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Abstract

In recent years a number of “data mining” approaches for modeling data containing nonlinear and other
complex dependencies have appeared in the literature. One of the key data mining techniques is decision trees,
also referred to as classification and regression trees or CART (Breiman et al, 1993). That method results in
relatively easy to apply decision rules that partition data and model many of the complexities in insurance data.
In recent years considerable effort has been expended to improve the quality of the fit of regression trees.
These new methods are based on ensembles or networks of trees and carty names like TREENET and
Random Forest. Viaene et al (2002) compared several data mining procedures, including tree methods and
logistic regression, for prediction accuracy on a small fixed data set of fraud indicators or “red flags”. They
found simple logistic regression did as well at predicting expert opinion as the more sophisticated procedures.
In this paper we will introduce some available regression tree approaches and explain how they are used to
model nonlinear dependencies in insurance claim dara. We investigate the relative performance of several
software products in predicting the key claim variables for the decision to investigate for excessive and/or
fraudulent practices, and the expectation of favorable results from the investigation, in a large claim database.
Among the software programs we will investgate are CART, S-PLUS, TREENET, Random Forest and
Insightful Miner Tree procedures. The data used for this analysis are the approximately 500,000 auto injury
claims reported to the Detailed Claim Database (DCD) of the Automobile Insurers Bureau of Massachusetts
from accident years 1995 through 1997. The decision to order an independent medical examination or a
special investigation for fraud, and the favorable outcomes of such decisions, are the modeling targets. We find
that the methods all provide some predictive value or lift from the available DCD variables with significant
differences among the methods and the four targets. All modeling outcomes are compared to logistic
regression as in Viaene et al. with some model/software combinations doing significantly better than the
logistic model.

Keywords: Fraud, Data Mining, ROC Curve, Variable Importance, Decision Trees

© Derrig-Francis 2005 - No more than two paragraphs or one table or figure can be quoted without written
permission of the authors before March 1, 2006.
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INTRODUCTION

In recent years a number of approaches for modeling data containing nonlinear and other
complex dependencies have appeared in the literature. Many of the methods were
developed by researchers from the computer science, artificial intelligence and statistics
disciplines’. The methods have been widely characterized as data mining techniques. These
procedures include several that should be of interest to actuaries dealing with large and
complex data sets. The procedures of interest for the purposes of this paper are various
varieties of classification and regression trees or CART. Viaene et al (2002) applied a wider
set of procedures, including neural networks, support vector machines, and a classical
general linear model, logistic regtession, on a small single data set of insurance claim fraud
indicators or “red flags” as predictors of suspicion of fraud. They found simple logistic
regression did as well at predicting expert opinion on the presence of fraud as the more
sophisticated procedures. Stated differently, the logistic model performed well enough in
modeling the expert opinion of fraud that there was litle need for the more sophisticated
procedures”.

A wide variety of statistical software is now available for implementing fraud and other
predictive models through clustering and data mining, In this paper we will introduce a
variety of Regression Tree data mining approaches’ and explain how they are used to model
nonlinear dependencies in insurance claim data. We also investigate the relative performance
of several software products that implement these models. As an example of relatve
performance, we test for the key claim variables in the decision to investigate for excessive
and/or fraudulent practices in a large claim database. The software programs we will
investigate are CART, S-PLUS, TREENET, Random Forests, and Insightful Tree and
Ensemble from the Insightful Miner package. Naive Bayes and Logistic models are used as
benchmarks. The data used for this analysis are the auto bodily injury liability claims
reported to the Detailed Claim Database (DCD) of the Automobile Insurers Bureau of
Massachusetts from accident years 1995 through 1997'. Three types of variables are
employed. Several variables thought to be related to the decision to investigate are included
here as reported to the DCD, such as outpatient provider medical bill amounts. A few
variables are included that are derived from publicly available demographic data sources,
such as income per household for each claimant’s zip code. Additional variables are derived
by accumulating proportional statistics from the DCD; e.g., the distance from the claimant’s
zip code to the zip code of the first medical provider or claimant’s zip code rank for the
number of plaintff attorneys per zip code. The decision to order an independent medical
examination or a special investigation for fraud, and a favorable outcome for each, are the
modeling target.

Eight modeling software results will be compared for effectiveness based on a standard
procedure, the area under the receiver operating characteristic curve (AUROC). We find
that the methods all provide some predictive value or lift from the DCD variables we make
available, with significant diffcrences among the eight methods and four targets. Modeling
outcomes can be compared to logistic regression as in Viaene et al. but the results here are
different. They show some software/methods can improve significantly on the predictive
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ability of the logistic model. That result may be due to the relative richness of this data set
and/or the types of independent variables at hand compared to the Viaene data. We show
how “important” each variable is within each software/model tested® and note the type of
data that are important for this analysis. This entire exercise should provide practicing
actuaries with guidance on regression tree software and market methods to analyze complex
nonlinear relationship commonly found in all types of insurance data.

The paper is organized as follows. Section 1 introduces the general notion of non-linear
dependencies in insurance data. Section 2 describes the data set of Massachusetts auto bodily
injury liability claims and variables used for illustrating the models and software
implementations. Desctiptions and illustrations of the data mining methods applied in the
paper appear in Section 3 while the specific software procedures are covered in Section 4.
Comparative outcomes for the variables (“importance”) and software (“AUROC”) are
reported in Sections 5 and 6. We provide some interpretation of the results in terms of the
decision to investigate within the Massachusetts data as an illustration of the usefulness of
the modeling effort in Section 7. Implications for the use of the software models are
discussed in section 8. Conclusions are shown in Section 9.

SECTION 1. NONLINEARITY IN INSURANCE DATA

Actuaries are nearly inseparable from data and data manipulation techniques. Data come in
all forms as a matter of course. Numeric (loss ratios), categorical (injury types), and text
(accident description) data all flood insurers on a daily basis. Reserving and pricing are two
major functions of casualty actuaries. Reserving involves compiling and understanding
through mathematical techniques historical pattetns of a portfolio of insurance claims in
order to predict an ultimate value. Pricing involves taking the best estimates of historical
cost data on claims and expenses, combining that data with financial asset pricing models
that include projecting future values in order to arrive at best estimates of all costs of
accepting underwriting risk. Of course, actuaries continually look back at both analytic
exercises to determine the accuracy of those estimates as the real accounting data develops
over time.

Traditionally, actuarial models were confined to linear, multiplicative or mixed algebraic
equations in the absence of the powerful computing environment we enjoy today. Those
mostly manual methods provided crude approximations that sufficed when alternative
methods were unavailable or non-existent. Simple deviations from linear relationships, such
as escalating inflation, could be handled by simple rtransformations of the data (log
transform) that allowed linear techniques to be applied to the data. Gradually, over time
these transformation techniques became more sophisticated and could be applied to many
problems with a variety of non-linear data®.

Trend lines of time series data, such as claim severity or frequency, ate generally amenable to

linear techniques. However, data where interactions and cross correlations are essential to
the modeling of the dynamics of the process underlying the data, require more
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comprehensive techniques that yield more precision on more types of data complexities.
Figure 1-1 shows a particular non-linear relationship between two insurance variables that
would be difficult, if not impossible, to model with simple techniques. One purpose of this
paper is to demonstrate a range of so-called artificial intelligence or statistical learning
techniques that have been developed to handle complicated relationships within data sets.

An Insurance Nonlinear Function:
Provider Bill vs. Probability of Independent Medical Exam

090~

080

Value Prob IME
. o° °
3 3
1 1

°
8
1

040~

030~

[39559.00 99208 REREARY S Y PELLLELY
EEELH LR F
Provider 2 Bill

Figure 1 -1

Nearly all regression and econometric academic courses address the topic of nonlinearity, at
least briefly. Students are instructed in methods to detect nonlinearity and how to model it.
Detection generally involves using scatter plots of independent versus dependent variables
ot evaluating plots of residuals. Two methods of modeling nonlinearity that are generally
taught: are 1) transformation of variables and 2) polynomial regression (Miller and Wichern’,
1977, and Neter et al, 1985). For instance, if an examination of residual plots indicates that
the magnitude of the residuals increases with the size of an independent variable, the log
transformation is recommended. Polynomial regressions are considered useful
approximations when a curvilinear relationship exists but its exact form is unknown.

A generalization of linear models known as Generalized Linear Models or GLM (McCullagh
and Nelder, 1989) enabled the modeling of multivariate relationships in the presence of
certain kinds of non-normality (i.e. where the random component is from the exponential
family of distribution). The link function of GLMs formalizes the incorporation of certain
nonlinear relationships into the modeling procedure: The transformations incorporated into
the common GLMs are:

The identity link: h(Y) =Y
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The log link: h(Y) = /#(Y)

The inverse link: h(Y) = % @

The logit link: h(Y) = ln(]—Y—Y—)
The probit link: h(Y) = ®(Y), ® denotes the normal CDF

Of these transformations, the log and logit transformation appear frequently in the insurance
literature. Because many insurance variables are right skewed, the log transformation is
applied to attained approximate normality and homogeneity of vatiance. In addition, aprioti
or domain considerations (e.g., the relationship between the independent variables and the
dependent variable is believed to be multiplicative) sometimes suggest the log
transformation. The logit transform is commonly used when the dependent variable is
binary.

Unfortunately, while the techniques cited above add significantly to the analyst’s ability to
model nonlinearity, they are not sufficient for many situations encountered in practice. In
actual insurance data, complex nonlinear relationships are the rule rather than the exception.
Some of the reasons the traditional approaches often do not provide a satisfactory
approximation to nonlinear functions ate:

e The form of the nonlineatity may be other than one of those permitted by the
known transformations which produce linearity. Figure 1-1 displays one such non-
linear function based on the insurance database used in this analysis.

¢ While a polynomial of adequate degree can approximate many complex functions,
extrapolation beyond the data, or interpolation within the data, may be problematic,
particularly for higher order polynomials.

® Determining the appropriate transformation (or polynomial) can be difficult if not
impossible when there are many independent variables, and the appropriate relation
between the target and each independent variable must be found.

¢ The relationship between a dependent variable and an independent variable may be
confounded by a third variable due to interaction or correlations that are not simple
to approximate.

To remedy these problems requires methods where:
¢ Any nonlinear relationship can be approximated.
¢ The analyst does not need to know the form of the nonlinearity.
e The effect of interactions can be easily determined and incorporated into the model.
L]

The method generalizes well on out-of-sample data for interpolation or extrapolation
purposes.

The regression tree methods included in our analysis meet these conditions. Section 3 of

this paper describes how each of our methods models nonlinearity. We now turn to a
description of the data set we will use in this analysis.
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SECTION 2. DESCRIPTION OF THE MASSACHUSETTS AUTO BODILY
INJURY DATA

The database we will use for our analysis is a subset of the Automobile Insurers Bureau of
Massachusetts Detail Claim Database (DCD); namely, those claims from accident years
1995-1997 that had closed by June 30, 2003 (AIB, 2004). All auto claims" arising from injury
coverages: Personal Injury Protection (PIP)/ Medical payments excess of PIP’, Bodily Injury
Liability (BIL), Uninsured and Underinsured Mototist. While there are more than 500,000
claims in this subset of DCD data, we will restrict our analysis to the 162,761 third party BIL
coverage claims. This will allow us to divide the sample into training, test, and holdout sub
samples, each containing in excess of 50,000 claims". The dataset contains fifty-four
variables relating to the insured, claimant, accident, injury, medical treatment, outpatient
medical providers (2 maximum), attorney presence, and three claims handling techniques for
mitigating claims cost for their presence, outcome, and formulaic savings amounts.

The claims handling techniques tracked are: Independent Medical Examination (IME),
Medical Audit (MA) and Special Investigation (SIU). IMEs are performed by licensed
physicians of the same type as the treating physician'’. They cost approximately $350 per
exam with a charge of $75 for no shows. They are designed to verify claimed injuries and to
evaluate treatment modalities. One sign of a weak or bogus claim is the failure to submit to
an IME and, thus, an IME can serve as a screening device for detecting fraud and build-up
claims. MAs are peer reviews of the injury, treatment and billing, They are typically done by
physicians without a claimant examination, by nurses on insurers’ staff or by third party
organizations, but also from expert systems that review the billing and treatment patterns™.
Favorable outcomes are reported by insurers when the damages are mitigated, the billing and
treatment are curtailed, and when the claimant refuses to undergo the IME or does not
show. In the latter two situations the insurer is on solid ground to reduce or deny payments
under the failure-to-cooperate clause in the policy."”

Special Investigation (SIU) is reported when claims are handled through non-routine
investigative techniques (accident reconstruction, examinations under oath and surveillance
are examples), possibly including an IME or Medical Audit, on suspicion of fraud. For the
most part, these claims are handled by Special Investigative Units (SIU) within the claim
department or by some third party investigative service. Occasionally, companies will be
organized so that additional adjusters, not specifically a part of the company SIU, may also
conduct special investigations on suspicion of fraud. Both types are reported to DCD and
we refer to both by the shorthand SIU in subsequent tables and figures. Favorable outcomes
are reported for SIU if the claim is denied or compromised based on the SIU investigation.

For purposes of this analysis and demonstration of non-linear models and software, we
employ twenty-one potentially predicting vatiables and four target variables. Thirteen
predicting variables are numeric, two from DCD fields (F), eight derived from internal
demogtaphic type data (DV), and three variables derived from external demographic data
(DM) as shown in Table 2-1.
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Auto Injury Liability Claim Numeric Variables

Std.

Variable N Type | Minimum | Maximum Mean Deviation
Provider 1_BILL 162,761 F 0 1,861,399 2,671.92 6,640.98
Provider 2_BILL 162,761 F 0 360,000 544.78 1,805.93
Age 155,438 | DV 0 104 34.15 15.55
Report Lag 162,709 | DV 0 2,793 47.94 144.44
Treatlag 147296 | DV 1 9 3.29 1.89
HouseholdsPerZipcode 118976 | DM 0 69,449 | 10,868.87 5,975.44
AverageHouseValue Per Zip 118,976 {| DM 0 1,000,001 | 166,816.75 77,314.11
IncomePerHousehold Per Zip 118,976 | DM 0 185,466 | 43,160.69 | 17.364.45
Distance (MP1 Zip to CLT. Zip) 72,786 | DV 0 769 38.85 76.44
Rankatt1 (rank att/zip) 129,174 | DV 1 3,314 150.34 343.07
Rankdoc?2 (rank prov/zip) 109,387 | DV 1 2,598 110.85 253.58
Rankeity (rank claimant city) 118,976 | DV 1 1,874 77.37 172.76
Rakpcity (rank provider city) 162,761 | DV 0 1,305 30.84 91.65
Valid N (listwise) 70,397

N = Number of non missing records; F=DCD Field, DV = Internal derived variable, DM = External derived

vagiable

Sourve: Antomobile Insurers Burean of Massachusetts, Detail Claim Database, AY 1995-1997 and Authors' Caleulations.
Table 2-1

Eight predicting variables, and four target variables (IME and SIU, Decision and Favorable
Outcome for each), ate categorical vatiables, all taken as reported from DCD and as shown

in Table 2-2.

Casualty Actuarial Society Forum, Winter 2006




Distinguishing the Forest from the TREES

Auto Injury Liability Claim Categorical Variables

N
Variable Type | Type Description
Policy Type 162,761 F Personal 92%, Commercial 8%
Emerggncv Treatment 162,761 F None 9%, Only 22%, w Qutpatient 68%
Health Insurance 162,756 F Yes, 15%, No 26%, Unknown 60%
Provider 1 - Type 162,761 F Chiro 41%, Physical Th. 19%, Medical 30%, None 10%
Provider 2 — Type 162,761 F Chiro 6%, Physical Th. 6%, Medical 36%, None 52%
. Rating Territories 1 (2.2%) Through 26 (1.3%); Territory 1-

2001 Territocy 162,298 F 16 bygincreasing riskf 17-2)6 is Bos%on ( ) : i
Attormney 162,761 F | Attorney present (89%), no attornev (11%)
Susp1 (SIU Done) 162,761 F Special Investigation Done (7%), No SIU (93%)

Independent Medical Examination Done (8%), No IME
Susp2 (IME Done) 162,761 F (92%)

Special Investigation Favorable (3.4%), Not Favorable/Not
Susp3 (SIU Favorable) 162,761 F | Done (95.6%)

Independent Medical Exam Favorable (4.4%), Not
Susp4 (IME Favorable) 162,761 F Favorable/Not Done (96.6%)

Injury Types (24) including minor visible (4%o), strain or
Injury Type 162,298 F | sprain, back and/or neck (81%), fatality (0.4%), disk

herniation (1%) and others

N = Number of non missing records F= DCD Field

Note: Descriptive percentages may not add to 100% due to rounding

Source: Antomobile Insurers Bureau of Massachusetts, Detail Claim Database, AY 1995-1997 and Authors’ Calenlations.
Table 2-2

Similar claim investigation variables are now being collected by the Insurance Research
Council in their periodic sampling of countrywide injury claims (IRC, 2004a, pp 89-104)™.
Nationally, about 4% and 2% of BI claims involved IMEs and SIU respectively, only one-
half to one-quarter of the Massachusetts rate. Most likely, this is because (1) a majority of
other states have a full tort system and so BIL contains all injury claims and (2)
Massachusetts is a fairly urban state with high claim frequencies and more dubious claims".
In fact, the most recent IRC study shows (IRC, 2004b, p25) Massachusetts has the highest
percentage of BI claims in no-fault states that are suspected of fraud (23%) and/or buildup
(41%). It is therefore, entirely consistent for the Massachusetts claims to exhibit more non-
routine claim handling techniques. Favorable outcomes average about 67% when an IME is
done or a claim is referred to SIU. We now turn to descriptions of the types of models, and
the software that implements them, in the next two sections before we describe how they are
applied to model the IME and SIU target variables.

SECTION 3. MODELS FOR NON-LINEAR DEPENDENCIES

How models handle nonlinearity
Traditional actuarial and statistical techniques often assume that the functional relationship

between the independent variables and the dependent variable is linear or that some
transformaton of the data exists that can be treated as linear. Insurance data often contain
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variables where the relationship among variables is nonlinear. Typically when nonlinear
relationships exist, the exact nature of the nonlinearity (i.e., where some transformation can
be used to establish linearity) is not known. In the field of data mining, a number of
nonparametric techniques have been developed which can model nonlinear relations without
any assumption being made about the nature of the nonlinearity. We cover how each of our
methods reviewed in this paper models nonlinearities in the following two examples. The
variables in this example were selected because of a known nonlinear relationship between
independent and dependent variables.

Ex. 1 The dependent variable, a numeric variable, is total paid losses and the
independent vatiable is provider 2 bill. Table 3-1 displays average paid losses at various
bands of provider 2 bill**.

Ex. 2 The dependent variable, a binary categorical variable, is whether or not an
independent medical exam is requested and the independent variable again is provider 2
bill.

Nonlinear Example Data
Provider 2 Bill (Banded) | Avg Provider 2 Bill | Avg Total Paid | Percent IME
Zero - 9,063 6%
1 - 250 154 8,761 8%
251 — 500 375 9,726 9%
501 - 1,000 731 11,469 10%
1,001 - 1,500 1,243 14,998 13%
1,501 - 2,500 1,915 17,289 14%0)
2,501 - 5,000 3,300 23,994 15%
5,001 - 10,000 6,720 47,728 15%
10,001+ 21,350 83,261 15%
All Claims 545 11,224 8%
Table 3-1
Trees

Trees, also known as classification and regression trees (CART) fit a2 model by recursively
partitioning the data into two groups, one group with a higher value on the dependent
variable and the other group with a lower value on the dependent variable. Each partition
of the tree is referred to as a node. When a parent node is split, the two children nodes, or
“leaves” of the tree, are each more homogenous (ie., less variable) with respect the
dependent variable'’. A goodness of fit statistic is used to select the split which maximizes
the difference between the two nodes. When the independent variable is numeric, such as
provider 2 bill, the split takes the form of a cutpoint, or threshold: x 2 ¢ and x < c as in
Figure 3-1.
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CART Example of Parent and Children Nodes
Total Paid as a Function of Provider 2 Bill

1st Split

Figure 3-1

The cutpoint c is found by evaluating all possible values for splitting the numeric variable
into higher and lower groups, and selecting the value that optimizes the split in some
manner. When the dependent variable is numeric, the split is typically based on the value
which results in the greatest reduction in residual sum of squares. For this example, all values
of provider 2 bill are searched and a split is made at the value $5,021. All claims with
provider 2 bill less than $5,021 go to the left node and “predict” a total paid of $10,770 and
all claims with provider 2 bill greater than $5,021 go to the right node, and “predict” a total
paid of $59,250. This is depicted in Figure 3-1. The tree graph shows that the total paid
mean is significantly lower for the claims with provider 2 bills less than $5,021.

One statistic often used as a goodness of fit measure to optimize tree splits is sum squared
error or the total squared deviation of actual values around the predicted values. The selected
cutpoint is the one which produces the largest reduction in total sum squared errors (SSE).
That is, for the entire database the total squared deviation of paid losses around the
predicted value (i.e., the mean) of paid losses is 4.95x10". The SSE declines to 4.66x10"
after the data are partitioned using $5,021 as the cutpoint. Any other partiion of the
provider bill produces a larger SSE than 4.66x10". For instance, if a cutpoint of $10,000 is
selected, the SSE is 4.76x10".

The two nodes in Figure 3-1 can each be split into to children nodes and these can then be
further split. The sequential splitting continues until no improvement in the goodness of fit
statistic occurs. The nodes containing the result of all the splits resulting from applying a
sequence of decision rules are the final nodes often referred to as terminal nodes. The
terminal nodes provide the predicted values of the dependent variables. When the dependent
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variable is numeric, the mean of the dependent variable at the terminal nodes is the
prediction.

The curve of the predicted value tresulting from a tree fit to total paid losses is a step
function. As shown in Figure 3-2A, with only two terminal nodes, the fitted function is flat
until $5,021, steps up to a higher value and then remains flat. Figure 3-2B displays the
predicted values of a tree with 7 terminal nodes. The steps or increases are more gradual for
this function.

CART Example with Two and Seven Nodes
Total Paid as a Function of Provider 2 Bill
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Figure 3-2A Figure 3-2B

The procedure for modeling data where the dependent variable is categorical (binary in our
example) is similar to that of a numeric variable. For instance, one of the fraud surrogates is
independent medical exam (IME) requested. The target class is claimants for whom an IME
was requested and the non-target group of (presumably) legitimate claims is that where an
IME was not requested. At each step, the tree procedure selects the split that best improves
or lowers node impurity. That is, it attempts to partition the data into two groups so that
one partition has a significantly higher proportion of the target category, IME requested,
than the other node. A number of statistical goodness of fit statistics measures is used in
different products to select the optimal split. These include entropy/deviance and Gini
index (which is described later in this paper). Kantardzic (2003), Breiman et al (1993) and
Venibles and Ripley (1999) describe the computation and application of the Gini index and
entropy/deviance measures™. A score or probability can be computed for each node after a
split is performed. This is generally estimated based on the numbet of observations in the
target groups versus the total number of observations at the node. The score or probability
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is frequently used to assign records to one of the two classes. Typically, if the model score
exceeds a threshold such as 0.5, the record is assigned to the target class; otherwise it is
assigned to the non-target class.

Figure 3-3A displays the result of using a tree procedure to predict a categorical variable
from the AIB data. The graph shows that each time the data is split on provider 2 bill; one
child node has a lower proportion and the other a higher proportion of claimants receiving
IMEs. The fitted tree function is used to model a nonlinear relationship between provider
bill and the probability that a claim receives an IME as shown in Figure 3-3B.

CART Example with Seven Nodes
IME Proportion as a Function of Provider 2 Bill

00 6140
Figure 3-3A
CART Example with Seven Step Functions
IME Proportion as a Function of Provider 2 Bill
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Figure 3-3B

Tree models use categorical as well as numeric independent variables in modeling complex
data. Howevet, because the levels on categorical data may not be ordered, all possible two-
way splits of categorical variables must be considered before the data are partitioned.

ns 1 Is-Boostin
Ensemble models are composite tree models. A series of trees is fit and each tree improves
the overall fit of the model. In the data mining literature the technique is often referred to as
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“boosting” (Hastie et al 2001, Freidman, 2001). The method initially fits a small tree of say 5
to 10 terminal nodes on a training dataset. Typically, the user specifies the number of
terminal nodes, and every tree fit has the same number of terminal nodes. The error, or
difference between the actual and fitted values, is computed and used in another round of
fitting as a dependent variable. The error is also used in the computation of the weight in
subsequent rounds of fitting, with records containing larger errors receiving higher weighting
in the next round of estimaton.

One algorithm for computing the weight is described by Hastie et al'”. Consider an ensemble
of trees 1,2, ...,M. The error for the m* tree measures the departure of the actual from the
fitted value on the test data after the m™ model has been fit. When the dependent variable is
categorical, as it is in the fraud application in this paper, 2 common etror measure used in
boosting is:

N

wl(y #F,(X,))

N
2,
=1

where N is the total number of records, w, is a weight (which is initialized to 1/N in the first
round of fitting), I is an indicator function equal to zero if the category is correctly predicted

and one if the class assigned is incorrect, y, is the dependent variable, x is a matrix of
predictors and F, (x) is the prediction for the i* record of the m™ tree.

—_ =
err, =

@

Then, the coefficient alpha is a function of the weight:

1
a, =log( errm)
err,
and the new weight is: 3

wl,m+l = wm exp(aml(yl * Fm (x)))

The process is performed many times until no further statistical improvement in the fit is
obtained.

The specific boosting procedures implemented differ among different software products.
For instance, TREENET (Freidman, 2001) uses stochastic gradient boosting, Stochastic
gradient boosting incorporates a number of procedures which attempt to build a more
robust model by controlling the tendency of large complex models to overfit the data. A key
technique used is resampling. A new sample is randomly drawn from the training data each
time a new tree is fit to the residuals from the prior round of model estimation. The
goodness of fit of the model is assessed on data not included in the sample, the test data.
Another procedure used by TREENET to control overfitting is shrinkage or regularization. A
simple way to implement shrinkage is to apply a weight which is greater than zero and less
than one to the contribution of each tree as it is added to the weighted average estimate.
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Alternatively, the Insightful Miner Ensemble model employs a simpler implementation of
boosting which applies non-stochastic boosting and uses all the training data in each round
of fitting,

The final estimate resulting from an ensemble approach will be a weighted average of all the
trees fit. Using a large collection of trees allows:

e Many different variables to be used. Some of these would not be used in smaller
models™.

e Many different models are used. The predictive modeling literature (Hastie et al.,
2001, Francis, 2003a, 2003c) indicates that composites of multiple models perform
better than the prediction of a single model™.

e Different training and test records are used (with stochastic gradient boosting). This
makes the procedure more robust to the influence of a few extreme observations.

The method of fitting many (often 100 or more) small trees results in fitted curves which are

almost smooth. Figures 3-4A and 3-4B display two nonlinear functions fit to total paid and
IME variables by the TREENET ensemble model.
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Ensemble Prediction of Total Paid
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Ensemble Models-Bagging

Bagging is an ensemble approach based on resampling or bootstrapping. Bagging is an
acronym for “bootstrap aggregation” (Hastie et al.,, 2000). Bagging does not use the error
from the priot round of fitting as a dependent variable or weight in subsequent rounds of
fitting. Bagging uses recursive sampling of records in the data to fit many trees. For
instance an analyst may decide to take a 50% of the data as a training set each time 2 model
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is fit. Under bagging, 100 or more models may be fit, each one to a different sample. The
trees fit are not necessarily small trees with 5 to 10 terminal nodes as with boosting and each
tree may have a different number of terminal nodes. By averaging the predictions of a
number of bootstrap samples, bagging reduces the prediction variance. The implementation
of bagging used in this paper is known as Random Forest. In addition to using only a
sample of the data each time a tree model is fit, Random Forest also samples from the
variables. For the analysis in this paper, one third of the variables were sampled for each
tree fit.

Figures 3-5A displays an ensemble Random Forest tree fit to total paid losses and Figure 3-
5B displays a tree fit to IME.

Random Forest Prediction of Total Paid
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Random Forest Prediction of IME
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Naive Bayes

The Naive Bayes method is a relatively simple and easy to implement method. In our
compatison, we view it as a benchmark data mining method. That is, we are interested in
how more complex methods improve performance (or not) against an approach where
simplifying assumptions are made in order to make the computations more tractable. We
also use logistic regression models as a second benchmark.

The Naive Bayes method was developed for categorical data. Specifically, both dependent
and independent variables are categorical. Therefore, its application to fitting nonlinear
functions will be illustrated only for the categonical target variable IME. In otder to utilize
numeric predictor variables it was necessary to derive new categorical variables based on
discretizing, or “binning”, the distribution of data for the numeric variables® .

The key simplifying assumption of the Naive Bayes method is the assumption of
independence. All predictor vatiables are assumed to act independently in influencing the
target variable. Interactions and correlations among the predictor variables are not

considered:

Bayes rule is used to estimate the probability that a record with given independent variable
vector X = {x} is in category C = {c} of the dependent variable.

Ple, |x)=P(x,|c,)P(c,)] P(x,) (4a)
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Because of the Naive Bayes assumption of conditional independence, the probability that an
observation will have a specific set of values for the independent variables is the product of
the conditional probabilities of observing each of the values given category c,

P(X|c, )=H P(x,Ic,) (4b)
J

The method is described in more detail in Kantardzic (2003). To illustrate the use of Naive
Bayes in predicting discrete variables, the provider 2 bill data was binned into groups based
on the quintiles of the distribution. Because about 50 percent of the claims have a value of
zero for provider 2 bill, only four categories are created by the binning procedure. The new
variable was used to estimate the IME targets. Figure 3-G displays a bar plot of the predicted
probability of an IME for each of the groups. Figure 3-7 displays the fitted function. This
function is a step function which changes value at each boundary of a provider 2 bill bin.

Bayes Predicted Probability IME Requested vs. Quintile of Provider 2 Bill
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Figure 3-6
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Naive Bayes Predicted IME vs. Provider 2 Bill
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SECTION 4. SOFTWARE FOR MODELING NON-LINEAR DEPENDENCIES

Nonadditivity: interactions

Conventional statistical models such as regression and logistic regression assume not only
linearity, but also additivity of the predictor variables. Under additivity, the effect of each
variable can be can be added to the model one at a time. When the exact form of the
relationship between a dependent and independent variable depends on the value of one or
more other variables, the effects are not additive and one or more interactions exist. For
instance, the relationship between provider 2 bill and IME may vary by type of injury (i.e.
traumatic injuries versus sprains and strains). Interactions are common in insurance data
(Weisberg and Derrig, 1998, Francis, 2003c).

With conventional linear statistical models, interactions are incorporated with multiplicative
terms:

Y = a+ bX, + bX, + b¥X *X, ®

In the case of a two-way interaction, the interaction terms appear as products of two
variables. If one of the two variables is categorical, the interaction terms allow the slope of
the fitted line to vary with the levels of the categorical variable. If both variables are
continuous the interaction is a bilinear interaction (Jicard and Turrisi, 2003) and the slope of
one variable changes as a linear function of the other variable. If both variables are
categorical the model is equivalent to a two factor ANOVA with interactions.
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The conventional approach to handling interactions has some limitations.

¢ Only a limited number of types of interactions can be modeled easily.

e If many predictor variables are included in the model, as is often the case in many
predictive modeling applications, it can be tedious, if not impossible, to find all the
significant interactions. Including all possible interactions in the model without
regard to their significance likely results in a model which is over-parameterized.

The tree-based data mining techniques used in this paper each have efficient methods for
handling interactions.

e Interactions are inherent in the method used by trees to pardtion data. Once data
have been partitioned, different partitions can and typically do split on different
variables and capture different interactions among the predictor variables. When the
decision rules used by a tree to reach a terminal node involve more than one variable,
in general, an interaction is being modeled.

e Ensemble methods incorporate interactions because they are based on the tree
approach.

¢ Naive Bayes, because it assumes conditional independence of the predictors, ignores
interactions.

e Logistic regression incorporates interactions in the same way ordinary least squares
regression does, with product interaction terms. In this fraud comparison study, no
attempt was made to incorporate interaction terms as this procedure lacks an
efficient way to search for the significant interactions.

Multiple predictors
Thus far, the discussion of the tree-based models concerned only simple one or two variable

models. Extending the tree methods to incorporate many potential predictors is
straightforward. For each tree fit, the method proceeds as follows:

e For each variable determine the best two-way partition of the data.

e Select the variable which produces the best improvement in the goodness of fit
statistic to split the data at a particular node.

e Repeat the process until no further improvement in fit can be obtained.

Software for modeling nonlinear dependencies and testing the models

Four software products were included in our fraud comparison: They are CART,
TREENET,
S-PLUS (R) and Insightful Miner™.

CART and TREENET are Salford Systems stand-alone software products that each
performs one technique. CART (Classification and Regression Trees) does tree analysis and
TREENET applies stochastic gradient boosting using the method described by Freidman
(2001). All the software tested produce SAS code™ that can be used to implement the model
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in a production stage. All the products contain a procedure for handling missing values
using sutrogate variables. At any given split point, CART and TREENET find the variable
that is next in importance in influencing the target variable and they use this variable to
replace the missing data. The specific statistic used to rank the variables and find the
surrogates is described in Brieman et. al. (1993). Different versions of CART and
TREENET handle different size databases. The number of levels of categorical variables
affects how much memory is needed, as more levels necessitate more memory. The 128k
version of each product was used for this analysis. With approximately 100,000 records in
the training data, occasional memory problems were experienced and it became necessary to
sample fewer records. One of the very useful features of the Salford Systems software is
that all the products rank variables in importance™.

S-PLUS and R are comprehensive statistical languages used to perform a range of statistical
analyses including exploratory data analysis, regression, ANOVA, generalized linear models,
trees and neural networks. Both S-PLUS and R are detived from S, a statistcal programming
language originally developed at Bell Labs. The S progeny, S-PLUS and R, are popular
among academic statisticians. S-PLUS is a commercial product sold by Insightful which has
a true GUI interface that facilitates easier handling of some functions. Insightful also
supplies technical support. The S-PLUS programming language is widely used by analysts
who do serious number crunching. They find it more effective, especially for processes that
are frequently repeated. R is free open source statistical software that is supported largely by
academic statisticians and computer science faculty. It has only limited GUI functionality
and the data mining functions must be accessed through the language. Most code written
for S-PLUS will also work for R. One notable difference is that data must be converted to
text mode to be read by R (a bit of an inconvenience, but usually not an insurmountable
one). Fox (2002) points out some of the differences between the two languages, where they
exist. The S-PLUS procedures used here in the fraud comparison are found in both S-PLUS
and R. However one ensemble tree method used, Random Forest, appears only to be
available in R. The S-PLUS (R) procedures used were: the tree function for decision trees
and the glm (generalized linear models) for logistic regression. S-PLUS (R) incorporates
relatively crude methods for handling missing values. These include eliminating all records
with a missing value on any varable, an approach which is generally not recommended
(Francis 2005, Allsion 2002). S-PLUS also creates a new category for missing values (on
categorical variables) and allows aborting the analysis if a missing value is found. In general,
it is necessary to preprocess the data (at least the numeric variables where there is no missing
value method™) to make a provision for the missing values. In the fraud comparison, a
constant not in the range of the data was substituted into the variable and an indicator
dummy variable for missing was created for each numeric variable with missing values. S-
PLUS and R are generally not considered optimal choices for analyzing large databases.
After experiencing some difficulty reading training data of about 100,000 records into S-
PLUS, the database was reduced to contain only the variables used in the analysis. Once the
data was read into S-PLUS, few problems were experienced. Another eccentricity is that the
S-PLUS tree function can only handle 32 levels on any given categorical vatiable, so in the
preprocessing the number of levels may need to be reduced”. The R Random Forest
function incorporates a procedure that can be used to rank variables in importance. The
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procedure produces an impurity statistic which can be used to rank the variables. The
impurity is based on the Gini index for classification applications and mean squared error for
numeric dependent variables. The S-PLUS tree function contains no built-in capability for
ranking variables in importance. Therefore using the S-PLUS language, an algorithm was
coded into S-PLUS to rank the variables. The method is described in Francis (2001) and
Potts (2000). The procedure quantifies how much the error increases when a variable is
removed from the model; the larger the increase in errors, the more important the variable.

The Insightful Miner is a data mining suite that contains the most common data mining
tools: regression, logistic regression, trees, ensemble trees, neural networks and Naive
Bayes™. As mentioned earlier, Insightful also markets S-PLUS. However, the Insightful
Miner has been optimized for large databases and contains methods (Naive Bayes) which are
not part of S-PLUS (R). The Naive Bayes, Tree and Ensemble Tree procedures from
Insightful Miner are used here in the fraud comparison. The insightful Miner has several
procedures for automatically handling missing values. These are 1) drop records with
missing values, 2) randomly generate a value, 3) replace with the mean, 4) replace with a
constant and 5) carry forward the last observation. Each missing value was replaced with a
constant. In theory, the data mining methods used, such as trees, should be able to partition
records coded for missing from the other observations with legitimate categorical or numeric
values and separately estimate their impact on the target variable (possible after allowing for
interactions with other variables). Setver versions of the Insightful Miner generate C code
that can be used in deploying the model, but the version used in this analysis did not have
that capability. As mentioned above some preprocessing was necessary for the Naive Bayes
procedure.  Since Insightful Miner contains no procedure for ranking variables in
importance, no rankings were provided for the Iminer methods.

Validating and Testing
It is common in data mining circles to partition the data into three groups (Hastie et al,,

2001). One group is used for “training”, or fitting the model. Another group, referred to as
the validation set, is used for “testing” the fit of the model and re-estimating parameters in
order to obtain a better model. It is common for a number of iterations of testing and
fitdng to occur before a final model is selected. The third group of data, the “holdout”
sample, is used to obtain an unbiased test of the model’s accuracy. An alternative approach
to a validation sample that is especially appropriate when the sample size used in the analysis
is relatively modest, is cross-validation. Cross-validation is a method involving holding out a
portion of the training sample, say one fifth of the data, fitting 2 model to the remainder of
the data and testing it on the held out data. In the case of 5-fold cross validation, the
process is repeated five times and the average goodness of fit of the five validations is
computed. The various software products and procedures have different methods for
validating the models. Some (Insightful Miner Tree) only allow cross-validation. Others
(TREENET) use a validation sample. S-PLUS (R) allows either approach™ to be used (so a
test sample of about 20% of the training data was used as we had a relatively large database).
Neither validation sample nor cross-validaton was used with Naive Bayes, Logistic
Regression or the Ensemble Tree.
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In this analysis, approximately a third of the data, about 50,000 records, was used as the
holdout sample for the final testing and comparison of the models. Two key statistics often
used to compare models accuracy are sensitivity and specificity. Sensitivity is the percentage of
events (ie., claims with an IME or referred to a special investigation unit) that were
predicted to be events. The specficity is the percentage of nonevents (in our applications

claims believed to be legitimate) that were predicted to be nonevents.
statistics should be high for a good model.

matrix (Hastie et. al., 2001), presents an example of the calculation.

Sample Confusion Matrix: Sensitivity and Specificity

True Class
Prediction No Yes Row Total
No 800 200 1,000
Yes _ 200 400 600
Column Total 1,000 600

Correct Total Percent Correct
Sensitivity 800 1,000 80%
Specificity 400 600 67%
Table 4-1

Both of these
Table 4-1, often referred to as a confusion

In the example confusion matrix, 800 of 1,000 non-events are predicted to be non-events so
the sensitivity is 80%. The specificity is 67% since 400 of 600 true positives are accurately

predicted.
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SECTION 5. SOFTWARE RANKINGS OF “IMPORTANT” VARIABLES IN
THE DECISION TO INVESTIGATE: IME AND SIU

The remainder of this paper is devoted to illustrating the usefulness and effectiveness of
eight model/software combinations applied to our Example 2, the decision to investigate via
IME:s or referral to SIU. We model the presence and proportion of favorable outcomes, of
each investigative technique for the DCD subset of automobile bodily injury liability (third
party) claims from 1995-1997 accident years.”” We employ twenty-one potentially predicting
variables of three types: (1) eleven typical claim variable fields informative of injury claims as
reported, both categorical and numeric, (2) three external demographic variables that may
play a role in capturing varations in investigative claim types by geographic region of
Massachusetts, and (3) seven internal “demographic” variables derived from informative
pattern variables in the database. Variables of type 3 are commonly used in predictive
modeling for marketing purposes. The variables used for these illustrations are by no means
optimal choices for all three types of variables. Optimization can be approached by other
procedures (beyond the scope of this paper) that maximize information and minimize cross
correlations and by variable construction and selection by domain experts.

The eight model/software combinations we will use here are of two categories: six tree
models, and two benchmark models (Naive Bayes and Logistic). They are:

1) TREENET 5) Iminer Ensemble
2) Iminer Tree 6) Random Forest
3) SPLUS Tree 7) Naive Bayes

4) CART 8) Logistic

As described in Section 4, CART and TREENET are Salford Systems stand-alone software
products that each performs one technique. CART (Classification and Regression Trees)
does tree analysis, and TREENET applies stochastic gradient boosting to an ensemble of
trees using the method described by Freidman (2001). The S-PLUS procedures used here in
the fraud comparison are found in both S-PLUS and in a freeware version in R. These were:
the tree function for decision trees, and the GLM (generalized linear models) for logistic
regression.

Insightful Miner is a data mining suite. The Naive Bayes, Tree and Ensemble Tree
procedures, from Insightful Miner are used here in the fraud comparison.

Model performance is covered in the next section, section 6, as we first cover the ranking of
variables by “importance” in relation to the target variables: the decision to perform an IME
or a Special Investigation (SIU) and the favorable outcomes of each investigative technique.
The training data of approximately 75,000 records was used in the ranking evaluations.

Data mining models are typically complex models where it is difficult to determine the
relevance of predictors to the model result. One of the handy tasks that some of the data
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mining software products perform is to rank the predictor variables by their importance to
the model in predicting the dependent variable. Where the software did not supply a
ranking, we omitted an importance ranking leaving five model/software determinations of
importance for the twenty-one variables. Different procedures are used for different
methods and different products.

Two software products, CART and TREENET supply importance rankings. The
procedures used are:

CART: CART uses a goodness of fit measure, also referred to in the literature as an
impurity measure, and computed over the entire tree, to determine a variable’s importance.
In this study the goodness of fit measure was the Gini Index defined below (Hastie, et al,,
p-271-272):

it)y=1- z p, i=the categories of the dependent variable and p,is the probability of

class (6)
Each split of the tree lowers the overall value for the statisticc. CART keeps track of the
impurity improvement at each node for both the variable used in the split and for surrogate
variables used as a replacement in the case of missing values. A consequence of this is that a
variable not used for splitting may rank higher in importance than a variable that is.

TREENET: Because it is composed of many small CART trees, TREENET uses the same
method as CART to compute importance rankings.

S-PLUS (R) does not supply an importance ranking, but the programming language can be
used to program a procedure to compute rankings. A sensitivity value was computed for
each variable in the model. The sensitivity is a measure of how much the predicted value’s
error increases when the variables are excluded from the model one at a time. However,
instead of actually excluding variables and refitting the model, their values are fixed at a
constant value. (See Francis, 2001 for a detailed recipe for applying the approach). The
sensitivity statistic was used to rank the variables from the tree function. For the logistic
regression, information about the variables contribution to sum of squared variation
explained by the model was used to rank it. Like CART and TREENET, Random Forest
uses an impurity measure (i.e., Gini Index) to produce an importance ranking.

Insightful Miner does not supply importance rankings. Unlike S-PLUS (R), the analytical
methods are not accessed through the language but through a seties of icons placed on a
palate. Thus, we were not able to custom program a ranking procedure for application with
the Iminer’s modeling methods. The resulting importance rankings were used in Tables 5-
1A & 5-2A for the decisions to investigate and 5-1B and 5-2B for the favorable outcomes.

Each of five model/software combination outputs allowed for the evaluation of the

predicting variables in rank order of importance, when significant, together with a measure
of the relative value of importance on a scale of zero (insignificant) to 100 (most significant
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variable). Table 5-1A displays the importance results for predicting an IME using the five
tree models while Table 5-1B displays those results for the remaining five model/software
combinations, including the benchmark Naive Bayes and Logistic. The predicting variables
are listed in the order of importance in the TREENET model, where all variables are
significant. The number of significant variables found ranges from a low of twelve variables
(S-PLUS Tree) to all twenty one (TREENET).

Software Ranking of Variables for IME Decision
By Importance Rank and Value

o) @ B) @ B)
Variable TREENET | S Plus Tree CART Random Logistic
Forest
Provider 2 Bill 1 (100) 2091 1 (100) 1 (100) 10 (1)
Attorneys Per Zip 2 (80) 5(26) 13 (9 6 (34 11 (1
Terdtory 3071 4(32) 11 (11) 3(59) *
Health Insurance 4 (61D 1 (100 3 (68) 2 (84 1 (100)
Injury Type 5 (50) 6 (24 547 10 (18) 2 (51)
Provider 1 Bill 6 (47) 3 (5 4 (58) 4(59) *
Provider 1 Tvpe 731 9() * 12 (15) 6(8)
Report Lag 8 (31) 7 (16) 8(18) 8 (27) 13 (1)
Attomey 9 (25) 12 (3) * 19 (5) 5(18)
Age 10 (23) ” 17 (2) 17 (8) *
Provider 2 Type 11 (19) 89 * 542 347
Income Household/Zip 12 (18) * 10 (13) 11 (16) 9(2
Avg. Household Price/Zip 13 (17) * 15 (5 * *
Providers per City 14 (17) * 9 (15 16 (9) i
Claimants per City 15 (16) * * 7(32) 12 (1)
Providers/Zip 16 (16) ” * 15 (13) 8(2
Households/Zip 17 (16) 11 (3) * 13 (15) 7
Treatment Lag 18 (14) 10 (4) 18 (2) 9 (24) 4 (24)
Distance MP1 Zip to Clt Zip 19 (13) * 20 (0.1) 14 (14) *
Emergency Treatment 204 i 7 (20) 18 (6) *
Policy Type 21 (3) ” 19 (2) 20 (0) "
Note: * represents insignificance of variable in the model.
Table 5-1A

The same set of model/software combinations was used with the same set of twenty-one
predicting variables to predict the favorable outcome of the IME. Table 5-1B shows the
importance of each of the 21 predictors for modeling favorable outcomes of IMEs.
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Software Ranking of Variables for IME Favorable

By Importance Rank and Value

o) D) ©) @ 6
Variable TREENET | S Plus Tree CART Random Logistic
Forest

Provider 2 Bill 5(64) 322 4037 5 (49) 2(13)
Attorneys Per Zip 11 (28) * 11 (6) 13 (28) 11 (1)
Tersitory 2 (98) 2 @3) 12 (5) 1 (100) 109
Health Insurance 1(100) 1(100) 11000 | 2(1 1 (100)
Injury Type 4(6) 5(10) 9 (15 4(67) 3(13)
Provider 1 Bill 7(45) 4(15 2(51) 300 *
Provider 1 Type 8 (38) 9 (16) 5 (36) 10 (32 509
Report Lag 6(53) 8 (N 18 (0) 6 (45) 8 (6)
Attorney 12 (25) * * 18(3) 7(8)
A 13 249 * 19 (0) 9 (33) *
Provider 2 Type 10 (29) * 6 (30) 12 31) *
Income Household/Zip 20(7) 11 (4 17 (0) 833y 10 (2
Avg. Household Price/Zip 15 (16) * 15 (0) * *
Providers per City 19(8) 7 8 (17) 15 (23) *
Claimants per City 9 (36) 12 (3) 13 (2) 16 (22) 13 (1
Providers/Zip 17 (12) 13(2) 7 (20) 11 (31) ”
Households/Zip 16 (15) 70 16 (0) 737 900
Treatment Lag 14 (22 141 10 (6) 14 (28) 6(8)
Distance MP1 Zip to Clt Zip 3078 6(8) 14 (1) * *
Emergency Treatment 18(9) 10 (6) 3 (44 17 (5) 12(1)
Policy Type 21 (5) * * * *

Note: * represents insignificance of variable in the model.

Table 5-1B

The same set of five model/software combinations was used with the same set of twenty-

one predicting variables to predict the use of special investigation or SIU. Tables 5-2A and
5-2B show the cotresponding ranking of variables by importance for each of the five model
combinations and two target variables, decision and favorable.
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Software Ranking of Variables for SIU Decision
By Importance Rank and Value

) @ _ 6) @ )
Variable TREENET | S Plus Tree CART Random Logistic
Forest

Providers/Zip 1 (100) 1 (100) 8 (37) 3 (74 *
Provider 2 Type 2 (98) 10 (3) 15 (34) 10 (30) 6 (39)
Territory 3092 5(18) 3(84) 1 (100) *
Health Insurance 4 (64) 3(33) 7(2) 6 (50) (28
Provider 1 Bill 5 (59) 2 (51) 2 (85) 2 (89) 14 (2)
Injury Type 6 (52) 7(6) 5(59) 16 (5) 2 (1)
Attorney 7 (47) 8 (4.5) 17 (13) 18 (4) 3(63)
Provider 1 Type 8 (38) 4 (29) 4 (69) 5 (51 1 (100)
Age 9 (31) * * 17 (5) *
Provider 2 Bill 10 (30) * 1(100) 4(74) 135
Report lag 11 (28) * 6 (54 8 (10) 11.(17)
Average House Price 12 (28) * 15 (18) * *
Attorneys/zip 13 (22 68 14 (20) 9 (30) 12(7)
Distance to Provider 14 (20 * 19 (4) 15 (18) 4 (58)
Emergency Treatment 15 (19) * 13 27) 19 (4 5(49
Income/Cap Household 16 (18) 11 (3) 9(45 13 (21) 927
Claimants per City 17 (17) ¥ 12 30) 11 (26) *
Treatment Lag 18 (16) 9 (34) 18 (12) 14 (20) 15 2)
Households/Zip 19 (16) * 16 (16) 12 21) 828
Policy Type 20 (8) * * 20(1) *
Providers per City 21(6) 12(1) 11 (30) 7 (44) 10 (22)

Note: * represents insignificance of variable in the model.
Table 5-2A
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Software Ranking of Variables for SIU Favorable
By Importance Rank and Value

©) ) ® ©) (10)
Variable TREENET | S Plus Tree CART Random Logistic
Forest
Providers/Zip 10 (20) 10 (6) 12 (25) 724 132
Provider 2 Type 4 (41 * 7 (35) 9 (18) 521
Territory 1 (100) 2 (94 1 (100) 1 (100) 1 (100)
Health Insurance 13 (18) 6 (16) * 15 (10) 7(19)
Provider 1 Bill 6 (30) 134 15 (9) 5(29) 14 (1)
Injury Type 3 (58) 5 (16) 6 (39) 16 (8) 3 (41)
Attorney 14 (16) 12 (4) 9 (27) 18 (6) 6 (20
Provider 1 Type 5 (40) 1 (100) 3 (50) 333 2 (45)
Age 8 (22 * 17.(7) 13 (13) 12
Provider 2 Bill 2 (66) 4 (18) 8(32) 6 (26) 9(3)
Report lag 7 (25) 7(14) 19 (2 2 (36) 122
Average House Price 15 (16) x 13 (24) * *
Attorneys/ zip 11 (19) 8 (14) 4 (45) 10 (17) *
Distance to Provider 16 (15) 914 5(39) * *
Emergency Treatment 21(9) 372 14 (17) 14 (11) 4 (25)
Income/Cap Household 17 (14 11 (5 2 (61 11 (16) *
Claimants per City 12 (19) * 11 (25) 12 (13) 15 (1)
Treatment Lag 19 (13) * 18 (4 17 (6) *
Households/Zip 18 (13) * 16 (9) 8 (19 8(5)
Policy Tvpe 20 (10) * * * *
Providers per City 9 (21 14 (3) 10 (26) 4 (31 10 (2
Note: * represents insignificance of variable in the model.
Table 5-2B

Clearly, in both instances of target variables the specific model and software implementation
determines how to unwind the cross correlations to extract the most information for
prediction purposes. For example, the distance between the claimant’s zip code and the first
outpatient provider (Distance) ranks low in importance (19/21) in the TREENET
application for the IME decision target but it is quite important in the TREENET model for
favorable IME outcome (3/21). Note, however, provider 2 bill is deemed highly important
in all IME non-benchmark applications. One way to isolate the importance of each
predicting variable is to tally a summary importance score across models. We will use a
score of (21-rank)*(importance), with all insignificant variables assigned zero importance,
summed over all relevant model combinations. For example, the variable provider 2 type
would have a summary score relating to the IME target across the five tree models for a total
importance score of 2,268. This scoring formula is typical of the ad hoc methods common
to data mining analytics. The multiplicative form gives emphasis to both the categorical rank
and the importance score in a dual monotone way. The numeric value of the score is less
important than the final rankings of the variables. Tables 5-3A&B and 5-4A&B show the
range of variable importance summary scores for all variables relative to the two targets,
IME and SIU, respectively. The ranks of the variables according to the two summary scores
are highly (Pearson) correlated as, for example, the decision summary ranks and favorable
summary ranks have correlation coefficients of 0.65 for IME and 0.57 for SIU. The tables
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also indicate the variable category of original DCD field (F), an internally derived variable
(DV) and an external demographic variable (DM). The external demographic variables do
not seem to be very informative in the presence of the field and derived variables chosen.

Important Variable Summarizations for IME
Tree Models Applied to Decision and Favorable Tasrgets
Total Decision | Favorable
Score Score Score
Variable Total

Variable type Score Rank Rank Rank
Health Insurance F 17,206 1 2 1
Provider 2 Bill F 10,820 2 1 4
Territory F 7.871 3 5 2
Provider 1 Bill F 6,726 4 4 3
Injury Type F 6,084 5 6 5
Attorneys Per Zip DV 3,102 6 3 15
Provider 2 Type F 2,873 7 8 9
Report Lag DV 2,859 8 16 7
Provider 1 Type F 2,531 9 10

Distance MP1 Zip to Clt Zip | DV 1,655 10 11 8
Treatment Lag DV 1,331 11 17 16
Emergency Treatment F 1,216 12 7 10
Claimants per City DV 1,146 13 14 13
Income Household/Zip DM 087 14 13 17
Attorney F 971 15 9 19
Households/Zip DM 957 16 19 11
Age F 881 17 12 14
Pro:'iders /Zip DV 838 18 18 12
Providers per City DV 719 19 20 18
Avg. Household Price/Zip DM 262 20 15 20
Policy Type F 4 21 21 21

Table 5-3

30 Casualty Actuarial Society Forum, Winter 2006



Distinguishing the Forest from the TREES

Important Variable Summarizations for SJU
Tree Models Applied to Decision and Favorable Targets
Total Decision Favorable
Score Score Score
Variable | Total
Variable Tvpe Score | Rank Rank Rank
Territory F | 15242 1 2 1
Provider 1 Type F 9,965 2 4 2
Providers/Zip DV | 6,676 3 1 13
Provider 1 Bill F 6,240 4 3 10
Provider 2 Bill F 6,030 5 5 4
Injury Type Fl 5845 6 7 3
Provider 2 Type F 4,753 7 8 6
Health Insurance F 4,262 8 6 15
Emergency Treatment F 3,039 9 13 5
Attorney F 2,705 10 9 14
Report lag DV 2,642 11 10 9
Providers per City DV 2,275 12 12 10
Attomeys/zip DV 2,183 13 14 8
Distance to Provider DV 2,109 14 11 14
Income/Cap Household DM 2,091 15 15 7
Claimants per City DV 1,142 16 18 16
Households/Zip DM 1,061 17 16 18
Age F 830 18 19 17
Treatment Lag DV 706 19 17 20
Average House Price DM 648 20 20 9
Policy Type F 19 21 21 21
Table 5-4
Additional Analyses

Most software allow for additional diagnostic tools that focus on the importance of
individual variable levels in the predictive model. We focus on two such features: partial
dependency plots and pruning of trees. Both features are designed to illustrate the
contribution of each /el of categorical variable and each inferval of continuous variables
created by the cut points. We illustrate the additional analyses using the Random Forest and
S-PLUS’s tree software.

Partial Dependence

The partial dependence plot is a useful way to visualize the effect of the values of a specific
variable on a dependent variable when a complex modeling method such as Random Forest
is used. The partal dependence plot is a graph of the marginal effect of a variable on the
class probability. For a classification application (in Random Forest), the partial plot uses
the logit or log of the odds ratio (the odds of being in the target category versus its
compliment) rather than the actual probability.
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X
S(x)=log p,(x)- D log(p,) 0
=1

Figures 5-1 and 5-2 show the partial dependence plot for the two IME targets for the most
important variable in Table 5-4, territory.

Random Forest: IME Requested

Partial Dependence on Territory
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Figure 5-1

Random Forest: IME Favorable
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Partial Dependence on Territory
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Figure 5-2

Both bar graphs have a distinctive right shift in the size of the partial dependency on the
territorv variable.  This result is not surprising given that Massachusetts automobile
territoties are set every two years based upon the calculation of a single 5-coverage pure
premium index for each of 350 towns. Towns are then grouped into 16 nearly homogenous
territories with the index generally rising from territory 1 (lowest) to tetritory 16 (highest).
Territories 17-26 are 10 individual parts of Boston that vary widely in this calculated pure
premium index (Conger, 1987). Figure 5-3 shows a bar graph of the pure premium indices
for the 26 territories used in this analysis for comparison purposes.

Massachusetts Rating Territories

Five Coverage Pure Premiums

Casualty Actuarial Society Forum, Winter 2006 33



Distinguishing the Forest from the TREES
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Figure 5-3

Figure 5-4 displays the proportion of claims with an IME requested (not marginal effects) by
territory, supetimposed on the pure premium territory levels. In contrast to the similarity of
the marginal importance of the IME territory variable to the territory pure premiums, the
proportions of claims with IME requested shown in Figure 5-4 show more uniformity across
territories, indicating a real dependence on other important variables.
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Massachusetts Rating Territories

Five Coverage Pure Premium vs IME Request Ratios
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Figure 5-4
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Pruning the Trees
Simple trees™ that extend to 2 large number of terminal nodes are difficult to assess the full

importance of individual vartiable levels because (1) later node splits may or may not be
statistically significant depending on the software algorithms employed and (2) terminal
nodes on the order of fifty plus may obscure the precise contribution of each variable level
despite the importance value described above for the overall variable.

The full tree produced by the software can be pruned back to the “best” tree with a pre-
determined number of nodes. For example, Figure 5-5 shows a best 10 node pruned tree
from S-PLUS. It begins with the health insurance variable as the “root” node (Y/N to the
left and U to the right)’” and proceeds to make general node splits based only on the
provider 2 bill amount. The universe of records is then classified by tetminal node IME
requested ratios ranging from 0.019 to 0.170. A similar pruned tree can be produced for the
other three targets.
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S-PLUS TREE: IME Requested
Best Ten Node Pruned Tree

0.060 0.072 0.150 0.090 0.170  0.120

Figure 5-5

We next turn to consideration of model performance as a whole in section 6 with an
interpretation of the models and variables relative to the problem at hand (example 2) in
Section 7.

SECTION 6. ROC CURVES AND LIFT FOR SOFTWARE: TREES, NAIVE
BAYES AND LOGISTIC MODELS

The sensitivity and specificity measures discussed in Section 4 are dependent on the choice
of a cutoff value for the prediction. Many models score each record with a value between
zero and one, though some other scoring scale can be used. This score is sometimes treated
like a probability, although the concept is much closer in spirit to a fuzzy set measurement
function®. A common cutoff point is .5 and records with scores greater than .5 are classified
as events and records below that value are classified as non-events®™. However, other cutoff
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values can be used. Thus, if a cutoff lower than 50% were selected, mote events would be
accurately predicted and fewer non-events would be accurately predicted.

Because the accuracy of a prediction depends on the selected cutoff point, techniques for
assessing the accuracy of models over a range of cutoff points have been developed. A
common procedure for visualizing the accuracy of models used for classification is the
receiver operating characteristic (ROC) curve”. This is a curve of sensitivity versus
specificity (or more accurately 1.0 minus the specificity) over a range of cutoff points. It
illustrates graphically the sensitivity or true positive rate compared to 1- specificity or false
alarm rate. When the cutoff point is very high (i.e. 1.0) all claims are classified as legitimate.
The specificity is 100% (1.0 minus the specificity is 0), but the sensitivity is 0%. As the
cutoff point is lowered, the sensitivity increases, but so does 1.0 minus the specificity.
Ultimately a point is reached whete all claims are predicted to be events, and the specificity
declines to zero (1.0 - specificity = 1.0). The baseline ROC curve (where no model is used)
can be thought of as a straight line from the origin with a 45-degree angle. If the model’s
sensitivity increases faster than the specificity decreases, the curve “lifts” or rises above a 45-
degree line quickly. The higher the “lift” or “gain”; the more accurate the model*. ROC
curves have been used in prior studies of insurance claims and fraud detection regression
models (Derrig and Weisberg, 1998 and Viaene et al., 2002). The use of ROC curves in
building models as well as comparing performance of competing models is a well established
procedure (Flach et al (2003)).

A statstic that provides a one-dimensional summary of the predictive accuracy of a model as
measured by an ROC curve is the area under the ROC curve (AUROC). In general,
AUROC values can distinguish good models from bad models but may not be able to
distinguish among good models (Marzban, 2004). A curve that rises quickly has more area
under the ROC curve. A model with an area of .50 demonstrates no predictive ability, while
a model with an area of 1.0 is a perfect predictor (on the sample the test is performed omn).
For this analysis, SPSS was used to produce the ROC curves and area under the ROC
curves. SPSS generates cutoff values midway between each unique score in the data and
uses the trapezoidal rule to compute the AUROC. A non-parametric method was used to
compute the standard error of the AUROC. The formula for the standard error” is:

SE(4) = \/A(l = A)+(n, —1)Q, = A1) +(n_~1)(Q, ~ 4%) o

n N
n, is the number of events, n_ is the number of non-events, N is the sample size

Where
A is the AUROC and scores are denoted as x
1 n.’
. 2 +=1
1 =n~n+2 zxn_zjx[n», +n+>/+n+=/+'-3'—]
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Tables 6-1A&B show the values of AUROC for each of eight model/software combinations
in predicting a decision to investigate with an IME (6-1A) and an SIU (6-1B). for the
Massachusetts auto bodily injury liability claims that comprise the holdout sample, about
50,000 claims. Upper and lower bounds for the “true” AUROC value are shown as the
AUROC value + two standard deviation determined by equation (7). TREENET, Random
Forest both do well with AUROC values about 0.7, significantly better than the logistic
model. The Iminer models (Tree, Ensemble and Naive Bayes) generally have AUROC
values significantly below the top two performers, with two (Tree and Ensemble)
significantly below the Logistic and the Iminer Naive Bayes benchmarks. CART also scores
at or below the benchmarks and significantly below TREENET and Random Forest. On the
other hand, S-PLUS (R) tree scores at or somewhat above the benchmarks.

Casualty Actuarial Society Forum, Winter 2006

Area Under the ROC Curve - IME Decision

CART S-PLUS

Tree Tree Iminer Tree | TREENET
AUROC 0.669 0.688 0.629 0.701
Lower Bound 0.661 0.680 0.620 0.693
Upper Bound 0.678 0.696 0.637 0.708

Imines Iminer

Ensemble Random Naive

Forest Bayes Logistic
AUROC 0.649 703 0.676 0.677
Lower Bound 0.641 695 0.669 0.669
Upper Bound 0.657 711 0.684 0.685
Table 6-1A
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Tables 6-2A&B show the values of AUROC for the model/software combinations tested
for the SIU dependent variable. We first note that, in general, the model predictions as
measured by AUROC are significantly lower than for IME across all eight model/software
combinations. This reduction in AUROC values may be a reflection of the explanatory
variables used in the analysis; i.e., they may be more informative about claim build-up, for
which IME is the principal investigative tool, than about claim fraud, for which SIU is the

Distinguishing the Forest from the TREES

Area Under the ROC Curve — IME Favorable

CART S-PLUS

Tree Tree Iminer Tree | TREENET
AUROC 0.651 0.664 0.591 0.683
Lower Bound 0.641 0.653 0.578 0.673
Upper Bound 0.662 0.675 0.603 0.693

Iminer Iminer

Ensemble Random Naive

Forest Bayes Logistic
AUROC 0.654 0.692 0.670 0.677
Lower Bound 0.643 0.681 0.660 0.667.
Upper Bound 0.665 0.702 0.681 0.687
Table 6-1B

principal investigative tool.
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Area Under the ROC Curve — SIU Decision

CART S-PLUS

Tree Tree Iminer Tree | TREENET
AUROC 0.607 0.616 0.565 0.643
Lower Bound 0.598 0.607 0.555 0.634
Upper Bound 0.617 0.626 0.575 0.652

Iminer Iminer

Ensemble Random Naive

Forest Bayes Logistic
AUROC 0.539 0.677 0.615 0.612
Lower Bound 0.530 0.668 0.605 0.603
Upper Bound 0.548 0.686 0.625 0.621
Table 6-2A
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Area Under the ROC Curve - SIU Favorable

CART S-PLUS

Tree Tree Iminer Tree | TREENET
AUROC 0.598 0.616 0.547 0.678
Lower Bound 0.584 0.607 0.555 0.667
Upper Bound 0.612 0.626 0.575 0.689

Iminer Iminer

Ensemble Random Naive

Forest Bayes Logistic
AURQOC 0.575 0.645 0.607 0.610
Lower Bound 0.530 0.631 0.593 0.596
Upper Bound 0.548 0.658 0.625 0.623
Table 6-2B

TREENET and Random Forest perform significantly better than all other model/software
combinations on the favorable target variables. Both perform significantly better than the
Logistic. Iminer Tree and Ensemble again do poorly on the IME and SIU Favorable holdout
samples.

