
A NONLINEAR REGRESSION MODEL OF INCURRED BUT NOT REPORTED
LOSSES by Scott Stelljes

Discussion by Jeffrey H. Adams, FCAS

The paper by Stelljes [1] the subject of this discussion is a welcome addition to the Casualty
Actuarial Society literature on nonlinear regression for loss reserving. This discussion will
predominantly concern a key assumption made in [1]. In particular, on page 361:

“Based on the assumption that the incremental pure premiums for different development intervals are
independent, the variance of IBNR pure premium is the sum of the variances of the incremental pure
premiums for the remaining development intervals.”

It may be true that the historical incremental pure premiums can be considered independent, but it
does not follow that the future fitted incremental pure premiums are independent. An analogous
situation exists for ordinary linear regression, where the hat matrix provides for the covariance of the
fitted values. Since the variance of the sum of random variables depends on covariance between the
random variables, the variance of the reserve will depend on the covariance of the incremental
IBNRs.

After providing a brief review on traditional nonlinear regression in section 2, the bulk of this
discussion is concerned with two issues. First, modifying the methods of [1] to reflect covariance
among the fitted values and is described in section 3. Second, there are times when a reliable
insurance trend factor is not available. In such circumstances the actuary needs to derive the trend as
part of the model, as in the model on page 359 of [1]. [1] succinctly describes the problems with
such an approach. Section 4 discusses this latter model and shows  simulation is not required to
calculate confidence intervals. The last section, section 5 will discuss some miscellaneous issues.

2. BRIEF REVIEW OF NON LINEAR REGRESSION  BASED ON THE BOOK BY MYERS,      
MONTGOMERY, VINING [4].

Let y be the dependent variable. Let  x be a vector of explanatory variables, and B a vector of
parameters. We then assume the following function:

(2.1)   y  =  f(x,B) + g

g are the errors and are assumed to be independent normal, with the means  zero and constant
variance F . 2

(When fitting the data, this assumption should be checked to see if the error assumption is tenable
since insurance claim data is often skewed or the errors may be heteroscedastic. [1] notes the
heteroscedasticity and thus modifies the error term).

(2.2)  E(y) = f(x,B), denotes the expectation of y.
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1 1 3 2 2For example let y =  x *B /(B  + x *B ) + error.  The expectation of y is f(x,B) and is 

1 1 3 2 2x *B /(B  + x *B ).

Typically, B is unknown and replaced with parameter estimates. Based on significance tests (see
(2.7) below), it is possible fewer parameters are necessary. Insignificant parameters can be discarded
and the function refit. 

The parameters may be estimated through nonlinear least squares using the iterative Gauss-Newton
method (or other methods).

The (asymptotic) variance covariance matrix of parameter estimators b is 
                           ^                
(2.3) var(b)  �  F  (D  D)2 T -1

i j(2.4)   Dij  =  Mf(x  , B)/MB ) is evaluated at final parameter estimates.

In (2.4) i refers to the vector of explanatory variables for observation i, and the j refers to the
 j’th parameter.

An estimate of the error variance is  

            ^         ^   ^
(2.5)    F   =   g  g /(n–p),  n is the number of observations fit, and p the number of parameters in B.2 T

 
          ^         
(2.6)   g  = y- f(x,b)

(2.7) A parameter significance test is (b ÷ (standard error of the parameter)), which is asymptotically 
the normal distribution. The denominator is the square root of the appropriate element from the
diagonal of the asymptotic variance covariance matrix of the parameters (2.3),  or for weighted 
regression (2.11).

Let g(b) be a function of the parameter estimators and observations. Then

(2.8) E(g(b)) � g(B)

The approximate (asymptotic) variance covariance matrix of g(b)  is 
                
(2.9) var(g(b))  �   d  var(b) d , whereT

1 p(2.10) d  = [ Mg( B)/MB ,..., Mg( B)/MB ]  is evaluated at the estimated parameters.T

Equations (2.9) emphasizes the discussion in section 1 regarding the non-independence of fitted
values. (Take g(b) as the predicted values, then (2.9) can be used to derive the covariance of the
predicted values).
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iIf weighted non linear regression is used with a diagonal matrix V = var(y ) =

1 n i i idiag{F ,.....,F };  F  = F  / w  ,  and w  are the weights then 2 2 2 2

                           
(2.11)   var(b)  �   (D V  D)T -1 -1

Weighted non linear regression may be used in the presence of heteroscedasticity.

1 n Let W = diag{w ,...,w }, then

              ^          ^         ^
(2.12)    F   =   g  (W) g /(n–p) is the mean square error, and2 T

              ^         ^          
i i(2.13)    F    =  F / w  ,  provides an estimate for V.2 2

After the fit, the model assumptions must be checked. Checks include the usual regression
error plots.

For loss reserving, errors should also be checked by accident quarter. The accident quarter fitted
values by age, should be plotted against the dependent variable pure premium values. This will
appraise the fit and the homogeneity of the accident quarters.

3. THE EQUATIONS APPLIED TO LOSS RESERVING WHEN EXTERNAL TREND IS USED

iLet c   represent the accident quarter exposures for observation i. In [1],  the exposures are not
inflation sensitive and external inflation factors were utilized to trend the incremental pure
premiums. If the exposures are inflation sensitive, no additional inflation adjustment is generally
required. (However, you may statistically test whether an additional trend factor is required by fitting
(4.1) and (4.2). This will be discussed in section 4). If no additional inflation adjustment is required,
the methods in section 4 may be applied, and no simulation is required for confidence intervals.

Start with the basic equation given in [1] for future observation(s) y, the future incremental pure
premium(s).  There is only one explicit explanatory variable x, the valuation age.

1 2 3 4(3.0) f(x,B)  = B  exp(xB ) + B exp(xB ) 

                              (3.1)   y  =  f(x,b) + g / (w  )1/2

Multiply (3.1) by exposure c gives

                                 (3.2) cy  = cf(x,b) +c g /(w  )1/2

 

Taking the variance of (3.2) gives

                                                                                   (3.3) variance(cy)  = variance(cf(x,b)) + variance(c g/w )1/2
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Now take g(b) = cf(x,b), and then apply (2.9), (2.10), and (2.11) giving,

                                                                  ^
(3.4) variance(c y) �  d  var(b) d + (c  )F / w  T 2 2

                                                                                ^For equation (3.4) use equation (2.12 ) to valuate F .2

                                                                                                                           ^
i iThe second term on right hand side of (3.4) is a diagonal matrix,  diag ={c   F   }.              2 2

The expectation of (3.2) is 

(3.5) E(cy) � c f(x,b) = g(b) 

(3.5) provides the vector of  means,  and (3.4) provides the variance covariance matrix, for a 
multinormal distribution. It is that distribution that must be sampled to provide an IBNR
array. Then, each IBNR value is multiplied by the simulated trend factor, as explained in [1]. Doray
[6] page 648 explains a method for simulating the multinormal. The simulations in this discussion
were performed in R version 2.4.1 (2006-12-18) (C) 2006 The R Foundation for Statistical
Computing.

Exhibit 1 displays a summary and the key results of this discussion. The first four columns are
reproduced from Table 3.2.1 of [1]. Columns (7) and (8) are calculated assuming all off diagonal
elements of the matrix of (3.4) are set to zero, and then doing 1000 simulations of the multinormal
distribution, after which simulated trend factors (using the [1] trending approach) are applied. That is
essentially the method in [1]. Columns (5) and (6) are also based on 1000 simulations but
incorporate covariance terms of the full matrix (3.4). Although the expected total IBNR are
essentially the same in columns (3), (5), (7), and the standard deviations of the total IBNR of (4) and
(8) are essentially the same, the standard deviations of the total IBNR in column (6) is significantly
higher. Column (6) is the appropriate standard deviation.

Exhibit 2 column (5) and (10) provides a partial listing of the vector of 780 means (3.5) used to
simulate the pre- trended IBNRs (these are at calendar quarter 40 level). Exhibit 3 provides a portion
of the 780 by 780 variance covariance matrix (3.4).

Accident quarter variances are estimated as a by-product of simulating the entire southeast portion of
the loss “triangle”, and should not add up to the variance of total IBNR.

4. THE EQUATIONS APPLIED TO LOSS RESERVING WHEN NO EXTERNAL TREND IS

     USED

Let y be the incremental losses divided by an inflation or non inflation sensitive exposure base.  We
use the rejected trend model on page 359 of [1] shown as (4.1) below. (See section 5 paragraph g
regarding the extrapolation issue briefly discussed in [1]).

5Let B  be the trend, u the calendar quarter, and age be the accident quarter valuation age. If an

5inflation sensitive exposure base is used, B  provides for excess trend. (I have assumed the same
weights as in [1]. Normally the appropriate weights need to be individually selected for each model).
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5After the fit, significance levels of the parameters can be checked. If B  is not significant then there is

5no trend other than what is contemplated by the exposure base and age, then exp(uB ) may be
dropped from equation (4.1) and the model refit.  

1 2 3 4 5(4.1)  f(age,u,B)  = (B  exp(B age) + B exp(B age))exp(uB )

(Denote u and age by the explanatory variable vector x.)

(4.2) y =  f(x,B) + g / (w  )1/2

Assume (4.1), (4.2) have been fit to the historical incremental pure premiums. The focus will now be
on the future incremental pure premiums.

Using the estimated parameters b in (4.2), multiply (4.2) by c to get the future incremental losses:
                                 
(4.3) c y  = cf(x,b) +c g / (w  )1/2

Taking the variance of (4.3) gives 

(4.4) variance(cy)  = variance(cf(x,b)) + variance(c g/w  )1/2

Now take g(b) = cf(x,b) and apply (2.9), (2.10), and (2.11) giving 

                                                                  ^
(4.5) variance(c y) �  d  var(b) d + (c  )F / w  T 2 2

                                                                                    ^For equation (4.5),  use equation (2.12 ) to evaluate  F  . The second term on the right hand side of  2

                                                             ^
i i(4.5) is a diagonal matrix,  diag ={c   F   }.2 2

The expectation of (4.3) are the expected future incremental losses      

(4.6) E(cy) � g(x,b)

Now form the sum of the future incremental losses denoted by R for reserve giving
                

(4.7 ) R = G cy , the sum taken over the southeast portion of the loss “triangle”.                    

The expectation of R is the mean total reserve and is given by 
                     

 (4.8) E(R) � G g(x,b) ,  the sum taken over the southeast portion of the loss “triangle”.

The variance of R denoted by var(R) is 
                             

i j j j (4.9)   var(R) =   G  G cov(c y , c ,y )
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In (4.9), the sum is taken over all future observations (i,j) in the southeast portion of the loss triangle.
The covariance terms in (4.9)  are from (4.5).

Using the normality assumption,  the confidence interval for the reserve becomes

(4.10)  E[R] ±   zAvar(R)  ,  z is the appropriate standard normal value.1/2

Applying section 4 equations to Exhibit A data from [1] provides the following:

1 2 3 4 5 The estimated parameters for  b , b , b  ,b , b  are  2.364885501 -0.077678377 21.611842502
-0.566532596  0.009735732.  The MSE is 2759171.

The parameter variance covariance matrix derived from equation (2.11) is

1 2 3 4 5               b                       b                  b                           b                       b

1b    0.308171765    -3.248550e-03    2.13645749   -2.257342e-02   -2.046082e-03

2b   -0.003248550     8.684792e-05   -0.01130499     4.756396e-04   -5.492841e-06

3b    2.136457489    -1.130499e-02   31.07109676   -2.940411e-01  -1.983273e-02

4b   -0.022573418     4.756396e-04   -0.29404108     6.488308e-03  -1.960661e-05

5b   -0.002046082    -5.492841e-06   -0.01983273   -1.960661e-05   3.016662e-05

The parameter standard deviations are the square roots of the diagonal:

      0.555132205,    0.009319223,    5.574145384,   0.080550033,    0.005492415 .

The 95%  confidence intervals using t(.025,590-5) are

1 2 3 4 5       b                      b                         b                          b                       b           
Lower   1.274593134  -0.095981606   10.664076447  -0.724735018   -0.001051543 
Upper    3.45518287   -0.05937519     32.55962508     -0.40833007      0.02052296 

5The trend parameter b  is just shy of significance at the 95% level, but will be used.

Exhibit 1, column (9) displays the estimated IBNRs and corresponds to equation (4.6) summed over
the accident quarter’s IBNRs.  The IBNR, by accident quarter and in total, compare favorably with
columns (3), (5), and (7), although a bit higher probably due to the higher trend (.0097  versus .005
used by the author). The total IBNR standard deviation calculated using the square root of (4.9) is
3782848, and using (4.10) with z =1.96  provides  a 95% reserve confidence interval of : (25254267 , 
40083031).

Simulation may also be used to determine confidence intervals.  (4.6) provides the vector of  means, 
and (4.5) provides the variance covariance matrix for a  multinormal distribution. Exhibit 2 columns
(4) and (9) provides a partial listing of the vector of 780 means that may be  used to simulate the
IBNRs. Exhibit 2 columns (4) and (5) are not comparable, since column (4) already includes trend,
while column (5) is still at calendar quarter 40 level. The same applies for columns (9) and (10).
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If confidence intervals are desired by accident quarter, the multinormal distribution can be simulated.
Accident quarter variances are estimated as a by-product of simulating the entire southeast portion of
the triangle, and of course will not add up to the variance of total IBNR. Alternatively, equation (4.9)
may be used limiting the summation to the appropriate accident quarter ages. For example, consider
accident quarter 4. The portion of the variance covariance matrix (4.5) corresponding to the fourth
accident quarter’s three IBNR elements is

age       38                39                40
 38       605880842   3367957       3291128
 39       3367957       582719205   3225207
 40       3291128       3225207       560981739

Adding up these nine figures provide the variance for the fourth accident quarter IBNR, which  is
1769350371, and a standard deviation of 42064. The diagonal elements are the individual IBNR
variances. For example, the variance of the incremental IBNR for accident quarter 4 age 39 is
582719205.  Exhibit 1, column (10) displays the standard deviations for the accident quarter IBNRs
calculated in such a fashion. 

 Exhibit 4 displays a partial portion of the variance covariance matrix as calculated in (4.5).

5. MISCELLANEOUS ISSUES

a) On page 354 of [1] “Furthermore, Narayan...remarks that dollar based regression models do not

take into account changing levels of exposure. This is a serious flaw because the amount of loss in an

accident period is highly correlated to the number of earned exposures.”  I would concur with this

assessment and would suggest incorporating exposure as an explanatory variable in GLM or

regression methods, or perhaps an offset in GLM.  England and Verrall [2] discuss incorporating

exposure in stochastic loss reserving. Incorporating exposure should act to reduce the number of

parameters in a GLM or regression type model.

b) Page 231 of [1] formula (2.3.1) should have included the weight function in the minimization

since weighted least squares is being performed i.e minimize 

n

i i i3w (y   -  f(x ,B))  2

i=1

This must have been a typo, and conversations with Stelljes  has confirmed this.

c) Page 371 of [1] “Some of the models could be applied to cumulative instead of incremental data.”

(Page 370 in [1] does note that if autocorrelation occurs other models exist). In my limited

experience fitting a single curve to an array of cumulative accident year or report year data results in

autocorrelation which violates linear and nonlinear regression assumptions. In addition,

heteroscedasticity tends to occur. A plot of the cumulative data for each incurred year versus the
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fitted curve will help detect autocorrlation as well as detect non-homogeneity of the accident years.

A further problem with fitting cumulative data occurs when the estimated ultimate pure premium for

a particular incurred year is below the actual emerged pure premium for that year. One way around

these problems may be to fit a separate curve to each accident year as in Clark [3] and Kazenski[5].

Kazenski asserts he has detected no autocorrelation using such an approach.

d) Traditional nonlinear regression assumes the error terms are normal which is a symmetric

distribution with a range  -4 to +4. Incremental pure premium data may actually be skewed and can

hardly ever be highly negative, therefore, using the normal distribution is approximation at best. 

e) Page 358 of [1] formula (2.2.2) should use the square root of the weight, not just the weight. 

This appears to have been a typo, and conversations with Stelljes has confirmed this. See equation

(3.1) above.

f) A note regarding the parameter estimates and the data used for fitting. 

[1] excluded the first evaluation of an accident quarter and all evaluations prior to the twenty first

calendar quarter when fitting the equation. The same was done in this discussion, both in section 3

and section 4 and section 5 paragraph g. Also, Stelljes [1] has informed me the raw incremental pure

premiums (Exhibit A in [1]) are first trended to calendar quarter 40 using a constant trend factor of

exp(.005) per calender quarter prior to fitting them. The same was done for the section 3

calculations. Using Exhibit A data (kindly supplied by Stelljes as a computer file), I was able to

replicate the following from [1]: parameters on page 362, matrix inversion of (FWF)  on page 363, ' -1

the confidence interval of (-40259,56186) for accident quarter 2 on page 364, and finally,  the mean

square error of 2987236 on page 364. The  parameters in [1] on page 362:   3.1994, -.0754, 29.4446,

1 2 3 4-.5480 correspond to estimates of B , B , B , B  in equation (3.0) of this discussion and are used in

section 3.

Keeping within the limited scope of this paper, various diagnostics for the section 4 or section 5

paragraph g fittings have not been performed. Those diagnostic procedures are widely discussed in

nonlinear regression texts and should be applied in practice. No claim is made that the fitted

parameters are actually the best. Nonlinear regression requires initial starting values, and there is no

guarantee the solution will converge, let alone converge to the global minimum mean square error.

g) Extrapolating 

5In section 4, if B  is significant, formula (4.5) extrapolates beyond the fitting space, (in the example

for calendar quarters past 40). Discussions with Stelljes, and page 359 in [1] cautions against

extrapolating. Pages 86-88 in [4] provides for a confidence interval of a “future observed response”,

and seems silent on the issue of extrapolating. Using the approaches in section 4, an alternative

model is:
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1 2 3 4 5(5.1)  f(age,aqtr,B)  = (B  exp(B age) + B exp(B age))exp(B  aqtr)

where aqtr the accident quarter. Using the same data as in section 4, results from (5.1) were very

5close to those of (4.1), but even (5.1) will also extrapolate beyond the fitting space when B  is

significant. 

