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Abstract 
In recent years a number of "data mining" approaches for modeling data containing nonlinear and other 
complex dependencies have appeared in the literature. One of the key data mining techniques is decision trees, 
also referred to as classification and regression trees or CART (Breiman et al, 1993). That method results in 
relatively easy to apply decision rules that partition data and model many of the complexities in insurance data. 
In recent years considerable effort has been expended to improve the qualit 3" of the fit of regression trees. 
These new methods are based on ensembles or networks of trees and cart 3, names like TREENET and 
Random Forest. Viaene et al (2002) compared several data mining procedures, including tree methods and 
logistic regression, for prediction accuracy on a small fixed data set of fraud indicators or "red flags". They 
found simple logistic regression did as well at predicting expert opinion as the more sophisticated procedures. 
In this paper we will introduce some available regression tree approaches and explain how they are used to 
model nonlinear dependencies in insurance claim data. We investigate the relative performance of several 
software products in predicting the key claim variables for the decision to investigate for excessive and/or 
fraudulent practices, and the expectation of favorable results from the investigation, in a large claim database. 
.Mnong the software programs we will investigate are CART, S-PLUS, TREENET, Random Forest and 
Insightful Miner Tree procedures. The data used for this analysis are the approximately 500,000 auto injury 
claims reported to the Detailed Claim Database (DCD) of the Automobile Insurers Bureau of Massachusetts 
from accident years 1995 through 1997. The decision to order an independent medical examination or a 
special investigation for fraud, and the favorable outcomes of such decisions, are the modeling targets. We find 
that the methods all provide some predictive value or lift from the available DCD variables with significant 
differences among the methods and the four targets. All modeling outcomes are compared to logistic 
regression as in Viaene et al. with some model/software combinations doing significantly betxer than the 
logistic model. 
Keywords: Fraud, Data Mining, ROC Cu~,e, Variable Importance, Decision Trees 

-) © Derrig-Francis _005 - No more than two pqragraphs or one table or figure can be quoted without written 
permission of the authors before March 1, 2006. 
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Distinguishing the Forest from the TREES 

I N T R O D U C T I O N  

In recent years a number of approaches for modeling data containing nonlinear and other 
complex dependencies have appeared in the literature. Many of the methods were 
developed by researchers from the computer science, artificial intelligence and statistics 
disciplines 1. The methods have been widely characterized as data mining techniques. These 
procedures include several that should be of interest to actuaries dealing with large and 
complex data sets. The procedures of interest for the purposes of this paper are various 
varieties of classification and regression trees or CART. Viaene et al (2002) applied a wider 
set of  procedures, including neural networks, support vector machines, and a dassical 
general linear model, logistic regression, on a small single data set of insurance dairn fraud 
indicators or "red flags" as predictors of suspicion of fraud. They found simple logistic 
regression did as well at predicting expert opinion on the presence of fraud as the more 
sophisticated procedures. Stated differently, the logistic model performed well enough in 
modeling the expert opinion of fraud that there was litde need for the more sophisticated 
procedures:. 

A wide variety of statistical software is now available for implementing fraud and other 
predictive models through clustering and data mining. In this paper we will introduce a 
variety of Regression Tree data mining approaches 3 and explain how they are used to model 
nonlinear dependencies in insurance claim data. We also investigate the relative performance 
of several software products that implement these models. As an example of relative 
performance, we test for the key claim variables in the decision to investigate for excessive 
and/or fraudulent practices in a large claim database. The software programs we 
investigate are CART, S-PLUS, TREENET, Random Forests, and Insightful Tree and 
Ensemble from the Insightful I~finer package. Naive Bayes and Logistic models are used as 
benchmarks. The data used for this analysis are the auto bodily injury liability daims 
reported to the Detailed Claim Database 0DCD) of the Automobile Insurers Bureau of 
Massachusetts from accident years 1995 through 1997 ~. Three types of variables are 
employed. Several variables thought to be related to the decision to investigate are included 
here as reported to the DCD, such as outpatient provider medical bill amounts. A few 
variables are included that are derived from publicly available demographic data sources, 
such as income per household for each claimant's zip code. Additional variables are derived 
by accumulating proportional statistics from the DCD; e.g., the distance from the claimant's 
zip code to the zip code of the first medical provider or claimant's zip code rank for the 
number of plaintiff attorneys per zip code. The decision to order an independent medical 
examination or a special investigation for fraud, and a favorable outcome for each, are the 
modeling target. 

Eight modeling software results will be compared for effectiveness based on a standard 
procedure, the area under the receiver operating characteristic curve (AUROC). We find 
that the methods all provide some predictive value or lift from the DCD variables we make 
available, with significant differences among the eight methods and four targets. Modeling 
outcomes can be compared to logistic regression as in Viaene et al. but the results here are 
different. They show some software/methods can improve significantly on the predictive 
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ability of the logistic model. That result may be due to the relative richness of this data set 
and/or the types of independent variables at hand compared to the Viaene data. We show 
how "important" each variable is within each software/model tested s and note the type of 
data that are important for this analysis. This entire exercise should provide practicing 
actuaries with guidance on regression tree software and market methods to analyze complex 
nonlinear relationship commonly found in all types of insurance data. 

The paper is organized as follows. Section 1 introduces the general notion of non-linear 
dependencies in insurance data. Section 2 describes the data set of  Massachusetts auto bodily 
injury liability claims and variables used for illustrating the models and software 
implementations. Descriptions and illustrations of the data mining methods applied in the 
paper appear in Section 3 while the specific software procedures are covered in Section 4. 
Comparative outcomes for the variables ("importance") and software ("AUROC") are 
reported in Sections 5 and 6. We provide some interpretation of the results in terms of the 
decision to investigate within the Massachusetts data as an illustration of the usefulness of 
the modeling effort in Section 7. Implications for the use of the software models are 
discussed in section 8. Contusions are shown in Section 9. 

S E C T I O N  1. N O N L I N E A R I T Y  IN I N S U R A N C E  DATA 

Actuaries are nearly inseparable from data and data manipulation techniques. Data come in 
all forms as a matter of course. Numeric (loss ratios), categorical (injury types), and text 
(accident description) data all flood insurers on a daily basis. Reserving and pricing are two 
major functions of casualty actuaries. Reserving involves compiling and understanding 
through mathematical techniques historical patterns of a portfolio of insurance claims in 
order to predict an ultimate value. Pricing involves taking the best estimates of historical 
cost data on claims and expenses, combining that data with financial asset pricing models 
that include projecting future values in order to arrive at best estimates of all costs of 
accepting underwriting risk. Of  course, actuaries continually look back at both analytic 
exercises to determine the accuracy of those estimates as the real accounting data develops 
over time. 

Traditionally, actuarial models were confined to linear, multiplicative or mixed algebraic 
equations in the absence of the powerful computing enviromnent we enjoy today. Those 
mostly manual methods provided crude approximations that sufficed when alternative 
methods were unavailable or non-existent. Simple deviations from linear relationships, such 
as escalating inflation, could be handled by simple transformations of the data (log 
transform) that allowed linear techniques to be applied to the data. Gradually, over time 
these transformation techniques became more sophisticated and could be applied to many 
problems with a variety of non-linear data ~'. 

Trend fines of time series data, such as dalrn severity or frequency, are generally amenable to 
linear techniques. However, data where interactions and cross correlations are essential to 
the modeling of the dynamics of the process underlying the data, require more 
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comprehensive techniques that yield more precision on more types of data complexities. 
Figure 1-1 shows a particular non-linear relationship between two insurance variables that 
would be difficult, if not impossible, to modal with simple techniques. One purpose of  this 
paper is to demonstrate a range of so-called artificial intelligence or statistical learning 
techniques that have been developed to handle complicated relationships within data sets. 

An Insurance Nonlinear Function: 
Provider Bill vs. Probability of Independent Medical Exam 
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o 7 0 -  
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~ o ~ -  
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P r o v i d e r  2 Bi l l  

Figure 1 -1 

Nearly all regression and econometric academic courses address the topic of  nonlinearity, at 
least briefly. Students are instructed in methods to detect nonlinearity and how to model it. 
Detection generally involves using scatter plots of independent versus dependent variables 
or evaluating plots of residuals. Two methods of  modeling nonlinearity that are generally 
taught: are 1) transformation of variables and 2) polynomial regression (Miller and Wichem 7, 
1977, and Neter et al, 1985). For instance, if an examination of  residual plots indicates that 
the magnitude of  the residuals increases with the size of  an independent variable, the log 
transformation is recommended. Polynomial regressions are considered useful 
approximations when a curvilinear relationship exists but its exact form is unknown. 

A generalization of linear models "known as Generalized Linear Models or GLM (McCullagh 
and Nelder, 1989) enabled the modeling of  multivariate relationships in the presence of  
certain kinds of  non-normality (i.e. where the random component is from the exponential 
family of distribution). The link function of GLMs formalizes the incorporation of certain 
nonlinear relationships into the modeling procedure: The transformations incorporated into 
the common GLMs are: 

The identity link: h(Y) = Y 
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The log link: h(Y) = lnC~ 
1 

The inverse link: h(Y) = - -  (1) 
Y 

The logit link: h(Y) = l n ( l _ ~  ) 

The probit link: h(Y) = ~(Y),  • denotes the normal CDF 
O f  these transformations, the log and logit transformation appear frequently in the insurance 
literature. Because many insurance variables are right skewed, the log transformation is 
applied to attained approximate normality and homogeneity of  variance. In addition, apriori 
or domain considerations (e.g., the relationship between the independent variables and the 
dependent variable is believed to be mulfiplicative) sometimes suggest the log 
transformation. The logit transform is commonly used when the dependent variable is 
binary. 

Unformnatdy, while the techniques cited above add significantly to the analyst's ability to 
model nonlinearity, they are not sufficient for many situations encountered in practice. In 
actual insurance data, complex nonlinear relationships are the rule rather than the exception. 
Some of the reasons the traditional approaches often do not provide a satisfactory 
approximation to nonlinear functions are: 

• The form of the nonlinearity may be other than one of  those permitted by the 
-known transformations which produce linearity. Figure 1-1 displays one such non- 
linear function based on the insurance database used in this analysis. 

• While a polynomial of  adequate degree can approximate many complex functions, 
extrapolation beyond the data, or interpolation within the data, may be problematic, 
particularly for higher order polynomials. 

• Determining the appropriate transformation (or polynomial) can be difficult if not 
impossible when there are many independent variables, and the appropriate relation 
between the target and each independent variable must be found. 

• The relationship between a dependent variable and an independent variable may be 
confounded by a third variable due to interaction or correlations that are not simple 
to approximate. 

To remedy these problems requires methods where: 
• Any nonlinear relationship can be approximated. 
• The analyst does not need to -know the form of the nonlinearity. 
• The effect of  interactions can be easily determined and incorporated into the model. 
• The method generalizes well on out-of-sample data for interpolation or extrapolation 

purposes. 

The regression tree methods included in our analysis meet these conditions. Section 3 of 
this paper describes how each of  our methods models nonlinearity. We now turn to a 
description of  the data set we will use in this analysis. 
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SECTION 2. DESCRIPTION OF THE MASSACHUSETTS AUTO BODILY 
INJURY DATA 

The database we will use for our analysis is a subset of the Automobile Insurers Bureau of 
Massachusetts Detail Claim Database (DCD); namely, those claims from accident years 
1995-1997 that had closed by June 30, 2003 (AIB, 2004). All auto claims s arising from injury 
coverages: Personal Injury Protection (PIP)/Medical  payments excess of PIP 9, Bodily Injury 
Liability (BIL), Uninsured and Underinsured Motorist. While there are more than 500,000 
claims in this subset of DCD data, we will restrict our analysis to the 162,761 third party BIL 
coverage claims. This will allow us to divide the sample into training, test, and holdout sub 
samples, each containing in excess of 50,000 claims TM. The dataset contains fifty-four 
variables relating to the insured, daimant, accident, injury, medical treatment, outpatient 
medical providers (2 maximum), attorney presence, and three claims handling techniques for 
mitigating daims cost for their presence, outcome, and formulaic savings amounts. 

The claims handling techniques tracked are: Independent Medical Examination (IME), 
Medical Audit (MA) and Special Investigation (SIU). IMEs are performed by licensed 
physicians of  the same type as the treating physician u. They cost approximately $350 per 
exam with a charge of $75 for no shows. They are designed to verify claimed injuries and to 
evaluate treatment modalities. One sign of a weak or bogus claim is the failure to submit to 
an IME and, thus, an IME can serve as a screening device for detecting fraud and build-up 
claims. MAs are peer reviews of the injury, treatment and billing. They are typically done by 
physicians without a claimant examination, by nurses on insurers' staff or by third party 
organizations, but also from expert systems that review the billing and treatment patterns 12. 
Favorable outcomes are reported by insurers when the damages are mitigated, the billing and 
treatment are curtailed, and when the claimant refuses to undergo the IME or does not 
show. In the latter two situations the insurer is on solid ground to reduce or deny payments 
under the failure-to-cooperate clause in the policy) 3 

Special Investigation (SIU) is reported when claims are handled through non-routine 
investigative techniques (accident reconstruction, examinations under oath and surveillance 
are examples), possibly including an IME or Medical Audit, on suspicion of fraud. For the 
most part, these claims are handled by Special Investigative Units (SIU) within the claim 
department or by some third party investigative service. Occasionally, companies will be 
organized so that additional adjusters, not specifically a part of  the company SIU, may also 
conduct special investigations on suspicion of fraud. Both types are reported to DCD and 
we refer to both by the shorthand SIU in subsequent tables and figures. Favorable outcomes 
are reported for SIU if the claim is denied or compromised based on the SIU investigation. 

For purposes of  this analysis and demonstration of non-linear models and software, we 
employ twenty-one potentially predicting variables and four target variables. Thirteen 
predicting variables are numeric, two from DCD fields (F), eight derived from internal 
demographic type data (DV), and three variables derived from external demographic data 
(DM) as shown in Table 2-1. 
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Auto Injury Liability Claim Numeric  Variables 

Variable N Type 

Provider I_BILL 162,761 F 
Provider 2_BILL 162,761 F 
ARe 155,438 DV 
Report La~ 162,709 DV 
Treatla~ 147,296 DV 
HouseholdsPerZipcode 118,976 DM 
AveralgeHouseValue Per Zip 118,976 DM 
IncomePerHousehold Per Zip 118 ,976 DM 
Distance ~IP1 Zip to CLT. Zip) 72,786 DV 
Rankattl (rank art/zip/ 129,174 DV 
Rankdoc2 (rank prov/zip/ 109,387 DV 
Rankci~. (rank claimant city,) 118,976 DV 
Rnkpcity (rank provider ci~') 162,761 DV 
Valid N (lJstwise) 70,397 

Minimum M~Lximum 

0 1,861,399 
0 360,000 
0 104 
0 2,793 
1 9 
0 69,449 
0 1,000,001 
0 185,466 
0 769 
1 3,314 
1 2,598 
1 1,874 
0 1,305 

Std. 
Mean Deviation 

2,671.92 6,640.98 
544.78 1,805.93 
34.15 15.55 
47.94 144.44 
3.29 1.89 

10,868.87 5,975.44 
166,816.75 77,314.11 
43,160.69 17,364.45 

38.85 76.44 
150.34 343.07 
110.85 253.58 
77.37 172.76 
30.84 91.65 

N = Number of non missing records; F=DCD Field, DV = Internal derived variable, DM = External derived 
variable 
Source; Automobile Insurers Bureau of Massachusetts, Detail Claim Database, A Y  1995-1997 aud Authors' Cakulations. 

Table 2-1 

Eight  predicting variables, and four target variables (IME and SIU, Decis ion and Favorable 
Outcome  for each), are categorical variables, all taken as reported f rom D C D  and as shown 
in Table 2-2. 
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Variable 

Policy Type 
Emergent, Treatment 162,761 
Health Insurance 162,756 
Provider I - Type 162,761 
Provider 2 - T}'pe 162,761 

2001 Territory 162,298 

Attorney 162,761 
Suspl (SIU Done / 162,761 

Susp2 (IME Done / 162,761 

Susp3 (SIU Favorable) 162,761 

Susp4 (IME Favorable / 162,761 

Injury Type 162,298 

N = Nttmber of non missing records 

Auto Injury Liability Claim CateBorical Variables 
N 

Type Type Description 
162,761 F Personal 92%, Commercial 8% 

F None 9%, Onl,v 22%, w Outpatient 68% 
F Yes, 15%, No 26%, Unknown 60% 
F Chiro 41%, Physical Th. 19%, Medical 30%, None 10% 
F Chiro 6%, Physical Th. 6%, Medical 36%, None 52% 
F Rating Territories 1 (2.2%) Through 26 (1.3%); Territory 1- 

16 by increasin~ risk, 17-26 is Boston 
F :kttorne~, present (89%), no attorney (11%) 
F Special Invesfi~tion Done (70/0/, No SIU (93%) 

Independent Medical Examination Done (8%), No IME 
F (920/o / 

Special Investagation Favorable 0.4%), Not Favorable/Not 
F Done (95.6% / 

Independent Medical Exam Favorable (4.4%), Not 
F Favorable/Not Done (96.6% / 

Injury Types (24) including manor visible (4O/o), strain or 
F sprain, back and/or neck (81%), fatality (0.4%), disk 

herniation (1%) and others 
F= DCD Field 

Note: Descriptive percentages may not add to 100% due to rounding 
Source: Automobile Insurers Bureau of Massachusetts, Detail Claim Database, A Y  1995-1997 andAuthors' Calculations. 

Table 2-2 

Similar claim investigation variables are now being collected by the Insurance Research 
Council in their periodic sampling of  countr3avide injury claims (IRC, 2004a, pp 89-104) 14. 
Nationally, about 4% and 2% of BI claims involved IMEs and SIU respectively, only one- 
half to one-quarter of  the Massachusetts rate. Most likely, this is because (1) a majority of  
other states have a full tort system and so BIL contains all injury claims and (2) 
Massachusetts is a fairly urban state with high claim frequencies and more dubious claimslk 
In fact, the most recent IRC study shows (IRC, 2004b, p25) Massachusetts has the highest 
percentage of  BI claims in no-fault states that are suspected of  fraud (23%) and/or  buildup 
(41%). It is therefore, entirely consistent for the Massachusetts claims to exhibit more non- 
routine claim handling techniques. Favorable outcomes average about 67% when an IME is 
done or a claim is referred to SIU. We now turn to descriptions of  the types of  models, and 
the software that implements them, in the next two sections before we describe how they are 
applied to model the IME and SIU target variables. 

S E C T I O N  3. M O D E L S  F O R  N O N - L I N E A R  D E P E N D E N C I E S  

H o w  models  handle nonlinearity 
Traditional actuarial and statistical techniques often assume that the functional rdationship 
between the independent variables and the dependent variable is linear or that some 
transformation of  the data exists that can be treated as linear. Insurance data often contain 
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variables where the relationship among variables is nonlinear. Typically when nonlinear 
relationships exist, the exact nature of  the nonlinearity (i.e., where some transformation can 
be used to establish linearity) is not known. In the field of  data mining, a number of  
nonparametric techniques have been developed which can model nonlinear relations without 
any assumption being made about the nature of  the nonlinearity. We cover how each of  our 
methods reviewed in this paper models nonlinearities in the following two examples. The 
variables in this example were selected because of  a known nonlinear relationship between 
independent and dependent variables. 

Ex. 1 The dependent variable, a numeric variable, is total paid losses and the 
independent variable is provider 2 bill. Table 3-1 displays average paid losses at various 
bands of  provider 2 bilP ~. 
Ex. 2 The dependent variable, a binary categorical variable, is whether or not an 
independent medical exam is requested and the independent variable again is provider 2 
bill. 

Nonlinear Example Data 
Provider 2 Bill (Banded) 

Zero 
1 - 250 
251 - 500 
501 - 1,000 
1,001 - 1,500 
1,501 - 2,500 
2,501 - 5,000 
5,001 - 10,000 
10,001+ 

All Claims 

Avg Provider 2 Bill Avg Total Paid 
9,063 

Percent IME 
6% 

154 8,761 8% 
375 9,726 9% 
731 11,469 10% 

1,243 14,998 13% 
1,915 17,289 14% 
3,300 23,994 15% 
6,720 47,728 15% 

21,350 83261 15% 

545 11,224 8% 

Table 3-1 

Trees 
Trees, also known as classification and regression trees (CART) fit a model by recursively 
partitioning the data into two groups, one group with a higher value on the dependent 
variable and the other group with a lower value on the dependent variable. Each partition 
of  the tree is referred to as a node. When a parent node is split, the two children nodes, or 
"leaves" of  the tree, are each more homogenous (i.e., less variable) with respect the 
dependent variable 17. A goodness o f  fit statistic is used to select the split which maximizes 
the difference between the two nodes. When the independent variable is numeric, such as 
provider 2 bill, the split takes the form of  a cutpoint, or threshold: x > c and x < c as in 
Figure 3-1. 
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CART Example of Parent and Children Nodes 
Total Paid as a Function of Provider 2 Bill 

1 ~ Split 

I 
i i 

Figure 3-1 

The cutpoint c is found by evaluating all possible values for splitting the numeric variable 
into higher and lower groups, and selecting the value that optimizes the split in some 
manner. When the dependent variable is numeric, the split is typically based on the value 
which results in the greatest reduction in residual sum of squares. For this example, all values 
of provider 2 bill are searched and a split is made at the value $5,021. All claims with 
provider 2 bill less than $5,021 go to the left node and "predict" a total paid of $10,770 and 
all claims with provider 2 bill greater than $5,021 go to the right node, and "predict" a total 
paid of $59,250. This is depicted in Figure 3-1. The tree graph shows that the total paid 
mean is significantly lower for the claims with provider 2 bills less than $5,021. 

One statistic often used as a goodness of fit measure to optimize tree splits is sum squared 
error or the total squared deviation of actual values around the predicted values. The selected 
cutpoint is the one which produces the largest reduction in total sum squared errors (SSE). 
That is, for the entire database the total squared deviation of paid losses around the 
predicted value (i.e., the mean) of paid losses is 4.95x10 is. The SSE declines to 4.66x10 is 
after the data are partitioned using $5,021 as the cut-point. Any other partition of the 
provider bill produces a larger SSE than 4.66x1013. For instance, if a cut'point of  $10,000 is 
selected, the SSE is 4.76x1013. 

The two nodes in Figure 3-1 can each be split into to children nodes and these can then be 
further split. The sequential splitting continues until no improvement in the goodness of fit 
statistic occurs. The nodes containing the result of  all the splits resulting from applying a 
sequence of decision rules are the final nodes often referred to as terminal nodes. The 
terminal nodes provide the predicted values of the dependent variables. When the dependent 
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variable is numeric, the mean of the dependent variable at the terminal nodes is the 
prediction. 

The curve of the predicted value resulting from a tree fit to total paid losses is a step 
function. As shown in Figure 3-2A, with only two terminal nodes, the fitted function is flat 
until $5,021, steps up to a higher value and then remains flat. Figure 3-2B displays the 
predicted values of a tree with 7 terminal nodes. The steps or increases are more gradual for 
this function. 

CART Example w/th Two and Seven Nodes 
Total Paid as a Function of Provider 2 Bill 

|t 

' 1 4  - 

o 

o 

Figure 3-2A Figure 3-2B 

The procedure for modeling data where the dependent variable is categorical (binary in our 
example) is similar to that of  a numeric variable. For instance, one of the fraud surrogates is 
independent medical exam (IME) requested. The target class is claimants for whom an IME 
was requested and the non-target group of (presumably) legitimate claims is that where an 
IME was not requested. At each step, the tree procedure selects the split that best improves 
or lowers node impurity. That is, it attempts to partition the data into two groups so that 
one partition has a significantly higher proportion of the target category, IME requested, 
than the other node. A number of statistical goodness of fit statistics measures is used in 
different products to select the optimal split. These include entropy/deviance and Gini 
index (which is described later in this paper). Kantardzic (2003), Breiman et al (1993) and 
Venibles and Ripley (1999) describe the computation and application of the Gini index and 
entropy/deviance measures is. A score or probability can be computed for each node after a 
split is performed. This is generally estimated based on the number of observations in the 
target groups versus the total number of observations at the node. The score or probability 
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is frequently used to assign records to one of  the two classes. Typically, if the model score 
exceeds a threshold such as 0.5, the record is assigned to the target class; otherwise it is 
assigned to the non-target class. 

Figure 3-3A displays the result of  using a tree procedure to predict a categorical variable 
from the AIB data. The graph shows that each time the data is split on provider 2 bill; one 
child node has a lower proportion and the other a higher proportion of  claimants receiving 
IMEs. The fitted tree function is used to model a nonlinear relationship between prmfider 
bill and the probability that a claim receives an IME as shown in Figure 3-3B. 

CART Example with Seven Nodes 
IME Proportion as a Function of Provider 2 Bill 

I . t 
! 

e 

Figure 3-3A 

CART Example with Seven Step Functions 
IME Proportion as a Function of Provider 2 Bill 

Figure 3-3B 

Tree models use categorical as well as numeric independent variables in modeling complex 
data. However, because the levels on categorical data may not be ordered, all possible two- 
way splits of  categorical variables must be considered before the data are partitioned. 

E n s e m b l e  M o d e l s - B o o s t i n g  
Ensemble models are composite tree models. A series of  trees is fit and each tree improves 
the overall fit of  the model. In the data mining literature the technique is often referred to as 
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"boosting" (Hastie et al 2001, Freidman, 2001). The method initially fits a small tree of say 5 
to 10 terminal nodes on a training dataset. Typically, the user specifies the number of 
terminal nodes, and every tree fit has the same number of terminal nodes. The error, or 
difference between the actual and fitted values, is computed and used in another round of 
fitting as a dependent variable. The error is also used in the computation of the weight in 
subsequent rounds of fitting, with records containing larger errors receiving higher weighting 
in the next round of estimation. 

One algorithm for computing the weight is described by Hastie et a119. Consider an ensemble 
of trees 1, 2, ...,M. The error for the m 'h tree measures the departure of the actual from the 
fitted value on the test data after the m 'h model has been fit. When the dependent variable is 
categorical, as it is in the fraud application in this paper, a common error measure used in 
boosting is: 

N 

~"w I(y, * F ( x ) )  
err = ' =' N (2) 

~ w  
I=1 

where N is the total number of records, w, is a weight (which is initialized to 1 /N in the first 
round of fitting), I is an indicator function equal to zero if the category is correctly predicted 
and one if the class assigned is incorrect, y, is the dependent variable, x is a matrix of 
predictors and Fm(x ) is the prediction for the i 'h record of the m 'h tree. 

Then, the coefficient alpha is a function of the weight: 

log(1 - e r r  m ~m = ) 
err ,  

and the new weight is: 
w,.m+ 1 =wm exp(aml(y, #Fm (x))) 

(3) 

The process is performed many times until no further statistical improvement in the fit is 
obtained. 

The specific boosting procedures implemented differ among different software products. 
For instance, TREENET (Freidman, 2001) uses stochastic gradient boosting. Stochastic 
gradient boosting incorporates a number of procedures which attempt to build a more 
robust model by controlling the tendency of large complex models to overfit the data. A key 
technique used is resampling. A new sample is randomly drawn from the training data each 
time a new tree is fit to the residuals from the prior round of model estimation. The 
goodness of fit of the model is assessed on data not included in the sample, the test data. 
Another procedure used by TREENET to control overfitfing is shrinkage or regulaffzation. A 
simple way to implement shrinkage is to apply a weight which is greater than zero and less 
than one to the contribution of each tree as it is added to the weighted average estimate. 
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Alternatively, the Insightful Miner Ensemble model employs a simpler implementation of 
boosting which applies non-stochastic boosting and uses all the training data in each round 
of fitting. 

The final estimate resulting from an ensemble approach will be a weighted average of  all the 
trees fit. Using a large collection of trees allows: 

• Many different variables to be used. Some of these would not be used in smaller 
models a'. 

• Many different models are used. The predictive modeling literature (Hasfie et al., 
2001, Francis, 2003a, 2003c) indicates that composites of multiple models perform 
better than the prediction of a single model -~1. 

• Different training and test records are used (with stochastic gradient boosting). This 
makes the procedure more robust to the influence of a few extreme observations. 

The method of fitting many (often 100 or more) small trees results in fitted curves which are 
almost smooth. Figures 3-4A and 3-4B display two nonlinear functions fit to total paid and 
IME variables by the TREENET ensemble model. 
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Ensemble Prediction of Total Paid 
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Figure 3-4B 

E n s e m b l e  M o d e l s - B a g g i n ~  
Bagging is an ensemble approach based on resampling or bootstrapping. Bagging is an 
acronym for "bootstrap aggregation" (Hastie et al., 2000). Bagging does not use the error 
from the prior round of fitting as a dependent variable or weight in subsequent rounds of 
fitting. Bagging uses recursive sampling of records in the data to fit many trees. For 
instance an analyst may decide to take a 50% of the data as a training set each time a model 
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is fit. Under bagging, 100 or more models may be fit, each one to a different sample. The 
trees fit are not necessarily small trees with 5 to 10 terminal nodes as with boosting and each 
tree may have a different number of  terminal nodes. By averaging the predictions of  a 
number of  bootstrap samples, bagging reduces the prediction variance. The implementation 
of  bagging used in this paper is known as Random Forest. In addition to using only a 
sample of  the data each time a tree model is fit, Random Forest also samples from the 
variables. For the analysis in this paper, one third of  the variables were sampled for each 
tree fit. 

Figures 3-5A displays an ensemble Random Forest tree fit to total paid losses and Figure 3- 
5B displays a tree fit to IME. 

Random Forest Prediction of Total Paid 
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Provider 2 Bi l l  

Figure 3-5 A 
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Random Forest Prediction of IME 
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Figure 3-5 B 

Naive Baves 
The Naive Bayes method is a relatively simple and easy to implement method. In our 
comparison, we xdew it as a benchmark data mining method. That is, we are interested in 
how more complex methods improve performance (or not) against an approach where 
simplifying assumptions are made in order to make the computations more tractable. We 
also use logistic regression models as a second benchmark. 

The Naive Bayes method was developed for categorical data. Specifically, both dependent 
and independent variables are categorical. Therefore, its application to fitting nonlinear 
functions will be illustrated only for the categorical target variable IME. In order to utilize 
numeric predictor variables it was necessary to derive new categorical variables based on 
discretizing, or "binning", the distribution of data for the numeric variables = . 

The key simplifying assumption of the Naive Bayes method is the assumption of 
independence. All predictor variables are assumed to act independendy in influencing the 
target variable. Interactions and correlations among the predictor variables are not 
considered: 

Bayes rule is used to estimate the probability that a record with given independent variable 
vector X = {x} is in category C = {c,} of the dependent variable. 

P(cj Ix,)=P(x, Icl)P(cl)/P(x,) (4a) 
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Because of the Naive Bayes assumption of conditional independence, the probability that an 
observation ~11 have a specific set of values for the independent variables is the product of 
the conditional probabilities of observing each of the values given category c, 

P(X I cs ) =I'-I P(x, I c, ) (4b) 
J 

The method is described in more detail in Kantardzic (2003). To illustrate the use of Naive 
Bayes in predicting discrete variables, the provider 2 bill data was binned into groups based 
on the quintiles of the distribution. Because about 50 percent of the daims have a value of 
zero for provider 2 bill, only four categories are created by the binning procedure. The new 
variable was used to estimate the IME targets. Figure 3-6 displays a bar plot of  the predicted 
probability of an IME for each of the groups. Figure 3-7 displays the fitted function. This 
function is a step function which changes value at each boundary of a provider 2 bill bin. 

Bayes Predicted Probability IME Requested vs. Quintile of Provider 2 Bill 

~ . t a c ~ x  - 

) . 1 ¢ c ~ x  - 

: ,xcc~x- 

Provider 2 Bill Ouintile 

Figure 3-6 
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Figure 3-7 

S E C T I O N  4. S O F T W A R E  F O R  M O D E L I N G  N O N - L I N E A R  D E P E N D E N C I E S  

N o n a d d i t i v i t v :  i n t e r a c t i o n s  

Conventional statistical models such as regression and logistic regression assume not  only 
linearity, but also additivity of  the predictor variables. Under  additivity, the effect of  each 
variable can be can be added to the model one at a time. When the exact form of  the 
relationship between a dependent and independent variable depends on the value of  one or 
more other variables, the effects are not  additive and one or more interactions exist. For 
instance, the relationship between provider 2 bill and IME may vary by type of  injury (i.e. 
traumatic injuries versus sprains and strains). Interactions are common in insurance data 
(Weisberg and Derrig, 1998, Francis, 2003c). 

With conventional linear statistical models, interactions are incorporated with multiplicative 
terms: 

Y = a + blX 1 + b2X2 + b3*XI*X 2 (s) 

In the case of  a two-way interaction, the interaction terms appear as products of  two 
variables. I f  one of  the two variables is categorical, the interaction terms allow the slope of  
the fitted line to vary with the levels of  the categorical variable. I f  both  variables are 
continuous the interaction is a bilinear interaction (Jicard and Turrisi, 2003) and the slope of  
one variable changes as a linear function of  the other variable. I f  both  variables are 
categorical the model is equivalent to a two factor A N O V A  with interactions. 
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The conventional approach to handling interactions has some limitations. 
• Only a limited number of types of interactions can be modeled easily. 

• If many predictor variables are included in the model, as is often the case in many 
predictive modeling applications, it can be tedious, if not impossible, to find all the 
significant interactions. Including all possible interactions in the model without 
regard to their significance likely results in a model which is over-parameterized. 

The tree-based data mining techniques used in this paper each have efficient methods for 
handling interactions. 

• Interactions are inherent in the method used by trees to partition data. Once data 
have been partitioned, different partitions can and typically do split on different 
variables and capture different interactions among the predictor variables. When the 
decision rules used by a tree to reach a terminal node involve more than one variable, 
in general, an interaction is being modeled. 

• Ensemble methods incorporate interactions because they are based on the tree 
approach. 

• Naive Bayes, because it assumes conditional independence of the predictors, ignores 
interactions. 

• Logistic regression incorporates interactions in the same way ordinary least squares 
regression does, with product interaction terms. In this fraud comparison study, no 
attempt was made to incorporate interaction terms as this procedure lacks an 
efficient way to search for the significant interactions. 

Multiple predictors 
Thus far, the discussion of the tree-based models concerned only simple one or two variable 
models. Extending the tree methods to incorporate many potential predictors is 
straightforward. For each tree fit, the method proceeds as follows: 

• For each variable determine the best two-way partition of the data. 
• Select the variable which produces the best improvement in the goodness of fit 

statistic to split the data at a particular node. 
• Repeat the process until no further improvement in fit can be obtained. 

Software for modeling nonlinear dependencies and testing the models 
Four software products were included in our fraud comparison: They are CART, 
TKEENET, 
S-PLUS (R) and Insightful M i n e r  23. 

CART and TREENET are Salford Systems stand-alone software products that each 
performs one technique. CART (Classification and Regression Trees) does tree analysis and 
TREENET applies stochastic gradient boosting using the method described by Freidman 
(2001). All the software tested produce SAS cod e  24 that can be used to implement the model 
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in a production stage. All the products contain a procedure for handling missing values 
using surrogate variables. At any given split point, CART and TREENET find the variable 
that is next in importance in influencing the target variable and they use this variable to 
replace the missing data. The specific statistic used to rank the variables and find the 
surrogates is described in Brieman et. al. (1993). Different versions of CART and 
TREENET handle different size databases. The number of levels of categorical variables 
affects how much memory is needed, as more levels necessitate more memory. The 128k 
version of each product was used for this analysis. With approximately 100,000 records in 
the training data, occasional memory problems were experienced and it became necessary to 
sample fewer records. One of the very useful features of the Salford Systems software is 
that all the products rank variables in importance :5. 

S-PLUS and R are comprehensive statistical languages used to perform a range of statistical 
analyses including exploratory data analysis, regression, ANOVA, generalized linear models, 
trees and neural networks. Both S-PLUS and R are derived from S, a statistical programming 
language originally developed at Bell Labs. The S progeny, S-PLUS and R, are popular 
among academic statisticians. S-PLUS is a commercial product sold by Insightful which has 
a true GUI interface that facilitates easier handling of some functions. Insightful also 
supplies technical support. The S-PLUS programming language is widely used by analysts 
who do serious number crunching. They find it more effective, especially for processes that 
are frequently repeated. R is free open source statistical software that is supported largely by 
academic statisticians and computer science faculty. It has only limited GUI functionality 
and the data mining functions must be accessed through the language. Most code written 
for S-PLUS will also work for R. One notable difference is that data must be converted to 
text mode to be read by R (a bit of  an inconvenience, but usually not an insurmountable 
one). Fox (2002) points out some of the differences between the two languages, where they 
exist. The S-PLUS procedures used here in the fraud comparison are found in both S-PLUS 
and R. However one ensemble tree method used, Random Forest, appears only to be 
available in R. The S-PLUS (R) procedures used were: the tree function for decision trees 
and the glm (generalized linear models) for logistic regression. S-PLUS (R) incorporates 
relatively crude methods for handling missing values. These include eliminating all records 
with a missing value on any variable, an approach which is generally not recommended 
(Francis 2005, AUsion 2002). S-PLUS also creates a new category for missing values (on 
categorical variables) and allows aborting the analysis if a missing value is found. In general, 
it is necessary to preprocess the data (at least the numeric variables where there is no missing 
value method 2~) to make a provision for the missing values. In the fraud comparison, a 
constant not in the range of the data was substituted into the variable and an indicator 
dummy variable for missing was created for each numeric variable with missing values. S- 
PLUS and R are generally not considered optimal choices for analyzing large databases. 
After experiencing some difficulty reading training data of about 100,000 records into S- 
PLUS, the database was reduced to contain only the variables used in the analysis. Once the 
data was read into S-PLUS, few problems were experienced. Another eccentricity is that the 
S-PLUS tree function can only handle 32 levels on any given categorical variable, so in the 
preprocessing the number of levels may need to be reduced 27. The R Random Forest 
function incorporates a procedure that can be used to rank variables in importance. The 
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procedure produces an impurity statistic which can be used to rank the variables. The 
impurity is based on the Gini index for classification applications and mean squared error for 
numeric dependent variables. The S-PLUS tree funcdon contains no built-in capability for 
ranking variables in importance. Therefore using the S-PLUS language, an algorithm was 
coded into S-PLUS to rank the variables. The method is described in Francis (2001) and 
Potts (2000). The procedure quantifies how much the error increases when a variable is 
removed from the model; the larger the increase in errors, the more important the variable. 

The Insightful Miner is a data mining s.uite that contains the most common data mining 
tools: regression, logistic regression, trees, ensemble trees, neural networks and Naive 
Bayes ~. As mentioned earlier, Insightful also markets S-PLUS. However, the Insightful 
Miner has been optimized for large databases and contains methods (Naive Bayes) which are 
not part of S-PLUS (R). The Naive Bayes, Tree and Ensemble Tree procedures from 
Insightful Miner are used here in the fraud comparison. The insightful Miner has several 
procedures for automatically handling missing values. These are 1) drop records with 
missing values, 2) randomly generate a value, 3) replace with the mean, 4) replace with a 
constant and 5) carry forward the last obseta-ation. Each missing value was replaced with a 
constant. In theory, the data mining methods used, such as trees, should be able to partition 
records coded for missing from the other obse~-ations with legitimate categorical or numeric 
values and separately estimate their impact on the target variable (possible after allowing for 
interactions with other variables). Server versions of the Insightful Miner generate C code 
that can be used in deploying the model, but the version used in this analysis did not have 
that capability. As mentioned above some preprocessing was necessary for the Naive Bayes 
procedure. Since Insightful Miner contains no procedure for ranking variables in 
importance, no rankings were provided for the Iminer methods. 

Validatine and Testin~ 
v 

It is common in data mining circles to partition the data into three groups (Hastie et al., 
2001). One group is used for "training", or fitting the model. Another group, referred to as 
the validation set, is used for "testing" the fit of the model and re-estimating parameters in 
order to obtain a better model. It is common for a number of iterations of testing and 
fitting to occur before a final model is selected. The third group of data, the "holdout" 
sample, is used to obtain an unbiased test of the model's accuracy. An alternative approach 
to a validation sample that is especially appropriate when the sample size used in the analysis 
is relatively modest, is cross-validation. Cross-validation is a method involving holding out a 
portion of the training sample, say one fifth of the data, fitting a model to the remainder of 
the data and testing it on the held out data. In the case of 5-fold cross validation, the 
process is repeated five times and the average goodness of fit of the five validations is 
computed. The various software products and procedures have different methods for 
validating the models. Some (Insightful Miner Tree) only allow cross-validation. Others 
(TREENET) use a validation sample. S-PLUS (R) allows either approach -~ to be used (so a 
test sample of about 20% of the training data was used as we had a relatively large database). 
Neither validation sample nor cross-validation was used with Naive Bayes, Logistic 
Regression or the Ensemble Tree. 
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In this analysis, approximately a third of the data, about 50,000 records, was used as the 
holdout sample for the final testing and comparison of the models. Two key statistics often 
used to compare models accuracy are sensitivity and spedficity. Sensitivity is the percentage of 
events (i.e., claims with an IME or referred to a special investigation unit) that were 
predicted to be events. The q~ecifid~y is the percentage of nonevents (in our applications 
claims believed to be legitimate) that were predicted to be nonevents. Both of these 
statistics should be high for a good model. Table 4-1, often referred to as a confusion 
matrix (Hasfie et. al., 2001), presents an example of the calculation. 

Sample Confusion Matrix: Sensitivity and Specificity 
True Class 

Prediction No Yes Row Total 
No 800 200 1,000 
Yes 200 400 600 
Column Total 1,000 600 

Correct Total Pement Correct 
Sensitivity 800 1,000 80% 
Specificity 400 600 67% 

Table 4-1 

In the example confusion matrix, 800 of 1,000 non-events are predicted to be non-events so 
the sensitivity is 80%. The specificity is 67% since 400 of 600 true positives are accurately 
predicted. 
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SECTION 5. SOFTWARE RANKINGS OF "IMPORTANT" VARIABLES IN 
T H E  DECISION TO INVESTIGATE: IME A N D  SIU 

The remainder of this paper is devoted to illustrating the usefulness and effectiveness of 
eight model/software combinations applied to our Example 2, the decision to investigate via 
IMEs or referral to SIU. We model the presence and proportion of favorable outcomes, of 
each investigative technique for the DCD subset of automobile bodily injury liability (third 
party) claims from 1995-1997 accident years. 3" We employ twenty-one potentially predicting 
variables of three types: (1) eleven typical claim variable fields informative of injury claims as 
reported, both categorical and numeric, (2) three external demographic variables that may 
play a role in capturing variations in investigative dairn types by geographic region of 
Massachusetts, and (3) seven internal "demographic" variables derived from informative 
pattern variables in the database. Variables of type 3 are commonly used in predictive 
modeling for marketing purposes. The variables used for these illustrations are by no means 
optimal choices for all three types of variables. Optimization can be approached by other 
procedures (beyond the scope of this paper) that maximize information and minimize cross 
correlations and by variable construction and selection by domain experts. 

The eight model/software combinations we xxtll use here are of two categories: six tree 
models, and two benchmark models (Naive Bayes and Logistic). They are: 

1) TREENET 5) Iminer Ensemble 
2) Iminer Tree 6) Random Forest 
3) SPLUS Tree 7) Naive Bayes 
4) CART 8) Logistic 

As described in Section 4, CART and TREENET are Salford Systems stand-alone software 
products that each performs one technique. CART (Classification and Regression Trees) 
does tree analysis, and TREENET applies stochastic gradient boosting to an ensemble of 
trees using the method described by Freidman (2001). The S-PLUS procedures used here in 
the fraud comparison are found in both S-PLUS and in a freeware version in R. These were: 
the tree function for decision trees, and the GLM (generalized linear models) for logistic 
regression. 

Insightful Miner is a data mining suite. The Naive Bayes, Tree and Ensemble Tree 
procedures, from Insightful Miner are used here in the fraud comparison. 

Model performance is covered in the next section, section 6, as we first cover the ranking of 
variables by "importance" in rdation to the target variables: the decision to perform an IME 
or a Special Investigation (SIU) and the favorable outcomes of each investigative technique. 
The training data of approximately 75,000 records was used in the ranking evaluations. 

Data mining modds are typically complex models where it is difficult to determine the 
relevance of predictors to the model result. One of the handy tasks that some of the data 
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mining software products perform is to rank the predictor variables by their importance to 
the model in predicting the dependent variable. Where the software did not supply a 
ranking, we omitted an importance ranking leaving five model/software determinations of 
importance for the twenty-one variables. Different procedures are used for different 
methods and different products. 

Two software products, CART and TREENET supply importance rankings. The 
procedures used are: 

CART: CART uses a goodness of fit measure, also referred to in the literature as an 
impurity measure, and computed over the entire tree, to determine a variable's importance. 
In this study the goodness of fit measure was the Gini Index defined below (Hastie, et al., 
p.271-272): 

i(t) = 1 - ~ p,  i--the categories of the dependent variable and p.is the probability of 
I 

class (6) 
Each split of  the tree lowers the overall value for the statistic. CART keeps track of the 
impurity improvement at each node for both the variable used in the split and for surrogate 
variables used as a replacement in the case of missing values. A consequence of this is that a 
variable not used for splitting may rank higher in importance than a variable that is. 

TREENET: Because it is composed of many small CART trees, TREENET uses the same 
method as CART to compute importance rankings. 

S-PLUS CR) does not supply an importance ranking, but the programming language can be 
used to program a procedure to compute rankings. A sensitix4ty value was computed for 
each variable in the model. The sensitivity is a measure of how much the predicted value's 
error increases when the variables are excluded from the model one at a time. However, 
instead of actually exduding variables and refitting the model, their values are fixed at a 
constant value. (See Francis, 2001 for a detailed recipe for applying the approach). The 
sensiti~fty statistic was used to rank the variables from the tree function. For the logistic 
regression, information about the variables contribution to sum of squared variation 
explained by the model was used to rank it. Like CART and TREENET, Random Forest 
uses an impurity measure (i.e., Gini Index) to produce an importance ranking. 

Insightful Miner does not supply importance rankings. Unlike S-PLUS (R), the analytical 
methods are not accessed through the language but through a series of icons placed on a 
palate. Thus, we were not able to custom program a ranking procedure for application with 
the Iminer's modeling methods. The resulting importance rankings were used in Tables 5- 
1A & 5-2A for the decisions to investigate and 5-1B and 5-2B for the favorable outcomes. 

Each of five model/software combination outputs allowed for the evaluation of the 
predicting variables in rank order of importance, when significant, together with a measure 
of the relative value of importance on a scale of zero (insignificant) to 100 (most significant 
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variable). Table 5-1A displays the importance results for predicting an IME using the five 
tree models while Table 5-1B displays those results for the remaining five model / sof tware  
combinations, including the benchmark Nai've Bayes and Logistic. The predicting variables 
are listed in the order o f  importance in the T R E E N E T  model,  where all variables are 
significant. The number  o f  significant variables found ranges from a low of  twelve variables 
(S-PLUS Tree) to all twenty one (TREENET) .  

Variable 

Provider 2 Bill 
Attorneys Per Zip 
Territo~" 
Health Insurance 
Injury Type 
Provider 1 Bill 
Provider 1 Type 
Report Lag 
Attorney 
Age 
Provider 2 Type 
Income Household/Zip 
Avg. Household Price/Zip . 
Providers per City 
Claimants per City 
Providers / Zip 
Households/Zip 
Treatment Lag 
Distance~lPl Zip to Clt Zip 
Emergency Treatment 
Policy. Type 

Software Ranking of Variables for IME Decision 
By Importance Rank and Value 
(1) 

T R E E N E T  

1 (100) 
2 (80) 
3 (71) 
4 (61) 
5 (50) 
6 (4"0 
7 (31) 
8 (31) 
9 (25) 
10 (23) 
11 (19) 
12 (18) 
13 (17) 
14 (17) 
15(16) 
16 (16) 
17 (16) 
18 (14) 
19 (13) 
20 (4) 
21 (3) 

(2) 
S Plus Tree 

2 (91) 
5 (26) 

(32) 
1 (lOO) 
6 (24) 
3 (51) 
9 (7) 
7 (16) 
12 (3) 

8 (9) 

11 (3) 
lo (4) 

(3) 
CART 

1 (100) 
13 (9) 
11 (11) 
3 (68) 
5 (47) 
4 (58) 

8 (18) 

17 (2) 

10 (13) 
15 (5) 
9 (15) 

18 (2) 
20 (0.1) 
7 (20) 
19 (2) 

(4) 
Random 

Forest 
1 (100) 
6 0 4) 
3 (59) 
2 (84) 
10 (18) 
4 (59) 
12 (15) 
8 (27) 
19 (5) 
17 (8) 
5 (42) 
11 (16) 

16 (9) 
7 (32) 
15 (13) 
13 (15) 
9 (24) 

14 (14) 
18 (6) 
20 (0) 

(s) 
Logisdc 

lO (1) 
11 (1) 

1 (100) 
2 (51) 

6 (8) 
13 (1) 
5 (18) 

3 (47) 
9 (2) 

12 (1) 
8 (2) 
7 (2) 

4 (24) 

Note: * represents insignificance of variable in the model. 
Table 5-1A 

The same set o f  model / sof tware  combinations was used with the same set o f  twenty-one 
predicting variables to predict the favorable outcome of  the IME. Table 5-1B shows the 
importance o f  each o f  the 21 predictors for modeling favorable outcomes o f  IMEs. 
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Variable 

Provider 2 Bill 
Attorneys Per Zip 
Territory 
Health Insurance 
Injury Type 
Provider I Bill 
Provider I Type 
Report Lag 
Attorney 
Age 
Proxdder 2 Type 
Income Household/Zip 
Avg. Household Price/Zip 
Providers per City 
Claimants per City 
Providers/Zip 
Households/Zip 
Treatment Lag 
Distance MP1 Zip to Clt Zip 
Emergency Treatment 
Vor~q Type 

Software Ranking of Variables for IME Favorable 
By Importance Rank and Value 
(1) (2) (3) 

TREENET S Plus Tree CART 

5 (64) 3 (22) 4 (37) 
11 (28) * 11 (6) 
2 (98) 2 (43) 12 (5) 
1 (100) 1 (100) 1 (100) 

(4) 
Random 
Forest 
5 (49) 
13 (28) 
1 (lOO) 
2 (71) 

(s) 
Logistic 

2 (13) 
11 (1) 
4 (9) 

1 (lOO) 
4 (76) 
7 (45) 
8 (38) 
6 (53) . 

12 (25) 
13 (24) 
10 (29) 
20 (7) . 
15 (16) 
19 (8) 
9 (36) 
17 (12) 
16 (15) 
14 (22) 
3 (78) . 
18 (9) 
21 (5) 

5 (10) 9 (15) 
4 (15) 2 (51) 
9 (16) 5 0 6) 
8(7) 18(o) 

* 19 (0) 
* 6 00 )  

11 (4) 17 (0) 
* lS  (0) 
* 8 (17) 

12 (3) 13 (2) 
13 (2) 7 (20) 
7 (7) 16 (0) 
14 (1) 10 (6) 
6 (8) 14 (1) 
10 (6) 3 (44) 

4 (67) 3 (13) 
3(70) * 
10 02) 5 (9) 
6 (45) 8 (6) 
18 (3) 7 (8) 
9 (33) * 
12 01) * 
8 (33) 10 g) 

15 (23) * 
16 (22) 13 (1) 
11 01) * 
7 (37) 9 (-'2) 
14 (28) 6 (8) 

17 (5) 12 (1) 

Note: * represents insignificance of variable in the model. 
Table 5-1B 

The  same set o f  five mode l / so f twa re  combinat ions  was used wi th  the same set o f  twenty- 
one  predict ing variables to predict  the use o f  spedal  invest igation or SIU. Tables 5-ZR and  
5-2B show the cor responding  ranking o f  variables by impor tance  for each o f  the five model  
combinat ions  and two target variables, decision and favorable. 
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Software Ranking of Variables for SIU Decision 
By Importance Rank and Value 

Variable 

Providers/Zip 
Provider 2 Type 
Territo9, 
Health lnsumnce 
Provider 1 Bill 
lnju~ Type 
Attorney 
Provider 1 Type 
Age 
Provider 2 Bill 
Report lag 
Average House Price 
Attorneys/zip 
Distance to Provider 

(1) 
TREENET 

1 (100) 
2 (98) 
3 (92) 
4 (64) 
5 (59) 
6 (52) 
7 (47) 
8 08) 
9 (31) 
10 (30) 
11 (28) 

Emergency, Treatment 
Income/Cap Household 
Claimants per City 
Treatment Lag 
Households/Zip 
Policy Type 
Providers per City 

12 (28) 
13 (22) 
14 (20) 
15 (19) 
16 (18) 
17 (17) 
18 (16) 
19 (16) 
20 (8) 
21 (6) 

(2) 
S Plus Tree 

1 (100) 
10 (3) 
5 (18) 
3 (33) 
2 (51) 
7(6) 

8 (4.5) 
4 (29) 

6 (8) 

11 (3) 

9 (34) 

12 (1) 

(3) 
CART 

8 (37) 
15 (34) 
3 (84) 
7 (52) 
2 (85) 
5 (59) 
17 (13) 
4 (69) 

1 (100) 
6 (54) 
15 (18) 
14 (20) 
19(4) 
13 (27) 
9 (4.5) 
12 (30) 
18 (12) 
16 (16) 

11 (30) 

(4) 
Random 

Forest 
3 (74) 
10 (30) 
1 (100) 
6 (50) 
2 (89) 
16 (5) 
18(4) 
s (81) 
17 (5) 
4 (74) 
8 (10) 

9 00) 
15 (18) 
19 (4) 
13 (21) 
11 (26) 
14 (20) 
12 (21) 
20 (1) 
7(44) 

(s) 
Logisuc 

6 (39) 

7G8) 
14 (2) 
2 (71) 
3 (63) 
1 (100) 

13 (5) 
11 (17) 

12 (7) 
4 (58) 
5 (49) 
9 (27) 

15 (2) 
8 (28) 

10 (22) 

Note: * represents insignificance of variable in the model. 
Table 5-2A 
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Variable 

Providers/Zip 
Provider 2 Type 
Territo~" 
Health Insurance 
Provider 1 Bill 
Injuq, Type 
Attorney 
Provider 1 Type 
Age 
Proxader 2 Bill 
Report lag 
Average House Price 
Attorneys/zip 
Distance to Provider 
Emergency Treatment 
Income/Cap Household 
Claimants per City 
Treatment Lag 
Households/Zip 
Policy T.vpe 
Providers per City 

Software Ranking of  Variables for SIU Favorable 
By Importance Rank and Value 
(6) (7) (8) 

TREENET $ Plus Tree CART 

10 (20) 10 (6) 12 (25) 
4 (41) * 7 (35) 
1 (100) 2 (94) 1 (100) 
13 (18) 6 (16) * 
6 (30) . 13 (4) . 15 (9) . 
3 (58) 5 (16) . 6 (39) 
14 (16) 12 (4) 9 (27) 
5 (40) 1 (100) 3 (50) . 
8 (22) * 17 (7) 
2 (66) 4 (18) 8 (32) 

. 7 (25) . 7 (14) 19 (2) . 
15 (16) * 13 (24) 
11 (19) 8 (14) 4 (45) 
16 (15) 9 (14) . 5 (39) 
21 (9) , 3 (72) 14 (17) 
17 (14) 11 (5) . 2 (61) 
12 (19) * 11 (25) 
19 (13) * 18 (4) 
18 (13) * 16 (9) . 
20 (10) * * 
9 (21) 14 (3) 10 (26) 

Note: * represents insignificance of variable in the model. 
Table 5-2B 

(9) 
Random 

Forest 
7 (24) 
9 08) 
1 (100) 
15 (10) 
5 (29) 
16 (8) 
18 (6) 
3 (33) 
13 (13) 
6 (26) 
2 (36) 

lO (17) 

14 (11) 
11 (16) 
12 (13) 
17 (6) 
8 (19) 

4 (31) 

(10) 
Logistic 

13 (2) 
5 (21) 
1 (100) 
7 (19) 
14 (1) 
3 (41) 
6 (20) 
2 (45) 
11(2) 
9 (3) 
12 (2) 

4 (25) 

15 (1) 

8 (5) 

lO (2) 

Clearly, in b o t h  instances o f  target variables the specific model  and software implementa t ion  
determines h o w  to unwind the cross correlations to extract the m o s t  in format ion  for 
predict ion purposes.  For  example, the distance be tween  the claimant 's  zip code and the first 
outpat ient  provider  (Distance) ranks low in impor tance  (19/21) in the T R E E N E T  
application for the I M E  decision target bu t  it is quite impor t an t  in the T R E E N E T  model  for 
favorable I M E  ou tcome  (3/21). Note ,  however ,  provider  2 bill is deemed highly impor tan t  
in all IME  n o n - b e n c h m a r k  applications. O n e  way to isolate the impor tance  o f  each 
predicting variable is to tally a summary  impor tance  score across models.  We  will use a 
score o f  (21-rank)*(importance),  wi th  all insignificant variables assigned zero impor tance ,  
summed  over  all relevant  model  combinat ions .  For  example, the variable proxqder 2 type 
would have a summary  score relating to the I M E  target across the five tree models  for a total 
impor tance  score o f  2,268. This scoring formula is t3"pical o f  the ad hoc me thods  c o m m o n  
to data mining  analytics. The  multiplicative form gives emphasis  to b o t h  the categorical rank 
and the impor tance  score in a dual m o n o t o n e  way. The  numer ic  value o f  the score is less 
impor tan t  than the final rankings o f  the variables. Tables 5-3A&B and 5-4A&B show the 
range o f  variable impor tance  summary  scores for all variables relative to the two targets, 
I M E  and SIU, respectively. The  ranks o f  the variables according to the two summary  scores 
are highly (Pearson) correlated as, for example,  the  decision summary  ranks and favorable 
summary ranks have correlat ion coefficients o f  0.65 for I M E  and 0.57 for SIU. The  tables 
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also indicate the variable category o f  original D C D  field (F), an internally derived variable 

(DV) and an external demographic variable (DM). The external demographic variables do 

not  seem to be very informative in the presence o f  the field and derived variables chosen. 

Important Variable Summarizadons for IME 
Tree Models Applied to Decision and Favorable Targets 

Total Decision Favorable 
Score Score Score 

Variable Total 
Variable type Score Rank Rank Rank 
Health Insurance F 17,206 1 2 1 

Provider 2 Bill F 10,820 2 1 4 

Territota? F 7,871 3 5 2 

Provider 1 Bill F 6,726 4 4 3 

Injury Type F 6,084 5 6 5 

Attorneys Per Zip DV 3,102 6 3 15 

Provider 2 Type F 2,873 7 8 9 

Report Lag DV 2,859 8 16 7 

Provider 1 Type F 2,531 9 10 6 

Distance MP1 Zip to Clt Zip DV 1,655 10 11 8 

Treatment Lag DV 1,331 11 17 16 
Emergency. Treatment F 1,216 12 7 10 

Claimants per Cit 3, DV 1,146 13 14 13 

Income Household/Zip DM 987 14 13 17 

Attorney F 971 15 9 19 

Households/Zip DM 957 16 19 11 
Age F 881 17 12 14 
Pro~ders/Zip DV 838 18 18 12 

Providers per City DV 719 19 20 18 

Avg. Household Price/Zip DM 262 20 15 20 

Policy. Type F 4 21 21 21 

Table 5-3 
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Important Variable Summarizations for SIU 
Tree Models Applied to Decision and Favorable Targets 

Variable Total 
Variable Type Score 
Territory F 15,242 
Provider 1 Type F 9,965 
Providers/Zip DV 6,676 
Provider I Bill F 6,240 
Provider 2 Bill F 6,030 
Injury Type F 5,845 
Provider 2 Type F 4,753 
Health Insurance F 4,262 
Emergency Treatment F 3,039 
Attorney F 2,705 
Report lag DV 2,642 
Providers per City. DV 2,275 
Attorneys/zip DV 2,183 
Distance to Provider DV 2,109 
Income/Cap Household DM 2,091 
Claimants per City DV 1,142 
Households/Zip DM 1,061 
Age F 830 
Treatment Lag DV 706 
Average House Price DM 648 
Policy Type F 19 

Total 
Score 

Decision Favorable 
Score Score 

Rank Rank Rank 

1 2 1 

2 4 2 
3 1 13 
4 3 10 
5 5 4 

6 7 3 
7 8 6 
8 6 15 
9 13 5 

10 9 14 
11 10 9 
12 12 10 
13 14 8 
14 11 14 
15 15 7 
16 18 16 
17 16 18 
18 19 17 
19 17 20 
20 20 9 
21 21 21 

Table 5-4 

A d d i t i o n a l  Analyse~ 
Mos t  software allow for additional diagnostic tools that focus on  the importance o f  
individual variable levels in the predictive model .  We focus on  two such features: partial 
dependency plots and pruning o f  trees. Both  features are designed to illustrate the 
contr ibution o f  each kvel o f  categorical variable and each interval o f  continuous variables 
created by the cut points. We illustrate the additional analyses using the Random Forest  and 
S-PLUS's tree software. 

Part ia l  D e p e n d e n c e  

The  partial dependence  plot  is a useful way to visualize the effect  o f  the values o f  a specific 
variable on a dependent  variable when  a complex model ing m e t h o d  such as Random Fores t  
is used. The partial dependence  plot  is a graph o f  the marginal effect o f  a variable on the 
class probability. For  a classification application (in Random Forest),  the partial plot  uses 
the logit or log o f  the odds ratio (the odds o f  being in the target category versus its 
compliment)  rather than the actual probability. 
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K 

f(x) = log p, (x) - ~ log(p, ) (7) 
/ = 1  

Figures 5-1 and 5-2 show the partial dependence plot for the two IME targets for the most 
important variable in Table 5-4, territory. 

Random Forest: IME Requested 

Partial Dependence  on Territory 
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Random Forest: IME Favorable 
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Partial  D e p e n d e n c e  on Terr i tory  
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Territory 

Figure 5-2 

Both bar graphs have a distinctive right shift in the size of the partial dependency on the 
territon, variable. This result is not surprising given that Massachusetts automobile 
territories are set every two years based upon the calculation of a single 5-coverage pure 
premium index for each of 350 towns. Towns are then grouped into 16 nearly homogenous 
territories with the index generally rising from territory 1 (lowest) to territory 16 (highest). 
Territories 17-26 are 10 individual parts of Boston that vary widely in this calculated pure 
premium index (Conger, 1987). Figure 5-3 shows a bar graph of the pure premium indices 
for the 26 territories used in this analysis for comparison purposes. 

Massachusetts Rating Territories 

Five Coverage Pure Premiums 
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Figure 5-4 displays the proportion of dairns with an IME requested (not marginal effects) by 
territory, superimposed on the pure premium territory levels. In contrast to the similarity, of 
the marginal importance of the IME territory variable to the territory pure premiums, the 
proportions of claims with IME requested shown in Figure 5-4 show more uniformity across 
territories, indicating a real dependence on other important variables. 
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Massachusetts Rating Territories 

Five Coverage Pure Premium vs IME Request Ratios 
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Prunin~ the Trees 
Simple trees 3~ that extend to a large number of terminal nodes are difficult to assess the flail 
importance of individual variable levels because (1) later node splits may or may not be 
statistically significant depending on the software algorithms employed and (2) terminal 
nodes on the order of fifty plus may obscure the precise contribution of each variable level 
despite the importance value described above for the overall variable. 

The full tree produced by the software can be pruned back to the "best" tree with a pre- 
determined number of nodes. For example, Figure 5-5 shows a best 10 node pruned tree 
from S-PLUS. It begins with the health insurance variable as the "root" node (Y/N to the 
left and U to the fight) 32 and proceeds to make general node splits based only on the 
provider 2 bill amount. The universe of records is then classified by terminal node IME 
requested ratios ranging from 0.019 to 0.170. A similar pruned tree can be produced for the 
other three targets. 
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S-PLUS TREE: IME Requested 
Best Ten N o d e  Pruned Tree 

h~nllh into Jmnr.~'h 
I / 

mn2 hi 1<4Zr,,4 mn~) hJ<4R.q 

L i- j o.-, L 
mp2 hil l  3010.5 mp2 hill 11~qF~1.5 mp? hill 15.o,6.5 

0.019 0.100 0.100 

1 
0.060 0.072 0.150 0.090 0.170 0.120 

Figure S-S 

We next turn to consideration of  model performance as a whole in section 6 with an 
interpretation of  the models and variables relative to the problem at hand (example 2) in 
Section 7. 

S E C T I O N  6. R O C  C U R V E S  A N D  L I F T  F O R  S O F T W A R E :  T R E E S ,  N A I V E  
BAYES A N D  L O G I S T I C  M O D E L S  

The sensitivity and specificity measures discussed in Section 4 are dependent on the choice 
of  a cutoff value for the prediction. Many models score each record with a value between 
zero and one, though some other scoring scale can be used. This score is sometimes treated 
like a probability., although the concept is much closer in spirit to a fuzzy set measurement 
function 33. A common cutoff point is .5 and records with scores greater than .5 are classified 
as events and records below that value are classified as non-events 3~. However, other cutoff 
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values can be used. Thus, if a cutoff lower than 50% were selected, more events would be 
accurately predicted and fewer non-events would be accurately predicted. 

Because the accuracy of  a prediction depends on the selected cutoff point, techniques for 
assessing the accuracy of  models over a range of  cutoff points have been developed. A 
common procedure for visualizing the accuracy of  models used for classification is the 
receiver operating characteristic (ROC) curve 3~. This is a curve of  sensitivity versus 
specificity (or more accurately 1.0 minus the specificity) over a range of  cutoff points. It 
illustrates graplfically the sensitivity or true positive rate compared to 1- specificity or false 
alarm rate. When the cutoff point is very high (i.e. 1.0) all claims are classified as legitimate. 
The spedficity is 100% (1.0 minus the specificity is 0), but the sensitivity is 0%. As the 
cutoff point is lowered, the sensitivity increases, but so does 1.0 minus the specificity. 
Ultimately a point is reached where all claims are predicted to be events, and the specificity 
declines to zero (1.0 - specificity = 1.0). The baseline ROC curve (where no model is used) 
can be thought of  as a straight line from the origin with a 45-degree angle. If  the model's 
sensitivity increases faster than the specificity decreases, the curve "lifts" or rises above a 45- 
degree line quickly. The higher the "lift" or "gain"; the more accurate the model 3c'. ROC 
curves have been used in prior studies of  insurance claims and fraud detection regression 
models (Derrig and \Veisberg, 1998 and Viaene et al., 2002). The use of  ROC curves in 
building models as well as comparing performance of  competing models is a well established 
procedure (Flach et al (2003)). 

A statistic that proxddes a one-dimensional summary of  the predictive accuracy of  a m o d d  as 
measured by an ROC curve is the area under the ROC curve (AUROC). In general, 
AUROC values can distinguish good models from bad models but may not be able to 
distinguish among good models 0Vlarzban, 2004). A curve that rises quickly has more area 
under the ROC curve. A model with an area of  .50 demonstrates no predictive ability, while 
a model with an area of  1.0 is a perfect predictor (on the sample the test is performed on). 
For this analysis, SPSS was used to produce the ROC cuin-es and area under the ROC 
curves. SPSS generates cutoff values midway between each unique score in the data and 
uses the trapezoidal rule to compute the AUROC. A non-parametric method was used to 
compute the standard error of  the AUROC. The formula for the standard error 37 is: 

I A(I - A) + (n+ - l)(Ql - A 2 ) + (n_ - I)(Q2 - A 2 ) 
SE(A) (8) 

n+N 

Where n+ is the number of  events, n. is the number of  non-events, N is the sample size 

A is the AUROC and scores are denoted as x 

= = j x [n+>/ -  n+> z r/+= / /./r/+2 E x  t'/- • , + + + ] 

38  C a s u a l t y  A c t u a r i a l  S o c i e t y  Forum, W i n t e r  2 0 0 6  
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1 
o , :  7 g +  Xx + : jxt  ,,: +o ,, + ,  :, 

Tables 6-1A&B show the values of  AUROC for each of  eight model/software combinations 
in predicting a decision to investigate with an IME (6-1A) and an SIU (6-1B). for the 
Massachusetts auto bodily injury liability claims that comprise the holdout sample, about 
50,000 claims. Upper and lower bounds for the "true" AUROC value are shown as the 
AUROC value + two standard deviation determined by equation (7). TREENET,  Random 
Forest both do well with AUROC values about 0.7, significantly better than the logistic 
model. The Iminer models (Tree, Ensemble and Nai've Bayes) generally have AUROC 
values significantly bdow the top two performers, with two (Tree and Ensemble) 
significantly below the Logistic and the Iminer Naive Bayes benchmarks. CART also scores 
at or below the benchmarks and significantly below T R E E N E T  and Random Forest. On the 
other hand, S-PLUS (R) tree scores at or somewhat above the benchmarks. 

Area Under the ROC Curve - IME Decis ion 
CART 
Tree 

0.669 
0.661 
0.678 

S-PLUS 
Tree 

AUROC 
Lower Bound 
Upper Bound 

Iminer 
Ensemble Random 

Forest 
AUR()C 0.649 703 
Lower Bound 0.641 695 
Upper Bound 0.657 711 

Iminer Tree 

Table 6-1A 

T R E E N E T  
0.688 0.629 0.701 
0.680 0.620 0.693 
0.696 0.637 0.708 

Iminer 
Naive  
Bayes 
0.676 
0.669 
0.684 

Logistic 
0.677 
0.669 
0.685 
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Area Under the ROC Curve - IME Favorable 
CART 
Tree 

AUROC 
Lower Bound 
Upper Bound 

AUROC 
Lower Bound 
Upper Bound 

0.651 
0.641 
0.662 

Iminer 
Ensemble 

0.654 
0.643 
0.665 

S-PLUS 
Tree Iminer Tree TREENET 
0.664 0.591 0.683 
0.653 0.578 0.673 
0.675 0.603 0.693 

Random 
Forest 
0.692 
0.681 
0.702 

Iminer 
Na/ve  
Bayes 
0.670 
0.660 
0.681 

Table 6-1B 

Logistic 
0.677 
0.667, 
0.687 

Tables 6-2A&B show the values o f  A U R O C  for the mode l / so f tware  combinat ions  tested 
for the SIU dependen t  variable. We first note  that, in general, the model  predict ions as 
measured by A U R O C  are significantly lower than for IME across all eight mode l / so f tware  
combinations.  This reduction in A U R O C  values may be a reflection o f  the explanatory 
variables used in the analysis; i.e., they may be more  informative about  d a l m  build-up, for 
which IME is the principal investigative tool, than about  claim fraud, for which SIU is the 
principal investigative tool. 

Area Under the ROC Curve - SIU Decis ion 

AUROC 
Lower Bound 
Upper Bound 

AUROC 
Lower Bound 
Upper Bound 

CART S-PLUS 
Tree Tree 

0.607 
0.598 
0.617 

Iminer 
Ensemble 

0.539 
0.530 
0.548 

Iminer Tree TREENET 
0.616 0.565 0.643 
0.607 0.555 0.634 
0.626 0.575 0.652 

Random 
Forest 

Iminer 
Naive  
Bayes 
0.615 0.677 

Logistic 
0.612 

0.668 0.605 0.603 
0.686 0.625 0.621 

Table 6-2A 
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Area Under the ROC Curve - SIU Favorable 
CART 
Tree  

AUROC 0.598 
Lower Bound 0.584 
Upper Bound 0.612 

I m i n e r  
E n s e m b l e  

AUROC 0.57.5 
Lower Bound 0.530 
Upper Bound 0.548 

S-PLUS 
Tree  I m i n e r  Tree  T R E E N E T  
0.616 0.547 0.678 
0.607 0.555 0.667 
0.626 0.575 0.689 

R a n d o m  
Forest  
0.645 

Iminer 
Naive 
B a y e s  
0.607 

Logmic 
0.610 

0.631 0.593 0.596 
0.658 0.625 0.623 

Table 6-2B 

T R E E N E T  and Random Fores t  per form significandy better than all o ther  moda l / so f tware  
combinat ions on the favorable target variables. Both  per form significantly better than the 
Logistic. Iminer  Tree and Ensemble  again do poorly on  the I M E  and SIU Favorable holdout  
samples. 

Figures 6-1 to 6-4 show the ROC curves for T R E E N E T  compared  to the Logistic for bo th  
IME and SIU 38. As we can see, a simple display o f  the ROC curves may not  be sufficient to 
distinguish per formance  o f  the models  as well as the A U R O C  values. 
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L o g i s t i c  R O C  C u r v e  - I M E  
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Finally, Table  6-3 displays the  relative pe r fo rmance  o f  the  m o d e l / s o f t w a r e  combina t ions  
according to A U R O C  values and  their ranks. Wi th  Nai've Bayes and  Logistic as the  
benchmarks ,  T R E E N E T ,  R a n d o m  Forest  and  SPLUS Tree  do better  than  the b e n c h m a r k s  
while C A R T  Tree,  In'finer Tree,  and  Iminer  E n s e m b l e  do worse.  

Ranking of Methods By AUROC - Decision 
Method SIU AUROC 

Random Forest 0.645 
TREENET 0.643 
S-PLUS Tree 0.616 
Iminer NaPce Bayes 0.615 
Logistic 0.612 
CART Tree 0.607 
1miner Tree 0.565 
Iminer Ensemble 0.539 

;IU Rank IME  Rank I M E  
AUROC 

1 0.703 
2 0.701 
3 0.688 

4 5 0.676 
4 0.677 
6 0.669 
8 0.629 
7 0.649 

Table 6-3A 
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1 2 0.683 
2 1 0.692 
3 5 0.664 
4 3 0.677 

4 0.670 
6 7 0.651 

6 0.654 
8 0.591 

Ranldng of Methods By AUROC - Favorable 
Method SIU AUROC SIU Rank IME Rank IME 

AUROC 
TREENET 0.678 
Random Forest 0.645 
S-PLUS Tree 0.61 
Logistic 0.61C 
Iminer Naive Bayes 0.607 
CART Tree 0.598 
Iminer Ensemble 0.575 
Iminer Tree 0.547 

Table 6-3B 

Finally, Figures 6-5A&B show the relative performance in a graphic. Procedures would work 
equally on both  IME and SIU if  they lie on the 45 degree line. To the extent that 
performance is better on the IME targets, procedures would be above the diagonal. Better 
performance is shown by positions farther to the fight and closer to the top of  the square. 
This graphic dearly shows that T R E E N E T  and Random Forest procedures do better than 
the other tree procedures and the benchmarks. 

Plot of AUROC for SIU vs. IME Decision 

0.65 
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Figure 6-5A 

Plot of AUROC for SIU vs. IME Favorable 
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Figure 6-5B 

S E C T I O N  7. C O N C L U S I O N  

Insurance data often involves both large volumes of information and nonlinearity of variable 
relationships. A range of data manipulation techniques have been developed by computer 
scientists and statisticians that are now categorized as data mining, techniques with principal 
advantages being precisely the efficient handling of large data sets and the fitting of non- 
linear functions to that data. In this paper we illustrate the use of software implementations 
of CART and other tree-based methods, together with benchmark procedures of Naive 
Bayes and Logistic regression. Those eight model/software combinations are applied to data 
arising in the Detail Claim Database (DCD) of auto injury liability claims in Massachusetts. 
Twenty-one variables were selected to use in prediction models using the DCD and external 
demographic variables. Four target categorical variables were selected to model: The decision 
to request an independent medical examination (IME) or a special investigation (SIU) and 
the favorable outcome of each investigation. The two decision targets are the prime claim 
handling techniques that insurers can use to reduce the asymmetry of information between 
the daimant and the insurer in order to distinguish valid claims from those involving 
buildup, exaggerated injuries or treatment, or outright fraud. 

Eight modeling software results were compared for effectiveness of modeling the targets 
based on a standard procedure, the area under the receiver operating characteristic curve 
(AUROC). We find that the methods all provide some predictive value or lift from the 
predicting variables we make available, with significant differences among the eight methods 
and four targets. Seven modeling outcomes are compared to logistic regression as in Viaene 
et al. (2002) but the results here are different. They show some software/methods can 
improve on the predictive ability of the logistic model. TREENET, Random Forest and 
SPLUS Tree do better than the benchmark Naive Bayes and Logistic methods, while CART 
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tree, Iminer tree, and Iminer Ensemble do worse. That some modal/software combinations 
do better than the logistic model may be due to the relative size and richness of this data set 
and/or the t3,pes of independent variables at hand compared to the Viaene et al. data. 

We show how "important" each variable is within each software/model tested and note the 
type of data that are important for this analysis. In general, variables taken directly from 
DCD fields and variables derived as demographic type variables based on DCD rid& do 
better than variables derived from external demographic data. Variables relating to the injury 
and medical treatment dominate the highly important variables while the presence of an 
attorney, age of the daimant, and policy type, personal or commercial, are less important in 
making the decision to im, oke these two investigative techniques. 

No general conclusions about auto injury claims can be drawn from the exercise presented 
here except that these modeling techniques should have a place in the actuary's repertory of 
data manipulation techniques. Technological advancements in database assembly and 
management, especially the availability of text mining for the production of variables, 
together with the easy access to computer power, will make the use of these techniques 
mandatory for analyzing the nonlinearity of insurance data. As for our part in advancing the 
use of data mining in actuarial work, we will continue to test various software products that 
implement these and other data mining techniques (e.g. support vector machines). 
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2 They also found that augmenting the categorized red flag variables with some other claim data (e.g. age, 
report lag) improved the lift as measured by AUROC across all methods but the logistic model still did as 
well as the other methods (Viaene et al., 2002, Table 6, p.400-40 l). 
3 A wider set of data mining techniques is considered in Derrig, R.A. and L A. Francis, Comparison of 
Methods and Software Modeling Nonlinear Dependencies: A Fraud Application, Congress of Actuaries, 
Paris, June 2006 
4 See section 2 for an overview of the database and descriptions of the variables used for this paper. 
5 The relative importance of the independent variables in modeling the dependent variable within these 
methods are analogous to statistical significance or p-values in ordinary regression models. 
6 See, for example, 2004 Discussion Paper Program, Applying and Evaluating Generalized Linear Models, 
May 16-19, 2004, Casualty Actuarial Society. 
7 This was the text used by the Casualty Actuarial Society for the exam on applied statistics during the 
19g0s 
8 Claims that involve only third party subrogation of personal injury protection (no fault) claims but no 
separate indemnity payment or no separate claims handling on claims without payment are not reported to 
DCD. 
9 Combined payments under PIP and Medical Payments are reported to DCD. 
J0 With a large holdout sample, we are able to estimate tight confidence intervals for testing model results 
in section 6 using the area under the ROC curve measure. 
H This fact is a matter of Massachusetts law which does not permit IMEs by one type of physician, say an 
orthopedist, when another physician type is treating, say a chiropractor. This situation may differ in other 
jurisdictions. 
12 Because expert bill review systems became pervasive by 2003, reaching 100% in some cases, DCD 
redefined the reported MA to encompass only peer reviews by physicians or nurses for claims reported 
after July l, 2003.. 
J3 The standard Massachusetts auto policy has a cooperation clause for IME both in the first party PIP 
coverage and in the third party BI liability coverage. 
14 The IRC also includes an index bureau check as one of the claims handling activities 
~5 Prior studies of Massachusetts Auto Injury claim data for fraud content included Weisberg and Derrig 
(1998, Suspicion Regression Models) and Derrig and Weisberg (1998, Claim Screening with Scoring 
Models). 
~6 See Section 5 for the importance of the provider 2 bill variable in the decision to investigate claims for 
fraud (SIU) and/or buildup (IME). 
~7 There are Tree Software models that may split nodes into three or more branches. SPSS classification 
trees is an example of such software. 
is For binary categorical data assumed to be generated from a binomial distribution, entropy and deviance 
are essentially the same measure. Deviance is a generalized linear model concept and is closely related to 
the log of the likelihood function. 
19 Hastie et al., p. 301 Note that Hastie et al. describe other error and weight functions. [endnote] 
.~0 Note that the ensemble tree methods employ all 21 variables in the models. See tables 5-1 and 5-2. 
2~ The ROC curve results in Section 6 show that TREENET generally provides the best prediction models 
for the Massachusetts data. 
22 The numeric variables were grouped into five bins or into quintiles in this instance. 
~,3 The software product MARS also was used to rank variables in importance. MARS implements 
multivariate adaptive regression splines and is described in Francis (2003). 
24 The SAS code is generally relatively easy to edit if some other language is used to implement the model 
25 See Section 5 for the importance of variables in our study. 
26 S-PLUS would convert the numeric variable into a categorical variable with a level for every nmnerie 
value that is in the training data, including missing data, but the result would have far too many categories 
to be feasible. 
27 Generally by collapsing sparsely populated categories into an "all other" category 
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2s It also contains some dimension reduction methods such as clustering and Principal Components which 
are also contained in S-PLUS. 
29 In general, some programming is required to apply either approach in S-PLUS (R) 
30 The data set is described in more detail in Section 2 above. 
31 Pruning is not feasible or necessary for the example tree methods such as TREENET or Random 
TREENET. 
32 The S-PLUS tree graph does not print out the values of categorical variables, although it displays the 
values of the numeric variables. For categorical variables letters are assigned and displayed instead of  the 
category values. 
33 See Ostaszewski (1993) or Derrig and Ostaszewski (1999). 
34 One way of  dealing with values equal to the cutoffpoint is to consider such observations as one-half in 
the event group and one-half in the non-event group 
35 A ROC curve is one example of a so-called "gains" chart. 
36 ROC curves were developed extensively for use in medical diagnosis testing in the 1970s and 1980s 
(Zhou et al. 2004 and more recently in weather forecasting (Marzban, 2004) and (Stephenson, 2000). 
37 The details of the formula were supplied by SPSS. 
38 All twenty ROC curves are available from the authors. 
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Louise A. Francis, FCAS, MAAA 

Abstract 
Motivation. One of the newest areas of data mining is text mining. Text mining is used to extract 
information from free form text data such as that in claim description fields. This paper introduces the 
methods used to do text naming and applies the method to a simple example. 
Method. The paper will describe the methods used to parse data into vectors of terms for analysis. It 
will then show how information extracted from the vectorized data can be used to create new features 
for use in analysis. Focus will be placed on the method of clustering for finding patterns in 
unstructured text information. 
Results. The paper shows how feature variables can be created from unstructured text information and 
used for prediction 
Conclusions. Text mining has significant potential to expand the amount of information that is 
available to insurance analysts for exploring and modeling data 
Availability. Free software that can be used to perform some of the analyses describes in this paper is 
described in the appendix. 
Keywords. Predictive modeling, data mining, text mining, statistical analysis 

1. INTRODUCTION 

Tradit ional  statistical analysis is pe r fo rmed  on  data arrayed in spreadshee t  format.  Tha t  

is, the  data is arrayed in two d imens iona l  matr ices  where  each row represents  a record and  

each c o l u m n  represents  a feature or  variable. Table  1-1 provides  a sample  o f  such  a 

database. In  Table 1-1, each row represents  a claimant.  The  features are the variables claim 

number ,  accident  date, claim status,  a t torney involvement ,  paid loss,  ou t s t and ing  loss, 

incurred loss,  incurred allocated loss ad jus tmen t  expenses  (ALAE) and  claimant  state. As  

seen in Table 1-1, the data conta in  two key types o f  variables, quanti tat ive or  numer ic  

variables such  as incurred losses and incurred expenses  and nomina l  or  categorical variables 

such  as claim status and  state. E ach  numer i c  value denotes  a specific quanti ty or  value for 

that  variable. E a c h  value or category, w h e t h e r  numer ic  or  a lphanumeric ,  o f  a categorical 

variable embeds  a coding that  m a p s  the  value to one  and only one  category. 1 This  data is 

s t ructured data. Structured databases result  f rom intent ional  des ign where  the variables have  

proscr ibed defini t ions and  the values o f  the  variables have  proscr ibed meaning.  

I Note that categorical variables can contain numeric codes as well as string values as in the example. Each 
code for the categorical variables maps to a value. That is injury '01' may denote a back strain and iniury '02' 
may denote a broken wrist for an injury type variable. 
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Sample Structured Data 

Claim Accident Incurred Incurred 
No Date Status Attorne Paid Outstanding ALAE Loss State 

199816 01/08/1999 C Yes 37,284 0 11,021 37,284 NY 
199843 01/16/1999 C No 0 0 0 0 NY 
200229 12/30/2002 O No 195 0 3 195 CA 
199868 09/19/1998 C Yes 99,852 0 31,807 99,852 NJ 
200327 05/19/2003 C No 286 0 72 286 PA 

Table 1-1 

Another kind of data that is also present in corporate databases is unstructured data. This 

data typically has the appearance of free form text data. Examples of text data are claim 

description fidds in claim files, the content of e-mails, underwriters written evaluation of 

prospective policyholders contained in underveriting files and responses to open ended 

survey questions on customer satisfaction survey. It has been estimated that 85% of 

corporate data is of  the unstructured tTpe CRobb, 2004). As Mani Shabrang of Dow 

Chemical says, "We are drowning in information but starved for "knowledge" (Robb, 2004). 

~¢~hen data is unstructured there is no obvious procedure for converting the data which is 

composed of sequences of characters that vary in length and content in apparently random 

ways, to information that can be used for analysis and prediction. Manual intervention on 

the part of  human beings may be able to convert some unstructured data to structured 

features which can be used to perform statistical analysis. Derrig et al. (1994) provide an 

example where claims experts rexdewed claims files and scored the claims on a number of 

indicators of suspicion of fraud. Because of the effort required and difficulty of interpreting 

the unstructured text data, it is typicaUy ignored for doing analysis. If information could be 

automatically extracted from unstructured data, a significant new source of data could 

become available to corporations. 

In the field of data mining, text mining has been attracting increased interest in the 

insurance industry. Text mining refers to a collection of methods used to find patterns and 

create intelligence from unstructured text data. 

In this paper, the key methods used in text mining will be presented. A simple 

application to a free form daim description field will be used to illustrate the text mining 

procedures. 

1.1 Research Context 

\Vhile text mining is relatively new, software for analyzing text data has been available 
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since the late 1990s from the major statistical software vendors such as SAS and SPSS. One 

of  the most common uses of  text mining procedures is in search engine technology. A user 

types in a word or phrase, which may include misspellings, and the search engine searches 

through a vast repository of  documents to find the most relevant documents. Other 

applications include: 

• Analysis of  survey data 

o Text mining is used as an automated approach to coding information 

from open ended survey questions. 

• Spam identification 

o The title line and contents of  e-mails are analyzed to identify which are 

spare and which are legitimate (Hastie et aL, 2001). 

• Surveillance 

o It is believed that a project referred to as E N C O D A  monitors telephone, 

internet and other communications for evidence of  terrorism (Wikipedia, 

2005). 

• Call center routing 

o Calls to help desks and technical support lines are routed based on verbal 

answers to questions. 

• Public health early warning 

o Global Public Health Intelligence Network (GPHIN) monitors global 

newspaper articles and other media to provide an early warning of  

potential public health threats including disease epidemics such as SARS, 

and chemical or radioactive threats. (Blench, 2005). 

• Alias identification 

o The aliases of  health care and other providers are analyzed to detect over 

billing and fraud. For instance, a bill may have been submitted by John 

Smith, J. Smith and Smith, John. The same approaches may be used to 

identify abuse by daimants, wh~re given claimants submit numerous 

insurance claims under different aliases. 

Text mining has evolved sufficiently that web sites are devoted to it and courses focusing 

solely on text mining are appearing in graduate school curricula. Text mining also occurs 
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frequently as a topic at data mining conferences. While the interest in text mining is 

rdatively recent, \greiss eta]. (2005) point out that text analysis dates back to at least the late 

1950s where "automatic abstracting" of text information was studied. In the 1970s and 

1980s, artificial intelligence researchers were interested in natural language processing. Many 

of these early efforts did not yield commercially useful results, so interest in text analysis 

declined. However, in the 1990s new developments in text mining tools led to a reawakened 

interest in the field. 

In property and casualty insurance, literature on text mining is sparse. In 2002 

Ellingsworth described the application of text mining to fraud identification (Ellingsworth, 

2002). Kolyshkina (2005) described the use of text mining to create features for identifying 

serious claims. 

This paper attempts to fill a gap in the actuarial literature on text mining. It will show 

that text mining combines string manipulation functions that are available in many modern 

programming languages, with commonly available statistical analysis methods. 

Many of the statistical procedures described in this paper are described in the statistical 

and actuarial literature (Hastie et al. 2001, Kaufman, 1990) but have not heretofore been 

applied to unstructured text data. Derrig et al. (1994) and Francis (2001, 2003), Hayword 

(2002) have described analytical methods that can be applied to large insurance databases 

and are used in data mining. Berry and Linoff, (1997), Kaufman and Rousseeuw (1990) and 

Hastie et aZ (2001) described some of the dimension reduction techniques that are utilized in 

text mining. The description of the methods used to derive information from terms in text 

data WIU make use of these dimension reduction techniques. 

Much of the text mining literature focuses on search engine and other information 

retrieval method. This paper focuses, instead, on using text mining for prediction of 

important business outcomes. It WIU therefore not cover some of the key approaches that 

are applied primarily in information retrieval. 

1.2 Objective 

The objective of this paper is to introduce actuaries and other insurance professionals to 

the methods and applications of text mining. The paper shows that many of the procedures 

are straightforward to understand and utilize. Many of the procedures have been known in 

the statistics discipline for decades. The two methods described are k-means and 

hierarchical clustering. 
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1.3 Outline 

The remainder of  the paper proceeds as follows. Section 2 ~ discuss the data used in 

the exposition of  the text mining methods. Section 2.1 presents the f~tst phase of  text 

mining: parsing and other string manipulations used to create terms for further analysis. 

Section 2.2 presents the methods used to create features or variables from the terms 

extracted in the first phase of  the process. These features can then be used to perform 

additional analysis. The concept of  dimension reduction is discussed in section 2.2.1. The 

two key methods of  dimension reduction used in this paper, k-means dustering and 

hierarchical dustering are discussed in sections 2.2.2 and 2.2.3 respectively. Further 

considerations such as the number of  clusters to retain and cluster naming to provide 

understanding of  the features created by clustering are described in sections 2.2.4 and 2.2.5. 

Section 2.2.6 presents two simple examples of  using variables derived from text mining for 

prediction. Results of  the analysis are summarized and discussed in Section 3. Condusions 

are presented in Section 4. 

While many details of  how text mining is performed ~ he presented, some analysts will 

want to acquire software specific for text mining. A discussion of  text mining software is 

presented in the Appendix. 

2. BACKGROUND AND METHODS 

Text mining can be viewed as having two distinct phases: term extraction and feature 

creation. Term extraction makes hea W use of  string manipulation functions but also applies 

techniques from computational linguistics. Actual content is a result of  the feature creation 

process. Feature creation applies unsupervised learning methods that reduce many potential 

features into a much smaller number of  final variables. These features are then potentially 

useable as dependent or predictor variables in an analysis. 

The example employed to illustrate text mining uses simulated data from a general 

liability daims file-'. The data contains one free form text field: injury description. In this 

simple example, there is no injury or body part code in the data and the only information 

about the nature of  the injury is the free form text description. The injury description is a 

very brief description, generally containing only a few words. The data is representative of  

that which might be available from a small self insured exposure. While many claims 

2 The claim descripnon field is very similar to actual claim descriptions in actual data from small self insurance 
programs. Other data, such as ultimate losses have been simulated, but are based on relationships actually 
observed in data. 
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databases contain larger acddent and claim description fields, this data serves as a simple 

example of  how text mining works. An example of  the sample text data is shown in Table 

2-1. 

Sample Claim File Text Data 

INJURY DESCRIPTION 
BROKEN ANKLE AND SPKAINED WRIST 
FOOT CONTUSION 
UNKNOWN 
MOUTH AND KNEE 
HE.AD, ARM L~CE1L~.TIONS 
FOOT PUNCTURE 
LOWER BACK AND LEGS 
BACK STILMN 
KNEE 

Table 2-1 

The sample data also contains other insurance related information: incurred losses, 

incurred loss adjustment expenses, accident year, status (open/dosed) and whether or not an 

attorney is involved in the claim. There are approximately 2,000 records in the data. The 

values in the data are simulated, but are based on relationships observed in actual data for 

this line of  business. 

2.1 Term Extraction 

During term extraction, character text is first parsed into words. The term extraction 

process also strips away words that convey no meaning such as "a" or "the". An additional 

part of  the process involves finding words that belong together such as "John Smith". 

When data is parsed, string functions are used to extract the words from the character 

string composing the text data. To do this, spaces, commas and other delimiters must be 

used to separate words. A simple example of  parsing one record using Microsoft Excel 

string functions with blank spaces as delimiters is illustrated in Table 2.1-1. The total length 

of  the character string is first determined using the "length" function. Then, the "find" 

function of  Excel is used to find the first occurrence of  a blank. This is shown in column (3). 

Next, the substring function is used to extract the first word from the text, using the position 

of  the first blank (column (4)). The remainder of  the term, after removing the first word is 

then extracted, again using the substring function (columns (5) and (6)). The process 

continues until every word has been extracted. The "iserr" function can be used to 

determine when no more blanks can be found in the field. The words extracted are shown 

in the highlighted area of  the table. 
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E x a m p l e  of Pars ing  Claim Descr ip t ion  

Full 

BROKE 
SPR~ 

ANKLE 

Re 

Re 

AND SP 

Re 

SPPJ 

Re 

Tab le  2.1-1 

The result of  parsing is data organizcd in spreadshcct format, i.e., a rectangttlar matrix 

containing indicator variables for the words extracted from the text field. For each word 

found in any record in the data a variable is created. The variable carries a value of  1 if a 

given record contains the word and a 0 otherwi,~e. 
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INJURY 
DESCRIPTION BROKEN ANKLE 

BROKEN 1 1 
ANKLE AND 
SPRAINED 
WRIST 
FOOT 0 0 
CONTUSION 
UNKNOWN 0 0 
NECK AND 0 0 
BACK STRAIN 

Example  of  Te rms  Created 

w 
R F N 

AND SPRAINED I O CONTU UNKNOWN E BACK STRAIN 
S 0 -SION C 
T T K 

I I I 0 0 0 0 0 0 

0 0 0 1 1 0 0 0 0 

0 0 0 0 0 I 0 0 0 
I 0 0 0 0 0 I I I 

Table  2.1-2 

The example above displays data that could be created from an injury description text 

field. Each claim description is treated as a "bag of  words" (Weiss eta/., 2005). The matrices 

resulting from parsing text data are typically sparse. That is, for most of  the terms, most of  

the records contain a zero for that term and only a few records have a one. 

The example shown is a relatively simple one. The claim description field is relativdy 

short and contains no delimiters other than a blank space. However, other delimiters such 

as the comma and period occur frequently and need to be identified also. Some delimiters, 

such as a single apostrophe (as in I'll) and period (as in etc.) may be part of  the words; so 

the complex rules for finding and using such delimiters must be coded into the program that 

parses the data. 

Certain words occur very frequently in text data. Examples include "the" and "a". These 

words are referred to as "stopwords". The stopwords are words removed from the term 

collection because they have no meaningful content. By creating a list of  such stopwords and 

eliminating 

them, the number ofindicator variables created is reduced. Table 2.1-3 displays a sample 

of  stopwords used in this analysis. Many of these stopwords do not appear in the claim 

description data, but appear frequently in text data. 
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Stopwords 
A 

And 

Able 

About 
Above 
Across 
Aforementioned 
After 
Again 

Table 2.1-3 

Table 2.1-4 below presents a collection of words obtained from parsing the injury 

description data into single words and removing stop words. 

Parsed Words 
HEAD 
LACERATION 
KNEE 
UNKNOWN 
L 
LEG 
ARM 
R 
FOOT 
HAND 
ANKLE 
HIP 
SHOULDER 
LEFT 
CUT 
WRIST 
NECK 

INJURY 
NONE 
BRUISED 
TWISTED 
LOWER 
BROKEN 
FRACTURE 
FINGER 
INJURIES 
LIP 
RIGHT 
KNEES 
FACE 
FX 
SIDE 
PAIN 
INJURED 

Table 2.1-4 

Other issues affecting the usefulness of the data must be dealt with. One issue is multiple 

versions and spellings of words. Table 2.1-4 illustrates this. Both L and LEFT are used to 

denote left, R and RIGHT are used to denote fight and the database has both the singular 

and plural versions of KNEE. In addition, it can be seen from the table that certain 

"words" stand for the same injury. For example, as a result of  abbreviations used, FX and 

FRACTURE as well as BROKEN all denote the same injury The process referred to as 
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stemming is used to substitute one word, referred to as a stem (because in the example of 

knee and knees, both words have the same stem) for all versions of the term. 

Once the words have been parsed, stopwords removed and stemming performed, the 

sparse matrix of term indicators is ready for the next step: feature creation. During the 

feature creation step, words and sequences of words are classified into groups that contain 

similar information. 

In some text mining applications, especially those that attempt to understand the content 

contained in large documents, other analysis such as grammatical analysis is performed 

before progressing to the feature creation step. Such analysis will not be described here as it 

is not relevant to the example in this paper. 

2.2 F ea ture  C r e a t i o n  

Term extraction is the first step in deriving meaning or content from free form text. The 

next step is feature creation. Thus far, each line of text has been parsed into a "bag of 

words". The data can be represented as a rectangular array that has indicator variables for 

each term in the injury description. When we analyze the terms more carefully, we may find 

that some words such as "back strain" and "neck strain" denote similar injuries and are 

unlike "head trauma". Thus, occurrence or non-occurrence of specific words may tell us 

something useful about the nature and severity of the injury. 

