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Abstract  

Robust statistical procedures have a growing body of literature and in actuarial applications have been 
applied in loss severity fitting. Here an introduction of robust methods is made for loss reserving. In 
particular, following Tampubolon [1], reserve models for a development triangle are compared based on 
the sensitivity of the reserve estimates to changes in individual data points. This is then related to the 
generalized degrees of freedom used by the model at each point. 
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All models are wrong, but some are useful. 
Christian Dior (or maybe George E. P. Box) 

0 INTRODUCTION 

The idea of this paper is simple: for models of a loss development triangle, look at the derivative 

of the loss reserve with respect to each data point. All else being equal, models that are highly 

sensitive to a few particular observations are less preferred than ones that are not. This is supported 

by the fact that individual cells can be highly unstable. This general approach, based on Tampubolon 

[1], is along the lines of robust statistics, so some background into robust statistics will be the 

starting point. Published models on three data sets will be tested by this methodology. For two of 

them, unsuspected problems with the previously best-fitting models are found, leading to improved 

models.  

The sensitivity of the reserve estimate to individual points is related to the power of those points 

to pull the fitted model towards them. This can be measured by what Ye [2] calls generalized degrees 

of freedom (GDF). For a model and fitting procedure, the GDF at each point is defined as the 

derivative of the fitted point with respect to the observed point. If any change in a sample point is 

matched by the same change in the fitted, the model and fitting procedure are giving that point full 

control over its fit, so a full degree of freedom is used. GDF does not fully explain the sensitivity of 

the reserve to a point, as the position of the point in the triangle also gives it more or less power to 

change the reserve estimate, but it adds some insight into that. 

Section 1 provides some background into robust analysis and section 2 shows some previous 
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applications to actuarial problems. These help to place the current proposal into perspective in that 

literature. Sections 3, 4, and 5 apply this approach to some published development models. Section 6 

concludes. 

1 ROBUST METHODS IN GENERAL 

Classical statistics takes a model structure and tries to optimize the fit of data to the model under 

the assumption that the data is in fact generated by the process postulated in the model. But in many 

applied situations, the model is a convenient simplification of a more complex process. In this case 

the optimality of estimation methods like maximum likelihood (MLE) may no longer hold. In fact a 

few observations that do not arise from the model assumptions can sometimes significantly distort 

the estimated parameters when standard techniques are used. For instance, Tukey [3] gives examples 

where even small deviations from the assumed model can greatly reduce the optimality properties. 

Robust statistics looks for estimation methods that in one way or another can insulate the estimates 

from such distortions. 

Perhaps the simplest such procedure is to identify and exclude outliers. Sometimes outliers clearly 

arise from some other process than the model being estimated, and it may even be clear when 

current conditions are likely to generate such outliers, so that the model can then be adjusted. If the 

parameter estimates are strongly influenced by such outliers, and the majority of the observations are 

not consistent with those estimates, it is reasonable to exclude the outliers and just be cautious about 

when to use the model.  

An example is provided by models of the US one-month Treasury bill rates at monthly intervals. 

Typical models postulate that the volatility of the rate is higher when the rate itself is higher. Often 

the volatility is proposed to be proportional to the pth power of the rate. The question is – what is p? 

One model, the CIR or Cox, Ingersoll, Ross model, takes p = ½. Other models postulate p as 1 or 

even 1.5, and others try to estimate p as a parameter. An analysis by Dell’Aquila et al. [4] found that 

when using traditional methods, the estimate of p is very sensitive to a few observations in the 1979-

82 period, when the US Federal Reserve bank was experimenting with monetary policy. Including 

that period in the data, models with p=1.5 cannot be rejected, but excluding that period finds that p 

= ½ works just fine. That period also experienced very high values of the interest rate itself, so their 

analysis suggests that using p = ½ unless the interest rate is unusually high would make sense. 

A key tool in robust statistics is the identification of influential observations, using the influence 
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function defined by Hampel [5]. This looks at statistics calculated from a sample, such as estimated 

parameters, as functionals of the random variables that are sampled. The influence function for the 

statistic at any observation is a functional derivative of the statistic with respect to the observed 

point. In practice, analysts often use what is called the empirical influence. For instance, Bilodeau [6] 

suggests calculating that at each sample point as the sample size times the decrease (which may be 

negative) in the statistic from excluding the point from the sample. That is, the influence is n times 

[statistic with full sample minus statistic excluding the point]. If the statistic is particularly sensitive 

to a single or a few observations, that calls its accuracy into question. The gross error sensitivity 

(GES) is defined as the maximum absolute value of the influence function across the sample. 

The effect on the statistic of small changes in the influential observations is also a part of robust 

analysis, as these effects should not be too large either. If each observation has a substantial 

randomness to it, the random component of influential observations would be having a 

disproportionate impact on the statistic. The approach used below in the loss reserving case is to 

identify observations for which small changes have large impacts on the reserve estimate. 

Exclusion is not the only option for dealing with outliers. Estimation procedures that use but 

limit the influence of the outliers are also an important element of robust statistics. Also finding 

alternative models that are not dominated by a few influential points and estimating them by 

traditional means can be an outcome of a robust analysis. In the interest rate case, a model with one 

p parameter for October 1979 through September 1982 and another elsewhere does this. Finding 

alternative models with less influence from a few points is what we will be attempting in the reserve 

analysis. 

2 ROBUST METHODS IN INSURANCE 

Several papers on applying robust analysis to fitting loss severity distributions have appeared in 

recent years. For instance, Brazauskas and Serfling [7] focus on estimation of the simple Pareto tail 

parameter α assuming that the scale parameter b is known. In this notation the survival function is 

S(x) = (b/x)α. They compare several estimators of α, such as MLE, matching moments or 

percentiles, etc. One of their tests is the asymptotic relative efficiency (ARE) of the estimate 

compared to MLE, which is the factor which when applied to the sample size would give the sample 

size needed for MLE to give the same asymptotic estimation error. Due to the asymptotic efficiency 

of MLE, these factors are never greater than unity, assuming the sample is really from that Pareto 
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distribution. 

