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We're SkewedmThe Bias in Small Samples from Skewed 
Distributions 

By Kirk G. Fleming, FCAS, MAAA 

Abstract People in insurance work all the time with financial processes that are best modeled with 
skewed distributions. Despite our constant exposure to skewed distributions, I believe when 
we study sample averages from these skewed distributions we think and work with them as if 
they were samples from normal symmetrical distributions. In this paper I want to discuss the 
idea that a sample average is biased lower than the actual mean of a skewed distribution - an 
amount that depends on the sample size and how skewed the distribution is. I vail talk about 
the implications that this small sample bias has for credibility procedures. Why do people 
ignore outliers? I will offer up some possible reason for why we ignore outliers and why deals 
get done despite what the data indicates. I will talk about the winner's curse or why we lose 
even as we win. Final]},, I will offer a small sample of skewed random thoughts on why these 
ideas explain everything from people engaging in risky behaviors to the property/casualty 
insurance cycle. 

INTRODUCTION 

People in insurance work all the time with financial processes that are best modeled with 

skewed distributions. Despite our constant exposure to skewed distributions, I believe when 

we study sample averages from these skewed distributions we think and work with them as if  

they were samples from normal symmetrical distributions. 

In this paper, I will show through computer simulations that the expected value of  a 

sample average from a skewed distribution varies between the mode o f  the distribution and 

the true mean of  the underlying distribution. Where the expected value of  the sample 

average falls between those two values will depend upon how skewed the distribution is and 

the sample size. For small samples, the expected value of  the sample average will be near the 

mode of  the distribution and for some skewed distributions, "small" samples can be 

unexpectedly big. The implication is that while we are searching for information on a 

population's mean by examining the averages of  small data samples from skewed 

distributions, we will most  likely be getting indications that could be significandy lower than 

the population mean. This is in contrast to the situation when we are sampling from a 

symmetrical distribution where the expected value of  a sample average is equal to the mean 

of  the distribution regardless of  the sample size. 

I would also like to talk about some of  the implications of  people not  realizing or 

ignoring that the expected value of  the sample average from a skewed distribution is biased 

lower than the mean of  a positively skewed distribution. I ~ talk about small sample bias 
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and credibility procedures. I will talk about why people tend to ignore outliers and why deals 

get done in spite of  what the data indicates. I will offer an explanation on why we can't win 

for losing or why making money in insurance is no easy matter. Finally, I will offer up a 

small sample o f  skewed random thoughts on how these ideas help to explain everything 

from people engaging in risky pursuits to the property/casualty insurance cycle. 

In the paper I talk a great deal about the mode and the mean because I think those are 

concepts that are common ground for all of  us in insurance. I hope to reach a bigger 

audience of  insurance professionals than just actuaries. To that end, I relegated all formulas 

to the appendices. However, I must share a word of  caution to actuaries who want to 

discuss these ideas with others outside our field. I have tried it and I have seen strange 

reactions from professionals of  all kinds. People have played dead so that I would just go 

away and leave them alone. Others have fought back violendy. ! have seen our outside 

audit partner a hardened insurance veteran who has "seen it all" practically break his leg as 

he tried to escape from my office when I even hinted at these ideas in answer to his 

question. You have been warned. 

A P R A C T I C A L  P R O B L E M  

Consider the following scenario - we have a customer who has written some business in 

a particular state and it turns out to be profitable business. The customer would like to 

expand into the state to write more of  this good business. Our job is to produce forecasted 

financial statements for this customer so that they can present their business plan to 

management. 

Because our customer does not have a great deal of  existing business in the state, we use 

an industry average loss ratio - a ratio that happens to be higher than our customer's actual 

experience when we produce a first draft of  the forecasted financials. Our customer objects 

to the higher loss ratio since he knows that his past business has been better than the 

industry result. In order to acknowledge his concerns we credibility weight his past 

experience with the industry average to give some credence to the actual experience. By 

using the credibility procedure, we are recognizing that our customer's experience might 

actually represent a profitable niche as opposed to being just be a random fluctuation from 

the industry average. 

However there is another explanation for why the small sample average based on our 

customer's past experience is different from the long term industry average as opposed to it 

being a profitable niche or a random fluctuation. I f  we are sampling from a typical positively 
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skewed distribution, the most likely value o f  that small sample average will be less than the 

true average of  the distribution simply because it is a small sample from a skewed 

distribution. For very small samples from highly skewed distributions, the sample average 

will more likely be closer to the mode rather than to the mean. 

When we do a single sample from any discrete distribution, the most likely value that we 

will see is the mode of  the distribution. That's the definition of  the mode - the observation 

that appears most often, or in other words, has the greatest probability o f  occurring. The 

mode is one of  those statistics that we learn about when we first do statistics but then we 

never hear much about it again unless we are trying to avoid distortions associated with 

extreme values. That is an injustice to the mode; it actually deserves more attention. 

For a symmetrical distribution with one mode like a bell curve, the mode is equal to the 

mean. But for a typical distribution that we might encounter in insurance that is skewed to 

the right and which has only one mode, the mode is less than the median which is less than 

the mean. (For an example of  an atypical skewed distribution where the mode is greater 

than the mean, see Appendix A). When we do small samples from typical skewed 

distributions, the most likely value for the sample average will be somewhere between the 

mode and the mean of  the distribution. How close to the mode or how close to the mean 

will depend on how skewed the distribution is and the sample size. Moreover, for some 

skewed distributions, "small" samples can be surprisingly big. 

For some insurance examples, this relationship should be in the back of  our minds. Take 

for example the annual sample from a highly skewed distribution like the annual hurricane 

losses in the city of  Miami. For any particular year, the most likely loss we will observe is 

zero -- the mode of  the distribution. Every so often there will be a hurricane loss that will 

bring the long-term average above the zero mark but most of  the losses we see ~ be zero. 

On the other hand, an industry average loss ratio is based on a sample size that we could 

consider for all practical purposes to be approaching infinity. I f  we are dealing with large 

samples, even from skewed distributions, we are confident that the most likely value for the 

sample average will be something close to the true average of  the distribution. This is the 

law of  large numbers. As the sample size increases, the probability approaches zero that the 

sample average differs from the mean of  the distribution by any set amount as long as the 

samples are mutually independent and from a distribution with a finite mean and variance. 

In between the two extreme cases - a sample size of  one and a sample size approaching 

infinity - the most likely value for the average of  the sample goes from the mode of  the 

distribution up to the distribution average. How does the most likely value o f  the sample 
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erage change with how skewed the distribution is and the sample size? Let us explore this 

question by examining results from a positively skewed distribution that is used in insurance 

modeling - the lognormal distribution. 

RESULTS FROM A TYPICAL SKEWED DISTRIBUTION 

The lognormal distribution has been used by actuaries to model losses since at least the 

early 1970's [1]. A lognormal has its hump to the left and a long tail to the right. Because of 

the shape of the curve, the lognormal implies that small losses are more likely than very big 

losses. How likely a small loss is as compared to a large loss depends on how skewed the 

particular lognormal distribution is. The chance of a large number of small losses increases 

with the skew of the distribution. 

Rather than talk about the skew of a distribution, I am going to talk about the coefficient 

of variation (CV) of  a distribution. When we are working with a lognormal, a higher CV is 

the same as a higher skew. The CV is defined as the standard deviation of the distribution 

divided by the mean of the distribution. Actuaries typically refer to the coefficient of 

variation (CV) of a distribution rather than how skewed a distribution so that they can 

compare the skews of two distributions with different means. Intuitively we should feel that 

for a family of skewed distributions, the higher the standard deviation, the higher the CV, 

and the more skewed the distribution. The lognormal is always positively skewed as shown 

in Appendix B. 

Actuaries who use the lognormal for size of loss curves very often have rules of thumb 

for an appropriate CV depending upon the line of business. CV's of around 1 or 2 rrught 

represent low limits liability lines of business, CV's between 2 and 5 might represent rmxed 

property and liability losses, and CV's on the order of 10 might be used for very volatile 

high limits excess lines of business. 

Chart 1 shows three lognormal curves each with a mean of 1000 and with varying CV's. 

As the CV increases, the mode or highest point on the distribution is associated with lower 

and lower values than the mean. Other typically skewed distributions would have the same 

relationship between the mode and the mean - as the skew of the distribution increases, the 

mode gets lower and lower as compared to the mean. 
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Lognormals with Mean 1000 
__ .ean IOO01 

Value 

Chart 1 

For the ]ognormal, the ratio o f  the mode to the mean can be written as a function of  the 

CV. I have included that formula at the end of  Appendix B for those who like formulas. 

Chart 2 shows the ratio of  the mode to the mean for lognormal distributions with different 

coefficients of  variation. 

1,00 ¢: 
q 

0.80 

~e 0.60 
o 0.40 

o 0.20 

Ratio of Mode to Mean vs. CV 

0 2 4 6 8 10 12 

Coefficient of Variation 

Chart 2 

As the coefficient of  variation increases, the ratio o f  the mode to the mean of  a lognormal 

distribution drops off  very quickly towards zero. What does that imply? The more skewed 

the distribution, the more likely a sampled mean will underestimate the true underlying 

mean. For a lognormal distribution with a CV over two, the most likely value for a sample 

of  one is relatively close to zero no matter how big the mean of  the distribution. For small 

samples, the expected value for the sample average will be close to zero. 
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To acknowledge that there are people who are uncomfortable with the idea of  focusing 

on the mode rather than the mean, I offer some numbers that might help them get more 

comfortable. The mode is the point at the highest point on the probability density function. 

What I am going to show is the area under the probability density function for all points that 

have a value that is greater than the value associated with the mean. Chart 3 shows a 

lognormal dismbution and we are interested in area "A" between the mean and the point to 

the left of  the mode that has the same probably density function value as the mean. 

Lognormal with Mean 1000 

J~ 
o 

a .  

VaLue 

Chart 3 

Table 1 shows for varying samples size averages from lognonnals with different 

coefficients of  variation the percentage of  sample averages whose probability density 

function value is higher than the value at the mean. This is area "A" in chart 3. 

Sample Size 
0.5 

1 47% 
25 13 
50 12 
75 11 
100 11 
150 7 
200 7 
300 7 
400 3 
500 2 

13 

CoefficientofVafiafion 
1.0 2.0 5.0 10.0 

64% 74% 82% 86% 
28 44 62 70 
19 38 56 66 
16 33 54 64 
13 28 53 63 

47 57 

2 
Table 1 Area "A" for 

26 
25 47 57 
17 41 55 
16 
14 

41 
38 

different sample average sizes distributions and CV's 

53 
51 
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As an example, the numbers in this table says that if you are taking averages from a 

lognormal distribution with a coefficient of variation of 10.0, then there is better than a 50% 

chance that the sample average will be below the true average of the distribution if the 

sample size is 500 or less. I like to think that focusing on the mode makes it easy to capture 

a lot of  this information and I hope to convince you of that with the following simulation 

exercises. 

So what makes up a very small sample size? In order to answer this question, I simulated 

a single random value from a lognormal distribution with mean 1000 and varying CV's using 

an Excel add-in called @Risk by Palisades. The @Risk add-in has functions that will 

simulate random values from various statistical distributions and it has functions that will 

calculate statistics for the random results. Since I am sampling from a continuous 

distribution, it is unlikely that I would sample any single point more than once. So rather 

than find the most common single point, I set the program to keep track of the most 

common interval of width 5 as a proxy to finding the single point mode. As a check on this 

process and to see if @Risk actually does what it claims to do, I wanted to see if the mode 

for a sample size of one tracks with the formula mode of the distribution. The results in 

Table 2 show that the simulated results track closely to the formula mode of the distribution 

after 1,000,000 simulations. 

CV 

0.5 

1.0 

2.0 

5.0 

10.0 

Table 2 

Simulated Mode Formula Mode 

717.91 715.54 

361.67 353.55 

79.75 89.44 

7.86 7.54 

2.51 0.99 

I then increased the sample size to 25 random values, 50 random values, 100, 200, 300, 

400, 500 and 10,000 random values. I measured the midpoint of the most common interval 

for the average of those larger samples doing 500,000 simulations each tune. (See Appendix 

C for additional details.) The results are shown in Chart 4 for lognormal distributions with 

mean of 1000 and CV's of 0.5, 1.0, 2.0, 5.0 and 10.0. 
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.8 

1200 
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400 

200 

0 

Mode of Sample Average 

1 25 50 75 1 O0 150 200 300 400 500 

Sample Size 

Chart 4 

What does this Chart 4 tell us? For individual claim size distributions that have low CV's, 

the most likely value that we would see from a sample average very quickly approaches the 

mean of the distribution, We are getting the same result as if wc were sampling from a 

symmetrical distribution where the mode is equal to the mean. However as the CV 

increases, it takes a very big sample size before the most likely value of the sample average 

approaches the mean of the individual claim distribution. For a distribution with a CV of 

10, even at a sample size of 500 the most likely value we would see from the sample average 

is 85% of the distribution mean. Formal credibility formulas aside, I believe many actuaries 

would consider 500 homogeneous claims a fairly large database. Appendix D has charts, 

albeit more complicated charts, which show additional information about the entire 

distributions of the sample averages. 

With a CV of 10 and a sample size of 10,000, the most likely value we would see is still 

only 96% of the mean of the distribution. William Blatcher, CFA, points out that a 

simulation size of 10,000 is a typical @Risk simulation size for actuaries working in 

reinsurance. Even at this large number of samples, there is still a downward bias of 4% from 

the actual average of the distribution. 

Another thing to observe about these sample results is that the most likely values for the 

sample averages follow a pattern of rising quickly from the mode of the distribution and 

then hitting a fairly fiat area that approaches the mean very slowly. In his book "Fooled by 

Randomness" [2], Nassim Taleb discusses how people are misled by skewed distributions. 
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He focuses on the rare extreme values in the tail of  the distribution, which he calls the black 

swans that are usually missing from the sample results out of skewed distributions. People 

forget about these black swans or are unaware of  them. However, for "small" samples out 

of skewed distributions, it is not just missing black swans that the observer can innocently 

miss that can cause problems. The small sample from the body of the distribution is actively 

misleading the observer because the mode is so much lower than the mean. It is almost as if 

the distribution is actively evil by feeding us misleading information from its body as 

opposed to passively withholding tail information from us. 

What are some of the implications of this? When we are doing relatively small samples 

from skewed distributions, we should recognize that the most likely value of the sample 

average will be less than the mean of the distribution that we are trying to measure. We 

should adjust our sample results based on the CV of the distribution and the sample size to 

calculate the population mean of the sampled distribution. The correction factor should be 

the ratio of the population mean and the mode of the sample average. The mode of the 

sample average would vary by the sample size. It would equal the population mode for a 

sample size of one and would approach the population mean as the sample size approaches 

infinity. Table 3 shows the correction factors for a lognormal distribution for given sample 

sizes and coefficients of variation based on the simulation results. These values are just the 

ratio of  the actual distribution mean and the mode of  the sample means underlying Chart 4. 

Sample Coefficient of Variation 
Size 

0.5 1 2 5 10 

1 1.45 2.51 
25 1.02 1.07 
50 1.00 1.05 
75 1.00 1.02 
100 1.00 1.03 
150 1.00 1.02 
200 1.00 1.01 
300 1.00 1.00 
400 1.00 1.00 
500 1.00 1.00 

10000 1.00 1.00 
Table 3: Correction factors 

11.79 
1.25 
1.13 
1.13 
1.09 
1.07 
1.05 
1.04 
1.02 
1.02 

128.90 
1.79 
1.45 
1.32 
1.31 
1.19 
1.18 
1.13 
1.11 
1.09 

399.67 
2.68 
1.93 
1.71 
1.58 
1.M 
1.38 
1.26 
1.24 
1.21 

1.00 1.02 1.05 

There is actually a precedent for a table of  adjustment factors like this. The British 
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Department for Transport has recognized that planners for large public projects routinely 

underes~nate the actual cost and time of the project [3]. To adjust for this tendency to bc 

optimistic, project appraisers are required to make adjustments or 'uphfts" to the submitted 

costs, benefits and duration. The factors which depend on the type of engineering project 

under consideration could be up to 51% for building projects and up to 200% for IT 

projects. They are used to adjust the project costs to overcome this downward bias and 

increase them to more likely cost levels. 

SMALL SAMPLE BIAS A N D  CREDIBILITY 

When we are credibility weighting two results from skewed distributions, we should 

recognize that the small sample size average might be different from its population mean 

only because it is biased downwards, In his paper "An Examination of Credibihty 

Concepts" [4], Stephen Philbrick presents an example of four people shooting at four 

different targets to help explain credibility. The diagrams in the paper show the historical 

results for the four shooters with their shots clustered around their four respective targets. 

The clustering is a simphfying assumption in order to focus on the main point of the paper. 

We are better able to guess who the shooter is if: 

We see more subsequent shots taken, 

The shooters are better shots or, 

The individual targets they are shooting at are moved further apart. 

When the targets are widely separated and the shooters are good shots; we want to give 

high credibility to the hypothesis that A is the shooter when we see a subsequent shot fall 

near target A. This follows, in part, from the assumption that the shots are symmetrically 

distributed around the targets. 

Now suppose a wind is blowing across the firing range affecting the results of shooter A. 

Most of the shots are blown away from target A and land near target B. Occasionally the 

wind ~ stop blowing and a shot wiU land near target A. Even more rarely, the wind will 

reverse direction and the shot will fall widely wide of the target on the other side. On 

average all the shots fall around target A. In this example, even if the means and standard 

deviations of the distribution of shooters has not changed from the symmetrical example, 

whatever standards we may have created for credibility when the shots were symmetrically 

clustered around the target have to be increased given that the distribution of shots is 

skewed. We need more shots, or the shooters have to compensate for the wind to improve 

10 Casualty Actuarial Society Forum, Spring 2007 



We're Skewed The Bias in Small Samples from Skewed Distributions 

their aim, or the targets have to be much further apart to achieve a given credibility standard 

when we are dealing with skewed distributions as opposed to symmetrical. 

In this second example, i f  we had a small sample from this skewed distribution, we 

probably would have given little credibility to the idea that the shooter was A unless we 

really understood the process involved. I f  we assumed we were dealing with symmetrical 

distributions, we most likely would have concluded that the shooter was B since the small 

sample of  shots would most likely have been grouped near the mode of  the distribution - 

target B. It is important to understand what type of  distribution we are working with and 

avoid convenient assumptions. 

O U T L I E R S  A N D  T H E  A R T  O F  T H E  D E A L  

James MacGinnitie in his Address to New Fellows at the November 2006 Casualty 

Actuarial Society annual meeting stated that the world is not normal and warns against 

unexamined use o f  the bell curve or  normal distribution as a model. In his book "The 

(Mis)Behaviour of  Markets" [5], Benoit Mandelbrot of  Chaos Theory fame discusses 

problems with assuming the financial markets behave according to the normal distribution. 

Why was the normal curve used in the first place? Mandelbrot states that at one time all of  

nature was assumed to behave according to the bell curve - that is why it is called the 

normal curve. Independent observations from a normal curve are not an appropriate model 

for many financial market situations even though modelers have historically used normal 

curves. Actual observations come from more highly skewed correlated distributions. 

Nevertheless, many financial modelers say, "So what?" They argue that the normal curve is 

a convenient approximation and as long as this assumption does not cause any problems, 

then we should just ignore any theoretical refinements. MacGinnitie and Mandelbrot claim 

that assuming normal, independent observations does cause problems by underestimating 

the true risk associated with skewed processes. Mandelbrot demonstrates that Chaos Theory 

yields a better model of  the financial market's behavior, He says that you cannot make 

money with this insight but he does assert that it allows you to understand better the risk 

that is involved which could help you avoid losing money. 

I f  someone makes a statement it is good to check it if  we are able. Can we underestimate 

the risk by using standard statistical techniques on small samples? Table 4 shows the most 

likely indicated CV from different sample sizes from a lognormal simulation with varying 

CV's. 
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Sample Size 

25 
50 
75 

0,50 
0.46 
0.47 
0.48 

Coefficient of Variation of  Sampled 
1.00 
0.79 
0.85 
0.89 

Distribution 
10.00 
1.81 
2.21 
2.66 

2.00 5.00 
1.02 1,63 
1.31 1.82 
1.40 2,04 
1.41 2.16 
1.5 2.27 

1.56 2.44 
1,61 2.55 
1,63 2.97 
1.65 2.98 
1.91 3.82 

100 0.48 0.89 3.00 
150 0.48 0.92 3.00 
200 0,50 0,93 3,01 
300 0.49 0.94 3.02 
400 0.49 0.96 3.17 
500 0.50 1.00 3.67 

0.50 10,000 1.00 
Table 4 Mode of the Sampled CV's 

6.00 

For small samples from skewed distributions, the most likely value for the CV 

underestimates the CV of the actual distribution since we are missing the values from the tail 

of  the distribution. If we used these numbers as parameters for our models, then we would 

underestimate the risk of the situation we are modeling. 

There is another reason to avoid assuming the normal distribution either consciously or 

unconsciously. Besides worrying about the tail of  the distribution, we also have to worry 

about the body. In actuarial and financial work, we have to avoid assuming that "small" 

sample averages from skewed distributions will give unbiased indications of the true mean of 

the underlying distribution as they would if we were sampling from a normal distribution. 

Actuaries someumes go out of their way to create problems, for example, by creating 

smaller and smaller data samples as opposed to maintaining larger groups for large samples. 

I have seen reserve studies that will take a book of business, split it into 34 different rating 

groups, and then split each of those into three different currencies for over 100 different 

groups to study. By doing so many splits of  data, we end up creating small sample averages 

where the results will be biased low. A few groups may have large claims but those are 

ignored as aberrations as opposed to being recognized as the extreme values from a skewed 

distribution. If only they were combined with the other sample values in larger groups, then 

there would be a better chance of yielding a more appropriate estimate of the true 

population mean. 

Is there a psychological explanation for why people disregard outliers? One of the 

explanations for our tendency to disregard outliers has to do with our training. Students are 

taught that, 
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"An out~er is a point ~vhich your data set is better off ~thout. If.you can prove yourpoint better by 

ignoring some smallportion of.your data, why not ignore it? It's probab[vjust a blunder on the part 

of the person colkcting data, or some ~Oedal, irrelevant circumstance that we needn't investigate in 

detaiZ "[6] 

I hope everyone is appropriately shocked with this advice and will acknowledge they have 

never followed it in the past nor will they ever follow it again. MacGinnitie and Mandelbrot 

strongly recommend not ignoring outliers. Taleb and others argue that properly accounting 

for outliers is how to win or lose the big money. Helping customers deal with outliers is 

what insurance is all about. 

Ignoring outliers could be instinctual. As the herd moves on, the weak, the old and the 

sick fall behind becoming outliers to be picked off by the wolves. The clustering illusion is 

an identified psychological bias where people xxfill pick out patterns even when none exist [7]. 

Because of this bias professionally designed standardized tests do not have long runs of a 

particular multiple choice answer. Students would feel such a pattern is unlikely and then 

feel pressured to answer incorrectly just to break the run. 

Certainly actuaries make their li~ag by finding and identifying patterns. Once a theory is 

formed about a particular pattern the confm-nation bias in psychology is the tendency for 

people to search for or interpret information to confirm one's preconception [7]. Outliers 

don't  fit the pattern and they don't support the basic idea that's being proposed, so ignore 

them. What is even worse, the more outrageous the outlier the more likely we are to throw 

it out of the sample. We can put all these biases all together to explain why people ignore 

outliers and call it the "Simon and Garfunkel Bias" - still the man hears what he wants to 

hear and disregards the rest [8]. 

Certainly, there may be business reason s for a person to leave an outlier unexamined 

when pricing a deal. There are no absolute rules. And for certain parties in the transaction, 

it is in their best interest to deemphasize the outliers. The negotiation skills and dedication 

of the brokers and market makers influence the final price. The best dealmakers that I have 

seen in action are those that continually work on the ego of the person they are trying to sell. 

The skilled insurance broker will set up a situation where the rejection of the proposed deal 

at the suggested price implies the insurance underwriter lacks cojones; they are not a real 

player. The broker will threaten that they have other underwriters at other companies - real 

business people - that are ready and willing to do the deal. Eventually, the ego driven 

underwriter will be dying to do the deal in order not to appear weak in front of the broker. 
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It doesn't matter about outliers. The broker now has the underwriter working for them in 

finding a way to do the deal rather than the underwriter working for their employer. This 

whole process is a beautiful thing to behold. You really have to admire a good broker at 

work. 

This is where an objective actuary can be a valuable asset in these negotiations. Actuaries 

typically get their ego kicks from doing a thorough analysis and beating other people (either 

in competitive exams or in doing accurate forecasts). I f  another actuary has arrived at an 

estimate that is lower than your estimate but cannot give a satisfactory reason for why your 

answer is too high, then you will stubbornly stick to your result. This can be a valuable 

sanity check for the underwriter when evaluating a deal. Whether the deal finally gets done 

or not at a particular price will depend on many things. Ego is involved in a complex 

interaction with many different forces; forces that will vary from company to company. The 

actuary can be a big assistance in providing a quantitative estimate that takes into account all 

the available information. 

Actuaries are also subject to ego problems and can be a liability to the process. Forecasts 

of  indicated prices are the appropriate combination of  all available information including 

outliers. As a deal is negotiated, very often new information is introduced that was not 

available when the first price forecast was produced, for example, a legitimate explanation of  

the outlier. That new information could cause the forecasted price to go up or it could cause 

the forecasted price to go down. It has been my experience that actuaries are more willing to 

allow their prices to go up rather than to go down based on new information. Part of  this 

might be the natural reluctance to lower a price based on the suspicion that only good 

information is being shared and none of  the bad information. Some of  it might just be 

misplaced pride in that changing an answer somehow implies that the original forecast was 

wrong. Some of  it might just be psychological. 

There have been experiments done asking people to guess a particular number when they 

have no idea what the appropriate answer is. For some reason the first number that people 

hear sets the magnitude of  the perceived correct answer whether or not it is anywhere close 

to the correct answer. This is known as the anchor effect [7]. All future answers will be 

judged against this initial answer. For example, what is the population of  Brazil? Someone 

might throw out a guess that the population is 40 million people. It sounds like a reasonable 

number. From that point on people xx4ll be evaluating future answers to the question, 

including the correct one, based on this initial guess. And future guesses will tend to 

fluctuate in the neighborhood of  this initial guess. (What is your guess for the population of  
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Brazil?') 

Are actuaries subject to the anchor effect? Are they more likely to be subject to it when 

they are the author of  the original forecast or guess? Everyone else is affected by it so why 

not actuaries? If  you have been around long enough, you have definitely seen this process in 

action. An early number sets the value for a deal, a transaction or an acquisition. Based on 

that early number a decision is made to do the deal or not. From that point on it doesn't 

matter what new information is brought forth and how the numbers change. A decision has 

been made and a course of  action is in motion. The first numbers that are released are very 

important because those may be the last numbers anyone pays attention to. 

The actuary has to bring a forecast to the table that reflects all the information available 

including outliers. A forecast is different than a prediction of  the future. If  data might have 

been withheld that can influence the answer or even if appropriate data are not available to 

do a proper forecast such as with a small sample from a skewed distribution, then that 

inadequacy of  the data has to be built into the pricing of  the deal. Exactly how the price is 

adjusted for the lack of  the data is a judgment call. But that judgment call is made by those 

responsible for the deal. The actuary has to be upfront with the indicated forecast based on 

the information available and also explicit about any additional loadings in the price that are 

due to the quality of  the data. 

B L E S S E D  A R E  T H E  L O S E R S  

Economists are concerned with a problem called the winner's curse [9]. In this problem 

several bidders are competing for an item in an auction and the winner will be the highest 

bidder. This item is worth the same to all the bidders. The bidders only have incomplete 

information about the true value of  the item and they have to make estimates about this 

value to prepare their bids. The average of  all the bids is assumed to be around the true 

value of  the item. If  this is the case, the winner will tend to lose money since they ~ bid 

more than the item is worth - the winner's curse. Savvy bidders will avoid the winner's 

curse by bid shading or quoting a price below what they believe is the value of  the item. The 

bidder who follows this strategy will lower their chance of  winning a particular auction but 

increase their expected return over time. This is the ideal situation as described by 

economists. 

For the reality of  the insurance world we have to make some changes as the problem is 

more complicated. One change is the winner is the lowest bidder not the highest. Another 

"The population of Brazil was reported to be 188 million people in 2006. 

C a s u a l t y  Ac tua r i a l  Soc ie ty  Forum, Spr ing  2 0 0 7  15 



We're Skewed The Bias in Small Samples from Skewed Distributions 

difference is that a particular account might be more valuable to one insurer than to another 

insurer for a variety of  possible business reasons. An account might have value outside of  its 

expected profit, For example, a company might have written premium goals and they 

set the price to win the account as opposed to setting the price at the estimated value of  the 

account. The winning bid does not necessarily lose money even if the bid is below the long 

term average cost of  the account because the annual cost of  an account is not fixed. An 

insured might have a good year and experience low losses for the year of  the auction. 

Another difference is that the result of  the traditional auction problem is known immediately 

but for an insurance contract, it could take years for the actual result to be known. Because 

there is this lagging feedback mechanism, inappropriate pricing might persist for a period of  

time as opposed to being corrected immediately. I would think these differences would tend 

to increase the monetary losses of  the winner. A difference that would tend to ameliorate 

the losses of  the winner is that all insurance companies are not all created equal. In real life, 

the insurance buyer bases their purchase decision on more than just price. They may go 

with a higher priced policy if they expect to get better service from a particular insurer. 

Participants in the traditional aucdon problem are assumed to have incomplete advanced 

information about the value of the item being auctioned. This is certainly true for insurance. 

We also have the potential additional problem associated with small samples from skewed 

distributions. Gary Blumsohn points out that the more skewed the distribution, the more 

likely it is that bidders will be quoting prices based on downwardly biased sample averages 

and thus the winner's curse will be compounded. 

Bidders in this case should build into their decision process how skewed the loss process 

is and how much actual loss information is available to price the account. The more biased 

the actual losses or the smaller the pool of  available information on the particular account or 

similar accounts, the more we should be concerned about adding a charge to our bid to 

compensate for any potential biases in the available information. In some extreme 

situations, we might just want to quote a "go away" price to the risk or broker. That would 

be a situation where we are very uncomfortable with the risk involved and/or  the 

deficiencies in the available pricing information. If  we are concerned about pricing it too 

low, then we should just quote a price high enough so that it is unlikely to be accepted but 

high enough so that we still feel O K  if for some reason we are the winning bidder. 

I f  one is faced with the risk of  an event that is likely to be a small sample from a highly 

skewed loss distribution, then there are a few things that can be done to Improve the 

situation. The first is to increase the sample size and combine that risk with other risks to 

take advantage of  the law of large numbers. If  you are a single insured, you buy a policy 
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from an insurance company who does the combining of  risks for you. If  you are an 

insurance company you can expand your writings until you have sufficient volume to 

produce stable results. As an insurance company, if it is impossible to combine the 

presented risk with a sufficiently large number of other independent risks, then the other 

alternative is to reduce the skew of the risk distribution. You can reduce the limits on the 

policy, restrict policy terms, or buy some form of appropriately priced reinsurance. Finally, 

the last thing that you can do is reduce the probability of the event to zero by not writing the 

risk at all. 

A S M A L l .  S A M P L E  O F  S K E W E D  R A N D O M  T H O U G H T S  

More than once, I have heard a story at a luncheon at a Casualty Actuarial Society 

meeting about either a start up company or a new branch of operation where the initial loss 

experience is good. The stories deal with heroic battles between an actuary and the naive 

management team. The actuary wants to hold surplus and maintain high rate levels in 

anticipation of losses yet to come. Management wants to cut rates or pay out large dividends 

based upon the small but exceptional experience to date. In the stories that I have heard, 

either the actuary wins out or the company barely survives its first few years. Because those 

are the only endings that I have heard, I have to assume that there is a survivorship bias in 

these results - only the survivors are happy to share their stories. 

The heroes of these stories recognized that skewed distributions give biased results not 

just due to small sample sizes but also because the mode is seen before the average result. 

Incremental claim reports follow skewed patterns. Once people in a company see 

incremental claim reports from a particular accident or policy year declining after the mode 

of the distribution has passed, they might think the worst is over and that claim reports will 

drop off as fast as they appeared. However, the tail that follows the mode could stretch out 

for years. Actuaries who have recognized this and have convinced their colleagues of claim 

reports yet to come have the right to boast [10]. Actuaries think accident year; everyone else 

thinks calendar year. 

Speaking of start up companies, another lunchtime conversation has to do with the 

strategy of starting a reinsurance company devoted to catastrophes. The question is whether 

the company will be able to build capital by surviving its first year without sustaining a 

catastrophe. These companies are insuring events from highly skewed distributions. The 

most likely loss that they vail see is zero. Chance is in their favor that they will survive the 

first year. This same type of thinking could explain why some investors are willing to rush in 

Casua l t y  Ac tua r i a l  Society  Forum, Spr ing  2 0 0 7  17 



We're Skewed The Bias in Small Samples from Skewed Distributions 

and refinance catastrophe reinsurance companies after they suffer a particularly bad season. 

The hope of stock price recoveries from big premium increases following the cat loss also 

has something to do with it. 

In case the traditional age to age development method has not been beaten up enough in 

recent papers, what about the way we average development factors? In the past, I have used 

methods that take the average of the most recent x development factors excluding the high 

and the low value. I have also heard of methods that use x binomial factors as weights to 

apply to the most recent x development factors ranked from highest to lowest to get a 

weighted average estimate. It certainly sounds like these methods are making an implicit 

assumption that we are sampling from a symmetric distribution if not a normal one. 

However, if these unquestionably small sample averages of individual loss development 

factors are from a skewed distribution then these methods are throwing out or downplaying 

important information. 

We become complacent about our safety or survival from repeated exposure to 

threatening situations that do not actually happen. Psychologists call this habituation [11]. 

When I worked in Jersey City, NJ, I would pass a good example of habituation in action 

every day when I went to work. Each morning I would drive past Nunez Restaurant on the 

comer of Montgomery Street and Jordan Avenue. The owner of the restaurant had put a 

couple of plastic owls on the ledge of his building to scare away the pigeons and save his 

customers untold embarrassing problems. However, the pigeons had become habituated to 

the owls. Initially the model of their natural predator would have scared the pigeons away 

but when nothing threatening ever happened, the pigeons learned to suppress their natural 

instinct to be afraid. So many pigeons have become habituated at Nunez Restaurant that on 

some mornings the corner could be used for the Jersey City/pigeon remake of Alfred 

Hitchcock's "The Birds". The pigeons have become conditioned to the mode of nothing 

happening and suppressed their fear of the extreme event of being attacked by the stationary 

plastic owls. (Some people might argue that my driving to work every day down 

Montgomery Street in Jersey City is a good enough example of habituation.) 

People are not to be outdone by pigeons. Here is a possible explanation for riding a 

motorcycle without a helmet. People are probably encouraged to do any high risk activity 

because they get something out of it and, most likely, not suffer any consequences for at 

least the first few times. The loss distributions associated with any high risk activities are 

skewed - driving without a seat belt, cave diving, painting the outside of a house without 

securing the ladder. For a small number of trials, any individual is most likely to experience 

the mode of the distribution and not suffer any consequences. Based upon the lack of any 
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immediate losses, the individual grows complacent, ignores any warnings, and continues with 

the activity. Yet the possibility that the individual will experience a loss increases over time 

as the sample size increases. 

The difference between the mode and the mean in skewed industry loss distributions 

might be a contributing factor to the insurance cycle. The distribution of  annual industry 

results appears skewed to me. If  that is the case, the most common result for the industry 

during the cycle period will be something closer to the mode of the distribution. All other 

things being equal, competition will keep pricing levels below the mean of the distribution as 

people grow complacent and the sky doesn't seem to be falling as constantly predicted by 

actuaries. Every once and a while there will be a major industry loss event. The industry 

feel the cash flow shock because it was pricing below the long-term average and it WIU 

overcorrect above the long-term average when it reacts. Mix in some skewed distributions 

associated with the asset side of the balance sheet and away we go. 

Along these lines, Ted Kelly, CEO of Liberty Mutual was quoted in the November 27, 

2006 [12] issue of the National Underwriter warning about pricing levels in the 2006 

property market. Property insurance prices had increased dramatically in 2006 because of 

the losses associated with Hurricane Katrina in 2005 and presumably due to the early 

predictions by the hurricane forecasters of severe hurricanes for 2006 and beyond. He said, 

"The lack of catastrophes this year will create its own set of  problems, including accusations 

that we cried wolf when we raised rates and are now price gouging." He joked that, "It's like 

saying someone who survives Russian roulette faced no risk just because the gun didn't go 

off, when we all know there is still a bullet in the chamber, and if you play the cat game long 

enough, it's going to go off." In my opinion, using the best estimate of the loss over the 

period in which the policy is exposed would be the correct way to fund for catastrophes. 

Currently, all the market forces seem to produce a collective behavior that is influenced by 

the results of small sample averages and then plays catch up after a major shock loss. If  

nothing else, funding at the best loss estimate for the exposure period would identify the 

costs that that market is facing. That being said, what is the loss distribution and what is the 

best cost estimate are among the difficult questions that all the participants in this market 

have to answer. 

The only cure for complacency is a conscious effort to take measures guarding against 

extreme events. Insurance companies exist to help our customers guard against extreme 

unexpected financial consequences of life. As actuaries and managers of insurance 

companies, we have to make sure we are forecasting the true long-term results and acting 

appropriately to account for extreme events so that our companies Hill be there to pay the 
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losses of  our customers. We have to avoid complacency bred by constant exposure to the 

mode of  distributions. 

A quote attributed to former first lady Barbara Bush is, "Bias has to be taught." She was 

speaking about prejudices and that children learn prejudices from adults as opposed to being 

born with any biases. I f  we speak about the statistical bias of  small sample averages, there 

are whole hosts of  places where subdy we are being rmsled. No  one is teaching us these 

things. We are forming theories based on small samples and then forgetting or not realizing 

that those theories might be wrong since they are based on small samples. Is that not a 

definition of  prejudice - developing a theory and then forgetting that it is a theory and 

assuming that it is fact? It would have been better if Barbara Bush had said, "Bias has to be 

fought". 

There is an old insurance joke that says an insurance company is a car being driven down 

the road by the blindfolded president of  the company. The head of  marketing is stepping on 

the gas, the underwriter is stepping on the brake and the actuary is looking out the rearview 

marror yelling which way to turn. To paraphrase the warning label that appears on the 

passenger side rearview mirrors of  US cars, those loss estimates that the actuary sees are 

larger than they appear. 

In that joke, the actuary is the only person in the car who is looking at any section of  the 

road. When working with small samples from skewed distributions, we should keep in mind 

that it rmght take many samples m order to get an average that provides a good estimate of  

the true average of  the underlying distribution. We have to understand the loss process we 

are trying to model along with the limitations of  our data samples, and make forecasts and 

recommendations accordingly. 
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Appendix  A 

Counter Examples Where the Mode of  a Distribution is Larger than the Mean of  a 
Distribution 

There is more than one definition of  the skew of  a distribution. The skew of  a 

distribution is usually calculated as the third central moment o f  the distribution. 

In this formula, n is the sample size, ~ is the sample mean and s is the sample standard 

deviation. A positively skewed distribution has a longer tail to the right. 

In Excel, the formula for the skew of  a distribution is the following: 

/ ' / ( / 3  

(n-l)(n-2) 2 
A distribution may have more than one mode but for this discussion I am going to 

assume that we are dealing with distributions with only one mode. 

Using the Excel definition, it is easy to construct a discrete distribution that is skewed to 

the right and the mode is greater than the mean [13]. 
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Chart 4 

One way to remove the counter intuitive examples is to define them away. The Pearson 

mode skewness of  a distribution is defined as: 
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m e a n  - m o d e  

s tandard d e v i a t i o n  

Using this definition, a positively skewed distribution would always have the mean higher 

than the mode. 
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Appendix B 
Some Formulas for the Lognormal Distribution 

As a reference or reminder, the probability density function for a lognorrnal distribution 

with parameters x < 0 ,  _00 </~ < o% and o" > 0 is the following [14]: 

1 - l ( lnx- /~  2 

f (x,  p ,  cr) = x o ' ~  e 2~ ~, j 

The mean is equal to: 

The variance is equal to: 

e(~ t+o2/2 ) 

And the coefficient of  variation (CV), the standard deviation of  the distribution divided 

by the mean, is equal to: 

- 1) 

Formulas that actuaries are probably not familiar with are the formulas for the median: 

e g 

The formula for the mode: 

(>-o 2) 
e- 
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And the formula for the skew of the distribution is the following: 

/ 
The lognormal is positively skewed for all values ofo ' .  