One of the most common techniques used to group records with similar values on the 

terms together is -known as duster analysis. Cluster analysis is an example of dimension 

reduction. Before describing duster analysis, the concepts of dimension and of dimension 

reduction are introduced. 

2.2.1 Dimension Reduction 

Jacoby (1991) describes dimensions as "the number of separate and interesting sources 

of variation among objects ''3 There are two views as to sources of  variation when dealing 

with a database organized in rectangular spreadsheet format: columns (or variables) and 

rows (or records). Table 2.2.1-1 displays the two views of dimensionality for a sample 

claims database. The arrow pointing to the right indicates that each column of data can be 

viewed as a separate dimension. The downward pointing arrow indicates that each row 

3Jacoby. p. 27 
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or claimant also can be viewed as a dimension. 

T w o  W a y s  of  V iewing  Dimens ion  in a D a t a b a s e  

! ~ - A I ~ I . ~ I  DATEOFLOSS} STA"~ ' !  INCURP~DLOSSl 

i i  19.o< o9,1, , 
t ;- • . . . . . . .  1 ~ 8 0 0 4  ~ . . . .  09/29/g7 

~..;VARIABLES I 
~o7.aC 

c! 0.{20 
- ' - - - - -c~  o.13o 
. . . . .  } . . . . . . . .  

r-'-i~l 199a0o~ 69/29~7 . . . .  ~ ........ 8,a-4716 L._ ___ C~ 0.00 
1o,o   

lO, lO~7 c! o.oo 
1998oo8! ~o/24~7 c i o.oo 

w 1998oo91 . l o ~ g ~ r - ~  2 1 , m ~  
i 1998oloi lo~9~7 c! o.oo 

£_7_ 1998015{ 11/04/97 i Ct 0.00 ' 

Table 2.2.1-1 

Each column contains information about the claimants and is a potential variable in an 

actuarial or modeling analysis. Each column is a separate dimension. Often in a large 

database containing hundreds or even thousands of  variables, many variables are highly 

correlated with each other and contain redundant information. The large number of  

variables can be reduced to a smaller number of  components or factors using a technique 

such as factor analysis. For instance, Figure 2.2-1 displays three of  the dimensions related to 

financial information in the sample claims data; ultimate incurred loss, ultimate allocated loss 

adjustment expense (ALAE) and ultimate incurred loss plus ALAE. It can be seen from the 

graph that the three dimensions are correlated, which one would expect, particularly when 

one of  the variables is the sum of the other two. It is common in actuarial analysis 

(particularly with small databases) to work with only one of  these variables; uhknate loss and 

ALAE. Thus the number of"dimensions" used in the analysis is reduced to one. 
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Scatterplot of Correlated Dimensions (Variables) 

1 0 0 -  

8 0 -  

o 

t t l  
6 0 -  

.~o 4 0 -  

Figure 2.2-1 

Each record in the data is also a dimension. When data is aggregated by accident year and 

development age in order to construct a loss development triangle, row-wise dimension 

reduction is taking place. The number of  dimensions is reduced from the total number of  

records in the database to the number of  cells in the loss development triangle. 

2.2.2 K-means Clustering 

In statistics, a formal procedure known as clustering is often used to perform dimension 

reduction along the rows. The objective of  the technique is to group like records together. 

A common application of  this method in property and casualty insurance is territory 

development. Policyholders are grouped into territories according to where they live and the 

territories are used in ratemaking. Both geographic information such as longitude and 

latitude and demographic information such as population density can be used for the 

territorial clustering. Cluster analysis is an unsupervised learning method; there is no 

dependent variable. Rather, records with similar values on the variables used for clustering 

are grouped together. In the territory example, policyholders living in high population 

density zip codes in the southeastern part of  a state might be grouped together into one 

territory. In text mining, clustering is used to group together records with similar words or 

words with similar meanings. 
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Many different techniques for clustering exist. One of the most common methods is k- 

means clustering. When using k-means clustering the analyst specifies the number of clusters 

he/she wants (a discussion of how to make this choice is deferred until later). A statistical 

measure of dissimilarity between records is used to separate records that are the most 

dissimilar and group together records that are the most similar. Different measures of 

dissimilarity are used for numeric data as opposed to categorical data. Text data is generally 

viewed as categorical. However, when terms are coded as binary indicator variables, it is 

possible to apply the techniques that are used on numeric data. Moreover, text mining is 

commonly applied to documents containing large collections of words, such as academic 

papers and e-mail messages. Some words appear multiple times in such text data and the 

number of times a word appears may be recorded and used for text analysis instead of a 

binary indicator variable. Dissimilarity measures for both numeric and categorical data will 

be presented. 

One of the most common measures of dissimilarity for numeric variables is Euclidian 

distance. The formula for Euclidian distance is shown below in equation 2.1. The Euclidian 

distance between two records is based on the variable-wise squared deviation between the 

values of the variables of the two records. 

m 

d,,=(~,,(x,.k-x, j.k)=)l/2 i , j=records,  m = n u m b e r o f  variables (2.1) 
k=l  

The second dissimilarity measure Manhattan distance is shown in equation 2.2. This 

measure uses absolute deviations rather than squared deviations. 

(9 9) 
d,.j = ~-~] x,. k - x,.k J i, j = records, m = number of  variables - ' -  

k=l  

Table 2.2.2-1 displays a calculation of both measures using two sample records. The first 

record has injury "broken ankle and sprained wrist" and the second record has injury 

"contusion to back of leg". Binary variables indicating the presence or absence of words 

after the parsing of text are the variables used in the measure. 
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Variable 

Euclidian and Manhattan Distance Between Two Records 
Record I Record 2 Squared 

BROKEN ANKLE AND CONTUSION TO 
SPRAINED V~RIST BACK OF LEG Difference 

Absolute 

Difference 

Back 0.000000 1.000000 1 1 
Contusion 0.000000 1.000000 1 1 
Head 0.000000 0.000000 0 0 
Knee 0.000000 0.000000 0 0 
Strain 0.000000 0.000000 0 0 
Unknown 0.000000 0.000000 0 0 
Laceration 0.000000 0.000000 0 0 
Leg 0.000000 1.000000 1 1 
Arm 0.000000 0.000000 0 0 
Foot 0.000000 0.000000 0 0 
Hand 0.000000 0.000000 0 0 
Ankle 1.000000 0.000000 1 1 
Shoulder 0.000000 0.000000 0 0 
Hip 0.000000 0.000000 0 0 
Left 0.000000 0.000000 0 0 
Neck 0.000000 0.000000 0 0 
Wrist 1.000000 0.000000 1 1 
Cut 0.000000 0.000000 0 0 
Fracture 1.000000 0.000000 1 1 
Surgery 0.000000 0.000000 0 0 
Finger 0.000000 0.000000 0 0 
None 0.000000 0.000000 0 0 
Broken 1.000000 0.000000 1 1 
Trauma 0.000000 0.000000 0 0 
Lower 0.000000 0.000000 0 0 
Ri~lht 0.000000 0.000000 0 0 

Total 7 7 
Distance Measure 2.65 7 

Table 2.2.2-1 

Dissimilarity measures specific for categorical variables also exist: Table 2.2.2-2 

displays the notation for comparing two records on all their binary categorical variables. 

For instance, the sum of all variables for which both records have a one is shown as "a" 

on the table. The counts of variables on which the two records agree are denoted "a" and 

"d". The counts of variables on which the two records disagree are denoted "b" and "c". 
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Crosstabulation of Counts for Two Records Binary Variables 

Record I 

1 0 

1 a b 

!~ 0 c d 

Table 2.2.2-2 

Simple matching is a dissimilarity measure that compares the total number of  non 

matches to the total number of variables as shown in equation 2.3. 

b + c (2.3) 
di'j a + b + c + d i,j records 

Another dissimilarity measure, shown in equation 2.4, is Rogers and Tanimoto. This 

measure gives more weight to disagreements than to agreements. In the example above 

(Table 2.2.2-1) where there are 7 disagreements and 19 agreements, the Rogers and 

Tanimoto dissimilarity measure is 0.43. 

2(b + c) i,j = records (2.4) 
di j  a + d + 2(b + c) 

Instead of using a dissimilarity measure, some dustering procedures use a measure of 

similarity. A common measure of similarity is the cosine measure. The cosine statistic is a 

measure of covariance, but it is applied to records rather than to variables. 

(2.5) 
m 

y~ (x,,, , x,,k ) 
cosine,,j  = *=J i,j = records, m = n u m b e r  of  variables 

(x, , , - )  ( X , f )  

Rather than use binary indicator variables in the cosine calculation, this statistic typically 

uses a value referred to as the tf-idf statistic as x,, in equation 2.5. The tf-idf (term frequency 

- inverse document frequency) statistic is based on the frequency of a given term in the 
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record. The static is normalized by being dix4ded by the total number  of  times term appears 

in all records 4. 

n i 
t f  = y , n  k n i = number  of  t imes term i occurs, 

k (2.6) 

tf- idf = t._f_f Df is the document  frequency 
Df 

There are several ways to count the document frequency (denoted Dfin equation 2.6) or 

the frequency of  a term in a database (Wikipedia, 2005). A common method counts the 

number  of  records 5 in which the term appears divided by the total number  of  records. 

Sometimes the log of  the inverse of  the document frequency is used in the calculation. This 

statistic is more appropriate for applications involving larger collections of  words, i.e., where 

each record is an entire document. The tf-idf method was not used in the analysis in this 

paper. 

K-means dustering using Euclidian distance was applied to the matrix of  extracted terms 

from the injury descriptions. Each cluster that is created from a k-means clustering 

procedure has a center referred to as the centroid. The centroid is the vector of  average 

values for the cluster for each variable entering the clustering procedure. In the case of  

binary variables coded as either zero or one, the centroid is the duster 's  frequency for each 

term or the proportion of  all records in the cluster which contain the term. For example, the 

clustering procedure was used to create two classes or clusters. The clusters' frequencies for 

each term are displayed in the Table 2.2.2-3. From the table, it can be seen that none of  the 

claims in Cluster 1 contain the word "back" and all of  the claims in Cluster 2 contain the 

word. In addition, Cluster 1 contains a much higher percentage of  claims with the words 

"contusion" "un  -lmown" and "laceration" while Cluster 2 contains a much higher proport ion 

of  records with the word "strain". Thus, when k-means clustering is used to create two 

clusters, a duster  with a high representation of  claims with back injuries is partitioned from 

claims with other injuries. 

4 In much of the text mining literature, the term "document" is a synonym for "record", because the unit of 
observation is often an entire document, such as a newswire article 
s Frequently when this statistic is used, each record is a document. See footnote 4 above. 
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Frequencies for Two Clusters 

Cluster 
Number back contusion head knee strain unknown laceration 

1 0.00 0.15 0.12 0.13 0.05 0.13 0.17 
2 1.00 0.04 0.11 0.05 0.40 0.00 0.00 

Table 2.2.2-3 

Frequency statistics for three clusters are displayed in Table 2.2.2-4. Again, one group, 

Cluster 2, is a cluster with 100% back injuries. Cluster 3 contains a high proportion of  claims 

with -knee injuries, while contusions and unknown are the most common injuries in Cluster 

1. As will be discussed in more detail in Section 2-5, examining cluster statistics such as 

those in Tables 2.2.2-3 and 2.2.2-4 assist the analyst in assigning labels to cluster. 

Frequencies for Three Clusters 

Cluster 
Number back contusion head knee strain unknown laceration 

1 0.00 0.17 0.14 0.04 0.05 0.16 0.19 
2 1.00 0.04 0. t l  0.05 0.40 0.00 0.00 
3 0.00 0.07 0.04 0.48 0.09 0.00 0.05 

Table 2.2.2-4 

Viewing the statistics for three clusters versus two dusters, it is clear that there is 

refinement in the definition of  the injury dusters when progressing from two to three 

dusters. Determining how many clusters to use is something of  an art. I f  too many clusters 

are estimated, the model is over parameterized and is fitting noise as well as pattern. I f  too 

few dusters are created, the data are not adequately modeled. This topic is discussed in 

more detail in Section 2.2.4. 

2.2.3 Hierarchical Clustering 

Though less common than k-means dustering, hierarchical clustering is another common 

method applied in text mining to cluster terms in order to discover content (in this case, to 

create features that can be used for further analysis). Hierarchical clustering is a stepwise 

procedure that begins with many clusters and sequentially combines clusters in close 

proximity to each other until no further clusters can be created. Typically, hierarchical 

clustering begins with every obserx ation as a single duster and terminates with one cluster 
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containing all the records? Hierarchical clustering procedures produce dendograms or tree- 

like visualizations of  the stages of  clustering which assist the analyst in determining the final 

number of  clusters to select. Hierarchical clustering can be applied to either records or 

variables. Because the visualization of  the results is easier to display, the results of  clustering 

by variable are displayed in Figure 2.2-2. The figure displays the tree like figure or 

dendogram that results from clustering ten of  the injury terms. For this dendogram, 

Euclidian distance was used. 

The dendogram displays the cluster groupings created at each step of  the clustering 

process. The left-hand side of  the dendogram under the label CASE lists the variables and 

their numbers (based on order in the database). The left-most portion of  the dendogram is a 

line representing a terminal branch of  the tree. There is one branch for each variable, as each 

variable is its own cluster at the beginning of  the clustering process. Moving to the right, the 

branch for arm and the branch for foot are connected, indicating that a new cluster is ' 

created in step one by combing arm and foot. Forming a cluster composed of  these two 

variables indicates that the distances between arm and foot are smaller than the distances 

between any other possible combination of  two variables. Next on the dendogram, the 

branch for leg is connected to the branch containing arm and foot, indicating that at the 

second step, a new cluster is created by combining leg with the arm-foot cluster. The 

stepwise process of  creating new clusters by combining together smaller clusters at each step 

continues until there is only one cluster containing all the variables. This is shown at the 

fight side of the dendogram where a branch containing back and strain are connected to a 

branch containing all other variables (i.e., at the next to last step the two group duster 

partitions the terms "back" and/or  "strain" from all other injuries). 

Table 2.2.3-1 presents a matrix of  proximity (i.e. distance) measures which underlie the 

dendogram clusters. These are the distances used to cluster the variables. For example, the 

distances between arm and foot, which are clustered together in the first step is 6.708. This 

compares to the distance of  8.888 between arm and back, which only cluster together in the 

last step, where all variables are combined into one cluster. 

6 Hierarchical clustering ~an also proceed in the opposite direction, from one cluster with all the data to many 
clusters 
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CASE 

Label Num 

arm 9 

foot I0 

leg 8 

laceration 7 

contusion 2 

head 3 

knee 4 

unknown 6 
¢~ 

back 1 

Dendogram for i0 Terms 
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Figure 2.2-2 

Proximity Matrix 

Matrix File Input 

Case Back Contusion Head Knee Strain Unknown Laceration Levi Arm Foot 
back 0.000 10.000 9.327 9.539 7.071 9.747 9.747 9.055 8.888 8.602 

'contusion 10.000 0 . 0 0 0  7.937 8.062 9 .274  9.220 9.110 8 .246  8.185 7.211 

head 9.327 7.937 0 .000 9.056 9 .000  8.944 8.124 8 .185  8.000 7.810 

knee 9.539 8.062 9 .055  . 0 0 0  8 .307  8.832 8.602 8 .307  8.000 7.681 
strain 7.071 9.274 9 .000 8.307 0 .000  8.775 8.775 7 .746  7.810 7.616 

unknown 9.747 9.220 8.944 8.832 8 .775  0.000 8.718 8.185 8.000 7.550 
laceration 9.747 9.110 8.124 8.602 8 .775 8.718 0.000 7 ,550  8.000 7.141 

leg 9.055 8.246 8.185 8.307 7 .746 8.185 7.550 0 .000  7.000 6.926 

arm 8.888 8.185 8.000 8000 7 .810  8.000 8.000 7 .000  0.000 6.708 

foot 8.602 7.211 7 .610  7.681 7 .616  7.550 7.141 6.928 6.708 0.000 

Table 2.2.3-1 

The hierarchical clustering of the terms in the data provides insight into word 

combinations in the data that tend to occur together and or tend to be associated with 

similar injuries. However, for the purpose of classifying records into injury, categories, it is 

more typical to duster case-wise rather than variable-wise. Thus, hierarchical clustering was 

also used to cluster the injury description records. 
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2.2.4 Number  of  Clusters 

Determination of the number of clusters to retain is often something of art. One 

approach involves viewing the cluster centers to determine if the clusters from a given 

grouping appear meaningful. Another procedure for determining the number of clusters 

involves comparing the performance of different clustering schemes on an auxiliary target 

variable of interest. Here, ultimate incurred losses and ALAE is one variable of  interest that 

may help in the decision. Figure 2.2-3 displays how the mean ultimate loss and ALAE varies 

by cluster for four and eight cluster groupings. 

A forward stepwise regression was run to determine the best cluster size. Stepwise 

regression is an automated procedure for selecting variables in a regression model. Forward 

stepwise regression begins with a null model or model that has no predictors. The 

procedure then tests all possible independent variables that can be used on a one-variable 

regression model. The variable which improves the goodness of fit measure the most is the 

variable entered in step one. In step two, all 2-variable regressions are fit using the variable 

selected in step one and the variables not selected in step one. The variable which produces 

the largest improvement in goodness of fit is then selected and entered into the model. The 

process continues until no further significant improvement in fit can be obtained. 
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Average Ult imate  Loss and A L A E  by Cluster for 4 and 8 Clusters 

• i.~oo- 

o 
© 

1 2 

Cluster Number 

~q 
I 
( 

( 

, ~ ; I . . . .  
s 6 ? 

Ckl~ttr NL, mber 

Figure 2.2-3 

A common goodness of fit measure used in stepwise regression is the F-statistic: 

F - MS Regression _- 

MS Residual 

where p=number of variables, 
N=number  of observations, 
SS=sum of squared deviation 

SS,,,, I p 
S S r .  , . / ( N  - p - 1) 

(2.7) 

The F statistic is the ratio of mean squared error of the regression (the amount of 

variance explained by the regression) divided by the mean square error of the residual (the 

amount of unexplained variation). When used in stepwise regression, after the first variable 

is entered, the change in F statistic is used. The user typically selects a significance level such 

as 5% that is used as a threshold for entering variables into the regression. 

When using stepwise regression to select the number of dusters to use, the possible 

predictor variables in the regression are the clusters created by 2 category cluster, 3 category 

cluster, etc, Since the objective is to find the optimal number of clusters, the regression is 

run on each of the category cluster variables and the category cluster with the best fit is 

selected. For the purposes of this paper, only the first step of the stepwise regression was 
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performed, i.e., only the one variable supplying the best fit of  all the one variable regressions 

was retained7 Stepwise regression provides a quick and efficient method for determining 

the number of  dusters. The stepwise procedure determined that a regression with seven 

groups produced the best fit. Regression also ascertained that k-means clustering produced 

clusters that were better predictors of  ultimate losses and ALAE than hierarchical clustering. 

A more formal approach is to use a statistical test to determine the optimum number of  

clusters. One such test is the BIC (Swartz Bayesian Information Criterion) (Chen and 

Gopalakrishnan, 2004). The statistic is used to compare two models at a time. The statistic 

chooses between a simpler model and a more complex model by comparing their adjusted or 

penalized likelihood function. A penalty, related to the number of  variables in the model is 

applied in order to control for overfitting. When applying the statistic, it is common to treat 

the data as if  from a multivariate normal distribution: 

X - N(la, ]g) (2.8) 

where X is a vector of  random variables 1 a is the centroid (mean) of  the data and 

]g is the variance-covariance matrix 

s Because of the small size of the data only one injury code variable was created. 
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The formula for the BIC statistic is: 

BIC = log L(X, M) - 3, I p*log(N) (2.9) 

where Iog(L(X,M)) is the logliklihood function for a model, p is the number of  
parameters, N the number of  records, ,g is a penalty parameter, often equal to 1 

For a cluster analysis, each cluster has a likelihood function based on the duster's 

centroid and variance-covariance matrix. For instance, in comparing a one-group cluster to 

a two-group cluster, a likelihood based on the overall centroid of  all the data and the overall 

variance-covariance matrix is compared to a two group likelihood based on the centroids 

and variance-covariance matrices of  the two clusters. The second model has twice as many 

parameters as the first. I f  the BIC increases significantly using two clusters compared to one 

cluster, a two group dustering is preferred. 

Most of  the software used in this analysis did not implement the BIC statistic to 

determine cluster size. However, one procedure, the SPSS two-step dustering procedure 

intended for categorical and mixed categorical-numeric data did implement the procedure. 

A two-step dustering procedure breaks the clustering process into two steps 1) create a 

dissimilarity matrix which may be done differently for categorical as opposed to numeric 

data and 2) use the dissimilarity matrix to cluster the data. When this procedure was applied, 

it produced a dustering with three groups. The two-step clusters had a significant 

correlation with ultimate losses and ALAE, though this correlation was not as high as that 

for the best k-means cluster. 

The end result of  clustering of  the claim description field in the data is to introduce one 

new feature or variable. This variable is a categorical variable indicating to which of  the 

cluster groupings or classes a record is assigned. This new variable can be xdewed as an 

injury type coding. In the application in section 2.2.6, the seven cluster grouping will be 

used, but other choices could have been made. Note that while only one duster grouping of  

the injury descriptions was selected, there may be situations where the analyst prefers to use 

multiple new features derived from the clustering procedure, each with a different number 

of  groups. 

2.2.5 Naming the Clusters 

For each duster, it can be informative to determine which word or words are important 

in defining the cluster. Examining the frequencies of  each word for each of  the clusters can 

be used to gain insight into the dusters. Figure 2.2-4 displays the frequencies of  the words 

"back" and "strain" for the seven-group cluster. The graph is a population pyramid. The 
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graph displays visually with bars a crosstabulation of back versus strain by duster group. 

That is, a bar displays the count for a zero or one on back, versus zero or one on strain for 

each of the seven injury cluster groupings. The bars appearing under one for back, one for 

strain or one for both back and strain denote injury groups that contain the words back, 

strain or both. From the graph it can be seen that Cluster 4 has a relatively high count of  

both the words back and strain and Cluster 6 has a high representation of the word back, but 

not strain. 

Table 2.2.5-1 presents frequencies of key words for the seven-group duster. The table 

displays the proportion of records for each cluster which contain the words. Words that 

have high representation within a cluster have been highlighted. From thetable it can be 

seen that Cluster 1 has a high representation of the word unknown. Cluster 2 has a high 

representation of the word contusion. Cluster 4 has a high representation of the words back 

and strain. Cluster 7 also has a high representation of the word strain, but the word back has 

a low representation. A conclusion is that Cluster 4 appears to be back strains while Cluster 

7 is largely other strains, and includes a high representation of the word leg. 
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Frequencies of the Words Back and Strain by Cluster 
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Figure 2.2-4 

Cluster 

Frequency of Terms by Cluster 

Back Contusion head knee strain unknown !~_ceration Le~ 
1 
2 
3 
4 
5 
6 
7 

0.000 0.000 0.000 0.095 0.000 ~. 0.277711 ~ 0.000 0.000 
0.022 :i:.i:000~'~i ~ 0.261 0.239 0.000 0.000 0.022 0.087 
0.000 0.000 0.162 0.054 0.000 0.000 ~,~!~000~i~q 0.135 

~;~.0007~: 0.000 0.000 0.043 .;.~A.O00:!~ 0.000 0.000 0.000 
0.000 0.000 0.065 ~01258:~ 0.065 0.000 0.000 0.032 
0.681 0.021 ::0,44.7 ~~ 0.043 0.000 0.000 0.000 0.000 
0.034 0.000 O. 034 O. 103 ~ 0.483~-? 0.000 0.000 ~>:0.655 ~~ 

Weighted 
Average 0.163 0.134 0.120 0.114 0.114 0.108 0.109 

Table 2.2.5-1 

0.083 
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A procedure involving tabulation of  the frequency of  the words within the duster can be 

automated. The most commonly occurring words can be identified and used to label the 

duster. 

2.2.6 Using the Features Derived from Text Mining 

A major objective of  text mining is to create new information that has predictive value. 

The simple illustration in this paper mined an injury description field and assigned each 

claim to one of  seven duster groups based on the words in the injury description. The 

cluster group is a new independent variable that can be used to predict a dependent variable 

of  interest to the analyst. Potential variables of  interest in a claims database indude financial 

variables such as losses and loss adjustment expenses, whether or not there has been 

subrogation or recovery on the dairn and whether or not the claim is likely a fraud or abuse 

daim. The database used in this exercise is representative of  what might be available in cases 

where a third party claims adjuster supplied data to a self insured entity. It is therefore 

smaller and less rich than what one would find in a large insurance company database. This 

.simple example focuses on the financial variables in the data. 

The example uses the new injury feature added by the text mining procedure to predict 

the likelihood that a daim will be a serious claim. One application of  data mining in the 

literature (Derrig, 2004) uses models to score dairns early in the life of  the claim. The 

objective is to identify claims that are likely to be the most costly to the company and apply 

more resources to those claims. For this analysis, a serious claim is defined as a claim whose 

total losses plus allocated loss adjustment expenses exceeds $10,000. Approximately 15% of 

the claims in the data exceed this threshold. A histogram of claim severities is shown in 

Figure 2.2-5. The histogram indicates that the severity distribution is right skewed and heavy 

tailed. Approximately 98% of loss dollars are due to claims defined as serious. (See the pie 

chart in Figure 2.2-6). 

76 Casualty Actuarial Society Forum, Winter 2006 



Taming Text: An Introduction to Text Mining 

Histogram of Claim Severity 
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Figure 2.2-5 
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Percent of Loss Dollars: Serious vs. Non Serious Claims 
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Figure2.2-6 

Logistic regression was used to predict the likelihood of a claim being a serious claim. 

Much of the current actuarial literature dealing with modeling large complex databases 

focuses on generalized linear models (See CAS Discussion Paper Program, 2004). A 

modeling procedure that is one of the options found within the family of generalized linear 

models is logistic regression. The logistic regression procedure functions much like ordinary 

linear regression, but under logistic regression the dependent variable is categorical or 

ordered categorical, not numeric. Logistic regression is a popular choice from the family of 

generaiized linear models for performing classification. With categorical variables, a value of 

one can be assigned to obsen'ations with a category value of interest to the researcher (i.e., 

serious claims) and zero to all other claims. Typically the objective is to score each 

obsen-ation with a probability the claim will fall into the target category, category one. The 

probability the claim will have a value of 1 lies in the range 0 to 1. This probability is 

denoted p(y). The model relating p(y) to a vector of independent variables x is: 

P(Y) 1 =bo +blX1 +b2X2...+bnXn (2.10) 1_-777: 

The ratio P(Y) is referred to as the odds ratio and the quantity I n ( P ( Y )  )is 
1 - p ( y )  ~ .1-- (77-~)  

known as the logit function or Iogit transformation. 
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The reader is referred to the extensive literature on logistic regression for further details 

(Hosmer 1989, Venibles and Ripley 1999). Once a linear model has been fit, the predicted 

value will be on the logit transformed scale. To use the predictions as probabilities, they 

must be transformed back to the original scale. I f  f ( x ) i s  the logistic predicted value, the 

eJ~(x) transformation /(1 + e J(x)) must be applied. 

Other analytical methods such as CART (Brieman et al., 1990) could also be applied 

although the data in this example likely does not lend itself to complex approaches meant for 

larger, complex databases. Two variables were used to predict the probability of  a serious 

claim: attorney involvement and the injury variable derived from text mining. Because the 

sample database is relatively small only a main effects s model was fit (a model with 

interaction terms was tested and found not to be significant). This means the model fit was 

of  the following form: 

Y = B o + B, Attorney+ BJnjury_Group (2.11) 

The injury group used in the mod~l is the injury grouping of  seven clusters created by 

the text mining analysis. The attorney variable denotes whether an attorney is involved in 

the claim. 

The logistic regression found both variables to be significant. The table below shows the 

average model probability of  a serious claim for both the serious and non-serious claims. It 

can be seen that the model predicts a much higher probability, on average, for the serious 

groups of  dairns than the non-serious group of  claims. 

s In a main effects model there are no interactions incorporated into the model. 
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M e a n  Probabilit].  

< 

a 

' o f  Ser ious  C l a i m  vs.  A c t u a l  V a l u e  

Actual Value 

1 0 

0.31 0.01 

T a b l e  2 .2 .6-1 

One other application of  the text variable is illustrated. A simple analysis of  variance 

(ANOVA) was used to predict ultimate losses and ALAE. An ANOVA is a linear model 

where the dependent variable is numeric and the independent variables are categorical. 

ANOVA is like a linear regression with categorical predictor variables. The form of  the 

model is: 

Y = B o + Bt A t t o r ney  + B 2 In jury  _ G r o u p  + B 3 A t t o r n e y  * I n j u r y _  G r o u p  (2.12) 

where Y is ultimate losses and ALAE trended to a common date 

Note this model includes the interaction term attorney * injury group. The results are 

displayed in the Table 2.2.6-2. In this regression, both attorney involvement and injury 

group as well as the interaction between attorney and injury are significant. As an alternative 

to the dassification procedure illustrated in the previous example, such a regression could be 

used to identify serious claims (i.e., the claims with high predicted values for the ultimate 

losses and ALAE). Another application of  models that predict ultimate losses and .~LAE is 

estimating reserves for insurance exposures. Heckman (1999) and Taylor (2004) introduced 

methods of  reserving that utilized individual claims data. There are two components to 

using claim data to estimate ultimate losses for a reserving application: 

• Estimate ultimate losses for claims already reported using the individual 

information for each claim's independent variables. Historic information on more 

mature daims is used to develop a model for less mature claims 

• Estimate uldmate losses for claims that have occurred, but because of  a long 

reporting lag, have not yet been reported. In order to estimate ultimate values for 

unreported claims the actuary needs: 

• An estimate of  unreported claims (perhaps derived from a daim 

development triangle) 
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An estimate of the proportion of claims in each category of the key 

predictor variables (i.e., an estimate of the proportion within each 

attorney/injury type combination). Recent historical patterns could be 

used to derive such estimates 
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Results for Regress ion of Ul t imate  Losses and ALAE on Attorney and Injury 

Parameter Estimates 

Dependent Variable: Ultimate Loss & ALAE 
Std. 

Parameter B Error t 

2975.08 74.56 39.90 

-2924.58 453.27 -6.45 

0.00 . 

16426.20 80.08 230.10 

10504.67 153.40 68.48 

6506.90 214.04 30.40 

1175.95 112.17 10.48 

37081.94 89.64 413.67 

74620.90 79.82 934.92 

0.00 

95% Confidence 
Sig Interval 

Upper 
Lower Bound Bound 

0 00 2790.20 3159.97 

0.00 -4048.49 -1800.67 

0.00 18227.64 18624.77 

0.00 10124.31 10885.03 

0.00 5976.17 7037.63 

0,00 897.81 1454.08 

0.00 36859.67 37304.22 

0.00 74422.99 74818.81 

Intercept 

[attorney=.000000] 

[attorney= 1.000000] 

[QCL6= 1] 

[QCL6= 2] 

[QCL6= 3] 

[QCL6= 4] 

[QCL6= 5] 
[QCL6= 6] 

[QCL6= 7] 

[attorney=.000000] * [QCL6= 1] 

[attorney=.000000] * [QCL6= 2] 
[attorney=.000000] * [QCL6= 3] 
[attorney=.000000] * [QCL6= 4] 

[attorney=.000000] * [QCL6= 5] 

[attorney=.000000] * [QCL6= 6] 

[attorney=.000000] * [QCL6= 7] 
[attomey=1.000000] * [QCL6= 1] 

[attomey=1.000000] * [QCL6= 2] 

[attorney=1.000000] * [QCL6= 3] 
[attorney=1.000000] * [QCL6= 4] 

[attorney=l,000000] * [QCL6= 5] 
[attorney=1.000000] * [QCL6= 6] 

[attomey=1.000000] * [QCL6= 7] 

A 

16537.20 530.17 -31.19 0,00 

10123.91 556.53 -18.19 0.00 
-3934.19 607.54 -6,48 0.00 

-675.90 719.76 -0.94 0.35 

36860.96 673.40 -54.74 0.00 

63147.92 567.22 111.33 0.00 

0 

0 

0 

0 
0 

0 
0 

0 

This pa~me~r is set to zero because it is redundant. 

-17851.81 -15222.59 

-11503.88 -8743.95 
-5440.64 -2427.74 

-2460.60 1108.80 

-38530.71 -35191.21 

-64554.39 -61741.44 

Table 2.2.6-2 

3. RESULTS AND DISCUSSION 

In this paper, a very simple example of text mining was used as an illustration of  the 

underlying concepts and methods. The illustration has shown that the basic procedures 

underlying text mining are straightforward to understand and implement. The two key 

technologies that are used are 1) string manipulation and processing functions that are part 

of nearly all programming languages and 2) classical statistical procedures for dimension 

reduction, such as clustering, that are induded within nearly all statistical software packages. 
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'In the illustration, text mining was used to add an injury t3qae code to a database that 

contained only a free form text field describing the injury. 

The injury description was then used as an independent variable in two simple predictive 

models. In more realistic situations text mining has the potential to add significantly to the 

information available to the analyst in large modeling projects. For instance, many large 

insurance company databases contain one or more free form claim description fields or 

narratives describing the accident and the circumstances associated with the accident. These 

narratives often contain information not contained in injury, cause of loss or other coding. 

This may be particularly true when new tTpes of claims or new patterns of claiming behavior 

are beginning to emerge Ellingsworth and Sullivan (2003) describe applications used to 

provide an understanding of rising homeowner claims and suspicious and possibly 

fraudulent auto claims at a large insurance company. When analytical approaches using only 

structured information coded into the company's database were unsuccessful in explaining 

the patterns, they turned to text mining. Ellingsworth and Sullivan provided the following 

hypothetical example of text from a claim description rid& 

"The claimant is anxious to settle; mentioned his attorney is willing to negotiate. Also 
willing to work with us on loss adjustment expenses (LAE) and calculating actual 
cash value. Unusualy familiar with insurance industry terms. Claimant provided 
unusual level of details about accident, road conditions, weather, etc. Need more 
detail to calculate the LAE." 

Certain terms in the text such as "anxious", "settle" and "familiar" may provide clues to 

suspicious" daims that cannot be found in the structured data in the claims database. Mining 

the text data for such terms significantly improved the ability of Ellingsworth and Sullivan to 

model the patterns in the data. 

Text mining has become sufficiently prominent that the major vendors of statistical and 

data mining software tools (such as SAS, SPSS and.Insightful) offer text mining products. 

Some of these tools are very powerful and are capable of processing data from large 

document collections, While a discussion of software tools for.text mining is postponed to 

the Appendix of this paper, acquisition of powerful text mining software may be 

unnecessary for smaller applications such as in this paper. That is, when the "documents" 

being analyzed are relatively modest in size, as many claim description data are, methods 

developed for applications on larger documents such as academic papers and news service 

articles may be more than is needed. The analyses in this paper were performed using free 

t~xt mining soft'ware along with statistical procedures available in SPSS13.0 and S-PLUS 6.2. 

The author believes that there are many situations where text mining can be used to augment 

the amount of information available for analysis and that for smaller applications, it is 
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unnecessary to acquire expensive specialized tools. 

4. CONCLUSIONS 

The purpose of this paper is to educate actuaries on the potential for using text mining 

for insurance applications. That is, the intent is to provide a basic introduction to the new 

area of text mining. It was shown that relatively uncomplicated methods underlie the main 

procedures used to perform text mining. It is widely believed that a large percentage of data 

is contained in unstructured form. Text mining has the potential to add significantly to the 

amount of data available for analysis. Some of this data includes adjuster dairn description 

notes, loss prevention specialist notes and underwriter notes. 

The field of text mining is one that is undergoing rapid development. New methods are 

being developed to improve on simple clustering as a means of classifying text data. These 

include methods based on discriminant analysis (Howland and Park, 2004), methods that use 

principal components analysis and single value decomposition (SneUert and Blondel, 2004), 

and linkage based methods that dynamically update (Aggarwal, 2005). Note that the methods 

used in this paper perform row-wise dimension reduction and cluster similar records. 

Methods based on factor analysis, principal components analysis and single value 

decomposition can perform column-wise or term-wise dimension reduction. While these 

methods were not described or illustrated in this paper, they show promise for improving 

the classification of text information. Another area under development that may expand the 

applicability of text mining is handwriting recognition and optical character recognition 

(Wikipedia, 2005). Many PDAs read handwritten entries. Microsoft Windows XP and 

Office XP also have handwriting recognition capability. Improvements in handwriting and 

optical character recognition could permit scanning and mining of handwritten and typed 

notes currently stored in paper files and not currently accessible from computerized 

databases. 
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Appendix A - Software for Text Mining 

This appendix describes the author's experiences with several text mining tools. The 

tools covered are 1) commercial text mining products, 2) a free text mining tool and 3) 

programming languages. The author found only categories 2) and 3) to be useful in this 

analysis, although commercial text mining products may prove invaluable in tasks invoh'ing 

84 Casualty Actuarial Society Forum, Winter 2006 



Taming Text: An Introduction to Text Mining 

larger, more complex data sets. 

Tbe task of  locating appropriate software for use in text mining proved to be something 

of  a challenge. A number of  software options were investigated in preparation for 

undertaking the analysis in this paper. Davi et al. (2005) gave a favorable review to two text 

mining packages; WordStat and SAS Text Miner. As the'SAS Text Miner package is sold 

bundled with the Enterprise Miner, a large, relatively expensive data mining suite intended 

for large application, no attempt was made to acquire or test it. Therefore WordStat, a 

modestly price product was investigated. The WordStat web site allows prospective 

customers to download a trial version of  the software. The user can use the demo software 

for 30 days or 10 uses. The latter limitation of  10 uses proved to be the more severe limiting 

factor. During this study about 5 of  the 10 uses were consumed in figuring our how to read 

data into the text mining module of  the software. Once the data were read, simple term 

extraction was performed and some simple descriptive statistics were created. However, the 

author was unable to apply dustering procedures to create an injury description feature or to 

output terms for analysis in other software. Thus, other options were investigated as 

WordStat was unable to provide the functionality needed for this study. 

Other vendors of  text mining software (SPSS and Insightful) felt their text mining 

software was inappropriate for the purposes of  this s tudf.  After relatively little success with 

other options, the free package TMSK was used to perform many of  the tasks for the text 

mining analysis in this paper. 

TMSK is a free product available to purchasers of  the book Text Mining (Weiss et al. 

2005). It can be downloaded from the author's web site using passwords supplied with the 

book. This software is very handy for performing term extraction. It comes with lists 

containing stop words and stem words that are automatically applied during running of  the 

program and can be used to do feature creation using k-means clustering. Certain other 

analytical tasks not covered in this paper are also induded. However, a certain amount of  

persistence is required to obtain useful results from the software. Some of  these features of  

this program the user needs to be aware of  are: 

• The user must have the programming language Java on his/her computer, Java 

can be downloaded for free from the Sun Microsystems web site: 

http://java.sun.com/. 

9 The software is intended primarily for much larger scale complex applications, and is intended for use on a 
server m "aking it difficult to install and use initially. Many of these are not major issues when being applied to 
large scale applications for which these packages are intended. 
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• The program will only run in DOS mode, i.e., in the command window. On 

ma W windows systems the command prompt is accessed by looking under 

accessories in the program listing. 

• The program will only read xml files. For this analysis, the injury description field 

of  the example data was saved to an xml file format within Microsoft Excel. More 

recent versions of  Adobe Acrobat can also save text in xml format. 

• The results of  term extraction are output to what is referred to as a "sparse 

vector". Table A-1 displays a snapshot of  what a sparse vector looks like. The 

sparse vector is a condensed representation of  the terms extracted, containing an 

entry only when the term is present for the record. The notation on the first row 

of Table A-1 indicates that for record 1 of  the example data, Term 15 occurred 

once, Term 20 occurred once and Term 21 occurred once. The analytical 

procedures included with TMSK read and process the sparse vector data. 

However, in order to use a statistical procedure other than the ones that come 

with TMSK, it is necessary to read and parse this output in some other 

programming language and associate the correct term and correct record with the 

position indicator and row from the table. 

• The manual indicates that the user can add additional stem words to the list 

maintained by TMSK. However, during this analysis, this feature did not appear 

to function, so some additional stemming was performed in other software. 

Sparse Vector Representation of Terms Extracted 

15@1 20@1 21@1 
1@1 2@1 8@1 
6@1 
1@1 23@1 
1@1 

Table A-1 

Most of  analysis after term extraction was performed in SPSS and S-PLUS. (TMSK could 

have been used for clustering, but more output and analysis than this package provides was 

needed for this paper). Most general purpose statistical packages provide clustering 

procedures that can be used in feature creation. 

Text miners may also want to program the steps required for term extraction themselves. 
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Most  p rogramming  languages, including those popular  for statistical applications, such as S- 

PLUS, R (an open  source analysis package), and SAS contain string manipula t ion  funct ion 

that can be used to parse words  f rom text data. Initially, some inves tment  in p rogramming  

effort  would be required to eliminate s topwords  and per form stemming.  The  book  Text 

Mining (Weiss et al., 2005) contains pseudo code that  can be referenced for p rogramming  

many o f  the text min ing  procedures.  

Two p rogramming  languages, Perl  and Py thon  have become  popular  for processing text 

data. Bo th  languages are free and can be downloaded  f rom the appropriate  web site 

(www.perl .com and www.python.org).  Because these languages are used so frequently for 

text processing, funct ions have already been  developed and made  available to users that  

handle many o f  the term extraction tasks. 

In summary,  text min ing  is a relatively new application, and software for per forming text 

min ing  is relatively undeveloped  compared  to o ther  data min ing  applications. \Xlaen using 

one the data min ing  suites, the text miner  may want  to use text min ing  capabilities sold with 

the suite. These  have not  been  tested as part  o f  this study. The  text miner  may also wish to 

use free software or  one o f  the p rogramming  languages that  specialize in text processing. 
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Variable R e d u c t i o n  for Predictive M o d e l i n g  wi th  
Cluster ing 

Robert Sanche, and Kevin Lonergan, FCAS 

Abstract 
Motivation. Thousands of variables are contained in insurance data warehouses. In addition, external 
sources of information could be attached to the data contained in data warehouses. When actuaries 
build a predictive model, they are confronted with redundant variables which reduce the model 
efficiency (time to develop the model, interpretation of the results, and inflate variance of the 
estimates). For these reasons, there is a need for a method to reduce the number of variables to input in 
the predictive model. 
Method. We have used proc varclus (SAS/STAT®) to find dusters of variables defined at a geographical 
level and attached to a database of automobile policies. The procedure finds cluster of variables which 
are correlated between themselves and not correlated with variables in other clusters. Using business 
"knowledge and 1-R2,,,,o. cluster representatives can be selected, thus reducing the number of variables. 
Then, the cluster representatives are input in the predictive model. 
Conclusions. The procedure used in the paper for variable clustering quickly reduces a set of numeric 
variables to a manageable reduced set of variable clusters. 
Availability. proc varclus from SAS/STAT® has been used for this study. We found an implementation 
of variable clustering in R, function varchis, while we did not experiment with it. 
Keywords. variable reduction, clustering, statistical method, data mining, predictive modeling. 

1. INTRODUCTION 

Over  the last decade, insurance companies have gathered a vast  amount  o f  data in their 

data warehouses.  Some o f  this informat ion is well-known by the actuaries because it is used 

for other  purposes,  e.g. pricing o f  the policy. Also, there are many sources o f  external data 

(demographics,  financial, meteorological . . . )  available f rom vendors.  The  external sources are 

typically no t  as familiar to the actuary as the data f rom the data warehouses.  This vast  

amount  o f  informat ion is available to create a predictive modal.  The objective o f  the 

predictive model  could be to improve the pricing or  reserving process,  but  also to analyze 

profitability, fraud, catastrophe,  and any insurance operation. This amount  o f  informat ion 

f rom multiple sources proxfides numerous  variables for the model ing project  contemplated.  

W h e n  a model ing project  involves numerous  variables, the actuary is confronted with the 

need to reduce the l~umber o f  variables in order  to create the model .  The variables have 

sometimes an unknown behavior  with the objective o f  the model ing  project. In addition, 

when  there is a multi tude o f  variables, it becomes difficult to find out  the relationship 

between variables. 

Too  many variables reduce the model  efficiency. With many variables there is a potential  
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of overfitting the data. The parameter estimates of  the model are destabilized when 

variables are highly correlated between each other. Also, it is much more difficult to have an 

explainable model when there are many variables. Finally, creating models with all possible 

combinations of  variables is exhaustive, but this approach would take indefinite time when 

there are thousands of  variables. An intermediate approach to the exhaustive search would 

also take a lot of  time and some combinations of  variables could be overseen. 

Suppose you want to reduce the number of  variables to a smaller set of  variable clusters 

for efficiency, you can use variable clustering. Variable clustering provides groups of  

variables where variables in a group are similar to other variables in the same group and as 

dissimilar as possible to variables in another group. 

1.1 Research Context 

This paper addresses the initial stage of  every predictive modeling project performed by 

an actuary, i.e. variable selection. Then, the variables selected would become inputs to 

predictive modeling techniques, such as, linear regression, generalized linear model, a neural 

network, to name a few. 

A technical description of  the variable clustering algorithm, proc vardus, is induded in the 

SAS/STAT® User's Guide) The method is not found in many textbooks on multivariate 

techniques, it mostly started as an implementation in statistical software. • 

This paper is focused on variable clustering, but the example could be used, for example, 

in the context of  complement to territorial relativities for automobile insurance. This 

complement would be obtained from a predictive model based on variables defined at some 

geographical level. The variables were selected using variable clustering on multiple sources 

of  information, usually not used in pricing, attached to an automobile policy database. I f  the 

objective of  the predictive model is to predict cost by territory, it makes sense to use fact 

(demographics, consumer expenditure, weather ...) variables selected from the variable 

clustering on the multiple sources, defined at some geographies (e.g. county), to complement 

territorial relativities. 

The example provided in the paper is a simplification of  a variable reduction problem. 

Many more variables would be dustered in a real life study. 

Note that the variables used in the example have some intuitive relation to automobile 

1 SAS/STAT® 9.1 User's Guide p. 4797 
2 Pasta paper 205 
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insurance cost, although generally the variables presented to the variable clustering 

procedure are not previously filtered based on some educated guess. All the demographics, 

consumer expenditure, and weather variables are used in the clustering analysis. Filtering of  

variables is typically done after the variable clusters have been created. When there is a 

multitude of  variables, it is more difficult to recognize irrelevant variables than to recognize 

redundant variables. A variable is considered irrelevant if it is not predictive for the specific 

predictive model. When the actuary deals with unknown data, a large number of  the 

variables turn out to be irrelevant. A variable is redundant when it is highly correlated with 

another potential variable. 

1.2 Objective 

More and more actuaries use advanced statistical methods to create insurance models. 

This paper provides a tool; variable clustering, that can be added to the arsenal of  the 

actuarial miners. Traditionally, PCA have been used for variable reduction by creating a set 

of  components (weighted linear combinations of  the original variables) which are difficult to 

interpret. 

Typically, in the clustering literature, there is a rule for selecting the cluster representative, 

the 1-R 2 ,~,~,. Business "knowledge from subject matter expert should also complement this 

rule to guide the selection of  variables. For this reason, someone could decide to use more 

than one variable per duster. Even though the clustering procedure provides diagnostic 

measures, there are reasons for using more than one variable per duster. One of  them is that 

the maximum number of  clusters is a parameter provided by the user of  the procedure. Also, 

for communication to users of  the predictive model, an alternate variable may provide a 

better intuitive interpretation of-the model than the cluster representative. 

We should point out that the variable clustering works only with numeric variables. 

However, there are ways to convert categorical variables into numeric variables. For 

example, the hamming distance converts categorical variables into a numeric variable. 

Conversion of  categorical variables is not covered in this paper. 

We suggest options (centroid without cop) to the procedure of  variable clustering which 

turn out to produce a scale-invariant method. Otherwise it would probably be necessary to 

rescale the ranges of  the variables (withpr0c standara). 

1.3 Outline 

The remainder of  the paper proceeds as follows. Section 2 x~l  provide an overview of 
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clustering and more precisely the variable dustering. We will describe shordy the variable 

clustering algorithm used in this paper. Section 3 will provide an example of  variable 

reduction in the context of  automobile insurance. We will use variable clustering and will 

explain how variables can be selected to reduce their nunaber. In section 4, we conclude the 

study. In Appendix A, we include an example of  the SAS code and in Appendix B we 

include the procedure's output. 

2. CLUSTERING 

2.1 Clustering 

"Cluster Analysis is a set of  methods for constructing a sensible and informative 

classification of  an initially unclassified set of  data, using the variable values observed on 

each individual ''3 

In general, the goal of  a duster analysis is to divide a data set into groups of  similar 

characteristics, such that observations in a group are as similar as possible and as dissimilar 

to observations in another group. Variable clustering, however, does not divide a set of  data; 

instead it splits a set of  variables with similar characteristics using a set of  subject data. 

Clustering is an unsupervised learning technique as it describes how the data is organized 

without using an outcome 4. As a comparison, regression is a supervised learning technique as 

there is an outcome used to derive the model. Most data mining techniques are supervised 

learning techniques. Unsupervised techniques are only useful when there is redundancy in 

the data (variables). 

At the basis of  clustering is the notion of  similarity. Without supervision, there is no 

response to say that occurrence a is similar to occurrence b. I f  there was a response 

associated with each occurrence; it could be used to compare a and b responses to induce 

similarity between both. Similarity: Two occurrences are similar if  they have common 

properties. 

For example, one occurrence is a car, another occurrence is a motorcycle and the last 

occurrence is a bicycle. First, lets say we have only number of  wheels as a property. Then we 

would cluster the motorcycle and the bicycle since they have the same number of  wheels• 

However, if  we add the number of  cylinders and fuel consumption, then the motorcycle is 

p 3 Everitt 1998 
4 Hastie p.2 
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more similar to the car. Similarity can be measured by distance measure (Euclidian distance, 

Manhattan or city block distance ...) or correlation type metrics. 

There are two classes of  clustering methods: 

• Hierarchical: This class of  clustering produces clusters that are hierarchically 

nested within clusters from previous iterations. This is the most commonly used 

clustering technique. 

• Partitive: This class of clustering divides data in clusters by minimizing an error 

function of  the distance between the observation vectors and the reference 

vectors (centroid - initial guess). This clustering technique requires elaborate 

selection of  parameters and evaluation of  the error function for all possible 

partition is impractical. 

There are two approaches to hierarchical clustering: 

• Agglomerative 

1. Start with each observation as its own cluster 

2. Compute the similarity between clusters 

3. hierge the clusters that are most similar 

4. Repeat from step 2 until one cluster is left 

• Divisive 

1. Start will all observations assigned to one cluster 

2. Compute the similarity between clusters 

3. Split the cluster that are least similar 

4. Repeat from step 2 until each observation is a cluster 

2.2 Variable Clustering 

The procedure used in this paper for variable clustering is both a divisive algorithm and 

iterative algorithm. The procedure starts with a single cluster and recursively divides 

existing clusters into two sub-clusters until it reaches the stopping criteria, producing a 

hierarchy of  disjoint clusters. 

As mentioned previously, the procedure starts with all variables in one cluster. Based on 

the smallest percentage of  variation explained by its cluster component a cluster is 
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chosen for splitting. The chosen cluster is split in two dusters by finding the first two 

principal components and assigning each variable to the component  with which it has 

the higher correlation. The assignment follows a hierarchical structure with the approach 

presented in this paper. The clustering stops when the maximum number  of  clusters is 

attained or reached a certain percentage of  variation explained. 

3. VARIABLE CLUSTERING EXAMPLE 

After the multiple sources of  data (demographics, consumer expenditures, meteorological 

...) are attached to the auto policy database, variable clustering can be performed to reduce 

the number  of  variables. The SAS code is included in Appendix A. The rule dictates to 

select the variable with the minimum 1-R 2 =~ as the cluster representative. The 1-R 2 ~o is 

defined below. 

1-R 2 =,,,, = (1-R..,,,2)/(1-R ....... :) (3.1) 

Intuitively, we want the cluster representative to be as closely correlated to its own cluster 

(R0~,2--+1) and as uncorrelated to the nearest cluster (R,,,~,,2--+0). Therefore, the optimal 

representative of  a cluster is a variable where 1-R 2 ..... tends to zero. 

Below, we include an extract of  the output from proc vardus (see Appendix B for 

additional output from the procedure) with three clusters. Based on the 1-R 2 ..... we should 

select variables snowd, cdensity, and lexp as cluster representatives. 

3 Clusters R-squared with 

Own Next I-R**2 
Cluster Variable Cluster Closest Ratio 

Cluster 1 Raind 0.5995 0.0426 0.4183 

Snowd 0.8976 0.0317 0.1058 

! Asnow 0.8940 0.0314 0.1095 

Cluster 2 Pdensity 0.9804 0.0228 0.0201 

Cdensity 0.9804 0.0113 0.0199 

Cluster3 Growth 0.6459 0.0911 0.3896 
v 

!Lexp i 0.6459 0.0013 0.3546 

Choose 

Choose 

Choose 
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Afterproc vardus, we have created a tree usingproc tree which shows h o w  the variable clusters 

are created. The variables are displayed vertically. The  propor t ion  o f  variance explained at 

each clustering level is displayed on the horizontal  axis. 

Name of Variable or Cluster 

growth 

lexp 

snowd II 

asnow 

raind 

I 

1 .0  

] I I I I I I I I 

9 0 . 8  0 , 7  0 . 6  0 . 5  0 . 4  0 . 3  0 . 2  0 . 1  0 . 0  

P r o p o r t i o n  o f  V a r i a n c e  E x p l a i n e d  

In  that example, variables with similar factual attributes were dus te red  together;  weather  

variables are in the same cluster and densit  T variables are in the same cluster. Even  with 

more  variables, similar grouping patterns are observed. 

I f  we consider  three dusters;  snowd,  asnow and ralnd would  all be in one cluster as they 

are on  the same branch o f  the tree. The  variable snowd would be the cluster representative 

since it has the lowest 1-R 2 .... . 

The  number  o f  variables has been reduced and, now,  we can efficiently create a predictive 

model  to solve the problem at hand using linear regression, G L M  s, or  neural ne twork 6. 

4. CONCLUSIONS 

Given hundreds o f  variables, in order  to create a predictive mode l  the variable clustering 

5 Holler 
6 Francis 
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procedure runs quickly and produces satisf3"ing results. We were able to reduce the number 

of variables using this procedure in order to efficiently create a predictive model. An efficient 

model was defined as followed: 

• Interpretable 

• Stable 

• Timely 

With this procedure, the modeling process is sped up significantly. The hierarchies 

produced by this procedure are easily interpretable with the tree output. Subject-matter 

experts usually do not have expertise to analyze statistical output in table form, but given the 

cluster hierarchy in tree output, can easily uncover alternate cluster representatives or 

eliminate irrelevant input. Other variable reduction techniques (e.g. PCA) do not create 

interpretable and disjoint clusters. 
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Appendix A: Code 

" Example of variable clustering ; 

%let varlist= pdensity cdensity growth /* demographics */ 
lexp /* expenditures */ 
raind snowd asnow /* weather */ 

proc varclus data='C:\example.sas7bdat' outtree=tree centroid maxc=6; 
var &varlist ; 
weight exp; 
run; 

axisl label={angle=O rotate=O) minor=none; 
axis2 minor=none order=(O to 1 by 0.I0); 

proc tree data=tree horizontal vaxis=axisl haxis=axis2; 
height _propor_; 
run; 

Appendix B: Ouput 

Cluster summary: 

Cluster summary gives the number  of  variables in each cluster. The variation explained by 
the cluster is displayed. The proportion of  variance explained is the variance explained 
divided by the total variance of  the variables in the cluster. 

Also displayed, is the summary are the R e of  each variable with its own cluster, its closest 
cluster, and the 1-R e .... 

Cluster Summary for 3 Clusters 

Cluster Variation 
Cluster Members Variation Explained 

1 3 3 2.371253 

2 2 2 1.960732 

3 2 2 1.291809 

Proportion 
Explained 

0.7904 

0.9804 

0.6459 

Total variation explained = 5.623 794 Proportion = 0.8034 

Casualty Actuarial Society Forum, Winter 2006 97 



Variable Reduction for Predictive Modeling with Clustering 

3 Clusters 

Cluster 

Cluster I 

Cluster 2 

Cluster 3 

R-squared with 

Own Next I-R**2 Variable 
Variable Cluster Closest Ratio Label 

Raind 0.5995 0.0426 0.4183 Rain 2 

Snowd 0.8976 0.0317 0.1058 Snow2 

Asnow 0.8940 0.0314 0.1095 Snow 1 

Pdensity 0.9804 0.0228 0.0201 Pop density 

Cdensity 0.9804 0.0113 0.0199 Car density 

Growth 0.6459 0.0911 0.3896 Popgrowth 

Lexp 0.6459 0.0013 0.3546 Leg expenditures 

Standardized scorin~ coefficients: 

The  standardized scoring coefficients predict  clusters f rom the variables. I f  a variable is no t  
in a cluster, then the coefficient is zero. SAS does no t  provide unstandardized scoring 
coefficients. 

Standardized Scoring Coefficients 

Cluster 1 2 3 

Pdensity Pop density 0.000000 0.504982 0.000000 

Cdensity Car density 0.000000 0.504982 0.000000 

G rowth 

Lexp 

Raind 

Snowd 

Asnow 

Popgrowth 0.000000 0.000000 0.622137 

Leg expenditures 0.000000 0.000000 0.622137 

Rain2 0.374930 0.000000 0.000000 

Snow2 0.374930 0.000000 0.000000 

Snow 1 0.374930 0.000000 0.000000 

~luster  Structure: 

The dus t e r  structure gives the correlation between the variables and the clusters. 
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Cluster Structure 

Cluster 1 2 3 

Pdensity Pop density - .069069 0.990134 -.151107 

Cdensity Car density -.082041 0.990134 -.106496 

Growth Pop growth - .301845 -.204659 0.803682 

Lexp Leg expenditures -.036435 -.004435 0.803682 

Raind Rain 2 0.774267 -.102212 -.206297 

Snowd Snow2 0.947393 -.044943 -.177956 

Asnow Snow 1 0.945502' -.056370 -.177070 

Inter-Cluster Correlation: 

This table provides the correlations between the clusters. 

Inter-Cluster Correlations 

!Cluster 1 2 3 

1 1.00000 -0.07631 -0.21046: 

2 -0.07631 1.00000 -0.13008 

3 -0.21046 -0.13008 1.00000 

Cluster 3 will be split because it has the smailest proportion of  variation explained, 0.645904, which is less than the PROPORTION=I value. 

Final summary: 

Cluster summary and the other tables are listed for each number of  clusters up to the 
maximum of  clusters (option maxc). This table is listed at the end of  the output and 
summarizes for each number of  clusters the total variation and proportion explained by the 
clusters, the minimum proportion explained by a cluster, the minimum R 2 for a variable and 
the maximum 1-R 2 =~o for a ratio. 
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Total Proportion Minimum Minimum Maximum 
Number Variation of Variation Proportion R-squared l-R**2 Ratio 

of Explained Explained Explained for a for a 
Clusters by Clusters by Clusters by a Cluster Variable Variable 

1 1.454308 0.2078 0.2078 0.0007 

2 3.539308 0.5056 0.3157 0.0300 1.0124 

3 5.623794 0.8034 0.6459 0.5995 0.4183 

4 6.331985 0.9046 0.7904 0.5995 0.4349 

5 6.952514 0.9932 0.9804 0.9804 0.0205 

6 6.991782 0.9988 0.9959 0.9959 0.0058 
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Abbreviations and notations 
PCA, principal component analysis 
proc, procedure in SAS 

GLM, generalized linear model 
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The Report of the Research Working Party on 
Correlations and Dependencies Among All Risk 

Sources 

Introduction 

Glenn G. Meyers, Co-Chair, Research Working Party on Correlations and 
Dependencies Among All Risk Sources 

Enterprise risk management requires the quantification of  the total risk of  an enterprise. 
As we undertake this task of  quantification we ftrst attempt to quantify the risk of  individual 
parts of  the enterprise. Examples of  "individual parts" of  an insurance enterprise could 
include the losses arising from its new business, its loss reserves or its asset portfolio. To 
properly combine these risks one needs to consider the "correlation" between the risks. We 
put the term "correlation" in quotes to draw attention to the fact that we are not restricting 
ourselves to the linear correlation that we all study in introductory statistics. This report 
considers a variety of  ways for different risks to "move together." 

There are three aspects of  this problem that deserve some discussion. 

Formulating models of  correlated risks. An example of  this includes inflation affecting 
the losses of  different lines of  insurance causing them to be correlated. A second example is 
where a correlation between inflation and interest rates that drives the correlation between 
the losses and assets of  an insurance company. 

Combining the models of  correlated risks. This aspect refers to the mathematical 
techniques that are needed to combine to obtain the combined distribution of  all the 
individual parts. 

Parameterizing the models of  correlated risks. I f  correlation matters, we should be able 
to find data somewhere that reflects this correlation and use it to parameterize a model that 
describes this data. 

As the working party began its discussions, we quickly found out that these aspects of  the 
correlation problem could not be treated in isolation. In the end, individual authors took the 
lead and produced four separate papers (or "chapters") that make up this report. Here is a 
summary of  each paper. 

1. "Correlation and Aggregate Loss Distributions with an Emphasis on the Iman- 
Conover Method" by Stephen J. Mildenhall. This paper gives a grand tour of  a 
variety of  multivariate models exhibiting correlation that should be of  interest to 
the casualty actuary. The focus of  the paper is the Iman-Conover method which 
can take arbitrary marginal (or individual risk) distributions and derive a 
multivariate distribution that has an arbitrary rank correlation matrix. 
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2. "Aggregating Bivariate Claim Severities with Numerical Fourier Inversion" by 
David L. Homer. This paper uses the very powerful technique of Fourier 
transforms to calculate the aggregate loss distributions with correlated claim 
severity distributions. Once we have settled on a standard set of models to 
describe the stochastic nature of the insurance business, the techniques described in 
this paper can significantly reduce the time needed to compute the distribution of 
an insurer's total losses. 

3. "The Common Shock Model for Correlated Insurance Losses" by Glenn G. 
Meyers. This paper addresses the problem of estimating the correlations between 
lines of insurance. It takes the data from several insurers and produces stable 
estimates of parameters underlying the coUective risk model for correlated 
insurance losses. And along the way it provides on how the parameters of the 
coUective risk model change as the size of the risk changes. 

4. "Serial Corrdation of Interest and Inflation Rates" by Hans E. Waszink. This 
paper discusses an approach to modeling the present value of reserves under the 
impact of uncertain interest and inflation rates. The dependence between interest 
rates and inflation rates is modeled using copulas. The paper also shows how to 
test the goodness of fit of data to members of the class of Archimedean copulas. 

In addition to the chapter authors listed above, there were several others who contributed 
to the work of the Correlation Working Party by either presenting ideas or by reviewing 
papers. These individuals are listed below. 

Shawna Ackerman 
Kevin Dickson 
Lijia Guo 
Leigh HaUiwell 
Roger Hayne 
Philip Heckman 
Daniel Heyer 
Youn~u Lee 
Christopher Monsour 
James Rech 
Kevin Shang 
Chuck Thayer 
Emil Valdez 
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The Report of the Research Working Party on 
Correlations and Dependencies  Among All Risk 

Sources 

Part I 

Correlation and Aggregate Loss Distributions With An 
Emphasis On The Iman-Conover Method 

Stephen J. MildenhaU, Member, CAS Research Working Party on Correlations 
and Dependencies Among All Risk Sources 

November 27, 2005 

Abstract 
Motivation. The C.~S Research Working Party on Correlation and Dependencies .~.mong All Risk Sources 
has been charged to "lay the theoretical and experimental foundation for quanti~,ing variability when data is 
limited, estimating the nature and magnitude of dependence relationships, and generating aggregate 
distributions that integrate these disparate risk sources." 
Method. The Iman-Conover method represents a straight forward yet powerful approach to working with 
dependent random variables. We explain the theory behind the method and give a detailed step-by-step 
algorithm to implement it. XXte discuss various extensions to the method, and give detailed examples 
showing how it can be used to solve real world actuarial problems. We also summarize pertinent facts from 
the theory of unix'adam and multivariate aggregate loss distributions, with a focus on the use of moment 
generating functions. Finally we explain how Vitale's Theorem provides a sound theoretical foundation to 
the Iman-Conover method. 
Availability. The software used to generate the paper's examples is available at http://www.mynl.com/wp. 
Keywords. Dependency, correlation, aggregate loss distributions, fast Fourier transform. 
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Chapter I 

INTRODUCTION 

The Iman Conover (IC) Method is a practical, down-to-earth approach to dealing 

with dependent random variables. It should be part of every actuary's toolkit. 

When two variables X and Y are positively correlated there is a tendency for 

large values of X to be associated with large values of Y. Knowing how the 

large values are associated would make it possible to work in reverse: by ordering 

samples from X and Y so that large-large matches and small-small matches are 

more likely would result in a bivariate sample with positive correlation. The Iman- 

Conover (IC) method gives a way of determining reasonable associations, and 

hence inducing correlation between samples of variables. It is ideally suited to 

simulation work where marginal distributions are sampled independently but must 

be combined to achieve some desired level of correlation. The IC method is used 

by the popular @Risk software package to induce correlation. 

Before describing the IC method, we begin with a review of measures of corre- 

lation and association in Chapter 2. Then, in Chapter 3 we describe several useful 

techniques for working with univariate and multivariate aggregate loss distribu- 

tions. These include formulae to compute moments of aggregates using moment 

generating functions, a discussion of mixed Poisson counting distributions, ap- 

proximating univariate aggregates using the shifted gamma and shifted lognormal 

distributions, Fast Fourier transform methods, and computing correlation coeffi- 

cients related to multivariate aggregates in a variety of situations. 
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Next we turn to a description of the IC method itself, which can simplistically 

be described as follows. Given two samples of n values from known marginal dis- 

tributions X and Y and a desired correlation between them, first determine a sam- 

ple from some reference bivariate distribution that has exactly the desired linear 

correlation. Then re-order the samples from X and Y to have the same rank order 

as the reference distribution. The output will be a sample from a bivariate distribu- 

tion with the correct marginal distributions and with rank correlation coefficient 

equal to that of a bivariate distribution which, in turn, has exactly the desired 

correlation coefficient. Since linear correlation and rank correlation are typically 

close, the output has approximately the desired correlation structure. What makes 

the IC method work so effectively is the existence of easy algorithms to determine 

samples from reference distributions with prescribed correlation structures. Ob- 

viously the method can then be extended to work with samples from multivariate 

distributions in any dimension. 

In their original paper, Iman and Conover [21] point out that their method has 

several desirable properties. 

1. It is very simple to understand and implement. 

2. It is distribution free; it may be used with equal facility on all types of input 

distributions. 

3. It can be applied to any sampling scheme for which correlated input vari- 

ables could logically be considered. That is, the output sample contains the 

same values as the input, only with a different pairing. Hence in Latin hyper 

cube sampling, the integrity of the intervals is maintained. 

4. The marginal distributions remain intact. 
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The actual IC method involves some enhancements over such a naive imple- 

mentation, and we give full details in Chapter 4. We give a step-by-step example 

to explain how the method works in practice in Section 4.3. In Section 4.4 we 

show how the basic IC method can be extended, and illustrate the impact these 

extensions have on the types of multivariate distributions the method produces. 

Section 4.5 compares the IC method with the normal copula method described in 

Wang [37]. 

Chapter 5 gives a detailed practical example which computes the bivariate dis- 

tribution of ceded and retained losses in a book with an excess of loss reinsurance 

structure. Such a bivariate distribution is necessary to compute the net under- 

writing result if the reinsurance contains any variable feature like a sliding scale 

commission, profit commission or annual aggregate deductible. 

Chapter 6 discusses the theoretical underpinnings of the IC method in a more 

technical manner. It can be ignored with impunity by readers more interested in 

practice than theory. 

Appendix A discusses practical computational issues and describes some freely 

available software which can be used to implement the IC method in Excel. 

Some sections are marked with an asterisk. These I regard as interesting, but 

not "core". The remaining, un-starred sections, contain core facts which I think 

every actuary working with correlation and aggregate losses should know. 

When modeling correlation the reader should remember that the model must 

follow an understanding of reality. Model building, especially modeling correla- 

tion, must start with an understanding of the underlying processes. Graphical rep- 

resentations are often useful to aid understanding and help communicate results. 

It may be necessary to build pre-models to understand the underlying processes 

and use these to parameterize quicker, more computationally efficient, implemen- 

tations. The IC method is ideal here: having understood the drivers of correlation 

and estimated an appropriate correlation matrix and suitable multivariate struc- 

ture, the IC method can be used to produce correlated samples with blistering 

speed. However, the reader should not succumb to the temptation to estimate a 
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200 x 200 correlation matrix using data and expect to get realistic result from it. 

It will be more noise than signal. 

In conclusion, we recommend the IC method as being fast, simple to under- 

stand, and efficient. We also recommend the use of a shifted gamma or shifted 

lognormal distribution to model univariate aggregate losses. 

Throughout the paper bold face roman variables represent vectors (lower case) 

and matrices (upper case). Sections in a smaller typeface are optional, more tech- 

nical discussions. Sections marked with an asterisk* contain non-core material. 

Acknowledgement. I would like to thank Christopher Monsour, Chuck Thayer, 

Leigh Halliwell, Roger Hayne, Phil Heckman, and Kevin Shang for their helpful 

comments and suggestions. 
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Chapter 2 

CORRELATION AND 
ASSOCIATION 

Before discussing specific measures of correlation and association, recall that two 

random variables X and Y are independent if 

Pr(X E A,Y C B) = Pr(X C A)Pr(Y E B) (2.1) 

for all suitable sets A and B. It is possible to prove that X and Y are independent 

if and only if 

E[f(X)g(Y)] = E[f(X)]E[g(Y)] (2.2) 

for all functions f and g. 

See Wang [37] and Press et al. [31] for more information on the definitions 

and terms described here. 

2.1 Correlation, Rank Correlation and Kendall's Tau 

There are three common measures of association (more commonly called simply 

correlation) between two random variables X and Y: linear or Pearson correla- 

tion, rank correlation and Kendall's Tau. 
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The linear or Pearson correlation coefficient, usually just called correlation, is 

defined as 

Coy(X, Y) E[(X - E(X) ) (Y  - E(Y))] 
p ( X , Y )  - a ( X ) ~ ( Y )  - a ( X ) a ( Y )  (2.3) 

where cr(X) is the standard deviation of X.  By the Cauchy-Schwarz inequality 

the correlation coefficient always lies in the range [ -1 ,  1]. The correlation coeffi- 

cient is sometimes called the Pearson correlation coefficient or linear correlation 

coefficient. Perfect correlation, when p = +1, occurs if and only if Y = a X  + b 

for constants a > 0 (resp. a < 0) and b. The correlation coefficient is a natural 

measure of association when X and Y come from a bivariate normal distribution 

because it is enough to completely specify the dependence between the marginals. 

Needless to say, such pleasant results do not hold in general! For a multidimen- 

sional distribution the correlation matrix has i, j th  element equal to the correlation 

coefficient of the i and j th marginals. 

A related measure is the covariance coefficient defined as 

Coy(X, Y) 
w(X, Y) -- E (X)E(Y)  (2.4) 

By (2.2) independent variables are uncorrelated. However, the converse is 

not true. The classic counter-examples of uncorrelated but dependent variables 

include 

• X a standard normal and Y = X 2, 

• (X, Y) uniformly distributed over a circle of radius one centered at the ori- 

gin, and 

• (X, Y) distributed with a bivariate t-distribution with zero correlation. 

• Let X, X1, X2 , . . .  be identically distributed random variables with mean 

zero and let N be a counting distribution. Then A = X1 + • • • XN  and N 

are uncorrelated but not independent. If X and Xi have a non-zero mean 

then Coy(A, N) = E(X)Var(N) .  
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The correlation coefficient of a bivariate sample (X,, Yi), i = 1 . . . .  , n, is 

defined as 
- 2 ) ( Y ,  - 

(2.5) 
P = x / ~ , ( x  ' _ R)~ ~ , ( ~  _ ;~)2 

where )(  = n -1 Y'~-i Xi and similarly for ~7. 

Let X be an n x r matrix representing an n-fold sample of 1 x r vectors. 

Suppose that the means of the columns of X are all zero (subtract the means if 

necessary). Then the variance-covariance matrix of X is simply n - i X ' X ,  where 

X '  denotes matrix transpose. 

The second measure of association we consider is rank correlation. Given 

a sample X 1 , . . . ,  Xn of observations from a random variable X the rank order 

statistics X(1) , . . . ,  X(,,) are a permutation of the original observations ordered so 

that X(1 ) ~ X(2 ) ~ . .° ~ X ( n ) .  Call j the rank of X0). The rank correla- 

tion, or Spearman rank correlation, of a sample is defined as the correlation of 

the ranks of the sample. Rank correlation lies in the range [ -1 ,  1] because it is a 

correlation. It is invariant under strictly monotonic transforms of X and Y, so for 

example the rank correlation of a sample (X, Y) is the same as the transformed 

samples (log(X), log(Y)) or (exp(X),  exp(Y)).  Rank correlation is a nonpara- 

metric measure of association because it is invariant under transformation. For 

continuous random variables rank correlation can also be computed as 

12E[( Fx(  X )  - 0.5)( Fy (Y)  - 0.5)] (2.6) 

where Fx (resp. Fy) is the distribution function of X (resp. Y). 

The third common measure of association is called Kendall's tau. Kendall's 

tau looks at concordances and discordances between pairs of data points (xi, y,) 

and (x3, yj). A pair of observation-pairs is concordant if (x~ - xj, Yi - -  Yj) lies 

in the upper right hand or lower left hand quadrants of the plane, and discordant 

otherwise. Take all n(n - 1)/2 distinct pairs of data from the sample and count 

the number of concordances c and discordances d, except that if the ranks of the 

x's are the same the pair is called an extra y pair and if the ranks of the y's are the 

same the pair is an extra x pair. If the ranks of both x and y are the same the pair 
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does not count at all. Let ez and % be the number of extra x and y pairs. Kendall's 

tau is defined in Press et al. [31] as 

c - d  
r = . (2.7) 

V/C + d + ey x/c + d + ex 

Kendall's tau can also be computed as 

folfo 1 r ( X , Y )  = 4 Fx,y(x,y)d2Fx,r(x,y) - 1 (2.8) 

provided singularities are handled appropriately, see Wang [37]. The Kendall's 

tau of a sample (Xi, Y~), i = 1 , . . . ,  n can be computed as 

2 Z sign((X~ - Xj)  (Y~ - Yj)) (2.9) 
r -  n (n- -1)  ,<a 

where sign(z) is 1,0 or - 1  when z is positive, zero or negative. 

The statistics of Kendall's tau are covered in more detail by Conover, [6]. 

Conover points out that if the null hypothesis that (X, Y) are independent is true, 

the distribution of tau approaches the normal quite rapidly. Hence the normal 

approximation for tau is better than the one for Spearman's rho under the null 

hypothesis. He also points out that tau has a natural interpretation in terms of the 

probability that an observation is concordant versus discordant. 

Equation (2.9) is precisely consistent with the definition in Equation (2.7) only 

when there are no ties. In the no-ties case, (2.9) is the form that Kendall proposed 

in his 1938 paper. When there are ties, (2.9) ignores ties in either X or Y, but it 

counts every pair of observations in the total used in the denominator. 

Equation (2.7) accounts explicitly for ties without distorting the answer un- 

duly, and it always provides an answer regardless of the number of ties in the 

sample. Conover's method fails when every pair results in a tie in the rank of the 

Xs. On the other hand, if the ranks of all the Xs  are tied, X should not really be 

termed a "variable", much less a "random variable"! 

Conover's alternative to (2.9) is to use a different method to account for ties. 

If the Y ranks are tied, he adds 1/2 to both c and d. If the X ranks are tied, the 
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comparison is dropped entirely, adding nothing to c or to d. Otherwise, c gets 

incremented for positive signs and d counts the negatives in the sum. Conover's 

final statistic is 
c - d  

r - (2.10) 
c + d "  

Conover's statistic adopts a form of Kendall's tau that was introduced by Good- 

man and Kruskal [14]. Equation (2.10), which is also called the gamma coeffi- 

cient, can attain the values +1 and - 1  even in the presence of ties in the sample 

data. 

There are several relationships between these measures of correlation, partic- 

ularly if the sample comes from a multivariate normal distribution. For example 

if (X, Y) are bivariate normal with correlation p then 

2 
r(~(X), ~(Y))  = - arcsin(p) (2.11) 

7r 

and the rank correlation 

6 
rankCorr(~(X), ~(Y))  = - arcsin(p/2). (2.12) 

rc 

Similar results hold for samples from any elliptically contoured distribution, 

see Fang and Zhang [11], Embrechts, Lindskog and McNeil [9] and Embrechts, 

McNeil and Straumann [10]. 

2.2 Comonotonicity* 

Two random variables X and Y are comonotonic if there exists a third variable 

Z and non-decreasing functions f and 9 such that X = f(Z) and Y = g(Z). 
For example, if X and Y are two different excess layers on the same risk then 

they are comonotonic. A stock and an option on it have comonotonic payouts. 

Comontonicity represents a high level of association between two values, but it 

need not result in a high level of linear correlation. 

Some authors propose that risk measures r should be sub-additive, r(X+Y) <_ 
r(X) + r(Y), with the tag-line "mergers cannot cause risk". Coherent measures 

require sub-additivity, see Artzner et al. [2]. Others authors propose additivity for 

comonotonic risks r(X + Y) = r(X) + r(Y) if X and Y are comonotonic, see 

Wang [36]. 
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2.3 Measures for Non-Normal Variables* 

Linear correlation is the perfect measure of association for normally distributed 

random variables. It does not deal so effectively with non-normal variables. How- 

ever, any continuous random variable X with distribution function F can be trans- 

formed into a normal variable Y via 

Y = ~-I(F(X)).  (2.13) 

It therefore makes sense to transform non-normal variables using (2.13) and then 

to compute correlations between the transformed variables. If X is already a 

normal variable then (2.13) simply normalizes X to mean 0 and standard deviation 

1. 

Normalizing transformations are related to the IC method and the normal cop- 

ula method as we will explain with Theorem 2 below. The normalizing trans- 

formation has been used in the literature by Wang [38] and Sornette et al. [32] 

amongst others. 
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Chapter 3 

GENERAL PROPERTIES OF 
AGGREGATE LOSS 
DISTRIBUTIONS 

Here we gather together some useful techniques for working with aggregate dis- 

tributions, modeling correlation, parameter uncertainty, and so forth. Many of the 

techniques we introduce here will be used in the extended example, given in the 

Chapter 5. We introduce the negative multinomial distribution and we provide an 

introduction to Fast Fourier Transform (FFT) methods in both one and two di- 

mensions. We begin with a discussion of moment generating functions and mixed 

Poisson frequency distributions. 

We will use the following notation. The variance of a random variable X is 

Var(X) = E(X 2) - E(X) 2. The standard deviation is ~r(X) = v/Var(X). The 

coefficient of variation (CV) of X is CV(X) = a ( X ) / E ( X ) .  The skewness of X 

is E[(X - E(X))a]/a(X) a. 

3.1 Moment Generating Functions 

The moment generating function of a random variable X is defined as 

Mx(~) = E(exp(~X)). (3.1) 
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The moment generating function is related to the characteristic function of X 
which is defined as ~Sx(~) = E(exp( i (X) )  = Mx(i(). ~ is guaranteed to con- 
verge for all real ( and so is preferred in certain situations. 

Moment generating functions get their name from the fundamental property 
that 

OnMx ;=0 = E(Xn) (3.2) 
0C ~ 

for all positive integers n provided the differential exists. 

Let F be the distribution function of X.  Feller [12, Section XVII.2a] shows that if F has 
expectation # then 4~, the characteristic function o fF ,  has a derivative q¢ and qT(0) = ip.  However 
the converse is false. Exactly what does hold is spelt out in the next theorem. 

Theorem 1 (Pitman) The fol lowing are equivalent. 

1. ~'(o) = iu. 
2. As t --+ oo, t(1 - F( t )  + F ( - t ) )  -+ 0 and 

i t  t x d F ( x )  --+ #. (3.3) 

F ( - t )  := lira F(s )  as s T t. 

3. The average ( X1 + . . "  + X n  ) / n tends in probabiliO' to #, that is Pr(I(X1 + . . .  + X,~ ) / n - 
Pb > e) - -+Oasn  + ac. 

Note that the condition for the limit in (3.3) to exist is weaker than the requirement that E (X)  

exists if X is supported on the whole real line. For the expectation to exist requires f ~  x d F ( x )  

exists which means l i m t _ _ ~  lim,_~o f t  x d F ( x ) .  

The moment generating function of a bivariate distribution (X1, X2) is defined 
as 

Mxl,x2((x, ~2) = E(exp(~aX, + (2X2)). (3.4) 

It has the property that 

O"~+n Mx, .x= 
O~pO~ (0,o) = E ( X p X ~ )  (3.5) 

for all positive integers n, rn. 
The MGF of a normal variable with mean # and standard deviation a is 

M(~) = exp(#~ + a2~2/2). The MGF of a Poisson variable with mean n is 

M(¢) = exp(n(e ¢ - 1)), (3.6) 

a fact we will use repeatedly below. 
See Feller [12] and Billingsley [3] for more information on moment generating 

functions, characteristic functions and modes of convergence. 

116 Casualty Actuarial  Society Forum, Winte r  2006 



R W P  on Correlations and Dependendes Among A l l  Risk Sources Report 

3.2 Mixed Poisson Frequency Distributions 

Here we consider some basic facts about mixed Poisson frequency distributions. 

Let G be a non-negative mixing distribution with E(G) = 1 and Var(G) = c. 

The variable c is called the contagion. Let N be a claim count random variable 

where the conditional distribution of NIG = g is Poisson with mean gn for some 

non-negative real n. We will call N a G-mixed Poisson random variable. 

By (3.6), the MGF of a G-mixed Poisson is 

MN(() = E(e ¢N) = E(E(e4NIG)) = E(e ~G(e¢-')) = Mc(n(e ~ - 1)) (3.7) 

since Me(() := E(eCa). Thus 

E(N)  = M~v(O ) = nM~(O) = n, (3.8) 

because E(G) = M~(O) = 1, and 

E(N 2) = M~(0) = n2M~(O) + nM~(O) = n2(1 + c) + n. (3.9) 

Hence 

Finally 

Var(N) = n(1 + cn). (3.10) 

E ( N  3) = ~I~)(0)  = 7/3j~I~3)(0) --{- 3Tt2J~1~(0) --{-- gtAJb(0 ) (3.11) 

from which it is easy to compute the skewness. 

We can also assume G has mean n and work directly with G rather than nG, 

E(G) = 1. We will call both forms mixing distr!butions. 
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Table 3.1: Parameterizations of the Gamma Distribution 

M o d e l  D e n s i t y  M G F  

(a) o~,/3 

(b) a,/3 

(c) c~, 0 

xa-le-X/~ 

xa-l~oe-X~ 

Xo~- I E-x/O 
oor( ) 

M e a n  Var  

(1 - / 3 t )  -~ o63 o~/32 

(1 - t / /3)  - ~  a / / 3  o~/¢3 2 

(1 - tO) -'~ c~O o~0" 

3.3 Gamma and Negative Binomial Variables 

Recall that a negative binomial is a gamma-mixed Poisson: if NIG is distributed 

as a Poisson with mean G, and G has a gamma distribution, then the unconditional 

distribution of N is a negative binomial. Both the gamma and negative binomial 

occur in the literature with many different parameterizations. The main ones are 

shown in the Tables 3.1 and 3.2. 

In Table 3.1 model (a) is used by Microsoft Excel, Wang [37] and Johnson et 

al. [22, Chapter 17]. Model (b) is used by Bowers et al. [4]. Model (c) is used by 

Klugman, Panjer and Willmot in the Loss Models text [25]. Obviously model (c) 

is just model (a) with a change of notation. 

In Table 3.2 model (a) is used by Wang and Loss Models, (b) by Johnson et al. 

[24, Chapter 5] and (c) by Bowers et al. [4] and Excel. In model (c) the parameter 

r need not be an integer because the binomial coefficient can be computed as 

( r + x -  1) _ F ( r + x )  

z r ( r ) x !  ' 

an expression which is valid for all r. The cumulative distribution function of the 

negative binomial can be computed using the cumulative distribution of the beta 
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distribution. Using the model (c) parameterization, if N is negative binomial p, r 

then 

1 I p u r - l ( l  __ u)kdu P r ( N  < a n) = BETADIST(p; r, k + 1) := B(r, k + 1) .,0 

where B is the complete beta function. See Johnson, Kotz and Kemp [24, Eqn. 

5.31 ] for a derivation. BETADIST is the Excel beta cumulative distribution func- 

tion. 

The name negative binomial comes from an analogy with the binomial. A 

binomial variable has parameters n and p, mean np and variance npq, where p + 

q = 1. It is a sum o f n  independent Bernoulli variables B where P r (B  = 1) = 19 

and P r (B  = 0) = q = 1 - p. The MGF for a binomial is (q + pe¢) n and the 

probabilities are derived from the binomial expansion of the MGE By analogy 

the negative binomial can be defined in terms of the negative binomial expansion 

o f ( Q -  Pe¢) -k where Q = 1 + P,  P > 0 and k > 0. 

For the actuary there are two distinct ways of looking at the negative binomial 

which give very different results and it is important to understand these two views. 

First there is the contagion view, where the mixing distribution G has mean n and 

variance c producing a negative binomial with mean n and variance n(1 + cn). 

(In fact G is a gamma with model (a) parameters c~ = r and/3 = 1/r.) The word 

contagion was used by Heckman and Meyers [17] and is supposed to indicate a 

"contagion" of claim propensity driven by common shock uncertainty, such as 

claim inflation, economic activity, or weather. Here the variance grows with the 

square of n and the coefficient of  variation tends to v ~ > 0 as n --+ oo. Secondly, 

one can consider an over-dispersed family of Poisson variables with mean n and 

variance vn for some v > 1. We call v the variance multiplier. Now the coefficient 

of variation tends to 0 as n ~ oo. The notion of over-dispersion and its application 

in modeling is discussed in Clark and Thayer [5] and Verrall [34]. 
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Table 3.2: Parameterizations of the Negative Binomial Distribution 

Model Density MGF 

(a) a,  

(b) P,  k 

(c)p, r > 0 

3 x 1 (o~ +Xx -1)(1+--+--+--+--+--+-~) (l+--~:"J) 

( r+x-1)p,  qX 
X 

Mean 

(1 - /3(e  t - 1)) -a a3  o~3 2 

(Q - pet)  -k kP kPQ 

pr rq/p rq/p 2 
(1  - q~*)" 

Var 

Q = P  + l , q =  l - p , O  < p <  l andr > O, a n d P =  l/(;3+ l). 

Table 3.3: Fitting the Negative Binomial Distribution 

Param- Variance Multiplier 
Model eters Scale Shape 

(a)  r,  pq r = m / ( v  - 1) 

(b) k, P k = m / ( v  - 1) 

(c) r ,  p r = m / ( v  - 1) 

Contagion 
Scale Shape 

= v - 1  r = l / c  ~ = e n  

P = v - 1  k = l / c  P = c n  

p=Uv r=l /c  p=l / ( l+cn)  
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3 . 4  A g g r e g a t e  D i s t r i b u t i o n s  

Let A = X1 + --. + XN be an aggregate distribution, where N is a G-mixed 
Poisson and X, are iid severity random variables. Then, proceeding by analogy 
with 3.7, we have 

AIA(() = E(exp(((X1 + . . .  XN)))  

= EE(exp(((X1 + . . .  XN))[N)  

= E(E(exp((X1)N)) 

= E(E(Mx(~)NIG)) 

= E(exp(nG(Mx( ( )  - 1))) 

= M o ( n ( M x ( ( )  - 1)) (3.12) 

Thus 

and 

E(A) = M.~(0) = nM~(0)M~(0) = hE(X) (3.13) 

E(A 2) = M'~(O) 

= n2Mg(0)M5,.(o) 2 + nMb(0)M (0) 

= n2E(G2)E(X) 2 + nE(X2). (3.14) 

Hence, using the fact that E(G 2) = 1 + c, we get 

Var(A) = n2E(G2)E(X) 2 + nE(X 2) - n2E(X) 2 

= 2 + nE(X 
= (Var(N) - E(N))E(X) 2 + E(N)E(X 2) 

= Var(N)E(X) 2 + E(N)Var(X). (3.15) 

Continuing along the same vein we get 

E(A a) = E ( N ) E ( X  a) + E(Na)E(X) 3 + 3 E ( N 2 ) E ( X ) E ( X  2) 
(3.16) 

- 3 E ( N ) E ( X ) E ( X  2) - 3E(N2)E(X) 3 + 2E(N)E(X) 3. 

and so we can compute the skewness of A--remember that E[(A - E(A)) a] = 
E(A a) - 3E(A2)E(A) + 2E(A) a. Further moments can be computed using deriva- 
tives of the moment generating function. 

Having computed the mean, CV and skewness of the aggregate using these 
equations we can use the method of moments to fit a shifted lognormal or shifted 
gamma distribution. We turn next to a description of these handy distributions. 
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3.5 Shifted Gamma and Lognormal Distributions 

The shifted gamma and shifted lognormal distributions are versatile three parame- 

ter distributions whose method of moments parameters can be conveniently com- 

puted by closed formula. The examples below show that they also provide a very 

good approximation to aggregate loss distributions. The shifted gamma approxi- 

mation to an aggregate is discussed in Bowers et al. [4]. Properties of the shifted 

gamma and lognormal distributions, including the method of moments fit param- 

eters, are also shown in Daykin et al. [7, Chapter 3]. 

Let L have a lognormal distribution. Then S = s + L is a shifted lognormal, 

where s is a real number. Since s can be positive or negative and since L can equal 

s + L or s - L, the shifted lognormal can model distributions which are positively 

or negatively skewed, as well as distributions supported on the negative reals. The 

key facts about the shifted lognormal are shown in Table 3.4. The variable 7/is a 

solution to the cubic equation 

77 a + 3 r / -  ")' = 0 

where "7 is the skewness. 

Let G have a gamma distribution. Then T = s 4- G is a shifted gamma distri- 

bution, where s is a real number. Table 3.1 shows some common parametric forms 

for the gamma distribution. The key facts about the shifted gamma distribution 

are also shown in Table 3.4. 

The exponential is a special case of the gamma where a = 1. The X 2 is a 

special case where c~ = k/2 and/3 = 2 in the Excel parameterization. The Pareto 

is a mixture of exponentials where the mixing distribution is gamma. 
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Table 3.4: Shifted Gamma and Lognormal Distributions 

Item 
Parameters 
Mean m 
Variance 
CV, u 

Skewness, 7 

Shifted Gamma 
8, 0 G 0 

s + a O  
ceO 2 

2/v  

Shifted Lognormal 
8, # ,  cr 

s + exp(# + (72/2) 
m 2 exp(a  2 - 1) 

exp((~r ~ - 1)/2) 
7 = u( u2 + 3) 

Method of Moments Parameters 
n/a 71 

Shift variable, s 

O~ oro-  

f l o r / z  

m - af t  
4 / 7  2 

rouT~2 

7 I = u - 1 /u  where 

u a = ~ + 4/2 + ")'/2 
m(1 - u~) 

v/in(l + W2) 
ln(m - s) - a2/2  

3.6 Excess Frequency Distributions 

Given a ground-up claim count distribution N,  what is the distribution of the 

number of claims exceeding a certain threshold? We assume that severities are 

independent and identically distributed and that the probability of exceeding the 

threshold is q. Define an indicator variable I which takes value 0 if the claim is 

below the threshold and the value 1 if it exceeds the threshold. Thus P r ( I  = 0) = 

p = 1 - q and P r ( I  = 1) = q. Let b i n  be the moment generating function of N 

and N '  is the number of claims in excess of the threshold. By definition we can 

express N '  as an aggregate 

N '  = I1 + . . .  + IN. (3.17) 

Thus the moment generating function of N '  is 

= Mu(log(Mt( ))) 

= a6 , ( l og (p  + qe¢)) (3.18) 

Using indicator variables I is called p-thinning by Grandell [15]. 

Here are some examples. 
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Let N be Poisson with mean n. Then 

M?~,,(4) = exp(n(p + qe ~ - 1)) = exp(qn(e ~ - 1)) (3.19) 

so N '  is also Poisson with mean qn-- the simplest possible result. 

Next let N be a G-mixed Poisson. Thus 

= M u ( l o g ( p +  qe )) 

= M G ( n ( p  + qe - 1)) 

= MG(,,q(e  -- 1)) .  (3.20) 

Hence N '  is also a G-mixed Poisson with lower underlying claim count nq in 

place of n. 

In particular, if N has a negative binomial with parameters P and c (mean cP,  

Q = 1 + P,  moment generating function MN(~) = (Q - Pe¢)-l/c), then N '  

has parameters qP and c. If N has a Poisson-inverse Gaussian distribution with 

parameters # and/3, so 

MN(~) = exp (--#(X/1 + 2 ~ ( e ¢ -  1 ) - - 1 ) ) ,  

then N is also Poisson inverse Gaussian with parameters >q and/3q. 

In all cases the variance of N'  is lower than the variance of N and N '  is closer 

to Poisson than N in the sense that the variance to mean ratio has decreased. For 

the general G-mixed Poisson the ratio of variance to mean decreases from 1 + cn 

to 1 + cqn. As q ---+ 0 the variance to mean ratio approaches 1 and N '  approaches 

a Poisson distribution. The fact that N '  becomes Poisson is called the law of small 

numbers. 
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3.7 Negat ive  M u l t i n o m i a l  Dis tr ibut ion  and  Re la ted  

F r e q u e n c y  Dis tr ibut ions*  

When we consider mixed Poisson distributions we often regard G as carrying 

inter-risk correlation, or more evocatively "contagion", information about weather, 

the state of the economy and inflation, gas prices etc. Hence if we have two related 

frequency variables N1 and N2 we should expect to use the same G and produce 

a bivariate mixed Poisson where, conditional on G = 9 ,  Ni has a Poisson distri- 

bution with mean nig and N1 and At2 are conditionally independent. The MGF of 

such a distribution will be 

M(~'1,C2) = E(e aNI+;=Na) 

= L(E(e~'NI+~2N2[G)) 

= Ec(E(eOU~IG)E(e<~N~IG)) 
= Ec(exp(G(nl(e  (' - 1) + n2(e ~2 - 1)))) 

= J ~ I G ( ' r L I ( C  ~1 - -  1 )  "~ '/~,9(C ~2 - -  1)). (3.21) 

For example, if O is a gamma random variable with MGF 

Mc(~) = (1 - /3~) -k (3.22) 

(mean kl3, variance k/32) we get a bivariate frequency distribution with MGF 

J~l(#l,~2) = [1 - / 3 ( n 1 ( e  <~ - 1 ) + n 2 ( e  ~2 - 1))] -k  

= [ l + / 3 ~ n i - / 3 E n i e ¢ ' ] - k  

= (0 - - k  (3.23) 
i 

where Pi = /3n~, P = ~ i  Pi and Q = 1 + P. Equation (3.23) is the moment 
generating function for a negative multinomial distribution, as defined in John- 
son, Kotz and Kemp [23]. The negative multinomial distribution has positively 

correlated marginals as expected given its construction with a common contagion 

G. 
The form of the moment generating function for negative multinomial distri- 

bution can be generalized allowing us to construct multivariate frequency distri- 

butions ( N1, . . . , Nt  ) where 
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1. Each Ni is a negative binomial. 

2. The sum N1 + • • • + Nt under the multivariate distribution is also negative 

binomial. (In general, the sum of independent negative binomials will not 

be negative binomial.) 

3. The Ni are correlated. 

We will call such multivariate frequencies, with common mixing distributions, 

G-mixed multivariate Poisson distributions. 

3.7.1 Evolution of Claims Over Time* 

Hm:e is an application of the NMN distribution. If  A is an aggregate distribution 

representing ultimate losses we may want to determine a decomposition A = 

}--~-t Dt into a sum of losses paid at time t for t = 1 , . . . ,  T. 

If  A = X1 + . . .  + XN has a compound Poisson distribution then such a 

decomposition is easy to arrange. Let 7rt be the expected proportion of ultimate 

losses paid at time t, so }--~ft---1 r r~t = 1. By definition we mean 

E(Dt) = rrtE(A). (3.24) 

(Equation (3.24) is a different assumption to 

E(Dt)  = rrtE(Alinformation available at t - 1) = 7rtAt_l, 

which is closer to the problem actually faced by the reserving actuary. Our rrt's 

are prior estimates assumed known at time O. These types of differences have 

interesting implications for actuarial methods and they are explored further in 

Mack [28].) Now we seek a decomposition 

A = D1 + D2 + . . .  + DT (3.25) 

but we know only (3.24). The simplest approach is to assume that severity X is 

independent of time and that 7rtn of the total n claims are paid at time t. If  we 
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further assume that the number of claims paid at time t is also Poisson, then the 

moment generating function of D1 + • . .  + DT is given by 

MD,+...+Dr(() = ~ exp(r:,n(Mx(() - i)) 

=exp(n(Z~tMx(~ ) - I)) 
t 

= exp (n (Mx( ( )  - 1)) 

= MA((). (3.26) 

Thus we have a very simple decomposition for (3.25): the individual Dt are inde- 

pendent compound Poisson variables with expected claim count rrtn and severity 

distribution X. 