If the variances as calculated by (4.5) appear unreasonable in the extrapolated region, perhaps a

ceiling or floor may be required after some point. This seems to be an area requiring further research.

h) On the one hand,  the approach in [1] (and section 3), assume the availability of an external trend

and that the estimates of the parameter in the model are independent of the trend. On the other hand,

it’s nonlinear regression model is not extrapolated, only the trend needs to be extrapolated. The

section 4 model allows for estimation of internal trend and allows for covariance among all the

5parameters (including trend), but does require extrapolation when B  is significant. Neither method is

perfect.   
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EXHIBIT I

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

 Discussion  Discussion  Discussion  Discussion

Paper Paper Paper Paper

 [1]  [1]  section 3  section 3  Check [1]  Check [1]  section 4  section 4

 Accident  Expected  Standard  Expected  Standard  Expected  Standard  Expected  Standard 

 Quarter  Exposure  Value  Deviation  Value  Deviation  Value  Deviation  Value  Deviation

2 50,801 8,190 24,518 7,489 24,719 7,616 24,912 8,010 23,601

3 51,187 16,643 35,835 16,767 36,204 16,816 33,944 16,872 33,922

4 51,146 26,310 44,192 28,985 45,415 24,058 44,909 26,443 42,064

5 51,527 36,541 51,941 33,429 51,328 37,975 52,022 37,157 49,402

6 52,348 49,099 58,839 49,399 59,053 48,470 60,416 49,380 56,446

7 52,480 61,528 65,232 60,100 69,592 60,716 65,327 62,191 62,790

8 53,148 75,340 71,800 75,401 72,824 76,815 72,159 76,954 69,266

9 53,924 91,671 78,552 93,025 79,352 90,003 80,072 93,486 75,738

10 54,403 109,065 85,433 112,127 88,895 108,506 87,839 111,208 81,966

11 54,557 124,874 91,436 126,736 94,084 125,926 91,494 129,920 87,919

12 55,083 144,622 96,258 149,578 100,674 141,166 94,407 151,342 94,221

13 55,292 168,450 103,341 175,839 107,340 166,273 101,628 173,891 100,296

14 55,899 192,189 108,233 189,828 117,084 183,868 108,754 199,906 106,864

15 56,067 215,948 115,108 218,495 119,945 218,185 113,886 226,736 113,100

16 57,025 247,643 123,187 245,486 126,152 249,288 119,610 259,542 120,393

17 57,071 279,736 129,481 277,633 136,171 279,801 129,502 291,148 126,815

18 57,317 311,248 134,933 305,717 133,675 311,388 134,122 326,584 133,667

19 57,907 346,819 143,714 346,509 143,603 336,674 140,549 367,375 141,225

20 58,285 388,878 149,405 383,582 151,327 387,150 152,150 410,598 148,789

21 59,096 433,974 157,772 435,640 164,002 427,185 163,959 461,162 157,349

22 59,193 479,592 165,473 474,623 173,326 478,486 161,765 510,590 165,192

23 59,524 530,342 173,337 524,379 177,440 528,747 169,566 566,470 173,823

24 59,745 583,879 177,894 585,037 183,270 573,480 175,996 626,235 182,747

25 60,427 645,944 188,083 652,774 204,720 639,599 194,014 696,579 193,112

26 60,155 705,701 195,557 709,139 199,170 706,895 193,614 761,641 202,285

27 60,568 776,239 207,953 776,419 222,299 788,439 203,526 841,356 213,588

28 60,708 852,632 215,059 863,905 225,281 844,677 209,276 924,383 225,219

29 60,262 925,896 222,578 921,837 235,006 924,073 229,328 1,005,182 236,460

30 60,606 1,012,197 233,755 1,015,105 247,787 1,016,063 247,362 1,107,100 250,821

31 60,580 1,109,304 251,368 1,099,773 268,201 1,094,682 247,988 1,212,155 265,684

32 60,648 1,213,637 258,802 1,227,733 267,445 1,221,054 254,047 1,330,473 282,513

33 61,159 1,344,114 277,079 1,325,154 281,107 1,348,687 269,254 1,473,989 302,862

34 61,462 1,492,000 292,032 1,470,864 296,064 1,509,526 298,480 1,633,463 325,285

35 61,934 1,660,873 312,021 1,664,619 328,967 1,665,426 304,419 1,826,677 351,853

36 61,716 1,858,275 333,112 1,867,446 348,580 1,863,920 337,684 2,040,965 380,446

37 61,837 2,123,409 361,113 2,128,841 352,122 2,140,963 343,229 2,330,037 417,181

38 62,285 2,514,004 394,000 2,499,739 392,466 2,521,633 404,654 2,738,893 466,097

39 62,728 3,055,695 450,062 3,069,822 465,666 3,061,935 443,104 3,329,815 532,473

40 63,180 3,892,584 522,958 3,892,268 515,975 3,878,801 501,528 4,232,741 633,498

Totals 30,105,085 1,350,093 30,101,242 2,210,162 30,104,966 1,348,733 32,668,649 3,782,848
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 Exhibit 2

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

 Section 4  Section 3  Section 4  Section 3

 Incremental  Incremental  Incremental  Incremental

 aqtr  age  expos  IBNR  IBNR  aqtr  age  expos  IBNR  IBNR

2 40 50801 8010 7964 40 2 63180 846121 795568

3 39 51187 8723 8653 40 3 63180 553745 520639

3 40 51187 8150 8024 40 4 63180 381677 357292

4 38 51146 9420 9323 40 5 63180 278847 258771

4 39 51146 8801 8646 40 6 63180 215972 198022

4 40 51146 8223 8018 40 7 63180 176251 159387

5 37 51527 10256 10128 40 8 63180 150042 133789

5 38 51527 9583 9392 40 9 63180 131801 115967

5 39 51527 8953 8710 40 10 63180 118339 102858

5 40 51527 8365 8077 40 11 63180 107812 92679

6 36 52348 11261 11095 40 12 63180 99153 84382

6 37 52348 10522 10289 40 13 63180 91736 77348

6 38 52348 9831 9542 40 14 63180 85192 71207

6 39 52348 9185 8849 40 15 63180 79299 65733

6 40 52348 8582 8206 40 16 63180 73920 60784

7 35 52480 12202 11994 40 17 63180 68967 56268

7 36 52480 11400 11123 40 18 63180 64381 52123

7 37 52480 10651 10315 40 19 63180 60120 48304

7 38 52480 9952 9566 40 20 63180 56153 44776

7 39 52480 9298 8871 40 21 63180 52454 41513

7 40 52480 8687 8227 40 22 63180 49002 38491

8 34 53148 13355 13098 40 23 63180 45780 35692

8 35 53148 12478 12147 40 24 63180 42771 33098

8 36 53148 11658 11264 40 25 63180 39960 30693

8 37 53148 10893 10446 40 26 63180 37335 28463

8 38 53148 10177 9688 40 27 63180 34882 26395

8 39 53148 9509 8984 40 28 63180 32591 24478

8 40 53148 8884 8332 40 29 63180 30450 22700

9 33 53924 14645 14330 40 30 63180 28450 21051

9 34 53924 13683 13289 40 31 63180 26581 19522

9 35 53924 12784 12324 40 32 63180 24835 18104

9 36 53924 11944 11429 40 33 63180 23203 16789

9 37 53924 11160 10599 40 34 63180 21679 15570

9 38 53924 10427 9829 40 35 63180 20255 14439

9 39 53924 9742 9115 40 36 63180 18925 13391

9 40 53924 9102 8453 40 37 63180 17682 12418

10 32 54403 15968 15589 40 38 63180 16520 11516

10 33 54403 14919 14457 40 39 63180 15435 10680

10 34 54403 13939 13407 40 40 63180 14421 9904

10 35 54403 13024 12433

10 36 54403 12168 11530

10 37 54403 11369 10693

10 38 54403 10622 9916

10 39 54403 9924 9196

10 40 54403 9273 8528
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Exhibit 3

aqtr 2 3 3 4 4 4

aqtr age 40 39 40 38 39 40

2 40 602,854,869 3,112,619 3,014,973 3,204,500 3,110,126 3,012,558

3 39 3,112,619 631,054,179 3,136,270 3,334,387 3,235,699 3,133,757

3 40 3,014,973 3,136,270 607,458,435 3,228,848 3,133,757 3,035,448

4 38 3,204,500 3,334,387 3,228,848 655,671,475 3,331,716 3,226,262

4 39 3,110,126 3,235,699 3,133,757 3,331,716 630,546,122 3,131,247

4 40 3,012,558 3,133,757 3,035,448 3,226,262 3,131,247 606,969,439

5 37 3,319,123 3,454,230 3,344,343 3,557,965 3,451,463 3,341,664

5 38 3,228,371 3,359,226 3,252,901 3,459,481 3,356,535 3,250,295

5 39 3,133,294 3,259,802 3,157,102 3,356,535 3,257,191 3,154,573

5 40 3,034,999 3,157,102 3,058,060 3,250,295 3,154,573 3,055,610

6 36 3,458,533 3,599,973 3,484,812 3,708,826 3,597,089 3,482,020

6 37 3,372,008 3,509,268 3,397,630 3,614,656 3,506,457 3,394,908

6 38 3,279,810 3,412,750 3,304,731 3,514,602 3,410,016 3,302,084

6 39 3,183,218 3,311,742 3,207,405 3,410,016 3,309,089 3,204,836

6 40 3,083,357 3,207,405 3,106,785 3,302,084 3,204,836 3,104,296

7 35 3,546,852 3,692,652 3,573,802 3,805,149 3,689,694 3,570,939

7 36 3,467,254 3,609,050 3,493,599 3,718,178 3,606,160 3,490,801

7 37 3,380,511 3,518,116 3,406,197 3,623,770 3,515,299 3,403,469

7 38 3,288,080 3,421,355 3,313,064 3,523,465 3,418,615 3,310,410

7 39 3,191,245 3,320,093 3,215,493 3,418,615 3,317,433 3,212,917

7 40 3,091,132 3,215,493 3,114,619 3,310,410 3,212,917 3,112,124

8 34 3,663,703 3,815,168 3,691,541 3,932,367 3,812,112 3,688,584

8 35 3,591,998 3,739,655 3,619,291 3,853,584 3,736,659 3,616,392

8 36 3,511,387 3,654,989 3,538,068 3,765,505 3,652,061 3,535,234

8 37 3,423,540 3,562,897 3,449,553 3,669,896 3,560,044 3,446,790

8 38 3,329,933 3,464,905 3,355,235 3,568,314 3,462,129 3,352,547

8 39 3,231,865 3,362,353 3,256,422 3,462,129 3,359,660 3,253,813

8 40 3,130,478 3,256,422 3,154,264 3,352,547 3,253,813 3,151,737

9 33 3,778,996 3,936,224 3,807,710 4,058,262 3,933,071 3,804,660

9 34 3,717,196 3,870,872 3,745,440 3,989,782 3,867,772 3,742,440

9 35 3,644,444 3,794,256 3,672,136 3,909,849 3,791,217 3,669,194

9 36 3,562,656 3,708,354 3,589,726 3,820,484 3,705,384 3,586,851

9 37 3,473,527 3,614,918 3,499,919 3,723,479 3,612,023 3,497,116

9 38 3,378,553 3,515,495 3,404,224 3,620,414 3,512,679 3,401,497

9 39 3,279,053 3,411,446 3,303,968 3,512,679 3,408,713 3,301,321

9 40 3,176,185 3,303,968 3,200,318 3,401,497 3,301,321 3,197,755

10 32 3,861,688 4,023,507 3,891,031 4,149,543 4,020,284 3,887,914

10 33 3,812,564 3,971,189 3,841,533 4,094,311 3,968,008 3,838,456
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Exhibit 4

      aqtr 2 3 3 4 4 4

 aqtr  age 40 39 40 38 39 40

2 40 557,010,999 3,076,909 3,007,116 3,181,310 3,115,232 3,044,109

3 39 3,076,909 583,099,003 3,141,809 3,324,615 3,255,594 3,181,296

3 40 3,007,116 3,141,809 561,346,864 3,249,349 3,183,066 3,111,471

4 38 3,181,310 3,324,615 3,249,349 605,880,842 3,367,957 3,291,128

4 39 3,115,232 3,255,594 3,183,066 3,367,957 582,719,205 3,225,207

4 40 3,044,109 3,181,296 3,111,471 3,291,128 3,225,207 560,981,739

5 37 3,309,854 3,459,950 3,381,707 3,580,453 3,506,202 3,426,258

5 38 3,248,025 3,395,306 3,319,801 3,513,545 3,442,061 3,364,808

5 39 3,180,038 3,324,227 3,251,437 3,439,980 3,371,218 3,296,648

5 40 3,106,968 3,247,836 3,177,730 3,360,919 3,294,831 3,222,924

6 36 3,465,072 3,623,357 3,541,518 3,750,844 3,673,110 3,589,404

6 37 3,408,292 3,563,915 3,484,814 3,689,234 3,614,287 3,533,269

6 38 3,344,022 3,496,650 3,420,281 3,619,536 3,547,345 3,469,022

6 39 3,273,491 3,422,845 3,349,190 3,543,076 3,473,604 3,397,971

6 40 3,197,796 3,343,649 3,272,681 3,461,044 3,394,244 3,321,287

7 35 3,571,152 3,735,590 3,651,328 3,868,496 3,788,379 3,702,096

7 36 3,521,668 3,683,685 3,602,101 3,814,585 3,737,218 3,653,557

7 37 3,463,277 3,622,482 3,543,587 3,751,066 3,676,435 3,595,423

7 38 3,397,363 3,553,427 3,477,220 3,679,434 3,607,512 3,529,163

7 39 3,325,166 3,477,814 3,404,282 3,601,029 3,531,782 3,456,095

7 40 3,247,795 3,396,803 3,325,924 3,517,048 3,450,436 3,377,400

8 34 3,708,164 3,880,415 3,793,016 4,020,164 3,936,970 3,847,360

8 35 3,667,175 3,837,284 3,752,499 3,975,213 3,894,734 3,807,677

8 36 3,615,573 3,783,079 3,700,941 3,918,824 3,841,063 3,756,609

8 37 3,554,928 3,719,439 3,639,966 3,852,693 3,777,639 3,695,822

8 38 3,486,652 3,647,838 3,571,034 3,778,341 3,705,975 3,626,814

8 39 3,412,007 3,569,596 3,495,454 3,697,135 3,627,427 3,550,925

8 40 3,332,125 3,485,894 3,414,395 3,610,295 3,543,208 3,469,358

9 33 3,846,268 4,026,672 3,936,130 4,173,643 4,087,347 3,994,380

9 34 3,815,764 3,994,377 3,906,352 4,139,764 4,056,121 3,965,605

9 35 3,772,676 3,948,954 3,863,507 4,092,331 4,011,365 3,923,380

9 36 3,718,786 3,892,266 3,809,438 4,033,270 3,954,991 3,869,594

9 37 3,655,700 3,825,989 3,745,804 3,964,313 3,888,716 3,805,947

9 38 3,584,857 3,751,625 3,674,094 3,887,013 3,814,085 3,733,966

9 39 3,507,548 3,670,523 3,595,643 3,802,764 3,732,479 3,655,021

9 40 3,424,928 3,583,889 3,511,646 3,712,812 3,645,138 3,570,336
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Chain Ladder Reserve Risk Estimators 

Daniel M. Murphy, FCAS, MAAA 
 
 

Abstract 
Mack (1993) [2] and Murphy (1994) [4] derived analytic formulas for the reserve risk of the chain 
ladder method. In 1999, Mack [3] gave a recursive version of his formula for total risk. This paper 
provides the recursive versions of Mack’s formulas for process risk and parameter risk and shows 
that they agree with the formulas in Murphy [4] except for a parameter risk cross-product term. 
MSE is decomposed into variance and bias components. For the unbiased all-year weighted average 
link ratios in Mack [2] and Murphy [4] the MSE decomposition in this paper yields formulas that 
agree with Murphy [4]. For well-behaved triangles the difference between Mack and Murphy 
parameter risk estimates should be negligible. The concepts are illustrated with an example using 
data from Taylor and Ashe [5]. 
 

 Keywords: chain ladder; reserve risk; Mack; mean square error; parameter risk; bias; benchmarks. 
 

Introduction 

Mack [1] derived formulas for the chain ladder reserve risk when the age-to-age factors 
are based on the all-year weighted average. Murphy [4] derived recursive formulas for the 
chain ladder reserve risk under assumptions that are equivalent to Mack’s. The authors’ 
formulas yield different results, for reasons to be discussed herein. 

Mack [3] presented a recursive version of the total risk formula. In Section 1 we show 
recursive formulas for process risk and parameter risk not shown in [3]. We compare them 
with Murphy’s recursive formulas using Mack’s notation and note that the difference 
between the Mack and Murphy reserve risk estimates lies in the parameter risk component. 

Mack’s reserve risk is measured by the mean square error (MSE). Murphy’s reserve risk is 
measured by total variance. Although MSE is employed in many authors’ actuarial research, 
a mathematically precise definition, particularly as regards reserve risk, is not readily found in 
the literature. In Section 2 we present a definition of mean square error using the calculus of 
probability density functions. We will see that MSE can be decomposed into three terms: 
process risk, parameter risk, and bias. Since total variance is the sum of process variance and 
parameter variance, the difference between the Mack and Murphy reserve risk measures is 
bias. A separate mathematical manipulation, this time of parameter risk, yields a recursive 
formula that agrees with Murphy’s. Most of the mathematics will be relegated to the 
appendix. 
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Bias is ubiquitous in actuarial practice. When an actuary employs benchmark or industry 
factors in reserving, there arises a very real potential for bias. Yet biased development factors 
can yield estimated ultimates with smaller MSE than ultimates based solely on a company’s 
own experience, especially when that experience lacks sufficient credibility. The role that bias 
plays in estimating reserves and reserve risk has received little attention in the literature.  

In Section 3 we illustrate the above with an example using the Taylor/Ashe data analyzed 
by Mack [2] and elsewhere in the literature. We expand on the discussion by exploring the 
data a bit more with the regression perspective of [1]. We show how a simple graphical 
diagnostic leads to a different deterministic method with a not insignificantly smaller MSE. 

1 Recursive Reserve Risk Formulas 

We start with the model of loss development presented in [2] and [4], employing Mack’s 
notation. 

Suppose we are given a triangle of cumulative loss amounts Cij by accident year i and 
development age j, 1 ≤ i,j ≤ I. The triangle is assumed to be sufficiently large that age I can be 
considered “ultimate.” Note that for a given accident year i the triangle’s current diagonal 
observation has column index j = I + 1 – i, a useful fact to keep in mind when reading 
Mack’s formulas. The triangle in hand can be considered a sample from a theoretical set of 
random variables { }iIjIiCD ij −+≤≤≤≤= 11 ,1| . 

Under the assumptions1 
 (CL1) E(Ci,k+1|D)=Cikfk ,  
 (CL2)   Var (Ci ,k+1 | D) = Cikσk

2  for unknown parameters   σk
2 ,  1≤ i ≤ I ,  1≤ k ≤ I −1, 

and (CL3) accident years are independent, 

Mack derived the following closed-form formula for the estimate of the mean square error 
(MSE) of the chain ladder estimated ultimate losses: 
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where 

                                                 
1 Assumptions from Mack [2], pp. 214-217, which agree with those of Model IV in [4]; 
labeling from Mack [3]. 
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• 
  
ˆ σ k

2 =
1

I − k −1
Cik

Ci ,k+1

Cik

− ˆ f k
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

i=1

I −k

∑  for 1 ≤ k ≤ I – 2; (2) 

•   ̂  σ I −1
2  is judgmentally selected2;  

• the link ratio estimates are calculated using the all-year weighted averages  

 

 

ˆ f k =

C j ,k+1
j =1

I −k

∑

C jk
j =1

I −k

∑
 ; 

• accident year losses for future ages (k > I + 1 – i) are predicted using the chain 
ladder method  

   
ˆ C ik = Ci ,I +1− i

ˆ f I +1− i L
ˆ f k−1 ; 

• and, despite being scalars and not estimates, the current diagonal elements are 
granted “hats” (  Ci ,I +1− i = ˆ C i ,I +1− i ), which makes the formula more concise. 

Formula (1) is a combination of process risk and parameter risk (a.k.a., “estimation 
error,” but more about that later). 

We next look at recursive versions of the process and parameter risk components of 
equation (1). In the remainder of this paper unless otherwise noted it is understood that all 
expectations are conditional expectations, conditional on the triangle D. Also, depending on 
the context, sometimes it will be convenient to refer to “risk” in terms of variance and 
sometimes in terms of standard deviation. 

1.1 Process Risk 
It can be seen in [2] that Mack’s closed-form estimator3 for the process risk component 

of equation (1) is 

 
  
V ˆ a r (CiI ) = ˆ C iI

2 ˆ σ k
2 ˆ f k

2

ˆ C ikk= I +1− i

I −1

∑  . (3) 

Mack based the derivation of equation (3) on the recursive property4 of process risk 

 2
11,

2
11, )(Var)()(Var −−−− += kkikkiik fCCEC σ  (4) 

                                                 
2 Mack suggests ))ˆ,ˆmin(,ˆˆmin(ˆ 2

2
2

3
2

3
4

2
2

1 −−−−− = IIIII σσσσσ . 
3 p. 218; the hat notation in (3) shows that )(râV iIC is an estimator of the variance Var(CiI). 
4 Ibid. 
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for ages k beyond the first future diagonal for the given accident year i. For the first future 
diagonal, (4) reduces to 

 2
11,

2
11, )()(Var −−+−− == kiIikkiik CCEC σσ ,  

which is assumption CL2 above. 

We obtain a recursive version of Mack’s estimator for process risk by substituting 
estimators of the unknowns in (4): 

 
    
Procesˆ s Riskik =

ˆ f k−1
2 Procesˆ s Riski ,k−1 + ˆ C i ,k−1 ˆ σ k−1

2  for k > I + 2 − i

Ci ,I +1− i ˆ σ k−1
2                              for k = I + 2 − i .