The formula for the ratio of the mode to the mean as a function of the CV is the 

following: 

mode =(CV 2 +1) -3 
mean 
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Appendix C 

Simulation of Results 

For these simulations, I used @Risk Version 4.05. I did different sample averages for 

different sizes 1, 25, 50, 75, 100, 150, 200, 300, 400, 500 and 10,000. For each sample size I 

took a sample average of that many random values of the lognormal function and for each 

different sample size I used different random values. I did not generate 10,000 random 

values and then take the average of the first 25, the first 50, etcetera. 

At each simulation, I selected as an output the RiskMod function to measure the mode of 

the simulated sample averages. Because we are dealing with a continuous distribution, I 

checked for the midpoint of the most common interval of width 5 as opposed to the most 

common single value. Excel/@Risk formulas for sample size 5 are below in Figure 1. 

1 

4 

7 

9 
1_3_o 
11 

, ,,12 
, 1 3  

14 

16 
17 
tR 

A . . . . .  t . . . . . . . . . . . . . . . . .  8 . . . . . . . . .  

Mean Standard Deviation 

10~ 2~0 

I=+A6+I 
=+AT+I- 
i=+AB+I 
I=+,68+1 

=RiskLognorm($A$4,$B$4) 
• • ~ -.R!skLo 9n o.rm(_$j~,$~ 4 ,$B $4)_.. 

=RiskLognorrn($A$4,$B$4) 
=RiskLognorrn($A$4,$B$4) 
=RiskLognorrn($A$4 ,$B$4) 

=RiskOu!put 0 + TRUNC(AVERAGE($B$6:B10)/5,0)%+2.5 

=RiskOutput 0 + TRUNC(STDEV(B$6:B10)/5,0)%+2.5 

17 l=RiskOutput0 + TRUNC((+A15/A13)/0.01,0)'0.01+0.005 

Average 5 
=+RiskOutput0+RiskMode(A13 ) 
SD 5 
=RiskOutput 0 + RiskMode(A15) 
CV5 
=RiskOutput 0 + RiskMode(A17) 

Figure 1 
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Appendix D 
Contour Maps of Sample Average Distributions 

In the paper, I showed charts on how the mode varies with the CV and how the mode 

varies in relation to the mean as the sample size varies. I wanted to get a feel for how the 

distribution o f  the lognormal sample average is shaped at different sample sizes. Even 

though the mode of  the distribution is the most likely result, I was interested in whether it is 

really more likely than other values or just marginally more likely. Here are the results using 

standard output from @Risk and Excel graphing routines. 

Charts 5 and 6 are contour maps of  the distributions of  sample averages of  lognormal 

distributions with CV's of  1 and 5 as the sample size varies. These are two-dimensional 

representations of  three-dimensional surfaces. I f  you are familiar with topographical maps, 

then think of  these charts in the same way. 

Contovr Map of Sample Average Distributions CV = 1 
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Chart 5 

Reading across the gridfine on Chart 5 for a sample size of  25 from left to right, the 5 'h 

percentile point is on a slope between the 500 and 750 contour fines. At the 10 'u percentile 

point, a wide gentle plateau begins going from 750 up to 1250 at about the 85 *u percentile 

point. The mode appears approximately the 47 'u percentile point and the mean is close by at 

the 54 'h percentile point. After we pass the 85 ~' percentile, the distribution approaches a 

steeply rising area signified by the contour fines getting closer and closer. The 95 'h percentile 

point looks like it is just under a value of  1500. If  we are sampling from a distribution with a 
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CV o f  1 and the sample size i f25 or above, it is not going to be a problem that the mode of  

the avenge is lower than the mean. The values are close together straddling the median 

value at the 50 ~ percentile line. It looks like we could get away with an assumption o f  a 

symmetrical distribution. 

Contour Map of Sample Average Distributions CV-  5 
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Chart 6 

When the CV is 5 as in Chart 6, the map gets to be a little more interesfng. If  we look 

across the 25-sample size gridlme again, the fifth percentile point is very close to the 250 

contour line. Now rather than a gende plateau stretching across the graph, we have a 

steadily increasing slope going across the chart up to the 1250 contour line at the 78 'h 

percentile. Here the surface starts to increase more steeply reaching just above the 2250 

point at the 95 'h percentile. On this chart, the mode and the mean are widely separated for a 

sample size of  25. Approximately 67 percent of  all the values of  the distribution are below 

the mean. The mode looks like it is situated right in the middle of  those values at the 33 'd 

percentile. There are definitely higher values that are likely to occur out on the higher 

percentile part of  the curve. 

As the sample size increases, the situation is not as clear-cut that we can get away with a 

symmetrical distribution approximation as it was when the CV was lower. Here the 1000 

contour line stays above the 60 ~ percentile until the sample size reaches 250. Even at a 

sample size of  500, the contour line for 1000 is above the 57 ~ percentile while the mode is at 

43 ra percentile. 
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These  charts  also show someth ing  interes t ing about  company  funding  and  size. Suppose 

we are collecting exactly the  expected losses f rom each insured  and  we wan t  to have enough  

surplus in the first year so that  we have a 90% chance that  surplus will no t  go negative just 

due to loss fluctuations.  Us ing  Char t  5, we can see for  a small company  p roduc ing  only 25 

claims it would  need  an  addit ional  750 o f  surplus for each claim result ing in a p remium to 

surplus ratio o f  approximately 1.33. A larger company  p roduc ing  500 claims could get by 

with a p r emi u m to surplus rat io o f  approximately 4.0. 
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An Exposure Based Approach to Automobile  
Warranty Ratemaldng and Reserving 

John Kerper, FSA, MAAA 

Lee Bowron, ACAS, MAAA 

ABSTRACT: Existing actuarial techniques for automobile warranty ratemaking and 
reserving rely heavily on emerging experience (loss development) for the pricing and 
unearned premium reserving of these products. Since terms for automobile warranties can 
extend up to 10 years, such data is typically not available or not credible to the degree that 
the actuary can take great reliance on it. In addition, changing coverage terms in the auto 
warranty products can often make past development even less meaningful. Exposure 
techniques that have been developed (Cheng, 1993) rely on overall averages for some critical 
assumptions instead of dismbutions or individual policy characteristics. 

We propose a "miles-driven" approach in which claims are assumed to arise from auto 
warranties in proportion to the miles driven times a weight assigned to the overall mileage of 
the vehicle. The method we employ is much more complex than traditional methods, but 
relies on data that is typically available at waxranty writers. Important data dements would 
include the mileage of the vehicle at the time of a claim and if the contract cancels. In 
addition, the underlying manufacturer's warranty is also critical. 

In order to provide an accurate model of pricing, a distributional approach is utilized for 
each policy to model the different driving habits of the policyholders. For example, claim 
costs can be developed using 5 different driving habit~ for each policy. 

Such a method is very useful for the pricing and premium reserving of new coverages or at 
start-up companies. 

The method proposed utilizes "policy-event based loss estimation methodology" in which a 
predicted claim cost is derived from each warranty individually. 

1. The Continuing Problem of Extended Warranty Coverages 

Pricing issues continue to plague the extended warranty industry for vehicles, of ten known 
as '~¢ehicle service contracts." Some o f  these issues are due to the structure o f  the industry 
which has historically had a low barrier to entry and a significant number  o f  players with 
capital constraints. As such, the market  can attract inexperienced players that are unaware o f  
the complexities o f  this insurance product.  

Warranties may be writ ten as traditional insurance products ,  or  may be in risk retent ion 
groups or  captives. In  some cases, warranties may no t  be classified as insurance for 
regulatory purposes.  Regulation o f  warranty products  varies widely and is constantly 
changing. Due  to the f ragmented nature o f  the industry and the variety o f  forms that 
warranties may take, it is difficult to compile industry level statistics. 

29 



Exposure Based Approach to Auto Warranty Ratemaking and Reserving 

The long warranty period gives rise to a long payout pattern that can mask optimistic pricing 
and reserving assumptions for several years. Terms for automobile warranties can range up 
to 10 years. For new car coverages, the effective coverage provided by the warranty over 
this time period is not uniform. For the first several years, relatively few claims are paid as 
manufacturer's warranty will cover most claims. As the manufacturer's warranties begin to 
expire, claims will begin to rise dramatically. Claims also should moderate at the end of  the 
contract as many contract holders ~ "m_ile out" of  their coverage - that is they will drive 
the allowed miles before the time has expired. In addition, the policyholder may sell or 
otherwise dispose of  the vehicle without transferring the warranty to the new owner. 

In general, this paper will use the term "warranty" which is common in the actuarial 
industry. However, the term "service contract" is increasingly being used in the industry. 
For the purposes of  this paper, these terms are interchangeable. 

2. T h e  S t r u c t u r e  o f  A u t o m o b i l e  E x t e n d e d  W a r r a n t y  I n d u s t r y  

Extended warranty or service contract underwriting is structurally different from other 
property/casualty products and an understanding of  the structure and terminology may be 
helpful for the actuary who is unfamiliar with the business. 

Although there are many different models, a common practice is that the extended warranty 
is sold at the dealership at the time of  purchase of  a new or used vehicle. Typically, the 
consumer may encounter several ancillary products which are sold at the time the vehicle is 
purchased. These would not only include extended warranties, but also pre-paid 
maintenance, GAP insurance ( which covers the difference between the actual cash value 
and the loan balance at the time of  an insurable event if the vehicle is a total loss), VIN etch, 
etc. These products are almost always financed with the vehicle. Once an extended 
warranty has been sold, the amount charged for the warranty will be divided into several 
components. These include: 

~" Retail markup (for the auto dealer) 
> Agent's commission 

Administrator Fee 
~" Warranty Reserve 

An administrator typically will perform all the processing and servicing of  the warranty. An 
agent xx611 represent the administrator to the dealer clients. The warranty reserve is remitted 
to an insurance company, which may or may not be owned by the administrator. For the 
actuary, there are two items of  note: 

1. The terrmnology of  reserve is misleading because "reserve" in extended warranty 
typically refers to all funds used to pay claims, not just the outstanding portion, and 
is more analogous to written premium. For our purposes, we will use the term 
premium. 

2. Since the vast majority of  expenses are paid prior to the remittance of  funds to the 
insurance company, the expected loss ratio is higher than other property/casualty 
products. Often, a book will be priced at an expected loss ratio of  95 to 100 percent. 
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Because these contracts are generally single premium and long term, there is a 
significant amount of investment income associated with extended warranties. 

While this paper only concerns the calculation of  expected loss costs for extended 
warranties, these techniques could also be used by administrators to recognize their fees in 
proportion to the expected daims from service contracts. 

3. Warranty Exposure Bases 

In general, exposure bases are measurements for insurers that tell of the relationship that 
exists between insurable objects and critical conditions where a claim can occur, that note 
the proportional size of hazard as measured by the losses (magnitude), and that are 
preferably practical and already in use. This means that exposure bases should have certain 
qualities, namely, accurate in measure of exposure to loss, easy to determine, and difficult to 
manipulate. 1 

The purpose of exposure bases is to determine the exposure to loss for an insurer based on 
the expected loss determined by a series of  accepted calculations in order to use the simple 
and reliable data to develop correct premiums for the insurer and equitably distribute the 
premiums among the insureds. 

For vehicle service contracts, exposure bases are somewhat unique in that the exposure base 
used to price and rate the coverage (Miles/Time) is not the exposure base that has been 
commonly used to evaluate the experience (Projected Claim Reporting Pattern). 

Deriving an appropriate exposure base for vehicle warranty coverage is a fundamental 
question when analyzing this line. Fortunately, changing the exposure base in the analysis of 
the product does not imply changing the exposure base used to market the product. 

~" Time (Earned Warranty Year) is a poor choice. Warranty claims are not uniform 
during the policy period. For an extended warranty sold for a new car, the claims 
pattern will be especially non-uniform, with few claims arising during the initial 
period that is covered by the manufacturer's warranty. The majority of claims will 
occur after the manufacturer's warranty expires. In addition, there WIU be a drop in 
claims at the end of the warranty as many vehicles exceed the maximum mileage 
allowed under the warranty or are sold without the transfer of the warranty coverage. 

~" Indicated Claims Reporting Pattern - This is the most common exposure base used 
today. This is formulated by developing incremental pure premiums (Cheng, 1993) 
or simply developing losses by reporting period. This is typically done by loss 
triangulation. However, instead of aging the claims since the time of the accident, 
the age of claims are measured from the inception of the policy. This method is 
appropriate, however, only if: 

1. There is enough data to make these assumptions. While extended warranty 
achieves credibility at low volumes due to the high frequency/low severity 

See Bouska, 1989 
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2, 

nature of this coverage, there may be limited or no data at the latter points of 
the coverage being analyzed. If  there is no data, common practice is to 
revert back to a benchmark pattern which may not be appropriate for the 
book being analyzed. 
The data is homogenous in each cell. This assumption is difficult in that the 
underlying warranties analyzed may change over time. For example, if the 
average new car warranty on cars sold five years ago was 36 months but it 
has now increased to 48 months, the historical pure premium at 60 months 
will not be predictive of the projected pure premium. In addition, the mix of 
business may change (European makes typically have higher costs than Asian 
makes, for example). Another problem is that the coverage offered typically 
changes due to market conditions. 

Mileage Driven - This is the exposure base proposed in this paper. If  mileage is 
hypothesized as an exposure base, then there is an assumption that claims are 
basically a function of the number of miles driven by the vehicle. This method is 
helpful for a number of reasons: 

2. 

Underlying warranty information is typically available at the individual 
contract level. Therefore, one could explicitly model the miles driven inside 
and outside the manufacturer's warranty. 
Historical claims information at the end of the contract is not necessary to 
make an estimate of future claims. Future claims can be modeled as a 
function of miles driven and the underlying cost per mile. While the clatms 
cost per mile will increase with age, this assumption can also be modeled and 
tested. 

3. A D i f f e r e n t  A p p r o a c h  

A better approach than loss development for estimating ultimate costs for either pricing or 
reserving is an exposure based modeling basis, where future losses are modeled for all 
contracts. This approach has been suggested for modeling other insurance liabilities, such as 
environmental and asbestos claims (Bouska, 1996). There are several advantages to 
modeling at the exposure level. 

Unlike many insurance products, extended warranty is a high frequency/low severity 
coverage. It is common for most extended warranties to experience several claims during 
the life of the warranty. Because of the nature of extended warranty clatms, loss data at 
specific evaluations is credible at relatively low levels, if credibility is defined by the number 
of claims reported. 

The difficulty is estimating the exposure base. This paper proposes an exposure base 
consisting of the miles driven for the vehicle, so that each mile driven under the warranty is 
considered an exposure unit. 
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A miles based exposure base over the term of  the contract is dosely matched to the actual 
exposure of  the vehicle, as claims can be considered a funcdon of  the miles driven during 
the contract. 

One problem with using miles as an exposure base is that there will be some increase in 
claims per mile during the latter periods of  the contract when the frequency of  claims will 
rise due to the age and mileage o f  the vehicle. This problem can be alleviated by a trend 
factor, though for newer sets of  contracts it ~ remain a source of  uncertainty. 

4. A W a r r a n t y  P u r e  P r e m i u m  F o r  a N e w  V e h i c l e  U s i n g  a M i l e a g e  

F u n c t i o n  

TBASlC 
T~ 

Tsr~I~T 

TBA_REM 

Trr_w_M 

TEXT 

Maximum term of  manufacturer basic (full) warranty in months 
Maximum term of  manufacturer power train warranty in months 

= Age of  Vehicle in months (since in service date) at start date of  extended 
warranty 

= Remaining term of  manufacturer basic (full) warranty in months at start date 
of  extended warranty 

= Max (0 ,  TBASl c - TSTART) 
= Remaining term of  manufacturer power train warranty in months at start date 

of  extended warranty 
= Max (0, TvT - TSTART) 
= Maximum term in Months of  extended warranty at start date of  extended 

warranty 

MBASI c = 

Mvr = 

MSTAR T = 
MBA_REM = 

M v r ~  = 

MEX T = 

Maximum term of  manufacturer basic (full) warranty in miles (actual 
odometer reading) 
Maximum term of manufacturer power train warranty in miles (actual 
odometer reading) 

Actual odometer reading in miles at start date of  extended warranty 
Remaining miles of  manufacturer basic (full) warranty at start date of  
extended warranty 
Max (0, MBASl c - Ms-r~XT ) 
Remaining miles of  manufacturer power train warranty at start date of  
extended warranty 
Max (0, Mvr - Ms-r~T) 
Maximum term of  extended warranty in miles at start date of  extended 
warranty 

The following two formulas are based on the assumption that the miles driven for any 
particular vehicle is proportionate to l~'ne and that the number of  miles driven per time 
period for each vehicle, A, is randomly distributed as a lognormal function. 
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A lognormal may be a reasonable approximation for the distribution of  driving habits since 
it is positively skewed and one can model the "high mileage" drivers in the taft of  the 
function. 

re(t) = miles driven at time t in months 
= At 

t(m) = time in months at which m miles have been driven 
= m / A  

= start of  extended warranty 
= 0 
= time of  true expiration of  manufacturer basic (full) warranty, measured in 

months from start of  extended warranty 
= Min (TBA_REM , t [MBa_~ ) 
= time of  true expiration of  manufacturer power train warranty, measured in 

months from start of  extended warranty 
= Min (Tv,-mUM, t[MI,T ~ ]  ) 
= time of  true expiration of  extended warranty, measured in months from start 

of  extended warranty 

= Min (TFxr, t[MFa d ) 

COStBAsi c 

Costvr = 

COStEx T = 

Extended Warranty cost per mile while manufacturer basic (full) warranty is 
in effect 
Extended Warranty cost per mile after manufacturer basic (full) warranty 
expires and while manufacturer power train warranty is in effect 
Extended Warranty cost per mile after both manufacturer basic (full) and 
power train warranties have expired 

m(t) 
k(0 
p(t) 

= mileage driven during extended warranty 
= trend of  repair costs 
= trend rate of  probability of  claims and size of  the claims as the vehicle ages 

Prem = Extended warranty pure premium (4.1) 

-- ~' Costaas,c* m(t)* k(t) * p(t +TsTAaT) * dt 

+ ~ CostpT * m(t)* k(t)* p(t +TsTART) * dt 

+ ~3COStExT * m(t)* k(t) * p(t +TsTAk0 * dt 
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5. A Simple Example 

In the example, we will use a new vehicle for an extended warranty. For a used vehicle, 
there is typically not an underlying warranty, so a similar analysis can be performed. A 
"Wrap Coverage" is often sold for vehicles with a long manufacturer's warranty and 
provides coverage in areas that the manufacturer's warranty excludes. This product can also 
be modeled using a similar technique. 

Assume a contract is sold for a new vehicle for 6 years/72,000 miles for a vehicle with a 3 
year/36,000 mile manufacturer's warranty. Assume that the inflation rate is 3% and claims 
will increase in proportion to the miles driven another 4%. In this example, the driver is 
assumed to drive 15,000 rniles per year. 

Warranty 
Example 

(1) (2) (3) (4) (5) (6) (7) (8) 

Miles in Cumulative Adjusted 
Cumulative Manufacturer's Exposed Incremental Mileage Exposed Percent 

Year Miles Warranty Miles Miles Trend Factor Miles Exposure 

1 15,000 15,000 0 0 1.000 1.000 0% 

2 30,000 30,000 0 0 1.030 1.040 0% 

3 45,000 36,000 9,000 9,000 1.061 1.082 10,332 23% 

4 60,000 36,000 24,000 15,000 1.093 1.125 18,444 41% 

5 75,000 36,000 36,000 12,000 1.126 1.170 15,809 35% 

6 90,000 36,000 36,000 0 1.160 1.217 0% 

44,585 100% 
Assumptions: 

15,oo0 Miles perYear 
72,000 Contract Miles 
36,000 Miles for the Manufacturer's Warranty 
3.0% Trend Rate for Repair Costs 
4.0% Mileage Trend 

Column 1 represents the cumulative miles driven during the contract. 

Column 2 is the cumulative miles covered by the manufacturer. 
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Column 3 is Column 1 - Column 2, subject to the limitations of  the contract. In this 
example the warranty covers the 36,000 miles between the odometer readings of  36,000 and 
72,000. 

Column 4 is the incremental miles in Column 3 for each year 

Column 5 is an estimate of  the increase in repair costs. 

Column 6 is an estimate of  the rate of  increase in claims due to the increased wear-and-tear 
on the vehicle. 

Column 7 is Column 4 x Column 5 x Column 6. This is the adjusted miles. 

Column 8 is the percentage of  Column 7. 

So in this example, we could assume that the earnings pattern should be 23% in Year 3, 41% 
in Year 4, and 35% in Year 5. Nothing would earn in Year 6 due to contract expiring due to 
miles. Years 1 and 2 would also earn nothing due to the manufacturer's warranty. 

Issues with the Simph~qed Example 

The example above is too simplified to utilize for a couple of  reasons. 

1. The assumption that no claims occur during the manufacturer's warranty is 
probably erroneous. Most contracts contain minimal coverage during the 
warranty period. This can be modeled by assuming the percentage of  
ultimate claims paid during the manufacturer's warranty. 

2. Knowledge of  the specific driving habits of  a contract holder is unknown. In 
this example, we have assumed that the driver's mileage exceeds the 
maximum covered by the warranty in Year 5. That may be true for average 
driver on the book, but one could expect some earnings in the 6 th y ear for 
drivers who are driving fewer miles than the average for the book. 

The next section will more closely examine estimating the average miles driven under 
Vehicle Service Contracts. 

6. E s t i m a t i n g  M i l e s  D r i v e n  f r o m  t h e  C o n t r a c t s  [m( t ) ]  

A mileage function can be estimated from the average miles driven and therefore the 
percentage of  the premium that ought to be earned in each period. One can examine all 
contracts that had a claim or cancellation (or both) and look at the average miles driven per 
month as of  the last recorded event. This data will typically be available since coverage must 
be conftrmed at the time of  a claim and cancellations are typically "pro-rata" as to the greater 
of  miles or time. 
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Instead of  estimating a probability distribution for the mileage driven as shown above, it may 
be more practical to use a discrete approximation. 

For our purposes, we will split the insured vehides into five equal groups based on average 
miles driven per year at the time of  the claim or cancellation with the arithmetic average 
calculated for each group. Then factors are calculated for each contract group assuming that 
claims are proportional to covered miles driven (miles under the contract but not under 
manufacturer warranty) and that the vehide for each contract was driven at the respective 
average yearly rates. The final factor applied is the average of  these five factors. 

The factors thus derived for a new book of  business may overstate earnings because the 
average miles generally decline as the warranty runs to expiration. This declining pattern is 
due to two factors - early claims are much more prevalent on cars with the most miles driven 
per month and as the higher mileage cars use up coverage, the average naturally declines. 

Therefore, one can triangulate the data and project to ultimate the average miles driven per 
year. 

For a new book of  business, there may not be data available. In this case, the actuary may 
simply assume a distribution of  miles or obtain driving mileage data from an external source. 

For this example, the averages for the book have been estimated at the mileage rates below: 

Es t imated  Mileage of  Warranties Divided Into  5 Equa l  Groupings  

Minimum I Maximum 
Base Yearly Yearly 
Average 

Group I 8,400 10,200 

Group 2 12,000 10,201 13,200 

Group 3 14,400 13,201 16,200 

Group 4 18,000 16,201 20,400 

Group 5 22,800 20,401 

7. A B e t t e r  E x a m p l e  

Now we will redo the initial example with two changes. First, we will assume that 3% of 
claims occur during the manufacturer's warranty. Second, we will utilize the "5 bucket" 
approximation noted above and calculate the exposures for each scenario. 

The results are shown below: 
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Year 

Total 

(1) (2) (3) (4) (5) 

Adjusted Adjusted Adjusted Adjusted Adjusted 
Exposed Exposed Exposed Exposed Exposed 

Miles Miles Miles Miles Miles 

8,400 12,000 14,400 18,000 22,800 

per year per year per year per year per year 

(6) (7) 

Exposure Percent 
Average Exposure 

1 252 360 432 540 684 454 1% 

2 252 360 432 540 9,708 2,258 7% 

3 252 360 7,200 17,460 22,116 9,478 28% 

4 8,148 11,640 13,968 17,460 3,492 10,942 32% 

5 8,148 11,640 13,968 6,751 20% 

6 8,148 11,640 3,958 12% 

25,200 36,000 36,000 36,000 36,000 33,840 100.00% 

8. Developing a Coverage Factor 

The use of a "coverage factor" when calculating mileage can be a simplifying assumption. 
For example, one can calculate the mileage driven inside the manufacturer's warranty, inside 
the Power Train warranty, and outside the warranty. Claims can be aggregated by examining 
the mileage on the claim in relation to the underlying warranty. 

Calculation of Coverage Factors 
(Miles 000) 

Initial Adjusted 
Covered Reported Cost per Coverage Covered 

Warranty Miles Losses Mile Adjustment Miles 

Manufacturers 174,831 349,662 0.002 0.071 12,413 

Power Trein 33,062 496,230 0,015 0,536 17,732 
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None 324,504 9,086,112 0.028 1.000 324,504 

In this example, the cost per mile for each type of warranty is placed in ratio to the cost per 
mile for claims outside the manufacturer's warranty. Miles inside the warranty are then 
adjusted downward to reflect the substantially lower claims during this period. In this case 
the cost per mile during no manufacturer's warranty is 2.8 cents per mile 
(9,086,122/324,504,000). 

9. E s t i m a t i n g  the  T r e n d  [k(t),  p(t)]  

As noted above, there are two types of trend that impact the vehicle as the warranty ages: 

The first type of trend [k(t)] is the general increase in repair costs. Information concerning 
repair costs can be estimated from industry repair information or by using the Consumer 
Price Index (CPI). While repair costs increase due to general inflation, it is important to 
realize that this trend has been tempered in the past by the increasing reliability of 
automobiles. 

The second type of trend [p(t)] is the increase in costs due to the age of the vehicle. 
Theoretically, this would be offset by decreasing claims consciousness as the vehicle ages, i.e. 
a vehicle owner may be more accepting of minor issues as the car ages. In addition, the 
owner of the vehicle may not know the warranty is in effect. While the warranty can 
typically be transferred or cancelled for refund by a vehicle owner when the vehicle is sold, 
there may be some cases where this does not occur. 

One could also estimate the two trends simultaneously, since the observed data will have 
trends due to both the inflationary [k(t)] and aging [p(t)] impact 

Using this methodology, there is an assumption that all differences in loss costs between 
development periods are due to changing costs due to inflation and the aging of the vehicle. 
Therefore, one should be aware of any changes outside of these factors that would have a 
significant impact on the loss ratios. These would include: 

Changes in coverages. Administrators may change the coverages offered from time- 
to-time which can result in different expected loss costs. 

~" Changes in claims settlement practices. There appears to be significant leeway in 
how claims are settled. It is common that administrators place more resources in 
denying or reducing marginal claims when results are above the expected level. 

Losses should now be segregated by the time since policy inception, and mileage calculated 
by the methodology above, also dividing the mileage into periods since policy inception and 
adjusting the mileage by the coverage levels above. 

At this point, one can compare the cost per mile for various ages to calculate the underlying 
trend for both the aging of the vehicle and the underlying inflation rate. In the example 
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below, used car experience will be used since it is easier to display and more credible at lower 
mileage levels. 

Trend EstJmatJon (Calculation of P(t), K(t)) 
(Miles 000) 

Covered Miles Dunng Policy Age Months I Undriven 
Make Term Coverage Miles 0-12 12-24 24-36 36-48 Miles 

European 36 Used 

American 36 Used 

Asian 36 Used 

European 48 Used 

American 48 Used 

Asian 48 Used 

47,520 24,948 7,128 3,564 11,880 

69,863 32,696 12,575 5,030 19,562 

74,199 38,346 15,789 2,256 17,808 

38,475 17,006 5 ,233  2 , 6 1 6  1,308 12,312 

69,925 27,271 9 ,999  5 ,454  2 , 7 2 7  24,474 

54,667 16,531 6 , 2 9 6  2,624 787 28,427 

Make 

European 36 Used 

American 36 Used 

Asian 36 Used 

European 48 Used 

American 48 Used 

Asian 48 Used 

Overall 
Average Cost per Mile in Successive Time 
Cost per Periods 

Term Coverage Mile 0-12 12-24 24-36 36-48 

0.0414 0.0403 0.0429 0.0458 

0.0258 0.0250 0.0269 0,0285 

0.0152 0.0149 0.0156 0.0175 

0.0465 0.0446 0.0473 0.0519 0.0568 

0.0316 0.0304 0.0317 0.0347 0.0374 

0.0209 0,0202 0.0212 0.0234 0.0256 

Change in Cost par Mile over Time 

Make Term Coverage 12-24 24-36 36-48 
European 36 Used 
American 36 Used 
Asian 36 Used 
European 48 Used 
American 48 Used 
Asian 48 Used 

Weighted Avg* 

6.5% 6.8% 
7.6% 5.9% 
4.7% 12.2% 
6.1% 9.7% 9.4% 
4.3% 9.5% 7.8% 
6.0% 10.4% 9.4% 

5.7% 8.6% 8.5% 
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Selected Trend 5.7% 8.6% 8.5% 

* Weighted by covered miles 

Note in this example the trends for each year range from 5.7% to 8.6%. One must be 
careful to anticipate that the trend may increase in the oudying years. It might be advisable 
to simulate different trend levels, especially on the later years, to check the sensitivity of the 
loss estimate to the trend assumption. 

The trend can either be modeled directly into the mileage function (by increasing the 
estimated miles in proportion to the selected trend) or by directly trending the results. The 
first method may be more practical when the selected trend varies significantly by product, 
term, or other variable. 

10. C a l c u l a t i n g  the  F u t u r e  C l a i m s  Ra te  (CostBASlc, COSbT, COSt~T) 

As noted above, future claims costs is a function of the expected mileage driven times the 
cost per mile. The historical cost per mile can be easily calculated by taking the reported 
daims divided by the historical estimated miles. For future claims, a claims rate should be 
calculated for each contract based on the characteristics for this contract. Important 
characteristics one should consider are: 

The type and term of the coverage 
~" The deductible of the coverage. 
~' The mileage of the vehicle when the contract was purchased. It is important to 

segregate contracts from "new" vehicles from "nearly new'' vehicles (vehicles with 
perhaps 1,000 miles on them) because they are typically significant claims differences 
at this level. 

~" A general grouping of the vehicle type. Typical groupings are by vehicle national 
origin (American, European, and Asian) with a couple of sub groupings for each type 
to differentiate between high cost makes and low cost makes. Certain make groups 
exhibit different daims characteristics. For example, Asian makes tend to exhibit 
lower claims costs than North American makes, which in turn exhibit lower claims 
costs than European makes. 

~" Other differences that you can model with the available data. For example, some 
books may have different distribution sources. A common structure is a "Producer 
Owned Reinsurance Company" where the ultimate liability for covering the claim 
will be at the servicing dealer. Not surprisingly, these books can exhibit significantly 
lower clams costs than books with claims paid by a third-party. 

In general the actuary should model all available variables and discard those with little 
relation to claims costs. 

In modeling the claims costs, an iterative minimum bias approach is recommended since 
many variables with have significant correlations. Generalized linear modeling may also 
provide good results. 
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Once again, the high frequency/low severity nature of  this line will tend to provide more 
credible relativities at lower loss levels than other property~casualty lines. 

11. Cancellations 

Future cancellations should also be considered when evaluating a book of  business. In 
general, cancellations will result in a refund of  premium equal to the lesser of  the proportion 
of  the miles remaining to total miles or time remaining to the total term of the warranty. No  
consideration of  underlying manufacturer's warranty is usually given. For example, if the 
warranty holder with a 6 year/72,000 mile contract cancels after three years and 50,000 
miles, the warranty holder will receive approximately 31% of  the premium as a refund 
((72000-50000)/72000). This is true even though the majority of  the exposure of  the 
warranty remains. In effect, the refund is stated as pro-rata to miles driven or time, but the 
impact is that of  a short-rate cancellation. Therefore, it is generally advantageous for the 
underwriter of  new vehicles for the warranty to be cancelled. 

12. C a s e  R e s e r v e s  a n d  I B N R  

Case reserves may or may not be held by an administrator, and are generally not a significant 
liability compared to the unearned premium reserve. Amounts held for pure incurred but 
not reported claims are rare since most claims must be pre-approved by the administrator 
before work can commence. Since the date of  loss is typically the date of  approval from the 
administrator, this should eliminate unreported claims except for supplemental payments 
beyond the initial estimate to repair the vehicle. 

If  reported losses are used to analyze a book, it should not be necessary to include additional 
reserves in your estimate. If  paid losses are used, the actuary can do a paid loss analysis for a 
development pattern and add this to observed cost per mile or extend the terms of  the 
contracts by the average delay between claim report and claim payment date. 

13. B u i l d i n g  t h e  I n d i c a t e d  R a t e s  

Indicated rates should be trended by the inflationary measure [p(t)] from the average 
accident date on the book until the average accident date of  the proposed rates. Assuming 
terms offered are similar, it is simpler to trend from the effective date of  the contract until 
the effective date of  the new rate change. The final indicated loss cost is defined by: 

(Reported Losses + Furore Claims) x Cost Trend/Number  of  Warranties 

where Future Claims is the Adjusted Mileage (adjusted for trend and coverage factors x 
Future Claims Rate. 
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Depending on the situation, other expenses such as taxes, underwriting expense, profit and 
contingencies, administrator fees, dealer commission and retail markup must be considered. 
However, some of these items may be either a flat dollar amount or percentage. 

14. C o n c l u s i o n  

The methodology proposed in this article is certainly more complex, but should estimate 
costs better than traditional methodology. Fortunately, the data required to do this type of 
analysis is typically available from a vehicle service contract database. The unique 
characteristics of the book (such as term, coverages, and underlying warranties) are explicitly 
modeled using such an approach. 

Because of the high credibility of extended warranty losses, detailed analysis can be done 
with small and immature books. Indeed, this type of analysis is even more appropriate for 
such books since a traditional "triangle analysis" will not have enough data for a good 
estimate. 

By explicitly modeling the exposures, the actuary is forced to consider the specific 
elements such as the trend rate which will have the most impact on the estimate. 
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R. S t ep h en  Pulis ,  A C A S ,  M A A A .  

Abstract 
The current literature describes pricing and reserving of medical malpractice insurance as 
written on either an occurrence or a claims-made basis. In current practice, many policies 
allow the reporting of incidents before a claim is submitted, to attach the claim to the 
current claims-made policy. This creates experience with characteristics of  both types of  
experience. This paper addresses the blend of the two types of experience based on the 
acceleration of the attachment of claims from their true assertion date back into the 
claims-made period. The goal is to assign exposure in proportion to expected claims, and 
to determine the number of claims and the related reserves to expect to be assigned to 
the current claims-made policy and to the residual taft exposure, and to reflect the change 
in the final pricing of the policy. 

Keywords. Medical malpractice, claims-made, pricing, reserving, Monte Carlo modeling 

1. I n t r o d u c t i o n  

Insurance contracts have been bound to provide coverage for events that occurred during 

the contract period since the inception of insurance. In the ninety years since its inception, 

the Casualty Actuarial Society has published papers outlining problems and methods to 

address these concerns in analyzing property/casualty experience for reserving and pricing. 

The problems of estimating professional liability costs in the late 1970's led to the 

emphasis of providing insurance on a "claims-made" coverage basis. The claims-made 

coverage facilitated the analysis by concentrating on reserving and pricing the events that 

would be newly reported and deferred the more difficult effort to evaluate future reported 

claims. The claims-made policy continues to be used extensively for professional liability, 

and has been adopted for use on other difficult lines such as Directors and Officers Liability. 

The occurrence poficy attaches responsibility for the claim to the policy in effect when 

the event giving rise to the daim took place. While this definition seems precise, there has 

been substantial controversy and litigation over identifying a precise moment of occurrence, 

especially when a continuous event is taking place. It is not the purpose of this paper to 

investigate making this assignment, but to recognize that once this definition is accepted, the 

claim is attached to the occurrence policy in effect on the occurrence date even though it 

may be reported a substantial amount of time after the occurrence date. Once the dairn is 

reported, a determination is made and the count of  the claim and the costs for the claim are 
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assigned back to the "occurrence" pedocL Tracking the history of  the reporting and change 

in cost estimates provides historical development patterns. For simplicity, assume that these 

periods are 12-month continuous periods that will be called years. 

The assignment of  a claim and its associated costs back to the occurrence year means that 

there will be future changes to be anticipated in the number of  claims reported, the costs of  

the new claims and any revisions in the esdmate of  the costs on claims previously reported. 

The estimate of  the costs on future reported claims is the "pure" portion of  what is normally 

referred to as IBNR (Incurred But Not  Reported). 

Under the claims-made policy, the assignment of  a claim to the insuring policy is 

simplified. When the insurer receives notice of  a claim, either directly or through its agent 

(either the insurance agent or the insured acting as a conduit to the insurer), the claim 

attaches to the policy in effect on that date. While there may be a short delay from the 

acceptance of  the notice until the matter is recorded by the insuxer, the "pure" IBNR is zero 

as all claims ate known by the end of  the policy term. There will not be any increases m 

claim counts except for the occasional clerical lag or mishandling. Any development of  the 

case incurred losses will be from adjustments made on known claims, and the general 

" IBNR" fund for these changes is only for this more limited need. The claims-made insured 

will have some lingering exposure that will attach subsequent to the expiration of  the current 

policy, and this is referred to as the "tail" of  the experience. 

Some claims-made policies provide for a claim to be attached to a current policy if the 

insured gives the insurer notice that an incident has occurred that may result in a claim being 

asserted in the future. The "assertion" of  the claim is the official submission of  a request for 

damages from the claimant to the insured/insurer. The traditional "report date" corresponds 

to the "assertion date" referred to in this paper. To distinguish from the pure IBNR claims, 

these reported but not asserted claims will be called "RBNA", and the remaining unknown 

claims will be the incurred but not known, "IBNK". 

Marker and Mohl initially state as Principle #41, "Claims-made policies incur no liability 

for IBNR claims . . ."  and later state 2 that at the introduction of  the claims-made policy, it 

was "assumed that, on average, claims would be reported sooner" and "that there would be 

Joseph Marker and James Mohl, "Rating Claims-Made Insurance Policies", CAS 1980 Discussion Paper 
Program, page 278. 
2 Joseph O. Marker and F. James Mohl, ibid, page 293. 
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some additional reporting of incidents that would never have come in under the occurrence 

policy". This acceleration was viewed as a one-time occurrence at the transition. Their on- 

going approach did not identify the RBNA component within the claims-made year, and 

treated its emergence in their backward-recursive development factors. However, an on- 

going acceleration of  claim reporting may adversely affect the adequacy of the renewal 

premium. 

There are pros and cons as to why an insured may give the insurer notice of  a potential 

claim beyond simply providing the insurer additional time to prepare the insurer's defense of 

the potential claim. If  the insured believes that this claim and the aggregate of  the other 

expected claims for this period are within the limits currently purchased, then it is to the 

insured's benefit to submit an incident report to the insurer during the current policy period 

This will maximize the benefit of the coverage already purchased and reduce the future 

liability under either another claims-made policy, or a "tail" coverage policy. If the insured is 

switching to self-insurance without purchasing a tail policy, then the reporting of incidences 

can only reduce potential self-insurance costs. A tort reform change may also simulate a 

change in the reporting and assertion pattern. 

If the frequency of claims or magnitude of a particular claim would exceed current 

coverage, then there is a disincentive to report the incident until an actual assertion of a 

claim is received. There is also an incentive for the insured to purchase increased coverage in 

future policies when there is an increased likelihood of a need for such expanded coverage. 