Moving one step further, it is often observed in practice that average severity 

increases with t so the assumption that X is fixed for all t is unrealistic. It may be 

better to assume that losses which close at time t are samples of a random variable 

Xt. As above, we assume that the expected number of such losses is 7r~n where 

n is the expected ultimate number of claims, and r~ adjusts the original rot for the 

difference in average severity E(X)  vs. E(Xt). Now 

MD,+...+Dr(() = I I  exp(rr~n(Mx,(() - 1)) 
t 

= exp(n(Z rc~alx,(~) -- i)) 
t 

= exp(n(Mx, ( ( )  - 1)) 

= ~IA (¢) (3.27) 

where X '  is a mixture of the Xt with weights 7r~. Equation (3.27) is a standard 

result in actuarial science, see Bowers et al. [4]. 

If we try to replicate the compound Poisson argument using a negative bino- 

mial distribution for N we will clearly fail. However if X is defined as a mixture 

of Xt with weights 7rt, as before, then we can write 

~IDI,...,DT ( ¢ 1 , . . - ,  CT) = (Q - Z PrrtMx~ (¢t)) -k (3.28) 
t 
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and so 

MA(¢) = aiD,,. ,V~(¢ , . . . ,  4) = (Q - ~ e , ~ l x , ( ¢ ) )  -~ = (O - P M x ( ¢ ) )  -~ 
t 

(3.29) 

where Pt := rctP. Equation (3.28) is the MGF for a negative multinomial dis- 

tribution, as defined in the previous section and Johnson, Kotz and Kemp [23]. 

As we have seen the negative multinomial distribution has positively correlated 

marginals, in line with our prior notions of liability dynamics. It therefore pro- 

vides a good model for the decomposition of ultimate losses into losses paid each 

period. 

3.7.2 Related Multivariate Frequency Distributions* 

We can use the same trick with other mixing distributions than the gamma. The 

Poisson inverse Gaussian (PIG) distribution is an inverse Gaussian mixture of 

Poissons, just as the negative binomial distribution is a gamma mixture. The MGF 

is 

M(~') = e x p ( - r ( v / 1  +/3(e~ - 1) - 1)). (3.30) 

The mean is r3 and the variance is r3(1 +/3). We can define a multivariate PIG 

(MPIG) by 

M(¢I,..., @) = exp(-r(~l + ~/3i(e~ - i) - I)). (3.31) 

Sichel's distribution is an generalized-inverse Gaussian mixture of Poissons. 

The MGF is 
Kv(wV/1 - 2/3(e¢ - 1)) 

AI(4) = K~(co)(1 - 2/3(e¢ - 1))~/2 (3.32) 

The mean and variance are given in Johnson, Kotz and Kemp [24, page 456]. 

Clearly we can apply the same techniques to get another multivariate frequency 

distribution. 
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The Poisson-Pascal distribution is a Poisson-stopped sum of negative binomi- 

als. It has moment generating function 

M(~) = exp(0((1 - P(e ~ - 1)) -~ - 1)) (3.33) 

and so will also yield another multivariate family. The mean and variance are 

given by 

# = OkP (3.34) 

1~2 = OkP(Q + k,P). (3.35) 

3.7.3 Excess count interpretation of G-mixed multivariate Pois- 
son distributions* 

The reader has probably realized that a G-mixed multivariate Poisson seems closely 

related to a single G-mixed Poisson and a series of indicator variables, combin- 

ing results from the previous sub-sections with Section 3.6. Let N be G-mixed 

Poisson with parameter n and Var(G) = c. Let (N1, N2) be G-mixed bivariate 

Poisson with parameters nl and n2 and the same G, so the MGF of (N1, ?v~) is 

M1(~1,~2) = Ma(nl (e  ¢1 - 1 ) +  n2(e c2 - 1)). (3.36) 

Finally let (I, J )  be a bivariate distribution supported on {0, 1} x {0, 1} with 

P r ( I  = 0, J = 0) = p0o 

P r ( I  = 1, J = 0) = pm 

P r ( I  = 0, J = 1) = pol 

P r ( I  = 1, J = 1) = pn  

and y~ p , j  = 1. 

We can define a new bivariate distribution from (I, J )  and N as 

(M1, M2) = (I1, al) + . . .  + (IN, dx).  (3.37) 
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The MGF of (M1, M2) is 

]~f2(~l, ~2) = Mc(n(pl le  ¢x+¢= + p l o e  ¢1 +Pine ¢2 +Poo). (3.38) 

Thus, if Pll = 0 we see the single-frequency sum of the bivariate (M1, M2) is 

actually a G-mixed bivariate Poisson. If P00 = 0 then n = T/. 1 -1- 122, otherwise 

(1 - Poo)n = nl + n2 and there are some extraneous "zero" claims. However, if 

Pn  :P- 0 then the single frequency sum is not a G-mixed bivariate Poisson. 

Here is an interesting interpretation and application of (I ,  or). We can regard 1 

as an indicator of whether a claim has been reported at time t and J and indicator 

of whether the claim is closed. Then 

P r ( I  = 0, J = 0) = meaningless 

P r ( I  = 1, J = 0) = reported claim which closes without payment 

P r ( I  = 0, J = 1) = claim not yet reported which closes with payment 

P r ( I  = 1, J = 1) = claim reported and closed with payment. 

Combining with a distribution N of ultimate claims we can use (3.37) to produce 

(M1, M2) = (11 + .-- + 1N, 3"1 + "'" + JN)--a  bivariate distribution of (claims 

reported at time t, ultimate number of claims)! Note the value (0, 0) is a meaning- 

less annoyance (it scales n) and we assume P00 = 0. The three other parameters 

can easily be estimated using standard actuarial methods. 

Given such a bivariate and a known number of  claims reported we can produce 

a posterior distribution of ultimate claims. Furthermore, in all these techniques we 

can extend the simple count indicators (I ,  J )  to be the distribution of case incurred 

losses and ultimate losses. Then we would get a bivariate distribution of case 

incurred to date and ultimate losses. I believe there is a lot of useful information 

that could be wrought from these methods and that they deserve further study. 

They naturually give confidence intervals on reserve ranges, for example. 

We end with a numerical example illustrating the theory we have developed 

and showing another possible application. Rather than interpreting p,j as reported 
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and ultimate claims we could interpret them as claims from line A and line B, 

where there is some expectation these claim would be correlated. For example A 

could be auto liability and B workers compensation for a trucking insured. Let 

c = 0.02 be the common contagion and n = 250. Then let 

P r ( I  = 0, J = 0) = 0 

P r ( I  = 1, a = 0) = 0.45 

P r ( I  = 0, J = 1) = 0.05 

P r ( I  = 1, J = 1) = 0.50. 

We interpret I as indicating a workers compensation claim and J as indicating 

an auto liability claim. The distribution says that when there is an auto liability 

claim (J  = 1) there is almost always an injury to the driver, resulting in a workers 

compensation claim (I  = 1). However, there are many situations where the driver 

is injured but there is no liability claim--such as back injuries. Overall we expect 

250(0.45 + 0.50) = 237.5 workers compensation claims and 250(0.05 + 0.5) = 

137.5 auto liability claims and 250 occurrences. 

We will consider the single-frequency bivariate distribution and the nega- 

tive multinomial. We have seen that the negative multinomial distribution will 

be slightly different because Pn :fl 0. The appropriate parameters are nl = 

250(P10 q- P11) = 237.5 and nl = 250(pol + P l l )  - -  137.5. Figure 3.1 shows 

the negative multinomial bivariate (top plot) and the single-frequency bivariate 

aggregate of (I,  J )  (bottom plot). Because of the correlation between 1 and J ,  

pll ---- 0 .5 ,  the lower plot shows more correlation in aggregates and the con- 

ditional distributions have less dispersion. Figure 3.2 shows the two marginal 

distributions, which are negative binomial c = 0.02 and mean 237.5 and 137.5 re- 

spectively, the sum of these two variables assuming they are independent (labelled 

"independent sum"), the sum assuming the negative muitinomial joint distribution 

("NMN Sum") which is identical to a negative binomial with c = 0.02 and mean 

350 = 237.5 + 137.5, the total number of claims from both lines, and finally, the 

sum with dependent (I, J )  ("bivariate sum"). The last sum is not the same as the 

negative binomial sum; it has a different MGF. 
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Figure 3.2 also shows the difference between the sum of two independent neg- 

ative binomials with means nl and n2 and contagion c and a negative binomial 

with mean nl + n2 and contagion c. The difference is clearly very material in the 

tails and is an object lesson to modelers who subdivide their book into homoge- 

neous parts but then add up those parts assuming independence. Such an approach 

is wrong and must be avoided. 

As the contagion c increases the effects of G-mixing dominate and the differ- 

ence between the two bivariate distributions decreases, and conversely as c de- 

creases to zero the effect is magnified. The value c = 0.02 was selected to balance 

these two effects. 
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Figure 3.1: Comparison of negative multinomial (top) and single frequency bi- 
variate claim count (bottom) bivariate distributions. 
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Figure 3.2: Comparison of negative multinomial and single frequency bivariate 
claim count marginal and total distributions. 
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3.8 Fast Fourier Transforms 

The FFF method is a miraculous technique for computing aggregate distributions. 

It is especially effective when the expected claim count is relatively small and the 

underlying severity distribution is bounded. These assumptions are true for many 

excess of loss reinsurance treaties, for example. Thus the FFT is very useful when 

quoting excess layers with annual aggregate deductibles or other variable features. 

The FFT provides a discrete approximation to the moment generating function. 

To use the FFT method, first "bucket" (or quantize) the severity distribution 

into a density vector x = ( x l , . . . ,  xm) whose length m is a power of two m = 2 n. 

Here 

zi = Pr(( i  - 1/2)b < X < (i + 1/2)b) (3.39) 

Xl = Pr (X  < b/2), z,~ = P r (X  > (m - 1/2)b) (3.40) 

for some fixed b. We call b the bucket size. Note ~ z, = 1 by construction. The 

FFT of the m x 1 vector x is another m x 1 vector i whose j th  component is 

2 n - - 1  

zk exp( 2rri j k /2n). (3.41) 
k=O 

The coefficients of ~: are complex numbers. It is also possible to express ~ = Fx 

where F is an appropriate matrix of complex roots of unity, so there is nothing 

inherently mysterious about a FFr.  The trick is that there exists a very efficient 

algorithm for computing (3.41). Rather than taking time proportional to m s, as 

one would expect, it can be computed in time proportional to m log(m). The 

difference between m log(m) and m 2 time is the difference between practically 

possible and practically impossible. 

You can use the inverse FFT to recover x from its transform ~. The inverse 

FFT is computed using the same equation (3.41) as the FFT except there is a 

minus sign in the exponent and the result is divided by 2 n. Because the equation 

is essentially the same, the inversion process can also be computed in m log(m) 

time. 
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The next step is magic in actuarial science. Remember that if N is a G-mixed 

Poisson and A = X1 + • • • + X N  is an aggregate distribution then 

~IA(~) = ~IG(n(~IX(~)  -- 1)). (3.42) 

Using FFTs you can replace the function M x  with the discrete approximation 

vector ~i and compute 

= M a ( n ( i -  1)) (3.43) 

component-by-component to get an approximation vector to the function MA. 

You can then use the inverse FFT to recover an discrete approximation a of A 

from ~i! See Wang [37] for more details. 

Similar tricks are possible in two dimensions--see Press et al. [31 ] and Homer 

and Clark [20] for a discussion. 

The FFT allows us to use the following very simple method to qualitatively ap- 

proximate the density of an aggregate of dependent marginals X1,. • •, Xn given 

a correlation matrix E. First use the FFT method to compute the sum S' of the X~ 

as though they were independent. Let Var(S') = a '2 and let a 2 be the variance of 

the sum of the X~ implied by E. Next use the FFT to add a further "noise" ran- 

dom variable N to S' with mean zero and variance a 2 - a '2. Two obvious choices 

for the distribution of N are normal or shifted lognormal. Then S' + N has the 

same mean and variance as the sum of the dependent variables Xi. The range of 

possible choices for N highlights once again that knowing the marginals and cor- 

relation structure is not enough to determine the whole multivariate distribution. It 

is an interesting question whether all possible choices of N correspond to actual 

multivariate structures for the X, and conversely whether all multivariate struc- 

tures correspond to an N. (It is easy to use MGFs to deconvolve N from the true 

sum using Fourier methods; the question is whether the resulting "distribution" is 

non-negative.) 

Heckman and Meyers [17] used Fourier transforms to compute aggregate dis- 

tributions by numerically integrating the characteristic function. Direct inversion 

of the Fourier transform is also possible using FFrs.  The application of FFrs  is 

not completely straight forward because of certain aspects of the approximations 

involved. The details are very clearly explained in Menn and Rachev [29]. Their 

method allows the use of FFTs to determine densities for distributions which have 

analytic MGFs but not densities--notably the class of stable distributions. 
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3.9 Correlated Aggregate Distributions 

Here we extend some of the ideas in Section 3.7.3 from plain frequency distri- 

butions to aggregate distributions. Begin with bivariate aggregate distributions. 

There are two different situations which commonly arise. First we could model a 

bivariate severity distribution and a univariate count distribution: 

(A, B) = (Xl, Y1) + " "  + (XN, YN). (3.44) 

Equation (3.44) arises naturally as the distribution of losses and allocated expense, 

ceded and retained losses, reported and ultimate claims, and in many other situa- 

tions. Secondly we could model 

(A,B) = (X~ +. . .  + XM, Y~ +""  + YN) (3.45) 

where Xi and ~ are independent severities and (A1, N) is a bivariate frequency 

distribution. (3.45) could be used to model losses in a clash policy. 

We will use the following notation. A = X1 + . - .  +XM and B = Y1 +" • • + YN 

are two aggregate distributions, with Xi iid and Yj iid, but neither X and Y nor 

M and N necessarily independent. Let E(X)  = x and E(Y) = y, Var(X) = vx 

and Var(Y) = %. Let E(M) = m, E(N)  = n, c be the contagion of M and d 

that of N. Hence Var(M) = m(1 + c r a )  and Var(N) = n(1 + dn). 

Will now calculate the correlation coefficient between A and B in four situa- 

tions. 

3.9.1 Correlated Severities, Single Frequency 

Assume that the bivariate severity distribution (X. Y) has moment generating 

function M(xy)(~', r) .  Also assume that the claim count distribution N is a G- 

mixed Poisson. Then, just as for univariate aggregate distributions, the MGF of 

the bivariate aggregate (A, B) is 

~I(A,B)(~, T) = ~IG(Zl,(~I(X,y)(~, T) -- 1)). (3.46) 
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Therefore, since E(G) = i and E(G 2) = 1 + c, 

E(AB) = 0 2 J ~ ( A ' B )  
O~Or (o,o) 

: . ,  

O ~  + o;or 
= (1 + c),~xy +,~E(XY) 

= (1 + c)n2xy + nCov(X, Y) + nxy. (3.47) 

The value of Coy(X, Y) will depend on the particular bivarate severity distribu- 

tion. 

For example, suppose that Z represents ground up losses, X represents a re- 

tention to a and Y losses excess of a (per ground up claim), so Z = X + Y. Then 

(X, Y) is a bivariate severity distribution. Since Y is zero when Z < a we have 

Cov(X, Y) = (a - x)y. 

3 . 9 . 2  B i v a r i a t e  F r e q u e n c y  

The second method for generating correlated aggregate distributions is to use a 

bivariate frequency distribution. So, suppose (M, N) has a G-mixed bivariate 

Poisson distribution. The variance of A is given by Equation (3.15). To compute 

the covariance of A and B write the bivariate MGF of (A, B) as 

- ~ ( A , B ) ( ~ ,  ~)  = J~f(~,  71) = A I G ( T t ' t ( J ~ X ( ~ )  - -  1) +n(Mv(~) - 1)) = M c ( ¢ ( ~ ,  71)) 

(3.48) 

where the last equality defines ~b. Then, evaluating at the partial derivatives at 

zero, we get 

Hence 

E(AB) 
02 M 
0¢ 0~ 
02Me O~ O~ OMG 02¢ 

- -  . q -  - -  - -  

Ot 2 0 (  O~ Ot 0~0~ 
= (1 + c ) m x n y .  (3.49) 

Cov(A, B) = E(AB) - E(A)E(B) = cmnxy. (3.50) 
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3.9.3 Parameter Uncertainty 

It is common for actuaries to work with point estimates as though they are certain. 

In reality there is a range around any point estimate. We now work through one 

possible implication of such parameter uncertainty. We will model E(A) = R and 

E(B) = S with R and S correlated random variables, and A and B conditionally 

independent given R and S. We will assume for simplicity that the severities 

X and Y are fixed and that the uncertainty all comes from claim counts. The 

reader can extend the model to varying severities as an exercise. R and S pick up 

uncertainty in items like the trend factor, tail factors and other economic variables, 

as well as the natural correlation induced through actuarial methods such as the 

Bornheutter-Ferguson. 

Suppose E(R) = r, E(S) = s, Var(R) = Vr, Var(S) = vs and let p be the 

correlation coefficient between R and S. 

By (3.15) the conditional distribution of AIR is a mixed compound Poisson 

distribution with expected claim count R/x and contagion c. Therefore the con- 

ditional variance is 

Var(A[R) = E(MIR)Var(X) ÷Var(MIR)E(X) 2 

= R / x v ~  + R / x O  + c n / x ) ~  2 

= xR(1 + v~/x 2) + cR 2, (3.51) 

and the unconditional variance of A is 

Var(A) = E(Var(AIR))  + V a r ( E ( A I R ) )  

= E ( x R ( v ~ / x  ~ + 1) + cR  ~) + Var(R) 

= x r ( y x / X  2 + 1) --~ c(v r + r 2) --~ v r. (3.52) 

Next, because A and B are conditionally independent given R and S, 

Cov(A, B) = E(Cov(A, B[R,S)) + Cov(E(AIR), E(BIS)) 

= Coy(R, S). (3.53) 

Note Equation (3.53) is only true if we assume A ~ B. 
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3.9.4 Parameter Uncertainty and Bivariate Frequency 

Finally, suppose E(A) = R, E(B) = S with R and S correlated parameters 

and conditional on (R, S) suppose that (M, N) has a G-mixed bivariate Poisson 

distribution. By (3.50) Coy(A, BIR, S) = cRS. The unconditional variances are 

as given in (3.52). The covariance term is 

Cov(A, B) = E(Cov(A, BIR, S)) + Cov(E(AIR),E(BIS)) 

= cE(RS) + Cov(R, s)  

= +  )Cov(R, s) + 

= p Vv/7~%~v%(1 + c) + crs. (3.54) 

3.10 Severity is Irrelevant 

In some cases the actual form of the severity distribution is essentially irrelevant 

to the shape of the aggregate distribution. Consider an aggregate with a G-mixed 

Poisson frequency distribution. If the expected claim count n is large and if the 

severity is tame (roughly tame means "has a variance"; any severity from a policy 

with a limit is tame; unlimited workers compensation may not be tame) then par- 

ticulars of the severity distribution diversify away in the aggregate. Moreover the 

variability from the Poisson claim count component also diversifies away and the 

shape of the aggregate distribution converges to the shape of the frequency mix- 

ing distribution G. Another way of saying the same thing is that the normalized 

distribution of aggregate losses (aggregate losses divided by expected aggregate 

losses) converges in distribution to G. 

We can prove these assertions using moment generating functions. Let Xn be 

a sequence of random variables with distribution functions Fn and let X another 

random variable with distribution F. If F,~(z) --+ F(z) as n ~ to for every point 

of continuity of F then we say Fn converges weakly to F and that Xn converges 

in distribution to F. 

Convergence in distribution is a relatively weak form of  convergence. A stronger form is 

convergence in probability, which means  for all e > 0 P r ( l X n  - X I > e) ---* 0 as n ~ a t .  I f X n  
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converges to X in probability then Xn  also converges to X in distribution. The converse is false. 

For example, let X n  = Y and X be binomial 0/1 random variables with P r ( Y  = 1) = P r ( X  = 

1) = 1/2. Then  X n  converges to X in distribution. However, since Pr(IX - YI = 1) = 1/2, Xn 

does not converge to X in probability. 

It is a fact that Xn converges to X if the MGFs Mn of Xn converge to the 

MFG of M of X for all t: Mn(t) --* M ( t )  as n ~ ~ .  See Feller [12] for more 

details. We can now prove the following theorem. 

Proposition 1 Let N be a G-mixed Poisson distribution with mean n, G with 

mean 1 and variance c, and let X be an independent severity with mean x and 

variance x(1 + '3'2). Let A = X1 + ' "  + X N  and a = nx. Then A / a  converges in 

distribution to G, so 

e r ( A / a  < c~) ---, Pr(G < c~) (3.55) 

as n --+ co. Hence 

Proof: By (3.12) 

i x(1 + 72) x/~. (3.56) I ) = c + + 

a 

MA(()  = M c ( n ( M x ( ( )  - 1)) 

and so using Taylor's expansion we can write 

lim MA/a(() 
n ~ O 0  

= lim M a ( ( / a )  

= ] i m o o M G ( n ( M x ( ( / n x )  - 1)) 

= } i r a  + 

= lim M e ( (  + n R ( ( / n x ) ) )  
n ~ O 0  

= M a ( ( )  

(3.57) 

for some remainder function R(t)  = O(t2). Note that the assumptions on the 

mean and variance of X guarantee M~(0) = x = E(X) and that the remainder 

term in Taylor's expansion actually is O(t2). The second part is trivial. 
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Figure 3.3: Theoretical distribution of scaled aggregate losses with no parameter 
or structure uncertainty and Poisson frequency. 
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F i g u r e  3 . 4 :  T h e o r e t i c a l  d i s t r i b u t i o n  e n v e l o p e  o f  s c a l e d  a g g r e g a t e  l o s s e s  w i t h  a 

g a m m a  m i x e d  P o i s s o n  f r e q u e n c y  w i t h  m i x i n g  v a r i a n c e  c = 0 . 0 6 2 5 .  
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The proposition implies that if the frequency distribution is actually a Pois- 

son, so the mixing distribution G is G = 1 with probability 1, then the loss ratio 

distribution of a very large book will tend to the distribution concentrated at the 

expected, hence the expression that "with no parameter risk the process risk com- 

pletely diversifies away." 

Figures 3.3 and 3.4 illustrate the proposition, showing how aggregates change 

shape as expected counts increase. 

In Figure 3.3 G = 1 and the claim count is Poisson. Here the scaled distribu- 

tions get more and more concentrated about the expected value (scaled to 1.0). 

In Figure 3.4 G has a gamma distribution with variance 0.0625 (asymptotic 

CV of 25%). Now the scaled aggregate distributions converge to G. 

It is also interesting to compute the correlation between A and G. We have 

Coy(A, G) = E(AG) - E(A)E(G) 

= E E ( A G I G ) -  nx 

= E(nxG 2 ) - n x  

: n X C ~  (3.58) 

and therefore 

Corr(A, G) = nxc /x /nx  7 + n(1 + cn)V"c ~ 1 (3.59) 

a s h - +  c~. 

The proposition shows that in some situations severity is irrelevant to large 

books of business. However, it is easy to think of examples where severity is 

very important, even for large books of business. For example, severity becomes 

important in excess of loss reinsurance when it is not clear whether a loss distri- 

bution effectively exposes an excess layer. There, the difference in severity curves 

can amount to the difference between substantial loss exposure and none. The 

proposition does not say that any uncertainty surrounding the severity distribution 

diversifies away; it is only true when the severity distribution is known with cer- 

tainty. As is often the case with risk management metrics, great care needs to be 

taken when applying general statements to particular situations! 
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Chapter 4 

THE IMAN-CONOVER METHOD 

Here is the basic idea of the Iman-Conover method. Given samples of n val- 

ues from two known marginal distributions X and Y and a desired correlation/9 

between them, re-order the samples to have the same rank order as a reference 

distribution, of size n x 2, with linear correlation/9. Since linear correlation and 

rank correlation are typically close, the re-ordered output will have approximately 

the desired correlation structure. What makes the IC method work so effectively is 

the existence of easy algorithms to determine samples from reference distributions 

with prescribed linear correlation structures. 

Section 4.1 explains the Choleski trick for generating multivariate reference 

distributions with given correlation structure. Section 4.2 gives a formal algorith- 

mic description of the IC method. 

4.1 Theoretical Derivation 

Suppose that M is an n element sample from an r dimensional multivariate dis- 

tribution, so M is an n × r matrix. Assume that the columns of M are uncorre- 

lated, have mean zero, and standard deviation one. Let M' denote the transpose of 

M. These assumptions imply that the correlation matrix of the sample M can be 

computed as n -aM'M,  and because the columns are independent, n -aM'M = I. 

(There is no need to scale the covariance matrix by the row and column standard 
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deviations because they are all one. In general n - I M ' M  is the covariance matrix 

of M.) 

Let S be a correlation matrix, i.e. S is a positive semi-definite symmetric ma- 

trix with l ' s  on the diagonal and all elements <_ 1 in absolute value. In order to 

rule out linearly dependent variables assume S is positive definite. These assump- 

tions ensure S has a Choleski decomposition 

S = C 'C (4.1) 

for some upper triangular matrix C, see Golub [13] or Press et al. [31]. Set T = 

MC. The columns of T still have mean zero, because they are linear combinations 

of the columns of M which have zero mean by assumption. It is less obvious, but 

still true, that the columns of T still have standard deviation one. To see why, 

remember that the covariance matrix of T is 

n - a T ' T  = n - I C ' M ' M C  = C 'C  = S, (4.2) 

since n - I M ' M  = I is the identity by assumption. Now S is actually the correlation 

matrix too because the diagonal is scaled to one, so the covariance and correlation 

matrices coincide. The process of converting M, which is easy to simulate, into 

T, which has the desired correlation structure S, is the theoretical basis of the IC 

method. 

It is important to note that estimates of correlation matrices, depending on how 

they are constructed, need not have the mathematical properties of  a correlation 

matrix. Therefore, when trying to use an estimate of a correlation matrix in an 

algorithm, such as the Iman-Conover, which actually requires a proper correlation 

matrix as input, it may be necessary to check the input matrix does have the correct 

mathematical properties. 

Next we discuss how to make n x r matrices M, with independent, mean zero 

columns, The basic idea is to take n numbers a l , . . . ,  a ,  with ~'-~ a i = 0 and 

n -  ~ ~-'~, a, 2 = 1, use them to form one n x 1 column of M, and then to copy it r 

times. Finally randomly permute the entries in each column to make them inde- 

pendent as columns of random variables. Iman and Conover call the ai "scores". 
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They discuss several possible definitions for the scores, including scaled versions 

of a~ = i (ranks) and ai uniformly distributed. They note that the shape of the 

output multivariate distribution depends on the scores. All of the examples in 

their paper use normal scores. We will discuss normal scores here, and consider 

alternatives in Section 4.4.1. 

Given that the scores will be based on normal random variables, we can either 

simulate n random standard normal variables and then shift and re-scale to ensure 

mean zero and standard deviation one, or we can use a stratified sample from the 

standard normal, a, = ~b-l(i/(n + 1)). By construction, the stratified sample 

has mean zero which is an advantage. Also, by symmetry, using the stratified 

sample halves the number of calls to ~b -1. For these two reasons we prefer it in 

the algorithm below. 

The correlation matrix of M, constructed by randomly permuting the scores in 

each column, will only be approximately equal to I because of random simulation 

error. In order to correct for the slight error which could be introduced Iman and 

Conover use another adjustment in their algorithm. Let E = n - I M ' M  be the 

actual correlation matrix of M and let E = F 'F be the Choleski decomposition of 

E, and define T = MF-1C.  The columns o f T  have mean zero, and the covariance 

matrix of T is 

n - I T ' T  = n - I C ' F ' - I M ' M F - 1 C  

= C 'F ' - IEF-1C 

= C 'F ' - IF 'FF-1  C 

= C'C 

= S, (4.3) 

and hence T has correlation matrix exactly equal to S, as desired. If E is singular 

then the column shuffle needs to be repeated. 

Now the reference distribution T with exact correlation structure S is in hand, 

all that remains to complete the IC method is to re-order the each column of the 

input distribution X to have the same rank order as the corresponding column of 

T. 
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4.2 Algorithm 

Here is a more algorithmic description of the IC method. The description uses 

normal scores and the Choleski method to determine the reference distribution. 

As we discussed above, it is possible to make other choices in place of these and 

they are discussed in Section 4.4. We will actually present two versions of the 

core algorithm. The first, called "Simple Algorithm" deals with the various ma- 

trix operations at a high level. The second "Detailed Algorithm" takes a more so- 

phisticated approach to the matrix operations, including referencing appropriate 

Lapack routines [1]. Lapack is a standard set of linear algebra functions, Soft- 

ware vendors provide very high performance implementations of Lapack, many 

of which are used in CPU benchmarks. Several free Windows implementations 

are available on the web. The software described in the Appendix uses the Intel 

Performance http://www.intel.com/softwarelproducts/perflibl. The reader should 

study the simple algorithm first to understand what is going in the IC method. In 

order to code a high performance implementation you should follow the steps out- 

lined in the detailed algorithm. Both algorithms have the same inputs and outputs. 

Inputs: An n x r matrix X consisting of n samples from each of r marginal 

distributions, and a desired correlation matrix S. 

The IC method does not address how the columns of X are determined. It is 

presumed that the reader has sampled from the appropriate distributions in some 

intelligent manner. The matrix S must be a correlation matrix for linearly indepen- 

dent random variables, so it must be symmetric and positive definite. If S is not 

symmetric positive semi-definite the algorithm will fail at the Choleski decompo- 

sition step. The output is a matrix T each of whose columns is a permutation of 

the corresponding column of X and whose approximate correlation matrix is S. 

Simple Algorithm: 

1. Make one column of scores a, = gP-l(i/(n + 1)) for i = 1 , . . .  , n  and 

rescale to have standard deviation one. 
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2. Copy the scores r times to make the score matrix M. 

3. Randomly permute the entries in each column of M. 

4. Compute the Correlation matrix E = n- IM'M of M. 

5. Compute the Choleski decomposition E = F 'F of E. 

6. Compute the Choleski decomposition S = C'C of the desired correlation 

matrix S. 

7. Compute T = MF-1C. The matrix T has exactly the desired correlation 

structure by Equation (4.3). 

8. Let Y be the input matrix X with each column reordered to have exactly the 

same rank ordering as the corresponding column of T. 

Detailed Algorithm: 

1. Compute the Choleski decomposition of S, S = C'C, with C upper triangu- 

lar. If the Choleski algorithm fails then S is not a valid correlation matrix. 

Flag an error and exit. Checking S is a correlation matrix in Step 1 avoids 

performing whsted calculations and allows the routine to exit as quickly as 

possible. Also check that all the diagonal entries of S are 1 so S has full 

rank. Again flag an error and exit if not. The Lapack routine DPOTRF 

can use be used to compute the Choleski decomposition. In the absence of 

Lapack, C = (cia) can be computed recursively using 

.4--1 
sij - Y~k=l CikCjk (4.4) 

CiJ ~ ¢ ~"~j--1 
1 - z_,k=l c2jk 

for 1 < i < j _< n--since all the diagonal elements of S equal one. The 

empty sum }-~0 ° = 0 and for j > i the denominator of (4.4) equals c,~ and 

the elements of C should be calculated from left to right, top to bottom. See 

Wang [37, p. 889] or Herzog [19]. 
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2 .  L e t  m = Ln/2J be the largest integer less than or equal to hi2 and v i  = 

q?-l(il(2m+ 1)) fo r i  = 1 , . . .  ,m. 

3. If n is odd set 

V -.~ ( V r a ,  V m - 1 ,  . . . , V l ,  O,  - - V l ,  . . . , - - V m )  

and if n is even set 

V = ( V m ,  V r n - 1 , . . . , t ' l , - - V l , . . . , - - V m ) .  

Here we have chosen to use normal scores. Other distributions could be 

used in place of the normal, as discussed in Section 4.4.1. Also note that 

by taking advantage of the symmetry of the normal distribution halves the 

number of calls to ~-1 which is relatively computationally expensive. If 

multiple calls will be made to the IC algorithm then store v for use in future 

calls. 

4. Form the n x r score matrix M from r copies of the scores vector v. 

5. Compute m, zx = n -1 )-~ v/2, the variance of v. Note that ~-'~i vi = 0 by 

construction. 

6. Randomly shuffle columns 2 , . . . , r  of  the score matrix M. Knuth [26, 

pp.139-41] gives the following algorithm for a random shuffle, which we 

have implemented it in Visual Basic. 

'' vtemp[O to n-l] is the array being shuffled. 

'' vtemp[j] is the end, you work backwards up the 

'' array shuffling each element. 

'' Rnd() returns a uniform random variable 

'' between zero and one. 

dim j as long, vtemp[O to n-l] as double 

dim temp as double, u as double 
Is 

'' populate vtemp 
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j=n-1 
do while j > 0 

u = Rnd() 

k = CLng(j * u) 

temp = vtemp[j] 

vtemp[j] = vtemp[k] 

vtemp[k] = temp 

j=j -i 

loop 

. Compute the correlation matrix E of the shuffled score matrix M. Each 

column of M has mean zero, by construction, and variance rnxz. The cor- 

relation matrix is obtained by dividing each element of M'M by rex,. The 

matrix product can be computed using the Lapack routine DGEMM. If E is 

singular repeat step 6. 

8. Determine Choleski decomposition E = F'F of E using the Lapack rou- 

tine DPOTRF. Because E is a correlation matrix it must be symmetric and 

positive definite and so is guaranteed to have a Choleski root. 

9. Compute F-1C using the Lapack routine DTRTRS to solve the linear equa- 

tion FA = C for A. Solving the linear equation avoids a time consuming 

matrix inversion and multiplication. The routine DTRTRS is optimized for 

upper triangular input matrices. 

10. Compute the correlated scores T = MF-1C = MA using DGEMM. The 

matrix T has exactly the desired correlation structure. 

11. Compute the ranks of the elements of T. Ranks are computed by indexing 

the columns of T as described in Section 8.4 of [31]. Let r(k) denote the 

index of the kth ranked element of T. See Appendix B for VBA code to 

perform indexing. 

12. Let Y be the n × r matrix with ith column equal to the ith column of the input 

matrix X given the same rank order as T. The re-ordering is performed using 

the ranks computed in the previous step. First sort the input columns into 

ascending order if they are not already sorted and then set Y,,k = X~,r(k). 
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Outputs: The output of the algorithm is a matrix Y each of whose columns is a 
permutation of the corresponding column of the input matrix X. The rank correla- 
tion matrix of Y is identical to that of a multivariate distribution with correlation 
matrix S. 

4.3 Simple Example of Iman-Conover 

Having explained the IC method, we now give a simple example to explicitly show 
all the details. The example will work with n = 20 samples and r = 4 different 
marginals. The marginals are samples from four lognormal distributions, with 
parameters # = 12, 11, 10, 10 and a = 0.15, 0.25, 0.35, 0.25. The input matrix is 

'123,567 
126,109 
138,713 
139,016 
152,213 
153,224 
153,407 
155,716 
155,780 

X =  161,678 
161,805 
167,447 
170,737 
171,592 
178,881 
181,678 
184,381 
206,940 
217,092 
240,935 

44,770 15,934 13,273 ~ 
45,191 16,839 15,406 
47,453 17,233 16,706 
47,941 17,265 16,891 
49,345 17,620 18,821 
49,420 17,859 19,569 
50,686 20,804 20,166 
52.931 21.110 20,796 
54,010 22,728 20,968 
57,346 24,072 21,178 
57,685 25,198 23,236 
57,698 25,393 23,375 
58,380 30,357 24,019 
60,948 30,779 24,785 
66.972 32,634 25,000 
68.053 33,117 26,754 
70,592 35,248 27,079 
72,243 36,656 30,136 
86,685 38,483 30,757 
87,138 39,483 35,108 

(4.5) 

Note that the marginals are all sorted in ascending order. The algorithm does not 
actually require pre-sorting the marginals but it simplifies the last step. 

The desired target correlation matrix is 

1.000 0.800 0.400 0.000 
S = 0.800 1.000 0.300 -0 .200]  

0.400 0.300 1 .000 0.100 ] " 
\o.ooo -0.200 O.lOO 1.ooo / 

(4.6) 
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The Choleski decomposition of S is 

{1.000 0.800 0.400 0.000 
|0.000 0.600 -0.033 -0.333 / 

C = |0.000 0.000 0.916 0.097 ] " (4.7) 
\0.000 0.000 0.000 0.938 J 

Now we make the score matrix. The basic scores are q5-1(i/21), for i = 

1 , . . . ,  20. We scale these by 0.868674836252965 to get a vector v with standard 

deviation one. Then we combine four v's and shuffle randomly to get 

/ -1 .92062 
-1.50709 
-1.22896 
-1.00860 
-0.82015 
-0.65151 
-0.49584 
-0.34878 
-0.20723 
-0.06874 

M =  
0.06874 
0.20723 
0.34878 
0.49584 
0.65151 
0.82015 
1.00860 
1.22896 
1.50709 
1.92062 

As described in Section 4.1, 

covariance matrix 

1.22896 -1.00860 -0.49584'  
-1.50709 -1.50709 0.82015 
1.92062 0.82015 -0.65151 

-0.20723 1.00860 -1.00860 
0.82015 0.34878 1.92062 

-1.22896 -0.65151 0.20723 
-0.65151 1.22896 -0.34878 
-0.49584 -0.49584 -0.06874 
-1.00860 0.20723 0.65151 
0.49584 0.06874 -1.22896 

-0.34878 -1.22896 0.49584 
0.34878 0.65151 0.34878 

-0.06874 -0.20723 1.22896 
-1.92062 -0.82015 -0.20723 
0.20723 1.92062 -1.92062 
1.00860 1.50709 1.50709 

-0.82015 -1.92062 1.00860 
1.50709 0.49584 -1.50709 
0.06874 -0.06874 0.06874 
0.65151 -0.34878 -0.82015 

M is approximately 

(4.8) 

independent. In fact M has 

E = 

1.0000 0.0486 0.0898 
0.0486 1.0000 0.4504 
0.0898 0.4504 1.0000 

-0.0960 -0.2408 -0.3192 

-0.0960'~ 
-0 .2408]  
-0 .3192]  
1.oooo / 

(4.9) 
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and E has Choleski  decomposi t ion 

[1 .0000  0.0486 0.0898 

| 0 . 0 0 0 0  0.9988 0.4466 
F =  

| 0 . 0 0 0 0  0.0000 0.8902 
| 

\ 0 .0000  0.0000 0.0000 

Thus T = M F - 1 C  is given by 

f-1.92062 -0.74213 -2.28105 
-1.50709 -2.06697 -1.30678 
-1.22896 0.20646 -0.51141 
-1.00860 -0.90190 0.80546 
-0.82015 -0.13949 -0.31782 
-0.65151 -1.24043 -0.27999 
-0.49584 -0.77356 1.42145 
-0.34878 -0.56670 -0.38117 
-0.20723 -0.76560 0.64214 
-0.06874 0.24487 -0.19673 

T = 
0.06874 -0.15653 -1.06954 
0.20723 0.36925 0.56694 
0.34878 0.22754 -0.06362 
0.49584 -0.77154 0.26828 
0.65151 0.62666 2.08987 
0.82015 1.23804 1.32493 
1.00860 0.28474 -1.23688 
1.22896 1.85260 0.17411 
1.50709 1.20294 0.39517 
1.92062 1.87175 -0.04335 

-0 .0960 '~  
- 0 . 2 3 6 4 |  

- 0 . 2 3 0 3 ]  

0.9391 / 

-1.33232 ~ 
0.54577 

-0.94465 
-0.65873 
1.76960 
0.23988 
0.23611 

-0.14744 
0.97494 

-1.33695 
0.14015 
0.51206 
1.19551 
0.03168 

-1.21744 
1.85680 
0.59246 

-1.62428 
0.13931 

-0.97245 

(4.10) 

(4.11) 

An easy calculat ion will  verify that T has correlat ion matrix S, as required.  

To complete  the IC method we must  re-order  each column of  X to have the 

same rank order  as T. The first column does not change because it is a l ready in 

ascending order. In the second column, the first e lement  of  Y must  be the 14th 

e lement  of  X; the second the 20th, third 10th and so on. The ranks of  the other  

e lements  are 

14 20 10 18 11 19 17 13 15 8 12 6 9 16 5 3 7 2 4 1 ~ '  

) 20 19 16 4 14 13 2 15 5 12 17 6 11 8 1 3 18 9 7 10 
18 6 15 14 2 8 9 13 4 19 10 7 3 12 17 1 5 20 11 16 
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and the resulting re-ordering of X is 

7123, 567 50,686 
126, 109 44,770 
138,713 57, 685 
139,016 47, 453 
152, 213 57, 346 
153,224 45,191 
153,407 47,941 
155,716 52,931 
155,780 49,420 

T =  161,678 58,380 
161,805 54,010 
167,447 66,972 
170, 737 57, 698 
171,592 49,345 
178,881 68, 053 
181,678 72,243 
184, 381 60,948 
206,940 86,685 
217, 092 70, 592 
240,935 87, 138 

The rank correlation matrix of Y is 

approximately equal to S. The achieved value is 

1.00 0.85 0.26 
0.85 1.00 0.19 
0.26 0.19 1.00 

-0.11 -0 .20  0.10 

15,934 16,706 ~ 
16,839 25,000 
17,620 19,569 
35,248 20, 166 
20, 804 30, 757 
21,110 24,019 
38,483 23,375 
17, 859 20,796 
33, 117 27,079 
22,728 15,406 
17,265 23,236 
32,634 24,785 
24, 072 30, 136 
30,357 20, 968 
39,483 16,891 
36,656 35, 108 
17, 233 26,754 
25,393 13,273 
30,779 21,178 
25, 198 18,821 

(4.12) 

exactly S. The actual linear correlation is only 

-0.11'~ 

-0.201 
0.i0 I ' 

loo / 
(4.13) 

a fairly creditable performance given the input correlation matrix and the very 
small number of samples n = 20. When used with larger sized samples the IC 
method typically produces a very close approximation to the required correlation 
matrix, especially when the marginal distributions are reasonably symmetric. 

4.4 Extensions of Iman-Conover 

Following through the explanation of the IC method shows that it relies on a 

choice of multivariate reference distribution. A straightforward method to com- 

pute a reference is to use the Choleski decomposition method Equation (4.2) ap- 

plied to certain independent scores. The example in Section 4.3 used normal 
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scores. However nothing prevents us from using other distributions for the scores 

provided they are suitably normalized to have mean zero and standard deviation 

one. We explore the impact of different choices of score distribution on the result- 

ing multivariate distribution in Section 4.4.1. 

Another approach to IC is to use a completely different multivariate distribu- 

tion as reference. There are several other families of multivariate distributions, 

including the elliptically contoured distribution family (which includes the nor- 

mal and t as a special cases) and multivariate Laplace distribution, which are easy 

to simulate from. We explore the impact of changing the reference distribution in 

Section 4.4.2. Note that changing scores is actually an example of changing the 

reference distribution; however, for the examples we consider the exact form of 

the new reference is unknown. 

4.4.1 Alternative Scores 

The choice of score distribution has a profound effect on the multivariate distribu- 

tion output by the IC method. Recall that the algorithm described in Section 4.2 

used normally distributed scores. We now show the impact of using exponentially 

and uniformly distributed scores. 

Figure 4.1 shows three bivariate distributions with identical marginal distri- 

butions (shown in the lower right hand plot), the same correlation coefficient of 

0.643 4- 0.003 but using normal scores (top left), exponential scores (top rigtht) 

and uniform scores (lower left). The input correlation to the IC method was 0.65 

in all three cases and there are 1000 pairs in each plot. Here the IC method pro- 

duced bivariate distributions with actual correlation coefficient extremely close to 

the requested value. 

The normal scores produce the most natural looking bivariate distribution, 

with approximately elliptical contours. The bivariate distributions with uniform 

or exponential scores look unnatural, but it is important to remember that if all you 

know about the bivariate distribution are the marginals and correlation coefficient 

all three outcomes are possible. 
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Figure 4.1: Bivariate distributions with normal, uniform and exponential scores. 
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50.0 

Figure 4.2: Sum of marginals from bivariate distributions made with different 
score distributions. 
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Figure 4.2 shows the distribution of the sum of the two marginals for each 

of the three bivariate distributions in Figure 4.1 and for independent marginals. 

The sum with exponential scores has a higher kurtosis (is more peaked) than with 

normal scores. As expected all three dependent sums have visibly thicker tails 

than the independent sum. 

Iman and Conover considered various different score distributions in their pa- 

per. They preferred normal scores as giving more natural looking, elliptical con- 

tours. Certainly, the contours produced using exponential or uniform scores ap- 

pear unnatural. If nothing else they provide a sobering reminder that knowing the 

marginal distributions and correlation coefficient of a bivariate distribution does 

not come close to fully specifying it! 

4.4.2 Multivariate Reference Distributions 

The IC method needs some reference multivariate distribution to determine an 

appropriate rank ordering for the input marginals. So far we have discussed us- 

ing the Choleski decomposition trick in order to determine a multivariate normal 

reference distribution. However, any distribution can be used as reference pro- 

vided it has the desired correlation structure. Multivariate distributions that are 

closely related by formula to the multivariate normal, such as elliptically con- 

toured distributions and asymmetric Laplace distributions, can be simulated using 

the Choleski trick. 

Elliptically contoured distributions are a family which extends the normal. 

For a more detailed discussion see Fang and Zhang [11]. The multivariate t- 

distribution and symmetric Laplace distributions are in the elliptically contoured 

family. Ellipticaily contoured distributions must have characteristic equations of 

the form 

~b(t) = exp(it 'm)~(t 'St)  (4.14) 

for some ~b : R ---+ R, where m is an r × 1 vector of means and S is a r x r 

covariance matrix (nonnegative definite and symmetric). In one dimension the 
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elliptically contoured distributions coincide with the symmetric distributions. The 

covariance is S, if it is defined. 

If S has rank r then an elliptically contoured distribution x has a stochastic 

representation 

x = m + RT'u  (r) (4.15) 

where T is the Choleski decomposition of S, so S = T'T, u (r/ is a uniform dis- 

tribution on the sphere in R r, and R is a scale factor independent of u (r). The 

idea here should be clear: pick a direction on the sphere, adjust by T, scale by 

a distance R and finally translate by the means in. A uniform distribution on a 

sphere can be created as x/Ilxll where x has a multivariate normal distribution with 

identity covariance matrix. (By definition, Ilxll 2 - -  has a X~ distribution.) 

Uniform vectors u (r) can also be created by applying a random orthogonal matrix 

to a fixed vector (1, 0 , . . . ,  0) on the sphere. Diaconis [8] describes a method for 

producing random orthogonal matrices. 

The t-copula with u degrees of freedom has a stochastic representation 

v7 
x = m + - ~ z  (4.16) 

where S' ,-~ X~ and z is multivariate normal with means zero and covariance ma- 

trix S. Thus one can easily simulate from the multivariate t by first simulating 

multivariate normals and then simulating an independent S and multiplying. 

The multivariate Laplace distribution is discussed in Kotz, Kozubowski and 

Podgorski [27]. It comes in two flavors: symmetric and asymmetric. The symmet- 

ric distribution is also an elliptically contoured distribution. It has characteristic 

function of the form 
1 

• (t) = (4 .17)  
1 + t 'St/2 

where S is the covariance matrix. To simulate from (4.17) use the fact that x/WX 

has a symmetric Laplace distribution if I/V is exponential and X a multivariate 

normal with covariance matrix S. 
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The multivariate asymmetric Laplace distribution has characteristic function 

1 
• (t)  = 1 + t ' S t / 2  - im't '  (4.18) 

To simulate from (4.18) use the fact that 

mW + x/WX (4.19) 

has a symmetric Laplace distribution if W is exponential and X a multivariate 

normal with covariance matrix S and means zero. The asymmetric Laplace is not 

an elliptically contoured distribution. 

Figure 4.3 compares IC samples produced using a normal copula to those 

produced with a t-copula. In both cases the marginals are normally distributed 

with mean zero and unit standard deviation. The t-copula has u -- 2 degrees 

of freedom. In both figures the marginals are uncorrelated, but in the right the 

marginals are not independent. The t-copula has pinched tails, similar to Venter's 

Heavy Right Tailed copula [33] 
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Figure 4.3: IC samples produced from the same marginal and correlation matrix 
using the normal and t copula reference distributions. 
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4.4.3 Algorithms for Extended Methods 

In Section 4.4.2 we described how the IC method can be extended by using dif- 

ferent reference multivariate distributions. It is easy to change the IC algorithm to 

incorporate different reference distributions for t-copulas and asymmetric Laplace 

distributions. Follow the detailed algorithm to step 10. Then use the stochas- 

tic representation (4.16) (resp. 4.19 for the Laplace): simulate from the scaling 

distribution for each row and multiply each component by the resulting number, 

resulting in an adjusted T matrix. Then complete steps 11 and 12 of the detailed 

algorithm. 

4.5 Comparison With the Normal Copula Method 

By the normal copula method we mean the following algorithm, described in 

Wang [37] and Herzog [19]. 

Inputs: A set of correlated risks ( X 1 , . . .  , X r )  with marginal cumulative distribu- 

tion functions F/and Kendall's tau r~a = r(Xi, Xj) or rank correlation coefficients 

r(X,,Xj) 
Algorithm: 

1. Convert Kendall's tau or rank correlation coefficient to correlation using 

PO = sin(rrrij/2) = 2 sin(Trrij/6) (4.20) 

and construct the Choleski decomposition S = C'C of S = (Pij). 

2. Generate r standard normal variables Y = (Y1, • • •, Y~). 

3. S e t Z = Y C .  

4. Set ui = ~(Z~) fori  = 1 , . . . , r .  

5. SetXi = F~-I(ui) .  
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Outputs: The v e c t o r s  ( X 1 ,  . . . , Xr) forn'l a sample from a multivariate distribu- 

tion with prescribed correlation structure and marginals F~. 

The Normal Copula method works because of the following theorem from 

Wang [37, Theorem 2]. 

Theorem 2 Assume that (Z1, . . . ,  Zk ) have a multivariate normal joint probabil- 

ity density function given by 

1 
f ( z l , . . . ,  zk) -- ~ exp(--z 'E- lz /2) ,  (4.21) 

z = ( q , . . . ,  zk), with correlation coefficients E i j =  Pij = p(Zi, Zj). L e t H ( q , . . . ,  zk) 

be their joint cumulative distribution function. Then 

C ( U l , . . . ,  ttk) = H(c I ) - I (u l ) , . . . ,  (I)-l(uk)) (4.22) 

defines a multivariate uniform cumulative distribution function called the normal 

copula. 

For any set of  given marginal cumulative distribution functions F1 . . . .  , Fk, 

the set of variables 

X1 = FI-I(~(Z1)), . . . ,  Xk = F~l(rb(Zk)) (4.23) 

have a joint cumulative function 

Fxl,. . . ,xk(Xl,. . . ,  ock) = H(~b- l (Fx(ul ) ) , . . . ,  cb-l(Fk(uk)) (4.24) 

with marginal cumulative distribution functions F1, . • •, Fk. The multivariate vari- 

ables (X1,. . . ,  Xk) have Kendall's tau 

2 
r( X,,  X j  ) = r( Z,, Zj ) = - arcsin(p0) (4.25) 

7"C 

and Spearman's rank correlation coefficients 

6 
rkCorr(Xi, Xj )  = rkCorr(Zi, Zj) = - arcsin(pij/2) (4.26) 

7r 
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In the normal copula method we simulate from H and then invert using (4.23). 

In the IC method with normal scores we produce a sample from H such that cb(zi) 

are equally spaced between zero and one and then, rather than invert the distribu- 

tion functions, we make the 3th order statistic from the input sample correspond 

to ~(z) = 3/(n + 1) where the input has n observations. Because the 3th or- 

der statistic of a sample of n observations from a distribution F approximates 

F - l ( j / (n  + 1)) we see the normal copula and IC methods are doing essentially 

the same thing. 

While the normal copula method and the IC method are confusingly similar 

there are some important differences to bear in mind. Comparing and contrasting 

the two methods should help clarify how the two algorithms are different. 

1. Theorem 2 shows the normal copula method corresponds to the IC method 

when the latter is computed using normal scores and the Choleski trick. 

2. The IC method works on a given sample of marginal distributions. The 

normal copula method generates the sample by inverting the distribution 

function of each marginal as part of the simulation process. 

3. Though the use of scores the IC method relies on a stratified sample of 

normal variables. The normal copula method could use a similar method, 

or it could sample randomly from the base normals. Conversely a sample 

could be used in the IC method. 

4. Only the IC method has an adjustment to ensure that the reference multi- 

variate distribution has exactly the required correlation structure. 

5. IC method samples have rank correlation exactly equal to a sample from 

a reference distribution with the correct linear correlation. Normal copula 

samples have approximately correct linear and rank correlations. 
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. An IC method sample must be taken in its entirety to be used correctly. 

The number of output points is fixed by the number of input points, and 

the sample is computed in its entirety in one step. Some IC tools (@Risk, 

SCARE) produce output which is in a particular order. Thus, if you sample 

the nth observation from multiple simulations, or take the first n samples, 

you will not get a random sample from the desired distribution. However, if 

you select random rows from multiple simulations (or, equivalently, if you 

randomly permute the rows output prior to selecting the nth) then you will 

obtain the desired random sample. It is important to be aware of these issues 

before using canned software routines. 

. The normal copula method produces simulations one at a time, and at each 

iteration the resulting sample is a sample from the required multivariate 

distribution. That is, output from the algorithm can be partitioned and used 

in pieces. 

In summary remember these differences can have material practical conse- 

quences and it is important not to misuse IC method samples. 
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Chapter 5 

EXAMPLES 

We now give an extended example which applies the IC method and some of the 

other methods introduced in Chapter 3, The example will compute the bivariate 

distribution of retained and ceded losses, where the reinsurance is an excess of 

loss cover. Such a bivariate distribution would be useful for a ceding company 

trying to determine its distribution of net underwriting results if the reinsurance 

included a variable feature such as a swing rate, sliding scale commission, annual 

aggregate deductible or profit commission. 

The example will apply the following methods and techniques: 

M1. Computing aggregate distributions using FFTs. 

M2. Compare aggregate distributions computed using FFTs (essentially exact) 

with method of moments shifted lognormal and shifted gamma approxima- 

tions. 

M3. Computing the bivariate distribution of ceded and retained losses using two 

dimensional FFTs. 

M4. Computing the bivariate distribution of ceded and retained losses using the 

IC method. 

M5. Compare the FFT and IC method. 
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M6. Illustrate the effect on the IC method of using a t reference distribution. 

The first two examples compute univariate marginal distributions, the funda- 

mental inputs to the IC method. The next five examples compute multivariate 

distributions in various ways. 

The reader should take away two lessons from these examples. First, the FFT 

method works incredibly well for small claim counts and thin tailed severity dis- 

tributions. In particular, any severity distribution with an occurrence limit is thin 

tailed. Second, the shifted gamma and shifted lognormal approximations to an 

aggregate distribution are exceedingly good in all but the most extreme cases. Ex- 

treme cases include a very small claim count (say less than five) or a thick tailed 

severity distribution. 

5.1 Example Parameters 

The input parameters for the example are as follows. Severity is modeled using 

a lognormal variable with # = 9.0 and a = 2.0. Underlying policies have a 

$1M policy limit. The excess of loss reinsurance attaches at $200,000 and has a 

limit of $800,000; thus it pays all losses between $200,000 and the policy limit, 

ground-up. The ground-up expected loss is $25M. 

The nth moments of the layer g excess a of for losses with density f ,  viz. 

f 
a + y  

E[min(y, max (X-a ,O) )  n] = (x-a) '~ f (x)dx  +ynPr(X > a+y) ,  (5.1) 
J a  

can be computed using 

io+ ,x - xn-kf(x)dx (5.2) 
a a k = O  

reducing the problem to computing simpler integrals. For the lognormal, the inte- 

fa+~ xn f ( x )dx equals gral A(n) := .a 

A(n) = exp(n# + n2a2/2)O((log(a + y) - I.t - na2)/a) (5.3) 
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if a = 0 and 

A(n) = exp(n#+n2a2/2)(cb((log(a+y)-#-na2)/a)-~((log(a)-p-na2)/a)) 
(5.4) 

for a > O. Then by the above formula for the lognormal we have 

k = n  

E[min(y'max(X-a'O))~] = Y~(1-~((l°g(a+Y)-P)/cr))+Z ( k )  (-a)kA(n-k). 
k=O 

(5.5) 
Using these formulae we find that the expected ground up loss is $47,439, the 

expected retained loss is $31,591 and the expected ceded loss is $15,848. The 

probability of attaching the reinsurance is 0.054463 and so the excess severity, 

conditional on an excess claim, is $290,985. 
The expected claim count is n = 526.00 = 25000000/47439. We will model 

claims using a negative binomial with contagion parameter c = 0.0625 which by 
the discussion in Section 3.3 corresponds to an asymptotic CV of 25% for the 

aggregate distribution. The parameters of the negative binomial are r = 1/c = 16 
and p = 1/(1 + on) = 0.0295, using the Bowers et al. [4] parameterization. The 
moments of the negative binomial are 

E(N) = (1 - p)r/p 

E(N ~) = ( p -  1 ) r ( ( p -  1)r - 1)/p 2 

E ( N  a) = (1 - p ) r ( ( p -  1 ) r ( ( p -  1 ) r -  3) - p +  2)/p 3 

(computed using symbolic differentiation of the moment generating function us- 
ing a computer algebra program). 

Now we can compute the moments of the gross aggregate distribution using 
(3.14) and (3.16). Writing A = X1 +. . .  + XN the results are 

E(A) = E(N)E(X) 

E(A 2) = E(N)E(X 2) + E(X)2E(N 2) - E(N)E(X)  2 

E(A 3) = E(N)E(X 3) + E(X)aE(N 3) + 3E(X)E(N:)E(X2) - 

3E(N)E(X)E(X 2) - 3E(X)aE(N 2) + 2E(N)E(X) 3. 

From these expressions we can compute the variance, standard deviation, CV 

and skewness of frequency, severity and aggregate losses using the definitions at 

the beginning of Chapter 3. The results are shown in Table 5.1. 
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Table 5.1: Frequency, Severity and Aggregate Distribution Statistics 

Severity Ground-Up Retained Ceded 
E(X) 47,439.0 31,591.0 290,985.3 
CV(X) 2.7217 1.6745 0.9513 
skew(X) 5.2380 2.2351 0.8375 
Frequency 
E(X) 527.0 527.0 28.7 
CV(X) 0.2538 0.2538 0.3120 
skew(X) 0.5001 0.5001 0.5123 
Aggregate 
E(X) 25,000,000.0 16,648,209.8 I 8,351,790.2 
CV(X) 0.2801 0.2640 ] 0.3590 
skew(X) 0.5128 0.5018 0.5543 

5.2 Univariate Methods--Computing Marginal Dis- 
tributions 

5.2.1 Fast Fourier Transform Methods 

To compute the aggregate distribution using Fast Fourier Transforms (FFT) we 

first have to "bucket" the severity distributions. We will use 4,096 buckets (the 

number must be a power of two for the FFT to work at peak efficiency) and 

a bucket size b = 12,500. The largest loss that we can produce is therefore 

$51.1875M which will be adequate for our example. The easiest way to bucket 

the severity is to compute the cumulative distribution function F at b/2, 3b/2, . . .  

and then take differences. The coefficients of bucketed distribution must sum to 

one. The distribution for ceded losses is actually the conditional distribution given 

an excess loss, F(x)/(1 - F(a)) where a is the attachment and F is the ground 

up severity distribution. The first few terms in the bucketed severities are shown 

in Table 5.2 

There are slight errors introduced when you bucket the severity distribution, 

particularly for the retained losses. The mean of the retained severity is 1.9% 

lower than the actual; the CV is 2.8% higher and the skewness is 1.5% lower. The 
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Table 5.2: Bucketed Severity Distributions 

Bucket Start Bucket Mid-Point Ground-Up Retained Ceded 
0 

12,500 
25,000 
37,500 
50,000 
62,500 
75,000 
87,500 
100,000 
112,500 
125,000 
137,500 
150,000 
162,500 
175,000 
187,500 
200,000 
212,500 
225,000 
237,500 
250,000 
262,500 
275,000 
287,500 
300,000 

etc. 

6,250 
18,750 
31,250 
43,750 
56,250 
68,750 
81,250 
93,750 
106,250 
118,750 
131,250 
143,750 
156,250 
168,750 
181,250 
193,750 
206,250 
218,750 
231,250 
243,750 
256,250 
268,750 
281,250 
293,750 
306,250 

0.448350 
0.214215 
0.087561 
0.050294 
0.033252 
0.023819 
0.017980 
0.014089 
0.011353 
0.009351 
0.007839 
0.006667 
0.005740 
0.004993 
0.004382 
0.003876 
0.003452 
0.003093 
0.002787 
0.002523 
0.002295 
0.002095 
0.001920 
0.001765 
0.001628 

0.448350 
0.214215 
0.087561 
0.050294 
0.033252 
0.023819 
0.017980 
0.014089 
0.011353 
0.009351 
0.007839 
0.006667 
0.005740 
0.004993 
0.004382 
0.003876 
0.056238 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

0.030800 
0.056797 
0.051170 
0.046328 
0.042130 
0.038467 
0.035252 
0.032415 
0.029899 
0.027658 
0.025653 
0.023853 
0.022230 
0.020762 
0.019431 
0.018219 
0.017114 
0.016103 
0.015176 
0.014323 
0.013538 
0.012814 
0.012143 
0.011522 
0.010946 
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Table 5.3: Shifted Gamma Approximations to the Aggregate Distributions 

Parameter 
8 

O~ 

Ground-Up 
-2.341E+06 

15.19659 
1.7780E+06 

Retained 
-8.907E+05 

15.88163 
1.0842E+06 

Ceded 
-2.468E+06 

13.02156 
8.3084E+05 

excess severity is virtually exact--because the bucket size is small relative to the 

features of the distribution. The ground-up severity is in between. The smaller 

the bucket size the lower these discretization errors will be, but on the other hand 

the less "space" available for the aggregate distribution. Selecting a bucket size 

which is an exact divisor of the limit will greatly help improve the accuracy of the 

discretized severity distribution. To determine if your bucket size is appropriate 

look at the moments of the FFT aggregate relative to the exact moments and plot 

a graph of the output density. It is usually obvious when the method has failed. 

Next we have to take the Fast Fourier Transform of the three 4096 x 1 severity 

vectors. We will assume the reader has a computer routine available which will 

compute FFTs--see Appendix A for one freely available implementation. Then 

you apply the moment generating function of the frequency distribution (see Ta- 

ble 3.2) row-by-row to the transformed severity. Note that you will be working 

with complex numbers. Finally you apply the inverse FFT to get a vector of real 

numbers. Because of the form of the input you are guaranteed that the output will 

be real and will sum to 1. 

5.2.2 Method of Moments and the Shifted Gamma and Log- 
normal Distributions 

In Section 3.5 we introduced the shifted gamma and lognormal distributions and 

gave explicit expressions for their method-of-moments parameters in terms of 

mean, CV and skewness. In our example the gross, retained and ceded fits are 

shown in Table 5.3 for the shifted gamma, 5.4 for the shifted lognormal, and 5.5 

for the lognormal. 
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Table 5.4: Shifted Lognormal Approximations to the Aggregate Distributions 

Parameter Ground-Up Retained Ceded 
s -1.636E+07 -9.872E+06 -8.057E+06 
# 17.52370 17.07988 16.59690 
cr 0.16811 0.16463 0.18122 

Table 5.5: Lognormal Fits to the Aggregate Distributions 

Parameter Ground-Up Retained Ceded 
# 16.98348 16.57454 15.87726 
~r 0.27554 0.26015 0.34819 

Figure 5.1 shows a comparison of the shifted gamma fits (denoted with an as- 

terisk in the legend) with the FFTs. For each of the total, ground-up loss, retained 

loss and ceded or excess loss the fits appear essentially perfect. On a log-scale, 

Figure 5.2, we see that the fits are again essentially perfect except for disagreement 

for small losses. However, the disagreement actually shows an error in the FUr; 

probabilities for losses greater than the largest bucket size (approximately $50M) 

wrap around in the FFT and re-appear as small losses, thus the FFT picture is ac- 

tually inaccurate. The wrapping phenomenon is an example of aliasing; it is the 

same effect that causes wagon wheels to appear to rotate backwards in Western 

movies. See Hamming [16] for more details. The shifted gamma approximation 

is recommended in Bowers et al. [4]. 

Figure 5.3 shows the shifted lognormal fit. Although not quite as good as the 

shifted gamma, the fit is still very close. A log scale (not shown) would show 

that the shifted iognormal is somewhat thicker in the extreme tail. The fact that 

the shifted gamma does a better job in the tail should not be a surprise since the 

negative binomial uses a gamma mixing distribution. 

Finally, Figure 5.4 shows a comparison of the FFTs with a regular two param- 

eter lognormal. The lognormal is too skewed (peaks too soon) and does not match 

the true shape of the aggregate well. Using a shifted gamma or shifted lognormal 

distribution gives a much more satisfactory fit to the true aggregate for very little 

extra work. 
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Figure 5.1: FFT vs. shifted gamma approximations for total, retained and ceded 
losses, illustrating that the gamma is an almost perfect fit. 

174 Casualty Actuarial Society Forum, Winter 2006 



RWP on Correlations and Dependencies Among Al l  Risk Sources Report 

1.0E+00 

1.0E,.01 

1.0E-02 

1,0E.-03 

1.0E-04 

1.0E-05 

1.0E-06 

,~ 1.0E4~7 

1.0E-08 

1.0E-09 
m 

~ 1.0E-10 
2 
a. 1.0E-11 

1.0E-12 

1 0E-13 

1.0E-14 

1.0E-15 

1.0E-16 

1.0E-17 

1.0E-18 

10 0 20.0 30.0 40.0 50.0 

Loss 

- -  Total - -  Total*** - -  Retention - -  Retention*** Excess - -  Excess '**  

60.0 

Figure 5.2: FFT vs. shifted gamma approximations for total, retained and ceded 
losses on a log density scale. 
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Figure 5.3: FFF vs. shifted lognormal approximations for total, retained and 
ceded losses. 
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Figure 5.4: FFT vs. lognormal approximations for total, retained and ceded losses, 
illustrating that the lognormal is a poorer fit than the shifted lognormal. 

Casualty Actuarial Society _Forum, Winter 2006 177 



RWP on Correlations and Dependencies Among Al l  Resk Sources Report 

5.3 Multivariate Methods and the IC Method 

Now we have the marginal distributions we need we can apply the IC method to 

determine the bivariate distribution of retained and ceded losses. 

5.3.1 Fast Fourier Transform Methods 

In order to have a benchmark for the IC method we begin by computing the exact 

bivariate distribution of ceded and retained losses using two dimensional FFTs. 

The two dimensional FFT method is far more limited than the one dimensional 

version because it is impractical to use discretized distributions larger than 4096 x 

4096--the size we will use here. One is caught by the need for a small bucket size 

to capture the shape of the ground-up severity and the need for enough buckets to 

capture the whole aggregate distribution. 

The method for two dimensional FFFs is essentially the same as for one di- 

mension: compute a discretized version of the input severity distribution, which 

will be a matrix rather than a column vector, apply the FFT, apply the MGF of the 

frequency distribution term-by-term, and then apply the inverse FTT. The result- 

ing distribution is shown in Figure 5.5. 
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Figure 5.5: Two dimensional FFT estimate of bivariate distribution of ceded and 
retained losses. 
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5.3.2 IC Method 

Next we apply the IC method to the marginal retained and ceded distribution com- 

puted in the previous section. Individual ceded and retained losses are a good ex- 

ample of comonotonic variables, since they are both increasing functions of gross 

losses. Aggregate ceded and retained losses will not generally be comonotonic. 

To apply IC we need the correlation coefficient between ceded and retained losses 

which can be computed using (3.47). The only missing value from that equation 

is the covariance between retained severity R and ceded severity C. However, 

because of the simple form of the bivariate severity, viz. ceded losses are zero 

until gross losses hit the retention a = $200,000 and then ceded losses increase, 

the covariance is easy to compute: 

Cov(R, C) = E(RC)  - E(R)E(C)  = E(C)(a  - E(R)).  (5.6) 

Substituting into (3.47) gives a correlation of 0.786 between aggregate retained 

losses and aggregate ceded losses. We can now apply the Iman Conover method. 

Here we used samples of 10,000 observations from the univariate distributions of 

ceded and retained losses. The result of the IC method will be a 10000 x 2 matrix 

sample from the bivariate distribution. In order to visualize the result we produced 

a bivariate histogram, as shown in Figure 5.6. The approximation is very similar 

to the previous "exact" FFT contour plot, as you can see if you overlay the two 

plots. 

The IC method underlying Figure 5.6 used a normal copula reference distri- 

bution. As we have already discussed there are many other possible reference 

distributions we could chose to use. Figure 5.7 shows the resulting two dimen- 

sional histogram if we use a t-copula with two degrees of freedom, which is a 

very extreme choice. Just as we saw in Figure 4.3 the result of using a t-copula 

is to introduce more extreme value dependence and the contours have a pinched 

look--both in the slope 1 and slope - 1  directions. 

Clearly the normal copula IC method produces bivariate distribution closer to 

the FFT actual than the t-copula, which should not be a surprise. There is no 

180 Casualty Actuarial  Society Forum, Winte r  2006 



RWP on Correlations and Dependencies Among Al l  Rask Sources Report 

generator of extreme tail correlation in our example. However, in other modeling 

situations, such as modeling the bivariate movement of stock prices or foreign 

exchange movements, there may be empirical evidence of strong tail correlation 

and a t-copula (or other non-normal) copula approach would be more appropriate. 

Finally, Figure 5.8 shows the distribution of the sum of ceded and retained 

losses using the normal-copula, t-copula, and actual dependence relationships. 

As expected the normal copula model is closest to the actual. The t-copula sum is 

too peaked and is more thick tailed than the actual distribution. 
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Figure 5.6: Iman-Conover approximation to bivariate distribution of ceded and 
retained losses. 
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Figure 5.7: Iman-Conover approximation to bivariate distribution of ceded and 
retained Josses using the t-copula as a reference distribution. 
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Figure 5.8: Distribution of total losses (ceded + retained) under normal copula, 
t-copula and actual. 
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Chapter 6 

THEORETICAL 
UNDERPINNINGS OF THE 
IMAN-CONOVER 
METHOD 

The theoretical foundations of the Iman-Conover method are elegantly justified by 

Vitale's Theorem [35]. We will state Vitale's theorem, explain its relationship to 

the IC method, and sketch the proof. The result should give a level of comfort to 

practitioners using a simulation approach to modeling multivariate distributions. 

It is not necessary to follow the details laid out here in order to understand and 

use the IC method, so the uninterested reader can skip the rest of the section. The 

presentation we give follows Vitale's original paper [35] closely. 

Functional dependence and independence between two random variables are 

clearly opposite ends of the dependence spectrum. It is therefore surprising that 

Vitale's Theorem says that any bivariate distribution (U, V) can be approximated 

arbitrarily closely by a functionally dependent pair (U, TU) for a suitable trans- 

formation T. 

In order to explain the set up of Vitale's theorem we need to introduce some 

notation. Let n be a power of 2. An interval of the form ((j - 1)/n, j/n) for some 

n > 1 and 1 < j _< n is called a dyadic interval of rank n. An invertible (Borel) 
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measure-preserving map which maps by translation on each dyadic interval of 

rank n is called a permutation of rank n. Such a T just permutes the dyadic 

intervals, so there is a natural correspondence between permutations of n elements 

and transformations T. If the permutation of dyadic intervals has a single cycle 

(has order n in the symmetric group) then T is called a cyclic permutation. 

Theorem 3 (VitaIe) Let U and V be uniformly distributed variables. There is a 

sequence of cyclic permutations T1, T2, . . .  such that (U, TnU) converges in dis- 

tribution to (U, V) as n ~ ~ .  

Recall convergence in distribution means that the distribution function of (U, TnU) 

tends to that of (U, V) at all points of continuity as n ~ oc. 

The proof of Vitale's theorem is quite instructive and so we give a detailed 

sketch. 

The proof is in two parts. The first constructs a sequence of arbitrary permuta- 

tions Tn with the desired property. The second part shows it can be approximated 

with cyclic permutations. We skip the second refinement. 

Divide the square [0, 1] x [0, 1] into sub-squares. We will find a permutation 

T such that the distributions of (U, V)  and (U, TU)  coincide on sub-squares. Re- 

ducing the size of the sub-squares will prove the result. 

Fix n, a power of two. Let Ij = ((j  - 1)In, j / n ) ,  j = 1 , . . . ,  n. We will find 

an invertible permutation T such that 

Pr(U E / j ,  T U  e Ik) = Pr(U E / j ,  V e Ik) := Pjk (6.1) 

for j,  k = 1 , . . . ,  n. Define 

Ijl - . ~  ( ( j -  1)/n,  (j - 1) /n  + p j , )  (6.2) 

Ij2 = ((j  - 1 ) /n  + P~I, (j  - 1) /n  + Pjl + Pj2) (6.3) 

" "  (6.4) 

1Tin = ~(J -- 1) /n  + Pjl + " "  + Pj ,n- l , j /n )  (6.5) 
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and 

Ijn 

((j  - 1)In, (j - 1)In + Plj) 

((j - 1)In + Plj, (j  -- l ) / n  + Plj -+-P2j) 

((j - 1)In + P l j  + " "  + p , -1 , j , j / n ) .  

(6.6) 

(6.7) 

(6.8) 

(6.9) 

By construction the measure of ljk equals the measure of ikj. The invertible map 

T which sends each Ijk to [k; by translation is the map we need because 

Pr(U E I j ,T (U)  E Ik) = Pr(U E I j ,  U E T-~(lk))  (6.10) 

= P r ( U e I j n r - ' ( U i k t )  ) (6.1 l) 
l 

= Pr(U E U I j N I ,  k) (6.12) 
l 

= Pr(U C Ijk) (6.13) 

= P;k, (6.14) 

since the only llk which intersects lj  is I;k by construction, and U is uniform• The 

transformation T is illustrated schematically in Table 6.1 for n = 3. The fact 3 is 

not a power of 2 does not invalidate the schematic! 

If each P;k is a dyadic rational then T is a permutation of the interval• If not 

then we approximate and use some more heavy duty results (a 1946 theorem of 

Birkhoff on representation by convex combinations of permutation matrices) to 

complete the proof• 

Vitale's theorem can be extended to non-uniform distributions. 

Corollary 1 (Vitale) Let U and V be arbitrary random variables• There is a 

sequence of  functions $1, $2, . . .  such that (U, SnU) converges in distribution to 

(U,V) as n --+ a¢. 

Let F be the distribution function of U and G for V. Then F(U) and G(V) 

are uniformly distributed. Apply Vitale's theorem to get a sequence of functions 

Tn. Then Sn = G-1TnF is the required transformation. 
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Table 6.1: Schematic of  the Vitale transformation for n = 3 
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Appendix A 

SOFTWARE 
IMPLEMENTATIONS 

Having laid out the IC method and given some explicit examples, we now discuss 

implementation issues. We will follow the Detailed Algorithm laid out in Section 

4.2. 

A.1 General Implementation and Design Consider- 
ations 

A good general rule in writing software is to ensure that the steps which exe- 

cute most frequently are coded as efficiently as possible. Cutting 50% from the 

execution time of a step which runs once and takes 1 second will have a barely 

perceptible impact. Cutting 50% from a step which takes 10 msecs, but executes 

10,000 times will have a material and perceptible impact. See Hennessy and Pat- 

terson [18] for more discussion. 

Matrix and linear algebra operations can be hard to code efficiently because 

of the design of modern computer chips and the strains matrix operations put on 

memory management. Modern CPUs have on-chip cache memory, which oper- 

ates very quickly. Processors are "smart" enough to partially anticipate future 

memory calls and ensure the relevant locations have been pre-loaded into cache. 
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For example, arrays are usually stored in contiguous blocks of memory, and if you 

ask for :r[i], it is likely you will ask for z[i + 1]. Processors will pull in a block 

of memory each side of z[i] to speed operation. If the required memory is not in 

cache the CPU has a "cache-miss". These are very costly and result in a lot of 

lost processing time. Certain operations used extensively in the IC algorithm tend 

to generate lots of cache-misses: matrix multiplication being the worst (you pull 

in a row and a column; only one of these will be contiguous in memory). There 

are ways around these problems, but they are not ways you would want to nav- 

igate yourself! Fortunately, professional software designers spend a lot of effort 

to code matrix operations as efficiently as possible. Many processor benchmarks 

use matrix operations, so chip manufacturers have a vested interest here. 

The Lapack [1] package is an example of a very efficiently coded set of 

matrix algebra operations. It is build on BLAS, Basic Linear Algebra Subpro- 

grams, which implements fundamental operations like matrix multiplication. La- 

pack implementations are available for most platforms, including Windows. See 

http://www.netlib.org/lapack for a non-commercial implementation. See http://- 

www.intel.com/software/products/mkl for a version optimized for Intel proces- 

sors. It will automatically multi-thread operations if there are two or more CPUs 

available. 

The implementation in Section 4.2 describes the appropriate Lapack functions 

for all the matrix operations, such as Choleski decomposition and solving a system 

of linear equations. I cannot claim that the implementation is optimal, but it is very 

fast. 

A.2 SCARE 

SCARE, a Simulating, Correlated Aggregation and Risk Engine, is a COM ob- 

ject (DLL) program which can be used from Excel/VBA. It implements the IC 

method, some other useful copula functions and bivariate normal and t distribu- 

tions. It can be downloaded from www.mynl.com/wp. It was originally designed 

and implemented for Scor Re US, who have kindly given permission for it to 
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be made available to CAS members as part of the Working Party on Correlation 

effort. 

Before programming with SCARE you need to install it and then reference 

it from your VBA project. Within the VBA editor, click Tools, References to 

bring up the References dialog. Make sure the SCARE library is selected, as 

shown in Figure A. 1. In your application the location should show as C:/Program 

Files/Scare/Bin. Libraries are listed alphabetically, except those in use by an open 

project, which appear at the top. 
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[ ]  Visual Basic For Applications ~1~. ~i.: 
[ ]  Microsoft Excel lO, 0 Object Library : i  
[ ]  OLE Automation ...... 
[ ]  Microsoft office 10,0 Object Library 
[ ]  SADCo2 1.0 Type Library .......................... ; 
[]~i'&',~'~,l,,~i,~i, im/i,~/~..i,~i.ili'.--~.~l~.,;.,,[~,~,,~ 
[ ]  1010 Woodbine FastVarMath 1,0 Type Library 
[ ]  1010 Woodbine Gauss Integration Helper T%~e Li[ 
[ ]  1010 Woodbine VarView2Type Library 
[ ]  Acrobat Distiller 
[ ]  AcrobatPDFMaker 
[ ]  Adobe Acrobat 5,0 Type Library 
[ ]  AdobePDFMakerX 

;!iii . 

Figure A. 1: Adding a reference to the SCARE component in Excel VBA. 
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A.3 SCARE Functions 

All of the functions exposed by the SCARE DLL are described in detail in the 

User's Guide [30]. Here we give a quick overview of the key functions aimed at 

the Excel user. The SCARE DLL functions can call be referenced from VBA but 

they cannot be called directly from an Excel spreadsheet. 

A.4 SCARE Wrapper Functions 

A wrapper function "wraps" a COM function call so that it can be used directly 

from a worksheet J . For example, here is how we wrap the sort-by-aggregate func- 

tion. The scSortByAgg function takes four arguments: the input multivariate ar- 

ray, an indicator to sort in ascending or descending order, a holder for the sorted 

output with the aggregate appended in the last column and a holder for the sorted 

output without the aggregate appended. Here is the VBA code. 

Function scSortByAgg(v, ad As Long) 

Dim xx as new Shuffler 

Dim w, agg 

' ad=l ascending order, ad=-I descending order 

xx. SortByAgg v, ad, w, agg 

scSortByAgg = w 

End Function 

The argument v is the multivariate sample and the argument ad is +/-1 for 

ascending or descending order respectively. Within the function, new variables w 

and agg are defined to hold the answers, and xx is defined as a new Shuffler object 

to access the member function. The SortByAgg method of Shuffler is then called. 

Finally scSortByAgg=w sets the answer to be returned to Excel. 

In a spreadsheet, the function would be called as =scSortByAgg(Al :D 100,1) 

input as an array function in a range large enough to hold the answer. Array 

functions are entered using control+shift+enter, rather than just enter. They appear 

in the spreadsheet as {=scSortByAgg(Al :D 100,1)}. 

IExcel 2002 will automatically create wrappers for all functions using Tools, Add-Ins and 
selecting the Automation button. 
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The implementation in the Wrappers  module of  SCARE.xla uses a single vari- 

able xx which is shared between all the functions in the work book. It is defined 

as a private variable at the beginning of  the workbook. 

Several variables below are defined as "variants". Variants are a useful hold- 

all variable type in VB/VBA. Almost  all method output variables are Variants. 

They can hold a single number, a string, an array of  numbers, or a mixed ar- 

ray, or even a reference to an entire open Excel application. Code such as v = 

Range("a l :b l0" ) .va lue  will set v equal to a 2 x 10 variant array. Depending on 

the contents of  the range it could be an array of  doubles or an array of  variants. 

Code like set v = Range("al  :b l0")  sets v equal to a reference to the range object. 

It is then possible to write v.ClearContents to clear Range("al  :b l0")  or v.Value 

= 10 to set all the cells A I : B I 0  equal to the value 10. Variants need to be used 

with care. In some situations they are convenient, fast and eff ic ient- -but  in others 

they are convenient, slow and inefficient. Their use in SCARE is confined to the 

former. 

The main various functions in SCARE.xla  are as follows. 

Function scSortByAgg(v, ad As Long) 

Sums the input n x r multivariate density over columns to get an n × 1 aggregate. Sorts 

the whole input array by the aggregate. Use ad=l to sort in ascending order, and ad=-I 

for descending order. 

Public Function scCholeski(x As Variant) As Variant 

Returns the Choleski decomposition of the input r × r matrix x. Note that the C++ object 

only populates the upper half of the matrix. The VBA method "tidies-up" that return by 

zero filling the lower portion. 

Function scCorr(v As Variant) As Variant 

Computes the mean by column, covariance matrix and correlation matrix of the input 

n × r multivariate density v. Only the correlation matrix is returned to Excel, but it would 

be easy for the user to alter to return the means vector or the covariance matrix. 
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Public Function scIsCovMat(x As Variant) As Boolean 

Tests input matrix X to determine if it is positive definite. Returns true or false. 

Function scNormDist(x As Double) As Double 

Computes ¢(x) the standard normal distribution function evaluated at x. It is more accu- 

rate, and from VBA quicker, than the worksheet function NormDist. 

Function scNormlnv(x As Double) As Double 

Computes the inverse standard normal probability distribution function at probability level 

x. Also quicker and more accurate than the built in functions. 

Function scTDist (nu As Long, x As Double) As Double 

Computes the t-distribution function with v degrees of freedom at x. 

Function scTlnv(nu As Long, x As Double) As Double 

Computes the inverse to the t distribution function with v degrees of freedom at probabil- 

ity level z. 

Function scBVN(h As Double, k As Double, rho As Double) As Double 

Computes the probability Pr(X < h, Y < k) where (X, Y) have a bivariate normal 

distribution with standard normal marginals and correlation coefficient p. 

Function scBVT(nu As Long, h As Double, k As Double, rho As Double) 
As Double 

Computes the bivariate t distribution function Pr(X < h, Y < k) where (X, Y) have a 

bivariate t distribution with n v  degrees of freedom and correlation p. 

Function scQuickShuffle(rgln, corrln) As Variant 

Returns the input n x r range rgIn re-ordered to have correlation approximately equal to 

the r x r correlation matrix coffin. 
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Function scQuickShuffleParam(spec, n As Long, covMat) As Variant 

As scQuickShuffle, except the input values are parameters for shifted lognormal variables. 

The spec input is a n x r array where there are n input lines of business and nine columns. 
The meaning of the nine columns is as follows: 

1. Not used 

2. +1,  where +1 is used to represent losses and - 1  liabilities 

3 . #  

4. o 

5. s, the shift parameters 

6. 0 or 1 indicator where 1 means there is layer and attachment information for the 

current row. 

7. Layer value 

8. Attachment value; the sample is from a shifted lognormal with parameters s, # 
and or, conditional on losses being greater than the attachment. The attachment is 

subtracted and losses are limited by layer value input. 

9. Not used. 
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Appendix B 

VBA CODE FOR INDEXING 

Private Sub indexx(n As Long, arr, colNo As Long, indx() As Long) 

' Indexes an array arr[l..n], i.e., outputs the array indx[l..n] such 

' that arr[indx[j]] is in ascending order for j = i, 2, . ,N. The 

' input quantities n and arr are not changed. Translated from [31]. 

Const m As Long = 7 

Const NSTACK As Long = 50 

Dim i As Long, indxt As Long, ir As Long, itemp As Long, j As Long 

Dim k As Long, 1 As Long 

Dim jstack As Long, istack(l To NSTACK) As Long 

Dim a As Double 

ir = n 

1 = 1 

For j = 1 To n 

indx(j) = j 

Next j 

Do While 1 

If (ir - 1 < m) Then 

For j = 1 + 1 To ir 

indxt = indx(j) 

a = arr(indxt, colNo) 

For i = j - 1 To 1 Step -I 

If (arr(indx(i), colNo) <= a) Then Exit For 

indx(i + i) = indx(i) 

Casualty Actuarial Society Forum, Winter 2006 197 



RWP on Correlations and Dependendes Among Al l  Risk Sources Report 

Next i 

indx(i + i) = indxt 

Next j 

If (jstack = 0) Then Exit Do 

ir = istack(jstack) 

jstack = jstack - 1 

1 = istack(jstack) 

jstack = jstack - 1 

Else 

k = (i + ir) / 2 

itemp = indx(k) 

indx(k) = indx(l + I) 

indx(l + i) = itemp 

If (arr(indx(1), colNo) > arr(indx(ir), colNo)) Then 

itemp = indx(1) 

indx(1) = indx(ir) 

indx(ir) = itemp 

End If 

If (arr(indx(l + i), colNo) > arr(indx(ir), colNo)) Then 

itemp = indx(l + I) 

indx(l + I) = indx(ir) 

indx(ir) = itemp 

End If 

If (arr(indx(1), colNo) > arr(indx(l + i), colNo)) Then 

itemp = indx(1) 

indx(1) = indx(l + i) 

indx(l + i) = itemp 

End If 

i = 1 + 1 

j = ir 

indxt = indx(l + i) 

a = arr(indxt, colNo) 

Do While 1 

Do 

i = i + 1 

Loop While (arr(indx~i), colNo) < a) 

Do 

j = j - 1 

Loop While (arr(indx(j), colNo) > a) 

If (j < i) Then Exit Do 

itemp = indx(i) 

indx(i) = indx(j) 

indx(j) = itemp 

Loop 

indx(l + i) = indx(j) 
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indx(j) = indxt 

jstack = jstack + 2 

If (jstack > NSTACK) Then MsgBox (''NSTACK too small in indexx.") 

If (it - i + 1 >= j - i) Then 

istack(jstack) = ir 

istack(jstack - i) = i 

ir = j - 1 

Else 

istack (j stack) = j - 1 

istack (j stack - i) = 1 

1 = i 

End If 

End If 

Loop 

End Sub 
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AGGREGATING BIVARIATE CLAIM SEVERITIES WITH 

NUMERICAL FOURIER INVERSION 

DAVID L. H O M E R  

Abstract 

This chapter will apply continuous Fourier transforms to compute the bivariate aggre- 

gate claims distribution arising from a bivariate severity distribution and a univariate 

claim count distribution. 

1. INTRODUCTION 

This chapter will apply continuous Fourier transforms to compute the bivariate aggre- 

gate claims distribution arising from a bivariate severity distribution and a univariate 

claim count distribution. 

Section 1 provides a general description of univariate aggregate claims methods 

followed by a general description of bivariate aggregate claims methods. 

Section 2 provides a brief summary of the univariate Fourier transform method 

applied by Heckman and Meyers [3] since this will provide the foundation for the 

bivariate method presented in section 3. The abbreviation "HM" will be used for 

"Heckman and Meyers". Section 4 presents examples. 

1.1. Univariate Methods 

There are several methods described in the actuarial literature for computing the uni- 

variate aggregate loss distribution arising from a univariate severity distribution and 

a univanate claim count distribution. These methods include HM's numerical Fourier 
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inversion [31, discrete Fourier transforms as discussed by Wang [10] and Robertson 

[8], and Panjer 's recursive techniques [7]. 

Heckman and Meyers' numerical Fourier inversion method uses a severity distri- 

bution with claim size intervals of constant density and a possible point mass at the 

maximum claim size. The claim count model is Binomial, Poisson, or Negative Bi- 

nomial. This method works best when the expected claim counts are large because 

the numeric integral computed by this method coverges more quickly when the claim 

counts are large. 

The basic discrete Fourier transform method requires a discrete claim size distri- 

bution with claim sizes at equally spaced intervals. It works best when the expected 

claim counts are small because of computer memory constraints. The interval size 

must be small enough to accurately represent the claim size distribution while the 

largest claim size represented must be large enough to capture the aggregate distri- 

bution. This generally means a large number of intervals are required and limited 

computer memory can make computations for large claim counts impractical. 

Robertson's method is a clever adaptat ion of the basic discrete Fourier transform 

for application with claim size distributions with equally spaced intervals of constant 

density. This is nearly the same claim size model used by HM, but with a few 

additional limitations. There is no point mass allowed at the maximal claim size and 

the intervals of constant density must have uniform width. The claim count model is 

a finite list of probabilities. This method works best when the expected claim counts 

are small because of computer memory constraints. 

Additional calculations are required to correct the basic discrete Fourier trans- 

form for the non-discrete severity density. In practice, the cost of the additional 

calculations may outweigh the benefit, if any, of using severities with intervals of con- 

stant density. However, since Robertson's method is exact it is extremely useful for 

checking methods like the HM method which has an error term. The testing must 

be done with examples with a moderate number of expected claims since the HM 

method works best with a large number and Robertson's method works best with a 

small number. In this paper we will use a two-dimensional application of Robertson's 
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method to compute the error of the two-dimensional extension of HM. 

The recursive technique uses a discrete severity distribution with uniformly spaced 

claim sizes. The claim count model includes the Binomial, Poisson and Negative 

Binomial distributions3. This method works well when the expected claim counts 

are small for reasons similar to those given for discrete Fourier transform methods. 

In the methods described above, a pair of risk collections--each with its own 

severity and claim count distr ibution--would be aggregated assuming the collections 

were independent. Heckman and Meyers also allow a mixing parameter that  reflects 

parameter risk in the scale of the aggregate distribution and induces a correlation 

between collections. Wang [10] and Meyers [6] discuss the univariate aggregation of 

correlated collections. 

1.2. Bivariate Methods 

The actuarial literature also describes the computation of bivariate aggregate dis- 

tributions. Homer and Clark [4] describe bivariate examples using two-dimensional 

discrete Fourier transforms. Sundt [9] extends Panjer recursions to multiple dimen- 

sions. Walhin [11] describes an application of two-dimensional Panjer recursions. 

Like their univariate counterparts, these methods work best when the expected claim 

counts are small due to computer memory constraints. 

This chapter extends the HM method to bivariate aggregate distributions. As with 

the univariate method, this extension works best when the expected claim counts are 

large because the numeric integrals computed converge more quickly with large claim 

counts. 

The following sections will provide a brief review of the HM univariate method, 

develop the bivariate method, and present some examples. 

1The claim count model for recursion technique includes a larger group of distributions which are 
the members of the (a, b, 0) or (a, b, 1) classes as described by Klugman et al [3]. The HM method 
can be modified to use (a, b, x) members. 

C a s u a l t y  A c t u a r i a l  S o c i e t y  Forum, W i n t e r  2 0 0 6  209 



R W P  on Correlations and Dependencies A m o n g  A l l  Ra'sk Sources Report 

2 .  UNIVARIATE N U M E R I C A L  F O U R I E R  INVERSION 

2.1. Univariate Collective Risk Model 

The collective risk model describes aggregate claims for a collection of risks with a 

claim count or frequency distribution and a claim size or severity distribution. The 

individual claims sizes Xk are independent and identically distributed (lid). The 

individual claim sizes are also independent of the claim count N. The aggregate 

losses are 

Z = X1 + ... + XN. (2.1) 

This model may be used to describe the aggregate losses for a single line or book of 

business. 

2.2. Univai-iate Aggregate Characteristic Function 

The aggregate loss distribution is conveniently described through its characteristic 

function in terms of the characteristic function of the claim size distribution and the 

probability generating function of the claim count distribution. 

Recall that the characteristic function (cf) for a distribution is defined as 

¢x(t)  = E(eitX), (2.2) 

and that the probability generating function (pgf) for a discrete distribution is defined 

a s  

PGFN(t )  = E(tN). (2.3) 

The aggregate loss characteristic function ¢z(t) is equal to the composition of the 

claim count probability generating function PGFN(t )  with the claim size character- 

istic function ¢x(t),  

C z ( t )  = E(e ~'z) 
: E(eXI+...+xN) 

= EN(¢X(t)NIN) 

= PGFN(¢x( t ) ) .  (2.4) 
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The cdf F(z) of Z can be obtained from ¢z(t) when it is continuous 

F(z) = ~1 + -~rl fo~lOz(t)lsin(zt - arg(¢z(t))) (2.5) 

Although ¢(t) is complex, Equation 2.5 is real valued; I¢1 is the modulus of ¢ and 

arg(¢) is its argument. The right hand side of 2.5 yields F(z) - Pr(Z = z)/2 at steps 

when F(z) is not continuous. Given ¢(t), F(z) is obtained via numeric integration. 

Equation 2.5 is equivalent to HM equation 6.5. By applying a scale change of 

variable t --~ t /a and substituting f(t) = I¢(t/a)l and g(t) = arg(¢(t/a))) into 

equation 2.5 we get HM equation 6.5, 

1 1 [o~ f(t) 
F(z) = -~ + - Jo sin(tz/a - g(t))dt. (2.6) 

t 

2.3. Univariate Severity Model 

The severity density is approximated to make the calculation of ¢x(t) easy. It is 

approximated with n intervals (ak, ak+l) of constant density dk (k = 1, ...n) and an 

optional point mass p at the maximal claim size a~+l such that 

n 

E dk(ak+l -- ak) + p = 1. (2.7) 
k=l 

Figure 2.1 shows a sample severity density with two intervals (al, a2) and (a2, a3) and 

a point mass at aa. With this severity model we easily obtain 

C x ( t )  = Ex(~ "x) 
• _ eztak 

= f i d k e ' t a k + l i t  + p £ t a n + l .  (2.8) 
k = l  

2.4. Univariate Numerical Inversion 

Heckman and Meyers integrate 2.5 using five point Gaussian quadrature with spe- 

cial treatment of the portion of the integral 1,ear zero. We will extend this to two 

dimensions using five point quadrature first along one dimension and again along the 

second dimension. 
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F I G U R E  2.1 

UNIVARIATE SEVERITY DENSITY - -  INTERVALS OF CONSTANT DENSITY 

dl 

T 

i ........... I / ' 
al a2 a3 

claim size 

3. BIVARIATE NUMERICAL FOURIER INVERSION 

3.1. Bivariate Collective Risk Model 

The collective risk model can be extended to model two collections of risks and their 

dependencies. There are two forms for this extension. 

The first form is the bivariate severity form. It is useful for modeling aggregate 

losses together with the corresponding aggregate adjustment expenses. This form 

uses a single claim count distribution and a bivariate claim size distribution. While 

the bivariate pair (Xk, Yk) may have any dependency structure, the pairs arising from 

different claims are assumed to be lid. The claim size pairs are also independent from 

the claim count N. The aggregate loss pair is 

(Zx, Zy) = (Xl + ... + XN, Y1 + ... + YN). (3.1) 

The second form is the bivariate count form. It is useful for modeling two risk col- 

lections with different but related claim counts. The claim size severities Xk and Y3 

are separately lid and also independent from each other. The claim counts for each 
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risk collection arise from a bivariate claim count distribution. The claim count pair 

(M, N) is independent from each of the claim sizes. The aggregate pair is 

(Zx, Z~) = (X1 + ... + XM,  Y1 +. . .  + YN). (3.2) 

This chapter will focus on the bivariate severity form, but the methods presented here 

can also be applied to the bivariate count form. 

3.2. The Bivariate Aggregate Characteristic Function 

The aggregate characteristic function for the bivariate severity form of the collec- 

tive risk model is a composition of the claim count pgf with the bivariate severity 

characteristic function. 

Cz~,z~(s, t) = E(e'sZx+itz~) 

= E(e'*(Xl+...+XN)+it(rI+...+YN)) 

_~ E(eisXl+itrl..eisX~+~trN) 

= EN(¢X ,y (S , t )NIN)  

= PGFN(¢X ,V( s , t ) )  (3.3) 

For the bivariate count form, V~;ang [10] gives the aggregate characteristic function. 

Cz~,z~(s, t) = PGFM, N(¢X(S),  Cv(t)). (3.4) 

Where PGFM,N(S, t) is the bivariate claim count pgf. 

Appendices A and B develop an expression for F(zx ,  zu) in terms of Cz,,z~(s, t) 

when F is continuous, 

F ( x , y )  = (F(x )  + F(y ) )  - ~ + ~-~2I, (3.5) 

where 

I = fo fo 2 (l¢(s, t)l cos(sx + ty  - arg(¢(s, t))) - 

dsdt 
I¢ (s , - t ) l cos (sx  - ty  - arg(¢(s , - t ) ) ) )  

~is)(it)" 
(3.6) 
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When F is not continuous, the right hand side of 3.5 yields F(zx, z~) + m/4 ,  where 

m is a correction for probability mass that lies along the lines Z, = zx and Zy = zu, 

and 

Pr(Z ,  > zx A Z~ = z~) 

+Pr(Z~ > zy N Zx = z~) 

- P r ( Z ~  < z, n Z~ = zy) 

- P r ( Z y  < zy n Zx = zx). 