The problem is, however, that the sample might not be simple Pareto. Even then, however, you 

would not want to identify and eliminate outliers: whatever process is generating the losses would be 

expected to continue, so no losses can be ignored.1 The usual approach to this problem is thus to 

find alternative estimators that have low values of the GES and high values of ARE. Brazauskas and 

Serfling [7] suggest estimators they call generalized medians (GM). The kth generalized median is the 

median of all MLE estimators of subsets of size k of the original data. That can be fairly calculation-

intensive, however, even with k = 3, 4, or 5.  

Finkelstein et al. [8] define an estimator they call the probability integral transform statistic (PITS) 

which is quite a bit easier to calculate but not quite as robust as the GM. It has a tuning parameter t 

in (0,1) to control the trade-off between efficiency and robustness. Since (b/x)α is a probability, it 

should be distributed uniform [0,1]. Thus (b/x)tα should be distributed like a uniform raised to the t 

power. The average of these over a sample is known to have expected value 1/(t+1), so the PITS 

estimator is the value of β for which the average of (b/x)tβ over the sample is 1/(t+1). This is a 

single-variable root-finding exercise. Finklestein et al. give values of the ARE and GES for the GM 

and PITS estimators, shown in Table 1. A simulation suggests that the GES for MLE for α = 1 is 

about 3.9, and since its ARE is 1.0 by definition, PITS at 0.94 ARE is not worthwhile in this context. 

In general the generalized median estimators are more robust by this measure. 

Other robust severity studies include Brazauskas and Serfling [9] who use GM estimation for 

both parameters of the simple Pareto, Gather, and Schultze [10] who show that the best GES for 

the exponential is the median scaled to be unbiased, but this has low ARE, and Serfling [11] who 

applies GM to the lognormal distribution. 

Table 1: Comparative efficiency and robustness of two robust estimators of Pareto α 
ARE GM-k PITS-t GM-GES PITS-GES

0.88 3 0.531 2.27α 2.88α
0.92 4 0.394 2.60α 3.54α 
0.94 5 0.324 2.88α 4.08α 

                                                 

1 A related problem is contamination of large losses by a non-recurring process. The papers on robust severity also 

address this, but it is a somewhat different topic than fitting a simple model to a complex process. 
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3 ROBUST APPROACH TO LOSS DEVELOPMENT 

Omitting points from loss development triangles can sometimes lead to strange results, and not 

every development model can be automatically extended to deal with this, so instead of calculating 

the influence function for development models, we look at the sensitivity of the reserve estimate to 

changes in the cells of the development triangle, as in Tampubolon [1]. In particular, we define the 

impact of a cell on the reserve estimate under a particular development methodology as the 

derivative of the estimate with respect to the value in the cell. We do this for the incremental 

triangle, so a small change in a cell affects all subsequent cumulative values for the accident year. 

This seems to make more sense than looking at the derivative with respect to cumulative cells, 

whose changes would not continue into the rest of the triangle. 

If you think of a number in the triangle as its mean plus a random innovation, the derivative with 

respect to the random innovation would be the same as that with respect to the total, so a high 

impact of a cell would imply a high impact of its random component as well. Thus models with 

some cells having high impacts would be less desirable. One measure of this is the maximum impact 

of any cell, which would be analogous to the GES, but we will also look at the number of cells with 

impacts above various thresholds in absolute value. 

This is just a toe in the water of robust analysis of loss development. We are not proposing any 

robust estimators, and will stick with MLE or possibly quasi-likelihood. Rather we are looking at the 

impact function as a model selection and refinement tool. It can be used to compare competing 

models of the same development triangle, and it can identify problems with models that can guide a 

search for more robust alternatives. This is similar to finding models that work for the entire history 

of interest rate changes and are not too sensitive to any particular points. 

To help interpret the impact function, we will also look at the generalized degrees of freedom 

(gdf) at each point. This is defined as the derivative of the fitted value with respect to the observed 

value. If this is near 1, the point’s initial degree of freedom has essentially been used up by the 

model. The gdf is a measure of how much a point is able to pull the fitted value towards itself. Part 

of the impact of  a point is this power to influence the model, but where it appears in the triangle 

also can influence the estimated reserve. Just like with the impact function, high values of the gdf 

would be a detriment. 

For the chain ladder (CL) model, some observations can be made in general. All three corners of 
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the triangle have high impact. The lower left corner is the initial value of the latest accident year, and 

the full cumulative development applies to it. Since this point does not affect any other calculations, 

its impact is the development factor, which can sometimes be substantial. The upper right corner 

usually produces a development factor which, though small, applies to all subsequent accident years, 

so its impact can also be substantial. When there is only one year at ultimate, this impact is the ratio 

of the sum of all accident years not yet at ultimate, developed to the penultimate lag, to the 

penultimate cumulative value for the oldest accident year. The upper left corner is a bit strange in 

that its impact is usually negative. Increasing it will increase the cumulative loss at every lag, without 

affecting future incrementals, so every incremental-to-previous-cumulative ratio will be reduced. The 

points near the upper right corner also tend to have high impact, and those near the upper left tend 

to have negative impact, but the lower left point often stands alone in its high impact. 

The GDFs for CL are readily calculated when factors are sums of incrementals over sums of 

previous cumulatives. The fitted value at a cell is the factor applied to the previous cumulative, so its 

derivative is its previous cumulative times the derivative of the factor with respect to the cell value. 

But that derivative is just the reciprocal of the sum of the previous cumulatives, so the gdf for the 

cell is its previous cumulative over the sum. Thus these GDFs sum down a column to unity, so each 

development factor uses up a total gdf of 1.0. Essentially each factor uses 1 degree of freedom, 

agreeing with standard analysis. The average gdf in a column is thus the reciprocal of the number of 

observations in that column. Thus the upper right cell uses 1 gdf, the previous column’s cells use ½ 

each on average, etc. Thus the upper right cells have high GDFs and high impact. 

We will use ODP to refer to the cross-classified development model in which each cell mean is 

modeled as a product of a row parameter and a column parameter, the variance of the cell is 

proportional to its mean, and the parameters are estimated by quasi-likelihood. It is well known that 

this model gives the same reserve estimate as CL. Thus if you change a cell slightly, the changed 

triangle will give the same reserve under ODP and CL. Thus the impacts of each cell under ODP 

will be the same as those of CL. The GDFs will not be the same, however, as the fitted values are 

not the same for the two models. The CL fitted value is the factor times the previous cumulative, 

whereas the ODP cumulative fitted values are backed down from the latest diagonal by the 

development factors, and then differenced to get the incremental fitted. It is possible to write down 

the resulting GDFs explicitly, but it is probably easier to calculate them numerically. 