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
 (5) 

The process risk estimator in (5) has the same form as Murphy’s recursive estimator5. To 
demonstrate that the authors’ formulas are identical in substance as well as form, it remains 
to be shown that Mack and Murphy have the same formula for the variance estimator 2ˆ kσ  
(both authors’ models yield weighted average link ratios). 

Mack’s formula (2) for the variance estimator6 can be rewritten as 

 ( ) . ˆ
1

1ˆ
1

2

1,
2 ∑

−

=
+ −

−−
=

kI

i
ikkkik CfC

kI
σ  

So 2ˆ kσ  is the sum of the squared deviations of losses at the end of the development period 
from the chain ladder predictions given the losses at the beginning of the period, all divided 
by n-1, where n is the number of terms in the summation. This is the formula for residual 
variance when the regression line (the paradigm in Murphy [4]) is determined by only a slope 
parameter, no intercept. Thus, the Mack and Murphy formulas for the variance estimator, 
and in turn for process risk, are equivalent. 

1.2 Parameter Risk 
It can be seen in Mack [2] that the author’s closed-form estimator for parameter risk7 is 

 

  

Paramete ˆ r Riskik = ˆ C ik
2

ˆ σ j
2

ˆ f j
2

j = I +1− i

k−1

∑ 1

Crj
r =1

I − j

∑
. (6) 

This can be reformulated recursively as follows: 

                                                 
5 Murphy [4], p. 168, under the weighted average development model. 
6 Mack [2], p. 217. 
7 In Mack’s derivation of equation (1). 
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= ˆ f k−1
2 Paramete ˆ r Riski ,k−1 + ˆ C i ,k−1

2 V ˆ a r ( ˆ f k−1)  .

 

For k equal to the first future diagonal, the prior parameter risk is zero, and Mack’s estimator 
above reduces to simply the second term. 

Murphy’s recursive estimator for parameter risk in Mack’s notation is8 
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Thus, the Mack and Murphy formulas differ only by the third, cross-product term in (7).9 
The derivation in theorem 2 in the appendix also yields the recursive formula (7). 

2 Decomposition of the Mean Square Error 

2.1 MSE Defined 
Dispensing with the subscripts for accident year i and ultimate development age I, the mean 
square error (MSE) of the predictor  ̂  C  is defined10 as the expected squared deviation of the 
predictor   ̂  C , a random variable, from the value of the random variable C being predicted; in 
operator notation 

  mse( ˆ C ) = E( ˆ C −C )2  

where the expectation is taken with respect to the joint probability distribution of   ̂  C  and C. 

                                                 
8 Mack [1] p. 167, assuming no constant term in the loss development model. 
9 The missing cross-product term has been noted elsewhere. See Buchwalder [1] for an  
example. 
10 For an example, see Mack [2], p. 216. 
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2.1 MSE Decomposed 
Theorem 1 in the appendix shows that the MSE can be decomposed into variance and 

bias terms: 

 )ˆ()ˆ()()ˆ( 2 CBiasCVarCVarCmse ++=  . (8) 

The bias of the estimator is the difference between its mean and the mean of its target: 

   Bias ( ˆ C ) = E( ˆ C ) − E(C ) . 

Thus, the MSE is the sum of process risk, parameter risk, and the squared bias of the 
estimator. 

As can be seen from equation (8), it is possible for the MSE of a biased estimator to be 
smaller than the MSE of an unbiased estimator. For example, when a company’s triangle is 
small or “thin” the resulting link ratios can bounce around too much from one reserve 
review to the next – high parameter risk. To stabilize the indications between reserve 
reviews, actuaries often supplement unstable company factors with more stable industry 
benchmarks. Do those benchmark factors introduce bias? Perhaps. If so, what might be the 
magnitude of that bias, and how does it compare with the corresponding reduction in MSE? 
Those questions are beyond the scope of this paper. 

The all-year weighted averages in Mack [2] and Murphy [4] are unbiased. 

2.2 Estimation Error Decomposed 
Equation (12) in Theorem 1 in the appendix shows that an intermediate decomposition 

of the MSE has two terms, process risk and estimation error: 

 2
ˆ )ˆ()()ˆ( CC

CECVarCmse μ−+= . 

Estimation error 2
ˆ )ˆ( CC

CE μ− is the expected squared deviation of the estimator, not from 
its own mean, but from the mean of its target.11 That expectation can be decomposed into 
the squared deviation of the estimator from its own mean plus the squared difference 
between the two means: 

 
.  )ˆ()ˆ(

)()ˆ()ˆ(
2

2
ˆ

2
ˆˆ

2
ˆ

CBiasCVar

CECE CCCCCC

+=

++−=− μμμμ
 

Thus, for unbiased estimators, estimation error and parameter risk are synonymous. For 
biased estimators, they are not. 
                                                 
11 Contrast this with Mack’s formulation of estimation error (Mack [2], p. 217), 2)ˆ( CC μ− , a 
random variable. 
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2.3 The Magnitude of the Cross-Product Parameter Risk Term 
Theorem 2 in the appendix proves (in parameter notation) that an estimator of the 

parameter risk of losses projected to age k is 

 
  
ˆ σ ˆ C k

2 = ˆ f k−1
2 ˆ σ ˆ C k−1

2 + ˆ C k−1
2 ˆ σ ˆ f k−1

2 + ˆ σ ˆ f k−1

2 ˆ σ ˆ C k−1

2 . 

The ratio of the cross product term to the parameter risk estimator gives an idea of the 
relative magnitude of its contribution to the parameter risk estimate: 

 
  

ˆ σ ˆ f k−1

2 ˆ σ ˆ C k−1

2

ˆ σ ˆ C k
2 =

ˆ σ ˆ f k−1

2 ˆ σ ˆ C k−1

2

ˆ f k−1
2 ˆ σ ˆ C k−1

2 + ˆ C k−1
2 ˆ σ ˆ f k−1

2 + ˆ σ ˆ f k−1

2 ˆ σ ˆ C k−1

2  

 

  

=
1

ˆ f k−1
2

ˆ σ ˆ f k−1

2 +
ˆ C k−1

2

ˆ σ ˆ C k−1

2 +1
 .     (9) 

As can be seen from equation (9) the contribution of the cross-product term to the 
parameter risk estimate will be large when the denominator in (9) is small, which can occur 
when the link ratio variation is large relative to the square of link ratio. So for small triangles 
or triangles with wildly varying development, it would behoove the actuary not to ignore the 
cross-product term. In our experience, with reasonably stable triangles the impact of the 
cross-product term has been negligible. 

3 An Example 

Mack [1] applied his formulas to the following triangular array of data from Taylor and 
Ashe [5]: 

357848 1124788 1735330 2218270 2745596 3319994 3466336 3606286 3833515 3901463
352118 1236139 2170033 3353322 3799067 4120063 4647867 4914039 5339085  
290507 1292306 2218525 3235179 3985995 4132918 4628910 4909315   
310608 1418858 2195047 3757447 4029929 4381982 4588268    
443160 1136350 2128333 2897821 3402672 3873311     
396132 1333217 2180715 2985752 3691712      
440832 1288463 2419861 3483130       
359480 1421128 2864498        
376686 1363294         
344014          

Given the all-year weighted average link ratios below and the cumulative loss 
development factors (LDFs) 
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 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 tail 
Link Ratio 3.491 1.747 1.457 1.174 1.104 1.086 1.054 1.077 1.018 1.000 

LDF 14.447 4.139 2.369 1.625 1.384 1.254 1.155 1.096 1.018 1.000 

the completed triangle is  

i/k k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 
i=1 357,848 1,124,788 1,735,330 2,218,270 2,745,596 3,319,994 3,466,336 3,606,286 3,833,515 3,901,463
i=2 352,118 1,236,139 2,170,033 3,353,322 3,799,067 4,120,063 4,647,867 4,914,039 5,339,085 5,433,719
i=3 290,507 1,292,306 2,218,525 3,235,179 3,985,995 4,132,918 4,628,910 4,909,315 5,285,148 5,378,826
i=4 310,608 1,418,858 2,195,047 3,757,447 4,029,929 4,381,982 4,588,268 4,835,458 5,205,637 5,297,906
i=5 443,160 1,136,350 2,128,333 2,897,821 3,402,672 3,873,311 4,207,459 4,434,133 4,773,589 4,858,200
i=6 396,132 1,333,217 2,180,715 2,985,752 3,691,712 4,074,999 4,426,546 4,665,023 5,022,155 5,111,171
i=7 440,832 1,288,463 2,419,861 3,483,130 4,088,678 4,513,179 4,902,528 5,166,649 5,562,182 5,660,771
i=8 359,480 1,421,128 2,864,498 4,174,756 4,900,545 5,409,337 5,875,997 6,192,562 6,666,635 6,784,799
i=9 376,686 1,363,294 2,382,128 3,471,744 4,075,313 4,498,426 4,886,502 5,149,760 5,544,000 5,642,266
i=10 344,014 1,200,818 2,098,228 3,057,984 3,589,620 3,962,307 4,304,132 4,536,015 4,883,270 4,969,825

The variance estimates are 

 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 
2ˆ kσ  160,280 37,737 41,965 15,183 13,731 8,186 447 1,147 447 

2ˆ
kf

σ  0.048170 0.003681 0.002789 0.000823 0.000764 0.00051 0.00004 0.00013 0.00012 

Using formula (5) the process risk (variance) estimates of the future losses displayed 
above are calculated recursively left to right. The variance of the sum is the sum of the 
variances because years i=1…10 are independent. 

 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 

i=1                     

i=2            2.38E+09 

i=3           5.63E+09 8.19E+09 

i=4          2.05E+09 7.92E+09 1.05E+10 

i=5         3.17E+10 3.71E+10 4.81E+10 5.19E+10 

i=6        5.07E+10 9.32E+10 1.05E+11 1.28E+11 1.34E+11 

i=7       5.29E+10 1.21E+11 1.79E+11 2.01E+11 2.39E+11 2.50E+11 

i=8      1.20E+11 2.29E+11 3.46E+11 4.53E+11 5.06E+11 5.93E+11 6.17E+11 

i=9     5.14E+10 2.09E+11 3.41E+11 4.71E+11 5.93E+11 6.61E+11 7.72E+11 8.02E+11 

i=10   5.51E+10 2.14E+11 5.42E+11 7.93E+11 1.02E+12 1.23E+12 1.37E+12 1.59E+12 1.65E+12 

Sum  5.51E+10 2.65E+11 8.71E+11 1.42E+12 2.00E+12 2.58E+12 2.88E+12 3.39E+12 3.53E+12 

For example, for i=8, k=6, 1373149005451029.2104.11046.3 11211 ⋅+⋅⋅=⋅ . 

Using formula (6) the parameter risk (variance) estimates of the future losses are also 
calculated recursively left to right. The variance of the sum is calculated using formulas in 
Murphy [4]. 



Chain Ladder Reserve Risk Estimators 

CAS E-Forum Summer 2007 www.casact.org 9 

 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 

i=1                     

i=2            3.32E+09

i=3           3.25E+09 6.62E+09

i=4          7.38E+08 4.00E+09 7.30E+09

i=5         7.70E+09 9.17E+09 1.33E+10 1.64E+10

i=6        1.04E+10 2.08E+10 2.38E+10 3.05E+10 3.46E+10

i=7       9.99E+09 2.50E+10 3.99E+10 4.52E+10 5.59E+10 6.16E+10

i=8      2.29E+10 4.59E+10 7.43E+10 1.03E+11 1.15E+11 1.39E+11 1.49E+11

i=9     6.84E+09 3.04E+10 5.18E+10 7.59E+10 9.99E+10 1.12E+11 1.33E+11 1.42E+11

i=10   5.70E+09 2.27E+10 6.06E+10 9.13E+10 1.21E+11 1.51E+11 1.68E+11 1.98E+11 2.08E+11

Sum  5.70E+09 4.16E+10 2.39E+11 4.95E+11 9.20E+11 1.44E+12 1.64E+12 2.12E+12 2.46E+12

For example, for i=8, k=6,  

 10210210 1059.4000764.0000764.049005451059.4104.11043.7 ⋅⋅+⋅+⋅⋅=⋅ . 

Comparisons of these Murphy-formula results with the Mack-formula results from Mack 
[2] are displayed in row detail, and in total, in the following table: 

 Reserve Risk Estimates 
Mack Formula Murphy Formula Origination 

Year Process Parameter Total Process Parameter Total 
i=2 48,832 57,628 75,535  48,832  57,628   75,535  
i=3 90,524 81,338 121,699  90,524  81,340   121,700  
i=4 102,622 85,464 133,549  102,622  85,467   133,551  
i=5 227,880 128,078 261,406  227,880  128,091   261,412  
i=6 366,582 185,867 411,010  366,582  185,907   411,028  
i=7 500,202 248,023 558,317  500,202  248,110   558,356  
i=8 785,741 385,759 875,328  785,741  385,991   875,430  
i=9 895,570 375,893 971,258  895,570  376,222   971,385  
i=10 1,284,882 455,270 1,363,155 1,284,882  455,957  1,363,385  
Total: 1,878,292 1,568,532 2,447,095 1,878,292  1,569,349  2,447,618  

The Mack and Murphy process risk estimates are identical. Differences in parameter risk 
occur, at most, only in the 3rd or 4th significant digit. 

Continuing with this example, the regression perspective of Murphy [4] provides 
additional insight into the Taylor/Ashe data. The graphical display below of the historical 
relationship between 12- and 24-month losses clearly shows that the data violate the first 
chain ladder assumption (Mack’s CL1), i.e., that the expected relationship is a line through 
the origin.  
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Although the indicated slope of the trend line is negative, the regression statistics support 
the statement that it is not significantly different from zero, implying that the 12- and 24-
month losses are actually uncorrelated. Therefore, a reasonable estimate of the 24-month 
losses for year 10 would simply be the average of all of the previous years’ 24-month losses, 
1,290,505. This estimate would be reasonable not just from a statistical standpoint but from 
a business standpoint if we knew, for instance, that all losses are on-level and of equal 
exposure. The standard deviation of those losses is 108,885 = process risk, and the standard 
deviation of the mean is 38497 = sqrt(1088952/(9-1)) = parameter risk. 

This demonstrates one of the advantages of recursive formulas: flexibility. The recursive 
formulas (5) and (7) do not know how the predictions and variances are estimated, nor do 
they care (e.g., see Theorem 2). One need only substitute these two new process risk and 
parameter risk estimates for year 10 into the corresponding (i=10,k=2) cells in the tables 
above and the recursive calculations for k>2 carry on as before. The new comparison table 
is 

chain ladder assumption
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 Reserve Risk Estimates 
Mack Formula Murphy Formula Origination 

Year Process Parameter Total Process Parameter Total 
i=2 48,832 57,628 75,535  48,832  57,628   75,535  
i=3 90,524 81,338 121,699  90,524  81,340   121,700  
i=4 102,622 85,464 133,549  102,622  85,467   133,551  
i=5 227,880 128,078 261,406  227,880  128,091   261,412  
i=6 366,582 185,867 411,010  366,582  185,907   411,028  
i=7 500,202 248,023 558,317  500,202  248,110   558,356  
i=8 785,741 385,759 875,328  785,741  385,991   875,430  
i=9 895,570 375,893 971,258  895,570  376,222   971,385  
i=10 1,284,882 455,270 1,363,155 980,971  390,295  1,055,762  
Total: 1,878,292 1,568,532 2,447,095 1,685,041  1,568,504  2,302,079  

Thus, after a simple diagnostic of the underlying data and an appropriate adjustment in the 
actuarial projection, process risk for year 10 is reduced by 22.5%, parameter risk by 14.3%, 
and total risk by 21.5%, and the total risk estimate for all years combined is 6% lower than 
that produced by the Mack method. This example also points out how it is not necessary – 
or even advisable – to use a single reserving method for the entire future development of a 
given year. In some instances it is beneficial to “change methods in the middle of the 
development stream.” 

4 Conclusion 

Although Mack’s reserve risk formulas omit a parameter risk cross-product term, the 
understatement should be negligible for reasonably behaved triangles. The advantage of 
closed-form formulas as in Mack [2]  is that they are concise. Recursive formulas by Murphy 
[4], by Mack [3], and in this paper are not as concise but are more flexible, e.g., allowing for 
projections based on a shift in model from one development period to the next. 

Mean square error is comprised of process risk, parameter risk, and bias. Estimation error 
and parameter risk are equivalent when the link ratios are unbiased. Within the context of 
the chain ladder method, utilization of industry benchmark factors might introduce bias into 
the projections, but in the actuary’s judgment the resulting stabilization may outweigh 
whatever bias might occur. Estimating the magnitude of the potential for bias and reduction 
in MSE are areas of further actuarial research. 

Appendix 
The definition of the mean square error (MSE) of the predictor   ̂  C  is the expected 

squared deviation of the (random variable) predictor  ̂  C  from the value of the random 
variable C being predicted: 
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  mse( ˆ C ) = E( ˆ C −C )2  (10) 

where the expectation is taken with respect to the joint probability distribution of   ̂  C  and C. 

Theorem 1: The MSE Decomposition Theorem 

 )ˆ(Bias)ˆ(Var)(Var)ˆ(mse 2 CCCC ++= . 

Proof: Let )ˆ,( ccf  represent the joint density of C and  ̂  C . Then the MSE is the integral 

 ∫∫ −= cdcdccfccC ˆ)ˆ,()ˆ()ˆ(mse 2  

taken over the joint sample space. 

To decompose the MSE into variance and bias components, we will use the fact that the 
joint density of the two random variables can be factored into a conditional density and a 
marginal density: 

  f (c , ˆ c ) = f (c | ˆ c ) f (ˆ c ). 

This fact allows us to write equation (10) as 

 ))ˆ|)ˆ((()ˆ(mse 2
ˆ CCCEEC C −=  (11) 

where the inner expectation is taken with respect to C conditional on the value of   ̂  C . We 
will manipulate the inner expectation first, taking advantage of the “scalar” nature of   ̂  C  with 
respect to that conditional expectation. 

We add and subtract the mean μC of the predicted random variable inside the quadratic, 
group the result into two terms, square the binomial, and observe that the cross-product 
term disappears. To wit 

 

. ]ˆ|)[(]ˆ|))(ˆ[(2]ˆ|)ˆ[(
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The third term above is just Var(C), the first term (conditional on  ̂  C ) is simply   ( ˆ C − μC )2, 
and the middle term disappears because 

 

    

EC [( ˆ C − μC )(μC −C ) | ˆ C ] = EC [( ˆ C μC − ˆ C C − μC
2 + μCC ) | ˆ C ]

= ˆ C μC − ˆ C EC [C | ˆ C ] − μC
2 + μC EC [C | ˆ C ]

= ˆ C μC − ˆ C μC − μC
2 + μC

2

= 0 .
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Substituting these expressions into (11), we have that 

 2
ˆ )ˆ()()ˆ(mse CC CECVarC μ−+=  (12) 

which shows that the MSE equals the process variance plus the expected squared deviation 
between the predictor and the mean of its target.12 The second term on the right in (12) is 
called “estimation error.” 

To continue the decomposition, we address the estimation error term in (12) by adding 
and subtracting the mean   μ ˆ C  inside the quadratic and proceeding as above: 
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Substituting this expression for   E ˆ C ( ˆ C − μC )2 into (12), we have  

 )ˆ()ˆ()()ˆ( 2 CBiasCVarCVarCmse ++=  

which proves the theorem. 