(a.7) 
(3.8) 
(3.9) 

(3.10) 

3.3. Bivariate Severity Model 

In an extension of the univariate severity model, the bivariate severity density will 

be approximated with rectangles of constant density. That is, the severity domain 

will be divided into mn rectangles (aj, aj+l) x (bk, bk+l) of constant density dj,k (j  -- 

1...m)(k = 1...n). Like the one dimensional case, this simplifies the calculation of 

Cx,r(s, t), 

Cx,r(s,t) = E(e "x+~tr) 

j = l  k = l  abk a 

- ~  eiSa3+l _ e~Sa3 eitbk+l _ eisbk 

= dj,k is it (3.11) 
j = l  k=l 

Figure 3.1 shows a sample bivariate density. 

Here we have not included mass points or mass lines, but it is possible to do so. 

3.4. Bivariate Numerical Fourier Inversion 

We will make use of two-dimensional five point Gaussian quadrature. Appendix C 

provides additional descriptions of two-dimensional quadrature. Sample code will also 

be provided in a spreadsheet that can be downloaded from the CAS Web site. It will 

follow key elements of the HM code fairly closely. 
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F I G U R E  3.1 

BIVARIATE SEVERITY DENSITY--RECTANGLES OF CONSTANT DENSITY 

dl A b l ~  
I I I 

al a2 a3 
X claim size 

In particular, HM split the line into 256 intervals of width h = 27ra/xma,. We will 

split the grid into rectangles of widths hx = rc/xmax and hy = rr/ym~ respectively. We 

are using half of the HM interval and trying to economize on the total number of rect- 

angles. We leave out the additional factor of a which is the standard deviation of the 

aggregate distribution and is not required. Heckman and Meyers additionally split the 

first interval into 5 smaller intervals (0, h/16), (h/16, h/8), (h/8, h/4), (h/4, h/2), (h/2, h). 

This is helpful because the integrand changes rapidly near zero. 

As suggested by HM it is speculated that the key source of error in this method 

is truncation error, since the integrals are from zero to infinity, but our algorithm 

must stop at a finite values. Errors in our sample calculations will be computed with 

comparisons to known values. 
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4. BIVARIATE EXAMPLES 

This section presents two examples. The first example applies the 2d inversion tech- 

nique to a bivariate severity and a claim count distribution allowing only a single 

claim. Thus, the aggregate distribution is the same as the bivariate severity and the 

error is readily computed. 

The second example applies the 2d inversion to the same bivariate severity with a 

moderate number of expected counts. This result is compared to an exact calculation 

produced by a two dimensional version of Robertson's method [8]. 

4.1. Example 1--Exactly One Claim 

Table 4.1 shows a sample bivariate severity distribution. If we also assume the claim 

count distribution has a 100% probability of 1 claim the resulting aggregate distribu- 

tion computed by our method is shown in Table 4.2. This method should reproduce 

Table 4.1. The error is shown in Table 4.3. 

T A B L E  4.1 

SAMPLE BIVARIATE SEVERITY CUMULATIVE DISTRIBUTION FUNCTION 

F(x,y) y 
0 200 600 800 1.200 

0 
200 
400 
600 

1,000 
2,000 
3,000 
5,000 

0.0000 0.0000 0.0000 0.0000 0.0000 
0.0000 0.4705 0.7557 0.7845 0.8120 
0.0000 0.4858 0.8243 0.8621 0.8990 
0.0000 0.4917 0.8540 0.8964 0.9380 
0.0000 0.4953 0.8735 0.9190 0.9640 
0.0000 0.4991 0.8949 0.9440 0.9930 
0.0000 0.4996 0.8978 0.9474 0.9970 
0.0000 0.5000 0.9000 0.9500 1.0000 
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TABLE 4.2 

AGGREGATION OF SAMPLE BIVARIATE SEVERITY CDF WITH 100% 
PROBABILITY OF 1 CLAIM 

Y(zx, Zy) Zy 
0 200 600 800 1,200 

Zx 
0 

200 
400 
600 

1,000 
2,000 
3,000 
5,000 

0.0000 0.0047 0.0076 0.0079 0.0082 
0.0011 0.4652 0.7485 0.7774 0.8046 
0.0012 0.4850 0.8236 0.8617 0.8985 
0.0012 0.4909 0.8535 0.8961 0.9377 
0.0012 0.4946 0.8731 0.9189 0.9639 
0.0012 0.4984 0.8945 0.9439 0.9929 
0.0012 0.4989 0.8975 0.9474 0.9969 
0.0012 0.4993 0.8996 0.9499 0.9999 

TABLE 4.3 

ERROR FOR EXAMPLE 1 AGGREGATE CDF 

Error 

0 
z, 200 

400 
600 

1,000 
2,000 
3,000 
5,000 

Zy 
0 200 600 800 1,200 

0.0000 0.0047 0.0076 0.0079 0.0082 
0.0011 (0.0054) (0.0072)(0.0072) (0.0074) 
0.0012 (0.0008) (0.0007)(0.0005) (0.0005) 
0.0012 (0.0008) (0.0005) (0.0002) (0.0003) 
0.0012 (0.0007) (0.0004) (0.0001) (0.0001) 
0.0012 (0.0007) (0.0004) (0.0001) (0.0001) 
0.0012 (0.0007) (0.0004) (0.0001) (0.0001) 
o.oo12 (o.ooo7) (0.0004) (o.oool) (o.oool) 
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4.2. Ezample 2--Variable Claim Counts 

In this example we use the claim size distribution from Example 1 and a claim count 

distribution with a maximum claim size. This allows us to compute the exact answer 

using an alternative method based on Robertson's one-dimensional method. Ap- 

pendix D provides a brief discussion of a 2d Robertson method. In addition, sample 

R code showing the 2d Robertson calculation will be made available for download- 

ing. Table 4.4 shows the count distribution. Table 4.5 shows the exact calculation 

based on the Robertson method. Table 4.6 shows the result from numerical Fourier 

inversion. The error is shown in Table 4.7. The errors are substantially smaller that  

those from Example 1 and this is at t r ibuted to the larger claim counts forcing the 

integrand to converge to zero more quickly. 

5. CONCLUSION 

Numerical Fourier inversion is a viable technique for exploring claim dependencies. 

When the claim counts are large, it may be more efficient than other techniques such 

as discrete Fourier transforms, recursion, or simulation. 

Additional development is possible for alternate severity structures such as a 

bivariate distribution for primary and excess claim portions. Given the aggregate 

characteristic function, conditional expected values can also be computed. These 

calculations could have potential applications in reserving and surplus allocation. 
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T A B L E  4.4 

EXAMPLE 2--CLAIM COUNT DISTRIBUTION 

Count Probability Cumulative 
0 0.000 0.000 
1 0.000 0.000 
2 0.000 0.000 
3 0.000 0.000 
4 0.000 0.000 
5 0.000 0.000 
6 0.000 0.000 
7 0.000 0.000 
8 0.100 0.100 
9 0.100 0.200 

10 0.100 0.300 
11 0.100 0.400 
12 0.100 0.500 
13 0.100 0.600 
14 ~ 0.100 0.700 
15 0.100 0.800 
16 0.100 0.900 
17 0.100 1.000 

Mean 12.500 
Std 2.872 
Var 8.250 
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TABLE 4.5 

EXAMPLE 2--EXACT SOLUTION FROM 2D ROBERTSON METHOD 

F(zz, Zy) Zy 
1,000 2,000 4.000 6,000 10,000 

Zx 
1,000 
2,000 
3,000 
4,000 
5,000 
6,000 
8,000 

15,000 

0.0009 0.0195 0.0550 0.0566 0.0567 
0.0017 0.0577 0.3249 0.3924 0.3951 
0.0019 0.0688 0.4850 0.6649 0.6782 
0.0019 0.0724 0.5613 0.8193 0.8431 
0.0019 0.0737 0.5925 0.8928 0.9239 
0.0019 0.0744 0.6073 0.9287 0.9639 
0.0019 0.0747 0.6170 0.9547 0.9935 
0.0019 0.0747 0.6185 0.9601 1.0000 

TABLE 4.6 

EXAMPLE 2--AGGREGATE CDF FROM NUMERICAL FOURIER INVERSION 

F(zx, z~) 0 

1,000 
zx 2,000 

3,000 
4,000 
5,000 
6,000 
8,000 

15,000 

Zy 
1,000 2,000 4,000 6,000 10,000 

0.0009 0.0195 0.0550 0.0566 0.0567 
0.0017 0.0577 0.3249 0.3924 0.3951 
0.0019 0.0688 0.4850 0.6649 0.6782 
0.0019 0.0724 0.5613 0.8193 0.8431 
0.0019 0.0737 0.5925 0.8928 0.9239 
0.0019 0.0744 0.6073 0.9287 0.9639 
0.0019 0.0747 0.6170 0.9547 0.9935 
0.0019 0.0747 0.6185 0.9601 1.0000 
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TABLE 4.7 

EXAMPLE 2--ERROR 

Error zy 
1,000 2,000 4,000 6,000 10,000 

1,000 
2,000 
3,000 
4,000 
5,000 
6,000 
8,000 

15,000 

0.00000 0.00000 0.00000 0.00000 0.00000 
0.00000 0.00000 0.00000 0.00000 0.00000 
0.00000 (0.00000) (0.00000) (0.00000) (0.00000) 
0.00000 0.00000 0.00000 0.00000 0.00000 
0.00000 0.00000 0.00000 0.00000 0.00000 
0.00000 0.00000 0.00000 0.00000 0.00000 
0.00000 0.00000 0.00000 0.00000 0.00000 
0.00000 0.00000 0.00000 0.00000 0.00000 

7. BIOGRAPHY 

David Homer is a Principal and Vice President of the Reinsurance business of Towers 

Perrin. He holds a bachelor's degree in mathematics and physics from Swarthmore 

College and a master's degree in mathematics from the University of Pennsylvania. 

David's current work involves pricing and modeling reinsurance solutions. He is 

a past winner of the Dorweiller Prize. 

Casual ty  Actuar ia l  Society Forum, Wi nt e r  2006 221 



RWP on Correlations and Dependen&s Among Al l  Risk Sources Report 

REFERENCES 

[1] Abramowitz, Milton, and Irene A. Stegun, "Handbook of Mathematical Func- 
tions," New York, Dover Publications, Inc., 1970. 

[2] Burden, Richard L., and J. Douglas Faires, "Numerical Analysis," 3rd ed., 

Boston, Prindle, Weber and Schmidt, 1985. 

[3] Heckman, Philip E. and Glenn G. Meyers, "The Calculation of Aggregate Loss 

Distributions from Claim Severity and Claim Count Distributions," PCAS LXX, 

1983, pp. 22--61. 

[4] Homer, David L. and David R. Clark, "Insurance Applications of Bivariate Dis- 

tributions," PCAS XC, 2003, pp. 274-307. 

[5] Klugman, Stuart A., Harry H. Panjer, and E. Willmot Gordon, Loss Models: 

From Data to Decisions, New York, John Wiley & Sons, Inc., 1998. 

[6] Meyers, Glenn G., "Discussion of Shaun Wang's Aggregation of Correlated Risk 

Portfolios: Models and Algorithms," PCAS LXXXV, 1999, pp. 781-805. 

[7] Panjer, Harry H., "Recursive Evaluation of a Family of Compound Distribu- 

tions," ASTIN Bulletin, Vol. 12, No. 1, 1981, pp. 22-26. 

[8] Robertson, John P., "The Computation of Aggregate Loss Distributions," PCAS 

LXXIX, 1992, pp. 57-133. 

[9] Sundt, Bjcrn, "On Multivariate Panjer Recursions," ASTIN Bulletin, Vol. 29, 

No. 1, 1999, pp. 29-45. 

[10] Wang, Shaun S., "Aggregation of Correlated Risk Portfolios: Models and Algo- 

rithms," PCAS LXXXV, 1998, pp. 848-939. 

[11] Walhin, Jean-Prangois, "On the Optimality of Multiline Excess of Loss Covers," 

CAS Forum, Spring 2003, pp. 231-243. 

222 Casualty Actuarial Society Forum, Winter 2006 



RWP on Correlations and Dependencies Among Al l  Risk Sources Report 

APPENDIX A 

Two-DIMENSIONAL INTEGRATION FORMULA 

Consider the integral 

/7/7 I = e'~(e~'~¢(-s, - t )  - e-"~¢(-s,  t)) 

t)) d sd t  (A.1) -~-~*X(e"~¢(s,-t) - ~-"~¢(s, /-gT' 

Substitute the integral form for ¢ and apply Fubini's theorem to change the order of 

integration. Then, 

f foof f  I = e i*(*-u)(e it(y-v) - e 't(v-y)) 
J - oe  J - oe  J O ,10 

eit(v_u)) d s d t d F ( u ,  v) 
-£~(~-~)  'eit(~-~) - i s i t  (A.2) 

Since 

where 

fo  ° e . . . .  e-isX.ds = rsgn(x), 
is  

(A.3) 

-1,  x < 0  
sgn(x)= 0, x = 0  , 

1, x > 0  
(A.4) 

Casualty Actuarial  Society Forum, Winter  2006 223 



RWP on Correlations and Dependencies Among Al l  Risk Sources Report 

I =  f _ :  f _ :  fo°~rrsgn(x- u)(e 't(u-v) - eit(v-Y))-~tdF(u,v ) 

= f_ : f_ : r r2sgn(x -u ) sgn(y -v )dF(u ,v )  

-Pr(Zu < zy n Z, = z~) 

- f ~  f~2dF(u,v) + Pr(Zy > z ~ n &  = z~) 

- i °~ f - L  rr2dF(u'v) + Pr(Z, > z ~ n &  = z~) 

+ f°~ i°°rr2dF(u,v ) 

= ~ ( F ( x , y )  - ( F ( z , ~ )  - F ( x , y ) )  - ( F ( ~ , y )  - F ( x , y ) )  

+(1 - F(oc,y) - F ( x ,  oo) + F(x,y)) + m). (A.5) 

Where  m is a correction for probabi l i ty  mass tha t  lies along the lines Zx = z~ and 

Z~ = zy when F(z,, zy) is not  continuous, since sgn(O) = O. 

m P r ( Z .  > zx n & = zy) 

+ P r ( &  > z~ n zx = z~) 

-Pr(Zx  <_ zx n Zy = zy) 

- P r ( Z y  < zy n Zx = zz), 

(A.6) 
(a.7) 
(A.8) 
(A.9) 

So, 

Finally, 

I = 7r2(4F(x, y) - 2 (F (x )  + F(y)) + 1 + m). 

1 l I  m 
F(x,y) = (F(x) + F(y)) - -~ + 4~r2 4" 

(A.10) 

(A.11) 
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APPENDIX B 

EXPANSION OF I FOR NUMERICAL INTEGRATION 
Appendix A provides an expression for the bivariate cdf F(x, y). 

1 ~ I ,  (B.1) F(x, y) = ~ (F(x) + F(y)) - -~ + 

where, 

/7/7 I = (e ~sx (dt~¢(-s,  - t )  - e-~tY¢(-s, t) 

dsdt (B.2) 
- e  - " x  - t )  - 

It will be helpful to write ¢ in polar form and make use of a few symmetries. Let 

R(s,t)  = I¢(s,t)l (B.3) 

O(s,t) = arg(¢(s,t)), (8.4) 

then, 
¢(s, t) = R(s, t)e i°(*'t) = E(ei**+it~). (B.5) 

We have the complex conjugate of ¢ 

¢(s,t) = R(s,t)e -i°("'t) (8.6) 

= E(e '**+'t~) (B.7) 

= E(e -~s~-'ty) (S.8) 

= R ( - s , - t ) e  ~°(-s'-t). (B.9) 

Thus, 

O(s,t) = - O ( - s , - t )  (B.10) 

O(s,-t)  = -O( - s , t )  (B.11) 

R(s,t)  = R ( - s , - t )  (B.12) 

R ( s , - t )  = R ( - s , t ) .  (B.13) 
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Now writing I with ¢ in polar form 

I = fo~ fo~ (e~*X (ei'~R(-s,-t)e'O(-s,-t) - e-i'~R(-s,t)e'O(-s,t)) - 

dsdt (B.14) e-~Sx (e't~R(*' -t)e'°(~'-') - e - ~ R ( s '  t)e~°(~"))) ( i , )( it)  

and simplifying using equations B.10-B.13, 

/7/7 I = (R(s, t) (e ~sx+~'~-~(~'~ + ~-~x-~'~+'~(~")) - 

R(s , - t )  (e . . . .  it~-,o(,,-t) + e-i,~+,tu+io(,,-t)) ) dsdt (B.15) 
(is)(it) 

we can now write 

/7/7 I = ( R ( ~ ,  t ) 2 e o ~ ( ~ x  + t y  - e(~,  t ) )  - 

. dsdt (B.16) R(~,- t )2eo~(~x - t y  - e ( ~ , - t ) ) )  ( ~ ) ( i t ) "  

In terms of ¢ we have 

/7/7 I - -  ( l ¢ ( s ,  t)12 cos(sx + ty - arg(¢(s, t))) - 

dsdt (B.17) 
]¢(s, -t)12 cos(sx - ty - arg ¢(s, - t ) ) ) )  (is)(it)" 
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APPENDIX C 

GAUSSIAN QUADRATURE FOR TWO DIMENSIONS 

This section will develop the formulae for two-dimensional Gaussian quadrature. 

The basic form to be approximated is 

/J// I ---- f(x, y)dxdy. (6.1) 

Using a change of variables, change the integral domain from the rectangle [a, b] x [c, d] 

to [-1,1] × [-1,1]. 

1 
u - b - a ( 2 X -  a -  b). (C.2) 

1 
v = d - c  (2y -c -d ) "  (C.3) 

Equation C.1 becomes 

/ l j / 1  ( u ( b _ a ) + a + b  v ( d _ c ) + c + d )  (b_a)(d_C)dudv" (C.4) I =  f 
1 1 2 ' 2 4 

The integral C.4 is now computed as a double sum, 

5 5 ( x i ( b - a ) + a + b  x j ( d - c ) + c + d ~  (b -a ) (d -c )  
= E E w , w , / \  2 ' 2 / 4 + ~ (c.s) 

z=l j = l  

The error term e depends on how well f(x, y) can be approximated by polynomials of 

finite degree (nine or less for five point Gaussian quadrature). By choosing sufficiently 

small intervals e can be made small. See [2] for additional details. 

The quadrature values xi and wi are taken from Abramowitz and Stegun [1]. 
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T A B L E  C. 1 

ABSCISSAS AND WEIGHTS FOR FIVE POINT GAUSSIAN QUADRATURE 

k xk wk 
1 -0.90617 98459 38664 0.23692 68850 56189 
2 -0.53846 93101 05683 0.47862 86704 99366 
3 0.00000 00000 00000 0.56888 88888 88889 
4 +0.53846 93101 05683 0.47862 86704 99366 
5 +0.90617 98459 38664 0.23692 68850 56189 

A P P E N D I X  D 

Two-DIMENSIONAL ROBERTSON METHOD 

This appendix provides a brief discussion of extending Robertson's method [8] to 

two dimensions. It begins with a summary of the one dimensional method. 

Robertson's method computes the aggregate distribution for a finite claim count 

distribution and a claim size distribution with equal width and constant density 

intervals. The method is exact and it uses discrete Fourier transforms. 

A more basic application of the discrete Fourier transform requires a discrete claim 

size distribution with claim sizes at integral intervals. 

Robertsons's method uses the usual discrete Fourier technique to compute convo- 

lutions, but adds a correction to reflect the constant density claim size intervals. The 

method is quite clever and it is not hard to develop an intuition to see why it works. 

Consider a discrete random variable X with integral size intervals of width I. Now 

add a random variable U that is uniform on the interval I. The result X + U is a 

random variable with claim size interval,- of constant density. 

This observation can be applied to develop the aggregate distribution with claim 

size distribution Fx+u and claim count distribution P. Note that the sum of n 

independent copies of X + U has the same distribution as the sum of n independent 

copies of X plus n independent copies of U. The aggregate cumulative distribution 
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function is then 
n = n m a x  

F(z)  = E P(n)F(x~ U(z) (D.1) 

n~r~rnax 

= E P(n)(F(xn)(z) * Fu(')(z))" (D.2) 
n = 0  

quantity F(xn)(z) can be computed with the discrete Fourier transform and The 

Robertson explains how F(un)(z) can be obtained. For integral values of z the convo- 

lution of the two is 
d = z  

Fx ('~1 ~'~ E ( f ( x n ) ( j ) F ( v " ) ( z - j ) ) .  (D.3) +U~,~]  

j=0 

Now consider ~(n) for integral values of z, • X + U  

j = z  

Fx  ('~) t,~ _ ~( ' )  t ,  _ 1) = E(f(xn)(j)(F(vn)(z  - j )  - F(un)(z - j - 1)) (D.4) +U~,~I  . X + U ~  

j=0 

Robertson explains that  the differences (F(un)(z - j )  - F(v")(z - j  - 1)) are the factors 
n az_ j where, 

a~ = 1/n! n > 1, (D.5) 

ajl : 0 j __> 1, (D.6) 

a~ = (1 /n ) ( (n  -j)a']_7~ + (j + 1)ay -1 n > 2, j > 1. (D.r) 

The right hand side of equation D.4 is the convolution of f(~) with a~ and can be 

computed using discrete Fourier transforms. 

The twn-dimensional extension wor "ks in exactly the same way by considering the 

discrete random pair (X, Y) with integral size intervals of widths I and J. By adding 

an independent pair (U, V) where U is uniform on I and V is uniform on J,  we get 

the random pair (X + U, Y + V), which has claim size rectangles of constant density. 

The two-dimensional correction factors for the nth convolution are outer products of 

the one-dimensional correction factors, since U and V are independent. 

a ~ = " " (D.8) (i,j) a~ aj 
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Sample R-code will be submitted with this chapter for downloading. 
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The Report of the Research Working Party on 
Correlations and Dependencies Among All Risk 

Sources 
Part 3 

The Common Shock Model for Correlated Insurance 

Losses 

Glenn Meyers, FCAS, M_,MMA, Ph.D. 

Abstract 

This chapter discusses an approach to the correlation problem where losses in different lines of 
insurance are linked by a common variation (or shock) in the parameters of  each line's loss model. 
The chapter begins with a simple common shock model and graphically illustrates the effect of  the 
magnitude of the shocks on correlation. Next it describes some more general common shock models 
that revolve common shocks to both the claim count and clatm severity distributions. It derives 
formulas for the correlation between lines of insurance in terms of the magnitude of the common 
shocks and the parameters of the underlying claim count and claim severity distributions. FinaUy, it 
shows how to estimate the magnitude of the common shocks. A feature of this estimation is that it 
uses the data from several insurers. 
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1. Introduction 

In the study of  insurer enterprise risk management, "correlation" has been an important, but 

elusive phenomenon. Those who have tried to model insurer risk assuming independence 

have almost always understated the variability that is observed in publicly available data. 

Most actuaries would agree that "correlation" is the major missing link to the realistic 

modeling of  insurance losses. 

This chapter discusses an approach to the correlation problem where losses in different lines 

of  insurance are linked by a common variation (or shock) in the parameters of  each line's 

loss model. Here is an outline of  what is to follow. 

• I will begin with a simple common shock model and graphically illustrate the effect of  

the magnitude of  the shocks on correlation. 

Next I WIU describe some more general common shock models that involve common 

shocks to both the claim count and claim severity distributions. I will derive formulas 

for the correlation between lines of  insurance in terms of  the magnitude of  the common 

shocks and the parameters of  the underi#ng claim count and claim severity distributions. 

• Finally, I will show how to estimate the magnitude of  the common shocks. A feature of  

this estimation is that it uses the data from several insurers. 

2. A Simple Common Shock Model 

Let X1 and X 2 be independent positive random variables. Also let f lbe  a positive random 

variable with mean 1 and variance b. If  b > 0, the random variables f i x  1 and f i x  2 tend to be 

larger when fl is  large, and tend to be smaller when f l is  small. Hence the random variables 

ffX~ and fiX2 are correlated. Figures 1-4 below illustrate this graphically. 

I will refer to the f l  as the "common shock" and refer to the b as the magnitude of  the 

common shocks. Figures 1-4 illustrate graphically that coefficient of  correlation depend 

upon b and the volatility of  the random variables X1 and X v 
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I will now derive formulas for the coefficient of correlation between the random variables 

fiX 1 and fiX_,. This derivation will be detailed and I believe that it is worth the reader's time 

to master these details in order to appreciate much of what is to follow. 

Let's begin with the derivation of two general equations from which I will derive much of 

what follows. These equations calculate the global covariance (or variance) in terms of the 

covariances (or variances) that are given conditionally on a parameter 8. 

c,,,,[x, r ]  = E[x.  YI-  E[x]. e[:~] 
=~,[~[x.~'lel]-~,[~[xlel].~,[E[rlel] 
= ~o [~[x.  r I e l -  E[x I el. E[Y I eli 
+~,[~[xle].e[rle]]-e,[e[xle]].~,[E[rle]] 
=E~[Cov[X,Yle]]+Cov~[~[xle],~[rle]] 

0) 

An important special case of this equation occurs when X = Y. 

Var[X]  = E, [ v~4x le l ]+w~ [ e [ x  I e]] (2) 

Now let's apply Equations 1 and 2 to the common shock model given at the beginning of 

this section. 

o,,,[px,,/~xal = ep [o,,,[px,, #x-, I #]]  + o,,,p [e[/~x, I P],E[Px= I P]] 
= ~[#:co4x, ,xd]+c~,E#E[x, ] ,#Elxd]  
=Ep[#:. 0] + e[x,l.,~[x:l.co,,p [/k,0] 
=~[x,] .E[xd-b 

(3) 

V,,r [#X, ] = E, EF,,4#X, I#] ]*  ~% E~[#X' I#]] 
= E,, [#: .  V,,,'[X, ]] * V,,,',, [,8. E[X,] ]  

= Var[X,].E# Eft-'] + E[X,]2.Var# [fl] 

=Var[X,].(I+O)+ E[X,] 2 .b 

(4) 

Similarly: Var[~X-,] = Var[X-,] .(I+b)+ E[X2]-, .b. (5) 
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Equations 3-5 can now be plugged into the following equation for the coefficient of  

correlation. 

codfx,,l x..] 
p I f  x, ,  f x  2 ] = 4Var [fiX, ]. Far [ f iX 2 ]] (6) 

Plugging Equations 3-5 into Equation 6 yields a simple expression if we give X, and X 2 

identical distributions with a common coefficient of  variation, CV. 

b (7) 
(CV)' . ( l + b ) + b  

The coefficients of correlation given in Figures 1-4 were calculated using Equation 7. 

At this point we can observe that the common shock model, as formulated above, implies 

that the coefficient of  correlation depends not only the magnitude of  the shocks, but also the 

volatility of  the distributions that receive the effect of  the random shocks. 

3. T h e  C o l l e c t i v e  R i s k  M o d e l  

The collective risk model describes the distribution of  total losses arising from a two-step 

process where: (1) the number of  claims is random; and (2) for each claim, the claim severity 

is random. In this section I will specify a particular version of  the collective risk model. In 

the next section I will subject both the claim count and claim severity distributions to 

common shocks across different lines of  insurance and calculate the correlations implied by 

this model. 

Let's begin by considering a Poisson distribution with mean )~ and variance 2 for the claim 

count random variable, N. Let 2" be a random variable with mean 1 and variance c. The 

claim count distribution 1 for our version of  the coUective risk model will be defined by the 

two-step process where; (1) 2"is selected at random; and (2) the claim count is selected at 

random from a Poisson distribution with mean 2"2. The mean of  this distribution is ,,~. I will 

refer to the parameter c as the contagion parameter. 

1 ifzhas a gamma distribution, it is well known that this claim count distribution is the negative binomial 
distribution. None of the results derived in this paper will make use of this fact. 
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Using Equation 2, one calculates the variance of N as: 

Var[N 1 = E, EVar[N ] X]3+ Var, E E[N I X]3 
= • [Z)~] + Var z [Z)~] (8) 

= ) ~ + c . ~  2 

Let Z, be a random variable for claim severity for the ff claim. We will assume that each Z, is 

identically distributed with mean/2 and variance o 2. For random claim count, N, let: 

X= Z, + .... + Z> 

The mean of  X is 2/1. Using Equation 2 we calculate the variance of  X as: 

Var[X] = E x, [Var[XINl]+Var,. [E[XIN]] 
[N.o:]+Var, IN-Vl 

= a 'O ' :  +/a-" "( a + ' ' ' ~ 2  ) (9) 

= a.(a-' +/aa)+c.a a V 2 

At this point, I would like to introduce a notion of  risk size and specify my assumptions on 

how the parameters of  this model change with risk size. 

1. The size of  the risk is proportional to the expected claim count, ,~. 

2. The parameters of  the claim severity distribution, ]1 and o;, are the same for all risk 

sizes. 

3. The contagion parameter, c, is the same for all risk sizes. 

I do not claim that these assumptions are applicable to all situations. For example, 

increasing the size of  an insured building will expose an insurer to a potentially larger 

property insurance claim. 

I do believe these assumptions are applicable in the context of  this chapter, enterprise risk 

management. As an insurer increases the number of  risks that it insureds, its total expected 

claim count, ~, increases. If  each risk that it adds on is similar to its existing risks, it is 
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reasonable to expect 1/and O'to be the same. One way to think of the contagion parameter, 

c, is as a measure of the uncertainty in the claim frequency. I believe it is reasonable to think 

this uncertainty applies to all risks simultaneously. 

While a set of assumptions may sound reasonable, ultimately one should empiricaUy test the 

predictions of such a model. I will do so below after I complete the description of my 

proposed model. 

If the risk size is proportional to the expected claim count, ,,~, under the above assumptions 

it is also proportional to the expected loss ,~./,t. In this chapter let's define the loss ratio as 

the ratio of the random loss X to its expected loss E[X] =)bfl. 

Equation 10 shows that the standard deviation of the loss ratio, R = X/E[X] decreases 

asymptotically to x/Tc as we increase the size of the risk. Figure 5 below illustrates this 

graphically. 

+ v : ) + c . a : . v  2 
Standard Deviation [R] = a-+~ ) x/Tc 

2. /1 
(10) 
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4. Common Shocks in the Collective Risk Model 

I will now apply the ideas underlying the common shock model described m Section 2, to 

the collective risk model described in Section 3. I will start with the claim count 

distributions. 

Let N 1 and N 2 be two claim count random variables with E[N~] = '~i and Var[N a = Ai + c, "~  

f o r / =  1 and2.  

Let a b e  a random variable with E[a]  = 1 and Var[o~ = g. 

I now introduce common shocks into the joint distribution o f N  I and N 2 by selecting N 1 and 

_N 2 from claim count distributions with means t~ ,~ and t~,~ respectively and variances 

O~ ~ + c 1 • (a. 21) 2 and o~ ~ + c 2 • (or. Ao) 2. Let's calculate the covariance matrix for N1 and N2. 
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Using Equation 2 to calculate the diagonal elements yields: 

V~r [N, l  = E~[Var[N, IO¢]]+VaG[E[N, la ' ] ]  

=~o[~.~  +c .~.a-']+Voro[~.x,] 
= 2  + c , ' 2 2 . ( l + g ) + 2 a . g  

=a  +g:-(c, +g+, , 'a)  

(11) 

Using Equation 1 to calculate the off-diagonal elements yields: 

c0,,{~v,, N2] = ~o [c0,,[ N,, N_~ i ~1] .c0vo [E[N, I ~I,e[N: I~]] 
= ~o [0] + C0vo [a.a,,a.4 ] 
= a ;~4  

(12) 

Now let's add independent random claim severities, Z 1 and Z 2 to  our common shock model. 

Here are the calculations for the elements of the covariance matrLx for the total loss random 

variables X 1 and X 2. 

Var[X ] =  Ex, [Var[X I N ] ]*Var \ .  [E[X, i N , ] ]  

= & IN, • ~,:]+ Vor,, IN, .V,] 
=;t, .<-0 +;,-' "(a +a-' .(c, + , + c  "a)) 

= ~, - ( ~  +;~)+  ;t-" "V~ .(c +S+~, "s) 

(13) 

Cov[X,,X~_] = Eo [Cov[X,,X~ i ~]] + Co,o [ e [ x ,  j ~ ] , ~ [ x :  I~]] 
= ~o[0]+c0,,,[~.~ ./~,,~.4-v_,] 
=a'& ./a, .& "/4 

(14) 

Finally, let's multiply the claim severity random variables, Z 1 and Z2, by a random variable f l  

with E[I~ = 1 and VarL~ = b. Here are the calculations for the elements of the covariance 

matrix for the total loss random variables X l and X 2. 
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V,r[X,]= EB[v,,tx , IPl]*V, rp[EIX I/~1] 

=F,[~, p~.(< = +v~).a:  p2.v~ (c, .g. , . ,  , ) ] .v , , , [x , .p .v , l  

=(4. (a,-' + d ) +  e .~  .(c, + ,+c  .,)). ~[e2] + 4: • ~,~ • v~,[e] 
=,~,. (/~,2 + rY,")' (1+ b)+ A:'/~,-" "(c i + g+b+c ,  "g+c i .b+ g 'b+c ,  " g ' b )  

(15) 

c0.[ x,. xd  = ~. [o,,[ x,. x~ I/~1] + c0~ [ e[ x, I pl. E[ x .  I Pl] 
= ~p [g. &./~.,,, .z_./~. ~2] + c0,,p [4./~. ~ , , , / ~ * , d  

=g.d~ ./1, .& ./~_, . E [  fla ] + dq . ll, . ~_ "14 . Var[fl]  

=2, % .k 14.(a+ g+a.g) 

(16) 

I now complete my description of this version of  the collective risk model with the following 

two assumptions. 

1. b and g are the same for all risk sizes. 

2. b and g are the same for all lines of  insurance. 

The parameters b andg represent parameter uncertainty that applies across lines of  

insurance and it seems reasonable to assume that this uncertainty, is independent of  the size 

of  risk. I made the second assumption to keep the math simple without sacrificing the main 

themes of  this chapter. In practice I have allowedg to vary by line of  insurance. I will leave 

it as an exercise to the reader to show that you can replace g in Equations 14 and 16 with 

,4~1" gz when the coefficient of correlation between 0 6 and a~, is equal to one. 

Now I will illustrate the implications of  this model for loss ratios as we vary the size of  risk. 

My example will assume t h a t / / =  16,000, o '=  60,000 and c = 0.010 for each line of  

insurance. The additional parameters wal be b = g = 0.001. In the final sections, I will 

show that these are reasonable choices of  the parameters. 

First let's note that since b and g are small compared to c, introducing b and g into the model 

has little effect on the standard deviation of  the loss ratio, although what effect there is, 

increases with the size of  the risk. This is illustrated by Figure 6. 
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However, the coefficient of  correlation, as defined by: 

p[~,R~] = Co,[~,~] 
4Var[Ph l" Var[R, ] ' 

increases significantly as you increase the size of  the risk. In Figure 7 below, it is almost 

negligible for small risks. 

~b=g=O.~1 
~b=g-~ 
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When I show similar exhibits to other actuaries, I often find that their expectations of  the 

coefficient of  correlations are much higher. My best rationale for these expectations is that 

most expect a positive number between 0 and 1, and 0.5 seems like a good choice. 

Even so, these (perhaps) seemingly small correlations can have a significant effect for a 

multiline insurer seeking to manage its risk as I shall now illustrate. 
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Let's consider the covariance matrix for an insurer writing n lines of  business. 

Var[X,] Cov[X1,X2] 
Cov[Xa,X,] Var[X2] 

CodX.X:] Cov[X,,,x ] 

. . .  Cov[X,,X 

.. Cov[X=,X,,] I 

::: Va;i'X,,] ) 

The standard deviation of  the insurer's total losses, X 1 + ... +X,, is the square root of  the 

sum of  the elements of  the covariance matrix. If  b = g = 0, this sum consists of  the n 

variances along the diagonal. If b and/or  g # 0, then there are n 2 - n off-diagonal 

covariances included in the sum. As n increases, so does the effect of  even a "small" 

correlation. This is illustrated in Figures 8 and 9. 

Figure 8 

0.30 

0.25 

g 
• ~ 0.20 

0.15 

0.10 

0.05 

0.00 

1,000 

Loss Ratios for the Collective Risk Model for the Sum of Two Risks 

/.t = 15,000 cr =60,000 c =0.01 

I 
i 

--b=g:O,OOl i 

10,~0 1 ~ , ~ 0  

Exacted Loss (000) per Risk 

1,0~,~0 

Casualty Actuarial Society Forum, Winter 2006 243 



RWP on Correlations and Dependencies Among Al l  Bask Sources Report 

Figure 9 
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5. An Empirical Test of the Model 

The collective risk model, as defined above, makes predictions about how the volatility and 

correlation statistics of  loss ratios vary with insurer characteristics. These predictions should, 

at least in principle, be observable when one looks at a sizeable collection of  insurance 

companies. In this section I will demonstrate that data that is publicly available on Schedule 

P is consistent with the major predictions of  this model. 

Data in Schedule P includes net losses, reported to date, and net premium by major line of  

insurance over a 10-year period of m e .  With Schedule P data for several insurers I 

calculated various statistics such as standard deviations and coefficients of  correlation 

between lines of  insurance for several insurers. Testing the model consisted of  comparing 

these statistics with available information about each insurer. 
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But first I will discuss some of  the difficulties with Schedule P data and discuss how, in work 

done jointly with Fred Klmker (see Meyers, Klinker and Lalonde [3] for details), we dealt 

with these difficulties. 

Schedule P premiums and reser~-es vary in largely predictable ways due to conditions that are 

present in the insurance market. These conditions are often referred to as the underwriting 

cycle. The underwriting cycle contributes an artificial volatility to underwriting results that 

lies outside the statistical realm of insurance risk. The measures insurance managers take to 

deal with the statistical realm of insurance risk, i.e. reinsurance and diversification, are 

different than those measures they take to deal with the underwriting cycle. 

We dealt with these difficulties by first using paid, rather than incurred, losses and estimating 

the ultimate incurred losses with industrywide paid loss development factors. Next we 

attempted to smooth out differences in loss ratios that we deemed "predictable." Appendix 

A in the Meyers et. al. paper referenced above describes this process in greater detail. 

After making the above adjustments, two other difficulties should be discussed. First, the 

use of  industrywide loss development factors removes the volatility that takes place after the 

report date of  the loss. As such, we should expect the volatilities we measure to understate 

the ultimate volatility. 

Second, Schedule P losses are reported net of  reinsurance. In addition, policy limits are not 

reported. Rather than incorporate this information directly into our estimation, we did 

sensitix~ity tests of  our model var)~ng limits and reinsurance provisions over realistic 

scenarios. 

Here I present results for commercial automobile liability insurance. I feel this is a good 

choice because: (1) it is a shorter tailed line than general liability and the underestimation of  

volatility will not be as great; (2) the use of  reinsurance is not as great as it is in the general 

liability lines of  insurance; and (3) commercial auto is not as prone to catastrophes as the 

property lines of  insurance. 
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5.1 Standard Deviation of Loss Ratios vs. Size of  Insurer 

As illustrated in Figure 5, the collective risk model predicts that the standard deviation of  

insurer loss ratios should decrease as the size of  the insurer increases. In Figure 10 we can 

see that this prediction is consistent with the observed standard deviations calculated from 

the Schedule P data described above. In this figure we plotted the empirical standard 

deviation of  55 commercial auto insurers against the average (over the 10 years of  reported 

data) expected loss for the insurer 2. 

Figure 10 also includes the standard deviations predicted by the collective risk model. The 

series denoted by "LowLim" used claim severity distribution parameters taken from a 

countrywide ISO claim severity distributions evaluated at the $300,000 occurrence limit. In 

this series I set c = 0.007, g = 0.0005 and b = 0. See Section 6 below for my commentary on 

selecting b and g. 

Now we (at ISO) know from data reported to us that, depending on the subline (e.g. light 

and medium trucks or long-haul trucks), typically 65% to 90% of  all commercial auto 

insurance policies are written at the $1 million policy limit. But since I also believed that the 

Schedule P data understates the true volatility of  the loss ratios, I selected the $300,000 

policy limit for the test. 

For the sake of  comparison, the series "HiLirn" represents a judgmental adjustment that one 

might use to account for problems with the Schedule P data. I used claim severity 

distribution parameters taken from a countrywide ISO claim severity distributions evaluated 

at the $1,000,000 occurrence limit. In this series I set c = 0.010,g = 0.0010 and b = 0. 

Figure 11 provides a comparable plot of loss ratios simulated from a collective risk model 

using the same parameters I used for the "LowLim" series. 

The two plots both  suggest that the Schedule P data is well represented by the collective risk 

mode - -  for an individual line of  insurance. 

2 Since the expected loss varies by each observation of annual losses, the annual loss ratios are not identically 
distributed according to the collective risk model. I don't think this is a serious problem here since the volume 
of business is fairly consistent from year to year. 
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Figure 10 
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5.2 C o e f f i c i e n t s  o f  C o r r e l a t i o n  vs .  t h e  S i z e  o f  t h e  I n s u r e r  

As Figure 7 illustrates, a second prediction of  the collective risk model is that the coefficients 

of  correlation will increase with the size of  the insurer. In Figure 12 below, we plotted the 

empirical coefficient of  correlation between commercial auto and personal auto for 38 

insurers of  both lines, against the average (over 10 years of  experience reported for the two 

lines of  insurance) expected loss. A comparable plot based on simulated data from the 

model underl)diag the URM is in Figure 13 3. 

We observe that the coefficient of  correlation is a veI T volatile statistic for both the empirical 

data and the simulated data which has a built-in assumption consistent with our hypothesis. 

This serves to illustrate the difficulty in measuring the effect of  correlation in insurance data. 

To provide a deeper analysis of  the correlation problem I will make the assumption that the 

common shock random variables 0~and f l  operate on all insurers simultaneously. For 

random loss ratios R 1 and R2: 

C°v[X"X2] =b+ g+b" g; (17) E[(R,-1).(R:-1)]= 4 

which I derived from Equation 16. 

Now we have already established that the standard deviation of  loss ratios decreases with the 

size of  the insurer. Thus the denominator of: 

- 1 ) ' ( R  2 - 1 ) ]  

should decrease. If  we can demonstrate with the Schedule P data, that the numerator does 

not also decrease, we can conclude that the prediction that coefficients of  correlation will 

increase is consistent with the Schedule P data. It is to this we now turn. 

3 It may seem odd that the predicted correlation curve is not smooth. It is not smooth because ti~e horizontal 
axis is the average of the commercial auto and the personal auto expected loss, while the actual split between 
the two expected losses varies significantly between insurers. 
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The data used in the test that (RI-1) .(R,-1) was independent of insurer size consisted of  all 

possible pairs (15,790 in all) of  q and r2, and the associated expected losses, taken from the 

same year and different insurers. I fit a line 4 to the ordered pairs 

(Average Size of the Insurer, (r,-1) • (r~-l)) 

and obtained a slope of  +1.95x10 -1''. This slightly positive slope means that an increasing 

coefficient of  correlation is consistent with the Schedule P data. 

Equation 17 also provides us with a way to estimate the quantity b + g + b g. One simply has 

to calculate the weighted average of  the 15,970 products of  (r1-1) ( r~l) ,  0.00054. Since the 

15,790 observations are not independent, the usual tests of  statistical significance do not 

apply. To test the statistical significance of  this result, I simulated 200 weighted averages 

using the "LowLim" parameters (except that b = g = 0) with the result that the highest 

weighted average was 0.000318. Thus we can reject the hypothesis that b + g + b g = 0. 

I did one final simulation with the "LowLim" parameters (except that b = 0 and 

g = 0.00054) and calculated 200 slopes, with the result that the slope of  1.95x10 -1" was just 

below the 49 'h highest. Thus this slope would not be unusual if the collective risk model is 

the correct model. 

6. T h e  R o l e  o f  J u d g m e n t  i n  S e l e c t i n g  F i n a l  P a r a m e t e r s  

Historically, most actuaries have resorted to judgment in the quantification of  correlation. 

This chapter was written in the hope of  suppl)4ng some objectivity to this quantification. 

My employer, Insurance Services Office (ISO), has worked on quantifying this correlation. 

We have conducted analyses similar to the one described above for several lines of  business 

using both Schedule P data and individual insurer data reported to ISO. In the end, no data 

set is perfect for the job and we end up making some judgments. Here are some of  the 

considerations we made in selecting our final models. Comments are always welcome. 

4 I used a weighted least squares fit, using the inverse of the product of the predicted standard deviations of the 
loss ratio as the weights. This gives the higher volume, and hence more stable, obseta, afions more weight. 
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We have reason to believe that the data we observe understates the ultimate 

variability since there are some claims that have yet to be settled. As a result we 

judgmentally increased the c, b andg parameters in the final model. 

Since the estimation procedure described provides an estimate of  b + g + b g, it is 

impossible to distinguish between the claim frequency common shocks, as 

quantified byg, and the claim severity common shocks as quantified by b. A lot of  

work has been done with claim severity and claim frequency trend and one can look 

to uncertainties is these trends when selecting the final parameters. 

While one might argue that the distinction between claim frequency common 

shocks and claim severity common shocks is unimportant, the way we apply them 

does make a difference. For claim frequency we group the various lines of  

insurance judgmentally, with some support from the data. For example, the same 

common shock for claim frequency applies to personal and commercial auto, but 

different common shocks apply to the commercial liability lines. We apply claim 

severity shocks across all lines. Meyers, Klinker and Lalonde [2003] describe this 

model more fully. 

Accounting data such as Schedule P may not be the best source for such analyses, but if  we 

cannot see the effect of  correlation in the accounting data, I would ask, do we need to 

worry about correlation? I believe that the analysis in this chapter demonstrates that we do 

need to consider correlation between lines of  insurance. 

7. Acknowledgements 

This chapter is largely an exposition of  work that appeared in a series of  prior papers that I 

will now describe. A significant advance ha the correlation literature was made by Shaun 

Wang [4] with the publication of  his work on a project that was sponsored by the CAS. It 

is in this paper that I first heard the term "common shock model." I rather quickly 

followed up with two related papers. In Meyers[1], I originally developed the model that is 

described in Section 4 of  this paper, and in Meyers[2] I developed methodology to 

parameterize the model with data that was "theoretically" available. A few years later we - -  
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Meyers, Klinker and Lalonde [3] - -  followed up with another methodology to parameterize 

the model with data that was actually available. The original version of this methodolog T is 

described in Appendix A and Fred_rick Klinker deserves the lion's share of the credit for 

developing it. I would described Section 5 as a minor improvement to this methodology. 
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The Report of the Research Working Party on 
Correlations and Dependencies Among All Risk 

Sources 

Part 4 
Serial Correlations of Interest and Inflation Rates 

Hans E. Waszink AAG, MSc. 

Abstract 
This chapter discusses an approach to model the value of  an outstanding, discounted 
liability under the impact of uncertain interest and inflation rates. Interest and 
inflation rates are modeled separately as time series to take into accotmt 
autocorreladon. Subsequently, the dependence between interest and inflation is 
modeled using copulas. The goodness of  fit of some copulas can be evaluated on the 
basis of historic data using a quantile plot. This is done for the Gumbel, Clayton and 
Independent copulas. The Gurnbel copula, which gives the best fit, is then compared 
with the Normal copula to show that the two copulas are vet)" similar with the 
parameters chosen. The distribution of  the required reserve is shown under four 
different copula assumptions: comonotonicity, which represent the best case, 
countermonotonicity which represents the worst case, and the Gumbel and Normal 
copulas which represent more realistic scenarios. The choice of copula has 
considerable impact on the higher percentiles of the required reserve, and the adopted 
approach is effective in selecting a suitable copula. 
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1. I N T R O D U C T I O N  

In this chapter the following are investigated: 

1. Correlations between the same variable, i.e. interest or inflation, at different 
points in time (autocorrelation). 

2. Correlations between interest and inflation over an extended period of time. 
3. Impact of  these correlations on the present value of  a discounted and inflated 

liabilit3,. 

The effect of  both types of correlations is demonstrated in a case study investigating the 
effect of  interest and inflation rates fluctuations on outstanding claims liabilities. Interest 
and infl fion rates are modeled as time series. Time series models are commonly used for 
variables of which observations are available sequentially in time, and consecutive 
observations are dependent. Both these properties typically apply to interest as well as 
inflation rates. 

A simple example of  a time series is an autoregressive process of  order 1 (AR(1)) which 
is given below: 

X(t) = a + bX(t-1) + ~(t), t =  I , . . . ,T  

with 

X(.): array of stochastic variables, l=- O, I , . . . ,T,  X(O) a given constant. 
e(t): random error within period (t-l,O, with N(O,a) distribution. 
a,b: model parameters. 

It can be shown that this structure defines a correlation structure between all X(t), with 
correlations depending on b and o and the elapsed time between observations. More 
complex time series models are often required to adequately capture specific 
characteristics such as cychcahty or heteroskedasticity. 
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2. O U T S T A N D I N G  L I A B I L I T Y  U N D E R  U N C E R T A I N  

I N T E R E S T  A N D  I N F L A T I O N  R A T E S  

We consider the value of an outstanding claims reserve as the present value of inflated 
and discounted future claim payments. Interest and inflation rates are modeled as 
random variables. As a starting point, we use uninflated projections of future claim 
payments in each future payment period. These can be derived from triangular reserving 
methods which include an explicit inflationary effect. 

Define: 

C(t): Uninflated, fixed and given cashflow projection at time t. 
Inf(O: Inflation rate in period (t,t+ 1), t = 0,1,2,... 
Int(t): Interest rate in period (t, t+ I), t = 0,1,2 .... 

Ac(O: Actual cashflow at time t. 

Ac(t) is equal to: 

t - !  

Ac(O = c ( o x  [-[  [l + I . f  (x)l, t =  1,2,3 .... 
r=O 

For simplicity it is assumed that Ac(t) is the product of the cashflow projection C(O, 
which is fixed and given, and future inflation rates only. Therefore the only uncertain 
factor in actual future cashflows is future inflation which can represent general inflation, 
superimposed inflation or a line-specific inflation. In this study we have used medical 
inflation, a line-specific inflation impacting on health insurance related liabilities. 

The inflation rates represent a component of systematic risk in the cash flow projection, 
i.e. they affect all individual claims simultaneously and to the same extent. To relax the 
assumption that inflation is the only uncertain factor affecting furore cash flows, 
additional components of  unsystematic risk can be added without any difficulty, however 
these are excluded here. 

Df(O: Discount factor in period (t,t+ I), t=O, 1,2,...: 

1 
Df(t) - 

1 + Int(O 

RR(O: Required reserve at time t ,  t=O, 1,2,...: 

S - t - I  

RR(t) = E[Ac(s)x  [ I  Df(t + r)] 
s > t  ~'---0 
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The required reserve is the total of  all actual future cashflows discounted at actual future 
interest rates. Obviously RR(t) is not known in advance as it is a function of C(t), Inf(t) 
and Int(t) with future interest and inflation rates unknown. 

The distribution of  the RR(t) is a function of  the marginal distributions of  the interest 
and inflation rates after time t and the dependencies between interest rates in different 
periods, the dependence between inflation rates in different periods, and the dependence 
between inflation and interest rates in the same period and in different periods. 
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3. MODELLING T H E  DISTRIBUTION OF INTEREST A N D  
I N F L A T I O N  RATES A N D  T H E I R  MUTUAL D E P E N D E N C E  

3.1 Interest rates 

A discrete version of  the CIRl-model for a single interest rate is used. A single interest 
rate is used for simplicity, although the CIR-model  allows for the generation o f  the entire 
yield curve with flail dependence between different maturities. Different field cun, e 
structures can be generated using various other interest rate models of  a similar time 
series structure. 

The discrete CIR-model is a time-series model  of  the following form: 

Int(t) = max{  O, Int(t  - 1) + a[ b - Int(t  - 1)1 + ~ g  , (t) } 

wi th  

Int(t): 
a: 

b: 

~ tnl ( t )  : 

the interest rate in the period (t,t+/) 
the average speed of  reversion to the long term mean interest rate; 
the long term mean interest rate. 

random deviation in period (t,t+l). T h e  gi, t (t) are mutually independent 

with marginal distributions N(O, a 2 ) .  

The model  has several desirable properties such as: 

• Interest rates are mean reverting; 

• Interest rates are non-negative. 

• Interest rates are heteroskedastic, i.e. variance increases with mean. 

• Interest rates at adjacent points in time are correlated. 

• Confidence intervals widen for interest rates projections further into the future. 

For  the parameterization of  the time series, we have used 3 year interest rates on US 
government securities which are shown in appendix I. The estimated parameters are 
shown in appendix II, simulated autocorrelations of  interest rates are shown in appendix 
III. 

1 Cox Ingersoll Ross, see Kaufmann (2001) 
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3 .2  I n f l a t i o n  rates  

For inflation rates a second order autoregressive process (AR(2)) is used: 

Inf( 0 = c o + c, Inf(t-l) + © Inf(t-2) + c,,/( 0 

with 

C i,,l- (O : 

model parameters. 

random deviations in period (t,t+ I). 

The e,4 (0 are mutually independent with identical marginal distributions N(O,a e ). 

Some properties of the AR(2) model are: 

• If  (o < 0, inflation rates may exhibit cyclicality. 

- • Observations at adjacent points in time are correlated. 
• Confidence intervals widen for projections further into the future. 

For the parameterization of  the time series, we have used US medical care index figures 
provided by the Bureau of  Labor Statistics, which are shown in appendix I. The 
estimated parameters are shown in appendix II, simulated autocorrelations of inflation 
rates are shown in appendix III. 

The (analytically determined) autocorrelations between the inflation rate in time period 1 
and all other periods, derived from the time series parameterization, are shown below: 

Correlation between Inf(1) and Inf(t) 

1.2 / 
I 

i°.° 0.4 

0.2 

0 ~ 
1 2 3 4 5 6 7 8 9 10 

t 

Figure 1: Modeled autocorrelations of  inflation rates 

As the parameter c, is very close to, and not significantly different from 0, there is no 
cyclical pattern in the correlation structure and the process is virtually identical to an 
AR(1) process. 
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3.3 D e p e n d e n c e  b e t w e e n  i n f l a t i o n  a n d  i n t e r e s t  r a t e s  

The dependence relation between interest and inflation rates in the same period is 
determined by, on the one hand, the structure of  the time series model for both interest 
and inflation rates, and on the other hand by the dependence between the random errors 

ei,,, (t) and ei,f (t) in the same period. 

Both time series as well as the dependence between them are parameterized on the basis 
of  actual historic data shown in appendix I. It can be expected that there is a dependency 

between el,,, (t) and ~,¢ (t) as changes in both inflation and interest rates are driven by the 

same or related macro-economic factors. Various types of  dependence relationships, i.e. 
copulas, can be used to model the dependency between el,,, (t) and e/,; (t). We assume that 

the dependence relation is the same for all values of t, hence does not change over time. 

Given that both error terms are assumed to follow a Normal distribution, the simplest 
form of dependency is the linear correlation which corresponds to the Normal copula. 
However the Normal copula does not always capture dependencies in the tail of  the 
distributions appropriately" hence the Gumbel and Clayton copulas are also investigated 

As ei,,, (t) and e,,, (t) are independent if t # t', so are giN, (t) and ~i,¢ (t'). Thus the choice of  

the time series models for interest and inflation rates together with the copula 
representing the dependence between e,,, (t)and e,,/(t) htlly define the joint distribution 

of  interest and inflation rates. As RR(0 is fully determined by the deterministic uninflated 
cashflows C(O in combination with interest and inflation rates during the projection 
period, the distribution of  all RR(t) is fully defined by the joint distribution of inflation 
and interest rates and C(t). The distribution of RR(t) is derived by means of  simulation. 

For the uninflated cashflow projection C(t) we set C(t) = 1 for t= 1,2, .... 10 and 0 
otherwise. For the choice of the copula defining the dependence between ei~,(t ) and 

e,,/(t), several alternative scenarios are investigated: 

1. el. ' (t) and ei,# (t) are comonotonic, i.e. the dependence between the two is 

maximum. As both e,,, (t) and Ein f (t) are Normal random variables, the linear 

correlation between them is 100%. This is the best case scenario for the insurer 
with respect to the dependence between the two error terms. The underlying 
assumption is that random depilations of  interest rates are fully correlated with 
random deviations of  inflation rates, hence unexpected increases in inflation are 
always accompanied by unexpected increases in interest rates. As increases in 
inflation rates lead to increases in R_R(.) whereas increases in interest rates lead to 
a decreases of  RR(.), the comonotonic assumption implies that there always is a 
compensating effect of  the two random errors on the liability for the insurer. 

2 See Embrechts (2001) 
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Therefore this scenario represents a best case for the insurer with respect to the 
occurrence of extremely high values of RR(0. 

2. In the second scenario, the dependence between e,./(t) and c,,t (t) is assumed to 

be 'countermonotonic '3, meaning unexpected increases in inflation rates are 
always accompanied by unexpected decreases in interest rates. Contrary to the 
first alternative, this scenario represents the worst case with respect to the 
occurrence of extremely high values of RR(.), as the effects of unexpected 
inflation in any particular period are aggravated by lower interest earnings in the 
same period. 

3. In the third scenario, the dependence between e,,,, (t) and e,¢ (0 is parameterized 

on the basis of historic observations. Historic obse~Tations of the error terms are 
obtained by substituting observed historic interest/inflation rates in the time 
series equations for Int(t) and Inf(t). Sufficient credible historic data needs to be 
available to justify a choice and parameterization of a copula in this way. 

The copula chosen here is the Gumbel copula,with parameter a = 1.4. 
Appendix IV shows the fit of the Gumbel and Clayton copulas, on the basis of 
which the Gumbel copula is the preferred choice. Appendix V shows correlations 
between inflation and interest rates under the Gumbel copula. 

4. In the fourth alternative, the dependence between e,,, (t) and c,,,/(t) is modeled 

as a multivariate Normal distribution, with the dependence between the two 
random variables fully characterized by their linear correlation coefficient. 

The simulated results of each of the four methods are shown in figure 2 below 4, with BC 
(Best Case) , WC (Worst Case), Gumbel and Normal depicting RR(0) in alternatives 1-4 
respectively. As the graphs of alternative 3 and 4 seem to overlap completely, the right 
tail is shown in more detail in figure 3. 

3 Characterization of comonot0nicity and countermonot0nicity can be found in Denuit (2003) 
4 Results were generated using IGLOO software. 
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F~ure 2: simulated distributions of RR(0) scenario 1-4 

In alternative 4, a linear co~ehfion between E~., (t) and c~ r (0 o f  0.44 is applied. This is 

the historically observed correlation between the residuals. In alternative 3, the Oumbel 
copula is parameterized using the algorithm described in Valdez (1998). The Gumbel 
copula in this case gives rise to the same linear correhtion of  0.44 as the Normal copula. 

The right tail of  the distributions resulting from the Normal and Gumbd copulas are 
shown below. 
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3 
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r 4~e~ce  
Omt3el 

b~ t e d  

Figure 3: right tail of  simulated distributions of  RR(0) scenario 3,4 

A marginal difference between the taro reserves can be observed. The fact that the 
difference between the distributions under the two copulas is so small suggests that the 
two copulas generate very similar dependence structures. This is confirmed by the 
simulated rank scatter plots of the two copulas shown in figure 4 below. 

A rank scatter plot shows simulated pairs of uniform random variables under a given 
dependence structure between the two variables. When realizations are spread evenly 
across the square, this indicates a low degree of dependence. A high degree of 
dependence is indicated by concentrations of points in certain parts of the square. For 
example tail correlation leads to a higher concentration of realizations in the comers of 
the square. 
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• Rank Scatter 

figure 4: rank scatter plot of  simulated Normal  and Gumbel copulas. 

The two scatter plots shown in figure 4 show very similar patterns, both with a slightly 
lower density of points towards the upper ].eft hand and lower right hand comer, and 
higher towards the other two comers. This indicates the dependence structures simulated 
by the two copulas are very similar. 
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4. RESULTS A N D  DISCUSSION 

Dependence between interest and inflation rates has a considerable impact on the 
distribution of the required reserve. The parameterization of the copulas in alternatives 3 
and 4 require a suffidently large history of reliable data, and one needs to assume that the 
dependence structure does not change over time. The approach in alternative 2 however 
provides an upper bound with regard to the dependence between the random errors of 
the two time series. Hence alternative 2 may be preferable if a prudent approach is 
sought and historic data are not considered sufficiently reliable. 

The difference between the Normal and the Gumbel copula and the impact on the 
distribution of the required reserve is minimal. The Gumbel copula gives a better fit to 
the data than the Clayton copula. A fit of the Normal copula can not be shown in the 
same way as it does not belong to the family of so-called 'Archimedean' copulas, see 
Valdez (1998). 

Parameterization of an interest rate model based on historically observed rates may lead 
to results which are inconsistent with current market rates. Also, the use of a one-factor 
model can be regarded as too simplistic. However additional prudence can be built in by 
reducing the long term mean parameter b for example on the basis of projections by an 
economic forecasting bureau. 

The long term average interest rate parameter b of 6.7% appears high in the current 
environment, and leads to a continuous upward trend in the projected future interest 
rate. Reducing b to 3% leads to an increase of the liability by about 6% across the 
distribution. Alternatively the CIR model can be parameterized on the basis of the 
current yield curve but this would not allow for the measurement of the correlation with 
inflation rates. Such measurement requires the availability of simultaneous observations 
of interest and inflation over an extended historic period. 
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Supplementary Material 

Two spreadsheets are attached. One contains the parameterizafion of the time series, the 
other the parameterization of the copulas and the quantile plot. They can be viewed in 
the Publications section of the CAS Web Site (www.casact.org) under 2006 Winter 
Forum. 
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Appendix I 

1. Medical Inflation rates: 

Area: U.S. d 0, 
Item: Medical care 

Source:http://data.bls.gov/servlet/SurveyOutputSe~qet?data_tool=latest_numbers&ser 
ies_id=CUUR0000SAM&output_view=pct_lmth 

2. Interest rates: 

Rate of interest in money and capital markets 
Federal Reserve System 
Long-term or capital market 
Government securities 
Federal 
Constant maturity 
Three-year 
Not seasonally adjusted 
Twelve monthsending December 

Source: http: //www. federalreserve.gox/releases/h 15/data.htm#fia 12 
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Medical Inflation 
rate 

2.02 

Interest rate (%) 

3.47 
2.42 3.67 
2.02 4.03 
2.83 4.22 
6.69 5.23 
6.38 5.03 
6.27 5.68 
6.05 7.02 
7.44 7.29 

4.80 5.66 
3.45 5.72 
5.52 6.96 

12.56 7.84 
9.70 7,5 

10.14 6.77 
8.73 6.68 
8.73 8.29 

10.25 9.70 
10.03 11.51 
12.45 14.46 
11.02 12.93 
6.38 10.45 
6.48 11.92 
6.48 9.64 
7.87 7.06 
5.75 7.68 
6.91 8.26 
8.73 8.55 
9.70 8.26 
7.97 6.82 
6.48 5.30 
5.22 4.44 
4.80 6.27 

3.97 6.25 
3,04 5.99 
3.04 
3.45 
3.76 
4.18 
4.70 
4.90 
3.66 
4.28 

6.10 
5.14 
5.49 
6.22 
4.09 
3.10 
2.10 
2.78 
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A p p e n d i x  I I  P a r a m e t e r i z a t i o n  of  the time series 

Interest rates 

ParametersoC~e CIR modelare." 
a 0.085823 

b 6.684528 

o 0.450159 

Parameters are estimated by minimizing the sum of  squared residuals on  the basis of  the 
data in appendix I. 

Inflation rates 

parameter  Estimate 

Co 1.3470 

cl 0.8441 0.13 

c2 - 0.0806 0.13 
~' 1.7151 

Standard 
e r r o r  

N.B. as c 2 is very small and not  significantly different f rom 0, an AR(1) process (with 

c2 = 0) will produce very similar results. 

Parameter  estimates are derived asS: 

rj(1-- r 2 ) 
Cl - -  

1-r~" 

r 2 - ~  2 

¢2 - l _ q 2  

with r~ and r, estimates of  the first and second order autocorrelation: 

n-k  

~" (x, - ~)(x,+ k - ~) 
r, = ,=l , k = 1,2 and n the number  of  observat ions x. 

n 
(x, - ~)2 

t=l 

c o is estimated such that  the mean  inflation rate is stationary and equal to the 

historical average: 

c o co= ( t ) ( l - q - c 2 ) .  

5 See Box (1994) 
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A p p e n d i x  I I I  S i m u l a t e d  a u t o c o r r e l a t i o n s  o f  i n t e r e s t  a n d  i n f l a t i o n  r a t e s  

c~ 

> 

Interest [1] 
Interest [2] 
Interest [3] 
Interest[4] 
Interest [5] 
Interest [6] 
Interest [7] 
Interest [8] 
Interest [9] 
Interest[10] 

Interest[l] Interest[2] Interest[3] Interest[4] Interest[5] Interest[6] Interest[7] Interest[8] Interest[9] Interest[10] 

1.000 0.660 0.509 0.416 0.352 0.306 0.267 0.230 0.206 O. 186 
0.660 1.000 0.766 0.625 0.529 0.457 0.399 0.347 0.310 0.277 
0.509 0.766 1.000 0.815 0.688 0.593 0.519 0.453 0.400 0.357 
0.416 0.625 0.815 1.000 0.842 0.724 0.633 0.556 0.490 0.435 
0.352 0.529 0.688 0.842 1.000 0.857 0.749 0.657 0.579 0.514 
0.306 0.457 0.593 0.724 0.857 1.000 0.868 0.760 0.670 0.594 
0.267 0.399 0.519 0.633 0.749 0.868 1.000 0.876 0.773 0.685 
0.230 0.347 0.453 0.556 0.657 0.760 0.876 1.000 0.881 0.780 
0.206 0.310 0.400 0.490 0.579 0.670 0.773 0.881 1.000 0.884 
O. 186 0.277 0.357 0.435 0.514 0.594 0.685 0.780 0.884 1.000 

<b" 

© 
Inflation [1] 
Inflation [2] 
Inflation [3] 
Inflation [4] 
Inflation [.5] 
Inflation [6] 
Inflation [7] 
Inflation [8] 
Inflation [9] 

Inflation [10] 

Inflation[l] Inflation[2] Inflation[3] Inflation[4] Inflation[5] Inflation[6] Inflation[7] Inflation[8] Inflation[9] Inflation[10] 

1.000 0.629 0.420 0.289 0.206 0.151 0.108 0.071 0.055 0.043 
0.629 1.000 0.709 0.493 0.351 0.254 0.185 O. 128 0.098 0.072 
0.420 0.709 1.000 0.739 0.528 0.383 0.280 0.197 0.144 0.105 
0.289 0.493 0.739 1.000 0.754 0.547 0.398 0.290 0.209 O. 151 
0.206 0.351 0.528 0.754 1.000 0.760 0.555 0.402 0.291 0.211 
0.151 0.254 0.383 0.547 0.760 1.000 0,760 0.550 0.401 0.291 
0.108 O. 185 0.280 0.398 0.555 0.760 1.000 0.765 0.561 0.410 
0.071 0.128 O. 197 0.290 0.402 0.550 0.765 1.000 0.767 0.560 
0.055 0.098 0.144 0.209 0.291 0.401 0.561 0.767 1.000 0.767 
0.043 0.072 0.105 0.151 0.211 0.291 0.410 0.560 0.767 1.000 

~b 

qb 

qb 

t~ 

0 
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Appendix  IV Quanti le plot  for Independent ,  Gumbel  and Clayton copulas 

A quantfle plot (also know as Q-Q plot) can be used to inspect the goodness of  fit of 
Archimedean copulas, and is derived as follows. 

Archimedean copulas are of the form: 

C~(u,v) = h0-1(h0(u)+ h0(v)) with 0 < u,v -< 1 and ~0 a convex decreasing function with 
domain (0,1]. 

For two random variables X and Y with dependence defined by the Archimedean copula Cv, 
it can be shown that the random Variable Z = C~(Fx(X), Fv(Y)) has the fonowing 
distribution function: 

Fz(z) = z- ~(z)&'(z). 

This implies that, assuming the dependence between X and Y is described by a given 
Archimedean copula C~, the variable Z should follow the distribution function given above. 
Hence comparing n ordered (pseudo)-obseta-ations of Z with the percentiles of the 
distribution function of Z in a Q-Q plot allows for inspection of  the goodness of  fit of the 
assumed distribution of  Z hence of  the copula fimction C,. The observations of  Z are 
derived from the observations of X and Y and the relation Z =C,(Fx(X), Fr(Y)). The 
process of  constructing the quantile plot and the underlying theory can be found in Valdez 
(1998). 

The interpretation of the Q-Q plot is no different than the Q-Q plot for any other single 
random variable. The closer observations are to the corresponding percentiles of  the 
theoretical distribution, the better the fit of  the distribution. Hence a Q-Q plot showing a 
pattern close to the straight line through the origin and (1,1) indicates a good fit of  the 
distribution. 

The copulas used are: 

Gumbel: C(u,v) = exp {-[(-In u) " + (- In v) = 1'/= },  
Clayton: C(u,v) = (u -~ + v -= -1) -'/=, 
Independent: C(u,v) = uv, 

~(.)= (-1~ .) ° 
~(u)= u - " - I  
~(~) = -111 .. 
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121 

Copula Quantile Plot 
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0 

0 0.2 0.4 0.6 0.8 1 

Observat ions 

i .~ Indpt - 4 - -  Gumbel × Clayton 

1.2 

Parametetigatiam 
Gumbel (~) 1.41716 I 
Clayton (=) 0.62773 I 
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Appendix  V Linear correlations of  interest and inflation rates 

Simulated linear correlations between interest and inflation rates in alternative 3 under the Gumbel copula are as foUows: 

Inflation 111 
lnflafiun 12] 
Inflation [3 I 
Inflation 141 
Inflation 15] 
Inflatitm 161 
Inflation 171 
Inflation 181 
Inflation [9] 
Inflation [10] 

lntcrestll I Interest[21 Intcrcstl31 Interest]41 lntcrestl51 lntercstl61 Intcrestl71 Intcrestl81 Intcrcstl91 lntcrcst[lO I 

0.436 0.289 0.214 0.176 0.148 0.124 0.105 0.094 0.083 0.070 
0.277 0.430 0.322 0.259 0.219 0.187 0.159 0.140 0.126 0.111 
0.188 0.314 0.431 0.346 0.290 0.248 0.214 0.187 0.169 0.151 
0.131 0.220 0.324 0.423 0.356 0.305 0.263 0.229 0.204 0.183 
0.094 0.158 0.236 0.324 0.420 0.360 0.312 0.274 0.242 0.220 
0.067 0.114 0.169 0.234 0.320 0.417 0.362 0.320 0.284 0.254 
0.052 0.086 0.127 0.173 0.238 0.323 0.414 0.366 0.323 0.288 
0.035 0.059 0.089 0.121 0.169 0.236 0.319 0.409 0.360 0.319 
0.027 0.045 0.068 0.090 0.127 0.175 0.237 0.316 0.403 0.358 
0.022 0.037 0.052 0.069 0.096 0.131 0.177 0.235 0.313 0.398 

t~  

~t 
['O 

t,O 
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Risk Transfer Test ing of Reinsurance Contracts: 
Analysis and Recommendat ions  

CAS R e s e a r c h  W o r k i n g  P a r t y  o n  R i s k  T r a n s f e r  T e s t i n g  

Abstract 
This paper was prepared in response to a call from the American Academy of Actuaries Comrmttee on 
Property and Lability Financial Reporting (COPLFR). The call requested ideas about how to define 
and test for risk transfer in short duration reinsurance contracts as required by FAS 113 and SSAP 62. 
These accounting standards require that a reinsurance contract must satisfy" one of two conditions in 
order to qualify- for reinsurance accounting treatment: 1) the contract must transfer "substantially all" of 
the underlying insurance risk, or failing that, 2) it must at least transfer "significant" insurance risk. The 
paper presents methods to test for both conditions, but the main focus is on testing for "significant" 
risk transfer. The shortcomings of the commonly used "10-10" test are discussed and two alternative 
testing frameworks axe presented as significant improvements over "10-10". The first of these, which is 
presented in detail, is based on the expected reinsurer deficit (ERD). Conceptually, that approach is a 
refinement and generalization of "10-10" that addresses its major shortcomings. The second 
framework, based on the right tail deviation (RTD), is presented more briefly. It has certain desirable 
properties but at the cost of greater complexity. 
Keywords: risk transfer testing, FAS 113, "10-10" test, downside risk, expected reinsurer deficit (ERD), 
right tail deviation (RTD), tail value at risk (TVal~, parameter uncertainty 

1. INTRODUCTION 

The  purpose  o f  this paper  is to p ropose  an improved  framework for testing short- 

duration reinsurance contracts for risk transfer compliance with FAS 113. Under  that 

accounting statement,  reinsurance accounting is allowed only for those indemnity contracts 

that transfer insurance risk. The  aim o f  the paper  is to present  a theoretically sound but  

practical approach to determining whether  a contract  meets  the risk transfer requirements o f  

FAS 113. 

1.1 Context  

The working party that prepared this paper was formed by the CAS to respond to a call 

by the American Academy o f  Actuaries Commit tee  on  Property and Liability Financial 

Report ing (COPLFR) for the submission o f  actuarially sound ideas about  how to define and 

test for risk transfer in reinsurance transactions. The American  Academy call arose out o f  

the need for a constructive response f rom the actuarial profess ion following some widely 

publicized cases o f  alleged abuse o f  finite reinsurance and related accounting principles. 

Those  cases have led to renewed scrutiny o f  reinsurance contracts  to ascertain whether  they 

comply with the existing accounting requirements and to a broader  inquiry as to whether  
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FAS 113 goes far enough in specifying the manner in which contracts will be accounted for 

either as reinsurance or otherwise. 

In a letter dated June 13, 2005, and addressed to members of  the CAS, the chair of  

COPLFR framed the request as follows: 

"Property/casualty actuaries interested in contributing suggestions...are asked to submit 

responses to one or more of  the following questions: 

1. What is an effective test for risk transfer? (Respondents are asked to focus on actuarial 

methodology and provide examples as appropriate.) 

2. What criteria should be used to determine whether a reinsurance contract transfers 

significant risk to the reinsurer? (Respondents are asked to focus on decision criteria 

used to evaluate the results of the test described in question #1.) 

3. What safe harbors, if any, should be established so that a full risk transfer analysis does 

not have to be completed for each and every reinsurance contract (i.e., in what instances 

is risk transfer "reasonably self-evident" and therefore cash flow testing is not necessary 

to demonstrate risk transfer)? 

4. What are the advantages and disadvantages of  the suggested approach versus other 

approaches commonly used?" 

There is very little published actuarial literature on the subject. The only significant paper 

appears to be the one prepared in 2002 by the CAS Valuation, Finance, and Investments 

Committee entitled, "Accounting Rule Guidance Statement of  Financial Accounting 

Standards No. 113--Considerations in Risk Transfer Testing"[1]. That paper provided an 

excellent summary of  FAS 113 and the risk transfer testing methods that emerged in 

response (including the "10-10" test) as well as a discussion of  a number of  alternative 

methods. However, the paper was fairly muted in its criticism of "10-10", and it did not 

strongly advocate replacing it with an alternative. 

In this paper we seek to respond to all four of  the questions posed by COPLFR. The 

members of  the working party believe the time has come to be explicit about the 

shortcomings of  the "10-10" test that has come into common use and to advocate its 

replacement with a better framework. Accordingly, in this paper we include an extensive 

critique of  the "10-10" test and describe two frameworks, one in detail and the other in 
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summary, that would be significant improvements over "10-10". We also identify methods 

for determining whether individual reinsurance contracts should be subject to detailed 

testing. 

The frameworks described in the paper primarily address the issue of developing a more 

consistent and rigorous quantitative approach for the evaluation of risk transfer. As a result, 

the approaches described might reduce the potential for accounting mistakes simply by 

virtue of the higher level of clarity and consistency that result from their application. But the 

working party wants to make it very clear that no quantitative methodology will ever be fully 

successful in detecting intentional attempts at fraud or accounting abuse. Regulators and 

auditors face a difficult but necessary task in ferreting out the motives and intent of the 

producers of accounting statements. Actuaries are important partners and advisors in the 

area, especially in areas such as risk transfer. But it would be a mistake to think that actuaries 

or any other quantitative expert can provide a formula that reduces the analysis of intent, 

good or bad, to a simple (or even complex) calculation. This is important, because many of 

the alleged acts that have topped recent headlines are in fact much more about bad intent 

than risk transfer. No matter how good this working party's work, the methodologies 

developed here would not likely have prevented many of the alleged abuses, at least not 

without other efforts to discern the intent of the transactions. 

At the same time, it is important to remember that in most reinsurance transactions the 

parties are acting in good faith and their intentions are good. Just as a mathematical test 

cannot identify bad intent, it cannot by itself discern the likely good intent of the parties. 

Therefore, the failure of a contract to meet a quantitative risk transfer test should not result 

in denial of  reinsurance accounting treatment to a transaction without a thorough review of 

the all aspects of the deal, induding the question of intent. 

1.2 D i s c l a i m e r s  

While this paper is the product of a CAS working party, its findings do not necessarily 

represent the official view of the Casualty Actuarial Society. Moreover, while we believe the 

approaches we describe are very good examples of how to address the issue of risk transfer, 

we do not claim they are the only acceptable ones. 

In the course of the paper, in order to make our ideas as clear as possible, we present a 

number of numerical examples that require assumptions about the distribution of losses and 
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appropriate threshold values for the risk transfer tests we describe. We recognize that any 

loss model we choose is an approximation to reality at best and might even be a poor one, 

and that with respect to the decision about appropriate risk transfer threshold values, other 

constituencies, including regulators, accountants and outside auditors have a key role to play. 

In making such assumptions for purposes of  illustration, we are not necessarily endorsing 

any particular loss model or threshold value. 

In many of our examples we display the results of  calculations to two decimal places, 

which suggests an unreasonably high level of  precision. We do so only in order to highlight 

the differences in what are frequently very small numbers. We are not suggesting that use of  

two decimal places is appropriate in the practical application of  the methods we describe. 

Throughout the paper we use the FAS 113 definition of  the reinsurer's loss, which 

ignores brokerage and the reinsurer's internal expenses. Our use of  that definition should 

not be construed to mean that we endorse that definition for any purpose other than testing 

reinsurance contracts for compliance with FAS 113. 

1.3 Organization of Paper 

The paper is structured in nine sections. 

Section 1 describes the impetus for and context of  the paper as well as a summary of  the 

risk transfer requirements of  FAS 113, which we treat as a reasonable framework for 

evaluating risk transfer, subject to a fair interpretation of  the critical elements of  "reasonably 

possible" and "substantially all". To meet the FAS 113 risk transfer requirements, a contract 

must satisfy one of  two conditions: 1) the reinsurer must assume "substantially all" of  the 

underlying insurance risk, or 2) the reinsurer must assume "significant" insurance risk and it 

must be "reasonably possible" that the reinsurer may realize a "significant" loss. 

In Section 2 we present a systematic approach for determining whether "substantially all" 

of  the underwriting risk has been transferred under a reinsurance contract. I f  "substantially 

all" the risk has been transferred, then the contract meets the risk transfer requirement of  

FAS 113 without it being necessary to show that the risk transfer is "significant". This 

section partially addresses the third question. 

In Section 3 we present a detailed critique of  the "10-10" test itself and how it has been 

applied in practice. We first describe the emergence of  the "10-10" approach as a method of  

testing contracts for "significant" risk. Then we illustrate the application of  the "10-10" 
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benchmark to three reinsurance contracts that clearly contain risk, including a property 

catastrophe contract and two quota shares of  primary portfolios. All the tested contracts 

"fail" the "10-10" test, implying that the test is flawed. :In the context of  one of  the 

examples we also emphasize the importance of  taking parameter uncertainty into account in 

the risk assessment. Finally, we point out some unintended consequences of  "10-10", 

namely that it implicitly imposes price controls on reinsurance contracts. We condude that 

"10-10" is inadequate as a measure of  risk and therefore unsuitable as a universal test for 

determining the "significance" of  risk transfer. At best, one may argue that "10-10" is a 

sufficient test for risk transfer. It is not, however, a necessary condition. 

Section 4 discusses two specific shortcomings of  "10-10" and describes a different 

approach that addresses those shortcomings, thus addressing the ftrst, second and fourth 

questions to varying degrees. The improved test we present here is based on the expected 

reinsurer deficit (ERD), which incorporates present value underwriting loss frequency and 

severity into a single measure. The loss severity embedded in the ERD is the tail value at risk 

(TVaR) measured at the economic breakeven loss ratio. We show that the ERD test is 

effectively a variable TVaR standard. We point out that a "significance" threshold of  

ERD _> 1% has the merit of  a certain amount of  continuity with the "10-10" but without 

that test's major shortcomings. In order to address concerns that "10-10" might not be a 

strict enough standard, we also suggest the possibility of  a supplemental minimum downside 

requirement. However, we do not advocate retesting of  contracts already on the books that 

have already been found to pass "10-10". 

Section 5 shows the application of  the ERD test to the same contracts tested in Section 3 

as well as to additional quota share contracts with loss ratio corridors or loss ratio caps, as 

well as to excess swing-rated contracts and individual risks. Using an illustrative standard of  

ERD > 1%, we show that contracts that most people would consider risky receive a 

"passing" score, with one exception. This further addresses the ftrst two questions. 

Section 6 discusses the identification of  contracts subject to the "significant" risk 

requirement, but which do not require individual testing, and thus addresses the third 

question. The NAIC is considering a requirement that the CEO and CFO attest that a risk 

transfer analysis has been completed for all reinsurance contracts, except those for which it 

is "reasonably self-evident" that significant risk has been transferred. We seek to put some 

definition to "reasonably stir-evident". In this section we illustrate the application of  the 
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ERD > 1% test to several classes of  reinsurance contracts with certain structural features. 

We show, using conservative assumptions, that 1) standard catastrophe excess of  loss 

treaties, 2) contracts covering individual risks and 3) certain other excess of  loss reinsurance 

structures, could all be "pre-quaiified" as meeting the "significant" risk requirement (unless 

there is reason to believe they include other features that might affect the amount of  risk 

transferred). We also describe an addifion~ approach that could potentially be used to 

further expand the set of  such contracts. 

Section 7 discusses the possible evolution of  risk measurement beyond the application to 

risk transfer testing that is the focus of this paper. This section offers an alternative way to 

address the first two questions. It briefly presents a framework proposed based on right tail 

deviation (RTD) that tightly links risk transfer testing and risk loading. We present two 

examples. While the RTD-based approach has theoretical appeal, it has the drawback of  

being more complex and thus less understandable to a non-actuarial audience than the ERD 

approach. 

Section 8 is a summary of  the key points of  the paper. 

Section 9 provides suggested priorities for areas of  further research. 

Appendix A gives the mathematics underlying the ERD test. Appendix B explains the 

comparison between S&P 500 equity risk and quota share reinsurance risk (which is used in 

examples in Sections 3 and 5). References are listed in Section 10, which follows the 

appendices. 

1.4 Background 

FAS 113 ("Accounting and Reporting for Reinsurance of  Short-Duration and Long- 

Duration Contracts") was implemented in 19931 to prevent, among other things, abuses in 

GAAP accounting for contracts that have the formal appearance of  reinsurance but do not 

transfer significant insurance risk and thus should not be eligible for reinsurance accounting. 

FAS 113 amplified the earlier requirement of  FAS 60 that reinsurance accounting only 

applies to contracts that transfer insurance risk. SSAP 62, which largely incorporates the 

same language as FAS 113, was implemented shortly thereafter to address the same issues 

t It was issued in December 1992 for implementatton with respect to financial statements for fiscal years 
commencing after December 15, 1992. Since insurance companies generally have fiscal years that coincide 
with calendar years, in effect it was implemented for the 1993 fiscal year. 
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with respect to statutory accounting. Our references to FAS 113 should be understood to 

refer collectively to FAS 113 and SSAP 62. 

In order for a contract to qualify for reinsurance accounting treatment in accordance with 

FAS 113, it must transfer insurance risk from an insurer to a reinsurer. To meet the risk 

transfer requirement, a reinsurance contract must satisfy one of  two conditions: 

1. It must be evident that "the reinsurer has assumed substantially all of  the insurance risk 

relating to the reinsured portion of  the underlying insurance contracts" (paragraph 11), or 

2. The reinsurer must "assume significant insurance risk under the reinsured portions of  the 

underlying insurance contracts"(paragraph 9a) and it must be "reasonably possible that 

the reinsurer may realize a significant loss from the transaction" (paragraph 9b). 

We are aware that our presentation of  the two FAS 113 conditions in this order (i.e., first 

the paragraph 11 condition and then the paragraph 9 condition) is unusual. In practice, the 

"significant" risk requirement has often been considered first, and only if the contract "fails" 

is paragraph 11 considered. However, because part of  our aim is to determine how to avoid 

testing every contract, we find it useful to start with the consideration of  whether the 

contract meets the risk transfer requirement by virtue of  "substantially all" the underlying 

risk having been transferred. If  it does, then the "significant" risk question does not need to 

be considered at all. Accordingly, throughout the paper we will present and work with the 

FAS 113 risk transfer conditions in that conceptual order. 

This paper is not intended to be a critique of  FAS 113. We treat FAS 113 as it is 

currently constructed as a reasonable framework for evaluating risk transfer, subject to a fair 

interpretation of  the critical elements of  "reasonably possible" and "substantially all", despite 

some reservations about its focus on the financial effects (exduding brokerage and internal 

expenses) of  a transaction on the reinsurer alone. 

While all reinsurance contracts must satisfy the requirements of  FAS 113, it is up to each 

company to determine which contracts should be subjected to detailed testing and which 

contracts clearly satisfy the requirements of  FAS 113 based upon inspection. In this paper 

we describe an approach that can help guide both ceding companies and reinsurers through 

that decision process. 
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2. D E T E R M I N I N G  W H E T H E R  T H E  CONTRACT TRANSFERS 
"SUBSTANTIAl=IN ALL" U N D E R L Y I N G  I N S U R A N C E  RISK 

We suggest it makes sense to begin by determining whether the contract meets the FAS 

113 condition of  transferring "substantially all" the insurance risk. If  it does, then the 

contract meets the risk transfer requirement. If  it does not, then the contract is subject to 

the other condition that the risk transfer must be "significant". 

What is the "insurance risk relating to the...underlying insurance contracts?" We see it as 

the downside risk associated with the cedent's portfolio of  insurance, i.e., the exposure faced 

by the underwriter to incurring a loss. I f  the downside risk assumed by the reinsurer is 

essentially the same as that faced by the cedent with respect to the original unreinsured 

portfolio, then the contract transfers "substantially all" the insurance risk. 

The trivial case is a quota share or other proportional contract with a fiat ceding 

commission equal to the ceding company's expense ratio, where there are no features such a 

sliding scale commission, profit commission, loss ratio corridor or aggregate loss ratio limit. 

In such a case, the comparison between the ceding company's position and that of  the 

reinsurer is obvious. The contract clearly transfers not only "substantially all" the risk to the 

reinsurer but literally all of  it. Facultative reinsurance is often written on this basis, but more 

often than not, quota share treaties include one or more of  the features identified above. 

Sliding scale and/or  profit commission features are often used by reinsurers as incentives 

to reinforce the ceding company's motivation to underwrite its business in a disciplined way, 

Their use can promote a win-win situation for the ceding company and the reinsurer. These 

and other features such as loss ratio corridors or caps appear frequently in traditional 

reinsurance contracts as a means of  making otherwise unattractive treaties acceptable to the 

reinsurance market. Usually the context for incorporation of  caps or corridors is poor 

historical underwriting experience in the portfolio for which reinsurance is being sought. 

The ceding company believes it has taken the necessary corrective actions to turn the 

portfolio around, but the reinsurance market is skeptical. The inclusion of  caps and 

corridors in a reinsurance contract can often make it possible for a ceding company that has 

confidence in its own business plan to obtain the reinsurance capacity it requires to execute 

that plan. Sometimes, but not always, such features have the effect of  taking "too much" 

risk out of  a reinsurance deal to allow the "substantially all" requirement to be met. We need 
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to be able to compare the downside risk in the ceding company's unreinsured policies with 

the downside risk of  the reinsurer. 

We describe two ways of  making this comparison - there may be other good methods as 

well - and illustrate them with an example. The first method is easier to understand but is 

not  always conclusive, while the second method is somewhat more complicated but can 

always be applied. 

Method 1 - Comparison of All Underwriting Downside Scenarios 

Compare the cedent's underwriting margin over a range of  loss ratios on the original 

unreinsured portfolio to the reinsurer's underwriting margin over the same range of  loss 

ratios. The cedent's underwriting margin is defined as 100% less its unreinsured loss ratio 

less its actual expense ratio on the unreinsured portfolio 2. The reinsurer's underwriting 

margin is defined as 100% less its assumed loss ratio less the ceding commission 3. I f  the 

cedent's margin equals or exceeds the reinsurer's margin for the loss ratios that imply an 

undetavriting loss, then clearly the reinsurer has assumed "substantially all" of  the insurer's 

downside risk. Even if  the cedent's margin is less than the reinsurer's margin, if that 

difference is small (as it is in Example 2.1), then the "substantially all" test may be met. Note 

that unless there are significant cash flow differences between the ceding company and the 

reinsurer, it is not necessary to conduct a full analysis of  cash flows, since they ~ affect 

both  parties in the same way. 

Method 2 - C o m p a r i s o n  of  Cedent and Reinsurer Expected Underwriting Deficits 

Compare the expected underwriting deficits (EUD) of the cedent and the reinsurer. The 

EUD can be calculated either directly as the pure premium of  an aggregate excess of  loss 

2 Expenses before reinsurance divided by premiums before reinsurance. Whether expenses should be marginal 
or average is a matter of debate. 

3 This definition of the reinsurer's underwriting margin does not reflect other expenses of the reinsurer, 
including brokerage and internal expenses. ~nile this approach to measuring the reinsurer's profitability is 
consistent with the FAS 113 defimtion, it does not reflect economic reality. 
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cover attaching at the breakeven loss ratio or as the product of  the frequency and severity of  

underwriting loss, (Freq(UL) and Sev(UL), respectively) 4. 

If  the EUD faced by the reinsurer is greater than or equal to the EUD of the cedent, then 

the "substantially all" test is dearly met. Because "substantially all" is less than "all", if  the 

EUD faced by the reinsurer is within a small tolerance of  the expected underwriting deficit 

faced by the cedent, say, within 0.1%, then we would also say the "substantially all" test is 

m e t .  

Let's consider an example to illustrate these two methods. 

E x a m p l e  2.1: Non-Standard  Auto Share wi th  Sl iding Scale C o m m i s s i o n  

Suppose a quota share of  a non-standard auto portfolio is under consideration. The 

ceding commission is on a sliding scale. A minimum commission of  19.5% is payable if  the 

loss ratio is 73% or higher. The commission slides up at a rate of  one point for every one 

point of  reduction in the loss ratio ("1:1 slide") below 73%, up to 30% at a loss ratio of  

62.5%. The commission increases above 30% at a rate of  0.75% for every one point of  loss 

ratio reduction ("0.75:1 slide") below 62.5%, up to a maximum commission of  39%, which 

is achieved at a loss ratio of  50.5% or lower. The ceding company's direct expense ratio on 

the subject business is 20%, so at the minimum ceding commission of  19.5%, it recoups 

virtually all of its direct costs. Its underwriting breakeven loss ratio is 80%. The reinsurer's 

FAS 113 underwriting breakeven loss ratio (i.e., ignoring brokerage and reinsurer internal 

expenses) is 80.5%. 

The results of  Method 1 are given in Table 1 and the accompanying Chart 1. The table 

compares the ceding company's expense ratio and underwriting margin on the unreinsured 

portfolio over a wide range of  loss ratios to the reinsurer's ceding commission expense and 

underwriting margin at the same loss ratios. The accompanying chart compares the ceding 

company's margin and the reinsurer's margin graphically. From Table 1 and Chart 1 we see 

that above an 80% loss ratio (the ceding company's breakeven on the unreinsured portfolio), 

the ceding company's margin and reinsurer's margin are virtually undistinguishable, which 

4 Ifx represents the loss ratio and B is the underwriting breakeven loss ratio, then 

EUD : ~ ( x  - B) f (x) dr : Freq(UL ). Sev(UL ) , where Freq(UL) = fff f (x) dr and Sev(UL ) is the 

"tail value at risk" ( TVaR) at the underwriting breakeven: Sev( U L ) = ~ ( x - B) f ( x ) dr / ~ f ( x ) dr 

2 8 6  C a s u a l t y  A c t u a r i a l  S o c i e t y  Forum,  W i n t e r  2 0 0 6  
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indicates the reinsurer has assumed "substantially all of  the insurance risk" of  the reinsured 

policies. 

TABLE 1 

"Substantially All" Risk Transfer Analysis - Method 1 

Comparison of  Reinsurer vs. Cedent Margins 
Example 2.1 

Subject 
Loss 
Rado 

30.0% 

50.5% 

62.5% 

73.0% 

80.0% 

80.5% 

100.0% 

Cedent 
Expense Cedent 

Rado Margin 

20.0% 50.0% 

20.0% 29.5% 

20.0% 17.5% 

20.0% 7.0% 

20.0% 0.0% 

20.0% -0.5% 

20.0% -20.0% 

Reinsurance 
Ceding 

Commission 

39.0% 

39.0% 

30.0% 

19.5% 

19.5% 

19.5% 

19.5% 

Reinsurer 
MarL, in 

31.0% 

10.5% 

7.5% 

7.5% 

0.5% 

0.0% 

-19.5% 

# 

a.  

CHART 1 
Cedent and Reinsurer Margins 

Example 2.1 

60% 

40% ~ 
20% ~ 

00/0 

-20% 

-40% , [] 
30% 50% 70% 90% 110% 

. . . .  Cedent Margin 

Reinsurer Margin 

Original Loss Ratio 
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Table 2 summarizes the Method 2 comparison of  expected underwriting deficits. It 

shows the insurer's and reinsurer's comparative underwriting downside risk by examining 

their respective Freq(UL), Sev(UL) and EUD. In this example, the ceding company's 

frequency of  underwriting loss is 11.28% vs. 10.45% for the reinsurer. The ceding 

company's underwriting loss severity is 8.33% vs. the reinsurer's 8.48%. The ceding 

company's EUD is 0.94% vs. the reinsurer's EUD of  0.89% s. While these measures vary 

slightly between the ceding company and the reinsurer, they are dearly very close. Thus, we 

would say that Method 2 also indicates that the reinsurer has assumed "substantially all" of  

TABLE 2 

"Substantially All" Risk Transfer Analysis - Method 2 
Reinsurer vs. Cedent Margins in Downside Scenarios 

Example 2.1 

Breakeven 
Loss Ratio Freq(UL) Sev(UL) EUD 

Cedent 80.0% 11.3% 8.3% 0.940% 
Reinsurer 80.5% 10.5% 8.5% 0.886% 

Difference -0.5% 0.8% -0.2% 0.054% 

the ceding company's downside risk and the contract therefore meets the risk transfer 

requirements of  FAS 113. 

We conclude that in this example either Method 1 or Method 2 indicates the contract 

transfers "substantially all" the underlying insurance risk to the reinsurer. 

While this approach works most naturally for quota share contracts, it can potentially be 

applied to excess of  loss treaties as well. In that case, the reinsurer's EUD, calculated in the 

same way as above in the quota share case as a ratio to the ceded premium, should be 

compared to the cedent's EUD on the portion of  the original subject portfolio which is 

exposed to the same risks as the excess of  loss reinsurance contract. I f  the reinsurer's EUD 

5 Losses have been modeled using a lognormal dismbution modified for parameter uncertainty, the details of 
which are not important for this example. 
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is close to or greater than the cedent's, then the reinsurer can be judged to have assumed 

"substantially all" the cedent's insurance risk in this context. For example, suppose the 

portion of  original insurance risk assumed by a catastrophe reinsurance contract covering a 

portfolio of  business has a 1% probability of  a claim of a certain size. In that case the 

reinsurance of  that portion of  the risk also requires no more than a 1% probability of  loss of  

the same size, because the EUDs of  the ceding company and the reinsurer are the same with 

respect to the original catastrophe exposure. 

If  our argument about the applicability of  the comparative EUD approach to excess of  

loss contracts and contracts with loss ratio caps is not found to be compelling, note that in 

section 6 we will also demonstrate that catastrophe reinsurance and some other contracts 

with aggregate loss limitations can meet the "significant" risk requirement under many 

circumstances. 

Finally, there is a case to be made that, to the extent that a ceding insurance company is 

limited in its ability to meet net losses by its surplus, it is reasonable to allow a similar 

limitation of  the reinsurer's aggregate liability. If  this is accepted, then it is possible to 

calculate the minimum loss ratio cap that can be imposed by the reinsurer without violating 

the condition that "substantially all" of  the underlying risk has been transferred. This 

potentially represents a third way of  determining whether the "substantially all" risk transfer 

condition has been met. 

For example, suppose a ceding company enters into a whole account quota share 

reinsurance arrangement that results in a net premium to surplus ratio of  200%. If  the quota 

share has a ceding commission of  25% (approximating the ceding company expenses), then 

a loss ratio cap as low as 125% would be consistent with the transfer of  "substantially all" of  

the risk, because at a combined ratio of  150% the ceding company has lost all of  its surplus. 

Naturally such an interpretation would have to be made after due consideration of all other 

relevant features of  the reinsurance contract in question. 