It may be fairly easy to find models that reduce the impact of the upper right cells. Usually the 
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development factors at those points are not statistically significant. Often the development is small 

and random, and is not correlated with the previous cumulative values. In such cases, it may be 

reasonable to model a number of such cells as a simple additive constant. Since several cells go into 

the estimation of this constant, the impact of some of them is reduced. Alternatively the factors in 

that region may follow some trends, linear or not, that can be used to express them with a small 

number of parameters. Again this would limit the impact of some of the cells.  

The lower left point is more difficult to deal with in a CL-like model. One alternative is a Cape 

Cod-type model, where every accident year has the same mean level. This can arise, for instance, if 

there is no growth in the business, but also can be seen when the development triangle consists of 

on-level loss ratios, which have been adjusted to eliminate known differences among the accident 

years. In this type of model, all the cells go into estimating the level of the last accident year, so the 

lower left cell has much less impact. This reduction in the impact of the random component of this 

cell is a reason for using on-level triangles. 

The next three sections illustrate these concepts using development triangles from the actuarial 

literature. The impacts and GDFs are calculated for various models fit to these triangles. The 

impacts are calculated by numerical derivatives, as are the GDFs except for those for the CL, which 

have been derived above. 

4 A DEVELOPMENT-FACTOR EXAMPLE 

4.1 Chain Ladder 
Table 2 is a development triangle used in Venter [12]. Note that the first two accident years are 

developed all the way to the end of the triangle, at lag 11. Table 3 shows the impact of each cell on 

the reserve estimate using the usual sum/sum development factors. In the CL model an explicit 

formula can be derived for these impacts, but it is easier to do the derivatives numerically, simply by 

adding a small value to each cell separately and recalculating the estimated reserve to get the change 

in reserve for the derivative. 
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Table 2: Incremental  Loss Development Triangle 
L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 

11,305 18,904 17,474 10,221 3,331 2,671 693 1,145 744 112 40 13 
8,828 13,953 11,505 7,668 2,943 1,084 690 179 1,014 226 16 616 
8,271 15,324 9,373 11,716 5,634 2,623 850 381 16 28 558  
7,888 11,942 11,799 6,815 4,843 2,745 1,379 266 809 12   
8,529 15,306 11,943 9,460 6,097 2,238 493 136 11   

10,459 16,873 12,668 9,199 3,524 1,027 924 1,190   
8,178 12,027 12,150 6,238 4,631 919 435   

10,364 17,515 13,065 12,451 6,165 1,381   
11,855 20,650 23,253 9,175 10,312   
17,133 28,759 20,184 12,874   
19,373 31,091 25,120    
18,433 29,131     
20,640      
 

Table 3: Impact of CL 
 L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11

AY0 -1.21 -0.34 0.04 0.39 0.73 1.10 1.48 1.85 2.46 3.35 4.61 7.31
AY1 -1.21 -0.34 0.04 0.39 0.73 1.10 1.48 1.85 2.46 3.35 4.61 7.31
AY2 -1.17 -0.29 0.08 0.44 0.78 1.14 1.53 1.89 2.51 3.39 4.66 
AY3 -1.15 -0.27 0.10 0.46 0.80 1.16 1.55 1.91 2.53 3.41  
AY4 -1.14 -0.27 0.11 0.46 0.80 1.17 1.56 1.92 2.54  
AY5 -1.10 -0.23 0.15 0.50 0.84 1.21 1.59 1.96  
AY6 -1.07 -0.20 0.18 0.53 0.87 1.24 1.62  
AY7 -1.03 -0.16 0.22 0.57 0.91 1.28  
AY8 -0.95 -0.08 0.30 0.65 0.99  
AY9 -0.73 0.14 0.52 0.87  
AY10 -0.31 0.57 0.95   
AY11 0.70 1.58    
AY12 4.95     

 

As discussed, the impacts are highest in the upper right and lower left corners, and the upper left 

has negative impact. The impacts increase moving to the right and down. The last four columns and 

the lower left point have impacts above 2, and six points have impacts above 4. Table 4 shows the 

GDFs for the chain ladder using the formula previous cumulative /sum previous cumulatives 

derived in Section 3. L0’s GDFs are shown as identically 1.0. Like the impact function, these 

increase going to the right after lag 0. Within each column the sizes depend on the volume of the 

year. 



Robustifying Reserving 

Casualty Actuarial Society E-Forum, Fall 2008 384 

Table 4: GDFs of CL 
 L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 

AY0 1.0 0.080 0.093 0.114 0.133 0.151 0.177 0.201 0.245 0.306 0.394 0.581 
AY1 1.0 0.063 0.070 0.082 0.097 0.110 0.128 0.145 0.174 0.221 0.285 0.419 
AY2 1.0 0.059 0.073 0.079 0.103 0.124 0.147 0.167 0.202 0.250 0.321  
AY3 1.0 0.056 0.061 0.076 0.089 0.106 0.128 0.148 0.177 0.223   
AY4 1.0 0.061 0.073 0.086 0.104 0.126 0.149 0.168 0.202    
AY5 1.0 0.074 0.084 0.096 0.113 0.130 0.149 0.170     
AY6 1.0 0.058 0.062 0.077 0.089 0.106 0.123      
AY7 1.0 0.074 0.086 0.098 0.123 0.146       
AY8 1.0 0.084 0.100 0.134 0.149        
AY9 1.0 0.122 0.141 0.158         
AY10 1.0 0.138 0.156          
AY11 1.0 0.131           
AY12 1.0            
 

Figure 1 graphs the impacts by lag along the diagonals of the triangle. After the first four lags, the 

impacts are almost constant across diagonals.  