Figures 6-1 to 6-4 show the ROC curves for TREENET compared to the Logistic for both
IME and STU®, As we can see, a simple display of the ROC curves may not be sufficient to
distinguish performance of the models as well as the AUROC values.

TREENET ROC Curve - IME
AUROC = 0.701

TREENET ROC Curve - SIU
AUROC = 0.677
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Logistic ROC Cutve - IME
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Logistic ROC Cutve — SIU
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AUROC = 0.643
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Finally, Table 6-3 displays the relative performance of the model/software combinations
according to AUROC values and their ranks. With Naive Bayes and Logistic as the
benchmarks, TREENET, Random Forest and SPLUS Tree do better than the benchmarks
while CART Tree, Iminer Tree, and Iminer Ensemble do worse.

42

Ranking of Methods By AUROC - Decision
Method SIU AUROC |[SIU Rank {IME Rank [IME
AUROC
Random Forest 0.645 1 1 0.703
TREENET 0.643 2 2 0.701
S-PLUS Tree 0.616 3 3 0.688
Iminer Naive Bayes 0.615] 4 5 0.676
Logistic 0.612! 5 4 0.677
CART Tree 0.607 6 6 0.669
Iminer Tree 0.565 7 8 0.629]
Iminer Ensemble 0.539] 8 7 0.649
Table 6-3A
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Ranking of Methods By AUROC - Favorable
Method SIU AUROC [SIU Rank [IME Rank [IME
AUROC
TREENET 0.678 1 2 0.683
Random Forest 0.645) 2 1 0.692
S-PLUS Tree 0.616 3 5 0.664
Logistic 0.610, 4 3 0.677
Iminer Naive Bayes 0.607 5 4 0.670
CART Tree 0.598 6 7 0.651
Iminer Ensemble 0.575 7 6 0.654
Iminer Tree 0.547 8| 8 0.591
Table 6-3B

Finally, Figures 6-5A&B show the relative performance in a graphic. Procedures would work
equally on both IME and SIU if they lie on the 45 degree line. To the extent that
performance is better on the IME targets, procedures would be above the diagonal. Better
performance is shown by positions farther to the right and closer to the top of the square.
This graphic cleatly shows that TREENET and Random Forest procedures do better than

the other tree procedures and the benchmarks.

Plot of AUROC for SIU vs. IME Decision
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Figure 6-5A

Plot of AUROC for SIU vs. IME Favorable
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SECTION 7. CONCLUSION

Insurance data often involves both large volumes of information and nonlinearity of variable
relationships. A range of data manipulation techniques have been developed by computer
scientists and statisticians that are now categorized as data mining, techniques with principal
advantages being precisely the efficient handling of large data sets and the fitting of non-
linear functions to that data. In this paper we illustrate the use of software implementations
of CART and other tree-based methods, together with benchmark procedures of Naive
Bayes and Logistic regression. Those eight model/software combinations are applied to data
arising in the Detail Claim Database (DCD) of auto injury liability claims in Massachusetts.
Twenty-one variables were selected to use in prediction models using the DCD and external
demographic variables. Four target categorical variables were selected to model: The decision
to request an independent medical examination (IME) or a special investigaton (SIU) and
the favorable outcome of each investigaton. The two decision targets are the prime claim
handling techniques that insurers can use to reduce the asymmetry of information between
the claimant and the insurer in order to distinguish valid claims from those involving
buildup, exaggerated injuries or treatment, or outright fraud.

Eight modeling software results were compared for effectiveness of modeling the targets
based on a standard procedure, the area under the receiver operating characteristic curve
(AUROC). We find that the methods all provide some predictive value or lift from the
predicting variables we make available, with significant differences among the eight methods
and four targets. Seven modeling outcomes are compared to logistic regression as in Viaene
et al. (2002) but the results here are different. They show some software/methods can
improve on the predictive ability of the logistic model. TREENET, Random Forest and
SPLUS Tree do better than the benchmark Naive Bayes and Logistic methods, while CART
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tree, Iminer tree, and Iminer Ensemble do worse. That some model/software combinations
do better than the logistic model may be due to the relative size and richness of this data set
and/or the types of independent variables at hand compared to the Viaene et al. data.

We show how “important” each variable is within each software/model tested and note the
type of data that are important for this analysis. In general, variables taken directly from
DCD fields and variables detived as demographic type variables based on DCD fields do
better than variables detived from external demographic data. Variables relating to the injury
and medical treatment dominate the highly important variables while the presence of an
attorney, age of the claimant, and policy type, personal or commercial, are less important in
making the decision to invoke these two investigative techniques.

No general conclusions about auto injury claims can be drawn from the exercise presented
here except that these modeling techniques should have a place in the actuary’s repertory of
data manipulation techniques. Technological advancements in database assembly and
management, especially the availability of text mining for the production of varables,
together with the easy access to computer power, will make the use of these techniques
mandatory for analyzing the nonlinearity of insurance data. As for our part in advancing the
use of data mining in actuarial work, we will continue to test various software products that
implement these and other data mining techniques (e.g. support vector machines).
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* They also found that augmenting the categorized red flag variables with some other claim data (e.g. age,
report lag) improved the lift as measured by AUROC across all methods but the logistic model still did as
well as the other methods (Viaene et al., 2002, Table 6, p.400-401).

3 A wider set of data mining techniques is considered in Derrig, R.A. and L A. Francis, Comparison of
Methods and Software Modeling Nonlinear Dependencies: A Fraud Application, Congress of Actuaries,
Paris, June 2006

* See section 2 for an overview of the database and descriptions of the variables used for this paper.

> The relative importance of the independent variables in modeling the dependent variable within these
methods are analogous to statistical significance or p-values in ordinary regression models.

® See, for example, 2004 Discussion Paper Program, Applying and Evaluating Generalized Linear Models,
May 16-19, 2004, Casualty Actuarial Society.

7 This was the text used by the Casualty Actuarial Society for the exam on applied statistics during the
1980s

§ Claims that involve only third party subrogation of personal injury protection (no fault) claims but no
separate indemnity payment or no separate claims handling on claims without payment are not reported to
DCD.

° Combined payments under PIP and Medical Payments are reported to DCD.

'® With a large holdout sample, we are able to estimate tight confidence intervals for testing model results
in section 6 using the area under the ROC curve measure.

' This fact is a matter of Massachusetts law which does not permit IMEs by one type of physician, say an
orthopedist, when another physician type is treating, say a chiropractor. This situation may differ in other
jurisdictions.

12 Because expert bill review systems became pervasive by 2003, reaching 100% in some cases, DCD
redefined the reported MA to encompass only peer reviews by physicians or nurses for claims reported
after July 1, 2003..

" The standard Massachusetts auto policy has a cooperation clause for IME both in the first party PIP
coverage and in the third party BI liability coverage.

" The IRC also includes an index bureau check as one of the claims handling activities

% Prior studies of Massachusetts Auto Injury claim data for fraud content included Weisberg and Derrig
(1998, Suspicion Regression Models) and Derrig and Weisberg (1998, Claim Screening with Scoring
Models).

'¢ See Section 5 for the importance of the provider 2 bill variable in the decision to investigate claims for
fraud (SIU) and/or buildup (IME).

1" There are Tree Software models that may split nodes into three or more branches. SPSS classification
trees is an example of such software.

'® For binary categorical data assumed to be generated from a binomial distribution, entropy and deviance
are essentially the same measure. Deviance is a generalized linear model concept and is closely related to
the log of the likelihood function.

1% Hastie et al., p. 301 Note that Hastie et al. describe other error and weight functions. [endnote]

 Note that the ensemble tree methods employ all 21 variables in the models. See tables 5-1 and 5-2.

! The ROC curve results in Section 6 show that TREENET generally provides the best prediction models
for the Massachusetts data.

2 The numeric variables were grouped into five bins or into quintiles in this instance.

* The software product MARS also was used to rank variables in importance. MARS implements
multivariate adaptive regression splines and is described in Francis (2003).

* The SAS code is generally relatively easy to edit if some other language is used to implement the model
* See Section 5 for the importance of variables in our study.

* S-PLUS would convert the numeric variable into a categorical variable with a level for every numeric
value that is in the training data, including missing data, but the result would have far too many categories
to be feasible.

*7 Generally by collapsing sparsely populated categories into an “all other” category
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It also contains some dimension reduction methods such as clustering and Principal Components which
are also contained in S-PLUS.

*In general, some programming is required to apply either approach in S-PLUS (R)

30 The data set is described in more detail in Section 2 above.

*! Pruning is not feasible or necessary for the example tree methods such as TREENET or Random
TREENET.

32 The S-PLUS tree graph does not print out the values of categorical variables, although it displays the
values of the numeric variables. For categorical variables letters are assigned and displayed instead of the
category values.

% See Ostaszewski (1993) or Derrig and Ostaszewski (1999).

** One way of dealing with values equal to the cutoff point is to consider such observations as one-half in
the event group and one-half in the non-event group

’ A ROC curve is one example of a so-called “gains” chart.

% ROC curves were developed extensively for use in medical diagnosis testing in the 1970s and 1980s
(Zhou et al. 2004 and more recently in weather forecasting (Marzban, 2004) and (Stephenson, 2000).

%7 The details of the formula were supplied by SPSS.

3 All twenty ROC curves are available from the authors.

Acknowledgement: The authors gratefully acknowledge the production assistance of Eilish Browne and helpful
comments from Rudy Palenik on a prior version of the paper.

Casualty Actuarial Society Forum, Winter 2006 49






Taming Text: An Introduction to Text Mining

Louise A. Francis, FCAS, MAAA

Abstract
Motivation. One of the newest areas of data mining is text mining. Text mining is used to extract
information from free form text data such as that in claim description fields. This paper introduces the
methods used to do text mining and applies the method to a simple example.
Method. The paper will describe the methods used to parse data into vectors of terms for analysis. It
will then show how information extracted from the vectorized data can be used to create new features
for use in analysis. Focus will be placed on the method of clustering for finding patterns in
unstructured text information.
Results. The paper shows how feature variables can be created from unstructured text information and
used for prediction
Conclusions. Text mining has significant potential to expand the amount of information that is
available to insurance analysts for exploring and modeling data
Availability. Free software that can be used to perform some of the analyses describes in this paper is
described in the appendix.
Keywords. Predictive modeling, data mining, text mining, statistical analysis

1. INTRODUCTION

Traditional stadstical analysis is performed on data arrayed in spreadsheet format. That
is, the data is arrayed in two dimensional matrices where each row represents a record and
each column represents a feature or variable. Table 1-1 provides a sample of such a
database. In Table 1-1, each row represents a claimant. The features are the variables claim
number, accident date, claim status, attorney involvement, paid loss, outstanding loss,
incurred loss, incurred allocated loss adjustment expenses (ALAE) and claimant state. As
seen in Table 1-1, the data contain two key types of variables, quantirative or numeric
variables such as incurred losses and incurred expenses and nominal or categorical variables
such as claim status and state. Each numeric value denotes a specific quantity or value for
that variable. Each value or category, whether numeric or alphanumeric, of a categorical
variable embeds a coding that maps the value to one and only one category.! This data is
structured data. Structured databases result from intentional design where the variables have

proscribed definitons and the values of the variables have proscribed meaning.

' Note that categorical varables can contain numeric codes as well as string values as in the example. Each
code for the categorical variables maps to a value. That is injury ‘01’ may denote a back strain and injury 02
may denote a broken wrist for an injury type varable.
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Sample Structured Data

Claim Accident Incurred Incurred

No Date Status Aftorney Paid Outstanding ALAE Loss State
199816 | 01/08/1999 C Yes 37,284 0 11,021 | 37,284 NY
199843 | 01/16/1999 C No 0 0 0 0 NY
200229 | 12/30/2002 o] No 195 0 3 195 CA
199868 | 09/19/1998 C Yes 99,852 0 31,807 | 99,852 NJ
200327 | 05/19/2003 C No 286 0 72 286 PA

Table 1-1

Another kind of data that is also present in corporate databases is unstructured data. This
data typically has the appearance of free form text data. Examples of text data are claim
description fields in claim files, the content of e-mails, underwriters written evaluation of
prospective policyholders contained in underwriting files and responses to open ended
survey questions on customer satisfaction survey. It has been estimated that 85% of
corporate data is of the unstructured type (Robb, 2004). As Mani Shabrang of Dow
Chemical says, “We are drowning in information but starved for knowledge” (Robb, 2004).

When data is unstructured there is no obvious procedure for converting the data which is
composed of sequences of characters that vary in length and content in apparently random
ways, to information that can be used for analysis and prediction. Manual intervention on
the part of human beings may be able to convert some unstructured data to structured
features which can be used to perform statistical analysis. Derrig e o/ (1994) provide an
example where claims experts reviewed claims files and scored the claims on a number of
indicators of suspicion of fraud. Because of the effort required and difficulty of interpreting
the unstructured text data, it is typically ignored for doing analysis. If information could be
automatically extracted from unstructured data, a significant new source of data could

become available to corporations.

In the field of data mining, Zx# mining has been attracting increased interest in the
insurance industry. Text mining refers to a collection of methods used to find patterns and

create intelligence from unstructured text data.

In this paper, the key methods used in text mining will be presented. A simple
application to a free form claim description field will be used to illustrate the text mining

procedures.

1.1 Research Context

While text mining is relatively new, software for analyzing text data has been available
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since the late 1990s from the major statistical software vendors such as SAS and SPSS. One
of the most common uses of text mining procedures is in search engine technology. A user
~ types in a word or phrase, which may include misspellings, and the search engine searches
through a vast repository of documents to find the most relevant documents. Other

applications include:
¢  Analysis of survey data

o Text mining is used as an automated approach to coding information

from open ended survey questions.
¢ Spam identification

o The title line and contents of e-mails ate analyzed to identify which are
spam and which are legitimate (Hastie e7 @/, 2001).

e  Surveillance

o Itis believed that a project referred to as ENCODA monitors telephone,

internet and other communications for evidence of terrorism (Wikipedia,
2005).

e Call center routing

o Calls to help desks and technical support lines are routed based on verbal

answers to questions.
¢ Public health eatly warning
0 Global Public Health Intelligence Network (GPHIN) monitors global

newspaper articles and other media to provide an early warning of
potential public health threats including disease epidemics such as SARS,
and chemical or radioactive threats. (Blench, 2005).

o  Alias identfication

o The aliases of health care and other providers are analyzed to detect over
billing and fraud. For instance, a bill may have been submitted by John
Smith, J. Smith and Smith, John. The same approaches may be used to
identify abuse by claimants, whcre given claimants submit numerous

insurance claims under different aliases.

Text mining has evolved sufficiently that web sites are devoted to it and courses focusing

solely on text mining are appearing in graduate school curricula. Text mining also occuts
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frequently as a topic at data mining conferences. While the interest in text mining is
relatively recent, Weiss ez a/ (2005) point out that text analysis dates back to at least the late
1950s where “automatic abstracting” of text information was studied. In the 1970s and
1980s, artificial intelligence researchers were interested in natural language processing. Many
of these early efforts did not yield commercially useful results, so interest in text analysis
declined. However, in the 1990s new developments in text mining tools led to a reawakened

interest in the field.

In property and casualty insurance, literature on text mining is sparse. In 2002
Ellingsworth described the application of text mining to fraud identification (Ellingsworth,
2002). Kolyshkina (2005) described the use of text mining to create features for identifying

serious claims.

This paper attempts to fill a gap in the actuarial literature on text mining. It will show
that text mining combines string manipulation functions that are available in many modern

programming languages, with commonly available statistical analysis methods.

Many of the statistical procedures described in this paper are described in the statstical
and actuarial literature (Hastie ez 4/ 2001, Kaufman, 1990) but have not heretofore been
applied to unstructured text data. Derrig ez /. (1994) and Francis (2001, 2003), Hayword
(2002) have described analytical methods that can be applied to large insurance databases
and are used in data mining. Berry and Linoff, (1997), Kaufman and Rousseeuw (1990) and
Hastie ez a/ (2001) desctibed some of the dimension reduction techniques that are utilized in
text mining. The description of the methods used to derive information from terms in text

data will make use of these dimension reduction techniques.

Much of the text mining literature focuses on search engine and other information
retrieval method. This paper focuses, instead, on using text mining for prediction of
important business outcomes. It will therefore not cover some of the key approaches that

are applied primarily in information retrieval.

1.2 Objective

The objective of this paper is to introduce actuaries and other insurance professionals to
the methods and applications of text mining. The paper shows that many of the procedures
are straightforward to understand and utilize. Many of the procedures have been known in
the statistics discipline for decades. The two methods described are k-means and

hierarchical clustering.
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1.3 Outline

The remainder of the paper proceeds as follows. Section 2 will discuss the data used in
the exposition of the text mining methods. Section 2.1 presents the first phase of text
mining: parsing and other string manipulations used to create terms for further analysis.
Section 2.2 presents the methods used to create features or variables from the terms
extracted in the first phase of the process. These features can then be used to perform
addidonal analysis. The concept of dimension reduction is discussed in section 2.2.1. The
two key methods of dimension reduction used in this paper, k-means clustering and
hierarchical clustering are discussed in sections 2.2.2 and 2.2.3 respectively. Further
considerations such as the number of clusters to retain and cluster naming to provide
understanding of the features created by clustering are described in secdons 2.2.4 and 2.2.5.
Section 2.2.6 presents two simple examples of using variables derived from text mining for
prediction. Results of the analysis are summarized and discussed in Section 3. Conclusions

are presented in Section 4.

While many details of how text mining is performed will be presented, some analysts will
want to acquire software specific for text mining. A discussion of text mining software is

presented in the Appendix.

2. BACKGROUND AND METHODS

Text mining can be viewed as having two distinct phases: term extraction and feature
creation. Term extraction makes heavy use of string manipulation functions but also applies
techniques from computational linguistics. Actual content is a result of the feature creation
process. Feature creation applies unsupervised learning methods that reduce many potential
features into a much smaller number of final variables. These featutes are then potentally

useable as dependent or predictor variables in an analysis.

The example employed to illustrate text mining uses simulated data from a general
liability claims file>. The data contains one free form text field: injury description. In this
simple example, there is no injury or body part code in the data and the only information
about the nature of the injury is the free form text description. The injury description is a
very brief description, generally containing only a few words. The data is representative of

that which might be available from a small self insured exposure. While many claims

* The claim descrption field is very similar to actual claim descriptions in actual data from small self insurance
programs. Other data, such as ultimate losses have been simulated, but are based on relationships actually
observed in data.
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databases contain larger accident and claim description fields, this data serves as a simple
example of how text mining works. An example of the sample text data is shown in Table

2-1

Sample Claim File Text Data

INJURY DESCRIPTION

BROKEN ANKLE AND SPRAINED WRIST
FOOT CONTUSION

UNKNOWN

MOUTH AND KNEE

HEAD, ARM LACERATIONS

FOOT PUNCTURE

LOWER BACK AND LEGS

BACK STRAIN

KNEE

Table 2-1

The sample data also contains other insurance related information: incurred losses,
incurred loss adjustment expenses, accident year, status (open/closed) and whether or not an
attorney is involved in the claim. There are approximately 2,000 records in the data. The
values in the data are simulated, but are based on relationships observed in actual data for

this line of business.

2.1 Term Extraction

During term extraction, character text is first parsed into words. The term extraction
process also strips away words that convey no meaning such as “a” or “the”. An additional

part of the process involves finding words that belong together such as “John Smith”.

When data is parsed, string functons are used to extract the words from the character
string composing the text data. To do this, spaces, commas and other delimiters must be
used to separate words. A simple example of parsing one record using Microsoft Excel
string functions with blank spaces as delimiters is illustrated in Table 2.1-1. The total length
of the character string is first determined using the “length” function. Then, the “find”
function of Excel is used to find the first occurrence of a blank. This is shown in column (3).
Next, the substring function is used to extract the first word from the text, using the position
of the first blank (column (4)). The remainder of the term, after removing the first word is
then extracted, again using the substring function (columns (5) and (6)). The process
continues until every word has been extracted. The “iserr” function can be used to
determine when no more blanks can be found in the field. The words extracted are shown
in the highlighted area of the table.
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Example of Parsing Claim Description

Location
Total of Next
Full Description Length Blank
M (2) (3)
BROKEN ANKLE AND
SPRAINED WRIST 31 7
2nd
Remainder 1 Blank
(6) {7)
ANKLE AND SPRAINED
WRIST 6
3rd
Remainder 2 Blank
(10) 1)
AND SPRAINED WRIST 4
40\
Remainder 3 Blank
(14) (15)
SPRAINED WRIST 9
sth
Remainder 4 Blank
(18) (19)
WRIST 0
Table 2.1-1

First Word
(4)

BROKEN
2" Word
(8)

ANKLE

3" Word
(12)
AND

4" word
(18)
SPRAINED

5" Word
(20)
WRIST

Remainder
Length 1

Remainder
Length 2

Remainder

The result of parsing 1s data organized in spreadshecet format, Le., a rectangular matrix

containing indicator vanables for the words extracted from the text field. For each word

found in any record in the data a variable is created. The variable carries a value of 1if a

given record contains the word and a 0 otherwise.
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Example of Terms Created

w
INJURY REF N
BROKEN ANKLE AND SPRAINED | (o] CONTU | UNKNOWN E | BACK STRAIN
DESCRIPTION s o lson :
TRT K
BROKEN 1 1 1 1 110 0 0 0f 0 0
ANKLE AND
SPRAINED
WRIST
FOOT 0 0 0 0 01 1 0 0f O 0
CONTUSION
UNKNOWN 0 0 0 0 olo 0 1 of 0
NECK AND 0 0 1 0 ofo[ o 0 1 1 1
BACK STRAIN
Table 2.1-2

The example above displays data that could be created from an injury description text
field. Each claim description is treated as a “bag of words” (Weiss e 4/, 2005). The matrices
resulting from parsing text data are typically sparse. That is, for most of the terms, most of

the records contain a zero for that term and only a few records have a one.

The example shown is a relatively simple one. The claim description field is relatively
short and contains no delimiters other than a blank space. However, other delimiters such
as the comma and period occur frequently and need to be identified also. Some delimiters,
such as a single apostrophe (as in I'll) and period (as in etc.) may be part of the words; so
the complex rules for finding and using such delimiters must be coded into the progtam that
parses the data.

Certain words occur very frequently in text data. Examples include “the” and “a”. These
words are referred to as “stopwords”. The stopwords are words removed from the term
collection because they have no meaningful content. By creating a list of such stopwords and
eliminating

them, the number of indicator variables created is reduced. Table 2.1-3 displays a sample
of stopwords used in this analysis. Many of these stopwords do not appear in the claim

description data, but appear frequently in text data.
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Stopwords

A

And

Able

About

Above

Across
Aforementioned
After

| Again

Table 2.1-3

Table 2.1-4 below presents a collection of words obtained from parsing the injury

description data into single words and removing stop words.

Parsed Words
HEAD INJURY
LACERATION NONE
KNEE BRUISED
UNKNOWN TWISTED
L LOWER
LEG BROKEN
ARM FRACTURE
R FINGER
FOOT INJURIES
HAND LIP
ANKLE RIGHT
HIP KNEES
SHOULDER FACE
LEFT FX
CcuT SIDE
WRIST PAIN
NECK INJURED

Table 2.1-4

Other issues affecting the usefulness of the data must be dealt with. One issue is multiple
versions and spellings of words. Table 2.1-4 illustrates this. Both L and LEFT are used to
denote left, R and RIGHT are used to denote right and the database has both the singular
and plural versions of KNEE. In addition, it can be seen from the table that certain
“words” stand for the same injury. For example, as a result of abbreviations used, FX and
FRACTURE as well as BROKEN all denote the same injury The process referred to as
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stemming is used to substitute one word, referred to as a stem (because in the example of

knee and knees, both words have the same stem) for all versions of the term.

Once the words have been parsed, stopwords removed and stemming performed, the
sparse matrix of term indicators is ready for the next step: feature creation. During the
feature creation step, words and sequences of words are classified into groups that contain

similar information.

In some text mining applications, especially those that attempt to understand the content
contained in large documents, other analysis such as grammatical analysis is performed
before progressing to the feature creation step. Such analysis will not be described here as it

is not relevant to the example in this paper.

2.2 Feature Creation

Term extraction is the first step in deriving meaning or content from free form text. The
next step is feature creation. Thus far, each line of text has been parsed into a “bag of
words”. The data can be represented as a tectangular array that has indicator varables for
each term in the injury description. When we analyze the terms more carefully, we may find
that some words such as “back strain” and “neck strain” denote similar injuries and are
unlike “head trauma”. Thus, occurrence or non-occurrence of specific words may tell us

something useful about the nature and severity of the injury.

One of the most common techniques used to group records with similar values on the
terms together is known as cluster analysis. Cluster analysis is an example of dimension
reduction. Before describing cluster analysis, the concepts of dimension and of dimension

reduction are introduced.

2.2.1 Dimension Reduction

Jacoby (1991) describes dimensions as “the number of separate and interesting sources
of variation among objects™ There are two views as to sources of variation when dealing
with a database organized in rectangular spreadsheet format: columns (or variables) and
rows (or records). Table 2.2.1-1 displays the two views of dimensionality for a sample
claims database. The arrow pointing to the right indicates that each column of data can be
viewed as a separate dimension. The downward pointing arrow indicates that each row

? Jacoby, p. 27
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Two Ways of Viewing Dimension in a Database

. CLAMNOMBER] DATE OF LOSS! STATUS! INCURRED LOSS)
: i mull{ VAR IABLES

k" 1998001] 00/15/97 c! 40781
I 1998002! 09/25/97 c 0.00 .
. § .. .19%e003 - oo/eele7) G ... 000
i 1998004 00/29/97 c 8247.16 |
; 1998005 09/29/97 c 0.00 i
e 1998006 10/02/97 c 0.00 !
X T1e08007! 10/10/97 Ci 0.00 !
! 1998008! 10/24/97 c 0.00 |
| 1998009 10/29/97 [ 21,211.66 |
o 1998010 10/29/97; c 0.00 |
) 1998011 11/03/97 Ci 0.00 |
1998012 11/03/97 ¢l 0.00 |

1998013 11/04/97 c 45166
“1o08014]  11o4m7| ¢l " 000
" gesots|  11oam7,  c 000
"T1ee8016' 1w0em7] | C " 15,903.66 |
1998017 11197 C, 465.10 .

Table 2.2.1-1

Each column contains information about the claimants and is a potental variable in an
actuarial or modeling analysis. Each column is a separate dimension. Often in a large
database containing hundreds or even thousands of variables, many variables are highly
correlated with each other and contain redundant information. The large number of
variables can be reduced to a smaller number of components or factors using a technique
such as factor analysis. For instance, Figure 2.2-1 displays three of the dimensions related to
financial information in the sample claims data; ultimate incurred loss, ultimate allocated loss
adjustment expense (ALAE) and ultimate incurred loss plus ALAE. It can be seen from the
graph that the three dimensions are correlated, which one would expect, particularly when
one of the variables is the sum of the other two. It is common in actuarial analysis
(particularly with small databases) to work with only one of these variables; ultimate loss and

ALAE. Thus the number of “dimensions” used in the analysis is reduced to one.
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Scatterplot of Correlated Dimensions (Variables)
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Figure 2.2-1

Each record in the data is also a dimension. When data is aggregated by accident year and
development age in order to construct a loss development triangle, row-wise dimension
reduction is taking place. The number of dimensions is reduced from the total number of

records in the database to the number of cells in the loss development triangle.

2.2.2 K-means Clustering

In statistics, a formal procedure known as clustering is often used to perform dimension
reduction along the rows. The objective of the technique is to group like records together.
A common application of this method in property and casualty insurance is tetritory
development. Policyholders are grouped into tertitories according to where they live and the
territories are used in ratemaking. Both geographic information such as longitude and
latitude and demographic information such as population density can be used for the
territorial clustering. Cluster analysis is an unsupervised learning method; there is no
dependent variable. Rather, records with similar values on the vatiables used for clustering
are grouped together. In the territory example, policyholders living in high population
density zip codes in the southeastern part of a state might be grouped together into one
territory. In text mining, clustering is used to group together records with similar words or

words with similar meanings.
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Many different techniques for clustering exist. One of the most common methods is k-
means clustering. When using k-means clustering the analyst specifies the number of clusters
he/she wants (a discussion of how to make this choice is deferred until later). A statistical
measute of dissimilarity between records is used to separate records that are the most
dissimilar and group together records that are the most similar. Different measures of
dissimilarity are used for numeric data as opposed to categorical data. Text data is generally
viewed as categorical. However, when terms are coded as binary indicator variables, it is
possible to apply the techniques that are used on numeric data. Moreover, text mining is
commonly applied to documents containing large collections of words, such as academic
papers and e-mail messages. Some words appear multiple times in such text data and the
number of times a word appears may be recorded and used for text analysis instead of a
binary indicator variable. Dissimilarity measures for both numeric and categorical data will

be presented.

One of the most common measures of dissimilarity for numeric variables is Euclidian
distance. The formula for Euclidian distance is shown below in equation 2.1. The Euclidian
distance between two records is based on the variable-wise squared deviation between the

values of the variables of the two records.

m 2.1
d,, =Q (x,;, -x,,)")"" i j=records,m=number of variables @D
k=|

The second dissimilarity measure Manhattan distance is shown in equation 2.2. This

measure uses absolute deviations rather than squared deviations.

m
d, = ZI X, —X%,; | i,j=records,m=number of variables
k=1

record has injury “broken ankle and sprained wrist” and the second record has injury
“contusion to back of leg”. Binary variables indicating the presence or absence of words

after the parsing of text are the variables used in the measure.
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Euclidian and Manhattan Distance Between Two Records

Record 1 Record 2 Squared Absolute
BROKEN ANKLE AND CONTUSION TO
Variable SPRAINED WRIST BACK OF LEG Difference Difference
Back 0.000000 1.000000 1 1
Contusion 0.000000 1.000000 1 1
Head 0.000000 0.000000 0 0
Knee 0.000000 0.000000 0 0
Strain 0.000000 0.000000 0 0
Unknown 0.000000 0.000000 0 0
Laceration 0.000000 0.000000 0 0
Leg 0.000000 1.000000 1 1
Arm 0.000000 0.000000 0 0
Foot 0.000000 0.000000 0 0
Hand 0.000000 0.000000 0 0
Ankle 1.000000 0.000000 1 1
Shoulder 0.000000 0.000000 0 0
Hip 0.000000 0.000000 0 0
Left 0.000000 0.000000 0 0
Neck 0.000000 0.000000 0 0
Wrist 1.000000 0.000000 1 1
Cut 0.000000 0.000000 0 0
Fracture 1.000000 0.000000 1 1
Surgery 0.000000 0.000000 0 0
Finger 0.000000 0.000000 0 0
None 0.000000 0.000000 0 0
Broken 1.000000 0.000000 1 1
Trauma 0.000000 0.000000 0 0
Lower 0.000000 0.000000 0 0
_Right 0.000000 0.000000 0 0
Total 7 7
Distance Measure 2.65 7
Table 2.2.2-1

Dissimilarity measures specific for categorical variables also exist: Table 2.2.2-2
displays the notation for comparing two records on all their binary categorical variables.
For instance, the sum of all variables for which both records have a one is shown as “a”
on the table. The counts of variables on which the two records agree are denoted “a” and

“d”. The counts of variables on which the two records disagree are denoted “b” and “c”.
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Crosstabulation of Counts for Two Records Binary Variables

Record 1
1 0
3
o 1 a b
3
0 c d
Table 2.2.2-2

Simple matching is a dissimilarity measure that compares the total number of non

matches to the total number of variables as shown in equation 2.3.
2.3)

b+c ..
i.j = ————— 1,j =records
Y a+b+c+d

Another dissimilarity measure, shown in equation 2.4, is Rogers and Tanimoto. This
measure gives more weight to disagreements than to agreements. In the example above

(Table 2.2.2-1) where there are 7 disagreements and 19 agreements, the Rogers and

Tanimoto dissimilarity measure is 0.43.
2.4
ij = 26+ ¢) i,j = records @49
Yoa+d+2(b+c)

Instead of using a dissimilarity measure, some clustering procedures use a measure of

similarity. A common measure of similarity is the cosine measure. The cosine statistic is a

measure of covariance, but it is applied to records rather than to variables.
(2.5)

m
*
Z('xl,k x/,l()
Al i,j = records, m = number of variables

3 )3 )
k=1 k=1

cosine, | =

Rather than use binary indicator variables in the cosine calculation, this statistic typically
uses a value referred to as the tf-idf statistic as x, in equation 2.5, The tf-idf (term frequency

— inverse document frequency) statistic is based on the frequency of a given term in the
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record. The static is normalized by being divided by the total number of times term appears

in all records®.

if =~=-— n; = number of times term i occurs,
k 2.6)

tf-idf = %;— Df is the document frequency

There are several ways to count the document frequency (denoted Dfin equation 2.6) or
the frequency of a term in a database (Wikipedia, 2005). A common method counts the
number of records® in which the term appears divided by the total number of records.
Sometimes the log of the inverse of the document frequency is used in the calculation. This
statistic is more appropriate for applications involving larger collections of words, i.e., where
each record is an entire document. The tf-idf method was not used in the analysis in this
paper.

K-means clustering using Euclidian distance was applied to the matrix of extracted terms
from the injury descriptions. Each cluster that is created from a k-means clustering
procedure has a center referred to as the centroid. The centroid is the vector of average
values for the cluster for each vatiable entering the clustering procedure. In the case of
binary variables coded as either zero or one, the centroid is the cluster’s frequency for each
term or the proporton of all records in the cluster which contain the term. For example, the
clustering procedure was used to create two classes or clusters. The clusters’ frequencies for
each term are displayed in the Table 2.2.2-3. From the table, it can be seen that none of the
claims in Cluster 1 contain the word “back” and all of the claims in Cluster 2 contain the
word. In addition, Cluster 1 contains a much higher percentage of claims with the words

&

“contusion” “unknown” and “laceration” while Cluster 2 contains a much higher proportion
of records with the word “strain”. Thus, when k-means clustering is used to create two
clusters, a cluster with a high representaton of claims with back injuries is partitioned from

claims with other injuries.

* In much of the text mining literature, the term “document” is a synonym for “record”, because the unit of
observation is often an entire document, such as a newswire article
* Frequently when this statistic is used, each record is 2 document. See footnote 4 above.

66 Casualty Actuarial Society Forum, Winter 2006



Taming Texct: An Introduction to Text Mining

Frequencies for Two Clusters

Cluster

Number back contusion head knee strain unknown laceration
1 000 015 012 013 0.05 0.13 0.17
2 1.00 004 011 0.05 040 0.00 0.00

Table 2.2.2-3

Frequency statistics for three clusters are displayed in Table 2.2.2-4. Again, one group,
Cluster 2, is a cluster with 100% back injuries. Cluster 3 contains a high proportion of claims
with knee injuries, while contusions and unknown are the most common injuries in Cluster

1. As will be discussed in more detail in Section 2-5, examining cluster statistics such as

Frequencies for Three Clusters

Cluster

Number back contusion head knee strain unknown laceration
1 0.00 0.17 014 004 0.05 0.16 0.19
2 1.00 0.04 0.11 005 040 0.00 0.00
3 0.00 0.07 0.04 048 0.09 0.00 0.05

Table 2.2.2-4

Viewing the statistics for three clusters versus two clusters, it is clear that there is
refinement in the definition of the injury clusters when progressing from two to three
clusters. Determining how many clusters to use is something of an art. If too many clusters
are estimated, the model is over parameterized and is fitting noise as well as pattern. If too
few clusters are created, the data are not adequately modeled. This topic is discussed in

more detail in Section 2.2.4.

2.2.3 Hierarchical Clustering

Though less common than k-means clustering, hierarchical clustering is another common
method applied in text mining to cluster terms in order to discover content (in this case, to
create features that can be used for further analysis). Hierarchical clustering is a stepwise
procedure that begins with many clusters and sequentially combines clusters in close
proximity to each other until no further clusters can be created. Typically, hierarchical

clustering begins with every obsen ation as a single cluster and terminates with one cluster
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containing all the records. Hierarchical clustering procedures produce dendograms or tree-
like visualizations of the stages of clustering which assist the analyst in determining the final
number of clusters to select. Hierarchical clustering can be applied to either records or
variables. Because the visualization of the results is easier to display, the results of clustering
by variable are displayed in Figure 2.2-2. The figure displays the tree like figure or
dendogram that results from clustering ten of the injury terms. For this dendogram,

Euclidian distance was used.

The dendogram displays the cluster groupings cteated at each step of the clustering
process. The left-hand side of the dendogram under the label CASE lists the variables and
their numbers (based on order in the database). The left-most portion of the dendogram is a
line representing a terminal branch of the tree. There is one branch for each variable, as each
variable is its own cluster at the beginning of the clustering process. Moving to the right, the
branch for arm and the branch for foot are connected, indicating that a new cluster is
created in step one by combing arm and foot. Forming a cluster composed of these two
variables indicates that the distances between arm and foot are smaller than the distances
between any other possible combination of two variables. Next on the dendogram, the
branch for leg is connected to the branch containing arm and foot, indicating that at the
second step, a new cluster is created by combining leg with the arm-foot cluster. The
stepwise process of creating new clusters by combining together smaller clusters at each step
continues until there is only one cluster containing all the variables. This is shown at the
right side of the dendogram where a branch containing back and strain are connected to a
branch containing all other variables (i.e., at the next to last step the two group cluster

partitions the terms “back” and/or “strain” from all other injuries).

Table 2.2.3-1 presents a matrix of proximity (i.e. distance) measures which underlie the
dendogram clusters. These are the distances used to cluster the variables. For example, the
distances between arm and foot, which are clustered together in the first step is 6.708. This
compares to the distance of 8.888 between arm and back, which only cluster together in the

last step, where all variables are combined into one cluster.

® Hierarchical clustering can also proceed in the opposite direction, from one cluster with all the data to many
clusters
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Dendogram for 10 Terms

Rescaled Distance Cluster Combine

CASE ¢] 5 10 15 20 25
Label Num +-me=————— fommm————— tom——————— o ———— Fmmmm————— +
arm 9 8x330x
foot 10 $rp 283333333038
leg 8 83333 2333803338338 8«
laceration 7 83308030383338333380 ELURURIRNY
contusion 2 3433848380833333330833083330808883x3830r 0333g
head 3 44008000800830300333083383333308338¢ <~
0333083330 .

knee 4 4338008080880833333338333333833338388880838¢ &
L1

unknown 6 44808000803030300083830083330880883880333333808000
&

back 1

43308033x33833038030308000830305883308088300333083083080833830w
strain 5 3083308382

Figure 2.2-2

Proximity Matrix

Matrix File Input

Case Back | Contusion | Head | Knee | Strain | Unknown | Laceration | Leg Arm Foot
back 0.000 10.000 | 9.327 | 9.539 | 7.071 9.747 9.747 9.055 | 8.888 | 8.602
contusion | 10.000 0.000 7.937 | 8.062 | 9.274 9.220 9.110 8.246 | 8.185 | 7.211
head 9327 | 7937 |0.000| 9.055 | 9.000 | 8.944 8.124 | 8.185 | 8.000 | 7.810
knee 9.539 8.062 9.055 | .000 | 8.307 8.832 8.602 8.307 | 8.000 | 7.681
strain 7.071 9.274 9.000 | 8.307 | 0.000 8.775 8.775 7.746 | 7.810 | 7.616

unknown | 9.747 9.220 8.944 | 8832 | 8.775 0.000 8.718 8.185 | 8.000 | 7.550
laceration | 9.747 9.110 8.124 | 8.602 | 8.775 8.718 0.000 7.550 | 8.000 | 7.141

leg 9.055 8.246 8.185 | 8307 | 7.746 | 8.185 7.550 0.000 | 7.000 | 6.928

am 8.888 8.185 8.000 | 8.000 | 7.810 | 8.000 8.000 7.000 | 0.000 | 6.708

foot 8.602 7.211 7.810 | 7681 | 7.616 7.550 7.141 6.928 | 6.708 | 0.000
Table 2.2.3-1

The hierarchical clustering of the terms in the data provides insight into word
combinations in the data that tend to occur together and or tend to be associated with
similar injuries. However, for the purpose of classifying records into injury categories, it is
more typical to cluster case-wise rather than variable-wise. Thus, hierarchical clustering was

also used to cluster the injury description records.
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2.2.4 Number of Clusters

Determination of the number of clusters to retain is often something of art. One
approach involves viewing the cluster centers to determine if the clusters from a given
grouping appear meaningful. Another procedure for determining the number of clusters
involves comparing the performance of different clustering schemes on an auxiliary target
variable of interest. Here, ultimate incurred losses and ALAE is one variable of interest that
may help in the decision. Figure 2.2-3 displays how the mean ultimate loss and ALAE varies

by cluster for four and eight cluster groupings.

A forward stepwise regression was run to determine the best cluster size. Stepwise
regression is an automated procedure for selecting variables in a regression model. Forward
stepwise regression begins with a null model or model that has no ptedictors. The
procedure then tests all possible independent variables that can be used on a one-variable
regression model. The variable which improves the goodness of fit measure the most is the
variable entered in step one. In step two, all 2-variable regressions are fit using the variable
selected in step one and the variables not selected in step one. The variable which produces
the largest improvement in goodness of fit is then selected and entered into the model. The

process continues until no further significant improvement in fit can be obtained.
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Average Ultimate Loss and ALAE by Cluster for 4 and 8 Clusters
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Figure 2.2-3

A common goodness of fit measure used in stepwise regression is the F-statistic:

5 MSRegression S5, /p
MSResidual  SS,, (N-p-1)
where p=number of variables,
N=number of observations,
SS=sum of squared deviation

@7

The F statistic is the ratio of mean squared error of the regression (the amount of
variance explained by the regression) divided by the mean s.;uare error of the residual (the
amount of unexplained variation). When used in stepwise regression, after the first variable
is entered, the change in F statistic is used. The user typically selects a significance level such

as 5% that is used as a threshold for entering variables into the regression.

When using stepwise regression to select the number of clusters to use, the possible
predictor variables in the regression are the clusters created by 2 category cluster, 3 category
cluster, etc. Since the objective is to find the optimal number of clusters, the regression is
run on each of the category cluster variables and the category cluster with the best fit is

selected. For the purposes of this paper, only the first step of the stepwise regression was
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performed, i.e., only the one variable supplying the best fit of all the one variable regressions
was retained.” Stepwise regression provides a quick and efficient method for determining
the number of clusters. The stepwise procedure determined that a regression with seven
groups produced the best fit. Regression also ascertained that k-means clustering produced

clusters that were better predictors of ultimate losses and ALAE than hierarchical clustering.

A more formal approach is to use a statistical test to determine the optimum number of
clusters. One such test is the BIC (Swartz Bayesian Information Criterion) (Chen and
Gopalakrishnan, 2004). The statistic is used to compare two models at a time. The statistic
chooses between a simpler model and a more complex model by comparing their adjusted or
penalized likelihood function. A penalty related to the number of variables in the model is
applied in order to control for overfitting. When applying the statistic, it is common to treat
the data as if from a multivariate normal distribution:

X~NuX) 2.8
where X is a vector of random variables 1 is the centroid (mean) of the data and

L is the variance-covariance matrix

7 Because of the small size of the data only one injury code variable was created.
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The formula for the BIC statistic is:

BIC =log L(X,M)- A % p*log(N) 2.9)

where log(L(X,M)) is the logliklihood function for a model, p is the number of
parameters, N the number of records, Ais a penalty parameter, often equal to 1

For a cluster analysis, each cluster has a likelihood funcdon based on the cluster’s
centroid and variance-covariance matrix. For instance, in comparing a one-group cluster to
a two-group cluster, a likelthood based on the overall centroid of all the data and the overall
variance-covariance matrix is compared to a two group likelihood based on the centroids
and varlance-covariance matrices of the two clusters. The second model has twice as many
parameters as the first. If the BIC increases significantly using two clusters compared to one

cluster, a two group clustering is preferred.

Most of the software used in this analysis did not implement the BIC statistic to
determine cluster size. However, one procedure, the SPSS two-step clustering procedure
intended for categorical and mixed categorical-numeric data did implement the procedure.
A two-step clustering procedure breaks the clustering process into two steps 1) create a
dissimilarity matrix which may be done differently for categorical as opposed to numeric
data and 2) use the dissimilarity matrix to cluster the data. When this procedure was applied,
it produced a clustering with three groups. The two-step clusters had a significant
correlation with ultimate losses and ALAE, though this correlation was not as high as that

for the best k-means cluster.

The end result of clustering of the claim description field in the data is to introduce one
new feature or variable. This variable is a categorical variable indicating to which of the
cluster groupings or classes a record is assigned. This new variable can be viewed as an
injury type coding. In the application in section 2.2.6, the seven cluster grouping will be
used, but other choices could have been made. Note that while only one cluster grouping of
the injury descriptions was selected, there may be situations where the analyst prefers to use
multiple new features derived from the clustering procedure, each with a different number

of groups.

2.2.5 Naming the Clusters

For each cluster, it can be informative to determine which word or words are important
in defining the cluster. Examining the frequencies of each word for each of the clusters can
be used to gain insight into the clusters. Figure 2.2-4 displays the frequencies of the words
“back” and “strain” for the seven-group cluster. The graph is a population pyramid. The
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graph displays visually with bars a crosstabulation of back versus strain by cluster group.
That is, a bar displays the count for a zero or one on back, versus zero or one on strain for
each of the seven injury cluster groupings. The bars appearing under one for back, one for
strain or one for both back and strain denote injury groups that contain the words back,
strain or both. From the graph it can be seen that Cluster 4 has a relatively high count of
both the words back and strain and Cluster 6 has a high representadon of the word back, but

not strain.

Table 2.2.5-1 presents frequencies of key words for the seven-group cluster. The table
displays the proportion of records for each cluster which contain the words. Words that
have high representation within a cluster have been highlighted. From the table it can be
seen that Cluster 1 has a high representation of the word unknown. Cluster 2 has a high
representation of the word contusion. Cluster 4 has a high representation of the words back
and strain. Clustet 7 also has a high representation of the word strain, but the word back has
a low representation. A conclusion is that Cluster 4 appears to be back strains while Cluster

7 is largely other strains, and includes a high representation of the word leg.
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Frequencies of the Words Back and Strain by Cluster
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Figure 2.2-4
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Frequency of Terms by Cluster

Cluster Back Contusion head knee strain unknown laceration Leg
1 0.000 0.000 0.000 0.095 0.000 0.277 0.000 0.000
2 0.022 1.000 0.261 0.239 0.000 0.000 0.022 0.087
3 0.000 0.000 0.162 0.054 0.000 0.000 1.000 0.135
4 1.000 0.000 0.000 0.043 1.000 0.000 0.000 0.000
5 0.000 0.000 0.065 0.258 0.065 0.000 0.000 0.032
6 0.681 0.021 0.447 0.043 0.000 0.000 0.000 0.000
7 0.034 0.000 0.034 0.103 0.483 0.000 0.000 0.655
Weighted
Average 0.163 0.134 0.120 0.114 0.114 0.108 0.109 0.083
Table 2.2.5-1
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A procedure involving tabulation of the frequency of the words within the cluster can be
automated. The most commonly occutring words can be identified and used to label the

cluster.

2.2.6 Using the Features Derived from Text Mining

A major objective of text mining is to create new information that has predictive value.
The simple illustration in this paper mined an injury description field and assigned each
claim to one of seven cluster groups based on the words in the injury description. The
cluster group is a new independent variable that can be used to predict a dependent variable
of interest to the analyst. Potential variables of interest in a claims database include financial
variables such as losses and loss adjustment expenses, whether or not there has been
subrogation or recovery on the claim and whether or not the claim is likely a fraud or abuse
claim. The database used in this exercise is representative of what might be available in cases
where a third party claims adjuster supplied data to a self insured entity. It is therefore
smaller and less rich than what one would find in a large insurance company database. This

-simple example focuses on the financial variables in the data.

The example uses the new injury feature added by the text mining procedure to predict
the likelihood that a claim will be a serious claim. One application of data mining in the
literature (Derrig, 2004) uses models to score claims early in the life of the claim. The
objective is to identify claims that are likely to be the most costly to the company and apply
more resources to those claims. For this analysis, a serious claim is defined as a claim whose
total losses plus allocated loss adjustment expenses exceeds $10,000. Approximately 15% of
the claims in the data exceed this threshold. A histogram of claim severities is shown in
Figure 2.2-5. The histogram indicates that the severity distribution is right skewed and heavy
tailed. Approximately 98% of loss dollars are due to claims defined as serious. (See the pie

chart in Figure 2.2-6).
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Histogram of Claim Severity
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Figure 2.2-5
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Percent of Loss Dollars: Serious vs. Non Serious Claims

SeriousClaim

o 100

Cases weighted by Severity

Figure2.2-6

Logistic regression was used to predict the likelihood of a claim being a serious claim.
Much of the current actuarial literature dealing with modeling large complex databases
focuses on generalized linear models (See CAS Discussion Paper Program, 2004). A
modeling procedure that is one of the options found within the family of generalized linear
models is logistic regression. The logistic regression procedure functions much like ordinary
linear regression, but under logistic regression the dependent variable is categorical or
ordered categorical, not numeric. Logistic regression is a popular choice from the family of
generalized linear models for performing classification. With categorical variables, a value of
one can be assigned to observations with a category value of interest to the researcher (ie.,
serious claims) and zero to all other claims. Typically the objective is to score each
observaton with a probability the claim will fall into the target category, category one. The
probability the claim will have a value of 1 lies in the range 0 to 1. This probability is

denoted p(y). The model relating p(y) to a vector of independent variables x is:

IH(LV)] = b() +b] ‘Y| + b: ‘X’z...+ bn.Yn (2]0)

1= p(y)

The ratio _P)_ is referred to as the odds ratio and the quantity ln(M]is
1- p(») 1-p(y)

known as the logit function or logit transformation.
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The reader is referred to the extensive literature on logistic regression for further details
(Hosmer 1989, Venibles and Ripley 1999). Once a linear model has been fit, the predicted
value will be on the logit transformed scale. To use the predictions as probabilities, they
must be transformed back to the original scale. If J} (x)is the logistic predicted value, the
transformation e/ ™ 1+ e (x)) must be applied.

Other analytical methods such as CART (Brieman e a/, 1990) could also be applied
although the data in this example likely does not lend itself to complex approaches meant for
larger, complex databases. Two variables were used to predict the probability of a setious
claim: attorney involvement and the injury variable derived from text mining. Because the
sample database is relatively small only a2 main effects® model was fit (a model with
interaction terms was tested and found not to be significant). This means the model fit was
of the following form:

Y = B, + B, Attorney + B, Injury _Group @.11)

The injury group used in the modél is the injury grouping of seven clusters created by
the text mining analysis. The attorney variable denotes whether an attorney is involved in

the claim.

The logistic regression found both variables to be significant. The table below shows the
average model probability of a serious claim for both the serious and non-setious claims. It
can be seen that the model predicts a much higher probability, on average, for the serious

groups of claims than the non-serious group of claims.

¥ 1n a main effects model there are no interactions incorporated into the model.
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Mean Probability of Serious Claim vs. Actual Value

Actual Value
1 0
>
<
[~
3
g 0.31 0.01

Table 2.2.6-1

One other application of the text variable is illustrated. A simple analysis of variance
(ANOVA) was used to predict ultimate losses and ALAE. An ANOVA is a linear model
where the dependent variable is numeric and the independent variables are categorical.
ANOVA is like a linear regression with categorical predictor variables. The form of the
model is:

Y = B, + B, Attorney + B, Injury _ Group + B, Attorney * Injury _ Group 2.12)

where Y is ultimate losses and ALAE trended to a common date

Note this model includes the interaction term attorney * injury group. The results are
displayed in the Table 2.2.6-2. In this regression, both attorney involvement and injury
group as well as the interaction between attorney and injury are significant. As an alternative
to the classification procedure illustrated in the previous example, such a regression could be
used to identify serious claims (i.e., the claims with high predicted values for the ultimate
losses and ALAFE). Another application of models that predict ultimate losses and ALAE is
estimating reserves for insurance exposures. Heckman (1999) and Taylor (2004) introduced
methods of reserving that utilized individual claims data. There are two components to

using claim data to estimate ultimate losses for a reserving application:

e Estimate ultimate losses for claims already reported using the individual
information for each claim’s independent variables. Historic information on more

mature claims is used to develop a model for less mature claims

e Estimate ulimate losses for claims that have occurred, but because of a long
reporting lag, have not yet been reported. In order to estimate ultimate values for

unreported claims the actuary needs:

e An estimate of unreported claims (perhaps derived from a claim

development triangle)
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® An estimate of the proportion of claims in each category of the key
predictor variables (i.e., an estimate of the proportion within each
attorney/injury type combination). Recent historical patterns could be

used to derive such estimates
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Results for Regression of Ultimate Losses and ALAE on Attorney and Injury

Parameter Estimates
Dependent Variable: Ultimate Loss & ALAE

Std. 95% Confidence
Parameter B Error t Sig. Interval
Upper
Lower Bound Bound

Intercept 2975.08 7456  39.90 000 2790.20 3159.97
[attorney=.000000] -2924.58 453.27 -6.45 0.00 -4048.49 -1800.67
[attorney=1.000000] 0.00 . . .

[QCL6= 1] 18426.20 80.08 230.10 0.00 18227.64 18624.77
[QCL6= 2] 10504.67 15340 68.48 0.00 10124.31 10885.03
[QCL6= 3] 6506.90 214.04 30.40 0.00 5976.17 7037.63
[QCL6= 4] 1175.95 11217  10.48 0.00 897.81 1454.08
[QCL6= 5) 37081.94 89.64 413.67 0.00 36859.67  37304.22
[QCL6= 6] 74620.90 79.82 934.92 0.00 7442299  74818.81
[QCL6=7] 0.00

[attorney=.000000] * [QCL6= 1] 16537.20 530.17 -31.19 0.00 -17851.81  -15222.59
[attorney=.000000] * [QCL6= 2] 10123.91 556.53 -18.19 0.00 -11503.88 -8743.95
[attorney=.000000] * {QCL6= 3] -3934.19 60754 -6.48 0.00 -5440.64 -2427.74
[attorney=.000000] * [QCL6= 4] 67590 719.76 -0.94 0.35 -2460.60 1108.80
[attorney=.000000] * [QCL6= 5] 36860.96 67340 -54.74 0.00 -38530.71  -35191.21
[attorney=.000000] * [QCL6= 6] 6314792 56722 111.33 0.00 -64554.39 -61741.44
[attorney=.000000] * [QCL6= 7] 0

[attorney=1.000000] * [QCL6= 1] 0

[attorney=1.000000] * [QCL6= 2] 0

[attorney=1.000000] * [QCL&= 3] 0

[attorney=1.000000] * [QCL6= 4] 0

[attorney=1.000000] * [QCL6= 5] 0

[attorney=1.000000] * {QCL6= 6] 0

[attorney=1.000000] * [QCL6= 7] 0

A

This parameter is set to zero because it is redundant.

3. RESULTS AND DISCUSSION

Table 2.2.6-2

In this paper, a very simple example of text mining was used as an illustration of the

underlying concepts and methods. The illustration has shown that the basic procedures

underlying text mining ate straightforward to understand and implement. The two key

technologies that are used are 1) string manipulation and processing functions that are part

of nearly all programming languages and 2) classical stadstical procedures for dimension

reduction, such as clustering, that are included within nearly all statistical software packages.
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‘In the illustration, text mining was used to add an injury type code to a database that

contained only a free form text field describing the injury.

The injury description was then used as an independent variable in two simple predictive
models. In more realistic situations text mining has the potential to add significantly to the
information available to the analyst in large modeling projects. For instance, many large
insurance company databases contain one or more free form claim description fields or
narratives describing the accident and the circumstances associated with the accident. These
narratives often contain information not contained in injury, cause of loss or other coding.
This may be particularly true when new types of claims or new patterns of claiming behavior
are beginning to emerge Ellingsworth and Sullivan (2003) describe applications used to
provide an undetstanding of rising homeowner claims and suspicious and possibly
fraudulent auto claims at a large insurance company. When analytical approaches using only
structured information coded into the company’s database were unsuccessful in explaining
the patterns, they turned to text mining. Ellingsworth and Sullivan provided the following
hypothetical example of text from a claim description field:

"The claimant is anxious to settle; mentioned his attorney is willing to negotiate. Also
willing to work with us on loss adjustment expenses (LAE) and calculating actual
cash value. Unusually familiar with insurance industry terms. Claimant provided
unusual level of details about accident, road conditions, weather, etc. Need more
detail to calculate the LAE."

bR IN1Y

Certain terms in the text such as “anxious”, “settle” and “familiar” may provide clues to
suspicious claims that cannot be found in the structured data in the claims database. Mining
the text data for such terms significantly improved the ability of Ellingsworth and Sullivan to
model the patterns in the data.

Text mining has become sufficiently prominent that the major vendors of statistical and
data mining software tools (such as SAS, SPSS and Insightful) offer text mining products.
Some of these tools are very powerful and are capable of processing data from large
document collections. While a discussion of software tools for text mining is postponed to
the Appendix of this paper, acquisition of powerful text mining software may be
unnecessary for smaller applications such as in this paper. That is, when the “documents”
being analyzed are reladvely modest in size, as many claitn description data are, methods
developed for applications on larger documents such as academic papers and news service
articles may be more than is needed. The analyses in this paper were performed using free
text mining software along with statistical procedures available in SPS§13.0 and S-PLUS 6.2.
The author believes that there are many situations where text mining can be used to augment

the amount of information available for analysis and that for smaller applications, it is
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unnecessary to acquire expensive specialized tools.

4. CONCLUSIONS

The purpose of this paper is to educate actuaries on the potential for using text mining
" for insurance applications. That is, the intent is to provide a basic introduction to the new
area of text mining. It was shown that relatively uncomplicated methods underlie the main
procedures used to perform text mining. It is widely believed that a large percentage of data
is contained in unstructured form. Text mining has the potential to add significantly to the
amount of data available for analysis. Some of this data includes adjuster claim description

notes, loss prevention specialist notes and underwriter notes.

The field of text mining is one that is undergoing rapid development. New methods are
being developed to improve on simple clustering as a means of classifying text data. These
include methods based on disctiminant analysis (Howland and Park, 2004), methods that use
principal components analysis and single value decomposition (Snellert and Blondel, 2004),
and linkage based methods that dynamically update (Aggarwal, 2005). Note that the methods
used in this paper perform row-wise dimension reduction and cluster similar records.
Methods based on factor analysis, principal components analysis and single value
decomposition can perform column-wise or term-wise dimension reduction. While these
methods were not described or illustrated in this paper, they show promise for improving
the classification of text information. Another area under development that may expand the
applicability of text mining is handwriting recognition and optical character recognition
(Wikipedia, 2005). Many PDAs read handwritten entries. Microsoft Windows XP and
Office XP also have handwriting recognition capability. Improvements in handwriting and
optical character recognition could permit scanning and mining of handwritten and typed
notes currently stored in paper files and not currently accessible from computerized

databases.
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Appendix A — Software for Text Mining

This appendix desctibes the author’s expetiences with several text mining tools. The
tools covered are 1) commercial text mining products, 2) a free text mining tool and 3)

programming languages. The author found only categories 2) and 3) to be useful in this

analysis, although commercial text mining products may prove invaluable in tasks involving
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larger, more complex data sets.

The task of locating appropriate software for use in text mining proved to be something
of a challenge. A number of software options were investigated in preparation for
undertaking the analysis in this paper. Davi ¢z 4/ (2005) gave a favorable review to two text
mining packages; WordStat and SAS Text Miner. As the SAS Text Miner package is sold
bundled with the Enterprise Miner, a large, relatively expensive data mining suite intended
for large application, no attempt was made to acquire or test it. Therefore WordStat, a
modestly price product was investigated. The WordStat web site allows prospective
customers to download a trial version of the software. The user can use the demo software
for 30 days or 10 uses. The latter limitation of 10 uses proved to be the more severe limiting
factor. During this study about 5 of the 10 uses were consumed in figuring our how to read
data into the text mining module of the software. Once the data were read, simple term
extraction was performed and some simple descriptive statistics were created. However, the
author was unable to apply clustering procedures to create an injury description feature or to
output terms for analysis in other software. Thus, other options were investigated as

WordStat was unable to provide the functionality needed for this study.

Other vendors of text mining software (SPSS and Insightful) felt their text mining
software was inappropriate for the purposes of this study’. After relatively little success with
other options, the free package TMSK was used to perform many of the tasks for the text
mining analysis in this paper.

TMSK is a free product available to purchasers of the book Text Mining (Weiss ¢ a/.
2005). It can be downloaded from the author’s web site using passwords supplied with the
book. This software is very handy for performing term extraction. It comes with lists
contatning stop words and stem words that are automatically applied dusing running of the
program and can be used to do feature creation using k-means clustering. Certain other
analytical tasks not covered in this paper are also included. However, a certain amount of
persisténce is required to obtain useful results from the software. Some of these features of

this program the user needs to be aware of are:

® The user must have the programming language Java on his/her computer. Java
can be downloaded for free from the Sun Microsystems web site:

http://java.sun.com/.

® The software is intended primarily for much larger scale complex applications, and is intended for use on a
server making it difficult to install and use initially. Many of these are not major issues when being applied to
large scale applications for which these packages are intended.
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The program will only run in DOS mode, ie., in the command window. On
many windows systems the command prompt is accessed by looking under

accessories in the program listing.

The program will only read xml files. For this analysis, the injury description field
of the example data was saved to an xml file format within Microsoft Excel. More

recent versions of Adobe Acrobat can also save text in xml format.

The results of term extraction are output to what is referred to as a “sparse
vector”. Table A-1 displays a snapshot of what a sparse vector looks like. The
sparse vector is a condensed representation of the terms extracted, containing an
entry only when the term is present for the record. The notation on the first row
of Table A-1 indicates that for record 1 of the example data, Term 15 occurred
once, Term 20 occurred once and Term 21 occurred once. The analytical

procedures included with TMSK read and process the sparse vector data.

" However, in order to use a statistical procedure other than the ones that come

with TMSK, it is necessary to read and parse this output in some other
programming language and associate the correct term and correct record with the

position indicator and row from the table.

The manual indicates that the user can add additional stem words to the list
maintained by TMSK. However, during this analysis, this feature did not appear

to function, so some additional stemming was petformed in other software.

Sparse Vector Representation of Terms Extracted

15@1 | 20@1 |21@1
@1 |2@1  Js@1
6@1

1@1__|23@1

1@1

Table A-1

Most of analysis after term extraction was performed in SPSS and S-PLUS. (TMSK could

have been used for clustering, but more output and analysis than this package provides was

needed for this paper). Most general purpose statistical packages provide clustering

procedures that can be used in feature creation.
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Text minets may also want to program the steps required for term extraction themselves.
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Most programming languages, including those popular for statistical applications, such as S-
PLUS, R (an open source analysis package), and SAS contain string manipulation function
that can be used to parse words from text data. Initally, some investment in programming
effort would be required to eliminate stopwords and perform stemming. The book Text
Mining (Weiss et al., 2005) contains pseudo code that can be referenced for programming

many of the text mining procedures.