Theorem 2:  The Parameter Risk Recursion Theorem 

 )ˆ(ˆ)ˆ(ˆ)ˆ(ˆˆ)ˆ(ˆˆ)ˆ(ˆ 1,11
2

1,1,
2

1 −−−−−− ++= kikkkikikik CraVfraVfraVCCraVfCraV  

Proof: Following a similar path as in equation (4) in Section 1 above: 
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Substituting estimates for the unknown parameters yields the desired result. 
                                                 
12 Contrast this with Mack’s expression for the MSE in [2]: 2)ˆ()(Var)ˆ(mse CCC C −+= μ . 
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Generalized Linear Models Beyond the Exponential 
Family with Loss Reserve Applications 

Gary G. Venter, FCAS, MAAA 

________________________________________________________________________ 

Abstract  

The formulation of generalized linear models in Loss Models by Klugman, Panjer, and Willmot [5] is a bit 
more general than is often seen, in that the residuals are not restricted to following a member of the 
exponential family. Some of the distributions this allows have potentially useful applications. The cost is 
that there is no longer a single form for the likelihood function, so each has to be fit directly. Here the 
use of loss distributions (frequency, severity, and aggregate) in generalized linear models is addressed, 
along with a few other possibilities. 
 
Keywords. Loss reserving; regression modeling; generalized linear models. 

             

1 INTRODUCTION 

The paradigm of a linear model is multiple regression, where the dependent variables are 

linear combinations of independent variables plus a residual term, which is from a single 

mean-zero normal distribution. Generalized linear models, denoted here as GLZ1, allow 

nonlinear transforms of the regression mean as well as other forms for the distribution of 

residuals. 

Since many actuarial applications of GLZ are to cross-classified data, such as in a loss 

development triangle or classification rating plan, a two-dimensional array of independent 

observations will be assumed, with a typical cell’s data denoted as qw,d. That is easy to 

generalize to more dimensions or to a single one.  

Klugman, Panjer, and Willmot (2004) [5] provide a fairly general definition of GLZs. To 

start with, let zw,d be the row vector of covariate observations for the w, d cell and β the 

column vector of coefficients. Then a GLZ with that distribution models the mean of qw,d as 

a function η of the linear combination zw,dβ, where all the other parameters, including β, are 

constant across the cells.  

It appears that their intention is that η does not take any of the parameters of the 
                                                 

1 Often GLM is used but with more restrictions on distributional form, typically the exponential family. 
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distribution as arguments, although this is not explicitly stated. An interesting special case is 

where η is the identity function, so the mean of qw,d is zw,dβ. Another key case is where η is 

exp, so E[qw] = exp(zw,dβ). This is a multiplicative model in which the mean is the product of 

the exponentiated summands in zw,dβ.  

Standard regression sets the mean zw,dβ to the μ of a normal distribution, which has 

another parameter σ that is constant across the cells. But almost any distribution that has a 

mean could be reparameterized so that the mean is one of the parameters. This allows 

virtually any distribution to be used for the residuals. The mean-parameter will be referred to 

as μ hereafter. 

Usual GLM requires the distribution to be from the exponential family. Mildenhall (1999) 

[7] defines this as a distribution that can be written in the form f(x;μ,φ) = 

c(x,φ)/exp[d(x;μ)/(2φ)] where ∫
−

=
x

dt
tV

xwxd
μ

μμ
)(

2);( for a strictly positive function V(t) 

and weighting constant w. The tricky part is that μ appears only in the exponent and is 

constrained in how it combines with φ. For any μ, c has to make the integral unity. While 

quite a few models are possible with this family and various η functions, expanding the 

universe of distributions leads to other interesting models. Some of the simplicity of 

exponential models is lost, however.  

Standard theory shows the mean of an exponential model is μ and the variance is 

φV(μ)/w. The V function defines the exponential model uniquely. Using w=1 and V = μj 

with j = 0, 1, 2, 3 gives the normal, Poisson, gamma, and inverse Gaussian distributions, 

respectively. The ratio of the coefficient of skewness to the coefficient of variation (or CV, 

which is the standard deviation divided by mean) for these distributions is also 0, 1, 2, 3, 

respectively. Renshaw (1994) [10] has a formula that implies more generally that 

skewness/CV is μ∂lnV/∂μ whenever w=1. 

The relationship of variance to mean is one of the issues in selecting a distribution for 

GLZs. The relationship no longer uniquely defines the distribution, however. For the 
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normal and t-distributions2 the mean and variance are not related, which could be expressed 

as the variance being proportional to μ0. The Poisson has variance proportional to μ1, and 

quite a few distributions have variance proportional to μ2. Other relationships of mean and 

variance will be discussed below. One advantage of GLZs is that distributions with the same 

relationship of variance to mean might have different tail properties, including different 

skewnesses and higher moments, giving more flexibility in fitting models to data. 

In linear regression the failure of the observations to match the predictions of constant 

variance is called heteroscedasticity. Often this occurs because the variance is smaller for 

smaller observations. In such a case using a distribution with variance proportional to a 

power of the mean might solve the heteroscedasticity problem. A simple example is the 

Poisson, where μ is the λ parameter, which then gets set to η(zw,dβ) for each cell and then is 

the mean and variance of the cell. 

Virtually any distribution can be used in a GLZ. Specific examples of frequency, severity, 

and aggregate loss distributions in GLZs are discussed next, followed by estimation issues 

and examples from modeling loss development triangles. 

2 FREQUENCY DISTRIBUTIONS IN GLZ 

For the Poisson in λ, the mean and variance are both λ = η(zw,dβ). The negative binomial 

is more interesting. In the usual parameterization, the variance is a fixed multiple of, but 

greater than, the mean. Negative binomial distributions are in the (a,b,0) class, which means 

that for k>0, there are values a and b so that probabilities follow the recursive relationship pk 

= (a+b/k)pk-1 . The negative binomial has two positive parameters, r and β, with mean = rβ 

and variance = rβ(1+β). Skewness/CV is 1+β/(1+β), which is between 1 and 2. Probabilities 

start with p0 = (1+β)-r and in the recursion a = β/(1+β) and b = (r-1)a. 

There are two simple ways to express the negative binomial mean as a parameter. First, 

keeping the parameter β, replace r by μ/β, so there are two parameters β and μ and the mean 
                                                 

2 Having t-distributed residuals is one of the many possibilities this formulation of GLZ allows. Also the 

Laplace, which has exponential tails in both directions from the origin, or the logistic, which is like a heavy-

tailed normal, could be used for symmetric residuals. 
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is μ. The variance rβ(1+β) becomes μ(1+β). In a GLZ the mean is μ = η(zw,dβ) and the 

variance is η(zw,dβ)(1+β), which is proportional to the mean. On the other hand if you keep 

r and replace β by μ/r, the parameters are r and μ, and the mean is again μ, but the variance 

rβ(1+β) is μ(1+μ/r), which is quadratic in μ. This form is in the exponential family. Thus 

depending on how you parameterize the negative binomial, its variance can be either linear 

or quadratic in the mean.  

The parameterization chosen does not make any difference for a single distribution. 

Suppose for example that X has r = 3 and β = 10 and so mean μ=30 and variance 330. The 

variance is μ(1+β) in the first formulation and μ(1+μ/r) in the second, both of which are 

330. A difference comes when modeling other variables while keeping parameters other than 

μ constant. Suppose Y has mean 100. If β is kept at 10, μ(1+β) = 1100, while if r is kept at 

3, μ(1+μ/r) = 3433. The parameterization to choose would be the one that best captures the 

way the variance grows as the risk size increases. This same idea is applied to severity 

distributions next. 

3 SEVERITY DISTRIBUTIONS IN GLZ 

A parameter θ of a distribution of X is a scale parameter if the distribution of a multiple 

of X is obtained by substituting that multiple of θ into the original distribution. The kth 

moment of the distribution is then proportional to θk. Thus if the mean μ is a scale 

parameter, the variance is proportional to μ2. 

3.1 Inverse Gaussian 
As an example, consider the inverse Gaussian distribution with density 

α
μμ

πα
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Here μ is a scale parameter, with EX = μ and VarX = αμ2. However it is more usual to 

parameterize the inverse Gaussian with λ = μ/α, so α is replaced by μ/λ: 
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Now μ is no longer a scale parameter, even though it is still the mean. The variance is 

μ3/λ, and so is proportional to μ3 instead of μ2. This is in the exponential family as μ is just 

in the exponent. Both forms meet the requirements to be GLZs, so either variance 

assumption can be accommodated. The choice would depend on how the squared deviations 

from the cell means tend to vary with the means η(zw,dβ). If they seem to grow 

proportionally to the square of the mean, ig1 would be indicated, but if they grow with the 

mean cubed, ig2 would be preferred.  

How the variance relates to the mean is thus not a fundamental feature of the inverse 

Gaussian, but is a result of how it is parameterized. A characteristic constant of this 

distribution, not dependent on parameterization, is the ratio of the skewness to the CV. In 

ig1, with μ a scale parameter, the third central moment is 3μ3α2 while it is 3μ5/λ2 in ig2. Thus 

in ig1 the CV is α½ and the skewness is 3α½, so the ratio is 3. In ig2 these coefficients are 

(μ/λ)½ and 3(μ/λ)½, so the ratio is again 3. 

3.2 Gamma 
Substituting alternative parameters can be done for other distributions as well. For 

instance the gamma distribution is usually parameterized F(x; θ,α) = Γ(x/θ; α) with the 

incomplete gamma function Γ. This has mean αθ and variance αθ2. To get the mean to be a 

parameter, set F(x; μ,α) = Γ(xα/μ; α). Then the variance is μ2/α and μ is still a scale 

parameter. But other parameterizations are possible. Similarly to the inverse Gaussian, 

setting F(x; μ,λ) = Γ(xλ/μ2; λ/μ) still gives mean μ but now the variance is μ3/λ. Other 

variance functions can be reached by this method. For instance F(x; μ,λ) = 

Γ[x/(λμp); μ1−p/λ] has mean μ and variance μ1+pλ. This works for any real p, so the gamma 

variance can be made to be proportional to any power of the mean, including zero. This will 

be called the gamma p. 

Hewitt (1966) [3] noted that if larger risks were independent sums of small risks, the 

variance would grow in proportion to the mean. He found in fact that aggregate loss 

distributions for some insurance risks can be modeled by gamma distributions, and that the 

gamma variance grows by about μ1.227. This relationship could be modeled by the gamma p 

with p = 0.227. 



Generalized Linear Models Beyond the Exponential Family with Loss Reserve Applications 

CAS E-Forum Summer 2007 www.casact.org 6 

As with the inverse Gaussian, the ratio of skewness to CV is a characteristic constant of 

the gamma distribution. With power p, the third central moment is 2λ2μ1+ 2p. This gives 

skewness of 2λ0.5μ 0.5p − 0.5, which is twice the CV, so the ratio is 2 for the gamma regardless 

of p. Thus an inverse Gaussian is 50% more skewed than the gamma with the same mean 

and variance.  

3.3 Lognormal 
The lognormal density can be parameterized as: 

  
πτ

τθ
τθ

2
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Here θ is a scale parameter. The mean is θeτ/2 and the variance is θ2eτ(eτ-1). Taking α = eτ/2 

and μ = αθ, the mean and variance are μ and μ2(α2–1) and 
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For the lognormal a characteristic constant is the ratio of skewness to CV minus the CV-

squared. This is always 3, regardless of parameterization. 

The usual parameterization of the lognormal is: ⎟
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parameters: skewness = 3

3

3
m
s

m
s

+ . As with the gamma, other reparameterizations of the 

lognormal are possible, and can give any relationship of variance and mean. In fact, 

has mean m, variance s2mp, and skewness 3t+t3, where t = smp/2-1. Here μ has been replaced 

by ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+ −221
ln

pms
m  and σ2 by ln(1+s2mp – 2). 

3.4 Pareto 
The Pareto is another interesting case. Consider F(x; θ,α) = 1 – (1+x/θ)−α. This has 

mean θ/(α−1). Taking μ = (α−1)θ gives F(x; μ,α) = 1 – (1+x/(μ α− μ))−α. This has mean 

μ and variance μ2/(α−2) if α > 2. But if α ≤ 1 this does not work, as the mean does not 

exist. There does not seem to be any reason not to extend the GLZs to this case. Perhaps 

the easiest way to do this is to model θw,d as η(zw,dβ) for each cell. Or the median m = θ(21/α 

– 1) could be the parameter modeled, by setting F(x; m,α) = 1 – (1+x(21/α−1)/m)−α, with m 

= η(zw,dβ). This is median regression in the GLZ framework. 

The skewness for the gamma, inverse Gaussian and lognormal distributions can be 

expressed as 2CV, 3CV, and 3CV+CV3, respectively. For the Pareto, if the skewness exists, 

CV2 is in the range (1,3). Then the skewness is 
3
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−
+

α
α

CV
 = 2

2

3
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. This is less 

than the lognormal skewness when 22 <CV  and less than the inverse Gaussian skewness 

when 4574.112/115.02 ≈+<CV . This illustrates the different tail possibilities for GLZs 

with the same means and variances. 

3.5 Origin Shifting 
Severity distributions have their support on the positive reals, so all fitted values have to 

be positive. Frequency and aggregate distributions extend the support to include zero, but 

not negative values. However, any of the positive distributions can be location shifted to 

allow the possibility of negative values or even negative means. For instance, the shifted 
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gamma has F(x) = Γ[(x–b)/θ, α], with mean b+αθ and variance αθ2. Making the mean a 

parameter gives the distribution F(x) = Γ[(α(x–b)/(μ–b), α]. The variance is then (μ–b)2/α, 

which is still quadratic in μ. 

4 AGGREGATE DISTRIBUTIONS IN GLZ 

Aggregate distributions can be especially useful for residuals that are continuous on the 

positive reals but also could take a positive probability at zero. This is often seen out in late 

lags of a development triangle, for example. 

4.1 Poisson-Gamma Aggregates 
An example of an aggregate loss model in the exponential family is the Tweedie 

distribution. This starts by combining a gamma severity in α and θ that has mean αθ and 

variance αθ2 with a Poisson frequency in λ. Then the aggregate distribution has 

mean μ =λαθ and variance = λαθ2(α+1) = μθ(α+1). Since this can also be written as 

λ(αθ)2(1/α+1), it is clear that the variance is linear in the frequency mean and quadratic in 

the severity mean.  

If the restriction λ = k(αθ)
α is imposed, then μ = k(αθ)

α+1, and the variance is 

kα
α+1

θ
α+2(1+α), or μ1+1/(α+1)(1+1/α)k−1/(α+1). This is the Tweedie distribution. The variance 

is proportional to a power of the mean between 1 and 2, which is often realistic for sums of 

claims. The link between frequency and severity is problematic, however. It would seem 

unusual for the observations with the smaller number of claims to also have the smaller 

claim sizes. 

Kaas (2005) [4] expresses the Tweedie by replacing the three parameters λ, α, θ of the 

Poisson-Gamma with three others μ, ψ, and p by the formulas: 

         λ = μ2 – p/[ψ(2 – p)]           α = (2 – p)/(p – 1)         θ = ψ(p – 1)μp – 1  

This looks like a 3 for 3 swap of parameters, so it is not clear that a relationship between 

the frequency and severity means has been imposed. But (αθ)α in this notation is: 

(αθ)α = λ[ψ(2 – p)]1/(p – 1). 
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Thus taking k = [ψ(2 – p)]1/(1 – p) gives λ = k(αθ)
α, which is the restriction originally 

imposed above. This k is not a function of μ and can also replace ψ by ψ = k1 – p/(2 – p). 

This gives a parameterization of the Tweedie in terms of k, p, and μ:  

         λ = μ(μ/k)1 – p          α = (2 – p)/(p – 1)         θ = (μ/k)p – 1 /α 

The mean is still μ, the frequency mean is k times the severity mean raised to the power 

(2 – p)/(p – 1), and the aggregate variance is now μpk1–p/(2 – p). Since p is (α+2)/(α+1), it is 

between 1 and 2. The parameters are a bit simpler than Kaas’ but the variance is more 

complicated than his ψμp. In any case skewness/CV is p, consistent with Renshaw’s formula. 

Not requiring the exponential family form gives other possibilities. Without imposing any 

relationship between frequency and severity, as noted above, the Poisson-gamma can be 

parameterized with mean μ and variance μθ(α+1). This has replaced λ with μ/(αθ). A 

somewhat different relationship between frequency and severity can be established by setting 

λ = (αθ)k. This gives mean μ = (αθ)k+1 and variance (αθ)k+2(1+1/α) = μ(k+2)/(k+1)(1+1/α), 

which is again proportional to a power of the mean between 1 and 2. 

4.2 Poisson-Normal 
A limiting case is the Poisson-normal. This has a point mass at zero but could have some 

negative observations. For the normal in m and s2 it has mean μ = λm, variance λ(m2+s2) = 

μm[1+(s/m)2] and skewness (1+3CV2)λ−½(1+CV2)−1.5. Fixing m and s and setting λw,d to 

μw,d/m makes the variance proportional to the mean. Another possibility is to make λ and s 

constant and set mw,d to μw,d/λ. Then the variance of each cell is μw,d
2/λ +λs2. This is quadratic 

in μw,d and any μw,d can be negative. This is possible for the normal regression as well, but for 

the Poisson-normal, homoscedasticity is not required (or possible). 

4.3 Poisson-Constant Severity Aggregates 
The simplest aggregate loss distribution is probably Poisson frequency with a constant 

severity, called the PCS distribution. If θ is the severity, a cell with frequency λ has mean 

θλ= η(zw,dβ) and variance θ2λ = θη(zw,dβ). This is sometimes called the over-dispersed 

Poisson distribution, but PCS may be more descriptive, especially if θ < 1. Some authors 

define the over-dispersed Poisson more broadly as any distribution in the exponential family 
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for which the variance is proportional to the mean. But by uniqueness properties of the 

exponential family the PCS is the only such distribution, and so is the unique over-dispersed 

Poisson. 

If X is the total loss random variable, X/θ is Poisson in λ = EX/θ = μ/θ. Thus 

Pr(X/θ = n) = e−μ/θ(μ/θ)n/n!. For x = θn, Pr(X=x) = e−μ/θ(μ/θ)x/θ/(x/θ)!. If x is not an 

integer multiple of θ, Pr(X=x) = 0. If μ is modeled by covariates and parameters, say μw,d = 

Uwgd, with θ fixed, then an observation of Xw,d, say qw,d, with qw,d /θ a non-negative integer, has 

Pr(Xw,d = qw,d) = p(qw,d) = e−μw,d/θ(μw,d/θ)qw,d/θ/(qw,d/θ)!, and p(qw,d) is zero otherwise. The PCS is a 

discrete distribution with positive probability only at integer multiples of θ. By its 

uniqueness, there is no continuous over-dispersed Poisson distribution in the exponential 

family. Thus over-dispersed Poisson probabilities are always zero except at integer multiples 

of θ. 

A continuous analogue of the PCS is discussed in Mack (2002)3 [6]. This can be described 

as a zero-modified continuous scaled Poisson, or ZMCSP. To specify it, start by using 

p(x)/θ as a density on the positive reals, extending the factorial by the gamma function, i.e., 

defining a! ≡ Γ(1+a). But this density gives total probability above unity. Mack’s solution is 

to reduce the probability mass at zero.  

The ZMCSP is defined by the density f(x;μ,θ) =  e−μ/θ(μ/θ)x/θ/[θ(x/θ)!] for x > 0 and by 

setting the point mass at x = 0 enough to make the total probability 1. To see how much 

probability is needed at 0, define the function pois(x,λ) = λxe−λ/x! and the function zm(λ) = 

1 – ∫0+

∞
pois(x,λ)dx. Then with a change of variable in f(x) to y = x/θ and defining λ = μ/θ, it 

is easy to see that ∫0

∞
f(x;μ,θ)dx is 1 – zm(λ). Thus the point mass needed at zero is zm(μ/θ). 

The function zm(λ) is less than the Poisson’s point mass of e−λ but is strictly positive. 

There is an extra θ in the denominator of f that is not in p, but that will not affect the 

MLE of μ or the components of μ if μ is a function of covariates. This is interesting because 

setting μw,d = Uwgd in the PCS and estimating by MLE is known to give the chain-ladder 
                                                 

3 Chapter 1.3.7 [6]. 
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reserve estimates. Since the estimates of Uw and gd for Mack’s ZMCSP will be the same as for 

the PCS (as long as there are not any zero observations), this looks like it extends the match 

of the chain ladder to the continuous case - no longer requiring that all cells in the triangle 

are integer multiples of θ. It turns out however that this is approximately but not exactly so. 