Figure 1: Impact of Chain Ladder by Diagonal 

4.2 Regression Model 
Venter [12] fit a regression model to this triangle, keeping the first five development factors but 

including an additive constant. The constant also represents development beyond lag 5. By 

stretching out the incremental cells to be fitted into a single column Y, this was put into the form of 
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a linear model Y = Xβ + ε, which assumes a normal distribution of residuals with equal variance 

(homoscedasticity) across cells. X has the previous cumulative for the corresponding incrementals, 

with zeros to pad out the columns, a column of 1’s for the constant. There were also diagonal 

(calendar year) effects in the triangle. Two diagonal dummy variables were included in X, one with 

1s for observations on the 4th diagonal and 0 elsewhere, and one equal to 1 on the 5th, 8th, and 10th 

diagonals, -1 on the 11th diagonal, and 0 elsewhere. The diagonals are numbered starting at 0, so the 

4th is the one beginning with 8,529 and the 10th starts with 19,373. The variance calculation used a 

heteroscedasticity correction. This model with eight parameters fit the data better than the 

development factor model with 11 parameters. Here we are only addressing the robustness 

properties, however.  

Table 5 gives the impact function for this model. It is clear that the large impacts on the right side 

have been eliminated by using the constant instead of factors to represent late development. The 

effects of the diagonal dummies can also be seen, especially in the right of the triangle. Now only 1 

point has impact above 2, and above 4. 

Table 5: Impact of Regression Model 
 L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11

AY0 -1.36 0.02 0.42 0.67 0.10 0.87 1.35 1.35 0.97 1.35 0.97 1.73
AY1 -1.56 0.22 0.66 -0.04 0.67 1.28 1.35 0.97 1.35 0.97 1.73 1.35
AY2 -1.53 0.52 -0.39 0.38 1.02 1.27 0.97 1.35 0.97 1.73 1.35 
AY3 -0.51 -0.64 0.15 0.78 1.07 0.90 1.35 0.97 1.73 1.35  
AY4 -1.24 -0.31 0.45 0.76 0.64 1.27 0.97 1.73 1.35  
AY5 -1.38 0.11 0.47 0.32 1.00 0.89 1.73 1.35  
AY6 -1.61 0.22 0.18 0.80 0.68 1.66 1.35  
AY7 -0.89 -0.36 0.35 0.24 1.34 1.25  
AY8 -1.34 0.00 -0.12 0.87 0.94  
AY9 0.29 -0.44 0.61 0.57  
AY10 -0.18 0.66 0.43   
AY11 1.11 1.04    
AY12 4.31     

 

Table 6 shows the GDFs for the regression model. For regression models the GDFs for the 

observations in the Y vector are known to be calculable as the diagonal of the “hat” matrix, where 

hat = X(X’X)-1X’, e.g., see Ye [2]. However in development triangles, changing an incremental value 

also changes subsequent cumulatives, so the X matrix is a function of lags of Y. This requires the 

derivatives to be done numerically. The total of these, excluding lag 0, is 8.02, which is a bit above 
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the usual number of parameters, due to the exceptions to normal linear models. Compared to the 

CL, the GDFs are lower for lag 6 onward, but are somewhat higher along the modeled diagonals. 

They are especially high for diagonal 4, which is short and gets its own parameter. 

Table 6: GDFs of Regression Model 
 L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11

AY0 1.0 0.071 0.089 0.127 0.352 0.195 0.034 0.034 0.055 0.034 0.055 0.076
AY1 1.0 0.047 0.056 0.305 0.107 0.099 0.034 0.055 0.034 0.055 0.076 0.034
AY2 1.0 0.046 0.299 0.084 0.098 0.123 0.055 0.034 0.055 0.076 0.034 
AY3 1.0 0.297 0.067 0.058 0.074 0.107 0.034 0.055 0.076 0.034  
AY4 1.0 0.064 0.056 0.072 0.120 0.128 0.055 0.076 0.034   
AY5 1.0 0.062 0.073 0.110 0.118 0.149 0.076 0.034   
AY6 1.0 0.040 0.067 0.061 0.095 0.140 0.034   
AY7 1.0 0.082 0.075 0.118 0.182 0.172   
AY8 1.0 0.077 0.134 0.212 0.207   
AY9 1.0 0.198 0.239 0.246   
AY10 1.0 0.245 0.253    
AY11 1.0 0.192     
AY12 1.0            

 

Figure 2: Impact of Regression Model by Diagonal 

Figure 2 graphs the impacts. Note that due to the diagonal effects, diagonal 11 has higher impact 

than diagonal 12 after the first two lags. 
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4.3 Square Root Regression Model 
As a correction for heteroscedasticity, regression courses sometimes advise dividing both Y and X 

by the square root of Y, row by row. This makes the model Y½ = (X/Y½)β + ε, where the ε are IID 

mean zero normals. Then Y = Xβ + Y½ ε, so now the variance of the residuals is proportional to Y. 

This sounds like a fine idea, but it is a catastrophe from a robust viewpoint. Table 7 shows the 

impact function. There are 12 points with impact over 2, 7 with impact over 4, 5 with impact over 

10, and 3 with impact over 25.  

Table 7: Impact of Square Root Regression Model 
 L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11

AY0 -0.94 -0.08 0.16 0.68 0.15 0.56 0.01 0.00 0.01 0.38 4.57 15.61
AY1 -1.06 -0.10 0.28 -0.30 2.19 1.86 0.01 0.15 0.00 0.15 10.21 0.01
AY2 -0.58 0.12 -0.09 0.20 0.68 0.39 0.01 0.03 28.26 3.09 0.02 
AY3 -0.20 -0.50 0.13 0.66 0.69 0.27 0.00 0.11 0.00 32.67  
AY4 -0.90 -0.15 0.33 0.41 0.59 0.56 0.03 0.14 37.14  
AY5 -1.28 -0.36 0.17 0.37 2.05 2.87 0.00 0.00  
AY6 -1.20 -0.09 0.01 0.77 0.71 2.34 0.02  
AY7 -1.02 -0.18 0.36 0.23 0.76 1.97  
AY8 -0.86 -0.07 -0.01 1.23 0.46  
AY9 -0.91 -0.06 0.59 1.02  
AY10 -0.45 0.48 0.89   
AY11 0.50 1.46    
AY12 4.56     

 

Part of the problem is that the equation Y = Xβ + Y½ ε is not what you would really want. The 

residual variance should be proportional to the mean, not the observation. This setup gives the small 

observations small variance, and so the ability to pull the model towards them. But the observations 

might be small because of a negative residual, with a higher expected value. So this formulation gives 

the small values too much influence. 