If  a contract does not meet the "substantially all" test, then it is subject to the second 

FAS 113 condition that "significant risk" must be transferred in order for the contract to 

qualify for reinsurance accounting. We now turn our attention to the question of  what 

constitutes "significant" risk. 
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3. "SIGNIFICANT" RISK TRANSFER AND T H E  "10-10" TEST 

3.1 "10-10" and its Shortcomings 

A contract that does not meet the FAS 113 requirement for risk transfer by transferring 

"substantially all" the underlying insurance risk is subject to the second condition that 

"significant" risk be transferred. The so-called "10-10" test emerged in the years following 

the implementation of  FAS 113 as a common benchmark for determining whether a 

reinsurance contract satisfies the requirement of  a reasonable chance of  "significant" loss to 

the reinsurer, which the test defines as "at least a 10% chance of  a 10% loss". "10-10" is 

usually referred to as a "risk transfer" test, which implies an understanding of  "risk" as a 

measure of  exposure to loss rather than as exposure to volatility of  results. "10% chance of  

a 10% loss" is usually interpreted to mean that the underwriting loss at the 90th percentile 

(of the probability distribution of  underwriting results 6) must be at least 10% of the ceded 

reinsurance premiums, where both underwriting loss and premiums are understood to be 

present values. Another term for "the underwriting loss at the 90th percentile" is "the value 

at risk" at the 90th percentile" or "VaRgoo/," with respect to the underwriting result. 

Accordingly, the "10-10" test can also be succinctly described as requiring VaRgo,/. >_ 10%. 

The "10-10" benchmark arose as an informal method for testing whether purported 

reinsurance contracts contained sufficient risk transfer to meet the requirements of  FAS 113 

under the reasonable chance of  significant loss criterion. It was not intended to be a 

universally applicable risk transfer test. Indeed, it has long been recognized that many 

reinsurance contracts having the characteristics of  low underwriting loss frequency but high 

severity (such as property catastrophe excess of  loss reinsurance) fail "10-10" on the basis 

that the probability of  a 10% loss is less than 10%. In addition, if  they do not meet FAS 113 

risk transfer requirements by xq.rtue of  transferring "substantially all" risk, ordinary quota 

share reinsurance of  many primary insurance portfohos (e.g., low limits private passenger 

auto), which have the characteristics of  high frequency of  underwriting loss but relatively low 

severity, may also fail. Until recently that was not seen as a problem because experienced 

practitioners understood the target of  FAS 113 to be highly structured contracts that limited 

the transfer of  insurance risk. As a consequence, traditional reinsurance contracts were 

typically not even tested. 

6 Low percentiles represent better results; high percentiles represent poorer results. Underwriting losses are 
represented as positive numbers. References to "underwriting results" and "underwriting losses" should be 
understood to refer to present values. 
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In the wake of the recent revelations of new accounting abuses related to "reinsurance 

contracts" apparently invohdng litde or no risk transfer, the situation has changed. There is 

greater sentiment now that (a) more contracts should be routinely tested for significant risk 

transfer and (b) "10-10" is not a stringent enough standard. The view that "10-10" may not 

be stringent enough arises in part from the fact that some highly structured contracts have 

been carefully engineered to allow for exacdy a 10% probability of a 10% loss and little or no 

possibility of a loss greater than 10%. 

It is clear from the failure of the "10-10" benchmark to correcdy identify both 

catastrophe excess of loss and some quota share reinsurance as risky and its failure to flag 

certain highly structured contracts as not significantly risky that "10-10" is insufficiently 

discriminating to serve as a universal measure of risk transfer in reinsurance contracts. We 

need a better test for measuring significant risk transfer in contracts that are subject to that 

requirement. 

The interpretation of FAS l13's paragraph 9b is a critical issue. Paragraph 64 states that 

"an outcome is reasonably possible if its probability is more than remote." Despite this 

definition, the expectation appears to have developed that "reasonably possible" means a 

probability substantially greater than "remote". While the accounting literature gives no 

specific guidance on these probabilities, a 10% chance has come to be widely accepted as the 

smallest probability that should be categorized as "reasonably possible." It is our position 

that a different interpretation of "reasonably possible" is more appropriate, one that depends 

on the context of the risk and recognizes that some weight should be given to loss scenarios 

that, while rare, are not remote. 

In particular, we propose that, in establishing the threshold probability for "reasonably 

possible", consideration must be given to the probability of loss (and indeed the size of that 

loss) arising from the reinsured portions of the underlying insurance contracts. For example, 

in the context of catastrophe reinsurance, "reasonably possible" should be associated with a 

probability that reflects the inherently low probability of the covered event. For other 

reinsured portfolios, where the inherent probability of loss is greater, "reasonably possible" 

is appropriately associated with a higher probability value. 

This interpretation goes a long way toward eliminating the apparent inconsistency of 

according reinsurance accounting to some contracts that do not satisfy an invariant 

probability threshold of 10%. That property catastrophe contracts are typically accorded 
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reinsurance accounting treatment even though they often do not meet a "reasonable 

possibility" requirement, defined as 10%, impliddy reflects this kind of  interpretation. 

In section 4 we will present a framework for capturing the interaction between the 

"reasonably possible" and "significant loss" components of  paragraph 9b in a way that 

automatically makes the appropriate contextual adjustment without having to resort to 

situation-based arguments. 

First, let us continue our critique of  "10-10". 

3.2 Illustration of the Shortcomings of "10-10" 

Through a series of  examples we will show why "10-10" is an unsatisfactory test for 

establishing whether or not a reinsurance contract transfers significant risk. Example 3.1 

illustrates the application of  the test to a property catastrophe contract and shows that it 

"fails" to transfer significant risk. Example 3.2 illustrates the application (and 

misapplication) of  "10-10" to a low volatility primary quota share, given a set of  historical 

loss ratio experience. We also use that example to warn of  the pitfalls of  simply fitting a loss 

distribution to on-level loss ratio experience and using that for risk transfer analysis. 

Example 3.3 shows that a quota share of  an insurance portfolio having the volatility 

characteristics of  the S&P 500 would frequently fail the "10-10" test. 

We begin with the property catastrophe example. 

Example 3.1: Property Catastrophe Excess of Loss Reinsurance 

A property catastrophe reinsurance contract paying a premium equal to 10% of the limit 7 

is typically priced to a loss ratio of  around 50%. That implies an expected loss of  5% of  the 

limit. Catastrophe reinsurance contracts, especially for higher layers, run loss free or have 

small losses in most years but occasionally have a total limit loss. This pattem is illustrated 

by the simplified catastrophe loss distribution shown in Table 3 below. 

7This is frequently referred to as a "10% rate on line". 
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TABLE 3 

Catastrophe Loss Distribution for Example 3.1 

Loss as Loss as Probability 

% of  Limit % of  Premiums of Given Loss 

0% 0% 67% 

5% 50% 20% 

10% 100% 10% 

100% 1000% 3% 

5% 50% 100% 

The loss at the 90th percentile of  the catastrophe loss distribution is 100% of  premiums. 

Assuming standard reinstatement premium provisions, the 90th percentile of  the 

underwriting result distribution is an underwriting profit of  10% of premiums (100% original 

premiums plus 10% reinstatement premiums minus 100% loss). This contract fails the "10- 

10" test. 

There is universal agreement among accountants, regulators, insurers, reinsurers and 

rating agencies that contracts like this one are risky. Clearly, the failure of"10-10" to identify 

the contract in this example as risky is an indication of  a problem with "10-10" and not the 

contract. 

Example 3.2: Primary Quota Share Reinsurance 

Assume a cedent and reinsurer have negotiated a quota share treaty on a primary 

insurance portfolio. The treaty has a ceding commission of  25%. Does the treaty contain 

"significant" risk transferS? 

s Let's assume the treaty does not meet the condition of transferring "substantially all" of the underl)fng risk, 
perhaps because the cedent's expenses are substantially greater than the ceding comrmssion. As a result the 
treaty is subject to the "significant" risk transfer requirement. 
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To measure the risk transferred we need to model the prospective underwriting result. 

Because the underwriting result is the breakeven loss ratio minus the actual loss ratio, the key 

to modeling the underwriting result is the probability distribution of  the prospective loss 

ratio x.  There are a number  of  reasonable actuarial methods for modeling prospective loss 

ratios '~. In actuarial pricing applications the principal focus is on the mean of  the prospective 

loss ratio distribution. Not  much attention is paid to the full distribution. In contrast, risk 

transfer analysis requires the full distribution. This means there are pitfalls associated with 

using the output from the pricing analysis for the risk transfer analysis without full 

consideration of  the issues affecting the fi.fll loss ratio distribution. 

Let's review the underwriting experience analysis of  the insurance portfolio that is the 

subject matter of  the quota share. Five years of  loss ratio experience is available together 

with information of  varying quality about historical loss development and claim trends as 

well as the rate level history and the cedent's expectation of  rate actions during the treaty 

period. This is summarized in Table 4, which shows the reported, estimated ultimate and 

estimated ultimate "on-level" loss ratios 1'' together with the loss development, premium on- 

level and loss on-level factors used in the analysis. The means, variances and standard 

deviations of  the on-level loss ratios x, and their natural logs In x, are tabulated using the 

assumption that exposure has been constant over the experience period. 

The historical experience has been poor. Given the ceding commission of  25% and 

ignoring brokerage and internal expenses (as per FAS 113), the reinsurer's present value 

breakeven loss ratio is 75% 11. Three of  the five years have estimated ultimate loss ratios 

significantly greater than 75% and in two of  the years the loss ratio is over 75% even on a 

reported basis. The good news is that the ceding company has taken action to increase rates 

significantly, which results in estimated on-level loss ratios that are much lower than the 

actual historical loss ratios. The on-level mean of  70.67% compares very favorably with the 

'~ The models we use for the purposes of illustrating the issues related to risk transfer testing ate not intended to 
be prescriptive and are independent of the risk measurements we describe. 

t. This means the loss ratios have been adjusted to reflect the projected premium rate and claim cost levels 
expected to apply during the treaty term. 

11 Note that given typical brokerage of 1.5% and internal expenses of 3% to 5%, reinsurers would regard their 
real breakeven loss ratio as 68.5% to 70.5%, depending on expenses. As we shall see, this treaty is a 
breakeven or sfightly worse than breakeven proposition and would not be attractive to most reinsurers. 
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historical mean of  about 80%. Moreover, the on-level loss ratios are not very variable as 

indicated by the standard deviations of 7.45% with respect to x and 10.88% with respect to 

lnx .  

TABLE 4 

On-Level Loss Ratio Experience 

For Quota Share in Example 3.2 

(1) (2) (3) (4) (5) (6) (7) (8) 

Prem Loss On-Level 

Accident Reported Age to Ult Est Ult On-Level On-Level L / R  
Year L / R  Factors L / R  Factors Factors x, In x, 

1 92.8% 1.039 96.4% 1.963 1.364 67.0% -0.401 

2 75.6% 1.048 79.3% 1.737 1.307 59.7% -0.516 

3 77.0% 1.095 84.3% 1.376 1.246 76.4% -0.269 

4 61.2% 1.141 69.9% 1.139 1.181 72.5% -0.321 

5 52.5% 1.415 74.3% 1.061 1.111 77.8% -0.251 

~Unbiased 

Mean ~ 70.7% -0.352 

Var*  s 2 0.554% 1.18% 

St. Dev.* s 7.45% 10.88% 

We are first going to illustrate how not to apply the "10-10" benchmark in this scenario. We 

do this in order to point out the problems associated with this approach, which we believe 

may be in relatively common use. 

Let's assume the underlying random process governing the prospective loss ratio is 

lognormal. Then the "best f i t"  distribution, given the on-level loss ratio experience, is 

defined by parameters ,u = ~ and • = s.  From this it is easy to determine whether the 

present value underwriting loss corresponding to VaRgo,/. exceeds 10%. If  B is the present 
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value FAS 113 breakeven loss ratio and FV and PV represent "future value" and "present 

value" operators, respectively, then from the characteristics of  the lognormal distribution we 

know that 

which implies 

N -j (90%) = ln[FV(B + VaRgo ~ ).] -/.t (3.1) 
O" 

VaRgo ~ = PV(e "~+N-'(9°ra)'' ) -  B 
(3.2) 

If  ceded loss payments lag ceded premium payments by one year on average, the risk free 

interest rate is 5%,/~ = ~ = -0.3518 and cr = s = 10.88%, then formula (3.2) implies 

VaRgo~ = er-O 3~s)+(12sis)r0 loss). (1.05 -t ) -  .75 

= 2.02% 

Since "10-10" requires VaRgoo/o > 10%, according to this analysis the quota share treaty in 

this example does not transfer "significant" risk. In fact, the VaRgoo/. of 2.02% suggests that 

the treaty contains hardly any risk at all. Yet when we look back at the historical experience, 

we see that the reinsurer would have lost more than 10% in one year and would have lost 

money over the entire period. The conclusion that the reinsurer does not face a "reasonable 

possibility of  significant loss" seems strange. 

\Vhy did we get this result? There are two reasons. The first, as we hinted at the 

beginning, has to do with inadequacies in the loss model we selected. The second has to do 

with shortcomings in the "10-10" test itself. 

Let's discuss the problem with the approach we described for identifying a loss ratio 

model. Fundamentally, the problem is that we fitted a single distribution to the on-level loss 

ratios and then used that distribution as though we "knew with certainty that it is the correct 

one. In that case the only source of  risk being modeled is process risk, because we have 

assumed we have the correct model. In fact, there are multiple sources of  parameter 

uncertainty, some of which we enumerate below: 
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• The ultimate loss estimates might be wrong; 

• The rate level history might be inaccurate; 

• The prospective rate changes assumptions might be wrong; 

• The historical claim trend estimates might be inaccurate; 

• The prospective claim trend assumptions might be wrong; 

• The experience period might be too short to include rare but very large losses; 

• The prospective loss ratios might not be lognormally distributed; 

• The lognormal assumption is right, but the "best fit" distribution is not the actual; 

• Cash flow timing assumptions, particularly regarding claims, might be wrong; 

• The prospective exposure mix might be different from expected; 

• For multi-year reinsurance contracts, the level of parameter uncertainty from all 

sources increases as the length of the coverage period increases. 

In any actuarial application where the knowledge of the loss distribution itself and not 

just its mean is important, it is very important that the modeling be based on loss models 

that incorporate parameter uncertainty, which is an important and frequently underestimated 

source of risk '2 . Risk transfer testing, given its dependence on the right tail of the loss ratio 

distribution is one of those applications. 

Accordingly, actuaries should be cautious about placing too much confidence in. a single 

distribution fitted to estimated loss ratios. Where the estimates are the result of  applying 

large development and/or  on-level factors, the likelihood of parameter error is especially 

large, and appropriately large adjustments must be made to the distribution to account for it. 

While it is beyond the scope of this paper to discuss specific methods for estimating the 

impact of parameter uncertainty, for the sake of illustration, suppose the effect of  reflecting 

parameter uncertainty in the current example is to increase cr in the lognormal model to 

15%. If we constrain /2 such that E(x) remains unchanged, then / . /=-0.3571 and 

formula (3.1) yields VaRgov. = 5.76%, which still fails to meet the "10-10" threshold for 

,2 Kreps[2] and Van Kampen [3] provide examples of large effects in loss reserve estimates and aggregate 
excess pure premiums, respectively, due to the recognition of parameter uncertainty. 
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"significant" risk transfer. In this case, an adjustment to try to take account of  parameter 

uncertainty is not sufficient to show "significant" risk transfer in the contract, at least if  we 

use "10-10" to measure it. 

The next example brings into question the appropriateness of  the "10-10" criterion of  

VaRgoo/o > 10% by examining its implications for how we think about stock market risk. 

Example 3.3: Primary Quota Share Reinsurance (Volatility of S&P 500) 

Assume we are considering a quota share treaty on a second primary insurance portfolio. 

As in Example 3.2 the treaty ceding commission is 25%, which implies a FAS 113 breakeven 

present value loss ratio of  75%. Suppose this portfolio has the distributional and volatility 

characteristics commonly attributed to the S&P 500 equity index and an on-level loss ratio of  

70%. This implies an assumpuon that the prospective loss ratio is lognorrnally distributed 13 

with a mean of  70%. Let's also assume the claim payments lag premiums by one year. In 

order to pass the "10-10" test, which requires a present value loss ratio of  at least 85% at the 

90th percentile, if  the risk free interest rate is 5%, the minimum value of  the lognormal ar 

parameter is about 21% TM . 

Actual annualized volatility in the price of  the S&P 500 index exchange traded fund 

(symbol SPY) between early May 2004 and early May 2005 was 10.64%. 15 On May 4, 2005, 

the broadly based CBOE Volatility Index (VIX'), a measure of  the expected annualized 

volatility in the S&P 500 stock index implied by the market pricing of  index options, closed 

at 13.85%. The market was using a higher estimate of  future volatility for pricing purposes 

than that observed in the recent past, which might reflect an adjustment for parameter 

uncertainty or simply the opinion that volatility would increase. Both estimates of  cr fall 

13 For a discussion of the basis for this assumption, see Appendix B. 

14 o" = ln[(.85)(1.05)] -I t  and /1 = ln(..70)-.5cr 2 imply o" = 20.6% or 236%, the former being the only 
N -I ~ 9) 

reasonable solution in this context. This threshold assumes a ceding comrmssion of 25%, a risk free interest 
rate of 5% and lognormal stock prices. The threshold will vary depending on the parameters. 

is Calculated as the annualized standard dex4ation of weekly log returns ln(P,./P~'-I ) between May 2004 and 
May 2005. 
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below the threshold o f  21% required to pass "10-10", implying that a "quota  share" o f  the 

S&P 500 index *(' would fail to meet  the FAS 113 requirement for significant risk transfer! 

This is not  merely a temporar  T aberration. During the period f rom early May 2004 

through early May 2005 the actual volatility observed on a one-year look-back basis averaged 

10.77%. Over  the same time period, VIX averaged 14.39%. Chart  2 shows this graphically. 

The  persistent pattern o f  VIX greater than actual historical volatility, suggests that VIX 

reflects an adjustment  for parameter  uncertaint T rather than a forecast that volatility x~ll 

increase, 

C h a r t  2 
S&P 5 0 0  V o l a t i l i t y  ( A c t u a l  vs.  I m p l i e d )  

M a y  2 0 0 4  - Apri l  2 0 0 5  

2 5 %  

2 0 %  

"6 
> 15% 

N 
" -  1 0 %  m 

C 

s% 

0% 
Mar-04 ]un-04 Oct-04 Jan-05 Apr-05 ]ul-05 

imP~ect (VlXi 
/ A c t u a l  __ 

Source: Yahoo! Finance 

Over  a longer period o f  time the market  opinion o f  the prospective volatility o f  the S&P 

500 has varied considerably, ranging f rom a high o f  about  50% in 2002 to a low o f  about  9% 

in 1993 *v. Chart 3 shows this graphically. 

*c, We put "quota share" in quotation marks because the S&P 500 index transaction comparable to a quota 
share of an insurance portfolio involves a short sale. Since a short sale is usuaUy considered to be even riskier 
than a long position, the failure to "pass" a risk transfer test is all the more surprising. See Appendix B for 
details. 
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CBOE SPX MARKET VOLATILITY INDE 
as of 16-Ma~-2005 
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Source: Yahoo! Finance 

Chart 4 shows the probability of  a present value loss of  10% or more on the quota share 

of  this example, given cr = VIX values as of  the last trading day of  each year from 1990 

through 2004 plus May 4, 2005. It shows that the probability exceeds 10%, given the VIX 

values at the end of  1990 and those for every December  from 1996 through 2002. However, 

the probability is less than 10%, given the VIX values from every December 1991 through 

1995 and those for December 2002 and 2003 as well as that for May 2005 TM. Almost no one 

would argue that an investment in equities, even in a diversified portfolio such as the S&P 

500, is not  risky. Yet the implication of  the "10-10" benchmark is that a quota share 

reinsurance that has the same volatility characteristics ascribed to the S&P 500 by the 

options market over the period since 1990 would have been considered risky only about half 

the time! Unless the intention is to set the bar for "significant" risk at a level higher than the 

typical volatility of  the S&P 500, we must conclude that the "10-10" criterion is an 

inadequate measure of  significant risk. 

17 For more information about VIX and its calculation, see the white paper published by the CBOE, which is 
available at its website: htrp://u~-.cboe.com/'micro/vix/vixwhlte.pdf. The paper included the history 
between 1990 and August 2003. 

is The data underlying Chart 4 can be found in AppendLx B. 
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Table 5 illustrates the "10-10" analysis for a quota  share o f  a portfolio w h o s e  loss ratio 

has the volatility characteristics o f  the S&P 500, for two volatility scenarios: 9% 

(represent ing the low end o f  the VIX  range since 1990) and 13.85% (represent ing the V I X  

value on  May 4, 2005). T he  ceding c o m m i s s i o n  is 25%. The  table shows  (a) the loss at the  

90th percentile o f  the  p resen t  value undervcriting result distr ibution,  and (b) the  probabil i ty 

o f  a p resen t  value loss o f  10% or more ,  for o- = 9% and 13.85%. Both  o f  these  volatility 

scenarios fail to mee t  the "10-10" threshold for significant risk transfer.  

I f  o- = 9%, which  represents  the low end o f  the range o f  S&P 500 implied volatility since 

1990, the quota  share actually has a negative loss (i.e., small profit) at the 90th  percentile 

("10% chance  o f  a (0.49%) or greater loss") and  a miniscule 0.30% probability o f  a 10% loss 

or  more.  This  scenario fails the "10-10" test badly! 

For  o" = 13.85% Table 5 shows  a 10% chance o f  a 3.85% or greater loss and a 3.41% 

chance o f  a 10% loss or  more.  This  contract  scenario also fails "10-10" by a long  way 19. 

*'~ Note that even at an expected loss ratio of 75%, which is the trea D" breakeven point, there is a 10% chance 
of only a 9.49% or greater loss. See Appendix B (Table B-2) for details about the sensitivity of the analysis to 
changes in the expected loss ratio assumption. 
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TABLE 5 

"10-10" Risk Transfer Analysis 

for Quota Share in Example 3.3 

Given Portfolio with Volatility of  S&P 500 

VIX ty 

Low 9.00% 

May 2005 13.85% 

(a) Co) 
90 'h Percentile P.V. Probability of  > 10% 
Underwriting Loss P.V. Underwriting Loss 

(0.49%) 0.30% 

3.85% 3.41% 

For further discussion of  the comparability of  quota share reinsurance with the S&P 500, 

see Appendix B. 

3.3 Unintended Consequences: The Impact of "10-10" on Reinsurance 
Pricing 

There is a further troubling implication of  "10-10". It irnplicidy imposes price controls 

on reinsurance contracts at such a low level that, if  that benchmark were to be enforced as a 

rule, reinsurance capacity for certain types of  business is likely to be reduced, if  not 

eliminated entirely. 

To illustrate this we will assume the prospective loss ratio is lognormaUy distributed 2". 

The mean of  a lognormal distribution is given by 

E(x)  = e *'+° '~: (3.3) 

If  we solve for /a in formula (3.1) and substitute the result for the ,u in formula (3.3) we 

obtain the formula for E(x) constrained by VaRgo,/, = 10%: 

0 2 We choose the lognormal merely for purposes of illustration. A different distribution might be more 
appropriate. 
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E(x)  = Exp{In[FV(B + VaRgoo/o)] + N- '  (90%). 0- + 0.50- 2 } (3.4) 

For example, in the treaty scenario with no ceding commission, B + VaRgov, = 110%, and 

the minimum permissible loss ratio is: 

E(x)  = Exp{ In[FV(110%)] + 1.2815.0- + 0.50 -2 } (3.5) 

Table 6 is a tabulation of  the minimum permissible loss ratios allowed by "10-10" for a 

range of  values of  0- and average net claim payment lags of  zero, one year, two years and 

three years. Chart 5 is a graphical representation of  the data in Table 6. We see that for 

small values of  0- and claim lags of  a year or more, the minimum permissible loss ratios are 

greater than 100%, implying the reinsurer is required to price its business at an underwriting 

loss even before taking into account brokerage and its own internal expenses. Even at 

somewhat higher values of  0- that might correspond to certain excess of  loss business, the 

reinsurers's net underwriting margins (after typical brokerage of  10% and comparable 

internal expenses) are quite low. 

For example, given o" = 9% and assuming no claim payment lag (and hence no 

investment income), the reinsurer's minimum permissible loss ratio is 98.4%. That implies a 

maximum allowable margin before brokerage and internal expenses of  1.6%. The maximum 

permissible loss ratio rises as the claim payment lag increases. The effect of  the 

VaR~./. = 10% constraint is that all the investment income earned as a result of  the claim 

payment lag is credited to the cedent, and the present value of  the reinsurer's margin remains 

at 1.6%. For example, given a three-year payment lag and a 5% interest rate, the breakeven 

loss ratio is 115.8% and the minimum permissible loss ratio is 113.9%, which leaves a future 

value margin for the reinsurer of  1.9%. The present value of  that 1.9% is 1.6%. Clearly, 

given brokerage costs and internal expenses, no reinsurer could afford to write business at 

such a meager margin. 
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TABLE 6 

Minimum Permissible Loss Ratio 
Implied by "10-10" 

Contracts with No Ceding Commission 
Interest at 5% per annum 

By cr and Claim Lag 

cr No Lag 1 Yr La~ 2 Yr Lag 3 Yr Lag 
9.0% 98.4% 103.3% 108.5% 113.9% 
10.0% 97.3% 102.1% 107.2% 112.6% 
11.0% 96.1% 100.9% 106.0% 111.3% 
12.0% 95.0% 99.8% 104.7% 110.0% 
13.0% 93.9% 98.6% 103.5% 108.7% 
14.0% 92.8% 97.5% 102.4% 107.5% 
15.0% 91.8% 96.4% 101.2% 106.3% 
20.0% 86.8% 91.2% 95.8% 100.5% 
25.0% 82.4% 86.5% 90.8% 95.4% 
30.0% 78.3% 82.3% 86.4% 90.7% 
40.0% 71.4% 74.9% 78.7% 82.6% 
50.0% 65.7% 69.0% 72.4% 76.0% 
60.0% 61.0% 64.1% 67.3% 70.7% 
75.0% 55.7% 58.5% 61.4% 64.5% 
100.0% 50.3% 52.9% 55.5% 58.3% 
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In light o f  our  earlier discussion o f  parameter  uncertaintT, it may well be that o" values as 

low as 9% will never be used in practice. However ,  the problem remains to some extent  at 

higher values o f  o ' .  For  example, for cr = 30% the maximum gross reinsurer's margin is 

21.7% (100% less the min imum loss ratio with no claims lag). I f  the reinsurance is on an 

excess o f  loss basis, brokerage is likely to be 10% and internal expenses are likely to be a 

similar amount.  That leaves only 1.7% as a net  present  value margin for the reinsurer, which 

is not  likely to be attractive. 

3.4 Section Summary 

The discussion in this section should make it clear that the "10-10" benchmark is a 

flawed measure o f  "significant" risk transfer. The test used to measure risk transfer should 

accurately distinguish between contracts that clearly contain significant risk from those that 

don' t .  That "10-10" fails to identif  3, both  catastrophe reinsurance treaties and contracts with 

the characteristics o f  equit T investments  as risky tells us that it is a poor  test. "10-10" also 

implies very restrictive caps on reinsurance pricing that can never have been intended. At  

the same time it has received criticism from the o ther  direction that it does not  do an 

adequate job o f  screening out contracts that meet  its min imum requirements but in such a 

contrived way that the intent o f  FAS 113 is thwarted. For  all o f  these reasons it makes sense 

to identify a better test than "10-10", which we seek to do in the next section. 
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4. TOWARD A BETTER TEST 

There are at least two major shortcomings of  the "10-10" test. First, the focus on the 

present value loss only at the 90th percentile (VaRgo,/o) ignores the information in the 

remainder of  the tail represented by the percentiles beyond the 90th. A better test would 

take account of  the loss potential in the right tail of  the distribution, which sometimes can be 

extreme (as in the case of  catastrophe reinsurance). Second, both the 10% probability and 

10% loss thresholds are arbitrary. The risk transfer test should be generalized to allow for 

both low frequency-high severity (e.g., 5%-20%) and high frequency-low severity (e.g., 20%- 

50/0) combinations. 

The first shortcoming could be remedied by replacing VaRgo, ~ with the mean severity of  

present value underwriting losses at and beyond the 90th percentile, a measure known as the 

"tail value at risk" or TVaRgoo/, 2,. This measure of  severity incorporates the information 

about the loss potential in the right tail that the "10-10" test misses. Indeed, the 2002 VFIC 

paper suggested replacing VaRgo,/. in the "10-10" test with TVaRgoo/,. However, simply 

replacing VaRgo,/, with TVaRgo,/, is not by itself a full solution to the problems associated 

with "10-10", because it leaves unaddressed that test's second shortcoming that the 10% 

thresholds wrongly screen out low frequency-high severity and high frequency-low severity 

contracts. 

That second shortcoming can be corrected by relaxing the requirement that the 

probability of  loss and the severity of  loss must both exceed 10%. We can do this by making 

use of  the fact that the expected reinsurer defidt (ERD) = is equal to the probability (orfrequen{y) 

of the present value underwriting loss times its average severiO,, where the latter is 

TVaR measured at the economic breakeven point. Since ERD incorporates information 

about both the frequency and severity of  the reinsurer's downside risk into a single measure, 

it makes sense to use that measure to define a threshold for measurement of  significant risk 

transfer rather than to define it in terms of  frequency and severity separately: 

21 Also known as the "tail conditional expectation" or "TCE", TVaR has been praised by VFIC[1], Meyers [4], 
and others as a coherent measure of risk as well as for its incorporation of the information contained in the 
right tail of the distribution. 

22 The ERD is the expected cost of all present value underwriting loss scenarios. It is also the expected value of 
Mango's [5] contingent capital calls. Conceptually, it is related to the EUD defined in Section 2, but the EUD 
is defined in nominal terms and the ERD is defined in present value terms. 
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ERD = Freq x Sev > A (4.1) 

where A represents the threshold above which a contract is considered to have provisionally 

"passed" the "significant" risk transfer test and below which is it is considered to have 

"failed". Freq and Sev refer to the frequency of present value loss and the average severity 

of such loss, respectively. See Appendix A for the mathematical definitions of all the 

dements of formula (4.1). 

This approach, which we will refer to as the "ERD Test", addresses both shortcomings of 

the "10-10" test by (a) reflecting the full right tail risk in the definition of severity and (b) 

replacing separate frequency and severity requirements with a single integrated measure that 

treats low frequency-high severity, high frequency-low severity and moderate frequency- 

moderate severity contracts in the same way. 

We will illustrate the application of the ERD test with a threshold A of 1%, because it has 

the merit of  a certain amount of continuity with the "10-10" test :3. The way to think about 
that is that first we have changed the VaR~/o >_ 10% embodied in the "10-10" test to 

TVaRgoo/. > 10%. Then we have generalized the TVaR standard to allow contracts having a 

wide variety of frequency-severity combinations, including 5%-20%, 10%-10% and 20%-5%, 

to meet the requirement for "significant" risk transfer. ERD _> 1% is effectively a variable 
1% 

TVaR standard that defines "significant" as TVaR I Freq > . One implication of this is 
- Freq 

that any contract that passes "10-10" will also pass a standard of ERD > 1%. 

Chart 6 shows the "significant" risk transfer frontiers for ERD > 1% and three TVaR 

standards ("10-10" as well as "5-20" and "20-5' 3 plotted in terms of frequency and severity. 

Frequency-severity combinations above and to the right of the frontiers represent 

"significant" risk. We see that a fixed TVaR "10-10" standard would exclude contracts with 

loss frequencies less than 10% and severities less than 10% that the ERD standard would 

accept as "significant". As a generalized TVaR standard, a ERD >1% standard would 

accept TVaR95,/, >__ 20% or TVaRgo,/, > 10% or TVaRso,/, > 5%, etc. 

.,3 Whether that is the proper threshold warrants further research. 
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CHART 6 
Risk Transfer Frontier: ERD > 1% vs. Various TVaR 
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To address the issue of  contracts that have been engineered to remove most  or all of  the 

potential for a loss greater than 10% in the right tail, which some criticize as too small, we 

suggest consideration of a supplemental requirement that there be the potential for a 

reinsurer loss of  some minimum threshold, say, 15% or 20% of  premiums. That  would 

eliminate ve~" low loss ratio caps. 

We are not advocating that even, reinsurance contract be tested for significant risk 

transfer. It should be possible to conclude that some contracts have adequate risk transfer 

xvithout formally testing them. In section 6 we will suggest some ways to do that. However, 

we are suggesting that the ERD test (possibly together with the supplemental test) could be 

applied to all contracts that are subject to the "significant" risk transfer requirement with the 

confidence that it would produce consistendy reasonable results. 

We believe the ERD test (with or without the supplemental component),  if adopted, 

should only be applied prospectively and not to contracts already on the books. 

5. ILLUSTRATION OF T H E  ERD TEST 

In this section we apply the proposed test to the contracts used in the examples of  

Section 3 as well as several additional examples. 
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E x a m p l e  5.1: P r o p e r t y  C a t a s t r o p h e  E x c e s s  o f  L o s s  R e i n s u r a n c e  

If  we apply the ERD test to the catastrophe reinsurance contract described in Example 

3.1, that contract now easily passes muster for risk transfer. Again assuming normal 

reinstatement premium provisions, which call for an additional premium equal to the original 

premium times the proportion of  the limit that has been exhausted, Freq=3%, Sev= 

TVaR97./~ =800% and ERD =24%. Because of  the large contribution from Sev to ERD, this 

contract now easily surpasses the standard of  ERD >_ 1%. 

TABLE 7 

ERD / Max Downside 

For Standard Cat XL Contracts 

By Rate on Line 

Reinsurer 
Rate on Poisson Max 

Line 2 ERD * Downside* 
1.0% 0.5% 49.0% 19545% 
2.0% 1.0% 48.0% 9678% 
3.0% 1.5% 47.0% 6364% 
4.0% 2.1% 46.0% 4651% 
5.0% 2.6% 45.1% 3726% 
7.5% 3.9% 42.6% 2373% 

10.0% 5.3% 40.2% 1711% 
12.5% 6.7% 37.9% 1315% 
15.0% 8.1% 35.6% 1051% 
20.0% 11.1% 31.0% 723% 
25.0% 14.2% 26.6% 530% 
30.0% 17.5% 22.3% 402% 
40.0% 24.6% 14.2% 246% 
50.0% 32.4% 6.6% 157% 

* Ratio to expected premium 

Assumotions. 
- One reinstatement of  limit for 100% A.P. 
- Investment income effects ignored 
- Poisson model with parameter 2~ 
- Expected loss ratio 50% 
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In  fact, using conservative assumptions,  contracts having the same structure as the 

standard property catastrophe treaty 24 can be shown to exceed the E R D  _> 1% threshold (as 

well as a supplemental  min imum potential  downside  threshold) i f  the upf ront  rate on  line 

ROL <_ 50%. Table 7 summarizes the ERD and potential  downside  values (ignoring 

inves tment  income) for contracts having rates on  line ranging f rom 1% to 50%, based on  the 

simplifying assumptions that the expected loss ratio is 50%, all claims are total limit losses 

and that  claims are Poisson distributed. O n  the basis that every rate on  line in Table 7 easily 

passes the ERD test even without  the supplemental  downside  requirement,  we suggest that 

any reinsurance contract  having this structure he deemed to meet  the requirements for 

"significant" risk transfer. Clearly, such contracts are subject to the "significant" risk 

transfer requirement,  but  because we have, in effect, pre-qualified them as a class, the 

requirement  to demonstra te  significant risk transfer can be waived. 

Example 5.2: Primary Quota Share Reinsurance 

'We applied the ERD test to the primary quota share contract  described in Example  3.2. 

Again assuming a one-year net  claim payment  lag 2s, a 5% interest  rate and a lognormal  o- o f  

15%, we calculated the frequency and severity, respectively, o f  present  value underwrit ing 

loss to be 21.53% and 6.91%, which corresponds  to an ERD o f  1.49% 26. This E R D  value 

surpasses the ERD > 1% standard. Moreover ,  because there is no  limit on the reinsurer 

downside  potential, it would  meet  the suggested supplemental  requirement.  Therefore ,  this 

contract  meets  the "significant" risk transfer requirement.  

Example 5.3: P r i m a r y  Q u o t a  Share  Reinsurance (Volatility o f  S & P  500) 

In  this example we test the same quota share that was the subject o f  Example  3.3. That  

quota share covered an insurance portfolio with the same loss ratio volatility as an S&P 500 

index investment.  The ceding commiss ion  is 25%. The  frequency, severity and E R D  

24 The standard property catastrophe treat 3, provides two loss limits, the second one paid for with a contingent 
"reinstatement" premium at the same rate on Line as the first one. 

2s Using this simpli~fing assumption, we can focus on the present value of the losses only, measured at the time 
the premium is received, because the present value factor applicable to premiums and losses for the period up 
to the premium receipt date is the same. The ratto of discounted ERD to discounted premium using the full 
claim and premium payment lags is equal to the ratio of discounted ERD, using the net claim lag, to 
undiscounted premium. 

26 If the prospective loss ratio is |ognormaUy distributed, ERD = PV[E(x) .  N ( d l ) -  FV(B). N(d2)],  

where 2X T is the normal cdf, dl = [ln(E(x) / FV(B)) + O. 5 ~ 2 ] / cr and d2 = dl - o' .  
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characteristics of  such a portfolio are summarized in Table 8 for the two volatility scenarios 

modeled in Example 3.3. For volatility of  13.85% the E R D > I %  standard is met. 

However, at the historically low volatility of  9%, a portfolio with S&P 500 volatility 

characteristics has an ERD of  only 0.28% and thus fails the ERD > 1% standard by a wide 

margin. That creates a conundrum - is it ever reasonable to consider the S&P 500 to be 

without risk? If  not, a 1% threshold for ERD is too high. 

TABLE 8 

ERD Risk Transfer Analysis for Quota Share in Example 5.3 

Given Portfolio with Volalility of  S&P 500 

cr Freq Sev ERD 

9.00% 8.8% 3.2% 0.28% 

13.85% 17.9% 6.0% 1.07% 

Next, we will use the ERD test to assess quota share contracts with features such as loss 

ratio caps and corridors that reduce the loss exposure of  the reinsurer. These features 

appear frequently in traditional reinsurance contracts as a means of  making otherwise 

unattractive treaties acceptable to the reinsurance market. 

Example 5.4: Reinsurance  with 25% Ceding  Commiss ion  and 5-Point Loss Ratio 
Corridor 

Table 9 shows the downside risk measures Freq, Sev and ERD for a quota share or 

excess contract that provides a 25% ceding commission and requires the ceding company to 

retain any losses that fall within a five point loss rado corridor from 75% to 80%. We 

assume the prospective loss ratio is lognormally distributed, with a mean of  70% and a range 

of  values for or. Claim payments are assumed to lag premium payments by one year. 

Table 9 shows that for lower volatility business, represented here by lognormal cr values 

of  10% and 15%, a treaty with the 5 point loss ratio corridor removes enough risk from the 

deal that the ERD falls below 1%, indicating that the risk transfer is not significant. For the 

o'values of  25% and higher, the ERD significantly exceeds the 1% threshold. Clearly, the 
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effect of  a loss ratio corridor depends on the characteristics of  the reinsured business, and in 

some circumstances such treaty feature is entirely appropriate. 

TABLE 9 

ERD Risk Transfer Analysis for Contract 

With 25% Ceding Commission and 

Loss Ratio Corridor from 75% to 80% 

o" 

10% 

15% 

20% 

25% 

30% 

40% 

50% 

Freq Sev 

3.1% 3.2% 

9.1% 6.0% 

15.6% 9.2% 

19.7% 12.6% 

22.4% 16.2% 

25.6% 23.9% 

26.9% 32.4% 

ERD 

0.10% 

0.59% 

1.43% 

2.47% 

3.63% 

6.13% 

8.74% 

Example 5.5: Reinsurance with 25% Ceding Commission and 95% Loss Ratio Cap 

We now consider the effect of  an aggregate loss ratio cap of  95% (instead of  a loss ratio 

corridor) on the same subject matter business discussed in Example 5.4. Table 10 shows 

frequency, severity and ERD for o-values ranging from 10% to 50%. Except for the case of  

= 10% (where ERD =0.41%) the aggregate loss ratio cap is at a high enough level that the 

1% threshold is exceeded, and for the higher values of  o" by a wide margin. 

Note that in the case of  o" = 10%, the ERD associated with a contract with no loss ratio 

cap is also 0.41%, indicating that the cap at 95% has no significant effect on the risk 

transferred to the reinsurer. On that basis, the contract with a 95% cap transfers 
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"substantially all" the risk in the underlying portfolio, and even though it does not transfer 

"significant" risk, it meets the risk transfer requirements of FAS 113. 

TABLE 10 

ERD Risk Transfer Analysis for Contract 

With 25% Ceding Commission and 

Loss Ratio Cap of 95% 

cr Freq 

10% 11.0% 

15% 19.5% 

20% 24.5% 

25% 27.6% 

30% 29.4% 

40% 31.1% 

50% 31.4% 

Sev ERD 

3.8% 0.41% 

6.5% 1.27% 

8.9% 2.18% 

10.7% 2.94% 

12.0% 3.53% 

13.8% 4.29% 

14.9% 4.69% 

Example 5.6: Excess Swing-Rated Reinsurance 

It is common for "working layer" excess of loss reinsurance to be structured on a "swing- 

rated" basis, which means the premium is based in part on the losses ceded to the treaty. 

Typically, the premium formula calls for ceded claims to be multiplied by a loading factor to 

reflect a margin for the reinsurer, subject to a minimum and maximum. In primary 

insurance this structure is known as a "retrospective experience rating plan". The purpose of 

such plans is to allow the ceding company to fund its own excess claims up to the point 

beyond which it would become too painful and to cede the excess claims beyond that point 

to the reinsurer. To the extent that the excess claims experience is good, the ceding company 

benefits from a lower rate. Reinsurers often like these plans because they provide strong 
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incentives, bo th  positive and negative, to the ceding company  to minimize excess claims. 

Ceding companies  of ten find these plans attractive because they believe their realized rate 

will be significantly less than under  a flat-rated plan. 

While minimizing risk transfer  is no t  usually the driving force behind  the s tructuring o f  a 

swing plan, such a structure t}-pically does t ransfer  less risk than a flat-rated excess o f  loss 

treat}, covering the same business. To  illustrate this, suppose the expected excess losses are 

$4 million. I f  the total p remiums on  the subject  portfol io are $50 million, this can be 

expressed as a loss cost  o f  8%. For  the sake o f  discussion let's assume the excess claim count  

can be mode led  using a negative binomial  dis t r ibut ion with an mean  o f  8 claims 2v and that  

only total limit claims are possible. The  claim distr ibut ion is shown graphically in Char t  7. 

12% 
10% 

,.-, 8% 
o 6% 
o.. 

CHART 7 
Excess Swing Plan Example 

C l a i m  D i s t r i b u t i o n  

4% 
2% 
0% 

Claim Count  

Suppose the swing plan calls for an excess reinsurance p remium equal to excess claims 

times 100/80,  subject to a m i n i m u m  of  4% of  subject  p remiums and a m a x i m u m  of  16%. 

That  results in the excess rate dis tr ibut ion shown  in Chart  8. The  expected value o f  the 

p remium rate under  this plan is 9.71%. The  alternative is a contract  with  a flat rate o f  

11.43%. 

2v Specifically using the Microsoft Excel function for the negative binomial probability, Prob(COUNT)= 
NEGBINOMDIST(COUNT, 8, 0.5) 
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CHART 8 
Excess Swing Plan Example 

Premium Rate by Claim Count 
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Table 11 summarizes the ERD analysis for both the flat-rated and swing-rated plans, 

assuming that there is a negligible claim payment lag. It shows that the swing plan has an 

ERD of 0.97%, just under the 1% threshold for significant risk. With some minor 

restructuring this contract would be able to pass the ERD test. In contrast, the flat-rated 

plan has an ERD of 4.70%, which is well above the threshold. Note that the mean severity 

of  loss faced by the reinsurer is greater in the case of the swing plan than in the flat-rated 

plan, but because the probability of  loss is much lower, the swing plan ERD falls below the 

threshold for "significant" risk. This is a good illustration of why severity (TVaR) by itself is 

an unreliable indicator of  risk. 

TABLE 11 

ERD Risk Transfer Analysis 

Swing-Rated vs. Flat-Rated Excess 

Plan Rate Freq Sev ERD 

Swing 9.71% 3.2% 30.4% 0.97% 

Flat 11.43% 18.0% 26.2% 4.70% 
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Example 5.7: Individual Risks 

One of  the well known drawbacks of  the "10-10" test is that if  it were applied to 

individual insurance contracts or facultative reinsurance contracts, it would in almost all 

cases indicate that they do not  contain "significant" risk, which strikes virtually everyone as 

unreasonable. In this example, using simplifying but not unreasonable assumptions we will 

show that the ERD test correctly identifies individual risk contracts as containing significant 

risk. 

We assume that a portion of  the premium for every individual risk contract is attributable 

to the potential for a limit loss. Since it is very large losses rather than partial losses that are 

most  likely to put the insurer or reinsurer into deficit, we will ignore the potential for small 

losses and focus on limit losses. Let's assume that the pure premium for total limit losses is 

10% of  the total premium. Since a limit loss can occur only once in a policy period, let's 

assume the probability of  such a loss is Bernoulli distributed with a probability equal to this 

10% times the total premium rate on line (i.e., the total premium divided by the limit). From 

that we can calculate the ERD and the maximum downside potential. 

The results are shown in Table 12 for rates on line ranging from 0.5% up to 83.33%. We 

see that any individual risk paying a rate on line of  less than 83.33% would exceed a 

ERD _> 1% standard for "significant" risk. We display such a wide range of  rates on line, 

because we want to show that virtually all individual risks, ranging from personal lines 

policies to large commercial policies with a high level of  premium funding, can be shown to 

meet the "significant" risk requirement using the ERD test. 

Above a rate on line of  83.33%, the maximum downside falls below 20% of  premium, 

which is a potential threshold for our proposed minimum downside requirement. Thus, 

individual risks with rates on line above 83.33% would fail to show "significant" risk. While 

this is a highly idealized example and further research would be appropriate to refine the 

methodology, we believe it is sufficiently realistic to "pre-qualify" virtually all individual risk 

contracts as containing significant risk and thus make it unnecessary to test them 

individually. 
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TABLE 12 

ERD / Max Downside 
For Individual Risk Contracts 

By Rate on Line 

Limit Reinsurer 
Rate on Loss Max 

Line Prob ERD Downside 
0.5% 0.05% 9.95% 19900% 
1.0% 0.10% 9.90% 9900% 
2.5% 0.25% 9.75% 3900% 
5.0% 0.50% 9.50% 1900% 

10.0% 1.00% 9.00% 900% 
25.0% 2.50% 7.50% 300% 
50.0% 5.00% 5.00% 100% 
75.0% 7.50% 2.50% 33% 
83.3% 8.33% 1.67% 20% 

Assumptions. 
- Investment income effects ignored 
- Bernoulli probability of  limit loss 
- Total limit loss ratio 10% 

5.1 Section Summary 

In this section we have shown that the ERD test produces mostly reasonable results when 

applied to a variety of  reinsurance structures covering insurance portfolios having a wide 

range of risk characteristics. Using the ERD > 1% standard together with reasonable 

contract assumptions we have demonstrated that catastrophe excess of  loss reinsurance and 

individual risk contracts generally contain significant risk, which is a common sense result 

that eludes the "10-10" test. We also showed that loss ratio corridors and loss ratio caps are 

acceptable under some circumstances but not under others, and similarly that swing-rated 

excess reinsurance must be structured with care to ensure that it transfers significant risk 

while still meeting the reinsurer's and ceding company's other goals. The only unreasonable 

result we produced was that a quota share contract with a ceding commission of  25% and 

the prospective volatility characteristics of  the S&P 500 (as measured by VIX) does not 

always meet the "significant" risk requirement. VIX has ranged as low as 9% in the period 
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since 1990. Volatility parameters below about 13% produce ERD results (in the quota share 

we tested) that suggest insignificant levels of risk. This is an anomalous result because it 

suggests that under some circumstances an investment related to the S&P 500 index should 

not be considered risky, a conclusion that does not seem reasonable. 

In summary, given these results and the findings in Section 4, we conclude that: 

1. The ERD methodology described here, with a 1% threshold for significant risk transfer, is 

numerically comparable to the "10-10" benchmark; 

2. The ERD methodology is qualitatively superior to that benchmark; and 

3. If the 1% ERD method were adopted as a de facto standard replacing the "10-10", we 

would consider that a significant improvement. 

6. I D E N T I F I C A T I O N  O F  C O N T R A C T S  S U B J E C T  T O  
" S I G N I F I C A N T "  R I S K  R E Q U I R E M E N T  T H A T  D O  N O T  

R E Q U I R E  I N D I V I D U A L  T E S T I N G  

Apart from those contracts for which it can be demonstrated that they transfer 

"substantially all" the risk inherent in the underlying insurance policies, all purported 

reinsurance contracts are subject to the requirement that they transfer "significant" risk. 

Unless a contract is tested, it is impossible to know whether or not it meets the requirement. 

However, the implication that it is necessary to test every single reinsurance contract is 

daunting. For many ceding companies buying excess of loss reinsurance, it might even be 

impossible. Ceding companies often buy excess coverage not only to transfer risk but also 

to obtain pricing for excess exposure they themseh,es do not fully understand, which they 

can factor into their own insurance rates. Under such circumstances, to ask ceding 

companies to model such exposure to demonstrate compliance with FAS 113 seems 

unreasonable. 

Ideally, we would like to find a way to partition the set of all reinsurance contracts subject 

to the "significant" risk requirement into the subset containing those that we can reasonably 

expect will pass if they were tested and the subset comprising all other contracts. The 

former subset would be exempt from individual testing, while the latter subset would have to 

be tested individually. The purpose of this section is to begin to identify elements of the first 

subset of contracts that do not require inclividual testing. 
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Example  6.1: Individual  Risk and Catastrophe Excess  of  Loss Contracts 

In Section 5 we showed that 1) standard catastrophe excess of  loss contracts and 2) 

individual risk contracts, generally possess ERD characteristics that indicate these two classes 

of  contracts meet the "significant" risk requirement, and that it is therefore unnecessary to 

test contracts within those classes individually. 

Example  6.2: Other  Excess  of  Loss Contracts 

By virtue of  analysis similar to that for individual risk and catastrophe excess of  loss 

contracts, it is possible to add a further large subset of  excess of  loss contracts (treaty and 

facultative) to the category of  contracts that do not require individual testing. Table 13 

summarizes the ERD analysis for excess of  loss contracts with no ceding commission and 

rates on line ranging from 1% to 500% and aggregate Limits no less than one full limit or 

200% of  premiums, whichever is greater. The term "rate on line" is most frequently used in 

connection with catastrophe excess of  loss treaties and other excess contracts where the 

rado of  premium to limit 2s is far less than 100%, so a rate on line of  500% might be 

surprising. However, it is common for "working layer" excess of  loss contracts to be priced 

with the expectation that there ~ be between several and many claims during the coverage 

period. Under typical pricing assumptions, a 500% rate on line implies the expectation that 

excess claims will be equivalent to about three total limits losses. 

Our analysis assumes a Poisson distribution for daim frequency and that all claims are 

Limit losses. Theoretically, we should use a negative binomial, but because that makes the tail 

fatter and thus easier to pass the ERD test, the Poisson assumption is conservative. We 

assume an expected loss ratio of  70%, another conservative assumption. In a competitive 

market the expected loss ratio can be expected to be higher, especiaUy for the higher rate on 

line business. We assume an interest rate of  5% and a 5-year claim payment lag (which 

makes this analysis suitable for reasonably 10ng tail as well as short tail business). 

On the basis that every rate on line in Table 13 from 1% to 500% passes the ERD test 

even without the supplemental downside requirement coming into play, we suggest that any 

excess of  loss contract having this structure (and no loss sensitive or other features that 

might call the contract's status into question) be deemed to meet the requirements for 

2s Note that the limit used in the denominator is the risk or occurrence limit, depending on the coverage, not 
the aggregate limit except in the case of aggregate excess coverage. 
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TABLE 13 

Expected Reinsurer Deficit / Max Downside 

For Long/Short  Tail XL Contracts with 
Aggregate Limit > One Limit or 200% Loss Ratio 

By Rate on Line 

Expected Reinsurer 
Rate Poisson Reinsurer Max P.V. 

on Line 2 Deficit* Downside* 
1.0% 0.7% 54.0% 7735% 
2.5% 1.8% 52.6% 3034% 
5.0% 3.5% 50.5% 1467% 
10.0% 7.0% 46.2% 6840/0 
15.0% 10.5% 42.1% 422% 
25.0% 17.5% 34.3% 213% 
50.0% 35.0% 16.7% 57% 
75.0% 52.5% 6.9% 57% 
100.0% 70.0% 8.8% 57% 
200.0% 140.0% 5.0% 57% 

'300.0% 210.0% 2.9% 57% 
400.0% 280.0% 1.8% 57% 
500.0% 350.0% 1.3% 57% 

* Ratio to premium 

AssumDdons. 
- Loss cap of  greater of  one limit or 200% L / R  
- No ceding commission 
- Poisson model with parameter 
- Claim payment lag 5 years 

- Interest rate 5% per annum 
- Expected loss ratio 70% 

"significant" risk transfer. Excess of  loss contracts with no aggregate limit dearly fall into 

this category as well. All such contracts are subject to the "significant" risk transfer 

320 Casualty Actuarial Society Forum, Winter 2006 



RWP on Risk Transfer Testing Report 

requirement. However, because we have, in effect, pre-qualified them as a class, the 

requirement to demonstrate significant risk transfer can be waived. 

Example  6.3: Contracts with Expec ted  Loss Ratios Above a M i n i m u m  Permissible 
Loss  Ratio Thresho ld  

There is a further general approach to expanding the set of  contracts subject to 

"significant" risk testing that do not need to be tested individuaUy. In Section 3 we noted 

that one unreasonable implication of  the "10-10" test is a cap on reinsurance pricing at such 

a low level that, if it were enforced, would likely lead to a reduction of  reinsurance capacity. 

The ERD _> 1% standard we have proposed also implies a cap on reinsurer margins. 

Fortunately, the E R D  standard we have illustrated implies a significantly higher maximum 

permissible present value margin for the reinsurer than the "10-10" test does. 

Table 14 shows maximum permissible present value margins and corresponding 

minimum permissible loss ratios implied by ERD > 1% for claim lags of  zero, one year, two 

years and three years with respect to contracts for which the prospective loss ratio can be 

modeled using a lognormal distribution 29. The results are shown for o- values ranging from 

9% to 100%. Note that for each value of  at, the permissible loss ratios increase in nominal 

terms with the claim lag, but the present values are all the same. The allowable margins for 

the o'values at the low end of  the range might make reinsurance of  such low risk portfolios 

impossible unless the reinsurance is structured to meet the "substantially all" risk transfer 

test. For example, the maximum permissible present value margin for cr = 9% of only 

7.1%, while much higher than the 1.6% permitted under . . . .  10-10 3,, does not allow a 

reinsurer much, if  any, upside potential, after deducting brokerage and internal expenses. 

That is one reason to consider the possibility that an E R D  threshold of  1% might be too 

high. On the other hand, in light of  our discussion in Section 3 about parameter uncertainty, 

it might turn out to be the case that realistic prospective estimates of  o" will, in practice, 

generally exceed the low end of  the range, making this concern irrelevant. 

29 Where the lognormal assumption is not appropriate, similar tables could be constructed for other loss ratio 
models. 

30 See Table 6. It is worth noting that the ERD >3% mentioned in the 2002 VFIC paper as a possible 
threshold would result in an even lower maximum permissible present value margan of 1.2%! A threshold of 
3% is clearly too high. 
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TABLE 14 

Maximum Margins / Minimum Permissible Loss Ratios 
Implied by ERD > 1% 

Contracts with No Ceding Commission 
Interest at 5% per annum 

Tabulated by cr and Claim Lag 

Max Minimum Permissible Loss Ratio 
P.V. Lag 0 Lag I Lag 2 Lag 3 

o" Marmn Yrs Yr Yr~ Yrs 
v 

9.0% 7.1% 92.9% 97.5% 102.4% 107.5% 
10.0% 8.4% 91.6% 96.2% 101.0% 106.0% 
11.0% 9.7% 90.3% 94.8% 99.6% 104.6% 
12.0% 11.0% 89.0% 93.5% 98.2% 103.1% 
13.0% 12.3% 87.7% 92.1% 96.7% 101.6% 
14.0% 13.6% 86.4% 90.8% 95.3% 100.1% 
15.0% 14.9% 85.1% 89.4% 93.9% 98.6% 
20.0% 21.3% 78.7% 82.7% 86.8% 91.1% 
25.0% 27.4% 72.6% 76.2% 80.0% 84.0% 
30.0% 33.2% 66.8% 70.1% 73.6% 77.3% 
40.0% 43.7% 56.3% 59.1% 62.1% 65.2% 
50.0% 52.6% 47.4% 49.8% 52.2% 54.9% 
60.0% 60.1% 39.9% 41.9% 44.0% 46.2% 
75.0% 69.1% 30.9% 32.5% 34.1% 35.8% 

100.0% 79.5% 20.5% 21.6% 22.6% 23.8% 

The maximum margins implied by ERD > 1% for larger values of  cr seem more 

reasonable. For example, for cr = 30%,  the allowable present value margin is 33.2%, which 

is a more reasonable ceiling 31. 

The implication of  this for our present discussion is that if a contract with no ceding 

commission is priced to an expected loss ratio that is greater than the minimum permissible 

loss ratio shown for the relevant o" and claim lag (and the other assumptions are 

reasonable), then the contract will meet the ERD > 1% standard that indicates significant 

risk transfer. We present this as an illustration of  how the subset of  contracts that do not  

sl In contrast, a threshold of ERD >3% implies a maximum permissible present value margin of 22.0%, which 
is about the same as that implied by "10-10". 
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require detailed testing for significant risk transfer could be expanded beyond the 

catastrophe excess of  loss, individual risk and other excess of loss contracts we identified 

earlier. Any contract that is priced to an expected loss ratio that exceeds the mimmum 

permissible loss ratio would be exempt from individual testing. Additional research is 

necessary to fully realize this approach. 

Chart 9 shows the minimum permissible loss ratios in Table 14 graphically. 

C H A R T  9 
M i n i m u m  Permiss ib le  Loss Ratios 

Impl ied by E R D > 1 %  Rule  
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~"~  - -  Lag3 Yrs 

Lognormal sigma 

Example  6.4: Contracts with Immateria l  P r e m i u m s  

Contracts or programs that invoh-e the cession of small amounts of  premium should be 

exempt from individual testing, unless there is reason to suspect that they might materially 

distort either the ceding company's or reinsurer's financial statements. A reasonable 

definition of  small might be the smaller of  $1 million and 1% of total gross premiums. The 

rationale for this exception is that small premium cessions by definition have a very, limited 

impact on either party's financial statements. Any distortion resulting from minimal risk 

transfer below the significance threshold would be immaterial. 

Casualty Actuarial Society Forum, Winter 2006 323 



R W P  on Risk  Transfer Testing Report 

7. POSSIBLE EVOLUTION OF RISK TRANSFER MEASUREMENT 

The context of the paper is risk transfer testing. However, the notion of risk transfer is 

also integral to the pricing of insurance and reinsurance products. Risk transfer is what gives 

rise to risk premiums and the potential for profit. Many methods already exist for explicitly 

or implicitly adding a profit load to a reinsurance contract. It seems reasonable that a risk 

loading method used to determine needed profits could be turned into a risk transfer test as 

well. Although this paper does not address the issue directly, the ERD risk transfer test 

described in earlier sections of this paper measures tail value at risk (TVaR), which is a valid 

method for producing risk and profit loads. In fact, given the coherent nature of TVaR, it is 

considered a superior method for risk loading by many practitioners. 

At least one major insurance company has used the ERD framework in pricing and 

enterprise risk management for several years, in the form of the risk coverage ratio (RCR) 

described by Ruhm [6]. In practice, that risk measure has produced results for the company 

that are reasonable and consistent across a broad variety of actual risks, due in large part to 

its good technical properties and its relative transparency. 

As noted before, this working party is not endorsing any single specific method for risk 

transfer testing. "Thus, rather than doing more work on our ERD example to show its full 

implications for risk loading, we will show another (much briefer) example here where risk 

loading and risk transfer testing are tightly linked. 

The approach we examine here is based on the right tail deviation (RTD), a framework 

proposed by Wang and developed from concepts he has written about extensively [7] [8]. 

For a given aggregate distribution function F(x) (derived from some convolution of 

frequency and severity distributions), we transform the distribution using the following 

formula: 

F" (x) = 1 - 1~- F(x) (7.1) 

Because 0 < F(x) < 1 for all x, it is fairly easy to see that F*(x) < F(x) for all x, which 

implies the following expected value relationship: 
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E* (x)  >_ E(x)  (7.2) 

The interpretation is that the transform has "loaded" the original distribution for risk. 

The difference between E* and E is the risk load, for any layer of the distribution. Thus, we 

can use E* instead of E to represent a fully risk loaded pure premium. The reason this 

approach is appealing is that the transformed distribution is itself another loss distribution, 

meaning that all the ordinary mathematics of loss distributions carry over. Relating this to 

financial mathematics, it is generally assumed that assets like equities are themselves 

transformed distributions, although this is not usually explicitly stated. The transform in the 

financial economic model is the so-caUed state price, which enforces no-arbitrage pridng [9]. 

If  one wants to think about the risk load independently, it is easily captured as: 

R T D ( x ) = E ' ( x ) - E ( x )  (7,3) 

Under this approach, the risk load RTD might be adjusted (i.e. multiplied) by some 

constant factor a to produce the final profit load. Note that Wang has generalized this 

model to consider other exponents of transformation (i.e. instead of just the power of 0.5, 

any power between 0 and 1 exclusive). 

There are a couple of ways in which the RTD could be used to devise a risk transfer test. 

One way would be to treat a.RTD as the maximum permissible reinsurer's margin consistent 

with "significant" risk transfer. That is essentially the same approach that was described in 

Example 6.3. The difference is that in that example, we derived the risk load consistent with 

a "significant" risk transfer threshold of ERD > 1%, whereas here we would determine the 

risk load component otRTD first and then effectively determine the risk transfer threshold 

that is consistent with it. 

A second way would be to devise a risk transfer test that compares the full premium (not 

just the margin) with a multiple of ctRTD using the following procedure, which is similar to 

one oudined by Wang: 

1. Compute expected loss of the contract under the untransformed distribution F(x); 

2. Note the premium for the deal (however computed--allows for market pricing); 

3. Compute RTD for the deal using the transformed distribution and formula (7.3); 
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4. Def ine  the ma.x:imum qualified premium as some mult iple of RTD (Wang suggests 3- 

5x3~); 

5. T h e  "signif icant"  risk transfer  threshold is def ined as "maximum qualifiedpremium >_ 
premiutrP 33. 

We will look at two examples o f  this approach.  The  first is the catas t rophe excess o f  loss 

contract  descr ibed in Examples  3.1 and 5.1. The  second example addresses a quest ionable  

scheme for creating a reinsurance structure that  apparently meets  the "s ignif icant"  risk 

t ransfer  requ i rement  by combin ing  two unrelated coverages to produce  just enough  risk 

t ransfer  to  pass. This  is an impor tan t  example,  because this m e t h o d  separates the 

re insurance p remium into higher  risk and lower risk c o m p o n e n t s  and thus has potent ia l  to 

identify highly s t ructured reinsurance contracts that  satisfy o ther  quanti tat ive tests bu t  do no t  

meet  the spirit o f  FAS 113 34. 

Example 7.1: Property Catastrophe Excess of Loss Reinsurance 

I f  we apply the RTD qualified p remium approach  to the  proper ty  catast rophe excess o f  loss 

example discussed in Examples  3.1 and 5.1, we see that  the  contract  easily meets  this RTD- 

based risk t ransfer  requirement .  Table 15 shows the catas t rophe loss dis tr ibut ion originally 

shown  in Table  3 wi th  an additional co lumn for the " t r ans fo rmed"  probabil i ty based on  the 

F*(x) determined  f rom formula 7.1. E*(x), expressed b o t h  in terms o f  p remiums and  limit, is 

shown  at the  b o t t o m  of  the table as 203% and 20%, respectively. 

32 The issue of the appropriate multiplier of RTD warrants fiarther research. A multiple of 4 appears to imply 
that traditional quota shares like those discussed in Examples 3.2 and 3.3 do not contain significant risk 
transfer, which suggests the effective threshold may be set too low. 

3s Wang has a suggested giving partial credit in cases where the maximum qualified premium is less than the 
actual reinsurance premium. However, we prefer to focus on the risk characteristics of the contract as a 
whole. 

34 This comes at the cost of some complexit3". The subdivision i n to  task" 3' and less risky components depends 
on the values chosen for at, the multiplier for ctRTD, and the exponent in formula (7.1), choices that are 
made more difficult by the fact that it is difficult to ascribe an intuitive meaning to these parameters. 
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LOSS as 

% of Limit 

0% 

TABLE 15 

Catastrophe Loss Distribution 

Example 7.1 

Actual 

Loss as Probability 

% of Premiums of Given Loss 

0% 67% 

Transformed 

Probability* 

of Given Loss 

43% 

5% 

10% 

100% 

5% 

20%* 

50% 

100% 

1000% 

20% 

10% 

3 % 

50% 

203%* 

100% 

21% 

19% 

17% 

100% 

In terms of premium, RTD=203%-50%=153%. Using a multiplier of 4x, the "qualified" 

premium proportion is 612%, which is well in excess of the threshold of 100% required for 

significant risk transfer. 

Example 7.2: "Highly Structured" Mix of Low Risk and High Risk Portfofios 

We now move on to the example of potential manipulation. In this case, the deal 

structure consists of a base portfolio with very little risk mixed with a highly risky 

catastrophe layer. The overall structure is designed to barely pass risk transfer using the "10- 

10" criterion. 

The low risk portfolio has expected losses of $8 n~llion with lognormal cr value of only 

1%. To maximize the low risk nature of this portfolio, its premium is $8 mill ion--no load 

for expense or profit at all. 

The catastrophic portfolio we add to this deal is a $1.6 million layer with a 12.5% chance 

of loss. For simplicity, if a loss occurs, it is a total loss. Thus, the expected loss for this 

piece is $200,000. Let's assume the premium is $500,000, for a 40% expected loss ratio. 
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First, let us consider the two pieces separately. The low risk portfolio has an 

untransformed expected loss of $8 million and a transformed expected loss of $8.1 million. 

The maximum qualified premium is only $0.4 million, leaving $7.6 million unqualified. This 

piece falls far short of the "significant" risk standard. 

The catastrophic portfolio has an untransformed expected loss of $200,000 and a 

transformed expected loss of $666,000. The maximum qualified premium is well in excess 

of the actual premium of $500,000, thus easily meeting the RTD-based "significant" risk 

standard. 

Now consider the combined distribution. The combined contract has a premium of $8.5 

million. A 10% loss over this would be an attachment of $9.35 million, and the probability 

of this occurring is 12.5% (very close to the cat loss alone, of course). Thus, this contract 

passes the "10-10" test. But Wang's method gets closer to the truth. The transformed 

expected losses are only $8.65 million vs. $8.2 million untransformed, producing maximum 

qualified premiums of only $1.8 million, leaving $6.7 million unqualified, well short of the 

100% required for "significant" risk transfer. 

Note that this method penalizes the combination even more than the sum of the 

components (the RTD of the combined deal is $450,000, whereas the sum of the RTDs of 

the two deals is about $570,000) 3s. It is not clear whether this phenomenon, i.e., the RTD- 

based approach of the highly contrived structure being less than sum of the RTD of the 

separate components, represents the general case. However, it does suggest the intriguing 

possibility that this approach could perhaps be developed into a quantitative test to detect 

reinsurance structures that appear to pass certain quantitative threshold, but which do not 

meet the spirit of FAS 113. 

This is as far as we will pursue the RTD ideas here. The RTD approaches have some 

appeal and added properties that the ERD method does not, at the cost of  increased 

complexity. As noted previously, the working party is not specifically advocating any 

particular method. This example shows that other methods could be used instead of the 

ERD example that we have examined in some detail. Ultimately, a combination of market 

and regulatory factors will determine what methods are actually deployed. 

3s This is due to the diversification of the combined deal, which is of course the correct treatment. 
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8. SUMMARY 

The purpose of  this paper has been to contribute constructively to the thin-king about 

what should be understood by the term "risk transfer" in the context of  FAS 113 by framing 

a comprehensive response to the four questions posed by COPLFR. 

In particular, we have responded to the ftrst two questions by describing two approaches 

for assessing the significance of  risk transfer that are superior to the "10-10" test that is in 

common use. The first approach, which we have described and illustrated in detail, is based 

on the expected reinsurer deficit (ERD). The second approach, which we outline more 

briefly, is based on the concept of  right tail deviation (RTD). We have responded to the 

third "safe harbor" question in two parts. First, we have described a framework for 

determining whether a purported reinsurance contract meets the FAS 113 risk transfer 

requirement by virtue of  the cession of  "substantially all" of  the underlying insurance risk to 

the reinsurer. Second, we have begun to identify groups of  contracts that are subject to the 

"significant" risk requirement of  FAS 113, but which can be exempted from detailed 

individual testing, because we have established that contracts failing within the group can 

reasonably be expected to pass the "significance" test, if  they were actually tested. 

In particular, the following classes of  contracts fall into the category of  transferring 

"substantially all" of the original insurance risk, unless they include features that reduce the 

reinsurer's expected underao4ting deficit (EUD) b r o w  that which the cedent would face on its 

unreinsured portfolio: 

• Proportional facultative reinsurance with effective ceding commissions no less than 

cedent expenses; 

• Proportional treaties with effective minimum ceding commissions no less than 

cedent expenses; 

• Proportional facultative or treaty reinsurance for which it can be shown that the 

reinsurer's EUD is essentially the same as the cedent's EUD on the unreinsured 

subject portfolio, irrespective of  whether the contract includes a loss ratio corridor, 

loss ratio cap or other risk mitigating feature; 

• Excess of  loss facultative or treaty reinsurance for which it can be shown that the 

reinsurer's EUD is essentially the same as the cedent's EUD on the portion of  the 
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original subject portfolio that is exposed to the same risks as the excess of  loss 

contract; 

• Whole account quota share contracts with loss ratio caps no lower than the point at 

which the ceding company would exhaust its surplus. 

To address the question of  how to measure "significant" risk transfer, we have proposed 

an ERD test as an improvement over the "10-10" test, which arose in the 1990s as a way to 

test "finite risk" reinsurance contracts for compliance with FAS 113. The "10-10" test was 

not originally intended to be applied to traditional reinsurance contracts, and usually it was 

not. In the wake of  recent real and alleged reinsurance accounting abuses, there is an 

increasing sentiment that a wider class of  reinsurance contracts beyond those classified as 

"finite" need to be tested for significant risk transfer. Because it has come into widespread 

use, the "10-10" test has become the de facto standard for reinsurance risk transfer testing, 

despite the fact that it has never been endorsed by any professional body nor subjected to 

serious critical scrutiny. 

We have also addressed COPLFR's fourth question. Throughout the paper we have 

discussed the advantages of  our described approaches over the "10-10" test that is 

commonly used today. We have demonstrated that "10-10" is inadequate for use as a 

universal risk transfer test, because it cannot correctly identify contracts that are clearly risky. 

We have proposed an improved alternative test based on the concept of  the expected reinsurer 

defidt, or ERD, which incorporates both frequency and severity of  underwriting loss into a 

single measure. The embedded severity measure is the TVaR at the economic breakeven 

point. TVaR has the advantages over VaR of reflecting all the information in the right tail of  

the underwriting result distribution as well as being a coherent measure of  risk. 

We have shown that the proposed ERD >_ 1% threshold correctly classifies as "risky 36 a 

quota share treaty that has the loss ratio volatility characteristics of  the S&P 500 stock index. 

This is important because the standard for assessing reinsurance risk should be consistent 

with those in other financial markets. 

We have also shown that low frequency-high severity reinsurance contracts (such as 

catastrophe excess of  loss treaties) and high frequency-low severity contracts (such as 

traditional primary quota share treaties) pass the ERD test, provided loss mitigating features 

36 Provided the risk characteristics of the treat), axe not too distorted by a large ceding comrmssion. 
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such as loss ratio caps and/or  corridors do not remove too much risk from the contracts (in 

which case a "failure" is entirely appropriate). 

In summary, while we are not explicitly endorsing any single model or framework, 

because the ERD methodology described here (with a 1% risk transfer threshold) is 

numerically comparable to the current "10-10" benchmark and is superior in almost every 

way to that benchmark, if  the 1% ERD method were adopted as a de facto standard 

replacing the "10-10", we would consider that a good outcome. 

To address the concern in some quarters that the ERD test is not always stringent enough 

with respect to the potential for a large loss by the reinsurer, we have suggested 

consideration of  a supplemental requirement that the reinsurer face a minimum downside 

potential of  15% or 20% of  premiums. 

Among contracts that are subject to the "significant" risk transfer requirement, under the 

"significance" standard embodied in ERD > 1% the classes of  contracts listed below would 

not be subject to individual testing, because they have already been found to meet the 

requirement under very general conditions. It is therefore possible to say about contracts 

falling into the categories on the list below that the significance of  their risk transfer is 

"reasonably self-evident". This is a preliminary list. We believe it may be possible to expand 

it considerably. 

• Individual risk contracts; 

• Short tail excess of  loss treaties in the standard catastrophe excess structure, i.e., one 

reinstatement of  the limit for 100% additional premium, with rates on line of  up to 

50°/< 

• Other excess of  loss contracts with aggregate limits of  no less than the greater of  one 

occurrence (or risk) limit and 200% of  premiums, no ceding commissions, and rates 

on line of  up to 500%; 

• Proportional and excess contracts having an expected loss ratio above the minimum 

permissible loss ratio implied by the ERD > 1% standard (or other standard as may 

be agreed); 

• Contracts invoMng immaterial premiums. 
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Other contracts should be considered for significance testing, even if they appear to fall 

into one of the safe harbor categories, for the simple reason that they have greater potential 

to attract attention, and it is better to be prepared. This group includes, for example, 1) 

contracts involving large premium cessions, 2) those which, when accounted for as 

reinsurance, would substantially alter surplus or the ratio of premiums to surplus, and 3) 

contracts involving unusual structures, especially those that look contrived (e.g., a primary 

quota share combined with catastrophe protection on a different portfolio). Contracts in 

category 3 may be structured to narrowly meet the quantitative requirements for 

"significant" risk transfer, but they might still reasonably be disqualified on other grounds. 

Thus, a quantitative risk transfer test such as the ERD will not be adequate in all cases. 

However, we believe the ERD would do a good job of discriminating between contracts 

with significant risk and those without significant risk in all but cases involxdng contrived 

structures. 

We have also pointed out that other risk transfer tests besides ERD can and should be 

considered, particularly in the context of reconciling risk transfer testing to the process of 

determining risk and profit loads. One such example, based on the dght tail deviation, has 

certain desirable properties but comes at the cost of greater complexity. Other approaches 

could surely be used and should be the subject of future research. 

It is important to remember that any risk transfer test requires a model of the prospective 

underwriting results and the related cash flows. In cases where there is relevant and credible 

loss experience, identifying a model is often straightforward, though it is always important to 

appropriately adjust the historical loss experience to prospective levels and to be conscious 

of the uncertainty in the model parameters. \X~ere there is litde or no relevant historical 

experience, the model must be chosen on the basis of the similarity of the subject portfolio 

to other ones with the same general characteristics. In such cases there will be greater 

uncertainty about the parameters, which should be reflected in the structure of the model. 

9. SUGGESTED PRIORITIES FOR F U R T H E R  RESEARCH 

The ERD test proposed in this paper should be seen as an example of a reasonable 

framework for assessing the significance of risk transfer in reinsurance contracts. We have 

demonstrated that it is a clear improvement over "10-10", but we do not claim that it is the 

only reasonable approach. Indeed, we briefly described another promising, albeit more 
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complicated, method, namely, Wang's RTD framework. There may be others. We urge the 

CAS to encourage further research on this subject, perhaps through a call for papers. 

We recommend the following research priorities in order to quickly arrive at a more 

effective assessment of  risk transfer according to FAS 113 as well as to provide for 

continuing research in relation to future improvements. 

9.1 I m m e d i a t e  "Level  1" Research  - C o n s e n s u s  on Thresho lds  

1. Determination of an appr(:priate pass threshold for the comparison methodologies 

presented in Section 2 to determine whether or not "substantially all" of  the insurance 

risk has been transferred. This may include determining a single applicable testing 

methodology (i.e., limiting the test to just one of  the two methods presented); 

2. Determination of  an appropriate "pass" threshold framework for the ERD test presented 

in Section 4. In particular, is the 1% threshold illustrated in this paper appropriate, or 

would some other threshold be more appropriate? In addition, should there be a 

supplemental requirement that the reinsurer's potential loss be greater than or equal to 

some minimum amount? (We considered a minimum underwriting loss of  20% in some 

of our examples.); 

3. Determination of  the contract categories and financial characteristics of  contracts that 

will not be required to be individually tested for "significant" risk transfer (because they 

have previously been analyzed and found generally to pass the significance test). This 

depends on item 2. Given a standard of  ERD _> 1%, we demonstrated that individual 

risks, short tail excess of  loss contracts in the standard catastrophe excess of  loss 

structure within a certain rate on line range, other excess treaties within a certain rate on 

line range that have aggregate limits that are not too large, and other contracts with 

expected loss ratios above a minimum permissible loss ratio threshold, should not be 

required to be individually tested because we have determined they will pass if they were 

tested. It may be possible to expand that set of  contracts "pre-quaiified" for "significant" 

risk in that same way. If  an ERD threshold different from 1% is adopted, the set of  

contracts that can be pre-qualified for "significant" risk may change. 

9.2 O n - G o i n g  "Level  2" Research  - Other M e t h o d s  

1. Continued research on methodologies and thresholds for determining whether or not 

"substantially all" of  the insurance risk has been transferred; 
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2. Continued research for methodologies that assess risk transfer within the "reasonably 

possible" chance of a "significant" loss. As stated earlier, the Wang transformation could 

be one example of such a method; 

3. Continued research into appropriate methods for incorporation of parameter uncertainty 

into models used for risk transfer testing. 

A p p e n d i x  A 

D e f i n i t i o n  o f  D o w n s i d e  R i s k  M e a s u r e s  

Suppose B represents the amount of (present value) claims corresponding to the 

reinsurer's economic "breakeven" point, before taking into account brokerage and internal 

expenses (the FAS 113 definition): 

B = P - C (A.1) 

where P represents the ceded premiums and C represents the ceding commissions payable 

on ceded premiums, if any. If C = 0, then the breakeven loss amount is equal to the 

premiums. 

Let x denote the random variable for the prospective losses. (It may be more 

convenient in practice to work with loss ratios, but here we are using loss dollars.) Then the 

expected cost of  FAS-ll3-defined present value loss scenarios PV(Loss > 0) (which ignore 

all reinsurer expenses other than ceding commissions), also known as the present value 

expected reinsurer deficit or ERD, expressed as a dollar amount, is: 

ERD = E [ ( P V ( L o s s )  > 0)]  = P V  I2~,cB)(x - F V ( B ) ) .  j r  ( x ) d x  (A.2) 

As the pure premium cost of underwriting loss scenarios, ERD is a measure of the 

reinsurer's underwriting downside risk 37. 

37 Note that the ERD is the expected present value of the contingent capital calls described by Mango [5]. 
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The probability or frequency of the insurer incurring a present value loss PV(Loss) > O) 

is: 

Freq = Prob[PV(Loss) > O] = f v  f~(x)dx 
(B) 

(A.3) 

The expected severity of underwriting loss, given PV(Loss)  > 0 ) ,  is 

Sev = E[(PV(Loss) I PV(Loss > 0)] 

~,:B)( x - FV(B ) ) f~ ( x )dx  

ERD 

Prob[PV(Loss > 0)] 
(A.4) 

Note that Sev is the Tail Value at Risk (for present value underwriting loss) described by 

Meyers [4] as a coherent measure of  risk and by the CAS Valuation, Finance, and 

Investments Committee [1] for potential use in risk transfer testing of finite reinsurance 

contracts. Meyers (p. 239) gives the following formula for TVaR~ : 

EPD(VaR~ ) 
TVaR~ = VaR~ + (A.5) 

1 - a  

Casualty Actuarial Society Forum, Winter 2006 335 



RWP on Risk Transfer Testing Report 

At the present value breakeven loss point B, a = Fx(B ) = [FV(B)f: (x)dx a0 x . The present 

value loss at the breakeven loss is zero, implying VaR= = 0. That  leaves only the second 

term. Because EPD(VaRF, r B) ) = ERD and 1 - a = 1 - F~ (B) = Pr ob[P V(loss > 0)] ,  when 

the variable of  interest is present value underwriting loss, (A.5) equates to formula (A.4). 

For a quota share with no loss ratio caps or corridors, the reinsurer's loss ratio is identical 

to the ceding company's loss ratio on the subject portfolio and their distributions are 

idenfical3s: 

f ~ ( x )  = f y ( y )  

I f  there are no loss ratio caps or corridors, it is often still convenient to express the 

random variable x for the reinsurer's loss ratio in terms of  the subject portfolio's loss ratio 

random variable y .  For example, given a 5-point loss ratio corridor between 75% and 80% 

with respect to the subject portfolio, the reinsurer's loss ratio x ( y )  is: 

y / f  y < 75% 

x ( y )  = 75% / f  75% < y < 80% 

y - 5 %  i f  y > 8 0 %  

In this case, given B = 75%,  formula (A.2) for ERD would be expressed in terms of  y 

as follows: 

ERD = PV I2;(B,)(y - FV(By) ) .  f y ( y ) d y  

ERD = PV I2;(,os)(y - Fvc80%)).  fyCy)dy 

where By = B + 5%. Similarly, Formulas (A.3) for frequency and (A.4) and severity can be 

expressed in terms o f y .  

38 - Because it is easier to compare the cedent and reinsurer positions if we use loss ratios rather than loss dollars, 
this part of the discussion is in terms ratios to premiums. 
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Appendix B 

Discussion of Analogy to Stock Market Risk 

In this appendix we compare S&P 500 equity risk 3" to the risk in a quota share 

reinsurance treat)-. We begin by discussing the basis of  the lognormal assumption. Then, in 

Example B.1, we show how the cash flows and economics of  the quota share described in 

Example 3.3 can be replicated by an S&P 500 index transaction. That transaction takes the 

form of a short sale. In that scenario, the short seller loses money if the S&P 500 index 

closes higher than its level at the time of  the short sale, just as the reinsurer loses money if 

the actual loss ratio exceeds the breakeven loss ratio. The appendix also includes Table B-l, 

which shows the data underlying Chart 4 and Table B-2, which shows the sensitivity of  "10- 

10" test results for the quota share in Example 3.3 to the expected loss ratio. 

Basis of Lognormal Assumption 

It is possible, perhaps even likely, that stock prices are not lognormally distributed. 

However, stock price movements are commonly assumed by financial economists to 

follow Brownian motion through continuous time, which implies that stock returns over 

infinitesimal time intervals are normally distributed and stock prices are lognormally 

distributed aker any finite time interval. For example, see Hull [10] Chapter 11 (p. 228) 

and Baxter-Rennie [11] Chapter 3 (p. 51). The latter says, "It is not the only model for 

stocks...but it is simple and not that bad." The Black-Scholes call option pricing formula 

was originally derived using a Brownlan motion assumption. It has subsequently been 

shown that it can also be derived from the assumption that "asset prices are lognormally 

distributed under the martingale measure Q."[Ibid, p. 181]. 

At the same time there is some disagreement with the Brownian motion/lognormal 

assumption. See for example Peters [12], Chapter 3 (p. 27), who presented evidence that 

the distribution of  actual stock market returns has a higher peak and fatter tails than 

predicted by a normal distribution and found, "The stock market's probability of  a three- 

sigma event is roughly ~'ice that of the Gaussian random numbers." [Ibid, p. 29]. He 

argues that because "capital market theo D- is, in general, dependent on normally distributed 

w In order to smaphfy the discussion we Ignore dividends, which could easily be incorporated m the example, 
but at the cost of comphcating the comparison. 
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retums"[Ibid, p. 25], the Efficient Market Hypothesis, Capital Asset Pricing Model and 

Modern Portfolio Theory all rest on a shaky foundation. We don't take a position in that 

debate. However, we do wish to point out that our use of  a lognormal distribution is 

consistent with the mainstream view. 

The fact is that doubling the probability at the three-sigma level does not have a 

significant practical effect. We can adjust for Peter's finding of  a fatter tail in the stock 

return distribution. A Student's t distribution with 30 degrees of  freedom has twice the 

probability of  a three-sigma event as the corresponding normal. It has a higher peak and 

fatter tails. 

I f  we replace the lognorrnal stock price model with a "log t" model, "10-10" test values 

for the Example 3.3 quota share with cr = 9% and cr = 13.85% still fall far short of  the 

significance threshold. For cr = 9%,  the 90 '8 percentile result is still a small profit of  

0.29% and the probability of  a 10% loss rises to just 0.51%. For o" =13.85%,  we find a 

90 'h percentile loss of  4.17% and a probability of  a 10% loss of  3.91%. These values are 

only slightly higher than those arising from the lognormal model. There is no practical 

effect of  thenon-normality observed by Peters. 

Example B.I: Replicating a Quota Share with 25% Ceding Commission 

Suppose the quota share in Example 3.3 involves ceded premiums of $10 million. Given 

a ceding commission of  25%, the net proceeds to the reinsurer total $7,5 million. Similarly, 

if  S&P 500 "spiders" (symbol SPY) are trading at $117 a share (as they were in early May 

2005), a short sale of 64,103 shares also yields net proceeds to the seller of $7.5 million. The 

expected loss ratio on the quota share is 70%, implying expected losses of  $7 million. Claim 

payments are expected to lag premiums by one year. This is equivalent to the short seller 

estimating the expected value of  SPY in one year's time as $109.20, or $7 million in total for 

the short position. (A short seller would generally not short the stock if he did not expect it 

to decline.) In order for the reinsurer to suffer a $1 million present value loss (10% of the 

ceded premiums), given a risk free interest rate of  5%, the loss ratio would need to reach 

85% times 1.05, or 89.25%. In order for the short seller to incur a $1 million present value 
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loss, the stock price would have to reach $139.23". These are the threshold levels for 

"passing" the "10-10" test. 

As discussed in Example 3.3, in order for either the loss ratio to exceed 89.25% or the 

stock price to exceed $139.23 with a probability of  10% (these being fundamentally identical 

scenarios), the lognormal o- parameter must be at least 20.6%. 

I f  we remove the 25% ceding commission from the quota share terms and instead 

prmdde for a premium cession net of  a 25% expense allowance, then the "10-10" threshold 

for a 10% / $750,000 present value loss to the reinsurer is 82.5% times 1.05, or 86.63%. 

The comparable "10-10" threshold for the short seller is a stock price of  $135.14. 

Exceeding these thresholds requires a c r  value of  at least 17.9%. 

Data Underlying Chart 4 

Table B-1 shows the data underlying Chart 4, which plots the probability of  a 10% 

present value loss on the quota share defined in Example 3.2, given a 70% expected loss 

ratio, 25% ceding commission and cr values equal to VIX as of  the last trading day of  each 

year from 1990 through 2004 plus May 4, 2005. 

4o $1 million loss amounts to $15.60 per share, implying a present value share price of $132.60 and a future 
value share price of $139.23. 
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TABLE B-1 

"10-10" Risk Transfer Analysis 

for Quota Share in Example 2.3 

Given Portfolio with Volatility of S&P 500 VIX 

Data Underlying Chart 4 

VIX Date VIX 
Dec 1990 26.4% 

Dec 1991 19.3% 

Dec 1992 12.6% 

Dec 1993 11.7% 

Dec 1994 13.2% 

Dec 1995 12.5% 

Dec 1996 20.9% 

Dec 1997 24.0% 

Dec 1998 24.4% 

Dee 1999 23.4% 

Dec 2000 26.9% 

Dec 2001 23.8% 

Dec 2002 28.6% 

Dec 2003 18.3% 

Dec 2004 13.3% 

May 2005 13.9% 

(a) 0') 
90 'h Percentile Probability of 

P.V. _> 10% P.V. 
Underwriting Underwriting 

Loss Loss 
15.3% 14.6% 

8.8% 8.8% 

2.7% 2.3% 

1.9% 1.6% 

3.3% 2.8% 

2.7% 2.3% 

10.3% 10.3% 

13.1% 12.9% 

13.5% 13.2% 

12.6% 12.4% 

15.7% 14.9% 

12.9% 12.7% 

17.3% 16.1% 

7.9% 7.8% 

3.4% 2.9% 

3.9% 3.4% 

Sensitivity of "10-10" Test Values to Expected Loss Ratio Assumption 

Table B-2 shows the sensitivity of the values shown in Table 5 to changes in the expected 

loss ratio. It shows that our conclusions with respect to the "10-10" test apply even with 

high assumed levels for the expected loss ratio. For example, even in the case of no 

expected profit and the higher May 2005 implied volatility levels, the "10-10" rule is not met. 
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TABLE 5 

"10-10" Risk Transfer Analysis 

for Quota Share in Example 2.3 

Given Portfolio with Volatility of S&P 500 

Sensitivity to Expected Loss Ratio 

(a) (b) 
90 'h Percentile Prob of > 10% 

VIX o" Expected P.V. P.V. 
Loss Underwriting Underwriting 
Ratio Loss/(Profit) Loss/(Profit) 

Low 9.00% 65% (5.81%) 0.02% 

Low 9.00% 67.5% (3.15%) 0.08% 

Low 9.00% 70% (0.49%) 0.30% 

Low 9.00% 62.5% 2.18% 0.93% 

Low 9.00% 75% 4.84% 2.40% 

May 2005 13.85% 65% (1.78%) 0.92% 

May 2005 13.85% 67.5%' 1.04% 1.85% 

May 2005 13.85% 70% 3.85% 3.41% 

May 2005 13.85% 62.5% 6.67% 5.82% 

May 2005 13.85% 75% 9.49% 9.25% 
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Estimating Tail Development Factors: What to do When 
the Triangle Runs Out 

Joseph Boor, FCAS 

Abstract:: There are several methods in use today for estimating tail factors. However, 
most of them are discussed as adjuncts to papers that primarily deal with other subjects. 
This paper will present a wide variety of method in an understandable format, and includes 
copious examples 

Keywords: Loss resenting, tail factors 

1. INTRODUCTION 

In ma W loss reserve analyses, especially those involving long-tail casualty lines, the loss 
development mangle may end before all the claims are settled and before the final costs of 
any year are known. For example, it is quite common to analyze U. S. workers 
compensation loss reserve needs using the ten years of data available in Schedule P of the 
US NAIC-mandated Annual Statement, while knowing that some of the underlying claims 
may take as long as fifty years to close. In response to this, actuaries supplement the 'link 
ratios' they obtain from the available mangle data with a 'tail factor' that estimates the 
development beyond the last stage of development (last number of months of maturity, 
usually) for which a link ratio could be calculated. 

The tail factor is used just like a link ratio in that it estimates (1.0 + ratio of (final costs after 
all daims are closed) to (the costs as of the last development stage used)). It is of  course 
included in the product of all the remaining link ratios beyond any given stage of 
development in calculating a loss development factor to ultimate for that stage of 
development. 

This paper will discuss the methods of computing (really estimating to be precise) tail factors 
in common usage today. It will also suggest both improvements in existing methods and a 
new method. It will begin with the simplest class of methods and move forward in 
increasing complexity. 

There are four groups of methods that will be presented: 

1. The Bondy (repeat-the-last link-type) methods 
2. The Algebraic methods (methods based on algebraic relationships between the paid 

and incurred mangles) 
3. Use of Benchmark Data 
4. Curve Fitting Methods 
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As part of the discussion, commentary on the advantages and disadvantages of each 
individual method, as well as each class of methods will be included. When the opporttmity 
to discuss an improvement or enhancement that applies to multiple methods presents itself, 
a brief digression on the enhancement will be included. 

2. GROUP 1 - THE BONDY-TYPE METHODS 

The Bondy methods all arose from an approach published by Martin Bondy prior to the 
1980s. In what was thought to be a period where development decayed rapidly from link 
ratio to link ratio, he promulgated a practice of simply repeating the last link ratio for use as 
the tail factor. Since then, several variations of his method that all base the tail factor on the 
last available link ratio have arisen. 

2.1 The Bondy Method 

As explained above, the original Bondy method involves simply using the last link ratio that 
could be estimated from the triangle (the link ratio of the last development stage present in 
the triangle, or the last stage where the triangle data could be deemed reliable for estimation) 
as the tail factor. This 'repeat the last link ratio' approach probably seems crude and 
unreasonable for long-tailed lines, where link ratios decay slowly. However, for fast deca3qng 
lines (such as an accident year 1 analysis of automobile extended warranty) this method may 
work when used as early as thirty-six or forty-eight months of maturity. It must be 
recognized, though, that in long-tailed lines the criticism is usually justified. 

To truly understand this method it also may be best viewed in historical context. The author 
of the method, Martin Bondy, developed this method well prior to the 1980's. It is 
commonly believed that during the 1960s and certainly part of the 1970s the courts 
proceeded at a faster pace and, ignoring the long-taB asbestos, environmental, and mass tort 
issues that would eventually emerge, general liability was believed to have a much shorter tail 
than we see today. 

It is also of interest to note that there is a theoretical foundation that supports this in certain 
circumstances. If one assumes that the 'development portion' of the link ratios (the link 
ratios minus one) are decreasing by one-half at each stage of development, and the last link 
ratio is fairly low, then the theoretically correct tail factor to follow a link ratio of l + d  is: 

(1 +.58) x (1 + .25d) x (1 +. 125d) x (1 +.0625d) × .. . . . . .  

Or 

1+(.5+.25+.125+.0625+....)×d + terms revolving d 2, d ~, etc. 

It should be noted that policy year automobile extended warranty represents an entirely different situation. 
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Which, per the interest theorem v+ve+v3+ .... =v/(1-v) is equivalent to:  

1 +1 xd + terms involving d z, d 3, etc. 

Since d is 'small', the other terms will be smaller by an order of magnitude, making the 
implied tail factor under these assumptions very close to the Bondy tail factor, a repetition of 
the last link ratio, l+d.  So the Bondy tail factor is 'nearly' equivalent to the tail implied by 
what will later be called the 'exponential decay' method, with a 50% decay constant. 

Of  note, this involves two basic assumptions. First that the link ratios decay in proportion 
to the remaining 'development portion' of the link. Of  note, in the absence of any 
information whatsoever about the decay, that would be as reasonable an assumption as one 
could reasonably make. Second, that the decay constant is 50%. Again, in the absence of any 
data whatsoever, one-half would be as reasonable an assumption as one could possibly 
make. Of course, we do have data in the link ratios before the tail, but it is important to 
understand this theoretical basis for the Bondy tail factor. 

2.2 The Modified Bondy Method 

In this method, the last link ratio available from the triangle, call it l+d, is modified by 
multiplying the development portion by 2. The result is a development factor like l+2d. 
Alternately, the last entire link ratio may be squared, which yields nearly the same value. 
This has many of the same issues and applications as the basic Bondy method, but it does 
field a larger tail than the Bondy method itself. However, for long-taft lines it is still not 
what would be considered a truly conservative approach, as we will see later. The 
assumption here is ' The Bondy method seems to underestimate, it should be increased, the 
easiest thing to do is to multiply the development portion by two.'. 

A little algebra and the v+v2+v3+ .... =v/(1-v) theorem show that this is functionally 
equivalent to 'exponential decay' with a decay coefficient of 2/3. 

2.3 Advantages and Disadvantages of the Bondy Methods 

The primary advantages of the ]3ondy methods are that they are extremely simple to execute 
and easy to understand. Further, they involve relatively straightforward assumptions. 
However, a major disadvantage is that they tend to greatly underestimate tabs of long-tailed, 
slow-decaying lines. 

3. GROUP 2 - THE ALGEBRAIC METHODS 

These methods involve initially computing some algebraic quantity that in turn describes a 
relationship between some aspect of the paid and incurred loss triangles. Then that quantity 
can be used to generate a tail factor estimate. As with the Bondy method, and almost all tail 
factor estimation methods, they are based on assumptions. However, in this case each is 
based on some relatively simple and fairly logical assumption that some numerical 
relationship known to be true in one circumstance will be true in another. 
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3.1 Equalizing Paid and Incurred Development Ultimate Losses 

This method is the first method discussed with a full theoretical background. It is most 
useful when incurred loss development essentially stops after a certain stage (i.e., the link 
ratios are near to unity or unity). Then, due to the absence of continuing development, the 
current case incurred (sometimes called reported) losses are a good predictor of  the ultimate 
losses for the older or oldest years without a need for additional tail factor development. A 
tail factor suitable for paid loss development can then be computed as the ratio of the case 
incurred losses to-date for the oldest (accident-') year in the triangle divided by the paid losses 
to-date for the same (accident) year. That way, the paid and incurred development tests will 
produce exactly the same ultimate losses for that oldest year. 

This method relies on one axiomatic (meaning plainly true rather than an assumption as 
such) assumption and two true assumptions. The axiomatic assumption is that the paid loss 
and incurred loss development estimates of  incurred loss are estimating the same quantity, 
therefore the ultimate loss estimates they produce should be equal. The second assumption 
(the first true assumption) is that the incurred loss estimate of  the ultimate losses for the 
oldest year is accurate. The last assumption is that the other years will show the same 
development in the tail as the oldest year. 