The divergence arises from the fact that the ZMCSP expected value is not exactly μ. 

Integrating xf(x) shows that the mean is actually: 

EX = μ[1 – zm(μ/θ) +∫−1

0 
pois(x,μ/θ)dx]. 

This is greater than μ, but not by much, unless λ is small, as Table 1 shows. Since the 

function of μ needed to produce the mean depends on the parameters of the distribution, 

the ZMCSP is probably not a GLZ. As with the Pareto with infinite mean, extending the 

definition of GLZ a bit to include linear modeling of a parameter that is not the mean may 

make sense. Whether or not this is considered a GLZ, it is still a useful model.  

The variance is a bit less than θμ for small values of λ. Integrating x2f(x) shows that EX2 

= θ2λ ∫0+

∞
pois(x–1,λ)xdx. For large values of λ the integral is λ+1, but it is different for 

smaller λ. 

Table 1: Point mass and moment adjustment by λ 

λ = μ/θ zm(μ/θ) EX/μ – 1 EX2/[θ2λ(λ+1)] – 1 Var/θ2λ– 1

0.2 .48628 .33861 .03976 -0.11066 

1 .16619 .03291 –8.73e-04 -0.06865 

5 .00216 9.43e-05 -3.75e-06 -0.00097 

25 3.19e-12 1.96e-14 -7.00e-13 -1.9E-11 

 

In a recent study of a fairly noisy runoff triangle, μ/θ was less than two for just one 

observation and less than five for five observations, out of 55. Thus, a few small 

observations would have fitted means a percent or two different from the chain ladder’s. 

While the noted match of the PCS and chain-ladder reserve estimates holds exactly only 

when all probability is concentrated on integer multiples of θ, the ZMCSP comes close to 

having this relationship in the continuous case.  



Generalized Linear Models Beyond the Exponential Family with Loss Reserve Applications 

CAS E-Forum Summer 2007 www.casact.org 12 

4.4 Geometric – Exponential  
The geometric frequency distribution can be described with a parameter α by pk = α(1 – 

α)k for k ≥ 0. This has mean (1 – α)/α and variance (1 – α)/α 2, which is higher than the 

mean. With an exponential severity in mean θ, the aggregate distribution has mean θ(1 – 

α)/α and variance θ2(1 – α2)/α 2. The aggregate survival function is known4 to be S(x) = (1 

– α)e– xα/θ. Both the frequency and aggregate distributions have a point mass of α at 0. 

Either α or θ can be replaced by the mean μ, but probably keeping a constant θ would be 

useful more often. This replaces α by θ/(μ+θ). Thus when μ is higher, the probability α of 

an observation of zero is lower, which would make sense in many cases. The aggregate mean 

and variance become μ and μ(μ+2θ) with survival function S(x) = μ/(μ+θ)e– x/[μ+θ]. The 

variance is quadratic in the mean but with the linear term it increases more slowly than μ2. 

For MLE the aggregate density is f(x) = μ/(μ+θ)2e– x/[μ+θ] for x > 0 and p0 = θ/(μ+θ). 

5 ESTIMATION ISSUES 

Key to estimation is having an efficient optimizer to estimate the likelihood function 

including the covariates. Advances in computing power and the availability of optimization 

algorithms, even as spreadsheet add-ins, is what makes it possible to go beyond the 

exponential family and to use full MLE estimation. 

The modified distributions like gamma p and lognormal basically substitute formulas for 

the usual parameters. For example in the gamma p, F(x; μ,λ) = Γ[x/(λμp); μ1−p/λ] can be 

written as F(x) = Γ(x/θ; α) with θ = λμp and α = μ1−p/λ. Thus a routine that searches for 

optimal gamma parameters can be used to estimate the gamma p by first expressing the 

gamma parameters in terms of λ, μ, and p and then searching for the best values for these 

three parameters. Since μ will be a function of covariates involving several parameters, this is 

the part where efficient algorithms comes in. 

As long as there are no zero observations the ZMCSP loglikelihood function is 

                                                 

4 See Loss Models [5], page 154. 
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covariates and the vector β is being estimated, the derivative of l* wrt the jth element of β, βj, 
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. This could be considered a series of weighted 

average relative errors, all of which should be 0. After finding the estimates of the βj, the 

likelihood can be maximized for θ. The Poisson is analogous to the normal distribution case 

where the loglikelihood reduces to minimizing ( )2
,,∑ − dwdwq μ . This gives the n equations 

( )∑ −
∂

∂
= dwdw

j

dw q ,,
,0 μ

β
μ

. Here the weighted average errors should be 0. 

In non-parametric estimation, it is common to adopt the criterion of minimizing the sum 

of the squared errors, regardless of distribution. This treats a fixed squared error in any 

observation as equally bad – basically incorporating a constant variance assumption. This 

reduces to the normal distribution when in the exponential family, so minimizing squared 

error is a normal non-parametric approach. It sets the sum of weighted errors to 0. This is 

called unbiased, which sounds like something you want to be, but is not always that 

important. 

If the same weighted relative error is equally bad across observations this is more of a 

Poisson assumption. This could also be used in a non-parametric context, where the 

weighted sums of relative errors are set to 0. This could be done without assuming the form 

of the distribution, so could be a Poisson non-parametric approach. The reasoning above 

shows that this results from finding the parameters that 

minimize ( )∑ − fittedactualfitted ln . This forces the actual/fitted toward 1. 

For the Poisson-gamma aggregate and its special cases (Tweedie, etc.) the density for the 
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likelihood function can be calculated by inverting the characteristic function ϕ(t) = exp[–

1+λ(1 – itθ)−α]. Mong (1980) [9] worked out a purely real integral for this in terms of λ, α, θ 

and the aggregate standard deviation σ: 

dttkxtexf tj∫
∞

⎥⎦
⎤

⎢⎣
⎡ −=

0

)( )(cos1)( λ
σσπ

λ , where j(t) = δ(t)cos[ρ(t)]−1 ; k(t) = δ(t)sin[ρ(t)] 

δ(t) = [1+(tθ/σ)2]−α/2 ; ρ(t) = αtan-1(tθ/σ). The scaling by σ is probably done for 

numerical efficiency. With covariates, μ/θα could replace λ in the characteristic function and 

its inversion. For the Tweedie it is also possible to express the density using an infinite sum, 

as in Clark and Thayer (2004) [1]. 

The gamma characteristic function is ϕΓ(t) = (1 – itθ)−α, and ϕΓ(t/σ) – 1 = j(t) + ik(t). For 

the normal distribution in m and s2 the characteristic function is ϕΝ(t) = exp(itm – 0.5(st)2). 

Scaling by s instead of σ gives ϕΝ(t/s) – 1 = j(t) + ik(t) where j(t) = exp(−0.5t2)cos(tm/s) – 1 

and k(t) = exp(−0.5t2)sin(tm/s). These can be used in the integral above to give the Poisson-

normal density if σ is replaced by s.  

Mong’s comments are: “(The) formula and its consequent computations may seem 

complex in the form shown above. However, the implementation is quite simple. Any 

standard numerical integration technique would handle the computation effectively; for 

example, the extended Simpson’s rule is adequate to calculate the integration and is easy to 

code in any scientific programming language.”  

The extended Simpson’s rule breaks down a finite range of integration into 2n intervals of 

length h, with 2n+1 endpoints x0, …, x2n. The function to be integrated is evaluated at each 

of the 2n+1 points and multiplied by h. Then these are weighted by the following factors and 

summed: x0 and x2n get weight 1/3; odd points x1, x3, …, x2n–1 get weight 4/3; even points x2, 

…, x2n–2 get weight 2/3. 
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Figure 1: Integrand for Poisson-gamma density 

integrand x=100,000, mu=400,000, alpha=2, theta=2000
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Figure 1 shows an example of the integrand for the Poisson-gamma density. This is for 

an x that is more than six standard deviations below the mean for a positively skewed 

distribution, so the integrated probability is low (7.5e-19). This makes the integration a bit 

more difficult as the dampening cycles have to get quite small before it stabilizes. However 

this occurred by about t = 10. Less remote probabilities have cycles that damp out more 

quickly. 

There is a problem with this integral, however. The integration for f(x) does not 

converge5! For both the gamma and normal severities, as t gets large j(t)→ –1 and k(t) → 0. 

Thus the integrand becomes e−λcos(xt/σ)/(xσ), which fluctuates and does not go to 0. If λ is 

sufficiently large, this fluctuation is well beyond any reasonable degree of accuracy, and so is 

not a problem. Otherwise an alternative is to use the inversion formula for the distribution 

function to calculate [F(x+ε) – F(x−ε)]/2ε for some appropriate ε, perhaps ½. According to 

Mong that inversion is: dttkxt
t

exF
tj

∫
∞

⎥⎦
⎤

⎢⎣
⎡ −+=

0

)(

)(sin1
2
1)( λ

σπ

λ

, which does converge. 

                                                 

5 My colleague John Major pointed this out. 
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6 DEVELOPMENT FACTOR EXAMPLE 

Venter (2007) [12] fit the development triangle in Table 2 by a regression model for the 

incremental losses at lags 1 and above. The independent variables were the cumulative losses 

at lags 0 through 4, a dummy variable equal to 1 for the 3rd diagonal and 0 elsewhere, a 

dummy variable equal to 1 on the 4th, 7th, and 9th diagonals, -1 on the 10th diagonal, and 0 

elsewhere, and a constant term. The diagonals are numbered starting at 0, so the 3rd is the 

one beginning with 7,888 and the 10th starts with 19,373. The cumulative loss independent 

variables are set to 0 for incremental losses that are not in the immediately following column. 

 

Table 2: Cumulative Loss Development Triangle 

Lag0 Lag1 Lag2 Lag3 Lag4 Lag5 Lag6 Lag7 Lag8 Lag9 Lag10 Lag11

11,305 30,210 47,683 57,904 61,235 63,907 64,599 65,744 66,488 66,599 66,640 66,652
8,828 22,781 34,286 41,954 44,897 45,981 46,670 46,849 47,864 48,090 48,105 48,721
8,271 23,595 32,968 44,684 50,318 52,940 53,791 54,172 54,188 54,216 54,775
7,888 19,830 31,629 38,444 43,287 46,032 47,411 47,677 48,486 48,498 
8,529 23,835 35,778 45,238 51,336 53,574 54,067 54,203 54,214  

10,459 27,331 39,999 49,198 52,723 53,750 54,674 55,864  
8,178 20,205 32,354 38,592 43,223 44,142 44,577  

10,364 27,878 40,943 53,394 59,559 60,940  
11,855 32,505 55,758 64,933 75,244  
17,133 45,893 66,077 78,951  
19,373 50,464 75,584   
18,433 47,564    
20,640     

 

This is a loss development model with a constant term and calendar-year adjustments up 

through lag 5, but for lags 6 and beyond the constant term and the calendar-year adjustments 

operate but there are no development factors. The late development appears to be random 

in time and not dependent on the level of the accident year. There are heteroscedasticity 

issues, however. The smaller incremental losses at the end tend to have lower residuals – 

which actually seems desirable. Also the 0 to 1 development factor fits unreasonably well, so 

the residuals are also lower for the large increments at lag 1. 

To address these issues, the same model was fit using Mack’s ZMCSP distribution and 

the gamma p, where p was -0.29. The other parameters, negative loglikelihood, and AICc/2 

are shown in Table 3. 
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Table 3: Parameters and fit statistics 

 lag0 lag1 lag2 lag3 lag4 diag3 4+-10 const θ,λ,σ -lnL AICc/2

ZMCPS 1.618 0.508 0.223 0.103 0.026 -2072 107.1 487.9 306.1 637.8 646.9 

Gamma p 1.624 0.504 0.217 0.102 0.027 -1922 132.0 499.8 3,969.0 630.3 642.0 

Normal 1.601 0.499 0.211 0.102 0.021 -1832 801.6 527.8 1,387.7 662.2 671.2 

 

For N observations and p parameters, taking half of the small sample AIC, denoted AICc, 

penalizes the negative loglikelihood by Np/(N – p – 1). For small samples (N < 40p) this is 

growing in popularity as the best way to penalize for extra parameters. Usually all parameters 

are penalized but for comparing fits maybe parameters that do not affect the fit can be 

ignored. Here for the normal and ZMCSP, p was set to 8, as θ and σ do not affect the fit. 

However for gamma p it was set to 10, as λ and p do. Still it gave the best AICc. N is 77 for 

this data. 

The fit is clearly worse for the normal regression, reflecting the heteroscedasticity issue. 

The variance for the gamma p is μ0.71. Usually a power less than 1 is not anticipated, thinking 

of losses coming from a compound frequency-severity distribution. The abnormally good fit 

for the 0 to 1 factor, which has the largest observations, may be pushing the power down. 

The regression coefficients are quite similar for all the distributions, reflecting the common 

wisdom that heteroscedasticity does not greatly distort regression estimates. The distribution 

of possible results will vary among the distributions, however. 

Figures 2 and 3 compare PP Plots for the normal and gamma p fits. The gamma p looks 

more reasonable. Figures 4 and 5 look at standardized residuals vs. fitted for the two 

distributions. They both look positively skewed, which they should be for gamma p but not 

for normal. Also the normal extremes are more extreme. The small fitted values have 

standardized residuals more like the other values for the gamma p, but not for the normal. 

Overall the gamma p seems to fit better. 
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Figure 2 

 

Figure 3 

Gamma p PP Plot
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Figure 4  

Normal Standardized Residual vs Fitted
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Figure 5 

Gamma p Standardized Residual vs Fitted
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7 MULTIPLICATIVE MODEL ISSUES 

Multiplicative fixed-effects models can be treated in the GLZ framework. Take the case 

where μw,d = Eqw,d = Uwgdhw+d. The covariates are 0, 1 dummies picking out which factors 

apply to each cell, and the vector of coefficients β is the log of all the accident year factors 

Uw followed by the log of all the delay factors gd followed by the log of all the calendar year 

factors hw+d in the model. Let zw,d be the vector that has zero in all positions except for ones 

for the positions of the wth row, dth column and w+d th diagonal. Then η(zw,dβ) = exp(zw,dβ) is 

Eμw,d. This can be used in any of the distributions discussed above. However the factors all 

have to be positive to take the logs, even though some observations can be negative with the 

right choice of distribution around the mean. However, if negative means are needed for 

some columns, μw,d = Eqw,d = Uwgdhw+d with some negative g’s can be used directly as the mean 

of any of the distributions discussed. This could be fit by MLE, but it would not really be 

considered a linear model any more, unless β is allowed to have complex coefficients that 

become negative reals when exponentiated. The line between GLZ and truly non-linear 

models is thus a bit imprecise, but the labeling is not really very important anyway.  

Fu and Wu (2005) [2] provide an iterative scheme, using constants labeled here as r and s, 

that can in some cases help in the estimation of multiplicative models. The Fu-Wu iteration 

for the row-column model can be expressed as6:  
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The idea is to start with reasonable guesses for the U’s and then alternatively apply the 

two formulas to get new g’s and U’s until they converge. Often this iteration gives the MLE 

for some model. For instance, taking r = 2 and s = 1 gives the normal regression. The case 

r=s=1 gives the estimate where qw,d is Poisson in Uwgd. Both of these cases work fine if some 

column of q’s tends to be negative and so its mean g is as well. Mildenhall (2005) [8] shows 

that there is a model for each r and s for which this iteration gives a reasonable estimate. The 

cases s=1, r = -1, 0, 1, and 2 are the inverse Gaussian, gamma, Poisson, and normal 

                                                 

6 They also include weighting factors that here are set to unity. 
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distributions, respectively, and the estimates are MLE for the β’s if the other parameters are 

known or do not affect the estimates of the β’s.  

With arbitrary s the power transforms of these distributions are realized. Taking r=0 gives 

the transformed gamma or inverse transformed gamma, depending on the sign of s, and so a 

wide range of distribution shapes. If 1 < r < 2 and s = 1, the Tweedie with p = r is produced. 

If p and ψ are known, the iteration gives the MLE for the β’s. This could be done within an 

optimization routine that is looking for the MLE values for p and ψ, so would only require a 

routine that works for two variables. 

For the multiplicative models with diagonal factors E[qw,d] = Uwgdhw+d, the Fu-Wu iterative 

estimates become: 
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8 MULTIPLICATIVE MODEL EXAMPLE 

Table 4 is a development triangle from Taylor-Ashe (1983) [11]. Venter (2007) [12] fit a 

form of the PCS multiplicative effects model to this data. Each cell μw,d was set to the 

product of row, column, and diagonal effects, but some parameters are used more than 

once. Accident year 0, a low year, gets its own parameter U0. Accident year 7 also gets its 

own parameter U7 as it is high. All the other years get the same parameter Ua, except year 6 

which is a transition and gets the average of Ua and U7. Thus, there are three accident-year 

parameters.  

The years are divided into high and low payment years with parameters ga and gb for 

fraction of total loss paid in the year. Delay 0 is a low year as payments start slowly. Delays 1, 

2, and 3 are the higher payment lags and all get gb. Delays 5, 6, 7, and 8 are again low getting 
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ga. Delay 4 is a transition and gets the average of ga and gb. Finally delay 9 gets the rest, i.e., 1 – 

5.5ga – 3.5gb. Thus there are only two delay parameters. Three of the diagonals were modeled 

as high or low, getting factors 1+c or 1–c. The 7th diagonal is low and the 4th and 6th are high. 

Thus, only one diagonal parameter c is used. The diagonals are numbered from 0, so the 7th 

starts with 359,480. 

Table 4: Incremental triangle Taylor-Ashe (1983) [11] 

Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8 Lag 9

357,848 766,940 610,542 482,940 527,326 574,398 146,342 139,950 227,229 67,948

352,118 884,021 933,894 1,183,289 445,745 320,996 527,804 266,172 425,046 

290,507 1,001,799 926,219 1,016,654 750,816 146,923 495,992 280,405  

310,608 1,108,250 776,189 1,562,400 272,482 352,053 206,286   

443,160 693,190 991,983 769,488 504,851 470,639   

396,132 937,085 847,498 805,037 705,960   

440,832 847,631 1,131,398 1,063,269   

359,480 1,061,648 1,443,370   

376,686 986,608    

344,014     

Fitting the PCS is done by maximizing ( )∑ −= dwdwdwql ,,, ln* μμ , where μw,d = 

Uwgdhw+d. This pretends that every observation qw,d is a multiple of θ, as in fact the PCS 

probability is zero otherwise. This is the same function to be maximized for fitting the 

ZMCSP, which does not require observations to be multiples of θ. Thus, the row, column, 

and diagonal parameters are the same for both models. The difference is that θ is fit by an ad 

hoc method for the PCS and by MLE for ZMCSP. The likelihood function is 
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l , and now θ is the only parameter needed to 

maximize over. The MLE estimate of θ is 30,892. Estimating it by a moments method 
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2
,1θ̂ gives 37,184. 

Just changing θ makes a difference in the estimated runoff distribution and parameter 

errors. The estimated parameters and their PCS standard errors from the information matrix 

with the moment and MLE θ’s are in Table 5. The runoff variance separated into process 
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and parameter is in Table 6. 

Table 5: Parameter se’s with two estimates of θ 

Parameter  U0 U7 Ua ga gb c 

Estimate  3,810,000 7,113,775 5,151,180 0.067875 0.173958   0.198533  

se 37,184 372,849  698,091 220,508 0.003431 0.005641  0.056896  

se 30,892 339,846  636,298 200,989 0.003127 0.005142  0.051860  

Table 6: Runoff Variance with two estimates of θ 

Model Moment 37,184 MLE 30,892 

Parameter Variance 1,103,569,529,544 916,846,252,340 

Process Variance 718,924,545,072  597,282,959,722 

Total Variance 1,822,494,074,616  1,514,129,212,061 

Parameter Std Dev 1,050,509 957,521 

Process Std Dev 847,894 772,841 

Standard Deviation 1,349,998 1,230,500 

So far this is all from keeping the PCS framework and replacing the estimated θ from the 

moment method by that from MLE from ZMCSP. The ability to estimate θ by MLE is 

actually the main difference between the two distributional assumptions. In this case the 

MLE θ is quite a bit lower, which gives a lower variance. It is also useful to have an 

optimized negative loglikelihood to compare to other models, as in the development factor 

example. Here that is 725. 