Table 8 shows the related GDFs. It is unusual here that some points have GDFs greater than 1. 

A small change in the original value can make a greater change in the fitted value, but due to the 

non-linearity the fitted value is still a ways from the data point. The sum of the GDFs is 13.0, which 

is sometimes interpreted as the implicit number of parameters. 

4.4 Gamma-p Residuals 
Venter [13] fits the same regression model, but by maximum likelihood with gamma-p residuals. 

The gamma-p is a gamma distribution, but each cell is modeled to have the variance proportional to 
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the same power p of the mean. This models the cells with smaller means as having smaller variances, 

but the effect is not as extreme as in the square root regression, where the variance is proportional 

to the observation, not its expected value.  

Table 8: GDFs of Square Root Regression Model 
 L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11

AY0 1.0 0.082 0.078 0.129 0.697 0.074 0.000 0.000 0.000 0.010 0.356 1.102
AY1 1.0 0.071 0.076 0.230 0.227 0.175 0.000 0.004 0.000 0.011 0.720 0.000
AY2 1.0 0.053 0.287 0.031 0.074 0.042 0.000 0.001 2.199 0.218 0.000 
AY3 1.0 0.201 0.045 0.081 0.064 0.025 0.000 0.008 0.000 0.906  
AY4 1.0 0.051 0.077 0.061 0.066 0.061 0.002 0.010 1.030   
AY5 1.0 0.076 0.102 0.089 0.252 0.322 0.000 0.000   
AY6 1.0 0.073 0.045 0.104 0.072 0.221 0.001   
AY7 1.0 0.069 0.103 0.053 0.106 0.249   
AY8 1.0 0.075 0.051 0.246 0.068   
AY9 1.0 0.117 0.193 0.208   
AY10 1.0 0.145 0.166    
AY11 1.0 0.144     
AY12 1.0            
 
Table 9: Impact of Gamma-p Residual Model 

 L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11
AY0 -0.59 -0.07 0.24 0.59 -0.03 1.47 1.37 1.37 1.23 1.25 -1.45 7.97
AY1 -0.90 -0.05 0.28 0.10 0.90 1.11 1.30 0.77 1.37 0.91 6.73 1.36
AY2 -0.46 0.08 -0.07 0.56 0.94 1.43 1.22 1.45 -5.62 4.33 1.35 
AY3 -0.29 -0.58 0.21 0.47 1.31 1.37 1.21 0.98 1.47 0.10  
AY4 -0.68 -0.15 0.19 0.51 0.94 1.48 1.24 1.96 0.02   
AY5 -1.04 -0.18 0.20 0.49 0.96 1.07 1.43 1.38   
AY6 -1.00 0.09 0.22 0.45 1.28 1.13 1.41   
AY7 -1.02 -0.18 0.50 0.50 0.95 1.17   
AY8 -0.71 -0.12 0.12 0.66 0.96   
AY9 -0.85 -0.02 0.80 0.86   
AY10 -0.44 0.48 0.88    
AY11 0.46 1.45     
AY12 4.43            
 

In this case, p was found to be 0.71. The impacts are shown in Table 9 and graphed in Figure 3. 

It is clear that these are not nearly as dramatic as the square root regression, but worse than the 

regular regression, and perhaps comparable to the chain ladder. Diagonals 10 and 11 can be seen to 

have a few significant impacts. These are at points with small observations that are also on modeled 

diagonals. Even with the variance proportional to a power of the expected value, these points still 

have a strong pull. The GDFs are in Table 10. 



Robustifying Reserving 

Casualty Actuarial Society E-Forum, Fall 2008 389 

 
Figure 3: Impact of Gamma-p Residual Model 
 
Table 10: GDFs of Gamma-p Residual Model 

 L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 
AY0 1.0 0.082 0.078 0.129 0.697 0.074 0.000 0.000 0.000 0.010 0.356 1.102

AY1 1.0 0.071 0.076 0.230 0.227 0.175 0.000 0.004 0.000 0.011 0.720 0.000
AY2 1.0 0.053 0.287 0.031 0.074 0.042 0.000 0.001 2.199 0.218 0.000 
AY3 1.0 0.201 0.045 0.081 0.064 0.025 0.000 0.008 0.000 0.906  
AY4 1.0 0.051 0.077 0.061 0.066 0.061 0.002 0.010 1.030   
AY5 1.0 0.076 0.102 0.089 0.252 0.322 0.000 0.000   
AY6 1.0 0.073 0.045 0.104 0.072 0.221 0.001   
AY7 1.0 0.069 0.103 0.053 0.106 0.249   
AY8 1.0 0.075 0.051 0.246 0.068   
AY9 1.0 0.117 0.193 0.208   
AY10 1.0 0.145 0.166    
AY11 1.0 0.144     
AY12 1.0            

 

Again this is less dramatic than for the square root regression, but the small points on the 

modeled diagonals still have high GDFs. The total of these is 11.3, which is still fairly high. This is 

somewhat troublesome, as the gamma-p model fit the residuals quite a bit better than did the 
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standard regression. The fact that the problems center on small observations on the modeled 

diagonals suggests that additive diagonal effects may not be appropriate for this data. They do fit 

into the mold of a generalized linear model, but that is not too important when fitting by MLE 

anyway. As an alternative, the same model but with the diagonal effects as multiplicative factors was 

fit. The multiplicative diagonal model can be written: 

EY = X[,1:6]β[1:6]∗β[7]X[,7]∗β[8]X[,8], 

which means that the first six columns of X are multiplied by the first six parameters, which includes 

the constant term, and then the last two diagonal parameters are factors raised to the power of the 

last two columns of X. These are now the diagonal dummies, which are 0, 1, or –1. Thus the same 

diagonals are higher and the same lower, but now proportionally instead of by an additive constant. 

It turns out that this model actually fits better, with a negative loglikelihood of 625, compared to 630 

for the generalized linear model. This solves the robustness problems as well. The impacts are in 

Table 11, the GDFs in Table 12, and the impacts are graphed in Figure 4. 