This method may also be generalized to the case where case incurred losses are still showing 
development near the tail. In that case, the implied paid loss tail factor is 

(incurred loss development ultimate loss estimate for the oldest year) / (paid losses to- 

date for the oldest year). 

Of  course, in that instance the incurred loss development estimate for the oldest (accident) 
year is usually the case incurred losses for the oldest year multiplied by an incurred loss tail 
factor developed using other methods. 

This method has a substantial advantage in that it is based solely on the information in the 
triangle itself and needs no special assumptions. Its weakness is that you must already have a 
reliable estimate of  the ultimate loss for the oldest year before it can be used. An ancillary 
weakness flows from the assumptions underlying this method. Specifically, if  the initial 
incurred loss development test is driven by a tail factor assumption, this becomes a test that 
is also based on not only that assumption, but also the assumption that the ratio of  the case 
incurred loss to the paid loss WIU be the same for the less mature years once they reach the 
older level of  maturity where you are equalizing the paid and incurred loss estimates. 

2 Accident year is used here for illustration. Under similar circumstances, this method would also work in 
policy year, reinsurance contract year, etc. development. 
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3.1.1 An example: 

Assume that it is just after year-end of 2000. You have pulled the incurred loss triangle from 
a carrier by subtracting part 4 of Schedule P from part 2 of Schedule P. You have also 
pulled a paid loss triangle from part 3 of Schedule P. The mangles cover 1991-2000, so 1991 
is the oldest year. Say for the sake of argument that the incurred loss link ratios you develop 
are 2.0 for 12-24 months, 1.5 for 24-36, 1.25 for 36-48, 1.125 for 48-60, 1.063 for 60-72, 
1.031 for 72-84, 1.016 for 84-96, 1.008 for 96-108, and 1.004 for 108-120. This conveniently 
happens to match the exponential decay discussed for the Bondy method, so it makes sense 
to use 1.004 for the tail factor for development beyond 120 months. Now assume that the 
latest available (i.e., at 12/31/2000, or 120 months maturity) the case incurred loss 3 for 1991 
is $50,000,000 and the corresponding paid loss is $40,000,000. The incurred test ulfrnate 
using the 1.004 tail factor is $50,200,000. The paid loss tail factor to equalize the ulfmate 
would be $50~200,000 divided by $40,000,000 or 1.255. 

3.1.2 Improvement  1 - us ing  multiple years tO develop the tail factor 

As stated earlier, the previous method assumes that the current ratio of case incurred loss to 
paid loss that exists in the oldest year (1991 evaluated at 12/31/2000 in the example above) 
will apply to the other years when they reach that same level of maturit T. For a large high 
dollar volume mangle with relatively low underlying pohcy limits that may be a reasonable 
assumption, but for many reserving applications the 120 month ratio of case incurred to paid 
loss may depend on whether a few large, complex claims remain open or not. Therefore, it 
may be wise to supplement the tail factor derived from the oldest available year with that 
implied by the following year or even the second following year. This method is particularly 
useful when the later development portion of the mangle has some credibility, but the 
individual link ratio estimates from the development triangle are not fully credible. 

The process of doing so is fairly straightforward. You merely compute the tail factor for 
each succeeding year by the method above, and divide each by the remaining link ratios in 
the mangle. 

An example using the data above may help clarify matters. Given the data above, assume 
that 1992 has $50,000,000 of paid loss and $60,000,000 of case incurred loss. Also, assume 
that your best estimate of the 108-120 paid loss link ratio is 1.01. The incurred loss esfmate 
of the ultimate loss, using the 108-120 link ratio (1.004) and the incurred loss tail factor (also 
1.004) is $60,000,000×1.004×1.004, or $60,480,960. The estimated (per incurred loss 
development) ultimate loss to paid loss ratio at 108 months would then be 
$60,480,960/$50,000,000, or approximately 1.210. So, 1.210 would then be the tail factor 
estimate for 108 months. Dividing out the 108-120 paid link ratio (assumed above to be 
1.01) gives a tail factor for 120 months of 1.21/1.01 = 1.198. By comparison, the previous 
analysis using 1991 instead of 1992 gave a 120-monfll tail factor estimate of 1.255. So it is 
possible that either 1991 has a high number of claims remaining open, or that 1992 has a low 
number. Both indicate taft factors in the 120-125 approximate range, though. So averaging 

3 To be technically correct, this would be loss and defense and cost containment under 2003 accounting 
rules. 
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the estimates might be prudent. Further, the use of averaging greatly limits the impact of 
any unusually low or high case reserves that may be present in the oldest year in the mangle, 

Note also, that the improvement above involved computing an alternate tail factor using the 
year with one year less maturity. A similar analysis could also be performed on the next 
oldest year, 1993, except that two incurred development link ratios plus the tail factor are 
needed to compute the incurred loss estimate of ultimate. Correspondingly, two paid loss 
link ratios need to be divided out of the (incurred loss ultimate estimate)/(paid loss to-date 
ratio for 1993) to estimate the 120 month paid loss tail factor 

3.1.2.1 An important note 

Further, in this case the improvement involved reviewing the taft factors at various ages from 
the equalization of paid and incurred loss estimates of the ultimate loss. The core process 
involves computing tail factors at different mamries, then dividing by the remaining link 
ratios to place them all at the same maturity. As such, it can also be used in the context of 
other methods for computing tail factors that will be discussed later in this paper. 

3.1.3 A brief digression - the nrimarv activity wi th in  each deve lopment  sta~e 
v 

When using multiple years to estimate a tail factor, it is relatively important that the years 
reflect the same general type of claims department activity as that which takes place in the 
tail. For example, in the early 12 to 24 month stage of workers compensation, the primary 
development activity is the initial reporting of claims and the settlement and closure of small 
claims. The primary factors influencing development are how quickly the claims are 
reported and entered into the system, and the average reserves (assuming the claims 
department initially just sets a 'formula reserve', or a fixed reserve amount for each claim of 
a given type such as medical or lost time) used when claims are first reported. In the 24 to 
36-48 month period, claims department activity is focused on ascertaining the true value of 
long-term claims and settling medium-sized claims. After 48-60 months most of the activity 
centers on long-term claims. So, the 12-24 link ratio has relatively httle relevance for the tail, 
as the driver behind the link ratio is reporting and the size of initial formula reserves rather 
than the handling of long-term cases. Similarly, if the last credible link ratio in the mangle is 
the 24 to 36 or 36 to 48 link ratio, that mangle may be a poor predictor of the required tail 
factor. 
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3.2 The Sherman-Boor 4 Method - Adjusting the Ending Case Using 
Ratios of Paid Loss to Case Reserve Disposed Of 

This method, developed by Sherman in Section X of  [3] and independently by the author, is 
the one method that relies solely on the triangle itself and does not  require a pre-existing 
ultimate loss estinaate, involve curve-fitting assumptions, or require external data. For data 
triangles with high statistical reliability as predictors, this can represent the opt imum 
estimation process. 

This method involves simply determining the ratio of  case reserves to paid loss for the oldest 
year in the triangle, then adjusting the case reserves by an estimate of  the ratio of  the unpaid 
loss to carried case reserves. In essence, the case reserves of  the oldest accident year are 
'grossed up' to estimate the true unpaid loss using a factor. The estimate of  the (true unpaid 
loss)/(case reserves) factor is based on how many dollars of  payments are required to 
'eliminate' one dollar of  case reserves. 

The mathematical formula requires computing a mangle containing incremental rather than 
cumulative paid losses. In effect, for each point in the paid loss triangle, one need only 
subtract the prexdous value in the same row (the first column is of  course unchanged). The 
next step begins with a triangle of  case reserves. The incremental case reserve disposed of  is 
calculated as the case reserve in the same row before the data point, less the current case 
reserve. That  represents (as the beginning case reserve - the ending case reserve) the case 
reserve disposed of. Then the ratios of  incremental paid to reserve disposed of  at the same 
points in the triangles are computed. Reviewing these, the adjustment ratio for the ending 
case reserves is estimated. 

3.2.1 An  example  

Reviewing an example may help the reader follow the calculations discussed earlier. This 
method requires two triangles, one of  paid loss and one of  case reserves. Consider the 
following set of  triangles: 

Cumulative Paid Loss Triansle 

12 24 36 4{ 6C 72 
1991 1,000 2,000 2,500 2,800 2,95C 3,100 
1992 1,100 2,400 3,000 3,50( 3,90C 
1993 1,300 2,500 3,000 3,400 
1994 1,200 2,300 3,100 
1995 1,400 2,800 

1996 1,490 

4 Of note, this method was first published by Richard Sherman, FCAS in 1984 and developed 
independently by the author in 1987. Of note, the author used some business materials that contained 
precursors to this method in 1984-1986 that were developed by a firm of which Mr. Sherman was a 
principal. 
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Triangle ofCase Reserves Outstandin~ (Cumulanve Case Incurred-Cumuladve Pmd) 

12 24 36 4~ 
1991] 1,500 1,30( 900 75C 

1992[ 2,000 1,70( 1,300 90C 

1993] 1,900 1,70( 1,300 1,00C 

1994[ 2,100 2,10( 1,500 
1995 ] 2,300 2,00( 
1996] 2,500 

60 72] 
600 5001 

600 

First, we compu te  the incremental  paid loss triangle. We begin wi th  a given cell in the 
cumulative paid loss triangle, and then  we subtract  the previous  cell in the same row of  the  
cumulative paid loss triangle. Tha t  produces  the fol lowing triangle. 

Incremental P~dLossTfian#e 

12 

199' 1,00C 
1992 1,10C 
1993 1,30C 

1994 1,20C 

1995 1,40C 

1996 

72! 24 36 48 60 
I 

1,000 50C 300 150 150 I 

1,300 600 500 400 
1,200 500 400 

1,100 800 

1,400 

1,49C 

T h e n  we subtract  the current  cell f rom the previous cell in the case reserve triangle to obta in  
the triangle o f  case reserves disposed of. 

Triangle oflncremental Case Resen, esDisposedOf 
12 24 

1991 20( 
1992 30( 
1993 20( 
1994 10( 

1995 30( 
1996 

36 

40C 
40G 
40G 
60{3 

48 

150 
400 
300 

60 

150 
300 

72 

100 
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Then we divide the actual fmal costs paid (the incremental paid loss), by the assumption- 
based case reserves eliminated. 

Ratio ofPmdLossto Resen,es Eliminated 
Ii 24 

1991 500~ 
1992 433~ 

1993 600~ 

1994 1100% 
1995 467~ 
1996 

36 

125% 
150~ 

125~ 

133% 

48 6£ 72 

200% 100% 150~ 
125% 133% 

133% 

Because the early development invoR-es not just elimination of  case reserves through 
payments, but also substantial emergence of  IBNR claims, the 12 and 36 columns are 
presumably distorted. In many lines the 48 month column would still be heavily affected by 
newly reported large claims, but presumably this is medium-tail business. Looking at the 
various ratios it would appear that they average around 140%, so we will use that as our 
adjustment factor for the case reserves. 

Pulling the $500 of  case left on the 1991 year at 72 months, and the cumulative paid on the 
1991 year of  $3,100, the development portion of  the paid loss tail factor would be 
($500/$3,100)x 140% = .161x140% = .226. So, the paid loss tail factor would be 1.226. 

For the incurred loss tail factor, first note that only the 'development portion' of  the 140%, 
or 40%, need be applied (the remaining case is already contained in the incurred). Second, a 
ratio of  the case reserves to incurred loss is technically needed (replacing 1.61 with 
$500/($500+$3,100) = .139). Multiplying the two numbers creates an estimate of  the 

development portion of  the tail at .4x.139=.056. So, the incurred loss tail factor estimate 
would be 1.056. 

3.2.2 An Important Note  

As is the case with most of  the other methods, this method has strengths and weaknesses. 
Significant strengths o f  this method are that it requires only the data already in the triangle 
and that it does not require additional assumptions. The weakness is that it can be distorted 
if the adequacy of  the ending case has changed significantly from the previous year. The 
reader is advised to also follow Improvement 1 and also evaluate the tail at the next-to-oldest 
year. 
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4. GROUP THREE- METHODS THAT USE BENCHMARK DATA 

A common solution to the ratemaking problems generated by data with partial statistical 
rehability (credibility) is to supplement the claims data with a 'complement of  credibility'. O f  
course, tail factor estimation problems stem more from a lack of  any data at all after the 
oldest development stage in the triangle rather than from partially rehable data. But, we can 
adopt a similar strategy and add outside data in the form of benchmark development factors. 

4.1 Directly Using Tail Factors From Bencbmark Data 

As noted above, many actuaries review benchmark data in selecting tail factors s. Benchmark 
data may come from one of  several sources. Perhaps the most common is the use of  the 
data triangles that can be developed from Best's Aggregates and Averages for each of  the 
Schedule P lines. The two larger rating bureaus, the National Council on Compensation 
Insurance and Insurance Services Office; as well as the Reinsurance Association of America, 
all publish benchmark loss development data. At its simplest, this method invokes cop3fing 
the derived remaining development factor at the maturity desired for the tail factor. 

It is important to note, though, that the quality of  the benchmark tail factor as an estimate of  
the tail depends on how closely the tail development of  the benchmark mirrors the tail 
development of  the book of business being analyzed. Considerations such as differences in 
the way claims are adjusted or reserved, differences in the potential for long-developing high 
value claims, differences in the initial reporting pattern of  claims (claims-made vs. 
occurrence, whether or there is an innately long discovery period or not, etc.), and 
differences in the adjudication process of  litigated claims can all cause differences in 
development patterns. It is important to consider those factors along with the statistical 
reliability of  the benchmark triangle when selecting the most appropriate benchmark tail 
factor. 

4.2 Using Bencbmark Tail Factors Adjusted to Company Development 
Levels 

One way to address differences between the benchmark development pattern and the 
development pattern of  a given book of  business is to try to adjust the benchmark data to 
more closely mirror the subject book of  business. A common practice is to review the 
relafivities of  link ratios from the triangle being analyzed to benchmark link ratios. Of  
course, there is not a tail factor for the triangle being analyzed (we are Wing to estimate 
one). So, instead we can review the quotients (relativities) of  subject triangle link ratios to 
those of  the benchmark data at the development stages prior to the tail development stage. 
The relativities from those stages are used to estimate a adjustment multiplier for the 
benchmark tail factor. Of  note, generally just the development portions ('d' of  l+d)  are 
compared in all the relativities we compute. 

s It is also common for actuaries to review benchmark data to supplement the portion of the reserve triangle 
following 72, 60, 48, or even 36 months when the overall triangle has medium credibility and hence has 
less than medium credibility in the portion that is dominated by activity on a smallish number of claims. 
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4.2.1 An examnle 

An example will help to illustrate how the process works. 
patterns: 

Consider the following two 

Link 

Ratio 

Estimated Benchmark 
Months of By Link 

Maturity Triangle Ratio 
12 2.00( 2.00( 
24 1.45( 1.35( 

36 1.20( 1.15( 
48 1.15( 1.10( 
6C 1.10( 1.05( 
72 1.08( 1.03( 
84 1,05( 1.025 
9~ 1.035 1.02( 

108 1,01( 1,01( 

Ta/ 1.05( 

We then simply compute the relativity quotient of  the 'development port ion'  of  our triangle- 
based link ratios to the development portion of  the matching benchmark link ratios. Noting 

that 1+1 = 100%, .45+.35 = 129%, .2+.15 = 133%, etc. 
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Link 

Ratio 

Estimated Benchmark 
Months of b v Link 

Matufi~" Triangle Ratio 

12 Z00( 2.00( 
24 1.45( 1.350 
3{ 1.20( 1.150! 

48 1.15( 1.10( 

6(] 1.10( 1.051 

72 1.08( 1.03C 
84 1.05( 1.025 
9{ 1.03~ 1.02( 

108 1.01( 1.01C 

Relafivi~, of 
Triangle 

Development 
to 

Benchmark 

100% 

129% 

133% 

150% 

200% 
267°/, 
200°A 
175°A 

100% 

Tail 1.05( 

Ehosen Ratio 175% 

;Implied Tail ] 1.08[ 

In the case above, we judgmentaUy select that the triangle development is roughly 175% of 
benchmark based on the 60 through 108 month  relativities. So the .05 development portion 

of the benchmark tail becomes .05x1.75=.0875~.088. Consequently the entire tail factor, 
including tmity, is 1.088. 

4.2.2 Ano the r  i m p o r t a n t  no te  

It is important  to consider that adjusting the benchmark tail for actual triangle link ratios is 
only helpful as long as the link ratios, or at least the broad pattern of  link ratios has statistical 
reliability (predictive accuracy). I f  not, the uncertainty surrounding the true long-term link 
ratios of the block of  business will cause the adjusted tail factor to lack predictive accuracy. 
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4.3 Advantages and Disadvantages o[ Using Benchmark Data 

When a good benchmark tail factor is available, this is both one of  the easiest and also 
among the most usefi.fl methods. However, it is often difficult to find a perfect match in 
terms of  all the factors (claims handling, case reserving, potential for large claims, etc.) that 
affect loss development. Adjusting the benchmark improves the fit markedly. One could 
even think of  the process of  adjusting the benchmark as that of  fitting a curve to the link 
ratios, where the family of  curves you are fitting from consists of  various relativity-adjusted 
versions of  the benchmark. If  the benchmark is remotely related to the book of  business 
being analyzed, that family of  ctm'es should be a superior choice to the highly assumption- 
driven curve families discussed later under curve fitting. 

On the other hand, it is often very difficult to obtain the more-mature data needed to create 
a reliable benchmark tail factor. So, for tail factors beginning at 108 or 120 months, it may 
be very difficult to find a suitable benchmark. 

5. GROUP 4 -THE CURVE HTTING METHODS 

As good students of  numerical analysis, actuaries long ago realized that they could attempt to 
extrapolate the tail development by fitting curves to the development before the tail, then 
using the fitted curve to extrapolate the additional tail development. Some methods have 
been developed that fit a curve to the paid or incurred loss. Other methods fit to the link 
ratios. What they all have in common is that they begin with some assumption about the 
development decay that gives rise to a family of  curves, and then select the coefficient(s) that 
specify the particular member of  the family of  curves that best fits the data. As with most 
extrapolations, they are as good as the assumptions that underlie them. 

5.1 McClenahan's Method-Exponential Decay of Paid Loss Itself 

McClenahan's method (as discussed in [1]) fits a curve to a set of  data per an assumption 
that the incremental paid loss of  a single accident year will decay exponentially over 
increasing maturities of  the accident year. In effect, that there was some decay rate 'p' and 
that the next month's payout on the accidents in a given month would always be 'p' times 
the current month's payments on that given accident month. He combined that with an 
assumption that no payments occurr in the first few months of  a claim. Putting those pieces 
together mathematically, he inferred that the payments in a given incremental month of  
maturity (call it 'm') were 

Ap( m *)q. 
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In this case A is a constant of  proportionality and 'p', (0<p< 1, q= (l-p)) represents the decay 
rate ~ and 'a '7 represents the average lag time until claims begin to be paid. A theorem from 
the study of  compound interest states that 

- ~ A p  ~m-~) q= A~'~ p ' q=  Aq/(1-p)=Aq/q =A. 
m::~ i=0 

So A is actually the ultimate loss for the entire year. 

Then,  under this assumption, the additional payments or incurrals beyond x months  are 
theoretically determined by the basic formula, at least once p and a are estimated. And there 
are several ways to estimate p and a. For convenience, p is monthly, but pl',  the annual 
decay rate, may be defined as 'r 's. Then r may be estimated by reviewing the ratios of  
incremental paid between m+12 and m+24  months  to the incremental paid between m and 
m+12  months.  McClenahan advised that 'a' could be estimated by simply reviewing the 
average report lag ̀) (average date of  report-average date of  occurrence) for the line of  
business.. Then, a curve of  the form 

A f ,  

where y is the maturity of  the accident year in years before each amount  of  incremental paid 
can be fit to the incremental dollar amounts of  paid loss (or incurred loss, as long as no 
downward development in incurred loss is present in the development pattern). 

Then,  McClenahan shows that the percentage remaining unpaid for an entire twelve month  
accident year at m months  of  (returning to p = r t/12) is 

(l_p)X(pm+,-a+ p=+l-a ,+ pm*,+=+...+ p,.+l+n)/(12X(1_p)) = p,~-~-> (1-p'Z)/12q 

The tail factor at m months is of  course unity divided by the percentage paid at m months,  
o r  

1/(100% - percentage unpaid at m months). 

6 McClenahan's model actually incorporates additional variables for trend, etc that may be collapsed into 
'p' for purposes of this analysis. 
7 In Mclenahan's original paper, 'd' is used instead of 'a'. But, since I have used 'd' to denote the 
development portion of the link ratio or development factor, I am using 'a' to denote the average payment 
lag. 
8 Please note that the usage of 'r' in this context is different than the usage in McClenahan's original paper. 
It is used merely because it represents an annual rate. 
9 Note that 'a' applies on a month-by-month basis. So it is technically incorrect to say that the average lag 
between the beginning of all loss reporting for an accident year is six months (the average lag between 
inception of the accident year and loss occurrence, at least for a full twelve month accident year) plus 'a' 
months. To simplify the calculations, the first twelve months can be excluded from the fit 
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Substituting our formula for the unpaid at 12 months ,  McClenahan's  me t hod  produces  a tail 
factor o f  

1/{1 - [p"~ ~'" (1- p '3 /12q]}  

Some algebra reduces that to 

1 2 q / { 1 2 q -  pm-~-u, (1- p*-') }, 

which provides a nice closed form*" expression for the tail. 

An Example: 

Assume that you begin with an 85ea r  triangle, and generate the following link ratios: 

12-24 5.772 

24-36 1.529 

,6-48 1.187 

48-60 1.085 

;0-72 1.042 

72-84 1.022 

84-96 1.012 

The first step is to covert  t hem to a form o f  dollars paid ( remember  that there are different 
paid amounts  for different accident years, so we just begin with one  hundred  dollars for the 
cun-e fitting and multiply by the successive link ratios. 

Development Link 

Stage Ratio 
12-24 5.772 
24-36 1.52c~ 

36-48 1.18"~ 
48-60 1.08 
60-72 1.047 

72-84 1.027 

~4-96 1.01." 

Equivalent 
Beginning Cumulative 
Mamfi~- P~d 

12 $100.00 
24 $577.23 

36 $882.45 
4~ $1,047.38 

6C $1,136.50 

77 $1,184.66 

84 $1,210.68 

9{ $1,224.75 

m It should be noted that while a closed form expression makes the calculations easy, for some audiences, it 
may be preferable to show the projected link ratios, at least until they are overwhelmingly close to unity. 
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Then  subtract successive cumulative paid amounts  to obtain 'normalized to $100 o f  first year 
paid'  incremental  dollars at each stage o f  deve lopment  that mirror  the actual link ratios. 

Development Link 

Stage Ratio 

12-24 5.772 

24-36 1.529 

36-48 1.187 

48-60 1.085 

60-72 1.042 

72-84 1.022 

84-96 1.012 

Beginning 

Maturm" 

12 $100.00 

24 $577.23 

36 $882.45 

48 $1,047.38 

60 $1,136.50 

72 $1,184.66 

84 $1,210.68 

96 $1,224.75 ! 

Equivalent Incremental 

Cumulative Paid 

Paid (Difference) 

$100.0( 

$477.22 

$305.2~ 

$164.92 

$89.1~ 

$48.1( 

$26.0,~ 

$14.0e 

T h e n  ratios o f  the successive 'normalized '  incremental  paid amounts  can be taken. 

Development Link 

Stage Ratio 

12-24 5.772 

24-36 1.529 

36-48 1.187 

48-60 1.085 
60-72 1.042 
72-84 1.022 

84-96 1.012 

Be~annm~ 

Mamrit)- 

12 $100.00 
24 $577.23! 

36 $882.4" 

48 $1,047.3~ 
60 $1,136.5( 
72 $1,184.66! 
84 $1,210.681 
96 $1,224.75 

Equivalent Incremental 

Cumulanve Paid 

Paid (Difference) 

$100.0( 

$477.22 

$305.2,~ 

$164.93 
$89.1,~ 

$48.1~ 
$26.0,2 

$14.0{ 

Year 

to Year 
Ratio 

4.7723 

0.6396 

0.5404! 
0.5404 

0.5404 
0.5404 

0.5404 

As one  can see, in this contrived example, the deve lopment  stage-to-stage ratio is a cons tant  
r = .5404. It 's twelve root  p is p = r 1/n = .95. 

That  o f  course only provides p, the average delay must  be found as well. Because the answer 
is contr ived to have a=7 months ,  a= 7 mon ths  will work  perfectly n for this example,  bu t  
note that McClenahan suggests merely using the repor t  delay for the b o o k  o f  business to 
determine 'a'. 

Using a= 7 m on ths  and p = .95, the computed  tail factor is 

1 2 q / { 1 2 q -  .95 m-a-''' (1- .9512)}, = .6/{.6 - .017385(1- .5404)} = 1.0135. 

I f  one reviews the link ratios prior to this, it certainly appears to be reasonable. In  fact, 
extending the payout to additional stages o f  deve lopment  will conf i rm its accuracy. 

n An interested reader can confirm that a=7 months and p=.95 yields the exact link ratios above. 
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5.1.1 Advantages and disadvantages of McClenahan 's  method 

At its core, McClenahan's method involves three basic assumptions: First, it assumes that the 
pattern of  paid loss will be a constantly decreasing pattern, at least after all the initial report 
lags are finished. Second, he assumes that the reduction will always occur in proportion to 
the size of  the most current payout (exponential decay). Third, he assumes that the 
exponent of  decay is constant throughout the entire payout pattern. Logically speaking, if 
one knew nothing about the individual pattern of  the data, but was forced to make some 
assumptions, those assumptions would seem to be about as minimal and reasonable as 
possible (excepting perhaps the third). But it is important to remember that they are 
assumptions and as such will color the predictions the method generates. They do suggest 
exponential decay of  the paid amounts, and exponential decay is a relatively fast decay 
relative to other forms of  asymptotic (far out in the tail) decay. Moreover, it does seem that 
in practice the decay in paid loss often seems to 'stall out' and show less decay near the tail. 

5.1.2 Improvement  2 - exact  fitting to the oldest vear  

A common problem with fitted curves is that the combination of  the curve assumptions and 
the data in the middle of  the triangle may create a curve that varies significantly from the 
development factors at the older stages. McClenahan's method is relatively unique in that 
the cutn, e is fit to the incremental paid, rather than the link ratios (as will be done in most of  
the later methods). Nevertheless, we can often improve the quality of  the tail prediction by 
comparing the fitted value to the actual incremental paid loss at the latest stage. 

This approach is especially helpful when the curve does not match the shape of  the data 
itself. For example, assume that the assumption of  a constant decay rate does not hold. Say 
the initial year-to-year decay was high at between 3612 and 48 months, 48 and 60 months, 
etc., but the decay rate at 84 to 96 months and 96 to 108 months, etc. is much less (i.e., a 
higher decay factor). Then, the last incremental payments (say between 108 and 120) may be 
much higher percentagewise than what is implied by the fitted curve. 

In that case 13, one need merely multiply the 'development portion' of  the tail factor (the tail 
factor minus one) times the ratio of  the actual 108 to 120 increment to the fitted increment. 
Of  course, unit 3, (one) must be added to the final result to produce a proper tail factor. 

12 Note that because of the delay a before payments, etc. begin, the apparent decay between 12 and 24 
months and 24 to 36 months is a distortion of the true annual decay. 
~3 Assuming that the data has enough volume for the 108 to 120 link ratio to have full credibility. 
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For example, in the above data, the last incremental data shown is from 96 to 108 months. 
In that case the fitted value equals the actual 'normalized' value equals $14.06 per a 96 to 108 
link ratio of  1.012 and decay rate of  .5404. But what if we had the same decay rate overall, 
but the link ratio from 96 to 108 was 1.018. In that case, the incremental paid would be 
$21.09, or 150% of the fitted value of  $14.06. Then the adjusted tail factor would be: 

l+150%(fitted tail factor-I) = 1+150%(1.0135-1)=1+150%x.0135=1.0203. 

Note that in the case of McClenahan's method, the ratio used for 'exact fitting' is the ratio of  
actual to fitted paid loss. In the later methods, where a curve is fit to the 'development 
portions', a ratio of  development portions should be used to produce the exact fit to the last 
link ratio. 

5.1.3 Improvement  1 (using mult iple  years to est imate the tail) can enhance 
improvement  2 

For McClenahan's method, and all the curve-fitting methods, improvement 1 can only be 
done in connection with improvement 2. In essence, the concept is to create an exact fit to 
the next-to-oldest link ratio or 'normalized' paid loss, and perhaps the third-to-last link ratio 
as well. Then, the implied tail factors can be averaged or otherwise combined into a single 
tail factor indication. This method is particularly useful when the 'tail' of  the triangle has 
some credibility, but the individual link ratio estimates from the development triangle are not 
fully credible. 

Dev Link Endin F 

Sta~e Rat io  ~htufiw 

12-24 5.772 ! 12 

24-36 1.529 24 

36-48 1.187 36 

¢8-60 1.0851 48 

50-72 1.0421 6G 

72-84 1.02~ 72 

84-96 1.012 84 

96 

Eqmvalent Incremental 

Cumulative Paid 

P r o d  ~Differenc~ 

$100.00' $100.00 

$577.23 $477.23 

$882.45 $305.22 

$1,047.38 $164.93 

$1,136.50! $89.12 

$1,184.66] $48.16 

$1,210.68 $26.02 

$1,224.75 $14.06 

Year Rexfised Equivalent 

to Year Link Cumulative 

Rauo Ratio Pmd 

5.772 $100.00 

4.7723 1.529 $577.23 

0.6396 1.187 $882.45 

0.5404 1.085 $1,047.38 

0.5404 1.042 $1,136.50 

0.5404 1.044 $1,184.66 

0.5404 1.018 $1,236.79 

0.5404 $1,259.05 

Incremental 

Pmd 

(Differenc~ 

$100.00 

$477.23 

$305.22 

$164.93 

$89.12 

$48.16 

$52.13 

$22.26 

For example, the table above contains the data cited in the original example of  McClenahan's 
Method (5.1) as the first set of  link ratios, equivalent cumulative paid, etc. But, beginning 
with the 'Revised lank Ratio' column it contains alternate link ratios, etc. for 72 months and 
later. Using that data, one would still conclude that the fitted annual decline is.5404. But, 
now the last rink is 1.018 (as in 5.1.2 - Improvement 2) instead of  1.012, and that the next- 
to-last (penultimate) 72-84 rink is 1.044 instead of 1.022. In this case, the implied normalized 
incremental paid between 72 and 84 monthsis now $52.13 instead of the original $26.02. 
$52.13 is approximately twice $26.02, so the 72-84 activity would imply a tail factor of  
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l+200%(fi t ted tail f ac to r - I )  = 1+200%(1.0135-1) = 1+200%x.0135 = 1.0270. 

The implied tail factor per the 84-96 link ratio is very close to the 1.0203 of  the previous 
example. Note that the normalized paid loss in the 84-96 stage is $22.26 now or roughly 
158% of paid loss. That  implies a tail factor of  

1+158%(1.0135-1) =1+158%x.0135 = 1.0213. 

So, averaging the two, a tail factor in the range of  1.024 might be optimal. 

5.2 Skurnick's 14 Simplification of McClenahan's Method 

Skumick's approach in [3] is essentially the same as McClenahan's. The difference is that 
Skumick does not include the delay constant. Further, Skumick does not  calculate a single 
decay rate for the entire triangle using selected link ratios. Rather Skumick fits a curve to 
each accident year and uses each cuta-e as the sole mechanism of  projecting each year's 
ultimate losses. MathematicaUy, his tail factor reduces to 

( 1 - ~ ( l _ r _  ry ) 

where r and y are as before. In this case y denotes the number  of  years of  development at 
which the tail factor will apply. 

An E:eample 

Consider the following incremental loss payouts: 

Development Accident Year 
Stage 199i 1991 

12 400( 1000 
24 2000 2000 
36 100( 1000 
4~ 500, 500 
6G 25( 250 
72 12~ 125 
84 62.5 62.5 
96 31.25 

14 This method is also referred to as the 'Geometric Curve' method. 
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For  illustration o f  the curve fitting process,  the 1992 data p roduces  the  following table, w h e n  
a curve is fit to the natural  logar i thms o f  the paid loss in each year (using the  identity 
~ ( a x ~ )  = ~(.a)+yXk,(r) ). 

Fitted Line 

Development Stase Amount Log of Ln(A) = 8.987 EXP = A = 8000 Fitted 

Stage in Years Paid ~mount Ln(r) = -.693 EXP = r = 0.5 Cu~'e 

12 1 4,00( 8.29405 4,000 

24 2 2,00( 7.600902 ! 2,000 

36 3 1,00( 6.907755 1,000 

48 4 50C 6.21460{ 500 

60 5 25( 5.521461! 250 

72 6 125 4.82831~ 125 

84 7 63 4.135161 63 

Fit 

gr~or 

The  tail factor is t hen  (1-.5)/(1-.5-.57)=.5/(1-.5-.007813) = 1.0159. 

T h e  above is o f  course  a contr ived example.  But  consider  the  m o r e  typical case o f  the  1991 
accident  year. In  this case, the paymen t s  begin low, then  decrease after reaching a ' h u m p '  in 
the  24 m o n t h  stage. The  eventual  rate o f  decrease is still .5, bu t  the  curve fit produces:  

Fitted Line 

Development Stage Amount Los of Ln(A) = 8.294 EXP = A = 4000 Fitted 

Stage m Years Paid kmount Ln(r) = -0.578 EXP = r = 0.56123 Cur~,e 

F~t 

Error 

12 1 1,00C 6.907755 2,245 

24 2 2,00C 7.60090; 1,122 

36 3 1,00¢ 6.907755 561 

48 4 50C 6.21460{ 281 

60 5 25C 5.521461 140 

72 6 125 4.82831~ 70 

84 7 63 4.13516~ 35 

96 8 31 3.44201~ 18 

-1,245 

878 

439 

219 

110 

55 

27 

14 

Because  o f  the h u m p  shape 'r '  is c o m p u t e d  at a h igher  (i.e., less decay) value, .5613. H e n c e  

the  tail factor is m u c h  larger at 

(1 -.5613) / (1 -.5613-.56137) = .4387/( .4387-.017554) = 1.041 7. 
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5.2.1 Advan tages  a n d  d i sadvan tages  of  Skurniclds  m e t h o d  

The primary advantage of  Skumick's method, at least relative to McClenahan's method, is 
that the calculations are much simpler. But correspondingly, this method invoh'es not  only 
all of the assumptions underlying McClenahan's method; a constantly decreasing pattern, 
exponential decay, and a lack of  trend in the decay rate; it adds the assumption of  no lag 
between the accident date and when payments begin. The last assumption is clearly untrue 
in the vast majority of  cases. 

As shown above, an additional major disadvantage is that it does not accommodate 'hump 
shaped' patterns well. The problems with hump-shaped curves sen-e as an introduction to 
the next improvement. 

5.2.2 I m p r o v e m e n t  3 - l imi t  curve f i r i n g  to the  m o r e  m a t u r e  years 

Skurmck's method is a prime candidate for this approach, because it is so common to have a 
'hump-shaped'  payout curt-e, whereas by the very nature of  the exponential curve, 
exponential curves are monotonically decreasing. So, it is logical to refocus the tail 
estimation process, putting primary emphasis on the tTpe of  claims activity occurring near 
the tail. 

Going back to the 'Brief Digression' on types of  claims activity, the t3"pe of  claims activity 
most closely associated with the tail does not  begin until after 48 or 60 months.  So, it would 
be logical to just fit the development cun, e to the paid after 60 months. The result of  
performing that limited fit on the 1991 data used to illustrate Skumick's method is shown 
below. 

Development 

Stage 

72 
84 
96 

Freed Line: 

Stage Amount Log of Ln(A) = 8.987 EXP = A = 8000  Fitted Fit 

in Years Paid Amount Ln(r) = -0.69 EXP = r = 0.5 Cun, e Error 

6 12~ 4.82831 125 
7 62 4.13519 62 
8 31 3.4420~ 31 

As expected, this produces the correct decay rate value of  'r '  = .5, and the corresponding tail 
factor of 1.0159. 
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5,2.1 A note of  caution 

The above improvement is logical and generally works well with large volume high- 
credibility data. When the mangle is of  'medium 'is size and has a fairly high cap on loss size, 
the mangle will not have full credibility. Therefore, a fit to paid data directly out of  the 
mangle will likely lead to poor tail factor estimates. Of  note, Skumick's method is not the 
only method where this will yield poor tail esnmates. It will happen with all the curve-fitting 
methods. 

5.2.3. Improvements 1 and 2 applied to Skumick's method 

These improvements and their processes have likely been discussed enough earlier in this 
paper to eliminate a need for examples. Logically, both improvements may be applied while 
using Skurnick's method. 

Method 1, using multiple ending years can be applied by simply fitting the curve to all the 
payments but the last year, computing the corresponding tail factor for the next-to-last stage 
of  development, and dividing by the last link ratio. 

Method 2 can be performed just as it was in McClenahan's method. For example, in the 
poor curve fit obtained when fitting to all of  the 1991 data, the 'development portion' of  the 
fitted tail, 1.0417-1 =.0417 could be multiplied by the ratio of  the actual incremental paid loss 
in the 96-108 stage (31, holding the place of  the exact value 31.25) to the fitted value 
(rounded to 18). Note though, that the 'corrected' tail factor is even further off at 
1 + 31 ×.417 / 18 = 1.0718. This illustration of  when improvement 2 does not improve the tail 
factor prediction is intended to further show what happens when the t3.'pe of  curve fitted is a 
poor match for the pattern of  the data. 

5.3 Exponential Decay of the Development Portion of the Link Ratios 16 

This method is the first of  several methods that extrapolate the tail factor off the loss 
development link ratios rather than the paid loss. This method was referred to briefly in the 
discussion of  the Bondy method as a possible source of  theoretical underpinnings for the 
two Bondy methods. The process is very simple. Given a set of  link ratios l+dl ,  l+d2, 
l+d3,.... 1+~., a curve of  the form 

D x r  = 

where D is the fitted development portion of  the first link ratio and r is the decay constant, 
is fit to the dm's. The easiest way to do so is by using a regression to the natural logarithms 
of  the dm's. Then, for an ending dy of  small size, the additional development can be 
estimated by using the previous approach of  

Ls It is very difficult to quatify 'medium' in a manner that will work across the different lines of insurance 
and still be meaningful years in the future. At the time this was written, an example of a 'medium" volume 
triangle might be a very large workers compensation self-insurance fund. 
16 This method was outlined in Sherman's paper, but likely was already heavily used by actuaries before 
Sherman's paper was published.. 
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f i  (1+ D x r ' )  =[I ( l+d: . r" ' )  = l + d , .  ~ r m = l+d~z / (1 - r ) .  
h i = )  + l  m = l  ' m = 3 + l  

This also automatically introduces Improvement  2 by fitting exactly to the last point. Similar 
algebra would show that the tail factor is approximated by 

1+ D x r  y+I /(l-r). 

For an ending dy of larger size, it may be necessary to simply project the link ratios for the 
next fifteen or so years (until the additional tail is immaterial), then multiply them all together 
to create a tail factor. 

5.3.1 An  example  

Consider the following sample link ratio data. 

StaRe Link 
m Years Rauo 

Development 
Sta[{e 

2~ 
3{ 
4{ 
6( 

72 
84 

1 1.5 
2 1.25 
3 1.125 
4 1.0625 

5 1.03125 
6 1.015625 
7 1.007813 

The astute reader will notice that is a pattern similar to that underlying the Bondy method. 
In any event, to fit our exponential curve to the development portion, we first subtract unity 
to obtain the development portion of  each link ratio. 

Development Sta~e Link Development 
Stase in Years Ratio Portion 'd' 

12 1 1.5 

24 2 1.25 

36 3 1.125 
48 4 1.0625 

60 5 1.03125 

72 6 1.01562~ 
84 7 1.007812 

0.5 

0.25 

0.125 

0.0625 

0.03125 
0.015625 

0.0078125 
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Then,  as a precursor  to cun 'e  fitting, we take the natural logarithms o f  the development  

portions,  or "d's".  

Development Stage L i n k  Development Lo B of 

Stage in Years R a t i o  Portion 'd' d' 

1~ 1 1.5 0.5 -0.69315 

2a 2 1.25 0.25 -1.38629 

3{ 3 1.125 0.125 -2.07944 

4{ 4 1.0625 0.0625 -2.77259 

6( 5 1.03125 0.03125 -3.46574 

7~ 6 1.015625 0.015625 -4.15888 

84 7 1.007813 0.0078125 -4.85203 

Then,  we fit a line to those logarithms. Standard commercial spreadsheet software produces: 

Development Stage L i n k  Development Log of Fitted Curve Values 

Stage in Years R a t i o  Portion 'd' d' Slope -0.6931 

Intercept 0.0000 

1~ 1 1.5 0.5 -0.69315 

24 2 1.25 0.25 -1.38629 

3{ 3 1.125 0.125 -2.079& 

4~ 4 1.0625 0.0625 -2.77259 

6£ 5 1.03125 0.03125 -3.46574 

72 6 1.015625 0.015625 -4.15888 

84 7 1.007813 0.0078125 -4.85203 
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Then ,  our  'D ' ,  or  deve lopmen t  por t ion  at t ime zero, is the e x p o n e n t  o f  the  intercept,  and  the  
rate o f  reduct ion,  'r '  is the  e x p o n e n t  o f  the slope. Calculating the  exponen t s  and  the  fitted 
curve,  we get: 

Development 

Sta~e 

12 

24 

36 

48 

60 

72 

84 

Stage Link Developmen! Lo~ of Fi,ed Cu~'e Value~ Fi,ed 

m Years Ratio Portion 'd' d' 5lope -0.6931 Cum-e 

[ntercept 0.0000 

1,5 0.~ -0.69315 

1.25 0.2~ -1,38629 = exp/slope ) 

1.125 0.12~ -2.07944D = exp(intercept) 

1.0625 0.0625 -2.77259 

1.03125 0.03125 -3.46574 

1.015625 0.015625 -4.15888 

1,007812 0.007812~ -4.85203 

1 1.50000 

2 0.5 1.25000 

31 1! 1.12500 

4 1.06250 

5 1.03125 

6 1.01563 

7 1.00781 

8 1.00391 

9 1.00195 

10 1.00098 

11 1.00049 

12 1.00024 

13 1.00012 

14 1.00006 

15 1.00003 

16 1.00002 

17 1.00001 

18 1.00000 

19 1.00000 

20 1.O000C 

21 1.0000C 

22 1.0000C 
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Then ,  for reference we compu t e  the  tail factor us ing  bo t h  the  'quick'  formula  usable for 

smaU remain ing  ' deve lopmen t  por t ions ' ,  and  by mul t ip lying the  fifteen fitted link ratios that  
make  up the  tail. 

Quick Formula Tail 

1 +1x(.5^8)/(1-.5) = 1.00781 

I 
Product of 8-22 Links 1.00783 

As  one  can see, the  difference is negligible. 

5.3.2 A m o r e  rea l i s t i c  e x a m p l e  

T h e  previous  example  was contr ived to make  the  ma thema t i c s  clear. Cons ider  the  following 
set o f  more  realistic data. 

Development 

Sta~e 

12 
24 
36 
48 
60 
72 
84 
96 

Sta~e 
in Years 

Link 

Rauo 

1 2.000 
2 1.250 
3 1.090 
4 1.050 
5 1.040 
6 1.030 
7 1.028 
8 1.020 

A cun-e can be fit to the  data us ing  the  m e t h o d o l o g y  employed  in the previous  example.  

Development 
Stage 

12 
24 
36 

48 
60 
72 

84 
96 

108 

Stage Link 
in Years Ratio 

Fitted Cun-e Values ] Fitted Fit 
Slope -0.4415 Curve Error 
Intercept -0.5723 

Development Log of 
Portion 'd' d' 

1 0.0000 

0.25 -1.3863 
0.09 -2.4079 

0.05 -2.9957 
0.04 -3.2189 
0.03 -3.5066 

0.028 -3.5756 
0.02 -3.9120 

0.018 -4.0174 

1 2 1.3628 -0.6372 
2 1.25 r = exp(slop~ 0.643042 1.2333 -0.0167 

3 1.09 D =  exp~ntercepO 0.56422 1.1500 0.0600 
4 1.05 1.0965 0.0465 
5 1.04 1.0620 0.0220 

6 1.03 1.0399 0.0099 
7 1.028 1.0257 -0.0023 
8 1.02 1.0165 -0.0035 
9 1.018 1.0106 -0.0074 

No te  that  the  fit errors exhibit  some  c)clic behavior ,  negative as a group at first, then  
positive f rom 3-6 years, then  negative again at 7-9 year maturit ies.  This  suggests  that  the 
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curve may be  a poo r  fit. Tha t  is bo rne  out  by the relat ionship o f  the tail factor estimates 
with  and  wi thou t  exact fit to the last rink ratio: 

( • u i c k  Formula Tail 
1,,+,Dx(r^lO//(1-r ) = 

Product of 8-22 Est. Links 

I 

1.019108 

1.019226 

After exact fit to last link 
1+.0191 x.018/.01061 ] 1.032403 

Once  again the 'quick approximat ion '  to the tail is a lmost  identical to the  precise tail 
indicated by exponent ia l  decay. However ,  note  that  because o f  the poor  fit o f  the curve near 
the tail, the use o f  I m p r o v e m e n t  2 (exact fitting to the last link ratio) produces  a markedly 
different  tail factor. The  quest ion o f  which  tail factor is bes t  mus t  now be  answered. 

To  do so, I m p r o v e m e n t  3 (fitting the curve solely to the mature  years) is in order. In  this 
case, the  curve will simply be  fit to years 4 (48 months )  and  beyond.  Tha t  produces  the 
following fit; 

Development 
Stase 

48 
60 
72 
84 
96 

108 

Sta~e Link Development Lo~ of Fitted Cun,e Values 
inYears Ratio Portion 'd' d' Slope -0.2073 

Intercept -2.1900 
4 1.05 0.05 -2.9957 
5 1.04 0.04 -3.2189 r = exp(slope) 
6 1.03 0.03 -3.5066 D =  exp0ntercepO 
7 1.028 0.028 -3.5756 
8 1.02 0.02 -3.9120 
9 1.018 0.018 -4.0174 

0.812748 
0.111915 

Fitted Fit 
Curve Error 

1.0488 -0.0012 
1.0397 -0.0003 
1.0323 0.0023 
1.0262 -0.0018 
1.0213 0.0013 
1.0173 -0.0007 

Which  produces  the following tail estimates: 

Quick Formula Tail 
l+Dx(r^l~)/(1-r/= 

Product of 10-24 Est. 
Links 

I 
After exact fit to last link 

1.075166 

1.075813 

1 +.075x.018/.0173 I 1.078035 
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Due to the low fit errors, as long as the 48-120 development triangle data that generated the 
link ratios is credible, this would strongly suggest that a tail factor of  around 1.075 is needed. 
Note also that the 'quick approximation also works well in this instance. In summary, this 
example illustrates the importance of  restricting use of  the fitted curve to the portion of  the 
development data that it can reasonably fit. 

5.3.3 Advantages  and disadvantages of  this method v 

A primary advantage of  this method is it's simplicity. The assumption of  exponential decay 
is relatively easy to understand. The calculations have moderate complexity, but an 
illustration of  the fitted values can readily give laypeople comfort that the method is being 
executed correcdy. Of  note, this method is 'asymptotically equal' to both McCleuahan's and 
Skumick's methods, yet is much simpler to execute. That also leads to it's major 
disadvantage. Because it assumes such a quick decay of  the [ink ratios (exponential decay is 
faster decay than l / x ,  l / x  2, l / x  3, etc.), it can easily underestimate the tail. 

5.4 Sberman's Method - Fitting an Inverse Power  Curve to tbe Link 
Ratios 

This method, the l a s t  17 of the curve fitting approaches to be discussed, was first articulated 
by Sherman [2]. Sherman noted TM, while fitting a curve from the McCleuahan-Skumick- 
Exponential Decay family, that the 'decay ratios' (ratios of  successive development portions 
of  link ratios) were not constant as suggested by expoential decay. Rather, as one went 
further out in the development pattern, the decay ratios rose towards unity (i.e. there was 
less and less decay as one went further out in the curve). Looking at the data, it appeared 
that asymptotically, the decay ratios approached unity. Based on this, he posited an 'inverse 
power' curve of  the form l+aXt b (t representing the maturity in years) for the link ratios. 
Sherman then investigated the quality of  curve fit to actual industry data for several families 
of  cmn-es, including the inverse power culn-e. The family that he found generally fit best 
were the so-caned 'inverse power' culx-es. 

The process of  fitting an inverse power curve is very similar to that used to fit the 
exponential ctuve, excepting that the 'independent variable' used in the curve fit is In(t). 
More specifically, the identity 

In(l+d-1) = In(d) = In(l+aXtb-1) = In(axt b) = In(a) + bxln(t) 

can be used to create an opportunity to base the fitted curve on a simple regression. 

17 Sherman also discussed the fitting of a lognormal curve to the cumulative paid (or implied cumulative 
paid) and the fit of a logarithmic curve to the link ratios. However, the lognormal fit does not lend itself to 
easy spreadsheet mathematics, and the logarithmic fit to the link ratios does not produce a unique tail 
factor. Further, a Sherman discussed, the inverse power curve is a preferable approach. 
~8 Mr. Sherman discusses this in Section III of [3]. 
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Unfortunately,  this author is no t  aware o f  any simple closed form approximat ion to the tail 
this curve generates,  so the tail factor mus t  be estimated by multiplying together  the 
successive link ratios after the tail begins until the impact  o f  additional link ratios is 
neg~gible. 

5.4.1 A n  e x a m p l e  

This may best  be  illustrated by using the initial dataset used for the exponential  decay 
approach: 

Development Stage Link 

Stage in Years Ratio 

12 1 1.5 

24 2 1.25 

36 3 1.125 
48 4 1.0625 

60 1.03125 
72 ~ 1.015625 

84 1.007813 
The first step is to calculate the deve lopment  por t ion o f  each link ratio and take natural 
logarithms o f  the result. 

Development Sta~e Link 

Sta~e in Years Ratio 

12 1.5 

24 1.25 
36 1.125 
48 4 1.0625 

60 5 1.03125 
72 6 1.015625 
84 7 1.007813 

Development Log of 
Portion 'd' d' 

0.5 -0.6931 

0.25 -1.3863 
0.121 -2.0794 

0.0625 -2.7726 

0.03125 -3.4657 
0.01562. -4.1589 

0.0078125 -4.8520 
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T h o s e  will represent  the  ' dependen t  variable'  in our  regression.  T h e n  for the  i n d e p e n d e n t  
variable, we take natural  logar i thms o f  the  deve l opmen t  s t age /beg inn ing  matur i ty  for  the  
link ratio in years. 

Development 

Stage 

24 

3C 

4{ 

6( 

7] 

84 

Stage 

in Years 

Link Development Lo~ of Log of 

Ratio Portion 'd' d' Stage in Yrs 

'X' W' 

1.5 0.5 -0.6931 0.0000 

1.25 0.25 -1.3863 0£931 

1.125 0.125 -2.0794 1,0986 

1.0625 0.0625 -2.7726 1,3863 

1.03125 0.03125 -3.4657 1,6094 

1.015625 0,015625 -4.1589 1.7918 

1.007813 0.0078125 -4.8520 1.9459 

Then ,  we c o m p u t e  the  regression parameters .  

Development Stage Link Development 

Stage in Years Ratio Port/on 'd' 

12 1 12 0.5 

24 2 1.25 0.25 

36 3 1.12~ 0.125 

48 4 1.062~ 0.0625 

6C 5 1.0312~ 0.03125 

72 6 1 .01562~ 0.015625] 

84 7 1.007812 0.0078125 

Log of 

d' 

LX' 

-0.6931 

-1.38631 

-2.0794 

-2.772( 

-3.4651 

-4.158S 

-4.852( 

Losof  

Stage inYrs 

'3" 31ope = 

0.000£ [ntercept = 

0.6931 = exp(intercp9 

1.0986 

1.3863 

1.6094 

1.7918 

1.9459 

Fitted Curve Parameters 

-2.1051~ =b 

-0.20881 

0.811553 
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Following that,  we c o m p u t e  the  fitted curve values and  the  fit error. 

Development Stage Link Fitted Curve Parameters 

Sta~e in Years Ratio 

Slope = 

12 1 1.5 Intercept = -0.20881 

24 2 1.25 a = exp(intercept) 0.811553 

36 3 1.125 

48 4 1.0625 

60 5 1.03125 

72 6 1.015625 

84 7 1.007813 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

lg 

2£ 

21 

2~ 

-2.10512 =b 

And,  the taft factor es t imates  are: 

Fitted Tail = 1.056977 

Fitted Fit 

Zurve Error 

1.8116 

1.1886 

1.0803 

1.0438 

1.0274 

1.0187 

1.0135 

1.0102 

1.008C 

1.0064 

1.005~ 

1.0042 

1.0037 

1.0031 

1.0027 

1.0024 

1.0021 

1.0018 

1.0016 

1.0015 

1.0013 

1.0012 

0.3116 

-0.061z 

-0.0447 

-0.0187 

-0.0038 

0.0030 

0.0057 

Exact Fit to last link 

1 +0.056977 x0.007813/0.0135 

= I 1.032975[. 

E v e n  with the  utility this adds m the fit, the  initial fit p roduces  a tail factor o f  over  1.05, 
w h e n  the previous  exponent ia l  decay analysis sugges ted  only 1.00781. The  exact  fit 
correction, though ,  does  p roduce  a n u m b e r  that  is m u c h  closer to the  theoretical tail. 
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Again,  one  approach  is to fit solely to the  mature  years. Tha t  approach  p roduces  the  

fol lowing regression calculations: 

Development StaRe Link Developmenl Los of 

, Stage in Years Ratio Portion 'd' d' 

~'X' 

48 4 1.0625 0.0625 -2.7726 

60 5 1.03125 0.03125 -3.4657 

72 6 1.015625 0.015625 -4.1589 

84 ~ 1.007813 0.0078125 -4.8520 

Lol~ of Fitted Curve Parameters 

Stage in Yrs 

W' Slope = 

1.3863 Intercept = 

1.6094 a = exp(intercpt) 

1.7918 

1.9459 

-3.69867 =b 

2.413854 

11.17696 

A n d  then  it p roduces  the  following fitted ctm-e: 

Development! 

• Stage 

4{ 

6( 

7] 

84 

Sta~e Link 

in Years Ratio 

Fitted Curve Parameters Fitted 

~kll~re 

Slope = -3.69867 =b 

4 1.0625 Intercept = 2.413854 1.0663 

5 1.03125 a = exp(intercpO 11.17696 1.0290 

6 1.015625 1.0148 

7 1.007813 1.0084 

8 1.0051 

9 1.0033 

10 1.0022 

11 1.0016 

12 1.0011 

13 1.0008 

14 1.0006 

15 1.0005 

16 1.0004 

17 1.0003 

18 1.0003 

19 1.0002 

2C 1.0002 

21 1.0001 

22 1.0001 

Fit 

Error 

0.0038 

-0.0022 

-0.0008 

0.0006 

And ,  the  tail it produces ,  a l though it remains  h igher  than  the  theoretical  tail (at a certain 
level, the  slower decay o f  the  inverse  power  curve as compa red  to an  exponent ia l  curve  

makes  it inevitable that  it will p roduce  a h igher  tail) is m u c h  closer to the  theoretical tail. 

Fixed Taft= 1.017077 

Exact Fit to last link 

1 +0.017077 x0.007813/0.0084 

= [1.0158841 
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5.4.2 The  more realistic e x a m p l e  

G o i n g  back to the  exponent ia l  decay, a tail was fit to the  m o r e  realistic link ratios s h o w n  

below: 

Developmenl 

Stage 

12 

24 

36 

48 

60 

72 

84 

96 

108 

StaRe Link 

in Years Ratio 

1 2 
2 1.25 

3 1.09 

4 1.05 

5 1.04 

6 1.03 

7 1.028 

8 1.02 

9 1.018 

As  in the  previous  example,  we fit an  inverse power  curve: 

Development Stage Link Development Log of 

Sta~e in Years Ratio Portion 'd' d' 

'X' 

12 2 0.0000 

24 ~ 1.25 0.25 -1.3863: 

36 1.09 0.0 c, -2.40791 

48 4 1.05 0.05 -2.99571 

6C 5 1.04 0.04 -3.2189 

7,7 6 1.03 0.02 -3.5066 

84 7 1.021 0.02~ -3.5756 

9~ 8 1.02 0.0,~ -3.9120 

10~ 91 1.018 0.01~ -4.017z 

Lo[[ of 

Stase in Yrs 

W' Slope = 

0.000C Intercept = 

0.6931 = exp(intercpt) 

1.098~ 

1.3862 

1.6094 

1.791~ 

1.945~ 

2.0794 

2.197~ 

Fitted Curve Parameters 

-1.82497, =b 

-0.18424 

0.83174 

A n d  then  we c o m p u t e  the  fitted curve values for the  link ratios that  compr i se  the  tail. Since 
the  link ratios decay so slowly, we project  thirty years o f  addit ional  deve lopmen t  ins tead o f  
fifteen. 
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Development 

Stage 

24 

3~ 

4~ 

6£ 

72 

84 

96 

10~ 

Stage 

in Years 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24, 

2.: 

2C 

2~ 

2{ 

2~ 

3( 

31 

3~ 

32 

34 

3.= 

3( 

37 

3{ 

3c~ 

Link Fined Curve Parameters 

Rado 
I 

,3lope = 

2.00C,!Intercept = 

1.25C a = exp(mtercpt) 
I 

1.0% 
I 

1.05C 
i 

1.04C 
i 

1.03C 
I 

1.028 
I 

1.02G 
i 

1.018 

-1.82492 =b 

-0.18424 

0.83174 

Fitted 

C u ~ r e  

1.8317 

1.2348 

1.1120 

1.0662 

1.0441 

1.031( 

1.014~ 

1.0111 

1.0151 

1.0124 

1.010~ 

1.008~ 

1.007; 

1.006~ 

1.005~ 

1.0052 

1.0047 

1.0042 

1.003~ 

1.0035 

1.0032 

1.003C 

1.0027 

1.0025 

1.0023 

1.0022 

1.002G 

1.0019 

1.0018 

1.0017 

1.0016 

1.0015 

1.0014 

1.0013 

1.0013 

1.0012 

1.0011 

1.0011 

1.0010 

Fit 

Error 

-0.168. ~ 

-0.015; 

0.022( 

0.0162 

0.0041 

0.001( 

1.023~ 

1.018~ 

-0.002~ 
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Tha t  p roduces  the  following tail data. 

Fitted Tail = I 1.114487 

I 

= I 1.136502 

For  compar i son ,  the  final 'bes t  es t imates '  us ing  the  exponent ia l  decay were in the  1.03-1.05 
range. But,  those  bes t  es t imates  were based o f f  a fit to just the  mature  years. So, let us  fit 

the curve solely to the  48+  m o n t h  data. 

Development 

Stage 

48 

60 

72 

84 

96 

108 

Stage 

m Years 

Link Development Log of Log of 

Ratio Portion 'd' d' Stage m Yrs 

'X' W' 

41 1.051 0.05 -2.9957 1.3863 

5 1.04 0.04 -3.2189 1.6094 

6 1.031 0.03 -3.5066 1.7918 

7 1.028, 0.028 -3.5756 1.9459 

8 1.01 0.02 -3.912C 2.0794 

9 1.018, 0.018 -4.0174 2.1972 

Fitted Cuta'e Parameters 

Slope = -1.2810~ =b 

Intercept = -1.1868~ 

a - exp(intercpt / 0.305171 

However ,  in this case, the  tail is even higher,  per  the  fit 

Development Stage Link 

Stage mYears Ratio 

Slope = 

48 4 1.05 Intercept = 

60 5 1.04 a = exp(mtercpt) 

72 6 1.03 

84 7 1.028 

96 8 1.02 

108 9 1.018 

10 

11 

12 

13 

Etc. 

Fitted Cuta,e Parameters 

-1.28108 =b 

-1.18688 

0.305171 

Fitted 

Curve 

1.0515 

1.038~! 

1.0307 

1.0252 

1.0213 

1.0183 

1.016C 

1.0141 

1.0126 

1.0114 

Etc 

Fit 

Error 

0.0015 

-0.0011 

0.0005 

-0.002~ 

0.0013 

0.0003 
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Multiplying the link ratios that comprise the tail factor together, the estimated tail is: 

Fitted. Tail = 1.208566 

Exact Fit to last link 

1 +0.2086 x0.018/0.0183 ] 1.20518 

So, this illustrates how this method is generally more conservative than the exponential 
decay method. 

5.4.3 Advantages and disadvantages of Sherman 's  method 

Relative to the other crux-e-fitting methods, this method's primary strengths and weaknesses 
stem from it's source, although that is mitigated by the fact that in choosing the form of the 
mathematical curiae family that was used (the inverse power cuB-e), Sherman relied heavily 
on actual data. Specifically, he noted that exponential decay factors flattened heavily (i.e., 
rose toward unity) at later ages. So, he chose the inverse power curve as his model to reduce 
the decay at later ages. In a sense, Sherman designed the inverse power curve with an eye 
toward mathematically correcting an observed deficiency in the exponential decay method. 
The approach he used to correct exponential decay 19 was merely to find a curve that roughly 
matched the data he obsein-ed. So, since the inverse power approach is based on actual 
properties of  the observed development link ratio curves, and appears to have superior fit to 
the data, it should arguably be a better predictor of  the tail. But on the other hand it also 
gives no single simple assumption (such as decay proportional to development portion size) 
that we can test the data against. In other areas, the fit looks a little more mathematically 
complex to the outsider, but is no more computationally difficult for the practitioner than 
exponential decay of  the link ratios. 

5. 5 Sherman's Revised Method - Adding Lag to the Inverse Power Curve 

In his study of  the inverse power curve, Sherman [3] noted that the fit could sometimes be 
improved by adding a lag parameter to the curve. He used the formula 

l + d  ~ l+aX(t-c) b. 

In this case, the mechanics of  fitting the curve are somewhat more complex. An example 
will illustrate the process. 

19 Sherman effectively replaced 1+ D r '  from exponential decay with l+axt a' . Note that a in the inverse power 

curve plays the same role as D in exponential decay, so really he just replaced r t , wath a constant decay ratio of 

r by tb'with a decay rate of ((t + l )+  t) b , which is asymptotically one. 

380 Casualty Actuarial Society Forum, Winter 2006 



Estimating Tail Development Factors 

5.5.1 E x a m p l e  o f  f i t t i ng  a n  i n v e r s e  p o w e r  c u r v e  w i t h  l a g  

W e  first set the  lag equal  to o n e  (unity) to beg in  the  process ,  t hen  fit the  an  inverse  p o w e r  
curve  reflect ing that  lag 

Development Stage Link Development Log of Stage 

Stage in Year~ Rauo Portion 'd' d' Minus Lag Stage in Yrs Lag = 

3lope = 

48 4 1.05 0.05 -2.9957 3.0000 1.098~ Intercept = 

60 5 1.04 0.04 -3.2189 4.0000 1.3861 = exp(intercp~ 

72 6 1.03 0.03 -3.5066 5.0000 1.6094 

84 7 1.02~ 0.028 -3.5756 6.0000 1.791{ 

96 8 1.0] 0.02 -3.9120 7.0000 1.9455 

108 9 1.01~ 0.018 -4.0174 8.0000 2.0794 

LogofRev. Fitted Curve Parameters 

1 

-1.0273 =b 

-1.8324 

0.1600 

T h e n  we  c o m p u t e  the link rat ios o n  the  fitted curve,  and  the  total squa red  fit e r ror  as well  

Development 

Stage 

48 

6O 

72 

84 

96 

108 

Stage 

in Years 

Link Fitted Curve Parameters Fitted Fit Squared 

Ratio Lag = 1 Curve Error Error 

Slope = -1.027387872 =b 

1.05 Intercept = .1.832444677 1.0385 -0.0115 1.32E-04 

1.04 a = exp(intercpt) 0.160021887 1.0306 -0.0094 8.79E-05 

1.03 1.0254 -0.0046 2.12E-05 

1.028 1.0217 -0.0063 4.00E-05 

1.02 1.0189 -0.0011 1.22E-06 

1.01~ 1.0167 -0.0013 1.58E-0~ 

2.84E-04 

W e  note  that  the total  fit e r ro r  associa ted  wi th  a lag o f  o n e  is .000284. 
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Next, in order to estimate the optimum lag, we use a bisection process, foUowing the process 
above for different potential lags; finding the lowest value of  the squared error across a 
group of values; and progressively narrowing the range. The computations were as follows, 
and only 7 steps were needed. For reference, at each step of  the process the lowest value of  
the fit error as well as the two adjacent values (the three values generated by the lag points 
that will be carried to the next step of the process) are in bold. 

gtalge 1 
Squared Squared Squared 

Lag Error Lag Error La~ Error 

-1 7.06E-04 -0.5 1.58E-04 

-1 7.06E-04 -o.5!  1.58E-04 -0.25 4.86177E-05 

( 1.32E-05 o 1.32E-05 o 1.32454E-05 
2.84E-04 o .5]  9.22E-05 0.25 3.28903E-05 

7.50E-04 1 2.84E-04 0.5 9.22146E-05 

1.08E-03 

Sta~e 5 Sta[~e 6 

Squared Squared Squared 

Error La~ Error La 8 Error 
4.8617VE-05 - 0 . 1 2 5  2.2949E-05 - 0 . 0 6 2 5  1.62499E-05 

2.2949E-05 -0.06251 1.625E-05 -0 .03125 1.43034E-05 
i 

1.32454E-05 0 1.3245E-05 0 1.32454E-05 
1.72333E-05 0 . 0 6 2 ~  1.366E-05 0.03125 1.30419E-05 

3.28903E-05 0 . 1 2 5  1.7233E-05 0 . 0 6 2 S  1.36599E-05 

Squared 

Error Final Selection 0.02 
1.32454E-05 
1.30389E-05 

1.30419E-05 
1.32502E-05 

1.36599E-05 

Stage 2 StaRe 3 

Sta~e 4 

Lag 

-0.2~ 

-0.125 
( 

0.12~ 

0.2~ 

Stage 7 

Lag 
C 

0.015625 

0.03125 

0.046875 

0.0625 

Note that as the fit error changes little near the minimum point, a rounded value is 
acceptable. 
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T h e n ,  t h a t  l ag  v a l u e  m a y  b e  u s e d  in  t h e  f ina l  c u r v e  fit. 

Development 

Sta~e 

48 

6C 

72 

84 

9~ 

10~ 

Stase Lmk 

m Years Ratio 

1.05 

1.04 

1.02 

Fitted Curve Parameters 

lO~ 

11 

1~" 

13 

14 

15i 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

1.02~ 

1,0f 

1.01~ 

La~ = 

~lope = 

[ntercept = 

= exp(intercpt) 

0.02 

-1.253797784 =b 

-1.23628766 

0.290460507 

Fitted Tail = 1.230663894 

Exact Fit to last link 

1+0.2307×0.018/0.0185 

= 1.224464865 

Fitted 

Curve 

1.0511 

1.038~ 

1.0307 

1.0252 

1.0214 

1.018~ 

1.016~ 

1.014a 

1.012 c 

1.011~ 

1.010{ 

1.009; 

1.009( 

1.008.: 

1.007, 

1.007g 

1.006~ 

1.006~ 

1.006( 

1.0055 

1.005, 

1.0051 

1.004 c. 

1.004~ 

1.004 

1.004 

1.004~ 

1.003! 

1.003~ 

1.003( 

1.003~ 

1.003~ 

1.003: 

1.003~ 

1.0031 

1.002! 
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Which provides a shghdy smaller tail. 

Fitted Tail = I 1-2306 

5.5.2 Advantages and disadvantages of introducing lae in the inverse power cma-e 

Summarizing, we can note that while the lag factor may sometimes mitigate the size of the 
tail, the inverse power in general tends to produce a higher tail than the exponential fit. 
Although it has not been illustrated herein with actual data, the inverse power curve also 
generally indicates higher tail factors than McClenahan's and Skumick's methods, as those 
methods tend to produce results that are very similar to that of the exponential decay a'. As 
before, the inverse power curve's main attraction is that it simply seems to fit the data better. 
However, in introducing lag it is clear that much computational complexity is added. The 
practitioner should evaluate whether the additional complexity produces large gains in the 
accuracy of the estimated tail factor. 

6. SUMMAR Y 

Several different methods for assessing tail development were presented, as well as some 
refinements. Hopefully, this will help the reader in his or her actuarial practice. 

2o That is because they are simply based on exponential decay of the payments rather than the link ratios. A 
little analysis will show that their decay patterns are about equal for 'large' maturities. If in doubt, simply 
consider their asymptotic properties. 
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Appendix 1-Tail Factor Metbods Based on Counts 

A.1 Introduction 

Although they are less commonly used, there are several methods for estimating tail factors 
that are based on counts. Among these are the Sherman-Diss method, the projected unpaid 
severity method, and what is really a older year ultimate loss selection method instead of a 
tail factor method for unexpectedly low open counts that is based on maximum possible 
costs per claim. All of these methods do have demonstrated limitations, though. So, it is 
just as important to understand the limitations of each method as it is to understand the 
methods themselves. 

A.2 The Sherman-Diss Method 

The Sherman-Diss method described in [4] is a specific example of what could become a 
class of methods that project the open claim counts at future times, and the cost per claim at 
each future period. For the first step, this method involves projecting the likelihood that 
each 'mature' (near the tail maturity) workers compensation claim will still be open next year, 
the following year, the year following that, etc. using life (mortality) tables and the claimant's 
current age. Then, the indemnity (wage replacement) benefits each would receive in each 
future period (if they are still alive to collect benefits as estimated using the life table) is 
estimated using each worker's current annual benefit, plus an estimate of any inflation in the 
benefit (should any be allowed under the law of the injured worker's state). The total 
indemnity tail would then be calculated by extending the probability of each claimant's 
survival at each future period (the expected open claim counts) times the annual indemnity 
benefit. For the medical benefits allowed claimants under the workers compensation laws, 
the probability of sun'ival to each future period is extended by the current medical inflated 
by an appropriate medical inflation factor. The extension of probability of survival times 
medical benefits produce the dollars of medical tail. 

A.2.1  Pros  a n d  c o n s  

Due to the complexity of the calculations and the status of this discussion as an appendix 
rather than the main paper, an example will not be provided. However, some discussion of 
this and the other methods in this appendix is certainly in order. 
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When Sherman and Diss compared their method to other tail factor methods (primarily the 
curve-fitting methods) on some specific workers compensation data, they found that it 
produced much higher tail factors than the other methods. However, when they tested their 
method retrospectively against actual dollar emergence on some Western state fund data, 
they found that as claimants achieved advanced ages (roughly at thirty to forty-plus years of  
development) the medical became much higher than that predicted by their method. Per 
their studies, it appears that as claimants achieve advanced ages, unexpected (at least per life 
tables and medical) additional development occurs because the main injury may cause related 
illnesses that are exacerbated by age and because family or spousal care for severely injured 
claimants must be replaced by nursing home care as the caregivers age and become infirm. 
So, at least for direct and unlimited workers compensation benefits, it appears that many 
common methods produce an inadequate tail, but that this method does not fully solve the 
problem. 

Also note that this 'open claim count' method is suitable only for fines where benefits are 
paid as long as claims remain open. To this author's knowledge, the only fines of  insurance 
that have that feature are workers compensation and disability. 

Further, this method was designed for direct and unlimited claim costs, when most insurers 
purchase some form of specific excess reinsurance that caps the insurer's costs at some 'net 
retention'. Note however, that method could be revised by accumulating the total projected 
costs paid to each claimant and eliminating the claim once the net retention is reachedZk In 
so doing, each claim would be effectively capped at the retention. 

Lastly, this method only directly produces a tail factor for the mature years. I f  there is a low 
volume of claims remaining open in the older years (as is often the case), the results of  this 
method will not be a reliable statistic for projecting the tail on the later years (i.e., they will 
lack credibility). 

Qualifications aside, this method does create a powerful tool in the right circumstances. 
Futher, as time goes by it is possible that other 'remaining open count'-based methods will 
be developed. 

21 Of note, it is also appropriate to build in any projected costs that exceed the limit of per claim reinsurance 
purchased. 
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A.3 The Unclosed Count Method 

This method also requires qualifications, but is worth discussion. Just as in workers 
compensation, the open status of  a claim is related to payments. In most other lines the 
majority of  payments occur at the time of  claim closing. So, it is reasonable to suppose that 
there would be a method based on the number of  claims yet to close and the average cost of  
each of  those claims. Of  course, while it may be relatively easy to estimate the number of  
claims that will close in the future as long as the actuary is certain that no further IBNR 
claims will materialize; it is usually very difficult if not impossible to estimate the average 
costs of  closing each claim. However, in some limited circumstances, the average paid loss 
per closed claim of the oldest accident year may have reliably and permanently plateaued. In 
those specific circumstances (and only those circumstances), it would be appropriate to 
multiply the number of  unclosed claims by the average paid loss per closed claim from the 
latest twelve months for the given accident year. 

A.3.1 Pros and cons  

This method cannot be discussed without discussing the tremendous detraction posed by 
blithely assuming that the current average paid loss per closed claim will equal the average 
cost of  disposing of  the open claim inventory. The author has personally seen general 
liability data of  about 48 months maturity and fairly low volume where the average paid per 
claim had leveled off  at around $5,000 per claim, where only four claims were open, but they 
were all $20,000+ claims. One major problem was that the maturity was only 48 months. 
So, the actuary is strongly cautioned to use this only for data of  at least 96 months maturity, 
preferably 120 months, and to carefully review whether the remaining open claims are of  the 
same type, class, average demand, etc. as the claims closed between, say, 96 and 120 months. 

The actuary is also cautioned that if  the data volume is not overwhelming large, the 
percentage of  claims left open for the older years now may not match the percentage of  
claims left open at 120 months or so on the more recent years once they reach the 120 
month stage. For example, if  only four or so claims are left open on the older years, they 
will lack statistical validity (a form of credibility) in predicting what will be open when the 
more recent years reach the same development stage. Therefore, they will lack validity in 
predicting the tail factors for the more current years. 

All that being said, under the right circumstances this can be a useful method. One must 
simply make sure that the set of  underlying assumptions hold in whatever circumstance the 
actuary is using this method. 

Casualty Actuarial Society Forum, Winter 2006 387 



Estimating Tail Development Factors 

A.4 The Maximum Possible Loss Method 

This method is a variant of  the unclosed count method. It, however, does not  so much 
create a taft factor as it does establish a maximum tail for the older years. The core idea of  
this method is that, given that the maximum net liability of  an insurer is some net retention 
'R', the liability for all the open claims should not  be more than the sum of  R-paid to date 
across all the open claims. So, to use it, given that an accident year is sufficiently mature for 
no IBNR claims to be reasonably possible, the remaining amounts to reach the retention (R- 
paid to date) are summed across all remaining open claims in the accident year. The result is 
not  so much an estimate of  the tail factor as an upper bound on tail development for that 
specific year. So, if  application of  the tail factor to a given year suggests more development 
than is 'possible' per the remaining amounts to reach the retention in the accident year, the 
ultimate unpaid loss for that accident year might be capped at the amounts remaining to 
reach the retention. 

In the (fairly unusual) event that there are enough claims left open for this to be a statistically 
valid predictor of  the development of  the more recent years, it could be used in estimating 
the tail factor for all the accident years. But, one would have to be certain that this finding 
was statistically consistent with the initial tail factor analysis. For example, if the initial tail 
factor came from a curve fitting, it might be reasonable statistically that the curve fitting was 
simply using the wrong curve. However, if the initial tail factor came from a 'paid over 
disposed' method that also used the actual data in the triangle itself, the tail findings would 
suggest the data is intemaUy inconsistent. In that case, greater care must  be taken to 
understand which method is most  accurate for the tail factor to be applied to the more 
recent years. 

A.4.1 Pros and cons  

This method improves on the average unpaid loss method by virtue of  the fact that the 
amount  to reach the retention need not be estimated. Rather, it is fact. However, it only 
produces an upper bound, not  an actual best estimate. 

Like the average unpaid loss method, there are often statistical reliability issues when making 
inferences about the tail factors of  the more recent years. But, one cannot  readily dispute 
the results as an upper bound for the older years on which the method is apphed, at least as 
long as one is certain the prospect of  additional IBNR claims is immaterial. So, like the 
average unpaid loss method, one must  be very careful to make sure the proper assumptions 
hold when using it. But, unlike the average unpaid loss method, it has far more certainty 
surrounding the loss sizes. 
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Appendix 2-Developing Case Reserves on the Older Years 

This method is also not  so much a method for estimating the tail factors to use in incurred 
or paid loss development as it is a method for estimating ultimate losses in the very mature 
years. The scenario this addresses is that of  a medium-to-low credibility (medinm-to-low 
volume of  losses in relation to the net retention) loss triangle. In that scenario it is not 
unusual for the remaining unpaid loss in the mature to vai T significantly depending on 
whether a large claim, or a few large claims, or no large claims happen to have occurred and 
still be open in the late development stage. In such circumstances, the standard application 
of  a tail factor may not  work simply because there are not  enough open claims in the mature 
years, or even open claims expected in the tail factor, for the law of  large numbers to apply. 
In that case, some recognition of  the specific cases remaining open (assuming no further 
reopenmgs or IBNR claims) will make the resulting ultimate loss predictions for the older 
years more accurate. 

The process is fairly simple. Given a ratio of  what it actually costs to close cases vs. the case 
reserves held from the 'paid loss to reserve disposed of'  method, one simply multiplies that 
ratio times the case reserve to obtain an estimate of  the unpaid loss on each of  the very 
mature years. The ultimate loss estimate for each of  those years would simply be the derived 
unpaid loss estimate plus the paid-to-date for each )Tear. 

A word of  caution is in order, however. Remember that this method was used to estimate 
the ultimate loss because the law of  large numbers did not  work. Therefore, the unpaid 
losses derived using this method lack credibility in estimating the tail factor for the less 
mature years. So, if this method is used because the remaining unpaid losses are driven by 
'luck of  the draw '=, it is illogical to use the unpaid losses from this method to estimate a tail 
factor for the less mature years. 

Pros  a n d  c o n s  

This method's  inherent advantage is it's usefulness in low credibility situations. It's 
disadvantage is that it does not  truly produce a tab factor, just some estimates of  ultimate 
loss for the older years. Further, it assumes no reopenings or true IBNR claims. So, it must 
be used with great caution and respect for it's limitations. 

22 The astute reader will note that the adjusted case reserves are exactly what is used to develop a tail factor 
in the 'paid loss to reserve disposed of  method. But note that in that instance the tail is presumably based 
on case reserves that are large enough to have reasonable credibility. 
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A DATABASE IN 3-D 

Alfred D. C o m m o d o r e ,  ACAS 

Abstract 

Three-dimensional geometry and calculus are useful conceptual and analytical 
tools for working with valuaaons of insurance statistics. Geometry can be used to 
provide a pictorial representation of a database and illustrate differences between 
calendar, exposure~accident and policy year concepts. Calculus can be used to estimate 
on-level, trended and developed statistics used in ratemaking and reserving. Also, three 
dimensions lead to several practical two-dimensional methods when the generaliO~ of- 
three dimensions is not required 

1. INTRODUCTION 

An insurer keeps track of various information over the course of  doing business. 
Databases are maintained recording the result of  exposure base, premium and elalms 
transactions for financial reporting, statistical reporting, ratemaking and reserving 
purposes, for example. The goal of  this paper is to develop a pictorial representation e r a  
database as three dimensions (3-D) with values attached to points. The result is a simple, 
conceptual and analytical tool useful for working with valuations of  insurance statistics. 
Our approach is summarized as follows: 

• Section 2 develops 3-I) as a pictorial representation of a database. 
• Section 3 includes conceptual applications of  Section 2 using an example from 

ratemaking. 
• Section 4 includes closing comments. 
* The Appendix provides further discussion of the 3-D approach and analytical 

applications of  Section 2 using methods from basic calculus. 

2. A DATABASE IN 3-D 

A variety of  exposure base, premium and claims transactions make up a database 
and are collected to produce reports. In this section we: 1) represent a database as points 
in 3-D with values attached; and 2) represent a report as a collection of  points in 3-D with 
a collective value attached. 

2.1 A Database m 3-D 

For the transaction: "On a policy issued 1-1-04 covering a claim incurred 8-1-04, 
pay $5,000 on 2-1-05."; we identify three dates and a value: 1) "1-1-04", the policy date 
or date the policy was written or issued; 2) "8-1-04", the exposure date or date the policy 
was in force and exposed to loss; 3) "2-1-05", the valuation date or date the transaction 
was made; and 4) "$5,000 paid losses", the amount and type of statistic. By defining 
xyz-spaee coordinates x, y and z as policy date, exposure lag and valuation lag, 
respectively - so that x+y and x+y+z are defined as exposure date and valuation date, 
respectively - we can represent the transaction as the "valued" point in 3-D, ((1-1- 
04,7,6)~5000), length 1 on an axis equal to 1 month. 
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TABLE 1 
TRANSACTION, ((X,Y,Z),S), 3-D COOROINA~S 

Combinations Intemretations* 
• x, y, z • policy date, exposure la~ valuation lag 
• x+y, x+y+z * exposure date, valuation date 
• y+z, z • policy age, exposure age 
• Policy, exposure and valuation date are synonymous with issue/written, in-force and transaction date, respectively. Exposure 
date and lag become claim (or accident) date and lag. respectively, when dealing with claim statistics. Note the two 
ig~rpretetions for the z-coordinate as a ~ of la[g and a~e. 

2.1.a. In 3-1) represent the transaction: "To a policy written, exposed and 
valuated at times x~ xo+yo and xo+yo+z~ respectively, assign so 
statistic units. "; as valued point ((x~y~zQ),So). 

Table 1 lists the various definitions and interpretations o f  xyz-coordinate combinations 
used throughout the paper. We plot several transactions on a policy issued 1-1-04 next, 
length 1 on an axis equal to 1 month a 

2.1.a.1. 

2.1.a.2. 

2.1.a.3. 

2.1.a.4. 

2.1.a.5. 

2.1.a.6. 

The initial transaction to record $4,320 in written premium is made at 
issue so that the valuation date equals the policy date; ((1-1- 
04.0.0).4320). 
The transaction to record $12 in earned premium on 3/1/04 is made 
at the time the policy is in-force on 3/1/04; ((1-1-04,2,0),12) 2 
On 6/1/04 corrective transactions are made since the policy was 
actually written for $8,640 and recorded in error. Transaction ((1-1- 
04.0.5).4320) corrects for written premium transaction 2.1.a.1 and 
transaction ((1-1-04,2,3), 12) corrects for earned premium transaction 
2.1.&2. 
An endorsement for additional coverage for $400 written premium is 
processed mid-term on 9/1/04; ((1-1-04.8.0).400). 
The policy is cancelled without penalties on 12/1/04 with a full 
refund of  a month's premiums unearned on the base policy for 
$720(=$8,640/12) and on the endorsement for $100(=$400/4); ((1-1- 
04.0.11).-720) & ((1-1-04,8.3).-100). 
The transaction to record a claim incurred 8/1/04 is made on 8/15/04; 
((1-1-04,7,0.5),1). 

A transaction's policy and valuation dates are recorded in practice. Exposure date 
- unless associated with a date of  loss - is not recorded and is an abstract concept we 
introduce for purposes of  the presentation. Imagine that an annual policy is made up of  
365 separate daily policies, 8,760 separate hourly policies, etc., until we view the policy 
as a post 3 continuum. We introduced exposure date so that transactions tracked by policy 
in practice could be tracked by post in theory. 

i We invile the reader to express each transaction in the form provided by 2.1.a by identifying the three 
dates and value, and plot all transactions in the same 3-D diagram. 
2 This transaction is "impficit" as no actual record is made to record earnings. 
3 Mnemonic for"a Policy e ~ e , d  to loss at a point in Time". 
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We extend 2.1.a to apply to a database of  transactions. For simplicity we assume 
all the transactions in the database are for the same statistic. 

2.1.b. In 3-D represent a database of transactions for a single staastic by 
D=(P~. 

In 2.1.b, P is the collection of points, (x,y,z), resulting from plotting transactions 
using 2.1.a andf i s  the rule assigning value to points ofP,  f(x,y,z), derived as the sum of  
the statistic over all transactions assigned to point (x,y,z). Thus, D=(PO9 is a collection of 
points of  the form, ((x,y,z)J(x,y,z)). Figure l(a) is a generic database D with the f-values 
assumed color-coded to simplify the illustration. Note: 

2.1.b.1 

2.1.b.2 

2.1.b.3 

D ranges from the collectible (e.g., written premium transactions in company 
records) to the hypothetical (e.g., written premium projections). 
D (or more precisely P in D--(PJ)) appears differently by type of  statistic. 
Under some basic conventions D is: 1) confined to the x-axis for written 
statistics, 2) confined to the xy-plane for earned statistics, and 3) 
unrestricted in space for claim statistics. 4 
D appears differently by coverage for the same statistic. Private Passenger 
Auto Physical Damage paid losses close rather quickly when compared to 
Workers Compensation paid losses. Transaction activity that occurs long 
after the accident date is reflected in larger z-coordinate values for points in 
D. Thus, we would expect D* for auto paid losses to be generally closer to 
the xy-plane than D** for Workers Compensation paid losses. 

2.2 ,4 Report m 3-£) 

A report involves collecting statistical information from specific database 
transactions. In 3-D this amounts to identifying a subset o f  space along with the total 
statistic value associated with that subset. The report: "Accident Year 2001 as of  
12/31/2002 totaled $31.3 Million Paid Losses."; is a very basic type of report we call a 
valuation characterized by: 1) a data organization (i.e., Accident Year 2001); 2) a 
status (i.e., "as of  12/31/2002"); and 3) a statistic level (i.e., $31.3 Million Paid Loss). 

2.2.a. In 3-D represent a valuation by O. V.s. 

In 2.2.a, O and V (O containing V) are subsets of  space determined by the valuation's 
data organization and status, respectively, and level s assigned to V is the total statistic 
for points PnV. 5 We often write V for ON.s, 0 and s understood. 

4 The conventions arise under the assumptions writt~!, earned and claim statistic l~msactions ((x,y,z),s) are 
made only at policy inception (i.e., x+y+z equals x), moment in force (i.e., x+y+z equals x+y) and after the 
date of loss (i.e., x+y+z exceeds x+y), respectively, and so reduce to forms ((x,0,0),s), ((x,y,0),s) and 
((x,y,z>0),s), respectively - as~lming non-negative coordinates x, y and z. 2.1.a.3 includes 
¢ounterexamples for the written and earned statistic conventions. As for a ¢ounterexample to the claim 
statistic convention, confine hypothetical Iransactions to record ultimate claim counts to the xy-plane, 
5 If PmV.~, then s is undefined. We consider two valuations distinct if they differ at either of 0 or V but 
equivalent if their V's have the same intersection with P. We can talk about the level or equivalence (to 
another subset) of an arbitrary subset A by considering the valuation where AffiOfV. 
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TABLE 2 
VALUATION, O.V.S, ILLUSTRATED 

Valuation Data Organizations, 
O. as Subsets of Svaee 

• Policy issued at time t with term k: All points 
with policy date x=t and exposure lag y at most k, 
(t,y<~z). 
• Post/Accident at exposure lag e on a policy issued 
at time t: All points with policy date x=t and 
exposure&evident lag y=e, (t,e,z). 
• Exposure/Accidents at time t: All points with 
exposure/accident date x+yft, (x,t-x,z). 
• Time t: All points with valuation date x+y+z=t, 
(x,y,t-x-y). 
• Policy, Exposure/Accident or Calendar Period tl 
to t2: All points with policy, exposure/accident or 
valuation date from tl to t2, inclusive. 

Valuation Statuses, 
V. as Subsets of 0 

• As of date t:. V is all points of 0 with valuation 
date x+y+z at most t. 

• At policy age a: V is all points of 0 with policy 
age y+z at most a. 

• At exposure/accident age e: V is all points of O 
with exposure/accident age z at most e. 
• Over ealeadar period tl to t2: V is all points of O 
with valuation date x+y+z from tl to t2, inclusive. 
• At ultimate: Vequals O. This is equivalent to t, a 
and e becoming infinite in the as-of-date-t, at- 
policy-age-a and at-exposme-age-e statuses, 
rospeetively. 

Note: Level s is the eolleotive value of Pc~V. See Table I for various date, la~ and a~e defmitious. 

Thus, using 2.2.a our valuation example is represented by drawing all points, (x,y,z), with 
accident date x+y in the year 2001 and assigning $31.3 Million Paid Losses to the subset 
with valuation date x+y+z at most 12/31/2002. 6 We close this section with comments on 
the primary valuation data organizations and statuses, which we define with drawing 
instructions in Table 2 and illustrate in Figure 1. 

2.2.a.1. 

2.2.a.2. 

2.2.a.3. 

2.2.a.4. 

2.2.a.5. 

A policy provides coverage during its terra, coverage at any point mid-term 
referred to as a post 7. Figure l(b) shows the annual policy written 12/31/04, 
which by Table 2 is drawn as all points with policy date x equal to 12/31/04 
and exposure lag y at most 1 year. The post (and the claim it covers) on 
6/30/05 is drawn as all points in the policy with exposure/claim date x+y 
equal to 6/30105. 
Art exposure s is coverage from all policies in force at a point in time and so 
concurrent claims are covered by an exposure. Figure l(b) shows the 
exposure (and concurrent claims) on 1/1/03, drawn as all points with 
exposure date x+y equal to 1/1/03. 
A point in time, itself, is drawn as all points with a given valuation date. 
Figure l(b) shows time 12/31/02 as all points with valuation date x+y+z 
equal to 12/31/02. 
Finally, policies, exposures and times combine to form periods of  the same. 
Figure 1(13) shows Calendar Year (CY) 2002, Exposure/Accident Year 
(E/AY) 2003 and Policy Year (PY) 2004. 
Valuation statuses for data organizations in 2.2.a.l-2.2.a.4 indicate which 
points to collect for a total statistic. As-of-date, at-policy-age and at- 
exposure-age statuses collect transactions for a data organization thru a 
certain valuation date, age of  underlying policies and age of  underlying 

6 The valuation is drawn in Figure 2. 
7 Introduced in Section 2.1 and equal to the intersection of a policy and an ~ as point sets. 
s We use the term "exposure" as a coverage concept. Other uses (e.g., type of insured, insurance coverage 
limit) are found in the literature. 
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exposures, respectively. For example, in Figure l(c) the status: 1) as-of- 
date-wffil/1/04 collects transactions with valuation date x+y+z < 1/1/04; 2) 
at-policy-age-w=18 months collects transactions with policy age y÷z < 18; 
and 3) at-exposure-age-w=18 months collects transactions with exposure age 
z _< 18. Over-ealendar-period status identifies transactions made on or 
between two dates, and at-ultimate status takes into account all transactions, 
past, present and future. 

3. APPLICATIONS 

In this section we apply D--(P,f) conceptually using the geometry of P to illustrate 
ideas l~om ratemaking. Analytical applications, where we consider howfbehaves on P 
using calculus in 1, 2 or 3 dimensions as required, are reserved for the Appendix. 

XYZ Company proposes a rate change for PY 2004 to be effective 1-1-04. They 
estimated ultimate losses and ultimate earned premiums (written using the current 
manual) for PY 2004 to be $45.0 million and $67.3 million, respectively. With a 
permissible loss ratio target of 65%, a rate level change of 2.9%(=45.0/67.3/0.65-1) was 
indicated. We sketch their approach as follows, using Figure 2 as a guide. 

3.a. LOSS PROJECTION (Figure 2(a)): PY 2004 ultimate losses are 
estimated from AY(=EY) 2001 losses. As of the latest valuation, 12- 
31-02, AY 2001 paid losses are $31.3 million. Development to 
ultimate would add another $9.6 million. Finally, $4.1 million trends 
or conforms the AY 2001 experience to the PY 2004 basis. The result 
is $45.0 (=31.3+9.6+4.1) million in estimated ultimate losses for PY 
2004. 

3.b. PREMIUM PROJECTION (Figure 2(b)): PY 2004 ultimate earned 
premium is estimated from CY 2001 earned premium. CY 2001 
earned premium was $60.3 million. Of that amount, $45.9 million was 
earned on policies written under the current manual that became 
effective 1-1-01. The remaining $14.4 million would be increased 
$0.6 million if underlying policies had been written using the current 
manual. Finallly, $6.3 million trends the CY 2001 experience to the 
PY 2004 basis. The result is $67.3 (--60.3+0.6+6.3) million in 
estimated ultimate earned premium for PY 2004. 

In practice we might use several AYs and CYs in pricing PY 2004, applying some 
weighted average of the results to derive our final estimate. Moreover, instead of using 
AY 2001 losses and CY 2001 premium, we could use losses and premiums from the 
same data organization. 
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4. CONCLUSIONS 

We represented a database pictorially by assuming three dates and a statistic value 
could be associated with each transaction. Note: 

4.a. In constructing a database in 3-D we first draw all policies then populate those 
policies with transactions. A policy, exposure and post/claim are infinite in height. 
We generally assume D consists of points with non-negative xyz-coordinates. By 
allowing z to be less than zero we can represent transactions made prior to policy 
issuance. For example, transaction ((1-1-04,0,-1),$1,000) is a $1,000 premium- 
renewal received 1 month in advance of the 1-1-04 renewal date. 

4.b. In 3-1) the origin should, in principle, correspond to a date before or on the 
effective date of the very fu'st policy written. Policy term may be unlimited (e.g., a 
title insurance policy) and the picture for a policy is independent of the claim 
"trigger" (e.g., occurrence or claims-made triggers). 

4.c. The list of valuation data organizations and statuses in Table 2 is not exhaustive, 
but representative of the valuations that often arise in practice. A variety of 
valuations can be found in Schedule P of the NAIC Annual Statement. CY, AY, 
EY and PY valuations can be found in Schedule P, Parts 1, 2, 6 and 7, 
respectively. Moreover, we consider PY, EY and CY the fundamental data 
organizations, with AY a special case of EY when we are dealing with claim 
statistics. 

4.d. Development triangles in Schedule P for AY, EY and PY are on an as-of-date-t 
basis. We could also set up development triangles on an at-policy-age or at- 
exposure/accident-age basis. All three approaches partition a data organization 
using planes at ever increasing height in the z or"development" direction. 
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FIGUR£ 1 
A DATABASE IN 3-0 
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FIGURE 2 
RATEMAKING ILLUSTRATED 
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APPENDIX 

ANALYTICAL APPLICATIONS 

Let D=(P~ be a database in 3-D 9 and O.V.s. a valuation. We assumeset V and 
densityfsuffieiently defined so that we may calculate s as the integral off.over V. We 
apply densities for various statistics for D in 1-, 2- and 3-dimensions, dimensions limiting 
valuation variety.I° Five basic analytical applications are described below: 

A.1. Developea~ On-Level & Trended Statistics: Developing involves 
determining the change in level for two valuations of  the same data 
organization. On-leveling involves determining the change in level for 
some V under different rules J~ & fz. Finally, trending involves 
determining the change in level for VI & V2 under the same ruler. 

A.2. Average Value and Average Point: Define the average value of V as 
s/IV [ and the average point or center of  V as that with average 
coordinates, v*=(x*,y*,z *) 11. The center provides the average policy, 
exposure/claim and valuation date, for example. The cemer forJ~x,y) 
constant or uniform over certain V in the xy-plane is readily determined 
as follows: 

a. For V a rectangle or parallelogram, x* is the midpoint of  the 
x range and y* the midpoint of the y-range for V. 

b. For V an isosceles right triangle, x* is 1/3 into the x-range 
and y* 1/3 into the y-range of  V, starting from the vertex at 
the fight angle. 

For the examples that follow, in xyz-space length 1 on an axis equals 1 year 
and x--0 and x=l correspond to dates 1/1/00 and 1/1/01, respectively. 

EXAMPLE 1. As an example of an on-level calculation, we estimate the 
change in earned premium for CY 2001 at actual and current rate levels, 
given: i) policies are annual term; ii) the manual effective 1/1/01 
represents the current rate level; and iii) DEr for earned premium is 
confined to the xy-plane with density fc.~(x,y)=(4000x)($100) for policies 
written prior to 1/1/01 and fF.p(x,y)=(4000x)($100)(1.2), thereafter./2 In 
Figure 3(a) we show CY 2001 split by rate level. The desired factor is 
On-level EP .-" Actual EP, calculated as follows: 

9 With R the set of real numbers, fP:  11 °-+ R ~ implies D is the graph off, a subset of R3xR 1 . 
~o Two subsets A and B of space are said to be equivalent ffthey have the same intersection with P, written 
"A~B". For example, D confined to the x-axis, xy-plane and xz-plane implies CY-=E/AY~PY, CY-=F_./AY 
and E/AY-=PY, respectively. 
n IV]> 0 is the content (i.e., length, area or volume) of V and v* is defined only when ~ on V with x*, y* 
and z* calculated as the integral of xfls, yflS and zfls over V, respectively. 
~2 Here: i) 4000x is the density for written exposure base units (e.g., car years, payroll, stadium seats, etc.) 
earned uniformly with respect to lag y; ii) $100 is the average written premium; and iii) factor 1.2 
represents a 20% increase in rate level on 1/1/01. 
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I 2-y Jl JO 480,O00xdydx] OEP /AF_,P = f f 480 ,000 xdxdy I 1 1-2 l*2-x /[ f f 400,000 xdydx + 
00 ,,'l-y O0Jl-x 

1.059= $480,000 / [$400,000(1/3)+$480,000(2/3)]. 