When the renewal policy is for limits greater than the expiring limits, an endorsement could 

be attached that applies the expiring limits to claims reported subsequent to the occurrence 

year. If the underwriter is really concerned about this possibility, the new policy will not be 

permitted to have the limit changed. 

2. A n a l y s i s  o f  t h e  H v b r i d  

It is the reporting of the incident prior to the claim's assertion that creates a hybrid 

between the claims-made and occurrence policy. The maximum number of potential claims 

~11 be known at the end of the policy, but the number of asserted claims WIU emerge over 

time and, therefore, have some characteristics similar to an occurrence policy. Not all 

potential claims that occur during the policy period will be recognized and reported as an 

incident within the policy period. The future asserted claims that were not reported as an 
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incident in the first policy period (incurred but not known or IBNK) will attach to a future 

claims-made policy. The claim count on a hybrid policy will be a blend of: 

* Claims that occurred during this period and are asserted during this period. 

• Claims asserted during this period that were IBNK at the end of  the prior 

period 

• Claims that occurred during this period that are reported but not asserted 

(RBNA). 

• Claims reported during this period that were IBNK at the end of the prior 

period, but that are not asserted yet (RBNA). 

The reserve needed for this period consists of a provision for adjustments on case 

reserves on asserted claims (the first two types) plus a provision for RBNA claims as of the 

evaluation date (the last two types). The residual IBNK reserve is a separate issue to be 

handled as "tail" coverage or in a subsequent claims-made policy 

For analysis purposes, some companies may set a subjective reserve and probability of 

assertion on individual incident reports if there is a substantial likelihood of a future claim 

with a payment. The hybrid therefore has reserves for development on known case reserves 

plus reserves on claims reported as incidents but not asserted (RBNA). The subjective 

reserves are part of  the RBNA. They generally are not carried on the books as official 

reserves, but are used only in the reserve analysis for estimating case incurred development, 

claim frequency, and claim seventy distributions. 

In a perfect wodd, all risks would have experience available and be sufficiendy large to be 

given full credence. If complete information were available, development triangles unique 

for this business could be calculated and applied. Lacking this, an estimate of the impact 

using a broad based distribution, and information and assumptions about the particular 

segment of business are used. This paper assumes complete information is not available and 

presents an approach to estimate the RBNA reserve. This approach is particularly useful 

when the pure IBNR is to be modeled using a Monte Carlo simulation. 
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The method requires knowledge of the claim reporting distribution between the 

occurrence date and the assertion date. If this distribution is defined in terms of the number 

of days between these dates, then an assumption should be made, such as "claims occur 

uniformly throughout the year", and the distribution converted into the portion reported by 

the end of 12 months, 24 months, etc. Edward Weissner's paper ~, "Estimation of the 

Distribution of Report l_ags by the Method of Maximum Likelihood", describes a procedure 

for estimating the distribution when the final claim reporting is still unknown. For this 

paper's purpose, Exhibit 1 creates a claims-made reporting pattern using an estimated 4 

probability distribution of the number of months between the occurrence and the assertion 

of a claim. Column (a) is the age, in months, from an occurrence that ~ produce a claim 

until the time of its assertion. Column (b) is the probability that the claim will be asserted in 

that month. Column (c) is the sum of the probabilities that the claim has been asserted by 

the end of the indicated month. Claims are assumed to occur uniformly throughout the year. 

An occurrence year would have an equal expected number of claims from each month but 

with varying ages of maturity. Column (d) calculates the 12-month rolling average of the 

monthly data by summing Column (c) for the 12 months ending at this age, and divides by 

12. Note that if the occurrence year is a partial year (less than 12 months old), the rolling 

average needs to be adjusted for the period incurred. 

Knowledge of the acceleration due to the incident reporting needs to be quantified when 

analyzing the hybrid. A development triangle of asserted claims by claims-made year can be 

compared to the distribution described in the previous paragraph. The claims-made 

distribution by report date defines how claims are assigned to current and future report 

years, and once assigned there is no development of claim counts. The measured 

development from the claims-made triangle is all emergence on claims reported as incidents 

by 12 months. At one extreme, if there is no incident reporting until a claim is asserted, the 

acceleration is 0% and the reporting distribution is a standard claims-made reporting pattern. 

At the other extreme, if incident reports are made on every situation inclusive of all claims 

ultimately asserted, then the acceleration is 100% and the resulting distribution is the same as 

the reporting pattern for an occurrence policy. Exhibit 2 is a table of the cumulative number 

of claims asserted for each evaluation of the hybrid year where the claim attaches. 

3 Edward W. Weissner, "Estimation of Distribution of  Report Lags by the Method of  Maximum 
Likelihood", PCAS LXV, page 1. 
4 The distributions used in this paper have been created to produce realistic results similar to observed data. 
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Acceleration could also be measured based on the additional change measured on 

developing losses. Quantifying the additional development resulting from late asserted 

claims over the case development on claims asserted within the first year, may be difficult to 

identify and measure. The probability of  a severe claim having a higher likelihood of  being 

reported early or late is debatable. Operating on the wrong part of  the body or excessive 

anesthetics can be severe and immediately known damage. Missing a diagnosis, or leaving a 

foreign object in the body, may take years to recognize and cause irreparable harm or 

extended pain and suffering. Several large insurers now reflect different reporting patterns 

by specialty. It has been assumed in this paper that the severity of  the claim is independent 

of  the length of  time for the claim to be asserted. Therefore, measuring the change in 

reporting patterns tracks with the associated costs. An adjustment for payment patterns is 

addresses later in the paper. 

If  the claim development shows that the number of  claims reported at 12 months 

ultimately increase by 48%, as in the example on Exhibit 2, then the quantity of  48% times 

the percentage of  claims asserted at 12 months, divided by the percentage unreported at 12 

months, gives a measure of  the accelerated claim reporting. This calculation can be made at 

each successive12-month evaluation to determine the accelerated portion reported by that 

date. It is not obvious that an insured ~ be better at identifying and reporting an incident 

that will be asserted in the third year verses being asserted in the fifth year. It may be 

possible to report incidents occurring near the end of  the policy period that are more likely 

to be asserted in the next 12 months. A uniform acceleration has been used in this paper, 

and is reflected in Exhibit 3. 

A second possible measure of  the acceleration can be estimated based on the frequency 

of  the incident reports compared to a standard reporting frequency. If  the underlying claim 

frequency is expected to be the same, then the ratio of  incident frequency to asserted 

frequency is a measure of  the acceleration. An adjustment may need to be applied to reflect a 

probability of  less than 100% that all the incidents reported will result in an asserted claim. 

The initial incident reports should have a much higher probability of  predicting an assertion. 

As the number of  incident reports increase, the probability of  identifying a future assertion 

should stay the same or decrease as marginal incidents are added. It is unlikely that an 

insured will be able to report all incidents that will result in an asserted claim without 

reporting an excessive number of  incidents that ~ not result in an asserted claim. The 

example of  neglecting to remove a foreign object from the body after an operation, Hill 

either be immediately known and treated, or remain unknown until such time that it is 
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discovered and an immediate claim assertion is made. There is little expectation that an 

occurrence has taken place between those times that would warrant an incident report. 

The hybrid year claim distribution, resulting from applying the acceleration, is separated 

into attachment years (hybrid year) on Exhibit 3. The change in the cumulative assertions 

(Exhibit 3, line (c)) is the amount of assertions during the calendar year as represented by 

each eolunm. The probability that an RBNA will be asserted during the current calendar year 

is the ratio of asserted claims to the RBNA at the end of the prior year. 

The cumulative development factor from Exhibit 2 provides a measure of the 

acceleration as a ratio of the projected the future assertions 0.09093 [=(0.18917)(0.481)] to 

the unasserted claims at the end of the ftrst year 0.81083. The ratio indicates 11.214% of 

what would be claims in future claims-made years will now be attached to the current hybrid 

year. Assuming that the acceleration is uniform, the cumulative portion of occurrence 

claims attached is the sum of the claims asserted to date plus the acceleration ratio times the 

portion of claims not asserted as of the evaluation. The calendar year change in the 

cumulative total is the hybrid year's uldmate portion. 

On Exhibit 4, the portion of the occurrence year accelerated and attached within the 

hybrid year is split into the amount asserted at each subsequent evaluation date, and the 

portion remaining as RBNA. These are expressed as proportions of the original occurrence- 

based incurred. Exhibit 4 assigns the ultimate hybrid year total [Exhibit 3, row (i)] to the 

initial subtotal for the hybrid year on Exhibit 4. The assertions during the calendar year 

[Exhibit 3 row (c)] correspond to the Total New Assertions at the bottom of Exhibit 4. The 

assertions during the calendar year are distributed between active hybrid years in proportion 

to the RBNA existing at the beginning of each the calendar year. Subtracting the asserted 

claims from the beginning RBNA produces the RBNA at the end of the current calendar 

year that WIU also be the RBNA at the beginning of the next calendar year. The probability 

that a RBNA will be asserted is the ratio of the assertions during the year to the RBNA at 

the beginning of the year. 

Exhibits 4a and 4b provide the same information as Exhibit 4 but Exhibit 4a has 0% 

acceleration and, therefore, resembles a pure claims-made policy, and Exhibit 4b assumes 

100% acceleration and, therefore, resembles an occurrence policy. As the acceleration 

increases, the tail diminishes as the exposure is shifted back into the prior years. 
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A multi-year analysis is modeled on Exhibit 5a and 5b. If  the insureds are large self- 

insured hospitals or physician groups written on a claims-made policy. They want to know 

three things: 

1. 

2. 

3. 

What is the reserve need at the end of the policy period? 

What funding is needed for the next year? 

What residual liability exists beyond next year? 

The development on asserted claims can be measured using the standard actuarial 

techniques; however, care must be used not to include the pure IBNR emergence that is 

calculated separately. The cost of the unasserted and future claims is essentially a frequency 

ume severity projection: multiplying frequency estimates times the underlying exposure, and 

multiplying the resulting expected number of asserted claims times an average claim cost 

amount. 

A full-time equivalent exposure (FTE) is calculated as the sum of the product of the unit 

exposure and the rating relativities; such items as classification, territory, step factor s, and 

fractional year exposed. These relativities recognize the variation in costs by medical 

specialty (classification), tendency for more or larger settlements depending on the location 

within the state (territory), number of years written under a claims-made policy (step factor), 

and portion of a year insured (fractional year). The historical claims are adjusted to a closed 

with payment basis, and developed to an ul~nate occurrence basis for use in determining 

the underlying claim frequency. The historic claim frequency is used to project the ultimate 

frequency for each period under review. The product of the ultimate frequency and F I E  

produces the expected number of ulttrnate claims for each period. 

On Exhibit 5a, the hybrid year proportions [Exhibit 3, row (i)] are multiplied times the 

calendar year exposures to distribute the exposures over the years in proportion to the 

expected claim assertions. The column can be summed to obtain the hybrid year total. A 

simplifying assumption could be made that either no exposure growth exists or that a fixed 

pelcentag¢ of growth applies over all years. With these assumptions a modified distribution 

can be derived and applied to only the current calendar year exposure. This has not been 

done here. The proposed procedure has the benefits of: being sensitive to uneven growth 

that may arise from such things as general expansion of business or acquisitions; provides 

s The step factor represents the cumulative percentage of an occurrence year that has been insured. 
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details of where the expected asserted claims were incurred; and facilitates applying trends 

and/or discounts related to the time lags. Exhibit 5a displays the allocation of the total 

exposures in proportion to the expected claim attachment distribution. Exhibit 5b multiplies 

the exposures times a frequency to project the expected ultimate claims for the occurrence 

year, and then uses the hybrid year proportions to distribute claims to the hybrid year. 

The ultimate claims underlying the three desired quantities are found on Exhibit 5b. The 

ultimate claims for Hybrid Year 0 and prior are the asserted and RBNAs as of the experience 

evaluation date (claims in columns (r) thru (w)). The claims enclosed in the box produce the 

tail exposure at the Year0 year end evaluation. The claims under Year+l (135 claims) WIU 

produce the loss experience to be funded for the next year, and the new tail subsequent to 

next year (160 claims) will be the losses produced by the claims in Columns (y) through (ad). 

The separation of the asserted and the RBNA claims for Year 0 and prior is calculated on 

Exhibit 6. The ultimate claims on the upper portion of Exhibit 6 were calculated on Exhibit 

5b. For each occurrence year, a line is shown with its contribution to the hybrid years in 

each column. The RBNA is the product of the ultimate occurrence year claims 6mes the 

RBNA ratio for that assertion year and evaluation lag. The 12 RBNAs for Year0 is the 

product of 136 ultimate claims [column ('0)] time 0.09093 on Exhibit 4 for Year0. 

If a change in the acceleration has or is expected to take place, a probability of assertion 

can be calculated for each hybrid year and evaluation lag. The probability of assertion would 

be multiplied times the RBNA to determine the number of new asserted claims, and the 

remaining RBNA count. The probability of assertion may also be adjusted to reflect impacts 

of tort reform legislation. The cumulative emerged claims equals the ultimate minus the 

ending RBNAs. The hybrid year count is the total of the column. 

The case incurred on known claims can be projected to ultimate using loss development 

factors if sufficient historical experience is available. However, including the open counts 

with the RBNA counts provides a mechanism to determine a range around the ultimate 

losses. Only the claims where a high likelihood that the case incurred is correct are treated 

as equivalent to a closed claim. The projected RBNA reserve is added to the "dosed 

incu~ed" to determine the ultimate incurred. 
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The approached used to project the RBNA reserve is a Monte Carlo model similar to that 

described by Bickerstaff 6. The loss dollars on closed claims and the subjective estimates for 

RBNAs with a high likelihood of payment, are trended to a common date, and fit with 

distribution curve(s), usually a single or compound log-normal curve(s) to project unlimited 

losses. _A. set of simulations (usually 1,000) are run to project first the number of claims 

based on a claim count distribution (a Poisson distribution is often used) with the expected 

number of claims as the mean. And second, for each random claim drawn by the Poisson, a 

random claim size is generated using the mean and variance of the severity-modeled 

lognormals. The lag between the time the incident is reported to the closing date can be 

accounted for by trending the (unlimited) severity mean used to generate the claim size. 

A loss expense adjustment cost is also generated for each claim. On average, the loss 

expense increases as the size of the loss increases. Bickerstaff 7 demonstrated the 

development of a conditional Defense and Cost Containment 0DCC) distribution. I t s  

parameters and the generated loss size are used to generate a random DCC for the unlimited 

loss-size claim. After generating the DCC, the claim-size is limited to the policy provisions. 

If the policy terms include DCC within the coverage limit, then the combination of loss and 

DCC is limited and prorated. 

The losses and DCC are summed for each sample, and the samples used to calculate the 

expected value, and the funding needed to meet the desired probability levels of confidence 

of adequate reserves. An additional loading is added for the reported incidents that are 

expected to produce loss adjustment expenses, but no indemnity payments. 

One factor to consider for the hybrid is whether the paid development will be the same 

for claims reported and asserted in the first year, compared to claims asserted in future years. 

One large insurer has developed statistics that show the payout on claims asserted after the 

occurrence year is longer from occurrence than for claims asserted in the occurrence year, 

but when comparing the development from the year asserted, the payout is faster on the 

claims asserted after the year in which the event occurred giving rise to the clatm. The speed 

up is faster during the first year after the assertion, and the differences diminish with age. 

This introduces a new dimension into determining the discounted value of the reserves. 

6 Dave Biekerstaff, "Hospital Self-lnsurance Funding: A Monte Carlo Approach", CAS Forum, Spring 
1989 Edition, page 89. 
7 Dave Bickerstaff, "Hospital Self-lnsurance Funding: A Monte Carlo Approach", CAS Forum, Spring, 
1989 Edition, page 105. 
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The statewide rate level change is based on comparing the indicated average premium to 

the current on-level average premium. Medical Malpractice policies generally carry high 

limits. It is a common practice to limit the analysis (premiums and losses) to a selected lower 

limit, such as 200/600 or 500/1000, to reduce the parameter variability. The fixed expenses 

are included in the premium as an Expense Constant added to the variable portion of the 

premium, The variable portion is the product of a "base rate" multiplied by relativity factors 

to adjust for territory, classification, time insured by claims-made coverage, and the other 

credit and debit adjustments. For the remainder of the paper I WIU use the more common 

term "claims-made" as inclusive of the "hybrid" coverage unless stated. 

The current base rate is a know quantity. The average current relativity is calculated by 

sequentially applying the current relativity and measuring the average factor resulting from 

the application of a rating element. Exhibit 7 shows the determination of the average 

relativity as each rating element is added. The sequential calculation also facilitates 

measuring changes in relativities; however, none are taking place in this review. The product 

of the exposure, based on head-count, times the sum of the expense constant plus the base 

rate times the average factors (Exhibit 8) develops the premium at current rates. 

The incurred losses and DCC expenses need to be increased for the Adjusting and Other 

expenses (AO, formerly known as unallocated loss adjustment expenses (ULAE)). 

Countrywide experience from the Annual Statement's Schedule P provides incurred Loss, 

DCC and AO experience. Ratios of the AO to loss plus DCC are calculated (see Exhibit 9) 

for the last 5 years. A loading is selected and applied to the state loss plus DCC to 

determine the ultimate incurred for all loss and loss adjustment expense. 

The incurred loss and loss adjustment expense needs to be adjusted to the level expected 

under the new rates. A pure premium per base class equivalent exposure is calculated on 

Exhibit 10. Curves are fit by least squares to the average pure premiums for several lengths 

of time, and the best fit for each time span is shown. An annual trend amount is selected 

and used to project the historic loss and loss adjustment expense to the mid-point proposed 

under the new rates. 

The expense loadings are separated between variable costs and fixed costs. The General 

Expenses and Other Acquisition are allocated on a per exposure insured basis to recognize 

that the costs to write and issue a policy do not materially vary with the location or 

classification of the risk. For this allocation the actual exposure are divided into the dollars 
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of  fixed expenses. The variable expenses are typically dependent on the state where the 

premium will be charged. The taxes, licenses and fees are dependent on the state laws. The 

brokerage and commissions are dependent on the contracts that will apply under the new 

rates. The adjustment for investment income recognizes the investment income on the 

available funds generated by the cash-flow and prevailing rates of  return and taxes. 

There axe many papers on investment income calculations. This paper will not delve into 

a particular method, but it should be noted that with the shortened life of  a claim under a 

claims-made policy, the investment income is significantly less than that realized under an 

occurrence policy. The hybrid policy will realize a return between the occurrence and pure 

claims-made amounts based on its payout pattern. 

The premium from the expense constant xxdll be subject to taxes, commissions, etc. The 

fixed expenses are loaded for these elements by dividing by the variable expense factor. The 

premium for fixed expenses is divided by the number of  exposures that will be assessed the 

expense constant. One expense constant will be charged for every exposure, and will only be 

modified for a shortened policy term. 

The statewide rate level indication uses premiums and losses limited to $500,000 per 

claim/S1,000,000 aggregate basic limit. These losses and loss adjustment expenses are 

trended to the average loss date under the proposed rates, and divided by the base class 

equivalent exposures to determine the indicated base pure premium at the future rate level. 

A base pure premium is selected, and a percentage, say 5%, is added for Death, Disability 

and Retirement s . The result is divided by the variable expense factor to determine the 

indicated base rate. The indicated average premium is the product of  the base rate, the 

average proposed base class factor (which includes all factors other than the increased limit 

factor), and the average increased limit factor, and, as the final step, the expense constant is 

added. Dividing the indicated average premium by the current level average premium 

produces the indicated change. 

This paper does not include revisions being made to the rate relativities, but the off- 

balance from each is used to adjust the base rate, and maintain the selected overall average 

premium. 

! The Death, Disability and Retirement provision is a loading in an on-going business to provide for the 
average cost of tail coverage on individuals who have ceased to practice through death, disability or 
retirement. 
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3. C o n c l u s i o n  

A critical factor in evaluating medical malpractice insurance is to determine the period 

where claims will attach, and to align the losses and exposures. The claims-made policy 

provision allowing an insured to report an incident of  a potential claim, and thereby attach 

that claim to a particular policy, creates experience that is a hybrid between a claims-made 

policy and an occurrence policy. The more aggressively the insured reports incidents in 

advance of the actual assertion of the claim, the greater the experience will resemble the 

experience expected under an occurrence policy. The procedure described in this paper 

facilitates measuring the shift and the calculation of the pure IBNR created for the claims- 

made policy by the acceleration of the attachment of the claims. 

The shift in claims covered from a pure claims-made coverage, increases the pure 

premium needed, increases the step factors that apply, and increases the investment income. 

The amount of acceleration allowed determines the degree that the change moves from a 

pure claims-made basis to an occurrence basis. 
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AO, all other loss adjustment expense 
DCC, Defense & Cost Containment 
expense 
FTE, fiaU-drne equivalent exposure 
IBNK, incurred but not known 

B i o g r a p h y  o f  t h e  A u t h o r  

IBNR, incurred but not reported 
RBNA, reported but not asserted 
ULAE, unallocated loss adjustment 
expense 
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Development of Claim Reporting Distribution 
Exhibit 1 

(a) (b) (c) (d) (a) 
I Single Claim-Month I Year-tO-Date 

Month Prob Rpt Cum Rpt Cum RDt Month 
1 0.000 0.000 0.00000 37 
2 0.010 0.010 0.00083 38 
3 0.020 0.030 0.00333 39 
4 0.030 0.060 0.00833 40 
5 0.040 0.100 0.01667 41 
6 0.050 0.150 0.02917 42 
7 0.050 0.200 0.04583 43 
8 0.050 0.250 0.06667 44 
9 0.050 0.300 0.09167 45 
10 0.045 0.345 0.12042 46 
11 0.045 0.390 0.15292 47 
12 0045 0.435 1 0 . 1 8 9 1 7  I 48 
13 0.040 0.475 0.22875 49 
14 0.040 0.515 0.27083 50 
15 0.040 0.555 0.31458 51 
16 0.035 0.590 0.35875 52 
17 0.035 0.625 0.40250 53 
18 0.035 0.660 0.44500 54 
19 0.030 0.690 0.48583 55 
20 0.030 0.720 0.52500 56 
21 0.030 0.750 0.56250 57 
22 0.020 0.770 0.59792 58 
23 0.020 0.790 0,63125 59 
24 0.020 0.810 I 0.66250 I 60 
25 0.015 0.825 0.69167 61 
26 0.015 0.840 0.71875 62 
27 0.015 0.855 0.74375 63 
28 0.010 0.865 0.76667 64 
29 0.010 0.875 0.78750 65 
30 0.010 0.885 0.80625 66 
31 0,008 0.893 0.82317 67 
32 0.008 0.901 0,83825 68 
33 0,008 0.909 0,85150 69 
34 0.008 0.917 0.86375 70 
35 0.008 0.925 0.87500 71 
36 0.008 0.933 I 0.88525 I 72 

(b) (c) (d) 

I I Year't°" 
Single Claim - Month Date 
Prob Rpt Cum Rpt Cure Rpt 

0.006 0.939 0.81650 
0.006 0.945 0.74650 
0.006 0 .951 0.67525 
0.005 0.956 0.60317 
0.005 0 .961 0.53025 
0.005 0.966 0.45650 
0.004 0,970 0.38208 
0.004 0.974 0.30700 
0.004 0.978 0.23125 
0.003 0 ,981 0.15483 
0.003 0.984 0.07775 
0.003 0.987 [ 0.96600 1 
0.002 0.989 0.97017 
0,002 0 .991 0.97400 
0.002 0.993 0.97750 
0.001 0.994 0.98067 
0.001 0.995 0.98350 
0.001 0.996 0.98600 
0.001 0.997 0.98825 
0.001 0.998 0.99025 
0.001 0.999 0.99200 
0.001 1.000 0.99358 
0.000 1.000 0.99492 
0000 1.00010.996001 
0.000 1.000 0.99692 
0.000 1.000 0.99767 
0.000 1.000 0.99825 
0.000 1.000 0.99875 
0.000 1.000 0.99917 
0.000 1.000 0.99950 
0.000 1.000 0.99975 
0.000 1.000 0.99992 
0.000 1.000 1.00000 
0.000 1.000 1.00000 
oooo 1.ooo 1.ooooo 
o.ooo lOOO I lOOOOO I 
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Calculation of Claim Development by Attachment Year 

Attachment Time to Reporting 
Year 12 mos 24 mos 36 mos 48 mos 60 mos 72 mos 

1996 72 102 107 109 
1997 74 100 104 108 
1998 81 117 119 123 
1999 85 120 126 127 
2000 82 107 110 113 
2001 94 131 137 
2002 88 118 
2O03 90 

Development FaVor 
1996 1.417 1.049 1.019 1.009 
1997 1.351 1.040 1.038 1.000 
1998 1.444 1.017 1.034 1.008 
1999 1.412 1.050 1.008 1.000 
2000 1.305 1.028 1,027 
2001 1.394 1.046 
2002 1.372 

1.000 
1.000 
1.000 

110 110 
108 108 
124 124 
127 

Average 1.385 1.038 1.025 1.004 1.000 
Cum.to Ulti. 1.481 1.069 1.030 1.004 1.000 

Exhibit 2 
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Exhibit 3 

(a) Cumulative Assertions 

Calculat ion of  Asserted Claim Emergence and Ass ignment  to Hybr id Year 

Occurrence I Years Subsequent to Occurrence Year 
y = Yea r ,1 +2 +._33 ,..44 +._.55 +..66 

0.18917 0.66250 0.88525 0.96600 0.99600 1.00000 1.00000 

I 
Total 

(b) Remaining Unasserted 
at beginning of Year 1.00000 0.81083 0.33750 0.11475 0.03400 0.00400 0.00000 

~-t 
P- 
c/3 
o 
¢3 

c/3 
9 
c~ 

c~ 

(c) Asserted During Year y 

(d) Probability IBNK Claim Asserted 

(e) Development Factor 

(f) Attachments Moved 
to First Year 

(g) Acceleration 

(h) Incident Reporting 
Acceleration 

(i) Hybrid Year Assigned 

Notes: 
(a) from Exhibit 1. 

0.18917 0.47333 0.22275 0.08075 0.03000 0.00400 0.00000 

0.18917 0.58376 0.66000 0.70370 0.86235 1.00000 1.00000 

1.481 

0.09093 

0.11214 

0.28010 0.70035 

0.28010 0.42025 

(b) = 1.0 - (a) for prior year; ie 0.33750 = 1.0 - 0.66250 
(c) = (a) - (a) for prior year; ie 0.47333 = 0.66250 - 0.18917 
(d) = (c)/(b); ie 0.58376 = 0.47333 / 0.81083 

1.00000 

0.89812 0.96981 0.99645 1.00000 1.00000 

0.19777 0.07169 0.02664 0.00355 0.00000 

(e) = from Exhibit 2. 
(f) = (a) [(e)-l]; ie 0.09093 = 0.18917 [ 1.461 -1 ] 
(g) = (f)/[1.G-(a)] ; ie 0.11214 = 0.09093 / [ 1.0 - 0.18917 ] 
(h) = (a) +(g)[1.0-Ca)]; ie 0.70035 = 0.66250 + 0.11214 [ 1- 0.66250 ] 
(i) = (h) - (h) for prior year; ie 0.42025 = 0.70035 - 0.28010 

1.00000 



Hybrid 
Year 

+0 

+1 

+2 

+3 

+4 

Emergence  of  Asser t ions f rom One Occurrence Y e a r  

Years after Occurrence 
0 +1 +2 +3 +4 +5 

New Assertions 0.18917 
Remaining RBNA 0.09093 

subtotal 0.28010 

+6 

0.08420 0.00636 0.00036 0.00001 0.00000 0.00000 
0.00673 0.00037 0.00001 0.00000 0.00000 0.00000 
0,09093 0.00673 0.00037 0.00001 0.00000 0.00000 

New Assertions 0.38913 0.02942 0.00162 0.00008 0.00000 0.00000 
Remaining RBNA 0,03112 0.00170 0.00008 0.00000 0,00000 0.00000 

subtotal 0.42025 0.03112 0,00170 0.00008 0.00000 0.00000 

New Assertions 
Remaining RBNA 

subtotal 

New Assertions 
Remaining RBNA 

subtotal 

0.18697 
0.01080 
0.19777 

Exhibit 4 

New Assertions 
Remaining RBNA 

subtotal 

Total 

0.28010 

0.42025 

0.01031 0.00048 0.00001 0.00000 0.19777 
0.00049 0.00001 0.00000 0.00000 
0.01080 0.00049 0.00001 0.00000 

0.06846 0.00318 0.00005 0 . O 0 0 0 0  0.07169 
0.00323 0.00005 0.00000 0.00000 
0.07169 0.00323 0.00005 0.00000 

0.02625 0.00039 0.00000 0.02664 
0.00039 0.00000 0.00000 
0.02664 0.00039 0.00000 

+5 New Assertions 
Remaining RBNA 

subtotal 

0.00355 
0,00000 
0.00355 

0.00000 
0.00000 
0.00000 

0.00355 

+6 NewAssertions 
Remaining RBNA 

subtotal 

0,00000 
0.00000 
0.00000 

0.00000 

G~ Total New Assertions 0.18917 0.47333 0.22275 0.08075 0.03000 0.00400 0.000O0 
Remaining RBNA 0.09093 0.03785 0,01287 0.00381 0.00045 0.00000 0.00000 

subtotal 0.28010 0.51118 0.23562 0.08456 0.03045 0.00400 0.00000 

1.00000 



O'x 
h-) 

Emergence of Assertions from One Occurrence Year 
Assuming 0% Acceleration, ie Standard Claims-Made Year 

Exhibit 4.a 

P_. 
C/3 Q 

t-J 

-,,j 

Hybrid 
Year 

+0 

+1 

+2 

+3 

+4 

+5 

+6 

New Assertions 
Remaining RBNA 

subtotal 

New Assertions 
Remaining RBNA 

subtotal 

New Assertions 
Remaining RBNA 

subtotal 

New Assertions 
Remaining RBNA 

subtotal 

New Assertions 
Remaining RBNA 

subtotal 

New Assertions 
Remaining RBNA 

subtotal 

New Assertions 
Remaining RBNA 

subtotal 

Years after Occurrence 
0 +1 +2 +3 +4 +5 +6 

0.18917 J 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
oooooo I 000000 000000 000000 000000 000000 000000 
0.18917 0.00000 0.00000 0.00000 0.00000 0.00000 0,00000 

0.00000 0.00000 0.00000 0.00000 0.00000 
0.00000 0.00000 0.00000 0.00000 0,00000 
0,00000 0,00000 0.00000 0.00000 0.00000 

0.22275 I 0.00000 0.00000 0.00000 0,00000 
0.00000 I 0.00000 0.00000 0.00000 0.00000 
0.22275 0.00000 0.00000 0.00000 0,00000 

0.00000 
0.00000 
0.00000 

0.03000 
0.00000 
0.03000 

0.47333 
0.00000 
0.47333 

0.00000 
0.00000 
0.00000 

0.00000 
0.00000 
0.00000 

L 0.00400 
0.00000 
0.00400 

0.08075 
0.00000 
0.08075 

0,00000 
0,00000 
0,00000 

0,00000 
0.00000 
0,00000 

0.00000 
0.00000 
0.00000 

0.00000 
0,00000 
0,00000 

Total 

0.18917 

0.47333 

0.22275 

0.08075 

0.03000 

0.00400 

0.00000 

5. 



Hybrid 
Year 

+0 

+1 

+2 

÷3 

Emergence of Assertions from One Occurrence Year 
Assuming 100% Reporting, ie Occurrence Year 

Years after Occurrence 
0 +1 +2 +3 +4 +5 

New Assertions I 0.18917 I 0.47333 
Remaining RBNA 0.81083 0.33750 

subtotal 1.00000 0.81083 

New Assertions 0.00000 
Remaining RBNA 0.00000 

subtotal 0.00000 

New Assertions 
Remaining RBNA 

subtotal 

New Assertions 
Remaining RBNA 

subtotal 

0.22275 
0.11475 
0.33750 

0.08075 
0.03400 
0.11475 

I 0.03000 0.00400 
0.00400 0.00000 
0.03400 0.00400 

+6 

0.00000 
0.00000 
0.00000 

0.00000 0.00000 0 .00000  0 .00000  0.00000 
0.00000 0.00000 0 .00000 0 .00000  0.00000 
0.00000 0.00000 0 .00000  0 .00000  0.00000 

0.00000 0.00000 0 .00000 0 .00000  0.00000 
0.00000 0.00000 0.00000 0.00000 0.00000 
0.00000 0.00000 0 .00000  0 .00000  0.00000 

0.00000 0 .00000  0 .00000  0.00000 
0.00000 0 .00000 0 .00000  0.00000 
0.00000 0 .00000  0 .00000  0.00000 

Exhibit 4.b 

Total 

1.00000 

0.00000 

0.00000 

0.00000 

5. 

% 

+4 New Assertions 
Remaining RBNA 

subtotal 

0.00000 0 .00000  0.00000 
0.00000 0 .00000  0.00000 
0.00000 0.00000 0.00000 

0.00000 

+5 New Assertions 
Remaining RBNA 

subtotaL 

0.00000 
0.00000 
0.00000 

0.00000 
0.00000 
0.00000 

0.00000 

G~ ~a 
+6 New Assertions 

Remaining RBNA 
subtotal 

0.00000 
0.00000 
0.00000 

0.00000 



O~ 

P__. 
C/3 
O 

(a) (b) 
Occurrence Equivalent 

Year Exposures 
Year-5 1,100 
Year-4 1.155 
Year-3 1,213 
Year -2 1,420 
Year -1 1,599 
Year 0 1,679 
Future 
Year 1,763 

Total 
Reported In Year +1 

Reported After Year +1 

(c) (d) 
Hybrid Year > 
-5 -4 
308 462 

324 

Exposure by Hybrid Year 

(e) (f) (g) (~) (I) 

215 
485 
34O 

-2 -1 ~ j 
79 29 4 

228 83 31 
510 240 87 
398 597 281 

448 672 
470 

308 786 1,043 1,215 1,397 1,545 

Exhibit 5a 

(j) (k) (I) (m) (n) Co) 

2 3 4 5 6 _7 
0 
4 0 

32 4 0 
102 38 5 0 
316 115 43 6 0 
~06 3 ~  120 ~5 6 0 J 

494 741 349 12~ ¥ 47 6 

1,654 
1,983 

% 

C/3 

O'Q 

C~ 



Exhibit 5b 
Claims by Hybr id Year 

G~ 

(a) (b) 
Occurrence Equivalent 

Year Exposures 
Year -5 1,100 
Year-4 1,155 
Year -3 1,213 
Year -2 1,420 
Year -1 1,599 
Year 0 1,679 
Future 
Year 1,763 

(a) (q) 
Occurrence Number of 

Year Claims 
Year -5 89 
Year -4 94 
Year -3 98 
Year -2 115 
Year -1 130 
Year 0 136 
Future 
Year 143 

Total 
Reported In Year +1 

Reported After Year +1 

(P) 
Expe~ed 
Freauencv 
0.0810 
0.0810 
0.0810 
0.0810 
0.0810 
0.0810 

0.0810 

(r) (s) 
Hybrid Year > 
-5 -4 

25 37 
26 

(t) 

-3 
18 
40 
27 

(q) 

Expected 
# Claims 

89 
94 
98 
115 
130 
136 

143 

(u) (v) (w) 

-2 -1 
6 3 

18 7 
42 19 
32 49 

36 

o 
0 
3 
7 

22 
55 
38 

25 63 85 98 114 125 

(x) (y) (z) (aa) (ab) (ac) (ad) 

1 2 3 4_ 5_ _6 7 
0 
0 0 
3 0 
9 3 

26 9 
57 27 

0 
0 0 
4 0 

10 4 

40 

135 

6O 28 11 

Y 
160 

1 

J 

3. 
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(a) 
Occurrence 

Year 
Year -5 
Year -4 
Year -3 
Year -2 
Year -1 
Year 0 

Exhibit 6 

Claim Emergence By Hybrid Year as Evaluated at End of Year 0 

Hybrid Year of Assignment 

(b) (c) (d) (e) (~ (g) (h) 
Number of Ul~mateClaims 

Claims Year-5 Year-4 Year-3 Year-2 y~ar-1 Year0 
89 25 37 18 6 3 0 
94 26 40 18 7 3 
98 27 42 19 7 
115 32 49 22 
130 36 55 
136 38 

Total 25 63 85 98 114 125 

(a) 
Occurrence 

Year 
Year -5 
Year -4 
Year -3 
Year -2 
Year -1 
Year 0 

(b) 
Number of 

Claims 
89 
94 
98 
115 
130 
136 

(I) (j) (k) (I) (m) (n) 
Cumulative Emergence of Assertions 

Year -5 Year -4 Year -3 Year -2 Year -1 Year 0 
25 37 18 6 3 0 

26 40 18 7 3 
27 42 19 7 

32 49 21 
35 51 

26 

Total 25 63 85 98 113 108 

(a) 
Occurrence 

Year 
Year -5 
Year -4 
Year -3 
Year -2 
Year -1 
Year 0 

(b) 
Number of 

Claims 
89 
94 
98 
115 
130 
136 

(o) 

Year-5 
0 

(p) (q) (r) (s) (t) 
RBNA at End of Period 

Year -4 Year -3 Year -2 Year -1 Year 0 
0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 

0 0 I 
I 4 

12 

Total 0 0 0 0 1 17 
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(1) 
Base 

I~i~k 
# Rate 

1 6,422 
2 6,422 
3 6,422 
4 6,422 
5 6,422 
6 6,422 
7 6,422 
8 6,422 
9 6,422 
10 6,422 

Total 64,220 

(2) (3) 
I Territory 

1 1.00 
1 1.00 
1 1.00 
2 1.15 
3 1.25 
3 1.25 
4 1.50 
4 1.50 
2 1.15 
3 1.25 

14) 

Calculation of Average Rate Relativity 

(5) (6) (7) (8) (9) 
Classification I Step Factor 

(lO) (11) 
I 

premium Code Rel. Premium Code Rel. Premium Code 

6,422 1C 1.35 6,670 CMM 1.00 8,670 C1 
6,422 2A 1.50 9,633 CM3 0.94 9,055 N 
6,422 1 B 1.00 6,422 CM2 0.88 5,651 D1 
7,385 1A 0.90 6,647 CM0 0.30 1,994 N 
8,025 1A 0.90 7,225 CMM 1.00 7,225 C1 
8,026 2B 2.00 16,056 CMM 1.00 16,056 C3 
9,633 8 6.00 57,798 CM3 0.94 54,330 N 
9,633 3 2.25 21,674 CM2 0.68 19,073 N 
7,355 1B 1.00 7,385 CMM 1.00 7,385 D2 
8,028 1A 0.90 7,225 CMM 1.00 7,225 C2 

84,000 163,600 151,515 

Change Factor (4)/(1) = 1.305 (7)/(4) = 1.950 

(4) =(1)(3) 
(7) = (4)(6) 
(10) = (7)(9) 
(13) =(10)(12) 

(lO)1(7) 
= 

Notes: 

0.925 

(12) (13) 
Schedule Rating 

Rel. 

0.95 
1.00 
1.05 
1.00 
0.95 
0.85 
1.00 
1.00 
1.10 
0.90 

(13)/(10) 
= 

Exhibit 7 

Premium 

8,237 
9,055 
5,934 
1,994 
6,864 

13,648 
54,330 
19,073 
8,124 
6,503 

148,333 

0.979 

% 



Pricing the Hybrid 

Company X 

State Y 

Physicians & Surgeons 

Average Rate Relativity 

Source of Relativity 

Territory Relativity 

Classification Relativity 

Claims Made Year (Step Factor) 

Schedule Rating Credit/Debit Factor 

New to Practice Credit Factor 

Part Time Credit Factor 

Risk Management Credit Factor 

Claim Free Credit Factor 

Combined Average Factor 

Exhibit 8 

Fa¢l;0r 

1.308 

1.950 

0.925 

0.979 

0.988 

0.962 

0.996 

0.938 

2.051 
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Pricing the Hybrid 

Company X 

Countrywide 

Physicians and Surgeons 

All Other Loss Adjustment Expense Factor 

Exhibit 9 

O) 
Claims 
Made 
Year. 