Table 11: Impact of Gamma-p Multiplicative Model 
 L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 

AY0 -0.94 -0.03 0.22 0.58 0.09 1.16 1.43 1.43 1.42 1.36 0.55 2.31
AY1 -1.02 0.00 0.32 0.17 0.56 1.02 1.43 1.26 1.43 1.30 2.14 1.43
AY2 -0.74 0.15 -0.46 0.39 0.98 1.30 1.42 1.42 -0.78 1.82 1.42 
AY3 -0.25 -0.50 -0.02 0.46 0.97 1.26 1.43 1.33 1.43 0.69  
AY4 -0.68 -0.39 0.23 0.51 0.83 1.26 1.39 1.50 0.64   
AY5 -1.09 -0.10 0.33 0.26 0.93 0.69 1.43 1.43   
AY6 -1.02 0.05 0.00 0.45 0.79 1.12 1.42   
AY7 -0.72 -0.37 0.31 0.29 1.11 1.07   
AY8 -0.81 -0.01 -0.21 0.92 0.99   
AY9 -0.76 -0.25 0.85 0.88   
AY10 -0.58 0.56 0.94    
AY11 0.35 1.50     
AY12 4.34      

 

Diagonal 11 still has more impact than the others, but this barely exceeds 2.0 at the maximum. 

The sum of the GDFs is 8.67. There are eight parameters for the cell means but two more for the 

gamma-p. It has been a question whether or not to count those two in determining the number of 

parameter used in the fitting. The answer to that from the gdf analysis is basically to count each of 

those as 1/3 in this case. Here the robust analysis has uncovered a previously unobserved problem 

with the generalized linear model, and lead to an improvement. 
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Table 12: GDFs of Gamma-p Multiplicative Model 
 L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11

AY0 1.0 0.079 0.087 0.125 0.323 0.136 0.034 0.033 0.038 0.040 0.093 0.074
AY1 1.0 0.063 0.069 0.191 0.210 0.132 0.034 0.048 0.033 0.046 0.066 0.034
AY2 1.0 0.053 0.410 0.079 0.085 0.068 0.038 0.035 0.175 0.050 0.034 
AY3 1.0 0.361 0.105 0.070 0.071 0.063 0.033 0.044 0.031 0.101  
AY4 1.0 0.107 0.070 0.067 0.111 0.084 0.040 0.034 0.106   
AY5 1.0 0.079 0.094 0.158 0.185 0.276 0.030 0.033   
AY6 1.0 0.066 0.106 0.081 0.104 0.117 0.035   
AY7 1.0 0.143 0.093 0.127 0.108 0.200   
AY8 1.0 0.080 0.200 0.220 0.102   
AY9 1.0 0.355 0.281 0.208   
AY10 1.0 0.316 0.196    
AY11 1.0 0.163     
AY12 1.0            

  

Figure 4: Impact of Gamma-p Multiplicative Model 

 

5 A MULTIPLICATIVE FIXED-EFFECTS EXAMPLE 

A multiplicative fixed-effects model is one where the cell means are products of  fixed factors 

from rows, columns, and perhaps diagonals. The most well-known is the ODP model discussed in 
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section 3, where there is a factor for each row, interpreted as estimated ultimate, a factor for each 

column, interpreted as fraction of ultimate for that column, and the variance of each cell is a fixed 

factor times its mean. This model if estimated by MLE gives the same reserve estimates as the chain 

ladder and so the same impacts for each cell, but the GDFs are different, due to the different fitted 

values.  

The triangle for this example comes from Taylor-Ashe (1983) and is shown in Table 13. The CL 

= ODP impacts are in Table 14 and are graphed in Figure 5. 

Table 13: Incremental Triangle Taylor-Ashe (1983) 
Lag 0 L1 L2 L3 L4 L5 L6 L7 L8 L9 
357,84 766,940 610,542 482,940 527,32 574,39 146,34 139,95 227,22 67,94
352,11 884,021 933,894 1,183,28 445,74 320,99 527,80 266,17 425,04
290,50 1,001,79 926,219 1,016,65 750,81 146,92 495,99 280,40
310,60 1,108,25 776,189 1,562,40 272,48 352,05 206,28  
443,16 693,190 991,983 769,488 504,85 470,63  
396,13 937,085 847,498 805,037 705,96  
440,83 847,631 1,131,39 1,063,26  
359,48 1,061,64 1,443,37  
376,68 986,608   
344,01    

 
Table 14: Impact of CL = ODP on TA 

 L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 
AY0 -3.11 -1.62 -1.01 -0.45 0.01 0.51 1.16 2.27 4.54 12.59
AY1 -2.87 -1.38 -0.77 -0.20 0.25 0.76 1.40 2.51 4.78 
AY2 -2.43 -0.93 -0.33 0.24 0.69 1.20 1.85 2.95  
AY3 -2.21 -0.72 -0.11 0.45 0.91 1.41 2.06  
AY4 -1.95 -0.46 0.15 0.71 1.17 1.67  
AY5 -1.67 -0.18 0.43 0.99 1.45  
AY6 -1.25 0.25 0.85 1.42  
AY7 -0.14 1.35 1.96  
AY8 2.07 3.57   
AY9 13.45    
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Figure 5: Impact of CL = ODP on TA 

Because the development factors are higher, the impacts are higher than in the previous example. 

Even though it is a smaller triangle, 14 points have impacts with absolute values over 2, 4 are over 4, 

and 2 are over 12. The CL GDFs are in Table 15. These sum to 9, excluding the first column, and 

are fairly high on the right where there are few observations per column. The ODP GDFs are in 

Table 16. These sum to 19, and are fairly high near the upper right and lower left corners. 