Two programming languages, Perl and Python have become popular for processing text
data. Both languages are free and can be downloaded from the appropriate web site
(www.petl.com and www.python.org). Because these languages are used so frequently for
text processing, functions have already been developed and made available to users that

handle many of the term extraction tasks.

In summary, text mining is a relatively new application, and software for performing text
mining is relatvely undeveloped compared to other data mining applications. When using
one the data mining suites, the text miner may want to use text mining capabilities sold with
the suite. These have not been tested as part of this study. The text miner may also wish to

use free software or one of the programming languages that specialize in text processing,
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Variable Reduction for Predictive Modeling with
Clustering

Robert Sanche, and Kevin Lonergan, FCAS

Abstract
Motivation. Thousands of variables are contained in insurance data warehouses. In addition, external
sources of information could be attached to the data contained in data warehouses. When actuaries
build a predictive model, they are confronted with redundant variables which reduce the model
efficiency (time to develop the model, interpretation of the results, and inflate variance of the
estimates). For these reasons, there is a need for a method to reduce the number of variables to input in
the predictive model.
Method. We have used proc varclus (SAS/STAT®) to find clusters of variables defined at a geographical
level and attached to a database of automobile policies. The procedure finds cluster of variables which
are correlated between themselves and not correlated with variables in other clusters. Using business
knowledge and 1-Runo, cluster representatives can be selected, thus reducing the number of variables.
"Then, the cluster representatives are input in the predictive model.
Conclusions. The procedure used in the paper for variable clustering quickly reduces a set of numeric
variables to a manageable reduced set of variable clusters.
Availability. proc varclus from SAS/ STAT® has been used for this study. We found an implementation
of variable clustering in R, function varclus, while we did not experiment with it.
Keywords. variable reduction, clustering, statistical method, data mining, predictive modeling.

1. INTRODUCTION

Over the last decade, insurance companies have gathered a vast amount of data in their
data warehouses. Some of this information is well-known by the actuaries because it is used
for other purposes, e.g. pricing of the policy. Also, there are many sources of external data
(demographics, financial, meteorological...) available from vendors. The external sources are
typically not as familiar to the actuary as the data from the data warehouses. This vast
amount of information is available to create a predictive model. The objective of the
predictive model could be to improve the pricing or reserving process, but also to analyze
profitability, fraud, catastrophe, and any insurance operation. This amount of information

from multiple sources provides numerous variables for the modeling project contemplated.

When a modeling project involves numerous vatiables, the actuary is confronted with the
need to reduce the niumber of variables in order to create the model. The variables have
sometimes an unknown behavior with the objective of the modeling project. In addition,
when there is a multitude of varables, it becomes difficult to find out the relationship

between variables.

Too many variables reduce the model efficiency. With many variables there is a potential
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of overfitting the data. The parameter estimates of the model are destabilized when
variables are highly correlated between each other. Also, it is much more difficult to have an
explainable model when there are many variables. Finally, creating models with all possible
combinations of variables is exhaustive, but this approach would take indefinite time when
there are thousands of variables. An intermediate approach to the exhaustive search would

also take a lot of time and some combinations of variables could be overseen.

Suppose you want to reduce the number of variables to a smaller set of variable clusters
for efficiency, you can use variable clustering. Variable clustering provides groups of
variables where vatiables in a group are similar to other variables in the same group and as

dissimilar as possible to variables in another group.

1.1 Research Context

This paper addresses the initial stage of every predictive modeling project performed by
an actuary, ie. varable selection. Then, the variables selected would become inputs to
predictive modeling techniques, such as, linear regression, generalized linear model, a neural

network, to name a few.

A technical description of the variable clustering algorithm, proc varclus, is included in the
SAS/STAT® User’s Guide." The method is not found in many textbooks on multivariate

techniques, it mostly started as an implementation in statistical software.”

This paper is focused on variable clustering, but the example could be used, for example,
in the context of complement to territorial relativides for automobile insurance. This
complement would be obtained from a predictive model based on variables defined at some
geographical level. The variables were selected using varjable clustering on multiple sources
of information, usually not used in pricing, attached to an automobile policy database. If the
objective of the predictive model is to predict cost by territory, it makes sense to use fact
(demographics, consumer expenditure, weather ...) variables selected from the variable
clustering on the multiple sources, defined at some geographies (e.g. county), to complement

territorial relativities.

The example provided in the paper is a simplification of a variable reduction problem.

Many more variables would be clustered in a real life study.

Note that the variables used in the example have some intuitive relation to automobile

' SAS/STAT® 9.1 User’s Guide p. 4797
2 Pasta paper 205
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insurance cost, although generally the variables presented to the variable clustering
procedure are not previously filtered based on some educated guess. All the demogtaphics,
consumer expenditure, and weather variables are used in the clustering analysis. Filtering of
variables is typically done after the variable clusters have been created. When there is a
multitude of variables, it is more difficult to recognize irrelevant variables than to recognize
redundant variables. A variable is considered irrelevant if it is not predictive for the specific
predictive model. When the actuary deals with unknown data, a large number of the
variables turn out to be irrelevant. A variable is redundant when it is highly correlated with

another potential variable.

1.2 Objective

More and more actuaries use advanced statistical methods to create insurance models.
This paper provides a tool; variable clustering, that can be added to the arsenal of the
actuarial miners. Traditionally, PCA have been used for variable reduction by creating a set
of components (weighted linear combinations of the original variables) which are difficult to

interpret.

Typically, in the clustering literature, there is a rule for selecting the cluster representative,
the 1-R* . Business knowledge from subject matter expert should also complement this
rule to guide the selection of variables. For this reason, someone could decide to use more
than one variable per cluster. Even though the clustering procedure provides diagnostic
measures, there are reasons for using more than one variable per cluster. One of them is that
the maximum number of clusters is a parameter provided by the user of the procedure. Also,
for communication to users of the predictive model, an alternate variable may provide a

better intuitive interpretation of-the model than the cluster representative.

We should point out that the variable clustering works only with numeric variables.
However, there are ways to convert categorical vatiables into numeric variables. For
example, the hamming distance converts categorical variables into a numeric variable.

Conversion of categorical variables is not covered in this paper.

We suggest options (cenfroid without cot) to the procedure of variable clustering which
turn out to produce a scale-invariant method. Otherwise it would probably be necessary to

rescale the ranges of the variables (with proc standard).

1.3 Outline

The remainder of the paper proceeds as follows. Section 2 will provide an overview of
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clustering and more precisely the variable clustering. We will describe shortly the variable
clustering algotithm used in this paper. Section 3 will provide an example of variable
reduction in the context of automobile insurance. We will use variable clusteting and will
explain how variables can be selected to reduce their number. In section 4, we conclude the
study. In Appendix A, we include an example of the SAS code and in Appendix B we

include the procedure’s output.
2. CLUSTERING

2.1 Clustering

“Cluster Analysis is a set of methods for constructing a sensible and informative
classification of an initially unclassified set of data, using the variable values observed on

each individual™

In general, the goal of a cluster analysis is to divide a data set into groups of similar
characteristics, such that observations in a group are as similar as possible and as dissimilar
to obsetvations in another group. Variable clustering, however, does not divide a set of data;

instead it splits a set of variables with similar characteristics using a set of subject data.

Clustering is an unsupervised learning technique as it describes how the data is organized
without using an outcome®. As a comparison, regression is a supervised learning technique as
there is an outcome used to derive the model. Most data mining techniques are supervised
learning techniques. Unsupervised techniques are only useful when there is redundancy in

the data (variables).

At the basis of clustering is the notion of similarity. Without supervision, there is no
response to say that occurrence ¢ is similar to occurrence 4. If there was a response
associated with each occutrence; it could be used to compare # and 4 responses to induce
similarity between both. Similarity: Two occurrences are similar if they have common

properties.

For example, one occurrence is a car, another occurrence is a motorcycle and the last
occurrence is a bicycle. First, lets say we have only number of wheels as a property. Then we
would cluster the motorcycle and the bicycle since they have the same number of wheels.

However, if we add the number of cylinders and fuel consumption, then the motorcycle is

® Everitt 1998
* Hastie p.2
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more similar to the car. Similarity can be measured by distance measure (Euclidian distance,

Manhattan or city block distance ...) or correlation type metrics.
There are two classes of clustering methods:

* Hierarchical: This class of clustering produces clusters that are hierarchically
nested within clusters from previous iterations. This is the most commonly used

clustering technique.

= Partitive: This class of clustering divides data in clusters by minimizing an etror
function of the distance between the observation vectors and the reference
vectors (centroid - initial guess). This clustering technique requires elaborate
selection of parameters and evaluation of the error function for all possible

partition is impractical.
There are two approaches to hierarchical clustering:
*  Agglomerative
1. Start with each observation as its own cluster

2. Compute the similarity between clusters

bt

Merge the clusters that are most similar
4. Repeat from step 2 until one cluster is left
= Divisive

1. Start will all observations assigned to one cluster

2. Compute the similarity between clusters
3. Split the cluster that are least similar
4. Repeat from step 2 until each observation is a cluster

2.2 Variable Clustering

The procedure used in this paper for variable clustering is both a divisive algorithm and
iterative algorithm. The procedure starts with a single cluster and recursively divides
existing clusters into two sub-clusters until it reaches the stopping criteria, producing a

hierarchy of disjoint clusters.

As mentioned previously, the procedure starts with all variables in one cluster. Based on

the smallest percentage of variation explained by its cluster component a cluster is
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chosen for splitting. The chosen cluster is split in two clusters by finding the first two
principal components and assigning each variable to the component with which it has
the higher correlation. The assignment follows a hierarchical structure with the approach
ptesented in this paper. The clusteting stops when the maximum number of clusters is

attained or reached a certain percentage of vatiation explained.

3. VARIABLE CLUSTERING EXAMPLE

After the multiple sources of data (demographics, consumer expenditures, meteorological
...) are attached to the auto policy database, variable clustering can be performed to reduce
the number of variables. The SAS code is included in Appendix A. The rule dictates to
select the variable with the minimum 1-R* _ as the cluster representative. The 1-R* , is
defined below.

1R, = (1R,,)/(1R,,.,) 3.1

Intuitively, we want the cluster representative to be as closely correlated to its own cluster

-

R,.,’—>1) and as uncorrelated to the nearest cluster (R,

neares!

—0). Therefore, the optimal

representative of a cluster is a variable where 1-R? __ tends to zero.

auo

Below, we include an extract of the output from proc varcus (see Appendix B for

additional output from the procedure) with three clusters. Based on the 1-R” ,, we should

nuo

select variables snowd, cdensity, and lexp as cluster representatives.

3 Clusters R-squared with

Own Next| I-R**2
Cluster Variable | Cluster| Closest Ratio

Cluster 1 |Raind 0.5995| 0.0426] 0.4183
Snowd 0.8976| 0.0317| 0.1058 | Choose
Asnow 0.8940| 0.0314| 0.1095
Cluster 2 | Pdensity 0.9804| 0.0228] 0.0201
Cdensity 0.9804| 0.0113] 0.0199(Choose
Cluster 3 | Growth 0.6459| 0.0911] 0.3896
Lexp | 06459 0.0013] 0.3546|Choose
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After proc varclus, we have created a tree using proc tree which shows how the variable clusters
are created. The variables are displayed vertically. The proportion of variance explained at
each clustering level is displayed on the horizontal axis.

Name of Variable or Cluster

growth

lexp
snowd I
asnow

raind _

pdensity

cdensityJ

[ T 1 T T T T L T 1
1.6 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

Proportion of Variance Explained

In that example, variables with similar factual attributes were clustered together; weather
variables are in the same cluster and density variables are in the same cluster. Even with

more variables, similar grouping patterns are observed.

If we consider three clusters; snowd, asnow and raind would all be in one cluster as they
are on the same branch of the tree. The variable snowd would be the cluster representative

since it has the lowest 1-R*

rauo *

The number of variables has been reduced and, now, we can efficiently create a predictive

model to solve the problem at hand using linear regression, GLM’, or neural network®.

4. CONCLUSIONS

Given hundreds of variables, in order to create a predictive model the variable clustering

’ Holler
® Francis
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procedure runs quickly and produces satisfying results. We were able to reduce the number
of variables using this procedure in order to efficiently create a predictive model. An efficient

model was defined as followed:

= Interpretable

= Stable

s  Timely

With this procedure, the modeling process is sped up significantly. The hierarchies

produced by this procedure are easily interpretable with the tree output. Subject-matter
experts usually do not have expertise to analyze statistical output in table form, but given the
cluster hierarchy in tree output, can easily uncover alternate cluster representatives or

eliminate irrelevant input. Other variable reduction techniques (e.g. PCA) do not create

interpretable and disjoint clusters.
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Appendix A: Code
* Example oI variable clustering ;

$let varlist= pdensity cdensity growth /* demographics */
lexp /* expenditures */
raind snowd asnow /* weather */

proc varclus data='C:\example.sas7bdat' outtree=tree centroid maxc=6;
var &varlist ;

weight exp:;

run;

axisl label={angle=0 rotate=0) minor=none;
axis2 minor=none order=(0 to 1 by 0.10);

proc tree data=tree horizontal vaxis=axisl haxis=axis2;
height _propor_;
run;

Appendix B: Ouput

Cluster summary:

Cluster summary gives the number of variables in each cluster. The variation explained by
the cluster is displayed. The proportion of variance explained is the variance explained
divided by the total variance of the variables in the clustet.

Also displayed, is the summary are the R* of each variable with its own cluster, its closest
cluster, and the 1-R*

120

Cluster Summary for 3 Clusters

Cluster| Variation| Proportion
Cluster| Members| Variation| Explained| Explained

1 3 3] 2371253 0.7904
2 2 2] 1960732 0.9804
3 2 2| 1.291809 0.6459

Total variation explained = 5.623794 Proportion = 0.8034
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3 Clusters R-squared with

Own Next| 1-R**2|Variable
Cluster Variable | Cluster| Closest Ratio | Label

Cluster 1 |Raind 0.5995| 0.0426{ 0.4183|Rain2

Snowd 0.8976| 0.0317] 0.1058]Snow 2

Asnow 0.8940| 0.0314| 0.1095(Snow 1
Cluster 2 | Pdensity 0.9804| 0.0228| 0.0201 | Pop density
Cdensity | 0.9804| 0.0113{| 0.0199|Car density
Cluster 3 | Growth 0.6459| 0.0911( 0.3896 | Pop growth
Lexp 0.6459| 0.0013[ 0.3546 | Leg expenditures

Standardized scoring coefficients:

The standardized scoring coefficients predict clusters from the variables. If a variable is not
in a cluster, then the coefficient is zero. SAS does not provide unstandardized scoring
coefficients.

Standardized Scoring Coefficients
Cluster 1 2 3
Pdensity |Pop density 0.000000 | 0.5049821 0.000000
Cdensity |Car density 0.000000 0.504982 | 0.000000
Growth | Pop growth 0.000000 | 0.000000 | 0.622137
Lexp Leg expenditures { 0.000000 | 0.000000| 0.622137
Raind Rain 2 0.374930] 0.000000 | 0.000000
Snowd | Snow 2 0.374930( 0.000000 | 0.000000
Asnow | Snow | 0.3749301 0.000000| 0.000000

Cluster Structure:

The cluster structure gives the correlation between the variables and the clusters.
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Cluster Structure
Cluster 1 2 3
Pdensity |Pop density -.069069 | 0.990134| -.151107
Cdensity | Car density -.0820410.990134| -.106496
Growth | Pop growth -.301845| -.204659 0.803682
Lexp Leg expenditures | -.036435| -.004435 | 0.803682
Raind Rain 2 0.774267| -.102212| -.206297
Snowd | Snow2 0.947393} -.044943 | -.177956
Asnow | Snow 1 0.945502| -.056370| -.177070

Inter-Cluster Correlation:

This table provides the correlations between the clusters.

Inter-Cluster Correlations
Cluster 1 2 3
1 1.00000 | -0.07631 | -0.21046
2 -0.07631 | 1.00000} -0.13008
3 -0.21046 | -6.13008 | 1.00000
Cluster 3 will be split b it has the llest proportion of variati plained, 0.645904, which is less than the PROPORTION=1 value.

Final summary:

Cluster summary and the other tables are listed for each number of clusters up to the
maximum of clusters (option maxc). This table is listed at the end of the output and
summarizes for each number of clusters the total variation and proportion explained by the
clusters, the minimum proportion explained by a cluster, the minimum R? for a variable and
the maximum 1-R* __ for a ratio.
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Total Proportion Minimum Minimum Maximum
Number Variation of Variation Proportion R-squared 1-R**2 Ratio
of Explained Explained Explained fora fora
Clusters| by Clusters by Clusters by a Cluster Variable Variable
1 1.454308 0.2078 0.2078 0.0007
2 3.539308 0.5056 0.3157 0.0300 1.0124
3 5.623794 0.8034 0.6459 0.5995 0.4183
4 6.331985 0.9046 0.7904 0.5995 0.4349
5 6.952514 0.9932 0.9804 0.9804 0.0205
6 6.991782 0.9988 0.9959 0.9959 0.0058
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The Report of the Research Working Party on
Correlations and Dependencies Among All Risk

Sources

Introduction

Glenn G. Meyers, Co-Chair, Research Working Party on Correlations and
Dependencies Among All Risk Sources

Enterprise risk management requires the quantification of the total risk of an enterprise.
As we undertake this task of quantification we first attempt to quantify the risk of individual
parts of the enterprise. Examples of “individual parts” of an insurance entetprise could
include the losses arising from its new business, its loss reserves or its asset portfolio. To
propetly combine these risks one needs to consider the “correlation” between the risks. We
put the term “correlation” in quotes to draw attention to the fact that we are not restricting
ourselves to the linear correlation that we all study in introductory statistics. This report
considers a variety of ways for different risks to “move together.”

There are three aspects of this problem that deserve some discussion.

Formulating models of correlated risks. An example of this includes inflation affecting
the losses of different lines of insurance causing them to be correlated. A second example is
where a correlation between inflation and interest rates that drives the correlation between
the losses and assets of an insurance company.

Combining the models of correlated risks. This aspect refers to the mathematical
techniques that are needed to combine to obtain the combined distribution of all the
individual parts.

Parameterizing the models of correlated risks. If correlation matters, we should be able
to find data somewhete that reflects this correlation and use it to parametetize a model that
describes this data.

As the working party began its discussions, we quickly found out that these aspects of the
correlation problem could not be treated in isolation. In the end, individual authors took the
lead and produced four separate papers (or “chapters”) that make up this report. Hereis a
summaty of each paper.

1. “Cortrelation and Aggregate Loss Distributions with an Emphasis on the Iman-
Conover Method” by Stephen J. Mildenhall. This paper gives a grand tour of a
variety of multivariate models exhibiting correlation that should be of interest to
the casualty actuary. The focus of the paper is the Iman-Conover method which
can take arbitrary marginal (or individual risk) distributions and derive a
multivariate distribution that has an arbitrary rank correlation matrix.
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2. “Aggregating Bivariate Claim Severities with Numerical Fourier Inversion” by
David L. Homer. This paper uses the very powerful technique of Fourier
transforms to calculate the aggregate loss distributions with correlated claim
severity distributions. Once we have settled on a standard set of models to
describe the stochastic nature of the insurance business, the techniques described in
this paper can significantly reduce the time needed to compute the distribution of
an insurer’s total losses.

3. “The Common Shock Model for Correlated Insurance Losses” by Glenn G.
Meyers. This paper addresses the problem of estimating the correlations between
lines of insurance. It takes the data from several insurers and produces stable
estimates of parameters undetlying the collective risk model for correlated
insurance losses. And along the way it provides on how the parameters of the
collective risk model change as the size of the risk changes.

4. “Serial Correlation of Interest and Inflation Rates” by Hans E. Waszink. This
paper discusses an approach to modeling the present value of reserves under the
impact of uncertain interest and inflation rates. The dependence between interest
rates and inflation rates is modeled using copulas. The paper also shows how to
test the goodness of fit of data to members of the class of Archimedean copulas.

In addition to the chapter authors listed above, there were several others who contributed
to the work of the Correlation Working Party by either presenting ideas or by reviewing
papers. These individuals are listed below.

Shawna Ackerman
Kevin Dickson
Lijia Guo

Leigh Halliwell
Roger Hayne
Philip Heckman
Daniel Heyer
Youngju Lee
Christopher Monsour
James Rech

Kevin Shang
Chuck Thayer
Emil Valdez
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The Report of the Research Working Party on
Correlations and Dependencies Among All Risk
Sources

Part 1

Correlation and Aggregate Loss Distributions With An
Emphasis On The Iman-Conover Method

Stephen J. Mildenhall, Member, CAS Research Working Party on Correlations
and Dependencies Among All Risk Sources

November 27, 2005

Abstract
Motivation. The CAS Research Working Party on Correlation and Dependencies Among All Risk Sources
has been charged to “lay the theoretical and experimental foundation for quantifying vardability when data is
limited, estimating the nature and magnitude of dependence relationships, and generating aggregate
distributions that integrate these disparate risk sources.”
Method. The Iman-Conover method represents a straight forward yet powerful approach to working with
dependent random variables. We explain the theory behind the method and give a detailed step-by-step
algorithm to implement it. We discuss various extensions to the method, and give detailed examples
showing how it can be used to solve real world actuarial problems. We also summarize pertinent facts from
the theory of univariate and multivariate aggregate loss distributions, with a focus on the use of moment
generating functions. Finally we explain how Vitale’s Theorem provides a sound theoretical foundation to
the Iman-Conover method.
Awvailability. The software used to generate the paper’s examples is available at http:/ /www.mynl.com/wp.
Keywords. Dependency, correlation, aggregate loss distdbutions, fast Fourier transform.
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Chapter 1
INTRODUCTION

The Iman Conover (IC) Method is a practical, down-to-earth approach to dealing
with dependent random variables. It should be part of every actuary’s toolkit.

When two variables X and Y are positively correlated there is a tendency for
large values of X to be associated with large values of Y. Knowing how the
large values are associated would make it possible to work in reverse: by ordering
samples from X and Y so that large-large matches and small-small matches are
more likely would result in a bivariate sample with positive correlation. The Iman-
Conover (IC) method gives a way of determining reasonable associations, and
hence inducing correlation between samples of variables. It is ideally suited to
simulation work where marginal distributions are sampled independently but must
be combined to achieve some desired level of correlation. The IC method is used
by the popular @Risk software package to induce correlation.

Before describing the IC method, we begin with a review of measures of corre-
lation and association in Chapter 2. Then, in Chapter 3 we describe several useful
techniques for working with univariate and multivariate aggregate loss distribu-
tions. These include formulae to compute moments of aggregates using moment
generating functions, a discussion of mixed Poisson counting distributions, ap-
proximating univariate aggregates using the shifted gamma and shifted lognormal
distributions, Fast Fourier transform methods, and computing correlation coeffi-

cients related to multivariate aggregates in a variety of situations.
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Next we turn to a description of the IC method itself, which can simplistically
be described as follows. Given two samples of n values from known marginal dis-
tributions X and Y and a desired correlation between them, first determine a sam-
ple from some reference bivariate distribution that has exactly the desired linear
correlation. Then re-order the samples from X and Y to have the same rank order
as the reference distribution. The output will be a sample from a bivariate distribu-
tion with the correct marginal distributions and with rank correlation coefficient
equal to that of a bivariate distribution which, in turn, has exactly the desired
correlation coefficient. Since linear correlation and rank correlation are typically
close, the output has approximately the desired correlation structure. What makes
the IC method work so effectively is the existence of easy algorithms to determine
samples from reference distributions with prescribed correlation structures. Ob-
viously the method can then be extended to work with samples from multivariate
distributions in any dimension.

In their original paper, Iman and Conover [21] point out that their method has

several desirable properties.
1. Itis very simple to understand and implement.

2. Itis distribution free; it may be used with equal facility on all types of input

distributions.

3. It can be applied to any sampling scheme for which correlated input vari-
ables could logically be considered. That is, the output sample contains the
same values as the input, only with a different pairing. Hence in Latin hyper

cube sampling, the integrity of the intervals is maintained.

4. The marginal distributions remain intact.
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The actual IC method involves some enhancements over such a naive imple-
mentation, and we give full details in Chapter 4. We give a step-by-step example
to explain how the method works in practice in Section 4.3. In Section 4.4 we
show how the basic IC method can be extended, and illustrate the impact these
extensions have on the types of multivariate distributions the method produces.
Section 4.5 compares the IC method with the normal copula method described in
Wang {37].

Chapter 5 gives a detailed practical example which computes the bivariate dis-
tribution of ceded and retained losses in a book with an excess of loss reinsurance
structure. Such a bivariate distribution is necessary to compute the net under-
writing result if the reinsurance contains any variable feature like a sliding scale
commission, profit commission or annual aggregate deductible.

Chapter 6 discusses the theoretical underpinnings of the IC method in a more
technical manner. It can be ignored with impunity by readers more interested in
practice than theory.

Appendix A discusses practical computational issues and describes some freely
available software which can be used to implement the IC method in Excel.

Some sections are marked with an asterisk. These I regard as interesting, but
not “core”. The remaining, un-starred sections, contain core facts which I think
every actuary working with correlation and aggregate losses should know.

When modeling correlation the reader should remember that the model must
follow an understanding of reality. Model building, especially modeling correla-
tion, must start with an understanding of the underlying processes. Graphical rep-
resentations are often useful to aid understanding and help communicate results.
It may be necessary to build pre-models to understand the underlying processés
and use these to parameterize quicker, more computationally efficient, implemen-
tations. The IC method is ideal here: having understood the drivers of correlation
and estimated an appropriate correlation matrix and suitable multivariate struc-
ture, the IC method can be used to produce correlated samples with blistering
speed. However, the reader should not succumb to the temptation to estimate a
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200 x 200 correlation matrix using data and expect to get realistic result from it.
It will be more noise than signal.

In conclusion, we recommend the IC method as being fast, simple to under-
stand, and efficient. We also recommend the use of a shifted gamma or shifted
lognormal distribution to model univariate aggregate losses.

Throughout the paper bold face roman variables represent vectors (lower case)
and matrices (upper case). Sections in a smaller typeface are optional, more tech-
nical discussions. Sections marked with an asterisk* contain non-core material.
Acknowledgement. I would like to thank Christopher Monsour, Chuck Thayer,
Leigh Halliwell, Roger Hayne, Phil Heckman, and Kevin Shang for their helpful
comments and suggestions.
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Chapter 2

CORRELATION AND
ASSOCIATION

Before discussing specific measures of correlation and association, recall that two

random variables X and Y are independent if
Pr(X € A)Y € B) =Pr(X € A)Pr(Y € B) 2.1

for all suitable sets A and B. It is possible to prove that X and Y are independent
if and only if

E[f(X)g(Y)] = E[f(X)]E[g(Y)] 2.2)

for all functions f and g.
See Wang [37] and Press et al. [31] for more information on the definitions

and terms described here.

2.1 Correlation, Rank Correlation and Kendall’s Tau

There are three common measures of association (more commonly called simply
correlation) between two random variables X and Y': linear or Pearson correla-

tion, rank correlation and Kendall’s Tau.
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The linear or Pearson correlation coefficient, usually just called correlation, is
defined as
Cov(X,Y) E[(X - E(X))(Y —E(Y))]

PXY) = o)~ 7 (X)o(Y) 23)

where o(X) is the standard deviation of X. By the Cauchy-Schwarz inequality
the correlation coefficient always lies in the range [—1, 1]. The correlation coeffi-
cient is sometimes called the Pearson correlation coefficient or linear correlation
coefficient. Perfect correlation, when p = +1, occurs if and only if Y = aX + b
for constants a > 0 (resp. a < 0) and b. The correlation coefficient is a natural
measure of association when X and Y come from a bivariate normal distribution
because it is enough to completely specify the dependence between the marginals.
Needless to say, such pleasant results do not hold in general! For a multidimen-
sional distribution the correlation matrix has ¢, jth element equal to the correlation
coefficient of the 7 and jth marginals.

A related measure is the covariance coefficient defined as
Cov(X.Y)

YY) = 5O0RY)

2.4)

By (2.2) independent variables are uncorrelated. However, the converse is
not true. The classic counter-examples of uncorrelated but dependent variables

include
e X astandard normal and Y = X?,

e (X,Y) uniformly distributed over a circle of radius one centered at the ori-
gin, and

e (X,Y) distributed with a bivariate ¢-distribution with zero correlation.

o Let X, X, X,,... be identically distributed random variables with mean
zero and let N be a counting distribution. Then A = X; +--- Xy and N
are uncorrelated but not independent. If X and X; have a non-zero mean
then Cov(A, N) = E(X)Var(N).
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The correlation coefficient of a bivariate sample (X;.Y;), ¢ = 1....,n, is

defined as B _
X =Xy -Y)

VE(Xi— XP (Y -Y)
where X = n~! Y, X, and similarly for Y.
Let X be an n X r matrix representing an n-fold sample of 1 x r vectors.

o (2.5)

Suppose that the means of the columns of X are all zero (subtract the means if
necessary). Then the variance-covariance matrix of X is simply n™! X’ X, where
X' denotes matrix transpose.

The second measure of association we consider is rank correlation. Given
a sample X, ..., X, of observations from a random variable X the rank order
statistics X(1), ..., X(n) are a permutation of the original observations ordered so
that X(;) < Xy < --- £ X(». Call j the rank of X(;. The rank correla-
tion, or Spearman rank correlation, of a sample is defined as the correlation of
the ranks of the sample. Rank correlation lies in the range [—1, 1] because it is a
correlation. It is invariant under strictly monotonic transforms of X and Y, so for
example the rank correlation of a sample (X,Y) is the same as the transformed
samples (log(X),log(Y)) or (exp(X),exp(Y)). Rank correlation is a nonpara-
metric measure of association because it is invariant under transformation. For
continuous random variables rank correlation can also be computed as

12E[(Fx (X) — 0.5)(Fy (Y) — 0.5)] 2.6)

where Fx (resp. Fy) is the distribution function of X (resp. Y).

The third common measure of association is called Kendall’s tau. Kendall’s
tau looks at concordances and discordances between pairs of data points (z;, y;)
and (z;,y;). A pair of observation-pairs is concordant if (z, — z;,y; — y;) lies
in the upper right hand or lower left hand quadrants of the plane, and discordant
otherwise. Take all n(n — 1)/2 distinct pairs of data from the sample and count
the number of concordances c and discordances d, except that if the ranks of the
z’s are the same the pair is called an extra y pair and if the ranks of the y’s are the
same the pair is an extra z pair. If the ranks of both = and y are the same the pair
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does not count at all. Let e, and e, be the number of extra z and y pairs. Kendall’s
tau is defined in Press et al. [31] as

—d
r= c . X)
Vetd+eetrd+e,
Kendall’s tau can also be computed as
1 1
XY =4 [ [ Ferle)@Feyzp) -1 @8
0o Jo
provided singularities are handled appropriately, see Wang [37]. The Kendall’s
tau of a sample (X;,Y;),7=1,...,n can be computed as
2 .
T =D ; sign((X; — X;)(Y; = Y})) 2.9

where sign(z) is 1, 0 or —1 when = is positive, zero or negative.

The statistics of Kendall’s tau are covered in more detail by Conover, [6].
Conover points out that if the null hypothesis that (X, Y") are independent is true,
the distribution of tau approaches the normal quite rapidly. Hence the normal
approximation for tau is better than the one for Spearman’s rho under the null
hypothesis. He also points out that tau has a natural interpretation in terms of the
probability that an observation is concordant versus discordant.

Equation (2.9) is precisely consistent with the definition in Equation (2.7) only
when there are no ties. In the no-ties case, (2.9) is the form that Kendall proposed
in his 1938 paper. When there are ties, (2.9) ignores ties in either X or Y, but it
counts every pair of observations in the total used in the denominator.

Equation (2.7) accounts explicitly for ties without distorting the answer un-
duly, and it always provides an answer regardless of the number of ties in the
sample. Conover’s method fails when every pair results in a tie in the rank of the
Xs. On the other hand, if the ranks of all the Xs are tied, X should not really be
termed a “variable”, much less a “random variable”!

Conover’s alternative to (2.9) is to use a different method to account for ties.
If the Y ranks are tied, he adds 1/2 to both ¢ and d. If the X ranks are tied, the
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comparison is dropped entirely, adding nothing to c or to d. Otherwise, ¢ gets
incremented for positive signs and d counts the negatives in the sum. Conover’s
final statistic is P
c—
T= g (2.10)
Conover’s statistic adopts a form of Kendall’s tau that was introduced by Good-
man and Kruskal [14]. Equation (2.10), which is also called the gamma coeffi-
cient, can attain the values +1 and —1 even in the presence of ties in the sample
data.
There are several relationships between these measures of correlation, partic-
ularly if the sample comes from a multivariate normal distribution. For example

if (X,Y) are bivariate normal with correlation p then

2
T7(®(X),2(Y)) = - arcsin(p) .11
and the rank correlation
rankCorr((X), B(Y)) = g arcsin(p/2). 2.12)

Similar results hold for samples from any elliptically contoured distribution,
see Fang and Zhang [11], Embrechts, Lindskog and McNeil [9] and Embrechts,
McNeil and Straumann [10].

2.2 Comonotonicity*

Two random variables X and Y are comonotonic if there exists a third variable
Z and non-decreasing functions f and g such that X = f(Z) and Y = ¢(Z).
For example, if X and Y are two different excess layers on the same risk then
they are comonotonic. A stock and an option on it have comonotonic payouts.
Comontonicity represents a high level of association between two values, but it
need not result in a high level of linear correlation.

Some authors propose that risk measures 7 should be sub-additive, r(X+Y) <
r(X) + r(Y'), with the tag-line “mergers cannot cause risk”. Coherent measures
require sub-additivity, see Artzner et al. [2]. Others authors propose additivity for
comonotonic risks 7(X +Y) = r(X) + r(Y) if X and Y are comonotonic, see
Wang {36].
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2.3 Measures for Non-Normal Variables*

Linear correlation is the perfect measure of association for normally distributed
random variables. It does not deal so effectively with non-normal variables. How-
ever, any continuous random variable X with distribution function F' can be trans-

formed into a normal variable Y via
Y = @“I(F(X)). 2.13)

It therefore makes sense to transform non-normal variables using (2.13) and then
to compute correlations between the transformed variables. If X is already a
normal variable then (2.13) simply normalizes X to mean O and standard deviation
1.

Normalizing transformations are related to the IC method and the normal cop-
ula method as we will explain with Theorem 2 below. The normalizing trans-
formation has been used in the literature by Wang [38] and Sornette et al. [32]
amongst others.
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Chapter 3

GENERAL PROPERTIES OF
AGGREGATE LOSS
DISTRIBUTIONS

Here we gather together some useful techniques for working with aggregate dis-
tributions, modeling correlation, parameter uncertainty, and so forth. Many of the
techniques we introduce here will be used in the extended example, given in the
Chapter 5. We introduce the negative multinomial distribution and we provide an
introduction to Fast Fourier Transform (FFT) methods in both one and two di-
mensions. We begin with a discussion of moment generating functions and mixed
Poisson frequency distributions.

We will use the following notation. The variance of a random variable X is
Var(X) = E(X?) — E(X)2. The standard deviation is o(X) = \/Var(X). The
coefficient of variation (CV) of X is CV(X) = o(X)/E(X). The skewness of X
is E[(X — E(X))®]/a(X)%.

3.1 Moment Generating Functions

The moment generating function of a random variable X is defined as

Mx(¢) = E(exp(CX)). 3.1
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The moment generating function is related to the characteristic function of X
which is defined as ¢x(¢) = E(exp(i( X)) = Mx(i(). ¢ is guaranteed to con-
verge for all real ¢ and so is preferred in certain situations.
Moment generating functions get their name from the fundamental property
that
" Mx
o™ l¢=0
for all positive integers n provided the differential exists.

Let F be the distribution function of X. Feller [12, Section XVII.2a) shows that if F' has
expectation u then ¢, the characteristic function of F', has a derivative ¢’ and ¢/(0) = ipz. However
the converse is false. Exactly what does hold is spelt out in the next theorem.

— E(X™) (3.2)

Theorem 1 (Pitman) The following are equivalent.
1L ¢'(0) =ip.
2. Ast— oo, t(1 — F(t) + F(—t)) — Oand

—t
/ 2dF(z) — p. (3.3)
t

F(=t):=limF(s)ass Tt

3. The average (X1 +--+ X,)/n tends in probability to p, that is Pr(J(X, + -+ -+ X)) /n—
Ul >¢€)—>0asn— .

Note that the condition for the limit in (3.3) to exist is weaker than the requirement that E(X)
exists if X is supported on the whole real line. For the expectation to exist requires f_°°°o zdF(x)
exists which means lim;_, _ o, lim,_.o fts zdF(x).

The moment generating function of a bivariate distribution (X, X>) is defined
as

My, x, (61, G2) = E(exp(QiX1 + (X)) (3.4)
It has the property that
6m+n]\[X1 X,
—_— 2 = E(XT" X7} 35
orocs oo (X X3) 3-5)
for all positive integers n, m.

The MGF of a normal variable with mean p and standard deviation o is

M(¢) = exp(uC + 0*¢?/2). The MGF of a Poisson variable with mean n is

M(¢) = exp(n(ef - 1)), (3.6)

a fact we will use repeatedly below.
See Feller [12] and Billingsley [3] for more information on moment generating
functions, characteristic functions and modes of convergence.
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3.2 Mixed Poisson Frequency Distributions

Here we consider some basic facts about mixed Poisson frequency distributions.
Let G be a non-negative mixing distribution with E(G) = 1 and Var(G) = c.
The variable ¢ is called the contagion. Let NV be a claim count random variable
where the conditional distribution of N|G = g is Poisson with mean gn for some
non-negative real n. We will call N a G-mixed Poisson random variable.

By (3.6), the MGF of a G-mixed Poisson is
My(¢) = E(eN) = E(E(e*V|G)) = E(e"%* V) = Mg(n(ef — 1)) (3.7)
since Mg (¢) := E(e¢¢). Thus
E(N) = My(0) = nAM;(0) = n, (3.8)
because E(G) = AM[(0) = 1, and
E(N?%) = M}(0) = n®ME(0) + nMG(0) = n*(1 +¢) + n. (3.9)

Hence

Var(N) = n(1 + cn). (3.10)

Finally
E(N%) = MP(0) = n®MP(0) + 3n* M4 (0) + nA15(0) 3.11)

from which it is easy to compute the skewness.

We can also assume G has mean n and work directly with G rather than nG,

E(G) = 1. We will call both forms mixing distributions.
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Table 3.1: Parameterizations of the Gamma Distribution
Model Density MGF Mean | Var

xa—le—z/@

(@ a, 8 “FT(a) (1-pt)~« af af?

ma—lgae—mﬁ

® a8 | EgZE= | 1 -t/8) | o/8 |a/@?

©a,b %%e(-a_z)/_e (1-—1t9)= ab af?

3.3 Gamma and Negative Binomial Variables

Recall that a negative binomial is a gamma-mixed Poisson: if N'|G is distributed
as a Poisson with mean G, and G has a gamma distribution, then the unconditional
distribution of N is a negative binomial. Both the gamma and negative binomial
occur in the literature with many different parameterizations. The main ones are
shown in the Tables 3.1 and 3.2.

In Table 3.1 model (a) is used by Microsoft Excel, Wang [37] and Johnson et
al. [22, Chapter 17]. Model (b) is used by Bowers et al. [4]. Model (c) is used by
Klugman, Panjer and Willmot in the Loss Models text {25]. Obviously model (c)
is just model (a) with a change of notation.

In Table 3.2 model (a) is used by Wang and Loss Models, (b) by Johnson et al.
{24, Chapter 5] and (c) by Bowers et al. [4] and Excel. In model (c) the parameter
r need not be an integer because the binomial coefficient can be computed as

(r+z— 1) _T{r+xz)
x L(r)z!’
an expression which is valid for all 7. The cumulative distribution function of the

negative binomial can be computed using the cumulative distribution of the beta
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distribution. Using the model (c) parameterization, if N is negative binomial p. 7

then

Pr(N < k) = BETADIST(p; r, k + 1) := B—(;;—H—) /Op "Y1 - w)Fdu
where B is the complete beta function. See Johnson, Kotz and Kemp [24, Eqn.
5.31] for a derivation. BETADIST is the Excel beta cumulative distribution func-
tion.

The name negative binomial comes from an analogy with the binomial. A
binomial variable has parameters n and p, mean np and variance npq, where p +
g = 1. It is a sum of n independent Bernoulli variables B where Pr(B=1) =p
and Pr(B = 0) = ¢ = 1 — p. The MGF for a binomial is (g + pe‘)™ and the
probabilities are derived from the binomial expansion of the MGF. By analogy
the negative binomial can be defined in terms of the negative binomial expansion
of (Q — Pe$)™* where @ =1+ P, P> 0and k > 0.

For the actuary there are two distinct ways of looking at the negative binomial
which give very different results and it is important to understand these two views.
First there is the contagion view, where the mixing distribution G has mean n and
variance c producing a negative binomial with mean n and variance n(1 + cn).
(In fact G is a gamma with model (a) parameters & = r and 3 = 1/r.) The word
contagion was used by Heckman and Meyers [17] and is supposed to indicate a
“contagion” of claim propensity driven by common shock uncertainty, such as
claim inflation, economic activity, or weather. Here the variance grows with the
square of n and the coefficient of variation tends to y/c > 0 as n — oo. Secondly,
one can consider an over-dispersed family of Poisson variables with mean n and
variance vn for some v > 1. We call v the variance multiplier. Now the voefficient
of variation tends to 0 as n — oo. The notion of over-dispersion and its application

in modeling is discussed in Clark and Thayer [5] and Verrall [34].
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Table 3.2: Parameterizations of the Negative Binomial Distribution

Model Density MGF Mean | Var
@) a, 8 (01 +£— 1) (1__?_&)1 (ﬁ)a (1 —ﬁ(et _ 1))_a af aBQ
() P, k Eri-h(5) (45F P)k (Q-Pety™k | kP | kPQ

©p,r>0 I Yy (T—Bq‘ﬁ rq/p | rq/p®

Q=P+1,q=1-p0<p<landr>0,and P =1/(3+1).

Table 3.3: Fitting the Negative Binomial Distribution

Param- Variance Multiplier Contagion
Model eters Scale Shape Scale Shape
(a) T, 3 r=mflv=1)| f=v-1|r=1/c B=ecn
(b) EP |k=m/v=-1)| P=v-1|k=1/c P=cn
) r,p |r=m/lv-1| p=1/v {r=1/c|p=1/(1+cn)
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3.4 Aggregate Distributions

Let A = X; +--- + Xy be an aggregate distribution, where N is a G-mixed
Poisson and X, are iid severity random variables. Then, proceeding by analogy
with 3.7, we have

Ma(() = E(exp(¢(X1+---Xn)))
= EE(exp(¢(X; +--- Xn))|N)
= E(E(exp(¢X1)"))
= E(E(Mx(O)V|G))
= E(exp(nG(Mx(¢) - 1)))
= Mg(n(Mx(¢) - 1)) (3.12)
Thus
E(A) = M/(0) = nM;(0)M%(0) = nE(X) (3.13)
and
E(4%) = M}(0)
= n?Mg(0) My (0)* + nMg(0)MK (0)
= n’E(G*)E(X)* + nE(X?). (3.14)
Hence, using the fact that E(G?) = 1 + ¢, we get
Var(A) = n*E(G*)E(X)? + nE(X?) — n’E(X)?
= n%cE(X)? + nE(X?)
= (Var(N) — E(N))E(X)? + E(N)E(X?)
= Var(N)E(X)? + E(N)Var(X). (3.15)
Continuing along the same vein we get
E(A®%) =E(N)E(X?) + E(N*)E(X)? + 3E(N?)E(X)E(X?)

— 3E(N)E(X)E(X?) — BE(N?)E(X)® + 2E(N)E(X)3.
and so we can compute the skewness of A—remember that E[(A — E(4))?}] =
E(A%)—3E(A%)E(A) +2E(A)3. Further moments can be computed using deriva-
tives of the moment generating function.

Having computed the mean, CV and skewness of the aggregate using these

equations we can use the method of moments to fit a shifted lognormal or shifted
gamma distribution. We turn next to a description of these handy distributions.

(3.16)
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3.5 Shifted Gamma and Lognormal Distributions

The shifted gamma and shifted lognormal distributions are versatile three parame-
ter distributions whose method of moments parameters can be conveniently com-
puted by closed formula. The examples below show that they also provide a very
good approximation to aggregate loss distributions. The shifted gamma approxi-
mation to an aggregate is discussed in Bowers et al. [4]. Properties of the shifted
gamma and lognormal distributions, including the method of moments fit param-
eters, are also shown in Daykin et al. [7, Chapter 3].

Let L have a lognormal distribution. Then S = s & L is a shifted lognormal,
where s is a real number. Since s can be positive or negative and since L can equal
s+ L or s — L, the shifted lognormal can model distributions which are positively
or negatively skewed, as well as distributions supported on the negative reals. The
key facts about the shifted lognormal are shown in Table 3.4. The variable n is a

solution to the cubic equation
3
n”°+3n—7=0

where 7 is the skewness.

Let GG have a gamma distribution. Then T = s &+ G is a shifted gamma distri-
bution, where s is a real number. Table 3.1 shows some common parametric forms
for the gamma distribution. The key facts about the shifted gamma distribution
are also shown in Table 3.4.

The exponential is a special case of the gamma where & = 1. The }? is a
special case where a = k/2 and 3 = 2 in the Excel parameterization. The Pareto

is a mixture of exponentials where the mixing distribution is gamma.
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Table 3.4: Shifted Gamma and Lognormal Distributions

Item Shifted Gamma Shifted Lognormal
Parameters s,a,d S, f, O
Mean m s+ob s+ exp(u + 02/2)
Variance af? m? exp(o? — 1)
CV,v vag/ym exp((0? —1)/2)
Skewness, v 2/\/a v=v(?+3)
Method of Moments Parameters
7 n/a n=u— 1/u where
ut= /12 +4/2+7/2
Shift variable, s m— af m(1 —vn)
aorco 4/~2 In(1 + n?)
Boru mvy/2 In(m - s) — 02/2

3.6 Excess Frequency Distributions

Given a ground-up claim count distribution N, what is the distribution of the
number of claims exceeding a certain threshold? We assume that severities are
independent and identically distributed and that the probability of exceeding the
threshold is ¢g. Define an indicator variable I which takes value O if the claim is
below the threshold and the value 1 if it exceeds the threshold. Thus Pr(/ = 0) =
p=1—gand Pr(] = 1) = q. Let A{y be the moment generating function of N
and N’ is the number of claims in excess of the threshold. By definition we can
express NV’ as an aggregate

N=5L+ - +1Iy. (3.17)
Thus the moment generating function of N’ is

Mn:(¢) = Mn(log(M;(¢)))
= Mn(log(p + g¢°)) (3.18)

Using indicator variables [ is called p-thinning by Grandell [15].
Here are some examples.
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Let NV be Poisson with mean n. Then
Myi(¢) = exp(n(p + qe¢ — 1)) = exp(qn(e® — 1)) (3.19)

so N’ is also Poisson with mean gn—the simplest possible result.

Next let N be a G-mixed Poisson. Thus

Myi(¢) = My(log(p+ get))
= Mg(n(p +ge® - 1))

= Mg(ng(et —1)). (3.20)

Hence N’ is also a G-mixed Poisson with lower underlying claim count ng in
place of n.

In particular, if NV has a negative binomial with parameters P and c (mean cP,
Q = 1+ P, moment generating function My (() = (Q — Pef)~1/¢), then N’
has parameters ¢P and c. If NV has a Poisson-inverse Gaussian distribution with

parameters 4 and 3, so

My (¢) = exp (—u(\/ 1+26(ef —1) - 1)) )

then N is also Poisson inverse Gaussian with parameters pq and (q.

In all cases the variance of N’ is lower than the variance of N and N’ is closer
to Poisson than N in the sense that the variance to mean ratio has decreased. For
the general G-mixed Poisson the ratio of variance to mean decreases from 1 + cn
to 1 + cgn. As g — 0 the variance to mean ratio approaches 1 and N’ approaches
a Poisson distribution. The fact that N’ becomes Poisson is called the law of small

numbers.
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3.7 Negative Multinomial Distribution and Related
Frequency Distributions*

When we consider mixed Poisson distributions we often regard GG as carrying
inter-risk correlation, or more evocatively “contagion”, information about weather,
the state of the economy and inflation, gas prices etc. Hence if we have two related
frequency variables N7 and N, we should expect to use the same (i and produce
a bivariate mixed Poisson where, conditional on G = g, N; has a Poisson distri-
bution with mean n;g and N; and N, are conditionally independent. The MGF of
such a distribution will be
M(GrG) = (e
— E(E(e<1N1+CzNz|G))
Eq(E(e™M|G)E(e4™|G))
= Eglexp(G(n1(e — 1) + ny(e®? — 1))))
= Mg(ni (e — 1) +ng(e® — 1)). (3.21)

For example, if ¢ is a gamma random variable with MGF

Mga(¢) = (1= 8¢)7* (3.22)

(mean k{3, variance k3%) we get a bivariate frequency distribution with MGF
M((,¢) = [1—B(ni(e —1) +ng(ef2 — 1))]7*

=1 +ﬁZni - ﬂZniec']_k

Q= Pes)™* (3.23)

where P, = pn;, P = 3, P, and Q = 1 + P. Equation (3.23) is the moment
generating function for a negative multinomial distribution, as defined in John-
son, Kotz and Kemp [23]. The negative multinomial distribution has positively
correlated marginals as expected given its construction with a common contagion
G.

The form of the moment generating function for negative multinomial distri-
bution can be generalized allowing us to construct multivariate frequency distri-
butions (Ny,. .., N;) where
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1. Each N; is a negative binomial.

2. The sum Nj + - - - + N, under the multivariate distribution is also negative
binomial. (In general, the sum of independent negative binomials will not
be negative binomial.)

3. The N, are correlated.
We will call such multivariate frequencies, with common mixing distributions,
G-mixed multivariate Poisson distributions.

3.7.1 Evolution of Claims Over Time*

Here is an application of the NMN distribution. If A is an aggregate distribution
representing ultimate losses we may want to determine a decomposition A =
> D¢ into a sum of losses paid at time t fort =1,...,T.

If A= X; + -+ Xy has a compound Poisson distribution then such a
decomposition is easy to arrange. Let 7; be the expected proportion of ultimate
losses paid at time ¢, so Z:;T 7; = 1. By definition we mean

E(D;) = mE(A). (3.24)
(Equation (3.24) is a different assumption to
E(D;) = mE(Alinformation available att — 1) = m A1,

which is closer to the problem actually faced by the reserving actuary. Our 7,’s
are prior estimates assumed known at time 0. These types of differences have
interesting implications for actuarial methods and they are explored further in
Mack [28].) Now we seek a decomposition

A=Di+Dy+ -+ Dp (3.25)

but we know only (3.24). The simplest approach is to assume that severity X is
independent of time and that mn of the total n claims are paid at time . If we
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further assume that the number of claims paid at time ¢ is also Poisson, then the
moment generating function of Dy + - - - + Dy is given by

Mp,1.+07(¢) = [ [ exp(mn(Mx(¢) = 1))

= exp(n(z mMx(¢) — 1))

= exp(n{Mx(¢) — 1))
= My((). (3.26)

Thus we have a very simple decomposition for (3.25): the individual D; are inde-
pendent compound Poisson variables with expected claim count 7;n and severity
distribution X.

Moving one step further, it is often observed in practice that average severity
increases with ¢ so the assumption that X is fixed for all ¢ is unrealistic. It may be
better to assume that losses which close at time ¢ are samples of a random variable
Xi. As above, we assume that the expected number of such losses is mn where
n is the expected ultimate number of claims, and 7} adjusts the original 7, for the
difference in average severity E(X) vs. E(X;). Now

Mp,440,(Q) = [ ] exp(min(Mx,(¢) — 1))

= exp(n(z mMx,(¢) = 1))

= exp(n(Mx/(¢) — 1))
= M4(¢) 3.27)
where X' is a mixture of the X, with weights 7]. Equation (3.27) is a standard
result in actuarial science, see Bowers et al. [4].
If we try to replicate the compound Poisson argument using a negative bino-

mial distribution for N we will clearly fail. However if X is defined as a mixture
of X; with weights m,, as before, then we can write

Mp,...pr (G Cr) = (Q = Y PmeMx, (G)) ™ (3.28)
11
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and so

Ma(¢) = Mp,,_pr(C,-- ) = (@ = D PMx,(())™F = (Q — PMx(())™

(3.29)
where P, := m,F. Equation (3.28) is the MGF for a negative multinomial dis-
tribution, as defined in the previous section and Johnson, Kotz and Kemp [23].
As we have seen the negative multinomial distribution has positively correlated
marginals, in line with our prior notions of liability dynamics. It therefore pro-
vides a good model for the decomposition of ultimate losses into losses paid each

period.

3.7.2 Related Multivariate Frequency Distributions*

We can use the same trick with other mixing distributions than the gamma. The
Poisson inverse Gaussian (PIG) distribution is an inverse Gaussian mixture of
Poissons, just as the negative binomial distribution is a gamma mixture. The MGF
is

M(Q) = exp(=7(v/1+ B(e€ = 1) = 1)). (330)
The mean is 73 and the variance is 73{1 + 3). We can define a multivariate PIG
(MPIG) by

MG, Cr) = exp(— \/1+Zﬂl e% — 1) —1)). (3.31)

Sichel’s distribution is an generalized-inverse Gaussian mixture of Poissons.

The MGF is
K, (wy/1—28(ef — 1))
Ky (w)(1 = 2B(e¢ = 1))/

The mean and variance are given in Johnson, Kotz and Kemp [24, page 456].

M(¢) = (3.32)

Clearly we can apply the same techniques to get another multivariate frequency

distribution.
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The Poisson-Pascal distribution is a Poisson-stopped sum of negative binomi-
als. It has moment generating function

M(¢) = exp(8((1 — P(ef = 1)) = 1)) (3.33)

and so will also yield another multivariate family. The mean and variance are
given by

= 0kP (3.34)
pt2 = OkP(Q + kP). (3.35)

3.7.3 Excess count interpretation of G-mixed multivariate Pois-
son distributions*

The reader has probably realized that a G-mixed multivariate Poisson seems closely
related to a single G-mixed Poisson and a series of indicator variables, combin-
ing results from the previous sub-sections with Section 3.6. Let N be G-mixed
Poisson with parameter n and Var(G) = c¢. Let (N1, N;) be G-mixed bivariate
Poisson with parameters n; and n, and the same G, so the MGF of (N, V) is

Mi(C1,G) = Ma(ni (e — 1) + na(e® — 1)). (3.36)

Finally let (I, J) be a bivariate distribution supported on {0,1} x {0, 1} with

Pr(I =0,J =0)=py
Pr(I=1,J=0)=pp
Pr(I=0,J=1) =py
Pr(I=1,J=1)=p,

and Zpu' =1.
We can define a new bivariate distribution from (I, J) and N as

(M, My) = (I, ) + -+ (In, IN)- (3.37)
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The MGF of (M, M,) is
My(C1, Ga) = Mg (n(p11€9 ¥ + pioe® + po1e® + poo)- (3.38)

Thus, if p;; = 0 we see the single-frequency sum of the bivariate (A, M) is
actually a G-mixed bivariate Poisson. If poy = 0 then n = n; + ny, otherwise
(1 — poo)n = my + ny and there are some extraneous “zero” claims. However, if
p11 # 0 then the single frequency sum is not a G-mixed bivariate Poisson.

Here is an interesting interpretation and application of (/, J). We can regard |
as an indicator of whether a claim has been reported at time ¢ and J and indicator
of whether the claim is closed. Then

Pr(I = 0,J = 0) = meaningless

Pr(I = 1,J = 0) = reported claim which closes without payment
Pr(I = 0,J = 1) = claim not yet reported which closes with payment
Pr(I =1,J = 1) = claim reported and closed with payment.

Combining with a distribution N of ultimate claims we can use (3.37) to produce
(M, My) = (I + -+ + Iy, J1 + - - - + Jy)—a bivariate distribution of (claims
reported at time ¢, ultimate number of claims)! Note the value (0, 0) is a meaning-
less annoyance (it scales n) and we assume pgo = 0. The three other parameters
can easily be estimated using standard actuarial methods.

Given such a bivariate and a known number of claims reported we can produce
a posterior distribution of ultimate claims. Furthermore, in all these techniques we
can extend the simple count indicators (I, J) to be the distribution of case incurred
losses and ultimate losses. Then we would get a bivariate distribution of case
incurred to date and ultimate losses. I believe there is a lot of useful information
that could be wrought from these methods and that they deserve further study.
They naturually give confidence intervals on reserve ranges, for example.

We end with a numerical example illustrating the theory we have developed
and showing another possible application. Rather than interpreting p,; as reported
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and ultimate claims we could interpret them as claims from line A and line B,
where there is some expectation these claim would be correlated. For example A
could be auto liability and B workers compensation for a trucking insured. Let
¢ = 0.02 be the common contagion and n = 250. Then let

Pr(I=1,J = 1) = 0.50.

We interpret I as indicating a workers compensation claim and J as indicating
an auto liability claim. The distribution says that when there is an auto liability
claim (J = 1) there is almost always an injury to the driver, resulting in a workers
compensation claim (I = 1). However, there are many situations where the driver
is injured but there is no liability claim—such as back injuries. Overall we expect
250(0.45 + 0.50) = 237.5 workers compensation claims and 250(0.05 + 0.5) =
137.5 auto liability claims and 250 occurrences.

We will consider the single-frequency bivariate distribution and the nega-
tive multinomial. We have seen that the negative multinomial distribution will
be slightly different because p;; # 0. The appropriate parameters are n; =
250(p10 + p11) = 237.5 and n; = 250(po; + p11) = 137.5. Figure 3.1 shows
the negative multinomial bivariate (top plot) and the single-frequency bivariate
aggregate of (I, .J) (bottom plot). Because of the correlation between I and J,
p11 = 0.5, the lower plot shows more correlation in aggregates and the con-
ditional distributions have less dispersion. Figure 3.2 shows the two marginal
distributions, which are negative binomial ¢ = 0.02 and mean 237.5 and 137.5 re-
spectively, the sum of these two variables assuming they are independent (labelled
“independent sum”), the sum assuming the negative multinomial joint distribution
(“NMN Sum”) which is identical to a negative binomial with ¢ = 0.02 and mean
350 = 237.5 + 137.5, the total number of claims from both lines, and finally, the
sum with dependent (I, J) (“bivariate sum”). The last sum is not the same as the
negative binomial sum; it has a different MGF.
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Figure 3.2 also shows the difference between the sum of two independent neg-
ative binomials with means n; and n, and contagion ¢ and a negative binomial
with mean n; + n and contagion c. The difference is clearly very material in the
tails and is an object lesson to modelers who subdivide their book into homoge-
neous parts but then add up those parts assuming independence. Such an approach
is wrong and must be avoided.

As the contagion c increases the effects of G-mixing dominate and the differ-
ence between the two bivariate distributions decreases, and conversely as ¢ de-
creases to zero the effect is magnified. The value ¢ = 0.02 was selected to balance
these two effects.
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Figure 3.1: Comparison of negative multinomial (top) and single frequency bi-
variate claim count (bottom) bivariate distributions.
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Figure 3.2: Comparison of negative multinomial and single frequency bivariate
claim count marginal and total distributions.
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3.8 Fast Fourier Transforms

The FFT method is a miraculous technique for computing aggregate distributions.
It is especially effective when the expected claim count is relatively small and the
underlying severity distribution is bounded. These assumptions are true for many
excess of loss reinsurance treaties, for example. Thus the FFT is very useful when
quoting excess layers with annual aggregate deductibles or other variable features.
The FFT provides a discrete approximation to the moment generating function.
To use the FFT method, first “bucket” (or quantize) the severity distribution

into a density vector X = (1, ..., Zn) Whose length m is a power of two m = 2",
Here

z; =Pr{(i —1/2)b < X < (i + 1/2)b) (3.39)

1 =Pr(X <b/2), =z, =Pr(X > (m—1/2)b) (3.40)

for some fixed b. We call b the bucket size. Note Y, z, = 1 by construction. The
FFT of the m x 1 vector x is another m x 1 vector X whose jth component is

-1
>z exp(2mijk/2"). (3.41)
k=0
The coefficients of X are complex numbers. It is also possible to express x = Fx
where F is an appropriate matrix of complex roots of unity, so there is nothing
inherently mysterious about a FFT. The trick is that there exists a very efficient
algorithm for computing (3.41). Rather than taking time proportional to m?, as
one would expect, it can be computed in time proportional to mlog(m). The
difference between m log(m) and m? time is the difference between practically
possible and practically impossible.

You can use the inverse FFT to recover x from its transform x. The inverse
FFT is computed using the same equation (3.41) as the FFT except there is a
minus sign in the exponent and the result is divided by 2". Because the equation
is essentially the same, the inversion process can also be computed in m log(m)
time.
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The next step is magic in actuarial science. Remember that if V is a G-mixed
Poisson and A = X; + - - - + X is an aggregate distribution then

Ma(¢) = Ma(n(Mx(¢) - 1)). (3.42)

Using FFTs you can replace the function Mx with the discrete approximation
vector X and compute
a= Mg(n(x—1)) (3.43)

component-by-component to get an approximation vector to the function M 4.
You can then use the inverse FFT to recover an discrete approximation a of A
from a! See Wang [37] for more details.

Similar tricks are possible in two dimensions—see Press et al. [31] and Homer
and Clark [20] for a discussion.

The FFT allows us to use the following very simple method to qualitatively ap-
proximate the density of an aggregate of dependent marginals X, ..., X, given
a correlation matrix X. First use the FFT method to compute the sum S’ of the X;
as though they were independent. Let Var(S’) = o' and let 2 be the variance of
the sum of the X, implied by ¥. Next use the FFT to add a further “noise” ran-
dom variable N to S’ with mean zero and variance 0 — '2. Two obvious choices
for the distribution of N are normal or shifted lognormal. Then S’ + N has the
same mean and variance as the sum of the dependent variables X;. The range of
possible choices for N highlights once again that knowing the marginals and cor-
relation structure is not enough to determine the whole multivariate distribution. It
is an interesting question whether all possible choices of N correspond to actual
multivariate structures for the X, and conversely whether all multivariate struc-
tures correspond to an N. (It is easy to use MGFs to deconvolve N from the true
sum using Fourier methods; the question is whether the resulting “distribution” is
non-negative.)

Heckman and Meyers [17] used Fourier transforms to compute aggregate dis-
tributions by numerically integrating the characteristic function. Direct inversion
of the Fourier transform is also possible using FFTs. The application of FFTs is
not completely straight forward because of certain aspects of the approximations
involved. The details are very clearly explained in Menn and Rachev [29]. Their
method allows the use of FFT's to determine densities for distributions which have
analytic MGFs but not densities—notably the class of stable distributions.
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3.9 Correlated Aggregate Distributions

Here we extend some of the ideas in Section 3.7.3 from plain frequency distri-
butions to aggregate distributions. Begin with bivariate aggregate distributions.
There are two different situations which commonly arise. First we could model a
bivariate severity distribution and a univariate count distribution:

(A’B)=(Xla)/1)++()(NaYN) (344)

Equation (3.44) arises naturally as the distribution of losses and allocated expense,
ceded and retained losses, reported and ultimate claims, and in many other situa-
tions. Secondly we could model

(AB)=(Xi+ - +Xa, Y1+ +Yn) (3.45)

where X; and Y; are independent severities and (A{, V) is a bivariate frequency
distribution. (3.45) could be used to model losses in a clash policy.

We will use the following notation. A = X1+---+Xrand B = Y1+ -+Yy
are two aggregate distributions, with X iid and Yj iid, but neither X and Y nor
M and N necessarily independent. Let E(X) = z and E(Y) = y, Var(X) = v,
and Var(Y) = v,. Let E(M) = m, E(N) = n, c be the contagion of A and d
that of N. Hence Var(M) = m(1 + c¢m) and Var(N) = n(1 + dn).

Will now calculate ihe correlation coefficient between A and B in four situa-
tions.