I f  exposure writings were uniform instead of  increasing (e.g., replace 
4,000x with constant 4,000 in the two densities) then the on-level factor 
becomes: 

1.091 = $480,000 / [$400,000(1/2)+$480,000(1/2)1. 

Example 1 is taken from [1]. In that paper the authors perform the same on-level 
factor calculations, however using a geometric orientation based on the traditional 
parallelogram method. For D confined to the x'y-plane, the transformation sendin~ point 
(x,y) to (x+ y,y) results in illustrations under the traditional parallelogram method, i3 

EXAMPLE 2. As an example of  a trend calculation, we estimate the 
change in ultimate loss ratios between PY 2001 @12/31/01 and PY 2004, 
given: i) ½-year policy terms; and ii) 3% accident year loss cost trend; and 
iii) 1% on-level policy year premium trend. We assume: 

• ultimate loss and ultimate earned premium densities take the forms 
fttL(x,y~--wl×(1.03) x+r and fEp(x,y)=wp×(1.01) x, respectively, w, 1 
and p exposure base unit, loss cost and premium constants, 
respectively14; and 

• loss and premium levels for V are estimated by s-~-/(v*)lVI where v* 
is the uniform center of  V, so that l(103)x*+Y°/p(1.01)x" is the loss 
ratio estimate for V. 

Applying (A.2.a) & (A.2.b) to Figure 3(b), the centers under uniformity 
for PY 2001 @12/31/01 and PY 2004 are (1.389,0.222) i5 and (4.5,0.25), 
respectively. The desired trend factor estimate is therefore 1.06378 (= 
(1.03 (4.75-1.611) / 1.01(4'5"1'389)). 

Example 2 supports a common calculation made in practice. Using actual in 
place of approximate integrations results in a trend factor of 1.06380. Integration has the 
advantages of following directly from the density assumptions and differentiating 
between V's with the same uniform center. 

~s For example, apply the transformation to Figure 3. Several 2-D plotting methods also arise from 
"collapsing" 3-I). In particular, we note mappings of (x,y,z) to 2-D planes (x,y), (x+y,y), (x,y+z), (x+y,z) 
and (x+y+z,y). 
14 1(1.03) t is the result of an exponential fit of a series of accident year average loss costs. With the on- 
leveling adjustment treated separately, p( 1.01 )t is the result of an exponential fit of a series of policy year 
average earned premiums at current rate level. 
is The center for EY 2001 is the weighted average of centers for its components from PY 2000 and PY 
2001. Thus, solving for (x,,yo) in: (1.25,.25) = .25(1-1/6,.50-1/6)+.75(X~yo); yields (x,,yo)=(1.389,.222). 
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EXAMPLE 3. We provide the calculations behind the XYZ Company 
loss and premium values presented in 3.a and 3.b from Section 3. In 
Figure 3(b) we show the "footprint" of  C/E/AY 2001 and PY 2004 in the 
xy-plane. Assume ½ year policy terms. Let DpL for paid losses be 3- 
dimensional with density, fpL(x,y,z)=196,000($400)e '°3~+mSy'z. Let DEp for 
earned premium be 2-dimensional with density f~,o(x,y) = 
196,000($575)e "°4x for x prior to 1/1/01 andf~,~(x,y) -- 196,000($600)e '°4X 
thereafter. The three loss and three premium integrations required are as 
follows: 

O.ff2-y3-x--y 

AY2001_PL@12/31/02= ~ ~ IfPL(x,y,z)dzdxdy=$31,329,071 
01-y 0 

0.52-yoo 

A Y2OO a_PL@ultimate= f I ~ f PL (x" y' z)dzdrdy= $40,852'442 
O l - y O  

0.55 *o 

PY2004_PL@ultimate= f l f fpL(x,y,z)dzdrdy=$45,036,196 
0 4 0  

.5 1 .52-y 

CY2OOa_EP@actua'= I I fEPa(x'y)dxdy+ I I fEPb(x'y)drdy 
Ol -y  0 1 

=$14,444,165 + $45,977,558 --- $60,421,723 

.5 2 - y  

level = [ fgpb(x,y)dxdy = $61,049,730 CY2OOI_EP @on 
1-y 

i 0.5 

PY2OO4_EP@on-level= IfFA~b(x,y)dydx=$67,301,286. 
0 

Example 3 densities were develo ~ed from assumptions on the rate at which 
units ere written and earned, and the relationship between premiums and losses for a 
given risk. The densities took the formsfE~x,y) : w(x)e(x,y)p(x,y) andf~,L(x,y,z) = 
w(x)e(x,y)l(x,y)q(z), where: 

• w(x)=10~e'°lqs the rate at which units are written at time x; 
• e(x,y)=l.96--2(.98) is the rate at which units written at time x are 

earned at lag y. The integral of  e(x,y)dy over term 0<y<1/2 equals 
98% due to a 2% cancellation rate on average; 

• p(x,y) is the post premium: the product of  a base rate ($575 for x prior 
• • 03x to 1/1/01 and $600 thereaRer) and premmm relatwlty e . 

• l(x,y) is the~ost loss cost: the product of  base loss cost $400, loss cost 
relativity e' ~x and inflation factor thru the date of  loss e "°~(~+y). 

• q(z)-- e "Z is the portion of loss l(x,y) paid at lag z. The integral ofq(z) 
over 0~z<~ equals 100%. 
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FIGURE 3 
EXAMPLES I, 2 & 3 DIAGRAMS 
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Reinsurance Involving Partial Risk Transfer 
Addressing the Accounting Difficulties 

S p e n c e r  M.  G l u c k ,  F C A S ,  M A A A  

Abstract: The paper proposes a measure for risk transfer, the portion or percentage of risk transferred ("PRT'O 
that varies between 0% and 100%. Such measure would provide a superior basis for a binary decision between 
reinsurance accounting and deposit accounting (with a likely critical value of 50°/0). A preferred approach would be 
to use PRT as the basis for continuous accounting. The paper differentiates between "natural" reinsurance 
contract provisions that do not limit risk transfer and "structural" contract provisinns that may limit risk transfer. 
The PRT measures the risk-limiting impact of the structural provisions by comparing risk distributions before and 
after the application of structural provisions. PRT is 100% for contracts without structural provisions. The risk to 
be measured is defined as potential adverse deviation from the amounts reflected in accounting values. Fixed 
reinsurance contract provisions that are accounted for without uncertainty provide no potential for adverse 
deviation and do not affect PRT. The paper includes a discussion and critique of the FAS 113 definition of risk 
transfer, and finds two fundamental flaws: (1) the definition is based on an absolute measure of the riskiness of the 
ceded cash flows, so that reinsurance of low risk subject portfolios often fails even though nearly all the risk is 
transferred, while reinsurance of high risk subject portfolios often passes even though the risk transfer is severely 
lhnited; and (2) the focus on reinsurer profitability includes fixed amounts that are unrelated to risk, and thereby 
includes an implicit standard for reinsurance pricing that is an inappropriate role for accounting. The paper includes 
examples of the application of PRT and several other risk transfer measures to a range of underlying cash flows and 
reinsurance contract structures. 

Introduction and Summary 

Reinsurance  contracts  frequently conta in  any n u m b e r  o f  risk l imit ing provis ions ,  w h i c h  may  call 

in to  ques t ion  the  validity o f  reduc ing  ne t  losses and  p r e m i u m s  by  showi ng  t h e m  as ha~fing been  

ceded  to  the reinsurance,  i.e. " re insurance  account ing" .  Many  or  m o s t  such  contrac ts  cede 

some,  bu t  n o t  all o f  the  re levant  risk, w h i c h  the  au thor  descr ibes  as partial risk transfer.  1 

The re  are concerns  that  s o m e  partial risk t ransfer  cont rac ts  have  b e e n  used  to manipula te  

financial s ta tements .  Ye t  there  are many  legitimate uses o f  partial risk t ransfer ,  and m o r e  that  

may deve lop  in the  future as sophis t ica ted  tools  for  risk m a n a g e m e n t .  Fur the rmore ,  there  may  

be  risks for  w h i c h  reasonably  pr iced  re insurance  is available only wi th  risk-limiting provisions.  

T h e  author ' s  v iew is that  oppor tuni t ies  for  financial s t a t emen t  

manipula t ion  arise f r o m  inaccurate accounting.  T h e  au thor ' s  p roposa l  for  m o r e  accurate 

account ing  would  substantially eliminate oppor tuni t ies  for  manipu la t ion  while allowing the  

legit imate use and fur ther  d e v e l o p m e n t  o f  s t ructured risk t ransfer  techniques .  

l Afore common terms are "structured risk" and "finite risk". The author prefers partial risk transfer, which 
corresponds more directly with the basis of the approach. Partial risk transfer includes many traditional risk sharing 
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Currently, the accounting choice is whether or not the contract in question has enough risk 

transfer to qualify as reinsurance, and therefore be eligible for reinsurance accounting. FAS 

11311], for U.S. GAAP, and SSAP 62[2], for SAP, 2 provide guidance for making this choice. 

The author's central thesis is that the degree of  risk transfer in a reinsurance contract can be 

described by a relatively simple and intuitive measure called "the percentage of  risk transferred" 

or "PRT', which should be the basis for the above decision. The central provisions f o r  

defining risk transfer in FAS 113 ate found to be fundamentaUy flawed. 

Section I: 

• develops the underlying basis for the central thesis, 

• contrasts the approach with FAS 113, 

• defines the approach specifically, and 

• applies the approach, along with several others, to a range of hypothetical cash flow models 

and h3~pothetical reinsurance contracts. 

The second aspect of  the central thesis is that the two available accounting choices ate 

appropriate for 100% risk transfer and 0% risk transfer, but that neither is truly appropriate for 

partial risk transfer. Section II illustrates how the measure developed in Section I can be used t o  

develop appropriate accounting for partial risk transfer contracts. 

2 The relevant language is generally identical m FAS 113 and SSAP 62. For brevity, references hereinafter will be to 
FAS 113. 
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Ou~ne 

Section I - Defining and Measuring Risk Transfer in Reinsurance Contracts 

1.1 Risk Transfer and Accounting 
1.1.1 Risk and Balance Sheets/Income Statements 
1.1.2 Risk and Net Premiums and Losses 
1.1.3 Reinsurance Accounting vs. Deposit Accounting 
1.1.4 The Relevant Risk 
1.1.5 Partial Risk Transfer 

1.2 The FAS 113 Definition of Risk Transfer - Discussion and Critique 
1.2.1 Measuring Risk Rather than Risk Transfer 
1.2.2 Re-Pricing the Reinsurance 

1.3 The Percentage of Risk Transfer ("PR 7") Approach 
1.3.1 Defining 100% Risk Transfer: Natural vs. Structural Contract 

Provisions 
1.3.2 The Applicable Cash Flows 
1.3.3 The Risk Model 
1.3.4 Adverse Deviation from Accounting Values 
1.3.5 Risk Measures and Co-Measures I 
1.3.6 The Percentage of Risk Transferred ("PRT"') 
1.3.7 Some Advantages of the PRTApproach 

1.4 Risk Measures and Co-Measures II 
1.4.1 Definitions and Examples 
1.4.2 Measures and Co-Measures Applied 

1.5 Examples Comparing Risk Transfer Measures: PRTvs. "Absolute" Risk 
Measures 
1.5.1 The Risk Transfer Measures 
1.5.2 The Subject Business Models 
1.5.3 The Reinsurance Contracts 
1.5.4 Risk Transfer Measures Appfied to Subject Business 
1.5.5 Risk Transfer Measures Applied to Quota-Share Contracts 
1.5.6 Risk Transfer Measures Applied to Structured Aggregate Excess 

Contracts 
1.5.7 Conclusion 

1.6 Examples Using PR Twith Various Risk Measures and Co-Measures 
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Section II  - Accounting for Partial Risk Transfer Reinsurance 

2.1 The Case for Continuous Accounting 

2.2 Goals of Partial Risk Transfer Accounting 
2.2.1 Undistorted Income and Equity 
2.2.2 Proper Characterization of Ceded Premiums and Losses 

2.3 Bifurcation to Achieve Continuous Accounting 
2.3.1 Proportional Bifurcation 
2.3.2 What Contracts Should Be Bifurcated? 
2.3.3 Should Risk Transfer Be Reevaluated? 

2.4 Comments  on Related Topics 
2.4.1 Over-funding 
2.4.2 Underwriting Risk and Timing Risk 
2.4.3 Accounting for Retroactive Reinsurance 
2.4.4 Policing 
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Section I - Def in ing  an d  Meas u r i n g  Risk  Transfer  in  Reinsurance Contracts 

1.1 Risk Transfer and Accounting 

The effects of  risk transfer accounting are subdivided into two basic categories: 

• Effects on overall reported equity and income; and 

• Effects on reported net premiums and losses. 

1.1.1 Risk and Balance Sheets/Income Statements 

In the most straightforward case, consider the reinsurance premium net of  ceding commission 

to be the sum of the mean discounted ceded losses and the reinsurer's margin. The initial 

impact of reinsurance on balance sheets and income statements consists of  a cost - the 

reinsurer's margin, and a gain - the difference between the ceded losses and their mean 

discounted value. While reinsurance accounting and deposit accounting differ on the timing of 

the recognition of the cost, our primary focus is on the gain, or more specifically, on the cession 

of incurred losses and loss reserves. The impact on incurred losses will be controlled by the 

impact on loss reserves. 

Loss reserves for most P / C  liabilities are recorded at estimated nominal (undiscounted) value, 

i.e., an estimate of the sum of future outgoing cash flows. It is important to distinguish the 

reserve from the liability itself. The liability is more complex, the sum total of  the insurer's 

obligations under the relevant policies. The reserve is simply a valuation of the liability, possibly 

a surrogate for a market value. 

If  the same future cash flows were not  estimates, but  simply future payment obligations that 

were fixed in amolmt and timing, then it is clear that the value of those obligations would be the 

discounted value of  the future payments, and the liability would be accounted for as such. The 

accounting difference between an at-risk insurance liability and the corresponding no-risk 

liability is precisely the discount. The (unrecognized) discount then is the required risk load. It 
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exists precisely because the liabilities are subject to insurance risk and would not exist if they 

were not. 

Under an "economic value" accounting concept (not currently applicable under U.S. GAAP or 

SAP), the implicit risk margin in the unrecognized discount may be replaced by an explicitly 

discounted reserve and an explicit risk margin. The issues to be discussed subsequently 

regarding ceding the reserve and its associated risk margin would be equally applicable if the risk 

margin were converted from implicit to explicit. 

1.1.2 Risk and Net Premiums and Losses 

For shorter tail business, where loss reserves and their implicit risk margin are small, the choice 

of  accounting will have little impact on overall equity or income. However, the characterization 

of premiums and losses as having been ceded (or not) affects the reported net premiums, losses, 

and loss reserves. Various measures of capital adequacy used by rating agencies, regulators, and 

other publics use net premiums, net losses, net loss reserves, etc. as measures of  the risk to 

which a company is exposed. 3 Accounting for premiums and losses as ceded when the 

corresponding risk has not been ceded, or has been partially ceded, distorts these measures. 

1.1.3 Reinsurance Accounting vs. Deposit Accounting 

When accounting for a ceded reinsurance contract (perhaps we should say a purported 

reinsurance contract), we currently have two options: reinsurance accounting or deposit 

accounting. 

Under reinsurance accounting, reserves are ceded on the same basis that they are established: in 

most cases at tmdiscounted, and therefore implicitly risk-loaded, value. Since the net recorded 

liability for the ceded cash flows is reduced to zero, the underlying assumption is clear - that the 

liability itself has been ceded, both at the recorded estimate and at all other possible outcomes. 
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The risk load has been 100% eliminated, which is appropriate only if 100% of the risk has been 

ceded. Similarly, since premiums and losses have been 100% ceded, capital adequacy measures, 

regulatory ratios, etc. also assume a 100% cession of the related risk. 

For contracts that do not  qualify for reinsurance accounting, the AICPA Statement of Position 

98-713] and SSAP No. 75[4] provide rules for deposit accounting under GAAP and SAP, 

respectively. The "interest method" is prescribed for all reinsurance contracts under SAP. Under 

GAAP, the same method is prescribed except for contracts that transfer underwriting but  not  

timing risk, or that have indeterminate risk. The interest method assumes that no reinsurance 

transaction has occurred, in other words, that 0% of  the risk has been ceded. 

1.1.4 The Relevant Risk 

For equity and income, the choice between reinsurance accounting and deposit accounting 

hinges on whether it is appropriate to eliminate (by cession) the risk load imbedded in the 

carried loss reserves. To discuss whether this risk has been ceded, we must define the relevant 

risk more precisely. What risk does this risk load provide for? 

The author believes that it is fairly clear that the relevant risk is the risk ofinaccura W in the 

estimate that is on the balance sheet. If we consider only downside risk to be important, then it 

is the risk of inadequacy of the estimate. If we view the balance sheet value as a surrogate for 

market value, the risk load is the amount  in addition to the discounted value required to fund the 

mean losses that ah assumer of  the liability would require to compensate for the risk of  

inadequacy in the mean estimate. 

This description of  risk is consistent with a concept of  risk as related to economic or financial 

losses. The risk as defined above is the risk of  the insurer realizing losses subsequent to the 

statement date related to the loss reserves to be ceded. 

3 This paper does not necessarily endorse the validh 3, of any particular capital adequacy measure. For example, 
capital adequac 3" measures that use net premiums as a surrogate for underwriting risk have a number of 
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While the previous paragraphs refer to loss resen'es, we will normally view risk prospectively, i.e. 

at the inception of the reinsurance contract, before statement values are established. How do we 

define the risk of  furore losses? If  the expected losses create an underwriting loss, then actual 

losses worse than expected create a future loss. If the expected losses create an underwriting 

profit, then actual losses worse than breakeven create a future loss. 

All further analysis herein will be based on a definition of risk as adverse deviation from actual 

or expected statement values. For prospective losses, adverse deviation is measured relative to 

expected losses or underwriting breakeven losses, whichever is higher. 

Note that fixed amounts, which create no accounting uncertainty as to their value, are not  

relevant. In particular, ceded premiums, to the extent that they are not  contingent on losses, will 

be accounted for m their normal straightforward manner  with no risk of accounting inaccuracy. 

The size of those fixed premiums, and therefore of the reinsurer's profit margin, does not  affect 

the question of whether the insurer has retained or ceded the risk for its losses, only the question 

of at what cost. Whatever the cost, that cost will be expensed under normal accounting 

procedures, and therefore creates no additional risk for the insurer. 

1.1.5 Partial Risk Transfer 

Many reinsurance contracts have risk-sharing provisions (e.g., retrospective rating, adjustable 

commissions, profit sharing, refundable experience accounts), and /or  risk limiting provisions 

(e.g., aggregate limits, sub-limits, additional premiums). These provisions may reduce, but  not  

necessarily eliminate, the transfer of risk. In such cases, neither of the assumptions underlying 

the available accounting options - 100% risk transfer or 0% risk transfer - i s  precisely accurate. 

The question before us is stated narrowly: Given that we have only these two options, which 

shall we use? A likely answer is: The one that is more nearly accurate. In other words, does the 

contract more nearly transfer 100% of the risk or 0% of  the risk? 

imperfections and potential distortions that shall not be discussed further. 
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In order to answer this question, we need to estimate, for any reinsurance contract, the portion, 

or percentage, of the risk that has been transferred ("/~RT'). In fact, a reasonable definition of 

PRTis  fairly simple, and the modeling required to estimate the value is no more complex or 

difficult than the modeling required to perform risk transfer testing under FAS 113 as currently 

written. Both require the same risk model of  the underl3fing cash flows. 

Once the PR T has been estimated, the choice of  accounting treatment can be decided by 

comparing the PR T to a critical value. A critical value of 50% would seem to best answer the 

question of  which accounting treatment is more nearly accurate, though other critical values 

might be chosen. 

The above test will provide a practical, intuitive answer to the narrow question which will, in the 

author's opinion, represent a significant improvement to current practice. It will minimize the 

degree of accounting inaccuracy to the extent possible under the constraint that we have only 

the two accounting treatments to choose from. Nonetheless, it must be recognized that neither 

of the available accounting treatments is in fact designed for partial risk transfer, and both will 

be inaccurate to some degree. The definition and estimation of the PRTcan also provide the 

basis for practical accounting for partial risk transfer. While this is a larger change to current 

accounting practice, the difficulties that arise from inaccurate accounting for partial risk transfer 

cannot be eliminated until partial risk transfer reinsurance is formally recognized and appropriate 

accounting is promulgated. 

A previous reference to measuring risk transferred by comparing "before" and "after" 

distributions is noted in the report of the CAS Valuations, Finance and Investment Committee 

("VFIC") [5]. The reference is to an approach described for testing the basis risk in catastrophe 

derivatives [6]. 

1.2 The  FAS 113 Definit ion of Risk Transfer  - Discuss ion and Critique 

The well known FAS 113 definition of adequate risk transfer is that it must be "reasonab~possible 

that the reinsurer may realize a significant loss from the transaction" [1]. The determination must be 
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based on all cash flows to the reinsurance contract, whether characterized as losses, premiums, 

expenses, etc., but  transactional expenses and the reinsurer's expenses are not  included) The 

terms "reasonab[ypossible" and "significant ]os~' are not  specifically defined, but  some guidance is 

given and the well known "10/10" rule is frequendy applied to test whether a contract meets the 

FAS 113 definition. 

The 10/10 rule has frequendy been discussed and criticized and a number of potentially superior 

risk measures have been suggested. The author's critique is more fundamental: The FAS 113 

definition of  risk transfer is fundamentally flawed, not just because of problems with the risk 

measures, but because the wrong risk is being measured. 

The two fundamental defects: 

1. The definition of risk transfer does not  contain the concept of risk transfer. Rather, the 

FAS 113 definition sets an absolute standard of  the required level of assumed risk. A 

test of  risk transfer requires a comparison of"before"  and "after" risk. No single 

absolute standard can produce results that are meaningfi,d regardless of  the riskiness of 

the underlying cash flows. 

2. The definition is influenced by fixed profit margins paid to the reinsurer. As discussed 

in the previous section, in determining proper accounting from the cedant's perspective, 

the relevant risk is the risk that the amounts carried in the cedant's financial statements 

are inadequate. Fixed profit margins are irrelevant. Furthermore, it is inappropriate for 

the risk transfer analysis to be influenced by the analyst's implicit second-guessing of  the 

reinsurance pricing, which is unavoidably the case when applying the FAS 113 definition. 

Each of these defects is further explored below: 

1.2.1 Measuring Risk Rather than Risk Transfer 

4 While the definition is stated from the reinsurer's perspective, the exclusion of transactional and reinsurer's 
expenses actually convert it to the cedant's perspective. A more accurate expression would be "reasonably possible 
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A problem that may arise from the FAS 113 definition that has been frequently discussed by 

others is that obvious risk transfers of  low risk portfolios may not pass. FAS 113 provides that 

obvious 100% risk transfer contracts need not be tested. The specific language is that the 

previous test would not apply if "the reinsurer has assumed substantial[r all of the insurance risk relating to 

the reinsured portion of the underling insurance contractF' [1 ]. Unstructured quota-share contracts are 

generally accepted to fall within this "safe harbor". While such contracts need not be tested, it 

would nevertheless be desirable if such contracts would pass the test. 

A number of  practitioners have explored risk measures that should be superior to the 10/10 

rule. Whatever the risk measure, a critical value must be selected, and "obviously risky enough" 

contracts should pass. Even with a fairly low threshold, unstructured quota-shares of  stable, 

profitable business may still fail - the solution will still be imperfect and the exception will still 

be required. 

But the corresponding problems at the other end of the risk spectrum, which have rarely been 

explored, may be even more significant. Imagine that the underlying ceded cash flows are 

extremely risky long-tailed payments. Because of the long tail, the distinction between 

discounted and undiscounted reserves (the implicit risk margin) is large and the choice of 

accounting treatment is highly material. Let us further assume that the reinsurance contract is 

highly structured so that only 20% of the risk is transferred. If  we have set the critical value of  

the risk measure low enough so that a modestly risky quota-share will pass (as we must), then 

20% of the risk on these extremely risky cash flows will also pass. If  so, the cedant will be 

eligible for reinsurance accounting and will record on its books a 100% cession of  the 

relevant reserves including a 100% elimination of  the risk margin, even though in fact 

80% of the risk has been retained -- a material accounting inaccuracy. This example is 

hardly purely hypothetical. 

that the cedant may realize a sigmficantgain from the transaction." 
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The example demonstrates that there is no absolute standard of riskiness, no matter how good 

the risk measure, that can apply equally to aU incoming cash flows which themselves contain 

various degrees of risk. 

1.2.2 Re-Pricing the Reinsurance 

The author has already presented a first principles case that the relevant risk is the risk in the 

cedant's financial statements, and that fixed premium amounts are irrelevant to the issue of  

whether the cedant's risk has been transferred. Risk relates only to uncertainty. 

A significant problem with the FAS 113 definition is that the risk analysis in this approach 

inherently includes an opinion on the appropriateness of the reinsurance pricing. There should 

be no better measurement of  value than the actual price agreed to by a willing buyer and a 

willing seller in a free market. Furthermore, there may be any number of  valid reasons, in 

volatile and cyclical markets, for a buyer to agree to pay a more conservative price at any given 

time. Accounting should be concerned with properly recording the actual price paid, not 

passing judgment on it, and any inherent "re-pricing" of  the reinsurance is undesirable. 

For example, in the past year, we have seen several cases where risk transfer has been questioned 

by auditors for straightforward casualty excess-of-loss contracts without adjustable provisions. 

Assuming that the FAS 113 "safe harbor" does not clearly apply in this case, the auditors were 

simply diligently applying the provisions of  FAS 113. In these cases, the FAS 113 test failed 

simply because the analyst's risk model implied that the reinsurance was overpriced. Apparently, 

the consensus of  the assuming and ceding companies was otherwise. 

1.3 The Percentage of Risk Transfer  ("PR T ~') Approach  

To define PRT's between 0% and 100%, we first require a definition of 100% risk transfer. The 

author presumes that the meaning of 0% risk transfer is self-evident, and no more discussion is 

necessary. 
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1.3.1 Def in ing  100% Risk  Transfer :  Na tu ra l  vs. Structural  Contrac t  Provis ions 

Practitioners have a fairly good idea regarding the meaning of 100% risk transfer as well. The 

safe harbor provision of FAS 113 provides a starting point. Recalling that language, the 

reinsurer must have "assumed substantially all of the insurance risk relating to the reinsuredportion of the 

underling insurance contracts." The definition may be adequate, but could be clarified. For 

example, it should be clear that a traditional per-claim excess-of-loss reinsurance contract is 

covered, even though the per-claim retentions and limits in the reinsurance contract do not  

necessarily correspond to provisions in the underlying insurance contract, and might not  be 

considered as defining the "reinsuredportion." Yet per-claim retentions and limits are not 

generally believed to be risk-limiting structures. 

To more specifically define 100% risk transfer, we introduce the concept of "natural provisions" 

of a reinsurance contract. These would be generally defined as provisions that do not  limit the 

losses ceded to the contract in a way that the cedant's own liability, as it relates to premiums and 

losses that would be ceded to such contract, is not  similarly limited. We introduce the term 

"structural provisions" to refer to provisions that involve risk-limiting or risk sharing. Any 

reinsurance contract containing only natural provisions would be deemed to contain 100% risk 

transfer. 

The author's suggested list of  natural provisions: 

• Percentage multipliers (e.g. quota-share, surplus share); 

• Deductibles, retentions, limits, on a per claim, per claimant, or per risk or per basis; 

• Deductibles, retentions, limits, on a per occurrence basis in some cases; 

• Exclusions applied on a policy or coverage basis; 

• Deductibles or retentions in the aggregate for all or subsets of  the subject losses. 

We describe the losses that would be ceded to a contract applying only the natural provisions as 

being in their "natural form". 
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Structural provisions are those that limit the ceded losses in ways that the cedant's own liability 

for such losses is not  similarly limited or that create additional cash flows contingent upon the 

natural form losses. Common provisions of  this type include: 

• Aggregate limits, applied to the total of  natural form losses or sub-limits applying to a subset 

of  the natural form losses; 

• Corridors, whether applying to the total natural form losses or a subset; 

• Limits on an occurrence basis in some cases; 

• Exclusions on a t3qae of claim basis; 

• Additional premiums; 

• Experience accounts and profit sharing provisions; 

• Retrospective rating; 

• Sliding scale commissions; 

• Limited reinstatements; 

• Reinstatement premiums. 

Neither list is necessarily exhaustive, and new t3~es of provisions may be developed. Ultimately, 

the determination of  whether a provision is considered natural or structural will have to be made 

by applying the basic principles. Hopefially, it will usually be a fairly straightforward matter. 

Note, for example, that per occurrence limits have been included in both lists. In the context of 

catastrophe reinsurance, occurrence limits are natural. There is no cession of  premiums or 

losses that implies that a risk has been eliminated when in fact it has not. On the other hand, in 

the context of  quota-share reinsurance, a catastrophe occurrence limit or exclusion is structural. 

Ceding premiums and losses under the quota-share implies that the risks associated with those 

premiums and losses are also ceded, and the provision limits the risk that is transferred. 

Note that for the most part, aggregate provisions are considered structural. An exception has 

been suggested for aggregate deductibles or retentions as these are not  viewed as risk-limiting. 
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The reader may notice that the list of structural provisions includes a number of  risk-sharing and 

risk-limiting provisions that are common features of traditional reinsurance. In particular, 

limited reinstatements and reinstatement premiums are universal in catastrophe reinsurance and 

common in some other high risk reinsurance; nevertheless, they are technically structural as they 

limit ceded risk in a way that the cedant's own risk is not limited. However, as commonly 

practiced, the exhaustion of  available reinstatements occurs only at very remote probabilities and 

reinstatement premiums are not typically a large percentage of  ceded losses; therefore, the risk 

limiting effect of these provisions is not likely to be substantial. 

Having now defined 100% risk transfer, we are ready to measure partial risk transfer, for 

contracts containing structural provisions. 

1.3.2 The  Applicable Cash Flows 

Given that natural provisions are not risk-limiting, the analysis of  risk transfer is an analysis of  

the impact of  structural provisions. For ease of expression, we will use the familiar terms 

"gross", "ceded", and "net", relative to the structural provisions, with all values reflecting the 

natural provisions. 

Let L be a random vector (i.e. a string of values) representing the cash flows for losses subject to 

a reinsurance contract. 

Gross: 

Let: g(L) = the net present value of the losses that would be ceded to that contract 

applying only natural provisions, gross of  structural provisions. 

For convenience, we have combined the processes of  applying the natural provisions and taking 

the net present value into a single function. 
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Ceded: 

Let: c(L) = the net present value of  the cash flows ceded to the contract, applying all 

provisions, both natural and structural. 

The ceded cash flows may include premium refunds or other favorable cash flows not accounted 

for as ceded losses, e.g. favorable commission adjustments (for compactness, we will refer to all 

such adjustments as refunds). For certain calculations we require these to be separately 

identified. Therefore, we define cr(L) as the net present value of  refunds, and co(L) = c(L) - 

c,(L) as the net present value of  other ceded cash flows, i.e. loss recoveries less unfavorable 

adjustments. 

Net: 

Let: n(L) = g(L) - c(L) = the net present value o f  the net cash flows to the cedant arising 

from natural losses, i.e. the net cash flows due to structural provisions, s 

Also, let no(L) -- g(L) - co(L), and n,(L) = -or(L). As for the ceded, we have separately 

identified the net cash flows arising from refunds. 

FAS 113 requires that all cash flows, no matter how characterized, be induded in the 

analysis. In the above, all such cash flows would be included in c(L), and consequently in n(L). 

That approach can be used here as well; however, fixed cash flows will have no impact. Only 

contingent cash flows, i.e. cash flows that can vary based on the value of  L, are essential. 

1.3.3 T h e  Risk  Model 

Sign convention: Ceded losses under g(L) and c(L) have positive values reflecting positive cash flows to the 
cedant. Positive values of n(L) are unfavorable, reflecting decreased cash flows to the cedant due to the structural 
provisions, For example, if the structural provision is a loss limitation, then c(L) will sometimes be smaller than 
g(L). The resulting positive value of n(L) indicates an unfavorable cash flow effect. If the structural provision is a 
premium refund, then c(L) may sometimes exceed g(L). The resulting negative value of n(L) indicates a favorable 
cash flow effect. 
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As with FAS 113, we require a risk model giving the probability distribution of  L and the 

resulting probability distributions ofg(L), c(L), and n(L). 

Given the book of  business that the insurer expects to write and intends to cede, and the 

reinsurer intends to reinsure, the goal of  the risk model is to reflect all of  the uncertainty in L, 

inchidmg the uncertainty in both the amount and timing of the payments. 

Risk is often sub-divided into "process" and "parameter" risk. 

Process Risk: Given that L is the result of a random process, the process risk refers to the risk 

arising from the randomness of  that process. Typically, the random process will be described by 

a mathematical model which allows the analyst to calculate (often by simulation) the effects of 

the random process. 

Parameter Risk: The remaining risk relates to the uncertainty about the model of the random 

process. The term "parameter risk" is often used to broadly describe this remaining risk. More 

generally, the risk relates to the uncertainty in both the parameters and the form of  the risk 

model. For example, if the total of  the payments in L is modeled as a lognormal distribution 

with a certain mean and variance, there will be uncertainty as to whether the parameters (i.e. 

mean and variance) are correct as well as whether the lognormal is the correct form for the 

distribution. The portion of  the risk model relating to uncertainty in payment timing may be 

more complex and more uncertain in its parameters and form. 

Underlying types of  risk that contribute to parameter risk may include: 

• Data Risks: The amount, stability, and applicability of available data. 

• Market Risks: Uncertain market impact on pricing, underwriting, risk selection. 

• Economic Risks: The impact of  uncertain future inflation, employment, etc. 

Actual risk model structures and estimation are beyond the scope of  this paper. 
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An important exception is that it would be inappropriate to include the risk that the company 

will write a different from expected book of business, e.g., a different mix of classes, coverages, 

policy limits, etc. This is not  a risk that reinsurance is necessarily expected to absorb. Reinsurers 

may include provisions, some of  which may be structural in form, to protect them against the 

cedant altering its book of business. For example, a sub-limit on a hazardous class of  business 

may be set at a level that is remote relative to the intended book, but would be significantly risk- 

limiting if that class were to grow dramaticaUy. The impact of  the provision is appropriately 

measured against the intended book only. 

1.3.4 Adverse Devia t ion  from A c c o u n t i n g  Values 

Adverse deviation is defined relative to the financial statements. TFpicaUy , financial statement 

values correspond to a single loss scenario. Accordingly, we define adverse dexiation relative to 

a base cash flow scenario, corresponding to the expected losses or the underwriting breakeven 

losses, whichever is higher. Let a be the vector representing the base cash flow stream. 

Base Values: 

Gross: Define the base value forg(L) as bg = g(a). Frequently b& = E[g(L)I , but not  

necessarily in all cases. 

Net: Define the base value for n(L) as b ,  = no(a) minus the carried asset for refunds under 

cash flow scenario a (assuming reinsurance accounting). Note that an asset has a negative sign 

relative to net losses. Here we are using the distinction between cash flows related to refunds 

(n o and other cash flows (no). The distinction is necessary since the carried asset for refunds is 

frequently less than n~a) - see example 2 below. If  n~a) were included in the base, it would 
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result in an adverse deviation whenever the refund was less than its expected value, even if no 

asset were carried for the refund. 

Note that bn will often be neither n(a) nor E[n(L)], and may frequently be zero. Two examples 

for illustration: 

1. 

2. 

The structural feature is an aggregate limit larger than Za. n(L) is zero for XL -< the 

limit, and positive for Y L > the limit. E[n(L)] is therefore positive, but  at scenario a, 

there are no net losses, no(a) is zero, and thus bn = 0. 

The structural feature is a premium refund based on an experience account that accrues 

interest. At scenario a, a refund would be due, given accrual of  interest, meaning that 

n,(a) would be negative. Further assume that no refund would be due at scenario a if 

accrual of  interest were ignored. Under these circumstances, normally no asset is carried 

for the premium refund, and therefore bn = re(a) I1 n(a). 

Adverse Deviation: 

The adverse deviations for g(L), n(L), and c(L) are defined as: 

d~ = g(L) - bg , if positive, and zero otherwise; 

dn -- n(L) - bn , if  positive, and zero otherwise; and 

dc=  d , - d n .  

Negative values are eliminated for dg to reflect the basic principal that risk is defined by adverse 

results only. A negative value for d~ indicates that the effect of  structural provisions is more 

favorable than is reflected m the accounting values (typically a premium refund larger than the 

asset - if any - carried for it), which does not  increase the cedant's downside risk. Negative 

values for dn are eliminated so that favorable effects of structural provisions cannot decrease the 

risk transfer measure. 

Note that: 
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g(r )  = n(r)  + c(r); and 

& = d . + d c  

Note  also that i f  fixed cash flows have been included in c(L) and therefore in n(L), they will be 

identical in the base values and all other values and will not  affect the adverse deviations. 

In keeping with prexfiously stated principles, these adverse deviations represent the relevant risk 

we intend to measure. 

1.3.5 Risk Measures and Co-Measures I 

Given a random variable, X, a risk measure, r(X) is a function applied to the distribution o f  X 

that returns a single value. 

Next  assume that X is itself the sum of  a number of  random variables, i.e.: 

X = y X i .  

For a broad class of  risk measures, there are corresponding "co-measures" that can be applied to 

the sub-variables Xi. ~ The most common example of  a risk measure and co-measure is variance 

and covariance. Co-measures provide a mathematically sound basis for allocating risk among 

sub-variables that may be dependant. 

For risk measure r(X), denote the corresponding co-measure applied to the sub-variable Xi as 

ri('Xi). The essential property of  co-measures is additivity, i.e.: 

rpr) = o r, pa) , 

regardless of the nature of any dependencies among the X,~s. 

6 See Kreps [7]. 
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In our specific case, r(dg) = r,(d,) + ride). Thus, co-measures provide a basis for allocating the 

risk in the losses gross of structural provisions to the net and ceded losses after the application 

of  structural provisions. 

Another useful property of co-measures is that, for any constant k, 

if Xi = kX, then ri(Xi)/r(X) = k. 

Thus, a co-measure applied to an x% quota-share is x% of  the risk measure applied to a 100% 

share. 

A more complete definition of  co-measures along with examples of actual risk measures and co- 

measures follows the next section. 

1.3.6 The  Percentage of Risk Transferred ("PRT")  

Simply stated, the PR T is the portion of the risk associated with the natural losses, gross of  the 

structural provisions, which is still ceded after the application of the structural provisions. 

Specifically: 

Let r be a risk measure with corresponding co-measure. 

The percentage of risk transferred is then defined as: 

P R T  = 1.0 r. ( d . )  
r(d g) 

or equivalently, 

C a s u a l t y  A c t u a r i a l  S o c i e t y  Forum, W i n t e r  2006  423 



Reinsurance Involving Partial Bask Transfer 

P R T -  rc(d") 
r ( d g )  

With PR T defined, adequate risk transfer to qualify as reinsurance would be defined as a value 

of PR T m excess of a selected critical value. A natural choice for the critical value may be 50%, 

as previously discussed. 

1.3.7 Some Advantages of the PRTApproach 

1. Risk transfer is reduced m a simple single number with an intuitive meaning. 

2. Safe harbors for obvious risk transfer contracts are an integral part of the risk transfer 

definition, rather than exceptions. 

3. The approach is equally valid regardless of the relative riskiness of  the subject losses. 

4. The approach is unaffected by profit margins and expenses. The approach avoids the 

second-guessing of  the reinsurance pricing that is implicit in the FAS 113 definition. 

1.4 Risk Measures and Co-Measures II 

1.4.1 Definitions and Examples: 

Define a risk measure r applied to a random variable X as: 

fiX) = EI  w(X).  I(X) fl Condition (2(,) l, 
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where l is a linear function and w is a weighting function. Note  that the weights, w, may be a 

function o f  X and are unrestricted as to form. The condition may also be functionally 

dependant on X. 

For a sub-variable X~, the corresponding co-measure is: 

rl (X,;) = E [  w(X) . l ~ )  n Condition (X) 1.7 

Note that the weights and the condition depend only on X, not  Xl, and are identical to the 

weights and condition in r(X). 

As an example, consider variance: 

Variance(X) = EI(X- E(X)fl] = EI(X- E00)" (X- E(X))] 

In this form, the first occurrence of  (X - E(X)) can be considered the weight and the second 

occurrence the linear function. There is no condition. 

Next, consider covariance: 

Covariance(Xi,X) = Variancei(X~) = EI(X- E(X))" ('X~ - E(XO) ] 

Note that the weight is dependant only on X and is identical to the weight used in variance, and 

the linear function is applied to Xi. Thus, covariance satisfies the definition of  a co-measure 

rela five to variance. 

By adding a condition, we define the semi-variance: 

7 This is one formulation consistent with the framework presented m [7]. The separate condition is convenient for 
our use, but could have been subsumed m the weights. 

Casualty Actuarial Society Forum, Winter 2006 425 



Reinsurance Involving Partial Re'sk Transfer 

Semi-variance(X) = E t (X - E(X)) 2 I (X > E(X) 1, 

with the average restricted to the values greater than the mean. The corresponding co-measure 

is: 

Semi-variancei(Xi) = E[ ( X -  E (X) ) .  ('Xl - E(XI)) D (X > E(X)]  

Again, the condition is based on X, not Xi. 

1.4.2 Measures and Co-Measures Applied 

We next consider actual applications, applied to the problem at hand. 

Mean Square Adverse Deviation ("MSAD") 

Define: 

M S A D ( & )  = E[ d8 2 n dg > 0 ]. 

Recall that dg -- g(L) - bg for positive values. Often, bg = E[g(L)I , m which case, 

MSAD(de) = Semi-variance(g(L)). 

The corresponding co-measure applied to dn is: 

MSAD.(d.) = E [ d . . d s g d x >  Ol 

The condition is again based on dg rather than d.. Therefore, the average may (and often will) 

include values of  d .  = 0. 
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Expected Adverse Deviation ("EAD") 

Eliminating the quadratic weight from MSAD leaves us with the simpler Expected Adverse 

Deviation: 

EAD(d~) -- E[ d~ 0 d~ > 0 ], 

with the corresponding co-measure: 

EAD.(d.} = E l & n d g >  0]. 

Tail Value at Risk ("TVaR") 

TVaR is a popular risk measure for capital adequa W. It is similar to EAD, except the 

borderline condition is a percentile of the distribution. Normally, relatively high percentiles are 

used, reflecting a belief that the most significant risk is exposure to extreme events. 

Define VaR-p (&), the 'Walue at Risk," as the pe~ percentile of  the distribution of  dg. 

Then~ 

TVaR-p(d~) = E[ d~ n d g >  VaR-p(dg) ] 

with the corresponding co-measure: 

TVaR-p.(dn) = E I d~ n d, > VaR-p(dg) ] 

Of the above three choices, the author's preference is for MSAD. 

TVaR and other tail-oriented measures are often used for measuring capital needs. In the 

context of measuring risk transfer, the measures have several drawbacks. One is that the 

selected percentile is arbitratT, which may not be desirable for a single measure to be widely 

applied. Anothcr is that these measures, when used with relatively high percentiles, are 

responsive only to a small portion of the distribution, and many structural risk-limiting 

provisions may be ignored. 
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EAD is at the other end of  the spectrum, considering the entire downside of the distribution 

without any greater weight to values in the tail. Most models for pricing risk assume that more 

extreme values have greater impact. 

MSAD, like EAD, includes the entire downside of the distribution, and will therefore be 

responsive to any risk limiting provisions. MSAD is quadratically weighted, so that values 

toward the tail of  the distribution have more impact. It is a relatively conventional risk measure, 

closely related to semi-variance, with the difference that deviations are measured from an 

accounting value which may differ from the mean. 

Some practitioners believe that the quadratic weighting of MSAD does not  give sufficient 

weight to the tail. The structure of  co-measures can accommodate more complex weighting 

schemes, including tail-heavier weights, as well as risk loading methods based on transformations 

of the probability distribution. The VFIC paper [5] discusses two such transforms, the Wang 

Transform [8], and an Exponential Transform [9]. While such transforms are normally applied 

to the entire distribution, they could applied as measures and co-measures to the distributions of 

dg and dn to develop corresponding PRT's. 

1,5 Examples Comparing Risk Transfer Measures: P_RTvs. "Absolute" Risk 

Measures 

The following examples use four measures to evaluate risk transfer: PRTand three different 

"absolute" risk measures. The absolute measures in this case refer to risk measures applied to 

the distribution of reinsurer's profit, as defined by FAS 113. They are described as absolute 

measures since they apply to the riskiness of a single distribution, as contrasted with PRTwhich 

is based on a comparison of riskiness in "before" and "after" distributions. The measures are 

applied to four different illustrative models of underlying subject losses with different degrees of  
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volatility, and up to five different reinsurance contract structures. All measures are based on 

10,000 simulations. 

1.5.1 The Risk Transfer Measures 

In all cases below, the reinsurer's result is calculated according to the FAS 113 rules, i.e., the net 

present value of  all cash flows to the reinsurer, however characterized, but without deducting 

transaction costs and without allowance for the reinsurer's internal expenses. All present values 

are at 4%. We will characterize a net loss to the reinsurer as a negative result. 

1. VaR-90: The reinsurer's result as a percentage of  ceded premium at the 90 th percentile 

(adverse) o f  the distribution (given the above sign convention, this is actually the 10 th 

percentile). Applying a critical value o f  -10% yields the "10/10"  rule. 

2. TVaR-90:  The expected value of  the reinsurer's result as a percentage of  ceded 

premium, given reinsurer's result less than VaR-90. There is no standard critical 

value. 10% of  the ceded premium has been suggested as a "more correct" 10/10 rule; 

however this is invariably less strict than the 10/10 nile. The VFIC paper suggests 

25%, though this seems unusually high? A range o f -10% to -15% appears more in line with 

other measures. 

3. E x p e c t e d  Reinsurer ' s  Def ic i t  ( " E R D " ) :  The expected value o f  the reinsurer's result 

as a percentage of  ceded premium, given a reinsurer's result less than zero, multiplied 

by the probability that the reinsurer's losses are greater than zero. Equivalently: 

ERD = Ixf (x)dx/NPV (Cededpremium) 
x<0 / 

s The VHC paper calculates a TVaR-90 of 42% for a quota-share with 10% volatility, similar to one of the examples 
used herein. However. that quota-share may be under priced. A graph appears to indicate that the reinsurer's 
median discounted profit is zero, meaning that the reinsurer's mean profit will be less than zero, even before 
consideration of transaction costs or the reinsurer's internal expenses. This illustrates the difficulties with using risk 
transfer measures sensitive to the reinsurance pricing. 
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Again, there is no standard critical value. In subsequent discussion we will use a 

range of-1.0% to -2.0%. 

4. PR T, using MSAD as the risk measure. 

1.5.2 The Subject Business Models 

MI: Low volatility, short payment pattern. 

M2: Modest volafilitT, modest payment pattern. 

M3: Higher volatility, longer payment pattern (e.g., primary casualty). 

M4: High risk, long payment pattern (e.g., excess casualty). 

Table 1 summarizes the assumptions for the various models: 
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Table 1 
Summary of Subject Business Models 

Model 

Premium 
Expenses 
Expected Losses 
CV 
Underwriting Profit 
Profit Including Discount 

Payout 1 

M1 M2 M3 M4 
$100 $100 $100 $100 
$30 $30 $30 $30 
$68 $69 $73 $83 
5% 10% 20% 40% 

2.0% 1.0% -3.0% -13.0% 
3.6% 4.3% 6.0% 11.3% 

90% 
2 10% 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

50% 
30% 
15% 
5% 

20% 
20% 
10% 
10% 
10% 
10% 
8% 
6% 
4% 
2% 

1% 
3% 
5% 
7% 
7% 
7% 
7% 
7% 
7% 
6% 
6% 
6% 
6% 
5% 
5% 
5% 
4% 
3% 
2% 
1% 

In all cases, the aggregate loss distribution is presumed to be lognormal. Payment patterns are at 

fixed percentages for all scenarios. 

The assumptions are illustrative, not based on any specific source. In the author's opinion, none 

of  the subject business is assumed to be unusually profitable. 
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1.5.3 The Reinsurance Contracts 

Quota-Share Contracts: 

C1: With  aggregate limit 35% over expected losses. 

C2: With  aggregate limit 10% over expected losses. 

C3: With  "corr idor"  (losses no t  covered) f rom 5% to 15% over expected losses and 

aggregate limit 35% over expected losses. 

Contract 

C1 

C2 

C3 

Table 2 
Quota-Share Contracts 

Model 

Ceded Premium 
Ceding Commission 
Loss Ratio at Limit 

Ceded Premium 
Ceding Commission 
Loss Ratio at Limit 

Ceded Premium 
Ceding Commission 
Loss Ratio at Limit 
Loss Ratio at Corridor Bottom 
Loss Ratio at Corridor Top 

M1 M2 M3 M4 
$100 $100 $100 $97 
30% 30% 30% 30% 

103% 104% 108% 118% 

$100 $100 $97 $92 
30% 30% 30% 30% 
78% 79% 83% 93% 

$100 $99 $97 $94 
30% 30% 30% 30% 

103% 104% 108% 118% 
73% 74% 78% 88% 
83% 84% 88% 98% 

Note  that  the ceding commission rate has been ~et equal to the expense ratio on  the subject 

business. Ceded premiums have been  reduced from $100 proport ional  to the reduction in 

expected losses f rom limits and corridors. 
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Structured Aggregate Excess of Loss Contracts: 

C4: Aggregate retent ion and limit; 

Attaches within expected losses; 

Upf ron t  p remium plus additional premiums as a percentage o f  ceded losses; 

Fixed margin is deducted from upfront  premium; 

Refimdable experience account  accrues interest at 4%. 

C5: Same as C4, plus another layer of additional premiums on subject losses extending 

beyond the policy limit. 

Table 3 
Structured Aggregate Excess of Loss Contracts 

Model 

Contract 

C4 

C5 

Upfront Premium 
Margin 
Retention 
Loss Ratio at Limit 
A.P.Rate 
AP Attachment L/R 
AP Exhaustion L/R 

M3 M4 
$9.00 
$3.00 

63.0% 
98.0% 

59.0% 
73.0% 
98.0% 

$5.50 
$4.00 

76.0% 
136.0% 
47.5% 
83.0% 

136.0% 

2nd A.P.Rate 12.5% 12.5% 
2nd AP Attachment L/R 93.0% 126.0% 
2nd AP Exhaustion LtR 113.0% 146.0% 

These contracts have no ceding commission. 
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1.5.4 Risk Transfer Measures Applied tO Subject Business 

Before appl}fing the risk transfer measures to the reinsurance contracts, it is interesting to first 

apply these measures to the subject business to be ceded (excluding PRT, which is not  defined 

in this case): 

Loss Probability 

VaR-90 
TVaR-90 
ERD 

Table 4 
Summary of Risk Transfer Measures 

Applied to Subject Business 

Model 

M1 M2 M3 M4 

14.15% 2 4 . 9 1 %  2 8 . 9 7 %  25.50% 

-0.73% -4.35% -10.85% -19.13% 
-2.46% -7.98% - 1 % 5 4 %  -38.73% 
-0.26% -1.09% -2.85% -8.13% 

The difficulties with the absolute risk transfer measures can be anticipated. All measures 

produce values well below any likely threshold for M1. 10% volatility without unusual 

profitability seems like a level of  risk that should "pass", but the 10/10 rule and TVaR-90  fail 

for M2 as well, while the E R D  passes only marginally at the low end of  the range. 
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1.5.5 Risk Transfer Measures Applied to Quota-Share Contracts 

We next apply the various measures to the three quota-share reinsurance contracts. 

Table 5 
Summary of Risk Transfer Measures 

Quota-Share Contracts 

Model 

Contract 
C1 

C2 

C3 

Loss Probability 

PRT-MSAD 
VaR-90 
TVaR-90 
ERD 

Loss Probability 

PRT-MSAD 
VaR-90 
TVaR-90 
ERD 

Loss Probability 

PRT-MSAD 
VaR-90 
TVaR-90 
ERD 

M1 M2 M3 M4 

13.83% 24.78% 29.27% 29.19% 

100.00% 100.00% 94.85% 63.86% 
-0.71% -4.17% -10.88% -17.77% 
-2.43% -7.94% -17.78% -21.60% 
-0.26% -1.06% -2.65% -3.82% 

13.83% 24.78% 34.86% 34.27% 

98.98% 78.65% 51.44% 31.72% 
-0.70% -4.35% -6.49% -7.24% 
-2.33% -5.40% -7.48% -9.95% 
-0.25% -0.83% -1.77% -1.91% 

13.83% 27.69% 34.86% 25.12% 

67.99% 52.21% 62.16% 48.82% 
-0.68% -1.53% -5.65% -14.22% 
-1.26% -2.38% -12.60% -17.72% 
-0.14% -0.43% -1.66% -2.88% 

The contract C1 aggregate limit 35% over the mean has no discemable impact when applied to 

the lower volatility M1 and M2 models. As the volatility increases with M3 and M4, the risk 

limiting impact  of  the aggregate limit increases. This effect can be seen as the percentage o f  risk 

transferred decreases to 95% for M3 and down to 64% for the volatile M4 model. 

The C1 contract applied to M] fails the risk transfer test for all of  the absolute risk measures, 

even though substantially an the risk is transferred. For  M2, mos t  still fail or marginally pass. As 

the underlying business gets riskier in the M3 and M4 models, results on  these risk transfer tests 

improve significantly, even as the aggregate limit becomes less remote and has 
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more risk limiting impact. The tests based on absolute risk measures are more sensitive to the 

level o f  risk in the underlfing business than to the degree o f  risk transfer. 

The same pattern persists as we move to more significant risk limiting features. In each case, the 

risk limiting impact of  the features becomes more significant when applied to the higher 

volatility cash flows, as is reflected in the declining PRT. In each case, the absolute risk 

measures increase due to the increased underlying risk, even though a smaller percentage o f  that 

risk is being transferred. 

1.5.6 Risk  Transfer Measures  App l i ed  to Structured A g g r e g a t e  E x c e s s  

Contracts 

Next, consider the application of  the highly structured reinsurance contracts C4 and C5 to the 

riskier cash flows of  models M3 and M4. 

Summary of Risk Transfer Measures 
Structured Aggregate Excess Contracts 

Model 

Contract 
C4 Loss Probability 

C5 

PRT-MSAD 
VaR-90 
TVaR-90 
ERD 

Loss Probability 

PRT-MSAD 
VaR-90 
TVaR-90 
ERD 

M3 M4 
24.80% 21.16% 

22.89% 18.35% 
-10.51% -10.91% 
-15.76% -21.00% 
-2.53% -3.09% 

24.80% 21.16% 

19.36% 13.19% 
-10.74% -10.73% 
-11.56% -11.91% 
-2.17% -1.94% 

While risk transfer measures based on absolute risk levels may often "fail" a contract which 

transfers nearly all the risk when it is applied to relatively stable business, the effect is just the 
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opposite when applied to higher volatility business. In these cases, contracts with features that 

eliminate most of the risk can still pass. 

In the case of  C4, only 23% and 18% of the risk is transferred for M3 and M4, respectively. Yet 

the 10/10 test is a marginal pass and the other tests would also appear to pass at likely critical 

values. 

Even though less than 25% of  the risk is transferred, the C4 contracts are fairly risky for the 

reinsurer, especially relative to their small margins. The accounting distortion is that die losses 

accounted for as ceded are oversized relative to the risk absorbed by the reinsurer. 

The C4 contract leaves the reinsurer with substantial tail risk, which is addressed in C5. Another 

layer of  additional premium attaches just above the 90 th percentile and extends beyond the policy 

limit, protecting the reinsurer from the acceleration risk caused by worsening loss ratios beyond 

the policy limit. The technique succeeds in further risk reduction, now bringing the PRT~s to 

19% and 13%. Yet the 10/10 rule is unaffected (as intended in the design of  the feature). The 

more sophisticated TVaR and E R D  tests respond to the additional risk reduction, with the 

more tail-oriented TVaR showing the greater effect. Despite the additional risk limitations, the 

ERD still produces a passing score and the TVaR may as well, depending on choice of  critical 

value. 

1.5.7 Conclusion 

In conclusion, the PRTtest appears to logically and consistently identify the impact of structural 

features that limit risk transfer. The measures based on absolute standards 

invariably underestimate risk transfer for more stable subject business and overesnmate nsk 

transfer for more volatile subject business. 
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1.6 Examples Using P R T w i t h  Various Risk Measures and Co-Measures 

The following tables present the results of  P R T ,  applied to the same models and contracts as 

the previous section, with one exception. We have removed the aggregate limit from the 3 'a 

contract (the corridor). We use the following risk measures (with their corresponding co- 

measures): 

• M S A D  

• E A D  

• TVaR- 90  

• T V a R - 9 5  

• TVaR - 98  

The results are presented without a great deal of  additional comment. With each risk measure, 

the pattern of P R T ' s  as the risk models and contracts change conform to a reasonable pattern 

of decreasing risk transfer as the risk-limiting provisions become more significant. 

The results are not  identical, however. The measures respond to the "heart" and the "tail" of  

the distribution to different degrees, consistent with their design. 
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Contract 

C1 

C2 

C3 

Table 7 
PRT's -- Comparison of Risk Measures 

Quota-Share Contracts 

Model 

MSAD 

EAD 

TVaR-90 

TVaR95 
TVaR98 

MSAD 

EAD 
TVaR-90 
TVaR95 

TVaR98 

MSAD 

EAD 
TVaR-90 
TVaR95 

TVaR98 

M1 M2 M3 M4 

100.00% 1 0 0 . 0 0 %  94.85% 63.86% 

100.00% 100.00% 97.92% 78.14% 
100.00% 1 0 0 . 0 0 %  95.84% 61.56% 

100.00% 1 0 0 . 0 0 %  9 3 . 1 3 %  52.25% 
100.00% 1 0 0 . 0 0 %  85.94% 43.72% 

98.98% 78.65% 5 1 . 4 4 %  31.72% 

99.63% 87.82% 64.46% 43.90% 
99.47% 76.45% 44.00% 29.53% 
99.16% 64.80% 38.16% 25.37% 

98.31% 54.41% 32.65% 21.27% 

67.51% 40.25% 61.89% 83.62% 

79.97% 46.61% 55.05% 71.67% 
71.55% 34.37% 64.16% 84.14% 
58.01% 34.00% 70.58% 87.42% 

46.51% 41.60% 75.93% 90.01% 
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Tal ,le 8 
PRT's -- Comparison of Risk Measures 
Structured Aggregate Excess Contracts 

Model 

Contract 

C4 

C5 

MSAD 

EAD 
TVaR-90 
TVaR95 
TVaR98 

MSAD 

EAD 
TVaR-90 
TVaR95 
TVaR98 

M3 M4 

22.89% 18.35% 

23.84% 17.93% 
23.23% 19.27% 
21.76% 18.85% 
19.53% 17.50% 

19.36% 13.19% 

21.71% 14.52% 
18.97% 13.31% 
15.85% 11.35% 
12.82% 10.41% 

Some observations: 

• In most cases MSAD produces results similar to TVaR-90. 

• Aggregate limits affect only the tail o f  the distribution, and are most penalized by the more 

tail-oriented TVaR measures, for example the low aggregate limit of  the C2 contract apphed 

to the moderately high risk M3 model. 

• The combination o f  low corridor and no limit (C3), when applied to high risk models M3 and 

M4, decreases risk more in the heart of  the distribution than the tail. In this case, the least 

tail-oriented measure, E A D ,  indicates the greatest reduction in risk transfer. 

• The first highly structured contract, C4, dramatically reduces risk in the heart and the tail o f  

the distribution and all measures are similar. 

• The second highly structured contract, C5, has an additional feature that mitigates the tail 

risk. Especially for risk model  M4, risk transfer is significantly lowered. The effect of  the tail- 

protecting feature is the smallest for the E A D  and the largest for the more tail-oriented 

measures. 

440 Casualty Actuarial Society Forum, Winter 2006 



Reinsurance Involving Partial Risk Transfer 

In conclusion, PR T is demonstrated to work acceptably well with a variety of  risk measures. 

Assuming that it is desirable to have a single measure to be used universaUy, the author's 

preference continues to be for MSAD, which works consistently and appears to strike the best 

compromSse between responsiveness to the whole downside of  the distribution and emphasis on 

the significance of  the tail. 
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Section II - Accounting for Partial Risk Transfer Reinsurance 

2.1 T h e  Case  for Continuous A c c o u n t i n g  

The problem addressed so far is to find the best possible solution given the significant 

accounting constraint that there are two types of  accounting available - one that is appropriate 

for 100% risk transfer and another for 0% risk transfer - and that our only option is to choose 

one or the other. The difference between these approaches can sometimes be very large - and 

for large enough contracts it can be material to the company's financial statements. 

If  the difference between the two accounting treatments is material, then it is likely that half that 

difference is material as well. Regardless of  which accounting treatment is used, the accounting 

for a contract with 50% risk transfer will be materially inaccurate, one way or another. The 

author's suggestion of  a critical value of  50% to define adequate risk transfer is simply to cut the 

worst case inaccuracy to the lowest possible number. 

Using the 50% critical value, there could continue to be motivation to design 51% risk transfer 

contracts to take advantage of  the 100% risk transfer accounting. 49% risk transfer contracts are 

no less problematic. The cedant may get no credit in its financial statements or solvency tests 

for a significant reduction in risk. And a reinsurer that assumes a 49% risk transfer contract that 

is ineligible for reinsurance accounting will be assuming significant risk while its financial 

statements reflect that it has assumed none? 

Another significant problem is the point of  discontinuity itsel£ I f  the difference in accounting 

treatment has a large impact, and the estimated PRTis close to the critical value, then a large 

material difference will turn on a decision requiting a precision o f  estimation that simply doesn't  

exist. 

9 This last point illustrates that there is no such thing as a "safe", "conservative" choice for a critical value. 
"gnnenever deposit accounting is conservative for the cedant, it is aggressive for the reinsurer. 
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Thus, the binary choice between reinsurance accounting and deposit accounting may not be an 

adequate solution. A continuous solution would provide more appropriate accounting for 

partial risk transfer contracts. The availability of PR T can prmdde a basis for such a continuous 

accounting solution. 

2.2 Goals of  Partial Risk Transfer Accounting 

The author has considered the following two goals of appropriate accounting for partial risk 

transfer: 

• Income statements and balance sheets that are undistorted in total, i.e., accurate total income 

and equity; and 

• Proper characterization of  ceded premiums and ceded losses. 

2.3 Bifurcation to Achieve Continuous Accounting 

2.3.1 Proportional Bifurcation 

The simplest approach, which would require no new development of  basic accounting rules, is 

to apply a weighted average of  the two accounting procedures already available, i.e. proportional 

bifurcation. The approach would be to simply divide all 100% values proportional to PRTand 

1-PRT, with the amounts proportional to PRTaccounted for as reinsurance and the amounts 

proportional to 1-PRT accounted for using deposit accounting. For the deposit accounting, the 

"interest method," which corresponds best to zero risk transfer, would be most appropriate. 

The First Objective -- Income and Equity: 
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As discussed much earlier, the income and equity effects of  reinsurance are gains related to the 

cession of losses and costs related to the reinsurer's margin. Since there are no gains from 

ceding losses under deposit accounting, under proportional bifurcation using PR T, the initial 

gain from ceding losses would be reduced proportional to the reduction in risk transfer, exactly 

as intended. As for the cost of the reinsurer's margin, this is expensed up front under 

reinsurance accounting but implicitly expensed over the life of the cash flows under deposit 

accounting. Thus proportional bifurcation will cause a deferral of a portion of  this cost. This is 

not necessarily our intent, and could be remedied with a slightly more complex solution. 

However, to the extent that this is considered an imperfection, it is not a serious one, and may 

not warrant the additional complexity-. 

The  Second Objective -- Losses and Premiums:  

Net losses under proportional bifurcation will be in proportion to the percentage of the risk 

retained, exactly as intended. 

Net premiums resulting from the proportional subdivision of premiums will not be perfectly 

reflective of  net underwriting risk retained, so the second objective will not be perfectly satisfied 

for net and ceded premium. 

Two imperfections related to the proportional subdivision of premium: The first imperfection is 

that the reinsurer's margin would be expected to be reduced if the risk is reduced. It would 

probably be preferable to allocate the margin entirely to reinsurance accounting, rather than sub- 

divided. The second imperfection, related to over-funding, is in the opposite direction. As will 

be discussed in a subsequent section, income, equity, and ceded losses are not distorted by over- 

fimding. However, if the reinsurance is over-funded with a refund provision, then the premium 

allocated to reinsurance accounting will be overstated to some degree. 

In the author's view, none of  the imperfections noted is likely to be significant, and simple 

proportional bifurcation will provide a major improvement in accounting accuracy compared 

with current practice. A modestly more complex solution can be devised for the income issue 

and the first premium issue discussed above, although the second premium issue is more 
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difficult. In any case none of the imperfections are likely to be large enough to warrant the 

additional complexity-. 

2.3.2 What Contracts Should Be Bifurcated? 

Bifurcation would increase accounting workloads and complexity and it makes sense to limit its 

application. Many reinsurance contracts have structural features that have modest risk-limiting 

effects. At the other extreme, there may be some contracts determined to have minimal risk 

transfer. In order to avoid unnecessary bifurcation, the author suggests that contracts with P, RT 

> 80% or PR T < 20% be accounted for with reinsurance accounting or deposit accounting, 

respectively, with bifurcation limited to 20% <PR T< 80%. 

Such a threshold would also reduce the need for unnecessa~ testing. It will be fairly obvious in 

some cases that structural provisions will not reduce risk transfer by more than the threshold 

value, and minimal testing may be required. 

2.3.3 Should Risk Transfer Be Reevaluated? 

If PR T were to become an explicit factor in reinsurance accounting, the PR T would 

presumably be evaluated at the inception of the reinsurance contract and that value would 

become fixed for accounting purposes at the inception of the contract. The issue of possible 

reevaluation of the PR Twould not be retrospective from inception, but only prospectively 

relating to remaining loss reserves. To the extent the PR T changed, that change would affect 

only the remaining loss reserves, not any previously accounted for amounts, such as premiums 

or loss payments. 

In the author's view, this idea is cumbersome and impractical and would appear to be an idea to 

be avoided. However, the discussion is included for the theoretical completion of the concept. 
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The amount  of remaining risk transferred for ceded loss reserves will change as the contract 

progresses over time. The change in the remaining risk transferred can be illustrated with a 

simple aggregate limit example. Suppose that an aggregate limit set above the expected loss ratio 

is originally estimated to have a 40% risk-limiting effect (i.e. 60% PR73. Two years later, the 

ultimate losses are known with much more accuracy and have developed below the original 

expected losses. The aggregate limit now appears quite remote and 95% of the remaining risk is 

transferred. Or conversely, losses have developed much worse than the original expected losses 

and ultimate losses are now estimated to be at the aggregate limit, leaving no more coverage 

available. To the extent that there are still ceded reserves, almost none of  the risk related to the 

remaining reserves is transferred. While these situations may be realistic, it would be hard to 

imagine that the increase in accounting accuracy would warrant reevaluating risk transfer on all 

contracts. 

But perhaps it should be considered in a few special cases. An obvious candidate is a multi-line 

contract combining long and short tail business. For example, assume that such a contract, 

mixing property and casualty but not  readily bifurcated in the more traditional sense, is estimated 

at its inception to transfer 50% of the risk and is accounted for with a 50% proportional 

bifurcation, Let us further assume that almost all the risk comes from exposure to property 

catastrophes, and that at the end of the year there has been no such catastrophe. There may be a 

significant cession of casualty reseta-es at a discount, but little or no risk transfer remaining. 

Conversely, if property catastrophe losses have occurred, a much larger degree of  risk may be 

ceded on the remaining casualty reserves. 

2.4 Comments  on Related Topics  

2.4.1 O v e r - F u n d i n g  

A common technique for reducing risk to the reinsurer is over-funding, i.e., charging a 

conservative premium with refund provisions. The refund may be based on an "experience 

account" which includes interest credited on ceded funds. This technique may allow a reinsurer 
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and cedant to come to terms without resolving differences of  opinion on likely losses, or may 

simply be used to lower the risk premium charged. 

Over-funding may be accomplished by charging a large upfront premium, through a contingent 

additional premium feature, or a combination of the two. To the extent that contingent 

additional premiums are charged, the outgoing cash flows will be included in the calculation of 

PR Tand the value of PR Twill be reduced. 

To the extent that over-funding is accomplished through an increase in upfront premiums, it will 

probably have no effect on PRT, as only downside risks are measured, and premium refunds 

usually have no impact. This may appear counterintuitive, as over-funding clearly reduces the 

risk to the reinsurer. 

Nevertheless, contingent refunds cannot cause a future loss for the cedant. To the extent that 

the risk related to ceded losses is covered by the reinsurance, it is appropriate to cede the losses 

and their associated risk margin, i.e. to apply reinsurance accounting. Whether the risk related to 

the ceded losses is covered from funds provided by the cedant or risk taken by the reinsurer is 

immaterial. As long as the cedant has expensed the premiums ceded, there is no increased risk of 

inadequacy in the financial statement values. 

Under current accounting, the cedant records an asset for future refunds only to the extent that 

the current ceded loss estimate indicates that a refund will be due without including future investment 

income ~redi,'cd to an e.x2Oenence account. This asset, when applicable, prevents over-funding from 

• causing a deferral of income. The exclusion of future investment income is also necessary - 

including it in the calculation of  the asset would have a similar effect to discounting the loss 

reserve while retaining the risk. 

In comlusion, premium refunds are not important when determining PR T since they do not 

affect downside risk. When reinsurance accounting is applied to reinsurance that includes over- 
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funding, the net effects on balance sheets, income statements, and ceded losses are not  

significantly distorted?" 

2.4.2 Underwriting Risk and Timing Risk 

Both GAAP and SAP require the separate consideration of whether underwriting and timing 

risk have been transferred, as well as whether the overall degree of  risk transfer is adequate. The 

approach herein is focused only on the overall risk. In the author's view, the distinction between 

underwriting and timing risk is often artificial. If  a continuous approach to risk transfer 

accounting were adopted so that the degree of  risk transfer were specifically reflected, perhaps 

the distinctions between underwriting and timing risk would be unnecessary. 

2.4.3 Accounting for Retroactive Reinsurance 

There are substantial restrictions in G~MRP and Statutory accounting when the liabilities ceded 

are related to losses incurred in the past, e.g., loss portfolio transfers ("LPT's"). In fact, GAAP 

essentially applies deposit accounting to all retroactive reinsurance, as if no risk transfer is 

possible. This punitive accounting undoubtedly has its historical roots in past abuses, but  

otherwise appears to have no sound basis. 

LPT's are often legitimate risk transfer motivated reinsurance contracts. There are any number  

of valid motivations, such as moving risky liabilities to better diversified and capitalized 

companies. LPT's are still done despite punitive accounting. But it would be hard to imagine 

that the accounting is not  suppressing the market for legitimate retroactive reinsurance. 

As we have demonstrated in the examples, FAS 113 is not  effective in preventing financial 

engineering for prospective reinsurance, nor would it be effective for retroactive reinsurance if 

the present restrictions were eliminated. The improved accounting recommended herein would 

m Overall equity, and income will be undistorted, as will ceded losses and loss reserves. Ceded premiums may be 
overstated to some degree. As with other imperfections on the premium side, this problem may not be sigmficant 
enough to warrant a more complex procedure. 
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effectively prevent the type of  abuses that were committed long ago, and the punitive 

accounting, which is itself highly inaccurate, could be eliminated. 

2.4 .4  P o l i c i n g  

Punitive accounting for retroactive reinsurance under GAAP might be considered an example of 

policing by accounting - the idea is not to account accurately, but to prevent abuse. 

Regulators have more direct police powers. Insurance executives may have to increasingly 

describe the intent of reinsurance transactions. While improved disclosure by financial 

executives is beneficial, the author is not endrely comfortable with police powers to regulate 

intent. 

With more accurate accounting, regulation of  intent would be less necessary. Bad behavior will 

still be possible; policing will still be needed. But with better accounting rules, policing can be 

about following the rules. 
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A Multivariate Bayesian Claim Count 
Development Model With Closed Form 
Posterior and Predictive Distributions 

Stephen J. Mildenhall 

Abstract 

We present a rich, yet tractable, multivariate Bayesian model of claim count develop- 
ment. The model combines two conjugate families: the gamma-Poisson distribution 
for ultimate claim counts and the Dirichlet-multinomial distribution for emergence. 
We compute closed form expressions for all distributions of actuarial interest, includ- 
ing the posterior distribution of parameters and the predictive multivariate distribution 
of future counts given observed counts to date and for each of these distributions give 
a closed form expression for the moments. A new feature of the model is its explicit 
sensitivity to ultimate claim count variability and the uncertainty surrounding claim 
count emergence. Depending on the value of these parameters, the posterior mean 
can equal the Bornhuetter-Ferguson or chain-ladder reserve. Thus the model provides 
a continuum of models interpolating between these common methods. We give an 
example to illustrate use of the model. 
JEL Classification: G - Financial Economics; G220 - Insurance; Insurance Compa- 
nies 
Keywords: Loss Development, Chain-Ladder Method, Bornhuetter-Ferguson Method, 
Dirichlet-multinomial, Poisson-gamma 

1 I N T R O D U C T I O N  

We present a Bayesian model of  claim count development. The model is rich 

enough to provide a realistic model for the practitioner but at the same time it 

is mathematically tractable and we give explicit equations for the posterior and 

predictive distributions. The predictive distribution is an example of  a general- 

ized power series distribution and a generalized hypergeometric distribution. The 
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method in the paper will be of interest to practicing actuaries because it is easy to 

implement and it provides explicit posterior distributions for unreported claims, 

and hence Bayesian means and confidence intervals, and a rationale for choosing 

between existing reserving methods. The model is theoretically interesting be- 

cause the posterior mean generalizes three common reserving methods (the peg, 

the Bornhuetter-Ferguson and the chain-ladder) in an intuitive and insightful man- 

ner. 

Actuaries today are asked to provide a distribution of potential outcomes or 

a confidence interval around the point estimates they have traditionally supplied. 

The push towards greater quantification of uncertainty is particularly marked in 

the property and casualty loss reserving practice. Understanding reserve uncer- 

tainty and linking the pricing actuary's prior estimate of ultimate losses to the 

reserving actuary's posterior estimates is therefore becoming more and more im- 

portant. 

These recent demands on the profession have played up some shortcomings of 

the traditional chain-ladder method of determining loss reserves. The chain-ladder 

method is simple to apply and easy to explain, and is the de facto standard reserve 

method. Mack's 1993 paper [15] showing how to compute the standard error of 

chain ladder reserves was an important enhancement to the method. However, 

the chain-ladder is still not well suited to providing explicit posterior distribu- 

tions, nor does it provide diagnostic information to assess model fit. The latter 

point is a severe weakness in practice. There is no one chain-ladder method; the 

technique can be applied to a variety of different loss development triangles in 

slightly different ways. (Academic discussions usually assume link ratios are sta- 

ble over time--something rarely seen in practice--and use the weighted average 

of all years link ratios.) When the various chain-ladder related estimates do not 

agree there is no statistical guidance on which method to prefer. The shortcom- 

ings of the chain-ladder have been discussed in the literature. Mack [14] identifies 

the stochastic assumptions which underlie the chain-ladder method. Venter [25] 

discusses the assumptions required for the chain-ladder estimates to produce least- 

squares optimal reserve estimates, and discusses some alternative methods when 
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the conditions are not met. Renshaw and Verrall [22] describe a statistical proce- 

dure which is exactly equivalent to the chain-ladder in almost all circumstances. 

We will discuss their model more in Section 6. 

In order to address these shortcomings, and respond to the demand for more 

precise quantification of uncertainty, both practicing actuaries and academics have 

explored alternative models. Zehnwirth [30] and Zehnwirth and Barnett [31] con- 

struct general linear models of reserve development based on log-incremental 

data. Kunkler [12] uses a mixed model to include zero claims in a log-incremental 

model. England and Verrall [7] and Wright [29] discuss generalized linear mod- 

els, the latter taking an operation time point of view. Norberg [19] models the 

claims process as a non-homogeneous marked Poisson process. There has been 

considerable interest in Bayesian models of development. Reserving involves the 

periodic update of estimates based on gradually emerging information--a natu- 

rally Bayesian situation. Bayesian methods have been explored by Robbin [23], 

de Alba [5], Dellaportas and Ntzoufras [20], Renshaw and Verrall [22], and Ver- 

rail [26, 27], amongst others. Stephens et al. [24] use a survival time approach 

to modeling claim closure in a Bayesian framework. As Robbin points out, the 

mathematics of Bayesian models often becomes intractable. One advantage of 

this paper's model is the closed mathematical form of all the distributions of inter- 

est. For the less tractable models the WinBUGs MCMC system has been applied. 

See Verrall [27] for a very detailed explanation of how to do this. 

Despite all of these advances, no model has come close to challenging the 

chain ladder method. In part this reflects the difficulties a new method faces be- 

fore it becomes accepted practice. It also reflects the technical complexity of 

some of the alternative models. Practicing actuaries can be uncomfortable with 

the assumptions I and the number of parameters. The chain-ladder method has 

one parameter for each development period: the link-ratios and the tail factor. Re- 

gression models may produce a model with fewer parameters, but the model itself 

is often selected from a very large number of potential models. This can lead to 

generalization error where a particular model can over-fit artifacts in a small data 

1A difficulty with explicit assumptions is the disquiet they can cause! 
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set. The advantages of "simple" models are discussed in Balasubramanian [2] and 

Domingos [6]. 

There is, therefore, a need for a simple statistical model of loss development 

to augment and enhance the chain-ladder method. A new model should have a 

similar number of parameters to the chain-ladder, should be fit to the data using 

a statistical technique such as maximum likelihood, should be able to incorporate 

prior information from the pricing department, and should be easy to update with 

observed loss information as it becomes available. We will present such a model 

for claim count development in this paper. The model is introduced in Section 

2. The explicit form of the marginal distributions of claims reported in each pe- 

riod is proved in Section 3. Sections 4 and 5 prove results about the conditional 

and predictive distributions. Section 6 discusses where our model fits within the 

continuum of reserving models, from the "book plan" peg method through the 

chain-ladder method. Section 7 discusses parameter estimation. Section 8 ap- 

plies the model to a specific triangle. Finally, Section 9 will discuss extending the 

model to loss development, rather than just claim count development. 

This paper focuses on the theoretical development of a new claim count model. 

However, I want to stress that this model is easy to use in practice and that it 

provides useful and powerful reserving diagnostics. 

Notation 

The following notational convention will be use extensively in the paper. For any 

n-tuple x l , . .  •, xn define 

x ( t )  = x ' ( t )  = 
i=1 i = t + l  

and let x := x(n). Thus x = x(n) = x(t) + x'(t) for all t = 1 , . . . , n .  This 

notation will apply to B, b, 7r, and v. It will be re-iterated before it is used. 

The letters p and q := 1 - p  will be used as parameters of a gamma distribution 

and will never have subscripts. 
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2 THE GPDM BAYESIAN CLAIM COUNT MODEL 

This section introduces the new gamma-Poisson Dirichlet-multinomial (GPDM) 

claim count model. The GPDM is a combination of a gamma-Poisson random 

variable to model total ultimate claims and a Dirichlet-multinomial multivari- 

ate distribution to model incremental claims by report period. For a particular 

accident year, let Bi be the incremental number of claims reported in period 

i = 1 , . . . ,  n. We assume that nth report is ultimate and will not model further 

claim emergence. Let 

B(n) = B1 +. . .  + Bn (1) 

denote the ultimate number of claims. 

The GPDM is defined as a combination of two conjugate models. The ul- 

timate number of claims B(n) conditional on A = A has a Poisson distribu- 

tion with mean A. A, the prior ultimate claim count, has a gamma distribu- 

tion. Conditional on B(n) and parameters 1-I 1 = " i l l , ' ' ' ,  Y In -x  = "f in-I ,  7rn = 

n - 1  
1 - ~--~i-1 "fii, the claim emergence vector (B 1 , . . . ,  Bn) has a multivariate multi- 

nomial distribution with parameters B(n), "ill,. - •, "fin. Here "fit is the expected pro- 

portion of claims reported in period t and B(n) is the number of ultimate claims. 

I I 1 , . . . ,  IIn-1 have a Dirichlet prior distribution. The full vector of parameters is 

0 = (A, 1-[1 . . . . .  H,-1) .  Conditional on 

n - 1  

(~ ~--- 0 : =  ( / ~ , " f i l , - ' -  , ' f i n - l )  T" n = 1 - -  ~- '~  "fii" (2 )  

i=1 

the GPDM probability density is 

e-~Ab(n) 
bl bn Pr(B1 . . . .  , B n  I (~) = O) - 7[- 1 . "fin 

b l ! . . .  bn~ 

n 
where b(n) = 2 i = 1  b,~ and the two b(n)! terms have cancelled. 

(3) 
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The prior densities for the parameter vector {3 = (A, lI1,..., l-In-i) are 

A ,-~ Gamma(r, p/q), q = 1 - p ,  

Pr(A = A) - P~ r-1  -,~p/q 
q~F(r)A e 

and 

(4) 

(5) 

( I - i1 , . . .  , l i n _ l )  ,-~ Dirichlet(vl,..., Vn), (6) 
r ( v  1 -Jr-... -t- ?Jn) vl-1 --Vn--1 (7) 

Pr(1-I, = ~rl , . . . , I In-1 = rrn-1) = ~((vl)-.--F(--~) rq " " ~ n  • 

A and the Hi are a priori independent. 

The form of the gamma distribution in Eqn. (4) is chosen so that the negative 

binomial predictive distribution for B(n) has density 

Pr(B(n) = b(n)) = ( r  + b(n) - l )  b(n) pr qb(n). (8) 

Thus E(B(n))  = rq/p and Var(B(n))  = rq/p 2. If E(B(n))  = m then p = 

r/(r + m), q = m/(r  + m) = 1/(1 + m/r) and Var(B(n))  = m(1 + m/r). The 

coefficient of variation of the gamma distribution is 1 /v~.  The expression 1/r is 

sometimes called the contagion, see Mildenhall [17, Section 2.2]. 

Compared to traditional methods of reserving the GPDM includes two new 

parameters: r which controls the variability of ultimate claim counts and the ex- 

tra Dirichlet paramter which controls the variability of claim emergence. The 

Bornhuetter-Ferguson method of reserving, by contrast, assumes a prior estimate 

of the ultimate number of claims but no measure of its variability. The chain- 

ladder does not assume a prior estimate of ultimate claims but gives full credibil- 

ity to observed claim emergence, corresponding to a high degree of confidence in 

estimates of IIi. These two extra parameters determine the behavior of the GPDM 

model. 

Pricing actuaries often have prior estimates of expected frequency because the 

frequency-severity approach is a common pricing method. Thus reserving actu- 

aries can usually obtain a prior mean for the number of ultimate claims expected 
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from a block of business. We want to be able to incorporate this information into 

our claim count model. Eqn. (3) assumes that the ultimate claim count, B(n),  

has a negative binomial distribution. The r parameter for B(n) is a measure of 

the inhomogeneity of insureds or of non-diversifiable parameter risk; it could be 

estimated based on line of business studies. The negative binomial has been sug- 

gested as a more flexible alternative to the Poisson distribution for modeling claim 

counts by many authors, including Klugman, Panjer and Willmot [10]. Also see 

the references in Johnson et al. [9]. 

The second part of Eqn. (3) is the multinomial with Dirichlet conjugate prior. 

Basic properties of Dirichlet-multinomial (DM) are given in Bemardo and Smith 

[3] and Johnson et al. [8, Section 35.13.1]. For more details on the Dirichlet see 

Kotz et al. [11]. The Dirichlet distribution has n free parameters (compared to 

only n - 1 free 7r, because of the condition ~-~i 7h = 1), and the extra parameter 

controls uncertainty in the proportions. When n = 2 the Dirichlet becomes a beta 

distribution. 

The DM distribution with parameters (b(n);vl, . . . ,  vn) has predictive proba- 

bility density function 

b(n)~ r ( E v d  f I  r(b, + v d 
Pr(B1 = b l , . . . , B n = b n ) =  bli:77.~n!i,(b(n)+}-~v4 ) 4=1 F(v4) (9) 

where b(n) = Y;,4 b,. We can write Eqn. (9) more succinctly using the Pochham- 

mer symbol (r)k. For a real r and non-negative integer k define 

(r)k := r(r + 1 ) ' ' '  (r + k -- 1) = r ( r  + k) r(r) Oo) 

Then Eqn. (9) becomes 

b(n)! 1 n 

Pr(B1 = bl , . .  B~ = bn) = II(v4)b,. ( l l )  
"' bli-7:-bn! ( E  V*)b(n) 4=1 

We will use the Pochhammer symbol extensively. 
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The marginal distributions of the DM are beta-binomial mixtures. Let v = 

}--~i vi. Then 

E(Bi) = m v J v ,  (12) 

= b ( n )  +_____2 - Var(B~) (13) 
1 + v  \ v 2 ] 

Cov(Bi, Bj)  = b(n) + v b(n)vivj  (14) 
1 + v  v 2 

V~ Vj 
Corr(B~, t33) = - (v - vi)(v - vj)" (15) 

The marginal and conditional distributions of a DM are also DMs. See Johnson et 

al. [8, Section 35.13.1] for these facts. 

The next lemma, and its obvious generalizations, follows from the properties 

of the Dirichlet and multinomial distributions. We will use it several times in 

various guises. 

Lemma 1 Let B1, . . . , B~ I 19 be a GPDM. Then B1 + B2, Ba, . . . , Bn 19' = 

(A, rq + rr2, r ra , . . . ,  rrn) is also a GPDM. 

Proof" This follows from [8, Chapter 35 Section 13.1]. • 

We end this section by computing the predictive distribution of B1,. 

given no observations. Let v = ~ vi. Then 

• ~ g n  

Proposition 1 Let B 1 , . . . ,  B,~ 119 be a GPDM. Then 

b(n) 'F(v)  ~ i  F (b i+  v~) ( r  + b ( n ) -  l )  
Pr(B1 = bl . . . .  , Bn = bn) - P(b(n) + v) z=l bi!F(vi) b(n) prqb(n). 

(16) 

Proof" We have 
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Pr(B1 = bl .... , Bn = bn) 

I " ' I P r ( g l ' " " B n  I{~)f(/~)f(~x,...,Trn)d/~dTrx...dTrn-x 

( e-;~ A b(n) Ar_l e_P:ffq = / / ~ ~ ) (bib(//,) , 7F} 1 7(bn) pr 
" [7-t ,n! ' r(--7)7 

F(v) 
I - I  7rv'-l d~dTrl " " drrn-1 

× I I  r(vi------7 i=1 

b(~)! r (v )  p~ 
b,!.., b~! I-[ F(vd F(r)q%(n)! 

× f ~,b*+v'-l'aTrl . . .  dTFn-1 
~=1 

- r (b(n)  + v) ,=1 bdr (vd  b(n) prqb(~) 

since the inner integral with respect to A equals F(b(n) + r)q b(n)+r and 1 + p/q = 

1/q. • 

Eqn. (16) can also be written more compactly as 

Pr(B1 bl, ,Bn bn) r b(r)b(n) r I  (Vi)b, (17) 
. . . .  ' = =P q ~ i = 1  bi[ 

3 MARGINAL DISTRIBUTIONS 

The GPDM is a tractable distribution because it is possible to write down closed- 

form and easy-to-compute expressions for its conditional marginal distributions 

and its predictive distribution of future claims given observed claims to date. The 

marginals are necessary to compute likelihoods from whole or partial claim count 

development triangles. The predictive distributions provide a conditional distribu- 

tion for ultimate claims given counts to date. We now prove these two important 

results, starting with marginal distributions in this section. 

Casualty Actuarial Society Forum, Winter 2006 459 



A Multivariate Bayesian Claim Count Development Model 

The marginal and conditional distributions of an GPDM are hypergeometric 

distribution and use the Gaussian hypergeometric functions 2F1 (a, b; e; z). Math- 

ematicians and actuaries today may not be as familiar with hypergeometric func- 

tions as their counter-parts would have been 50 or 100 years ago. Given this lack 

of familiarity expressions involving 2F1 can be a little forbidding. It is important 

to remember that 2F1 is no more mysterious than the other functions built-in to 

most calculators and spreadsheets. Indeed, it is very easy to program 2Fa into 

a spreadsheet and use it like a built-in function. The properties of 2Fa we use, 

together with pseudo-code to compute it, are given in Appendix A. 

The next proposition computes the marginal distribution of B1, • •. ,  Bt for t < 

n. Obviously an analogous result would hold for any subset of the B~. Remember 

that v = ElLa vi, v'(t) = ~'~ b(t) E ~ = I  b, and 7r(t) E t , = l  7I" i. i = t + l  Vz' ~- = 

Proposition 2 Let B a , . . . ,  Bn [ O have a GPDM distribution. I f  t <_ n - 1 then 

the marginal distribution of(B1 . . . .  , Bt [ (3) is also GPDM with 

Pr(B1 = b l , . . .  , g t = b t I (~  = ()k, 711, • • , T r n - 1 ) )  

= Pr(B~ = b l , . . . ,  Bt = bt I (Tr(t)/~, Tra ~r, 
~(t)  . . . .  ' ~( t )  ))" 

The predictive marginal of ( B1 . . . . .  Bt ) is" 

p(v) r(b(t) + r) f i  r(b~ + vi) 
Pr(B1 = b l  . . . .  ,Bt = bt) =jqb(t)V(b(t)  +v)  P(r) z=l  r(vdb,!  

× 2ra(v'(t), b(t) + ~; b(t) + v; q) 

= ~r.b(,)(~)b(,) r I  (v,)b, v v (v)b(,) ,=1 ~ uFa(v'(t),b(t) + r ; b ( t ) + v ; q ) .  

(18) 

(19) 

(2Q) 

Proof." Using Lemma 1 we can sum the unobserved variables (Bt+l,.  • •, B,,) and, 

without loss of generality, assume that t = n - 1. 
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Then  Pr (B1  = b l , . . . ,  Bt  = bt I 1~ ) 

= E e r ( B 1  -=- b l , . . . ,  g n  -= bn I (~) 
bn >_0 

bo>o b(~)! , ~ - ,  b~! ] _ bn! ] 
bl bt 

_ 7rl . . .  7r t /kb(t)e-Tr(t):~ 

b l ! . . ,  bt! 
= b(t)!  (Tq /Tr ( t ) )b~ ' ' "  (Trt/rr(t))bt)(Tr(t)/k)b(t)e-~(t):~ 

b l ! . . ,  bt! b(t)!  
7F 1 Tit )~ 

= P r ( B 1  = b l , . . . , B t  = bt I (rr(t))~, 9 r ( t ) " ' "  7r(t) '" 

Next, using Proposition 1 and remembering t = n - 1, we have Pr(B1 = 

bl , . . . , B t  = bt ) 

= E Pr (B1  = b l , . . . ,  Bt  = bt, Bn  = bn) 
bn >_O 

b(n)'F(v) ~ i F ( b i + v , ) ( r + b ( n ) - l )  
= ~ F(b(n)+ v) bdF(vd b(n) prqb(n) 

bn>O i = 1  

r v ~ob(,) 1-~ r(b~ + vd ~ b(n)! r(b~ + v~) P(r + b(n)) b~ 
= ( )" ~ 1~ F~r-(v-~ o~.o_ bn! r(vn)r(b(n) + ~) ~ q 

r ~r (v ) r (b ( t )+  ~) ~ r(b, + ~,) x-~  (vn)~o(b(t)+ r)~° ~o 
= P q"r(b(t------y7 v--)t--(r--) 11~=1 b,!r(vd 82->>0 - ~  7V)b--~. w q 

b~,, r(v)r(b(t) + r) ~r  r(b, + v~) 
= prq, ,  r(b(t-----7 7 v--}r--(r-) 1I~=1 b,!r(v~) :F1 (vn, b(t) + ~; b(t) + v; q) 

since b(n) = b(n- 1) + bn = b(t) + bn. • 

To evaluate Eqn. (20) use the log-gamma function and convert the product of 

gamma functions into a sum and difference of log's and then exponentiate. This 

avoids potential over- or under-flow problems. 
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It  follows that the marginal distribution of/~1 is 

Pr(B1 bl) ~--- ~r.bl F(v)F(bl -+- r) F(bl -q- 1)1) 2F1(1)2~ bl -q- r; bl + v; q). (21) 
= u ~ r (bl  + v ) r ( r )  bl!F(vl) 

Since the two components of a GPDM are a priori independent Eqn. (l 2) implies 

the mean of B1 is 

E(B1) = E(E(Ba I B(n))) 

= E(B(n)II~) = E(AII1) = E(A)E(II1) 

= vlrn/v. (22) 

The variance of B1 can be computed using Eqn. (13): 

Vat(B1) = E(Var(B~ I B ( n ) ) ) +  Var(E(B1 I B(n)))  

1) 1(V ~) v~m(1 + re~r) 
- - ) E ( B ( n ) )  + vl(v - V,)E(B(n)2 ) + 

v2(1 + v) v(1 7 v 2 
?'TlVl rn2v,(v(1 -1"- r - 1 )  --  vl(1 - / ' - 1 1 ) ) )  

= + (23) 
v v2(1 + v) 

since E(B(n))  = m, Var(B(n)) = m(1 + mr -1) and E(B(n)  2) = m + m2(1 + 

r - l ) .  Similarly, the covariance of B1 and B2 can be computed using Eqn. (14): 

Coy(B1, B2) = E(Cov(B1, B2 I B(n))) + Cov(E(B1 I B(n)), E(B2 I B(n))) 

F + v l = - E  L i ~ v  v2 j +Cov(vlB(n)/v,  v2B(n)/v) 

= m2Vl1)2,r-lv( - 1) (24) 
v2(1 + v) 

Eqn. (14) shows that the covariance between two marginals of a Dirichlet-multi- 

nomial is always negative. Eqn. (24) shows that the covariance between two 

marginals of a GPDM is negative if v < r, and positive othLrwise. It becomes 

positive because the effect of the common mixing through the gamma prior for A 

overwhelms the negative correlation given B(n). 
We will show in Section 6 that when r = v the GPDM produces the Bornhuetter- 

Ferguson reserve; whenr  > v, and there is less uncertainty in the prior ultimate 
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than emergence, it favors the peg method; and when r < v it favors the chain- 

ladder method. Which of these methods is indicated depends on the data being 

analyzed. Common practice favors the chain-ladder and Bornhuetter-Ferguson 

methods; the peg method is rarely used. Thus we expect to find that r < v in data. 

When r --+ oc the variance of the gamma prior tends to zero and the ulti- 

mate claim count distribution tends to a Poisson with mean A. The the marginal 

distribution of B1 , . . . ,  Bt becomes 

r (v)  f i r ( b i + v  d 
Pr(B1 = b l , . . . ,  Bt = bt) = e-aA b(t) F(b + v~) i=1 I'(vi)b,! (25) 

x ,Fl(v'(t); b(t) + v; q) 

where 1F1 is a confluent hypergeometric function. 

4 POSTERIOR DISTRIBUTIONS 

In this section we consider the posterior distribution of O given observed devel- 

opment data: 

Pr(O ] data) = Pr(data I O)Pr(O) 
Pr(data) o( Pr(data [ O)Pr(O).  (26) 

When we are trying to identify the posterior distribution we can ignore any vari- 

able which is not a function of the parameters O. 

Our data consists of multivariate observations of development data B 1 , . . . ,  Bn. 

However for all but the oldest accident year we only have a partial observation 

B 1 , . . . ,  Bt for some t < n with which to update the distribution of O. Recall that 

the prior distribution of O = (A, I I1 , . . . ,  IIn) is 

Pr(O) = F(r,p/q) x Di(Vl , . . . ,  Vn) (27) 

where A has a gamma distribution, the proportions IIi have a Dirichlet distribution 

and the two distributions are a priori independent. The next proposition shows 

how to update the prior distribution of O given a partial observation of claim 

counts. Let rr(t) = E~=I ~i, 9T¢(t) = E~n__t+l rri and b(t) = Y'~i=lt bi. 
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Proposition 3 Let B1,. .  •, Bn I (9 have a GPDM distribution and let t < n. Then 

the posterior distribution of(9 given a partial observation B1, • • •, Bt has density 

PT((9 = (k, 7 1 " i ,  • . .  71"n_l) I B1 = b l , • . . ,  Bt = bt) = 
I~ /~b(t)+r-le-'~(P/q+rr(t))Tr}l+Vl-1 ~bt+vt -1  v t + l - 1  vn-1  (28) 

• " • " t  7 r t + l  " " " 71"n 

where 

t 

= r(v + b(t)) (qr+b(~/r(r + b(t)) I I  r(b~ + vd 
z = l  

/I )1 x F(v d x 2 F l ( V ' ( t ) , b ( t ) + r ; b ( t ) + v ; q )  (29) 
i = t + l  

In Eqn. (28) the distribution of A is dependent on the distribution of observed 

claims through the term 7r(t), so the two have become entangled. This is the 

reserving conundrum: counts through t periods are higher than expected; is this 

because we have observed a greater proportion of ultimate claims than expected 

or because ultimate claims will be higher than expected? Our model will show 

how to answer this question. When t = n, and we have a full observation, the 

posterior is no longer entangled because 7r(n) = 1; the posterior distribution is 

again a product of independent gamma and Dirichlet distributions• 

Proof." Using Eqn. (3), the prior distribution for (9, and the multinomial expansion 

in the penultimate step, we have Pr((9 [ B1,. • •, Bt) 

c< P r ( B a , . . . ,  Bt [ (9)Pr((9) 

5-" vn--1 1 7r~1.. " 7rb ,~Ab(n)e_)~Ar_le_pA/qTr~l_l . . .  rrn 
bf l . . ,  b,! 

bt + 1 ~...,bn 

- bt+l bn ) 
b>~O A b  E 0 7 r t +  1 . . .  7r n Ab( t )+r_le_A( l+p/q  ) 

(3( ~ b b b • \ ~ + ~ + . . . +  ~= bt+l! '"bn! 