Table 15: GDFs of CL on TA 
 L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 

AY0 1.0 0.108 0.110 0.115 0.120 0.153 0.208 0.272 0.423 1.0 
AY1 1.0 0.106 0.121 0.144 0.182 0.211 0.258 0.365 0.577  
AY2 1.0 0.087 0.126 0.147 0.175 0.222 0.259 0.363   
AY3 1.0 0.093 0.138 0.146 0.204 0.224 0.275   
AY4 1.0 0.133 0.111 0.141 0.157 0.189   
AY5 1.0 0.119 0.130 0.145 0.162   
AY6 1.0 0.132 0.126 0.161   
AY7 1.0 0.108 0.139   
AY8 1.0 0.113    
AY9 1.0     
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Table 16: GDFs of ODP on TA 
 L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 

AY0 0.154 0.261 0.273 0.295 0.229 0.224 0.253 0.301 0.459 1.0 
AY1 0.186 0.295 0.308 0.333 0.276 0.281 0.325 0.400 0.612  
AY2 0.187 0.300 0.312 0.338 0.278 0.282 0.324 0.398  
AY3 0.188 0.304 0.317 0.344 0.280 0.282 0.323  
AY4 0.184 0.309 0.322 0.348 0.275 0.271  
AY5 0.197 0.331 0.346 0.374 0.293  
AY6 0.221 0.375 0.391 0.423  
AY7 0.284 0.498 0.519   
AY8 0.370 0.747    
AY9 1.0     

 

The GDFs can be used to allocate the total degrees of freedom of the residuals of n – p. The n is 

allocated 1 to each observation, and the p can be set to the gdf of each observation. This would give 

a residual degree of freedom to each observation which could be used in calculating a standardized 

residual that takes into account how the degrees of freedom vary among observations. 

Venter [12] looked at reducing the number of parameters in this model by setting parameters 

equal if they are not significantly different, and using trends, like linear trends between parameters. 

Also diagonal effects were introduced. The result was a model where each cell mean is a product of 

its row, column, and diagonal factors. There are six parameters overall. For the rows there are three 

parameters, for high, medium, and low accident years. Accident year 0 is low, year 7 is high, year 6 is 

the average of the medium and high levels, and all other years are medium. There are 2 column 

factors: high and low. Lags 1, 2,  and 3 are high, lag 4 is an average of high and low, lag 0 and lags 5 

to 8 are low, and lag 9 is 1 minus the sum of the other lags. Finally there is one diagonal parameter c. 

Diagonals 4 and 6 have factors 1+c, lag 7 has factor 1 – c, and all the other diagonals have factor 1. 

 With just six parameters this model actually provides a better fit to the data than the 19 

parameter model. The combining of parameters does not degrade the fit much, and adding diagonal 

effects improves the fit. An improved fit over that in Venter [12] was found by using a gamma-p 

distribution with p = ½ so the variance of each cell is proportional to the square root of its mean. 

The impacts and GDFs of this model are shown in Tables 17 and 18, and the impacts are graphed in 

Figure 6, this time along accident years. 
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Table 17: Impact of 6-Parameter Gamma-½ on TA 
 L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 

AY0 0.65 -0.82 -1.08 -2.07 -0.87 0.97 -0.32 0.33 0.53 12.06
AY1 1.45 -0.02 0.68 0.60 -0.25 1.90 1.40 1.61 1.57
AY2 1.64 0.75 -0.19 0.84 0.90 1.93 1.66 1.36
AY3 1.26 0.43 -0.21 0.97 -0.36 1.70 1.71
AY4 1.62 0.08 0.67 0.37 0.63 1.35
AY5 1.19 -0.11 0.57 0.51 1.17
AY6 2.56 1.19 0.91 1.13 
AY7 2.18 1.27 1.49  
AY8 1.72 0.92   
AY9 1.59    
 
Table 18: GDFs of 6-Parameter Gamma-½ on TA 

 L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 
AY0 0.046 0.152 0.211 0.288 0.150 0.017 0.248 0.095 0.082 0.938
AY1 0.044 0.031 0.057 0.155 0.014 0.115 0.018 0.051 0.043
AY2 0.055 0.041 0.134 0.027 0.102 0.114 0.046 0.049
AY3 0.045 0.078 0.062 0.028 0.181 0.052 0.064
AY4 0.078 0.057 0.026 0.119 0.011 0.037
AY5 0.037 0.147 0.083 0.032 0.026
AY6 0.254 0.200 0.095 0.100 
AY7 0.111 0.527 0.250  
AY8 0.047 0.031   
AY9 0.047    
 
Figure 6: Impact of Gamma-½ on TA 
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The impacts are now all quite well contained except for one point – the last point in AY0. 

Possibly because AY0 gets its own parameter, lag 9 influences the level of the other lags’ parameters, 

and this is a small point with a small variance, this model only slightly reduces the high level of 

impact that point has in ODP. The same thing can be seen in the GDFs as well, where this point 

has slightly less than a whole gdf. The points on AY7 and the modeled diagonals also have relatively 

high GDFs, as do some small cells. The total of the GDFs is 6.14. There are six parameters affecting 

the means, plus one for the variance of the gamma. That one can affect the fit slightly, so counting it 

as 1/7th of a parameter seems reasonable.  

In an attempt to solve the problem of the upper-right point, an altered model was fit: lag 9 gets 

half of the paid in the low years. This can be considered a trend to 0 for lag 10. Making the lags sum 

to 1.0 now eliminates a parameter, so there are five. The NLL is slightly worse, at 722.40 vs. 722.36, 

but that is worth saving a parameter. The robustness is now much better, with only two impacts 

above 2.0, the largest being 2.35. 

6 PAID AND INCURRED EXAMPLE 

Venter [15], following Quarg and Mack [16], builds a model for simultaneously estimating paid 

and incurred development, where each influences the other. The paid losses are part of the incurred 

losses, so the separate effects are from the paid and unpaid triangles, shown in Tables 19 and 20.  

First the impacts on the reserve (7059.47) from the average of the paid and incurred chain ladder 

reserves is calculated, where the paids at the last lag are increased by the incurred-to-paid ratio at 

that lag. Tables 21 and 22 show the impacts of the paid and unpaid triangles, and Tables 23 and 24 

show the GDFs. 