3.9.1 Correlated Severities, Single Frequency

Assume that the bivariate severity distribution (X.Y) has moment generating
function Mx yy(¢, 7). Also assume that the claim count distribution N is a G-
mixed Poisson. Then, just as for univariate aggregate distributions, the MGF of
the bivariate aggregate (A, B) is

Map) (¢, 7) = Ma(n(Mixy)(¢,7) — 1)). (3.46)
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Therefore, since E(G) = 1 and E(G?) = 1 +¢,

52]\1(,4‘3)
E(AB) = a¢or  1.0)
OMxy) OM xy) O*Mxy)
— [l/ 0 2 ( . ) ( s J\[/ ( 5
= (1+c)n’zy +nE(XY)
= (1+c)n’zy + nCov(X,Y) + nzy. 347

The value of Cov(X,Y’) will depend on the particular bivarate severity distribu-
tion.

For example, suppose that Z represents ground up losses, X represents a re-
tention to a and Y losses excess of a (per ground up claim), so Z = X + Y. Then
{X,Y) is a bivariate severity distribution. Since Y is zero when Z < a we have
Cov(X,Y) = (a - 2)y.

3.9.2 Bivariate Frequency

The second method for generating correlated aggregate distributions is to use a
bivariate frequency distribution. So, suppose (M, N) has a G-mixed bivariate
Poisson distribution. The variance of A is given by Equation (3.15). To compute
the covariance of A and B write the bivariate MGF of (A, B) as

Map)(C.n) = M(C,n) = Ma(m(Mx(¢) —1) +n(My(n) - 1)) = Mc(¢(¢,n))
(3.48)
where the last equality defines ). Then, evaluating at the partial derivatives at

zero, we get
M
E = —
(AB) acan
_ 821\10%% Mg 0%
ot 9C on ot d(on
= (1+c)mzny. (3.49)
Hence
Cov(A, B) = E(AB) — E(A)E(B) = cmnzy. (3.50)
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3.9.3 Parameter Uncertainty

It is common for actuaries to work with point estimates as though they are certain.
In reality there is a range around any point estimate. We now work through one
possible implication of such parameter uncertainty. We will model E(A) = R and
E(B) = S with R and S correlated random variables, and A and B conditionally
independent given R and S. We will assume for simplicity that the severities
X and Y are fixed and that the uncertainty all comes from claim counts. The
reader can extend the model to varying severities as an exercise. R and S pick up
uncertainty in items like the trend factor, tail factors and other economic variables,
as well as the natural correlation induced through actuarial methods such as the
Bornheutter-Ferguson.

Suppose E(R) = r, E(S) = s, Var(R) = v, Var(S) = v, and let p be the
correlation coefficient between R and S.

By (3.15) the conditional distribution of A|R is a mixed compound Poisson
distribution with expected claim count R/z and contagion c. Therefore the con-
ditional variance is

Var(A|R) E(M|R)Var(X) + Var(M|R)E(X)?
= R/zv, + R/z(1 + cR/z)z®

= 2R(1+v,/2%) + cR?, (3.51)

and the unconditional variance of A is

Var(A) E(Var(A|R)) + Var(E(A|R))
E(zR(v;/z* + 1) + cR?) + Var(R)

zr(ve/T® + 1) + c(vy +12) + v, (3.52)

i

Next, because A and B are conditionally independent given R and S,

Cov(A,B) = E(Cov(A4, B|R,S)) + Cov(E(A|R),E(B|S))
= Cov(R,S). (3.53)

Note Equation (3.53) is only true if we assume A # B.
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3.9.4 Parameter Uncertainty and Bivariate Frequency

Finally, suppose E(A) = R, E(B) = S with R and S correlated parameters
and conditional on (R, S) suppose that (A, N) has a G-mixed bivariate Poisson
distribution. By (3.50) Cov(A, B|R, S) = cRS. The unconditional variances are
as given in (3.52). The covariance term is

Cov(A, B)

E(Cov(A, B|R, S)) + Cov(E(A|R),E(B|S))

cE(RS) + Cov(R, S)

(1+¢)Cov(R,S) +crs

pVUrus(l +¢) +crs. (3.54)

3.10 Severity is Irrelevant

In some cases the actual form of the severity distribution is essentially irrelevant
to the shape of the aggregate distribution. Consider an aggregate with a G-mixed
Poisson frequency distribution. If the expected claim count n is large and if the
severity is tame (roughly tame means “has a variance”; any severity from a policy
with a limit is tame; unlimited workers compensation may not be tame) then par-
ticulars of the severity distribution diversify away in the aggregate. Moreover the
variability from the Poisson claim count component also diversifies away and the
shape of the aggregate distribution converges to the shape of the frequency mix-
ing distribution G. Another way of saying the same thing is that the normalized
distribution of aggregate losses (aggregate losses divided by expected aggregate
losses) converges in distribution to G.

We can prove these assertions using moment generating functions. Let X, be
a sequence of random variables with distribution functions F;, and let X another
random variable with distribution F. If F,(z) — F(z) as n — oo for every point
of continuity of F' then we say F, converges weakly to F' and that X,, converges
in distribution to F'.

Convergence in distribution is a relatively weak form of convergence. A stronger form is

convergence in probability, which means foralle > 0 Pr(| X, — X| >¢) - 0asn — o0. If X,
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converges to X in probability then X, also converges to X in distribution. The converse is false.
For example, let X, = Y and X be binomial 0/1 random variables with Pr(Y = 1) = Pr(X =
1) = 1/2. Then X,, converges to X in distribution. However, since Pr(|X -~ Y| =1) =1/2, X,,
does not converge to X in probability.

It is a fact that X, converges to X if the MGFs Af, of X, converge to the
MFG of M of X for all t: A, (t) — M(t) asn — oo. See Feller [12] for more
details. We can now prove the following theorem.

Proposition 1 Let N be a G-mixed Poisson distribution with mean n, G with
mean 1 and variance c, and let X be an independent severity with mean x and
variance (1 +7?). Let A= X, +---+ Xy and a = nx. Then A/a converges in
distribution to G, so

Pr(A/a < o) - Pr(G < «) (3.55)
as n — oc. Hence
2
o(A/a) =1/c+ &}’7_) — Ve (3.56)
Proof: By (3.12) i
M4(€) = Ma(n(Mx(¢) — 1)) (3.57)

and so using Taylor’s expansion we can write

lim Mayo(¢) = lim Ma(C/a)

= lm MG(”(MX(C/"I) - 1)

= T}i_r'roloMG(n (0)¢/nz + R((/nx)))
= Jm MolC 4 nR(C/n)

= Mc(()

for some remainder function R(t) = O(t?). Note that the assumptions on the
mean and variance of X guarantee A/%(0) = z = E(X) and that the remainder

(
term in Taylor’s expansion actually is O(#2). The second part is trivial.
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Figure 3.3: Theoretical distribution of scaled aggregate losses with no parameter
or structure uncertainty and Poisson frequency.
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Figure 3.4: Theoretical distribution envelope of scaled aggregate losses with a
gamma mixed Poisson frequency with mixing variance ¢ = 0.0625.
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The proposition implies that if the frequency distribution is actually a Pois-
son, so the mixing distribution G is G = 1 with probability 1, then the loss ratio
distribution of a very large book will tend to the distribution concentrated at the
expected, hence the expression that “with no parameter risk the process risk com-
pletely diversifies away.”

Figures 3.3 and 3.4 illustrate the proposition, showing how aggregates change
shape as expected counts increase.

In Figure 3.3 G = 1 and the claim count is Poisson. Here the scaled distribu-
tions get more and more concentrated about the expected value (scaled to 1.0).

In Figure 3.4 GG has a gamma distribution with variance 0.0625 (asymptotic
CV of 25%). Now the scaled aggregate distributions converge to G.

It is also interesting to compute the correlation between A and G. We have

Cov(A,G) = E(AG) - E(A)E(G)

= EE(AG|G) — nz
= E(nzG?* - nz
= nzxc, (3.58)
and therefore
Corr(A, G) = nzc/v/nzy + n(l + cn)ve — 1 (3.59)

asn — 0o.

The proposition shows that in some situations severity is irrelevant to large
books of business. However, it is easy to think of examples where severity is
very important, even for large books of business. For example, severity becomes
important in excess of loss reinsurance when it is not clear whether a loss distri-
bution effectively exposes an excess layer. There, the difference in severity curves
can amount to the difference between substantial loss exposure and none. The
proposition does not say that any uncertainty surrounding the severity distribution
diversifies away; it is only true when the severity distribution is known with cer-
tainty. As is often the case with risk management metrics, great care needs to be
taken when applying general statements to particular situations!
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Chapter 4
THE IMAN-CONOVER METHOD

Here is the basic idea of the Iman-Conover method. Given samples of n val-
ues from two known marginal distributions X and Y and a desired correlation p
between them, re-order the samples to have the same rank order as a reference
distribution, of size n x 2, with linear correlation p. Since linear correlation and
rank correlation are typically close, the re-ordered output will have approximately
the desired correlation structure. What makes the IC method work so effectively is
the existence of easy algorithms to determine samples from reference distributions
with prescribed linear correlation structures.

Section 4.1 explains the Choleski trick for generating multivariate reference
distributions with given correlation structure. Section 4.2 gives a formal algorith-
mic description of the IC method.

4.1 Theoretical Derivation

Suppose that M is an n element sample from an r dimensional multivariate dis-
tribution, so M is an n x r matrix. Assume that the columns of M are uncorre-
lated, have mean zero, and standard deviation one. Let M’ denote the transpose of
M. These assumptions imply that the correlation matrix of the sample M can be
computed as n~'M'M, and because the columns are independent, n"'M'M = 1.

(There is no need to scale the covariance matrix by the row and column standard
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deviations because they are all one. In general n~!M’M is the covariance matrix
of M.)

Let S be a correlation matrix, i.e. S is a positive semi-definite symmetric ma-
trix with 1’s on the diagonal and all elements < 1 in absolute value. In order to
rule out linearly dependent variables assume S is positive definite. These assump-
tions ensure S has a Choleski decomposition

S=CC 4.1)

for some upper triangular matrix C, see Golub [13] or Press et al. [31]. Set T =
MC. The columns of T still have mean zero, because they are linear combinations
of the columns of M which have zero mean by assumption. It is less obvious, but
still true, that the columns of T still have standard deviation one. To see why,
remember that the covariance matrix of T is

nIT'T =n"ICM'MC = C'C =8, 4.2)

since n”*M'M = I is the identity by assumption. Now S is actually the correlation
matrix too because the diagonal is scaled to one, so the covariance and correlation
matrices coincide. The process of converting M, which is easy to simulate, into
T, which has the desired correlation structure S, is the theoretical basis of the IC
method.

It is important to note that estimates of correlation matrices, depending on how
they are constructed, need not have the mathematical properties of a correlation
matrix. Therefore, when trying to use an estimate of a correlation matrix in an
algorithm, such as the Iman-Conover, which actually requires a proper correlation
matrix as input, it may be necessary to check the input matrix does have the correct
mathematical properties.

Next we discuss how to make n x r matrices M, with independent, mean zero
columns. The basic idea is to take n numbers ay,...,a, with ) a; = 0 and
n™* Y, a2 = 1, use them to form one n x 1 column of M, and then to copy it r
times. Finally randomly permute the entries in each column to make them inde-
pendent as columns of random variables. Iman and Conover call the a; “scores”.
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They discuss several possible definitions for the scores, including scaled versions
of a, = i (ranks) and a; uniformly distributed. They note that the shape of the
output multivariate distribution depends on the scores. All of the examples in
their paper use normal scores. We will discuss normal scores here, and consider
alternatives in Section 4.4.1.

Given that the scores will be based on normal random variables, we can either
simulate n random standard normal variables and then shift and re-scale to ensure
mean zero and standard deviation one, or we can use a stratified sample from the
standard normal, a, = ®~!(i/(n + 1)). By construction, the stratified sample
has mean zero which is an advantage. Also, by symmetry, using the stratified
sample halves the number of calls to ®~!. For these two reasons we prefer it in
the algorithm below.

The correlation matrix of M, constructed by randomly permuting the scores in
each column, will only be approximately equal to I because of random simulation
error. In order to correct for the slight error which could be introduced Iman and
Conover use another adjustment in their algorithm. Let E = n~!M'M be the
actual correlation matrix of M and let E = F'F be the Choleski decomposition of
E, and define T = MF~1C. The columns of T have mean zero, and the covariance
matrix of T is

n'T'T = n”'CF'MMF-'C
= CF'EF'C
= CF-'FFFIC
= CC
= 8, (4.3)

and hence T has correlation matrix exactly equal to S, as desired. If E is singular
then the column shuffle needs to be repeated.

Now the reference distribution T with exact correlation structure S is in hand,
all that remains to complete the IC method is to re-order the each column of the

input distribution X to have the same rank order as the corresponding column of
T.
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4.2 Algorithm

Here is a more algorithmic description of the IC method. The description uses
normal scores and the Choleski method to determine the reference distribution.
As we discussed above, it is possible to make other choices in place of these and
they are discussed in Section 4.4. We will actually present two versions of the
core algorithm. The first, called “Simple Algorithm” deals with the various ma-
trix operations at a high level. The second “Detailed Algorithm™ takes a more so-
phisticated approach to the matrix operations, including referencing appropriate
Lapack routines [1]. Lapack is a standard set of linear algebra functions. Soft-
ware vendors provide very high performance implementations of Lapack, many
of which are used in CPU benchmarks. Several free Windows implementations
are available on the web. The software described in the Appendix uses the Intel
Performance http://www.intel.com/software/products/perflib/. The reader should
study the simple algorithm first to understand what is going in the IC method. In
order to code a high performance implementation you should follow the steps out-
lined in the detailed algorithm. Both algorithms have the same inputs and outputs.

Inputs: An n x r matrix X consisting of n samples from each of r marginal
distributions, and a desired correlation matrix S.

The IC method does not address how the columns of X are determined. It is
presumed that the reader has sampled from the appropriate distributions in some
intelligent manner. The matrix S must be a correlation matrix for linearly indepen-
dent random variables, so it must be symmetric and positive definite. If § is not
symmetric positive semi-definite the algorithm will fail at the Choleski decompo-
sition step. The output is a matrix T each of whose columns is a permutation of

the corresponding column of X and whose approximate correlation matrix is S.

Simple Algorithm:

1. Make one column of scores a, = ®!(i/(n + 1)) fori = 1,...,n and

rescale to have standard deviation one.
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2. Copy the scores r times to make the score matrix M.
3. Randomly permute the entries in each column of M.
4. Compute the correlation matrix E = n=!M’'M of M.
5. Compute the Choleski decomposition E = F'F of E.

6. Compute the Choleski decomposition S = C'C of the desired correlation
matrix S.

7. Compute T = MF~!C. The matrix T has exactly the desired correlation
structure by Equation (4.3).

8. Let Y be the input matrix X with each column reordered to have exactly the
same rank ordering as the corresponding column of T.

Detailed Algorithm:

1. Compute the Choleski decomposition of S, S = C'C, with C upper triangu-
lar. If the Choleski Valgorithm fails then S is not a valid correlation matrix.
Flag an error and exit. Checking S is a correlation matrix in Step 1 avoids
performing wasted calculations and allows the routine to exit as quickly as
possible. Also check that all the diagonal entries of S are 1 so S has full
rank. Again flag an error and exit if not. The Lapack routine DPOTRF
can use be used to compute the Choleski decomposition. In the absence of
Lapack, C = (c;;) can be computed recursively using

j-1
Sij — D by CikCik
¢y = k=1 CikC; (4.4)

1- Zi;ll C?k
for 1 <4 < 5 < n—since all the diagonal elements of .S equal one. The
empty sum 23 = 0 and for j > ¢ the denominator of (4.4) equals ¢,; and

the elements of C should be calculated from left to right, top to bottom. See
Wang [37, p. 889] or Herzog [19].
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2. Let m = |n/2] be the largest integer less than or equal to n/2 and v; =
®-1(i/2m+1))fori=1,...,m.

3. If nis odd set
V= (Um, Um-1,-..,01,0, =01, ..., —Un)
and if n is even set
V= Unm,Um=1y---, V1, —=V1y- -, ~Um).

Here we have chosen to use normal scores. Other distributions could be
used in place of the normal, as discussed in Section 4.4.1. Also note that
by taking advantage of the symmetry of the normal distribution halves the
number of calls to ®~! which is relatively computationally expensive. If
multiple calls will be made to the IC algorithm then store v for use in future

calls.
4. Form the n x r score matrix M from r copies of the scores vector v.

5. Compute m,, = n~'Y" v?, the variance of v. Note that } ,v; = 0 by

construction.

6. Randomly shuffle columns 2,...,r of the score matrix M. Knuth [26,
pp-139-41] gives the following algorithm for a random shuffie, which we
have implemented it in Visual Basic.

'’ vtemp[0 to n-1] is the array being shuffled.
‘' vtemp[j] is the end, you work backwards up the
‘e array shuffling each element.

'’ Rnd() returns a uniform random variable

'’ between zero and one.

dim j as long, vtemp[0 to n-1] as double
dim temp as double, u as double

1

'* populate vtemp

]
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j=n-1

do while j > 0
u = Rnd{()
k = CLng(j * u)
temp = vtemp[j]
vtemp[j] = vtemp [k]
vtemp[k] = temp
j=3-1 :

loop

7. Compute the correlation matrix E of the shuffled score matrix M. Each
column of M has mean zero, by construction, and variance m.,. The cor-
relation matrix is obtained by dividing each element of M'M by m,,. The
matrix product can be computed using the Lapack routine DGEMM. If E is
singular repeat step 6.

8. Determine Choleski decomposition E = F'F of E using the Lapack rou-
tine DPOTRF. Because E is a correlation matrix it must be symmetric and
positive definite and so is guaranteed to have a Choleski root.

9. Compute F~'C using the Lapack routine DTRTRS to solve the linear equa-
tion FA = C for A. Solving the linear equation avoids a time consuming
matrix inversion and multiplication. The routine DTRTRS is optimized for
upper triangular input matrices.

10. Compute the correlated scores T = MF'C = MA using DGEMM. The
matrix T has exactly the desired correlation structure.

11. Compute the ranks of the elements of T. Ranks are computed by indexing
the columns of T as described in Section 8.4 of [31]. Let r(k) denote the
index of the kth ranked element of T. See Appendix B for VBA code to
perform indexing.

12. Let Y be the nx 7 matrix with ith column equal to the ith column of the input
matrix X given the same rank order as T. The re-ordering is performed using
the ranks computed in the previous step. First sort the input columns into
ascending order if they are not already sorted and then set Y, x = X, 1)
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Outputs: The output of the algorithm is a matrix Y each of whose columns is a
permutation of the corresponding column of the input matrix X. The rank correla-
tion matrix of Y is identical to that of a multivariate distribution with correlation
matrix S.

4.3 Simple Example of Iman-Conover

Having explained the IC method, we now give a simple example to explicitly show
all the details. The example will work with n = 20 samples and r = 4 different
marginals. The marginals are samples from four lognormal distributions, with
parameters p = 12,11,10, 10 and ¢ = 0.15,0.25, 0.35, 0.25. The input matrix is

123,567 44,770 15.934 13,273
126,109 45,191 16,839 15,406
138,713 47,453 17.233 16,706
139,016 47,941 17,265 16,891
152,213 49,345 17,620 18,821
153,224 49,420 17.859 19,569
153,407 50,686 20,804 20,166
155,716 52.931 21.110 20,796
155,780 54,010 22,728 20,968
161,678 57,346 24,072 21,178
161,805 57,685 25,198 23,236
167,447 57,698 25,393 23,375
170,737 58,380 30,357 24,019
171,592 60,948 30,779 24,785
178,881 66.972 32,634 25,000
181,678 68.053 33,117 26,754
184,381 70,592 35,248 27,079
206,940 72,243 36,656 30,136
217,002 86,685 38,483 30,757
240,935 87,138 39,483 35,108

4.5)

Note that the marginals are all sorted in ascending order. The algorithm does not
actually require pre-sorting the marginals but it simplifies the last step.
The desired target correlation matrix is

1.000 0.800 0.400 0.000
0.800 1.000 0.300 —0.200
§= 10400 0.300 1.000 0.100 |- 4.6)

0.000 —0.200 0.100 1.000
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The Choleski decomposition of S is

1.000 0.800 0.400  0.000

0.000 0.600 —0.033 —0.333
C=1o0000 0000 0916 0097 | 4.7

0.000 0.000 0.000 0.938

Now we make the score matrix. The basic scores are ®~1(i/21), for i =
1,...,20. We scale these by 0.868674836252965 to get a vector v with standard

deviation one. Then we combine four v’s and shuffle randomly to get

-1.92062 1.22896 —1.00860 —0.49584
—1.50709 -1.50709 -1.50709 0.82015
—1.22896 1.92062 0.82015 —0.65151
—1.00860 -0.20723 1.00860 —1.00860
—-0.82015 0.82015  0.34878  1.92062
-0.65151 -1.22896 —0.65151 0.20723
—0.49584 —0.65151 1.22896 —0.34878
—0.34878 —0.49584 —0.49584 —0.06874
—0.20723 -1.00860 0.20723  0.65151
—0.06874 0.49584  0.06874 —1.22896
0.06874 —0.34878 —-1.22896 (0.49584
0.20723  0.34878  0.65151  0.34878
0.34878 —-0.06874 —0.20723 1.22896
0.49584 —-1.92062 -0.82015 -0.20723
0.65151  0.20723  1.92062 —1.92062
0.82015  1.00860 1.50709  1.50709
1.00860 —0.82015 -1.92062 1.00860
1.22896 1.50709  0.49584 —1.50709
1.50709  0.06874 -0.06874 0.06874
1.92062  0.65151 —0.34878 —0.82015

(4.8)

As described in Section 4.1, M is approximately independent. In fact M has

covariance matrix

1.0000 0.0486  0.0898 —0.0960
0.0486 1.0000 0.4504 —0.2408
0.0898 0.4504 1.0000 -0.3192
-0.0960 —0.2408 -0.3192 1.0000

E= 4.9)
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and E has Choleski decomposition

1.0000 0.0486 0.0898 -0.0960

F— 0.0000 0.9988 0.4466 —0.2364 (4.10)
~ 1 0.0000 0.0000 0.8902 -0.2303 ’

0.0000 0.0000 0.0000 0.9391

Thus T = MF~C is given by

—-1.92062 -0.74213 -2.28105 —1.33232
—1.50709 -2.06697 -1.30678 0.54577
—1.22806 0.20646 —0.51141 —0.94465
—1.00860 —0.90190 0.80546 —0.65873
—-0.82015 -0.13949 -0.31782 1.76960
—0.65151 -1.24043 -0.27999 0.23988
—0.49584 —0.77356 1.42145 0.23611
—0.34878 —0.56670 —0.38117 -—0.14744
—0.20723 -0.76560 0.64214  0.97494
T = —0.06874 0.24487 —0.19673 —1.33695 @110
0.06874 —0.15653 -1.06954 0.14015 ’
0.20723  0.36925  0.56694  0.51206
0.34878  0.22754 -0.06362 1.19551
0.49584 —0.77154 0.26828  0.03168
0.65151  0.62666  2.08987 —1.21744
0.82015 1.23804 1.32493 1.85680
1.00860  0.28474 —1.23688 0.59246
1.22896 1.85260  0.17411 —1.62428
1.50709 1.20294  0.39517  0.13931
1.92062 1.87175 —0.04335 —0.97245

An easy calculation will verify that T has correlation matrix S, as required.

To complete the IC method we must re-order each column of X to have the
same rank order as T. The first column does not change because it is already in
ascending order. In the second column, the first element of Y must be the 14th
element of X, the second the 20th, third 10th and so on. The ranks of the other
elements are

20 19 16 4 14 13 2 15 5 12 17 6 11 8

14 20 10 18 11 19 17 13 15 8 12 6 9 16 5 3 7 2 4 1\’
13 18 9 7 10
18 6 15 14 2 8 9 13 4 19 10 7 3 12 17 1
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and the resulting re-ordering of X is

123,567 50,686 15,934 16,706
126,109 44,770 16,839 25,000
138,713 57,685 17,620 19,569
139,016 47,453 35,248 20,166
152,213 57,346 20,804 30,757
153,224 45,191 21,110 24,019
153,407 47,941 38,483 23,375
155,716 52,931 17,859 20,796
155,780 49,420 33,117 27,079
T | 161,678 58,380 22,728 15,406 “.12)

161,805 54,010 17,265 23,236 | :
167,447 66,972 32,634 24,785
170,737 57,698 24,072 30,136
171,592 49,345 30,357 20,968
178,881 68,053 39,483 16,891
181,678 72,243 36,656 35,108
184,381 60,948 17,233 26,754
206,940 86,685 25,393 13,273
217,092 70,592 30,779 21,178
240,935 87,138 25,198 18,821

The rank correlation matrix of Y is exactly S. The actual linear correlation is only
approximately equal to S. The achieved value is

1.00 0.85 0.26 —0.11
085 1.00 019 -0.20
026 019 100 0.10 }°
-0.11 —-0.20 0.10 1.00

(4.13)

a fairly creditable performance given the input correlation matrix and the very
small number of samples n = 20. When used with larger sized samples the IC
method typically produces a very close approximation to the required correlation
matrix, especially when the marginal distributions are reasonably symmetric.

4.4 Extensions of Iman-Conover

Following through the explanation of the IC method shows that it relies on a
choice of multivariate reference distribution. A straightforward method to com-
pute a reference is to use the Choleski decomposition method Equation (4.2) ap-
plied to certain independent scores. The example in Section 4.3 used normal
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scores. However nothing prevents us from using other distributions for the scores
provided they are suitably normalized to have mean zero and standard deviation
one. We explore the impact of different choices of score distribution on the result-
ing multivariate distribution in Section 4.4.1.

Another approach to IC is to use a completely different multivariate distribu-
tion as reference. There are several other families of multivariate distributions,
including the elliptically contoured distribution family (which inéludes the nor-
mal and ¢ as a special cases) and multivariate Laplace distribution, which are easy
to simulate from. We explore the impact of changing the reference distribution in
Section 4.4.2. Note that changing scores is actually an example of changing the
reference distribution; however, for the examples we consider the exact form of
the new reference is unknown.

4.4.1 Alternative Scores

The choice of score distribution has a profound effect on the multivariate distribu-
tion output by the IC method. Recall that the algorithm described in Section 4.2
used normally distributed scores. We now show the impact of using exponentially
and uniformly distributed scores.

Figure 4.1 shows three bivariate distributions with identical marginal distri-
butions (shown in the lower right hand plot), the same correlation coefficient of
0.643 £ 0.003 but using normal scores (top left), exponential scores (top rigtht)
and uniform scores (lower left). The input correlation to the IC method was 0.65
in all three cases and there are 1000 pairs in each plot. Here the IC method pro-
duced bivariate distributions with actual correlation coefficient extremely close to
the requested value.

The normal scores produce the most natural looking bivariate distribution,
with approximately elliptical contours. The bivariate distributions with uniform
or exponential scores look unnatural, but it is important to remember that if all you
know about the bivariate distribution are the marginals and correlation coefficient

all three outcomes are possible.
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Figure 4.1: Bivariate distributions with normal, uniform and exponential scores.
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Figure 4.2: Sum of marginals from bivariate distributions made with different
score distributions.
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Figure 4.2 shows the distribution of the sum of the two marginals for each
of the three bivariate distributions in Figure 4.1 and for independent marginals.
The sum with exponential scores has a higher kurtosis (is more peaked) than with
normal scores. As expected all three dependent sums have visibly thicker tails
than the independent sum.

Iman and Conover considered various different score distributions in their pa-
per. They preferred normal scores as giving more natural looking, elliptical con-
tours. Certainly, the contours produced using exponential or uniform scores ap-
pear unnatural. If nothing else they provide a sobering reminder that knowing the
marginal distributions and correlation coefficient of a bivariate distribution does

not come close to fully specifying it!

4.4.2 Multivariate Reference Distributions

The IC method needs some reference multivariate distribution to determine an
appropriate rank ordering for the input marginals. So far we have discussed us-
ing the Choleski decomposition trick in order to determine a multivariate normal
reference distribution. However, any distribution can be used as reference pro-
vided it has the desired correlation structure. Multivariate distributions that are
closely related by formula to the multivariate normal, such as elliptically con-
toured distributions and asymmetric Laplace distributions, can be simulated using
the Choleski trick.

Elliptically contoured distributions are a family which extends the normal.
For a more detailed discussion see Fang and Zhang [11]. The multivariate ¢-
distribution and symmetric Laplace distributions are in the elliptically contoured
family. Elliptically contoured distributions must have characteristic equations of

the form
(t) = exp(it'm)p(t'St) (4.14)

for some ¢ : R — R, where mis an r x 1 vector of means and Sisar x r

covariance matrix (nonnegative definite and symmetric). In one dimension the
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elliptically contoured distributions coincide with the symmetric distributions. The
covariance is S, if it is defined.
If S has rank r then an elliptically contoured distribution x has a stochastic
representation
x=m+ RTu™ 4.15)

where T is the Choleski decomposition of S, so § = T'T, u!” is a uniform dis-
tribution on the sphere in R”, and R is a scale factor independent of u™. The
idea here should be clear: pick a direction on the sphere, adjust by T, scale by
a distance R and finally translate by the means m. A uniform distribution on a
sphere can be created as x/||x|| where x has a multivariate normal distribution with
identity covariance matrix. (By definition, ||x|? = 5_, z? has a x? distribution.)
Uniform vectors u(™ can also be created by applying a random orthogonal matrix
to a fixed vector (1,0, ...,0) on the sphere. Diaconis [8] describes a method for
producing random orthogonal matrices.

The t-copula with v degrees of freedom has a stochastic representation

/7

x=m+Ylz (4.16)
VS

where S ~ x2 and z is multivariate normal with means zero and covariance ma-
trix S. Thus one can easily simulate from the multivariate ¢ by first simulating

multivariate normals and then simulating an independent S and multiplying.
The multivariate Laplace distribution is discussed in Kotz, Kozubowski and
Podgorski [27]. It comes in two flavors: symmetric and asymmetric. The symmet-
ric distribution is also an elliptically contoured distribution. It has characteristic

function of the form
1

where S is the covariance matrix. To simulate from (4.17) use the fact that vWX
has a symmetric Laplace distribution if W is exponential and X a multivariate

normal with covariance matrix S.
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The multivariate asymmetric Laplace distribution has characteristic function

1

= ) 4.1
v 1+t'St/2 —im't (4.18)
To simulate from (4.18) use the fact that
mW + VWX (4.19)

has a symmetric Laplace distribution if W is exponential and X a multivariate
normal with covariance matrix S and means zero. The asymmetric Laplace is not
an elliptically contoured distribution.

Figure 4.3 compares IC samples produced using a normal copula to those
produced with a ¢-copula. In both cases the marginals are normally distributed
with mean zero and unit standard deviation. The t-copula has v = 2 degrees
of freedom. In both figures the marginals are uncorrelated, but in the right the
marginals are not independent. The t-copula has pinched tails, similar to Venter’s
Heavy Right Tailed copula [33]
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Figure 4.3: IC samples produced from the same marginal and correlation matrix
using the normal and ¢ copula reference distributions.
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4.4.3 Algorithms for Extended Methods

In Section 4.4.2 we described how the IC method can be extended by using dif-
ferent reference multivariate distributions. It is easy to change the IC algorithm to
incorporate different reference distributions for ¢t-copulas and asymmetric Laplace
distributions. Follow the detailed algorithm to step 10. Then use the stochas-
tic representation (4.16) (resp. 4.19 for the Laplace): simulate from the scaling
distribution for each row and multiply each component by the resulting number,
resulting in an adjusted T matrix. Then complete steps 11 and 12 of the detailed
algorithm.

4.5 Comparison With the Normal Copula Method

By the normal copula method we mean the following algorithm, described in
Wang [37] and Herzog [19].

Inputs: A set of correlated risks (X7, ..., X,) with marginal cumulative distribu-
tion functions F; and Kendall’s tau 7;; = 7(X;, X;) or rank correlation coefficients
(X, Xj).
Algorithm:

1. Convert Kendall’s tau or rank correlation coefficient to correlation using
Py = sin(n7;;/2) = 2sin(wr;/6) (4.20)
and construct the Choleski decomposition S = C'C of § = (p;;).
2. Generate r standard normal variables Y = (Y7,...,Y;).
3. SetZ =YC.
4, Setu; = ®(Z,)fore=1,...,r.

5. Set X; = F ().

?
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Outputs: The vectors (X1, ..., X,) form a sample from a multivariate distribu-
tion with prescribed correlation structure and marginals F;.

The Normal Copula method works because of the following theorem from
Wang [37, Theorem 2].

Theorem 2 Assume that (Zy, . .., Zy) have a multivariate normal joint probabil-
ity density function given by

1
ey 2k) = —m—m——x —-2/¥71z/2 4.21
f( 1, ) k) (27‘{)"'2| exp( z Z/ )7 ( )

z=(z1,...,z), withcorrelation coefficients £;; = pi; = p(Zi, Z;). Let H(z, . ..

be their joint cumulative distribution function. Then

C’(ul,...,uk) = H(@'l(ul),...,fb'l(uk)) (422)
defines a multivariate uniform cumulative distribution function called the normal
copula.

For any set of given marginal cumulative distribution functions Fy...., Fy,

the set of variables
Xy = FTH®(Z0), ..., Xk = FTY(®(Z))) (4.23)
have a joint cumulative function
Fx, . x.(x1,... ze) = H@ Y (Fe(u1)), ... 71 (Fh(ur)) (4.24)

with marginal cumulative distribution functions F1, . .., Fy. The multivariate vari-
ables (X1, ..., Xx) have Kendall’s tau

2
T(Xl, X]) = T(Z,7 Z]) = ; arcsin(p”-) (425)
[
and Spearman’s rank correlation coefficients

rkCorr(X;, X;) = rkCorr(Z;, Z;) = garcsin(pij/Q) (4.26)
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In the normal copula method we simulate from H and then invert using (4.23).
In the IC method with normal scores we produce a sample from H such that ®(z;)
are equally spaced between zero and one and then, rather than invert the distribu-
tion functions, we make the jth order statistic from the input sample correspond
to (z) = j/(n + 1) where the input has n observations. Because the jth or-
der statistic of a sample of n observations from a distribution F' approximates
F~1(j/(n + 1)) we see the normal copula and IC methods are doing essentially
the same thing.

While the normal copula method and the IC method are confusingly similar
there are some important differences to bear in mind. Comparing and contrasting

the two methods should help clarify how the two algorithms are different.

1. Theorem 2 shows the normal copula method corresponds to the IC method

when the latter is computed using normal scores and the Choleski trick.

2. The IC method works on a given sample of marginal distributions. The
normal copula method generates the sample by inverting the distribution

function of each marginal as part of the simulation process.

3. Though the use of scores the IC method relies on a stratified sample of
normal variables. The normal copula method could use a similar method,
or it could sample randomly from the base normals. Conversely a sample
could be used in the IC method.

4. Only the IC method has an adjustment to ensure that the reference multi-

variate distribution has exactly the required correlation structure.

5. IC method samples have rank correlation exactly equal to a sample from
a reference distribution with the correct linear correlation. Normal copula

samples have approximately correct linear and rank correlations.
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6. An IC method sample must be taken in its entirety to be used correctly.

The number of output points is fixed by the number of input points, and
the sample is computed in its entirety in one step. Some IC tools (@Risk,
SCARE) produce output which is in a particular order. Thus, if you sample
the nth observation from multiple simulations, or take the first n samples,
you will not get a random sample from the desired distribution. However, if
you select random rows from multiple simulations (or, equivalently, if you
randomly permute the rows output prior to selecting the nth) then you will
obtain the desired random sample. It is important to be aware of these issues

before using canned software routines.

. The normal copula method produces simulations one at a time, and at each

iteration the resulting sample is a sample from the required multivariate
distribution. That is, output from the algorithm can be partitioned and used

in pieces.

In summary remember these differences can have material practical conse-

quences and it is important not to misuse IC method samples.

166
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Chapter 5
EXAMPLES

We now give an extended example which applies the IC method and some of the
other methods introduced in Chapter 3. The example will compute the bivariate
distribution of retained and ceded losses, where the reinsurance is an excess of
loss cover. Such a bivariate distribution would be useful for a ceding company
trying to determine its distribution of net underwriting results if the reinsurance
included a variable feature such as a swing rate, sliding scale commission, annual
aggregate deductible or profit commission.

The example will apply the following methods and techniques:
M1. Computing aggregate distributions using FFTs.

M2. Compare aggregate distributions computed using FFTs (essentially exact)
with method of moments shifted lognormal and shifted gamma approxima-

tions.

M3. Computing the bivariate distribution of ceded and retained losses using two
dimensional FFTs.

M4. Computing the bivariate distribution of ceded and retained losses using the
IC method.

MS5. Compare the FFT and IC method.
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M6. Illustrate the effect on the IC method of using a ¢ reference distribution.

The first two examples compute univariate marginal distributions, the funda-
mental inputs to the IC method. The next five examples compute multivariate
distributions in various ways.

The reader should take away two lessons from these examples. First, the FFT
method works incredibly well for small claim counts and thin tailed severity dis-
tributions. In particular, any severity distribution with an occurrence limit is thin
tailed. Second, the shifted gamma and shifted lognormal approximations to an
aggregate distribution are exceedingly good in all but the most extreme cases. Ex-
treme cases include a very small claim count (say less than five) or a thick tailed
severity distribution.

5.1 Example Parameters

The input parameters for the example are as follows. Severity is modeled using
a lognormal variable with ¢ = 9.0 and ¢ = 2.0. Underlying policies have a
$1M policy limit. The excess of loss reinsurance attaches at $200,000 and has a
limit of $800,000; thus it pays all losses between $200,000 and the policy limit,
ground-up. The ground-up expected loss is $25M.

The nth moments of the layer y excess a of for losses with density f, viz.

E[min(y, max(X —a,0))"] = /a+y(x —a)"f(z)dz +y"Pr(X > a+y), (5.1

can be computed using
a+y n n a+y
/ (z ~ o) f(x)dz = ( k) (—a)* / M f@de (52)
a k=0 a

reducing the problem to computing simpler integrals. For the lognormal, the inte-
gral \(n) := [*™Y 2" f(z)dz equals

A(n) = exp(np + n0?/2)@((log(a + y) — p — na?) /o) (5.3)
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ifa = 0 and

Xn) = exp(np+n’a?/2)(®((log(a+y) —u~no®)/o)~®((log(a)~p—no?)/7))
(5.4)
for a > 0. Then by the above formula for the lognormal we have

13

E[min(y, max(X—a,0))"] = y"(1-®((log(a+y)—pn) /o) +Z( ) An—k).

(5.5)

Using these formulae we find that the expected ground up loss is $47,439, the
expected retained loss is $31,591 and the expected ceded loss is $15,848. The
probability of attaching the reinsurance is 0.054463 and so the excess severity,
conditional on an excess claim, is $290,985.

The expected claim count is n = 526.00 = 25000000,/47439. We will model
claims using a negative binomial with contagion parameter ¢ = 0.0625 which by
the discussion in Section 3.3 corresponds to an asymptotic CV of 25% for the
aggregate distribution. The parameters of the negative binomial are r = 1/c = 16
and p = 1/(1 + cn) = 0.0295, using the Bowers et al. [4] parameterization. The
moments of the negative binomial are

E(N)=(1-p)r/p
E(N*) = (p~Dr((p-1)r - 1)/p’
E(N%) = (1 =p)r((p=Dr((p~1)r - 3) —p+2)/p’
(computed using symbolic differentiation of the moment generating function us-
ing a computer algebra program).
Now we can compute the moments of the gross aggregate distribution using
(3.14) and (3.16). Writing A = X; + - - - + X the results are
E(A) = E(N)E(X)
E(A?) = E(N)E(X?) + E(X)*E(N?) — E(N)E(X)?
E(4%) = E(N)E(X®) + E( JE(N®) + 3E(X)E(N?)E(X?)—
SE(N)E(X)E(X?) — 3E(X)*E(N?) + 2E(N)E(X)’.
From these expressions we can compute the variance, standard deviation, CV

and skewness of frequency, severity and aggregate losses using the definitions at
the beginning of Chapter 3. The results are shown in Table 5.1.
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Table 5.1: Frequency, Severity and Aggregate Distribution Statistics

Severity | Ground-Up Retained Ceded
E(X) 47,439.0 31,591.0 [ 290,985.3
CV(X) 2.7217 1.6745 0.9513
skew(X) 5.2380 2.2351 0.8375
Frequency

E(X) 527.0 527.0 28.7
CV(X) 0.2538 0.2538 0.3120
skew(X) 0.5001 0.5001 0.5123
Aggregate

E(X) 25,000,000.0 | 16,648,209.8 | 8,351,790.2
CV(X) 0.2801 0.2640 0.3590
skew(X) 0.5128 0.5018 0.5543

5.2 Univariate Methods—Computing Marginal Dis-
tributions

5.2.1 Fast Fourier Transform Methods

To compute the aggregate distribution using Fast Fourier Transforms (FFT) we
first have to “bucket” the severity distributions. We will use 4,096 buckets (the
number must be a power of two for the FFT to work at peak efficiency) and
a bucket size b = 12,500. The largest loss that we can produce is therefore
$51.1875M which will be adequate for our example. The easiest way to bucket
the severity is to compute the cumulative distribution function F at b/2,3b/2, . ..
and then take differences. The coefficients of bucketed distribution must sum to
one. The distribution for ceded losses is actually the conditional distribution given
an excess loss, F(z)/(1 — F(a)) where a is the attachment and F is the ground
up severity distribution. The first few terms in the bucketed severities are shown
in Table 5.2

There are slight errors introduced when you bucket the severity distribution,
particularly for the retained losses. The mean of the retained severity is 1.9%
lower than the actual; the CV is 2.8% higher and the skewness is 1.5% lower. The
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Table 5.2: Bucketed Severity Distributions

Bucket Start | Bucket Mid-Point | Ground-Up | Retained | Ceded
0 6,250 0.448350 | 0.448350 | 0.030800
12,500 18,750 0.214215 0.214215 | 0.056797
25,000 31,250 0.087561 0.087561 | 0.051170
37,500 43,750 0.050294 0.050294 | 0.046328
50,000 56,250 0.033252 0.033252 | 0.042130
62,500 68,750 0.023819 0.023819 | 0.038467
75,000 81,250 0.017980 | 0.017980 | 0.035252
87,500 93,750 0.014089 0.014089 | 0.032415
100,000 106,250 0.011353 0.011353 | 0.029899
112,500 118,750 0.009351 0.009351 | 0.027658
125,000 131,250 0.007839 0.007839 | 0.025653
137,500 143,750 0.006667 0.006667 | 0.023853
150,000 156,250 0.005740 0.005740 | 0.022230
162,500 168,750 0.004993 0.004993 | 0.020762
175,000 181,250 0.004382 0.004382 | 0.019431
187,500 193,750 0.003876 | 0.003876 | 0.018219
200,000 206,250 0.003452 0.056238 | 0.017114
212,500 218,750 0.003093 0.000000 | 0.016103
225,000 231,250 0.002787 0.000000 | 0.015176
237,500 243,750 0.002523 0.000000 | 0.014323
250,000 256,250 0.002295 0.000000 | 0.013538
262,500 268,750 0.002095 0.000000 | 0.012814
275,000 281,250 0.001920 0.000000 | 0.012143
287,500 293,750 0.001765 0.000000 | 0.011522
300,000 306,250 0.001628 0.000000 | 0.010946
etc.
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Table 5.3: Shifted Gamma Approximations to the Aggregate Distributions

Parameter | Ground-Up | Retained Ceded
s -2.341E+06 | -8.907E+05 | -2.468E+06
a 15.19659 15.88163 13.02156
8 1.7780E+06 | 1.0842E+06 | 8.3084E+05

excess severity is virtually exact—because the bucket size is small relative to the
features of the distribution. The ground-up severity is in between. The smaller
the bucket size the lower these discretization errors will be, but on the other hand
the less “space” available for the aggregate distribution. Selecting a bucket size
which is an exact divisor of the limit will greatly help improve the accuracy of the
discretized severity distribution. To determine if your bucket size is appropriate
look at the moments of the FFT aggregate relative to the exact moments and plot
a graph of the output density. It is usually obvious when the method has failed.

Next we have to take the Fast Fourier Transform of the three 4096 x 1 severity
vectors. We will assume the reader has a computer routine available which will
compute FFTs—see Appendix A for one freely available implementation. Then
you apply the moment generating function of the frequency distribution (see Ta-
ble 3.2) row-by-row to the transformed severity. Note that you will be working
with complex numbers. Finally you apply the inverse FFT to get a vector of real
numbers. Because of the form of the input you are guaranteed that the output will
be real and will sum to 1.

5.2.2 Method of Moments and the Shifted Gamma and Log-
normal Distributions

In Section 3.5 we introduced the shifted gamma and lognormal distributions and
gave explicit expressions for their method-of-moments parameters in terms of
mean, CV and skewness. In our example the gross, retained and ceded fits are
shown in Table 5.3 for the shifted gamma, 5.4 for the shifted lognormal, and 5.5

for the lognormal.
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Table 5.4: Shifted Lognormal Approximations to the Aggregate Distributions

Parameter | Ground-Up | Retained Ceded
s -1.636E+07 | -9.872E+06 | -8.057E+06
U 17.52370 17.07988 16.59690
o 0.16811 0.16463 0.18122

Table 5.5: Lognormal Fits to the Aggregate Distributions

Parameter | Ground-Up | Retained | Ceded
7 16.98348 16.57454 | 15.87726
o 0.27554 0.26015 | 0.34819

Figure 5.1 shows a comparison of the shifted gamma fits (denoted with an as-
terisk in the legend) with the FFTs. For each of the total, ground-up loss, retained
loss and ceded or excess loss the fits appear essentially perfect. On a log-scale,
Figure 5.2, we see that the fits are again essentially perfect except for disagreement
for small losses. However, the disagreement actually shows an error in the FFT;
probabilities for losses greater than the largest bucket size (approximately $50M)
wrap around in the FFT and re-appear as small losses, thus the FFT picture is ac-
tually inaccurate. The wrapping phenomenon is an example of aliasing; it is the
same effect that causes wagon wheels to appear to rotate backwards in Western
movies. See Hamming [{16] for more details. The shifted gamma approximation
is recommended in Bowers et al. [4].

Figure 5.3 shows the shifted lognormal fit. Although not quite as good as the
shifted gamma, the fit is still very close. A log scale (not shown) would show
that the shifted lognormal is somewhat thicker in the extreme tail. The fact that
the shifted gamma does a better job in the tail should not be a surprise since the
negative binomial uses a gamma mixing distribution.

Finally, Figure 5.4 shows a comparison of the FFTs with a regular two param-
eter lognormal. The lognormal is too skewed (peaks too soon) and does not match
the true shape of the aggregate well. Using a shifted gamma or shifted lognormal
distribution gives a much more satisfactory fit to the true aggregate for very little
extra work.
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Figure 5.1: FFT vs. shifted gamma approximations for total, retained and ceded

losses, illustrating that the gamma is an almost perfect fit.
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Figure 5.2: FFT vs. shifted gamma approximations for total, retained and ceded
losses on a log density scale.
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Figure 5.3: FFT vs. shifted lognormal approximations for total, retained and
ceded losses.
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Figure 5.4: FFT vs. lognormal approximations for total, retained and ceded losses,
illustrating that the lognormal is a poorer fit than the shifted lognormal.
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5.3 Multivariate Methods and the 1C Method

Now we have the marginal distributions we need we can apply the IC method to
determine the bivariate distribution of retained and ceded losses.

5.3.1 Fast Fourier Transform Methods

In order to have a benchmark for the IC method we begin by computing the exact
bivariate distribution of ceded and retained losses using two dimensional FFTs.
The two dimensional FFT method is far more limited than the one dimensional
version because it is impractical to use discretized distributions larger than 4096 x
4096—the size we will use here. One is caught by the need for a small bucket size
to capture the shape of the ground-up severity and the need for enough buckets to
capture the whole aggregate distribution.

The method for two dimensional FFTs is essentially the same as for one di-
mension: compute a discretized version of the input severity distribution, which
will be a matrix rather than a column vector, apply the FFT, apply the MGF of the
frequency distribution term-by-term, and then apply the inverse FFT. The result-
ing distribution is shown in Figure 5.5.
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Retained Losses

Figure 5.5: Two dimensional FFT estimate of bivariate distribution of ceded and
retained losses.
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5.3.2 IC Method

Next we apply the IC method to the marginal retained and ceded distribution com-
puted in the previous section. Individual ceded and retained losses are a good ex-
ample of comonotonic variables, since they are both increasing functions of gross
losses. Aggregate ceded and retained losses will not generally be comonotonic.
To apply IC we need the correlation coefficient between ceded and retained losses
which can be computed using (3.47). The only missing value from that equation
is the covariance between retained severity R and ceded severity C. However,
because of the simple form of the bivariate severity, viz. ceded losses are zero
until gross losses hit the retention a = $200, 000 and then ceded losses increase,

the covariance is easy to compute:
Cov(R,C) = E(RC) — E(R)E(C) = E(C)(a — E(R)). (5.6)

Substituting into (3.47) gives a correlation of 0.786 between aggregate retained
losses and aggregate ceded losses. We can now apply the Iman Conover method.
Here we used samples of 10,000 observations from the univariate distributions of
ceded and retained losses. The result of the IC method will be a 10000 x 2 matrix
sample from the bivariate distribution. In order to visualize the result we produced
a bivariate histogram, as shown in Figure 5.6. The approximation is very similar
to the previous “exact” FFT contour plot, as you can see if you overlay the two
plots.

The IC method underlying Figure 5.6 used a normal copula reference distri-
bution. As we have already discussed there are many other possibie reference
distributions we could chose to use. Figure 5.7 shows the resulting two dimen-
sional histogram if we use a t-copula with two degrees of freedom, which is a
very extreme choice. Just as we saw in Figure 4.3 the result of using a t-copula
is to introduce more extreme value dependence and the contours have a pinched
look-—both in the siope 1 and slope —1 directions.

Clearly the normal copula IC method produces bivariate distribution closer to
the FFT actual than the t-copula, which should not be a surprise. There is no
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generator of extreme tail correlation in our example. However, in other modeling
situations, such as modeling the bivariate movement of stock prices or foreign
exchange movements, there may be empirical evidence of strong tail correlation
and a t-copula (or other non-normal) copula approach would be more appropriate.

Finally, Figure 5.8 shows the distribution of the sum of ceded and retained
losses using the normal-copula, ¢-copula, and actual dependence relationships.
As expected the normal copula model is closest to the actual. The ¢-copula sum is
too peaked and is more thick tailed than the actual distribution.
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Figure 5.6: Iman-Conover approximation to bivariate distribution of ceded and
retained losses.

182 Casualty Actuarial Society Forum, Winter 2006



RWP on Correlations and Dependencies Among All Risk Sources Report

50.0

40.0

Ceded Losses
w
1=}
o

N
=}
o
4

100

10.0 200 30.0 40.0 50.0
Retzined Losses

Figure 5.7: Iman-Conover approximation to bivariate distribution of ceded and
retained losses using the ¢-copula as a reference distribution.

Casualty Actuarial Society Forum, Winter 2006 183




RWP on Correlations and Dependencies Amoh(g Al Risk Sources Report

0.140
0.120
0.100

0.080

Density

0.060

0.040

0.020

10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0
Loss

—e— Actual Distribution —e— Normal Copula —=—t-Copula

Figure 5.8: Distribution of total losses (ceded + retained) under normal copula,
t-copula and actual.
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Chapter 6

THEORETICAL
UNDERPINNINGS OF THE
IMAN-CONOVER
METHOD

The theoretical foundations of the Iman-Conover method are elegantly justified by
Vitale’s Theorem [35]. We will state Vitale’s theorem, explain its relationship to
the IC method, and sketch the proof. The result should give a level of comfort to
practitioners using a simulation approach to modeling multivariate distributions.
It is not necessary to follow the details laid out here in order to understand and
use the IC method, so the uninterested reader can skip the rest of the section. The
presentation we give follows Vitale’s original paper [35] closely.

Functional dependence and independence between two random variables are
clearly opposite ends of the dependence spectrum. It is therefore surprising that
Vitale’s Theorem says that any bivariate distribution (U, V') can be approximated
arbitrarily closely by a functionally dependent pair (U, TU) for a suitable trans-
formation T'.

In order to explain the set up of Vitale’s theorem we need to introduce some
notation. Let n be a power of 2. An interval of the form ((j —1)/n, j/n) for some
n> land1l < j < nis called a dyadic interval of rank n. An invertible (Borel)
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measure-preserving map which maps by translation on each dyadic interval of
rank n is called a permutation of rank n. Such a T just permutes the dyadic
intervals, so there is a natural correspondence between permutations of n elements
and transformations T If the permutation of dyadic intervals has a single cycle
(has order n in the symmetric group) then 7" is called a cyclic permutation.

Theorem 3 (Vitale) Let U and V' be uniformly distributed variables. There is a
sequence of cyclic permutations Ty, Ty, . .. such that (U, T,U) converges in dis-

tribution to (U, V') as n — oo.

Recall convergence in distribution means that the distribution function of (U, T.U)
tends to that of (U, V') at all points of continuity as n — oo.

The proof of Vitale’s theorem is quite instructive and so we give a detailed
sketch.

The proof is in two parts. The first constructs a sequence of arbitrary permuta-
tions T}, with the desired property. The second part shows it can be approximated
with cyclic permutations. We skip the second refinement.

Divide the square [0, 1] x [0, 1] into sub-squares. We will find a permutation
T such that the distributions of (U, V) and (U, TU) coincide on sub-squares. Re-
ducing the size of the sub-squares will prove the result.

Fix n, a power of two. Let [; = ((j — 1)/n,j/n), j = 1,...,n. We will find

an invertible permutation 7' such that
PrUe ;,TU e I,)=Pr(U € I;,V € I) := Dk 6.1)

for j,k =1,...,n. Define

In = (G-1/n.( = 1)/n+p;) (6.2)
Iip = (G—1/n+pn, (G —1)/n+pu+pj) (6.3)

(6.4)
Iin = ((G=1)/n+pjp+ - +Pja1,j/n) (6.5)
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and
i = ((G-1)/n,(j —1)/n+py) (6.6)
I = (G- 1)/n+py (G —1)/n+pi;+psy) 6.7)
(6.8)
ijn = ((j“1)/"“‘1)1]'+"'+Pn—l,jaj/n)~ (69)

By construction the measure of I;; equals the measure of fkj. The invertible map
T which sends each Iy, to I}; by translation is the map we need because

Pr(Ue I;,TU)e ) = PrUe,UeT (It) (6.10)
= Pr(U e nT(J 1) (6.11)
l

= Pr(Ue(JLn 1y (6.12)
l

= Pr(U € Iy) (6.13)

= Pk (6.14)

since the only I;;, which intersects I; is I;; by construction, and U is uniform. The
transformation T is illustrated schematically in Table 6.1 for n = 3. The fact 3 is
not a power of 2 does not invalidate the schematic!

If each pj is a dyadic rational then T is a permutation of the interval. If not
then we approximate and use some more heavy duty results (a 1946 theorem of
Birkhoff on representation by convex combinations of permutation matrices) to
complete the proof.

Vitale’s theorem can be extended to non-uniform distributions.

Corollary 1 (Vitale) Let U and V be arbitrary random variables. There is a
sequence of functions Sy, Sa, ... such that (U, S,U) converges in distribution to
(U.V)asn — oc.

Let F be the distribution function of U and G for V. Then F(U) and G(V)
are uniformly distributed. Apply Vitale’s theorem to get a sequence of functions
T,.. Then S, = G~!T, F is the required transformation.
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Table 6.1: Schematic of the Vitale transformation for n = 3

Is3 P33
I3 I~ 39 D23

I3 P13
Ips P32
Iy Iy P22

In P12

I3 P31

I Iy P21

Iy || p11

In [T [ s [ Iy | oo [ s [ I3 | Iso | Isn
I I I3

188 Casualty Actuarial Society Forum, Winter 2006



RWP on Correlations and Dependencies Among All Risk Sources Report

Appendix A

SOFTWARE
IMPLEMENTATIONS

Having laid out the IC method and given some explicit examples, we now discuss
implementation issues. We will follow the Detailed Algorithm laid out in Section
4.2.

A.1 General Implementation and Design Consider-
ations

A good general rule in writing software is to ensure that the steps which exe-
cute most frequently are coded as efficiently as possible. Cutting 50% from the
execution time of a step which runs once and takes 1 second will have a barely
perceptible impact. Cutting 50% from a step which takes 10 msecs, but executes
10,000 times will have a material and perceptible impact. See Hennessy and Pat-
terson [ 18] for more discussion.

Matrix and linear algebra operations can be hard to code efficiently because
of the design of modern computer chips and the strains matrix operations put on
memory management. Modern CPUs have on-chip cache memory, which oper-
ates very quickly. Processors are “smart” enough to partially anticipate future

memory calls and ensure the relevant locations have been pre-loaded into cache.
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For example, arrays are usually stored in contiguous blocks of memory, and if you
ask for z[i], it is likely you will ask for z[i + 1]. Processors will pull in a block
of memory each side of z{i] to speed operation. If the required memory is not in
cache the CPU has a “cache-miss”. These are very costly and result in a lot of
lost processing time. Certain operations used extensively in the IC algorithm tend
to generate lots of cache-misses: matrix multiplication being the worst (you pull
in a row and a column; only one of these will be contiguous in memory). There
are ways around these problems, but they are not ways you would want to nav-
igate yourself! Fortunately, professional software designers spend a lot of effort
to code matrix operations as efficiently as possible. Many processor benchmarks
use matriX operations, so chip manufacturers have a vested interest here.

The Lapack [1] package is an example of a very efficiently coded set of
matrix algebra operations. It is build on BLAS, Basic Linear Algebra Subpro-
grams, which implements fundamental operations like matrix multiplication. La-
pack implementations are available for most platforms, including Windows. See
http://www.netlib.org/lapack for a non-commercial implementation. See http://-
www.intel.com/software/products/mkl for a version optimized for Intel proces-
sors. It will automatically multi-thread operations if there are two or more CPUs
available.

The implementation in Section 4.2 describes the appropriate Lapack functions
for all the matrix operations, such as Choleski decomposition and solving a system
of linear equations. I cannot claim that the implementation is optimal, but it is very
fast.

A.2 SCARE

SCARE, a Simulating, Correlated Aggregation and Risk Engine, is a COM ob-
ject (DLL) program which can be used from Excel/VBA. It implements the IC
method, some other useful copula functions and bivariate normal and ¢ distribu-
tions. It can be downloaded from www.mynl.com/wp. It was originally designed
and implemented for Scor Re US, who have kindly given permission for it to
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be made available to CAS members as part of the Working Party on Correlation
effort.

Before programming with SCARE you need to install it and then reference
it from your VBA project. Within the VBA editor, click Tools, References to
bring up the References dialog. Make sure the SCARE library is selected, as
shown in Figure A.1. In your application the location should show as C:/Program
Files/Scare/Bin. Libraries are listed alphabetically, except those in use by an open
project, which appear at the top.
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Microsoft Office 10.0 Object Library
ADCo2 1.0 Type Librar
ildenh mulating Correlation Aggregation and Ri
[] 1010 Woodbine FastvarMath 1.0 Type Library
[] 1010 Woodbine Gauss Integration Helper Type Librar
[] 1010 Woodbine Varview2 Type Library

[] Acrobat Distiller

[J AcrobatPDFMaker
{] Adobe Acrobat 5.0 Type Library
] AdobePDFMakerX
{[ 1atovb

Figure A.1: Adding a reference to the SCARE component in Excel VBA.
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A.3 SCARE Functions

All of the functions exposed by the SCARE DLL are described in detail in the
User’s Guide [30]. Here we give a quick overview of the key functions aimed at
the Excel user. The SCARE DLL functions can call be referenced from VBA but
they cannot be called directly from an Excel spreadsheet.

A.4 SCARE Wrapper Functions

A wrapper function “wraps” a COM function call so that it can be used directly
from a worksheet'. For example, here is how we wrap the sort-by-aggregate func-
tion. The scSortByAgg function takes four arguments: the input multivariate ar-
ray, an indicator to sort in ascending or descending order, a holder for the sorted
output with the aggregate appended in the last column and a holder for the sorted
output without the aggregate appended. Here is the VBA code.
Function scSortByAgg(v, ad As Long)

Dim xx as new Shuffler

Dim w, agg

‘ ad=1 ascending order, ad=-1 descending order

xx.8ortByAgg v, ad, w, agg

sCSortByAgg = w
End Function

The argument v is the multivariate sample and the argument ad is +/-1 for
ascending or descending order respectively. Within the function, new variables w
and agg are defined to hold the answers, and xx is defined as a new Shuffler object
to access the member function. The SortByAgg method of Shuffler is then called.
Finally scSortByAgg=w sets the answer to be returned to Excel.

In a spreadsheet, the function would be called as =scSortByAgg(A1:D100,1)
input as an array function in a range large enough to hold the answer. Array
functions are entered using control+shift+enter, rather than just enter. They appear
in the spreadsheet as {=scSortByAgg(A1:D100,1)}.

'Excel 2002 will automatically create wrappers for all functions using Tools, Add-Ins and
selecting the Automation button.
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The implementation in the Wrappers module of SCARE.xla uses a single vari-
able xx which is shared between all the functions in the work book. It is defined
as a private variable at the beginning of the workbook.

Several variables below are defined as “variants”. Variants are a useful hold-
all variable type in VB/VBA. Almost all method output variables are Variants.
They can hold a single number, a string, an array of numbers, or a mixed ar-
ray, or even a reference to an entire open Excel application. Code such as v =
Range(“al:b10”).value will set v equal to a 2 x 10 variant array. Depending on
the contents of the range it could be an array of doubles or an array of variants.
Code like set v = Range(““al:b10”) sets v equal to a reference to the range object.
It is then possible to write v.ClearContents to clear Range(“al:b10”) or v.Value
= 10 to set all the cells A1:B10 equal to the value 10. Variants need to be used
with care. In some situations they are convenient, fast and efficient—but in others
they are convenient, slow and inefficient. Their use in SCARE is confined to the
former.

The main various functions in SCARE.xla are as follows.

Function scSortByAgg(v, ad As Long)
Sums the input n x r multivariate density over columns to get an n x 1 aggregate. Sorts

the whole input array by the aggregate. Use ad=1 to sort in ascending order, and ad=-1

for descending order.

Public Function scCholeski (x As Variant) As Variant

Returns the Choleski decomposition of the input  x r matrix . Note that the C++ object
only populates the upper half of the matrix. The VBA method “tidies-up” that return by

zero filling the lower portion.

Function scCorr(v As Variant) As Variant

Computes the mean by column, covariance matrix and correlation matrix of the input
n x r multivariate density v. Only the correlation matrix is returned to Excel, but it would

be easy for the user to alter to return the means vector or the covariance matrix.
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Public Function scIsCovMat (x As Variant) As Boolean

Tests input matrix X to determine if it is positive definite. Returns true or false.
Function scNormDist (x As Double) As Double

Computes $(x) the standard normal distribution function evaluated at z. It is more accu-
rate, and from VBA quicker, than the worksheet function NormDist.

Function scNormInv(x As Double) As Double

Computes the inverse standard normal probability distribution function at probability level
x. Also quicker and more accurate than the built in functions.

Function scTDist (nu As Long, x As Double) As Double

Computes the t-distribution function with v degrees of freedom at z.

Function scTInv(nu As Long, x As Double) As Double

Computes the inverse to the ¢ distribution function with v degrees of freedom at probabil-
ity level .

Function scBVN(h As Double, k As Double, rho As Double) As Double
Computes the probability Pr(X < h,Y < k) where (X,Y) have a bivariate normal
distribution with standard normal marginals and correlation coefficient p.

Function scBVT(nu As Long, h As Double, k As Double, rho As Double)
As Double

Computes the bivariate ¢ distribution function Pr{(X < h,Y < k) where (X,Y) have a

bivariate ¢ distribution with nr degrees of freedom and correlation p.

Function scQuickShuffle(rgIn, corrIn) As Variant

Returns the input n x r range rgln re-ordered to have correlation approximately equal to

the r x r correlation matrix corrln.
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Function scQuickShuffleParam(spec, n As Long, covMat) As Variant

As scQuickShuffle, except the input values are parameters for shifted lognormal variables.
The spec input is a n x r array where there are n input lines of business and nine columns.
The meaning of the nine columns is as follows:

1.
2.

