⋅+ ++  = random variable, at time n, for the present 
value of 1+nh  as of time n+1, given  Ln  

))((|( 1α1 ++ nn hPVVaRLPV = present value of the unpaid loss component of the one-year 
hindsight loss estimate a the α  confidence level 

nR ′   = risk-free present value of future risk charges associated with unpaid losses 

  Ln  at time n 

r  = risk-free annual interest rate assuming a flat yield curve 
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mfr :   = risk-free annual f-year forward interest rate on the m-year maturity bond 

for the period from time n+f to n+f+m 

mr   = risk-free annual interest rate for the m-year maturity bond for the period 

from time n to n+m  

nr ′   = )
1

( r
tax

roec n −
−

⋅  = annual risk charge expressed as a rate of return on  Ln  

roe  = annualized required after-tax return on equity (capital) 

PTroe  = annualized required pre-tax return on equity (capital) 

1+nS    = )1())(( rCLT R
nn +⋅+  = accumulated value at time n+1 of initial assets 

equal to time n capital and loss reserve fair value plus interest 

tax  = income tax rate 

)(⋅T   = fair value at time n of unpaid losses  Ln   

)( nLT   = fair value at time n of unpaid losses  Ln   

)( 1+nlT   = random variable, at time n, for fair value at time n+1 of unpaid losses, 
given   Ln  

)( 11 ++ + nn PLT  = )1()( 2
1

11 rPLT nn +⋅+ ++  = fair value at time n+1 of one-year hindsight 
estimate of   Ln   

1
1

−
+nT   = inverse distribution function of 1+nt  

)( 1+nPT   = )1( 2
1

1 rPn +⋅+  = fair value at time n+1 of paid losses 1+nP   

)( 1+npT   = random variable, at time n, for fair value at time n+1 of paid losses 
between time n and n+1, given  Ln  

1+nt   = )( 11 ++ + nn plT  = )1()( 2
1

11 rplT nn +⋅+ ++  = random variable, at time n, for 

fair value at time n+1 of one-year hindsight estimate of  Ln  

v  = 1)1( −+ r  = one-year risk-free discount factor assuming a flat yield curve 

mfv :   = 1
: )1( −+ mfr  = one-year risk-free discount factor corresponding to mfr :   

mv   = 1)1( −+ mr  = one-year risk-free discount factor mr  

)( 1α +ntVaR  = Value-at-Risk with respect to 1+nt  at the α  confidence level 

))(( 1α +nhPVVaR = Value-at-Risk with respect to )( 1+nhPV  at the α  confidence level 
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Note: An Excel spreadsheet supporting the calculation of the values of Tables 1 through 10 is available at

         http://www.casact.org/library/index.cfm?fa=caveat. 
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