Recall that the mean and variance of each cell differs a little from μ and θμ in the 

ZMCSP model for the smaller cells. In this case only the last projected column has low 

values of λ = μ/θ and these are around 3. This has only a very slight effect on the projected 

mean and variance. The estimated reserve of 19,334,000 increases by about 1,000 and the 

standard deviation of 1,230,500 decreases by about 100. Thus in this case that is a very 

minor impact. Only the change in the estimated θ has any significant influence on the 

projections. 

A good starting point for investigating other possible distributions for the same models 

structure is fitting the gamma p. Aggregate losses are often approximately gamma distributed, 

and the value of p gives an indication of how the variance can be expressed as a multiple of 



Generalized Linear Models Beyond the Exponential Family with Loss Reserve Applications 

CAS E-Forum Summer 2007 www.casact.org 24 

the mean.  

For this data the MLE of p is -0.136, which gives the variance as proportional to the 

mean raised to 0.864. This is not suggestive of any other popular models, however. The 

negative loglikelihood is 723.06 compared to 725.00 for the ZMCSP. With 8 parameters 

compared to 7 for the ZMCSP, the AICc’s come out as 732.6 and 733.2, so the gamma p is a 

little lower. However, if only 6 parameters are counted for the ZMCSP under the view that θ 

does not affect the fit, its AICc reduces to 731.9. Thus, there is some ambiguity as to which 

is the best fit. Better ways of counting the degrees of freedom a model uses up would be 

helpful. In any case the variance is close to proportional to the mean in either model. 

Another model with that property is the Poisson-normal. MLE using Mong’s formula for 

f(x) gives m = 35,242 and s = 3,081, with λ’s ranging from 2 to 35. The negative 

loglikelihood is 722.4, which is the best so far. The resulting AICc for 8 parameters is 732.0, 

which is still ambiguous in comparison to the ZMCSP. The integral for f(x) for the one cell 

with λ = 2 is of limited accuracy, so there is a slight degree of additional ambiguity in the 

value of the AICc. 

9 CONCLUSIONS 

GLMs provide a powerful modeling tool, but the exponential family has some limitations. 

By not requiring this form, even familiar distributions can be reparameterized to provide 

different relationships between the mean and variance of the instances of the fitted 

dependent variable. When fitting aggregate loss distributions, the gamma is often a good 

starting point for the shape of the distribution, and so fitting the gamma p, which is a gamma 

but allows for the variance to be any desired power of the mean, is often a good way to get 

an indication of the form of the variance to mean relationship. Other distributions can then 

be tried which have approximately that relationship. 

Even when using exponential family distributions, computing power is usually sufficient 

to calculate the full likelihood function, instead of approximations sometimes used in GLMs. 

GLZs thus expand the limitations of GLMs, yet there are still situations where it may be 

useful to use strictly nonlinear models. 
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Refining Reserve Runoff  Ranges 
Gary G. Venter, FCAS, MAAA 
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Abstract  

Reserve runoff ranges are often wider than they need to be. This paper applies some practical tools used by 
regression modelers to find ways to reduce the ranges. Four approaches are explored: finding better-fitting 
models; getting rid of insignificant parameters; using exposure information; and considering whether some 
part of the triangle should be ignored. 
 
Keywords. Loss reserving; regression modeling; range estimates; parameter reduction. 

             

1. INTRODUCTION 

Techniques that can reduce the runoff variance and reserve ranges are outlined and illustrated 

through three examples of fitting models to development triangles. Two basic paradigms for 

development models are used: 

[1] Future development is a proportion of losses emerged to date, plus a random error. 

[1] Future development is a proportion of the as yet unknown ultimate, plus a random error. 

The chain ladder method is the paragon of the first paradigm, and the Bornhuetter-Ferguson 

(BF) method is an early example of the second. Multiplicative effects models, where the mean of 

each cell is a product of a row and column parameter, are also of the second type, as the row 

parameters can be scaled to be expected ultimate.  

The factors estimated for both model types can be distorted if there are diagonal (calendar-year) 

influences in the data. It is possible to identify and take into account such influences in either of the 

modeling paradigms. This is investigated in all of the examples. 

Exposure information, if available, can also improve the model fit and reduce the variance and 

ranges. Also there are situations where the common models fit better to a portion of the triangle 

than to the whole triangle, and this is explored as well. 

The first example is a triangle whose development pattern is much better explained as a factor 

times ultimate than a factor times already emerged, but the multiplicative effects model has so many 

parameters that the estimated variance and runoff ranges are higher than for the chain ladder, 

despite the better fit, due to greater parameter uncertainty. Ways to maintain a good fit while 
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eliminating insignificant parameters are explored, and lead to a lower variance. These are somewhat 

ad hoc methods out of the regression modelers’ tool bag.  Their application is more of an art than a 

science but they can produce better models in many cases. The multiplicative effects model can 

easily handle calendar-year influences by including row, column, and diagonal factors. 

The second example is one in which development factors appear to provide a reasonable fit to 

the data, at least at the early lags. The chain ladder is often presented in a regression context, where 

factors are calculated using some form of regression on the previous cumulative losses. That gives a 

separate variance for each factor. It is possible to include diagonal effects in the chain ladder, but the 

factors have to be computed in a single overall regression. This can get into problems with 

heteroscedasticity, where a single variance is assumed for each cell but latter lags in fact have lower 

variances. This does not usually affect the parameter estimates very much, but it does distort the 

estimated runoff variance. A heteroscedasticity adjustment is introduced and applied to this case. 

Further use of parameter-reduction techniques are also illustrated. 

The third example is of a triangle that exhibits a good deal of change in development patterns 

over time, and ways to test for that are explored. It also has exposure information available, and 

using that improves the model. Parameter reduction by fitting a distribution to the emergence lag 

pattern is applied to this triangle as well. 

Section 2 reviews some details of the two modeling paradigms and provides a common notation 

to discuss them. Section 3 addresses how to compare fits of alternative models. Sections 4, 5, and 6 

are the three examples. Section 7 concludes. Standard assumptions, discussed in each case, are used 

for the distributions of the error terms, but other distributions could be used. These are beyond the 

scope of this paper, but should not be ignored in application. 

2. BACKGROUND ON DEVELOPMENT TRIANGLE MODELS 

Mack (1993) [13] presents statistical assumptions and criteria under which the chain-ladder 

estimate is optimal, and shows how to calculate the implied variance. Mack’s assumptions are 

intuitive from the viewpoint of what actuaries might imagine development factors are doing. 

Basically they postulate that the incremental losses at a given lag are a factor times the previous 

cumulative, plus a random innovation.  

Having a model like Mack’s allows for testing how well the chain-ladder assumptions apply to 



Refining Reserve Runoff  Ranges 

CAS E-Forum August 2007 www.casact.org 3 

specific triangles1. Which model works best for a given data set is an empirical matter, but when the 

chain-ladder assumptions fail it is often because incremental losses are not fit well as a factor times 

previous cumulative. Then the losses at each lag might be modeled as a fraction of the yet-unknown 

ultimate losses. This is an element of the Bornheutter-Ferguson approach, so all such models can be 

regarded as formalized versions of BF. Typically these take the form of multiplicative fixed-effects 

models (MFE), where each cell’s expected loss is a product of row and column (and perhaps 

diagonal) factors. 

2.1 Variants of Chain Ladder 
Murphy (1994) [16] gives several versions of the chain ladder in a regression setting. Losses at 

one age are expressed as a factor times the cumulative losses at a previous age plus a random error, 

plus possibly a constant term. For each age the variance of the random error could be constant, or it 

could be proportional to the level of the previous cumulative losses, or to the square of the previous 

cumulative. Murphy shows that for the model with no additive term and a constant variance, 

standard regression theory gives the estimator Σxy/Σx2, where y represents the current losses and x 

the previous. He calls this the LSM model, for least-squares multiplicative. Using transformed 

regressions Murphy shows that the factor estimators when the variance is proportional to losses or 

losses squared are Σy/Σx and average(y/x), respectively. Σy/Σx is typical in actuarial applications and 

is the same estimator as Mack’s. It is the regression estimator for a no-constant regression of y/x½  

on x½ that converts the constant variance to a variance proportional to x. Unfortunately it is difficult 

to tell which behavior of the variance best holds for a single column, so judgment is often needed. 

2.2 Multiplicative Fixed Effects Models 
These models express the losses in a cell in a triangle as a product of a row constant and a 

column constant, which are the fixed effects plus a random innovation. Some notation is needed to 

discuss this. 

The n+1 columns of a triangle are numbered 0, 1, … n and denoted by the subscript d. The rows 

are also numbered from 0 and denoted by w. The last observation in each row of a full triangle will 

then have w+d=n. The cumulative losses in cell w,d are denoted cw,d and the incrementals by qw,d. 

For the MFE model, E[qw,d] is Uwgd, where Uw and gd  are the row and column parameters, 
                                                 

1 See for example Mack (1994) [14], Venter (1998) [21], Barnett and Zehnwirth (2000) [3]. 
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respectively. Note that increasing each g by the same factor and dividing each U by that factor does 

not change the mean for any cell. To have specificity, it is often convenient to have the g’s sum to 1. 

Then Uw can be interpreted as the ultimate loss for year w and gd the fraction that are at lag d.  

Assuming that the distribution around the cell mean is lognormal, each cell’s observation is log 

[qw,d] =log Uw+ log gd + εw,d, which is a linear model with a normal error term, and so estimable by 

regression. This was already studied by Kremer (1982) [9]. On the other hand, if the distribution is 

normal, so qw,d = Uwgd + εw,d, the model is non-linear. Mack (1991) [12] linked this model of 

development triangles to MFE models in classification ratemaking, such as those in Bailey (1963) [1], 

Bailey-Simon (1960) [2], etc. These models can be estimated by a generalization of fixed-point 

iteration called Jacobi iteration, using ∑∑
−
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is just the result of alternatively treating the g’s and the U’s as known constants, so the model 

temporarily becomes a simple factor model in the other parameter. 

2.3 Poisson – Constant Severity Distribution 
A convenient starting point for multiplicative fixed-effects models is to assume the error terms 

follow the Poisson – constant severity (PCS) distribution. This is the aggregate loss distribution 

consisting of a Poisson frequency and a constant severity. In this context that assumes all claims or 

payments in all cells are the same size, call it b. This of course is rarely the case, but the model has 

some advantages. First, it is a distribution of aggregate claims, which most triangles consist of. 

However its historical appeal is that an PCS model estimated by MLE gives the same reserve 

estimate as the chain ladder. 

In the pure Poisson case, the agreement of methods was shown by Hachemeister and Stanard 

(1975) [6] although that finding was not published formally until Kremer (1985) [10] in German 

(translated into Russian as well) and Mack (1991) [12] in English. Renshaw and Verrall (1998) [17] 

extend this to the over-dispersed Poisson, which in generalized linear model terminology is defined 

as any member of the exponential family whose variance is proportional to its mean. However the 

only distribution meeting this criterion is the PCS. A good presentation is Clark (2003) [4], who in 

addition uses a parameterized distribution for the payout pattern. None of the cited papers compare 

the MFE – PCS variance to the chain ladder’s, however. 

Giving the same answer as the chain ladder is not a particularly useful criterion for evaluating 
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models, but it starts from a familiar base. Thus the error terms will be assumed approximately PCS 

distributed for MFE models here.  

For the PCS model, a cell with frequency λ has mean bλ and variance b2λ. For the MFE 

implementation then bλw,d = Uwgd. This model is applied here to incremental losses, so that the 

observation qw,d/b is Poisson with mean Uwgd/b. The loglikelihood function2 can be shown to be:  
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b
gU

b
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b
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Cl dwdwdw ln, , where C=– Σ ln Γ(1 + qw,d/b) ≡ – Σ ln [( qw,d/b)!]. Taking 

derivatives, the MLE estimates can be expressed as: ∑∑
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, , which do not depend on b. Technically, the Poisson probabilities are zero 

unless qw,d is an integral multiple of b. However Mack (2002) [15], chapter 1.3.7, shows that there is a 

continuous analogue of the Poisson that can be scaled by b and gives estimates close to the PCS. 

When the PCS is applied in a continuous setting it can be thought of as using this distribution. For 

more details see Venter (2007) [22]. 

The MLE formulas can be solved by iteration, starting with some values then solving alternatively 

for the g’s and U’s until the results converge. If then the g’s do not sum to 1, just divide each by their 

sum and multiply each U by the same sum. Starting at the upper right corner of the triangle and 

working back can show that these estimates correspond to the chain-ladder calculation. Essentially 

the U’s are the last diagonal grossed up to ultimate by the development factors and the g’s are the 

factors converted to a distribution of ultimate. The fitted incrementals are then the g’s applied to the 

U’s, and can be calculated by using the development factors to back cumulatives down from the last 

diagonal. 

From the chain-ladder viewpoint these use future information to predict the past, but this is not 

the chain-ladder paradigm. Sometimes incremental losses are better fit as a fraction of ultimate 

(MFE model) than as a factor times previous cumulative (chain-ladder model). The drawback is that 
                                                 

2 Note that this requires not fitting just one Poisson distribution but (n/2 +1)(n+1) of them, defined by 2n+1 row-

column parameters plus b. But MLE applies to fitting multiple distributions with the same parameters. This is noted in 

the Loss Models textbook [8], for instance. 
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there are more parameters needed for MFE. The chain ladder models each column conditionally on 

the previous column and does not estimate the first column of the triangle. It requires the 

calculation of n factors. The PCS model does estimate the first column but uses 2n+1 parameters. 

Comparing the fits of the two models is thus awkward. Perhaps comparing the estimated variances 

is the best way to do this. The process variances can be thought of as measuring the accuracy of the 

models, and the parameter variance is the parameter penalty. 

Clark (2003) [4] discusses calculating the MFE – PCS variance. First an estimate of b is needed. 

Since the variance of each cell is b times its mean, he suggests estimating b by: 

( )
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2
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. 

This is a kind of moment matching, but it is not clear how good an estimate of b this might be. 

The estimated variance of each projected incremental cell is the cell’s mean times this b, and so the 

reserve variance is the reserve times b. This is the process variance, assuming all the parameters are 

known. Since in fact they are estimated, another element of reserve variance is the parameter 

variance. Clark suggests estimating this by the delta method. The delta method (see Loss Models) 

starts with the usual covariance matrix of the parameters, calculated as the inverse of the MLE 

information matrix (matrix of 2nd derivatives of the negative loglikelihood wrt the parameters). The 

delta method calculates the parameter variance of a function of the parameters by the covariance 

matrix left and right multiplied by the vector of the derivatives of the function wrt the parameters. 

In this case the function of the parameters is the reserve.  For the PCS model, the 2nd derivatives of 

the loglikelihood function wrt the parameters are: 
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The derivative of the reserve wrt gd is Σw>n-dUw and wrt Uw is Σd>n-wgd. But with gn set to 1–Σd<ngd, 

these have to be adjusted. First 0
0
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. The derivative of the reserve wrt Uw is not affected by this adjustment, but wrt 
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2.4 Adding in Calendar-Year Effects 
Diagonal effects can be a result of accelerated or stalled claim department activity in a calendar 

year. Such a departure would often be made up for in a later year or years, so more than one 

diagonal can be affected. A similar pattern can arise from inflation operating on calendar years. 

Inflation operating on accident year is in the factor approach, as each year gets its own level. But 

there can appear to be inflation by accident year that is actually generated by calendar year. If that 

inflation varies by year, high and low residuals can show up by diagonal. Large differences in 

residuals among diagonals would suggest that either calendar-year inflation or claim department 

variation is operating. In many cases there are diagonal effects in triangles, and modeling them can 

provide better fits. Not accounting for such effects when they are present can lead to misestimating 

row and column parameters. 

Taylor (1977) [18], following Verbeek (1972) [23], discusses a method for estimating calendar-

year effects, which he calls the separation method. For some decades after that, models of calendar-

year effects were informally called separation models, even when they did not use that technique. 

In the lognormal MFE model given by qw,d = Uwgdhw+d(1+ηw,d), taking logs gives log qw,d = log Uw + 

log gd + log hw+d + εw,d, which is a linear multiple regression model.  

Barnett and Zehnwirth (2000) [3] set up a model framework of this type, but in a way that 

facilitates parameter reduction. They denote log Uw by αw and express log gd = ∑
=

d

k
k

1

γ  and log hw+d = 

∑
+

=

dw

t
t

1

ι . This makes γd = log[gd/gd-1], for instance. Thus it makes sense to call γ a trend. If the g’s are 

trending upwards or downwards by a power curve for several columns, the same γ can be used for 

those columns, reducing the number of parameters in the model. Similarly the ι’s are trends over 

calendar years and may be constant for a few years, reducing the number of diagonal parameters. 

3. COMPARING MODELS 

This paper’s goal is finding ways to increase the accuracy and reduce the variance and ranges of 

reserve estimates. A lower predictive variance is suggestive but not absolutely definitive for having 
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the best model. Calculating variances can also be tedious. Thus, when searching for models, 

variances are calculated only for a few models and comparison of fits are based on other criteria 

from information theory. The original information criterion, Akaike’s information criterion, or AIC, 

can be interpreted as imposing a penalty of 1 to the maximized loglikelihood for each parameter in 

the model. This is often regarded as too low a penalty, however. The Hannan-Quinn information 

criterion (HQIC) has a per-parameter penalty of the log of the log of the number of observations N. 

For instance for a 10×10 triangle with 55 observations, this gives a penalty of 1.388 for each 

parameter. The Schwartz-Bayesian information criterion penalty is higher, at the log of the square 

root of N, which is per-parameter penalty of 2 for 55 observations. This may be a bit high, however. 

An alternative is the small sample AIC, denoted by AICc. Its per-parameter penalty with p 

parameters is N/[N – p – 1], which increases with the number of parameters. The penalty is a bit 

less than that of the HQIC when there are not too many parameters, but is higher with over-

parameterized models. A typical standard for what is a small sample is anything less than 40 times 

the number of parameters, so would include most loss-development triangles. 

Here the AICc is favored but the HQIC also used. The formal criteria are actually double what are 

stated above, but dividing by 2 is convenient in that it directly penalizes the loglikelihood. Since the 

MFE – PCS loglikelihood increases with b, as does the variance, worse fitting models with a higher 

variance can have a higher loglikelihood. Thus, comparing likelihoods across PCS models requires 

fixing a value of b and using it for different models. The choice of b affects the scale of the 

loglikelihood and, thus, the meaning of the parameter penalties. Therefore, these can only be 

regarded as general guidelines and not strict cutoffs for this model. 

 4. EXAMPLE 1 

In this example the MFE – PCS model is fit to a triangle that has often been used as an example 

and for which the Mack estimates are known. This is first fit by the MFE – PCS model, then some 

diagonal parameters are added in, and then ways to reduce the number of parameters used are 

explored. The starting point in Table 1 is the incremental development triangle for years 1972 - 81 

from Taylor and Ashe (1983) [20] that has been used by Mack, Clark, and many other authors. The 

first column is estimated ultimate counts. 

Often dividing the losses by exposure information like counts produces a more stable triangle, 

but preliminary analysis suggests that in this case it does not. The source of the data has not been 
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identified, but it is consistent with excess losses with an increasing retention, which with inflation 

can make the losses more stable than average claim size. Exposure information is not useful in every 

case, and will not be used here, but is included for reference. 