196

Not used

+1, where +1 is used to represent losses and —1 liabilities

n

a

. 8, the shift parameters

. 0 or 1 indicator where 1 means there is layer and attachment information for the

current row.

. Layer value

. Attachment value; the sample is from a shifted lognormal with parameters s, u

and o, conditional on losses being greater than the attachment. The attachment is
subtracted and losses are limited by layer value input.

. Not used.
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Appendix B
VBA CODE FOR INDEXING

Private Sub indexx(n As Long, arr, colNo As Long, indx() As Long)
' Indexes an array arr([l..n}, i.e., outputs the array indx[l..n] such
'  that arr[indx{j}] is in ascending order for j =1, 2, . . . ,N. The
* input quantities n and arr are not changed. Translated from [31].

Const m As Long = 7
Const NSTACK As Long = 50

Dim i As Long, indxt As Long, ir As Long, itemp As Long, j As Long
Dim k As Long, 1 As Long

Dim jstack As Long, istack(l To NSTACK) As Long

Dim a As Double

For j = 1 Ton

indx(j) = jJ
Next j
Do While 1
If (ir - 1 < m) Then
For j = 1 + 1 To ir

indxt = indx(3j)

a = arr({indxt, colNo)

For i = j - 1 To 1 Step -1
If (arr(indx(i), colNo) <= a) Then Exit For
indx(i + 1) = indx(i)
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Next i
indx(i + 1) = indxt
Next j
If (jstack = 0) Then Exit Do
ir = istack(jstack)
jstack = jstack - 1
1 = istack(jstack)
jstack = jstack - 1

k = (1 + ir) / 2

itemp = indx(k)

indx (k) = indx(l + 1)

indx (1l + 1) = itemp

If (arr(indx(l), colNo) > arr(indx(ir), colNo)) Then
itemp = indx(1l)

indx (1) = indx(ir)
indx{ir) = itemp
End If

If (arr(indx(l + 1), colNo) > arr{indx(ir), colNo)) Then

itemp = indx(l + 1)

indx(l + 1) = indx(ir)
indx(ir) = itemp
End If

If (arr(indx(l), colNo) > arr(indx(l + 1), colNo)) Then

itemp = indx (1)
indx(1l) = indx(1l + 1)

indx(l + 1) = itemp
End If
i=1+1
j = ir

indxt = indx(1 + 1)
a = arr{indxt, colNo)

Do While 1
Do
i=14+1
Loop While (arr(indx.i), colNo) < a)
Do
i=3-1

Loop While (arr(indx(j), colNo) > a)
If (j < i) Then Exit Do

itemp = indx(i)
indx (i) = indx(j)
indx(3j) = itemp
Loop
indx(l + 1) = indx(3j)

Casualty Actuarial Society Forum, Winter 2006



RWP on Correlations and Dependencies Among All Risk Sources Report

indx(j) = indxt

jstack = jstack + 2

If (jstack > NSTACK) Then MsgBox ('‘NSTACK too small in indexx.")

If (ir - i + 1 »>= j - 1) Then
istack(jstack) = ir
istack(jstack - 1) = 1
ir =3 -1

Else
istack(jstack) = j
istack(jstack - 1)
1 =1

End If

End If
Loop

[}
)

End Sub
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AGGREGATING BIVARIATE CLAIM SEVERITIES WITH
NUMERICAL FOURIER INVERSION
DAVID L. HOMER

Abstract

This chapter will apply continuous Fourier transforms to compute the bivariate aggre-
gate claims distribution arising from a bivariate severity distribution and a univariate

claim count distribution.

1. INTRODUCTION

This chapter will apply continuous Fourier transforms to compute the bivariate aggre-
gate claims distribution arising from a bivariate severity distribution and a univariate
claim count distribution.

Section 1 provides a general description of univariate aggregate claims methods
followed by a general description of bivariate aggregate claims methods.

Section 2 provides a brief summary of the univariate Fourier transform method
applied by Heckman and Meyers [3] since this will provide the foundation for the
bivariate method presented in section 3. The abbreviation “HM” will be used for

“Heckman and Meyers”. Section 4 presents examples.

1.1.  Univariate Methods

There are several methods described in the actuarial literature for computing the uni-
variate aggregate loss distribution arising from a univariate scverity distribution and

a univanate claim count distribution. These methods include HM’s numerical Fourier
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inversion [3], discrete Fourier transforms as discussed by Wang [10] and Robertson
[8], and Panjer’s recursive techniques {7].

Heckman and Meyers’ numerical Fourier inversion method uses a severity distri-
bution with claim size intervals of constant density and a possible point mass at the
maximum claim size. The claim count model is Binomial, Poisson, or Negative Bi-
nomial. This method works best when the expected claim counts are large because
the numeric integral computed by this method coverges more quickly when the claim
counts are large.

The basic discrete Fourier transform method requires a discrete claim size distri-
bution with claim sizes at equally spaced intervals. It works best when the expected
claim counts are small because of computer memory constraints. The interval size
must be small enough to accurately represent the claim size distribution while the
largest claim size represented must be large enough to capture the aggregate distri-
bution. This generally means a large number of intervals are required and limited
computer memory can make computations for large claim counts impractical.

Robertson’s method is a clever adaptation of the basic discrete Fourier transform
for application with claim size distributions with equally spaced intervals of constant
density. This is nearly the same claim size model used by HM, but with a few
additional limitations. There is no point mass allowed at the maximal claim size and
the intervals of constant density must have uniform width. The claim count model is
a finite list of probabilities. This method works best when the expected claim counts
are small because of computer memory constraints.

Additional calculations are required to correct the basic discrete Fourier trans-
form for the non-discrete severity density. In practice, the cost of the additional
calculations may outweigh the benefit, if any, of using severities with intervals of con-
stant density. However, since Robertson’s method is exact it is extremely useful for
checking methods like the HM method which has an error term. The testing must
be done with examples with a moderate number of expected claims since the HM
method works best with a large number and Robertson’s method works best with a
small number. In this paper we will use a two-dimensional application of Robertson’s
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method to compute the error of the two-dimensional extension of HM.

The recursive technique uses a discrete severity distribution with uniformly spaced
claim sizes. The claim count model includes the Binomial, Poisson and Negative
Binomial distributions.!. This method works well when the expected claim counts
are small for reasons similar to those given for discrete Fourier transform methods.

In the methods described above, a pair of risk collections—each with its own
severity and claim count distribution—would be aggregated assuming the collections
were independent. Heckman and Meyers also allow a mizing parameter that reflects
parameter risk in the scale of the aggregate distribution and induces a correlation
between collections. Wang [10] and Meyers [6] discuss the univariate aggregation of
correlated collections.

1.2. Bivariate Methods

The actuarial literature also describes the computation of bivariate aggregate dis-
tributions. Homer and Clark [4] describe bivariate examples using two-dimensional
discrete Fourier transforms. Sundt [9] extends Panjer recursions to multiple dimen-
sions. Walhin [11] describes an application of two-dimensional Panjer recursions.
Like their univariate counterparts, these methods work best when the expected claim
counts are small due to computer memory constraints.

This chapter extends the HM method to bivariate aggregate distributions. As with
the univariate method, this extension works best when the expected claim counts are
large because the numeric integrals computed converge more quickly with large claim
counts.

The following sections will provide a brief review of the HM univariate method,

develop the bivariate method, and present some examples.

1The claim count model for recursion technique includes a larger group of distributions which are
the members of the (a,b,0) or (a,b,1) classes as described by Klugman et al [3]. The HM method
can be modified to use (a, b, z) members.
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2. UNIVARIATE NUMERICAL FOURIER INVERSION
2.1.  Univariate Collective Risk Model

The collective risk model describes aggregate claims for a collection of risks with a
claim count or frequency distribution and a claim size or severity distribution. The
individual claims sizes X are independent and identically distributed (iid). The
individual claim sizes are also independent of the claim count N. The aggregate
losses are

Z=X1+..+Xn. (2.1)

This model may be used to describe the aggregate losses for a single line or book of

business.

2.2.  Univariate Aggregate Characteristic Function

The aggregate loss distribution is conveniently described through its characteristic
function in terms of the characteristic function of the claim size distribution and the
probability generating function of the claim count distribution.

Recall that the characteristic function (cf) for a distribution is defined as
ox(t) = E(e*¥), (2.2)

and that the probability generating function (pgf) for a discrete distribution is defined

as

PGFy(t) = E(tY). (2.3)

The aggregate loss characteristic function ¢z(t) is equal to the composition of the
claim count probability generating function PGFn(t) with the claim size character-

istic function ¢x(t),

¢z(t) = E(e*%)

— E(€X1+”'+XN)

= En(¢x(t)V|N)
= PGFn(¢x(t)) (24)
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The cdf F(z) of Z can be obtained from ¢z(t) when it is continuous
1 1 [ sin(zt — arg(¢z(t

t
Although ¢(¢) is complex, Equation 2.5 is real valued; |¢| is the modulus of ¢ and
arg(¢) is its argument. The right hand side of 2.5 yields F(z) — Pr(Z = z)/2 at steps
when F(z) is not continuous. Given ¢(t), F(z) is obtained via numeric integration.

dt. (2.5)

Equation 2.5 is equivalent to HM equation 6.5. By applying a scale change of
variable ¢ — t/o and substituting f(t) = |¢(t/o)| and g(t) = arg(é(t/o))) into
equation 2.5 we get HM equation 6.5,

Fz) = % + % /0 ” f%sin(tz/a — g(t))dt. (2.6)

2.3. Univariate Severity Model

The severity density is approximated to make the calculation of ¢.(t) easy. It is
approximated with n intervals (ax, ar41) of constant density di (k = 1,..n) and an

optional point mass p at the maximal claim size a,4; such that

> di(ars —a) +p=1. (2.7)

k=1
Figure 2.1 shows a sample severity density with two intervals (a1, a2) and (ag, as) and

a point mass at az. With this severity model we easily obtain

¢x(t) = Ex(e")
n etory1 _ pttar

3 S petans, (2.8)

P it

2.4.  Univariate Numerical Inversion

Heckman and Meyers integrate 2.5 using five point Gaussian quadrature with spe-
cial treatment of the portion of the integral near zero. We will extend this to two
dimensions using five point quadrature first along one dimension and again along the

second dimension.
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FIGURE 2.1
UNIVARIATE SEVERITY DENSITY — INTERVALS OF CONSTANT DENSITY
dio
S} p ........................................ O
2
8§ do oo
T 1
a as as
claim size

3. BIVARIATE NUMERICAL FOURIER INVERSION
8.1. Bivariate Collective Risk Model

The collective risk model can be extended to model two collections of risks and their
dependencies. There are two forms for this extension.

The first form is the bivariate severity form. It is useful for modeling aggregate
losses together with the corresponding aggregate adjustment expenses. This form
uses a single claim count distribution and a bivariate claim size distribution. While
the bivariate pair (X}, ¥;) may have any dependency structure, the pairs arising from
different claims are assumed to be iid. The claim size pairs are also independent from
the claim count N. The aggregate loss pair is

(Z3,Zy)=(X1i+ ...+ Xn, Y14+ ...+ Yn). (3.1)

The second form is the bivariate count form. It is useful for modeling two risk col-
lections with different but related claim counts. The claim size severities X and Y,

are separately iid and also independent from each other. The claim counts for each

212 Casualty Actuarial Society Forum, Winter 2006



RWP on Correlations and Dependencies Among All Risk Sonrces Report

risk collection arise from a bivariate claim count distribution. The claim count pair
(M, N) is independent from each of the claim sizes. The aggregate pair is

(Z4,2y) = (X1 + .. + X, Y1+ ...+ Yn). (3.2)

This chapter will focus on the bivariate severity form, but the methods presented here
can also be applied to the bivariate count form.

3.2. The Bivariate Aggregate Characteristic Function

The aggregate characteristic function for the bivariate severity form of the collec-
tive risk model is a composition of the claim count pgf with the bivariate severity

characteristic function.
bz.n(st) = B(e%HR)
_ E(els(X1+~--+XN)+it(Yl+-<-+YN))

_ E(eisxl +itYy . “eisXN +itYy )

= En(¢xy(s,t)NIN)
= PGFn(¢xy(s,t)) (3.3)

For the bivariate count form, Wang [10] gives the aggregate characteristic function.

¢2,.2,(s,t) = PGFy n(ox(s), oy (). (3.4)

Where PGFyn(s,t) is the bivariate claim count pgf.
Appendices A and B develop an expression for F(z,2,) in terms of ¢z, z,(s,t)

when F is continuous,

F(z.y) = 3 (F@) + Fy)) - 3 + 1], (35)

where

=2 [T [ ot costse + ty - ans(o(s,0) -
dsdt
(is)(it)’

|6(s, —t)| cos(sz — ty — arg(e(s, —1)))) (3.6)
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When F' is not continuous, the right hand side of 3.5 yields F'(z,, 2,) + m/4, where
m is a correction for probability mass that lies along the lines Z, = 2, and Z, = z,,

and
m = Pr(Z;>2NZ,=z) (3.7)
+Pr(Zy > 2yNZ; = z) (3.8)
—Pr(Z, <z,NZ,=1z,) (3.9)
—Pr(Zy < zyNZ; = z;). (3.10)

3.83. Bivariate Severity Model

In an extension of the univariate severity model, the bivariate severity density will
be approximated with rectangles of constant density. That is, the severity domain
will be divided into mn rectangles (a;, a;41) % (bg, bir1) of constant density d;x (5 =
1..m)(k = 1..n). Like the one dimensional case, this simplifies the calculation of
dxy(s,t),

¢X,Y(S, t) - E(613X+itY)

m o n b1 poy41 )
— § : Z / / dj,kelsx+ltyd$dy
bk a;

j=1 k=1

3

n 15041 _ otSay eitbk+1 - eisbk

€
> dix — = . (3.11)

k=1

Il

-

.

Figure 3.1 shows a sample bivariate density.

Here we have not included mass points or mass lines, but it is possible to do so.

3.4. Bivariate Numerical Fourier Inversion

We will make use of two-dimensional five point Gaussian quadrature. Appendix C
provides additional descriptions of two-dimensional quadrature. Sample code will also
be provided in a spreadsheet that can be downloaded from the CAS Web site. It will
follow key elements of the HM code fairly closely.
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FIGURE 3.1
BIVARIATE SEVERITY DENSITY—RECTANGLES OF CONSTANT DENSITY

¥ I T
a Qag as

X claim size

In particular, HM split the line into 256 intervals of width h = 276 /Zme,. We will
split the grid into rectangles of widths h; = 7/Z ez and by = 7/ymq, respectively. We
are using half of the HM interval and trying to economize on the total number of rect-
angles. We leave out the additional factor of ¢ which is the standard deviation of the
aggregate distribution and is not required. Heckman and Meyers additionally split the
first interval into 5 smaller intervals (0, h/16), (h/16, h/8), (h/8,h/4),(R/4,h/2),(h/2,h).
This is helpful because the integrand changes rapidly near zero.

As suggested by HM it is speculated that the key source of error in this method
is truncation error, since the integrals are from zero to infinity, but our algorithm
must stop at a finite values. Errors in our sample calculations will be computed with

comparisons to known values.
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4. BIVARIATE EXAMPLES

This section presents two examples. The first example applies the 2d inversion tech-
nique to a bivariate severity and a claim count distribution allowing only a single
claim. Thus, the aggregate distribution is the same as the bivariate severity and the
error is readily computed.

The second example applies the 2d inversion to the same bivariate severity with a
moderate number of expected counts. This result is compared to an exact calculation

produced by a two dimensional version of Robertson’s method (8].

4.1. Ezample 1—FEzactly One Claim

Table 4.1 shows a sample bivariate severity distribution. If we also assume the claim
count distribution has a 100% probability of 1 claim the resulting aggregate distribu-
tion computed by our method is shown in Table 4.2. This method should reproduce
Table 4.1. The error is shown in Table 4.3.

TABLE 4.1
SAMPLE BIVARIATE SEVERITY CUMULATIVE DISTRIBUTION FUNCTION
F(z,y) Yy

0 200 600 800  1.200
0] 0.0000 0.0000 0.0000 0.0000 0.0000

z 200} 0.0000 04705 0.7557 0.7845 0.8120
400 | 0.0000 0.4858 0.8243 0.8621 0.8990

600 | 0.0000 0.4917 0.8540 0.8964 0.9380
1,000 | 0.0000 0.4953 0.8735 0.9190 0.9640
2,000 | 0.0000 0.4991 0.8949 0.9440 0.9930
3,000 | 0.0000 0.4996 0.8978 0.9474 0.9970
5,000 | 0.0000 0.5000 0.9000 0.9500 1.0000
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AGGREGATION OF SAMPLE BIVARIATE SEVERITY CDF WITH 100%

TABLE 4.2

ProBABILITY OF 1 CLAIM

F(2z, 2y)

>
<

Y

0

200 600

800

1,200

2z

200
400
600
1,000
2,000
3,000
5,000

0.0000
0.0011
0.0012
0.0012
0.0012
0.0012
0.0012
0.0012

0.0047 0.0076
0.4652 0.7485
0.4850 0.8236
0.4909 0.8535
0.4946 0.8731
0.4984 0.8945
0.4989 0.8975
0.4993 0.8996

0.0079
0.7774
0.8617
0.8961
0.9189
0.9439
0.9474
0.9499

0.0082
0.8046
0.8985
0.9377
0.9639
0.9929
0.9969
0.9999

ERROR FOR EXAMPLE 1 AGGREGATE CDF

TABLE 4.3

Error

2y

0

200 600

800

1,200

2y 200
400

600

1,000
2,000
3,000
5,000

0.0000
0.0011 (
0.0012 (
0.0012 (
0.0012 (0.0007
0.0012 (
0.0012 (
0.0012 (

(
0.0007) (0.0004)
(

0.0047  0.0076

(0.0072)
(0.0007)
(0.0005)
(0.0004)
0.0004)

0.0004)

0.0079

0.0082
(0.0074)
(0.0005)
(0.0003)
(0.0001)
(0.0001)
(0.0001)
(0.0001)
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4.2.  Erample 2—Varigble Claim Counts

In this example we use the claim size distribution from Example 1 and a claim count
distribution with a maximum claim size. This allows us to compute the exact answer
using an alternative method based on Robertson’s one-dimensional method. Ap-
pendix D provides a brief discussion of a 2d Robertson method. In addition, sample
R code showing the 2d Robertson calculation will be made available for download-
ing. Table 4.4 shows the count distribution. Table 4.5 shows the exact calculation
based on the Robertson method. Table 4.6 shows the result from numerical Fourier
inversion. The error is shown in Table 4.7. The errors are substantially smaller that
those from Example 1 and this is attributed to the larger claim counts forcing the
integrand to converge to zero more quickly.

5. CONCLUSION

Numerical Fourier inversion is a viable technique for exploring claim dependencies.
When the claim counts are large, it may be more efficient than other techniques such
as discrete Fourier transforms, recursion, or simulation.

Additional development is possible for alternate severity structures such as a
bivariate distribution for primary and excess claim portions. Given the aggregate
characteristic function, conditional expected values can also be computed. These

calculations could have potential applications in reserving and surplus allocation.
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ExaMPLE 2-——CLAIM CoOUNT DISTRIBUTION

TABLE 4.4

Count Probability Cumulative

0 0.000 0.000

1 0.000 0.000

2 0.000 0.000

3 0.000 0.000

4 0.000 0.000

5 0.000 0.000

6 0.000 0.000

7 0.000 0.000

8 0.100 0.100

9 0.100 0.200

10 0.100 0.300

11 0.100 0.400

12 0.100 0.500

13 0.100 0.600

14 0.100 0.700

15 0.100 0.800

16 0.100 0.900

17 0.100 1.000
Mean 12.500
Std 2.872
Var 8.250
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TABLE 4.5
EXAMPLE 2—EXACT SOLUTION FROM 2D ROBERTSON METHOD
F(Z:ta Zy) zy

1,000 2,000 4.000 6,000 10,000
1,000 | 0.0009 0.0195 0.0550 0.0566 0.0567

zz 2,000 | 0.0017 0.0677 0.3249 0.3924 0.3951
3,000 | 0.0019 0.0688 0.4850 0.6649 0.6782
4,000 | 0.0019 0.0724 0.5613 0.8193 0.8431
5,000 | 0.0019 0.0737 0.5925 0.8928 0.9239
6,000 | 0.0019 0.0744 0.6073 0.9287 0.9639
8,000 | 0.0019 0.0747 0.6170 0.9547 0.9935
15,000 | 0.0019 0.0747 0.6185 0.9601 1.0000

TABLE 4.6
EXAMPLE 2—AGGREGATE CDF FROM NUMERICAL FOURIER INVERSION
F(zy,2) 0

2y

1,000 2,000 4.000 6,000 10,000
1,000 | 0.0009 0.0195 0.0550 0.0566 0.0567

z; 2,000 |0.0017 0.0577 0.3249 0.3924 0.3951
3,000 | 0.0019 0.0688 0.4850 0.6649 0.6782
4,000 | 0.0019 0.0724 0.5613 0.8193 0.8431
5,000 | 0.0019 0.0737 0.5925 0.8928 0.9239
6,000 | 0.0019 0.0744 0.6073 0.9287 0.9639
8,000 | 0.0019 0.0747 0.6170 0.9547 0.9935
15,000 | 0.0019 0.0747 0.6185 0.9601 1.0000
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TABLE 4.7
ExamMPLE 2—ERROR
Error 2y

1,000 2,000 4,000 6,000 10.000

1,000 | 0.00000  0.00000  0.00000  0.00000  0.00000

zz 2,000 [ 0.00000  0.00000  0.00000 0.00000 0.00000
3,000 | 0.00000 (0.00000) (0.00000) (0.00000) (0.00000)
4,000 | 0.00000  0.00000 0.00000  0.00000  0.00000
5,000 { 0.00000  0.00000 0.00000  0.00000  0.00000
6,000 | 0.00000  0.00000 0.00000  0.00000  0.00000
8,000 | 0.00000  0.00000  0.00000 ° 0.00000  0.00000
15,000 | 0.00000  0.00000  0.00000  0.00000  0.00000
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APPENDIX A

Two-DIMENSIONAL INTEGRATION FORMULA

Consider the integral

P [T enema-s -0 - e o(-s,0)
o Jo
. . dsdt
sz ( aty ,——t _ ity ,t . Al
(e Wg(s, ~1) — (s, ) (A1)
Substitute the integral form for ¢ and apply Fubini’s theorem to change the order of

integration. Then,

00 OO pOO  fOO
I = / / / / eis(z—u)(eit(y—v) _ ett(v—y))
—o0 J -0 JO 0

dsdtdF(u,v)

__ps(u—x) ¢ it(y—v) _ it(v—y) A2
¢ (e € ) isit (4.2)
Since : )
X0 pisT _ o—isT
/ ————ds = nsgn(z), (A.3)
0 18
where
-1, z<90
sgn(z) = 0, z=0, (A4)
1, z>0
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]

/ / / wsgn(z — u)(e@=Y) — eit(”‘“))i:dF(u,v)
-0 J—00 0 3

/—00 /_00 mlsgn(r — u)sgn(y — v)dF{u, v)
/I /y 72dF(u,v) — Pr(Z,; < z; N Z, = z,)

~Pr(Zy < zyNZ; = z)

/ / 72dF(u,v) + Pr(Z, > 2, N Z, = z,)
/ / T2 dF(u,v) + Pr(Zy > 2, N Zy = z,)
/ [} e
(F(z,y) — (F(z,00) = F(z,y)) = (F(o0,y) — F(z,y))
+(1 — F(oo,y) — F(z,00) + F(z,y)) + m). (A.5)

Where m is a correction for probability mass that lies along the lines Z; = z, and

Z, = zy when F(2;, zy) is not continuous, since sgn(0) = 0.

So,

Finally,

224

m = Pr(Z,>zNZ,=z) (A.6)

+Pr(Zy, > 2,NZ; = 2;) (A7)

—Pr(Z, <z, N Z, = z,) (A.8)

—Pr(Z, < zyNZ, = z,). (A.9)

I =n?(4F(z,y) — 2(F(z) + F(y)) + 1 + m). (A.10)
1 1 1 m
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APPENDIX B

EXPANSION OF I FOR NUMERICAL INTEGRATION
Appendix A provides an expression for the bivariate cdf F(z,y).

1
+ 5l (B.1)

Flz,y) = 5(F@) + F®) - §

where,

/ / € (ep(—s, —t) — e Wg(—s,t))

dsdt

e 5T (eity _ ety
It will be helpful to write ¢ in polar form and make use of a few symmetries. Let
R(s,t) = |o(s,t)] (B.3)
O(s,t) = arg(¢(s,t)), (B.4)
then,
é(s,t) = R(s,t)e®et) = E(eis=tity), (B.5)

We have the complex conjugate of ¢

o(s,t) = R(s,t)e”D (B.6)
= E(ewatity) (B.7)
= E(e—isx—ity) (BS)
= R(-s, —t)e?-s71. (B.9)
Thus,
0(s,t) = —0(—s,—t) (B.10)
0(s,~t) = —6(—s,t) (B.11)
R(s,t) = R(-s,-t) (B.12)
R(s,—t) = R(—s,t) (B.13)
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Now writing / with ¢ in polar form

I /-oo /00 (ewz (e"yR(—S, _t)eza(—s.—t) _ e—ityR(_s’ t)e19(-s,t)) _
0 0
dsdt

—isx ity —t 19(s,—t) __ —ity 10(s,t) B.1
e (™ R(s, —t)e e WR(s,t)e?*Y)) )00 (B.14)
and simplifying using equations B.10-B.13,
I= / / 1sz‘+ity—10(s,t) + e—is:c—ity+10(s,t)) _
: : dsdt
. v ity—if(s,—t) —isz+ity+i6(s,—t) B.1
we can now write
I —/ / (s,t)2cos(sx + ty — O(s,t)) —
dsdt
—1)2 - -
R(s, —t)2cos(sz — ty — 8(s, —t))) BIDk (B.16)
In terms of ¢ we have
T= [ [ Gots.tn2cos(sz + y —arglo(s,) -
dsdt
|@(s, —t)|2 cos(sz — ty — arg ¢(s, —t)))) Bk (B.17)
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APPENDIX C

GAUSSIAN QUADRATURE FOR Two DIMENSIONS
This section will develop the formulae for two-dimensional Gaussian quadrature.

The basic form to be approximated is

- /ab /cdf(x,y)da:dy. (C.1)

Using a change of variables, change the integral domain from the rectangle [a, 4] x [c, d]
o[-1,1] x [-1,1].
1
u = _a(2x—a~—b). (C.2)

v o= d—ié(2y—c—-d). (C3)

<

Equation C.1 becomes

I_/ /—1 ( -a +a+b7v(d )2+c+d)(b—a)4(d_c)dudv. (C.4)

The integral C.4 is now computed as a double sum,

I=ZwaJf( a;+a+b,xj(d—c;+c+d) (b—al(d—c)_}_ﬁ (C5)

=1 j=1

The error term € depends on how well f(z,y) can be approximated by polynomials of
finite degree (nine or less for five point Gaussian quadrature). By choosing sufficiently
small intervals € can be made small. See (2] for additional details.

The quadrature values x; and w; are taken from Abramowitz and Stegun [1].
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TABLE C.1
ABSCISSAS AND WEIGHTS FOR FIVE POINT GAUSSIAN QUADRATURE

k Tk Wi

-0.90617 98459 38664 0.23692 68850 56189
-0.53846 93101 05683  0.47862 86704 99366
0.00000 00000 00000  0.56888 88888 88889
+0.53846 93101 05683 0.47862 86704 99366
+0.90617 98459 38664 0.23692 68850 56189

[ I G

APPENDIX D

Two-DIMENSIONAL ROBERTSON METHOD

This appendix provides a brief discussion of extending Robertson's method [8] to
two dimensions. It begins with a summary of the one dimensional method.

Robertson's method computes the aggregate distribution for a finite claim count
distribution and a claim size distribution with equal width and constant density
intervals. The method is exact and it uses discrete Fourier transforms.

A more basic application of the discrete Fourier transform requires a discrete claim
size distribution with claim sizes at integral intervals.

Robertsons’s method uses the usual discrete Fourier technique to compute convo-
lutions, but adds a correction to reflect the constant density claim size intervals. The
method is quite clever and it is not hard to develop an intuition to see why it works.

Consider a discrete random variable X with integral size intervals of width I. Now
add a random variable U that is uniform on the interval I. The result X + U is a
random variable with claim size intervals of constant density.

This observation can be applied to develop the aggregate distribution with claim
size distribution Fx,y and claim count distribution P. Note that the sum of n
independent copies of X + U has the same distribution as the sum of n independent
copies of X plus n independent copies of U. The aggregate cumulative distribution
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function is then

N=Nmaz

Fz) = 3 PMFu() (D.1)
=Y POEPE) « B 02)
n=0

The quantity F. )((")(z) can be computed with the discrete Fourier transform and
Robertson explains how F[(J")(z) can be obtained. For integral values of z the convo-

lution of the two is
j=z

Flu2) = Y (FPGF (2 - 5)). (D.3)
j=0

Now consider F ,(("_iU for integral values of z,

j=z

Flu(e) = Fflp(z=1) = LU OFEP (=) = FP (=5 =1)) (D)

J=0

Robertson explains that the differences (F((]")(z -j) - F[(,")(z — j —1)) are the factors

a;_; where,
ay =1/n! n>1, (D.5)
aj =0 j>1, (D.6)
@ =(1/n)((n -+ G+ DG n>2, > 1 (D7)

The right hand side of equation D.4 is the convolution of f™ with a} and can be
computed using discrete Fourier transforms.

The twn-dimensional extension works in exactly the same way by considering the
discrete random pair (X,Y’) with integral size intervals of widths I and J. By adding
an independent pair (U, V') where U is uniform on I and V is uniform on J, we get
the random pair (X + U,Y + V), which has claim size rectangles of constant density.
The two-dimensional correction factors for the nth convolution are outer products of

the one-dimensional correction factors, since U and V' are independent.

agiy = a;a; (D.8)
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Sample R-code will be submitted with this chapter for downloading.
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The Report of the Research Working Party on
Correlations and Dependencies Among All Risk
Sources

Part 3

The Common Shock Model for Correlated Insurance

Losses

Glenn Meyers, FCAS, MAAA, Ph.D.

Abstract

This chapter discusses an approach to the correlation problem where losses in different lines of
insurance are linked by a common variation (or shock) in the parameters of each line’s loss model.
The chapter begins with a simple common shock model and graphically illustrates the effect of the
magnitude of the shocks on correlation. Next it describes some more general common shock models
that mvolve common shocks to both the claim count and claim severity distnbutions. It denves
formulas for the correlation between lines of insurance in terms of the magnitude of the common
shocks and the parameters of the underlying claim count and claim severity distributions. Finally, it

shows how to estimate the magnitude of the common shocks. A feature of this estimation is that it
uses the data from several insurers.
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1. Introduction

In the study of insurer enterprise risk management, “correlation” has been an important, but
elusive phenomenon. Those who have tried to model insurer risk assuming independence
have almost always understated the variability that is obsetved in publicly available data.
Most actuaries would agree that “correlation” is the major missing link to the realistic

modeling of insurance losses.

This chapter discusses an approach to the correlation problem where losses in different lines
of insurance are linked by a common variation (or shock) in the patameters of each line’s

loss model. Here is an outline of what is to follow.

o [ will begin with a simple common shock model and graphically illustrate the effect of

the magnitude of the shocks on correlation.

e Next I will describe some more general common shock models that involve common
shocks to both the claim count and claim severity distributions. I will derive formulas
for the correlation between lines of insurance in terms of the magnitude of the common

shocks and the parameters of the underlying claim count and claim severity distributions.

¢ Finally, I will show how to estimate the magnitude of the common shocks. A feature of

this estimation is that it uses the data from several insurets.

2. A Simple Common Shock Model

Let X, and X, be independent positive random variables. Also let Sbe a positive random
variable with mean 1 and variance 4. If b > 0, the random variables £X, and X, tend to be
larger when f3is large, and tend to be smaller when fis small. Hence the random variables

PX, and BX; arte correlated. Figures 1-4 below illustrate this graphically.

I will refer to the S as the “common shock” and refer to the  as the magnitude of the
common shocks. Figures 1-4 illustrate graphically that cocfficient of correlation depend
upon b and the volatility of the random variables X, and X.,.
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AX,

BX,
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1 will now derive formulas for the coefficient of correlation between the random variables
BX, and BX,. This derivation will be detailed and I believe that it is worth the reader’s time

to master these details in order to appreciate much of what is to follow.

Let’s begin with the derivation of two general equations from which I will derive much of
what follows. These equations calculate the global covatiance (or variance) in terms of the

covariances (or variances) that are given conditionally on a parameter 6.

Cow[X,Y]= E[X-Y]~E[X]-E[Y]
=E,[E[X Y |6]]-E,[E[x6]] E, [ E[Y|6]]
=E,[E[X-Y|6]-E[X|6]-E[Y|6]] )
+E,[ E[X16]-E[Y|6]]- E,[ E[X | 6]]- E, [ E[Y | 6]]
= E, [ Cor[ X,Y | 6]]+ Cor, [ E[ X | 6], E[Y | 6]]

An important special case of this equation occurs when X =Y.
Var[X]= E,[ Var[ X | 6]+ Var,[ E[ X | 6]] 7))

Now let’s apply Equations 1 and 2 to the common shock model given at the beginning of

this section.

Cor| X, BX.] = By [ Con| BX,, BX, | B])+ Covg [ E[BX, | B], E[ BX.. | B]]
= E,[ B*Cor[ X,. X, ]|+ Cony [ BE[X,]. BE[X,]]
=E,[ §°-0]+E[X,] E[X,] Cons[ B, 5]
=E[X,] E[X,] ¢

©)

Var[BX,]= E,[Var[ X, | B]]+Var,| E[8X, | B]]
=E,[ 8 Var[X,]]+Vary[ B-E[X,]]
=Var[X,]- Eg[ B |+ E[X,] -Var [ 8]
=Var[X,]- (1+0)+E[X,] -4

Similarly: Var[BX,]=Var[X,]-(146)+ E[X,] 5. ©)
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Equations 3-5 can now be plugged into the following equation for the coefficient of

correlation.

Co”[ﬂXl’ﬂXZ]

pBX,.X,]= ©)
TR arl Bx) - var[pX.]
Plugging Equations 3-5 into Equation 6 yields a simple expression if we give X, and X,
identical distributions with 2 common coefficient of variation, CV.
b
p[ﬂXnﬂXz]: ™

(CVY-(1+b)+6
The coefficients of correlation given in Figures 1-4 were calculated using Equation 7.

At this point we can observe that the common shock model, as formulated above, implies
that the coefficient of correlation depends not only the magnitude of the shocks, but also the

volatllity of the distributions that receive the effect of the random shocks.

3. The Collective Risk Model

The collective risk model describes the distribution of total losses arising from a two-step
process where: (1) the number of claims is random; and (2) for each claim, the claim severity
is random. In this section I will specify a particular version of the collective risk model. In
the next section I will subject both the claim count and claim severity distributions to

common shocks across different lines of insurance and calculate the correlations implied by

this model.

Let’s begin by consideting a Poisson distribution with mean A and variance A for the claim
count random variable, N. Let ¥ be a random variable with mean 1 and variance ¢. The
claim count distribution' for our version of the collective risk model will be defined by the
two-step process where; (1) ¥ is selected at random; and (2) the claim count is selected at

random from a Poisson distribution with mean YA. The mean of this distribution is 4. T will

refer to the parameter ¢ as the contagion parameter.

UIf y has a gamma distribution, it is well known that this claim count distribution is the negative binomial
distribution. None of the results derived in this paper will make use of this fact.
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Using Equation 2, one calculates the variance of N as:

Var[N]=E,[Var[N| z]]+Var,[ E[N| z]]
= E, [¥A]+Var, [ 2] ®)
=A+c-A°

Let Z, be a random variable for claim severity for the 7/ claim. We will assume that each Z, is

identically distributed with mean g and variance &. For random claim count, N, let:
X=Z+ ...+ Z
The mean of X is Ax. Using Equation 2 we calculate the variance of X as:

Var[X]= Ey[Var[X | N]]+Var [ E[X | N]]
=E, [N : O':]+Varx [N-u]
=0t +u(A+e AP)
=A- (0P + )+ AP g’

©)

At this point, I would like to introduce a notion of risk size and specify my assumptions on

how the patameters of this model change with risk size.
1. The size of the risk is proportional to the expected claim count, A

2. The parameters of the claim severity distribution, ¢/ and 0 are the same for all nisk

sizes.
3. The contagion parameter, ¢, is the same for all risk sizes.

I do not claim that these assumptions are applicable to all situations. For example,
increasing the size of an insured building will expose an insurer to a potentially larger

propetty insurance claim.

I do believe these assumptions are applicable in the context of this chapter, enterprise risk

management. As an insurer increases the number of risks that it insureds, its total expected

claim count, 4, increases. If each risk that it adds on is similar to its existing risks, it is
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reasonable to expect # and O to be the same. One way to think of the contagion parameter,
¢, is as a measure of the uncertainty in the claim frequency. I believe it is reasonable to think

this uncertainty applies to all risks simultaneously.

While a set of assumptions may sound reasonable, ultimately one should empirically test the
predictions of such a model. I will do so below after I complete the description of my

proposed model.

If the risk size is proportional to the expected claim count, 4, under the above assumptions
it is also proportional to the expected loss A- 4. In this chapter let’s define the loss ratio as

the ratio of the random loss X to its expected loss E[X] =4 4.

Equation 10 shows that the standard deviation of the loss ratio, R = X/E[X] decreases

asymptotically to V¢ as we increase the size of the risk. Figure 5 below illustrates this

graphically.

\//1-(0'2+,u2)+£'/12-ﬂ2
A-u

Standard Deviation [R] =

N (10)

Ao
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Figure 5

Loss Ratios for the Collective Risk Model
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4. Common Shocks in the Collective Risk Model
I will now apply the ideas underlying the common shock model desctibed in Section 2, to
the collective risk model described in Section 3. I will start with the claim count

distributions.

Let N, and N, be two claim count random variables with E[N] = A,and Var{N]} = 4, + ¢, A
fori=1and 2.

Let arbe a random variable with E[0] = 1 and Var{d] = g

I now introduce common shocks into the joint distribution of IN; and N, by selecting N, and
N, from claim count distributions with means & 4, and @ 4, respectively and variances

@A+ (@AY and o A + ¢, (@ A Let’s calculate the covariance matrix for N, and N..
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Using Equation 2 to calculate the diagonal elements yields:

Var[N,]=E,[Var[N, | a]]+Var,[ E[N, |a]]
=Ea[a~/1, +e, -/1,2:|+Var,z [a-4]

11
=A 4o AT (14 g)+ A0 g
=ﬂ'1 +/1i2 .(“l +<g+“1 .g)
Using Equation 1 to calculate the off-diagonal elements yields:
Cor[N,,N,]=E,[Co[N,,N, | @] ]+ Cor,[ E[N, | a] E[N, | a]]
=E,[0]+Cor, [ad, a4 ] (12)

=gA44,

Now let’s add independent random claim severities, Z, and Z, to our common shock model.

Here are the calculations for the elements of the covariance matrix for the total loss random

variables X, and X,.

Var[X,]= Ey [Var[ X, |N,]]+Var, [E[X, IN,]]
=E, [Nl '0-12]+V‘”:\‘, [N, ‘:ui]

13
S (A B (o b i) *
=4 (07 )H A4 (e, + g+e, - 9)
Co|X,, X,]= B, [ Con[ X, X, | @] ]+ Cov, [ E[ X, | @), E[ X, | ]]
=Ea[0]+Co/»a[a‘ﬂ.‘-,u,,a-l_,~,u2] (14)

=gAh Ao,

Finally, let’s multiply the claim severity random variables, Z, and Z,, by a random variable
with E[}] = 1 and Vat[ff] = . Here are the calculations for the elements of the covariance

matrix for the total loss random variables X, and X,
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Var|X,|= E;[Var[X,| B)]+Vary [ E[ X, | B]]
=Ey[A-B (0241} )+ A2 B (e, + g+e,- 8) |+ Vary [ 4, B- 1]

2 AN a2 2 I 15)
=(4 (07 + )+ X 42 (e, + g+, 8))- B[ B |+ A2 -t} -Var [ B)
=4 (407 ) (1+0)+ A4 (o, + g +b+e, - g+e, b+ g-b+e,- g-b)
Co”[Xan]:Eﬂ[Co”[XnX:|ﬁ]]+C0”ﬁ[E[X1|ﬂ]’E[leﬂ]:|
=Eglgd Bt B ]+ Covg[ 4B 11, 2 B, ] 16)

=gA U 'ﬂz'luz'El:ﬂz:l"'i"/ul'Az‘.uz'Var[ﬂ]
=A p A (bt g+hg)

I now complete my desctiption of this version of the collective risk model with the following

two assumptions.

1./ and gare the same for all risk sizes.

2. band g are the same for all lines of insurance.

The parameters 4 and g represent parameter uncertainty that applies across lines of
insurance and it seems reasonable to assume that this uncertainty is independent of the size
of risk. I made the second assumption to keep the math simple without sacrificing the main
themes of this chapter. In practice I have allowed g to vary by line of insurance. I will leave

it as an exercise to the reader to show that you can replace g in Equations 14 and 16 with

J &, * &, when the coefficient of correlation between ¢, and ¢, is equal to one.

Now I will illustrate the implications of this model for loss ratios as we vary the size of risk.
My example will assume that ¢ = 16,000, o= 60,000 and ¢ = 0.010 for each line of
insurance. The additional parameters wiil be # = g = 0.001. In the final sections, I will

show that these are reasonable choices of the parameters.

First let’s note that since 4 and g are small compared to ¢, introducing 5 and g into the model
has little effect on the standard deviation of the loss ratio, although what effect there is,

increases with the size of the risk. This is illustrated by Figure 6.
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Figure 6

Loss Ratios for the Collective Risk Model
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However, the coefficient of correlation, as defined by:

CulR,R]
\/Var[R1]~Var[R2]

pIR.R,]=

increases significantly as you inctease the size of the risk. In Figure 7 below, it is almost

negligible for small risks.
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Figure 7

Loss Ratios for the Collective Risk Model
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When I show similar exhibits to other actuaties, I often find that their expectations of the
coefficient of correlations are much higher. My best rationale for these expectations is that

most expect a positive number between 0 and 1, and 0.5 seems like a good choice.

Even so, these (pethaps) seemingly small correlations can have a significant effect for a

multiline insurer seeking to manage its tisk as I shall now illustrate.
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Let’s consider the covariance mattix for an insurer writing » lines of business.

Var[X,] Cov[X,X.] .. Co[X,,X,]
Co[X,,X,] Var[X,] .. Co[X,,X,]
Cw[X,,X,] Cw[X,,X,] .. Var[X,]

">

The standard deviation of the insurer’s total losses, X, + ... +X,, is the square root of the
sum of the elements of the covariance matrix. If b = g = 0, this sum consists of the »
variances along the diagonal. Ifb and/or g # 0, then there are #* — 7 off-diagonal
covariances included in the sum. As 7 increases, so does the effect of even a “small”

correlation. This is dllustrated in Figures 8 and 9.
Figure 8

Loss Ratios for the Collective Risk Model for the Sum of Two Risks
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Figure 9

Loss Ratios for the Collective Risk Model for the Sum of Ten Risks
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5. An Empirical Test of the Model

The collective risk model, as defined above, makes predictions about how the volatility and
correlation statistics of loss ratios vary with insurer characteristics. These predictions should,
at least in principle, be observable when one looks at a sizeable collection of insurance
companies. In this section I will demonstrate that data that is publicly available on Schedule

P is consistent with the major predictions of this model.

Data in Schedule P includes net losses, reported to date, and net premium by major line of
insurance over a 10-year petiod of time. With Schedule P data for several insurers I
calculated various statistics such as standard deviations and coefficients of cortelation
between lines of insurance for several insurers. Testing the model consisted of comparing

these statistics with available information about each insurer.
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But first I will discuss some of the difficulties with Schedule P data and discuss how, in work
done jointly with Fred Klinker (see Meyers, Klinker and Lalonde [3] for details), we dealt
with these difficulties.

Schedule P premiums and reserves vary in largely predictable ways due to conditions that are
present in the insurance matket. These conditions are often referred to as the underwriting
cycle. The underwriting cycle contributes an artificial volatility to underwriting results that
lies outside the statistical realm of insurance risk. The measures insurance managers take to
deal with the statistical realm of insurance risk, i.e. reinsutance and diversification, are

different than those measures they take to deal with the underwriting cycle.

We dealt with these difficulties by first using paid, rather than incurted, losses and estimating
the ultimate incurred losses with industrywide paid loss development factors. Next we
attempted to smooth out differences in loss ratios that we deemed “predictable.” Appendix

A in the Meyers er. al. paper referenced above describes this process in greater detail.

After making the above adjustments, two other difficulties should be discussed. First, the
use of industrywide loss development factors removes the volatility that takes place after the
report date of the loss. As such, we should expect the volatilities we measure to understate

the ultimate volatility.

Second, Schedule P losses are reported net of reinsurance. In addition, policy limits are not
reported. Rather than incorporate this information directly into our estimation, we did
sensitivity tests of our model varying limits and reinsurance provisions over realistic

scenatios.

Here I present results for commercial automobile liability insurance. I feel this is a good
choice because: (1) it is a shorter tailed line than general liability and the underestimation of
volatility will not be as great; (2) the use of reinsurance is not as great as it is in the general
Lability lines of insurance; and (3) commercial auto is not as prone to catastrophes as the

propetty lines of insurance.
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5.1 Standard Deviation of Loss Ratios vs. Size of Insurer

As illustrated in Figure 5, the collective risk model predicts that the standard deviation of
insurer loss ratios should decrease as the size of the insurer increases. In Figure 10 we can
see that this prediction is consistent with the observed standard deviations calculated from
the Schedule P data described above. In this figure we plotted the empirical standard
deviation of 55 commercial auto insurers against the average (over the 10 years of reported

data) expected loss for the insurer’.

Figure 10 also includes the standard deviations predicted by the collective risk model. The
series denoted by “LowLim” used claim severity distribution parameters taken from a
countrywide ISO claim severity distributions evaluated at the $300,000 occurrence limit. In
this series I set ¢ = 0.007, g = 0.0005 and » = 0. See Section 6 below for my commentaty on

selecting b and g.

Now we (at ISO) know from data reported to us that, depending on the subline (e.g. light
and medium trucks or long-haul trucks), typically 65% to 90% of all commercial auto
insurance policies are written at the $1 million policy limit. But since I also believed that the
Schedule P data understates the true voladlity of the loss ratios, I selected the $300,000
policy limit for the test.

For the sake of comparison, the series “Hilim” represents a judgmental adjustment that one
might use to account for problems with the Schedule P data. I used claim severity
distribution parameters taken from a countrywide ISO claim severity distributions evaluated
at the $1,000,000 occurrence limit. In this series I set ¢ = 0.010, g = 0.0010 and 5 = 0.

Figure 11 provides a comparable plot of loss ratios simulated from a collective risk model

using the same parameters I used for the “LowLim” series.

The two plots both suggest that the Schedule P data is well represented by the collective risk

mode — for an individual line of insurance.

2 Since the expected loss varies by each observation of annual losses, the annual loss ratios are not identically
distributed according to the collective risk model. I don’t think this is a serious problem here since the volume
of business is faitly consistent from year to year.
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Figure 10
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5.2 Coefficients of Correlation vs. the Size of the Insurer

As Figure 7 illustrates, a second prediction of the collective risk model is that the coefficients
of correlation will increase with the size of the insurer. In Figure 12 below, we plotted the
empirical coefficient of correlation between commercial auto and personal auto for 38
insurers of both lines, against the average (over 10 years of experience repotted for the two
lines of insurance) expected loss. A comparable plot based on simulated data from the

model underlying the URM is in Figure 13°.

We observe that the coefficient of correlation is a very volatile statistic for both the empirical
data and the simulated data which has a built-in assumption consistent with our hypothesis.

This setves to illustrate the difficulty in measuring the effect of correlation in insurance data.

To provide a deeper analysis of the cotrelation problem I will make the assumption that the

common shock random variables &rand f operate on all insurers simultaneously. For

random loss ratios R, and Ry:

_ Co[X,,X,]

=btg+b-g; Qan
Aty o phy

E[(R,-1)-(R,-1)]

which I derived from Equation 16.

Now we have already established that the standard deviation of loss ratios decreases with the

size of the insurer. Thus the denominator of:

E[(R,~1):(R,~1)]
Std[R,]-Std[R,]

PIR,R,]=

should decrease. If we can demonstrate with the Schedule P data, that the numerator does
not also decrease, we can conclude that the prediction that coefficients of correlation will

increase is consistent with the Schedule P data. It is to this we now turn.

3 It may seem odd that the predicted correlation curve is not smooth. It is not smooth because tiie horizontal
axis is the average of the commercial auto and the personal auto expected loss, while the actual split between
the two expected losses varies significantly between insurers.
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Figure 12
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The data used in the test that (R—1) (R,—1) was independent of insurer size consisted of all
possible pairs (15,790 in all) of r, and ., and the associated expected losses, taken from the

same year and different insurers. I fita line* to the ordered paits
(Average Size of the Insurer, (r—~1) - (r~1))

and obtained a slope of +1.95%10™". This slightly positive slope means that an increasing

coefficient of correlation is consistent with the Schedule P data.

Equation 17 also provides us with a way to estimate the quantity 4 + g+ b g. One simply has
to calculate the weighted average of the 15,970 products of (r—1) {r~1), 0.00054. Since the
15,790 observations ate not independent, the usual tests of statistical significance do not
apply. To test the statistical significance of this result, I simulated 200 weighted averages
using the “LowLim” parameters (except that » = g = 0) with the result that the highest
weighted average was 0.000318. Thus we can reject the hypothesis that b+ g+ b g = 0.

1 did one final simulation with the “LowLim” parameters (except thatb = 0 and
g = 0.00054) and calculated 200 slopes, with the result that the slope of 1.95X10™" was just
below the 49" highest. Thus this slope would not be unusual if the collective risk model is

the correct model.
6. The Role of Judgment in Selecting Final Parameters

Historically, most actuaries have resorted to judgment in the quantification of correlation.
This chapter was written in the hope of supplying some objectivity to this quantification.
My employer, Insurance Services Office (ISO), has wotked on quantifying this correlation.
We have conducted analyses similar to the one described above for several lines of business
using both Schedule P data and individual insurer data reported to ISO. In the end, no data
set is petfect for the job and we end up making some judgments. Here are some of the

considerations we made in selecting our final models. Comments are always welcome.

+1 used a weighted least squares fit, using the inverse of the product of the predicted standard deviations of the
loss ratio as the weights. This gives the higher volume, and hence more stable, observations more weight.
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e  We have reason to believe that the data we observe understates the ultimate
variability since there are some claims that have yet to be settled. As a result we

judgmentally increased the ¢, b and g parameters in the final model.

® Since the estimation procedure described provides an estimate of & + g+ b g, it is
impossible to distinguish between the claim frequency common shocks, as
quantified by g and the claim severity common shocks as quantified by 4. A lot of
work has been done with claim severity and claim frequency trend and one can look

to uncertainties is these trends when selecting the final parameters.

¢  While one might argue that the distinction between claim frequency common
shocks and claim sevetity common shocks is unimportant, the way we apply them
does make a difference. For claim frequency we group the various lines of
insurance judgmentally, with some support from the data. For example, the same
common shock for claim frequency applies to personal and commercial auto, but
different common shocks apply to the commercial liability lines. We apply claim
severity shocks across all lines. Meyers, Klinker and Lalonde [2003] describe this

model more fully.

Accounting data such as Schedule P may not be the best source for such analyses, but if we
cannot see the effect of correlation in the accounting data, I would ask, do we need to
wortty about correlation? I believe that the analysis in this chapter demonstrates that we do

need to consider cotrelatdon between lines of insurance.
7. Acknowledgements

This chapter is largely an exposition of work that appeared in a series of prior papers that I
will now describe. A significant advance in the correlation literature was made by Shaun
Wang [4] with the publication of his work on a project that was sponsored by the CAS. It
is in this paper that I first heard the term “common shock model.” I rather quickly
followed up with two related papers. In Meyers[1], I originally developed the model that is
described in Section 4 of this paper, and in Meyers[2] I developed methodology to

parameterize the model with data that was “theoretically” available. A few years later we —
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Meyers, Klinker and Lalonde [3] — followed up with another methodology to parameterize
the model with data that was actually available. The original version of this methodology is
described in Appendix A and Fredrick Klinker deserves the lion’s share of the credit for

developing it. I would desctibed Section 5 as a minor improvement to this methodology.
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The Report of the Research Working Party on
Correlations and Dependencies Among All Risk
Sources

Part 4
Serial Correlations of Interest and Inflation Rates

Hans E. Waszink AAG, MSc.

Abstract

This chapter discusses an approach to model the value of an outstanding, discounted
lLiability under the impact of uncertain interest and inflation rates. Interest and
inflation rates are modeled separately as time series to take into account
autocorrelation. Subsequently, the dependence between interest and inflation is
modeled using copulas. The goodness of fit of some copulas can be evaluated on the
basis of historic data using a quantile plot. This is done for the Gumbel, Clayton and
Independent copulas. The Gumbel copula, which gives the best fit, is then compared
with the Normal copula to show that the two copulas are very similar with the
parameters chosen. The distribution of the required reserve is shown under four
different copula assumptions: comonotonicity, which represent the best case,
countermonotonicity which represents the worst case, and the Gumbel and Normal
copulas which represent more realistic scenarios. The choice of copula has
considerable impact on the higher petcentiles of the required reserve, and the adopted
approach is effective in selecting a suitable copula.
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1. INTRODUCTION

In this chapter the following are investigated:

1. Correlations between the same variable, i.e. interest or inflation, at different
points in time (autocorrelation).
2. Cotrelations between interest and inflation over an extended period of time.

3. Impact of these correlations on the present value of a discounted and inflated
Liabiliry.

The effect of both types of cotrelations is demonstrated in a case study investigating the
effect of interest and inflation rates fluctuations on outstanding claims liabilities. Interest
and inflation rates are modeled as time series. Time seties models are commonly used for
variables of which observations are available sequentially in time, and consecutive
observations are dependent. Both these properties typically apply to interest as well as
inflation rates.

A simple example of a time series is an autoregressive process of order 1 (AR(1)) which
is given below:

X =a+ X)) +e(@, t=1,..,T

with

X(): array of stochastic variables, /= 0,7,...,T, X(0) a given constant.

&#):  random error within period (#-7,7), with N(0,g) distribution.

ab:  model patameters.

It can be shown that this structure defines a correlation structure between all X(4), with
cortelations depending on & and ¢ and the elapsed time between observations. More

complex time series models are often requited to adequately capture specific
characteristics such as cyclicality or heteroskedasticity.
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2. OUTSTANDING LIABILITY UNDER UNCERTAIN
INTEREST AND INFLATION RATES

We consider the value of an outstanding claims reserve as the present value of inflated
and discounted future claim payments. Interest and inflation rates are modeled as
random variables. As a starting point, we use uninflated projections of future claim
payments in each future payment period. These can be denved from triangular reserving
methods which include an explicit inflationary effect.

Define:

C(#):  Uninflated, fixed and given cashflow projection at time 7.
Inflt):  Inflaton rate in period (#,2+17), 1= 0,1,2,...
Int(z): Interest rate in petiod (¢, #+1), 2= 0,1,2....

Ae(t): Actual cashflow at ime 7.

Ac(?) is equal to:

Acft) = C(t)xﬁ[1+1r1f(1)], t=123...

=0

For simplicity it is assumed that 4c(z) is the product of the cashflow projection C{2),
which is fixed and given, and future inflation rates only. Therefore the only uncertain
factor in actual future cashflows is future inflation which can represent general inflation,
superimposed inflation or a line-specific inflation. In this study we have used medical
inflation, a line-specific inflation impacting on health insurance related Liabilities.

The inflation rates represent a component of systematic risk in the cash flow projection,
ie. they affect all individual claims simultaneously and to the same extent. To relax the
assumption that inflation is the only uncertain factor affecting future cashflows,
additional components of unsystematic risk can be added without any difficulty, however
these are excluded here.

Dff?): Discount factor in period (1,/+7), =0,1,2,...:

Dy =
0= 15 Intf)
RR(#): Required reserve at time ¢, /=0,1,2,...:
s=t-1

RR®) = Y [A)x [ [ Dt +0)]

s>t =0
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The required reserve is the total of all actual future cashflows discounted at actual future
interest rates. Obviously RR(#) is not known in advance as it is a function of C(¥), Inff?)
and Int(z) with future interest and inflation rates unknown.

The distribution of the RR(#) is a function of the marginal distributions of the interest
and inflation rates after time 7 and the dependencies between interest rates in different
periods, the dependence between inflation rates in different petiods, and the dependence
between inflation and interest rates in the same period and in different periods.
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3. MODELLING THE DISTRIBUTION OF INTEREST AND
INFLATION RATES AND THEIR MUTUAL DEPENDENCE

3.1 Interest rates

A discrete version of the CIR'-model for a single interest rate is used. A single interest
rate is used for simplicity, although the CIR-model allows for the generation of the entire
yield curve with full dependence between different maturides. Different yield curve
structures can be generated using various other interest rate models of a similar time
serles structure.

The discrete CIR-model is a time-series model of the following form:

Int(t) = maxc{0,Int(t - 1)+ alb = Int(s —1)] + [ Int(t =)z, (1)}

with

Int(z): the interest rate in the period (7,s+7)

@ the average speed of reversion to the long term mean interest rate;

b the long term mean interest rate.

et random deviation in period (4,¢+7). The £, () are mutually independent

with marginal distributions N(0,0° ).

The model has several desirable properties such as:

Interest rates are mean reverting;

Interest rates are non-negative.

Interest rates are heteroskedastic, i.e. variance increases with mean.

Interest rates at adjacent points in titme are correlated.

Confidence intervals widen for interest rates projections further into the future.

@ o o o o

For the parameterization of the time series, we have used 3 year interest rates on US
government secutities which are shown in appendix 1. The estimated parameters are
shown in appendix II, simulated autocorrelations of interest rates are shown in appendix
III.

! Cox Ingersoll Ross, see Kaufmann (2001)
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3.2 Inflation rates

For inflation rates a second order autoregressive process (AR(2)) is used:

Inft) = ¢y + ¢, Infle-1) + o, Inf1-2) + £, (1)

with
Cys 1 62 model parameters.
&y (1) random deviations in period (4,7+7).

The ¢, () are mutually independent with identical marginal distributions N(0,6” ).
Some properties of the AR(2) model are:
e If <0, inflation rates may exhibit cyclicality.

- o  Observations at adjacent points in time are cotrelated.
¢ Confidence intervals widen for projections further into the future.

For the parameterization of the time series, we have used US medical care index figures
provided by the Bureau of Labor Statistics, which are shown in appendix I. The
estimated parameters atre shown in appendix II, simulated autocorrelations of inflation

rates are shown in appendix III.

The (analytically determined) autocorrelations between the inflation rate in time period 1

and all other periods, derived from the time series parameterization, are shown below:

| Correlation between Inf(1) and Inf(t)
l
J
|
1

correlation

Figure 1: Modeled autocorrelations of inflation rates

As the parameter ¢, is very close to, and not significantly different from 0, there is no
cyclical pattern in the correlation structure and the process is virtually identical to an

AR(1) process.
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3.3 Dependence between inflation and interest rates

The dependence relation between interest and inflation rates in the same period is
determined by, on the one hand, the structure of the time seties model for both interest
and inflation rates, and on the other hand by the dependence between the random errors

¢,,/(1) and ¢, (¢) in the same period.

Both time series as well as the dependence between them are parameterized on the basis
of actual historic data shown in appendix I. It can be expected that there is a dependency

between ¢,,(7)and ¢, (1) as changes in both inflation and interest rates are driven by the

same or related macro-economic factors. Vatious types of dependence relationships, i.e.
copulas, can be used to model the dependency between ¢, (#) and ¢, (z). We assume that

the dependence relation is the same for all values of # hence does not change over time.

Given that both error terms are assumed to follow a Normal distribution, the simplest
form of dependency is the linear correlation which cotresponds to the Normal copula.
However the Normal copula does not always capture dependencies in the tail of the
distributions appropriately” hence the Gumbel and Clayton copulas are also investigated

As ¢, (f)and ¢, (¢)are independent if t #¢, so are ¢,,(?) and €,/ (*). Thus the choice of

the time series models for interest and inflation rates together with the copula
representing the dependence between ¢,,(2)and ¢, (7) fully define the joint distribution
of interest and inflation rates. As RR(?) is fully determined by the deterministic uninflated
cashflows C(?) in combination with interest and inflation rates during the projection
petiod, the distribution of all RR(#) is fully defined by the joint distribution of inflation
and interest rates and C(2} . The distribution of RR(?) is derived by means of simulation.

For the uninflated cashflow projection C(#) we set C(t) = 1 for = 1,2,...,10 and 0
otherwise. For the choice of the copula defining the dependence between ¢,,(?) and

&, (1), several alternative scenarios are investigated:

1. ¢,(t) and ¢, () are comonotonic, i.e. the dependence between the two is
maximum. As both ¢,,(#and ¢,/ (2) are Normal random variables, the linear

cottelation between them is 100%. This is the best case scenario for the insurer
with respect to the dependence between the two error terms. The underlying
assumption is that random deviations of interest rates are fully correlated with
random deviations of inflation rates, hence unexpected increases in inflation are
always accompanied by unexpected increases in interest rates. As increases in
inflation rates lead to increases in RR(,) whereas incteases in interest rates lead to
a decreases of RR()), the comonotonic assumption implies that there always is a
compensating effect of the two random errors on the liability for the insurer.

2 See Embrechts (2001)
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Therefore this scenario represents a best case for the insurer with respect to the
occutrence of extremely high values of RR(%).

In the second scenario, the dependence between ¢, (7) and ¢, (2} is assumed to

be ‘countermonotonic”, meaning unexpected increases in inflation rates are
always accompanied by unexpected decreases in interest rates. Contrary to the
first alternatve, this scenario represents the wotst case with respect to the
occurrence of extremely high values of RR(), as the effects of unexpected
inflation in any particular petiod are aggravated by lower interest earnings in the
same period.

In the third scenario, the dependence between ¢, (7} and ¢, (?) is parameterized

on the basis of historic observations. Historic observations of the error terms are
obtained by substituting observed historic interest/inflation rates in the time
series equations for Iz#(t) and Inf{?). Sufficient credible historic data needs to be
available to justify a choice and parameterization of a copula in this way.

The copula chosen here is the Gumbel copula, with parameter o = 1.4.

Appendix IV shows the fit of the Gumbel and Clayton copulas, on the basis of
which the Gumbel copula is the preferred choice. Appendix V shows correlations
between inflation and interest rates under the Gumbel copula.

In the fourth alternative, the dependence between ¢, (/) and ¢, () is modeled

as a multivariate Normal distribution, with the dependence between the two
random variables fully charactetized by their linear correlation coefficient.

The simulated results of each of the four methods are shown in figure 2 below*, with BC
(Best Case) , WC (Worst Case), Gumbel and Normal depicting RR(0) in alternatives 1-4
respectively. As the graphs of alternative 3 and 4 seem to overlap completely, the right

tail is shown in more detail in figure 3.

? Characterization of comonotonicity and countermonotonicity can be found in Denuit (2003)
4 Results were generated using IGLOO software.
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Required
reserve BC

Required
reserve WC

Required
reserve
Gumbel

Required
reserve
Normal

Percentile

Figure 2: simulated distributions of RR(0) scenario 1-4

In alternative 4, a linear correlation between ¢, (#) and ¢, (7) of 0.44 is applied. This is

the historically observed correlation between the residuals. In alternative 3, the Gumbel
copula is parameterized using the algorithm described in Valdez (1998). The Gumbel
copula in this case gives tise to the same linear correlation of 0.44 as the Normal copula.

The right tail of the distributions resulting from the Normal and Gumbel copulas are
shown below.
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Figure 3: right tail of simulated distributions of RR(0) scenario 3,4

A marginal difference between the two reserves can be observed. The fact that the
difference between the distributions under the two copulas is so small suggests that the
two copulas generate very similar dependence structures. This is confirmed by the
simulated rank scatter plots of the two copulas shown in figure 4 below.