(2) (3) (4) 
Total 

L&LAE All Other Loss Exocn$¢ 
Incurred P~d Unpaid 

2 0 0 0  7 3 , 8 2 5 , 2 9 0  2,499,355 232,181 
2 0 0 1  8 1 , 7 3 0 , 7 2 7  2,010,576 441,346 
2 0 0 2  105,054,866 2 , 0 4 5 , 4 1 8  1,421,392 
2 0 0 3  114,113,914 1 ,848 ,645  2,259,456 
2 0 0 4  137,487,266 1 ,495,861 3,178,706 

Total 512 ,212 ,063  9 ,899 ,856  7,533,080 

(5) 

AO LAE 
Factor 

0.038 
0.031 
0.034 
0.037 
0.035 

0.035 

Notes: Countrywide Experience is from Schedule P - Part 1F. 
(5) = [(3)+(4)]/[(2)-(3)-(4)] 
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Pricing the Hybrid 

Company X 

State Y 

Physicians and Surgeons 

Development of Pure Premium Trend 
500/1000 Limits 

Exhibit 10 

Report 
Year 

1997 
1998 
1999 
2000 
2001 
2002 
2003 
2004 
2005 

(1) (2) (3) (4) 
Base Class Base 
Equivalent Selected Class 

Earned Ultimate Pure 
Expos~Jres Loss & DCC Premium X 

Y=(2)/(1) 

987 3,918,390 3,970 
1,004 4,151,540 4,135 
1,100 4,973,100 4,521 
1,155 5,509,350 4,770 
1,213 6,286,979 5,183 
1,420 8,828,140 6,217 
1,599 9,430,902 5,898 
1,679 11,269,448 6,712 

Correlation Annual 
# Points Coefficient Trend 

8 0.965 11.6% 
6 0.920 11.1% 
4 0.770 4.9% 

Selected = 9.2% 
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Pricing the Hybrid 

Exhibit 11 

Company X 

State Y 

Physicians and Surgeons 

Development of Expense Constant and Variable Expense Factor 

Variable Exp~=n.~e Components: 

1. Brokerage and Commissions 10.0% 

2. Taxes, Licenses and Fees 2.5% 

3. Underwriting Profit Reflecting Investment Income -1.7% 

4. Total Variable Expenses excluding L&LAE 10.8% 

5. Variable Expense Factor = 1.0 - Variable Expenses 0.892 

Fixed Exoense Comoonent:  

6. Other Acquisition Expenses 237,074 

7. General Expenses 355,611 

8. Total Fixed Expenses = (6) + (7) 592,685 

9. Base Class Equivalent Exposures [Exhibit 5a] 1,679 

10. Average Base Class Factor [Exhibit 8] 2.051 

11. Exposures = (10) /(9) 819 

12. Fixed Expense per Exposure = (8) / (11) 724 

13. Expense Constant = (12) / (5) 812 
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Pricing the Hybrid 

Company X 

State Y 

Physicians & Surgeons 

Rate Levellndication 
500/1000 Limits 

(a) (b) (c) (d) 
Base Trended # 
Class Earned Ultimate Ultimate 

Hybrid Equivalent Premium at Incurred Incurred 
Current 

Ye.ar Exposures Rates L&LAE L&LAE 
1997 987 7,139,958 4,056,450 9,359,683 
1998 1,004 7,262,936 4,297,814 9,081,134 
1999 1 ,100 7,957,400 5 ,148 ,321  9,961,745 
2000 1 ,155 8,355,270 5,703,465 10,106,155 
2001 1 ,213 8,774,842 6,508,493 10,560,998 
2002 1,420 10,272,280 9,139,189 13,580,305 
2003 1,599 11,567,166 9,763,188 13,285,286 
2004 1,679 12.145.886 11.666,513 14,537,766 
Total 10,157 73,475,738 56,283,434 90,473,071 

00-04 7,066 51,115,444 42,780,848 62,070,509 

1. Selected Claims Made L&LAE Pure Premium 
2. Death, Disability and Retirement (DDR) Load 
3. Claims Made Pure Premium with DDR Load = (1)(2) 
4. Variable Expense Factor [Exhibit 11] 

5. Calculated Variable Base Rate = (3) / (4) 

6. Average Proposed Base Class Factor [Exhibit 8] 
7. Average Increased Limit Factor 
8. Average Variable Premium = (5)(6)(7) 
9. Expense Constant [Exhibit 11] 

10. Average Indicated Premium = (8) + (9) 

11. Current Average Premium = (b) / actual unit earned exposure 

12. Indicated Change = (10) /(11) -1 

Note: # Trended to one year beyond 1/1/2006 Effective Date. 

Exhibit 12 

(e) = (d)l(a) 

Trended 
Pure 

Premium 
9,483 
9,045 
9,056 
8,750 
8,707 
9,564 
8,308 
8,659 
8,907 

8,784 

8,784 
1.05 

9,223 
0.892 

10,340 

2.051 
1.123 

23,816 
812 

24,628 

17,474 

40.9% 
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Incorporating Cancellations into Pricing and Reserving 
Extended Warranties 

Richard Easton, FCAS, MAAA 

Abstract: Accounting rules specify that extended warranty contracts with terms of thirteen months or 
longer use loss payment patterns to determine the unearned premium reserve. These payment 
patterns should incorporate cancellations. Ignoring cancellations overstates earned premium and 
understates the oneamed premium reserve. 

Disclaimer. The views expressed in this paper are solely the responsibility of the author and do not necessarily 
reflect the views of Iris employer, The Warranty Group. 

Extended Warranties 0SWs) axe unusual property and casualty coverages due to the 

uncertainty about the estimate of  unearned (and earned) premium. Generally, there is much 

less uncertainty about pending reserves and IBNR. The reverse is the case for the typical 

liability property and casualty line. Statutory Accounting Principle 65 requires that 

companies carry the highest o f  three estimates as the unearned premium reserve. Test 1 is 

the amount of  refunds that would be paid if  all the contracts canceled. Test 2 is the gross 

premium times the unpaid losses divided by the total losses. Test 3 is the unpaid losses with 

discounting allowed though at a less than market rate. Companies generally establish 

earnings patterns for their databases which calculate the unearned (and earned) premium for 

test 2. This paper asserts that the payment pattern should explicitly adjust for cancellations. 

Not  adjusting for cancellations overestimates the earned premium by 2%-3% for a mature 

book of  in-force business and by a substantially greater amount for a growing immature 

book. 

EWs have been discussed in several Casualty Actuaxial Society axticles (see appendix). 

However, I have not been able to find any detailed consideration of  how cancellations 

should be handled in terms of  the earnings pattern. This issue pertains mainly to 

automobile and power sports EWs. Cancellations are not as significant on other EWs due 

to the difference in term and premium amount. For example, Electronics and Appliances 

generally have a lower EW premium and a shorter term than is the case for automobile. 

These two factors usually lead to less cancellations. 

EW cancellation refunds are normally pro-rata. Thus, the refund for a six year contract 

with $1,000 premium after three years is $500. An additional cancellation fee is sometimes 

levied. Cancellation fees will be ignored in this paper. Generally, the manufacturer's 
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warranty covers most if  not all losses in the first three years for new vehicles. Once a 

contract is cancelled, any remaining premium is earned. No  premium earns during the 

manufacturer's warranty unless the EW adds additional coverage. In this example, the 

canceled contract has $500 of  earned premium against little or no exposure. This fact alone 

means that one should monitor cancellation rates closely since they greatly affect 

profitability. Most of  these cancellations, except for the buyer's remorse ones just after the 

EW is purchased, arise from the existing vehicle being traded in for a new one. There is 

some ambiguity about cancellation rates. Thus, there is generally breakage in the latter part 

of the EW contxact's term. Breakage is defined as the reduction in losses in the latter part of 

the contract period due to people forgetting that they have coverage or no longer owning 

the item. The cancellation rate could increase if  fewer people forget that they have an EW 

when the covered car is sold or people owning vehicles for shorter periods of  time. 

However, it is reasonable to assume that the rate of  forgetfulness is relatively constant and 

an increase in cancellation rate implies a higher turnover rate for the covered car. 

For used vehicles, the exposure is generally faster than pro-rata; thus the loss ratio on 

canceled contracts should be higher than that for contracts which run the full term and 

expire. 

For the sake of  simplicity, all of  the examples in this paper will use term orlly. Most auto 

EWs have both a term and a mileage component. Thus, one could write a six year and 

60,000 mile EW for a vehicle with a three year and 36,000 mile manufacturer's warranty. A 

few high mileage drivers will exceed the 36,000 limit in the first year with a much higher 

percentage exceeding it in the second and third year. Thus, they will mile out of  the 

manufacturer's warranty before the three year term expires. These high mileage drivers will 

usually exceed the 60,000 limit prior to the expiration of  the six year term limit, 

Exhibit 1 shows a simple example of  two year contracts. Note that EWs are not 

considered insurance in most states; thus, we will use the term contract not policy and 

effective year rather than policy year. 100 contracts are written on 1/1/2000 for $1 of  

premium per contract. Frequency is 10% per exposed year with severity uniform at $5. 

Thus, paid losses are 50% of  the in-force premium per exposed year. The resulting payment 

pattern is 55.6% for the first year and 44.4% for the second year. Using this pattern 

mismatches premium and losses. Assuming no lag between accident date and payment date, 

which eliminates the need for lag IBNR, the $50 of  losses in the first year divided by $55.6 

of earned premium yields a 90% loss ratio. In the second year, $40 of losses divided by 

$34.4 of earned premium is a 116% loss ratio. The problem with Method 1 arises since the 
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front loaded overall payment pattern stems from cancellations and not from the inherent 

risk being greater in the first half of  the contract. 

Method 2 measures the partial pure premiums in developing the payment pattern. Thus, 

there are $50 of losses in the first year against an in-force of $100 for a 50% in-force loss 

rate. Similarly, there are $40 of losses in the second year against an in-force of $80 for a 50% 

rate. The earned premium is $50 in the first year (0.5 x $100) and $40 in the second year 

(either 0.5 x $80 or 90 - 50). Method 3 projects the ultimate written premium net of 

cancellations. Thus, premium emergence patterns are used to estimate the ultimate written 

net of cancellations of $90. Using the standard payment pattern also yields earned of $50 in 

the first year and $40 in the second year. Method 2 is superior since the individual contracts 

are earned correctly and there is no need for an overall cancellation adjustment. This correct 

earning of contract data means that further splits, such as by class or SKU, will be correct. 

Alternately, one ignore all premium and losses from policies which have canceled. 

Exhibit 2A shows a more realistic example for new vehicles with seven year contracts and 

three year manufacturer's warranties. In this example, 10% of the contracts cancel after the 

fourth year. Method 1, the unadjusted payment pattern, results in loss ratios of 92.5%, 

90.3% 102.8% and 102.8% in years four to seven. Method 2 yields loss ratios of 100% 

except for year five. The lower year five loss ratio stems from all the cancellation profit 

being realized in the year in which the contracts cancel. Thus, the contracts earn 57.1% of 

the premium for covering 25% of the exposure. 6.4 = 20 x (.571 - 0.25). Method 3 gives a 

104.5% loss ratio in year four and 94% in years five to seven. Once again, the partial pure 

premium after adjusting for cancellations, Method 2, yields the best result. 

Exhibit 2B shows the effect of  cancellations doubling. Underwriting profitability doubles 

as a result since the contracts which are not canceled have a 100% loss ratio. Note though 

that the 100% loss ratio probably reflects some breakage. Thus, individuals sell their car but 

forget to cancel their warranty contract will generally have even better experience than the 

cancellations since there is no return premium. Method 1 again sends out false profitability 

signs in years four and five. Method 2 shows break-even underwriting except for year five. 

Method 3 has an unprofitable year four and is profitable in years five to seven. 

The long-term results from contracts in Exhibit 2A is shown in Exhibit 3A. Thus, it 

shows the effect on results of level writings with 10% cancellations in the beginning of the 

fifth year. The loss ratios in Method 1 are more profitable than the long-term average in 

years four to six and then equals the overall average of 96.6% after that. Method 2 is 

breakeven in year four, is better than average in years five and six, but higher than Method 1, 
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and then is at the long-term average. Method 3 is unprofitable in year four and then declines 

gradually to the long-term average in years seven onwards. The UPR is consistently the 

highest in Method 3, reflecting the unprofitable results in the fourth year and less profitable 

results in years five and six. Exhibit 3B shows the effect of doubling cancellations. 

Exhibits 4A and 4B show similar examples for used vehicles where losses, adjusted for 

cancellations, are faster than pro-rata. In these cases, the pro-rata cancellations increase the 

loss ratio from 100% to 100.7% and 101.5% in Exhibits 5A and 5B, respectively. Exhibit 

5A shows that Method 1 gives a false underwriting profit in year one, whereas Method 3 

shows far too unprofitable a loss ratio in the first year. Once again, Method 2 yields the best 

results. Exhibit 5B again shows the effect of doubling cancellation rates. 

Exhibit 6 shows an example for a 60 month EW where most or all of the manufacturer's 

warranty has expired. Column 5 shows that with level written premium for at least five 

years, the earned premium without adjusting for cancels in column 2 is 2.3% higher than the 

adjusted earned in cokmm 4. Column 6 shows an example where written premium is 

increasing by 4% per year. The larger premiums are given at the top since they represent 

more recent contract months (ages 1-12 are the f~rst contract year, etc.). Adjusted for the 

premium increases, column 9 shows that the in-force earned premium without adjusting for 

cancels is 2.4% higher than the adjusted earned. For the most recent contract year, it is 

10.6% higher, for the last two years, it is 7.5% higher, etc. The payment pattern in Exhibit 6 

is given on an accident date basis rather than for payment date. Thus, pending reserves and 

IBNR are required to cover the liability for the payment lag. Earnings curves can also be 

done by payment date. They obviously will extend beyond the end of the contract period. 

In conclusion, partial pure premiums, excluding contracts which canceled prior to the 

beginning of the period, are the best method for earning premium for EWs with sigmficant 

cancellation rates. In general, 1 have found that the adjustment reduces earned premium on 

in-force contracts by about 2% as was shown in Exhibit 6. Thus, if no contracts have 

expired, the inception-to-date loss ratio using unadjusted payment patterns will be about 2% 

too low. Similarly, the carried UPR from Test 2 will also be too low. 
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Exhib i t  1 

2 year Warranties 
All wdtten on 1/I/2000 
Pro-rata losses 
Premium = $1 
Contract Count = 100 
Severity = $5 
Frequency = 10% per exposed year 
20% cancel on 1/1/2001 - $10 total return premium 

Method 1 - overall payment pattern 
2000 2001 Total 

Wdtten Premium in-force 100 60 
Policies in-force 100 80 
Paid Losses 50.0 40.0 90.0 
Payment Pattern 55.6% 4 4 . 4 %  100.0% 
Earned Premium from payment pattern 55.6 35.6 91.1 
Adjusted Earned Premium (written - cancellation) 55.6 34.4 90.0 
Refunds from Cancellations 10,0 10.0 
Loss Ratio 90.0% 116.1% 100.0% 

55.6 = 100 x 60/90. 
34.4 =100 x 40/90 -10 or 90-55.6 

Method 2 - use payment pattern excluding canceled policies 
Partial Pure premium 50.0% 5 0 , 0 %  100.0% 
Resulting Earned Premium 50 40 90 
Loss Ratio 100.0% 100.0% 100.0% 

Method 3 - Project Ultimate Written Premium after cancellations 
Projected Ultimate Premium 90 
Payment Pattern 55.6% 4 4 . 4 %  100.0% 
Resulting Earned Premium 50 40 90 
Loss Ratio 100,0% 100.0% 100.0% 
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Exhib i t  2 A  - N e w  V e h i c l e s  

7 year Warranties 
All written on 111/2000 
Pro-rata losses 
3 Year (36 month/36,000 miles) manufacturer's warranty - no Losses during this period 
Premium = $2 
Contract Count = 100 
Sevedty = $5 
Frequency = 10% per exposed year 
10% cancel on 11112004 

Method I - Unadjusted payment pattern 
2000 2001 2002 2003 2004 2005 2006 Total 

Paid Losses 0.0 0.0 0.0 50.0 45.0 45.0 45.0 185.0 
Payment Pattern 0,0% 0.0% 0.0% 27.0% 24.3% 24.3% 24.3% 100.0% 
In Force Written Premium 200 200 200 200 180 180 180 
Policies in-force 100 100 100 100 90 90 90 
Earned Premium from payment pattern 0.0 0.0 0,0 54.1 43,8 43,8 43,8 185,4 
Adjusted Earned Premium (written - cancellation) 0.0 0.0 0.0 54.1 49,8 43.8 43.8 191.4 
Earned - Paid = profit from cancellations. 0.0 0.0 0.0 4.1 4.8 -1.2 -1.2 6,4 
Refunds from Cancellations 8.6 8.6 
Loss Ratio 92.5% 90.3% 102.8% 102.8% 96.6% 

Method 2 - use payment pattern excluding canceled pol~.~es 
Partial Pure premium 0 0 0 25.0% 25.0% 25.0% 25.0% 100.0% 
Resulting Earned Premium 0 0 0 50 45 45 45 185 
Additional earned from cancellations 6.4 
Total Earned Premium 0 0 0 50 51.4 45 45 191.4 
Earned - Paid = profit from cancellations. 0.0 0.0 0.0 0.0 6.4 0.0 0.0 6.4 
Loss Ratio 100.0% 87.5% 100,0% 100.0% 96.6% 

Method 3 - Project Ultimate Written Premium after cancellations 
Projected Ultimate Premium 191.4 
Payment Pattern 0.0% 
Total Earned Premium 0.0 
Earned - Paid = profit from cancellations. 0.0 
Loss Ratin 

0.0% 0,0% 25.0% 25.0% 25.0% 25.0% 
0.0 0.0 47.9 47.9 47.9 47.9 191.4 
0.0 0.0 -2.1 2.9 2.9 2.9 8.4 

104.5% 94.0% 94.0% 94.0% 96.6% 
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Exhibit  2 6  - New Vehic les 

7 year Warranties 
NI written on 111/2000 
Pro-rata losses 
3 Year (36 month/36,000 miles] manufacturer's warranty - no losses during this period 
Premium = $2 
Contract Count = 100 
Severity = $5 
Frequency = 10% par exposed year 
20% cancel on 111/2004 

M ~ o d  1 - Unad)u~tod paymsnt pattern 
2000 2001 2002 2003 2004 2005 2006 Total 

Paid Losses 0.0 0.0 0,0 50.0 40.0 40.0 40.0 170,0 
Payment Pattern 0.0% 0.0% 0.0% 29.4% 23,5% 23.5% 23.5% 100.0% 
In Force Written Premium 200 200 200 200 160 160 160 
Policies in-force 100 100 100 100 80 80 80 
Earned Premium from payment pattern 0.0 0.0 0.0 58.6 37.6 37.6 37.6 171.6 
Adjusted Earned Premium (written - cancellation) 0.0 0.0 0.0 58.8 48.7 37.6 37.6 182.9 
Earned - Paid = profit from cancellations. 0.0 0.0 0.0 8.8 6.7 -2.4 -2.4 12.9 
Refunds from Cancellations 17.1 17.1 
Loss Ratio 85.0% 82,1% 106.3% 106.3% 93.0% 

Method 2 - use payment pattern excluding canceled policies 
Partial Pure premium 0 0 0 25.0% 25,0% 25.0% 25.0% 100.0% 
Resulting Earned Premium 0 0 0 50 40 40 40 170 
Additioeal earned from cancellations 12.9 
Total Earned Premium 0 0 0 50 52.9 40 40 152.9 
Earned - Paid = profit from cancellations. 0.0 0.0 0.0 0.0 12.9 0.0 0.0 12.9 
Loss Ratio 100.0% 75.7% 100.0% 100.0% 93.0% 

Method 3 - Project Ultimate Written Premium after cancellations 
Proiected U~mate P(emi~m 182.9 
Payment Pattern 0.0% 
Total Earned Premium 0.0 
Earned - Paid = profit from cancellations. 0.0 
Loss Ratio 

0.0% 0.0% 25.0% 25.0% 25.0% 25.0% 
0.0 0.0 45.7 45.7 45.7 45.7 182.9 
0.0 0.0 -4.3 5.7 5.7 5.7 12.9 

109.4% 87.5% 87.5% 87.5% 93.0% 
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Exh ib i t  3A - N e w  Veh ic les  

7 year Warranties 
All written on 111/2000 
Pro-rata losses 
3 Year (36 month/36,000 miles) manufacturor's warranty - no losses dunng this period 
Premium = $2 
Contract Count = 100 
Seventy = $5 
Frequency = 10% per exposed year 
I0~  cancel on I11 of fifth year 

E f f ~ v e  Paid Losses  
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 
2000 0.0 0.0 
2001 0.0 
2002 
2003 
2004 
2005 
2006 
2007 
2008 
Total 0.0 0.0 

0.0 50.0 45.0 45.0 45.0 
0.0 0.0 50.0 45.0 45.0 45.0 
0.0 0.0 0.0 50.0 45.0 45.0 45.0 

0.0 0.0 0.0 50.0 45.0 45.0 
0.0 0.0 0.0 50.0 45.0 

0.0 0.0 0.0 50.0 
0.0 0.0 0.0 

0.0 0.0 
0.0 

0.0 50.0 95.0 140.0 185.0 185.0 185.0 

Method I - use unadjusted payment pattern 
Effective Earned Premium 

Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 
2000 0.0 0.0 
2001 0.0 
2002 
2003 
2004 
20O5 
2006 
2007 
2008 
Total 0.0 0.0 

LoesRatio 

0.0 54.1 49.8 43.8 43.8 
0.0 0.0 54.1 49.8 43.8 43.8 
0.0 0.0 0.0 54.1 49.8 43.8 43.8 

0.0 0.0 0.0 54.1 49.8 43.8 
0.0 O.0 0.0 54.1 49.8 

0,0 0.0 0.0 54.1 
0.0 0.0 0.0 

0.0 0.0 
0.0 

0.0 54.1 103.9 147.6 191.4 191.4 191.4 
92.5% 91.5% 9 4 . 8 %  9 6 . 6 %  9 6 . 6 %  96.6% 

Test 2 UPR 200.0 400.0 600.0 745.9 842.1 894.4 903.0 911.6 920.2 

Method 2 - use payment pattern excluding canceled policies 

Effective Earned Premium 
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 
2000 0.0 0.0 
2001 0.0 
2002 
2003 
2004 
2005 
2006 
2007 
2008 
Total 0.0 0.0 

Loss Ratio 

0.0 50.0 51.4 45.0 45.0 
0.0 0.0 50.0 51.4 45.0 45.0 
0.0 0.0 0.0 50.0 51.4 45.0 45.0 

0.0 0.0 0.0 50.0 51.4 45.0 
0.0 0.0 0.0 50.0 51.4 

0.0 0.0 0.0 50.0 
0.0 0.0 0.0 

0.0 0.0 
0.0 

0.0 50.0 101.4 146.4 191.4 191,4 191.4 
100.0% 9 3 . 7 %  9 5 . 6 %  9 6 . 6 %  9 6 . 6 %  96.6% 

Test 2 UPR 200.0 400.0 600.0 750.0 848.6 902.1 910.7 919.3 927.9 

Method 3 - Project Ultimate Written Premium after cancellations 
Effective Earned Premium 

Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 
2000 0.0 0.0 0.0 47.9 47.9 47.9 47.9 
2001 0.0 0.0 0.0 47.9 47.9 47.9 47.9 
2002 0.0 0.0 0.0 47.9 47.9 47.9 47.9 
2003 0.0 0.0 0.0 47.9 47.9 47.9 
2004 0.0 0.0 0.0 47.9 47.9 
2005 0.0 0.0 0.0 47.9 
2006 0.0 0.0 0.0 
2007 0.0 0.0 
2008 0.0 
Total 0.0 0.0 0.0 47.9 95.7 143.6 191.4 191.4 191.4 

Loss Ratio 104.5% 9 9 . 3 %  9 7 . 5 %  9 6 . 6 %  9 6 . 6 %  96.6% 
Test 2 UPR 200.0 400.0 600.0 752.1 856.4 912.9 921.4 930.0 938.6 
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Incorporating Cancellations into Pricing and Reserving Extended Warranties 

E x h i b i t  3 B - N e w V e h i c l e s  

7 year Warrant,s 
All written on 1/1/2000 
Pro-rata losses 
3 Year (36 month/36.000 miles) manufacturer's warranty - no losses during this period 
Premium = $2 
Contract Count = 100 
Severity = $5 
Frequency = 10% per exposed year 
20% cancel on 111 of fifth year 

Effective P a i d  L o s s e s  
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 
2000 0.0 0.0 0.0 50.0 40.0 40.0 40.0 
2001 0.0 0.0 0.0 50,0 40.0 40 0 40.0 
2002 0.0 0.0 0.0 50.0 40.0 40,0 40,0 
2003 0.0 0.0 0.0 50.0 40.0 40.0 
2004 0.0 0.0 0.0 50,0 40,0 
2005 0.0 0.0 0.0 50.0 
2006 0.0 0.0 0,0 
2007 0.0 0.0 
2008 0.0 
Total 0,0 0.0 0,0 50.0 90.0 130.0 170.0 170,0 170.0 

Method I - use unadjusted payment pattern 

Effective F a m e d  P r e m i u m  
Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 
2000 0.0 0.0 0.0 
2001 0.0 0.0 
2002 0 0 
2003 
2004 
2005 
2006 
2007 
2008 
Total 0.0 0.0 0.0 

Loss Ratio 
Test 2 UPR 200.0 400.0 600.0 

58.8 48.7 37.6 37.6 
0.0 58.8 48.7 37.6 
o.o o o 58.8 48.7 
0.0 0.0 0.0 58 8 

0.0 O0 OO 
0 0 0.0 

0.0 

58.8 107.6 145.2 182.9 
85 0% 83 7% 89.5% 93.0% 
741.2 833.6 888.4 905.5 

Method 2 - use payment pattern excluding canceled policies 
Effective E a r n e d  P r e m i u m  

Year 2000 2OOl 2002 2003 

37.6 
37.6 37.6 
48.7 37.6 
58.8 48.7 
0.0 58.8 
0.0 0.0 
0.0 0.0 

0.0 
182.9 182.9 

93.0% 93.0% 
922.7 939.8 

2004 2005 2006 2007 2008 
2000 0,0 0,0 0.0 50.0 52.9 
2001 0,0 0.0 0.0 50.0 
2002 0.0 0.0 0.0 
2003 0,0 0.0 
2004 0.0 
2005 
2006 
2007 
2008 
Total 0 0 0.0 0 0 50.0 102.9 

Loss Ratio 100.0% 87.5% 
Test 2 UPR 200.0 400.0 600.0 750.0 847.1 

Method 3 - Project Ultimate Written Premium after cancellations 

Effective E a r n e d  P r e m i u m  
Year 2000 2001 2002 2003 2004 

40.0 40,0 
52,9 40.0 40.0 
50,0 52.9 40.0 40.0 
0 0 50.0 52.9 40,0 
0,0 0,0 50,0 52.9 
0,0 0.0 0,0 50.0 

0.0 0.0 0,0 
00  00  

0.0 
142.9 182.9 182 9 182.9 

91.0% 93.0% 93.0% 93.0% 
904.3 921.4 938.6 955.7 

2005 2006 2007 2008 
2000 0.0 0.0 0,0 45.7 45.7 
2001 0.0 0.0 0.0 45,7 
2002 0.0 0,0 0.0 
2003 0.0 0.0 
2004 0.0 
2005 
2006 
2007 
2008 
Total 0 O 0 0 0 0 45.7 91.4 

Loss Ratio 109.4% 98.4% 
Test 2 UPR 200.0 400.0 600.0 754,3 862.9 

45.7 45.7 
45.7 45.7 45.7 
45.7 45.7 45.7 45.7 

09  45.7 45.7 45.7 
0.0 0.0 45.7 45.7 
0 0 0.0 0.0 45.7 

0.0 0.0 0.0 
0.0 0.0 

0.0 
137.1 162.9 182.9 1829 

94.8% 93.0% 93 0% 93.0% 
925.7 942.9 950.0 977.1 
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Exhib i t  4 A  - Used  V e h i c l e s  

3 year Warranties 
All written on 1/1/2000 
Losses emerge faster than pro-rata 

Premium = $2 
Contract Count = 100 

10% cancel on 11112001 

Method 1 - use unadjusted payment pattern 
2000 2001 2002 Tot~ 

Paid Losses 80.0 54.0 54.0 188.0 
Payment Pattem 42.6% 28.7% 28.7% 100.0% 
In Force Written Premium 200 180 180 
Policies in-force 100 90 90 
Earned Premium from payment pattern 85.1 51,7 51.7 186.5 
Adjusted Earned Premium (written - cancellation) 85.1 49.9 51.7 186.7 
Difference (= extra profit fTom cancellations) 0.0 -1.8 0.0 -1,8 
Refunds from Cancellations 0,0 
Loss Ratio 94.0% 108.2% 104.4% 100,7% 

Method 2 - use payment pattern excluding canceled policies 
Partial Pure premium 40% 30% 30% 100.0% 
Resulting Earned Premium 80.0 54.0 54.0 188.0 
Additional earned from cancellations -1.3 
Total Earned Premium 80.0 52.7 54.0 186.7 
Loss Ratio 100.0% 102.5% 100.0% 100.7% 

Method 3 - Project Ultimate Written Premium after cancellations 
Projected Ultimate Premium 186.7 
Payment Pattern 40.0% 30,0% 30,0% 
Total Earned Premium 74.7 56.0 56.0 186.7 
Loss Ratio 107.1% 96.4% 96,4% 100.7% 
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Exhibi t  4 B  - Used  Veh ic les  

3 year Warranties 
All written on 1/1/2000 
Losses amel'ge faster than pro-rata 

Premium = $2 
Contract Count = 100 

20% cancel on 11112001 

Method 1 - use unadjusted payment pattern 
2000 2001 2002 Total 

Paid Losses 80.0 48.0 48.0 176.0 
Payment Pattern 45.5% 27.3% 27.3% 100.0% 
In Force WHtten Premium 200 160 160 
Policies in-force 100 80 80 
Earned Premium from payment pattern 90.9 43.6 43,6 178.2 
Adjusted Earned Premium (wri~en - cancellation) 90.9 38.9 43.6 173.4 
Difference (= extra profit from cancellations) 0.0 -4.8 0.0 -4.8 
Refunds from Cancellations 
Loss Ratio 88.0% 123.5% 110.0% 101.5% 

Method 2 - use payment pattem excluding canceled policies 
Partial Pure premium 40% 30% 30% 100.0% 
Resulting Earned Premium 80,0 48.0 48.0 176.0 
Additional earned from cancellations -2.6 
Total Earned Premium 80.0 45.4 48.0 173.4 
Loss Ratio 100.0% 105.7% 100.0% 101.5% 

Method 3 - Project Ultimate Written Premium after cancellations 
Projected Ultimate Premium 173.4 
Payment Pattern 40.0% 30.0% 30.0% 
Total Earned Premium 69.4 52.0 52.0 173.4 
Loss Ratio 115.3% 92.3% 92.3% 101.5% 

¢= 
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Incorporating Cancellations into Pricing and Reserving Extended Warranties 

E x h i b i t  5,6, - U s e d  V e h i c l e s  

3 year Warranties 
All written on 1/1 of policy year 
Losses emerge faster than pro-rata 

Premium = $2 
Contract Count =100 

10% cancel on 111 of second year 

Eftec~ve Paid Losses 
Year 2000 2001 2002 2003 2004 
2000 80.0 54.0 54.0 
2001 80,0 54.0 54.0 
2002 60.0 54.0 54.0 
2003 80.0 54.0 
2004 80.0 
Total 80.0 134.0 188.0 188.0 188.0 

Method/-  use una~ustedpaymentpaftern 

Effective Earned Premium 
Year 2000 2001 2002 2003 2004 
2000 85.1 49.9 51.7 
2001 65.1 49.9 51,7 
2002 85.1 49.9 51.7 
2003 85.1 49.9 
2004 85.1 
Total 85.1 135.0 186.7 186.7 186.7 

Lose Ratio 94.0% 9 9 , 3 %  100,7% 100.7% 100.7% 
Test2 UPR 114.9 179.9 193.2 206.5 219,8 

Method 2 - use payment pattern excluding cence#~ policies 
Effective Earned Premium 

Year 2000 2001 2002 2003 2004 
2000 80.0 52.7 54.0 
2001 80.0 52,7 54.0 
2002 80,0 52.7 54.0 
2003 80.0 52,7 
2004 80.0 
Total 80.0 132.7 186,7 186.7 186.7 

Loss Ratio 100 .0% 101.0% 100.7% 100.7% 100.7% 
Test 2 UPR 120.0 187.3 200,6 213.9 227.2 

Method 3 - Project Ultimata Written Premium after cancellations 
Effective Earned Premium 

Year 2000 2001 2002 2003 2004 
2000 74.7 56.0 56.0 
2001 74.7 56,0 56.0 
2002 74.7 56.0 56.0 
2003 74.7 56.0 
2004 74.7 
Total 74.7 130,7 186.7 186.7 186.7 

L o u  Ratio 107 .1% 102.5% 100.7% 100.7% 100.7% 
Test 2 UPR 125,3 194.6 207.9 221.2 234.5 
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Incorporating Cancellations into Pricing and Reserving Extended Warranties 

Exhib i t  5B - Used Vehic les  

3 year Warranties 
All written on 1/1 of policy year 
Losses emerge faster than pro-rata 

Premium = $2 
Contract Count = 100 

20% cancel on 11t of second year 

Effective Paid Losses 
Year 2000 2001 2002 2003 2004 
2000 80.0 48.0 48.0 
2001 80.0 48.0 48.0 
2002 80.0 48.0 480 
2003 80.0 48.0 
2004 80,0 
Total 80.0 128.0 176.0 176.0 176.0 

Method I - use unadjusted payment pattern 
Effective Earned Premium 

Year 2000 2001 2002 2003 2004 
2000 90.9 36.9 43.6 
2001 90.9 38.9 43.6 
2002 90.9 38.9 43.6 
2003 90.9 38.9 
2004 90.9 
Total 90.9 129.8 173.4 173.4 173.4 

Loss RaUo 88.0% 9 8 . 6 %  101.5% 101.5% 101,5% 
Test2 UPR 109.1 179.3 205.9 232.5 259.1 

Method 2 - use payment pattern excluding canceled policies 

Effective Earned Premium 
Year 2000 2001 2002 2003 2004 
2000 80.0 45.4 48.0 
2001 80.0 45.4 48.0 
2002 80.0 45.4 46.0 
2003 80.0 45.4 
2004 60.0 
Total 80.0 t25.4 173.4 173.4 173.4 

Loss Ratio 100 .0% 102.1% 101.5% 101.5°/o 101.5% 
Test2 UPR 120.0 194.6 221.2 247.8 274,4 

Method 3 - Project Ultimate Written Premium after cancellations 
Effective Earned Premium 

Year 2000 2001 2002 2003 2004 
2000 69.4 52.0 52.0 
2001 69.4 52.0 52.0 
2002 69.4 52.0 52.0 
2003 69.4 52.0 
2004 69.4 
Total 69.4 121.4 173.4 173.4 173.4 

Loss Ratio 115 .3% 105.5% 101.5% 101.5% 101.5% 
Test 2 UPR 130.6 209.3 235.9 262.5 289.1 
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Incorporating Cancellations into Pricing and Reserving Extended Warranties 

Famed Premium Comparhmn Exhibit $ 
Term: 60 months/10,099 mllee 

Difference Earned Premium 
WRh CIncels ~/~hout Cancels in V~itten ~ ~Rthout 

Age UPR EPR UPR EPR Earned Premium Cancels Cancels Difference 
(Months) (1) (2) (3) (4) (5) (6) (7) (8) {9) 

1 1.9000 O.O000 1.0000 0.0900 -5.1% 1,213 0.0 0.0 0.0 
2 0.9890 0.00o7 6.6990 0.99o7 1.1% 1.299 0.0 0.0 0.0 
3 0.9956 0.0044 0.9961 0.0039 14.5% 1,205 5.3 4.7 0.7 
4 0.9912 0.0088 0.9922 0.9978 13.6% 1,201 10.6 9.3 1.3 
5 0.9847 0.0153 0.9865 0.0135 12.9% 1.197 16.0 16.2 2.1 
6 0.9767 0.0233 0.9792 0.0200 12.2% 1,193 27.8 24.8 3.0 
7 0.9673 0.0327 0.9706 0.0294 11.1% 1,189 38.9 35.0 39 
8 0.9551 0.0449 0,9596 0.0404 11.2% 1,185 53.2 47.8 5.4 
0 0.9401 0.0599 0.9460 0.0540 10.9% 1,181 70.8 63.8 7.0 

10 0.9225 0.0775 0.9296 0.0704 10.2% 1,178 91.3 82.8 8.5 
11 0.9032 0.0968 0.9121 0.0678 10.1% 1,174 113.6 1032 10.4 
12 0.8831 0.1169 0.8937 0.1083 10.0% 1,170 136.8 124.4 124 
13 0.8615 0.1385 0.8734 0 1266 9.4% 1,166 161.5 147.6 13.9 
14 0 8390 0.1610 0.8525 0.1475 0.2% 1,t62 187.2 171 4 15.7 
15 0.8156 0.1844 0.8301 0.1899 8.5% 1,158 213.6 1968 16.7 
16 0.7929 0.2071 08081 0.1910 8.0% 1,155 239.2 221.5 17.6 
17 07698 0.2302 0.7862 0.2138 77% 1,151 265.0 246.0 18.9 
16 0.7455 0,2545 0.7629 0,2371 7.4% 1,147 292.0 272.0 20,0 
19 0.7219 0.2751 0.7405 0.2595 7.2% 1,143 318 0 296.7 21.3 
20 0,6970 0.3030 0.7166 0,2834 6.9% 1.140 345.3 323.0 22.3 
21 0,6709 0.3291 0.6912 0,3088 6.6% 1.136 373.9 350.9 23.1 
22 0,6452 0,3549 0,6658 0,3342 6 2% 1,132 401.7 378.4 23 3 
23 0.6196 0,3804 0.6407 0.3593 5.9% 1,129 4294 405.5 238 
24 0.5932 0.4990 0.6153 0.3847 5.0% 1,125 4576 432.7 250 
25 0.5653 0.4347 0,5878 0.4122 5,5% 1,121 487.4 462 2 25.2 
26 0,5381 0.4619 05607 0.4393 5.1% 1,118 516.2 4909 253 
27 9.5199 04894 0.5327 04673 4,7% 1,114 545,1 520.5 24,7 
28 0.4850 05150 0.5073 0,4927 45% 1,110 5718 547.1 247 
29 04591 0.5409 04820 0.5180 4.4% 1.107 598.6 573,3 25.3 
30 04352 0.5648 0.4581 0.5419 42% 1.103 623.0 5977 25.3 
31 0.4108 0.5892 0.4330 0.5670 39% 1,099 647,8 623.4 24.3 
32 0.3885 06115 0.4097 0.5903 3,6% 1,096 670,1 646.9 23.2 
33 0.3659 0.6341 0.3866 0.6134 3.4% 1,092 6926 670.0 226 
34 0.3428 0.6572 0,3628 0.6372 3.1% 1,089 715.5 693.7 21,8 
35 0 3202 0.6798 0.3393 0.6607 2.9% 1.085 737.7 717.0 20.7 
36 0.2987 0,7013 0.3172 0,6828 2.7% 1,082 758.5 738,5 20.0 
37 0.2784 0 7216 0.2959 0 7041 2 5% 1,078 777.9 759.1 18.8 
38 0.2579 0.7421 0,2745 0.7255 2 3% t,075 797,4 779.6 17.8 
39 02408 0.7592 0.2565 0.7435 2.1% 1,071 813.1 796.3 16.8 
40 0 2217 0.7783 0.2368 0,7632 2.0% 1,068 830 9 814.7 16 2 
41 0.2050 0.7950 0.2193 07807 1 8% 1,064 846,0 8307 15.3 
42 0.1894 0,8106 0.2027 0.7973 1 7% t,061 859 7 845.6 14 2 
43 0.1736 9,8264 0,1861 0.8139 1 5% 1,057 873 6 860.4 132 
44 0 1571 08429 0 1686 0.8314 1.4% 1,054 888 1 876 1 12 1 
45 0.1439 0.8561 0.1546 0.8454 1 3% 1,050 899.1 887.9 11.2 
46 0.1312 0.8608 0.1410 0.8590 I 1% 1,047 909.5 899.3 10.2 
47 0.1178 0.8822 0.1266 0.8734 1 0% 1,043 920.5 911.3 9 2 
48 0.1059 0.8941 0 1143 0.8857 0.9% 1.040 929.8 921.1 8.7 
49 0.0949 0.9051 0.1024 0.B976 0.8% t,037 938.3 930.5 7 8 
50 0.0829 0.8171 0.0897 0.9103 0.8% 1,033 947.6 940.5 7.1 
51 0.0710 09290 0.0770 09230 0.6% 1.030 956.7 950.6 6.2 
52 0.0624 0.9376 0.0677 0.9323 0,6% 1.026 962.5 957.0 5.4 
53 0.0545 0.9455 0.0592 0.9408 0 5% 1.023 967.4 962 6 4.8 
54 0.0461 0.9539 0.0501 0.9499 0.4% 1,020 972.8 968.7 4.1 
55 0.0387 0.9613 0,0421 0,6579 0.4% 1,016 9771 973.7 35 
56 0,0315 0.8685 0.0343 0,9657 0.3% 1,010 981,2 978,4 2.9 
57 00261 09739 0.0284 08716 0.2% 1,010 983.5 981.1 2,4 
58 0.0194 0.9806 00211 09789 02% 1,007 987.1 985.3 1.8 
59 0.0144 09856 0.0157 0.9843 0 1% 1,003 98B,8 987 5 1.3 
60 0.0066 09934 0.0072 0.9928 0.1% 1,000 993.4 9928 06 

31.0161 31.1027 2.3% 33,618.0 33,027.2 2.4% 
year 1 567.4 512.8 10.6% 

Notes" Years 1-2 4,251 6 3,955 2 7.5% 
1. (2) = 1.0 - (1). Years 1-3 11,815.9 11.236.5 5.2% 
2 (4) = 1.0- (3). Years 1-4 22,161.6 21.418 5 3.5% 
3. (5) = (2) / (4) - 1.0. 
4, (6)ie. inoreasing by4% per year. 
6 (7) = (6}x (2). 
6. (8) = (0) x (4), 
7. (9) = (7) - (8). 
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INTERPRETATIONS OF SEMI-PARAMETRIC MIXTURE MODELS, UNBIASED 
ESTIMATORS OF ULTIMATE VALUE FOR INDIVIDUAL CLAIMS AND 
CONDITIONAL PROBABILITY APPLICATIONS TO CALCULATE BULK 

RESERVES 

by Rajesh Sahasrabuddhe, FCAS, MAAA 

Abstrac t  
Semi-parametric mixture models have well documented technical 

advantages for modeling loss distributions. These technical advantages are 
documented in papers that focus on the estimation of the parameters of  

semi-parametric models. 