Table 1 – Taylor Ashe triangle with ultimate claim counts (#) 

# Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8 Lg 9 

40 357,848 766,940 610,542 482,940 527,326 574,398 146,342 139,950 227,229 67,948

37 352,118 884,021 933,894 1,183,289 445,745 320,996 527,804 266,172 425,046

35 290,507 1,001,799  926,219 1,016,654 750,816 146,923 495,992 280,405 

41 310,608 1,108,250  776,189 1,562,400 272,482 352,053 206,286  

30 443,160   693,190  991,983  769,488 504,851 470,639  

33 396,132 937,085 847,498 805,037 705,960  

32 440,832 847,631 1,131,398 1,063,269  

43 359,480 1,061,648 1,443,370  

17 376,686 986,608   

22 344,014    

Mack’s methods lead to a reserve estimate of 18,681,000 to the end of the triangle and a 

prediction standard error of 2,447,000. The MFE – PCS model calculated as outlined above gives 

the same reserve estimate but a prediction standard error of 2,827,000. The difference is due to the 

combination of a much better fit from the MFE – PCS model, with an almost 50% reduction in 

process standard deviation, and a parameter standard deviation greater by almost 70% due to the 

greater number of parameters.  
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Figure 1 
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Figure 2 
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To illustrate the difference in fits, Figures 1 and 2 graph the delay 1 incremental losses as a 

function of the delay 0 losses and as a function of the estimated ultimate losses. A factor times 

ultimate losses looks like a much better explanation of the incremental losses than does a factor 

times losses at 0. 

There are of course assumptions that need to be verified for either model. For instance in MFE 

all of the observations are assumed independent, while for Mack at least the rows should be 

independent. Both assumptions are violated when there are strong calendar-year (diagonal) effects, 
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as in this triangle.  

Table 2 shows the residuals by diagonal for the MFE – PCS model. Diagonals 2, 3, 4, 6, and 7 are 

all suspicious, with 7 being the most problematic. A related issue is correlation of residuals among 

columns. This can be a result of diagonal effects that have not been modeled. Table 3 shows the 

correlation of the MFE – PCS residuals from one column to the next for the first four columns. All 

the correlations are negative and two are quite significant.  

Table 2 

 

 

 

 

 

                                                

Table 3 

 

                                           

4.1 Incorporating Diagonal Effects 
Factors can be put into the model for diagonal effects. Denoting the factor for the jth diagonal as 

hj, then the cell expected loss is not given by bλw,d = Uwgd, but by bλw,d = Uwgdhw+d. Still assuming that 

the λ’s are Poisson means, the likelihood function is: 
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These converge a bit slowly, but 50 or so iterations often suffice. This can be done in a spreadsheet 

without programming any functions. Again the g’s can be made to sum to 1, and so represent a 

Diagonal  Average Residual Fraction Positive 
0                      87,787 1 of 1 
1                      35,158 1 of 2 
2                     (76,176) 0 of 3 
3                     (74,853) 1 of 4 
4                    100,127 4 of 5 
5                     (26,379) 2 of 6 
6                    103,695 5 of 7 
7                   (115,163) 1 of 8 
8                     (17,945) 3 of 9 
9                      38,442 6 of 10 

Columns 0-1 1-2 2-3 3-4
Correlation -21.5% -89.5% -48.9% -85.4%
Significance 0.289 0.001 0.133 0.015
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payout pattern, but with the calendar-year factors the U’s are then no longer the ultimate losses. 

Using this method, two models with calendar-year effects were fit to the Taylor-Ashe data, 

adding diagonal parameters for the 7th diagonal, and for the 6th and 7th. The other h’s in the iteration 

were kept at 1. To compare the loglikelihoods, b was fixed at 37,183.5. This is the estimated value 

for another MFE – PCS model, discussed below. With this value, the maximum loglikelihood values 

for zero, one, and two diagonal factors are: 

 -149.11, -145.92, -145.03. 

With 55 observations, the HQIC penalty for an additional parameter is 1.388. According to this, 

the model with both diagonals is better than the one with no diagonal parameters, but not as good 

as the one with only the 7th diagonal. The AICc strongly penalizes having so many parameters (up to 

21) with only 55 observations, and charges the first diagonal parameter 2.5 and the second 2.65. This 

makes no diagonal parameters better than two but worse than one. The factors for the 6th and (in 

both models) 7th diagonal are 1.136 and 0.809. 

Including these parameters corrects for potential random errors in the row and column 

parameter estimates from ignoring diagonal effects. The chain ladder and original PCS reserves were 

18,681,000. Adding one diagonal parameter increases this to 19,468,000 and having them both 

increases it further to 19,754,000. Thus it appears that the original reserve estimates were low. 

4.2 Reducing the Number of Parameters 
Regression modelers use various techniques to get rid of insignificant parameters without hurting 

the fit. Parameters that are not significantly different from 0 or 1 are sometimes defaulted to those 

values. Also parameters that are not significantly different from each other can be set equal. Also, 

when changes are systematic, a parameter for a year or delay could be set to the average of the 

parameters before and after it. More generally, several parameters in a row could be expressed as a 

linear or geometric trend, which can reduce the number of parameters further. Reducing the 

parameters in these ways can eliminate distinctions that are not supported by the data. This can be 

done for row, column, or diagonal parameters. For instance, up to random effects, the upward and 

downward diagonal deviations could be indistinguishable. This could hold for many of the late small 

lag factors and some accident-year mean levels as well. 

Several of these methods were tried for the Taylor-Ashe data. A fairly extreme example gets the 

MFE model down to just six parameters without significantly degrading the fit. In this model, 
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accident year 0 is low so gets its own parameter U0. Accident year 7 is high and also gets its own 

parameter U7. All the other years get the same parameter Ua, except year 6 which is a transition and 

gets the average of Ua and U7. Thus there are three accident year parameters.  

The fraction paid is divided into high and low payment years with parameters ga and gb. Delay 0 is 

a low year as payments start slowly. Delays 1, 2, and 3 are the higher payment lags and all get gb. 

Delays 5, 6, 7, and 8 are low getting ga, but delay 4 is a transition and gets the average of ga and gb. 

Finally delay 9 gets the rest, i.e., 1 – 5.5ga – 3.5gb. This leaves only two delay parameters. Three of the 

diagonals were specified as high or low diagonals, getting factors 1+c or 1–c. The 7th diagonal is low 

and the 4th and 6th are high. Thus only one diagonal parameter c is used.  

This model uses the techniques of setting parameters equal if they are not significantly different 

and putting other parameters on trend lines – in this case averages – of other parameters. The 

loglikelihood for this six-parameter model is -146.66. This is not as good as the twenty-parameter 

model above, with a loglikelihood of -145.92, but it gets an HQIC penalty that is less by 19.4 and an 

AICc penalty that is lower by 25.5. These clearly overwhelm the difference in loglikelihood of 0.74. 

The resulting parameters and their standard errors are: 

 

Parameter      U0       U 7      U a       ga       gb        c 
Estimate 3,810,000 7,113,775 5,151,180 0.0678751 0.1739580 0.1985333
StdError 372,849 698,091 220,508 0.0034311 0.0056414 0.0568957
Table 4 

Estimating the parameters was done by an add-in spreadsheet optimizer on the loglikelihood. 

Most of the build-in spreadsheet optimizers have trouble estimating this many parameters. The 

parameter variances came from the information matrix. The 2nd derivatives of the unconstrained 

loglikelihood wrt Uw and gd do not change with the inclusion of diagonal parameters. The other 2nd 

partials are: 
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The derivatives of the loglikelihood wrt Ua, ga, gb, and c, use the chain rule on the sum of the 

derivatives of the loglikelihood wrt the parameters above. However Ua and U7 are now not 

independent, as they go into estimation of some of the same cells, and similarly for ga and gb. The 
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correlations of adjacent residuals improve a good deal with the diagonal parameters, as shown in 

Table 5. This is still somewhat problematic, however, as the correlations are all negative and some 

are weakly significant. These correlations are still there after accounting for diagonal effects, so 

might indicate some degree of actual serial correlation in accident year payments. Perhaps ARIMA 

models could have a role in this modeling. The logic is that high development in one year would be 

followed by low development the next, which is possible. But forcing the column factors to sum to 

one would induce some degree of negative correlation across columns, so the extent of this would 

have to be established before any firm conclusions about auto-correlated development could be 

made. 

Table 5 

Columns 0-1 1-2 2-3 3-4
Correlation -0.9% -58.1% -50.7% -74.1%
Significance 0.491 0.066 0.123 0.046
Table 6 

Model Original 19 Parameter 6 Parameter 
Parameter Variance 7,009,527,908,811 1,103,569,529,544
Process Variance  982,638,439,386 718,924,545,072
Total Variance 7,992,166,348,198 1,822,494,074,616
Parameter Std Dev 2,647,551 1,050,509
Process Std Dev 991,281 847,894
Standard Deviation 2,827,042 1,349,998
The reserve estimate from this model is 19,334,000, which is quite close to that of the twenty-

parameter model. The prediction standard error (with b = 37,183.5) is down to 1,350,000, compared 

to 2,827,000 for the full MFE – PCS and 2,447,000 for the chain ladder. The better fit from 

including calendar-year effects and the reduced number of parameters has decreased the standard 

error appreciably. The breakdown of the variance into parameter and process is in Table 6. There is 

a decrease in the process standard deviation of 15%, probably coming from recognizing the diagonal 

effects, and a 60% reduction in the parameter standard deviation in going from 19 to 6 parameters, 

for a total decrease in the prediction standard error of over 50%. 

4.3 Testing the Variance Assumption 
In the PCS model the variance of each cell is b times its mean. If the variance is proportional to a 

higher power of the mean, then the PCS standardized residuals (residuals divided by modeled 

standard deviation) would tend to be larger in absolute value for the cells with the larger means. A 

plot of standardized residuals vs. fitted values would be a way to show this. These are graphed in 
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Figure 3 for the six-parameter model. This effect does not appear. However, the positive residuals 

have more extreme values than do the negative residuals, which could be indicative of a more highly 

skewed model.  

There is a possible analogue to the PP-plot as well. A PP-plot for a probability distribution fitted 

to data compares the empirical cumulative probability to the fitted cumulative probability at each 

sample point. Here there are 55 Poisson distributions, each of which has a sample of 1, namely 

qw,d/b. The typical empirical probability for the pth observation out of a sample of N is p/(N+1), so 

this would be ½ for each of our 55 observations. But you could start with the fitted probability at 

each point, rank these 55 fitted values from 1 to N and then assign the empirical probability = 

rank/(N+1) to each. This gives something like a PP-plot, and is shown in Figure 4 for the six-

parameter model. 

The fit is not too bad, but is better below the median than above. Above there are more 

observations below most of the probability levels than the Poissons would predict, as shown by the 

empirical probabilities being higher than the Poisson probabilities. That is a bit surprising, in that 

usually you would expect observed data to have more large observations than the Poisson. Probably 

overall this graph is supportive of the distributional assumption, but Figures 3 and 4 both weakly 

suggest a lighter tail than the Poisson.  

Figure 3 
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4.4 Example 1 Conclusions 
The MFE – PCS model with one parameter for each row and column matches the chain-ladder 

reserve calculation but can have very different fitted values in the triangle. It has more parameters so 

a better fit would be expected, but the variance calculation reflects the parameter uncertainty, so the 

chain ladder can easily give a lower variance. The fit and assumptions of both models can be 

strained by calendar-year effects, but these can be modeled with their own parameters in either 

model. As in this example, it should usually be possible to reduce the number of parameters in the 

models through the use of trends, combination of similar parameters, etc. The MFE models also 

allow for eliminating some accident year parameters, which can be reduced even to a single 

parameter in the Cape Cod case. In the example here, three levels sufficed for 10 years. Other 

possible models, including MFE with different distributional assumptions, have not been considered 

and may give better fits to this data. Negative correlations between adjacent columns might also be 

real, and these could be modeled by time-series techniques. Taylor (2000) [19] and de Jong (2006) [5] 

explore time-series modeling for development triangles. In summary, getting a better fit by 

recognizing calendar-year effects and then reducing the number of parameters in the model can 

decrease the both the process and parameter variances of the reserve estimate. The MFE paradigm 

is appealing when incremental losses are not well explained as a factor times previous cumulative. 

Figure 4 
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5. EXAMPLE 2 

For those who like development factors, it is possible to do many of the steps of Example 1 in a 

factor setting. Calendar-year effects can be modeled, and parameter-reduction techniques can be 

applied. These can lead to better-fitting models with fewer parameters. Such ideas are illustrated in 

this example, using a triangle of long-haul trucking liability losses.  

Table 7 Long-Haul Trucking Development Triangle and Murphy LSM Factors  

Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8 Lag 9 Lag 10 Lag 11
11,305 30,210 47,683 57,904 61,235 63,907 64,599 65,744 66,488 66,599 66,640 66,652
8,828 22,781 34,286 41,954 44,897 45,981 46,670 46,849 47,864 48,090 48,105 48,721
8,271 23,595 32,968 44,684 50,318 52,940 53,791 54,172 54,188 54,216 54,775
7,888 19,830 31,629 38,444 43,287 46,032 47,411 47,677 48,486 48,498 
8,529 23,835 35,778 45,238 51,336 53,574 54,067 54,203 54,214  

10,459 27,331 39,999 49,198 52,723 53,750 54,674 55,864  
8,178 20,205 32,354 38,592 43,223 44,142 44,577  

10,364 27,878 40,943 53,394 59,559 60,940  
11,855 32,505 55,758 64,933 75,244  
17,133 45,893 66,077 78,951  
19,373 50,464 75,584   
18,433 47,564    
20,640     

Factors 2.640 1.5132 1.2220 1.1102 1.0359 1.0149 1.0108 1.0093 1.0017 1.0035 1.0045

The data is for 1984 to 1995. Recall that the LSM model calculates each factor by a least-squares 

regression. For this data the factors provide a believable representation of the development process 

for the first five lags. The actual and fitted incremental losses at these lags are graphed as a function 

of the previous cumulative losses in Figure 5. Some of the deviations from the lines are fairly 

substantial, but the factors do seem to capture the general pattern of development. This is not to say 

that factors give the best model for this data – in fact no other models were tested. The goal is just 

to show how to apply the methods above to factor models. 
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Figure 5 
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5.1 Multiple Regression Format 
To add in diagonal elements, these regressions can be converted to a single multiple regression, 

and dummy variables added in for the diagonals. Table 8 shows part of the design matrix for such a 

regression. The incremental losses at lags 1 to 5 (partial) are strung out into the first column, then 

the subsequent columns are the cumulative losses at lags 0 to 4 that are to predict the next 

incremental losses. 

The last column is a dummy variable that picks out the incremental losses that are on the 4th 

diagonal, which are highlighted. Before looking at diagonals, a standard normal-residual regression 

routine provided the output in Table 9 on the 11 development factors estimated by a single no-

constant multiple regression. 



Refining Reserve Runoff  Ranges 

CAS E-Forum August 2007 www.casact.org 19 

Table 8 

 Incremental L0 L1 L2 L3 L4 D4 
18,904 11,305 - - - - - 
13,953 8,828 - - - - - 
15,324 8,271 - - - - - 
11,942 7,888 - - - - 1 
15,306 8,529 - - - - - 
16,873 10,459 - - - - - 
12,027 8,178 - - - - - 
17,515 10,364 - - - - - 
20,650 11,855 - - - - - 
28,759 17,133 - - - - - 
31,091 19,373 - - - - - 
29,131 18,433 - - - - - 
17,474 - 30,210 - - - - 
11,505 - 22,781 - - - - 
9,373 - 23,595 - - - 1 

11,799 - 19,830 - - - - 
11,943 - 23,835 - - - - 
12,668 - 27,331 - - - - 
12,150 - 20,205 - - - - 
13,065 - 27,878 - - - - 
23,253 - 32,505 - - - - 
20,184 - 45,893 - - - - 
25,120 - 50,464 - - - - 
10,221 - - 47,683 - - - 
7,668 - - 34,286 - - 1 

11,716 - - 32,968 - - - 
6,815 - - 31,629 - - - 
9,460 - - 35,778 - - - 
9,199 - - 39,999 - - - 
6,238 - - 32,354 - - - 

12,451 - - 40,943 - - - 
9,175 - - 55,758 - - - 

12,874 - - 66,077 - - - 
3,331 - - - 57,904 - 1 
2,943 - - - 41,954 - - 
5,634 - - - 44,684 - - 
4,843 - - - 38,444 - - 
6,097 - - - 45,238 - - 
3,524 - - - 49,198 - - 
4,631 - - - 38,592 - - 
6,165 - - - 53,394 - - 

10,312 - - - 64,933 - - 
2,671 - - - - 61,235 - 
1,084 - - - - 44,897 - 
2,623 - - - - 50,318 - 
2,745 - - - - 43,287 - 
2,238 - - - - 51,336 - 
1,027 - - - - 52,723 - 



Refining Reserve Runoff  Ranges 

CAS E-Forum August 2007 www.casact.org 20 

The first five factors are all highly significant, but none of the others are. Yet they are all positive, 

so some recognition of development beyond 5th is clearly needed. Since the differences among the 

factors is small compared to their standard deviations, one possibility is combining some, like 6th 

through 8th and 9th through 11th, or trending them, or replacing them by a constant or constants. For 

this example a constant term was included in the regression and factors f6 to f11 dropped. That 

reduced the number of parameters by five while still recognizing late development. 

Table 9 

Parameter Est value St dev t student Prob(>|t|)
f1 1.64042 0.03751 43.7337 6.2E-50 

f2 0.5132 0.01564 32.8085 3.6E-42 

f3 0.22199 0.0118 18.8143 5.3E-28 

f4 0.11017 0.01095 10.061 7E-15 

f5 0.0359 0.01111 3.23205 0.00193 

f6 0.01486 0.01173 1.26635 0.20991 

f7 0.01079 0.0122 0.88452 0.37968 

f8 0.00931 0.01329 0.69999 0.48643 

f9 0.0017 0.0147 0.1155 0.90841 

f10 0.00348 0.01636 0.21279 0.83216 

f11 0.00451 0.01959 0.23034 0.81855 

5.2 Modeling Diagonal Effects 
Table 10 shows the average residual from the all-factors model and the percent positive for each 

diagonal. The jth diagonal has j+1 fitted values in it except for the 11th, which has 11 values. The 3rd, 

4th, 7th, 9th and 10th diagonals are suspicious. Adding them all to the regression gives the results in 

Table 11. The same factors are significant but with slightly different values. The 3rd diagonal is 

significant at the 5% level, and the 4th and 9th at a bit weaker levels. Some combination of the 

diagonal adjustments might be more significant. 

Table 10 

Diagonal 0 1 2 3 4 5 6 7 8 9 10 11 
Avg Residual 359 721 402 (1,681) 1,226 (142) 93 599 (157) 902 (734) (63)
% Positive 100 50 33 25 80 17 71 88 44 50 27 36 

This model gives separate parameters to all the development factors and the suspicious diagonals. 

Trying parameter reduction, a fairly minimalist model is to keep the first five factors, add a constant 
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to the regression for the later development, keep the 3rd diagonal, and have a common factor for the 

4th, 7th, 9th, and 10th diagonals, but with the 10th subtracted. The constant for all development after 5th 

works well enough because this development is highly random and does not seem to depend on the 

level of previous cumulative. The late development could be due to lawsuits coming to a conclusion 

late in the process, with the timing being highly random. There is still a possibility of improving the 

model by differentiating stages of the late development, however, which is not explored here. The 

regression results are in Table 12. All the parameters are significant enough to keep in the model. 