A rank scatter plot shows simulated pairs of uniform random variables under a given
dependence structure between the two variables. When realizations are spread evenly
across the square, this indicates a low degree of dependence. A high degree of
dependence is indicated by concentrations of points in certain parts of the square. For
example tail correlation leads to a higher concentration of realizations in the corners of
the square.
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figure 4: rank scatter plot of simulated Normal and Gumbel copulas.

The two scatter plots shown in figure 4 show very similar patterns, both with a slightly
lower density of points towards the upper left hand and lower right hand corner, and
higher towards the other two corners. This indicates the dependence structures simulated
by the two copulas are very similar.
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4. RESULTS AND DISCUSSION

Dependence between interest and inflation rates has a considerable impact on the
distribution of the required reserve. The parametetization of the copulas in alternatives 3
and 4 require a sufficiently large history of reliable data, and one needs to assume that the
dependence structure does not change over time. The approach in alternative 2 however
provides an upper bound with regard to the dependence between the random errors of
the two time series. Hence alternative 2 may be preferable if a prudent approach is
sought and historic data are not considered sufficiently reliable.

The difference between the Normal and the Gumbel copula and the impact on the
distribution of the required reserve is minimal. The Gumbel copula gives a better fit to
the data than the Clayton copula. A fit of the Normal copula can not be shown in the
same way as it does not belong to the family of so-called ‘Archimedean’ copulas, see
Valdez (1998).

Parameterization of an interest rate model based on historically observed rates may lead
to results which are inconsistent with current market rates. Also, the use of a one-factor
model can be regarded as too simplistic. However additional prudence can be built in by
reducing the long term mean parameter b for example on the basis of projections by an
economic forecasting bureau.

The long term average interest rate parameter / of 6.7% appears high in the current
environment, and leads to a continuous upward trend in the projected future interest
rate. Reducing / to 3% leads to an increase of the liability by about 6% across the
distribution. Alternatively the CIR model can be parameterized on the basis of the
current yield curve but this would not allow for the measurement of the correlation with
inflation rates. Such measurement requites the availability of simultaneous observations
of intetest and inflation over an extended historic period.
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Supplementary Material

Two spreadsheets are attached. One contains the parameterization of the time series, the
other the parameterization of the copulas and the quantile plot. They can be viewed in
the Publications section of the CAS Web Site (www.casact.org) under 2006 Winter
Forum.

268 Casualty Actuarial Society Forum, Winter 2006



RIWP on Correlations and Dependencies Among All Risk Sources Report

Appendix I
1. Medical Inflation rates:

Area: U.S. aty
Item: Medical care

Source:http://data.bls.gov/servlet/SurveyOutputServlet?data_tool=latest_numbers&ser

tes_id=CUURO0000SAM&output_view=pct_1mth
2. Interest rates:

Rate of interest in money and capital markets
Federal Reserve System

Long-term or capital market

Government securities

Federal

Constant maturity

Three-year

Not seasonally adjusted

Twelve months ending December

Source: http://www.federalreserve.gov /releases/h15/data htm#fn12
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ACETl Medical Inflation | Interest rate (%)
rate (%)

1962 2.02 3.47
1963 2.42 3.67
1964 2.02 4.03
1965 2.83 4.22
1966 6.69 5.23
1967 6.38 5.03
1968 6.27 5.68
1969 6.05 7.02
1970 7.44 7.29
1971 4.80 5.66
1972 345 5.72
1973 5.52 6.96
1974 12.56 7.84
1975 9.70 7.5
1976 10.14 6.77
1977 8.73 6.08
1978 8.73 8.29
1979 10.25 9.70
1980 10.03 11.51
1981 12.45 14.46
1942 11.02 12.93
IPLR 6.38 10.45
1984 6.48 11.92
1985 6.48 9.64
1986 7.87 7.06
1987 5.75 7.68
1988 6.91 8.26
1989 8.73 8.55
1990 9.70 8.26
1991 797 6.82
1992 6.48 5.30
1993 522 4.44
1994 4.80 6.27
1995 3.97 6.25
1996 3.04 5.99
1997 3.04 6.10
1998 3.45 5.14
1999 3.76 5.49
2000 4.18 6.22
2001 4.70 4.09
2002 4.90 3.10
2003 3.66 2.10
2004 4.28 2.78
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Appendix II Parameterization of the time series

Interest rates

Parameters of the CIR model are:

a 0.085823
b 6.684528
o 0.450159

Parameters are estimated by minimizing the sum of squared residuals on the basis of the
data in appendix I.

Inflation rates

Standard
parameter | Estimate | etror
o 1.3470
Lo 0.8441 0.13
G - 0.0806 0.13
a 1.7151

N.B. as ¢, is very small and not significantly different from 0, an AR(1) process (with
¢, = 0) will produce very similar results.

) . 5
Parameter estimates are derived as™:

with 7, and r. estimates of the first and second order autocorrelation:

n-k
Z('xr _X)(xwk —X)
— 1=l

7 - , £ = 1,2 and » the number of observations x.
-2
> (x, —x)
=1
¢, is estimated such that the mean inflation rate is stationary and equal to the
historical average:
1 n
€y Co= —Zlnf(t)(l—cl—c'z).
L
> See Box (1994)
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Appendix III Simulated autocorrelations of interest and inflation rates

Interest[1] Interest[2] Interest{3] Interest[4] Interest([5] Interest[6] Interest{7] Interest[8] Interest{9] Interest[10]
Interest [1] 1.000 0.660 0.509 0.416 0.352 0.306 0.267 0.230 0.206 0.186
Interest [2] 0.660 1.000 0.766 0.625 0.529 0.457 0.399 0.347 0.310 0.277
Interest [3] 0.509 0.766 1.000 0.815 0.688 0.593 0.519 0.453 0.400 0.357
Interest [4] 0.416 0.625 0.815 1.000 0.842 0.724 0.633 0.556 0.490 0.435
Interest [5] 0.352 0.529 0.688 0.842 1.000 0.857 0.749 0.657 0.579 0.514
Interest [0} 0.306 0.457 0.593 0.724 0.857 1.000 0.868 0.760 0.670 0.594
Interest [7] 0.267 0.399 0.519 0.633 0.749 0.868 1.000 0.876 0.773 0.685
Interest [8] 0.230 0.347 0.453 0.556 0.657 0.760 0.876 1.000 0.881 0.780
Interest [9] 0.206 0.310 0.400 0.490 0.579 0.670 0.773 0.881 1.000 0.884
Interest [10] 0.186 0.277 0.357 0.435 0.514 0.594 0.685 0.780 0.884 1.000
Inflation[l]  Inflaton[2] Inflation{3] Inflation[4] Inflation[5] Inflation[6] Inflation[7] Inflation[8] Inflation[9] Inflation[10]
Inflation [1] 1.000 0.629 0.420 0.289 0.206 0.151 0.108 0.071 0.055 0.043
Inflation [2] 0.629 1.000 0.709 0.493 0.351 0.254 0.185 0.128 0.098 0.072
Inflation [3] 0.420 0.709 1.000 0.739 0.528 0.383 0.280 0.197 0.144 0.105
Inflation [4] 0.289 0.493 0.739 1.000 0.754 0.547 0.398 0.290 0.209 0.151
Inflation [5] 0.206 0.351 0.528 0.754 1.000 0.760 0.555 0.402 0.291 0.211
Inflation [6] 0.151 0.254 0.383 0.547 0.760 1.000 0.760 0.550 0.401 0.291
Inflation [7] 0.108 0.185 0.280 0.398 0.555 0.760 1.000 0.765 0.561 0.410
Inflation (8] 0.071 0.128 0.197 0.290 0.402 0.550 0.765 1.000 0.767 0.560
Inflation [9] 0.055 0.098 0.144 0.209 0.291 0.401 0.561 0.767 1.000 0.767
Inflation [10] 0.043 0.072 0.105 0.151 0.211 0.291 0.410 0.560 0.767 1.000
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Appendix IV Quantile plot for Independent, Gumbel and Clayton copulas

A quantile plot (also know as Q-Q plot) can be used to inspect the goodness of fit of
Archimedean copulas, and is derived as follows.

Archimedean copulas are of the form:

C w(”"f) = o' (@(@)+ 9(»)) with 0 < #,2 < 1 and ¢ a convex decreasing function with
domain (0,1].

For two random variables X and Y with dependence defined by the Archimedean copula C,
it can be shown that the random Varable Z = C (F(X), Fy(Y)) has the following
distribution function:

Fy(2) = z- 9(2)/% (2).

This implies that, assuming the dependence between X and Y is described by a given
Archimedean copula C,, the variable Z should follow the distribution function given above.
Hence comparing # ordered (pseudo)-observations of Z with the percentiles of the
distribution function of Z in a Q-Q plot allows for inspection of the goodness of fit of the
assumed distribution of Z hence of the copula function C,. The observations of Z are
derived from the observations of X and Y and the relation Z =C(Fy(X), Fi(Y)). The
process of constructing the quantile plot and the underlying theory can be found in Valdez
(1998).

The interpretation of the Q-Q plot is no different than the Q-Q plot for any other single
random variable. The closer observations are to the corresponding percentiles of the
theoretical distribution, the better the fit of the distribution. Hence a Q-Q plot showing a
pattern close to the straight line through the origin and (1,1) indicates a good fit of the
distribution.

The copulas used are:

Gumbel: Clup) = exp{-[(ln #) * + (-In ») *]"*}, ¢@) = (ln#"°
Clayton: Clup)= (™ + -1y, o@) = #™-1
Independent: C(w,) = ur, o) = -Ina
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wCo——~30CpQ

0 0.2 0.4 0.6 0.8 1 1.2
Observations ‘
o R ]
Indpt —=— Gumbel —— Clayton ‘
Parameterization:
Gumbel («) 1.41716
Clayton (o) 0.62773

274 Casualty Actuarial Society Forum, Winter 2006




9007 FIUIN\ ‘#ni0] £19100Q [errenIdy LIfense))

SLT

Appendix V Linear correlations of interest and inflation rates

Simulated linear cortelations between interest and inflation rates in alternative 3 under the Gumbel copula are as follows:

Interest|1) Interest[2} Interest}3| Interest{4] Intcrest{5] Intercst|6] Interest|7) Interest|8] Interest]9) Interest[10]
Inflation [1) 0.436 0.289 0.214 0.176 0.148 0.124 0.105 0.094 0.083 0.070
Inflation [2] 0.277 0.430 0.322 0.259 0.219 0.187 0.159 0.140 0.126 0.111
Inflation [3) 0.188 0.314 0.431 0.346 0.290 0.248 0.214 0.187 0.169 0.151
Inflation [4] 0.131 0.220 0.324 0.423 0.356 0.305 0.263 0.229 0.204 0.183
Inflation [5] 0.094 0.158 0.236 0.324 0.420 0.360 0.312 0.274 0.242 0.220
Inflation [6] 0.067 0.114 0.169 0.234 0.320 0.417 0.362 0.320 0.284 0.254
Inflation [7] 0.052 0.086 0.127 0.173 0.238 0.323 0.414 0.366 0.323 0.288
Inflation (8] 0.035 0.059 0.089 0.121 0.169 0.236 0.319 0.409 0.360 0.319
Inflation |9) 0.027 0.045 0.068 0.090 0.127 0.175 0.237 0.316 0.403 0.358
Inflation [10] 0.022 0.037 0.052 0.069 0.096 0.131 0.177 0.235 0.313 0.398
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Risk Transfer Testing of Reinsurance Contracts:
Analysis and Recommendations

CAS Research Working Party on Risk Transfer Testing

Abstract

This paper was prepared in response to a call from the American Academy of Actuaries Committee on
Property and Liability Financial Reporting (COPLFR). The call requested ideas about how to define
and test for risk transfer in short duration reinsurance contracts as required by FAS 113 and SSAP 62.
These accounting standards require that a reinsurance contract must satisfy one of two conditions in
order to qualify for reinsurance accounting treatment: 1) the contract must transfer “substantially all” of
the underlying insurance risk, or failing that, 2) it must at least transfer “significant” insurance risk. The
paper presents methods to test for both conditions, but the main focus is on testing for “significant”
risk transfer. The shortcomings of the commonly used “10-10” test are discussed and two alternative
testing frameworks are presented as significant improvements over “10-10”. The first of these, which is
presented in detail, is based on the expected reinsurer deficit (ERD). Conceptually, that approach is a
refinement and generalization of “10-10” that addresses its major shortcomings. The second
framework, based on the right tail deviation (RTD), is presented more briefly. It has certain desirable
properties but at the cost of greater complexity.

Keywords: risk transfer testing, FAS 113, “10-10” test, downside risk, expected reinsurer deficit (ERD),
right tail deviation (RTD), tail value at risk (TVaR), parameter uncertainty

1. INTRODUCTION

The purpose of this paper is to propose an improved framework for testing short-
duration reinsurance contracts for risk transfer compliance with FAS 113. Under that
accounting statement, reinsurance accounting is allowed only for those indemnity contracts
that transfer insurance risk. The aim of the paper is to present a theoretically sound but

practical approach to determining whether a contract meets the risk transfer requirements of
FAS 113.

1.1 Context

The working party that prepared this paper was formed by the CAS to respond to a call
by the American Academy of Actuaries Committee on Property and Liability Financial
Reporting (COPLFR) for the submission of actuartally sound ideas about how to define and
test for risk transfer in reinsurance transactions. The American Academy call arose out of
the need for a constructive response from the actuarial profession following some widely
publicized cases of alleged abuse of finite reinsurance and related accounting principles.
Those cases have led to renewed scrutiny of reinsurance contracts to ascertain whether they

comply with the existing accounting requirements and to a broader inquiry as to whether
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FAS 113 goes far enough in specifying the manner in which contracts will be accounted for

either as reinsurance or otherwise.

In a letter dated June 13, 2005, and addressed to members of the CAS, the chair of
COPLEFR framed the request as follows:

“Property/ casualty actuaies interested in contributing suggestions. ..are asked to submit

responses to one or more of the following questions:

1. What is an effective test for risk transfer? (Respondents are asked to focus on actuarial

methodology and provide examples as appropriate.)

2. What criteria should be used to determine whether a reinsurance contract transfers
significant risk to the reinsurer? (Respondents are asked to focus on decision criteria

used to evaluate the results of the test described in question #1.)

3. What safe harbors, if any, should be established so that a full risk transfer analysis does
not have to be completed for each and every reinsurance contract (i.e., in what instances
is risk transfer “reasonably self-evident” and therefore cash flow testing is not necessary

to demonstrate risk transfer)?

4. What are the advantages and disadvantages of the suggested approach versus other

approaches commonly used?”

There is very little published actuarial literature on the subject. The only significant paper
appears to be the one prepared in 2002 by the CAS Valuation, Finance, and Investments
Committee entitled, “Accounting Rule Guidance Statement of Financial Accounting
Standards No. 113—Considerations in Risk Transfer Testing”[1]. That paper provided an
excellent summary of FAS 113 and the risk transfer testing methods that emerged in
response (including the “10-10” test) as well as a discussion of a number of alternative
methods. However, the paper was fairly muted in its crticism of “10-10”, and it did not

strongly advocate replacing it with an alternative.

In this paper we seek to respond to all four of the questions posed by COPLFR. The
members of the working party believe the time has come to be explicit about the
shortcomings of the “10-10” test that has come into common use and to advocate its
replacement with a better framewotk. Accordingly, in this paper we include an extensive

criique of the “10-10” test and describe two frameworks, one in detail and the other in
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summary, that would be significant improvements over “10-10”. We also identify methods
for determining whether individual reinsurance contracts should be subject to detailed

testing.

The frameworks described in the paper primarily address the issue of developing a more
consistent and rigorous quantitative approach for the evaluation of risk transfer. As a result,
the approaches desctibed might reduce the potential for accounting mistakes simply by
virtue of the higher level of clarity and consistency that result from their application. But the
working party wants to make it very clear that no quantitative methodology will ever be fully
successful in detecting intentional attempts at fraud or accounting abuse. Regulators and
auditors face a difficult but necessary task in ferreting out the motives and intent of the
producers of accounting statements. Actuaries are important partners and advisors in the
area, especially in areas such as risk transfer. But it would be a mistake to think that actuaries
or any other quantitative expert can provide a formula that reduces the analysis of intent,
good or bad, to a simple (or even complex) calculation. This is important, because many of
the alleged acts that have topped recent headlines are in fact much more about bad intent
than risk transfer. No matter how good this working party’s work, the methodologies
developed here would not likely have prevented many of the alleged abuses, at least not

without other efforts to discern the intent of the transactions.

At the same time, it is important to remember that in most reinsurance transactions the
parties are acting in good faith and their intentions are good. Just as a mathematical test
cannot identify bad intent, it cannot by itself discern the likely good intent of the parties.
Therefore, the failure of a contract to meet a quantitative risk transfer test should not result
in denial of reinsurance accounting treatment to a transaction without a thorough review of

the all aspects of the deal, including the question of intent.

1.2 Disclaimers

While this paper is the product of a CAS working party, its findings do not necessarily
represent the official view of the Casualty Actuarial Society. Moreover, while we believe the
approaches we describe are very good examples of how to address the issue of risk transfer,

we do not claim they are the only acceptable ones.

In the course of the paper, in order to make our ideas as clear as possible, we present a

number of numerical examples that require assumptions about the distribution of losses and
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appropriate threshold values for the risk transfer tests we describe. We recognize that any
loss model we choose is an approximation to reality at best and might even be a poor one,
and that with respect to the decision about appropriate risk transfer threshold values, other
constituencies, including regulators, accountants and outside auditors have a key role to play.
In making such assumptions for purposes of illustration, we are not necessarily endorsing

any particular loss model or threshold value.

In many of our examples we display the results of calculations to two decimal places,
which suggests an unreasonably high level of precision. We do so only in order to highlight
the differences in what are frequently very small numbers. We are not suggesting that use of

two decimal places is appropriate in the practical application of the methods we describe.

Throughout the paper we use the FAS 113 definition of the reinsurer’s loss, which
ignores brokerage and the reinsurer’s internal expenses. Our use of that definition should
not be construed to mean that we endorse that definition for any purpose other than testing

reinsurance contracts for compliance with FAS 113.

1.3 Organization of Paper

The paper is structured in nine sections.

Section 1 describes the impetus for and context of the paper as well as a summary of the
risk transfer requirements of FAS 113, which we treat as a reasonable framework for
evaluating risk transfer, subject to a fair interpretation of the critical elements of “reasonably
possible” and “substantially all”. To meet the FAS 113 risk transfer requirements, a contract
must satisfy one of two conditions: 1) the reinsurer must assume “substantally all” of the
underlying insurance risk, or 2) the reinsurer must assume “significant” insurance risk and it

must be “reasonably possible” that the reinsurer may realize a “significant” loss.

In Section 2 we present a systematic approach for determining whether “substantially all”
of the underwriting risk has been transferred under a reinsurance contract. If “substantially
all” the risk has been transferred, then the contract meets the risk transfer requirement of

13

FAS 113 without it being necessary to show that the risk transfer is “significant”. This

section partially addresses the third question.

In Section 3 we present a detailed critique of the “10-10” test itself and how it has been
applied in practice. We first describe the emergence of the “10-10” approach as a method of
testing contracts for “significant” risk. Then we illustrate the application of the “10-10”
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benchmark to three reinsurance contracts that cleatly contain sk, including a property
catastrophe contract and two quota shares of primary portfolios. All the tested contracts
“fail” the “10-10” test, implying that the test is flawed. .In the context of one of the
examples we also emphasize the importance of taking parameter uncertainty into account in
the risk assessment. Finally, we point out some unintended consequences of “10-107,
namely that it implicitly imposes price controls on reinsurance contracts. We conclude that
“10-10” is inadequate as a measure of risk and therefore unsuitable as a universal test for
determining the “significance” of risk transfer. At best, one may argue that “10-10” is a

sufficient test for risk transfer. It is not, however, a necessary condition.

Section 4 discusses two specific shortcomings of “10-10” and describes a different
approach that addresses those shortcomings, thus addressing the first, second and fourth
questions to varying degrees. The improved test we present here is based on the expected
reinsurer deficit (ERD), which incorporates present value underwriting loss frequency and
severity into a single measure. The loss severity embedded in the ERD is the tail value at risk
(TVaR) measured at the economic breakeven loss ratio. We show that the ERD test is
effectively a variable TVaR standard. We point out that a “significance” threshold of
ERD 21% has the merit of a certain amount of continuity with the “10-10” but without
that test’s major shortcomings. In order to address concerns that “10-10” might not be a
strict enough standard, we also suggest the possibility of a supplemental minimum downside
requirement. However, we do not advocate retesting of contracts already on the books that

have already been found to pass “10-10”.

Section 5 shows the application of the ERD test to the same contracts tested in Section 3
as well as to additional quota share contracts with loss ratio corridors or loss ratio caps, as
well as to excess swing-rated contracts and individual risks. Using an illustrative standard of
ERD 21%, we show that contracts that most people would consider risky receive a

“passing” score, with one exception. This further addresses the first two questions.

Section 6 discusses the identification of contracts subject to the “significant” risk
requirement, but which do not require individual testing, and thus addresses the third
question. The NAIC is considering a requirement that the CEO and CFO attest that a risk
transfer analysis has been completed for all reinsurance contracts, except those for which it
is “reasonably self-evident” that significant risk has been transferred. We seek to put some

definition to “reasonably self-evident”. In this section we illustrate the application of the
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ERD 21% test to several classes of reinsurance contracts with certain structural features.
We show, using conservative assumptions, that 1) standard catastrophe excess of loss
treaties, 2) contracts covering individual risks and 3) certain other excess of loss reinsurance
structures, could all be “pre-qualified” as meeting the “significant” risk requirement (unless
there is reason to believe they include other features that might affect the amount of risk
transferred). We also describe an additional approach that could potentially be used to

further expand the set of such contracts.

Section 7 discusses the possible evolution of risk measurement beyond the application to
risk transfer testing that is the focus of this paper. This secdon offers an alternative way to
address the first two questions. It briefly presents a framework proposed based on right tail
deviation (RTD) that tighdy links risk transfer testing and risk loading. We present two
examples. While the RTD-based approach has theoretical appeal, it has the drawback of
being more complex and thus less understandable to a non-actuarial audience than the ERD

approach.
Section 8 is a summary of the key points of the paper.
Section 9 provides suggested priorities for areas of further research.

Appendix A gives the mathematics underlying the ERD test. Appendix B explains the
comparison between S&P 500 equity risk and quota share reinsurance risk (which is used in
examples in Sections 3 and 5). References are listed in Section 10, which follows the

appendices.
1.4 Background

FAS 113 (“Accounting and Reporting for Reinsurance of Short-Duration and Long-
Duration Contracts™) was implemented in 1993' to prevent, among other things, abuses in
GAARP accounting for contracts that have the formal appearance of reinsurance but do not
transfer significant insurance risk and thus should not be eligible for reinsurance accounting.
FAS 113 amplified the eatlier requirement of FAS 60 that reinsurance accounting only
applies to contracts that transfer insurance risk. SSAP 62, which largely incorporates the

same language as FAS 113, was implemented shortly thereafter to address the same issues

It was issued in December 1992 for implementation with respect to financial statements for fiscal years
commencing after December 15, 1992. Since insurance companies generally have fiscal years that coincide
with calendar years, in effect it was implemented for the 1993 fiscal year.
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with respect to statutory accounting. OQur references to FAS 113 should be understood to
refer collectively to FAS 113 and SSAP 62.

In order for a contract to qualify for reinsurance accounting treatment in accordance with
FAS 113, it must transfer insurance risk from an insurer to a reinsurer. To meet the risk

transfer requirement, a reinsurance contract must satisfy one of two conditions:

1. It must be evident that “the reinsurer has assumed substantially all of the insurance risk

relating to the reinsured portion of the underlying insurance contracts” (paragraph 11), or

2. The reinsurer must “assumne significant insurance risk under the reinsured portions of the
underlying insurance contracts”(paragraph 92) and it must be “reasonably possible that

the reinsurer may realize a significant loss from the transaction” (paragraph 9b).

We are aware that our presentation of the two FAS 113 conditions in this order (i.e., first
the paragraph 11 condition and then the paragraph 9 condition) is unusual. In practice, the
“significant” risk requirement has often been considered first, and only if the contract “fails”
is paragraph 11 considered. However, because part of our aim is to determine how to avoid
testing every contract, we find it useful to start with the consideration of whether the
contract meets the risk transfer requirement by virtue of “substantially all” the underlying
risk having been transferred. If it does, then the “significant” risk question does not need to
be considered at all. Accordingly, throughout the paper we will present and work with the
FAS 113 risk transfer conditions in that conceptual order.

This paper is not intended to be a critique of FAS 113. We treat FAS 113 as it is
currently constructed as a reasonable framework for evaluating risk transfer, subject to a fair
interpretation of the critical elements of “reasonably possible” and “substantially all”, despite
some reservations about its focus on the financial effects (excluding brokerage and internal

expenses) of a transaction on the reinsurer alone.

While all reinsurance contracts must satsfy the requirements of FAS 113, it is up to each
company to determine which contracts should be subjected to detailed testing and which
contracts clearly satisfy the requirements of FAS 113 based upon inspection. In this paper
we describe an approach that can help guide both ceding companies and reinsurers through

that decision process.
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2. DETERMINING WHETHER THE CONTRACT TRANSFERS
“SUBSTANTIALLY ALL” UNDERLYING INSURANCE RISK

We suggest it makes sense to begin by determining whether the contract meets the FAS
113 condition of transferring “substantially all” the insurance risk. If it does, then the
contract meets the risk transfer requirement. If it does not, then the contract is subject to

the other condition that the risk transfer must be “significant”.

What is the "insurance risk relating to the...underlying insurance contracts?” We see it as
the downside risk associated with the cedent's portfolio of insurance, i.e., the exposure faced
by the underwriter to incurring a loss. If the downside risk assumed by the reinsurer is
essentially the same as that faced by the cedent with respect to the original unreinsured

portfolio, then the contract transfers “substantially all” the insurance risk.

The trivial case is a quota share or other proportional contract with a flat ceding
commission equal to the ceding company’s expense ratio, where there are no features such a
sliding scale commission, profit commission, loss ratio corridor or aggregate loss ratio limit.
In such a case, the comparison between the ceding company’s position and that of the
reinsuter is obvious. The contract clearly transfers not only “substandally all” the risk to the
reinsurer but literally all of it. Facultative reinsurance is often written on this basis, but more

often than not, quota share treaties include one or more of the features identified above.

Sliding scale and/or profit commission features ate often used by reinsurers as incentives
to reinforce the ceding company’s motvation to underwrite its business in a disciplined way.
Their use can promote a win-win situation for the ceding company and the reinsurer. These
and other features such as loss ratio corridors or caps appear frequently in traditional
reinsurance contracts as a means of making otherwise unattractive treaties acceptable to the
reinsurance market. Usually the context for incorporation of caps or corridors is poor
historical underwriting experience in the portfolio for which reinsurance is being sought.
The ceding company believes it has taken the necessary corrective actions to turn the
portfolio around, but the reinsurance market is skeptical. The inclusion of caps and
corridors in a reinsurance contract can often make it possible for a ceding company that has
confidence in its own business plan to obtain the reinsurance capacity it requires to execute
that plan. Sometimes, but not always, such features have the effect of taking “too much”

risk out of a reinsurance deal to allow the “substantially all” requirement to be met. We need
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to be able to compare the downside risk in the ceding company’s unreinsured policies with

the downside risk of the reinsurer.

We describe two ways of making this comparison — there may be other good methods as
well — and illustrate them with an example. The first method is easier to understand but is
not always conclusive, while the second method is somewhat more complicated but can

always be applied.

Method 1 - Comparison of All Underwriting Downside Scenarios

Compare the cedent's underwriting margin over a range of loss ratios on the original
unreinsured portfolio to the reinsurer's underwriting margin over the same range of loss
ratios. The cedent's underwriting margin is defined as 100% less its unreinsured loss ratio
less its actual expense ratio on the unreinsured portfolic. The reinsurer's underwriting
margin is defined as 100% less its assumed loss ratio less the ceding commission®. If the
cedent's margin equals or exceeds the reinsurer's margin for the loss ratios that imply an
underwriting loss, then clearly the reinsurer has assumed “substandally all” of the insurer's
downside risk. Even if the cedent's margin is less than the reinsurer's margin, if that
difference is small (as it is in Example 2.1), then the "substantally all" test may be met. Note
that unless there are significant cash flow differences between the ceding company and the
reinsurer, it is not necessary to conduct a full analysis of cash flows, since they will affect

both parties in the same way.

Method 2 — Comparison of Cedent and Reinsurer Expected Underwriting Deficits

Compare the expected underwriting deficits (EUD) of the cedent and the reinsurer. The

EUD can be calculated either directly as the pure premium of an aggregate excess of loss

2 Expenses before reinsurance divided by premiums before reinsurance. Whether expenses should be marginal
or average is a matter of debate.

3 Thus definition of the reinsurer’s underwriting margin does not reflect other expenses of the reinsurer,

including brokerage and mternal expenses. While this approach to measuring the reinsurer’s profitability is
consistent with the FAS 113 definition, 1t does not reflect economic reality.
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cover attaching at the breakeven loss ratio or as the product of the frequency and severity of

underwriting loss, (Freq(UL) and Sew(UL), respectively) *.

If the EUD faced by the reinsurer is greater than or equal to the EUD of the cedent, then
the “substantally all” test is clearly met. Because “substantially all” is less than “all”, if the
EUD faced by the reinsurer is within a small tolerance of the expected underwriting deficit
faced by the cedent, say, within 0.1%, then we would also say the "substantally all" test is

met.
Let’s consider an example to illustrate these two methods.

Example 2.1: Non-Standard Auto Share with Sliding Scale Commission

Suppose a quota share of a non-standard auto portfolio is under consideration. The
ceding commission is on a sliding scale. A minimum commission of 19.5% is payable if the
loss ratio is 73% ot higher. The commission slides up at a rate of one point for every one
point of reduction in the loss ratio (“1:1 slide”) below 73%, up to 30% at a loss ratio of
62.5%. The commission incteases above 30% at a rate of 0.75% for every one point of loss
ratio reduction (“0.75:1 slide”) below 62.5%, up to a maximum commission of 39%, which
is achieved at a loss ratio of 50.5% or lower. The ceding company’s direct expense ratio on
the subject business is 20%, so at the minimum ceding commission of 19.5%, it recoups
virtually all of its direct costs. Its underwriting breakeven loss ratio is 80%. The reinsurer’s
FAS 113 underwriting breakeven loss ratio (i.e., ignoring brokerage and reinsurer internal

expenses) is 80.5%.

The results of Method 1 are given in Table 1 and the accompanying Chart 1. The table
compares the ceding company’s expense ratio and underwriting matgin on the unreinsured
portfolio over a wide range of loss ratios to the reinsurer’s ceding commission expense and
underwriting margin at the same loss ratios. The accompanying chart compares the ceding
company’s margin and the reinsurer’s margin graphically. From Table 1 and Chart 1 we see
that above an 80% loss ratio (the ceding company’s breakeven on the unreinsured portfolio),

the ceding company’s margin and reinsurer’s margin are virtually undistinguishable, which

+ If x represents the loss ratio and B is the underwnung breakeven loss ratio, then

EUD= J’: (x— B) f(x) dx = Freq(UL)- Sew(UL) , where Freq(UL)= j: £(x) dx and Sew(UL) is the

“tail value at risk” (TVaR) at the underwriting breakeven: Sev(UL) = I: (x—B) f(x) dx/ J: f(x) de
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indicates the reinsurer has assumed “substantially all of the insurance risk” of the reinsured

policies.

TABLE 1
"Substantially All" Risk Transfer Analysis - Method 1
Comparison of Reinsurer vs. Cedent Margins
Example 2.1
Subject Cedent Reinsurance
Loss Expense  Cedent Ceding Reinsurer
Ratio Ratio Margin Commission Margin
30.0% 20.0% 50.0% 39.0% 31.0%
50.5% 20.0% 29.5% 39.0% 10.5%
62.5% 20.0% 17.5% 30.0% 7.5%
73.0% 20.0% 7.0% 19.5% 7.5%
80.0% 20.0% 0.0% 19.5% 0.5%
80.5% 20.0% -0.5% 19.5% 0.0%
100.0% 20.0% -20.0% 19.5% -19.5%
CHART 1
Cedent and Reinsurer Margins
Example 2.1
- 60% — ——-Cedent Margin
‘c 40% Reinsurer Margin
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Table 2 summarizes the Method 2 comparison of expected underwriting deficits. It
shows the insurer’s and reinsurer’s comparative underwriting downside risk by examining
their respective Freq(UL), Sew(UL) and EUD. In this example, the ceding company’s
frequency of underwriting loss is 11.28% vs. 10.45% for the reinsurer. The ceding
company’s underwriting loss severity is 8.33% vs. the reinsurer’s 8.48%. The ceding
company’s EUD is 0.94% vs. the reinsurer’s EUD of 0.89%’. While these measures vary
slightly between the ceding company and the reinsurer, they are clearly very close. Thus, we
would say that Method 2 also indicates that the reinsurer has assumed “substantially all” of

TABLE 2
"Substantially All" Risk Transfer Analysis - Method 2
Reinsurer vs. Cedent Margins in Downside Scenarios
Example 2.1
Breakeven
Loss Rato  Freq(UL) Sev(UL) EUD
Cedent 80.0% 11.3% 8.3% 0.940%
Reinsurer 80.5% 10.5% 8.5% 0.886%
Difference -0.5% 0.8% -0.2% 0.054%

the ceding company’s downside risk and the contract therefore meets the risk transfer

requirements of FAS 113.

We conclude that in this example either Method 1 or Method 2 indicates the contract

transfers “substantially all” the underlying insurance risk to the reinsurer.

While this approach works most naturally for quota share contracts, it can potentially be
applied to excess of loss treaties as well. In that case, the reinsurer's EUD, calculated in the
same way as above in the quota share case as a ratio to the ceded premium, should be
compared to the cedent's EUD on the portion of the original subject portfolio which is

exposed to the same risks as the excess of loss reinsurance contract. If the reinsurer's EUD

5 Losses have been modeled using a lognormal distrtbution modified for parameter uncertainty, the details of
which are not important for this example.
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is close to or greater than the cedent's, then the reinsurer can be judged to have assumed
"substantially all" the cedent's insurance risk in this context. For example, suppose the
portion of original insurance risk assumed by a catastrophe reinsurance contract coveting a
portfolio of business has a 1% probability of a claim of a certain size. In that case the
reinsurance of that portion of the risk also requires no more than a 1% probability of loss of
the same size, because the EUDs of the ceding company and the reinsurer are the same with

respect to the original catastrophe exposure.

If our argument about the applicability of the comparative EUD approach to excess of
loss contracts and contracts with loss ratio caps is not found to be compelling, note that in
section 6 we will also demonstrate that catastrophe reinsurance and some other contracts
with aggregate loss limitations can meet the “significant” risk requirement under many

circumstances.

Finally, there is a case to be made that, to the extent that a ceding insurance company is
limited in its ability to meet net losses by its surplus, it is reasonable to allow a similar
limitation of the reinsurer’s aggregate liability. If this is accepted, then it is possible to
calculate the minimum loss ratio cap that can be imposed by the reinsurer without violating
the condition that “substanually all” of the underlying risk has been transferred. This
potentally represents a third way of determining whether the “substantially all” risk transfer

condition has been met.

For example, suppose a ceding company enters into a whole account quota share
reinsurance arrangement that results in a net premium to surplus ratio of 200%. If the quota
share has a ceding commission of 25% (approximating the ceding company expenses), then
a loss ratio cap as low as 125% would be consistent with the transfer of “substantially all” of
the risk, because at a combined ratio of 150% the ceding company has lost all of its surplus.
Naturally such an interpretation would have to be made after due consideration of all other

relevant features of the reinsurance contract in question.

If a contract does not meet the “substantially all”” test, then it is subject to the second

FAS 113 condition that “significant risk” must be transferred in otrder for the contract to
gni

qualify for reinsurance accounting. We now turn our attention to the question of what

constitutes “significant” risk.
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3. “SIGNIFICANT” RISK TRANSFER AND THE “10-10” TEST

3.1 “10-10” and its Shortcomings

A contract that does not meet the FAS 113 requirement for risk transfer by transferring
“substantially all” the undetlying insurance risk is subject to the second condition that
“significant” risk be transferred. The so-called “10-10” test emerged in the years following
the implementadon of FAS 113 as a common benchmark for determining whether a
reinsurance contract satisfies the requirement of a reasonable chance of “significant” loss to
the reinsurer, which the test defines as “at least a 10% chance of a2 10% loss”. “10-10” is
usually referred to as a “risk transfer” test, which implies an understanding of “risk” as a
measure of exposure to loss rather than as exposure to volatility of results. “10% chance of
a 10% loss” is usually interpreted to mean that the underwriting loss at the 90th percentile
(of the probability distribution of underwriting results®) must be at least 10% of the ceded
reinsurance premiums, where both underwriting loss and premiums are understood to be
present values. Another term for “the underwriting loss at the 90th percentile” is “the value

»

at risk” at the 90th percentle” or “VaR,,,” with respect to the underwriting result.

Accordingly, the “10-10” test can also be succinctly described as requiring VaR 4, 2 10%.

The “10-10” benchmatk arose as an informal method for testing whether purported
reinsurance contracts contained sufficient risk transfer to meet the requirements of FAS 113
under the reasonable chance of significant loss criterion. It was not intended to be a
universally applicable risk transfer test. Indeed, it has long been recognized that many
reinsurance contracts having the characteristics of low underwriting loss frequency but high
severity (such as property catastrophe excess of loss reinsurance) fail “10-10” on the basis
that the probability of a 10% loss is less than 10%. In addition, if they do not meet FAS 113
risk transfer requirements by virtue of transferring “substantially all” risk, ordinary quota
share reinsurance of many primary insurance portfolios (e.g., low limits private passenger
auto), which have the characteristics of high frequency of underwriting loss but relatively low
severity, may also fail. Until recently that was not seen as a problem because experienced
practitioners understood the target of FAS 113 to be highly structured contracts that limited
the transfer of insurance risk. As a consequence, traditional reinsurance contracts were

typically not even tested.

¢ Low percentiles represent better results; high percentiles represent poorer results. Underwriting losses are
represented as positive numbers. References to “underwriting results” and “underwriting losses” should be
understood to refer to present values.
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In the wake of the recent revelations of new accounting abuses related to “reinsurance
contracts” apparently involving little or no risk transfer, the situation has changed. There is
greater sentiment now that (a) more contracts should be routinely tested for significant risk
transfer and (b) “10-10” is not a stringent enough standard. The view that “10-10” may not
be stringent enough arises in part from the fact that some highly structured contracts have
been carefully engineered to allow for exactly a 10% probability of a 10% loss and little or no
possibility of a loss greater than 10%.

It is clear from the failure of the “10-10” benchmark to correctly identify both
catastrophe excess of loss and some quota share reinsurance as risky and its failure to flag
certain highly structured contracts as not significantly risky that “10-10” is insufficiently
discriminating to serve as a universal measure of risk transfer in reinsurance contracts. We
need a better test for measuring significant risk transfer in contracts that are subject to that

requirement.

The interpretation of FAS 113’s paragraph 9b is a critical issue. Paragraph 64 states that
“an outcome is reasonably possible if its probability is more than remote.” Despite this
definition, the expectation appears to have developed that “reasonably possible” means a
probability substantially greater than “remote”. While the accounting literature gives no
specific guidance on these probabilities, a 10% chance has come to be widely accepted as the
smallest probability that should be categorized as “reasonably possible.” It is our position
that a different interpretation of “reasonably possible” is more appropriate, one that depends
on the context of the risk and recognizes that some weight should be given to loss scenarios

that, while rare, are not remote.

In particular, we propose that, in establishing the threshold probability for “reasonably
possible”, consideration must be given to the probability of loss (and indeed the size of that
loss) arising from the reinsured portions of the underlying insurance contracts. For example,
in the context of catastrophe reinsurance, “teasonably possible” should be associated with a
probability that reflects the inherently low probability of the covered event. For other
reinsured portfolios, where the inherent probability of loss is greater, “reasonably possible”

is appropriately associated with a higher probability value.

This interpretation goes a long way toward eliminating the apparent inconsistency of
according reinsurance accounting to some contracts that do not satisfy an invariant

probability threshold of 10%. That property catastrophe contracts are typically accorded
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reinsurance accounting treatment even though they often do not meet a “reasonable

possibility” requirement, defined as 10%, implicitly reflects this kind of interpretation.

In section 4 we will present a framework for capturing the interaction between the
“reasonably possible” and “significant loss” components of paragraph 9b in a way that
automatically makes the appropriate contextual adjustment without having to resort to

situation-based arguments.

First, let us continue our critique of “10-10”.

3.2 Tllustration of the Shortcomings of “10-10”

Through a series of examples we will show why “10-10” is an unsatsfactory test for
establishing whether or not a reinsurance contract transfers significant risk. Example 3.1
illustrates the application of the test to a property catastrophe contract and shows that it
“fails” to transfer significant risk.  Example 3.2 illustrates the application (and
misapplication) of “10-10” to a low volatility primary quota share, given a set of historical
loss ratio experience. We also use that example to warn of the pitfalls of simply fitting a loss
distribution to on-level loss ratio experience and using that for risk transfer analysis.
Example 3.3 shows that a quota share of an insurance portfolio having the volatility
characteristics of the S&P 500 would frequently fail the “10-10” test.

We begin with the property catastrophe example.

Example 3.1: Property Catastrophe Excess of Loss Reinsurance

A property catastrophe reinsurance contract paying a premium equal to 10% of the limit’
is typically priced to a loss ratio of around 50%. That implies an expected loss of 5% of the
limit. Catastrophe reinsurance contracts, especially for higher layers, run loss free or have
small losses in most years but occasionally have a total limit loss. This pattern is illustrated

by the simplified catastrophe loss distribution shown in Table 3 below.

" This is frequently referred to as a “10% rate on line”.
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TABLE 3
Catastrophe Loss Disttibution for Example 3.1
Loss as Loss as Probability

% of Limit % of Premiums | of Given Loss

0% 0% 67%

5% 50% 20%

10% 100% 10%

100% 1000% 3%

5% 50% 100%

The loss at the 90th percentile of the catastrophe loss distribution is 100% of premiums.
Assuming standard reinstatement premium provisions, the 90th percentile of the
underwriting result distribution is an underwriting profit of 10% of premiums (100% original
premiums plus 10% reinstatement premiums minus 100% loss). This contract fails the “10-
10” test.

There is universal agreement among accountants, regulators, insurers, reinsurers and
rating agencies that contracts like this one are risky. Clearly, the failure of “10-10” to identify
the contract in this example as risky is an indication of a problem with “10-10” and not the

contract.

Example 3.2: Primary Quota Share Reinsurance

Assume a cedent and reinsurer have negotated a quota share treaty on a primary
insurance portfolio. The treaty has a ceding commission of 25%. Does the treaty contain

“significant” risk transfer®?

8 Let’s assume the treaty does not meet the condition of transferring “substantially all” of the underlying risk,
perhaps because the cedent’s expenses are substantially greater than the ceding commission. As a result the
treaty is subject to the “significant” dsk transfer requirement.
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To measure the risk transferred we need to model the prospective underwriting result.
Because the underwriting result is the breakeven loss ratio minus the actual loss ratio, the key
to modeling the underwriting result is the probability distribution of the prospective loss
ratio X. There are a number of reasonable actuarial methods for modeling prospective loss
ratios”. In actuarial pricing applications the principal focus is on the mean of the prospective
loss ratio distribution. Not much attention is paid to the full distribudon. In contrast, risk
transfer analysis requires the full distribution. This means there are pitfalls associated with
using the output from the pricing analysis for the risk transfer analysis without full

consideration of the issues affecting the full loss ratio disttibution.

Let’s review the underwriting experience analysis of the insurance portfolio that is the
subject matter of the quota share. Five years of loss ratio experience is available together
with information of varying quality about historical loss development and claim trends as
well as the rate level history and the cedent’s expectation of rate actions during the treaty
period. This is summarized in Table 4, which shows the reported, estimated ultimate and
estimated ultimate “on-level” loss ratios"' together with the loss development, premium on-
level and loss on-level factors used in the analysis. The means, variances and standard
deviations of the on-level loss ratios x, and their natural logs Inx, are tabulated using the

assumption that exposure has been constant over the expetience petiod.

The historical experience has been poor. Given the ceding commission of 25% and
ignoring brokerage and internal expenses (as per FAS 113), the reinsurer’s present value
breakeven loss ratio is 75%'". Three of the five years have estimated ultimate loss ratios
significantly greater than 75% and in two of the years the loss ratio is over 75% even on a
reported basis. The good news is that the ceding company has taken action to increase rates
significantly, which results in estimated on-level loss ratios that are much lower than the

actual historical loss ratios. The on-level mean of 70.67% compares very favorably with the

9 The models we use for the purposes of illustrating the issues related to risk transfer testing are not intended to
be prescriptive and are independent of the risk measurements we describe.

10 This means the loss ratios have been adjusted to reflect the projected premium rate and claim cost levels
expected to apply during the treaty term.

1 Note that given typical brokerage of 1.5% and internal expenses of 3% to 5%, reinsurers would regard their

real breakeven loss ratio as 68.5% to 70.5%, depending on expenses. As we shall see, this treaty is a
breakeven or slightly worse than breakeven proposition and would not be attractive to most reinsurers.
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historical mean of about 80%. Moreover, the on-level loss ratios are not very variable as
indicated by the standard deviations of 7.45% with respect to x and 10.88% with respect to

Inx.

TABLE 4
On-Level Loss Ratio Experience

For Quota Share in Example 3.2

) @ 3 ) ®) ©) U] ®)

Prem Loss ~ On-Level
Accident Reported Age to Ult Est Ult On-Level On-Level L/R

Year L/R Factors L/R Factors  Factors X, Inx,
1 92.8% 1.039 96.4% 1.963 1.364 67.0% -0.401
2 75.6% 1.048 79.3% 1.737 1.307 59.7% -0.516
2 77.0% 1.095 84.3% 1.376 1.246 76.4% -0.269
4 61.2% 1.141 69.9% 1.139 1.181 72.5% -0.321
5 52.5% 1.415 74.3% 1.061 1.111 77.8% -0.251
Mean x 70.7% -0.352
Var* s? 0.554% 1.18%
*Unbiased St Dev.* s 7.45% 10.88%

We are first going to illustrate how not fo apply the “10-10” benchmark in this scenatio. We
do this in order to point out the problems associated with this approach, which we believe

may be in relatively common use.

Let’s assume the underlying random process governing the prospective loss ratio is
lognormal.  Then the “best fit” distribution, given the on-level loss ratio experience, is
defined by parameters 4 =X and 0 =5. From this it is easy to determine whether the

present value underwriting loss corresponding to VaRy,, exceeds 10%. If B is the present
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value FAS 113 breakeven loss ratio and FV and PV represent “future value” and “present

value” operators, respectively, then from the characteristics of the lognormal distribution we

know that
N_,(QO%)=ln[FV(B+VaR90%)]-,u 3.
log
which implies
- ;1+N'l(90%)«¢7 -
VaR,,, = PV(e )—B (3.2)

If ceded loss payments lag ceded premium payments by one year on average, the risk free
interest rate is 5%, g4 =X =~0.3518 and o =5 =10.88%, then formula (3.2) implies

VaRgo% =e(—03518)+(1,28|5)-(0 1088 ) (105—l)_75

=2.02%

Since “10-10” requires VaRy,, 210% , according to this analysis the quota share treaty in
this example does not transfer “significant” risk. In fact, the VaRyy, of 2.02% suggests that
the treaty contains hardly any risk at all. Yet when we look back at the historical expetience,
we see that the reinsurer would have lost more than 10% in one year and would have lost
money over the entire period. The conclusion that the reinsurer does not face a “reasonable

possibility of significant loss” seems strange.

Why did we get this result? There are two reasons. The first, as we hinted at the
beginning, has to do with inadequacies in the loss model we selected. The second has to do

with shortcomings in the “10-10” test itself.

Let’s discuss the problem with the approach we described for identifying a loss ratio
model. Fundamentally, the problem is that we fitted a single distribution to the on-level loss
ratios and then used that distribution as though we knew with certainty that it is the correct
one. In that case the only source of risk being modeled is process tisk, because we have
assumed we have the correct model. In fact, there are multiple sources of parameter

uncertainty, some of which we enumerate below:
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e The ultimate loss estimates might be wrong;

¢ The rate level history might be inaccurate;

® The prospective rate changes assumptions might be wrong;

o The historical claim trend estimates might be inaccurate;

¢ The prospective claim trend assumptions might be wrong;

¢ The experience period might be too short to include rare but very large losses;

e The prospective loss ratios might not be lognormally distributed;

o The lognormal assumption is right, but the “best fit” distribution is not the actual;
e Cash flow timing assumptions, particularly regarding claims, might be wrong;

¢ The prospective exposure mix might be different from expected;

e For multi-year reinsurance contracts, the level of parameter uncertainty from all

sources increases as the length of the coverage period increases.

In any actuarial application where the knowledge of the loss distribution itself and not
just its mean is important, it is very important that the modeling be based on loss models
that incorporate parameter uncertainty, which is an important and frequently underestimated
source of risk". Risk transfer testing, given its dependence on the right tail of the loss ratio

distribution is one of those applications.

Accordingly, actuaries should be cautious about placing too much confidence in a single
distribution fitted to estimated loss ratios. Where the estimates are the result of applying
large development and/or on-level factors, the likelihood of parameter error is especially

large, and appropriately large adjustments must be made to the distribution to account for it.

While it is beyond the scope of this paper to discuss specific methods for estimating the
impact of parameter uncertainty, for the sake of illustration, suppose the effect of reflecting
parameter uncertainty in the current example is to increase o in the lognormal model to
15%. If we constrain g such that E(x) remains unchanged, then g =-0.3571 and
formula (3.1) yields VaR,,, =5.76%, which still fails to meet the “10-10” threshold for

12 Kreps[2]) and Van Kampen (3] provide examples of large effects in loss reserve estimates and aggregate
excess pure premiums, respectively, due to the recognition of parameter uncertainty.
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“significant” risk transfer. In this case, an adjustment to try to take account of parameter
uncertainty is not sufficient to show “significant” risk transfer in the contract, at least if we

use “10-10” to measure it.

The next example brings into question the appropriateness of the “10-10” criterion of

VaRy,, =210% by examining its implications for how we think about stock market risk.

Example 3.3: Primary Quota Share Reinsurance (Volatility of S&P 500)

Assume we are consideting a quota shate treaty on a second primary insurance portfolio.
As in Example 3.2 the treaty ceding commission is 25%, which implies a FAS 113 breakeven
present value loss ratio of 75%. Suppose this portfolio has the distributional and volatility
characteristics commonly attributed to the S&P 500 equity index and an on-level loss ratio of
70%. This implies an assumption that the prospective loss ratio is lognormally distributed”’
with a mean of 70%. Let’s also assume the claim payments lag premiums by one year. In
order to pass the “10-10” test, which requires a present value loss ratio of at least 85% at the
90th percentile, if the risk free interest rate is 5%, the minimum value of the lognormal o

parameter is about 21%"*.

Actual annualized volatility in the price of the S&P 500 index exchange traded fund
(symbol SPY) between early May 2004 and early May 2005 was 10.64%.” On May 4, 2005,
the broadly based CBOE Volatility Index (VIX), a measure of the expected annualized
volatility in the S&P 500 stock index implied by the market pricing of index options, closed
at 13.85%. The market was using a higher estimate of future volatility for pricing purposes
than that observed in the recent past, which might reflect an adjustment for parameter

uncertainty or simply the opinion that volatility would increase. Both estimates of o fall

13 For a discussion of the basis for this assumption, see Appendix B.

o= In{(85)(1.05)] - u
NT(9)
reasonable solution in this context. This threshold assumes a ceding commission of 25%, a risk free interest
rate of 5% and lognormal stock prices. The threshold will vary depending on the parameters.

and pg=1In( 70)—.50’2 imply o = 20.6% or 236%, the former being the only

15 Calculated as the annualized standard deviation of weekly log returns In(P, / P, ) between May 2004 and
May 2005.
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below the threshold of 21% required to pass “10-10”, implying that a “quota share” of the

S&P 500 index'® would fail to meet the FAS 113 requirement for significant risk transfer!

This is not merely a temporary aberration. During the period from early May 2004
through eatly May 2005 the actual volatility observed on a one-year look-back basis averaged
10.77%. Over the same time period, VIX averaged 14.39%. Chart 2 shows this graphically.
The persistent pattern of VIX greater than actual historical volatility suggests that VIX
reflects an adjustment for parameter uncertainty rather than a forecast that volatlity will

increase.

Chart 2
S&P 500 Volatility (Actual vs. Implied)
May 2004 - April 2005

25%

20%

15% :
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Actual
10%
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Source: Yahoo! Finance

Over a longer period of time the market opinion of the prospective volatility of the S&P
500 has varied considerably, ranging from a high of about 50% in 2002 to a low of about 9%
in 1993". Chart 3 shows this graphically.

16 We put “quota share” in quotation marks because the S&P 500 index transaction comparable to a quota
share of an insurance portfolio involves a short sale. Since a short sale is usually considered to be even riskier
than a long position, the failure to “pass” a risk transfer test is all the more surprising. See Appendix B for
details.

Casualty Actuarial Society Forun, Winter 2006 299




RWP on Risk Transfer Testing Report

CHART 3

CBOE SPX MARKET VOLATILITY INDE
as of 16-May-2005
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Source: Yahoo! Finance

Chart 4 shows the probability of a present value loss of 10% or more on the quota share
of this example, given o = VIX values as of the last trading day of each year from 1990
through 2004 plus May 4, 2005. It shows that the probability exceeds 10%, given the VIX
values at the end of 1990 and those for every December from 1996 through 2002. However,
the probability is less than 10%, given the VIX values from every December 1991 through
1995 and those for December 2002 and 2003 as well as that for May 2005'. Almost no one
would argue that an investment in equities, even in a diversified portfolio such as the S&P
500, is not risky. Yet the implication of the “10-10” benchmark is that a quota share
reinsurance that has the same volatlity characteristics ascribed to the S&P 500 by the
options market over the period since 1990 would have been considered risky only about half
the time! Unless the intention is to set the bar for “significant” risk at a level higher than the
typical volatility of the S&P 500, we must conclude that the “10-10” criterion is an

inadequate measure of significant risk.

17 For more information about VIX and its calculation, see the white paper published by the CBOE, which is
available at 1ts website: http: //www.choe.com/micro/vix/vixwhite.pdf. The paper included the history
between 1990 and August 2003.

18 The data underlying Chart 4 can be found in Appendix B.
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CHART 4
Prob PV Loss > 10%
Giveno=VIX
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Table 5 illustrates the “10-10” analysis for a quota share of a portfolio whose loss ratio
has the volatlity characteristics of the S&P 500, for two volatlity scenarios: 9%
(representing the low end of the VIX range since 1990) and 13.85% (representing the VIX
value on May 4, 2005). The ceding commission is 25%. The table shows (a) the loss at the
90th percentile of the present value underwriting result distribution, and (b) the probability
of a present value loss of 10% or more, for o = 9% and 13.85%. Both of these volatility

scenarios fail to meet the “10-10” threshold for significant risk transfer.

If o = 9%, which represents the low end of the range of S&P 500 implied volatility since
1990, the quota share actually has a negative loss (i.e., small profit) at the 90th percentile

(“10% chance of a (0.49%) or greater loss”) and a miniscule 0.30% probability of a 10% loss
or more. This scenario fails the “10-10 test badly!

For o = 13.85% Table 5 shows a 10% chance of a 3.85% or greater loss and a 3.41%

chance of a 10% loss or more. This contract scenario also fails “10-10” by a long wayw.

1" Note that even at an expected loss ratio of 75%. which is the treary breakeven point, there is a 10% chance

of only a 9.49% or greater loss. See Appendix B (Table B-2) for details about the sensitivity of the analysis to
changes in the expected loss ratio assumption.
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TABLE 5
“10-10” Risk Transfer Analysts
for Quota Share in Example 3.3
Given Portfolio with Voladlity of S&P 500

(@ (b)
VIX o 90™ Percentile P.V. Probability of >10%
Underwriting Loss | P.V. Underwriting Loss
Low 9.00% (0.49%) 0.30%
May 2005 | 13.85% 3.85% 3.41%

For further discussion of the comparability of quota share reinsurance with the S&P 500,
see Appendix B.

3.3 Unintended Consequences: The Impact of “10-10” on Reinsurance
Pricing '

There is a further troubling implication of “10-10”. It implicitly imposes price controls
on reinsurance contracts at such a low level that, if that benchmark were to be enforced as a
rule, reinsurance capacity for certain types of business is likely to be reduced, if not

eliminated entirely.

To illustrate this we will assume the prospective loss ratio is lognormally distributed™.

"The mean of a lognormal distribution is given by
E(x) =% (3.3)

If we solve for g in formula (3.1) and substitute the result for the x in formula (3.3) we
obtain the formula for £(x) constrained by VaRy,, =10%:

20 We choose the lognormal merely for purposes of illustration. A different distribution might be more
appropriate.
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E(x) = Exp{In[FV(B +VaRy, )]+ N (90%)- o +0.50*} (3.4

For example, in the treaty scenario with no ceding commission, B + VaRy,, =110%, and

the minimum permissible loss ratio is:

E(x) = Exp{In[FV(110%)]+1.2815 - & + 0.50} (3.5)

Table 6 is a tabulation of the minimum permissible loss ratios allowed by “10-10” for a
range of values of o and average net claim payment lags of zeto, one year, two years and
three years. Chart 5 is a graphical representation of the data in Table 6. We see that for
small values of o and claim lags of a year or more, the minimum permissible loss ratios are
greater than 100%, implying the reinsurer is required to price its business at an underwriting
loss even before taking into account brokerage and its own internal expenses. Even at
somewhat higher values of & that might correspond to certain excess of loss business, the
reinsurers’s net underwriting margins (after typical brokerage of 10% and comparable

internal expenses) are quite low.

For example, given o =9% and assuming no claim payment lag (and hence no
investment income), the reinsurer’s minimum permissible loss ratio is 98.4%. That implies a
maximum allowable matgin before brokerage and internal expenses of 1.6%. The maximum
permissible loss ratio rises as the claim payment lag increases. The effect of the
VaRyy, =10% constraint is that all the investment income earned as a result of the claim
payment lag is credited to the cedent, and the present value of the reinsurer’s margin remains
at 1.6%. For example, given a three-year payment lag and a 5% interest rate, the breakeven
loss ratio is 115.8% and the minimum permissible loss ratio is 113.9%, which leaves a future
value margin for the reinsurer of 1.9%. The present value of that 1.9% is 1.6%. Clearly,
given brokerage costs and internal expenses, no reinsurer could afford to write business at

such a meager margin.
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TABLE 6

Minimum Permissible Loss Ratio
Implied by “10-10”

Contracts with No Ceding Commission
Interest at 5% per annum

By o and Claim Lag

_O_ No Lag 1Yrlag 2Yrlag 3Yrlag
9.0% 98.4% 103.3% 108.5% 113.9%
10.0% 97.3% 102.1% 107.2% 112.6%
11.0% 96.1% 100.9% 106.0% 111.3%
12.0% 95.0% 99.8% 104.7% 110.0%
13.0% 93.9% 98.6% 103.5% 108.7%
14.0% 92.8% 97.5% 102.4% 107.5%
15.0% 91.8% 96.4% 101.2% 106.3%
20.0% 86.8% 91.2% 95.8% 100.5%
25.0% 82.4% 86.5% 90.8% 95.4%
30.0% 78.3% 82.3% 86.4% 90.7%
40.0% 71.4% 74.9% 78.7% 82.6%
50.0% 65.7% 69.0% 72.4% 76.0%
60.0% 61.0% 64.1% 67.3% 70.7%
75.0% 55.7% 58.5% 61.4% 64.5%
100.0% 50.3% 52.9% 55.5% 58.3%
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CHART 5
Minimum Permissible Loss Ratios Implied by 10-10 Rule
(No Commission, 5% Interest)
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In light of our earlier discussion of parameter uncertainty, it may well be that o values as
low as 9% will never be used in practice. However, the problem remains to some extent at
higher values of o. For example, for o =30% the maximum gross reinsurer’s margin is
21.7% (100% less the minimum loss ratio with no claims lag). If the reinsurance is on an
excess of loss basis, brokerage is likely to be 10% and internal expenses are likely to be a
similar amount. That leaves only 1.7% as a net present value margin for the reinsurer, which

is not likely to be attractive.

3.4 Section Summary

The discussion in this section should make it clear that the “10-10” benchmark is a
flawed measure of “significant” risk transfer. The test used to measure risk transfer should
accurately distinguish between contracts that clearly contain significant risk from those that
don’t. That “10-10” fails to identify both catastrophe reinsurance treaties and contracts with
the characteristics of equity investments as risky tells us that it is a poor test. “10-10” also
implies very restrictive caps on reinsurance pricing that can never have been intended. At
the same time it has received criticism from the other direction that it does not do an
adequate job of screening out contracts that meet its minimum requirements but in such a
contrived way that the intent of FAS 113 is thwarted. For all of these reasons it makes sense

to identify a better test than “10-10”, which we seek to do in the next section.
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4. TOWARD A BETTER TEST

There are at least two major shortcomings of the “10-10” test. First, the focus on the
present value loss only at the 90th percendle (VaR,,) ignores the information in the
remainder of the tail represented by the percentiles beyond the 90th. A better test would
take account of the loss potential in the right tail of the distribution, which sometmes can be
extreme (as in the case of catastrophe reinsurance). Second, both the 10% probability and
10% loss thresholds are atbitrary. The risk transfer test should be generalized to allow for
both low frequency-high severity (e.g., 5%-20%) and high frequency-low severity (e.g., 20%-

5%) combinations.

The first shortcoming could be remedied by replacing VaR,,, with the mean severity of
present value underwriting losses at and beyond the 90th percentile, a measure known as the
“tail value at risk” or TVaR,y,, *. This measure of severity incorporates the information
about the loss potential in the right tail that the “10-10” test misses. Indeed, the 2002 VFIC
paper suggested replacing VaR,,, in the “10-10” test with TVaR,, . However, simply
replacing VaRy,, with TVaRyy,, is not by itself a full solution to the problems associated
with “10-10”, because it leaves unaddressed that test’s second shortcoming that the 10%
thresholds wrongly screen out low frequency-high severity and high frequency-low severity

contracts.

That second shortcoming can be corrected by relaxing the requirement that the
probability of loss and the severity of loss must both exceed 10%. We can do this by making
use of the fact that the expected reinsurer deficit (ERD)™ is equal to the probability (or _freguency)
of the present value underwriting loss times its average severity, where the latter is
TVaR measured at the economic breakeven point. Since ERD incorporates information
about both the frequency and severity of the reinsurer’s downside risk into a single measure,
it makes sense to use that measure to define a threshold for measurement of significant risk

transfer rather than to define it in terms of frequency and severity separately:

2! Also known as the “tail conditional expectation” or “TCE”, TVaR has been praised by VFIC[1] , Meyers [4],
and others as a coherent measure of risk as well as for its incorporation of the information contained in the
right tail of the distribution.

22 The ERD is the expected cost of all present value underwriting loss scenarios. It is also the expected value of

Mango’s [5] contingent capital calls. Conceptually, it is related to the EUD defined in Section 2, but the EUD
is defined in nominal terms and the ERD is defined in present value terms.
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ERD = Freq x Sevz A 4.1)

where A represents the threshold above which a contract is considered to have provisionally
“passed” the “significant” risk transfer test and below which is it is considered to have
“failed”. Freq and Sev refer to the frequency of present value loss and the average severity
of such loss, tespectively. See Appendix A for the mathematical definitions of all the

elements of formula (4.1).

This approach, which we will refer to as the “ERD Test”, addresses both shortcomings of
the “10-10” test by (a) reflecting the full right tail risk in the definition of severity and (b)
replacing separate frequency and severity requirements with a single integrated measure that
treats low frequency-high severity, high frequency-low severity and moderate frequency-

moderate severity contracts in the same way.