This paper assumes that the parameters have already been determined and 
then provides an interpretation of  the results of  the parameter estimation. 

This interpretation is intended to make semi-parametric models intuitively 
appealing. I f  we accept this interpretation of  the parameters, then we can 

use conditional probability concepts to calculate bulk reserves either 
deterministically or in a stochastic framework. 

1. Introduction 
A recent paper by Keatinge I discussed the virtues of  semi-parametric mixture models vis- 
/t-vis (fully) parametric models and non-parametric (empirical) models. The advantages 
discussed in Keatinge focus on the attractive compromise between smoothing and data 
responsiveness offered by semi-parametric models. Semi-parametric models have the 
following density function: 

f ( x )  = w I x f l  (x )  + w 2 x f2  (x)  +... + w n × f~ (x)  

where: 
i. y~x) represents the probability density function for the mixture model, 
ii. f,(x) represents the probability density function for the i-th component of  the 

mixture, and 
iii. wirepresents the mixing weight corresponding to i-th component of  the mixture. 

Furthermore, the mixing weights are subject to the constraints that: 
i. w ~ > 0  

ii. )-~w i =1.  

i Keatinge, Clive L., "Modeling Losses with the Mixed Exponential Distribution," Proceedings of the 
Casualty Actuarial Society 1999 Vol: LXXXVI Page(s): 654-698, Casualty Actuarial Society: Arlington, 
Virginia 
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Interpretations of Semi-Parametric Mixture Models 

The mixture is considered semi-parametric since each component of  the mixture is a 
parametric model but the distribution of  mixing weights is model free. Also, it should be 
noted that there is no restriction that the components of the mixture have the same model 
form (e.g. exponential, lognormal, Pareto) or, for that matter, any specific model form. 

The remainder of this paper assumes that model forms and parameters have already been 
determined. 

2. Interpreting Semi-parametric Models 
While Keatinge's arguments are certainly persuasive, there may be a more important 
argument supporting the use of  semi-parametric models: they are intuitively appealing. 

Specifically, it is reasonable to assume that loss experience is comprised of  observations 
from a discrete number of underlying loss processes. The table below provides some 
examples: 

Coverage 
Auto Liability Workers Medical Homeowners 

Compensation Malpractice 
Property Damage Indemnity Nuisance Theft 

2 Total Loss of 
Settlement without 

Death Property and 
o litigation ,z Contents 

Under this assumption, it is then reasonable to interpret the mixing weights (wi) as the 
percentage of total claims that are generated by each loss process. Logically, the named 
loss processes must therefore be exhaustive 2. That is, all claims must fall into one of 
these categories and the sum of the probabilities associated with the loss processes must 
equal 1. It would then follow that the components of the mixture would be interpreted as 
describing the distribution of  claims amounts resulting from each loss process. 

Although in many cases the loss process is coded in the claims record 3, this is not always 
the case. The table above is meant to provide examples of  types of  multiple loss 
processes that might produce the observed claim distribution That is, we assume that the 

2. Since we can define the loss process as narrowly or broadly as we desire, we are not concerned that a 
mixture model would be required to describe a single loss process nor are we concerned that multiple loss 
processes would be described by distributions that are not significantly different. 
3 For example, auto liability loss records will often indicate whether the loss is for bodily injury or property 
damage. 

90 Casualty Actuarial Society Forum, Spring 2007 



Interpretations of Semi-Parametric Mixture Models 

mixture model identifies all significantly different underlying loss processes 4. In addition, 
it should be noted that there is no requirement that we identify the loss processes by 
name. In fact it may not be possible to identify each and every loss process. 

3. Using Conditional Probability Concepts to Estimate Claim Level Bulk Reserves 

The term "bulk reserve" is used to represent the reserve for development on known (or 
reported) losses and is often referred to as the "incurred but not enough reported" 
("IBNER") reserve. As is common in analysis of  claims-made coverages, the bulk 
reserve is often estimated in the aggregate for a body of  claims. For occurrence 
coverages, the bulk reserve and the reserve for unreported claims are often estimated on a 
combined basis. 

The mixture model represents the overall distribution of  claim values without anyprior 
knowledge. However for reported claims, we will have some knowledge about each 
claim. This "knowledge" will generally include amounts paid to date and case basis 
reserves. 

For purposes of  this discussion, it should be assumed that an unbiased estimator for the 
ultimate value of  each claim is available. (We will return to this assumption in the next 
section.) This unbiased estimator will be denoted U. 

We now focus on the likelihood of  the various loss processes generating a claim of  size 
U. What we are really concerned with is not the absolute probabilities but rather the 
relative probabilities. Recall the conditional probability relationship: 

Pr(A~ I B) - Pr(A~ n B) where 
Pr(a) 

At represents the event that loss process i underlies the claim and 
B represents event that the unbiased estimate of  the claim is equal to U. 

The relative probabilities i.e. Pr (A JIB), Pr (AeIB) ... Pr (A,IB) are proportional to: 
Pr(A, n B) = Pr(A, I B) x Pr(B) = Pr(B I At)* Pr(A~). 

In this case we decide to use the second expression. Under the interpretation offered in 
Section 2: 

Pr(A3 = wi and 
Pr(BIA3 is proportional tof,(U). 

So we can restate the mixture model with adjusted mixing weights defined as follows: 
~, = Pr(A,)x Pr(B I A,) oc w, x f~ (U). (2.1) 

4 To the extent that those differences are represented in the data, of course. 

Casualty Actuarial Society Forum, Spring 2007 91 



Interpretations o f  Semi-Parametric  Mix ture  Models 

where the - indicates that the parameter (or distribution) is applicable to an individual 
claim and has been adjusted to consider the unbiased estimator of  the ultimate value of  
that claim. 

Normalizing mixture weights, we obtain: 

~, = w, × f , ( u ) / ~ w ,  ~ f , ( u ) .  
i 

(2.2) 

The conditional density function is then equal to: 

f (x I u)  = 7(x) = ~,~ × A (x) + ~'2 × A (x) +... + ~,. × f . ( x ) .  (2.3) 

The table below provides an example of how mixing weights adjust for various U values 
for a mixture of 3 component iognormal models. 

i 
muj 

sigma~ 
Initial Mixing Weight (w i) 

1 2 3 Total 
9 10 12 

1.5 1.75 1.5 
50% 20% 30% 100% 

Mean 24,959 101,849 501,320 183,246 
Standard Deviation 72,716 459,801 1,460,532 

Example #1 
Unbiased Estimator (U) 10,000 

ft  (U) 2.63E-05 2.06E-05 4.72E-06 
Adjusted Mixing Weight 70% 22% 8% 100% 

Mean 24,959 101,849 501,320 77,943 

Example #2 
Unbiased Estimator (U) 150,000 

f~ (U) 2.67E-07 g.33E-07 1.77E-06 
Adjusted Mixing Weight 16% 20% 64% 100% 

Mean 24,959 I 01,849 501,320 344,701 

Example #3 
Unbiased Estimator (U) 750,000 

f ,  (U) 3.73E-09 3.98E-08 2.1 IE-07 
Adjusted Mixing Weight 3% I 1% 87% 100% 

Mean 24,959 101,849 501,320 445,681 

In particular, readers should observe how the mixing weights shift given the unbiased 
estimator for the claim and the means and standard deviations of the components of the 
mixture. 

Readers will also note that the mean value for each claim is not equal to the unbiased 
estimator. This is because the process is designed to produce individual distributions that, 
taken together, describe the distribution of a portfolio of claims. The process is not 
necessarily appropriate for any individual claim. (As discussed in the following section, 
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determination of  an unbiased estimator for a claim may also not be possible.) That is, as 
with most actuarial techniques, the predictive value of  the results requires sufficient 
credibility of  the claims portfolio being modeled. Finally, after reviewing the relative 
stability 5 of  the distribution parameters and the stability of  the unbiased estimator, it may 
be appropriate to balance the results of  the two indications. 

4. Calculation of  Bulk Reserves 

With this adjusted density function, we can calculate bulk reserves either 
deterministically or stochastically. The deterministic estimate is simply calculated by 
integrating and subtracting the current reported value (denoted R) of  the claim as follows: 

~,~ × j(x)ax 
oULK= f (x)a  R. 

(3.0 

It should be noted that the limits of  integration are not included in the formula above. A 
possible adjustment would be to truncate the distribution from below at the paid to date 
value of  the claim or to truncate the distribution from above at the maximum probable 
loss. Without these adjustments, the denominator of  the first term equals 1 and is not 
necessary. 

In addition, the numerator can readily be modified to consider the effect of  policy limits. 
This adjustment is left to the interested reader. 

More powerfully however, we can use the adjusted mixing weights to simulate a range of  
ultimate values for each claim. This is done in a two step process. In the first step, we 
draw from a Discrete (x, p) distribution where the loss processes are the x values and the 
adjusted mixing weights are thep values. This step determines the loss model that 
describes the distribution of  ultimate values of  the claim. In the second step, we draw a 
loss value from the loss model from the first step. This amount represents the simulated 
ultimate value of  the claim. Commercial simulation software can then be used to develop 
both mean estimates of the bulk reserve as well as bulk reserve estimates at various 
confidence levels. 

5. The Unbiased Estimator 

The discussion above assumes that an unbiased estimator of  the ultimate value of  each 
claim is available. As we know this is almost never the case. (If it were, there would be 
much less need for actuaries.) However, we should recognize a biased estimator is 
usually available and an adjustment factor can be applied to this estimator to remove the 

s "Stability" here refers to the change in these items resulting from incremental (marginal) increases in the 
data underlying their estimation. 
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bias. That biased estimator is the reported (paid plus case reserve) value of the claim and 
the adjustment factor is related to the loss development factor. 

The loss development factor would have to be adjusted to remove the distorting 
influences of  closed claims and unreported claims. That is, a cumulative reported loss 
development factor at age (maturity)j could be written as follows6: 

Paid on Closedj + Ultimate on Openj + Ultimate on Unreportedj 
RLDFj - (4.1) 

Paid on Closedj + Reported on Openj 

It should be noted that for this purpose, the loss development factors merely need to be 
for the same type of claim as the bulk reserve being estimated. That is, we are simply 
trying to develop the adjustment factor for known claims and liability for known claims 
exists regardless of  whether coverage is written on a claims-made or occurrence basis. 
Therefore, we could use claims-made factors in this exercise to develop bulk reserves for 
occurrence basis coverage. 

Rewriting the numerator of  equation 4.1 as Ultimate Loss and taking reciprocals, we 
arrive at the following: 

RLDFTJ = Paid on Closedj + (Paid on Openj - Paid on Openj)+Reported on Openj 

Ultimate Loss 

RLDFT, = PLDFT~ Paid on Openj ÷ Reported on Open Claimsj 
Ultimate Loss Ultimate Loss 

where "PLDFf '  denotes the cumulative paid loss development factor at agej. 

(4.2) 

We can rewrite the second term of the right hand side of  the equation using the following 
relationship: 

Paid on Openj Total Paidj Paid on Openj 
x = PLDF71 x (4.3) 

Ultimate Loss Total Paidj Total Paidj 

and we then rewrite equation 4.2 as: 

RLDF 7' = PLDF 7' - PLDF 7' × 
Paid on Openj Reported on Open Claimsj 

4 
Total Paid j Ultimate Loss • ( 4 . 4 )  

Rearranging equation 4.4, we obtain: 
I Paid on Openj ] -- Reported on Open Claims~ 

RLDF7 ~ - P L D F 7  ~ x 1 TotalPaidj ) Ultimate Loss (4.5) 

6 Assumes no reserve is required for reopened claims. 
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Taking reciprocals, we have: 

[ RLDFTI_PLDFTIx(1 Paid °n Openj.]]-I = 
Total Paidj )J  

Ultimate Loss 

Reported on Open Claimsj 
(4.6) 

Focusing on the right side of  this equation we have the following: 

Ultimate Loss 

Reported on Openj 

Paid on Closedj + Ultimate on Openj + Ultimate on Unreportedj " 

Reported on Openj 

(4.7) 

For convenience, we will refer to the three terms of the right hand side of  this equation as 
F, G, and H. We should recognize that the middle term (G) is the bias adjustment that we 
need to convert the reported value to an unbiased estimator of  ultimate loss (U). 

Substituting equation 4.7 into equation 4.6 and solving for G, we have: 

Paid on Open j - Fj - Hj  
G i = RLDF71 -PLDFj "1 x 1 Total Paidj (4.8) 

 ai On ota 
Paid on Closedj Ultimate on Unreportedj 

Reported on Open j Reported on Open j 

(4.9) 

The author recognizes that (1) Paid on Openj,  (2) Paid on Closedj and (3) 
Total Paidj Reported on Openj 

Ultimate on Unreportedj are statistics that are not "natural" and are not generally readily 
Reported on Openj 

available. 

However, it is the author's opinion that (1) and (2) should be straightforward to compile 
from a loss database since they are based strictly on reported values. Therefore it should 
not be inordinately more difficult to develop these statistics than it is to develop loss 
development factors. 

The third statistic should also be straightforward to determine and in many cases it may 
not be necessary. That is, with respect to the numerator of  this statistic, we can use a 
frequency / severity approach. We already have a severity model,fix), and unreported 
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frequency should be readily estimated using a claim count development factors. The 
denominator is based only on reported data. 

It should also be noted that for many lines of  business substantially all claims are 
reported within two years so this term would be unnecessary after 24 months. For longer- 
tailed lines of  business, loss development factors are generally available on a claims- 
made basis. If  we are using these claims-made loss development factors, this term is, by 
definition, equal to 0 and is therefore not necessary. 

Finally we should recognize that statistics (1) and (2) should be expected to approach 
zero as claims mature. Statistic (3) should be expected to become large as claims mature. 
In fact since (3) may become unstable at late maturities, the actuary may simply want to 
use the reported value of  the claim (without adjustment) at late maturities. This is not 
altogether unwarranted since at late maturities the unknown facts associated with a claim 
will decrease and reported value of  the claim is more likely to be an unbiased estimator of  
ultimate value. 

Using Rj.k to denote the reported value of thej- th  claim at age k, and Uj to denote the 
unbiased estimator of  the ultimate value of thej- th  claim, we can now state the following: 

Uj = Rj, k x G k . (4.10) 

Readers will note that G is based on aggregate statistics such as loss development factors. 
These statistics only consider the age of  a claim and therefore ignore many other factors 7 
that would influence development of  a given claim. Determining an appropriate G for any 
single claim is extremely difficult. The framework described in this paper therefore 
provides an attractive compromise between the unbiased estimator and the apriori 
average claim size. 

While this may seem like a significant effort, the reward is equally significant. Namely, 
the actuary now has insight into the average level of  misstatement in case reserves. The 
actuary should recognize this as particularly important information in evaluating reserves. 

6. Conclusion and Summary 

Using the procedure above, we can transform a semi-parametric mixture model from its 
generic form of  

f(x) =w, x f l (x)  + w 2 ×f2(x)+...+w. × f . ( x )  

to a form that may be used to describe the distribution of  the ultimate value of  a known 
claim: 

f ( x  I u )  : j ( x )  : ~, × f ,  (x) + ~'2 × L (x) +... + ~,. × L (x) 

7 Such as claim size. 
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where the mixing weights are adjusted based on an unbiased estimator of the ultimate 
value of the claim. This unbiased estimator can be calculated as a function of the reported 
value of the claim. 

As actuarial analyses move from deterministic frameworks to stochastic frameworks, the 
distributions of ultimate values for known claims will gain in importance. 
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Resimulation 

By James Shaheen 

1. INTRODUCTION 

One method of  simulating random variables is to generate uniform 0 to 1 variables, then 

use them in the inverse of  the cumulative distribution function of  the random variable you 

want to simulate. For example, if  you had U1, a uniform 0 to 1 variable, and you wanted to 

use it to simulate St, the flip o f  a fair coin, you could use this function: 

I f  0<U1<0.5 , then Sl=tails 

I f  0 .5<Ut<l  , then Sl=heads 

Historically it was thought that if  you wanted to simulate two independent variables in 

this manner, you would have to generate two uniform variables. But in fact, you can 

simulate multiple independent discrete variables from a single uniform variable. 

Example 1 

I f  you wanted to simulate two flips of a fair coin (S 1 and $2) , you could use this 

function: 

I f  0<U~<0.25, then Sl=tails and S2=tails 

I f  0.25<U1<0.5 , then Sl=tails and S2=heads 

If  0.5<U1<0.75 , then Sl=heads and S2=tails 

If0.75<Ul<1 , then Sl=heads and S:=heads 

By simple inspection you can see that by this method $1 and S 2 both have a 50% chance 

of  being heads and a 50% chance of  being tails, and that they are independent from each 

other. 

2. ADDITIONAL VARIABI.ES 

This method can work to simulate as many discrete variables as you want. 

Example  2 

I If  you wanted to simulate three flips of  a fair coin, you could use this function: 

I f  0<U1<0.125, then St=tails, S2=tails, and S3=tails 
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If  0.125<U1<0.25 , then St=tails, S2=tails, and S3=heads 

If 0.25<U,<0.375, then Sl--tails, S_,--heads, and S3=tails 

If  0.375<U1<0.5, then Sl=tails , S2=heads , and S3=heads 

If  0.5<U,<0.625, then Sl=heads, S2=tails , and S3=tails 

If  0.625<U,<0.75, then S 1=heads, S2=tails, and S3=heads 

If  0.75<U1<0.875, then Sl=heads, S2=heads, and S3=tails 

If  0.875<U1<1, then S~=heads, S_,=heads, and S3=heads 

So for example, if U1<0.43, then Sl=tails, S2=heads, and S3=heads. 

3. A S I M P L E R  F O R M U L A  

The method from Sections 1 and 2 gets exponentially more complicated as you simulate 

more variables, so it can be a pain to use, especially in cases where you're simulating 

something more complicated than the flip of a coin. But it can be simplified if you use the 

first uniform 0 to 1 variable to simulate other uniform 0 to 1 variables, and use those other 

uniform variables to simulate subsequent flips of a coin, or subsequent variables of whatever 

distribution you want to simulate. 

To do this, I introduce these definitions: 

D e f i n i t i o n  1 

Min(F-I(F(U~)))=The smallest number which, when plugged into the function F, would 

produce the same result that U, produced. 

D e f i n i t i o n  2 

Max(F-I(F(Uo)))=The largest number which, when plugged into the function F, would 

produce the same result that U. produced. 

Exam ~le 3 

Suppose you were simulating a coin flip, using this function F: 

If 0<U.<0.5, then F(U~)=tails 

If  0.5<U,< 1, then F(U,) =heads 

If  U,=0.43, then F(U,)=tails. Therefore FI(F(U.)) = Fl(tails)=anything from 0 to 

0.5. Therefore 
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Min(F-a(F(U,)))=Min(anything from 0 to 0.5)=0. 

Max(F-l(FCUa)))=Max(anything from 0 to 0.5)-.-0.5. 

Example 4 

I Using the same function F from Example 3, 

Min(F4 (F(0.86))) =0.5. 

Max(F-1(F(0.86)))=1. 

Using those new definitions, I introduce this recursive formula for simulating additional 

uniform 0 to I variables: 

Theorem 1 

uo+, = (Uo-Min (F' (VCC.)))) / (Max(F '(FCO~)))-Min (F"(F CC~)))) 

Example 5 

Assume we have a uniform 0 to 1 variable, Ut, equal to 0.43, and from that we want 

to simulate three flips of a fair coin. 

We'll use the simple simulation formula: 

If 0<U,<0.5, then S,=F(U,)=tails 

If 0.5<U.<l, then Sn=F(U,)=heads 

So if U1=0.43, then Sl=tafls 

To get U2, we use the formula 

U,,+,--- (U,,-Min (F" (F(Uo)))) / (Max (F" (F(U,,)))- Min (F-'(F(U,,)))) 

u.,= Cd,-Min(F-'~,))))/(Max~"(F(U,)))-Min~'C~,)))) 

U:=(0.43-M~(F-'(F(0.43))))/(Max(F'~(0.43)))-MIn~'~(0.43)))) 

U2= (0.43-0)/(0.5-0) =0.86 

To get S_, we can again use our simple simulation formula: 

If 0<U~<0.5, then Sn=F(U,)=tails 

If 0.5<Un<l , then Sn=F(U,)=heads 

So if U_~=0.86, then S2=heads 

To get U3, we again use the recursive formula 
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u.+,=Cu.-~aan0 ~'0~))))/CMax(v'(F(U~)))-Mm~'0~(o~)))) 

U3---(U2-Min~'0~))))/~ax(F' 0~(U~)))-Min~'(F(U~)))) 

U3= (0.86-Min(F' (F(0.86)))) / 0VIax(F'(F(0.86)))-Min(F" (F(0.86)))) 

U3=(0.86-0.5)/(1-0.5) =0.72 

And finally, we can get S 3 by using our simple simulation formula again: 

If 0<U.<0.5, then Sn=F(U~)=tails 

If 0.5<U,<l , then S =F(U,)=heads 

So if U3=0.72, then S3=heads 

Therefore if Ut=0.43, then Sl=tails, S2=heads, and S3=heads. And we were able to 

generate all three of those variables using just two simple formulas. 

Note that neither U2 nor S, are independent of U,. But S 2 is independent of S,, since S 2 

has a 50% chance of being heads and a 50% chance of being tails regardless of whether S, is 

heads or tails. 

E x a m p l e  6 

Assume we have a uniform 0 to 1 variable, U,, equal to 0.29, and from that we want 

to simulate variables, S,, $2, and Ss, each of which have a 20% chance of being 0, a 

50% chance of being 1, and a 30% chance of being 2. 

If 0<Un<0.2 , Sn=F(U,)=0. 

If 0.2<U.<0.7, S,=F(U~)=I. 

If  0.7<U,<l, S,=F(U,)=2. 

u.+, =(U.-~i~(F ' (F(U2)))/~ax(F"(FCU,)))-~n(F'(FCU,0))) 

Therefore $1=1. 

U2= (0.29-0.2)/(0.7-0.2) =0.18. 

S_,=0. 

U~,= (0.18-0)/(0.2-0)=0.9. 

$3--2. 

Note that this theorem will not work with functions that have gaps in the definition of 

single outcomes. For example, it will work with this function: 
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If  0<U,<0.5, then St=tails 

If  0.5<U1< 1, then St=heads 

But it would not work with this function, since it has a gap in the defirfition of 

St=tails: 

If  0<Ut<0.25, then Sl=tafls 

If  0.25<U1<0.75, then St=heads 

If  0.75<U~<1, then St=tails 

4. C O N T I N U O U S  S I M U L A T E D  V A R I A B I . R S  

In general, if you use a uniform 0 to 1 random variable to simulate a continuous variable, 

you will not be able to reuse it to simulate a second variable that is independent of the first 

simulated variable. The formula for U,+~ doesn't make sense if S n is continuous. 

If  F(U~) is continuous, then U,=Min(F-'(F(U,)))=Max(F"(F(U~))). 

Therefore the formula for U.+,: 

Uo+,=fU°-Min(F'(F(U~))))/~ax(F'(F(U.)))-Min(F'(F(U~)))) 

Comes out to 

U.+,=(U.-U,)/(U.-U.)=0/0, which is undefined. 

So in general, you can only reuse a uniform 0 to 1 random variable if it was first used 

to simulate a discrete variable. 

5. P A R T I A ! . 1  .Y D I S C R E T E  V A R I A B L E S  

If you're using a uniform 0 to 1 random variable to simulate a variable that is partially 

discrete and partially continuous, then you can reuse the uniform 0 to 1 random variable if 

and only if it ends up simulating the part of  the variable that is discrete. 

E x a m p l e  7 

Assume that we want to simulate three independent variables (St, S,, and $3) that 

each have a 50% chance of being uniformly distributed between 0 and 0.5 and a 50% 

chance of being 0.5. To do this we are given the uniform 0 to 1 variables 0.6 (which 

we'll call U,), 0.3 (Ub), and 0.1 CUe.), but whenever possible we should reuse those 
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uniform variables using resimulauon, so that we use as few of  them as possible. To 

simulate $1, $2, and $3, we can use the formula: 

I f  0<U.<0.5, S,=F0d,)--U .. 

I f  0.5<U,<1, Sn=F(U~)=0.5. 

We need a uniform 0 to 1 variable, U ,  to simulate S v For lack of  anything else we 

can use, we'll use the U~ that we were given. 

Therefore U~=0.6, therefore S1=0.5. That's the part of  the variable that is discrete, 

therefore we can reuse U, to simulate Uo. 

Un+, =(U°-MJn(F~ 0~(U.))))/(Max(S' 0=(U.)))-M~n(F'(V(O.)))) 

Therefore 

U;= (U,-Mi-(F'(;(U,)))) / (Max(F' 0~(U,)))-~n (F '  0%U,)))) 

U;=(0.6-Mm0~-'(F(0.6))))/CMax(F' 0~(0.6)))-Mi,(S'0:(0.6)))) 

U_,= (0.6-0.5)/(1-0.5) =0.2. 

Therefore $2=0.2. That's the part of the variable that is continuous, therefore we 

can't reuse U, to simulate U3. If  we tried, we'd get: 

U°+,=(U.-Min(F~(F(U.))))/(Max(F'(F(U.)))-Min(F-I(F(U3))) 

U~=(U.-Min(F '(F(U.))))/0Vtax(F'(F#._)))-Min(F-~(F(U._)))) 

U, = (0.2-Min (F-'(FO.2)))) / (Max(F-' (F(0.a)))-Min(F-' (F(0.2)))) 

U3--(0.2-0.2)/(0.2-0.2)=0/0 , which is undefined. 

So instead, for U 3 we'll have to use Ub, the second of  the uniform 0 to 1 variables we 

were given. 

U3=0.3. Therefore S~=0.3. And we don't have to use U c. 

Example 8 

The James Insurance Company has losses at a Poisson rate of  3 per year. 40% of the 

losses are for $100; 35% are for $1,000; and 25% are for $10,000. Simulate how 

much it had in losses in one year. To do this we are given the uniform 0 to 1 

variables U~ to Uk: 0.57, 0.79, 0.63, 0.02, 0.33, 0.68, 0.18, 0.94, 0.12, 0.21, and 0.95, 

but whenever possible we should l:euse those uniform variables using resimulation, 

so that we use as few of them as possible. 
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We simulate the number  of  losses first, then use resimulation to simulate the amount  

of  each loss. I f  losses occur at a Poisson rate, then the times between losses are 

exponential. So we'll start by simulating them. The CDF for an exponential 

distribution with [] = 1 / 3  is: 

1-e^(-3"S,) 

We can simulate exponential variables if  we set that equal to Un, and solve for S., 

which gives us: 

S,=F(U~)=- 1/3*ln(1-U,) 

We need a uniform 0 to 1 variable, U1, to simulate S 1. For lack of  anything else we 

can use, we'll use the U~ that we were given. Therefore Ut=0.57 , therefore St, the 

time to the first loss is 

=- 1/3"In(1-0.57) =0.2813. 

Now we need another uniform 0 to 1 variable, U2, to simulate S 2. St was continuous, 

so we can't  reuse U t to get U 2. So for lack of  anything else we can use, we'll use the 

U b that we were given. Therefore U2=0.79, therefore $2, the time from the first loss 

to the second loss is 

=-1/3"1n(1-0.79) =0.5202. 

The total time until the third loss is 

=0.2813+0.5202=0.8015. 

Similarly, for U s we'll use U c. Therefore U3=0.63 , therefore $3, the time from the 

second loss to the third loss is 

=-1/3"1n(1-0.63) =0.3314. 

The total time until the third loss is 

=0.2813+0.5202+0.3314= 1.1329. 

The second loss was the last one that occurred before the end of  the first year, 

therefore there were two losses in the year. Now we need to simulate the amount of  

those two losses. To do that, we need another uniform 0 to 1 variable, U 4. And 

here's the trick. Since S s was continuous, one might imagine that we can't  reuse U s 

to simulate U4. But we can. 

1-$1-$2=1-0.2813-0.5202=0.1985. Therefore i f  the time from the second loss to the 

third loss had been less than 0.1985, there would have been (at least) three losses in 
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the year. But as long as the time from the second loss to the third loss was greater 

than 0.1985, there would only have been two losses m the year. And once we know 

that there were only two losses m the year, it doesn't matter to us when the third loss 

actually occurs. It could be in year 2 or it could be in year 100. It doesn't matter. 

And we can reflect that by rewrimag F(U3) as a partially discrete function. 

The CDF for an exponential distribution with [] =1/3  is: 

1-e^(-3*S.)=U. 

Therefore the U, that corresponds to a S. of  0.1985 is: 

1-e^(-3"0.1985)=0.449. 

So we can use this partially discrete function: 

If  0<U3<0.449, then S3=F(U3) =- 1/3*in(I-U3). 

If  0.449<U3<1, then S~ is such that the third loss is after the end of the first year. 

And since U3>0.449 , it falls into the discrete portion of our new function, and we 

can reuse U 3 to simulate U 4. 

U.+,= (U.-Min(F'(F(U.))))/(Max(F'(F(U~)))-Min(F ~'(F(U.)))) 

Therefore 

U~= (U,-Min(F' 0%U,)))) / (Max(V-' (V(U~)))-Min(F-'(F(U~)))) 

U4--(0.63-0.449)/(1-0.449) =0.328 

And once we have a new uniform 0 to 1 random variable, we can simulate the size of 

the losses in the first year fairly easily. 

If 0<Un<0.4, S.= 100. 

If 0.4<U,<0.75, S,=1,000. 

If 0.75<U.<1, S.=10,000. 

Un+ ~= (U~-Min(F-1 (F(IJ,)))) / (Max(F' (F(U,))) Min(FI(F(U.)))) 

U4=0.328. Therefore the size of the first loss, Sa=100. 

Us=(0.328-0)/(0.4-0)=0.82. Therefore the size of the second loss, $5--10,000. 

Therefore the total losses are 100+10,000=10,100. All done using only the first 

three of the uniform random variables we were given. 
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Abstract 

This paper is a review and case study of Butsic’s expected policyholder deficit (EPD) framework for 
measurement and maintenance of risk-based capital adequacy for property-casualty insurance 
companies, the promise of which is that long term solvency protection can be achieved by periodic 
assessment and adjustment of risk-based capital using a consistent and short time horizon, e.g., one 
year, for risks on both sides of the balance sheet.  Using a common one-year EPD risk measure to 
assess all risks, the case study examines the exposure to capital exhaustion during the period 1999 
through 2004 arising from 1) U.S. Commercial Auto Liability accident year 1999 underwriting and 
reserving and 2) investment in the stocks comprising the S&P 500.  The case study results indicate 
that NAIC and rating agency risk-based capital requirements for Commercial Auto Liability are 
significantly higher than necessary to meet stated solvency objectives and much higher than those 
demanded for common stock investments. That disparity probably exists for other lines of business as 
well.  The consistent measurement of all time-dependent risks described in the paper is relevant not 
only to risk-based capital applications but to enterprise risk assessment and management as well. 
 
Keywords: risk-based capital, expected policyholder deficit, stochastic loss models, Commercial Auto 
Liability, enterprise risk management, transfer value 

1. INTRODUCTION  

The thesis of this paper is that U.S. regulatory and rating agency1 risk-based capital 
factors used to allocate capital for at least some non-catastrophe underwriting and reserve 
risks are significantly higher than necessary to meet stated solvency objectives.  These factors 
are too high both in absolute terms and relative to those that are applicable to insurance 
company assets such as common stocks. The reason for this disparity is that the risks related 
to insurance underwriting and reserving and those associated with investing in common 
stocks have been measured inconsistently.  When the risks are measured consistently, less 
risk-based capital is required to support underwriting activity and loss reserves or more 
capital is required to support the holding of assets such as common stocks, or possibly both. 

Our thesis is based on the application of Robert Butsic’s approach to measurement of 
risk-based capital adequacy, which makes use of a clearly defined and consistent time 
horizon for assessing and managing underwriting, asset and other risks.  In his 
Michelbacher-Prize-winning 1992 paper [5] on risk-based capital and solvency issues for the 

                                                 
1 A.M. Best and Standard and Poor’s. 
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property-casualty industry, Butsic showed that long term solvency protection can be 
achieved by periodically rebalancing risk-based capital to maintain a constant (and low) target 
exposure to capital exhaustion over a short prospective time horizon2.  He used the expected 
policyholder deficit (EPD) with a time horizon of one year as the measure of exposure to capital 
exhaustion3.  Butsic’s framework incorporates a consistent time horizon for measuring and 
allocating capital for risks on both sides of the balance sheet.  The risk-based capital 
requirements for asset risks as well as underwriting and reserve risks are all calibrated to the 
same target one-year EPD.  The capital allocated to support a block of assets or 
underwriting risks is adjusted up or down at the end of each year to produce a prospective 
one-year EPD that matches the target value4. 

The idea that an insurer needs to allocate capital to minimize the risk of underwriting and 
reserve related capital exhaustion occurring only within the next year seems to run counter 
to the imperative that allocated capital be sufficient to deal with the risk of insolvency over 
the indefinite time horizon encompassing ultimate claim settlement.  It apparently leaves the 
insolvency risk beyond the next year “unfunded.”  In fact, that is not the case.  Butsic’s 
breakthrough insight was that such longer term risk can be addressed effectively, one year at 
a time, as it comes into the one-year time horizon in future periods (in the same way that 
common stock risk has historically been handled).  Because capital is recalibrated each year 
to the target EPD, any capital inadequacy short of total exhaustion that has emerged during 
a year can be corrected at the end of that year.  In that way the small prospective exposure to 
capital exhaustion at the start of each successive one-year time horizon is maintained at the 
target level.  If an insurer cannot recapitalize at the level consistent with the target EPD, in 
all circumstances except those in which the capital has been exhausted there still will be 
sufficient assets to facilitate liquidation of the risk portfolio.  If the regulators do not 
immediately intervene, rating agencies can calculate the EPD associated with the reduced 

                                                 
2 We refer, in particular, to his discussion on pages 327-335.  A slightly amended version of Butsic’s paper was 

later published in the Journal of Risk and Insurance under the same title [6].  In that version the discussion 
appears on pages 668-675. 

3  The expected policyholder deficit with a time horizon of one year is defined as the expected value of the 
amount by which available assets, including allocated capital, will be inadequate to satisfy all claims one year 
in the future.  A policyholder deficit with respect to asset risk arises when a fluctuating asset value falls below 
the value of unpaid losses (which is assumed to be fixed).  A policyholder deficit with respect to 
underwriting-related risks arises when the fluctuating transfer value of unpaid losses exceeds the value of the 
available assets (which is assumed to be fixed).  The EPD expressed as a ratio to the expected unpaid losses 
as of the beginning of the year can be viewed as the expected value of the proportion of the outstanding 
policyholder claims that will be unrecoverable because of insurer insolvency.  Butsic used a one-year time 
horizon to illustrate his framework.  It could, of course, be more or less than one year. 

4 Note that this framework can easily be adapted to use a risk measure other than the EPD.  The principle that 
the chosen risk measure be used consistently to assess all risks consistently over successive short time 
horizons is more important than the risk measure itself (provided the risk measure is a sound one). 
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capital level and adjust the insurer’s financial strength rating to reflect the increased 
insolvency risk5.   

A major advantage of Butsic’s approach is that its consistent measurement of all risks 
over a common time horizon allows us to compare and ultimately combine risks that have 
different natural time horizons.   That enables us to make clear and meaningful statements 
about an insurer’s exposure to capital exhaustion in the next year.  In contrast, it is less clear 
what a statement about an insurer’s exposure to capital exhaustion means when it reflects a 
mixture of time horizons.  Should capital exposed over different time horizons be calibrated 
to different target EPDs, perhaps 1% for one-year horizons and 4% for four-year horizons, 
or should the target be fixed irrespective of time horizon?  How do risks having different 
time horizons interact?  For example, if we measure risks only at their ultimate time 
horizons, if we add a four-year horizon risk to a portfolio with a one-year horizon, how do 
we measure the one-year capital exhaustion risk of the new portfolio?  Butsic’s framework 
allows us to avoid these questions by focusing on a common time horizon from the start.  

A significant obstacle to the full implementation of Butsic’s approach has been that, while 
it is relatively easy to calculate for asset risks, it is more difficult to determine the one-year 
EPD for underwriting and reserve risks.  Butsic explained the concept and illustrated the 
calculation, but he did not describe a model or method for doing the calculation in practice.  
The issue is that the value of the one-year EPD is a function of a time-dependent loss 
distribution for which actuaries historically have had no use.  However, a recent paper by 
Wacek [12] on the path of the ultimate loss ratio estimate describes a framework that can be 
used to model that distribution.  We will use the approach outlined in that paper together 
with actual industry loss experience to illustrate the application of Butsic’s framework for 
measuring underwriting and loss reserve risk. 

One of our aims is to revive interest in Butsic’s approach to the assessment of risk-based 
capital requirements, and, in particular, the use of a clear and consistent time horizon for 
measuring all of the solvency risks faced by an insurance company.  In this paper we present 
a review and illustration of the key concepts of his framework using insurance industry and 
stock market experience from the period 1999 through 2004.  By using actual experience to 
parameterize stochastic stock price and loss ratio models, we show that Butsic’s framework 
is not only of theoretical interest but can be practically applied in the real world.  While we 

                                                 
5 That is more or less what happens today (though both A.M. Best and Standard and Poor’s base their capital 

factors for underwriting and reserve risks on an ultimate time horizon EPD methodology [1][11]). Best, for 
example, reports that an EPD ratio of greater than 1% indicates a BCAR score of less than 100 and a rating 
of less than B+, and makes clear that capital adequacy is a key element of its rating analysis.  See [1], page 5.  
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focus on the analysis of non-catastrophe risks, Butsic’s framework can also be applied to the 
analysis of the threat to solvency posed by property catastrophe loss events. 