Table 19: Quarg-Mack Paid Increments 
 L0 L1 L2 L3 L4 L5 L6

AY0 576 1228 166 54 50 28 29
AY1 866 1082 214 70 52 64  
AY2 1412 2346 494 164 78   
AY3 2286 3006 432 126    
AY4 1868 1910 870     
AY5 1442 2568      
AY6 2044       
 

Table 20: Quarg-Mack Unpaid 
 L0 L1 L2 L3 L4 L5 L6

AY0 402 300 164 120 100 80 43
AY1 978 604 304 248 224 106  
AY2 1492 596 446 184 150   
AY3 1216 666 346 292    
AY4 944 1104 204     
AY5 1200 396      
AY6 2978       
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Table 21: Average Reserve Impact of Paid 
 L0 L1 L2 L3 L4 L5 L6 

A0 -0.68 -.02 0.32 0.86 2.32 5.95 13.99
A1 -0.45 0.20 0.54 1.08 2.54 6.17
A2 -0.41 0.24 0.58 1.12 2.59 
A3 -0.36 0.30 0.64 1.18  
A4 -0.32 0.33 0.67   
A5 -0.20 0.46    
A6 1.37     
 
Table 23: Average Reserve GDF of Paid 

 0 L1 L2 L3 L4 L5 L6
A0 1 0.068 0.109 0.140 0.233 0.476 1
A1 1 0.102 0.117 0.153 0.257 0.524
A2 1 0.167 0.227 0.301 0.509 
A3 1 0.271 0.319 0.406  
A4 1 0.221 0.228   
A5 1 0.171    
A6 1     

 

Table 22: Average Reserve Impact Unpaid 
L0 L1 L2 L3 L4 L5 L6 

-0.29 -0.15 -0.26 -0.72 -1.76 -4.01 14.99
-0.29 -0.15 -0.26 -0.72 -1.76 3.57 
-0.29 -0.15 -0.26 -0.72 1.77  
-0.29 -0.15 -0.26 1.08   
-0.29 -0.15 0.82   
-0.29 0.68   
0.84   

 
Table 24: Average Reserve GDF Unpaid 

 0 L1 L2 L3 L4 L5 L6
A0 1 0.067 0.106 0.139 0.232 0.464 1
A1 1 0.126 0.129 0.160 0.269 0.536
A2 1 0.198 0.219 0.306 0.499 
A3 1 0.239 0.300 0.395  
A4 1 0.192 0.246   
A5 1 0.180   
A6 1   

The impacts of the lower left are not great, mostly because the development factors are fairly low 

in this example. The impacts on the upper right of both paid and unpaid losses are quite high, 

however. The unpaid losses not on the last diagonal have a negative impact, because they lower 

subsequent incurred development factors, but do not have factors applied to them. The GDFs are 

similar to CL in general. 

The model in Venter [15] used generalized regression for both the paid and unpaid triangles, 

where regressors could be from either triangle or from the cumulative paid and incurred triangles. 

Except for the first couple of columns, the previous unpaid losses provided reasonable explanations 

of both the current paid increment and the current remaining unpaid. The paid and unpaid at lags 3 

and on were just multiples of the previous unpaid, with a single factor for each. That is, expected 

paids were 33.1%, and unpaids 72.3%, of the previous unpaid. Since these sum to more than 1, there 

is a slight upward drift in the incurred. The lag 2 expected paid was 68.5% of the lag 1 unpaid. The 

best fit to the lag 2  expected unpaid was 9.1% of the lag 1 cumulative paid. For lag 1 paid, 78.1% of 

the lag 0 incurred was a reasonable fit. Lag 1 unpaid was more complicated, with the best fit being a 

regression, with constant, on lag 0 and lag 1 paids. There were also diagonal effects in both models. 

The residuals were best fit with a Weibull distribution. Tables 25 – 28 show the fits. 
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Table 25: Weibull Model Impact of Paid 
 L0 L1 L2 L3 L4 L5 L6

A0 0.09 -0.18 -1.58 4.38 0.38 7.67 5.45
A1 0.04 0.26 0.59 1.90 2.75 2.32  
A2 -.37 0.33 0.42 0.57 -0.28   
A3 -.13 0.17 0.67 1.26    
A4 -.02 0.20 0.31     
A5 -.94 0.70      
A6 1.25       
 
Table 27: Weibull Model GDF of Paid 

 0 L1 L2 L3 L4 L5 L6
A0 1 0.938 0.725 0.235 0.268 0.125 .143
A1 1 0.451 0.057 0.052 0.066 0.065  
A2 1 0.192 0.347 0.377 0.290   
A3 1 0.137 0.250 0.145    
A4 1 0.094 0.277     
A5 1 0.269      
A6 1     

 

Table 26: Weibull Model Impact Unpaid 
L0 L1 L2 L3 L4 L5 L6
0.06 0.67 -1.02 -1.45 -1.82 0.51 4.14

-0.17 -0.44 -1.80 -0.73 0.52 2.56  
-0.20 -0.16 0.47 -1.17 3.63   
-0.09 -0.32 -1.17 2.51    
-0.10 -0.34 1.89     
-0.32 1.47      
0.65       

 
Table 28: Weibull Model GDF Unpaid 

 0 L1 L2 L3 L4 L5 L6
A0 1 0.824 0.172 -0.058 0.015 .072 .054
A1 1 0.357 0.700 -0.044 0.115 .052  
A2 1 0.152 0.465 -0.173 0.113   
A3 1 0.050 0.136 0.123    
A4 1 0.507 0.089     
A5 1 0.687      
A6 1   

The two highest impacts for the average of paid and incurred are 14 and 15. For the Weibull they 

are 7.7 and 5.5. The average has two other points with impacts above 5, whereas the Weibull has 

none. Below 5 the impacts are roughly comparable. Since the Weibull has variance proportional to 

the mean squared, small observations have lower variance, and so a stronger pull on the model and 

higher impacts. In total, excluding the first column, the GDFs sum to 9.9, but including the 

diagonals (see Venter [15] for details) there are 12 parameters plus two Weibull shape parameters. 

The form of the model apparently does not allow the parameters to be fully expressed. The Weibull 

model still has more high impacts than would be desirable, but it is a clear improvement over the 

average of the paid and incurred. The reserve is quite a bit lower for the better-fitting Weibull model 

as well: 6255 vs. 7059.  

7 CONCLUSION 

Robust analysis has been introduced as an additional testing method for loss development 

models. It is able to identify points that have a large influence on the reserve, and so whose random 

components would also have a large influence. Through three examples, customized models were 

found to be more robust than standard models like CL and ODP, and in two of the examples, even 

better models were found as a response to the robust analysis. 
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