We will illustrate the application of the ERD test with a threshold A of 1%, because it has

the merit of a certain amount of continuity with the “10-10” test™. The way to think about
that is that first we have changed the VaR,,, 210% embodied in the “10-10” test to
TVaRyy, 210%. Then we have generalized the TVaR standard to allow contracts having a
wide variety of frequency-severity combinations, including 5%-20%, 10%-10% and 20%-5%,
to meet the requirement for “significant” risk transfer. ERD >1% is effectively a variable
TVaR standard that defines “significant” as TVaR 2 %:oq. One implication of this is

1-Freq =
that any contract that passes “10-10” will also pass a standard of ERD 21%.

Chart 6 shows the “significant” risk transfer frontiers for ERD 21% and three TVaR
standards (“10-10” as well as “5-20” and “20-5) plotted in terms of frequency and severity.
Frequency-severity combinations above and to the right of the frontiers represent
“significant” risk. We see that a fixed TVaR “10-10” standard would exclude contracts with
loss frequencies less than 10% and severities less than 10% that the ERD standard would
accept as “significant”. As a generalized TVaR standard, a ERD 21% standard would
accept TVaR,,,, 220% or TVaRy,, 210% or TVaRy,, > 5%, etc.

23 Whether that is the proper threshold warrants further research.
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CHART 6
Risk Transfer Frontier: ERD > 1% vs. Various TVaR
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To address the issue of contracts that have been engineered to remove most or all of the
potential for a loss greater than 10% in the right tail, which some criticize as too small, we
suggest consideration of a supplemental requirement that there be the potental for a
reinsurer loss of some minimum threshold, say, 15% or 20% of premiums. That would

eliminate very low loss ratio caps.

We are not advocating that every reinsurance contract be tested for significant risk
transfer. It should be possible to conclude that some contracts have adequate risk transfer
without formally testing them. In section 6 we will suggest some ways to do that. However,
we are suggesting that the ERD test (possibly together with the supplemental test) could be
applied to all contracts that are subject to the “significant” risk transfer requirement with the

confidence that it would produce consistently reasonable results.

We believe the ERD test (with or without the supplemental component), if adopted,
should only be applied prospectively and not to contracts already on the books.

5. ILLUSTRATION OF THE ERD TEST

In this section we apply the proposed test to the contracts used in the examples of

Section 3 as well as several additional examples.
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Example 5.1: Property Catastrophe Excess of Loss Reinsurance

If we apply the ERD test to the catastrophe reinsurance contract described in Example
3.1, that contract now easily passes muster for risk transfer. Again assuming normal
reinstaternent premium provisions, which call for an additional premium equal to the original
premium times the proportion of the limit that has been exhausted, Freqg=3%, Sev=
TVaR,,, =800% and ERD =24%. Because of the large contribution from Sev to ERD, this
contract now easily surpasses the standard of ERD 21%.

TABLE 7

ERD / Max Downside

For Standard Cat XL Contracts

By Rate on Line
Reinsurer
Rate on Poisson Max

Line _A_ ERD * Downside*

1.0% 0.5% 49.0% 19545%

2.0% 1.0% 48.0% 9678%

3.0% 1.5% 47.0% 6364%

4.0% 2.1% 46.0% 4651%

5.0% 2.6% 45.1% 3726%

7.5% 3.9% 42.6% 2373%
10.0% 5.3% 40.2% 1711%
12.5% 6.7% 37.9% 1315%
15.0% 8.1% 35.6% 1051%
20.0% 11.1% 31.0% 723%
25.0% 14.2% 26.6% 530%
30.0% 17.5% 22.3% 402%
40.0% 24.6% 14.2% 246%
50.0% 32.4% 6.6% 157%

* Ratio to expected premium

Assumptions.
- One reinstatement of limit for 100% A.P.

- Investment income effects ignored
- Poisson model with parameter A
- Expected loss ratio 50%
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In fact, using conservative assumptions, contracts having the same structure as the
standard property catastrophe treaty™ can be shown to exceed the ERD >1% threshold (as
well as a supplemental minimum potential downside threshold) if the upfront rate on line
ROL <50%. Table 7 summarizes the ERD and potential downside values (ignoring
investment income) for contracts having rates on line ranging from 1% to 50%, based on the
simplifying assumptions that the expected loss ratio is 50%, all claims ate total limit losses
and that claims are Poisson distributed. On the basis that every rate on line in Table 7 easily
passes the ERD test even without the supplemental downside requirement, we suggest that
any reinsurance contract having this structure be deemed to meet the requirements for
“significant” risk transfer. Clearly, such contracts are subject to the “significant” risk
transfer requirement, but because we have, in effect, pre-qualified them as a class, the

requirement to demonstrate significant risk transfer can be waived.

Example 5.2: Primary Quota Share Reinsurance

We applied the ERD test to the primary quota share contract described in Example 3.2.
Again assuming a one-year net claim payment lag®, a 5% interest rate and a lognormal ¢ of
15%, we calculated the frequency and severity, respectively, of present value underwriting
loss to be 21.53% and 6.91%, which cotresponds to an ERD of 1.49% This ERD value
surpasses the ERD 21% standard. Moreover, because there is no limit on the reinsurer
downside potential, it would meet the suggested supplemental requirement. Therefore, this

contract meets the “significant” risk transfer requirement.

Example 5.3: Primary Quota Share Reinsurance (Volatility of S&P 500)

In this example we test the same quota share that was the subject of Example 3.3. That
quota share covered an insurance portfolio with the same loss ratio voladlity as an S&P 500

index investment. The ceding commission is 25%. The frequency, severity and ERD

> The standard property catastrophe treaty provides two loss limits, the second one paid for with a contingent
“reinstatement” premium at the same rate on line as the first one.

2 Using this simplifying assumption, we can focus on the present value of the losses only, measured at the time
the premium is received, because the present value factor applicable to premiums and losses for the period up
to the premium receipt date is the same. The ratio of discounted ERD to discounted premium using the full
claim and premium payment lags is equal to the ratio of discounted ERD, using the net claim lag, to
undiscounted premium.

2 If the prospective loss ratio is lognormally distributed, ERD = PV [E(x)-N(dl)-FV(B)-N(d2)],
where N is the normal cdf, dl1={In(E(x)/ FV(B))+0.5 cl]/c and d2=dl-o.
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characteristics of such a portfolio are summarized in Table 8 for the two volatility scenarios
modeled in Example 3.3. For volatility of 13.85% the ERD >1% standard is met.
However, at the historically low volatlity of 9%, a portfolio with S&P 500 volatility
characteristics has an ERD of only 0.28% and thus fails the ERD 2 1% standard by a wide
margin. That creates a conundrum — is it ever reasonable to consider the S&P 500 to be
without risk? If not, a 1% threshold for ERD is too high.

TABLE 8
ERD Risk Transfer Analysis for Quota Share in Example 5.3
Given Portfolio with Volatlity of S&P 500

o Freq Sev ERD
9.00% 8.8% 3.2% 0.28%
13.85% 17.9% 6.0% 1.07%

Next, we will use the ERD test to assess quota share contracts with features such as loss
ratio caps and corridors that reduce the loss exposure of the reinsurer. These features
appear frequently in traditional reinsurance contracts as a means of making otherwise
unattractive treaties acceptable to the reinsurance market.

Example 5.4: Reinsurance with 25% Ceding Commission and 5-Point Loss Ratio
Corridor

Table 9 shows the downside risk measures Freg, Sev and ERD for a quota share or
excess contract that provides a 25% ceding commission and requires the ceding company to
retain any losses that fall within a five point loss ratio cotridor from 75% to 80%. We
assume the prospective loss ratio is lognormally distributed, with a mean of 70% and a range

of values for o. Claim payments are assumed to lag premium payments by one year.

Table 9 shows that for lower volatility business, represented here by lognormal & values
of 10% and 15%, a treaty with the 5 point loss ratio corridor removes enough risk from the
deal that the ERD falls below 1%, indicating that the risk transfer is not significant. For the
o values of 25% and higher, the ERD significantly exceeds the 1% threshold. Clearly, the
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effect of a loss ratio corridor depends on the characteristics of the reinsured business, and in

some circumstances such treaty feature is entirely appropriate.

TABLE 9
ERD Risk Transfer Analysis for Contract
With 25% Ceding Commission and
Loss Ratio Corridor from 75% to 80%

o Freg Sey ERD

10% 31% 3.2% 0.10%

15% 9.1% 6.0% 0.59%

20% 15.6% 9.2% 1.43%

25% 19.7% 12.6% | 2.47%

30% 22.4% 16.2% | 3.63%

40% 25.6% 23.9% [ 6.13%

50% 26.9% 32.4% | 8.74%

Example 5.5: Reinsurance with 25% Ceding Commission and 95% Loss Ratio Cap

We now consider the effect of an aggregate loss ratio cap of 95% (instead of a loss ratio
corridor) on the same subject matter business discussed in Example 5.4. Table 10 shows
frequency, severity and ERD for o values ranging from 10% to 50%. Except for the case of
o =10% (where ERD =0.41%) the aggregate loss ratio cap is at a high enough level that the
1% threshold is exceeded, and for the higher values of o by a wide margin.

Note that in the case of o =10%, the ERD associated with a contract with no loss ratio
cap is also 0.41%, indicating that the cap at 95% has no significant effect on the risk

transferred to the reinsurer. On that basis, the contract with a 95% cap transfers
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“substantially all” the risk in the underlying portfolio, and even though it does not transfer

“significant” risk, it meets the risk transfer requiremnents of FAS 113.

TABLE 10
ERD Risk Transfer Analysis for Contract
With 25% Ceding Commission and
Loss Ratio Cap of 95%

o Freq Sev ERD
10% 11.0% 3.8% 0.41%
15% 19.5% 6.5% 1.27%
20% 24.5% 8.9% 2.18%
25% 27.6% 10.7% | 2.94%
30% 29.4% 12.0% | 3.53%
40% 31.1% 13.8% | 4.29%
50% 31.4% 14.9% | 4.69%

Example 5.6: Excess Swing-Rated Reinsurance

It is common for “working layer” excess of loss reinsurance to be structured on a “swing-

rated” basis, which means the premium is based in part on the losses ceded to the treaty.

Typically, the premium formula calls for ceded claims to be multiplied by a loading factor to

reflect a margin for the reinsurer, subject to a minimum and maximum.

In primary

insurance this structure is known as a “retrospective experience rating plan”. The purpose of

such plans is to allow the ceding company to fund its own excess claims up to the point

beyond which it would become too painful and to cede the excess claims beyond that point

to the reinsurer. To the extent that the excess claims experience is good, the ceding company

benefits from a lower rate. Reinsurers often like these plans because they provide strong
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incentives, both positive and negative, to the ceding company to minimize excess claims.
Ceding companies often find these plans attractive because they believe their realized rate

will be significantly less than under a flat-rated plan.

While minimizing risk transfer is not usually the driving force behind the structuring of a
swing plan, such a structure typically does transfer less risk than a flat-rated excess of loss
treaty covering the same business. To illustrate this, suppose the expected excess losses are
$4 million. If the total premiums on the subject portfolio are $50 million, this can be
expressed as a loss cost of 8%. For the sake of discussion let’s assume the excess claim count
can be modeled using a negative binomial distribution with an mean of 8 claims™ and that

only total limit claims are possible. Tle claim distribution is shown graphically in Chart 7.

‘ CHART 7
Excess Swing Plan Example
Claim Distribution
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Suppose the swing plan calls for an excess reinsurance premium equal to excess claims
times 100/80, subject to 2 minimum of 4% of subject premiums and a maximum of 16%.
That results in the excess rate distributon shown in Chart 8. The expected value of the

premium rate under this plan is 9.71%. The alternative is a contract with a flat rate of
11.43%.

77 Specifically, using the Microsoft Excel function for the negative binomial probability, Prob(COUNT)=
NEGBINOMDIST(COUNT, 8, 0.5)
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CHART 8
Excess Swing Plan Example
Premium Rate by Claim Count
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Table 11 summarizes the ERD analysis for both the flat-rated and swing-rated plans,

assuming that there is a negligible claim payment lag. It shows that the swing plan has an

ERD of 0.97%, just under the 1% threshold for significant risk.

With some minor

restructuring this contract would be able to pass the ERD test. In contrast, the flat-rated

plan has an ERD of 4.70%, which is well above the threshold. Note that the mean severity

of loss faced by the reinsurer is greater in the case of the swing plan than in the flat-rated

plan, but because the probability of loss is much lower, the swing plan ERD falls below the

threshold for “significant” risk. This is a good illustration of why severity (TVaR) by itself is

an unreliable indicator of risk.

TABLE 11
ERD Risk Transfer Analysis
Swing-Rated vs. Flat-Rated Excess

Plan Rate Freq Sev ERD

Swing | 9.71% | 3.2% ([ 30.4% | 0.97%

Flat | 11.43% | 18.0% | 26.2% | 4.70%
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Example 5.7: Individual Risks

One of the well known drawbacks of the “10-10” test is that if it were applied to
individual insurance contracts or facultative reinsurance contracts, it would in almost all
cases indicate that they do not contain “significant” risk, which strikes virtually everyone as
unreasonable. In this example, using simplifying but not unreasonable assumptions we will
show that the ERD test correctly identifies individual risk contracts as containing significant

risk.

We assume that a portion of the premium for every individual risk contract is attributable
to the potential for a limit loss. Since it is very large losses rather than partial losses that are
most likely to put the insurer or reinsurer into deficit, we will ignore the potential for small
losses and focus on limit losses. Let’s assume that the pure premium for total limit losses is
10% of the total premium. Since a limit loss can occur only once in a policy period, let’s
assume the probability of such a loss is Bernoulli distributed with a probability equal to this
10% times the total premium rate on line (i.e., the total premium divided by the limit). From

that we can calculate the ERD and the maximum downside potential.

The results are shown in Table 12 for rates on line ranging from 0.5% up to 83.33%. We
see that any individual risk paying a rate on line of less than 83.33% would exceed a
ERD > 1%standard for “significant” risk. We display such a wide range of rates on line,
because we want to show that virtually all individual risks, ranging from personal lines
policies to large commercial policies with a high level of premium fundiné, can be shown to

meet the “significant” risk requirement using the ERD test.

Above a rate on line of 83.33%, the maximum downside falls below 20% of premium,
which is a potental threshold for our proposed minimum downside requirement. Thus,
individual risks with rates on line above 83.33% would fail to show “significant” risk. While
this is a highly idealized example and further research would be appropriate to refine the
methodology, we believe it is sufficiently realistic to “pre-qualify” virtually all individual risk
contracts as containing significant risk and thus make it unnecessary to test them
individually.
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TABLE 12

ERD / Max Downside
For Individual Risk Contracts

By Rate on Line
Limit Reinsurer
Rate on Loss Max
Line Prob ERD Downside
0.5% 0.05% 9.95% 19900%
1.0% 0.10% 9.90% 9900%
2.5% 0.25% 9.75% 3900%
5.0% 0.50% 9.50% 1900%
10.0% 1.00% 9.00% 900%
25.0% 2.50% 7.50% 300%
50.0% 5.00% 5.00% 100%
75.0% 7.50% 2.50% 33%
83.3% 8.33% 1.67% 20%

Assumptions.
- Investment income effects ignored

- Bernoulli probability of limit loss
- Total limit loss ratio 10%

5.1 Section Summary

In this section we have shown that the ERD test produces mostly reasonable results when
applied to a variety of reinsurance structures covering insurance portfolios having a wide
range of risk characteristics. Using the ERD >1% standard together with reasonable
contract assumptions we have demonstrated that catastrophe excess of loss reinsurance and
individual risk contracts generally contain significant risk, which is a common sense result
that eludes the “10-10” test. We also showed that loss ratio corridors and loss ratio caps are
acceptable under some circumstances but not under others, and similarly that swing-rated
excess reinsurance must be structured with care to ensure that it transfers significant risk
while still meeting the reinsurer’s and ceding company’s other goals. The only unreasonable
result we produced was that a quota share contract with a ceding commission of 25% and
the prospective volatlity characteristics of the S&P 500 (as measured by VIX) does not

always meet the “significant” risk requirement. VIX has ranged as low as 9% in the period
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since 1990. Volatility parameters below about 13% produce ERD results (in the quota share
we tested) that suggest insignificant levels of risk. This is an anomalous result because it
suggests that under some circumstances an investment related to the S&P 500 index should

not be considered risky, a conclusion that does not seem reasonable.
In summary, given these results and the findings in Section 4, we conclude that:

1. The ERD methodology described here, with a 1% threshold for significant risk transfer, is
numerically comparable to the “10-10” benchmark;

2. The ERD methodology is qualitatively superior to that benchmark; and

3. If the 1% ERD method were adopted as a de facto standard replacing the “10-10”, we

would consider that a significant improvement.

6. IDENTIFICATION OF CONTRACTS SUBJECT TO
“SIGNIFICANT” RISK REQUIREMENT THAT DO NOT
REQUIRE INDIVIDUAL TESTING

Apart from those contracts for which it can be demonstrated that they transfer
“substantially all” the risk inherent in the underlying insurance policies, all purported
reinsurance contracts are subject to the requirement that they transfer “significant” risk.
Unless a contract is tested, it is impossible to know whether or not it meets the requirement.
However, the implication that it is necessary to test every single reinsurance contract is
daunting. For many ceding companies buying excess of loss reinsurance, it might even be
impossible. Ceding companies often buy excess coverage not only to transfer risk but also
to obtain pricing for excess exposure they themselves do not fully understand, which they
can factor into their own insurance rates. Under such circumstances, to ask ceding
companies to model such exposure to demonstrate compliance with FAS 113 seems

unreasonable.

Ideally, we would like to find a way to partition the set of all reinsurance contracts subject
to the “significant” risk requirement into the subset containing those that we can reasonably
expect will pass if they were tested and the subset comprising all other contracts. The
former subset would be exempt from individual testing, while the latter subset would have to
be tested individually. The purpose of this section is to begin to identify elements of the first

subset of contracts that do not require individual testing.
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Example 6.1: Individual Risk and Catastrophe Excess of Loss Contracts

In Section 5 we showed that 1) standard catastrophe excess of loss contracts and 2)
individual risk contracts, generally possess ERD characteristics that indicate these two classes
of contracts meet the “significant” risk requirement, and that it is therefore unnecessary to

test contracts within those classes individually.

Example 6.2: Other Excess of Loss Contracts

By virtue of analysis similar to that for individual risk and catastrophe excess of loss
contracts, it is possible to add a further large subset of excess of loss contracts (treaty and
facultative) to the category of contracts that do not require individual testing. Table 13
summarizes the ERD analysis for excess of loss contracts with no ceding commission and
rates on line ranging from 1% to 500% and aggregate limits no less than one full limit or
200% of premiums, whichever is greater. The term “rate on line” is most frequently used in
connection with catastrophe excess of loss treaties and other excess contracts where the
ratio of premium to limit™ is far less than 100%, so a rate on line of 500% might be
surprising. However, it is common for “working layer” excess of loss contracts to be priced
with the expectation that there will be between several and many claims during the coverage
period. Under typical pricing assumptions, a 500% rate on line implies the expectation that

excess claims will be equivalent to about three total limits losses.

Our analysis assumes a Poisson distribution for claim frequency and that all claims are
limit losses. Theoretically, we should use a negative binomial, but because that makes the tail
fatter and thus easier to pass the ERD test, the Poisson assumption is conservative. We
assume an expected loss ratio of 70%, another conservative assumption. In a competitive
market the expected loss ratio can be expected to be highet, especially for the higher rate on
line business. We assume an interest rate of 5% and a 5-year claim payment lag (which

makes this analysis suitable for reasonably long tail as well as short tail business).

On the basis that every rate on line in Table 13 from 1% to 500% passes the ERD test
even without the supplemental downside requirement coming into play, we suggest that any
excess of loss contract having this structure (and no loss sensitive or other features that

might call the contract’s status into question) be deemed to meet the requirements for

8 Note that the limit used in the denominator is the risk or occurrence limit, depending on the coverage, not
the aggregate limit except in the case of aggregate excess coverage.
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Expected Reinsurer Deficit / Max Downside

For Long/Short Tail XL Contracts with
Aggregate Limit > One Limit or 200% Loss Ratio

TABLE 13

By Rate on Line
Expected Reinsurer
Rate Poisson Reinsurer Max P.V.
on Line _A_ Deficit* Downside*
1.0% 0.7% 54.0% 7735%
2.5% 1.8% 52.6% 3034%
5.0% 3.5% 50.5% 1467%
10.0% 7.0% 46.2% 684%
15.0% 10.5% 42.1% 422%
25.0% 17.5% 34.3% 213%
50.0% 35.0% 16.7% 57%
75.0% 52.5% 6.9% 57%
100.0% 70.0% 8.8% 57%
200.0% 140.0% 5.0% 57%
*300.0% 210.0% 2.9% 57%
400.0% 280.0% 1.8% 57%
500.0% 350.0% 1.3% 57%

* Ratio to premium

Assumptions.

- Loss cap of greater of one limit or 200% L/R

- No ceding commi

- Poisson model with parameter A4
- Claim payment lag 5 years

- Interest rate 5% per annum

- Expected loss ratio 70%

ssion

“significant” risk transfer. Excess of loss contracts with no aggregate limit clearly fall into

this category as well. All such contracts are subject to the “significant” risk transfer
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requirement. However, because we have, in effect, pre-qualified them as a class, the

requirement to demonstrate significant risk transfer can be waived.

Example 6.3: Contracts with Expected Loss Ratios Above a Minimum Permissible
Loss Ratio Threshold

There is a further general approach to expanding the set of contracts subject to
“significant” risk testing that do not need to be tested individually. In Section 3 we noted
that one unreasonable implication of the “10-10” test is a cap on reinsurance pricing at such
a low level that, if it were enforced, would likely lead to a reduction of reinsurance capacity.
The ERD >1% standard we have proposed also implies a cap on reinsurer margins.
Fortunately, the ERD standard we have illustrated implies a significantly higher maximum

permissible present value margin for the reinsurer than the “10-10” test does.

Table 14 shows maximum permissible present value margins and corresponding
minimum permissible loss ratios implied by ERD 21% for claim lags of zero, one year, two
years and three years with respect to contracts for which the prospective loss ratio can be
modeled using a lognormal distribution”. The results are shown for o values ranging from
9% to 100%. Note that for each value of ¢, the permissible loss ratios increase in nominal
terms with the claim lag, but the present values are all the same. The allowable margins for
the o values at the low end of the range might make reinsurance of such low risk portfolios
impossible unless the reinsurance is structured to meet the “substantially all” risk transfer
test. For example, the maximum permissible present value margin for o =9% of only
7.1%, while much higher than the 1.6% permitted under “10-10”*, does not allow a
reinsurer much, if any, upside potental, after deducting brokerage and internal expenses.
That is one reason to consider the possibility that an ERD threshold of 1% might be too
high. On the other hand, in light of our discussion in Section 3 about parameter uncertainty,
it might turn out to be the case that realistic prospective estimates of ¢ will, in practice,

generally exceed the low end of the range, making this concern irrelevant.

29 Where the lognormal assumption is not approj riate, similar tables could be constructed for other loss ratio
g0 p pprop.
models.

30 See Table 6. It is worth noting that the ERD >3% mentioned in the 2002 VFIC paper as a possible

threshold would result in an even lower maximum permissible present value margin of 1.2%! A threshold of
3% is clearly too high.
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TABLE 14
Maximum Margins / Minimum Permissible Loss Ratios
Implied by ERD >21%
Contracts with No Ceding Commission
Interest at 5% per annum
Tabulated by o and Claim Lag
Max Minimum Permissible oss Ratio
J A Lag0 Lag1 Lag2 Lag3
g Margin Xrs Yr Yrs Yrs
9.0% 71% 92.9%  97.5% 1024%  107.5%
10.0% 8.4% 91.6%  962% 101.0%  106.0%
11.0% 9.7% 90.3%  94.8% 99.6%  104.6%
120%  11.0% 89.0%  93.5% 98.2%  103.1%
13.0% 12.3% 87.7%  921% 96.7%  101.6%
14.0% 13.6% 86.4%  90.8% 95.3%  100.1%
15.0% 14.9% 85.1%  89.4% 93.9% 98.6%
20.0% 21.3% 78.7%  82.7% 86.8% 91.1%
25.0% 27.4% 72.6%  76.2% 80.0% 84.0%
30.0%  33.2% 66.8%  70.1% 73.6%  77.3%
40.0% 43.7% 56.3%  59.1% 62.1% 65.2%
50.0% 52.6% 47.4%  49.8% 52.2% 54.9%
60.0% 60.1% 39.9%  41.9% 44.0% 46.2%
75.0% 69.1% 30.9%  32.5% 34.1% 35.8%
100.0%  79.5% 20.5%  21.6% 22.6% 23.8%

The maximum margins implied by ERD 21% for larger values of 0 seem more
reasonable. For example, for o =30%, the allowable present value margin is 33.2%, which

is a more reasonable ceiling®.

The implication of this for our present discussion is that if a contract with no ceding
commission is priced to an expected loss ratio that is greater than the minimum permissible
loss ratio shown for the relevant ¢ and claim lag (and the other assumptions are
reasonable), then the contract will meet the ERD >1% standard that indicates significant

risk transfer. We present this as an illustration of how the subset of contracts that do not

31 In contrast, a threshold of ERD >3% implies a maximum permissible present value margin of 22.0%, which
is about the same as that implied by “10-10”.
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require detailed testing for significant risk transfer could be expanded beyond the
catastrophe excess of loss, individual risk and other excess of loss contracts we identified
eatlier. Any contract that is priced to an expected loss ratio that exceeds the minimum
permissible loss ratio would be exempt from individual testing. Additional research is

necessary to fully realize this approach.

Chart 9 shows the minimum permissible loss ratios in Table 14 graphically.

‘ CHART 9
: Minimum Permissible Loss Ratios
Implied by ERD>1% Rule
No Commission, Interest at 5%
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Example 6.4: Contracts with Immaterial Premiums

Contracts or programs that involve the cession of small amounts of premium should be
exempt from individual testing, unless there is reason to suspect that they might materially
distort either the ceding company’s or reinsurer’s financial statements. A reasonable
definition of small might be the smaller of $1 million and 1% of total gross premiums. The
rationale for this exception is that small premium cessions by definition have a very limited
impact on either party’s financial statements. Any distortion resulting from minimal risk

transfer below the significance threshold would be immaterial.
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7. POSSIBLE EVOLUTION OF RISK TRANSFER MEASUREMENT

The context of the paper is tisk transfer testing. However, the notion of risk transfer is
also integral to the pricing of insurance and reinsurance products. Risk transfer is what gives
tise to risk premiums and the potential for profit. Many methods already exist for explicitly
or implicitly adding a profit load to a reinsurance contract. It seems reasonable that a risk
loading method used to determine needed profits could be turned into a risk transfer test as
well. Although this paper does not address the issue directly, the ERD risk transfer test
described in earlier sections of this paper measures tail value at risk (TVaR), which is a valid
method for producing risk and profit loads. In fact, given the coherent nature of TVaR, it is

considered a superior method for risk loading by many practitioners.

At least one major insurance company has used the ERD framework in pricing and
enterprise risk management for several years, in the form of the risk coverage ratio (RCR)
described by Ruhm [6]. In practice, that risk measure has produced results for the company
that are reasonable and consistent across a broad variety of actual risks, due in large part to

its good technical properties and its relative transparency.

As noted before, this working party is not endorsing any single specific method for risk
transfer testing. “Thus, rather than doing more work on our ERD example to show its full
implications for risk loading, we will show another (much briefer) example here where risk

loading and risk transfer testing are tightly linked.

The approach we examine here is based on the right tail deviation (RTD), a framework

proposed by Wang and developed from concepts he has written about extensively [7] [8].

For a given aggregate distribution function F{x) (derived from some convolution of
frequency and severity distributions), we transform the distribution using the following

formula:

F'(x)=1-1-F(x) (7.1)

Because 0 < F(x) < 1 for all x, it is fairly easy to see that F*(x) < F(x) for all x, which

implies the following expected value relationship:
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E'(x)2 E(x) 7.2)

The interpretation is that the transform has “loaded” the original distribution for risk.
The difference between E” and E is the risk load, for any layer of the distribution. Thus, we
can use E’ instead of E to represent a fully risk loaded pure premium. The reason this
approach is appealing is that the transformed distribution is itself another loss distribution,
meaning that all the ordinary mathematics of loss distributions carry over. Relating this to
financial mathematics, it is generally assumed that assets like equities are themselves
transformed distributions, although this is not usually explicitly stated. The transform in the

financial economic model is the so-called state price, which enforces no-arbitrage pricing [9].

If one wants to think about the risk load independently, it is easily captured as:

RTD(x)=E'(x)-E(x) (7.3)

Under this approach, the risk load RTD might be adjusted (i.e. multiplied) by some
constant factor & to produce the final profit load. Note that Wang has generalized this
mode] to consider other exponents of transformation (i.e. instead of just the power of 0.5,

any power between 0 and 1 exclusive).

There are a couple of ways in which the RTD could be used to devise a risk transfer test.
One way would be to treat @RTD as the maximum permissible reinsurer’s margin consistent
with “significant” risk transfer. That is essentially the same approach that was described in
Example 6.3. The difference is that in that example, we derived the risk load consistent with
a “significant” risk transfer threshold of ERD 21%, whereas here we would determine the
risk load component aRTD first and then effectively determine the risk transfer threshold

that is consistent with it.

A second way would be to devise a risk transfer test that compares the full premium (not
just the margin) with a multiple of @RTD using the following procedure, which is similar to
one outlined by Wang:

1. Compute expected loss of the contract under the untransformed distribution F{(x);
2. Note the premium for the deal (however computed—allows for market pricing);

3. Compute RTD for the deal using the transformed distribution and formula (7.3);
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4. Define the maximum qualified premium as some multiple of RTD (Wang suggests 3-
5x7);

5. The “significant” risk transfer threshold is defined as “maximum qualified premium >

preminm™.

We will ook at two examples of this approach. The first is the catastrophe excess of loss
contract described in Examples 3.1 and 5.1. The second example addresses a questionable
scheme for creating a reinsurance structure that apparently meets the “significant” risk
transfer requirement by combining two unrelated coverages to produce just enough risk
transfer to pass. This is an important example, because this method separates the
reinsurance premium into higher risk and lower risk components and thus has potential to
identify highly structured reinsurance contracts that satisfy other quantitative tests but do not
meet the spirit of FAS 113,

Example 7.1: Property Catastrophe Excess of Loss Reinsurance

If we apply the RTD qualified premium approach to the property catastrophe excess of loss
example discussed in Examples 3.1 and 5.1, we see that the contract easily meets this RTD-
based risk transfer requirement. Table 15 shows the catastrophe loss distribution originally
shown in Table 3 with an additional column for the “transformed” probability based on the
F '(x) determined from formula 7.1. E'(x), expressed both in terms of premiums and limit, is
shown at the bottom of the table as 203% and 20%, respectively.

32 The issue of the appropriate multiplier of RTD warrants further research. A multiple of 4 appears to imply
that traditional quota shares like those discussed in Examples 3.2 and 3.3 do not contain significant risk
transfer, which suggests the effective threshold may be set too low.

33 Wang has a suggested giving partial credit in cases where the maximum qualified premium is less than the
actual reinsurance premium. However, we prefer to focus on the risk characteristics of the contract as a
whole.

34 This comes at the cost of some complexity. The subdivision 1nto nsky and less risky components depends

on the values chosen for @, the multiplier for aRTD, and the exponent in formula (7.1), choices that are
made more difficult by the fact that it is difficult to ascribe an intuitive meaning to these parameters.
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TABLE 15
Catastrophe Loss Distribution
Example 7.1
Actual Transformed
Loss as Loss as Probability Probability*
% of Limit % of Premiums | of Given Loss | of Given Loss
0% 0% 67% 43%
5% 50% 20% 21%
10% 100% 10% 19%
100% 1000% 3% 17%
5% 50% 100% 100%
20%* 203%*

In terms of premium, RTD=203%-50%=153%. Using a multiplier of 4x, the “qualified”
premium proportion is 612%, which is well in excess of the threshold of 100% required for

significant risk transfer.
Example 7.2: “Highly Structured” Mix of Low Risk and High Risk Portfolios

We now move on to the example of potential manipulation. In this case, the deal
structure consists of a base portfolio with very little risk mixed with a highly risky
catastrophe layer. The overall structure is designed to barely pass risk transfer using the “10-
10” criterion.

The low risk portfolio has expected losses of $8 million with lognormal o value of only
1%. To maximize the low risk nature of this portfolio, its premium is $8 million—no load

for expense ot profit at all.

The catastrophic portfolio we add to this deal is a $1.6 million layer with a 12.5% chance
of loss. For simplicity, if a loss occurs, it is a total loss. Thus, the expected loss for this

piece is $200,000. Let’s assume the premium is $500,000, for a 40% expected loss ratio.
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First, let us consider the two pieces separately. The low rsk portfolio has an
untransformed expected loss of $8 million and a transformed expected loss of $8.1 million.
The maximum qualified premium is only $0.4 million, leaving $7.6 million unqualified. This
piece falls far short of the “significant” risk standard.

The catastrophic portfolio has an untransformed expected loss of $200,000 and a
transformed expected loss of $666,000. The maximum qualified premium is well in excess
of the actual premium of $500,000, thus easily meeting the RTD-based “significant” risk

standard.

Now consider the combined distribution. The combined contract has a premium of $8.5
million. A 10% loss over this would be an attachment of $9.35 million, and the probability
of this occurring is 12.5% (very close to the cat loss alone, of course). Thus, this contract
passes the “10-10” test. But Wang’s method gets closer to the truth. The transformed
expected losses are only $8.65 million vs. $8.2 million untransformed, producing maximum
qualified premiums of only $1.8 million, leaving $6.7 million unqualified, well short of the
100% required for “significant” risk transfer.

Note that this method penalizes the combination even more than the sum of the
components (the RTD of the combined deal is $450,000, whereas the sum of the RTDs of
the two deals is about $570,000)”. It is not clear whether this phenomenon, i.e., the RTD-
based approach of the highly contrived structure being less than sum of the RTD of the
separate components, represents the general case. However, it does suggest the intriguing
possibility that this approach could perhaps be developed into a quantitative test to detect
reinsurance structures that appear to pass certain quantitative threshold, but which do not
meet the spirit of FAS 113.

This is as far as we will pursue the RTD ideas here. The RTD approaches have some
appeal and added properties that the ERD method does not, at the cost of increased
complexity. As noted previously, the working party is not specifically advocating any
particular method. This example shows that other methods could be used instead of the
ERD example that we have examined in some detail. Ultimately, a combination of market

and regulatory factors will determine what methods are actually deployed.

35 This is due to the diversification of the combined deal, which is of course the correct treatment.
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8. SUMMARY

The purpose of this paper has been to contribute constructively to the thinking about
what should be understood by the term “risk transfer” in the context of FAS 113 by framing
a comprehensive response to the four questions posed by COPLFR.

In particular, we have responded to the first two questions by describing two approaches
for assessing the significance of risk transfer that are superior to the “10-10” test that is in
common use. The first approach, which we have described and illustrated in detail, is based
on the expected reinsurer deficit (ERD). The second approach, which we outline more
briefly, is based on the concept of right tail deviation (RTD). We have responded to the
third “safe harbor” question in two parts. First, we have described a framework for
determining whether a purported reinsurance contract meets the FAS 113 risk transfer
requirement by virtue of the cession of “substantially all” of the underlying insurance risk to
the reinsurer. Second, we have begun to identify groups of contracts that are subject to the
“significant” risk requirement of FAS 113, but which can be exempted from detailed
individual testing, because we have established that contracts falling within the group can

reasonably be expected to pass the “significance” test, if they were actually tested.

In particular, the following classes of contracts fall into the category of transferring
“substantially all” of the original insurance risk, unless they include features that reduce the
reinsurer’s expected underwriting deficit (EUD) below that which the cedent would face on its

unreinsured portfolio:

e Proportional facultative reinsurance with effective ceding commissions no less than

cedent expenses;

e DProportonal treaties with effecive minimum ceding commissions no less than

cedent expenses;

¢ Proportional facultative or treaty reinsurance for which it can be shown that the
reinsurer’s EUD is essentially the same as the cedent’s EUD on the unteinsured
subject portfolio, irrespective of whether the contract includes a loss ratio corridor,

loss ratio cap or other risk mitigating feature;

e Excess of loss facultative or treaty reinsurance for which it can be shown that the

reinsurer’s EUD is essentially the same as the cedent’s EUD on the portion of the
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original subject portfslio that is exposed to the same risks as the excess of loss

contract;

e  Whole account quota share contracts with loss ratio caps no lower than the point at

which the ceding company would exhaust its surplus.

To address the question of how to measure “significant” risk transfer, we have proposed
an ERD test as an improvement over the “10-10” test, which arose in the 1990s as a way to
test “finite risk” reinsurance contracts for compliance with FAS 113. The “10-10” test was
not originally intended to be applied to traditional reinsurance contracts, and usually it was
not. In the wake of recent real and alleged reinsurance accounting abuses, there is an
increasing sentiment that a wider class of reinsurance contracts beyond those classified as
“finite” need to be tested for significant risk transfer. Because it has come into widespread
use, the “10-10” test has become the de facto standard for reinsurance risk transfer testing,
despite the fact that it has never been endorsed by any professional body nor subjected to

serious critical scrutiny.

We have also addressed COPLFR’s fourth question. Throughout the paper we have
discussed the advantages of our described approaches over the “10-10” test that is
commonly used today. We have demonstrated that “10-10” is inadequate for use as a
universal risk transfer test, because it cannot correctly identify contracts that are clearly risky.
We have proposed an improved alternative test based on the concept of the expected reinsurer
deficit, or ERD, which incorporates both frequency and severity of underwriting loss into a
single measure. The embedded severity measure is the TVaR at the economic breakeven
point. TVaR has the advantages over VaR of reflecting all the information in the right tail of

the underwriting result distribution as well as being a coherent measure of risk.

We have shown that the proposed ERD 21% threshold correctly classifies as “risky™ a
quota share treaty that has the loss ratio volatility characteristics of the S&P 500 stock index.
This is important because the standard for assessing reinsurance risk should be consistent

with those in other financial markets.

We have also shown that low frequency-high severity reinsurance contracts (such as
catastrophe excess of loss treaties) and high frequency-low severity contracts (such as

traditional primary quota share treaties) pass the ERD test, provided loss mitigating features

3 Provided the risk characteristics of the treaty are not too distorted by a large ceding commission.
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such as loss ratio caps and/or corridors do not remove too much risk from the contracts (in

which case a “failure” is entirely appropriate).

In summary, while we are not explicitly endorsing any single model or framework,
because the ERD methodology described here (with a 1% risk transfer threshold) is
numerically comparable to the current “10-10” benchmark and is superior in almost every
way to that benchmark, if the 1% ERD method were adopted as a de facto standard

replacing the “10-10”, we would consider that a good outcome.

To address the concern in some quarters that the ERD test is not always stringent enough
with respect to the potential for a large loss by the reinsurer, we have suggested
consideration of a supplemental requirement that the reinsurer face a minimum downside

potential of 15% or 20% of premiums.

Among contracts that are subject to the “significant” risk transfer requirement, under the
“significance” standard embodied in ERD 21% the classes of contracts listed below would
not be subject to individual testing, because they have already been found to meet the
requirement under very general conditions. It is therefore possible to say about contracts
falling into the categories on the list below that the significance of their risk transfer is
“reasonably self-evident”. This is a preliminary list. We believe it may be possible to expand

it considerably.
e Individual risk contracts;

e Short tail excess of loss treaties in the standard catastrophe excess structure, i.e., one
reinstatement of the limit for 100% additional premium, with rates on line of up to
50%;

e Other excess of loss contracts with aggregate limits of no less than the greater of one
occurrence (or risk) limit and 200% of premiums, no ceding commissions, and rates

on line of up to 500%;

e Proportional and excess contracts having an expected loss ratio above the minimum
petmissible loss ratio implied by the ERD >1% standard (or other standard as may
be agreed);

e Contracts involving immatetial premiums.
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Other contracts should be considered for significance testing, even if they appear to fall
into one of the safe harbor categories, for the simple reason that they have greater potential
to attract attention, and it is better to be prepared. This group includes, for example, 1)
contracts involving large premium cessions, 2) those which, when accounted for as
reinsurance, would substandally alter surplus or the ratio of premiums to surplus, and 3)
contracts involving unusual structures, especially those that look contrived (e.g., a primary
quota share combined with catastrophe protection on a different portfolio). Contracts in
category 3 may be structured to narrowly meet the quantitative requirements for
“significant” risk transfer, but they might sull reasonably be disqualified on other grounds.
Thus, a quanttative risk transfer test such as the ERD will not be adequate in all cases.
However, we believe the ERD would do a good job of discriminating between contracts
with significant risk and those without significant risk in all but cases involving contrived

structures.

We have also pointed out that other risk transfer tests besides ERD can and should be
considered, particularly in the context of reconciling risk transfer testng to the process of
determining risk and profit loads. One such example, based on the right tail deviation, has
certain desirable properties but comes at the cost of greater complexity. Other approaches

could surely be used and should be the subject of future research.

It is important to remember that any risk transfer test requires a model of the prospective
underwriting results and the related cash flows. In cases where there is relevant and credible
loss experience, identifying a model is often straightforward, though it is always important to
appropriately adjust the historical loss experience to prospective levels and to be conscious
of the uncertainty in the model parameters. Where there is little or no relevant historical
experience, the model must be chosen on the basis of the similarity of the subject portfolio
to other ones with the same general characteristics. In such cases there will be greater

uncertainty about the parameters, which should be reflected in the structure of the model.

9. SUGGESTED PRIORITIES FOR FURTHER RESEARCH

The ERD test proposed in this paper should be seen as an example of a reasonable
framework for assessing the significance of risk transfer in reinsurance contracts. We have
demonstrated that it is a clear imptovement over “10-10”, but we do not claim that it is the

only reasonable approach. Indeed, we briefly described another promising, albeit more
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complicated, method, namely, Wang’s RTD framework. There may be others. We urge the

CAS to encourage further research on this subject, perhaps through a call for papers.

We recommend the following research priorities in order to quickly arrive at a more
effective assessment of risk transfer according to FAS 113 as well as to provide for

continuing research in relation to future improvements.

9.1 Immediate “Level 1” Research — Consensus on Thresholds

1. Determination of an apprcpriate pass threshold for the comparison methodologies
presented in Section 2 to determine whether or not “substantially all” of the insurance
risk has been transferred. This may include determining a single applicable testing

methodology (i.e., limiting the test to just one of the two methods presented);

2. Determination of an appropriate “pass” threshold framework for the ERD test presented
in Section 4. In particular, is the 1% threshold illustrated in this paper appropriate, ot
would some other threshold be more appropriate? In additon, should there be a
supplemental requirement that the reinsurer’s potential loss be greater than or equal to
some minimum amount? (We considered a minimum underwriting loss of 20% in some

of our examples.);

3. Determination of the contract categories and financial characteristics of contracts that
will not be required to be individually tested for “significant” risk transfer (because they
have previously been analyzed and found generally to pass the significance test). This
depends on item 2. Given a standard of ERD 21%, we demonstrated that individual
risks, short tail excess of loss contracts in the standard catastrophe excess of loss
structure within a certain rate on line range, other excess treaties within a certain rate on
line range that have aggregate limits that are not too large, and other contracts with
expected loss ratios above a minimum permissible loss rato threshold, should not be
required to be individually tested because we have determined they will pass if they were
tested. It may be possible to expand that set of contracts “pre-qualified” for “significant”
risk in that same way. If an ERD threshold different from 1% is adopted, the set of

contracts that can be pre-qualified for “significant” risk may change.

9.2 On-Going “Level 2” Research — Other Methods

1. Continued research on methodologies and thresholds for determining whether or not

“substantially all” of the insurance risk has been transferred;
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2. Continued research for methodologies that assess risk transfer within the “reasonably
possible” chance of a “significant” loss. As stated earlier, the Wang transformation could

be one example of such a method;

3. Continued research into appropriate methods for incorporation of parameter uncertainty

into models used for risk transfer testing.

Appendix A

Definition of Downside Risk Measures

Suppose B represents the amount of (present value) claims corresponding to the
reinsurer’s economic “breakeven” point, before taking into account brokerage and internal
expenses (the FAS 113 definition):

B=P-C (A1)

where P represents the ceded premiums and C represents the ceding commissions payable
on ceded premiums, if any. If C =0, then the breakeven loss amount is equal to the

premiums.

Let x denote the random variable for the prospective losses. (It may be more
convenient in practice to work with loss ratios, but here we are using loss dollars.) Then the
expected cost of FAS-113-defined present value loss scenarios PV(Loss > 0) (which ignore
all reinsurer expenses other than ceding commissions), also known as the present value

expected reinsurer deficit or ERD, expressed as a dollar amount, is:

ERD =E[(PV(Loss)>0)] =PV j:w(x —~FV(B))- f.(x)dx (A2

As the pure premium cost of underwriting loss scenatios, ERD is a measure of the

reinsurer’s underwriting downside risk”.

37 Note that the ERD is the expected present value of the contingent capital calls described by Mango [5].
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The probability or frequency of the insurer incurring a present value loss PV (Loss) > 0)

is:
Freq = Prob{PV(Loss) > 0] = _[’m) £, (x)dx (A.3)

The expected severity of underwriting loss, given PV (Loss)>0),is

Sev = E[(PV(Loss) | PV (Loss > 0)]

[, (x=FV(B)f.(x)dx
fV(B;f" (x)dx

_ ERD
Prob[ PV (Loss > 0)]

(A4)

Note that Sev is the Tail Value at Risk (for present value underwriting loss) described by
Meyers {4] as a coherent measure of risk and by the CAS Valuadon, Finance, and
Investments Committee [1] for potential use in risk transfer testing of finite reinsurance

contracts. Meyers (p. 239) gives the following formula for TVaR,,:

EPD(VaR,)
-a

TVaR, =VaR, + (A.5)
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Fv(B)

At the present value breakeven loss point B, @ = F,(B) = I

0

J.(x)dx. The present

value loss at the breakeven loss is zero, implying VaR, =0. That leaves only the second
term. Because EPD(VaRFX(B)) =ERD and 1 -a =1-F,_(B) = Prob[ PV (loss > 0)}, when

the variable of interest is present value underwriting loss, (A.5) equates to formula (A.4).

For a quota share with no loss ratio caps or corridors, the reinsurer’s loss ratio is identical
to the ceding company’s loss ratio on the subject portfolio and their distributions are
identical®:

f(x)=1,(y)

If there are no loss ratio caps or corridors, it is often still convenient to express the
random variable x for the reinsurer’s loss ratio in terms of the subject portfolio’s loss ratio

random variable y . For example, given a 5-point loss ratio corridor between 75% and 80%

with respect to the subject portfolio, the reinsurer’s loss ratio x('y) is:

y if y<75%
x(y)=75% if 5% <y <80%
y=5% if y=280%

In this case, given B = 75%, formula (A.2) for ERD would be expressed in terms of y

as follows:

ERD =PV j:yw(y —FV(B,))- f,(y)dy

ERD=PV [ (y~FV(80%)-f,(y)dy

where B, = B+5%. Similarly, Formulas (A.3) for frequency and (A.4) and severity can be

expressed in terms of y .

38 Because it is easier to compare the cedent and reinsurer positions if we use loss ratios rather than loss dollass,
this part of the discussion is in terms ratios to premiums.
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Appendix B
Discussion of Analogy to Stock Market Risk

In this appendix we compare S&P 500 equity risk” to the risk in a quota share
reinsurance treaty. We begin by discussing the basis of the lognormal assumption. Then, in
Example B.1, we show how the cash flows and economics of the quota share described in
Example 3.3 can be replicated by an S&P 500 index transaction. That transaction takes the
form of a short sale. In that scenario, the short seller loses money if the S&P 500 index
closes higher than its level at the time of the short sale, just as the reinsurer loses money if
the actual loss ratio exceeds the breakeven loss ratio. The appendix also includes Table B-1,
which shows the data underlying Chart 4 and Table B-2, which shows the sensidvity of “10-

10” test results for the quota share in Example 3.3 to the expected loss rato.
Basis of Lognormal Assumption

It is possible, perhaps even likely, that stock prices are not lognormally distributed.
However, stock price movements are commonly assumed by financial economists to
follow Brownian motion through continuous time, which implies that stock returns over
infinitesimal time intervals are normally distributed and stock prices are lognormally
distributed after any finite time interval. For example, see Hull [10] Chapter 11 (p. 228)
and Baxter-Rennie [11] Chapter 3 (p. 51). The latter says, “It is not the only model for
stocks...but it 1s simple and not that bad.” The Black-Scholes call option pricing tormula
was originally derived using a Brownian motion assumption. It has subsequently been
shown that it can also be derived from the assumption that “asset prices are lognormally

distributed under the martingale measure Q.”[Ibid, p. 181].

At the same time there is some disagreement with the Brownian motion/lognormal
assumption. See for example Peters [12], Chapter 3 (p. 27), who presented evidence that
the distribution of actual stock market refurns has a higher peak and fatter tails than
predicted by a normal distribution and found, “The stock market’s probability of a three-
sigma event is roughly twice that of the Gaussian random numbers.” [Ibid, p. 29]. He

argues that because “capital market theory is, in general, dependent on normally distributed

¥ In order to stmplify the discussion we ignore dividends, which could easily be incorporated in the example,
but at the cost of complicating the comparison.
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returns”([Ibid, p. 25], the Efficient Market Hypothesis, Capital Asset Pricing Model and
Modern Portfolio Theory all rest on a shaky foundation. We don’t take a position in that
debate. However, we do wish to point out that our use of a lognormal distribution is

consistent with the mainstream view.

The fact is that doubling the probability at the three-sigma level does not have a
significant practical effect. We can adjust for Peter’s finding of a fatter tail in the stock
return distribution. A Student’s £ distribution with 30 degrees of freedom has twice the
probability of a three-sigma event as the corresponding normal. It has a higher peak and
fatter tails.

If we replace the lognormal stock price model with a “log t” model, “10-10” test values
for the Example 3.3 quota share with 0 =9% and o =13.85% sdill fall far short of the
significance threshold. For o =9%, the 90™ percentile result is still a small profit of
0.29% and the probability of a 10% loss rises to just 0.51%. For o =13.85%, we find a
90™ percentile loss of 4.17% and a probability of a 10% loss of 3.91%. These values are
only slightly higher than those atising from the lognormal model. There is no practical
effect of the non-normality observed by Peters.

Example B.1: Replicating a Quota Share with 25% Ceding Commission

Suppose the quota share in Example 3.3 involves ceded premiums of $10 million. Given
a ceding commission of 25%, the net proceeds to the reinsurer total $7.5 million. Similarly,
if S&P 500 “spiders” (symbol SPY) are trading at $117 a share (as they were in early May
2005), a short sale of 64,103 shares also yields net proceeds to the seller of $7.5 million. The
expected loss ratio on the quota share is 70%, implying expected losses of $7 million. Claim
payments are expected to lag premiums by one year. This is equivalent to the short seller
estimating the expected value of SPY in one year’s time as $109.20, or $7 million in total for
the short position. (A short seller would generally not short the stock if he did not expect it
to decline.) In order for the reinsurer to suffer a $1 million present value loss (10% of the
ceded premiums), given a risk free interest rate of 5%, the loss ratio would need to reach

85% times 1.05, or 89.25%. In order for the short seller to incur a $1 million present value
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loss, the stock price would have to reach $139.23*.  These are the threshold levels for
“passing” the “10-10 test.

As discussed in Example 3.3, in order for either the loss rado to exceed 89.25% or the
stock price to exceed $139.23 with a probability of 10% (these being fundamentally identical

scenatios), the lognormal o parameter must be at least 20.6%.

If we remove the 25% ceding commission from the quota share terms and instead
provide for a premium cession net of a 25% expense allowance, then the “10-10 threshold
for a 10% / $750,000 present value loss to the reinsurer is 82.5% times 1.05, or 86.63%.
The comparable “10-10” threshold for the short seller is a stock price of $135.14.
Exceeding these thresholds requires a ¢ value of at least 17.9%.

Data Underlying Chart 4

Table B-1 shows the data underlying Chart 4, which plots the probability of a 10%
present value loss on the quota share defined in Example 3.2, given a 70% expected loss
ratio, 25% ceding commission and ¢ values equal to VIX as of the last trading day of each
year from 1990 through 2004 plus May 4, 2005.

40$1 million loss amounts to $15.60 per share, implying a present value share price of $132.60 and a future
value share price of $139.23.
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TABLE B-1
“10-10” Risk Transfer Analysis
for Quota Share in Example 2.3
Given Portfolio with Volatility of S&P 500 VIX
Data Underlying Chart 4
@ ©
90™ Percentile Probability of
P.V. 210% P.V.
Underwriting Underwritng

VIX Date VIX Loss Loss
Dec 1990 26.4% 15.3% 14.6%
Dec 1991 19.3% 8.8% 8.8%
Dec 1992 12.6% 27% 2.3%
Dec 1993 11.7% 1.9% 1.6%
Dec 1994 13.2% 3.3% 2.8%
Dec 1995 12.5% 2.7% 2.3%
Dec 1996 20.9% 10.3% 10.3%
Dec 1997 24.0% 13.1% 12.9%
Dec 1998 24.4% 13.5% 13.2%
Dec 1999 23.4% 12.6% 12.4%
Dec 2000 26.9% 15.7% 14.9%
Dec 2001 23.8% 12.9% 12.7%
Dec 2002 28.6% 17.3% 16.1%
Dec 2003 18.3% 7.9% 7.8%
Dec 2004 13.3% 3.4% 2.9%
May 2005 13.9% 3.9% 3.4%

Sensitivity of “10-10” Test Values to Expected Loss Ratio Assumption

Table B-2 shows the sensitivity of the values shown in Table 5 to changes in the expected
loss ratio. It shows that our conclusions with respect to the “10-10” test apply even with
high assumed levels for the expected loss ratio. For example, even in the case of no
expected profit and the higher May 2005 implied volatility levels, the “10-10” rule is not met.
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TABLE 5
“10-10” Risk Transfer Analysis
for Quota Share in Example 2.3
Given Portfolio with Volatility of S&P 500
Sensitivity to Expected Loss Ratio
(@) (®)
90™ Percentile | Prob of 210%
VIX c Expected P.V. PV
Loss Underwriting Underwriting
Ratio Loss/(Profit) Loss/(Profit)
Low 9.00% 65% (5.81%) 0.02%
Low 9.00% 67.5% (3.15%) 0.08%
Low 9.00% 70% (0.49%) 0.30%
Low 9.00% 62.5% 2.18% 0.93%
Low 9.00% 75% 4.84% 2.40%
May 2005 | 13.85% 65% (1.78%) 0.92%
May 2005 | 13.85% 67.5% 1.04% 1.85%
May 2005 | 13.85% 70% 3.85% 3.41%
May 2005 | 13.85% 62.5% 6.67% 5.82%
May 2005 | 13.85% 75% 9.49% 9.25%
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Estimating Tail Development Factors: What to do When
the Triangle Runs Out

Joseph Boor, FCAS

Abstract:: There are several methods in use today for estimating tail factors. However,
most of them are discussed as adjuncts to papers that primarily deal with other subjects.
This paper will present a wide variety of method in an understandable format, and includes
copious examples

Keywords: Loss reserving, tail factors

1. INTRODUCTION

In many loss reserve analyses, especially those involving long-tail casualty lines, the loss
development triangle may end before all the claims are settled and before the final costs of
any year are known. For example, it is quite common to analyze U. S. workers
compensation loss resetve needs using the ten years of data available in Schedule P of the
US NAIC-mandated Annual Statement, while knowing that some of the underlying claims
may take as long as fifty years to close. In response to this, actuaries supplement the ‘link
ratios’ they obtain from the available triangle data with a ‘tail factor’ that estimates the
development beyond the last stage of development (last number of months of maturity,
usually) for which a link ratio could be calculated.

The tail factor is used just like a link ratio in that it estimates (1.0 + ratio of (final costs after
all claims are closed) to (the costs as of the Jast development stage used)). It is of course
included in the product of all the temaining link ratios beyond any given stage of
development in calculating a loss development factor to ultimate for that stage of
development.

This paper will discuss the methods of computing (really estimating to be precise) tail factors
in common usage today. It will also suggest both improvements in existing methods and a
new method. It will begin with the simplest class of methods and move forward in
increasing complexity.

There are four groups of methods that will be presented:

1. The Bondy (repeat-the-last link-type) methods

2. The Algebraic methods (methods based on algebraic relationships between the paid
and incurred triangles)

3. Use of Benchmark Data

4. Curve Fitting Methods

Casualty Actuarial Society Forum, Winter 2006 345



Estimating Tail Development Factors

As part of the discussion, commentary on the advantages and disadvantages of each
individual method, as well as each class of methods will be included. When the opportunity
to discuss an improvement or enhancement that applies to multiple methods presents itself,
a brief digression on the enhancement will be included.

2. GROUP 1 - THE BONDY-TYPE METHODS

The Bondy methods all arose from an approach published by Martin Bondy prior to the
1980s. In what was thought to be a period where development decayed rapidly from link
ratio to link ratio, he promulgated a practice of simply repeating the last link ratio for use as
the tail factor. Since then, several variations of his method that all base the tail factor on the
last available link ratio have arisen.

2.1 The Bondy Method

As explained above, the original Bondy method involves simply using the last link ratio that
could be estimated from the triangle (the link ratio of the last development stage present in
the triangle, or the last stage where the triangle data could be deemed reliable for estimation)
as the tail factor. This ‘repeat the last link ratio’ approach probably seems crude and
unreasonable for long-tailed lines, where link ratios decay slowly. However, for fast decaying
lines (such as an accident year' analysis of automobile extended warranty) this method may
work when used as eatly as thirty-six or forty-eight months of maturity. It must be
recognized, though, that in long-tailed lines the criticism is usually justified.

To truly understand this method it also may be best viewed in historical context. The authot
of the method, Martin Bondy, developed this method well prior to the 1980%s. It is
commonly believed that during the 1960s and certainly part of the 1970s the courts
proceeded at a faster pace and, ignoring the long-tail asbestos, environmental, and mass tort
issues that would eventually emerge, general liability was believed to have a much shorter tail
than we see today.

It is also of interest to note that there is a theoretical foundation that supports this in certain
circumstances. If one assumes that the ‘development portion’ of the link ratios (the link
ratios minus one) are decreasing by one-half at each stage of development, and the last link
ratio is fairly low, then the theoretically correct tail factor to follow a link ratio of 1+d is:

1+ 5d) X (1+.25d)x (1+.125d) X (1+.0625d)X. ...

Or

1+(.5+.25+.125+.0625+....)Xd + terms involving &, d’, etc.

! It should be noted that policy year automobile extended warranty represents an entirely different situation.
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Which, pet the interest theorem v+vivi+ . =v/ (1-v) is equivalent to:
1+1xd + terms involving d°, d’, etc.

Since d is ‘small’, the other terms will be smaller by an order of magnitude, making the
implied tail factor under these assumptions very close to the Bondy tail factor, a repetition of
the last link ratio, 1+d. So the Bondy tail factor is ‘neatly’ equivalent to the tail implied by
what will later be called the ‘exponential decay’ method, with a 50% decay constant.

Of note, this involves two basic assumptions. First that the link ratos decay in proportion
to the remaining ‘development portion’ of the link. Of note, in the absence of any
information whatsoever about the decay, that would be as reasonable an assumption as one
could reasonably make. Second, that the decay constant is 50%. Again, in the absence of any
data whatsoever, one-half would be as reasonable an assumption as one could possibly
make. Of course, we do have data in the link ratios before the tail, but it is important to
understand this theoretical basis for the Bondy tail factor.

2.2 The Modified Bondy Method

In this method, the last link ratio available from the triangle, call it 1+d, is modified by
multiplying the development portion by 2. The result is a development factor like 1+2d.
Alternately, the last entire link ratio may be squared, which yields nearly the same value.
This has many of the same issues and applications as the basic Bondy method, but it does
yield a larger tail than the Bondy method itself. However, for long-tail lines it is stll not
what would be considered a truly conservative approach, as we will see later. The
assumption here is  The Bondy method seems to underestimate, it should be increased, the
easiest thing to do is to multiply the development portion by two.’.

A litle algebra and the v+v’+v’+....=v/(1-v) theorem show that this is functionally
equivalent to ‘exponential decay’ with a decay coefficient of ?/,.

2.3 Advantages and Disadvantages of the Bondy Methods

The primary advantages of the Bondy methods are that they are extremely simple to execute
and easy to understand. Further, they involve relatively straightforward assumptions.
However, a major disadvantage is that they tend to greatly underestimate tails of long-tailed,
slow-decaying lines.

3. GROUP 2 - THE ALGEBRAIC METHODS

These methods involve initially computing some algebraic quantity that in turn desctibes a
relationship between some aspect of the paid and incurred loss triangles. Then that quantity
can be used to generate a tail factor estimate. As with the Bondy method, and almost all tail
factor estimation methods, they are based on assumptions. Howevet, in this case each is
based on some relatively simple and fairly logical assumption that some numerical
relationship known to be true in one citcumstance will be true in another.
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3.1 Equalizing Paid and Incurred Development Ultimate Losses

This method is the first method discussed with a full theoretical background. It is most
useful when incurred loss development essentdally stops after a certain stage (i.e., the link
ratios are near to unity or unity). Then, due to the absence of continuing development, the
current case incurred (sometimes called reported) losses are a good predictor of the ultimate
losses for the older or oldest years without a need for additional tail factor development. A
tail factor suitable for paid loss development can then be computed as the ratio of the case
incurred losses to-date for the oldest (accident’) year in the triangle divided by the paid losses
to-date for the same (accident) year. That way, the paid and incurred development tests will
produce exactly the same ultimate losses for that oldest year.

This method relies on one axiomatic (meaning plainly true rather than an assumption as
such) assumption and two true assumptions. The axiomatic assumption is that the paid loss
and incurred loss development estimates of incurred loss are estimating the same quantity,
therefore the ultimate loss estimates they produce should be equal. The second assumption
(the first true assumption) is that the incurred loss estimate of the ultimate losses for the
oldest year is accurate. The last assumption is that the other years will show the same
development in the tail as the oldest year.

This method may also be generalized to the case whete case incutred losses are still showing
development near the tail. In that case, the implied paid loss tail factor is

(incurred loss development ultimate loss estimate for the oldest year) / (paid losses to-
date for the oldest year).

Of course, in that instance the incutred loss development estimate for the oldest (accident)
year is usually the case incurred losses for the oldest year multiplied by an incurred loss tail
factor developed using other methods.

This method has a substantial advantage in that it is based solely on the information in the
triangle itself and needs no special assumptions. Its weakness is that you must already have a
reliable estimate of the ultimate loss for the oldest year before it can be used. An ancillary
weakness flows from the assumptions underlying this method. Specifically, if the initial
incurred loss development test is dtiven by a tail factor assumption, this becomes a test that
is also based on not only that assumption, but also the assumption that the ratio of the case
incutred loss to the paid loss will be the same for the less mature years once they reach the
older level of maturity where you are equalizing the paid and incurred loss estimates.

? Accident year is used here for illustration. Under similar circumstances, this method would also work in
policy year, reinsurance contract year, etc. development.
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3.1.1 An example:

Assume that it is just after year-end of 2000. You have pulled the incutred loss triangle from
a cartier by subtracting part 4 of Schedule P from part 2 of Schedule P. You have also
pulled a paid loss triangle from part 3 of Schedule P. The triangles cover 1991-2000, so 1991
is the oldest year. Say for the sake of argument that the incurred loss link ratios you develop
are 2.0 for 12-24 months, 1.5 for 24-36, 1.25 for 36-48, 1.125 for 48-60, 1.063 for 60-72,
1.031 for 72-84, 1.016 for 84-96, 1.008 for 96-108, and 1.004 for 108-120. This conveniently
happens to match the exponential decay discussed for the Bondy method, so it makes sense
to use 1.004 for the tail factor for development beyond 120 months. Now assume that the
latest available (i.e., at 12/31/2000, or 120 months maturity) the case incurred loss® for 1991
is $50,000,000 and the corresponding paid loss is §40,000,000. The incurred test ultimate
using the 1.004 tail factor is $50,200,000. The paid loss tail factor to equalize the ultimate
would be $50,200,000 divided by $40,000,000 or 1.255.