Table 11 

Parameter Est value St dev t student Prob(>|t|)
f1 1.6345 0.0364 44.947 6.58E-48
f2 0.5127 0.0151 33.988 6.72E-41
f3 0.2208 0.0115 19.274 2.18E-27
f4 0.1103 0.0108 10.236 8.76E-15
f5 0.0293 0.0108 2.7165 0.0086
f6 0.0117 0.0112 1.0430 0.3011
f7 0.0080 0.0117 0.6902 0.4927
f8 0.0043 0.0130 0.3344 0.7392
f9 0.0005 0.0140 0.0359 0.9715
f10 -0.0004 0.0158 -0.0270 0.9786
f11 0.0110 0.0187 0.5855 0.5604
D3 -1657.7 779.5 -2.1266 0.0376
D4 1325.9 700.0 1.8941 0.0630
D9 1041.5 535.1 1.9463 0.0563
D10 -655.2 528.3 -1.2403 0.2197
D7 726.5 573.2 1.2675 0.2099
Table 12 

Parameter Est value St dev t student Prob(>|t|) 
Constant 527.81 255.77 2.0636 0.0428 
f1 1.601 0.03767 42.4984 3.23E-51 
f2 0.499 0.01558 32.0293 3.77E-43 
f3 0.211 0.01167 18.0798 7.01E-28 
f4 0.102 0.01083 9.4008 5.59E-14 
f5 0.021 0.01076 1.9818 0.0515 
D3 -1832 724.59 -2.5284 0.0138 
D4+D7+D9-D10 801.61 245.88 3.2601 0.0017 
 

5.3 Comparing Fits 
The loglikelihood at the maximum for a regression with normal residuals on n observations can 

be expressed as a function of the SSE: 

 log L = (n/2)log[2πeSSE/n] 
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Using this, with p parameters, AICc/2 = (n/2)log[2πeSSE/n] + np/[n – p – 1]. The se of the 

regression is also a function of goodness of fit and number of parameters, so it is a related 

comparative measure. The models discussed above are compared on this basis in Table 13. 

The minimalist model is not a special case of the 16 parameter model because it has a constant 

term. This appears to provide a somewhat better explanation of the development than does the 

combination of factors even before adjusting for number of parameters. 

Model p SSE se AICc/2 
All Development Factors 11 171,040,478 1609.821 684.913 
All Factors and Five Diagonals 16     133,609,815 1479.975 682.907 
Minimalist 8     132,867,569 1387.666 671.218 
Table 13 

5.4 Analysis of Residuals 
Figure 6 is a QQ plot of the residuals of the minimalist model vs. the normal distribution 

regression assumption. The QQ plot graphs the residuals, whereas the PP plot graphs the 

probabilities of the residuals. In the right tail the last few residuals are much higher than the normal 

percentiles, while most of the positive residuals are lower than the normal would suggest. This is not 

very supportive of the normal assumption. 

Figure 7 plots the residuals by delay. Regression assumes that all the residuals have the same 

distribution, but delays 2 through 4 or 5 appear to have a higher variance. Failure to have the same 

residual distribution is a regression problem known as heteroscedasticity. It does not necessarily 

affect the estimates of the coefficients, but it does require a different variance calculation.  

There is a formal test for heteroscedasticity known as White’s test,  which when applied to this 

model is ambiguous about the presence of heteroscedasticity. However White’s test is not regarded 

as definitive. In this model heteroscedasticity would be suspected and even preferred in the sense 

that the smaller observed increments at later stages of development should have lower error 

variances than the larger increments earlier on. A preference for equalizing relative errors actually 

would suggest a lognormal model, which is not explored here. However there are correction 

methods available for adjusting the variance for heteroscedasticity in the model, and these come at 

little cost, because they do not change the estimate much when the variances are in fact constant. 

Thus such an adjustment would be appropriate for calculating the variance for this model. 
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Figure 6 

QQ Plot of Residuals of Minimalist Model of Trucking Data vs. Normal
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Figure 7 

Residuals by Delay
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5.5 Estimating the Variance 

Again the parameter variance can be estimated by the delta method, and the process variance by 

using the standard error. The covariance matrix of the parameters needed for the delta method is a 

standard output of multiple regression software. However when heteroscedasticity is suspected, an 

adjusted covariance matrix is appropriate. 

This discussion is based on Long and Ervin (2000) [11].  They recommend a heteroscedasticity 

consistent covariance matrix they call HC3 whenever there is any chance of heteroscedasticity. 

Explaining this requires getting into the calculations underlying multiple regression. The starting 

point is the matrix X of independent variables, which is an n × p matrix with a row for each 
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observation and a column for each variable. The p × p matrix Z = (X’X)-1 is widely used in 

regression. 

The p × p covariance matrix for the parameter estimates can be expressed in terms of Z and the n 

× n covariance matrix Φ of the observations of the dependent variable as ZX’ΦXZ. When the error 

variances of the observations are constant and independent, i.e., Φ = σ2I, the parameter covariance 

matrix simplifies to σ2Z. This is the usual parameter covariance matrix put out by regression 

programs. A convenient calculation of Z is thus to simply divide this matrix by σ2. 

To correct for possible heteroscedasticity, let ei be the residual for the ith observation and define si 

= xiZxi’, where xi is the row vector of the ith observations of the independent variables. Then ei/(1 – 

si) is an adjusted residual. The adjusted parameter covariance matrix uses the diagonal matrix of 

squared adjusted residuals as the estimate of Φ. Thus: 

  HC3 = ZX’diag[ei
2/(1 - si)

2]XZ  

is the adjusted covariance matrix of the parameters.  

Since the heteroscedasticity is expected to come from differences among column variances, it 

would be reasonable to extend this approach to estimating adjusted column variances as well. The 

average of the squared adjusted residuals down a column of the triangle could be used as the 

estimate of the variance of the residuals for that column. 

For the minimalist model this methodology was applied. The original and revised t-statistics for 

each parameter are in Table 14. The adjusted standard deviations σj by column are in Table 15. 

Using these standard deviations, the actual residuals standardized are graphed against standard 

normal percentiles in Figure 8. While light in the left tail, this adjustment makes the residuals look 

more normal. 

Table 14 

h Constant f1 f2 f3 f4 f5 D3 D4+D7+ 

D9-D10
Original 2.064 42.498 32.029 18.080 9.401 1.982 (2.528) 3.260 
Adjusted 3.501 72.264 17.985 12.838 6.035 3.206 (1.926) 2.574 

Table 15 

927 2,46 2,13 2,01 831 713 800 919 697 808 228 
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Figure 8 

To calculate the variance of the projection, the recursive scheme of Murphy can be applied. First 

denote by Sj the cumulative losses up through lag j for all accident years in the triangle not already 

observed through j. The recursion begins: 

ES1 = cn,0(1+f1)+b  

ESj = (cn-j+1,j-1+ESj-1)(1+fj)+jb, where fj = 0 for j > 5. 

For the process variance given that the parameters are known:  

Var(S1) = σ1
2  

Var(Sj) = EVar(Sj|Sj-1) + VarE(Sj|Sj-1) = jσj
2 + Var[(1+fj)Sj-1] = jσj

2 + (1+fj)2Var(Sj-1) 

For the delta method the derivatives of Sn can be calculated by recursion as well: 

∂ES1/∂b = 1; ∂ESj/∂b = j + (1+fj)∂ESj-1/∂b 

∂ESj/∂fj = cn-j+1,j-1+ESj-1 

∂ESj/∂fi = 0 if i > j and ∂ESj/∂fi = (1+fj)∂ESj-1/∂fi 0 if i < j.  

The results are in Table 16. 
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Table 16 

 Minimal Original Murphy LSM
Reserve estimate 213,553 221,800
Process variance  89,501,787 92,565,591
Parameter variance  86,856,827 138,084,020
Variance  176,358,614 230,649,611
Standard deviation  13,280 15,187

The reserves corrected for calendar-year effects are lower in this case, the process variance is 

lower due to a bit better fit, and the parameter variance is lower because of 8 parameters vs. 11. 

5.6 Variants of the Chain Ladder 
Murphy considered three calculations of chain ladder factors, namely regression, ratio of sums, 

and average of ratios. As mentioned above, the ratio of sums is a regression for each column where 

the incremental losses for the column and the cumulative losses for the previous column are both 

divided by the square root of the previous cumulative, and the average of ratios is the regression 

divided by the previous cumulative itself. 

These adjustments can be done for multiple regression as well. There is only one previous 

cumulative in each row of the design matrix, so the entire row, including the dummy variables and 

the 1 for the constant term if included, can be divided by the previous cumulative or its square root. 

Thus calendar-year effects can be modeled with any variant of the chain ladder. This adjustment is 

not likely to remove heteroscedasticity from the regressions, however, as the smallest incremental 

losses are still going to be factors times the largest previous cumulatives. 

Further variants of the chain ladder using generalized linear models are also possible. Generalized 

linear models replace the normal distribution assumption of the residuals with other distributions. 

The PCS could be used, for example, which would have variance proportional to mean for the entire 

multiple regression. This could in itself eliminate the problem of heteroscedasticity. 

6. EXAMPLE 3 

This example looks at using exposure data, distributions instead of lag factors, and leaving out 

data. Factors are sometimes based on the last five diagonals, or even last five diagonals excluding the 

high and low observations in each column. This example illustrates that it can sometimes be 

appropriate to leave out some data. This is when it is clear that there has been a change in the 

development process. Otherwise leaving out data will increase the variance of the estimate. 
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Excluding high and low observations is particularly problematic in that if factors are from a skewed 

distribution this will bias the estimated factors downward. 

The triangle in Table 17 is cumulative claim counts with exposures for 1978 - 1995 from Taylor 

(2000) [19]. Exposures are growing over time. The usual assumption is that this consists of more 

units from the same population. That is not necessarily the case, however, and may not be so here. 

The development factors are grouped by selected accident-year ranges in Table 18. The 0 to 1 

factors for the four groups are 1.52, 1.37, 1.47, and 1.32, and the factors are fairly consistent within 

each group. Most of the development occurs from 0 to 1, so it is critical to get a good estimate for 

this factor. 

Table 17 Cumulative Claim Count Triangle with Exposures  

Exposure Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8 Lag 9 Lg 10
71,543 368 559 587 595 601 606 609 610 610 610 611
75,681 393 544 569 575 579 584 588 589 591 592 592
98,960 517 702 731 748 759 769 777 778 778 778 779

102,974 578 832 881 903 920 926 929 929 930 930 930
106,810 622 828 867 883 886 893 893 894 894 894 894
110,779 660 903 931 943 955 959 963 964 964 964 964
114,307 666 900 953 963 971 975 981 982 982 982 982
117,306 573 839 901 913 918 925 931 936 937 937 938
123,304 582 863 895 922 934 947 953 955 956 956  
125,533 545 765 808 826 838 847 852 854 854   
131,265 509 775 824 846 861 865 873 873    
139,661 589 799 828 845 857 861 870     
152,895 564 760 783 795 804 809      
160,331 607 810 839 848 855       
162,900 674 843 863 875        
170,045 619 809 850         
173,248 660 821          
175,941 660           
One approach to verifying that there actually has been a change in development is to compare 

the variance of the estimate using the full data and using only the more recent data that appears to 

be from a different population. In this case the claims through lag 6 (7th column) were developed 

from all accident years and for the last seven years. Using the Mack formulas, estimating the factors 

from all the years combined gives an expected future claim count for the last seven years of 481, of 

which 68% are from the last accident year, and a standard deviation of 62. From just the last seven 

years alone these estimates are 417 claims with a standard deviation of 42, and 65% are from the last 

accident year. The estimated standard deviation is much lower with the last seven years alone, which 

supports the idea that there has been a change in development patterns. 
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Table 18 – Development Factors for Claim Count Triangle 

1.519 1.050 1.014 1.010 1.008 1.005 1.002 1.000 1.000 1.002 
1.384 1.046 1.011 1.007 1.009 1.007 1.002 1.003 1.002 1.000 
1.358 1.041 1.023 1.015 1.013 1.010 1.001 1.000 1.000 1.001 
1.439 1.059 1.025 1.019 1.007 1.003 1.000 1.001 1.000 1.000 
1.331 1.047 1.018 1.003 1.008 1.000 1.001 1.000 1.000 1.000 
1.368 1.031 1.013 1.013 1.004 1.004 1.001 1.000 1.000 1.000 
1.351 1.059 1.010 1.008 1.004 1.006 1.001 1.000 1.000 1.000 
1.464 1.074 1.013 1.005 1.008 1.006 1.005 1.001 1.000 1.001 
1.483 1.037 1.030 1.013 1.014 1.006 1.002 1.001 1.000   
1.404 1.056 1.022 1.015 1.011 1.006 1.002 1.000     
1.523 1.063 1.027 1.018 1.005 1.009 1.000       
1.357 1.036 1.021 1.014 1.005 1.010         
1.348 1.030 1.015 1.011 1.006           
1.334 1.036 1.011 1.008             
1.251 1.024 1.014               
1.307 1.051                 
1.244                   

Figure 9 graphs the 0 to 1 factors, with the groupings indicated. The last group is subdivided into 

two sub-groups of three years each. It appears that there have been different eras of internally 

consistent development factors, and that the last six factors tend to be lower than the others. This 

supports ignoring most of the older data, especially for the 0 to 1 factor. It raises the question of a 

possible continuing downward trend, however.  

The exposure data is helpful in resolving the question of homogeneity of the last seven years. 

Table 19 shows the claims per 10,000 exposures for the 0 and 1 lags. The grouping of years is a bit 

different here. For cumulative claims, the last six years appear homogeneous and different from the 

years before them. This supports the idea that either the new exposures are from a different 

population or there has been a change in risk conditions. The claims through lag 1 have gone down 

from about 80 per 10,000 exposures to less than 50. 
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The last six years show what actuaries would like to see from using exposures: all the years seem 

to be about the same level after dividing by exposures. This allows for application of an additive 

model, where each column has its own expected increment. There may still be a downward trend 

within these years for incremental claims at lag 1, but this will be ignored for now.  

Figure 9 

Table 19 – Cumulative and incremental claims per 10,000 exposures  

Lag 0 Lag 1 cum Lag 1 incr
51.4 78.1 26.7
51.9 71.9 20.0
52.2 70.9 18.7
56.1 80.8 24.7
58.2 77.5 19.3
59.6 81.5 21.9
58.3 78.7 20.5
48.8 71.5 22.7
47.2 70.0 22.8
43.4 60.9 17.5
38.8 59.0 20.3
42.2 57.2 15.0
36.9 49.7 12.8
37.9 50.5 12.7
41.4 51.7 10.4
36.4 47.6 11.2
38.1 47.4 9.3
37.5  

Additive development of claims per exposure for the last six years through lag five gives an 

outstanding reserve of 357 claims. These years can be developed through the end of the triangle 



Refining Reserve Runoff  Ranges 

CAS E-Forum August 2007 www.casact.org 30 

using data from earlier accident years. Comparing claims per exposure at lags 0 to 5 for the first 11 

years to the last 6 shows an average ratio around 1.945. Dividing the average claims per exposure by 

this for the older years at each lag for lags 6 and on gives a projection of the future claims for the 

last 6 years. This adds 35 claims to the expected emergence. Finally doing an additive development 

for the 4 incomplete older years adds 6 more claims, for a total estimated outstanding of 398 claims.  

This is considerably less than the 500 projected from the whole triangle, and can be considered 

an improved estimate due to the use of exposures and the changes that have occurred in the data. 

This shows that ignoring data can give a better and possibly significantly different estimate when 

there are demonstrable changes in the process. However ignoring data otherwise can degrade the 

estimate. It may be possible to find ways to use the older data with time-series methods instead of 

discarding it for the first several lags. The apparent continuing downward trend in the claims per 

exposure at lag 1 gives incentive for following up on this. Taylor (2000) [19] explores some 

alternatives with this data. 

The last 6-year triangle with exposures provides an opportunity to apply a parametric model 

suggested by Clark (2003) [4]. Denoting the exposures for year w by Pw and the probability of claims 

appearing by lag d as Gd, assume that qw,d is Poisson in Pwr(Gd – Gd-1), where r is an overall ratio of 

claims to exposures. Any distribution can be used for G, but here Weibull was assumed, with Gd = 1 

– exp[–(d/θ)ω] for d = 1, 2, …5. Weissner (1978) [24] suggests fitting a truncated version of the 

Weibull, which is technically correct, but for simplicity that was not done here, although it does not 

seem to make a lot of difference in this case since claims have almost finished their development by 

lag 5. By starting at d = 1 the Weibull is fit for claim appearance after lag 0.  

Clark provides the likelihood function and its first two derivatives. MLE for this triangle gives r = 

0.001525, θ = 0.5637 and ω = 0.4980. The resulting outstanding through lag 5 is 354 claims, which 

is similar to the 357 from the additive development. However this model has only 3 parameters, 

while additive development has 5, so there may be a lower variance. 

The sample variance for each column of claims per exposure is the sum of the squares of the 

deviation from the average divided by n – 1. This variance would apply to each projected 

incremental cell. In addition there is the variance of the estimated mean, which is the column 

variance divided by n. This all results in a factor of (n+1)/[n(n – 1)] applied to the sum of squares of 

the column deviations. For the last column with only one observation an ad hoc variance is typically 
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imputed, and here that was the ratio of the squares of the means applied to the previous variance. 

This procedure gives the variance of the ratios to exposure for each column of the triangle. In the 

projection period these are multiplied by the square of the exposures to give the variance of each 

projected cell. The sum of these through lag 5 is 1087.5, so the standard deviation is near 33. 

For the Poisson-Weibull model the process variance of each cell is its mean, by the Poisson 

assumption. The parameter variance for each projected cell can be calculated by the delta method, 

using the derivatives of the loglikelihood from Clark. The covariance matrix of the parameters is in 

Table 20.  

r ω θ 
 6.230E-09 -4.717E-06  3.605E-06
-4.717E-06  6.643E-03 -2.336E-03
 3.605E-06 -2.336E-03  5.950E-03

Table 20 – Covariance matrix of Poisson-Weibull fit 

The w, d projected cell has mean rPw(Gd – Gd-1) and its derivatives wrt the 3 parameters are as in 

Clark. Summing over the projected cells gives the derivatives of the reserve wrt r, ω, θ as 231,931.82, 

95.74 and 65.36. Multiplying the covariance matrix on the left and right by this as a vector gives the 

delta method estimate of parameter uncertainty of 292. When added to the mean this gives a total 

variance of 646, or standard deviation of 25.4. Going from 5 to 3 parameters is a 40% reduction in 

the number of parameters and not much goodness-of-fit was lost, so the standard deviation of the 

estimated outstanding decreased. 

7. CONCLUSIONS 

Two paradigms dominate loss development triangle modeling. The conditional approach models 

each incremental cell’s expected value as a linear function of the previous cumulative losses. The 

unconditional approach models the cell expected losses as a portion of an unobserved level 

parameter for the year. The chain ladder and BF methods are the original examples of these two 

paradigms. The unconditional model often fits better but since it uses more parameters (for the 

accident-year levels), it can have higher variances and wider runoff ranges.  

Alternative unconditional or conditional models can be compared on parameter-penalized 

maximized loglikelihood, but it is difficult to compare across the two paradigms by this method. 

Perhaps the variance of the estimate is the best common comparison. How to compare models is 
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not a settled issue, however. 

Through three examples, ways of improving the estimate were explored. First it is critical to 

identify calendar-year effects. If these are significant, ignoring them biases the estimates of the other 

factors. Including them can improve the fit. After that, improving the model primarily consists of 

getting rid of insignificant parameters. This is not a matter of simply dropping such parameters. It 

instead involves finding models with fewer parameters that nonetheless account for the observable 

features of the data. 

Replacing level parameters by trends has considerable potential for reducing the number of 

parameters without sacrificing the fit of the model. In the examples here only linear trends were 

used and even then just for short periods, but non-linear trends and longer trend periods can be 

helpful in many cases. A related approach that helped in Example 3 is to use probability 

distributions for the lag factors. Exposure data when available may improve the modeling as well. 

When the data has undergone clearly demonstrable changes in structure, using only part of the data 

can improve the estimates, but otherwise ignoring data will usually increase the variance of the 

projection. Time series models that account for the changes in structure may be a useful alternative. 

These could apply vertically, to account for changes in level, horizontally, if high and low 

development seem to alternate, or by diagonal for evolving cost trends. 

Both the conditional and unconditional models can be framed in the notation of multiple 

regression and put into generalized linear models for alternative residual distributions. The examples 

only touched on those possibilities, and many more distributions could be tried. If the normal 

distribution is used, a heteroscedasticity adjustment is needed. A major issue not explored is using 

calendar-year trends that are projected into the future instead of constants for the diagonal effects. 

Changing cost trends can strongly affect the projections, and could be considered a key contributor 

to model risk, also not addressed.  
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