~blq-Vl-1 ,rrbt+vt-1 V t + l - 1  . . 7rVn-1 
X iL 1 " " " " t  7 r t + l  " - - n  

. . . .  71" t T ' t +  1 • . . 71" n 

= /~b(t)+r-le-A(Tr(t)+p/q)Tr~l+Vl-1 arbt+vt-1 V t + l - 1  Vn--1 
• " " "'t 7 r t + l  • • • 71"n • 
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To evaluate the constant n use the exact form of the conditional and unconditional 

marginal distributions given in Proposition 2. • 

Figure 1 is a contour plot of the prior and posterior distribution of (II1, A). 

The left hand column shows the prior distributions with prior mean 250 and 

E(II1) = 0.5. The middle column shows the posterior given an observation 40 

below expected and the right hand column the posterior given an observation 40 

above expected. The four rows show different degrees of precision in the priors. 

Row 1. r = l0 and v = 15, so both priors have a moderately high uncertainty. Since 

r < v the model gives weight to the chain-ladder method, so the posterior 

distributions lie north-east to south-west. Both are still relatively diffuse, 

reflecting the lack of information in the priors. The correlation between 1-I1 

and A in the posterior densities is very clear. 

Row 2. r = 10 and v = 50, so the emergence is known with more prior certainty 

than the ultimate. The prior is now stretched along the y-axis, ultimate 

claims. Since emergence is known more precisely, this method is closer 

to the chain-ladder method (100% confidence in observed losses). In the 

picture we see the two posterior distributions lie north-east to south-west, 

corresponding to the chain-ladder method 

Row 3. r = 50 and v = 15, so the prior ultimate is known with more certainty than 

the emergence. Now the prior is stretched along the x-axis, emergence. 

This method is closer to the peg method. The two posterior distribution 

lie east-west, corresponding to the less weight given to the observed claim 

information. 

Row 4. r = v = 50, so both ultimate and emergence are known with more confi- 

dence. Compared to row 1 the prior is far more concentrated. Since r = v 

this method reproduces the Bornhuetter-Ferguson--see below. 

In the left hand column A and 1-I1 are uncorrelated in all four examples. 

The next corollary computes the exact Bayesian reserve: the expected number 

of unreported claims given claims to date. It is an important result and we will 

discuss it further in Section 4. The corollary assumes n = 2 and t = 1; using 

Lemma 1 we can reduce any particular reserving problem to this case. 
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Figure 1: Prior and posterior density of I11 vs A = E(B(n))  for various values 
of r and v and observed counts. Prior mean equals 250 and E(IIt) = 0.5. Left 
hand column shows prior density. Middle column shows posterior given observed 
counts 40 below expected; right hand column posterior given counts 40 above 
expected. 
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Corollary 1 Let n = 2 and t = 1. Then 

v2(bl + r) 2El(v2 + 1, bl + r + 1; bl + v + 1; q) 
E ( B 2 1 B i = b l ) = q  ~ - v -  2 F l ( v 2 , b l + r ; ~ - + v ; q i  (30) 

Proof." By definition 

E(B2 I B1 = 51) = E((1 - II1)A I ((9 I B1)). (31) 

Now use the explicit form of the posterior distribution of ((9 l B1) given in the 
proposition and integrate with respect to A to get 

/ol/j E(B2 I Bt = bl) = ~ )~bl+re- '~(Tr l+P/q)Tr~l+vl- l (1  --  7rl)V2d)~dTrl (32) 

fo F(bl + r + 1) 7r~X+v1_l( 1 _ 7rl)V:&rl. (33) 
---- t~ (71-1 q_ p/q)b,+r+l 

Substitute w = 1 - 7rl and re-arrange to get 

/o ~qbl+r+~I'(bl + r + 1) wV~(1 -- w)b~+vl-l(1 -- qw)-(b~+r+l)dw. (34) 

The result follows from Euler's integral representation of hypergeometric func- 
tions Eqn. (65). • 

_1) 
We can write Eqn. (30) as 

(bl + r) (2El  (v2, b______l _q-r__ + 1; bl +_v;__q) 
\ 2Fl(v2, bl + r; bl + v; q) 

(35) 

using Whittaker and Watson [28, Chapter 14, Ex. 1]. Since bl is claims observed 
to date, the Bayesian expected ultimate is 

E(A [ B1 = bl) = bl f  + r ( f  - 1) (36) 

where f is the ratio of hypergeometric functions. Thus f is acting like a loss 
development factor, but one which is a function of bl. It is interesting that the 
Bayesian estimate does not go through the origin because of the constant r term. 

Using the same approach we can compute all moments of the posterior distri- 
bution. 

Corollary 2 Let n = 2, t = 1 and let a, b be non-negative integers. Then 

qa (bl + r)a(bl + Vl)b 2Fl(v2, bl + r + a; bl + v +b;q)  
E(AaHbl) (37) 

(bl + V)b 2F1(v2, bl + r; bl + v; q) 
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5 P R E D I C T I V E  D I S T R I B U T I O N S  

The next proposition gives an expression for the predictive distribution 

(B,+I,..., Bn I B1,... B,). 

~2 
Remember that b(t) = Et i=l  b,, b'(t) = Ei=t+l bi and v = ~,~1 vi. 

Proposition 4 Let B1 , . . . ,  Bn [ 0 have a GPDM distribution and let 1 < t < 

n - 1. Then the conditional distribution o f (B t+l , . . . ,  Bn) given B1 , . . . ,  Bt is 

(b(t) + r)b,(t) f i  (vi)b, qb'(t) 
(b(t) + v)b,(t) ** T 2Fl(v'(t), b(t) + r; b(t) + v; q)-l. (38) 

i=t+l 

Proof" Recall that 

Pr(Bt+x, . . . ,  B,~ [ B1, . . .  Bt) 

= I P r ( B t + l ' " " B n  [ B1 , . . .B t ,  O)f(ID I B1 , . . .B t )dO 

f Pr(B1,. .  B~ I o )  Pr(B1 . . . .  ,Bt [ O)f(O) 
= Pr----Fffll,. T: : de B, I e)  N[b17:7. :B,) 

Pr(B1 . . . . .  B,)  

P r (B1 , . . . ,  Bt ) 

Combine this with Proposition 2 and the definition of the GPDM and then cancel 

to complete the proof. • 

Proposition 4 shows the predictive distribution does not depend on the indi- 

vidual observed values b l , . . . ,  bt but only on their sum b(t) = bl + . . .  bt. Thus the 

GPDM model has a kind of Markov property that the future development depends 

only on the total number of claims observed to date, and not on how those claims 

were reported over time. 

Considering the probability distribution of the sum Bt+l +" • • + Bn given B 1 

• .. + Bt gives us the following corollary which we shall need later. This corollary 

can also be proved using induction and properties of the binomial coefficients. 
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Corollary 3 

( h  (vi)b,) (Vl + " "  + Vn)b (39) 
E2 \t=*l b,! ) :  

bl +...+bn=b 

Using Lemma 1 we can add Bt+l, .. •, B,~ and reduce to the case n = 2, t = 1. 

Then Eqn. (38) gives the conditional distribution of unreported claims B2 given 

claims reported to date b. This provides a closed form expression for the posterior 

distribution which is exactly the distribution required for claim count reserving. 

Corollary 4 

(b + r)b2 (V2)b2 2Fl(V2, b + r; b + v; q)_a. Pr(B2 = b2 I B1 = b) = qb2(b+ V)b2 b2[ (40) 

The probabilities Pr(B~ = j [ B1 = b) can be computed recursively using 

Pr(B2 = j + 1 I B1 = b) - -  Pr(B2 = j I B1 - - - -  b)j q 
+ 1  

(b + r + j)(v2 + j) 
( b + v + j )  

(41) 

for j _> 0 and 

Pr(B2 = 0 I Ba = b) = 2Fl(v2, b + r ; b + v ; q )  -1. (42) 

Figure 2 shows six examples of the density B2 [ B1 for various values of v and 

r. They are the two key shape parameters. For comparison, each plot also has a 

Poisson with the same mean 30.305 as the r = 100, v = 1 frequency. 
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Figure 2 : ( B 2  I B1) for various values of r and v. n = 100, b = 65, and 
vl/v = 0.6. 
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It follows from Eqn. (40) that the probability generating function 2 of B2 I 

J~l : bis 
2F1 (v2, b + r; b + v; zq) (45) 

G ( z ) =  2Fl(ve, b+ r ;b+ v;q) " 

Therefore B2 I B1 = b is a generalized power series distribution and a generalized 
hypergeometfic probability distribution according to the classification in Johnson 
et al. [8]. It does not, however, appear in Table 2.4 of [8]. 

Differentiating G, using Equations 63 and 64 for the derivatives of the hyper- 
geometric function, gives the factorial moments of B2 I B1 = b: 

E(B21BI=b)  = qv2(b+r) 9 F l ( v 2 + l , b + r + l ; b + v + l ; q )  (46) 
b + v  2Fl(v2, b + r ; b + v ; q )  ' 

which reproduces Corollary l, and more generally 

p(k)(B2 I B1 = b) = qk(v2)k(b q- r ) k  2Fl(V2 --k k, b + r + k;b + v + k; q) 
(b + v)k 2Fl(v2, b + r; b + v; q) 

(47) 

6 THE CONTINUUM OF RESERVING METHODS 

Corollary 1 is very important. It provides a Bayesian estimate of unreported 
claims given claims to date which is exactly the quantity the reserving actu- 

-'The probability generating function of a nonnegative discrete random variable X is defined 
as 

a(z) = E(:x). 

The (descending) kth factorial moment of  a random variable X is defined as 

#(k) (X)  = E ( X ( X  - 1 ) . . .  (X  - k + 1)). 

Factorial moments can be computed from the probability generating function by differentiating: 

dkG(z)  
#(k) -- dz"""'g-- Iz=l" (43) 

It is easy to compute the central moments and moments about zero from the factorial moments. 
For example 

Var (X)  = #(2) + ,u - #2. (44) 

See Johnson et al. [9] for more general relationships. 
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ary must estimate. In this section we show that special or limiting cases of the 

GPDM include the peg, the Bornhuetter-Ferguson, Benktander, and the chain- 

ladder methods. Then we compare the GPDM to traditional methods over prac- 

tical ranges of the parameters r and v. The model confirms the suggestion in 

Renshaw and Verrall [22] that the chain-ladder is just one of many appropriate 

methods. A schematic showing how the GPDM interpolates between other re- 

serving methods is shown in Figure 3. 

Emergence Variability, v 

low 

high 

v>>r / 
~CL Method J r  = v, BF Method 

v > r  / . I  
, -~k-Benk tander /  ~ ~3Fl~le;'hod oc 
M e t h ~  J 

,-,Peg Method 

J v<<r 
Perverse 

P 

high low 
Ultimate Count Variability, r 

Figure 3: Schematic showing the behavior of the GPDM reserve as (r, v) vary. 
Low r (resp. v) corresponds to high uncertainty in ultimate counts (resp. claim 
emergence). The r = v diagonal is exactly the Bornhuetter-Ferguson method. 

Using Lemma 1 we can reduce each accident year to the case n = 2, t = 1. 

B1 denotes observed claims and B2 unreported claims. (B1, B~ ] 8)  has a GPDM 

distribution; 19 = (A, II1). A has a gamma distribution with mean m, the prior 
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expected number of ultimate claims, and variance m(1 + m/r).  1-It has a beta 

distribution with parameters Vl and v2. Let v = vl + v2 and rr := g(l'I1) = Vl/V. 

Per Section 2, the parameters of the gamma distribution are r and p/q where 

p = r / (r+m) and q = 1 - p  = m/(r+m).  Higher values o f r  and v correspond to 

lower variances of A and II1 respectively. As r --+ c¢ the claim count distribution 

tends to a Poisson. 

We are going to compare the six estimates of unreported claims: GPDM, peg, 

chain-ladder, Bornhuetter-Ferguson, k-Benktander, and linear least squares. Con- 

ditional on observed claims to date of b estimated unreported claims for each 

method are denoted b'.(b) where • = g,p,c, b,k,l indicates the method. The 

estimate of ultimate claims corresponding to each method is therefore simply 

b + b',(b). 

1. The GPDM method 

b'g(b) = E(B2 I B1 = b ) =  ( b + r ) ( ~ ( v 2 ' b + r - - + ! ; b + v " q )  ) 
\ 2Fl(v2, b+r;b+v;q )  - 1 . .  

(48) 

2. The peg method 

b'p(b) := (m - b) +. (49) 

The peg ultimate is insensitive to observed data--until  observed claims ex- 

ceed the peg! The peg is an extreme reserving method. It ignores actual 

emergence completely. 

3. The chain-ladder method 

b'(b) . -  (1 - 7r)b (50) 
71" 

see Mack [16] or Renshaw and Verrall [22]. 7r is usually estimated from 

the data as a product of link ratios. Each link ratio is the weighted average 

development from one period to the next over all available accident periods. 

The chain-ladder method is at the opposite extreme to the peg method. It 

completely ignores prior estimates of ultimate counts. 
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4. The Bornhuetter-Ferguson method estimate 

b'~(b) := m(1 - 7r) (51) 

see Mack [16]. This estimate of unreported claims is completely insensi- 

tive to the observation b. The Bornhuetter-Ferguson method is sometimes 

regarded as an extreme, but it is actually a middle-ground method between 

the chain-ladder and peg methods. 

5. The k-Benktander method, k = 0, 1, 2 , . . .  

b (b) : =  - (52) 

see Mack [16]. When k = 0 this reduces to the Bornhuetter-Ferguson. As 

k ~ oo, b~k(b) ---* b'c(b ). The Benktander methods are all linear in b. They 

are a credibility weighting of the Bornhuetter-Ferguson and chain-ladder 

methods. 

6. The linear least squares, or greatest accuracy credibility, estimate 

b'z(b ) := a +/3b (53) 

where a and/3 are chosen to minimize the expected squared error. This 

approach is described in Klugman et al. [10, Section 5.4] from a credibility 

perspective and in Murphy [ 18] from a linear least squares loss development 

perspective. Solving by differentiating E((B2 - a -/3B1) 2) with respect to 

a and/3 and setting to zero gives 

c~ = E(B2) - /3E(Ba)  /3 _ Cov(Bx, B2) (54) 
Var(B1) 

In order to actually compute a and/3 we need a bivariate distribution for 

B1 and B2; we use the GPDM. The variance and covariance are computed 

in Eqn. (23) and Eqn. (24). By construction b' z will be the least squares line 

through b;. When r = v, and B1 and B2 are uncorrelated, b[ reduces to the 

Bornhuetter-Ferguson. 
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Neither the chain-ladder nor the Bornhuetter-Ferguson method is sensitive to 

the relative variance of ultimate losses B1 + B2 and the proportion of claims ob- 

served II1. This is a weakness that can be illustrated by considering two hypothet- 

ical situations. In the first, the ultimate is estimated with low confidence but the 

claim reporting pattern is very predictable, so r < v. We would favor the chain- 

ladder estimate over the prior m. This corresponds to the second row in Figure 1. 

In the second situation, the ultimate claim count distribution is known with a high 

confidence, but the reporting pattern is estimated with less confidence, so r > v. 

Here we would weigh the prior estimate m more than the chain-ladder which re- 

lies on the proportion reported. This corresponds to the third row in Figure 1. 

Corollary 1 provides a probabilistic model of these intuitions that continuously 

interpolates from one extreme to the other. The GPDM captures and models the 

process behind the actuarial judgment of selecting appropriate reserves. By pro- 

viding a quantification of what is currently a judgmental process the model should 

be of great value to the practicing actuary. 

Here are six examples of how the GPDM behaves for different values of r and 

v. They are illustrated in Figure 3. 

1. For fixed r, b'g(b) ---+ m(1 - rr)(b + r ) / (mrr  + r) as v --+ oc. Proof." As 

I )  " - '+  O ~  

2F1 (z'2, b + r; b + v; q) = 2F1 ((1 - rr)v, b + r; b + v; q) 

---+ 2Fl(1,b + r;1; (1 - rr)q) 

= (1 - (1 - re)q) -(b+r) 

by Eqn. (66). Therefore 

b'g(b) --+ q(1 - 7r)(b + r) rn(1 - 7r)(b + r) 
1 - ( 1 - r r ) q  = m r r + r  (55) 

We can write this limit as a credibility weighting of the chain-laddei and 

Bornhuetter-Ferguson with credibility z = rarr/(mrr + r) given to the chain 

ladder: 

m ( 1 - ~ r ) ( b + r ,  ( rnrc ) ( 1 - r r ) b  ( ) 
= - t- r ((1-Tr)rn). (56) 

m,'r + r mTr + r rr m ~ +  r 
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This equation corresponds to the k-Benktander  method with 

k = log(r / (mTr  + r) )  (57) 
log(1 - ~r) 

2. As r --+ 0 the GPDM reserve tends to the chain ladder reserve, b'g(b) --+ 

b'c(b ). Proof." Use the l imit  of  the hypergeometr ic  function as r --+ 0 and 

q --+ 1. 

3. I f  r = v then the GPDM reserve equals the Bornhuetter-Ferguson reserve, 

b'g(b) = b~(b). Proof." Apply ing  Eqn. (66) to Eqn. (46) gives 

b ' g ( b ) -  qv2 _ qv2 (58) 
i - -q v 

Since r = v, q /p  = r e l y  and so 

b'g(b) - rnv~ _ rn(1 - ~) (59) 
v 

as required. The case r = v represents an exact  balance between the un- 

certainty in ult imate losses and claim count emergence which reproduces 

the Bornhuetter-Ferguson. By Eqn. (24) it also represents the case when t31 

and B2 are uncorrelated. 

4. I f  r = cry for a constant a then as v --~ oc the GPDM reserve converges to 

the Bornhuetter-Ferguson: b'g(b) --~ b'b(b ). 

5. For  fixed small v > 0 the GPDM reserve is close to the peg reserve as 

r ~ oc. See the figures below. 

6. As v --* 0 and r --* e~ the GPDM reserve tends to zero if  b > 0 and 

rn i f  b = 0. This is a perverse kind of  reserve[ It is possible  to prove 

this analytically,  but heurist ically the reason is that as v --~ 0 the Dirichlet  

distribution becomes concentrated at the corners. Thus the claims all tend 

to be reported at once. So if  any claims have been reported then no more 

are expected. On the other hand, if  none have been reported they should all 

still be held in reserve. 
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The fourth point needs elaborating because it appears to contradict the main 

result of Renshaw and Verrall [22]. Their model assumes incremental claims Bi 
have a Poisson distribution and hence emergence is modeled with a multinomial 

distribution. They prove their model reproduces the chain-ladder reserve when 

the parameters are determined using maximum likelihood. As r --+ c~ the GPDM 

ultimate has a Poisson distribution. As v ---+ oo the Dirichlet prior becomes a de- 

generate distribution, so the DM becomes a multinomial distribution conditional 

on ultimate counts B(n). In this situation B~ will also have a Poisson distribution 

and so in the limit the GPDM model appears to be the same as Renshaw and Ver- 

rail's, and yet it gives the Bornhuetter-Ferguson reserve and not the chain-ladder. 

The reconciliation of this apparent contradiction is that Renshaw and Verrall fit 

the emergence pattern (means of the multinomial) and the prior accident year 

means from the data. If  we interpret these parameters as prior estimates then their 

model produces exactly expected emergence--see [22, Eqn. (2.4)]. In the GPDM 

model the emergence pattern and accident year means are given a priori. As 

t,, r + oo both parameters become certain. If losses emerge exactly as expected 

then the chain-ladder and Bornhuetter-Ferguson methods agree and so the GPDM 

would also give the chain-ladder reserve. However, actual emergence from the 

GPDM need not be exactly equal to expected because the means and emergence 

are specified a priori. Note that in the Poisson-multinomial model (r, v --+ o¢) 

B1 and B2 are independent so the linear least squares method also reproduces the 

Bornhuetter-Ferguson. 

These mathematical limits of the GPDM method are mainly of academic in- 

terest. However, the way the GPDM interpolates between the common reserving 

methods for realistic values of r and v is of practical interest because it provides 

analytical guidance to supplement actuarial judgment. We now explore that inter- 

polation. 

Figure 4 shows a plot of b'~(b) against b for r = 25, rr = 0.45, m = 110 

and v = 0.1, 1, 10, 2g.. 100, 1000. Each plot also shows the peg, chain-ladder, 

Bornhuetter-Ferguson, k-Benktander and linear least squares reserves. The value 

of k is determined by Eqn. (57). Figure 4 ties back to the six points we made 

about b'g. 
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• The four standard methods do not change with v. The linear least squares 

method is sensitive to v and is a line through b' 9 as expected. 

• Point 1 is illustrated by v = 100 and v = 1000. The GPDM method tends to 

the predicted k-Benktander method line for larger k. If  we had plotted large 

v and small r the GPDM line would eventually convert up to the chain- 

ladder line, per Point 2. 

• Point 3 is illustrated by v = 25 = r; the GPDM line lies underneath the 

Bornhuetter-Ferguson line. 

• The fact that the GPDM favors the peg method when v < r and the chain- 

ladder method when v > r is shown in the increasing slope of the GPDM 

line from the first plot to the last. 

• Point 5 is illustrated by v = 1: b'g is close to the peg method. 

• Point 6 is illustrated by v = 0.1 which shows b'9 --+ 0 for larger b. 

Figures 5 and 6 are two views of the bivariate density of (B1, B2) computed 

with rn = 110 claims, r = 25 and rr = 0.45, so E(B1) = 49.5 and E(B2) = 109.5. 

The nine contour plots correspond to v = 0.1, 1, 2.5, 5, 10, 25, 100, 1000, 10000. 

As expected, when v < 25 B1 and/32 are negatively correlated. When v = 25 they 

are uncorrelated and when v > 25 they are positively correlated. The posterior 

distribution of B2 I B1 = bl is simply a re-scaled vertical slice through these 

distributions, so the reader should be able to connect these plots with the plots of  

b'a(b ). The cases v = 0.1 and v = 1 help explain how the GPDM reacts given 

extreme uncertainty in the payout pattern. The 3-d plot explains why the contour 

plot seems to disappear: the probability becomes concentrated along the axes. 

This completes our theoretical investigation of the properties of the GPDM 

distribution. We have produced easy-to-compute expressions for the marginal and 

conditional distributions and written down the mean of the posterior distribution of 

unreported claims given claims observed to date. Next we show how the GPDM 

can be used in practice by applying it to a particular claim count development 

triangle. 
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Figure 4: b'p(b) for r = 25, rr = 0.45, E(A) = 110 and v = 
0.1, 1, 10, 25,100, 1000, compared with the peg, chain-ladder, Bornhuetter- 
Ferguson, Benktander k and linear least squares methods, k = 1.826 determined 
by Eqn. (57). 
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Figure 5: Contour plots o f  the bivariate density (B1, B2) with r = 25, m = 110, 
rr = 0.45 shown for v = 0.1, 1, 2.5, 5, 10, 25 ,100 ,  1000, 10000. 
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Figure 6: Three dimensional  density plots o f  the bivariate density (B1, B2) with 
r = 25, m = 110, 7r = 0.45 shown for v = 0.1, 1, 2.5, 5, 10, 25 ,100 ,  1000, 10000. 
The z-scales  are all the same. The orientations vary by plot. 
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7 PARAMETER ESTIMATION 

The GPDM model for n periods of  development uses n + 2 parameters;  of  these 

the n development-related parameters vl, • • •, vn would usually be shared across 

multiple accident years. The prior mean m of the ultimate distribution would vary 

by accident year and r would generally be considered common.  Thus to model 

a development triangle with n accident years and development periods there are 

2n + 1 parameters.  If  there is a good exposure measure then prior mean could 

be modeled as a common frequency times exposure and that would reduce the 

number of  parameters to n + 2. 

Reasonable initial estimates for m should be available from the pricing de- 

partment. A view of r could be driven by a macro line-of-business level study. 

Alternatively we could take r to be very small corresponding to a non-informative 

prior for the ultimate. 

Kotz et al. [11] discuss using sample moments  to estimate the parameters  

vt of a Dirichlet-multinomial. Let ~l~t be the sample mean of the proportion 

of  claims observed in the tth period (computed with respect to the chain-ladder, 

for example),  and let AI~I be the mean of  the square of  the proportion of  claims 

observed in the first period. Then reasonable starting parameters are 

! , ! 

~t = ( j ~ I ~ l  - -  ~J21)'~l~t i = 1 . . . .  , n  -- 1 (60) 
AI 1 - ( a s h )  2 ' 

= (/1I~1 - M~1)(1 - E~=l~ k'Iit) (61) 
_AI~I - (~I{1) 2 

Alternatively taking Vl . . . . .  vn = 1 gives a prior emergence distribution 

equal over all periods, which could be regarded as a non-informative prior. 
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Table 1: Incremental Claim Count Data 

Year 1 2 3 4 5 6 7 8 9 10 b 
1990 
1991 
1992 
1993 
1994 
1995 
1996 
1997 
1998 
1999 

40 124 157 93 141 22 14 10 3 2 
37 186 130 239 61 26 23 6 6 
35 158 243 153 48 26 14 5 
41 155 218 100 67 17 6 
30 187 166 120 55 13 
33 121 204 87 37 
32 115 146 103 
43 111 83 
17 92 
22 

606 
714 
682 
604 
571 
482 
396 
237 
109 
22 

Table 2: Loss Development Factors 

AY 1 : 2  2 : 3  3 : 4  4 : 5  5 : 6  6 : 7  7 : 8  8 : 9  9 : 1 0  
1990 
1991 
1992 
1993 
1994 
1995 
1996 
1997 
1998 

4.100 1.957 1.290 1.341 1.040 1.024 1.017 1.005 1.003 
6.027 1.583 1.677 1.103 1.040 1.034 1.009 1.008 
5.514 2.259 1.351 1.081 1.041 1 .021 1.007 
4.780 2.112 1.242 1.130 1.029 1.010 
7.233 1.765 1.313 1.109 1.023 
4.667 2.325 1.243 1.083 
4.594 1.993 1.352 
3.581 1.539 
6.412 

Wtd. Avg. 5.055 1.930 1.350 1.134 1.035 1.023 1.011 1.007 1.003 
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8 EXAMPLE 

We now give an example to illustrate the use of the GPDM to estimate the distri- 

bution of unreported claims. 

The incremental claim count data is shown in Table 1 and the claim count de- 

velopment factors are shown in Table 2. The right hand column shows total counts 

observed to date b. This data was analyzed by de Alba [5]. Using a Bayesian 

model he found a mean of 919 outstanding claims with a standard deviation of 

79.51. 

We use Eqn. (20) to compute the likelihood of each row of the development 

triangle and then determine the maximum likelihood estimate parameters. Initial 

parameter values were r = 25, the chain ladder estimates for the prior means m~ 

by accident year, and the estimates of vt given in the previous section. The starting 

values and maximum likelihood estimates for m~ are shown in Table 3. Table 4 

shows the same thing for vt along with the incremental reporting patterns for both 

estimates. The maximum likelihood estimator for r is 1625458.8 which is much 

closer to Poisson than the starting value and v = 129.018 so the model has r > v. 

Clearly the development pattern for this triangle is quite erratic, and so a low v 

is expected. One reason that r is so large is the use of a different variable mi for 

each accident year. These parameters absorb some of the claim count variability 

and increase r. 3 

Table 5 shows the GPDM, chain ladder and Bornhuetter-Ferguson reserves, 

and the standard deviation and coefficient of variation of the GPDM reserve. The 

overall reserve is slightly lower than the chain ladder. It is interesting that the 

reserves are actually higher for the older years and lower for the more recent 

years. 

Figure 7 shows the distribution of the GPDM reserve. This distribution is the 

sum of the reserve distributions for each accident year, assuming they are inde- 

pendent. Figure 8 shows the evolution of the predictive 6istribution of ultimate 

claims for the oldest accident year, as more and more claim information becomes 

available. 

3Exposure information was not available for this triangle, but estimating an exposure base 
produced a modeled ~ = 196.1, lowered the reserve to 889 from 895 and increased the standard 
deviation of the reserve to 55.4 from 40.5. The estimate of v declined slightly. 
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Table 3: Starting and maximum likelihood estimates of rn for each accident year. 

Year CLMean Prior Meanm 
1990 
1991 
1992 
1993 
1994 
1995 
1996 
1997 
1998 
1999 

606.0 
716.4 
689.0 
616.7 
596.2 
520.8 
485.1 
391.9 
347.9 
355.0 

606.0 
718.2 
692.5 
621.6 
601.8 
527.1 
487.9 
390.0 
339.8 
333.0 

Table 4: Starting and Maximum Likelihood Estimates for vi with implied incre- 
mental and cumulative proportion of claims reported 

t 
Initial vt 
Incremental 
Cumulative 
MLE vt 
Incremental 
Cumulative 

t 
Initial vt 
Incremental 
Cumulative 

MLE vt 
Incremental 
Cumulative 

1 2 3 4 5 
13.195 52.531 60.500 43.094 22.834 
0.064 0.253 0.292 0.208 0.110 
0.064 0.317 0.608 0.816 0.926 
8.477 32.702 36.891 26.322 13.367 
0.066 0.253 0.286 0.204 0.104 
0.066 0.319 0.605 0.809 0.913 

6 7 8 9 10 v = ~ v i  
6.636 4.428 2.225 1.384 0.686 207.514 
0.032 0.021 0.011 0.007 0.003 
0.958 0.979 0.990 0.997 1.000 
4.488 3.010 1.729 1.246 0.786 129.018 
0.035 0.023 0.013 0.010 0.006 
0.948 0.971 0.984 0.994 1.000 
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Table 5: Comparison of Reserve Estimates (r = 1625458.8, LL = -221.42) 

b~(b) Year b m b~(b) Std. Dev. CV b'c(b ) 
1991 714 718 4 5.018 1.191 2 
1992 682 693 11 7.671 0.728 7 
1993 604 622 18 9.300 0.529 13 
1994 571 602 31 11.688 0.380 25 
1995 482 527 45 12.910 0.287 39 
1996 396 488 92 15.965 0.174 89 
1997 237 390 153 16.774 0.110 155 
1998 109 340 231 17.344 0.075 239 
1999 22 333 311 18.072 0.058 333 
Total 4423 895 40.465 0.045 902 
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Figure 7: Distribution of total reserve. 
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Figure 8: Predictive distribution of ultimate losses for oldest accident year starting 
with prior and adding observed losses for each development period. 
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9 EXTENSION TO LOSS DEVELOPMENT 

The GPDM model applies to claim counts. Understanding claim counts can be 

a hard problem and the power of the model for working with counts should not 

be discounted. Nonetheless an extension to loss development is desirable. There 

will not be a similarly tractable model for loss development--just as there is no 

analog of the Poisson-gamma model for aggregate loss distributions. However, 

the general philosophy of the GPDM model, that the appropriate reserve depends 

on the relative variance of ultimate losses and loss emergence, carries over in- 

tact to losses and the problem is to determine a suitable bivariate distribution for 

observed and unobserved claims. Once that bivariate distribution is in hand nu- 

merical methods can be used to produce predictive reserve distributions. There 

are at least two approaches we could take. 

Firstly, like Renshaw and Verrall [22], we can just use the GPDM directly to 

model losses. This is actually a more rational assumption than it seems. For a 

large book of business with a "tame" severity distribution (for example, where 

all policies have a low limit) the severity quickly diversifies and the normalized 

distribution of ultimate losses converges in distribution to the distribution of A as 

the book gets larger, see Daykin et al. [4, Appendix C] or Mildenhall [17, Section 

2.10]. This method would be particularly appropriate when the maximum severity 
is of the same order of magnitude as the average severity because the diversifica- 

tion would occur more quickly. Working layer excess of loss reinsurance is an 

example. 
The second approach is to try and determine a bivariate distribution for B1 

and B2 and work with it numerically. Here we need a distribution of severity 

at tth report and ultimate. This could be estimated directly from a transactional 

loss database. The severity component would be combined with a mixed count 

emergence model like the GPDM. The aggregate distributions could be computed 

numerically using Fourier or fast Fourier transforms, or simulation. Alternatively, 

given the model specification and conditional severity distribution, we could use 

WinBUGs and MCMC techniques--see Verrall [27]. Understanding individual 

claim severity development is a great opportunity for further actuarial research in 

loss development. Since claim databases for most lines (except workers compen- 

sation) are much smaller than exposure databases this is also a practical thing to 

do. 
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10 CONCLUSIONS 

We have introduced the GPDM model of claim count development and computed 

many of its important actuarial properties. The GPDM model incorporates esti- 

mates of the variability of ultimate claims and the claim emergence pattern into its 

estimates of reserves. Selecting between different reserve estimates is something 

usually done via actuarial judgment. The GPDM model can help bolster actuarial 

judgment by supplying a well-defined analytic selection framework. 

The model includes the chain-ladder and Bornhuetter-Ferguson methods as 

special cases, and also closely approximates the peg method and k-Benktander 

methods. Thus it provides a rich modeling framework for the practitioner. 

The GPDM is a statistical model of claim development which can be fit using 

maximum likelihood. Given an exposure base, it can also be used to fit ultimates 

in the presence of covariates, again also using maximum likelihood. The model 

is easy to use and provides full posterior distributions rather than just a point 

estimate and standard deviation. 

A Appendix: Hypergeometric Functions 

The hypergeometric function 2F1 is defined as 

21~1(a, b; C; q) = ~ (a)k(b)k k 
k_>0 ~ q"  (62) 

The notation (a, b; c; q) indicates there are two variables in the numerator, one 

in the denominator and one argument (there are generalizations the reader can 

readily imagine). The series is absolutely convergent for Iql < 1 and conditionally 

convergent for Iql = 1. In our applications q is real and 0 < q < 1, so convergence 

is not an issue. Hypergeometric functions have been described as a staple of 

nineteenth century math; a glance at any table of mathematical equations will 

explain why. The facts we use are gathered from Abramowitz and Stegun [1, 

Chapter 15] and Lebedev [13]. 

The hypergeometric function is very easy to compute for Iql < 1. The follow- 

ing algorithm, taken from Press et al. [21], will compute 2Fl(a, b; c; q) for a > 0, 

b > 0, c > 0 and 0 < q < 1 to machine accuracy. 
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Initialize: f = i, 

do 

g = g * q* 

f = f + g 

a -- a + 1 

b = b + 1 

c -- c + 1 

i = i + 1 

while g > 0 

return f 

g = I, i = 1 

a * b / c / i  

Because the series defining 2F1 is absolutely convergent it can be differentiated 

term by term, giving 

d F  ab 
- 2 F l ( a + l , b + l ; c + l ; q )  (63) 

dq c 

and more generally 

dn F 
dq n 

(a) .(b).  
- -  - - -  2Fl(a + n ,b  + n ;c  + n; q). (64) 

(c)n 

Euler's integral representation of 2F1 is 

F(c) ~01 tb-l(1 - -  t)c-b-l(1 - -  tq)-adt (65) 
2Fl(a, b; c; q) - r(b)r(c - b) 

[l, Chapter 15.3]. We will use the result 

(66) 2Fl(a,b;b;q)  = 2Fl(b,a;b;q)  = (1 - q)-a 

from [1, Chapter 15.1]. This can be seen by considering the sum of the probabili- 

ties of a negative binomial distribution. 
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Incorporating Systematic Risk Into The RMK Framework 

Trent  Vaughn,  FCAS, MAAA 

Abstract 
The RMK pricing algorithm provides a method for pricing insurance contracts or reinsurance deals. This 
paper discusses the incorporation of systematic, or non-diversifiable, risk into the RMK framework. 

1. A SIMPLE EXAMPLE OF THE RMK METHOD 

Ruhm/Mango (2003) present a simple illustration of the RMK pricing algorithm. 
Specifically, this simple example assumes that the insurance (or reinsurance) company 
writes two risks, each with the following state-dependent loss vector: 

State Risk 1 Loss 
$100 

Risk 2 Loss 
$100 

Portfolio Loss 
$200 

Probability 
35% 

2 $100 $200 $300 15% 
3 $200 $100 $300 25% 
4 $200 $200 $400 25% 

The RMK algorithm incorporates an adjustment for risk by means of a set of outcome- 
specific weights. For this example, Ruhm/Mango utilize the following set of risk-averse 
outcome weights: 

Portfolio Outcome Risk-Averse Outcome Weight 
$200 0.500 
$300 1.000 
$400 1.250 

These risk-averse outcome weights are similar to Mango's (2003) concept of a cost 
function. Mango points out that such a function can be interpreted as a corporate utility 
function; that is, in some sense, management has determined that a $300 aggregate loss is 
"twice as bad" as a $200 aggregate loss. 1 

These risk-averse weights are then normalized (scaled so that their expected value is one) 
to produce the following vector of normalized weights: 

Fama and Miller (1972) point out the many theoretical difficulties involved in interpreting and 
determining a "corporate" utility-of-wealth function. However, for purposes of this paper, we will assume 
that such a function has been determined by some means, 
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Portfolio Outcome 
$200 

Normalized Weight 
0.563 

$300 1.127 
$400 1.408 

The RMK method then determines the "risk load" for each of the two risks according to 
the following formula: 

Risk Load for Risk i = Cov(Ri,Z), 

where Ri is the loss amount for each of the two risks (i = 1, 2), 
and Z is the vector of normalized weights. 

Thus, the resulting risk load is $13.38 for Risk 1 and $12.11 for Risk 2. The final 
premium is then determined by discounting the expected loss for each risk (at the risk- 
free rate of interest), then adding the risk load. Assuming that losses are payable at the 
end of one year, and a risk-free interest rate of 2%, the final RMK premiums are as 
follows: 

Premium for Risk 1 = $150/1.02 + $13.38 = $160.44 
Premium for Risk 2 = $140/1.02 + $12.11 = $149.36 

2. THE FINANCIAL PRICING METHOD 

By comparison, let's utilize a financial pricing method to price each of the risks in the 
previous example. If we ignore default costs, then the financial premium formula 
reduces to the following equation: 

Premium = Present Value of Expected Loss (at risk-adjusted rate) + Capital * Cost of 
Capital 

According to the Capital Asset Pricing Model (CAPM), the risk-adjusted discount rate 
for the loss amount depends on the relationship between the loss random variable and the 
return on the market portfolio. Let's assume the following state-specific returns (Rm) for 
the market portfolio: 

State Return on Market Portfolio (Rm) 
I +25% 
2 +10% 
3 +4% 
4 -5% 
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For each of the two risks, the present value of  the expected loss at the risk-adjusted rate, 
or PV(Ri), is determined according to the certainty-equivalent version of the CAPM: 2 

PV(Ri) = E(Ri) / (1 + Rf) - [Lambda * Cov(Ri,Rm)] / (l+Rf), 

Where E(Ri) is the expected loss amount for each of the two risks, 
Rf is the risk-free rate of interest, 
And Lamda is the "market price &risk"  given by: 

Lambda = [E(Rm) - Rq / Var(Rm) 

According to our assumptions regarding the return on the market portfolio, we calculate 
the following values: 

Cov(Rl ,Rm) = -5.25 
Cov(R2,Rm) = -3.75 
Lambda = 5.56 
PV(R1) = $175.65 
PV(R2) = $157.68 

In the financial formula, the "cost of  capital" is primarily due to double taxation and 
agency costs. Let's arbitrarily assume that the cost of  capital is 10% of the required 
capital. The required capital for each policy is generally determined by allocating the 
total capital down to the risk, or policy, level. In the financial method, this allocation 
method is generally based on some form of  Option Pricing Theory (OPT). However, for 
simplicity, let's assume that a total capital amount is $200, and that it will be allocated in 
proportion to the expected loss amount for each risk. The premium for each risk is then 
given as follows: 

Premium for Risk 1 = $175.65 + 10% of $103.45 = $186.00 
Premium for Risk 2 = $157.68 + 10% of  $96.55 = $167.33 

3. EXPLAINING THE DIFFERENCES BETWEEN THE RMK AND FINANCIAL 
PREMIUMS 

In the previous two sections, the Financial method resulted in a much higher required 
premium for each policy than the RMK method. There are two major reasons for this 
discrepancy. 

First, the RMK method requires a "calibration" to ensure that the resulting combined 
ratio and return on equity are in accordance with the overall corporate objectives. Mango 
(2003) discusses the issue of  calibration in detail, but the procedure is outside the scope 
of this paper. Presumably, the overall return implied by management's risk-averse 
outcome weights would determined; if this overall return falls short of corporate targets, 
there would need to be a feedback loop back to management to adjust the weights. The 

-' See the Appendix to Chapter 9 of Brealey and Myers (2000) for a derivation of this formula. 
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procedure would continue until a set of weights had been identified that resulted in an 
acceptable corporate return. 

Second, the financial method incorporates additional data and assumptions regarding the 
state-return on the market portfolio. In other words, the financial method incorporates 
the "systematic risk" of the loss variables, whereas the RMK method did not. Since these 
loss variables possessed a negative covariance with the market return, the incorporation 
of  systematic risk resulted in an increase in the required premium. 

This begs the question: can we adjust the RMK method from Section 1 to reflect the 
market return data - and the "systematic risk" of the loss variables? This question will be 
explored in the following section. 

4, A METHOD FOR REFLECTING SYSTEMATIC RISK IN THE RMK 
ALGORITHM 

Mango (2004) presents a simplified flow-chart method for incorporating systematic risk 
into the RMK framework. Essentially, the method combines the results of the insurer's 
underwriting portfolio and the insurer's asset portfolio to produce a state-specific net 
income distribution. This net income distribution then serves as the reference portfolio 
for the RMK application. 

In order to determine this net income distribution, we need to develop some assumptions 
regarding the insurer's investment (or asset) portfolio. For this example, let's assume 
that 80% of the insurer's assets are invested in risk-free bonds, earning the risk-free rate 
of 2%; the remaining 20% of the insurer's assets are invested in the market portfolio, 
earning the state-specific returns provided in Section 2. 

Since we are now dealing with net income, management's risk preferences must be stated 
in terms of various net income amounts (as opposed to aggregate loss amounts). Let 's 
assume that management has developed the risk-averse outcome weights as a function of  
various net income amounts. Again, there is an intuitive interpretation of this risk 
aversion function? For instance, let's say that the outcome-specific weight is 1.25 for net 
income of $50 and 0.25 for net income of  $150; in this sense, management views a net 
income result of only $50 as being "five times as bad" as a higher net income result of  
$150. 

In this case, the RMK method requires an iterative approach, since the resulting premium 
amount impacts both the underwriting income and the investment income? With the 
asset allocation assumptions above - together with some assumed values for the risk- 
averse outcome weights -- the resulting premium is $171.77 for Risk l and $160.47 for 
Risk 2. The following chart and formulas provide the details of  the calculation: 

3 And, again, we will ignore the theoretical and practical difficulties involved in determining this function. 
4 Investment income is impacted since total assets are equal to total premium plus total surplus. 
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State 
Aggregate 

Probability Loss 
0.35 $2O0 

Market 
Return 
25% 

Net 
Income 
$167.37 

Mgt. Risk 
Weight 
0.25 

Normalized 
Weight (Z) 
0.230 

2 0.15 $300 10% $51.41 1.25 1.149 
3 0.25 $300 4% $45.02 1.25 1.149 
4 0.25 $400 -5% -$64.56 2.00 1.839 

Risk Load for Risk 1 = Cov(R1,Z) = $24.71 
Risk Load for Risk 2 = Cov(R2,Z) = $23.22 
Premium for Risk 1 = $150/1.02 + $24.71 = $171.77 
Premium for Risk 2 = $140/1.02 + $23.22 = $160.47 

Also, it may be helpful to illustrate the calculation of  the net income amount for state 1. 
In this state, the income variables are as follows: 

Underwriting Income = Total Premium -Aggrega t e  Loss = $332.24 - $200 = $132.24 
Total Assets = Total Premium + Surplus = $332.24 + $200 = $532.24 
Assets Invested in Market Portfolio: 20% of  $532.24 = $106.45 
Assets Invested in Bond Portfolio: = 80% of  $532.24 = $425.79 
Investment Income from Market Portfolio = 25% return on $106.45 = $26.62 
Investment Income from Bond Portfolio = 2% return on $425.79 = 8.52 
Total Income s = $132.24 + $26.62 + $8.52 = $167.38 

Net income for the other states is determined in a similar manner. 

5. POTENTIAL PROBLEMS WITH THE MANGO ADJUSTMENT FOR 
SYSTEMATIC RISK 

In some sense, the method in Section 4 does provide an adjustment for systematic risk, 
since the insurer's net income depends (to a certain extent) on the return on the market 
portfolio. However, the sensitivity of  the insurer's net income to the market return will 
depend on the insurer's asset allocation. For example, i f  the insurer is invested entirely in 
risk-free bonds, then net income will be unaffected by market return. 

Moreover, in a practical situation, the insurance company invests in many more asset 
types than simply a "market portfolio" and risk-free bonds. Insurers may invest in 
corporate bonds, some sampling of  common and preferred stocks, real estate, etc. In 
addition, the insurer's common stock portfolio may not be fully diversified, but invested 
in only a handful of  individual stock holdings. In this case, the net income approach will 
reflect the risk characteristics of  the insurer's asset portfolio, but it would be incorrect to 
say that it has "incorporated systematic risk" into the analysis. 

5 This is actually total income prior to federal income taxes. We are ignoring federal income taxes in this 
example. 
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As an alternative, we may wish to calculate the insurer's net income distribution by fully 
utilizing the return on the representative market portfolio -- that is, make the assumption 
that the insurer is 100% invested in the market portfolio. This approach is still subject to 
the following drawbacks: 

1. Instead of using the assumption of 100% in the market portfolio, we could have 
used some other hypothetical mixture, such 75% in the market portfolio and 25% 
in risk-free bonds. It isn't clear which representative mixture best incorporates 
"systematic risk" into the net income distribution. And, in general, the resulting 
risk loads (and premiums) will vary on the basis of the assumed allocation. 

2. It becomes much harder to provide any intuitive meaning to the risk-averse 
outcome weight. The subject of these outcome weights is now a complicated 
intermingling of the market return volatility and the insurance portfolio volatility 

- and may bear little resemblance to the actual net income result for the insurance 
company in any particular state. 

3. There are already a variety of financial approaches for reflecting the systematic 
risk of a cash flow (e.g. CAPM, APT, Fama-French Three Factor Models). These 
models are not based on judgmental assessments of management's risk 
preferences, but financial theories regarding equilibrium in capital markets. By 
combining the adjustments for systematic risk and insurance risk into one step, we 
are not able to utilize these financial theories regarding systematic risk. 

It is possible, in theory, to determine a set of risk-averse outcome weights for the RMK 
procedure that will duplicate the premiums from the financial model. 6 This, however, 
provides little guidance to the actuary who is pricing a reinsurance deal "from scratch". 
That is, assuming that the answer is not known in advance, the pricing actuary must 
determine a set of risk-averse outcome weights from a reference portfolio that has little 
(if any) intuitive or practical meaning. 

6. AN ALTERNATIVE METHOD FOR INCORPORATING SYSTEMATIC RISK 
INTO RMK 

As an alternative to the method in Section 4, we can accommodate systematic risk within 
an RMK framework simply by discounting the expected losses at a risk-adjusted discount 
rate. In other words, simply utilize the RMK risk loads from Section 1, but adjust the 
discount rate for the losses in accordance with financial theory. 

For instance, according to the certainty-equivalent version of the CAPM, the present 
value of expected losses for each of the two risks was given as follows (per Section 2): 

PV(RI) = $175.65 
PV(R2) = $157.68 

6 Assuming that the surplus allocation in the financial model is additive, which it is in this case. 
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According to the RMK method of Section 2, the risk loads (excluding systematic risk) 
were $13.38 for Risk 1 and $12.11 for Risk 2. By adding these risk loads to the present 
value (at the risk-adjusted rate) of  losses, we get the following premiums: 

Premium for Risk 1 = $175.65 + $13.38 = $189.03 
Premium for Risk 2 = $157.68 + $12.11 = $169.79 

By using this method, we can also "bridge the gap" between the financial method and the 
RMK method. Specifically, in the financial method in Section 2, we allocated capital in 
proportion to expected losses. As an alternative, let's allocate capital in accordance with 
the risk-averse outcome weights assigned to the various aggregate loss amounts in 
Section 1. In other words, allocate capital to each risk in proportion to that risk's relative 
contribution to the covariance between the aggregate loss outcome and the Z-vector. For 
instance, the percentage of  capital allocated to Risk 1 is Cov(R1,Z) / Cov (Aggregate 
Portfolio Outcome,Z) = $13.38 / $25.49 = 52.5%. 7 According to the Z-vector from 
Section 1, the $200 capital would then be allocated at $104.99 for Risk 1 and $95.01 for 
Risk 2. The financial premiums then become: 

Risk 1 Premium = $175.65 + 10% of $104.99 = $186.15 
Risk 2 Premium = $157.68 + 10% of $95.01 = $167.18 

Lastly, the final reconciliation issue is simply a problem of "calibration" (per the 
terminology in Mango). That is, there is no reason to expect that the total capital ($200) 
and cost of  capital (10%) in the financial model will produce the same ROE as the RMK 
method. But, on an individual policy level, the ratio between the premiums for each risk 
is the same. Thus, we can complete the reconciliation by changing either the total capital 
or the cost of capital in the financial model. Let's change the cost of capital to 12.75%, 
which will complete the reconciliation: 

Risk 1 Premium = $175.65 + 12.75% of $104.99 = $189.03 
Risk 2 Premium = $157.68 + 12.75% of $95.01 = $169.79 

7. SUMMARY 

This paper has presented two proposed methods for incorporating systematic risk into the 
RMK pricing algorithm. The Mango (2004) method is plagued by an assortment of  
theoretical and practical problems. In short, the best method for incorporating systematic 
risk into the RMK framework is simply to discount the expected losses at a risk-adjusted 
hurdle rate. This risk-adjusted rate can be determined by any one of the common 
financial pricing models, including the CAPM, the APT, or the Fama-French Three 
Factor Model. 

7 Also, note that this is just the ratio of each of the individual risk loads to the total risk load. 
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A Portfolio Theory of Market Risk Load 

Yingj ie  Zhang,  PhD,  F C A S  

A b s t r a c t  

In insurance pricing, it is convenient to split the total risk load for a policy 

into the market risk load and the insurer specific risk load, and calculate 

each separately. The market risk load represents an equilibrium price on a 

competitive insurance market. A portfolio theory is developed along the line 

of the classic CAPM, where a policy's market risk load is a function of its 

systematic risk and the risk load of the entire insurance market. The model 

is mathematically proved. As a corollary a formula for the risk adjusted 

discount rate is obtained. Issues about the real world application and testing 

are also discussed. 

1 Introduct ion  

Risk load calculation is important  in insurance princing. As long as risk is trans- 

feted in an insurance transaction, a risk load should be included in the premium. 

The purpose of the risk load is to reward the insurers for taking the insurance 

risk. An insured pays a certain amount of premium to eliminate the uncertainty 

in future loss costs, and an insurer collects the premium and assumes the responsi- 

bility of paying any claims. Since both the insured and the insurer are risk averse, 

the insured is willing to pay a premium greater than the expected loss, and the 

insurer needs tha t  addit ional  premium to justify taking the risk. The size of the 

risk load depends on the riskiness of the insured loss and the competi t ion on the 

insurance market.  

In the actuarial  l i terature the calculation of risk load has experienced consid- 

erable change. In the classic premium principles, a risk load is determined by the 

volatili ty of the insured loss itself, and the volati l i ty is measured by the variance 

or the s tandard deviation [15]. Although these methods are still used, they have 

been considered inadequate.  As pointed out in Feldblum [8], they measure the 
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insured's risk but not the insurer's risk, inconsistant with the purpose of risk load. 

More reasonable risk load fornmlas were proposed in [8] and [12], which took ac- 

count of not only the volatility of the policy loss but also the company insurance 

portfolio and the market competition. These articles were inspired by the mod- 

ern financial theory, especially the Capital Asset Pricing Model (CAPM). Under 

the assumptions that the insurance market is competitive and the market players 

are "rational" decision makers, supply and demand determine an equilibrium risk 

load. These methods better reflect the insurer perspective of risk loads. They are 

among the first attempts to extend the modern financial theory to insurance. 

A recent COTOR review article [6] lays out a framework for the study of all 

risk components in premium. Underwriting risks come from various sources. Risks 

resulting from the uncertainty in an insured loss and the economic conditions of 

the insurance market do not rely on the particular insurer with which the policy is 

insured. The frictional cost of capital, on the other hand, is one of the risk items 

related to the capital structure of a particular insurer. So it is natural to split 

the insurer total risk load into two classes, the market risk loads and the insurer 

specific risk loads, which may be calculated separately. The following split is given 

in [6] 

premium = expected loss + market risk premium 

+ risk management cost + expected default + expenses. 

The total risk load consists of the second and the third term on the right hand 

side. (The expected default is a reduction to premium, so is not considered part 

of the risk load.) The market risk premium is just another name for the market 

risk load. The risk management cost includes all risks steming from an insurer's 

holding capital. 

The market risk load is the subject of this paper. (Here the word "market" 

meuns the insurance market, not the total financial market.) The market equilib- 

rium approach, whose power has been demonstrated repeatedly in modern finan- 

cial theory, will be employed to derive a risk load model. (The same approach, 

however, seems less effective in studying the insurer specific risk load, since com- 

panies have different line-of-business composition and different capital adequacy.) 

The paper is structured as follows. In Section 2, we examine the concept of market 
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risk load in detail. The market risk load is determined by a market equilibrium 

where no arbitrage opportunities exist. It is not related to the line-of-business 

composition and the capital amount in any particular insurance company. Section 

3 reviews various risk load models in the literature. We focus on the market equi- 

librium approach and the CAPM-related models. The CAPM idea seems widely 

applicable. But for a model to work it is necessary to reexamine the assumptions 

and perferrably provide a mathematical proof. Each risk load model by and large 

reflects one of the two pricing views: the actuarial view and the financial view. 

The former addresses the risk/return of the insurance companies, and the latter 

that  of the shareholders. 

In Section 4 we develope a portfolio theory for the market risk load. The 

derivation is parallel to the CAPM. The market risk load for a policy is a function 

of its systematic risk, defined in line with the/3 parameter in CAPM. The risk load 

is also in proportion to the overall market risk load, so is influenced by the level 

of competition on the insurance market, and in particular, by the underwriting 

cycles. A corresponding equation for the risk adjusted discount rate is derived in 

Section 5. Just like the CAPM, our model may not be a perfect fit in the real 

insurance market. In Section 6 we discuss what may happen when some of the 

theoretical assumptions fail. Modifications seem necessary to obtain more realistic 

models. Empirical testing of this or any other insurance models is difficult, due 

partly to the settlement lag and the data limitation. Finally, a mathematical proof 

is given in the appendix. 

2 Market  Risk Load 

Market risk loads represent equilibrium prices in a competitive market. To deve- 

lope a theory for the market risk load, ~¢e assume there exists an ~deal insurance 

market. Insureds and insurers are risk averse. Insureds pay a premium to transfer 

their future uncertain loss to the insurance market. They are willing to pay a risk 

load in addition to the expected loss. The size of the risk load is commensurate 

with the risk transfered. On the other hand, insurers enter the insurance market 

to make a profit. They accept a premium, invest the proceeds in the financial mar- 

ket, and pay any claims. Because of the uncertainty of the future loss, an insurer 

demands a risk load over and above the expected loss. In a competitive market, 
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the insureds shop around to pay the lowest possible risk load, while the insurers 

collect the highest possible risk load from each policyholder and select the policies 

to minimize the total insurance risk. Further assume the market is efficient, so 

that insureds and insurers have perfect information regarding the expected loss 

and the risk of any policy, and they can easily access the entire market. Under 

these conditions there exists an equilibrium risk load for each policy. This is the 

market risk load. 

The real insurance market has inadequate competition and efficiency. The in- 

sureds do not have sufficient information about price, so they may not find the 

lowest one. Insurers are limited by underwriting expertise and regulation, so they 

only write a few business lines and charge noncompetitive rates. Besides, without 

a frictionless trading mechanism, it is not possible to reach the equilibrium prices. 

Nevertheless, the market risk load is still a useful concept. It represents a fair 

premium to both insureds and insurers. It may not be reached, but can be un- 

boundedly approached with improvement in market competition and efficiency. In 

a market segment where risk securitization is in place, the market risk load may 

be practically realized. CAT call spreads and bonds are examples of successful 

securitization. 

The market risk load avoids the consideration of line-of-business composition 

and capital structure of a particular insurer. (In other words, we imagine "ab- 

stract" insurers that have unlimited and costless access to capital. They are able 

to minimize the total insurance risk by diversification, and they charge risk loads 

only to cover the uncertainty risk in the claims.) This allows a portfolio theory to 

be developed. On the other hand. the insurer specific risk varies with a different 

set of risk factors. The frictional cost of capital is one important component of 

the insurer specific risk, examples of which include taxation and agency costs. [23] 

gives a detailed analysis of the frictional cost. Premium charge for the frictional 

cost is a function of the capital amount allocated to the individual policies. Re- 

cent development in capital allocation includes [17], [20] and [27]. In practice, 

many companies also charge policyholders additional premium to compensate for 

their more risky line-of-business composition. Large and multiline insurers have 

a higher degree of diversification, so demands relatively lower risk loads, while 

small and monoline insurers require higher risk loads. It seems unreasonable to 
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charge the policyholders for an insurer's own inefficiency. Yet since the actual 

competition on the market is inadequate, companies are able to obtain this extra 

premium from unknowing policyholders. In actuarial literature, quantification of 

insurer specific risk loads is less studied. The market equilibrium approach seems 

powerless here. 

In the rest of the paper we omit the insurer specific risk load, and focus only 

on the market risk load. The term "risk load" and "market risk load" may be 

used interchangeablly. We also ignore all expenses. Therefore, the premium has 

the following expression 

premium = expected loss + market risk load. 

Venter [22] discusses constraints imposed on premium in a competitive market, 

where any arbitrage activity must be short-lived. In equilibrium state the market 

is arbitrage-free. A necessary condition for an arbitrage-free market is that  the 

premiums are additive, meaning that the total premium for a group of policies, 

whether independent or not, equals the sum of the individual premiums. This 

implies that the market risk loads are additive. Notice that when the insurer spe- 

cific risk loads are included, the total risk loads do not have the additive property. 

Because of the diversification effect, the insurer specific risk load of a portfolio is 

likely to be lower than the sum of that of the individual policies. (It makes sense, 

however, for the total risk load to be additive within an insurance company.) [6] 

also has an interesting discussion on additivity. 

Diversification is an important concept in modern financial theory. There are 

many forms of diversification in the insurance world. The market risk loads provide 

a simple one. When policies are combined into a portibho, the portfolio risk load 

is the sum of the individual risk loads. However, as long as the policy losses are 

not perfectly correlated, the risk of the portfolio, represented by the standard 

deviation or other reasonable measures, is less than the sum of the individual 

risks. So it is to an insurer's advantage to write a large volume of multiline 

insurance portfolio. Greater diversification effect may be achieved by insuring 

many negatively correlated risks. 
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3 R ev i ew  of Risk Load Models  

On the surface the insurance market is analogous to the securities market. The 

insurance policies are like the securities, and the insurers the investors. An in- 

surer's charging a risk load is similar to an investor's demanding a risk premium 

for a risky asset. Therefore, there is a great temptation in applying the securities 

pricing techniques to the insurance pricing. 

Much research has done to extend the classic CAPM to risk load calculation. 

Among the P&C actuaries, the Feldblum article [8] was influential and inspired a 

great deal of discussion. It provides a CAPM-like model to calculate the risk loads 

by line. It argues that  the CAPRi has many advantages over other methods like 

the standard deviation, the probability of ruin, or the utility functions. However, 

as commented later on ([13] [21]), [8] contains some conceptual difficulties and the 

risk load formula is not convincing. One significant conceptual flaw in [8] is that  

it "simply borrows the CAPM notation while ignoring the underlying message 

of the CAPRi paradigm" [21]. This subtle and important point warrants further 

explanation. 

A basic CAPM assumption is that  the investors are risk averse. They select 

the securities to maximize the portfolio return and minimize its risk. The selection 

process by many small investors produces a market equilibrium where the security 

returns are given by the classic CAPRi. The CAPM is intuitively appealing and 

can be mathematically proved. It is also extensively tested with empirical data. 

Many modifications are proposed in response to the unfavorable test results. The 

current status of the issue is summarized well in [6] and [1]. The argument in [8], 

however, ignores the shareholders of the firm and the returns required by the finan- 

cial market. In that setting the classic CAPRi is not applicable. [8] replaces the 

investor/security pair by the firm/line-of business-pair, and restates the CAPM 

in terms of the latter. Without carefully examining the CAPM assumptions or 

providing a mathematical proof, &is approach becomes simply "borrowing nota- 

tion", which often leads to erroneous results. In a different context, Mildenhall 

[16] spells out the error of borrowing notations from the option pricing paradigm 

to the insurance pricing. 

The classic CAPM is a cornerstone of the modern financial theory. Its eco- 
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nomic implication extends far beyond the formula itself. Even in situations the 

model is not directly applicable, its insights may still prove useful. Meyers [12] 

provides a risk load formula using the frequency and severity. The formula is de- 

rived along the line of the CAPM, from the equilibrium in a competitive insurance 

market. It is used by ISO in the calculation of the increased limit factors. The risk 

load problem is closely related to that of the risk adjusted discount rate. Butsic 

[3] derives a formula for the risk adjusted discount rate that looks similar to the 

CAPM. While in the classic CAPM the risk adjustment usually increases the rate 

of return (a positive/3), the risk adjustment in a discount rate formula is nega- 

tive, decreasing the discount rate for uncertain losses. (More discussion on this 

in Section 5.) Kulik [11] reviews many other CAPM related insurance applications. 

The CAPM is based on the mean-variance optimization. The market risk load 

is also studied using other utility functions. The Biihlmann economic premium 

principle is one example [2]. The economic premium is equivalent to the market 

risk load. If P is an economic premium for an insured loss X, then P - E(X) 

is the market risk load in our definition. [2] uses an exponential utility function. 

[25] contains some new development. 

Venter [22] proposes two risk load principles satisfying the additive condition: 

the covariance principle and the adjusted distribution principle. Our portfolio the- 

ory is an example of the former. The adjusted distribution principles have been 

studied extensively. Two of the well-known adjustments are the PH-transform 

and the Wang transform [24] [26]. An adjusted distribution readily produces risk 

loads for multiple coverage layers, which are consistent in the following sense: a 

higher layer always has a higher risk load relative to the expected loss in that 

layer. Butsic [4] calculates the risk loads for excess layers using a generalized 

PH-transform. Usually the transforms contain one c,r more parameters to be de- 

termined according to the market conditions. It may be able to use a market 

risk load principle, such as developed in [2] or in this paper, to parameterize a 

transform. [25] is insightful in this regards. 

The COTOR [6] distinguishes two views of the pricing paradigm. The actuar- 

ial view assumes the insurers are risk averse. They make underwriting selections 

and actively manage the risk/return of their insurance portfolio. The financial 
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view looks at the broader financial market. The shareholders of the insurance 

companies are risk averse. They choose to invest in the stocks of the insurance 

companies as well as other industries according to a preset utility function. In 

other words, the actuarial price is determined by the insurers with the insureds' 

fairness in mind, while the financial economic price is set on the market of all fi- 

nancial assets. The classic CAPM, being investor focused, has been used to build 

financial pricing models [5] [7]. In contrast, the economic premium principle [2] is 

purely actuarial. The goal of Feldblum [8] is also to construct an actuarial pricing 

model. 

It is pointed out in [6] that  the two insurance pricing views are converging. But 

so far they are still separate for the most part. The financial models ignore the 

mutual selection between the firms and the policyholders. The actuarial methods 

address the mutual selection but pay little attention to the shareholder welfare. 

The two theories complement each other in pricing practice. In the following sec- 

tion, we develope a portfolio theory within the actuarial pricing paradigm. Unlike 

[8], we price for the market risk only. It is necessary to limit our scope to derive 

a precise result. The model is similar to the classic CAPM. But it is about the 

insurer/insured relationship instead of the investor/security relationship in the 

CAPM. 

4 A Portfolio Theory 

We derive a risk load formula parallel to the classic CAPM. Our presentation 

follows a standard text book [18] (Chapter 8). The setting and the result are 

confined to the basic form. 

Consider a one-period model where policies are written and premiums are col- 

lected at time 0 and losses are paid at time 1. At time 0, a loss payment at time 1 

is viewed as a random variable. Assume at time 0 the market has complete knowl- 

edge of the random losses. In the context of mean-variance analysis, this means all 

market players know the mean, the variance and the covariance of all policy losses. 

Assume an insurance market contains N policies with random losses X1, • • •, XN, 
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which will be paid at time 1. The total market loss is thus a random variable 

X M = X1 + . . .  + X N .  Assume the market premium for policy i is Pi, which 

is charged at time 0. Then the total market premium is p M  .= P1 + "'" + PN. 

Further assume there is a risk free asset with rate of return r I.  So an insurer 

collects premium Pi, invests it in the risk free asset, receives Pi(1 + r l )  at time 1 

and pays any claim. The rate of return on premium is 

Pi(1 + r I )  - X i  Pi - X i  
Ri  = Pi = r f  + Pi ' 

where the first term is the investment rate of return and the second the under- 

writing rate of return. The mean and the covariance of the random returns are 

#i = E ( R i )  = (1 + r i )  E ( X i )  Pi ' (4.1) 

~ = Cov(R,  R,) = Co~ k ~ ,  ~] • Co~(X,, xj) .  (4.2) 

Now assume an insurer is allowed to insure any fraction of a policy, as in quota 

share treaties, and an insurer can borrow and lend any amount at the risk free 

rate. An insurance portfolio thus consists of ai portion of loss Xi  and a bor- 

rowed amount w, where 0 ~< ai <<. 1, i = 1 , . . . ,  N (more on this condition in the 

appendix), and w may be positive or negative, aiP~ is the premium charge for 

insuring loss aiXi .  A negative w means an amount of Iwl is lended. 

N At time 0, the portfolio has a total asset equal to w + ~ i = 0  ai-Pi" When w is 
N negative, assume [w[ is small so that  w + }-~'-i=0 aiPi > 0. (An insurer can lend no 

more than its collected premium.) The asset is invested risk free and receives a 

g X rate of return r I.  At time 1, a loss Y~.i=l ai i is paid and the borrowed amount 

returned together with an earned interest. So the 1ate of return of this portfolio 

is 

Rport  foli o = 
(w + EiN=I aiPi)(1 + r i )  - EiN=I a iXi  - w(1 + rf)  

+ E~=I a,P~ 

~ N  1 ai(Pi(1 + rl) - Xi) 

+ E ~ l  aiPi 

E N = I  aiPiRi 

w + E~=I a~P, 
(4.3) 

Let us examine this setup. The r e t u r n  RportfC, i o is essentially a return on premium, 
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except for the amount w in the denominator.  The return on premium is a reason- 

able measure of the insurer profit. In a competit ive insurance market,  not only 

the insurers select insureds, but  the insureds choose among the insurers as well. 

The lnutual selection mechanism forces the market  to a t ta in  an equilibrium such 

tha t  no insurer is allowed an excessive return on premium, no mat te r  what  initial 

wealth (capital) the insurer has. Each insured is charged an amount of premium 

commensurate to its market  risk. Ignoring the capital  structure of the insurer is 

both  necessary and reasonable in studying the market  risk loads. The inclusion 

of an amount w in the portfolio asset is needed for a closed form solution. An in- 

surer should be allowed to use borrowing and lending to adjust  its risk and return 

relationship. Lending at the risk free rate is practically achievable, but  borrow- 

ing at the rate  is less realistic. A similar issue also appears with the classic CAPM. 

The mean and the variance of the portfolio return are 

]*portfol io = E ( R p o r t f o l i o )  

N 
1 Zaipi ,~ ,  (4.4) 

= w + ~ 1  aiP~ i=1 

2 
~po r t fo l i o  = Var(Rportfolio) 

N 
1 

= (W "ac ~iN_l aiP~) 2 ~ a'ajPiPaaiJ" (4.5) 
i o = l  

We seek insurance portfolios that  have a maximum Pportfolio for a given O'portfolio~ 

or a minimum aportfono for a given Pportfolio. These are called the efficient port- 
folios. More formMly, a portfolio is efficient with respect to a given 7- /> 0 if the 

following quant i ty  is maxmized 

2 (4.6) 27" ~ p o r t f o l i o  - -  O'portfol io • 

The number 7" represents the risk preference of an insurer. Notice tha t  if a 

portfolio is efficient then a multiple of the portfolio is also efficient. This is easily 

seen since multiplying a l , . . . ,  aN and w by the same positive number does not 

change either ~ p o r t f o l i o  o r  O'p2ortfolio . 

The mean-variance criterion (4.6) was used in the classic CAPM. It  is also 

applicable in our setting. The variance captures the volatili ty risk of a firm. (The 

volati l i ty is a significant risk. Reference [6], p.190, argues tha t  volati l i ty in earn- 

ings is harmful because of increased tax  liability, reduced oppor tuni ty  of benefiting 
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from deductions, and more costly funds from investors.) In addition, if a portfolio 

consists of a large number of policies, its return is approximately symmetrically 

distributed, alought the individual loss distributions are not symmetrical. (The 

total loss for a line of business is often modeled with a lognormal distribution. If 

the line is large the lognormal usually has a small CV, and the distribution is close 

to be symmetrical.) So the variance (or the standard deviation) is an appropriate 

risk measure. 

Assume the N x N variance-covariance matrix ~ = (¢ij) is positive definite. 

(A variance-covariance matrix is always nonnegative definite. A necessary and 

sufficient condition for P. to be positive definite is that none of the linear combi- 

nations of the losses X1, . . . ,  X N  is risk free. In particular, if a ground-up loss X 

is split into a primary loss X p and an excess loss X e, then either X or the pair 

X p and X e may be included in the model, but not all three.) If all insurers make 

rational decisions so that each chooses an efficient insurance portfolio, according 

to its own risk preference, then the following equation holds 

E(XO Cov(Xi,X M) ( E(X M) 
Pi l + r  I = V a r ( X  M) . p M  ~ 7 7 7  ] . (4.7) 

This is our model for the market risk load. Pi - E (X i ) / (1  + r l)  is the risk load 

(at time 0) for the ith policy and pM _ E ( x M ) / ( 1  + rl  ) the overall market risk 

load. The appearance of the factor 1 + r I in the formula is because Xi is valued 

at time 1 while Pi is at time 0. (Xi/(1 + rl)  is called in [9] the (random) present 

value of Xi.) The equation will be proved in an appendix. The fact that  all insur- 

ers choose efficient portfolios implies that  the entire insurance market portfolio is 

efficient. Equation (4.7) actually follows from the efficiency of the market portfolio. 

Equation (4.7) looks similar to the CAPM, and its proof is parallel to that of 

the CAPM. But the difference is noticeable. The investor/security pair in the clas- 

sic CAPM is replace here by the insurer/insured pair. The basic assumption in the 

CAPM is that the investors are risk averse, and they select securities to minimize 

the risk for a given return. Here in the market risk load theory the shareholder is 

ignored. The insurers are assumed risk averse. They manage underwriting results 

and take risk control measures to minimize the total risk contained in the insur- 

ance portfolio. 
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As discussed in Section 3, there are two distinct views of the insurance pricing. 

The classic CAPM is a basis of the financial pricing approach, while the above 

model takes an actuarial point of view. It has been noticed that the two pricing 

views are not entirely consistent [6] [21]. Since the shareholders can easily select 

the securities and diversify their investment portfolio, they do not require the com- 

pany to mitigate its risk. And the risk control is undesirable because it is always 

costly. But in practice, risk control and underwriting supremacy are among the 

very goals of the company management. With the help of recent development in 

Dynamic Financial Analysis, it becomes more probable to optimize the insurance 

portfolio, to improve the reinsurance structure, or to make more efficient use of 

the company capital. This apparent contradiction is explained in [6]. Because 

of imperfection in the financial market, it costs the shareholders if a company 

experiences financial distress or excessive profit volatility. Company value "will 

increase as long as the costs associated with the practice of risk management do 

not exceed the benefits of the risk management program" [6]. Neither the finanical 

view nor the actuarial view alone gives a complete picture of the insurance price. 

Integration of the two sides appears to be a challenging task. 

The overall market risk load in (4.7) is usually positive due to risk aversion. For 

most policies, the random loss is positively correlated with the overall market, so 

the risk load is positive. The model provides an economic risk load in the sense of 

Bfihlmann [2]. The risk load reflects not only the risk of the loss itself but also the 

market conditions. General economic environment and the level of competition on 

the insurance market are reflected in the overall risk load pM _ E(xM)/(1 + r l) .  

An underwriting cycle is just a cyclic change in the overall risk load. pM is high 

when the market is "hard", and is low when it is "soft". Model (4.7) states that  a 

change in pM _ E(xM)/(1 + rl ) causes a proportional change in the risk load of 

an individual policy. The overall market has a higher influence on an individual 

risk load if the correlation is high. 

As in the investment theory, it is the covariance Cov(Xi, xM), rather than 

the variance or the standard deviation of Xi, that  determines the risk load of Xi. 

Each Xi can be split as follows 

= x g  ys + ns, 
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where X sys = Cov(Xi,XM)/Var(X M) . X M is the systematic component and 

Xi uns = X i - X  sys the unsystematic component.  It is easy to verify that  Cov(X uns, X M) = 

0. Equation (4.7) implies that  X T M  has no impact on the risk load of Xi. An 

unsystematic component may increase the total  risk of a policy (calculated with 

the s tandard  deviation or other risk measures), but  does not warrant an addit ional 

risk charge, since it can be diversified away. In reality, however, diversification is 

not achieved in a single insurance company. It can only be done in the entire 

market.  Increasing the premium volume and including more classes and territo- 

ries, a company may a t ta in  a higher level of diversification. A small or monoline 

insurance company has a competit ive disadvange because its insurance portfolio 

contains significant amount of unsystematic risk. However, even a very large insur- 

ance portfolio has a much lower degree of diversification than an average financial 

market  player. Main reasons include that  writing a policy is much more expensive 

than buying a share of stock, and that  the insurance risks are more numerous and 

more heterogeneous. 

In the investment world, an unsystematic risk means tha t  it is uncorrelated 

with the total  financial market.  In [5] and [7], the same concept is used in insur- 

ance: the part  of risk contained in the underwriting profit is called unsystematic 

if it is uncorrelated with the total  financial market.  This paper  focuses on the in- 

surance market  instead. We implicit ly assume the aggregate impact  of the broad 

financial market  on the policy losses is incorporated in the overall market  risk 

load pM _ E(xM)/(1 + r$). (The overall market  risk load serves as a "catch-all" 

term.) This definition of unsystematic risk is closer to the insurance practice. Un- 

derwriters usually consider a policy's  correlation with other policies rather than 

with investment assets. However, it is possible to generalize our model to include 

all financial assets. Instead of assuming the premiums grow at the risk free rate, 

we may allow them to be invested in any financial instruments.  The theory should 

develope similarly. 

Schnapp [19] derives a pricing model similar to (4.7) using a heuristic ap- 

proach. He noticed another conceptual difference between (4.7) and the classic 

CAPM. Both models provide a "reward" to the risk takers commensurate with 

the size of the risk. The CAPM defines "risk" in terms of the uncertainty in the 

future stock price. But the uncertainty in price is a result of the uncertainty in 
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company business. So the CAPM is about a "derived" risk. On the other hand, 

in our model (4.7) "risk" is related to the randomness of the loss variable Xi, the 

"original" risk. It is a more fundamental form of risk. 

Equation (4.7) is simplified if a policy is not correlated with the rest of the 

market. If Cov(Xi, x M - - x i )  = 0 then Cov(Xi, X lti) = Var(Xi) and (4.7) reduces 

to 

E(X,) 1 ( E(X M) ] 
Pi = 1 + r----~ + Var(Xi) . Var(XM) \PM l + r$ / . (4.8) 

This is a classic variance principle. Thus the variance principle is economically 

sound if a policy is uncorrelated with the market. But it oversimplifies in gen- 

eral. Equation (4.8) also provides a multiplier in the variance principle, which is 

a function of the overall market conditions. 

Model (4.7) also explains other real world observations. If Xi is a random 

loss of a catastrophe coverage, then the risk load is expected to be large. The 

classic risk load priciples would support this by reasoning that Var(Xi) is large. 

Equation (4.7) may explain more. Since a catastrophic event may simultane- 

ously triger many policies and multiple coverages like property, business inter- 

ruption, workers compensation, life and medical, it has high correlation with 

the overall market. So Cov(Xi ,X M - Xi) is also large. Therefore, in (4.7), 

Cov(Xi, X M) = Var(Xi) + Cov(Xi, X M - Xi) is a large number, which results in 

a high risk load. 

Notice that on the right hand side of model (4.7), E(xM),  pM and Var(X I~I) 

are all very large numbers. We may restate (4.7) in the following more manageable 

format. 

where 

P, 1 ) 
E(Xi) 1 + r I - fli" \ E~-M) 1 : - r f  ' (4.9) 

(x ,  
fl~ = Coy E-(Xi)' E ( X M ) J / V a r  \ ~ ] .  (4.10) 

fl~ has been called a loss beta in the literature, which parallels the asset beta in 

the classic CAPM./3/ i s  different from the underwriting beta in [7], Section 4. 
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5 Risk  Adjus ted  Discount  Rate  

A risk load model directly leads to a formula for the risk adjusted discount rate. 

If a policy loss is certain in both amount and timing, the risk load is zero and the 

economic premium equals the present value of the loss discounted at the risk free 

rate. If the loss is uncertain, however, the premium usually includes a positive 

risk load, and the premium is conventionally viewed as the present value of loss 

discounted at a rate lower than the risk free rate. This rate is called a risk adjusted 

discount rate. 

Calculation of risk adjusted discount rates has been discussed in the actuarial 

literature. Butsic [3] derives an equation of the following form 

risk adjusted discount rate -- risk free rate - risk adjustment. 

The size of the risk adjustment is in direct proportion to the riskiness of the claim 

payment cash flow. This formula is in the same spirit as the classic CAPM. Here 

the risk adjusted discount rate is used to discount uncertain claim payments, a 

cash outflow, while the CAPM calculates a rate to discount the future cash inflow. 

In the above equation the risk adjustment reduces the risk free rate. The CAPM, 

on the other hand, produces an upward rate adjustment for risk. 

We use equation (4.9) to calculate the risk adjusted discount rate. By defini- 

tion, in our one-period model, a discount rate for Xi is a rate ri satisfying 

E(X,) 
P i =  l + r i  

A similar equation holds for the overall market discount rate r M. 

these into (4.9) we have 

Subtituting 

1 1 _ ~ i . (  1 1 ) 
l + ri l+r----~ l + r M l ~ri " (5.1) 

It is convenient to introduce the risk adjusted discount factors vi = 1/(1 + ri), 

vl = 1/(1 + r l )  and v M = 1/(1 + rM). Then equation (5.1) becomes 

(5.2) vi = v i + Zi (v M - W )" 

In general, v M is greater than v I and/~i is positive. So equation (5.2) produces 

a positive risk adjustment for the discount factor. Summing up both sides in 
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equation (5.1), we have 
r I - r_______~ r I - r M 

l + r i  = ~ i  l + r M  • 

Assuming for a loss X i  we have ri ~ r M, then the above equation approximately 

reduces to 

ri = r I + ~i (r M - r l ) .  (5.3) 

The risk adjustment is negative because r M is less than r I .  Equation (5.3) is in 

the form of Butsic [3]. Our derivation shows that (5.3) is only an approximation, 

while equation (5.2), given in terms of the discount factors, is an exact relationship. 

Note that the above discount rate correspond to the market risk load, not the 

total risk load. Discounting by this rate yields the market value of losse. As men- 

tioned in Section 1, the complete premium also includes the insurer specific risk 

load. Therefore, a more precise term for the above rate would be the risk adjusted 

m a r k e t  discount rate. The discount rate for the complete premium is even smaller 

than the market discount rate, for an additional risk adjustment is included. 

The practical use of the risk adjusted discounting is mostly for multiple- 

payment claims. For instance, one often estimates the annual payout pattern 

of a business line and then use a selected discount rate to calculate the present 

value of liability. The above derivation shows it is inappropriate to use one dis- 

count rate for all future years. There is a distinct discount rate for each year 

commensurate with the riskiness of that year's partial payment. Halliwell [9] ar- 

gues against any use of the risk adjusted discounting. He proposes to start from 

the random present value and use the utility theory. 

6 Validity of the Model  

The risk load model (4.7) has many desirable features and is mathematically 

proved. But its validity does not directly follow, since the assumptions do not 

all hold in the real world. In this section, we reexamine the key assumptions and 

discuss issues related to empirical testing. (4.7) and the classic CAPM share many 

practical problems. But there are also significant differences. 

In Section 4 we assume the insurance market is competitive and is efficient 

regarding the pricing information. In reality, most policyholders have little knowl- 
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edge about price. They unknowingly overpay premiums. In the mean time, in- 

surance companies are inadequately diversified because of expense and capital 

concerns. They have to charge extra amount of risk loads for the remaining un- 

systematic risk. Therefore, the actual market risk loads are probably higher than 

needed. (On the other hand, recent industry data show that the P&C insurance 

as a whole has been less profitable compared with other industries, which seems 

to indicate the risk loads are charged too low. But this is an issue in the classic 

CAPM paradigm, not related to our model.) This difficulty does not appear in the 

context of the classic CAPM, because the financial market is much more efficient. 

Another key assumption in (4.7) is that  firms attempt to optimize the mean- 

variance criterion (4.6). The mean-variance is also used in the classic CAPM. As 

discussed in Section 4, it captures the volatility risk and is especially preferable 

if the insurance portfolio consists of many small policies. However, this criterion 

is less effective if the catastrophic or other large losses have a significant impact 

on the firm. If the risk is highly skewed, the potential damage from tail events 

is not captured by the variance alone. To remedy this problem higher moment 

CAPMs have been developed, first in the investment world, and then extended 

to insurance [10]. The same idea may be used here to add higher moments into 

equation (4.7). 

In practice, model (4.7) should not be applied to individual policies, unless 

a policy is very large and is stable over time. It may be used to calculate the 

market risk load for a line of business, or any stable portfolio of policies. Since it 

is linear with respect to Xi and P~, equation (4.7) can be stated with respect to any 

insurance portfolio. All policies need not be written at the same point in time. But 

the policies in the portfolio and those in the entire market should be comparable, 

meaning their policy terms and effective dates are similarly distributed within a 

common time period. It is also convenient to discount the ions of each policy to 

the policy inception date using the risk free rate. The portfolio version of equation 

(4.9) is 

Pport folio 
E(Xport folio) 

( pM ) 
1 = ~portfolio ~ E ( ~ I )  1 , (6.1) 
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where 

Z M X M 

/~portfolio -~ C o v  ~E(Xportfoli-----~o) , (6.2) 

Note the change of notation here: Xportfoli o a n d  X M are not evaluated at the 

end of the time period, but at the same time as the premiums are evaluated. 

The ra t io  p M / E ( X M )  is larger in a hard market and smaller in a soft one. If 

/~portfolio is positive, the market cycle produces similar cyclic change in the portfo- 

lio price. Data from a rating agency may be used as a proxy for the overall market. 

Since first derived forty years ago, the classic CAPM has been tested exten- 

sively. The implications of the test results are widely debated. Not all empirical 

evidences support the model. The unfavorable ones have led to many modifica- 

tions of the original model, e.g., redefining/3 or adding other risk factors. But no 

single model in any modified version has been statistically confirmed. Nonethe- 

less, the CAPM is still widely used in the financial world. [1] (Chapter 13) and 

[6] discuss historical development of testing the CAPM. Empirical testing of our 

model (4.7) or (6.1) has parallel issues. It also poses additional problems because 

of the nature of insurance business and the (generally inferior) data source. 

The first problem with any tests is that  insurance claims take many years to 

settle. Exact values of Xportfolio and X M are often not known within a reasonable 

length of time. (In particular, since X M contains all liability claims, it takes even 

longer to fully develope.) Using the latest estimates to substitute for the exact 

values brings about additionM randomness. So the quality of the test is inevitably 

compromised. 

Another difficulty is that  the market risk load cannot be singled out from the 

premium. In pricing, usually a total profit and contingency loading is explic- 

itly built into the premium. (In formula, premium = expected loss + expense + 

total loading.) The total loading is the sum of the market risk load, the insurer 

specific risk load, and any profit provision over and above the risk loads. But 

equation (6.1) should only include the market risk load, the value of which cannot 

be recovered from the historical data. 
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Yet another challenge comes from the calculation of the expected losses E(Xportfolio) 

and E(X M) (or the expected loss ratios E(Xportfolio/Pportfolio) and E(xM/pM)). 
These expected values find further use in estimating the variance and the covari- 

ance in (6.2). An expected loss is a forecast made at one point in time, using all 

available information up to that point, on the average future claim payment. It 

is not observable from the experience. In the testing of the classic CAPM, the 

expected returns are statistically estimated from the actual returns. On the fi- 

nancial market stocks are actively traded everyday. Monthly average returns are 

satisfactory estimates for the monthly expected returns. Average returns of many 

months are available for the regression analysis. So the CAPM can be tested with 

reasonable precision. (Chapter 13 of [1] describes a regression using 60 months of 

data.) In insurance, however, observations are usually made once a year. Using 

actual losses or loss ratios to estimate the expected values requires many years 

of data. But such a time span normally would include several pricing cycles. So 

there is not enough stable samples for the statistical estimation. A discussion of 

the issue is also seen in [14]. Future expected losses are required inputs in many 

DFA models. The current projection methods are little more thin1 educated guess. 

7 C o n c l u s i o n s  

It is convenient to split the total risk load into the market risk load and the insurer 

specific risk load. Market risk load can be studied using the market equilibrium 

approach. Our equation (4.7) is mathematically proved parallel to the classic 

CAPM. Its compact form, intuitive meaning and consistency with real world ob- 

servations make it an attractive model. Although modifications seem necessary 

for more accurate calculations, I believe the model itself can provide a guidance 

and insights to the insurance pricing, similar to the role the CAPM has played in 

the financial world. 

The expected value and the variance of loss, and the covariance between losses, 

are basic inputs for our model and all other DFA models. Estimation of these val- 

ues requires both statistical and nontraditional tools. Better tedmiques need to 

be developed for the models to become truely useful in company decision making 

processes. 
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Appendix: Proof of Equation (4.7) 

We prove equation (4.7) under the assumptions s ta ted in Section 4. 

ta t ion follows the proof of the classic CAPM in [18], Chapter  8. 

Our presen- 

To increase readabi l i ty  vectors and matrices are used whenever needed. Let 

us first introduce the following (column) vectors and a matr ix  

R -- (R1, . . . ,  RN)  T is the vector of returns, 

/z = ( # 1 , . . . ,  #N)  T is the vector of mean returns, 

E ---- (aij)  is the N × N variance-covariance matrix.  

An insurance portfolio is represented by a pair (a, w), where a = (al ,  . . . ,  aN) T, 

0 <~ ai ~< 1 for i = 1 , . . . ,  N,  and w + ~N=l  a jP j  > O. ai is the port ion of loss 

Xi included in the portfolio, and w is the amount borrowed. Call a pair (a, w) 

a pseudo-portfolio if the above condition 0 ~< ai ~< 1 is replaced by - 1  ~< ai ~< 1, 

and all other conditions s tay the same. A pseudo-portfolio is not an insurance 

portfolio if some ai < 0. We can think of an extended insurance market  where an 

insurer can bet  with other insurers on the loss of a policy, so that  it makes sense 

to hold ai port ion of a policy even if ai < O. 

For a given pseudo-portfolio (a, w), define a vector o~ = ( ~ 1 , . . . ,  O~N) T by 

ai Pi 
c~ i = . (A.1) 

w + E ; = l  a jP j  

Under the assumption w + Y~.;=I a jP j  > 0, if ai > 0, = 0, or < 0, then ~i > 0, 

= 0, or < 0, respectively. Conversely, for a given c~ = ( c q , . . . ,  OIN) T, any pair  

(a, w) satisfying (A.1) has the form 

(~i 
ai = --~i . A , i = l,  . . . , N ,  

N 

w = (1 - E cU)" A, (A.2) 
j=l  

where A is a positive number. I t  is easy to see w + ~':~g 1 aiPi = A and ai  and ai 

have the same sign. If A is small, then all lails are less than 1. 
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In Section 4, the utility function (4.6) is a function of the pair (a, w), through 

the equations (4.4) and (4.5). Denote this function by Fr(a, w), that is, 

Fr(a, w) = 2r ~por t fo l io  - -  O'p2ortfolio • 

Equations (4.4) and (4.5) can be restated in terms of a ,  defined in (A.1), 

~por t fo l io  = o~T~tt~ 

2 = ~ T ~ .  
O'portfolio 

So the utility function (4.6) has the following expression 

2 Gr(a) = 2"/" ~por t fo l io  - -  O'portfoli 0 

= 2r aTl~ -- aTEol. 

Consider the follo~ing two optimization problems. An efficient insurance port- 

folio is determined by 

N 

max{Fr(a, w) I 0 <. ai <~ 1, for i = 1 , . . . ,  N, w + E aiYi > 0}. (A.3) 
i=1  

Or, stated in terms of a 

max{G,(a)  I c~ > 0, for i = 1 , . . . ,  N}. (A.4) 

The following lemma shows (A.3) and (A.4) are equivalent. 

L e m m a  1 If a pair (a, w) is a solution of the optimization problem (a.3), then 

a ,  given by (A.1), is a solution of the optimization problem (A.4). Conversely, if 

c~ is a solution of (A.4), then there exists a number A > 0, so that the pair (a, w), 

given by (A.2), is a solution of (A.3~. 

The proof is straightforward. We also need parallel statements for pseudo- 

portfolios. An "efficiunt" pseudo-portfolio is a pair (a, w) defined by 

N 

max{Fr(a,w) l - l  <. ai<~ l , f o r i = l  . . . . .  N , w + E a i P i > O  }. (A.aa) 
i=1  

Stated in terms of a yields an unconditional optimization problem 

maxG~(a).  (A.4a) 

(A.3a) and (A.4a) are equivalent in the following sense. 
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L e m m a  l a  If a pair (a, w) is a solution of the optimization problem (A.3a), 

then the corresponding ~ is a solution of the optimization problem (A.4a). Con- 

versely, if c~ is a solution of (A.4a), then there exists a number A > 0, so that  the 

corresponding pair (a, w) is a solution of (A.3a). 

Since Gr(~) is a quadratic function, the optimization problems (A.4) and 

(A.4a) are much easier to solve than (A.3) and (A.3a). Equation (4.7) will be 

proved in two steps. First, assuming there exists an efficient insurance portfolio, 

we show (4.7) holds. Then we prove an efficient insurance portfolio indeed exists; 

in fact, the overall insurance market portfolio is efficient. 

S t e p  1. We work with the insurance portfolios and the optimization problems 

(A.3) and (A.4). The following assumption is needed. 

A s s u m p t i o n  A. There exists a solution (a*, w*) to the optimization problem 

(A.3), for some r = T*, such that  a* = (a~ , . . . ,  a'N) T i s  a positive vector, that  is, 

a~ > 0 for all i = 1 , . . . , N .  

a* being a positive vector means that  this portfolio contains a nonzero fraction 

of every loss Xi. The reason to make the assumption is as follows. If a is a positive 

vector, then the corresponding ~ is also positive. So c~ lies in the interior of the 

region {~ I(~i/> 0, for i = 1 , . . . ,  N, }. If the maximum in problem (A.4) is reached 

at c~, then ~ satisfies 

0 
Oc~iGr(~) = O, i = 1 , . . . ,N .  

Taking partial derivatives of the quadratic function, yields 

r u  - Pa  = O. (A.5) 

Since Gr(e~) is a negative-definite quadratic function, (A.5) gives the one and only 

maximizing Gr(~). 

Under Assumption A, the corresponding a* satisfies (A.5), i.e., 

r*t t  -- Ec~* = 0. 

Solving for c~*, we have 

{:t* ~ T*y]--I~.t .  
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Since c~* is a positive vector, the vector E-x / .  must also be positive. So for any 

r > 0, the vector 

ol = r E - 1 / ~ .  

is positive and satisfies (A.5). It is thus the only solution to the optimization 

problem (A.4), with respect to r. From the lemma we conclude that  a pair (a, w) 

is a solution to the optimization problem (A.3) if and only if the corresponding a 

satisfies equation (A.5). 

Now we invoke a market clearing mechanism to prove equation (4.7). Assume 

there are K insurers, each selecting an efficient insurance portfolio according to its 

own risk preference. Let the kth insurer hold a portfolio (a (k), w (k)), with respect 

to r (k) > 0, where a (k) = (a~k), . . . ,  a(~)) T. Then (a (k), w (k)) is a solution of (A.3) 

with r = r (k). The corresponding c~ (k) = (a~k),. . . ,  a(~)) T must satisfy (A.5), 

r(H/* - Ect (k) = O. (A.6) 

If the market clears, then the K portfolios add up to the overall market portfolio. 

Thus 
K 

E a(k) = (1 . . . .  ,1) T. (A.7) 
k=l  

Let W M = W (1} q- " ' '  -'[- W ( K ) .  Call the pair a M = (1 , . . . ,  1) T and w M the market 

portfolio. Then the corresponding a M is given by 

wM + P, 

Pi 
- w M + p M ,  i = 1 , . . . , N .  (A .8 )  

We introduce the following notation for any k 

W(k) -{- E;=I • (k)p .  
C (k) = ~j * a (A.9) w M + pM 

Then c(H > 0 for k = 1 , . . . , K ,  and from (A.7), ~ ' - - 1  c(k) = 1. For a n y i  = 

1 , . . . ,  N we have 

g g alklpi 
c(k)c~ k) = ~ c(k)w(k) + v .N , ,(k).  

k=l  k=l  A...,j=I ~ j  r j  

K alk)pi Pi X-" a M . 
W M + pM = W M "b pM 

k = l  
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Or in vector form 
K 

E c(k)~(k) = o~ M. 

k=l 

Let T M = E L 1  c(k)7 "(k). Then from (A.6) and (A.10), 

(A.10) 

rM tt = ~o~ M. (A.11) 

(A.11) implies the overall market portfolio is an efficient portfolio. 

(4.1) and (4.2) into (A.11), yields 

r M 1 + r i  - E(Xi__.__)) C o v ( X i , X J ) w M  
Pi i j + p M  j=l 

= ~ .  1 Cov(X. xM). 
Pi W M + p M  

Or, 

1 pM Cov(Xi, xM). TM((1 + r l )P i  - E ( X i ) )  = w M  + 

Substituting 

(A.12) 

Summing up (A.12) over i, yields 

1 pert C°v (  xlv1' x M ) "  rM((1 + r l ) P  M - E ( x M ) )  = wM + (A.13) 

Dividing (A.12) by (A.13) on both sides and rearranging terms we obtain (4.7). 

S t e p  2. (4.7) has been proved in Step 1 under Assumption A. Now we show the 

assumption is indeed true; in fact the overall market portfolio is such an a*.  We 

start  with the pseudo-portfolios and the optimization problems (A.3a) and (A.4a). 

Let each of the K insurers hold an efficient pseudo-portfolio (a  (k), w(k)), with 

respect to r (k) > 0. Lemma l a  says the corresponding cz (k) is a solution of the 

unconditional optimization problem (A.4a). Thus ex (k) satisfies (A.6). If the 

(extended) market clears, (A.7) holds. Again define {:X M and c (k) by (A.8) and 
v'~N (k)~ W M pM (A.9). The condition w (k) + 2~i=t ai Yi > 0 implies + > 0, a M > 0 for 

i = 1 , . . . ,  N, and c (k) > 0 for k = 1 , . . . ,  K.  Using the same argument as in Step 

1, we again derive equation (A.11), with T M = EK=I  c(k)T (k) > O. 

(A.11) means a M is a solution to the optimization problem (A.4a), with re- 

spect to T M. But {:X M corresponds to the overall market portfolio (a M, wM). So 
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(a M, W M) is a solution of the optimization problem (A.3a), Since each a~ ~ = 1, 

(a M, w M) is also a solution of the original problem (A.3). This proves Assump- 

tion A holds with (a*,w*) = (aM~wM). F~lrthermore, from (A.11) we have 

a M  = r M z - 1 / , .  So E-1D is a positive vector. (A.6) gives c~ (k) = r(k)Z-1/~, 

which is also a positive vector. Thus the corresponding a (k) is positive. This 

proves the original efficient pseudo-portfolios (a (k), w (k)) are actually efficient in- 

surance portfolios. Therefore, the argument in Step 1 is entirely valid here. Proof  

of (4.7) is complete. 

(The above proof reveals a very important  property of the efficient portfolios: 

the overall market portfolio is essentially the only efficient portfolio. Any other 

efficient portfolio must be a fraction of the market portfolio; that  is, it contains 

the same fraction of all policies. A different borrowing amount w produces an 

efficient portfolio corresponding to a different r; and an efficient portfolio with 

respect to any r is constructed this way with a suitable w.) 
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