The late 1990s were challenging years for the U.S. insurance industry.  For our case study 
of underwriting and reserve risk within the Butsic framework, we used industry data for 
Commercial Auto Liability, a line that experienced particularly poor accident year 
underwriting results in the late 1990s.  We focused on accident year 1999, which had not 
only the highest estimated ultimate loss ratio of any accident year for that line in the period 
1995 through 2004 but also one that proved difficult for the industry to estimate accurately.  
The ultimate loss ratio estimate of 78.3% booked as of December 1999 had to be increased 
repeatedly, reaching 92.1% as of December 20046.  While there is evidence that the industry 
could have made better estimates at early valuations using information available at the time, 
even those better estimates underestimated the ultimate loss ratio significantly7.   The 
magnitude and unpredictability of the 1999 ultimate loss ratio makes that accident year a 
good choice for stress-testing the Butsic framework. 

The period 1999 through 2004 was also a turbulent one for the U.S. stock market.  The 
S&P 500 rose by more than 20% in two of the six years, declined for three consecutive years 
(including one year by more than 20%) and ended 2004 about 8% above its level at the 
beginning of 19998.  That volatility makes the S&P 500 in this period a good candidate for a 
case study of risk-based capital analysis of diversified common stock investments. 

Our case study reveals that during this period, if the risk in both portfolios is measured 
consistently, the insolvency risk embedded in the industry Commercial Auto Liability 
underwriting and reserve portfolios was a small fraction of that inherent in the diversified 
common stock portfolio represented by the S&P 500.  Our modeling of the increased risk 
associated with individual insurers (compared to the industry as a whole) also indicated 
much lower insolvency risk than investment in the S&P 500.  Moreover, we found that the 
amount of risk-based capital required to achieve a target one-year EPD for underwriting and 
reserve risks consistent with the 1% target sometimes cited for common stocks [1][8] to be 

                                                 
6 According to the industry 2004 Schedule P data reported in the 2005 edition of Best’s Aggregates & Averages 

[4].  These loss ratios were calculated from “incurred net losses and cost containment expenses” reported in 
Part 2C and “net premiums earned” reported in Part 1C. 

7 See Wacek [13], which was a case study of the relative quality of clinical judgment and statistical prediction in 
Commercial Auto Liability loss reserving for accident years 1995 through 2001.   The paper concluded that 
the statistical prediction methods performed far better than the clinical methods actually used to set the 
reserves, but noted that they also did not perform well.  For example, the accident year 1999 loss ratio 
actually booked at twelve months underestimated the ultimate loss ratio by 13.8 loss ratio points, while the 
mean of the statistical estimates underestimated it by 6.9 loss ratio points. 

8 Including dividends, the annual S&P 500 total returns during  the period 1999 through 2004 were as follows: 
+21.0%, -9.1%, -11.9%, -22.1%, +28.7% and +10.9%.  Source: Berkshire Hathaway 2005 Annual Report [3]. 
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much lower than NAIC and rating agency requirements as of December 2006, while we 
found the capital required for common stocks, at least during the period covered by our 
study, to be higher.  Our study was too narrow in scope to support general conclusions, but 
the strikingly lower risk level we found for Commercial Auto Liability suggests that 
consistently calibrated risk-based capital factors would probably also be lower than those 
promulgated by the NAIC and the rating agencies for the underwriting and reserve risk 
associated with other insurance lines.  

1.1 Organization of the Paper 

The paper comprises three main sections including this introduction, plus four 
appendices containing more technical and detailed material.  The heart of the paper is 
Section 2, where we first define the one-year policyholder deficit and its expected value with 
respect to 1) common stock asset risk and 2) underwriting and reserve risk, and then 
illustrate these definitions by applying them to the actual performance of the S&P 500 and 
the U.S. industry Commercial Auto Liability 1999 accident year between January 1999 and 
December 2004.  In addition, we extend the industry analysis to model underwriting and 
reserve risks at the insurer level.  Section 3 comprises a brief summary and our conclusions.  
Appendix A describes the source and use of the loss development data used in the paper.  It 
also includes exhibits that summarize the calculation of statistical ultimate loss ratio 
estimates for accident year 1999 at successive annual valuations using unadjusted historical 
loss development patterns.  Appendix B shows the derivation and illustration of a formula 
for Butsic’s “transfer value of unpaid losses,” a key element in the calculation of the one-year 
actual and expected policyholder deficits with respect to underwriting activity.  Appendix C 
describes the stochastic modeling used to estimate the loss distributions underlying the 
calculation of the policyholder deficit with respect to underwriting and reserve risks.  It 
discusses the sources of variation in future loss ratio estimates, describing in detail how this 
is manifested in the ultimate loss ratio estimates produced by the loss development methods 
used in the paper.  It also discusses our modeling of the estimated ultimate loss ratio and the 
policyholder deficit distributions, explaining our application of Monte Carlo simulation and 
how we reflected parameter uncertainty in the modeling.  Appendix D discusses the 
policyholder deficit and intermediate calculations pertaining to the U.S. industry Commercial 
Auto Liability 1999 accident year experience at annual valuations between December 1999 
and December 2004. 
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2. THE POLICYHOLDER DEFICIT AND ITS EXPECTED VALUE 

The distinctive element of Butsic’s risk-based capital framework is its use of the EPD, 
calculated over a short time horizon, to calibrate risk-based capital consistently for both asset 
risks and underwriting and reserve risks.  In order to determine the EPD for a specified time 
horizon, we first need to define the policyholder deficit for that time horizon and then to 
estimate the mean of its distribution.    

For common stocks, modeling the distribution is relatively easy, because the idea that 
stock prices follow a time-dependent stochastic process, and one that can be modeled, is 
well-established.   On the other hand, modeling the one-year EPD for underwriting and 
reserve risk is more difficult, because it requires a time-dependent perspective of ultimate 
loss ratio estimates, a perspective that is not required for most actuarial applications.   For 
that reason we begin our discussion with common stocks. 

2.1 Actual and Expected Policyholder Deficits - Stocks 

If the required capital to asset ratio for common stocks is c, then an initial stock 
investment of  made from assets matching expected unpaid losses      requires a 
concurrent risk-based capital allocation of .   

0A L0

00 AcC R ⋅=

If the allocated capital C  earns interest at the risk-free rate r and the value of the stock 
investment after one year is , then the value of the capital at the end of the year is equal 
to the change in value of the stock investment plus the initial capital value with interest

0
R

1A
9: 

                                               (2.1) )1(0011 rCAAC R ++−=

If the value of the available assets at the end of the year, , falls below the 
expected unpaid losses     , then there is, by definition, a funding deficit with respect to 
the unpaid policyholder claims.  Setting , we can express that 
policyholder deficit as: 

)1(01 rCA R ++
L0 = A0

  S1 = A0 − C0
R (1+ r )

         111 ASPD −=               (2.2) 

To determine the expected policyholder deficit from the vantage point of investment 
inception, we need to model the prospective year-end policyholder deficit.  We cannot use 

                                                 
9 This formulation assumes no change in the estimate of the total claims value.  It also assumes that any claims 

paid during the period are settled at the end of the year, allowing the stock investment to be held for the full 
year, and that any gain (or loss)  on the stock investment is transferred to (or from) the “capital 
account” at the end of the year, leaving assets in the “investment account” equal to the initial  required to 
match the initial expected unpaid losses . 

01 AA −

0A

0L
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1A  and  for this purpose, because until a year after investment inception, they are 
unknown and uncertain.  However,  and   are prefigured by random variables  
and , defined as of investment inception, which represent the respective values, one year 

out, of the stock investment and the policyholder deficit.  We can express the one-year 
expected policyholder deficit  as of investment inception as the following function 
of : 

1PD

1A 1PD 1a

1pd

)( 10 pdE

1a

     ,        (2.3) 1110 110 )()()( 1 daafaSpdE
S

−= ∫
which is recognizable as the expected expiry value of a one-year European put option on the 
stock investment with a strike price of .  1S

    E0( pd 1)  is the expected value, as of investment inception (hence the ), of the 
policyholder deficit after one year of investment results.  Because it is a measure of the 
capital exhaustion risk associated solely with prospective investment performance, the value 
of  given by Formula (2.3) can be described as the one-year EPD with respect to 
common stock asset risk.   

0E

)( 10 pdE

The classical stock price model assumes that price changes can be explained by geometric 
Brownian motion, which implies that future stock prices after any finite time interval are 
lognormally distributed.  Accordingly, we will assume that  is lognormal.  This allows us to 
restate Formula (2.3) as: 

1a

    )1)(()1)(()()( 211110 −⋅−−⋅= dNSdNaEpdE ,        (2.4) 

where 
σ

σ5.0)/)((ln 2
11

1
+

=
SaEd  and σ12 −= dd .  and  are values of the 

standard normal cumulative distribution function evaluated at  and , respectively

)( 1dN )( 2dN

1d 2d 10. 

If we assume that the initial investment  is funded by assets corresponding to the 
unpaid claims liability  (i.e., 

0A

0L 00 LA = ), then  implies that policyholders can 

expect to recover less than 100% of the value of their unpaid claims.  Butsic advocated that 
the risk-based capital factor c be chosen to target a selected EPD ratio that identifies this 

shortfall, namely, 

0)( 10 >pdE

0

10 )(
L

pdE .  

                                                 
10 For some purposes it may be desirable to know the present value of  the one-year EPD, which is given by the 

Black-Scholes formula for the value of a one-year European put option: 

, where )1)(()1)(())(( 211010 −⋅−−⋅= − dNeSdNApdEPV r

σ
σ5.0)/(ln 2

10
1

++
=

rSA
d and σ12 −= dd . 
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Feldblum [8] reported that Butsic, as part of his work for the American Academy of 
Actuaries Property/Casualty Risk-Based Capital Task Force, had “calibrated the common 
stock charge using a 1% ‘expected policyholder deficit’” and on that basis argued that a 15% 
risk-based capital charge was more appropriate than 30% (which was also under 
consideration)11.   While we do not know what parameter assumptions Butsic used for his 
calibration, his conclusion seems about right for the time period in which he did his work.  
The long term standard deviation of U.S. stock market returns is about 20%12, and the value 
of the CBOE VIX index, which measures the prospective annualized volatility ( ) of the 
S&P 500 index implied by the market prices of short term options on that index, hovered 
around 20% during the early 1990s

σ

13.  If we assume %20σ = , together with a prospective 
expected annual stock return of 10%, risk-free rate %5=r  (both simple rates of return), 

 and , then 10 =A %15=c 8425.005.115.011 =×−=S  and Formula (2.4) produces an 

EPD ratio one year out of 0.81%: 

    

E0( pd 1)
L0

= 1.1⋅(0.9241− 1) − 0.8425 ⋅(0.8916 − 1)= 0.81%  

Suppose the expected unpaid claim liability after one year is  and, after transferring 
assets of  back to the investment account

1L

01 AA − 14, the insurer makes a matching stock 
investment of     A1

15.  Because the capital  was intended to minimize the risk of 
capital exhaustion arising from the stock investment  over the one-year time horizon just 

ended, the allocated risk-based capital needs to be adjusted to maintain the target EPD ratio 
with respect to the updated investment value  for the year ahead.  In particular, risk-based 
capital of      is required to hold the stock investment .  After the transfer of 

 back to the investment account, the capital account balance is , which 
means that a calibrating capital adjustment of  is necessary.  If 

, then the capital provider must contribute additional capital.  
 implies that capital can be released to the capital provider. 

00 AcC R ⋅=

0A

  A1

C1
R = c ⋅ A1   A1

01 AA − )1(0 rC R +

)1(01 rCC RR +−

0)1(01 >+− rCC RR

0)1(01 <+− rCC RR

If we reset     and      at the beginning of each year, we can use Formulas 
(2.1) through (2.3) to determine     ,  and  for any one-year period. 

A0 = A1 C0
R = C1

R

C1 1PD   E0( pd 1)

                                                 
11 Best has also reported that its capital factor of 15% for common stocks “is consistent with A.M. Best’s goal 

of calibrating the baseline capital factors to a 1% expected policyholder deficit.”  See [1], page 6. 
12 Dimson, Marsh and Staunton [7] put it at 20.2% for the period 1900 through 2000 (page 55).  
13 This can be seen in the chart for symbol ^VIX at the Yahoo! Finance website displayed for the maximum 

time range: (http://finance.yahoo.com/q/bc?s=%5EVIX&t=my).  
14 See footnote 9. 
15 It would be sheer coincidence, of course, for  to match .  However, we want to illustrate the capital 

consequences of a buy-and-hold stock investment policy. 
1L 1A
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2.1.1 Case Study – S&P 500:  1999-2004 

In this section we illustrate the calculation of one-year expected and actual policyholder 
deficits for each year from 1999 through 2004 with respect to $100 of assets invested on 
January 1, 1999 in the stocks comprising the S&P 500 index.   

We begin by summarizing the performance of the S&P 500 during the period 1999 
through 2004 against the backdrop of the estimated probability distributions from which it 
arose.  We used the classical stock price model to estimate successive distributions of the 
value one year out of an investment in the stocks comprising the S&P 500 for each year 
from 1999 through 2004. For each of these distributions, we assumed a prospective 
expected annual return of 10% (9.53% continuously compounded) and annualized volatility 
( ) equal to the closing value of the CBOE Volatility Index (VIX) on the last trading day 
before the beginning of each year
σ

16.  

Figure A is a plot of the actual performance during this period of a $100 investment 
made on January 1, 1999 against the backdrop of 95% confidence intervals from these six 
successive distributions of stock investment values one year out17.  The connected square 
dots reflect the actual S&P 500 total return performance including dividends from the 
beginning of 1999 through the end of 2004.  The triangles highlight the successive one-year 
confidence intervals.  The vertical side of each triangle marks the confidence interval range.  
Because each confidence interval is a function of the state of knowledge as of the prior year 
valuation, in order to stress that temporal connection we connected the endpoints of each 
confidence interval to the investment value one year earlier. 

For example, during 1999 an investment in the S&P 500 returned 21.0% and the $100 
initial investment grew to $121.00 at the end of December.  Of course, on January 1, 1999, 
when the $100 investment was made, that result was far from certain.  At that time the 95% 
confidence interval for the value of the investment on December 31, 1999 indicated a range 
of $66.16 to $172.31. 

                                                 
16 These prospective  estimates were: 24.42% (1999), 23.4% (2000), 26.85% (2001), 20.45% (2002), 28.62% 

(2003) and 18.31% (2004).   
σ

17 See Table 1 for the actual investment values plotted here.  According to the general formula for a 95% 
lognormal confidence interval, , the endpoints of the confidence intervals are as 
follows: $66.16-$172.31 (1999), $81.87-$204.87 (2000), $68.95-$197.53 (2001), $69.91-$155.85 (2002), $45.48-
$139.66 (2003) and $73.40-$150.46 (2004). 

)σ5.0σ96.1exp()( 2−±⋅xE
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FIGURE A
Actual  S&P 500  Performance: 1999-2004

Within 95% Confidence Intervals for One Year Horizon
Total Return Including Dividends
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 2000 the actual S&P 500 return was a loss of 9.1%, which reduced the value of the 
inv

actual one-year policyholder deficit ratios for the period 
19

In
estment from $121.00 in January to $109.99 at the end of December.  At the beginning of 

2000 the 95% confidence interval for that ending value was a range of $81.87 to $204.87.  
The actual value of the investment at the end of each year during the 1999 through 2004 
period fell within each year’s 95% confidence interval.  However, in 2002, when the total 
return on the S&P 500 was a loss of 22.1%, the ending investment value fell close to the 
bottom of the confidence interval.  

Table 1 shows the expected and 
99 through 2004.   The actual policyholder deficits were calculated using Formula (2.2), 

assuming capital ratio     c = 15% 18 and risk-free rate %5=r , which imply a capital exhaustion 
threshold 1S  equal to 84.25% of the beginning market value each year.  The EPDs were 
calculated from Formula (2.4) using the same assumptions together with an assumed 
prospective expected annual stock return of 10% and the previously described VIX-based σ  
estimates.  

                                                 
18 We assumed the same 15% capital factor for common stocks used by the NAIC, A.M. Best and S&P in their 

capital models as of December 2006. 
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During most of this period the one-year EPD ratio, given   c = 15% , was significantly 
greater than 1%, averaging about 1.5% over the period.  It reached 2.59% in 2003 when  
peaked at 28.6%.  In 2002 the S&P 500 declined enough that an investment in it would have 
resulted in an actual policyholder deficit equal to 6.35% of the January 2002 investment 
value

σ

19.  Given the high average EPD ratio during the period, it is not surprising that an 
actual policyholder deficit would have emerged in at least one year.  A one-year EPD ratio of 
1.5% corresponds roughly to an annualized 15% chance of a 10% deficit.  Over six years the 
probability of a deficit in one or more years is over sixty percent20! 

 
TABLE 1 

Expected and Actual Policyholder Deficits 1999-2004 
S&P 500 Investment (1) 

Policyholder Deficit 

Calendar 
Year σ  

Beginning 
Market 
Value     

A0

Ending 
Market 
Value     

A1

Capital 
Exhaustion 
Threshold 

S1

Expected 
E0(pd1) 

Actual 
PD1

1999 24.4% $100.00 $121.00  $84.25  1.63% 0.00% 

2000 23.4%   121.00    109.99   101.94  1.42% 0.00% 

2001 26.9%   109.99      96.90   92.67  2.17% 0.00% 

2002 20.5%    96.90      75.49  81.64  0.89% 6.35% 

2003 28.6%    75.49      97.15  63.60  2.59% 0.00% 

2004 18.3%    97.15    107.74 81.85  0.57% 0.00% 

(1) 15% capital, 5% risk-free rate, 10% expected stock return 

 

Figure B shows how the risk-based capital allocated using a 15% factor at the beginning 
of each year was affected by the investment performance during the year.  It also shows 
how, at the end of each year, the risk-based capital was rebalanced to match the prospective 
15% requirement.  In 2002 the capital was totally depleted and a policyholder deficit 

                                                 
19 . %35.690.96$/)49.75$64.81($ =−
20 The binomial probability of no deficit in six years, given a 15% annual chance of deficit, is about 38%. 
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emerged. In order to continue trading forward into 2003, the capital provider would have 
needed both to fund that deficit and recapitalize to the 15% level.  

This recap of historical policyholder deficit experience assumed a constant capital ratio of 
15%.   Given the widely varying EPD ratios indicated by the VIX estimates of , if the 
objective is to maintain a constant one-year EPD ratio, then it is necessary to adjust the 
capital ratio c to reflect expected S&P 500 volatility in the year ahead.  If the c had been 
recalibrated at the beginning of each year to correspond to a prospective one-year EPD ratio 
of 1%, then the capital ratios would have been as follows:  19% (1999), 18% (2000), 22% 
(2001), 14% (2002), 24% (2003) and 11% (2004). 

σ

 

FIGURE B
Risk-Based Capital for S&P 500 Investment: 1999-2004

Investment of $100 on January 1, 1999
Required Capital = 15% of Investment Market Value
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2.2 Actual and Expected Policyholder Deficits – Underwriting21

f 
bu

                                                

For our analysis of underwriting and reserve risks, we will focus initially on a single line o
siness for a single accident year and later discuss the implications of the more realistic 

scenario that involves reserves from multiple accident years.  We will begin with 

 
21 To avoid a proliferation of variable names, we will reuse the capital and policyholder deficit related notation 

from Section 2.1. In particular, we will redefine , , , , ,  and      to reflect the 
underwriting related context of this section. 

  C 0
R

  C 1   C 1
R )( 10 pdE   PD1   pd 1 S1
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underwriting risk.  The total available assets one year after accident year inception comprise 
the allocated risk-based capital and the underwriting assets derived from premiums22, plus 
interest earned on these assets during the year23.  If we assume that the underwriting assets 

)( 0LT  and allocated capital RC 0  earn interest at the risk-free rate r, then the value of the 

1S  available at the end of the year to fund the claim obligation that was assumed at 

accident year inception is: 

assets 

)1())(( 4
3

001 rLTCS R +⋅+=   

In nominal terms, the end of year value of the estimated claim obligation  that was 
ass

0L
umed at inception is the sum of the estimated unpaid losses 1L  at year-end and the 

claims paid during the year 1P .  The transfer value of that liability )11 PT (L +  is the price at 
which 11 PL +  can be removed from the insurer’s balance sheet on r accident year 

inceptio

  In orde

e year afte

n. 

r to quantify , let us look at the transfer values of the paid and unpaid 
loss components separately. 

)( 11 PLT +
)( 1LT  is the price a third party would charge to assume the 

liability for unpaid losses 1L ne year of development, which Butsic defined as the 
present value of 1L  plus a risk charge to reflect the uncertainty in the unpaid losses

 at o
24.  

)( 1PT  is the price claimants would demand to defer payment of their claims until year-end.  
ing that the claims comprising 1P  are paid, on average, halfway through the year, then 

their year-end transfer value is 
Assum

)1()( 2
1

11 rPPT +⋅= .  The total year-end transfer value of 

11 PL +  is )()( 111 TLTPLT +=+ )( 1P . 

The capital position one year after accident year inception is equal to the value of the 
underwriting and capital assets less the transfer value of the loss liability25: 

                                                 
22 These are premiums net of expenses only.  Claims paid during the year are treated as part of the loss liability. 
23 We assume that half of the accident year earned premiums is written and collected before the beginning of 

the accident year and thus earns interest for the full year.  We assume the other half of the earned premiums 
 

24

f the value of insurance 

25

is collected, on average, halfway through the year and earns (simple) interest for six months.  Capital is
assumed to be allocated as premiums are collected and to earn interest accordingly. 
 Conceptually, this is identical to the theoretical market price of a stock, which also reflects the present value 
of the future realizable cash flows of the company and an appropriate risk premium.  In an efficient market, 
the theoretical and actual market prices should be the same.  In his discussion o
claims, Butsic used the terms “market value” and “transfer value” interchangeably.  Because there is not an 
active market after policy inception for the buying and selling of loss reserves, we prefer the term “transfer 
value,” which has a more theoretical connotation. We derive a formula for )( nLT  for 1≥n  in Appendix B, 
which reflects the recapture of the cost of the allocated risk-based capital.  That approach has also been 
discussed in connection with the EU’s Solvency II initiative.  See the UK FSA’s Solvency II discussion paper 
[10], page 25. 
 This formulation assumes that any shortfall (or surplus) in the assets available to fund losses is transferred 
from (or to) the “capital account,” leaving the correct amount in the “underwriting account” to fund losses 
exactly. 
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                 )( 1111 PLTSC +−= ,                    (2.5) 

If 111 )( SPLT >+ , then the ending capital 01 <C , which implies a policyholder deficit 

of: 

      )P            111 ( SLTPD + −1=               (2.6)  

While at age twelve mon )( 11 PLT +ths  and  take on specific values, at accident year 
inception their values are unknown and uncertai . Let  and 
def n, that cor d t

1PD
n 1t 1  be random variables, pd

ined at accident year inceptio respon o )( 11 PLT +  and 1PD , respectively.  1t  

represents the transfer value, one year out, of the unpaid losses embedded in the premiums 
at accident year inception and 1pd  represents the polic ficit, year out, viewed 

from the vantage point of accident year inception. 

We can express the one-year expected policyholder deficit as of accident year inception as 
the following function of 1t : 

yholder de one 

      111110 )()()(
1

dttfStpdE
S∫
∞

−= ,         (2.7) 

which is recognizable as th  ee xpected expiry value of a one-year European call option, with a 
strike price of  on the tra  value, one year out, of the ti ated u paid l

.  It is calculated at accident year inception before any actual claims have been 
re

al ratios
d underwriting risk-based 

cap

capital factor  should likewise be chos  equal to 1% of 
.  However, because  is not observable, a practical alternative is to calibrate the EPD 

t
                                                

1S , nsfer es m n osses at 
inception26. 

)( 10 pdE is the expected value as of inception of the policyholder deficit after one year of 
development

ported.  Because it is a measure of the capital exhaustion risk associated solely with 
prospective underwriting activity, the value of )( 10 pdE  given by Formula (2.7) can be 
described as the one-year EPD with respect to underwriting risk.   

Butsic advocated calibration of risk-based capit  to produce consistent EPD ratios 
for all asset, underwriting and reserve risks.  Suppose the require

ital RC 0  at accident year inception is defined as a certain percentage 0c  of the premiums 
net of expenses )( 0LT , which implies )( 000 LTcC R ⋅= .  If the target one-year EPD ratio 
for common stocks is set at 1% of expected unpaid losses, then the und writing risk-based er

 0c en to produce a value of )( 10 pdE

0 0

o 1% of the loss provision implied by premiums net of expenses )( 0LT . 
L L

 
26 Note that while the classical theory of stock prices implies that  (the stock price random variable) is 

lognormal, 1  is lognormal only under very narrow circumstances, which means we cannot simply use the 
stock price model to value the underwriting risk EPD.  We also cannot use the Black-Scholes call formula to 
determine the present value of the one-year EPD. 

1a
t
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At twelve months after accident yea r interest turns from the adequacy of 
the loss provision in the premiums to the adequacy of the loss reserves.  The loss reserve 1L  
must be funded by assets equal to )( 1LT .  In addition, capital of 1C  is required to 

port the loss reserves r the next twelve months, bringing the total required accident 
year underwriting and capital assets to )( 11 LTC R + .  Because t din

r inception, ou

R ⋅=

sup  fo
he en g capital

rar
t

tal can be r

ly w
loss reserve estimates.  We could also r

ly as a resu
nvention is to refer to the risk arising from loss reserves as 

res

 (including interest earned for the full year) is: 

         

d claims . 
At

11 Lc

 1C  will 
ely match the prospective required capital C1 , a calibrating capital adjustment of  

11 CC R −  is necessary.  011 >− CC R  implies that the capital provider must contribu e 
additional capital in that amount.  01 <C  implies that capi eleased to the 

capital provider in that amount. 

From one year of accident year development and beyond, the successive one-year EPDs 
measure the capital exhaustion risk associated on ith the prospective uncertainty in the 

efer to the risk arising from loss reserve uncertainty as 
underwriting risk, since it arises on lt of past underwriting activity.  However, 
because the risk-based capital co

R

1 −C R

erve risk, we follow that convention of separating the total risk in the accident year into 
its underwriting and reserve components. 

2.3 Actual and Expected Policyholder Deficits – Loss Reserves 

Following the capital rebalancing at the end of the first year of development, the 
combined risk-based capital and underwriting assets total )( 11 LTC R + .  By the end of the 
second year the value of available assets 2S

)1())(( 112 rLTCS R +⋅+=

During the second year of development, the loss reserve L  is reduced by pai1

 the end of the year     L1 − P2  is replaced by a revised loss reserve 2L , which is based on the 
loss development observed during the year. 22 PL

 2P

+  is the one-year hindsight estimate of 

1L , with a transfer value of )1()()( 2
1

2222 rPLTPLT +⋅+=+ .  The economic value of the 

allocated capital at the end of the second year of development is given by: 

)( 2222 PLTSC +−=                (2.8) 

    T(L2 + P2 )> S2  implies a policyholder deficit of: 

PD 2222 )( SPLT= + −    

nding 
to PLT , respectively. We can then express the one-year EPD at age o
as the following function of : 

      (2.9) 

Let  2t  and 2pd  represent the random variables, defined at age one year, correspo
)( 22 + and 2PD ne year 

2t
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      E1( pd2 ) = (t2 −
S

S2
2

∞

∫  
) f (t 2 )dt 2 ,       (2.10) 

which is the same as Formula (2.7) except that the subscrip  are fferen The o
EP h ct t

The risk-based capital required to support the unpaid loss liability hich
funded by assets of LT ) in the period from two to three years of development is 

ted at each successive valuation at one-year intervals until all 
accident year claims have been paid.  The key loss-related formulas applicable to the 
val

ts di t. ne-year 
D wit  respe o loss reserve risk at twelve months is expressible as the expected expiry 

value of a one-year European call option on the transfer value, one year out, of the unpaid 
losses as of twelve months.   

2L  (w  itself is 
)( 2

222 LcC R ⋅= .  Because the ending capital at two years is 2C  a calibrating capital adjustment 
of 22 CC R −  is required, resulting in an additional capital contribution or a capital release. 

The same process is repea

uation n years after accident year inception (for 1≥n ) are as follows:  

   nn
R
n LcC ⋅=         (2.11) 

  )1())((1 rLTCS n
R
nn +⋅+=+           (2.12) 

   )( 1111 ++++ +−= nnnn PLTSC           (2.13) 

         1111 )( ++++ −+= nnnn SPLTPD , if 11 )( +++ > 1+ nnn SPLT      (2.14) 

    
+1    

En( pd n +1) = (t n +1 − Sn +1

∞

Sn
∫ ) f (t )dt       (2.15) 

In practice, an insurer’s unpaid losses almost never pertain to a single accident year.  This 
is important, because the objective of minimizing exposu to cap al exh tion
reserve risk does not require minimizing that exposure with respect to eac ccid
individually, but rather for all accident years collectively.  As we will see n ur ca
discussed in Section 2.4.1, this makes a big difference in the amount of required capital.  The 
key formulas for working with unpaid losses arising from multiple cc ent ye rs are 
Sec

erves from multiple accident years as well as our modeling of 
the policyholder deficit calculations at the insurer level. 

n + 1 n +1

re it aus  due to 
h a ent year 

 i  o se study 

 a id a given in 
tion C.7 of Appendix C.  

2.4.1 Case Study – Commercial Auto Liability Accident Year 1999:  1999-2004 

In this section we illustrate the calculation of one-year expected and actual policyholder 
deficits at the industry level for each year from 1999 through 2004 with respect to accident 
year 1999 claims arising from $100 of Commercial Auto Liability earned premiums.  We also 
discuss the impact of loss res
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We begin by summarizing the performance of statistical ultimate loss ratio estimates 
during the period 1999 through 2004 against the backdrop of the estimated probability 
distributions from which they arose.   

The statistical ultimate loss ratio estimates – so called because they reflected no actuarial 
or other clinical judgment – are simple averages of the unadjusted estimates produced by 
fou

13], in a comparison of the accuracy of 
var

As of December 31 each Year 

r traditional loss development methods: 1) paid chain ladder, 2) paid Bornhuetter-
Ferguson, 3) case incurred chain ladder, and 4) case incurred Bornhuetter-Ferguson.  We 
chose the four-method average because Wacek [

ious loss projection methods for accident years 1995 through 2001, found the four-
method average to be the most accurate estimator of the ultimate loss ratio over that period 
for Commercial Auto Liability at twelve, twenty-four and thirty-six months of development.  

 

TABLE 2 

Accident Year 1999 Ultimate Loss Ratio Estimates 
Commercial Auto Liability 

Calendar 
Year CL Paid 

CL Case 
Incurred B-F 

B-F Case 
Incurred 

Mean of 
Methods Paid 

1999 85.3% 90.3% 84.7% 83.7% 82.5% 

2000 91.7% 90.0% 89.1% 90.8% 88.4% 

2001 92.7% 92.4% 92.1% 91.9% 92.3% 

2002 93.5% 92.9% 93.4% 92.9% 93.2% 

2003 93.1% 92.2% 93.1% 92.2% 92.6% 

2004 91.6% 91.8% 91.7% 91.8% 91.7% 

 

Table 2 s the es o imate tio fr four s and their 
mean at th of ea from hroug 27.  Th  of m  estimate as 
of the end of 1999 was 85.3%.  Unanticipated loss development, i.e., development beyond 
that impli the l de nt p  durin next ears led to 

                                              

 show  estimat f the ult  loss ra om the  method
e end ch year  1999 t h 2004 e mean ethods

ed by historica velopme atterns, g the three y

   
27 See Appendix Exhibit A-4 for the details of the calculation of each of these ultimate loss ratio estimates.  For 

a full description of the four methods, see Appendix A, Section A.2.2, of [13]. 
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inc

 estimated as of the end of 1999 was one of many potential estimates.  If the 
ob

loss ratio estimates for 
suc

  

reases in the ultimate loss ratio estimate in each of 2000, 2001 and 2002 to 90.0%, 92.3% 
and 93.2%, respectively28.   Then the pattern of unfavorable development deviation reversed 
itself, and in 2003 and 2004 unexpectedly favorable development led to slight reductions in 
the ultimate loss ratio estimate to 92.6% and 91.7% at the end of 2003 and 2004, 
respectively. 

Each of these actual ultimate loss ratio estimates can be viewed as one outcome from the 
distribution of potential loss ratio estimates arising from a stochastic loss development 
process.  For example, from the vantage point of accident year inception, the ultimate loss 
ratio of 85.3%

served loss development during 1999 had been different, then the ultimate loss ratio 
estimate would also have been different.  We estimated the distribution of these different 
ultimate loss ratio estimates using a Monte Carlo simulation process that stochastically 
modeled the loss development observed during 1999, combined it with what was already 
known at accident year inception, and then applied the four loss development methods 
described above to the simulated experience.  We used the set of ultimate loss ratio estimates 
produced from 10,000 Monte Carlo trials as a discrete approximation of the distribution of 
the ultimate loss ratio estimate one year out (at the end of 1999) from the vantage point of 
accident year inception.   We followed the same procedure to model the distribution of the 
ultimate loss ratio one year out at each successive annual valuation from accident year 
inception (which we have just described) through December 200329.  

Figure C is a plot of the path of the 1999 accident year ultimate loss ratio estimate (the 
four-method average) for Commercial Auto Liability against the backdrop of 95% 
confidence intervals from the distributions of the estimated ultimate loss ratio one year 
out30.  The connected square dots reflect the actual statistical ultimate 

cessive annual valuations ranging from the beginning of 1999 through the end of 2004.  
As in Figure A, the triangles highlight the successive one year confidence intervals, where the 
vertical side of each triangle marks the confidence interval range.  

                                               
28 Because the estimated ultimate loss ratios were purely statistical estimates calculated from the unadjusted 

indications of the four loss development methods, the main source of subsequent upward or downward 
revisions in the estimates was the deviation of observed loss development from that predicted by historical 
patterns.  An additional source of minor deviations was the behavior of the five-year moving averages of 
historical development used to estimate prospective development.  See footnote 32. 

29 See Appendix C for a detailed description of how these distributions were estimated.  
30 The endpoints of the confidence intervals are as follows: 76.1%-85.1% (1999), 83.6%-91.6% (2000), 87.9%-

93.0% (2001), 90.4%-94.3% (2002), 91.5%-95.0% (2003) and 92.0%-93.4% (2004). 
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FIGURE C
Path of Accident Year 1999 Ultimate Loss Ratio Estimate: 1999-2004

Within 95% Confidence Intervals for One Year Horizon
Commercial Auto Liability
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Figure C shows that at the beginning of the accident year on January 1, 1999, the initial 
ultimate loss ratio estimate was 81.1%31. At that time the 95% confidence interval for the 
ultimate loss ratio estimate one year out (i.e., at the December 31, 1999 valuation) was 

unded by 76.1% on the low end and 85.1% on the upper end32.  Based on the actual loss 
emergence during calendar year 1999 the four-method average ultimate loss ratio estimate as 
of 

                                                

bo

December 31, 1999 was 85.3%.  Unusual paid and case incurred loss development during 
calendar year 1999 led to an upward revision in the ultimate loss ratio estimate to just above 
the upper end of the 95% confidence interval. 

At the December 31, 1999 valuation, the 95% confidence interval for the ultimate loss 
ratio estimate one year out (i.e., as of December 31, 2000) was a range of 83.6% to 91.6%.  
One year later, at the December 31, 2000 valuation, the ultimate loss ratio estimate was 

 
31 This the mean of the paid and case incurred Bornhuetter-Ferguson initial expected loss ratios, 83.4% and 

78.7%, respectively, which were based purely on 1998 and prior accident year experience.  See [13] for more 
information about how that was done.  This purely statistical estimate ignored other objective information, 
which, if available, might have improved this estimate. 

32 The mean of the ultimate loss ratio estimate one year out was 80.3%, which is different from the 81.1% 
estimate as of January 1, 1999 because it reflects a slight difference in the five data points comprising the 
development factor means.  The estimate one year out drops the calendar year 1994 development 
observation from each development factor calculation and replaces it with the mean of the 1994-1998 
observations. 
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rev

at the width of the confidence intervals became smaller in successive years, which 
ref

ised from 85.3% to 90.0%, based on loss development observed during calendar year 
2000.  

The ultimate loss ratio estimates continued to increase at the December 31, 2001 and 
2002 valuations, before declining slightly at the December 31, 2003 and 2004 valuations33.  
Note th

lects the declining proportion of unpaid claims (the only source of uncertainty) within the 
loss ratio.   

 

FIGURE D
Accident Year 1999 Actual & Hindsight Unpaid Loss Ratio Estimates: 1999-2004

Within 95% Confidence Intervals for One Year Horizon
Commercial Auto Liability
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Because the threat to solvency arises from the potential for adverse deviation inherent in 
the unpaid portion of the ultimate loss ratio estimate, let’s look at the behavior of the 

cident year 1999 unpaid loss ratio over the same period.  Figure D is a plot showing the 
) and their hindsight re-estimates one year later 

L

                                                

ac
succession of unpaid loss estimates ( nL
( 11 ++ + nn P ) against the backdrop of 95% confidence intervals for the latter.  The connected 

square dots represent the actual and one-year hindsight estimates of the unpaid loss ratio at 

 
33 The development of both paid and case incurred losses during 2004 was extremely light compared to the 

historical pattern.  Referring to the columns labeled “Age 5-6” in Appendix Exhibits A-1A and A-1B, we see 
that the paid age-to-age factor of 1.032 was the lowest by far of eleven factors and the case incurred age-to-
age factor of 1.007 was tied for lowest of eleven.   
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successive annual valuation between accident year inception and 2004.  The triangles show 
the 95% confidence intervals for the hindsight estimates one year out, and as such provide a 
visual representation of the potential exposure of the unpaid loss estimate to upward or 
downward revision in the next year. 

The initial unpaid loss ratio estimate at accident year inception was %1.810 =L .  One 
year later the hindsight estimate of 0L  as of December 1999 was %3.8511 =+ PL , 
representing the sum of the paid loss ratio 1P  of 20.6% and the unpaid loss ratio 1L  of 
64.7%.  The upward sloping line c c   and onne ting 0L 11 PL +  indicates adverse loss 
development, which is quantified by the difference %2.4011 =−+ LPL s (5% 
of 0L ). 

The hindsight estimate of 1L  as of December 2000 was %4.69

 of premium

22 =+ PL , the sum of the 
period paid loss ratio %6.232 =P  and the unpa loss rat %8.45=id io 2 L

r adverse loss devel
mi s (7% of L

an
 estimates.

nd 04 the unexpected loss development turned favorable. 

fa
Because the 

req

.  The upward 
sloping line between L  and PL +  indicates furthe opment of 4.7% of 
pre um

1 22

 1 ). 

The next two years, 2001 d 2002 saw a continuation of the pattern of the hindsight 
estimates of unpaid losses exceeding the beginning of year   The adverse 
development was 2.3% of premiums (5% of L ) in 2001 and 0.8% of premiums (3% of   L ) 

in 2002.  In 2003 a  20
2 3

The cumulative adverse loss development from accident year inception through 
December 2002 totaled 12% of premiums.  That seems to support the argument for a large 
capital requirement for Commercial Auto Liability.  However, the fact that this short ll 
emerged over four years rather than a single year is extremely important.  

uired amount of risk-based capital is determined annually, any erosion of allocated capital 
caused by adverse loss development is replenished at the end of the year.   If capital 
exhaustion can be avoided for each of the four years in succession, then clearly capital 
exhaustion is also avoided for the four years as a block.  In that context the adverse loss 
development seen in Commercial Auto Liability between 1999 and 2002, which averaged 
about 5% of the unpaid loss estimate at the beginning of each year, was much more 
manageable than the volatility seen in the S&P 500, which lost 22% of its value in a single 
year (2002) and 38% over three years (2000-2002).  
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FIGURE E
Risk-Based Capital for Accident Year 1999 Unpaid Losses: 1999-2004
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Ending Capital Rebalanced Capital   

This can be seen in Figure E, which shows the effect on capital of the accident year 1999 
loss development observed between accident year inception and December 2004, assuming 
an 

                                                

expense ratio of 25%, risk free rate of 5% and a required capital ratio of 15%34.  It shows, 
for example, that because the year-end 1999 ultimate loss ratio estimate of 85.3% exceeded 
the funding capacity of the premiums, a portion of the initial capital of $11.25 (15% of $75) 
had to be diverted to fund losses and capital ended the year at $5.65.  That implied a loss to 
insurers, but capital was far from exhausted.  At the end of 1999 capital had to be topped up 
to $9.70 (15% of unpaid losses of $64.69).  During 2000 further adverse development 
resulted in a reduction in capital to $7.23.  However, the required capital going forward (15% 
of unpaid losses of $45.80) was only $6.87, which meant that $0.36 of capital could be 
withdrawn.  Subsequent increases in the ultimate loss ratio estimate in 2000 and 2001 

 
34 We chose the same 15% capital factor used for common stocks in order to facilitate the comparison of the 

relative riskiness of Commercial Auto Liability insurance and an investment in the S&P 500.  As of 
December 2006, the NAIC and S&P both used capital factors for underwriting risk that equate to about 22% 
of premiums net of 25% expenses, and capital factors for reserve risk that equate to 16% and 10%, 
respectively, of undiscounted loss reserves.  Note that, unlike the NAIC and Best, S&P does not use 
covariance or diversification adjustments, so its effective factors on a comparable basis are at least 50% 
higher than those given here. Best has not published its underwriting and reserve factors, but we have 
observed Best capital factors for Commercial Auto Liability greater than 15%. 
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resulted in further capital drawdowns.  However, in none of the years was capital close to 
being exhausted35. 

Table 3 shows the expected and actual one-year policyholder deficit ratios for the period 
1999 through 2004 in tabular form.  The actual policyholder deficits were calculated using 
Formula (2.6) for the December 1999 valuation and Formula (2.9) for the 2000 through 
2004 valuations.  For further details of these calculations, see Appendix Exhibit D.   

 
TABLE 3 

Expected and Actual Policyholder Deficits 1999-2004 

Industry Commercial Auto Liability - Accident Year 1999 (1) 

Policyholder Deficit 

Calendar 
Year 

n 
(2) 

Beginning 
Unpaid 

Loss 
Provision 

Ln (3) 

Hindsight 
Unpaid 

Loss 
Ln+1+Pn+1

Transfer 
Value 

Hindsight 
Unpaid 

Loss 
T(Ln+1+Pn+1)

Capital 
Exhaustion 
Threshold 

Sn+1 Expected Actual 

1999 0 $75.00 $85.32 $83.84  $89.48  0.01% 0.00% 

2000 1 $64.69 $69.39  $68.78  $76.01  0.01% 0.00% 

2001 2 $45.80 $48.07  $47.89  $54.05  0.00% 0.00% 

2002 3 $28.76 $29.65  $29.62  $34.03 0.00% 0.00% 

2003 4 $16.01 $15.48  $15.48  $18.95  0.04% 0.00% 

2004 5 $8.07 $7.15 $7.10 $9.54 0.02% 0.00% 

 
(1) 15% capital, 5% risk-free rate 
(2) Lag from inception (in years) as of beginning of year 
(3)  for 1999 )( 0LT

 
 

                                                 
35 See Appendix Exhibit D for the details underlying the calculation of capital and policyholder deficits with 

respect to the underwriting and reserve risks associated with the Commercial Auto Liability accident year 
1999 between 1999 and 2004. 
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The expected policyholder deficit  was calculated using Formula (2.7) for the 

1999 valuation (    

)( 1+nn pdE

n = 0) and Formula (2.10) for the 2000 and subsequent valuations 
(    1≤ n ≤ 5)36.  A capital requirement of )(%15 nLT⋅  and risk-free rate %5=r  implied capital 
exhaustion thresholds )05.01()(15.1 4

3
01 ⋅+⋅⋅= LTS  for   n = 0 and 05.115.11 ⋅⋅=+ nn LS  

for     1≤ n ≤ 5.  The policyholder deficit was determined by comparing the transfer value 
 of the hindsight estimate )( 11 ++ + nn PLT   Ln +1 + Pn +1 to the capital exhaustion threshold .  

We have expressed the policyholder deficits in Table 3 as ratios to 
1+nS

 Ln
37. Throughout the 

1999-2004 period the one-year EPD was barely greater than zero. The largest EPD value 
was 0.04% (4 basis points) in 2003 and its average was less than 1.5 basis points, just 1% of 
the EPD calculated for the investment in the S&P 500!  Moreover, despite the persistent 
pattern of upward adjustment in the hindsight reserve estimates, the actual policyholder 
deficit remained zero throughout the 1999-2004 period.  

These expected and actual policyholder deficit calculations assumed that accident year 
1999 was the sole source of Commercial Auto Liability loss reserves.  If, instead, we assume 
that there were also loss reserves from a number of other accident years, then the one-year 
EPD with respect to total reserve risk approaches zero.  To illustrate this simply, let us 
pretend that the loss development statistics tabulated in Table 3 with respect to accident year 
1999 over several calendar years instead pertained to loss development observed during 
calendar year 2000 with respect to accident years 1995 through 1999 as shown in Table 4.  
To create Table 4 we mapped the accident year 1999 loss reserves at each development age 
(shown in Table 3) to the accident year that would be the same age in calendar year 200038.   
In effect, we assumed that the accident loss exposure was constant from 1995 through 1999 
and the development patterns observed in that period were similar to those we saw for 
accident year 1999 as it developed.   

At the beginning of 2000, the total unpaid loss provision with respect to these 
hypothetical accident years 1995-1999 was $163.33.  At the end of 2000 the hindsight loss 
estimate for this block of reserves increased to $169.74 and the transfer value of that 
hindsight estimate was $168.27.  The capital exhaustion threshold, which reflects the 
beginning of year total underwriting and risk-based capital assets plus interest, was $191.78.  

                                                 
36 Strictly speaking we calculated the EPDs from discrete approximations of the underlying distributions 

achieved through Monte Carlo simulation, rather than by integrating the actual continuous density functions 
as implied by the references to Formulas (2.7) and (2.10).  In particular, we approximated the application of 
Formulas (2.7) and (2.10) by using Formulas (2.6) and (2.9) for each Monte Carlo trial and then computing 
the mean policyholder deficit over all trials. 

37  for   )( 0LT   n = 0. 
38 This is a purely illustrative assumption for the purpose of showing the effect that holding multiple accident 

years’ reserves has on the policyholder deficit calculations.  
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That implied an actual policyholder deficit of zero.  We also found the one-year EPD to be 
negligible.  We assumed the unpaid accident year losses were independent, but if they were 
anything less than totally correlated, the expected and actual policyholder deficits for the five 
accident years’ unpaid losses would always be lower than for the accident years individually. 

  
TABLE 4 

Expected and Actual Policyholder Deficits  

Illustration of Multiple Accident Years’ Reserves Effect in 2000 

Industry Commercial Auto Liability – Hypothetical Accident Years 1995-1999 

Policyholder Deficit 

Accident 
Year 

Beginning 
Unpaid 

Loss 
Provision  

Hindsight 
Unpaid 

Loss  

Transfer 
Value 

Hindsight 
Unpaid 

Loss  

Capital 
Exhaustion 
Threshold Expected Actual 

1995 $8.07 $7.15 $7.10 $9.54 0.02% 0.00% 

1996 $16.01 $15.48  $15.48  $18.95 0.04% 0.00% 

1997 $28.76 $29.65  $29.62  $34.03 0.00% 0.00% 

1998 $45.80 $48.07  $47.89 $54.05  0.00% 0.00% 

1999 $64.69 $69.39  $68.78  $76.01  0.01% 0.00% 

1995-99 $163.33 $169.74 $168.87 $191.78 0.00%+ 0.00% 

 
15% capital, 5% risk-free rate 
 
 

Clearly, compared to the risk in the diversified common stock portfolio exemplified by 
the S&P 500, at the industry level the exposure to capital exhaustion posed by the accident 
year 1999 Commercial Auto Liability underwriting and reserve risks, given the same 15% 
capital ratio used with the S&P 500, was negligible.  However, because solvency concerns are 
focused on the exposure that individual insurers have to capital exhaustion, and not on the 
exposure of the industry as a whole, we need to address the question of insolvency risk at 
the insurer level.   
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While we did not have access to the individual insurer data comprising the industry 
experience and thus could not model capital exhaustion exposure at the insurer level directly, 
we were able to model it indirectly by making use of the relationship between insurer “total 
risk” and “industry risk” reported by the American Academy of Actuaries Property/Casualty 
Risk-Based Capital Task Force [2].  The Task Force reported “total risk” coefficients of 
variation for ultimate time horizon underwriting and reserve risks of 23.3% and 17.2%, 
respectively, and corresponding “industry risk” coefficients of 12.2% and 6.4%, equating to 
ratios of 2.7 and 1.939.   To approximate the risk faced by individual insurers, we multiplied 
the standard deviations of the age-to-age development factor natural logarithms tabulated in 
Appendix Exhibits A-2A and A-2B by factor of 3 (rounding up from 2.7 and 1.9).  We then 
repeated the same one-year EPD analysis that we had performed using the industry data40. 

This procedure produced a one-year EPD with respect to underwriting risk of 0.50% and 
a one-year EPD with respect to the reserve risk arising from the five accident years 1995-
1999 of 0.03%, both of which are much lower than the average one-year EPD of 1.5% for 
the S&P 500 using the same risk-based capital factors. 

Calibrated to a 1% target one-year EPD, the indicated Commercial Auto Liability capital 
factors for individual insurers would have been 5% for underwriting risk and 4% for reserve 
risk. These indicated factors are much lower than those promulgated by the NAIC and the 
rating agencies41.   

3. SUMMARY AND CONCLUSIONS 

In this paper we have provided a detailed roadmap for the application of Butsic’s 
framework for insurance company solvency protection and illustrated it with a case study 
using historical data.  The results of the case study support Butsic’s contention that 
insurance company solvency can be ensured by the periodic assessment and rebalancing of 

                                                 
39 See [2], Exhibit 3, Sheets 1 and 2, pages 155-156. 
40 A factor of 3 increased the coefficient of variation of a lognormal random variable by slightly more than 3.  

See Appendix C for details of the loss development model used for the industry and company analyses. 
41 See footnote 34 for a recap of those factors.  Another simple way to measure the relative variability of an 

investment in the S&P 500 and Commercial Auto Liability insurance is to compare the coefficients of 
variation of the random variables      and .  The c.v. of   ranged from 18% to 29%.  In contrast the 
coefficients of variation for  (in particular, for , which corresponds to underwriting risk, and 

an +1   t n +1   an +1

1+nt 1t ∑ it , 
which corresponds to total reserve risk) were much lower at 9% for underwriting and 3% for total reserves.  
S&P states that its 15% capital factor for common stocks is equal to the standard deviation of S&P 500 
annual returns since 1945 [11] (page 35).  Ignoring the fact that our research indicated a higher standard 
deviation for the S&P 500, if S&P had been consistent in its approach, it would have set its capital factors at 
9% for underwriting risk and 3% for reserve risk instead of at 22% and 10%.  
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capital to maintain a constant target EPD ratio over a short time horizon.  A striking finding 
from the case study is that the amount of capital needed to support the problematical 
Commercial Auto Liability line in the worst accident year of the “soft market” of the late 
1990s was significantly less than that required by the NAIC, Best and S&P.  That Butsic’s 
solvency framework with a capital ratio of 15% or less would work so well in the face of the 
severe deterioration in the accident year 1999 ultimate loss ratio estimate to 91.7% at the end 
of 2004 is a testament to its robustness.  A second striking finding is that the riskiness of 
investment in a diversified common stock portfolio appears to be underappreciated by the 
NAIC and the rating agencies, both in absolute terms and relative to Commercial Auto 
Liability insurance.  The risk-based capital they required to support such an investment was 
consistent with a one-year EPD ratio averaging 1.5% over the 1999 through 2004 period 
(fifty times the Commercial Auto Liability EPD ratio at the same capital level!) and was 
insufficient to prevent actual exhaustion of that allocated capital during 2002.   

It is important that any solvency framework measure the risk of capital exhaustion 
consistently across lines of insurance and both sides of the balance sheet.  While our case study 
is too limited in scope to permit sweeping conclusions, the results with respect to 
Commercial Auto Liability are startling enough to suggest that the capital requirements of 
other insurance lines should be studied as well.  We have a strong suspicion that the capital 
requirements of the NAIC, Best and S&P with respect to other lines of insurance are also 
overstated, both in absolute terms and relative to their requirements for common stock 
investment42.    

We believe the bias in favor of common stock investment embedded in the current 
(December 2006) capital factors is unintentional and has resulted from the unconscious use 
of inconsistent methods of measuring risk.  It appears that the risk associated with common 
stock investment has been measured using a time horizon of about one year, while 
underwriting and reserve risks have been measured over a much longer time horizon.  Butsic 
argued the importance of using a consistent time horizon in the early 1990s at the time when 
the NAIC began implementing its risk-based capital framework.  However, either because 
there was no practical way to incorporate his insights or because they were not properly 
understood, his ideas have languished, and for far too long43. 

                                                 
42 We have in mind the largest U.S. primary lines of business, which lend themselves well to Schedule P 

analysis.  Unfortunately, because of data quality and heterogeneity issues, Schedule P does not shed much 
light on this question for International, Special Liability and the Nonproportional Reinsurance lines. 

43 Butsic was a member of the American Academy of Actuaries Property/Casualty Risk-Based Capital Task 
Force, but that did not prevent the Task Force from employing an EPD methodology for underwriting and 
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Butsic’s concept of a short time horizon for risk measurement that is used consistently 
for all types of risk also has obvious application to enterprise risk management and other 
updated approaches to solvency risk management.  While we have focused on the 
measurement and calibration of asset and underwriting-related risks separately, clearly the 
ultimate objective of solvency management is to minimize the likelihood and cost of 
insolvency from all of the risks, alone or in combination, inherent in an insurance enterprise.  
The EPD measured over a consistent short time horizon is a good measure of that 
enterprise-wide risk.  We advocate calibrating the enterprise-wide capital requirement to a 
target EPD that measures all risks simultaneously over the same time horizon.  We have 
illustrated the EPD measure using a time horizon of one year, but it is easy to see the 
potential merits of shorter time horizons, such as quarterly or even monthly.  While there are 
obvious practical obstacles to implementing such a framework in the near term, conceptually 
we can imagine a solvency framework in which capital is recalibrated on a daily basis! 

Meanwhile, it is important that the issue of the capital required by the existing risk-based 
capital models to support property-casualty insurance operations be taken up again and with 
some urgency.  This is important, because in recent years rating agencies have shown an 
inclination to increase underwriting-related capital requirements by increasing capital factors 
directly and/or indirectly by increasing the capital adequacy ratios that correspond to their 
various ratings.  While no responsible insurance professional can be opposed to a strong 
solvency regime, requiring more capital than is actually required to meet stated solvency 
objectives increases the cost of insurance and unnecessarily impedes the ability of insurers to 
compete with alternative methods of managing risk.  Our aim in preparing this paper has 
been to stimulate thoughtful discussion of this important issue, which we hope will 
ultimately lead to actions by regulators and rating agencies to adapt their risk-based capital 
models to reflect more accurately the real risks embedded in insurance company 
underwriting and loss reserving activities. 

                                                                                                                                                 
reserve risks that assumed a time horizon that encompassed ultimate claim settlement [2].  Best and S&P 
both state that their risk-based capital models use that same ultimate time horizon EPD methodology [1] [11]. 
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4. APPENDICES 

APPENDIX A  

Historical Loss Development and Accident Year 1999 Estimates 

The main source of the loss development data used in this paper was the Best’s 
Aggregates & Averages compilation of industry Schedule P information for Commercial 
Auto Liability that was tabulated in Wacek [13] as sets of paid and case incurred loss 
development factors (in that paper’s Appendix Exhibits A-2A and A-5A, respectively)44. 

  The upper half of Appendix Exhibit A-1A of this paper shows the 1) paid loss ratio 
through one year of development, and 2) age-to-age paid development factors (from age 1-
to-2 through age 9-to-10), that were observed during calendar years 1994 through 2004 with 
respect to accident years 1999 and prior.  The calendar year 1994 through 2003 data is from 
Best as tabulated by Wacek [13].  The calendar year 2004 information was derived directly 
from the industry Schedule P compilation contained within 2005 edition of Best’s 
Aggregates & Averages [4].   The age 10-to-ultimate paid development factor implied by the 
relationship between the accident year 1995 reported ultimate and age 10 paid losses (1.009) 
is also tabulated here. The lower half of Appendix Exhibit A-1A displays the natural 
logarithms of the loss ratios and development factors shown in the upper half of the exhibit. 

Appendix Exhibit A-1B is the case incurred loss analogue to Appendix Exhibit A-1A.  
The upper half of the exhibit displays the case incurred loss ratios through one year of 
development and age-to-age case incurred loss development factors.  The source of that data 
is largely Appendix Exhibit A-5A of Wacek [13], supplemented by calendar year 2004 data 
from the 2005 edition of Best’s Aggregates & Averages [4]. The age 10-to-ultimate case 
incurred development factor implied by the relationship between the accident year 1995 
reported ultimate and age 10 case incurred losses (1.002) is also tabulated here.  The lower 
half of the exhibit gives the corresponding natural logarithms. 

Appendix Exhibits A-2A and A-2B display trailing five-year simple means and standard 
deviations of the loss ratio and development factor natural logarithms shown in the lower 
halves of Appendix Exhibits A-1A and A-1B, respectively.  The means and standard 
deviations tabulated in Appendix Exhibit A-2A were used as estimates of the parameters  

and , respectively, of lognormal random variables representing 1) the paid loss ratio 
through one year of development, and 2) age-to-age paid loss development factors.  For the 

μ

σ

                                                 
44 Best’s Aggregates & Averages, 1995-2005 editions.  See [13] for full details. 
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insurer level analysis we multiplied these estimates  by a factor of three.  In order to 
preserve the same expected lognormal development factors as those found in the industry 
analysis, we adjusted the corresponding estimates of  by adding the term , 
where 

σ

μ )1(σ5.0 22 f−⋅
3=f .  

The means and standard deviations tabulated in Appendix Exhibit A-2B were used to 
parameterize lognormal random variables representing 1) the case incurred loss ratio through 
one year of development, and 2) age-to-age case incurred loss development factors.  For the 
insurer analysis, we made the same adjustment to the  estimates that we described in the 
previous paragraph with respect to paid development factors. 

σ

Appendix Exhibits A-3A and A-3B display the expected values of the lognormal random 
variables parameterized using the means and standard deviations displayed in Appendix 
Exhibits A-2A and A-2B, respectively.  To a very close degree of approximation, the implied 
mean age-to-age and age-to-ultimate development factors match those computed directly 
from the development factor data. 

Appendix Exhibit A-4 summarizes the use of the historical loss development data to 
estimate accident year 1999 Commercial Auto Liability ultimate loss ratios using paid and 
case incurred chain ladder and Bornhuetter-Ferguson loss development methods at annual 
valuations from December 1999 through December 2004.  We applied these four loss 
development methods as described in Appendix A of [13] using age-to-ultimate 
development factors from Appendix Exhibits A-3A and A-3B. 

APPENDIX B 

Estimating the Transfer Value of Unpaid Losses  

According to Butsic, the transfer value of the unpaid loss liability should equal the 
present value of the expected future loss payments plus a risk charge for the potential for 
adverse deviation45.  That definition was echoed in the UK FSA’s February 2006 discussion 
paper on the EU’s Solvency II initiative: “An unbiased valuation of insurance liabilities 
would reflect the best estimate plus a margin determined by the cost of capital required by 
the market to bear the risk of holding the liability46.”  In this appendix we derive a formula 
for this transfer value based on the capital required to support the unpaid loss liability and 
the required return on that allocated risk-based capital. 

The transfer value  of unpaid losses )( nLT  Ln  at development age   n ≥ 1 years is the sum: 

                                                 
45 See [5], page 330, footnote 15. 
46 See [10], page 25. 
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          nnn RLPVLT ′+= )()( ,         (B.1) 

where  is the present value sum of the future loss payments at the risk-free rate r 

and   

)( nLPV

′ R n  is the present value sum, at the same rate r, of the future risk charges associated with 
unpaid losses.   

The calculation of the first term  of  requires knowledge of the amounts 

and timing of the expected future loss payments 

)( nLPV )( nLT

   Pn +1 ,Pn +2 ,Pn +3 ,K ,Pn +k , where k represents 
the number of future loss payments.  If we assume that all loss payments are made at the 
midpoint of each payment year, then the value of  is given by the formula: )( nLPV

        nn ArLPV ⋅+= )1()( 2
1 ,         (B.2) 

where       An = Pn +1 ⋅ v + Pn +2 ⋅ v2 + Pn +3 ⋅ v3 +K + Pn +k ⋅ vk  and 
  
v =

1
1+ r

.   An  is the present 

value sum of the loss payments under the assumption that they are made at the end of each 
year.     1+ 1

2 r  is the adjustment factor required to reflect our assumption that loss payments 

are made at the midpoint of each year. 

If the annual risk charge related to unpaid losses is expressed as a percentage return on 
the allocated risk-based capital    , then the second term Cn

R = c n ⋅ Ln  ′ R n  in Formula (B.1) can 
be expressed as:  

           ′ R n = ′ r n ⋅ Ln ⋅ v + ′ r n +1 ⋅ Ln +1 ⋅ v2 + ′ r n +2 ⋅ Ln +2 ⋅ v3 +K+ ′ r n +k−1 ⋅ Ln +k−1 ⋅ vk ,      (B.3) 

where       ′ r n , ′ r n +1 , ′ r n +2 ,K , ′ r n +k−1  are the required annual returns expressed in terms of unpaid 
losses.  To determine these required returns we assume that the capital provider demands an 
annualized after-tax return on equity of roe commensurate with the risk it is assuming for 
each year the capital is exposed.  Given a tax rate of tax, the annual pre-tax return 

requirement on the allocated risk-based capital is 
  

roe
1− tax

, of which r will be provided by 

interest earned on the capital itself.  If the allocated capital is  c n ⋅ Ln , then the required risk 

charge for each development period   n ≥ 1 is )
1

( r
tax

roeLc nn −
−

⋅⋅ .   This risk charge can be 

expressed as an annual rate of return on  Ln  of: 

      )
1

( r
tax

roecr nn −
−

⋅=′          (B.4)  

If        c1 = c 2 = c 3 =L = c n  for all   n ≥ 1, i.e., the risk-based capital charges applicable to loss 
reserves are identical irrespective of the development age of the reserves, then we can drop 
the subscript from   ′r n  and restate Formula (B.3) as: 
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Then the transfer value nnn RLPVLT ′+= )()(  can be expressed in terms of    as: An

       )()1()( 2
1

nnnn AL
r
rArLT −⋅
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or in terms of  as: )( nLPV
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2
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Appendix Exhibit B-1 illustrates the risk charge and transfer value calculations using the 
unpaid losses as of December 1999 associated with $100 of premiums from accident year 
1999.  The expected payment pattern was derived from the simple average age-to-age 
(annual) paid development factors observed during the five calendar years 1995 through 
199947.  The illustration assumes a capital factor of 15% of unpaid losses, a required after-tax 
return on allocated capital of 15%, tax rate of 35% and risk-free return of 5%. 

The left side of the exhibit summarizes the transfer value calculation.  The unpaid losses 
of $64.69 at the end of 1999 (and beginning of 2000) had a present value of $58.62.  The 
present value sum of the future annual risk charges was $4.06. The sum of these two 
components, $62.69, represents the transfer value of the $64.69 of loss reserves at the 
beginning of 2000.  One year later at the end of 2000 (and beginning of 2001), the unpaid 
losses were expected to decline to $43.59.  On that basis and the expected future payment 
pattern, the present values of the unpaid losses and future risk charges, were $39.93 and 
$2.51, respectively, yielding a transfer value of $42.44.  Observe that a risk charge must be 

                                                 
47 See the “1999” row in the “Trailing Five-Year Average Development to Ultimate” section of Appendix 

Exhibit A-3A. 
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added to the present value of the unpaid losses at each valuation date at which there remain 
unpaid losses, which in this illustration is out through the end of 2009. 

The right side of the exhibit is a reconciliation of the transfer value calculations. It shows 
that invested cash equal to the transfer value of $62.69 at the beginning of 2000 would earn 
$2.61 during 2000.  That principal and interest would be sufficient to pay expected claims of 
$21.10 plus a cash risk charge of $1.75 to the capital provider, leaving a balance of $42.44 at 
the end of the year.  That ending balance matched the expected transfer value of unpaid 
losses at that time.  The reconciliation shows that the transfer values calculated on the left 
side of the exhibit are such that all losses and risk charges can be paid as due (assuming the 
size and timing of loss payments are as expected.) 

Appendix Exhibit B-2 summarizes the present value of the remaining loss reserves and 
the related risk charge (from Formula (B.5)), based on trailing five-year paid loss 
development experience, as of each calendar year-end from 1999 through 2004.  The sum of 
these two present values is the transfer value of the remaining reserves (expressed as a 
percentage of remaining reserves).   

APPENDIX C 

C.1 Stochastic Modeling of Losses 

The premise underlying the stochastic loss models used in this paper is that age-to-age 
loss development can be represented using a lognormal model.  Our approach is closely 
related to the one described by Wacek [12], which was an elaboration of an idea first 
presented by Hayne [9].  We assumed that both paid and case incurred loss development 
patterns are lognormal.   

Sources of Variation in Future Ultimate Loss Ratio Estimates 

In general, a future estimate of the ultimate loss ratio with respect to a particular accident 
year depends mainly on the loss development that occurs between now and the time the 
future estimate is made48.   That loss development affects the future ultimate loss estimate in 
two ways.  The first and most direct effect arises from the loss development observed with 
respect to the subject accident year itself.  More development generally implies a larger 

                                                 
48 There can also be a minor effect that arises from the use of moving averages of historical development 

measures.  For example, if prospective development in the tail is estimated using the five-year mean of 
historical development factors, then one year later when the tail is re-estimated, the earliest development 
factor will have dropped out of the calculation and a factor reflecting more recent development will have 
entered.  The difference between the dropped factor and the added factor can have a small effect on the 
revised tail.   
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future ultimate loss ratio estimate than less development.  The second effect arises from the 
loss development observed with respect to earlier accident years.  That loss development 
affects the estimation of development in the tail of the subject accident year beyond the 
future valuation date.  Again, more development generally implies a larger future ultimate 
loss ratio estimate than less development.    

Our interest is in estimates of the ultimate loss ratio for accident year 1999 one year out 
from the vantage point of a succession of annual valuation dates from accident year 
inception (    n = 0) through December 2003 (   n = 5), where n refers to years of development.   

From the vantage point of accident year 1999 inception (   n = 0), the ultimate loss ratio 
estimate one year out will depend on loss development observed during calendar year 1999 
with respect to: 1) accident year 1999 (from inception to age one year) and 2) 1998 and prior 
accident years. 

In general, at each annual valuation through December 2003 corresponding to 50 ≤≤ n  
years of development, the ultimate loss ratio estimate one year out is a function of: 1) 
accident year 1999 development during calendar year 11998 ++ n  (from age n to 1+n ), and 
2) development on 1998 and prior accident years observed during calendar year 

11998 ++ n . 

To estimate the parameters of the random variables representing these loss development 
effects, we used industry Commercial Auto Liability loss development experience from 
Best’s Aggregates & Averages, which is tabulated in Appendix Exhibits A-1A and A-1B 
mainly in the form of paid and case incurred age-to-age development factors (and their 
natural logarithms), respectively.  See Appendix A for a full description of this data and its 
source. 

C.2 Paid Chain Ladder    

At n years of development the accident year 1999 paid chain ladder ultimate loss ratio 
estimate one year out is the product of the accident year 1999 cumulative paid loss ratio one 
year out (at age     n + 1) and the paid age   n + 1-to-ultimate tail factor one year out (at age   n + 1).  
The first factor of this product reflects accident year 1999 development in the next year.  
The second factor reflects the effect of development of accident years 1998 and prior on the 
calculation of the tail factor one year out. 

Modeling the First Source of Variation – Accident Year Development 

To model accident year development over the course of the next year from the 
perspective of accident year 1999 inception (   n = 0), we calculated the mean     y = −1.678 and 
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standard deviation     s = 0.041 of the natural logarithms of the paid loss ratios through one 
year of development observed over the five most recent calendar years (1994 through 
1998)49.  We used y  and s as estimates of the parameters  and  of the lognormal random 
variable      representing the paid loss ratio that will be observed one year out at the end of 
1999.  The expected value of the paid loss ratio at the end of 1999  implied by these 
parameters was 18.7%.  The actual paid loss ratio  observed at the end of 1999 was 20.6%. 

μ σ
p1

)( 1pE

1P

At the end of 1999 (    n = 1) we went through a similar procedure.  Let   y  and   s  represent 
the mean and standard deviation, respectively, of the natural logarithms of the age 1-to-2 
development factors observed over the five most recent calendar years (1995 through 1999).  
We used 836.0743.0%)6.20ln(ln 1 −=+=+ yP  and   s = 0.024 to estimate the parameters 

 and σ  of the lognormal random variable representing the cumulative paid loss ratio 
 that will be observed at the end of 2000

μ

    P1 + p2
50.  These parameters implied an expected 

cumulative paid loss ratio as of the end of 2000 )( 21 pPE +  of 43.4%.  The actual cumulative 
paid loss ratio  observed at the end of 2000 was 44.2%. 21 PP +

Generally, at 51 ≤≤ n  years of development, to model the accident year 1999 paid loss 

ratio one year out at the end of n+1999 , we used yP
n

i
i +∑

=

)ln(
1

  and  s  as estimates of the 

parameters  and  of the lognormal random variable , where  is the actual 

partial loss ratio paid during period i, and 

μ σ 1
1

+
=

+∑ n

n

i
i pP iP

 y  and  s  are the mean and standard deviation, 
respectively, of the natural logarithms of the age n to 1+n  development factors observed 
over the five most recent calendar years ( 51999 −+ n  through 11999 −+ n ). The expected 

cumulative paid loss ratio out year out, i.e., as of the end of n+1999 , is  and 

the actual cumulative paid loss ratio is 

)( 1
1

+
=

+∑ n

n

i
i pPE

  
Pi

i=1

n

∑ + Pn +1. 

                                                 
49 Appendix Exhibit A-2A summarizes these calculations, which are based on data in Appendix Exhibit A-1A.  

For the insurer level analysis we used in place of s and s3 )31(5.0 22 −⋅+ sy  to model the greater variability 
of an individual insurer’s development factors, while preserving the original lognormal expected value 
development factors. 

50 The random variable for the cumulative paid loss ratio can also be defined multiplicatively as     , where 

     is the lognormal random variable at age 
P1 ⋅d 1 ,1−2

d 1 ,1−2   n = 1 representing the age 1-to-2 development factor that will 
manifest itself over the next year, with parameters estimated by   y = 0.743 and   s = 0.024 .  We prefer the 
additive formulation, because it preserves the annual components of the cumulative paid loss ratio. 

 

Consistent Measurement of P&C Risk-Based Capital Adequacy

141Casualty Actuarial Society             Spring 2007                                          Forum,



We calculated these parameter estimates for 51 ≤≤ n  and tabulated them, together with 
the expected and actual paid loss ratios one year out, in Appendix Exhibit C-1A in the 
column labeled “Paid L/R.” 

Modeling the Second Source of Variation – Tail Factor Revision 

The revised tail factor one year out is the product of the mean age-to-age factors one year 
out.  If five-year means are used, four of the five development factors to be used in the 
mean age-to-age factor calculations are already known. The fifth development factor is 
unknown, because it represents the development to be observed during the next year, but we 
can model it as a random variable.  Because it involves four constants and a random variable, 
the mean age-to-age factor one year out is a random variable.   

We modeled the revised tail factor one year out in three steps.  First, we estimated the 
parameters of each age-to-age development factor random variable.  These random variables 
modeled the age-to-age development to be observed during the next year.  Next, we 
estimated the parameters of the mean age-to-age factors one year out.  These mean age-to-age 
factor random variables combined the four known development factors and the random 
variable determined in step one.  Finally, the mean age-to-age random variables were 
multiplied together to obtain the random variable for the revised tail factor out year out.  
Because the final step is difficult to carry out analytically, we used Monte Carlo simulation to 
model the revised tail factor random variables. 

We illustrate the first two steps of this process for the age 1-to-2 development factor at 
accident year inception (    n = 0).  Referring to Appendix Exhibit A-1A, the age 1-to-2 
development factors observed in calendar years 1994 through 1998 (with respect to accident 
years 1993 through 1997) and their natural logarithms were 2.265, 2.165, 2.115, 2.032, 2.079 
and 0.817, 0.772, 0.749, 0.709, 0.732, respectively.  That implied   y = 0.756 and     s = 0.041, 
which we took as estimates of the μ  and σ  parameters of the random variable      for the 

age 1-to-2 development factor to be observed in 1999 (with respect to accident year 1998).   
That is step one.   

d0 ,1−2

Because the historical development factors can be thought of as lognormal random 
variables with a  parameter of zero, the random variable for the mean age 1-to-2 
development factor one year out     

σ
d 1,1−2 has estimated parameters  (for μ ) and ŷ ŝ  (for ) of σ
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1
5 (0.772+0.749+0.709+0.732+0.756)=0.744 and ⋅5

1 0.041=0.00851.  This random variable 

has an expected value of 2.10452. 

The same process was repeated for each age-to-age factor out to the factor for 
development from age nine to ten years.  The age ten years to ultimate factor was treated as 
a constant.  The product of all of the mean age-to-age factors one year out is the tail factor.  
The results from the perspective of accident year inception (   n = 0) are tabulated in Appendix 
Exhibit C-1A in the rows corresponding to Valuation Date “12/98.” At the far right we also 
show the effect of multiplying the paid loss ratio one year out by the product of the revised 
age-to-age factors one year out to produce the estimated ultimate loss ratio estimate one year 
out.  Here we see that at accident year inception the expected paid chain ladder ultimate loss 
ratio estimate one year out was 82.0%53.  However, after observing the actual development 
during 1999, the paid chain ladder ultimate loss ratio estimate was revised to 90.3%. 

In general, to model the tail factor one year out at 50 ≤≤ n  years of development, we 
followed the same procedure that we described for   n = 0.  In the first step we calculated the 
mean   y  and standard deviation  s  of the natural logarithms of the paid loss age-to-age 
development factors separately for each development period beyond age 1+n  years (from 
age     n + 1-to-    n + 2 out through age 9-to-10) observed over the five calendar years 

51999 −+ n  through 11999 −+ n .  We took these as estimates of the parameters of the 
distributions of age-to-age factors that would be observed during 11998 ++ n .  In the 
second step we combined the four age   n + 1-to-   n + 2 development factor observations from 
calendar years     1999+ n − 4 through   1999+ n −1 with the random variable for n+1999  
development whose parameters we estimated in step one.  The results from the perspective 
of all annual valuation dates from December 1998 (   n = 0) through December 2003 (   n = 5) 
are tabulated in Appendix Exhibit C-1A.  The combined effects of accident year 
development and tail factor revision are embodied in the actual and expected ultimate loss 
ratio estimates one year out shown at the far right. 

 

                                                 
51 For the insurer level analysis we did not adjust the four known data points (0.772, 0.749, 0.709 and 0.732) to 

offset the effect of multiplying s by a factor of three.  This resulted in a slight upward bias in the distributions 
of the mean development factors making up the tail. 

52 Note that this matches the simple average comprising the 1995 through 1998 development factors and the 
1994 through 1998 development factor mean.  If we were interested only in the development factor itself and 
not also its variability, it would be easier to work directly with the development factor data.  

53 If the reader is puzzled about why this is different from the 83.5% shown in Appendix Exhibit A-3A as the 
implied paid chain ladder estimate at inception of the ultimate loss ratio, note that 82.0% is the estimate at 
inception of the paid chain ladder ultimate loss ratio one year out, which reflects the dropping of the 1994 
development factors and addition of the estimate of 1999 development. 
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C.3 Case Incurred Chain Ladder   

The modeling of the random variables for case incurred loss development was the same 
in every respect as that for paid loss development, except that case incurred loss data was 
used to estimate the parameters rather than paid loss data.   

The parameter estimates for the case incurred random variables one year out, together 
with the expected and actual case incurred loss ratios one year out, are tabulated in Appendix 
Exhibit C-1B in the column labeled “Case Inc L/R” for annual valuation from accident year 
inception through December 2003.  The parameter estimates for the case incurred age-to-
age factor random variables one year out, together with the expected and actual case 
incurred age-to-age factors one year out, are tabulated in the body of the same Appendix 
Exhibit C-1B.  The far right column shows the values one year out of the expected and 
actual ultimate loss ratio estimates. 

C.4 Bornhuetter-Ferguson – Paid and Case Incurred   

We applied the paid and case incurred Bornhuetter-Ferguson methods described in 
Appendix A, Section A.2.2, of Wacek [13] to loss development experience simulated using 
the random variables described in sections C.2 and C.3.  At accident year inception (   n = 0) 
we used the same initial expected loss ratios that were used in that paper: 83.4% for the paid 
method and 78.7% for the case incurred method.  Separately for the paid and case incurred 
versions, we set the expected loss ratio for subsequent valuations equal to the chain ladder 
ultimate loss ratio estimate from the prior valuation, which was the convention used in [13]. 

C.5 Incorporation of Parameter Uncertainty   

If we could have been certain about our lognormal parameter estimates, we would have 
simulated loss development experience using the lognormal random variables described in 
the foregoing sections of this appendix.  Given a uniform random number R, the 
corresponding lognormal random number  is: ),σ,μ(1 RLN −

)σ)(μexp(),σ,μ( 11 ⋅+= −− RNRLN ,        (C.1) 

where μ  and σ  are the usual lognormal parameters and  is the standard normal inverse 

distribution function. 

1−N

However, we did not (and could not) know the true values of  and .  We had only 
parameter estimates   

μ σ
ˆ y  and ŝ .  Because of that parameter uncertainty, we used a log t (rather 

than lognormal) random variable to simulate random values representing loss development 
experience: 
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       )/1ˆ)(ˆexp(),,ˆ,ˆ( 1
1

1 kksRTykRsyLT k +⋅+= −
−

−        (C.2) 

where  and ŷ ŝ  are the estimates of the lognormal parameters  and , R is a uniform 

random number and  is the inverse distribution function for the Student’s t distribution 

with  degrees of freedom (k representing the number of data points used to 
estimate the parameter).  The 

μ σ
1
1

−
−kT

41 =−k
kk /1+  factor reflects the fact that both parameters are 

uncertain.  In much statistical analysis involving the Student’s t distribution it is assumed that 
 is known and only σ  is uncertain.  We know here that both are uncertain.  See Wacek 

[14] for a detailed discussion of parameter uncertainty in lognormal models.  

μ

C.6 Monte Carlo Simulation  

Because the loss development random variables are hard to work with analytically 
(especially because we incorporated parameter uncertainty), we used Monte Carlo simulation 
to model chain ladder and Bornhuetter-Ferguson ultimate loss ratio estimates one year out 
as of each annual valuation date from inception through December 2003 using both paid 
and case incurred methods.  For each of 10,000 Monte Carlo trials, we determined ultimate 
loss ratio estimates from each of the four loss development methods, and selected their 
unadjusted simple mean     Un +1 as the best estimate of the ultimate loss ratio one year out.  
Appendix C-2A illustrates, for one Monte Carlo trial, the simulation of the paid chain ladder 
and Bornhuetter-Ferguson ultimate loss ratio estimates one year out from the vantage point 
of accident year inception (    n = 0).  Appendix C-2B illustrates the simulation of the case 
incurred chain ladder and Bornhuetter-Ferguson ultimate loss ratio estimates one year out 
from the same vantage point54.  We used the same uniform random numbers for the paid 
and case incurred simulations, reflecting our assumption that paid and case incurred loss 
development are not independent. 

The ultimate loss ratio estimate has two stochastic elements corresponding to paid and 
unpaid losses, which we needed to separate in order to determine the transfer value of the 
ultimate loss ratio estimate one year out: )()()( 1111 ++++ +=+ nnnn PTLTPLT .   

Therefore, in addition to     Un +1, for each trial we also tabulated the simulated values one 
year out of the period paid loss ratio   Pn +1 and the unpaid portion   Ln +1 of     Un +1 (given by 

), as well as the transfer values 
    
Ln +1 = Un +1 − Pi

i=1

n +1

∑ )( 11 ++ + nn PLT  and .  The transfer 

values were determined using the approach described in Appendix B. 

)( 1+nLT

                                                 
54 Note that Appendix Exhibits C-2A and C-2B use the same principles and format as Exhibit 11 in [12]. 
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For each Monte Carlo trial we calculated the value of ending capital   Cn +1 and the ending 
policyholder deficit     PDn +1 using the formulas in Section 2.  The expected policyholder 
deficit was computed as the mean over 10,000 random trials: 

∑
=

++ =
000,10

1
,1000,10

1
1 )(

i
innn PDpdE          (C.3) 

Formula (C.3) is a discrete approximation of Formula (2.15), which uses the continuous 
random variable  corresponding to 1+nt )( 11 ++ + nn PLT . 

C.7 Reserves from Multiple Accident Years  

If we let AY refer to the most recent of the accident years  AY − i  (     ) with unpaid 
losses, the key loss-related formulas applicable to the valuation n years after AY’s inception 
(for 

i ≥ 0

1≥n ) of all accident years together are as follows:  

 AY −i C n + i
R = c n + i ⋅AY − i Ln + i         (C.4) 

         AY −i Sn + 1+ i =( AY − i Cn + i
R + AY −iT (Ln + i )) ⋅(1+ r )       (C.5) 

      
    
All S n +1 = ( AY − iC n + i

R +AY − iT( Ln + i )) ⋅ (1+ r )
i ≥0
∑       (C.6) 

    AY −i C n +1+i = AY − i Sn +1+ i −T( AY − i Ln +1+ i + AY −i Pn +1+ i )        (C.7) 

    
    
All Cn +1 = All Sn +1 − T( AY −i Ln +1+ i + AY − i Pn + 1+ i )

i ≥0
∑        (C.8) 

    
All PDn +1 = T( AY − i Ln +1+ i + AY −i Pn +1+i )

i ≥0
∑ − All Sn + 1, if   All Cn +1 < 0       (C.9) 

    
En( All pd n +1) = (t n +1 −All Sn +1

All Sn +1

∞

∫ ) f (t n+ 1)dt n +1 ,     (C.10) 

where     t n +1  is abbreviated notation for
  
All t n + 1 = AY − i t n +1+ i

i≥ 0
∑ . 

APPENDIX D 

Accident Year 1999 Actual Policyholder Deficits: 1999-2004 

This appendix gives details of the capital and policyholder deficit calculations arising from 
the actual Commercial Auto Liability accident year 1999 industry experience evaluated at 
successive annual intervals from December 1999 through December 2004.  We used an 
analogous process to determine capital and policyholder deficits in the Monte Carlo analysis 
described in Appendix C.  The centerpiece of our discussion is Appendix Exhibit D.  Key 
results from that exhibit are summarized in Table 3 and Figure D in Section 2. 

At the beginning of 1999, risk-based capital was established at 15% of premiums net of 
expenses and subsequently recalibrated to maintain funding equal to 15% of loss reserves at 
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the end of each calendar year.  A negative capital balance at the end of a year implied a 
policyholder deficit.  If the “capital account” was under-funded at the end of any year, either 
because of a policyholder deficit or the recalibration requirement, the capital provider had to 
deposit additional cash.  If this account was over-funded, the capital provider could 
withdraw the excess cash.   

At accident year inception we assumed $100 of premiums and an underwriting expense 
ratio of 25%, which implied initial underwriting assets  of $75. The initial required 

capital was $11.25 (15% of $75).  For purposes of calculating interest earned on the 
underwriting and capital assets, we assumed that half of the premium cash was available on 
January 1, 1999 in the form of an unearned premium portfolio and that the other half was 
available, on average, on July 1, 1999.  Assuming the capital was allocated as the premiums 
were received and a risk free rate of 5%, interest of $3.23 was earned during 1999.  The 
December 1999 value of the underwriting and capital assets, including interest, was 

=$75.00+$11.25+$3.23=$89.48.  

)( 0LT

    S1

Meanwhile, the hindsight re-estimate   L1 + P1 as of December 1999 of the initial loss 
estimate      was $85.32, comprising paid losses  of $20.63 and an unpaid loss liability  
of $64.69.  The total transfer value of the hindsight losses 

L0   P1   L1

)( 11 PLT +  was $83.84, reflecting 
a paid loss transfer value  of $21.15 and an unpaid loss transfer value  of 

$62.69

)( 1PT )( 1LT
55. 

Now let’s look at the “capital account”.  The ending capital as of December 1999 was 
$5.65, which was the difference between the available assets  and the transfer value of the 
hindsight losses .  Because the capital balance remained positive, the policyholder 

deficit was zero. 

  S1

)( 11 PLT +

  However, based on the loss reserve of $64.69 as of December 1999, the prospective 
capital requirement was $64.89×15%, or $9.70, which meant that the capital account was 
under-funded by $4.06.  In order to meet the ongoing capital requirement, the capital 
provider had to contribute $4.06 of additional capital at the end of 199956.  (This is 
summarized graphically in Figure D in Section 2 of the paper.  The initial capital of $11.25 

                                                 
55 The paid loss transfer value assumes that claims were settled, on average, on July 1, 1999. The risk charge 

embedded in the unpaid loss transfer value is consistent with a 15% target after-tax return on the capital 
supporting the loss reserves, tax rate of 35%, risk-free interest rate of 5% and capital/reserve ratio of 15%.  
The loss payout pattern was derived from paid loss development experience through the end of calendar year 
1999.  See Appendix B for the theoretical basis and numerical illustration of the calculation. 

56 If the capital provider had failed to recapitalize, it would have been possible for the regulator to arrange an 
immediate transfer of the unpaid loss liability at the transfer value.   
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was reduced to $5.65 by the end of 1999, but was replenished to $9.70 to meet the 
prospective capital requirement based on year-end 1999 loss reserves.)  

The same process was repeated for calendar year 2000.  At the end of the year the sum of 
capital and underwriting assets ($9.70+$62.69) plus interest of $3.62 resulted in total 
available assets of $76.01, which was more than enough to cover the $68.78 transfer value of 
hindsight losses, despite an increase in the ultimate loss ratio estimate from 85.3% to 90.0%.  
Capital was reduced from $9.70 at the beginning of the year to $7.23 at the end, but it was 
far from exhausted, so again the actual policyholder deficit was zero.  

At the beginning of 2001 capital again had to be reestablished at 15% of unpaid losses, or 
$6.87.  Because the ending capital balance in December 2000 was $7.23, the capital provider 
could withdraw $0.36.  2001 saw further deterioration in the ultimate loss ratio estimate to 
92.3%, and capital declined to $6.17 by year-end, but the policyholder deficit was zero.   

We will leave it to the reader to review the details of the development of accident year 
1999 from the end of 2001 through the end of 2004 as tabulated in Appendix Exhibit D, 
pointing out only that no policyholder deficit emerged at any valuation. 
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Abbreviations and notations   

  An , value of S&P 500 investment at time n 

    an +1 , random variable, at time n, for value of S&P 
500 investment one year out (n+1) 

AY, accident year  

  C n
R , required risk-based capital at time n 

    C n +1

, risk-based capital factor for common stocks 
, ending capital at time n+1 

  c

    c 0 , risk-based capital factor for underwriting 

    c n +1 , risk-based capital factor for loss reserves at 
time n+1 

    d n ,age −age +1 , random variable for age-to-age+1 loss 
development factor  

    d n +1 ,age −age +1 , random variable, at time n, for mean 
age-to-age+1 loss development factor one 
year out (n+1) 

)( 1+nn pdE , expected value, at time n, of 
policyholder deficit one year out (n+1) 

EPD, expected policyholder deficit 

  Ln , unpaid losses at time n 

    Ln +1 + Pn +1 , one-year hindsight estimate of   n

( ,prob), inverse lognormal distribution 
function 

L
    LN −1 σ,μ

    LT −1 (  ,prob,k), inverse log t distribution 
function based on k-point sample 

ˆ y ,ˆ s 

    N −1(prob), inverse standard normal distribution 
function 

  n , lag (years) from inception at beginning of year 
    n + 1, lag (years) from inception at end of year 

    Pn +1 , paid losses between time n and n+1 

    PDn +1 , policyholder deficit at time n+1 

 

  pn +1 , random variable, as of time n, for paid losses 
between time n and n+1 

  pd n +1 , random variable, as of time n, for 
policyholder deficit one year out (n+1) 

PV, present value operator 
R, random number from unit uniform distribution 

 R n
' , present value risk charge at time n 

 r , risk-free interest rate, per annum 

 rn
' ,  risk charge, per annum, as a rate on    nL

 roe , after-tax target return on equity capital 

  Sn +1 , strike price, at time n, of insolvency option 
one year out (n+1) 

 s , five-year standard deviation of LDF logs 
 ̂ s , estimate of  used in log t simulations σ

)( nLT , transfer value of unpaid losses at time n  
)( 1+nPT , transfer value of paid losses between time 

n and n+1 
1
1

−
−kT (prob), Student’s t inverse distribution 

function with k-1 degrees of freedom 

  t n +1 , random variable, as of time n, transfer value 
of  one year out (n+1)  n

, corporate income tax rate  
L

 tax
 y , five-year mean of LDF logs 

 ̂  y , estimate of μ used in log t simulations 

 U n , estimated ultimate loss at time n 
 v , one-year PV factor: )1/(1 r+=  
μ , first parameter of lognormal 
σ , second parameter of lognormal 
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APPENDIX EXHIBIT A-1A

Commercial Auto Liability Accident Year Paid LDFs and their Natural Logarithms
By Calendar Year of Observed Development

Calendar Age 1 Age Age Age Age Age Age Age Age Age Age
Year Loss Ratio 1 - 2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7 7 - 8 8 - 9 9 - 10 10-Ult
1994 17.6% 2.265 1.456 1.196 1.101 1.050 1.028 1.016 1.008 1.004
1995 18.2% 2.165 1.449 1.205 1.099 1.048 1.025 1.013 1.008 1.004
1996 19.2% 2.115 1.422 1.202 1.104 1.047 1.024 1.011 1.005 1.004
1997 19.2% 2.032 1.406 1.209 1.098 1.047 1.024 1.012 1.006 1.004
1998 19.2% 2.079 1.422 1.197 1.096 1.046 1.020 1.012 1.007 1.003
1999 20.6% 2.118 1.434 1.198 1.093 1.049 1.025 1.013 1.006 1.004
2000 2.143 1.429 1.208 1.105 1.047 1.021 1.010 1.004 1.002
2001 1.437 1.215 1.101 1.046 1.023 1.010 1.006 1.002
2002 1.215 1.105 1.049 1.023 1.010 1.007 1.004
2003 1.096 1.046 1.020 1.007 1.006 1.004
2004 1.032 1.019 1.009 1.006 1.003 1.009

Natural Logarithms of Age 1 Loss Ratio and Age-to-Age Factors Shown Above
1994 -1.739 0.817 0.375 0.179 0.096 0.049 0.028 0.016 0.008 0.004
1995 -1.703 0.772 0.371 0.187 0.094 0.047 0.025 0.013 0.008 0.004
1996 -1.648 0.749 0.352 0.184 0.099 0.046 0.024 0.011 0.005 0.004
1997 -1.652 0.709 0.341 0.189 0.093 0.046 0.024 0.012 0.006 0.004
1998 -1.651 0.732 0.352 0.180 0.091 0.045 0.020 0.012 0.007 0.003
1999 -1.578 0.750 0.360 0.181 0.089 0.048 0.025 0.013 0.006 0.004
2000 0.762 0.357 0.189 0.100 0.046 0.020 0.009 0.004 0.002
2001 0.362 0.195 0.097 0.045 0.023 0.010 0.006 0.002
2002 0.194 0.099 0.048 0.023 0.010 0.007 0.004
2003 0.092 0.045 0.020 0.007 0.006 0.004
2004 0.032 0.019 0.009 0.006 0.003 0.009
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APPENDIX EXHIBIT A-1B

Commercial Auto Liability Accident Year Case Incurred LDFs and their Natural Logarithms
By Calendar Year of Observed Development

Calendar Age 1 Age Age Age Age Age Age Age Age Age Age
Year Loss Ratio 1 - 2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7 7 - 8 8 - 9 9 - 10 10-Ult
1994 46.7% 1.363 1.123 1.048 1.024 1.010 1.006 1.004 1.002 1.002
1995 46.8% 1.362 1.120 1.051 1.020 1.007 1.002 1.001 1.001 1.001
1996 46.9% 1.337 1.121 1.050 1.024 1.009 1.002 1.002 1.000 1.001
1997 48.0% 1.349 1.123 1.060 1.025 1.008 1.007 1.003 1.001 1.000
1998 47.1% 1.336 1.137 1.065 1.024 1.010 1.003 1.002 1.001 1.000
1999 50.3% 1.380 1.148 1.068 1.018 1.010 1.003 1.001 0.999 1.001
2000 1.408 1.154 1.069 1.028 1.011 1.004 1.000 0.999 0.999
2001 1.162 1.082 1.036 1.013 1.006 1.003 1.002 1.002
2002 1.073 1.036 1.017 1.008 1.003 1.003 1.003
2003 1.022 1.009 1.002 0.998 1.001 1.000
2004 1.007 1.005 1.002 1.002 1.001 1.002

Natural Logarithms of Age 1 Loss Ratio and Age-to-Age Factors Shown Above
1994 -0.761 0.310 0.116 0.047 0.023 0.010 0.006 0.004 0.002 0.002
1995 -0.758 0.309 0.114 0.049 0.020 0.007 0.002 0.001 0.001 0.001
1996 -0.758 0.291 0.114 0.049 0.024 0.009 0.002 0.002 0.000 0.001
1997 -0.734 0.300 0.116 0.058 0.025 0.008 0.007 0.003 0.001 0.000
1998 -0.754 0.289 0.128 0.063 0.023 0.010 0.003 0.002 0.001 0.000
1999 -0.687 0.322 0.138 0.065 0.018 0.010 0.003 0.001 -0.001 0.001
2000 0.342 0.143 0.067 0.028 0.010 0.004 0.000 -0.001 -0.001
2001 0.150 0.079 0.035 0.013 0.006 0.003 0.002 0.002
2002 0.070 0.035 0.017 0.008 0.003 0.003 0.003
2003 0.022 0.009 0.002 -0.002 0.001 0.000
2004 0.007 0.005 0.002 0.002 0.001 0.002
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APPENDIX EXHIBIT A-2A

 Commercial Auto Liability Accident Year Paid Loss Development

Mean and Standard Deviations of  Natural Logarithms of LDFs

Trailing Five-Year Mean Age-to-Age Development Factor Natural Logarithms

Cal Age 1 Age Age Age Age Age Age Age Age Age Age

Year Loss Ratio 1 - 2 2 - 3 3 - 4 4 - 5 5 - 6  6 - 7  7 - 8  8 - 9  9 - 10 10-Ult *

1998 -1.678 0.756 0.358 0.184 0.095 0.047 0.024 0.013 0.007 0.004 0.009

1999 0.743 0.355 0.184 0.093 0.047 0.023 0.012 0.006 0.004 0.009

2000 0.352 0.185 0.094 0.046 0.023 0.011 0.006 0.003 0.009

2001 0.187 0.094 0.046 0.022 0.011 0.006 0.003 0.009

2002 0.095 0.046 0.022 0.011 0.006 0.003 0.009

2003 0.046 0.022 0.010 0.006 0.003 0.009

2004 0.021 0.009 0.006 0.003 0.009

Trailing Five-Year Standard Deviation of Age-to-Age Development Factor Natural Logarithms

1998 0.041 0.041 0.014 0.005 0.003 0.001 0.003 0.002 0.001 0.000 0.000

1999 0.024 0.011 0.004 0.004 0.001 0.002 0.001 0.001 0.000 0.000

2000 0.007 0.005 0.005 0.001 0.002 0.001 0.001 0.001 0.000

2001 0.006 0.004 0.001 0.002 0.001 0.001 0.001 0.000

2002 0.005 0.002 0.002 0.001 0.001 0.001 0.000

2003 0.002 0.002 0.002 0.001 0.001 0.000

2004 0.002 0.001 0.001 0.001 0.000

* Age 10 to Ultimate development implied in 2004 Annual Statement for accident year 1995  
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APPENDIX EXHIBIT A-2B

 Accident Year Case Incurred Loss Development

Mean and Standard Deviations of Natural Logarithms of LDFs

Trailing Five-Year Mean Age-to-Age Development Factor Natural Logarithms

Cal Age 1 Age Age Age Age Age Age Age Age Age Age

Year Loss Ratio 1 - 2 2 - 3 3 - 4 4 - 5 5 - 6  6 - 7  7 - 8  8 - 9  9 - 10 10-Ult *

1998 -0.753 0.300 0.118 0.053 0.023 0.009 0.004 0.002 0.001 0.001 0.002

1999 0.302 0.122 0.057 0.022 0.009 0.003 0.002 0.001 0.001 0.002

2000 0.128 0.061 0.024 0.009 0.004 0.002 0.000 0.000 0.002

2001 0.067 0.026 0.010 0.004 0.002 0.001 0.000 0.002

2002 0.028 0.012 0.005 0.002 0.001 0.001 0.002

2003 0.012 0.004 0.001 0.001 0.001 0.002

2004 0.005 0.001 0.001 0.001 0.002

Trailing Five-Year Standard Deviation of Age-to-Age Development Factor Natural Logarithms

1998 0.011 0.010 0.006 0.007 0.002 0.001 0.002 0.001 0.001 0.001 0.000

1999 0.014 0.011 0.008 0.003 0.001 0.002 0.001 0.001 0.001 0.000

2000 0.013 0.007 0.004 0.001 0.002 0.001 0.001 0.001 0.000

2001 0.008 0.006 0.002 0.002 0.001 0.001 0.001 0.000

2002 0.008 0.003 0.002 0.001 0.002 0.001 0.000

2003 0.003 0.003 0.002 0.002 0.001 0.000

2004 0.002 0.002 0.001 0.001 0.000

* Age 10 to Ultimate development implied in 2004 Annual Statement for accident year 1995  
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APPENDIX EXHIBIT A-3A

 Implied Lognormal Mean Accident Year Paid Loss Development Factors

Based on Mean and Standard Deviations of Natural Logarithms of LDFs

Commercial Auto Liability

Trailing Five-Year Average Age-to-Age Development 

Cal Age 1 Age Age Age Age Age Age Age Age Age Age

Year Loss Ratio 1 - 2 2 - 3 3 - 4 4 - 5 5 - 6  6 - 7  7 - 8  8 - 9  9 - 10 10-Ult *

1998 18.7% 2.131 1.431 1.202 1.099 1.048 1.024 1.013 1.007 1.004 1.009

1999 2.102 1.427 1.202 1.098 1.048 1.024 1.012 1.006 1.004 1.009

2000 1.423 1.203 1.099 1.047 1.023 1.012 1.006 1.003 1.009

2001 1.205 1.099 1.047 1.023 1.011 1.006 1.003 1.009

2002 1.100 1.048 1.022 1.011 1.006 1.003 1.009

2003 1.047 1.022 1.010 1.006 1.003 1.009

2004 1.021 1.009 1.006 1.003 1.009

Trailing Five-Year Average Development to Ultimate

1998 83.5% 4.468 2.096 1.465 1.219 1.109 1.058 1.033 1.020 1.013 1.009

1999 4.378 2.083 1.460 1.215 1.107 1.056 1.032 1.019 1.013 1.009

2000 2.075 1.459 1.213 1.103 1.053 1.030 1.018 1.013 1.009

2001 1.460 1.211 1.102 1.053 1.030 1.018 1.012 1.009

2002 1.212 1.102 1.052 1.029 1.018 1.012 1.009

2003 1.101 1.051 1.028 1.018 1.012 1.009

2004 1.049 1.027 1.018 1.012 1.009

* Age 10 to Ultimate development implied in 2004 Annual Statement for accident year 1995  
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APPENDIX EXHIBIT A-3B

 Implied Lognormal Mean Accident Year Case Incurred Loss Development Factors

Based on Mean and Standard Deviations of Natural Logarithms of LDFs

Commercial Auto Liability

Trailing Five-Year Average Age-to-Age Development 

Cal Age 1 Age Age Age Age Age Age Age Age Age Age

Year Loss Ratio 1 - 2 2 - 3 3 - 4 4 - 5 5 - 6  6 - 7  7 - 8  8 - 9  9 - 10 10-Ult *

1998 47.1% 1.350 1.125 1.055 1.023 1.009 1.004 1.002 1.001 1.001 1.002

1999 1.353 1.130 1.059 1.022 1.009 1.003 1.002 1.001 1.001 1.002

2000 1.137 1.063 1.024 1.010 1.004 1.002 1.000 1.000 1.002

2001 1.069 1.026 1.010 1.004 1.002 1.001 1.000 1.002

2002 1.028 1.012 1.005 1.002 1.001 1.001 1.002

2003 1.012 1.004 1.001 1.001 1.001 1.002

2004 1.005 1.001 1.001 1.001 1.002

Trailing Five-Year Average Development to Ultimate

1998 78.7% 1.671 1.238 1.100 1.043 1.020 1.011 1.007 1.004 1.003 1.002

1999 1.684 1.244 1.101 1.040 1.018 1.009 1.005 1.004 1.003 1.002

2000 1.258 1.107 1.042 1.018 1.008 1.004 1.003 1.003 1.002

2001 1.119 1.046 1.020 1.009 1.005 1.003 1.003 1.002

2002 1.052 1.023 1.010 1.006 1.004 1.003 1.002

2003 1.021 1.009 1.005 1.004 1.003 1.002

2004 1.010 1.005 1.004 1.003 1.002

* Age 10 to Ultimate development implied in 2004 Annual Statement for accident year 1995  
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APPENDIX EXHIBIT A-4

Accident Year 1999 Ultimate Loss Ratio Estimates
Commercial Auto Liability

Chain Ladder Methods

Calendar Dec Dec Paid Case CL Paid CL Case
Year Paid L/R Case L/R LDF LDF Ult L/R Ult L/R
1999 20.6% 50.3% 4.378 1.684 90.3% 84.7%
2000 44.2% 70.8% 2.075 1.258 91.7% 89.1%
2001 63.5% 82.3% 1.460 1.119 92.7% 92.1%
2002 77.2% 88.3% 1.212 1.052 93.5% 92.9%
2003 84.6% 90.2% 1.101 1.021 93.1% 92.2%
2004 87.3% 90.9% 1.049 1.010 91.6% 91.8%

Paid Bornhuetter-Ferguson Method

Calendar Dec BF  Paid Age to Ult LDF BF Paid
Year Paid L/R ELR Current Prior Ult L/R
1999 20.6% 83.4% 4.378 4.468 83.7%
2000 44.2% 90.3% 2.075 2.083 90.8%
2001 63.5% 91.7% 1.460 1.459 92.4%
2002 77.2% 92.7% 1.212 1.211 93.4%
2003 84.6% 93.5% 1.101 1.102 93.1%
2004 87.3% 93.1% 1.049 1.051 91.7%

Case Incurred Bornhuetter-Ferguson Method

Calendar Dec BF Case Age to Ult LDF BF Case
Year Case L/R ELR Current Prior Ult L/R
1999 50.3% 78.7% 1.684 1.671 82.5%
2000 70.8% 84.7% 1.258 1.244 88.4%
2001 82.3% 89.1% 1.119 1.107 91.9%
2002 88.3% 92.1% 1.052 1.046 92.9%
2003 90.2% 92.9% 1.021 1.023 92.2%
2004 90.9% 92.2% 1.010 1.009 91.8%

Summary All Methods

Calendar CL Paid CL Case BF Paid BF Case Mean
Year Ult L/R Ult L/R Ult L/R Ult L/R Ult L/R
1999 90.3% 84.7% 83.7% 82.5% 85.3%
2000 91.7% 89.1% 90.8% 88.4% 90.0%
2001 92.7% 92.1% 92.4% 91.9% 92.3%
2002 93.5% 92.9% 93.4% 92.9% 93.2%
2003 93.1% 92.2% 93.1% 92.2% 92.6%
2004 91.6% 91.8% 91.7% 91.8% 91.7%
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APPENDIX EXHIBIT B-1

Calculation of Expected Transfer Values of Accident Year 1999 Unpaid Losses

Loss Payment Patterns Based on Paid Development Through 1999

Per $100 of Commercial Auto Liability Premiums

Calculation Reconciliation

Cal 
Year

Beginning 
Unpaid 
Losses 

Paid 
Losses 

Expected 
in Period

PV 
Beginning 

Unpaid 
Losses

Risk 
Charge 

in Period

PV Total 
Risk 

Charge

Beginning 
Transfer 
Value of 
Unpaid 
Losses

Beginning 
Cash

Interest 
Earned

Paid 
Losses 

Expected 
in Period

Risk 
Charge 
Paid in 
Period

Ending 
Cash

2000 $64.69 $21.10 $58.62 $1.75 $4.06 $62.69 $62.69 $2.61 -$21.10 -$1.75 $42.44

2001 43.59 17.17 39.93 1.18 2.51 42.44 42.44 1.69 -17.17 -1.18 25.78

2002 26.42 11.60 24.33 0.72 1.46 25.78 25.78 1.00 -11.60 -0.72 14.47

2003 14.82 6.74 13.65 0.40 0.81 14.47 14.47 0.55 -6.74 -0.40 7.88

2004 8.08 3.61 7.42 0.22 0.45 7.88 7.88 0.30 -3.61 -0.22 4.35

2005 4.47 1.87 4.09 0.12 0.26 4.35 4.35 0.17 -1.87 -0.12 2.53

2006 2.59 0.99 2.38 0.07 0.15 2.53 2.53 0.10 -0.99 -0.07 1.56

2007 1.60 0.53 1.48 0.04 0.09 1.56 1.56 0.07 -0.53 -0.04 1.06

2008 1.07 0.32 1.01 0.03 0.05 1.06 1.06 0.05 -0.32 -0.03 0.76

2009 0.76 0.76 0.74 0.02 0.02 0.76 0.76 0.02 -0.76 -0.02 0.00

Interest Rate 5.0% Eff Risk Chg Rate 2.71%

Capital Ratio 15.0%

Target ROE 15.0%

Tax Rate 35.0%
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APPENDIX EXHIBIT B-2

Projected Loss Payout Patterns for Use with Accident Year 1999 Commercial Auto Liability

Based on Trailing Five-Year Paid Development Experience

Period Paid Development as % of Ultimate Losses

5-Year 
Period 

Remaining 
Reserves 

Remaining 
Reserves Age Age Age Age Age Age Age Age Age Age

Ending PV Factor PV Risk Chg 1 - 2 2 - 3 3 - 4 4 - 5 5 - 6  6 - 7  7 - 8  8 - 9  9 - 10 10-Ult

1999 90.62% 6.28% 25.2% 20.5% 13.8% 8.0% 4.3% 2.2% 1.2% 0.6% 0.4% 0.9%

2000 91.66% 5.73% 20.4% 13.9% 8.2% 4.3% 2.2% 1.1% 0.6% 0.3% 0.9%

2001 92.25% 5.42% 14.1% 8.1% 4.3% 2.1% 1.1% 0.6% 0.3% 0.9%

2002 92.37% 5.36% 8.2% 4.3% 2.1% 1.1% 0.6% 0.3% 0.9%

2003 92.12% 5.49% 4.3% 2.1% 1.0% 0.6% 0.3% 0.9%

2004 91.44% 5.85% 2.0% 0.9% 0.6% 0.3% 0.9%

Cumulative Paid Development as % of Ultimate Losses
5-Year

Period Age Age Age Age Age Age Age Age Age Age

Ending    1      2      3      4      5      6      7      8      9      10   

1999 22.8% 48.0% 68.5% 82.3% 90.4% 94.7% 96.9% 98.1% 98.7% 99.1%

2000 48.2% 68.6% 82.5% 90.6% 94.9% 97.1% 98.2% 98.8% 99.1%

2001 68.5% 82.6% 90.7% 95.0% 97.1% 98.2% 98.8% 99.1%

2002 82.5% 90.7% 95.0% 97.2% 98.2% 98.8% 99.1%

2003 90.8% 95.1% 97.3% 98.2% 98.8% 99.1%

2004 95.3% 97.3% 98.2% 98.8% 99.1%

    Present values reflect 5% risk free rate

    Capital allocation 15% of reserves, tax rate 35%, target return on equity 15%.
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APPENDIX EXHIBIT C-1A

Commercial Auto Liability Accident Year Paid Loss Development
Applicable to Stochastic Modeling of Accident Year 1999 Losses One Year Out

Lognormal Parameters and Expected vs. Actual Values of Random Variables One Year Out

Val Paid Age Age Age Age Age Age Age Age Age Est Ult
Date L/R 1 - 2 2 - 3 3 - 4 4 - 5 5 - 6  6 - 7 7 - 8 8 - 9 9 - Ult L/R
12/98 ŷ -1.678 0.744 0.355 0.185 0.094 0.046 0.023 0.012 0.007 0.013

ŝ 0.041 0.008 0.003 0.001 0.001 0.000 0.001 0.000 0.000 0.000
Expected 18.7% 2.104 1.426 1.203 1.099 1.047 1.023 1.012 1.007 1.013 82.0%

Actual 20.6% 2.102 1.427 1.202 1.098 1.048 1.024 1.012 1.006 1.013 90.3%
12/99 ŷ -0.836 0.352 0.183 0.093 0.047 0.023 0.012 0.006 0.013

ŝ 0.024 0.002 0.001 0.001 0.000 0.000 0.000 0.000 0.000
Expected 43.4% 1.422 1.201 1.098 1.048 1.023 1.012 1.006 1.013 89.9%

Actual 44.2% 1.423 1.203 1.099 1.047 1.023 1.012 1.006 1.013 91.7%
12/00 ŷ -0.464 0.185 0.094 0.046 0.022 0.012 0.006 0.012

ŝ 0.007 0.001 0.001 0.000 0.000 0.000 0.000 0.000
Expected 62.9% 1.203 1.098 1.048 1.023 1.012 1.006 1.012 91.7%

Actual 63.5% 1.205 1.099 1.047 1.023 1.011 1.006 1.012 92.7%
12/01 ŷ -0.267 0.094 0.046 0.022 0.011 0.006 0.012

ŝ 0.006 0.001 0.000 0.000 0.000 0.000 0.000
Expected 76.6% 1.099 1.047 1.022 1.011 1.006 1.012 92.7%

Actual 77.2% 1.100 1.048 1.022 1.011 1.006 1.012 93.5%
12/02 ŷ -0.164 0.047 0.023 0.011 0.006 0.012

ŝ 0.005 0.000 0.000 0.000 0.000 0.000
Expected 84.9% 1.048 1.023 1.011 1.006 1.012 93.6%

Actual 84.6% 1.047 1.022 1.010 1.006 1.012 93.1%
12/03 ŷ -0.121 0.022 0.010 0.006 0.012

ŝ 0.002 0.000 0.000 0.000 0.000
Expected 88.6% 1.022 1.010 1.006 1.012 93.1%

Actual 87.3% 1.021 1.009 1.006 1.012 91.6%

Consistent Measurement of P&C Risk-Based Capital Adequacy

159Casualty Actuarial Society             Spring 2007                                          Forum,



APPENDIX EXHIBIT C-1B

 Commercial Auto Liability Accident Year Case Incurred Loss Development
Applicable to Stochastic Modeling of Accident Year 1999 Losses One Year Out

Lognormal Parameters and Expected vs. Actual Values of Random Variables One Year Out

Val Rptd Age Age Age Age Age Age Age Age Age Est Ult
Date L/R 1 - 2 2 - 3 3 - 4 4 - 5 5 - 6  6 - 7 7 - 8 8 - 9 9 - Ult L/R
12/98 ŷ -0.753 0.298 0.118 0.055 0.023 0.008 0.004 0.002 0.001 0.003

ŝ 0.011 0.002 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000
Expected 47.1% 1.347 1.125 1.056 1.023 1.009 1.004 1.002 1.001 1.003 78.6%

Actual 50.3% 1.353 1.130 1.059 1.022 1.009 1.003 1.002 1.001 1.003 84.7%
12/99 ŷ -0.385 0.124 0.059 0.022 0.009 0.004 0.002 0.001 0.003

ŝ 0.014 0.002 0.002 0.001 0.000 0.000 0.000 0.000 0.000
Expected 68.1% 1.132 1.060 1.023 1.009 1.004 1.002 1.001 1.003 85.0%

Actual 70.8% 1.137 1.062 1.024 1.010 1.004 1.002 1.000 1.003 89.1%
12/00 ŷ -0.217 0.063 0.023 0.010 0.004 0.001 0.000 0.002

ŝ 0.013 0.001 0.001 0.000 0.000 0.000 0.000 0.000
Expected 80.5% 1.065 1.024 1.010 1.004 1.001 1.000 1.002 89.3%

Actual 82.3% 1.069 1.026 1.010 1.004 1.002 1.001 1.003 92.1%
12/01 ŷ -0.128 0.026 0.011 0.004 0.001 0.000 0.003

ŝ 0.008 0.001 0.000 0.000 0.000 0.000 0.000
Expected 88.0% 1.026 1.011 1.004 1.001 1.000 1.003 92.1%

Actual 88.3% 1.028 1.012 1.005 1.002 1.001 1.003 92.9%
12/02 ŷ -0.096 0.013 0.005 0.002 0.001 0.003

ŝ 0.008 0.001 0.000 0.000 0.000 0.000
Expected 90.8% 1.013 1.005 1.002 1.001 1.003 93.0%

Actual 90.2% 1.012 1.004 1.001 1.001 1.003 92.2%
12/03 ŷ -0.091 0.005 0.002 0.001 0.003

ŝ 0.003 0.001 0.000 0.000 0.000
Expected 91.3% 1.005 1.002 1.001 1.003 92.4%

Actual 90.9% 1.005 1.001 1.001 1.003 91.8%
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APPENDIX EXHIBIT C-2A

Monte Carlo Simulation of Estimated Ultimate Loss Ratio One Year Out - Paid Development Methods
Accident Year 1999 at Inception

Illustration of One Random Trial - Reflecting Parameter Uncertainty
Commercial Auto Liability

Devt 
Period

Expected 
LDF

Sample 
Size k

Degrees 
of 

Freedom 
k -1

Uniform 
Random 
Number 
__R_  T 4

-1(R ) __ŷ__ __ŝ__ ________

Random 
Paid LR: 
Accident 
Yr Devt *

Random 
LDF: 

Revised 
Tail *

9-Ult 1.013 5 4 0.034 -2.481 0.013 0.000 1.095 1.013
8-9 1.007 5 4 0.665 0.460 0.007 0.000 1.095 1.007
7-8 1.012 5 4 0.879 1.373 0.012 0.000 1.095 1.013
6-7 1.023 5 4 0.954 2.202 0.023 0.001 1.095 1.025
5-6 1.047 5 4 0.056 -2.032 0.046 0.000 1.095 1.047
4-5 1.099 5 4 0.110 -1.456 0.094 0.001 1.095 1.098
3-4 1.203 5 4 0.729 0.664 0.185 0.001 1.095 1.204
2-3 1.426 5 4 0.205 -0.918 0.355 0.003 1.095 1.422
1-2 2.104 5 4 0.025 -2.779 0.744 0.008 1.095 2.051
0-1 18.7% 5 4 0.333 -0.467 -1.678 0.041 1.095 18.3%

4.387 18.3% 4.270

*   =

 Revised Paid Chain Ladder Loss Ratio Estimate One Year Out 
= 18.3% x 4.27 = 78.0%

 Revised Paid Bornhuetter-Ferguson Loss Ratio Estimate One Year Out 
= 18.3% - 18.7% + 18.7%  x 4.27 = 79.4%

k
k 1+

)/)1(ˆ)(ˆexp( 1
1 kksRTy k +⋅+ −

−
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APPENDIX EXHIBIT C-2B

Monte Carlo Simulation of Estimated Ultimate Loss Ratio One Year Out - Case Incurred Development Methods
Accident Year 1999 at Inception

Illustration of One Random Trial - Reflecting Parameter Uncertainty
Commercial Auto Liability

Devt 
Period

Expected 
LDF

Sample 
Size k

Degrees 
of 

Freedom 
k -1

Uniform 
Random 
Number 
__R_  T 4

-1(R ) __ŷ__ __ŝ__ ________

Random 
Case LR: 
Accident 
Yr Devt *

Random 
LDF: 

Revised 
Tail *

9-Ult 1.003 5 4 0.034 -2.481 0.003 0.000 1.095 1.003
8-9 1.001 5 4 0.665 0.460 0.001 0.000 1.095 1.001
7-8 1.002 5 4 0.879 1.373 0.002 0.000 1.095 1.002
6-7 1.004 5 4 0.954 2.202 0.004 0.000 1.095 1.005
5-6 1.009 5 4 0.056 -2.032 0.008 0.000 1.095 1.008
4-5 1.023 5 4 0.110 -1.456 0.023 0.000 1.095 1.023
3-4 1.056 5 4 0.729 0.664 0.055 0.001 1.095 1.057
2-3 1.125 5 4 0.205 -0.918 0.118 0.001 1.095 1.124
1-2 1.347 5 4 0.025 -2.779 0.298 0.002 1.095 1.339
0-1 47.1% 5 4 0.333 -0.467 -0.753 0.011 1.095 46.8%

1.668 46.8% 1.658

*   =

 Revised Case Incurred Chain Ladder Loss Ratio Estimate One Year Out 
= 46.8% x 1.658 = 77.6%

 Revised Case Incurred Bornhuetter-Ferguson Loss Ratio Estimate One Year Out 
= 46.8% - 47.1% + 47.1%  x 1.658 = 77.8%

k
k 1+

)/)1(ˆ)(ˆexp( 1
1 kksRTy k +⋅+ −
−
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APPENDIX EXHIBIT D

Calculation of Actual Policyholder Deficits 1999-2004

Commercial Auto Liability – Accident Year 1999

Premiums of $100

25% Expenses / Required Capital 15% of Unpaid Losses / 5% Interest

Calendar Year 1999 2000 2001 2002 2003 2004
 n 1    0 1 2 3 4 5

    T(L
n
) $75.00 $62.69 $44.61 $28.09 $15.65 $7.88

  
C

n

R

11.25 9.70 6.87 4.31 2.40 1.21

))((
n

R

n
LTCr +  2

3.23 3.62 2.57 1.62 0.90     0.45

n
S $89.48 $76.01 $54.05 $34.02 $18.95 $9.54

1+nU
3

85.32 90.02 92.29 93.17 92.65 91.73

1+nP 20.63 23.58 19.31 13.64 7.41 2.74

1+nL 64.69 45.80 28.76 16.01 8.07 4.41

11 ++ +
nn
PL 85.32 69.38 48.07 29.65 15.48 7.15

)( 1+nPT 21.15 24.17 19.79 13.98 7.60 2.81
)( 1+nLT 62.69 44.61 28.09 15.65 7.88 4.29
)( 11 ++ +

nn
PLT $83.84 $68.78 $47.89 $29.62 $15.48 $7.10

1+nC $5.86 $7.23 $6.17 $4.40 $3.47 $2.44

1+nPD $0.00 $0.00 $0.00 $0.00 $0.00 $0.00

R

n
C

1+ 9.70 6.87 4.31 2.40 1.21 0.66

11 ++ n

R

n
CC 4.06 (0.36) (1.85) (2.00 (2.26) (1.78)

1 n  is the lag in years from accident year inception at beginning of year

2 ))((
004

3
LTCr

R

+  for n=0

3 
1+n

U  is the estimated ultimate loss amount at age n+1
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