3.1.2 Improvement 1 - using multiple years to develop the tail factor

As stated earlier, the previous method assumes that the current ratio of case incurred loss to
paid loss that exists in the oldest year (1991 evaluated at 12/31/2000 in the example above)
will apply to the other years when they reach that same level of maturity. For a large high
dollar volume triangle with relatively low undetlying policy limits that may be a reasonable
assumption, but for many reserving applications the 120 month ratio of case incurred to paid
loss may depend on whether a few large, complex claims remain open or not. Therefore, it
may be wise to supplement the tail factor detived from the oldest available year with that
implied by the following year or even the second following vear. This method is particularly
useful when the later development portion of the triangle has some credibility, but the
individual link ratio estimates from the development triangle are not fully credible.

The process of doing so is faitly straightforward. You merely compute the tail factor for
each succeeding year by the method above, and divide each by the remaining link ratios in
the triangle.

An example using the data above may help clarify matters. Given the data above, assume
that 1992 has $50,000,000 of paid loss and $60,000,000 of case incurred loss. Also, assume
that your best estimate of the 108-120 paid loss link ratio is 1.01. The incurred loss estimate
of the ultimate loss, using the 108-120 link ratio (1.004) and the incurred loss tail factor (also
1.004) is $60,000,000%1.004%1.004, or $60,480,960. The estimated (per incurred loss
development) ultimate loss to paid loss ratio at 108 months would then be
$60,480,960/$50,000,000, or approximately 1.210. So, 1.210 would then be the tail factor
estimate for 108 months. Dividing out the 108-120 paid link ratio (assumed above to be
1.01) gives a tail factor for 120 months of 1.21/1.01 = 1.198. By comparison, the previous
analysis using 1991 instead of 1992 gave a 120-month tail factor estimate of 1.255. So it is
possible that either 1991 has a high number of claims remaining open, or that 1992 has a low
number. Both indicate tail factors in the 120-125 approximate range, though. So averaging

3 To be technically correct, this would be loss and defense and cost containment under 2003 accounting
rules.
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the estimates might be prudent. Further, the use of averaging greatly limits the impact of
any unusually low or high case reserves that may be present in the oldest year in the triangle.

Note also, that the improvement above involved computing an alternate tail factor using the
year with one year less maturity. A similar analysis could also be performed on the next
oldest year, 1993, except that two incurred development link ratios plus the tail factor are
needed to compute the incurred loss estimate of ultimate. Correspondingly, two paid loss
link ratios need to be divided out of the (incurred loss ultimate estimate)/(paid loss to-date
ratio for 1993) to estimate the 120 month paid loss tail factor

3.1.2.1 An important note

Further, in this case the improvement involved reviewing the tail factors at various ages from
the equalization of paid and incurred loss estimates of the ultimate loss. The core process
involves computing tail factors at different maturies, then dividing by the remaining link
ratios to place them all at the same maturity. As such, it can also be used in the context of
other methods for computing tail factors that will be discussed later in this paper.

3.1.3 A brief digression — the primary activity within each development stage

When using multiple years to estimate a tail factor, it is relatively important that the years
reflect the same general type of claims department activity as that which takes place in the
tail. For example, in the eatly 12 to 24 month stage of workers compensation, the primary
development activity is the initial reporting of claims and the settlement and closure of small
claims. The primary factors influencing development are how quickly the claims are
reported and entered into the system, and the average reserves (assuming the claims
department initially just sets a ‘formula reserve’, or a fixed reserve amount for each claim of
a given type such as medical or lost time) used when claims are first reported. In the 24 to
36-48 month period, claims department activity is focused on ascertaining the true value of
long-term claims and settling medium-sized claims. After 48-60 months most of the activity
centers on long-term claims. So, the 12-24 link ratio has relatively little relevance for the tail,
as the driver behind the link ratio is reporting and the size of initial formula reserves rather
than the handling of long-term cases. Similarly, if the last credible link ratio in the triangle is
the 24 to 36 or 36 to 48 link ratio, that triangle may be a poor predictor of the required tail
factor.
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3.2 The Sherman-Boor* Method - Adjusting the Ending Case Using
Ratios of Paid Loss to Case Reserve Disposed of

This method, developed by Sherman in Section X of [3] and independently by the author, is
the one method that relies solely on the triangle itself and does not require a pre-existing
ultimate loss estimate, involve curve-fitting assumptions, or require external data. For data
triangles with high statistical reliability as predictors, this can represent the optimum
estimation process.

This method involves simply determining the ratio of case reserves to paid loss for the oldest
year in the triangle, then adjusting the case reserves by an estimate of the ratio of the unpaid
loss to cartied case reserves. In essence, the case reserves of the oldest accident year are
‘grossed up’ to estimate the true unpaid loss using a factor. The estimate of the (true unpaid
loss)/(case reserves) factor is based on how many dollars of payments are required to
‘elininate’ one dollar of case reserves.

The mathematical formula requires computing a triangle containing incremental rather than
cumulative paid losses. In effect, for each point in the paid loss triangle, one need only
subtract the previous value in the same row (the first column is of course unchanged). The
next step begins with a triangle of case reserves. The incremental case reserve disposed of is
calculated as the case reserve in the same row before the data point, less the cutrent case
reserve. That represents (as the beginning case reserve — the ending case reserve) the case
reserve disposed of. Then the ratios of incremental paid to reserve disposed of at the same
points in the triangles are computed. Reviewing these, the adjustment ratio for the ending
case reserves is estimated.

3.2.1 An example

Reviewing an example may help the reader follow the calculations discussed earlier. This
method requires two trangles, one of paid loss and one of case reserves. Consider the
following set of triangles:

Cumulative Paid Loss Triangle
12| 24 36 48 60 72
1991 1,000 2,000 2,500 2.800 2,950 3,100
1992] 1,100 2,400 3,000, 3,500 3,900
1993 1,300) 2,500 3,000] 3,400,
1994 1,200 2,300 3,100
1995 1,400 2,800
1996 1,490

4 Of note, this method was first published by Richard Sherman, FCAS in 1984 and developed
independently by the author in 1987. Of note, the author used some business materials that contained
precursors to this method in 1984-1986 that were developed by a firm of which Mr. Sherman was a
principal.
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Tniangle of Case Reserves Outstanding (Cumulative Case Incurred-Cumulative Paid)

12} 24 36 48 60 72
1991 1,500 1,300 900 750 600 500
1992 2,000 1,700 1,300 900 600
1993 1,9001 1,700 1,300 1,000
1994 2,100] 2,100} 1,500
1995 2,300/ 2,000}
1996 2,500

First, we compute the incremental paid loss triangle. We begin with a given cell in the
cumulative paid loss triangle, and then we subtract the previous cell in the same row of the

cumulative paid loss triangle. That produces the following triangle.

Incremental Paid Loss Triangle
1 24 36 48 60 72
1991 1,000 1,000 500) 300 150 150
1992 1,100, 1,300 600 500 400
1993 1,300 1,200 500 400]
1994 1,200 1,100 800f
1995] 1,400] 1,400
1996 1,490

Then we subtract the cutrent cell from the

the triangle of case reserves disposed of.

previous cell in the case reserve triangle to obtain

Trangle of Incremental Case Reserves Disposed Of

12] 24 30 48] 60 72
1991 200] 400) 150 150f 100)
1992] 300) 400] 400} 300
1993 200 400) 300
1994] 100 600)
1995 300
1996
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Then we divide the actual final costs paid (the incremental paid loss), by the assumption-
based case reserves eliminated.

Ratio of Paid Loss to Reserves Eliminated

12] 24 36 48] 60 72
1991 500% 125% 200% 100% 150%
1992 433%| 150% 125% 133%
1993 600%| 125% 133%
1994 1100% 133%)
1995 467%
1996

Because the early development involves not just elimination of case reserves through
payments, but also substantial emergence of IBNR claims, the 12 and 36 columns are
presumably distorted. In many lines the 48 month column would still be heavily affected by
newly reported large claims, but presumably this is medium-tail business. Looking at the
various ratios it would appear that they average around 140%, so we will use that as our
adjustment factor for the case resetves.

Pulling the $500 of case left on the 1991 year at 72 months, and the cumulative paid on the
1991 year of $3,100, the development portion of the paid loss tail factor would be
($500/$3,100)x140% = .161x140% = .226. So, the paid loss tail factor would be 1.226.

For the incutred loss tail factor, first note that only the ‘development portion’ of the 140%,
or 40%, need be applied (the remaining case is already contained in the incurred). Second, a
ratio of the case reserves to incurred loss is technically needed (replacing 1.61 with
$500/(3500+$3,100) = .139). Muldplying the two numbets creates an estimate of the
development portion of the tail at .4X.139=.056. So, the incutred loss tail factor estimate
would be 1.056.

3.2.2 An Important Note

As is the case with most of the other methods, this method has strengths and weaknesses.
Significant strengths of this method are that it requires only the data already in the triangle
and that it does not require additional assumptions. The weakness is that it can be distorted
if the adequacy of the ending case has changed significantly from the previous year. The
reader is advised to also follow Improvement 1 and also evaluate the tail at the next-to-oldest
year.
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4. GROUP THREE - METHODS THAT USE BENCHMARK DATA

A common solution to the ratemaking problems generated by data with partial statistical
reliability (credibility) is to supplement the claims data with a ‘complement of credibility’. Of
course, tail factor estimation problems stem more from a lack of any data at all after the
oldest development stage in the triangle rather than from partially reliable data. But, we can
adopt a similar strategy and add outside data in the form of benchmark development factors.

4.1 Directly Using Tail Factors From Benchmark Data

As noted above, many actuaries review benchmark data in selecting tail factors®. Benchmark
data may come from one of several sources. Perhaps the most common is the use of the
data triangles that can be developed from Best’s Aggregates and Averages for each of the
Schedule P lines. The two larger rating bureaus, the National Council on Compensation
Insurance and Insurance Services Office; as well as the Reinsurance Association of America,
all publish benchmark loss development data. At its simplest, this method involves copying
the derived remaining development factor at the maturity desired for the tail factor.

It is important to note, though, that the quality of the benchmark tail factor as an estimate of
the tail depends on how closely the tail development of the benchmark mitrors the tail
development of the book of business being analyzed. Considerations such as differences in
the way claims are adjusted or reserved, differences in the potential for long-developing high
value claims, differences in the initial reporting pattern of claims (claims-made vs.
occutrence, whether or there is an innately long discovery period or not, etc.), and
differences in the adjudication process of litigated claims can all cause differences in
development patterns. It is important to consider those factors along with the statistical
reliability of the benchmark triangle when selecting the most appropriate benchmark tail
factor.

4.2 Using Benchmark Tail Factors Adjusted to Company Development
Levels

One way to address differences between the benchmark development pattern and the
development pattern of a given book of business is to try to adjust the benchmark data to
more closely mirtror the subject book of business. A common practice is to review the
relativities of link tatios from the triangle being analyzed to benchmark link ratios. Of
course, thete is not a tail factor for the triangle being analyzed (we are trying to estimate
one). So, instead we can review the quotients (relativities) of subject triangle link ratios to
those of the benchmatk data at the development stages prior to the tail development stage.
The relativities from those stages are used to estimate a adjustment multplier for the
benchmark tail factor. Of note, generally just the development portions (‘d’ of 1+d) are
compared in all the relativities we compute.

% 1t is also common for actuaries to review benchmark data to supplement the portion of the reserve triangle
following 72, 60, 48, or even 36 months when the overall triangle has medium credibility and hence has
less than medium credibility in the portion that is dominated by activity on a smallish number of claims.
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4.2.1 xample

An example will help to illustrate how the process works. Consider the following two
patterns:

Link
Ratio
Estimated | Benchmark
Months of By Link
Maturity | Triangle Ratio
12] 2.000) 2.000|
24 1.450 1.350,
36, 1.200] 1.150
48 1.150)] 1.100,
60| 1.100] 1.050]
72 1.080) 1.030,
84 1.050] 1.025
96 1.035 1.020
108 1.010 1.010
Tl 1.050

We then simply compute the relativity quotient of the ‘development portion’ of our triangle-
based link ratios to the development portion of the matching benchmark link ratios. Noting
that 1+1 = 100%, .45+.35 = 129%, .2+.15 = 133%, etc.
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Link Relativity of
Ratio Triangle
Estimated | Benchmark | Development
Months of by Link to
Maturity Triangle Ratio Benchmark
12 2.000) 2.000] 100%
24 1.4501 1.350] 129%
36 1.200] 1.150! 133%
48] 1.1501 1.100 150%]
60) 1.100] 1.051 200%
72 1.080 1.03 267%
84 1.050f 1.02 200%
96 1.035] 1.02 175%
108 1.010f 1.01 100%
Tail 1.050
Chosen Ratio 175%
Implied Tail 1.088]

In the case above, we judgmentally select that the triangle development is roughly 175% of
benchmark based on the 60 through 108 month relativities. So the .05 development portion
of the benchmark tail becomes .05%1.75=.0875=.088. Consequently the entire tail factor,
including unity, 1s 1.088.

4.2.2 Another important note

It is important to consider that adjusting the benchmark tail for actual triangle link ratios is
only helpful as long as the link ratios, or at least the broad pattern of link ratios has statistical
teliability (predictive accuracy). If not, the uncertainty surrounding the true long-term link
ratios of the block of business will cause the adjusted tail factor to lack predictive accuracy.
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4.3 Advantages and Disadvantages of Using Benchmark Data

When a good benchmark tail factor is available, this is both one of the easiest and also
among the most useful methods. However, it is often difficult to find a perfect match in
terms of all the factors (claims handling, case reserving, potential for large claims, etc.) that
affect loss development. Adjusting the benchmark improves the fit markedly. One could
even think of the process of adjusting the benchmark as that of fitting a curve to the link
ratios, where the family of curves you are fitting from consists of various relativity-adjusted
versions of the benchmark. If the benchmatk is remotely related to the book of business
being analyzed, that family of curves should be a superior choice to the highly assumption-
driven curve families discussed later under curve fitting,

On the other hand, it is often very difficult to obtain the more-mature data needed to create

a reliable benchmark tail factor. So, for tail factors beginning at 108 or 120 months, it may
be very difficult to find a suitable benchmark.

5. GROUP 4 -THE CURVE FITTING METHODS

As good students of numerical analysis, actuaries long ago realized that they could attempt to
extrapolate the tail development by fitting curves to the development before the tail, then
using the fitted curve to extrapolate the additional tail development. Some methods have
been developed that fit a curve to the paid or incutred loss. Other methods fit to the link
ratios. What they all have in common is that they begin with some assumption about the
development decay that gives rise to a family of curves, and then select the coefficient(s) that
specify the particular member of the family of curves that best fits the data. As with most
extrapolations, they are as good as the assumptions that underlie them.

5.1 McClenaban’s Method-Exponential Decay of Paid Loss Itself

McClenahan’s method (as discussed in [1]) fits a curve to a set of data per an assumption
that the incremental paid loss of a single accident yeat will decay exponentially over
increasing maturities of the accident year. In effect, that there was some decay rate ‘p’ and
that the next month’s payout on the accidents in a given month would always be ‘p’ times
the cutrent month’s payments on that given accident month. He combined that with an
assumption that no payments occurr in the first few months of a claim. Putting those pieces
together mathematically, he inferred that the payments in a given incremental month of
maturity (call it ‘m’) were

Ap(m")q.
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In this case A is a constant of proportionality and ‘p’, (0<p<1, q=(1-p)) represents the decay
rate® and ‘a” represents the average lag time until claims begin to be paid. A theorem from
the study of compound interest states that

> Ap™q=AY, p'q= Aq/(1-p)=Aq/q =A.
i=0

So A 1s actually the ultimate loss for the entire year.

Then, under this assumption, the additional payments or incurrals beyond x months ate
theoretically determined by the basic formula, at least once p and a are estimated. And there
are several ways to estimate p and a. For convenience, p is monthly, but p*, the annual
decay rate, may be defined as ‘r*. Then r may be estimated by reviewing the ratios of
incremental paid between m+12 and m+24 months to the incremental paid between m and
m+12 months. McClenahan advised that ‘a’ could be estimated by simply reviewing the
average report lag’ (average date of report-average date of occurrence) for the line of
business.. Then, a curve of the form

Ar',

where y is the maturity of the accident year in years before each amount of incremental paid
can be fit to the incremental dollar amounts of paid loss (or incurred loss, as long as no
downward development in incurred loss is present in the development pattern).

Then, McClenahan shows that the percentage remaining unpaid for an entire twelve month
accident year at m months of (returning to p = £'/"%) is

(1_P)X(Pmﬂ-a+ pm+1-a—l+ Pm+1-z»2+‘ L+ pm+1-z-ﬂ)/(12x(1~P)) - pm-;-ln (1_ p12)/12q

The tail factor at m months is of course unity divided by the percentage paid at m months,
or

1/(100% - percentage unpaid at m months).

8 McClenahan’s model actually incorporates additional variables for trend, etc that may be collapsed into
‘p’ for purposes of this analysis.

" In Mclenahan’s original paper, ‘d’ is used instead of ‘a’. But, since I have used ‘d’ to denote the
development portion of the link ratio or development factor, I am using ‘a’ to denote the average payment
lag.

& Please note that the usage of r’ in this context is different than the usage in McClenahan'’s original paper.
It is used merely because it represents an annual rate.

% Note that ‘a” applies on a month-by-month basis. So it is technically incorrect to say that the average lag
between the beginning of all loss reporting for an accident year is six months (the average lag between
inception of the accident year and loss occurrence, at least for a full twelve month accident year) plus ‘o’
months. To simplify the calculations, the first twelve months can be excluded from the fit
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Substituting our formula for the unpaid at 12 months, McClenahan’s method produces a tail
factor of

1/41 - ™" (1-p)/12q]}

Some algebra reduces that to

12q/{12q-p™" (1-p" ),

which provides a nice closed form" expression for the tail.
An Example:

Assume that you begin with an 8-year triangle, and generate the following link ratios:

12-24 5.772
24-36 1.529
36-48 1.187
48-60 1.085
60-72 1.042)
72-84 1.022
84-96 1.012

The first step is to covert them to a form of dollars paid (remember that there are different
paid amounts for different accident years, so we just begin with one hundred dollars for the
curve fitting and multiply by the successive link ratios.

Equivalent
Development Link Beginning | Cumulative
Stage Ratio Maturity Paid

12-24 5.772) 12 $100.00
24-36 1.529) 24 $577.23
36-48 1.187 36 $882.45
48-60 1.085] 48 $1,047.38
60-72 1.042] 60| $1,136.50
72-84 1.022 72| $1,184.66
R4-96 1.012] 84 $1,210.68
96 $1,224.75

1% 1t should be noted that while a closed form expression makes the calculations easy, for some audiences, it
may be preferable to show the projected link ratios, at least until they are overwhelmingly close to unity.
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Then subtract successive cumulative paid amounts to obtain ‘normalized to $100 of first year
paid’ incremental dollats at each stage of development that mirror the actual link ratios.

Equivalent [Incremental

Development Link Beginning | Cumulative Paid
Stage Ratio Matunity Pad (Difference)

12-24 5.772] 12) $100.00 $100.00]
24-36 1.529] 24 $577.23 $477.23
36-48 1.187 36 $882.45 $305.22
48-60 1.085 48 $1,047.38 $164.93
60-72 1.042] 60 $1,136.50 $89.12
72-84 1.022] 72 $1,184.66 $48.16
84-96 1.012; 84 $1,210.68 $26.02

96 $1,224.75 $14.06

Then ratios of the successive ‘normalized’ incremental paid amounts can be taken.

Equivalent [Incremental Year
Development Link Beginning | Cumulative Pad to Year
Stage Ratio Maturity Paid (Difference) Ratio
12-24 5.772 12 $100.00 $100.00
24-36 1.529) 24 $577.23 $477.23 4.7723
36-48 1.187 36 $882.45 $305.22) 0.6396
48-60 1.085) 48 $1,047.38 $164.93 0.5404
60-72 1.042 60 $1,136.50 $89.12 0.5404
72-84 1.022 72 $1,184.66 $48.16] 0.5404
84-96 1.012 84 $1,210.68 $26.02 0.5404
96 $1.224.75 $14.06 0.5404

As one can see, in this contrived example, the development stage-to-stage ratio is a constant
£ = .5404. It’s twelve root pis p = r'"? = .95,

That of course only provides p, the average delay must be found as well. Because the answer
is contrived to have a=7 months, a= 7 months will work perfectly“ for this example, but
note that McClenahan suggests metely using the report delay for the book of business to
determine ‘a’.

Using a= 7 months and p = .95, the computed tail factor is
12q/{12q - 95™*" (1- .95")},= .6/{.6 - .017385(1- .5404)} = 1.0135.

If one reviews the link ratios prior to this, it certainly appears to be reasonable. In fact,
extending the payout to additional stages of development will confirm its accuracy.

! An interested reader can confirm that a=7 months and p=.95 yields the exact link ratios above.
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5.1.1 Advantages and disadvantages of McClenahan’s metho

At its core, McClenahan’s method involves three basic assumptions: First, it assumes that the
pattern of paid loss will be a constantly decreasing pattern, at least after all the initial report
lags are finished. Second, he assumes that the reduction will always occur in proportion to
the size of the most cutrent payout (exponential decay). Third, he assumes that the
exponent of decay is constant throughout the entire payout pattern. Logically speaking, if
one knew nothing about the individual pattern of the data, but was forced to make some
assumptions, those assumptions would seem to be about as minimal and reasonable as
possible (excepting perhaps the third). But it is important to remember that they are
assumptions and as such will color the predictions the method generates. They do suggest
exponential decay of the paid amounts, and exponential decay is a relatively fast decay
relative to other forms of asymptotic (far out in the tail) decay. Moteover, it does seem that
in practice the decay in paid loss often seems to ‘stall out” and show less decay near the tail.

5.1.2 Improvement 2 - exact fitting to the oldest year

A common problem with fitted curves is that the combination of the curve assumptions and
the data in the middle of the triangle may create a curve that varies significantly from the
development factors at the older stages. McClenahan’s method is relatively unique in that
the curve is fit to the incremental paid, rather than the link ratios (as will be done in most of
the later methods). Nevertheless, we can often improve the quality of the tail prediction by
comparing the fitted value to the actual incremental paid loss at the latest stage.

This approach is especially helpful when the curve does not match the shape of the data
itself. For example, assume that the assumption of a constant decay rate does not hold. Say
the initial year-to-year decay was high at between 36'* and 48 months, 48 and 60 months,
etc., but the decay rate at 84 to 96 months and 96 to 108 months, etc. is much less (i.e., a
higher decay factor). Then, the last incremental payments (say between 108 and 120) may be
much higher percentagewise than what is implied by the fitted curve.

In that case”, one need merely multiply the ‘development portion’ of the tail factor (the tail
factor minus one) times the ratio of the actual 108 to 120 increment to the fitted increment.
Of course, unity (one) must be added to the final result to produce a proper tail factor.

12 Note that because of the delay a before payments, etc. begin, the apparent decay between 12 and 24
months and 24 to 36 months is a distortion of the true annual decay.
'* Assuming that the data has enough volume for the 108 to 120 link ratio to have full credibility.
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For example, in the above data, the last incremental data shown is from 96 to 108 months.
In that case the fitted value equals the actual ‘normalized’ value equals $14.06 per a 96 to 108
link ratio of 1.012 and decay rate of .5404. But what if we had the same decay rate overall,
but the link ratio from 96 to 108 was 1.018. In that case, the incremental paid would be
$21.09, or 150% of the fitted value of $14.06. Then the adjusted tail factor would be:

1+150%(fitted tail factor-1) = 1+150%(1.0135-1)=1+150%X%.0135=1.0203.

Note that in the case of McClenahan’s method, the ratio used for ‘exact fitting’ is the ratio of
actual to fitted paid loss. In the later methods, where a curve is fit to the ‘development
portions’, a ratio of development portions should be used to produce the exact fit to the last
link ratio.

5.1.3 Improvement 1 (using multiple vears to estimate the tail) can enhance

improvement 2

For McClenahan’s method, and all the curve-fiting methods, improvement 1 can only be
done in connection with improvement 2. In essence, the concept is to create an exact fit to
the next-to-oldest link ratio or ‘normalized’ paid loss, and pethaps the third-to-last link ratio
as well. Then, the implied tail factors can be averaged or otherwise combined into a single
tail factor indication. This method is particulatly useful when the ‘taill’ of the triangle has
some credibility, but the individual link ratio estimates from the development triangle are not
fully credible.

Equivalent |Incremental Year Revised | Equivalent |Incremental

Dev Link Ending | Cumulative Paid 1o Year Link | Cumulative Paid
Stage Ratio Maturity Paid (Difference Ratio Ratio Paid (Difference)
12-24 5.772 12 $100.00 $100.00 5.772) $100.00, $100.00
24-36 1.529] 24| $577.23 $477.23 4.7723) 1.529 $577.23 $477.23
36-48 1.187) 36 $882.45 $305.22 0.6396, 1.187, $882.45 $305.22
48-60 1.085) 48 $1,047.38 $164.93 0.5404 1.085]  $1,047.38] $164.93
60-72 1.042 60) $1,136.50 $89.12 0.5404 1.042]  $1,136.50 $89.12
72-84 1.022 72 $1,184.606 $48.16 0.5404/ 1.044f  $1,184.66] $48.16
84-96 1.012] 84 $1.210.68 $26.02 0.5404 1.018|  $1.236.79 $52.13
90 $1,224.75 $14.06 0.5404 $1,259.05 $22.26

For example, the table above contains the data cited in the original example of McClenahan’s
Method (5.1) as the first set of link ratios, equivalent cumulative paid, etc. But, beginning
with the ‘Revised Link Ratio’ column it contains alternate link ratios, etc. for 72 months and
later. Using that data, one would still conclude that the fitted annual decline is.5404. But,
now the last link is 1.018 (as in 5.1.2 — Improvement 2) instead of 1.012, and that the next-
to-last (penultimate) 72-84 link is 1.044 instead of 1.022. In this case, the implied normalized
incremental paid between 72 and 84 monthsis now $52.13 instead of the original $26.02.
$52.13 is approximately twice $26.02, so the 72-84 activity would imply a tail factor of
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14+200%(fitted tail factor —1) = 1+200%(1.0135-1) = 1+200%x.0135 = 1.0270.

The implied tail factor per the 84-96 link ratio is very close to the 1.0203 of the previous
example. Note that the normalized paid loss in the 84-96 stage is $22.26 now or roughly
158% of paid loss. That implies a tail factor of

1+158%(1.0135-1) =1+158%X.0135 = 1.0213.

So, averaging the two, 2 tail factor in the range of 1.024 might be optimal.

5.2 Skurnick’s" Simplification of McClenaban’s Method

Skurnick’s approach in [3] is essentially the same as McClenahan’s. The difference is that
Skurnick does not include the delay constant. Further, Skurnick does not calculate a single
decay rate for the entire triangle using selected link ratios. Rather Skurnick fits a curve to
each accident year and uses each curve as the sole mechanism of projecting each year’s
ultimate losses. Mathematically, his tail factor reduces to

(i=-r
A—r—r"')

where r and y are as before. In this case y denotes the number of years of development at
which the tail factor will apply.

An Example

Consider the following incremental loss payouts:

Development Accident Year
Stage 1992 1991
12 4000 1000
24 2000 2000j
36 1000 1000
48 500 500
60) 250 250
72) 125 125
84 62.5 62.5]
96 31.25

' This method is also referred to as the ‘Geometric Curve’ method.
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For illustration of the curve fitting process, the 1992 data produces the following table, when
a curve is fit to the natural logarithms of the paid loss in each year (using the identity
In(AXt) = In(A)+y¥In() )

Fitted Line
Development Stage Amount |Log of Lo(A)= | 8987 |EXP=A=| 8000 Fitted Fit
Stage in Years Paid  [Amount In(r) =] -693 | EXP=r= 0.5 Curve | Error

12) 1 4,000] 8.29405, 4,000 0|
24| 2] 2,000 7.600902 2,000 0|
36 3 10000  6.907755] 1,000 0]
48 4 500] 6.214608 500) 0]
60| 5 250f 5.521461 250 0|
72 6 125 4.828314 125 0|
84 7 63] 4.135167 63 0]

The tail factor is then (1-.5)/(1-.5-.5")=.5/(1-.5-.007813) = 1.0159.

The above is of course a contrived example. But consider the more typical case of the 1991

accident year. In this case, the payments begin low, then decrease after reaching a ‘hump’ in

the 24 month stage. The eventual rate of decrease is still .5, but the curve fit produces:

Fitted Line
Development Stage Amount |Log of Lo(A) = | 8294 |{EXP=A =] 4000 Fitted Fit
Stage mn Years Paid  fAmount Ln(r) = [-0578| EXP=r= ] 0.56123 | Curve | Error

12 1 1,000 6.907755 2,245 -1,245
24 2, 2,000{ 7.600902 1,122] 878
36 3 1,000  6.907755] 561 439
48, 4 500[  6.214608] 281 219
60 5 250[  5.521461 140 110
72| 0| 125( 4.828314 70; 55
84 7 63[  4.135167 35 27
96 8 31 3.442019 18 14

Because of the hump shape

the tail factor is much larger at

(1-.5613)/(1-.5613-.5613") = .4387/(.4387-.017554) =1.0417.

364

‘t’ is computed at a higher (i.e., less decay) value, .5613. Hence
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5.2.1 Advantages and disadvantages of Skurnick’s method

The primary advantage of Skurnick’s method, at least telative to McClenahan’s method, is
that the calculadons are much simpler. But correspondingly, this method involves not only
all of the assumptions underlying McClenahan’s method; a constantly decreasing pattern,
exponential decay, and a lack of trend in the decay rate; it adds the assumption of no lag
between the accident date and when payments begin. The last assumption is cleatly untrue
in the vast majority of cases.

As shown above, an additional major disadvantage is that it does not accommodate ‘hump
shaped’ patterns well. The problems with hump-shaped curves serve as an introduction to
the next improvement.

5.2.2 Improvement 3 — limit curve fitting to the more mature yeats

Skurnick’s method is a prime candidate for this approach, because it is so common to have a
‘hump-shaped’ payout curve, whereas by the very nature of the exponential curve,
exponential curves are monotonically decreasing. So, it is logical to refocus the tail

estimation process, putting primary emphasis on the type of claims activity occurring near
the tail.

Going back to the ‘Brief Digression’ on types of claims activity, the type of claims activity
most closely associated with the tail does not begin until after 48 or 60 months. So, it would
be logical to just fit the development curve to the paid after 60 months. The result of
performing that limited fit on the 1991 data used to illustrate Skurnick’s method is shown
below.

Fatted Line
Development Stage Amount _|Log of Ln(A) = 18987 |[EXP =.A=| 8000 [ Fitted Fit
Stage in Years Paid  |Amount | ILn(r)= | 069 |EXP=r=]| 05 Curve | Error
72) 6 125]  4.82831 125
84 7 63| 4.13517 63
96 8 31]  3.44202 31

As expected, this produces the correct decay rate value of t’ = .5, and the cotresponding tail
factor of 1.0159.
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5,2.1 A note of caution

The above improvement is logical and generally works well with large volume high-
credibility data. When the triangle is of ‘medium’" size and has a fairly high cap on loss size,
the triangle will not have full credibility. Therefore, a fit to paid data directly out of the
triangle will likely lead to poor tail factor estimates. Of note, Skurnick’s method is not the
only method where this will yield poor tail estimates. It will happen with all the curve-fitting
methods.

.2.3. Improvements 1 and 2 applied to Skurnick’s method

These improvements and their processes have likely been discussed enough earlier in this
paper to eliminate a need for examples. Logically, both improvements may be applied while
using Skurnick’s method.

Method 1, using multiple ending years can be applied by simply fitting the curve to all the
payments but the last year, computing the corresponding tail factor for the next-to-last stage
of development, and dividing by the last link ratio.

Method 2 can be performed just as it was in McClenahan’s method. For example, in the
poor curve fit obtained when fitting to all of the 1991 data, the ‘development portion’ of the
fitted tail, 1.0417-1=.0417 could be multiplied by the ratio of the actual incremental paid loss
in the 96-108 stage (31, holding the place of the exact value 31.25) to the fitted value
(rounded to 18). Note though, that the ‘corrected’ tail factor is even further off at
1+31X.417/18 = 1.0718. This illustration of when improvement 2 does not improve the tail
factor prediction is intended to further show what happens when the tvpe of curve fitted is a
poor match for the pattern of the data.

5.3 Exponential Decay of the Development Portion of the Link Ratios™

This method is the first of several methods that extrapolate the tail factor off the loss
development link ratios rather than the paid loss. This method was refetred to briefly in the
discussion of the Bondy method as a possible source of theoretical underpinnings for the
two Bondy methods. The process is very simple. Given a set of link ratios 1+d,, 1+d,,
1+d,,.... 1+d,, a curve of the form

Dxr™

where D is the fitted development portion of the first link ratio and r is the decay constant,
is fit to the d’s. The easiest way to do so is by using a regression to the natural logarithms
of the d_’s. Then, for an ending d_ of small size, the additional development can be
estimated by using the previous approach of

%1t is very difficult to quatify ‘medium’ in a manner that will work across the different lines of insurance
and still be meaningful years in the future. At the time this was written, an example of a ‘medium’ volume
triangle might be a very large workers compensation self-insurance fund.

' This method was outlined in Sherman’s paper, but likely was already heavily used by actuaries before
Sherman’s paper was published..
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t

I a+ Dxrm) =Mla+ds™) =1+d, S 1 =1+de/(10),

m=y+l m=1 m=3+1

This also automatically introduces Improvement 2 by fitting exactly to the last point. Similar
algebra would show that the tail factor is approximated by

1+ DXr™ /(1-1).

For an ending d_ of larger size, it may be necessaty to simply project the link ratios for the

next fifteen or so years (until the additional tail is immaterial), then multiply them all together
to create a tail factor.

5.3.1 An exampl

Consider the following sample link ratio data.

Development Stage Link
Stage n Years Ratio

12 1 1.5

24 2 1.25

36) 3 1.125

48 4 1.0625]

60 5|  1.03125

72 6]  1.015625

84 71 1.007813

The astute reader will notice that is a pattern similar to that underlying the Bondy method.
In any event, to fit our exponential curve to the development portion, viee first subtract unity
to obtain the development portion of each link ratio.

Development Stage Link Development
Stage in Years Ratio Portion 'd'
12 1 1.5 0.5
24] 2 1.25) 0.25]
36) 3 1.125 0.125
48| 4 1.0625) 0.0625|
60) 50 1.03125 0.03125
72) 6]  1.015625 0.015625
84 7| 1.007813 0.0078125
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Then, as a precursor to curve fitting, we take the natural logarithms of the development
portions, or “d’s”.

Development Stage  [Link Development |Log of
Stage in Years |[Ratio Portion 'd’ d'
12 1 1.5 0.5 -0.69315
24 2 1.25 0.25) -1.38629
36 3 1.125 0.125(  -2.07944
48 4 1.0625 0.0625( -2.77259
60 5| 1.03125 0.03125] -3.46574
72 6| 1.015625 0.015625( -4.15888
84 71 1.007813] 0.0078125 -4.85203

Then, we fit a line to those logarithms. Standard commercial spreadsheet software produces:

Development Stage  |Link Development |Log of Fitted Curve Values

Stage in Years |Ratio Portion 'd' d' Slope -0.6931
Intercept 0.0000]

12} 1 1.5 0.5  -0.69315

24 2 1.25 0.25( -1.38629

36 3 1.125 0125  -2.07944

48 A 1.0625 0.0625|  -2.77259

60 5|  1.03125 0.03125]  -3.46574

72 6] 1.015625 0.015625(  -4.15888

84] 7] 1.007813 0.0078125] -4.85203
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Then, our ‘D’, or development portion at time zero, is the exponent of the intercept, and the
rate of reduction, ‘¢’ is the exponent of the slope. Calculating the exponents and the fitted

curve, we get:

Development{ Stage Link [Development| Logof |Fitted Curve Values Fitted
Stage in Years | Ratio | Portion'd' d' [Slope -0.6931 Curve
Intercept 0.0000]

12, 1 1.5 0.5] -0.69315 1.50000]

24 2 1.25) 0.25 -1.38629]t = exp(slope) 0.5 1.25000

36 3 1.125 0.125 -2.07944D = exp(intetcept) 1] 1.12500]

48 4 1.0625 0.0625 -2.77259 1.06250]

60 5 1.03125 0.03125| -3.46574 1.03125

72 6] 1.015625) 0.015625| -4.15888 1.01563

84 7| 1.007813| 0.0078125| -4.85203 1.00781

8 1.00391

9 1.00195

10] 1.00098]

11 1.00049

12 1.00024

13 1.00012)

14 1.00006

15 1.00003

16 1.00002)

17| 1.00001

18 1.00000)

19 1.00000

20) 1.00000]

21 1.00000]

22 1.00000)
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Then, for reference we compute the tail factor using both the ‘quick’ formula usable for
small remaining ‘development portions’, and by multiplying the fifteen fitted link ratios that

make up the tail.
Quick Formula Tail
1+1X(5°8)/(1-.5) = 1.00781
Product of 8-22 Links 1.00783)

As one can see, the difference is negligible.

5.3.2 A more realistic example

The previous example was contrived to make the mathematics clear. Consider the following
set of more realistic data.

Development Stage Link
Stage in Years Ratio

12 1 2.000

24 2 1.250

36 3 1.090

48 4 1.050

60 5 1.040

72 6 1.030

84 7 1.028

96 8 1.020

A curve can be fit to the data using the methodology employed in the previous example.

Development | Stage | Link | Development | Log of | Fitted Curve Values [ Fitted Fit
Stage in Years | Ratio | Portion 'd’ d' Slope -0.4415 Curve | Error
Intercept | -0.5723
12 1 2 1| 0.0000 1.3628 | -0.6372
24 2] 125 0.25 | -1.3863 | r = exp(slope) 0.643042 | 1.2333 | -0.0167
36 31 1.09 0.09 | -2.4079 | D = exp(intercept) | 0.56422 | 1.1500 | 0.0600
48 4] 105 0.05 | -2.9957 1.0965 | 0.0465
60 5] 1.04 0.04 | -3.2189 1.0620 | 0.0220
72 6] 1.03 0.03 | -3.5066 1.0399 | 0.0099
84 7] 1.028 0.028 § -3.5756 1.0257 | -0.0023
96 8] 1.02 0.02 | -3.9120 1.0165 | -0.0035
108 911018 0.018 | -4.0174 1.0106 | -0.0074

Note that the fit errors exhibit some cyclic behavior, negative as a group at first, then
positive from 3-6 years, then negative again at 7-9 year maturities. This suggests that the
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curve may be a poor fit. That is borne out by the relationship of the tail factor estimates
with and without exact fit to the last link ratio:

Quick Formula Tail

1+Dx(:*10)/(1-1) = 1.019108
Product of 8-22 Est. Links 1.019226
After exact fit to last link

1+.0191%.018/.01061 | 1.032403

Once again the ‘quick approximation’ to the tail is almost identical to the precise tail
indicated by exponential decay. However, note that because of the poor fit of the curve near
the tail, the use of Improvement 2 (exact fitting to the last link ratio) produces a markedly
different tail factor. The question of which tail factor is best must now be answered.

To do so, Improvement 3 (fitting the curve solely to the mature years) is in order. In this
case, the curve will simply be fit to years 4 (48 months) and beyond. That produces the
following fit;

Development | Stage Link | Development | Log of | Fitted Curve Values Fitted Fit
Stage in Years | Ratio | Portion 'd’ d' Slope -0.2073 Curve | Error
Intercept | -2.1900
48 4] 1.05 0.05 | -2.9957 1.0488 | -0.0012
60 5] 1.04 0.04 | -3.2189 | r = exp(slope) 0.812748 | 1.0397 | -0.0003
72 6] 1.03 0.03 | -3.5066 | D = exp(intercept) | 0.111915 | 1.0323 | 0.0023
84 711.028 0.028 | -3.5756 1.0262 | -0.0018
96 81 1.02 0.02 | -3.9120 1.0213 | 0.0013
108 9]1.018 0.018 | -4.0174 1.0173 | -0.0007

Which produces the following tail estimates:

Quick Formula Tail
1+Dx("10)/(1) = | 1.075166
Product of 10-24 Est.

Links 1.075813
After exact fit to last link
1+.075%.018/.0173 | 1.078035
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Due to the low fit errors, as long as the 48-120 development triangle data that generated the
link ratios is credible, this would strongly suggest that a tail factor of around 1.075 is needed.
Note also that the ‘quick approximation also works well in this instance. In summary, this
example illustrates the importance of restricting use of the fitted curve to the portion of the
development data that it can reasonably fit.

5.3.3 Advantages and disadvantages of this method

A primary advantage of this method is it’s simplicity. The assumption of exponential decay
is relatively easy to understand. The calculations have modetate complexity, but an
illustration of the fitted values can readily give laypeople comfort that the method is being
executed correctly. Of note, this method is ‘asymptotically equal’ to both McClenahan’s and
Skurnick’s methods, yet is much simpler to execute. That also leads to it’s majotr
disadvantage. Because it assumes such a quick decay of the link ratios {(exponential decay is
faster decay than 1/x, 1/ x5, 1/5°, etc.), it can easily underestimate the tail.

5.4 Sherman’s Method - Fitting an Inverse Power Curve to the Link
Ratios

This method, the last'” of the curve fitting approaches to be discussed, was first articulated
by Sherman [2]. Sherman noted™, while fitting a curve from the McClenahan-Skurnick-
Exponential Decay family, that the ‘decay ratios’ (ratios of successive development portions
of link ratios) were not constant as suggested by expoential decay. Rathet, as one went
further out in the development pattern, the decay ratios rose towards unity (i.e. there was
less and less decay as one went further out in the curve). Looking at the data, it appeared
that asymptotically, the decay ratios approached unity. Based on this, he posited an ‘inverse
power’ curve of the form 1+axt® (t representing the maturity in years) for the link ratios.
Sherman then investigated the quality of curve fit to actual industry data for several families
of curves, including the inverse power curve. The family that he found generally fit best
were the so-called ‘inverse power’ curves.

The process of fitting an inverse power curve is very similar to that used to fit the

exponential curve, excepting that the ‘independent variable’ used in the curve fit is In(t).
More specifically, the identity

In(1+d-1) = In(d) = In(1+axt>-1) = In(aXt") = In(a) + bxin(t)

can be used to create an opportunity to base the fitted curve on a simple regression.

17 Sherman also discussed the fitting of a lognormal curve to the cumulative paid (or implied cumulative
paid) and the fit of a logarithmic curve to the link ratios. However, the lognormal fit does not lend itself to
easy spreadsheet mathematics, and the logarithmic fit to the link ratios does not produce a unique tail
factor. Further, a Sherman discussed, the inverse power curve is a preferable approach.

18 Mr. Sherman discusses this in Section III of [3].
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Unfortunately, this author is not aware of any simple closed form approximation to the tail
this curve generates, so the tail factor must be estimated by multiplying together the
successive link ratios after the tail begins until the impact of additional link ratios is
negligible.

5.4.1 An example

This may best be illustrated by using the initial dataset used for the exponential decay
approach:

Development Stage Link
Stage in Years Ratio

12 1 1.5

24 2 1.25

36 3 1.125

48 4 1.0625

60) 5|  1.03125

72 6] 1.015625

84 71 1.007813

The first step is to calculate the development portion of each link ratio and take natural
logarithms of the result.

Development| Stage Link Development | Log of
Stage in Years Ratio Portion 'd' d'
12 1 1.5 0.5 -0.6931
24 2| 1.25 0.25 -1.3863
36) 3 1.125 0.125 -2.0794
48] 4 1.0625 0.0625 -2.7726
60| 5 1.03125 0.03125 -3.4657
72 6] 1.015625 0.015625 -4.15891
84 7] 1.007813 0.0078125 -4.8520)
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Those will represent the ‘dependent variable’ in our regression. Then for the independent
variable, we take natural logarithms of the development stage/beginning maturity for the
link ratio in years.

Development |  Stage Link Development | Log of Log of
Stage in Years Ratio Portion 'd' d' Stage in Yrs
r Vv

12| 1 1.5 0.5 -0.6931 0.0000

24 2 1.25 0.25 -1.3863] 0.6931

36 3 1.125! 0.125 -2.0794{ 1.0986

48] 4 1.0625 0.0625 -2.7726) 1.3863!

[y 5 1.03125] 0.03125 -3.4657 1.6094

72 6f  1.015625) 0.015625) -4.1589) 1.7918

84 71 1007813  0.0078125]  -4.8320 1.9459

Then, we compute the regression parameters.
Development |  Stage Link Development [ Log of Log of Fitted Curve Parameters
Stage in Years Ratio Portion 'd’ d Stage in Yrs
X Y Slope = -2.10512|=

12] 1 1.5 0.5 -0.6931 0.0000|Intercept = -0.20881
24 2 1.25 0.25]  -1.3863 0.6931]a = expintercpt) | 0811553
36 3 1.125 0.125 -2.07944 1.0986

48 4 1.0625 0.0625 -2.7726] 1.3863)

60] 5 1.03125 0.03125] -3.4657 1.6094

72] 6] 1.015625 0.015625 -4.1589 1.7918)

84 71 1.007813 0.0078125 -4.8520] 1.9459
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Development | Stage Link Fitted Curve Parameters Fitted Fit
Stage in Years Ratio Curve Error
Slope = -2.10512}=

12 1 1.5|Intercept = -0.20881 1.8116) 0.3116
24 2 1.25[a = exp(intercept) 0.811553 1.1886 -0.0614
36 3 1.125 1.0803 -0.0447,
48 4 1.0625 1.0438 -0.0187
60) 5 1.03125 1.0274 -0.0038]
72 6] 1.015625 1.0187 0.0030
84 7| 1.007813 1.0135 0.0057

8 1.0102]

9 1.0080,

10 1.0064

11 1.0052)

12] 1.0043)

13 1.0037

14 1.0031

15 1.0027

16] 1.0024

17, 1.0021

18 1.0018

19 1.0016)

20 1.0015

21 1.0013

22] 1.0012)

And, the tail factor estimates are:

Fitted Tail =

1.056977

Exact Fit to last link

1+0.056977x0.007813/0.0135

| 1.032975]

Even with the utility this adds in the fit, the initial fit produces a tail factor of over 1.05,

when the previous exponential decay analysis suggested only 1.00781.
cotrection, though, does produce a number that is much closer to the theoretical tail.
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Again, one approach is to fit solely to the mature years. That approach produces the
following regression calculations:

Development| Stage Link [Development] Log of Log of Fitted Curve Parameters
Stage in Years | Ratio | Portion'd’ d' Stage in Yrs
X Y’ Slope = -3.69867|=b
48] 4 1.0625 0.0625[ -2.7726 1.3863|Intercept = 2.413854
60 5| 1.03125 0.03125] -3.4657 1.6094]a = exp(intercpt)]|11.17696)
72 6} 1.015625 0.015625| -4.1589 1.7918]
84 7] 1.007813] 0.0078125] -4.8520) 1.9459).
And then it produces the following fitted curve:
Development| Stage Link Firted Curve Parameters Fitted  [Fit
Stage in Years | Ratio Curve  |Error
Slope = -3.69867|=b
48 4 1.0625|Intercept = 2.413854] 1.0663{ 0.0038
60| 5| 1.03125}a = exp(intercpt) 11.17696) 1.0290] -0.0022
72 6| 1.015625 1.0148] -0.0008
84 7] 1.007813 1.0084] 0.0006,
8 1.0051
9 1.0033
10 1.0022]
11 1.0016
12] 1.0011
13 1.0008|
14 1.0006
15 1.0005;
16 1.0004]
17 1.0003]
18 1.0003
19 1.0002
20 1.0002)
21 1.0001
22 1.0001

And, the tail it produces, although it remains higher than the theoretical tail (at a certain
level, the slower decay of the inverse power curve as compared to an exponential curve
makes it inevitable that it will produce a higher tail) is much closer to the theoretical tail.

Fitted Tall = 1.017077

Exact Fit to last ink
1-+0.017077x0.007813/0.0084
= [ 1.015884]
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5.4.2 The more realistic exampl

Going back to the exponential decay, a tail was fit to the more realistic link ratios shown

below:

Development|  Stage Link
Stage in Years Ratio

12 1 2

24 2 1.25

30 3 1.09

48 4 1.05

60| 3 1.04

72 6 1.03

84 7 1.028)

96) 8 1.02

108 9 1.018]

As in the previous example, we fit an inverse power curve:

Development| Stage Link |Development| Log of Log of Fitted Curve Parameters
Stage in Years | Ratio Portion 'd' d Stage in Yrs
X’ Y Slope = -1.82492|=b

12] 1 2| 1 0.0000] 0.0000|Intercept = -0.18424]
24 2 1.25 025  -1.3863 0.6931}a = exp(intercpt)] _ 0.83174)
36) 3 1.09 0.09] -2.4079 1.0986|
48] 4 1.05 0.05| -2.9957 1.3863
60) 5 1.04] 0.04{ -3.2189 1.6094;
72 [3 1.03 0.03]  -3.5066] 1.7918]
84 7 1.028] 0.028]  -3.5756 1.9459,
96 8 1.02} 0.02]  -3.9120] 2.0794

108| 9 1.018§] 0.018] -4.0174 2.1972

And then we compute the fitted cutve values for the link ratios that comprise the tail. Since
the link ratios decay so slowly, we project thirty years of additional development instead of

fifteen.
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Development| Stage Link Fitted Curve Parameters Fitted  |Fit
Stage in Years Ratio Curve  [Error
Slope = -1.82492=b

12] 1 2.000{Intercept = -0.18424 1.8317| -0.1683
24 i 1.250fa = exp(intercpt) 0.83174 1.2348 -0.0152]
36 3 1.090) 1.1120{ 0.0220
48 4 1.050 1.0663| 0.0163
60, 5 1.040) 1.0441] 0.0041
72 6 1.030] 1.0316] 0.0016)
84 7 1.028 1.0149] 1.0239
96 8 1.020) 1.0111} 1.0187
108 9 1.018 1.0151{ -0.0029

10] 1.0124

1 1.0105

12 1.0089)

13 1.0077

14] 1.0067

15] 1.0059)

16| 1.0053]

17 1.0047

18] 1.0043]

19 1.0039)

20 1.0035]

21 1.0032)

22 1.0030]

23 1.0027,

24 1.0025

25 1.0023]

26 1.0022]

27 1.0020]

28 1.0019

29 1.0018]

30 1.0017,

31 1.0016

32 1.0015]

33 1.0014

34 1.0013]

35 1.0013]

36 1.0012

37 1.0011

38 1.0011

39 1.0010]
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That produces the following tail data.

Fitted Tail = 1.114487
Exact Fit to last link
1+0.11451x0.018/0.0151

= | 1136502

For comparison, the final ‘best estimates’ using the exponential decay were in the 1.03-1.05
range. But, those best estimates were based off a fit to just the mature years. So, let us fit
the curve solely to the 48+ month data.

Development| Stage | Link [Development| Log of Log of | Fitted Curve Parameters
Stage 1 Years [ Ratio | Portion'd’ d' Stage in Yrs
X Y’ Slope = -1.28108|=b
48 4 1.05 0.05] -2.9957 1.3863|Intercept = -1.18688
60) 5 1.04 0.04] -3.2189 1.6094ja = expfintercp)[0.305171
72 6 1.03 0.03] -3.5066 1.7918]
84 7 1.028 0.028] -3.5756 1.9459
96 8 1.02 0.02] -3.9120 2.0794
108, 9 1.018 0.018f -4.0174 2.1972]
However, in this case, the tail is even higher, per the fit
Development| Stage Link Fitted Curve Parameters Fitted Fit
Stage in Years | Ratio Curve  |Error
Slope = -1.28108=b
48] 4 1.05|Intercept = -1,18688 1.0517) 0.0017]
60| 5 1.04ja = exp(intercpt) 0.305171 1.0388 -0.0012
72) 6 1.03 10307 0.0007
84 7 1.028 1.0252] -0.0028
96 8 1.02] 1.0213] 0.0013
108 9 1.018 1.0183] 0.0003
10 1.0160)
11 1.0141
12 1.0126]
13 1.0114
Etc. Erc.
379
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Multiplying the link ratios that comprise the tail factor together, the estimated tail is:

Fitted Tail = 1.208566
Exact Fit to last link

1+0.2086%0.018/0.0183

- 1 12018

So, this illustrates how this method is generally more conservative than the exponential
decay method.

5.4.3 Advantages and disadvantages of Sherman’s method

Relative to the other curve-fitting methods, this method’s primary strengths and weaknesses
stem from it’s source, although that is mitigated by the fact that in choosing the form of the
mathematical curve family that was used (the inverse power curve), Sherman relied heavily
on actual data. Specifically, he noted that exponential decay factors flattened heavily (ie.,
rose toward unity) at later ages. So, he chose the inverse power curve as his model to reduce
the decay at later ages. In a sense, Sherman designed the inverse power curve with an eye
toward mathematically correcting an observed deficiency in the exponential decay method.
The approach he used to correct exponential decay'” was merely to find a curve that roughly
matched the data he observed. So, since the inverse power approach is based on actual
propetties of the observed development link ratio curves, and appears to have supesior fit to
the data, it should arguably be a better predictor of the tail. But on the other hand it also
gives no single simple assumption (such as decay proportional to development portion size)
that we can test the data against. In other areas, the fit looks a little more mathematically
complex to the outsider, but is no mote computationally difficult for the practitioner than
exponential decay of the link ratios.

5.5 Sherman’s Revised Method - Adding Lag to the Inverse Power Curve

In his study of the inverse power curve, Sherman [3] noted that the fit could sometimes be
improved by adding a lag parameter to the curve. He used the formula

1+d = 1+ax(t-0).

In this case, the mechanics of fitting the curve are somewhat more complex. An example
will illustrate the process.

'° Sherman effectively replaced 1+ D 7' from exponential decay with 1+axt® . Note that a in the inverse power
curve plays the same role as D in exponential decay, so really he just replaced r !, with a constant decay ratio of

r by t* with a decay rate of ((t + 1)+ I)b , which is asymptotically one.
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5.5.1 Example of fitting an inverse power curve with lag

We first set the lag equal to one (unity) to begin the process, then fit the an inverse power

curve reflecting that lag

Development] Stage Link |Development] Log of | Stage [Log of Rev.| Fitted Curve Parameters
Stage in Years] Ratio | Portion'd’ d' |Minus Lag|Stage in Yrs Lag = 1
Slope = -1.0273)=b
48 4 1.05 0.05] -2.9957]  3.0000 1.0986/Intercept = -1.8324
60) 5 1.04 0.04) -3.2189]  4.0000 1.3863|a = exp(intercpt)| 0.1600]
72 6 1.03 0.03) -3.5066] _ 5.0000 1.6094
84 7 1.028 0.028) -3.5756]  6.0000f 1.7918]
96 8 1.02, 0.02 -3.9120]  7.0000] 1.9459
108 9 1.018 0.018] -4.0174]  8.0000, 2.0794

Then we compute the link ratios on the fitted curve, and the total squared fit error as well

Development]  Stage Link Fitted Curve Parameters Fitted Fit Squared
Stage | in Years Ratio Lag = 1 Curve | Error Error
Slope = -1.027387872}=b
48 4 1.05{Intercept = -1.832444677 1.0385 -0.0115[ 1.32E-04]
60| 5 1.04Ja = exp(intercpt)| 0.160021887 1.0306| -0.0094 8.79E-05
72 6 1.03) 1.0254] -0.0046] 2.12E-05
84 7 1.028] 1.0217} -0.0063|  4.00E-05
96) 8 1.02) 1.0189] -0.0011 1.22E-06|
108 9 1.018 1.0167] -0.0013f 1.58E-06|
2.84E-04
We note that the total fit error associated with a lag of one is .000284.
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Next, in order to estimate the optimum lag, we use a bisection process, following the process
above for different potential lags; finding the lowest value of the squared error across a
group of values; and progressively narrowing the range. The computations were as follows,
and only 7 steps were needed. For reference, at each step of the process the lowest value of
the fit error as well as the two adjacent values (the three values generated by the lag points
that will be carried to the next step of the process) are in bold.

Stage 1 Stage 2 Stage 3
Squared ‘ Squared Squared
Lag Error Lag Error Lag Error
-1 7.06E-04 -0.5 1.58E-04
-1 7.06E-04 0.5 1.58E-04 0251  4.86177E-05
0 1.32E-05 of  132E-05 0| 132454E-05
1 2.84E-04 0.5 9.22E-05 025 3.28903E-05
2 7.50E-04f 1 2.84E-04 0.5 9.22146E-05
3| 1.08E-03!
Stage 4 Stage 5 Stage 6
Squared Squared Squared
_Lag Error _Lag Error Lag Error
-0.25 4.86177E-05] -0.125 2.2949E-05) -0.0625| 1.62499E.-05!
-0.125 2.2949E-05| -0.0625 1.625E-05| -0.03125 1.43034E-05
0 1.32454E-05 0 1.3245E-05 0| 1.32454E-05
0.125|  1.72333E-05| 0.0625 1.366E-05 0.03125 1.30419E-05
0.25) 3.28903E-05] 0.125 1.7233E-05 0.0625) 1.36599E-05
Stage 7
Squared
Lag Error Final Selection 0.02
0| 1.32454E-05
0.015625|  1.30389E-05
0.03125]  1.30419E-05
0.046875 1.32502E-05)
0.0625| 1.36599E-05

Note that as the fit error changes litde near the minimum point, a rounded value is
acceptable.
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Then, that lag value may be used in the final curve fit.

Development Stage Link Fitted Curve Parameters Fitted
Stage in Years Ratio Lag = 0.02] Curve
Slope = -1.253797784{=

48 4 1.05{Intercept = -1.23628766 1.0511
60) 5 1.04]a = exp(intercpt) 0.290460507 1.0386
72 [$ 1.03) 1.0307
84 7 1.028) 1.0253
96 8 1.02fFitted Tail = 1.230663894 1.0214
108 9 1.018 1.0185
10] Exact Fit to last link 1.0162)

11 1+0.2307%0.018/0.0185 1.0144]

12] = 1.224464865) 1.0129

13 1.0117

14 1.0106

15] 1.0097,

16] 1.0090)

17 1.0083

18 1.0077

19| 1.0072]

20j 1.0068

21 1.0064]

22 1.0060

23 1.0057

24 1.0054

25 1.0051

26 1.0049

27 1.0047]

28 1.0045]

29 1.0043

30f 1.0041

31 1.0039,

32 1.0038

33 1.0036)

34 1.0035

35 1.0034

36 1.0032]

37 1.0031

38 1.0030,

39 1.0029
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Which provides a slightly smaller tail.

Firted Tail = 1.2306
Exact Fit to last ink
1+0.2307x0.018/0.0185

= | 12244

5.5.2 Advantages and disadvantages of introducing lag in the inverse power curve

Summarizing, we can note that while the lag factor may sometimes mitigate the size of the
tail, the inverse power in general tends to produce a higher tail than the exponential fit.
Although it has not been illustrated herein with actual data, the inverse power cutrve also
generally indicates higher tail factors than McClenahan’s and Skurnick’s methods, as those
methods tend to produce results that are very similar to that of the exponential decay™. As
before, the invetse power curve’s main attraction is that it simply seems to fit the data better.
However, in introducing lag it is clear that much computational complexity is added. The
practitioner should evaluate whether the additional complexity produces large gains in the
accuracy of the estimated tail factor.

6. SUMMARY

Several different methods for assessing tail development were presented, as well as some

refinements. Hopefully, this will help the reader in his or her actuarial practice.

 That is because they are simply based on exponential decay of the payments rather than the link ratios. A
little analysis will show that their decay patterns are about equal for ‘large’ maturities. If in doubt, simply
consider their asymptotic properties.
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Appendix 1-Tail Factor Methods Based on Counts

A.1 Introduction

Although they are less commonly used, there are several methods for estimating tail factors
that are based on counts. Among these are the Sherman-Diss method, the projected unpaid
severity method, and what is really a older year ultimate loss selection method instead of a
tail factor method for unexpectedly low open counts that is based on maximum possible
costs per claim. All of these methods do have demonstrated limitations, though. So, it is
just as important to understand the limitations of each method as it is to understand the
methods themselves.

A.2 The Sherman-Diss Method

The Sherman-Diss method described in [4] is a specific example of what could become a
class of methods that project the open claim counts at future times, and the cost per claim at
each future period. For the first step, this method involves projecting the likelihood that
each ‘mature’ (near the tail maturity) workers compensation claim will still be open next year,
the following year, the year following that, etc. using life (mortality) tables and the claimant’s
current age. Then, the indemnity (wage replacement) benefits each would receive in each
future petiod (if they are still alive to collect benefits as estimated using the life table) is
estimated using each worker’s current annual benefit, plus an estimate of any inflation in the
benefit (should any be allowed under the law of the injured worker’s state). The total
indemnity tail would then be calculated by extending the probability of each claimant’s
survival at each future period (the expected open claim counts) times the annual indemnity
benefit. For the medical benefits allowed claimants under the wortkers compensation laws,
the probability of survival to each future period is extended by the current medical inflated
by an appropriate medical inflation factor. The extension of probability of survival times
medical benefits produce the dollars of medical tail.

A.2.1 Pros and cons
Due to the complexity of the calculations and the status of this discussion as an appendix

rather than the main paper, an example will not be provided. However, some discussion of
this and the other methods in this appendix is certainly in order.
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When Sherman and Diss compared their method to other tail factor methods (primarily the
curve-fitting methods) on some specific workers compensation data, they found that it
produced much higher tail factors than the other methods. However, when they tested their
method retrospectively against actual dollar emergence on some Western state fund data,
they found that as claimants achieved advanced ages (roughly at thirty to forty-plus yeats of
development) the medical became much higher than that predicted by their method. Per
their studies, it appears that as claimants achieve advanced ages, unexpected (at least per life
tables and medical) additional development occurs because the main injury may cause related
illnesses that are exacerbated by age and because family or spousal care for severely injured
claimants must be replaced by nursing home care as the caregivers age and become infirm.
So, at least for direct and unlimited wotkers compensation benefits, it appears that many
common methods produce an inadequate tail, but that this method does not fully solve the
problem.

Also note that this ‘open claim count’ method is suitable only for lines where benefits are
paid as long as claims remain open. To this author’s knowledge, the only lines of insurance
that have that feature are workers compensation and disability.

Futther, this method was designed for direct and unlimited claim costs, when most insurers
purchase some form of specific excess reinsurance that caps the insurer’s costs at some ‘net
retention’. Note however, that method could be revised by accumulating the total projected
costs paid to each claimant and eliminating the claim once the net retention is reached”. In
so doing, each claim would be effectively capped at the retention.

Lastly, this method only directly produces a tail factor for the mature years. If there is a low
volume of claims remaining open in the older years (as is often the case), the results of this
method will not be a reliable statistic for projecting the tail on the later years (i.e., they will
lack credibility).

Qualifications aside, this method does create a powerful tool in the right circumstances.
Futher, as time goes by it is possible that other ‘remaining open count’-based methods will
be developed.

21 Of note, it is also appropriate to build in any projected costs that exceed the limit of per claim reinsurance
purchased.
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A.3 The Unclosed Count Method

This method also requires qualifications, but is worth discussion. Just as in workers
compensation, the open status of a claim is related to payments. In most other lines the
majority of payments occur at the time of claim closing. So, it is reasonable to suppose that
there would be a method based on the number of claims yet to close and the average cost of
each of those claims. Of course, while it may be relatively easy to estimate the number of
claims that will close in the future as long as the actuary is certain that no further IBNR
claims will materialize; it is usually very difficult if not impossible to estimate the average
costs of closing each claim. However, in some limited circumstances, the average paid loss
per closed claim of the oldest accident year may have reliably and permanently plateaued. in
those specific circumstances (and only those circumstances), it would be appropriate to
multiply the number of unclosed claims by the average paid loss per closed claim from the
latest twelve months for the given accident year.

A.3.1 Pros and cons

This method cannot be discussed without discussing the tremendous detraction posed by
blithely assuming that the current average paid loss per closed claim will equal the average
cost of disposing of the open claim inventory. The author has personally seen general
liability data of about 48 months maturity and fairly low volume where the average paid per
claim had leveled off at around $5,000 per claim, whete only four claims were open, but they
were all $20,000+ claims. One major problem was that the maturity was only 48 months.
So, the actuary is strongly cautioned to use this only for data of at least 96 months maturity,
preferably 120 months, and to carefully review whether the remaining open claims are of the
same type, class, average demand, etc. as the claims closed between, say, 96 and 120 months.

The actuary is also cautioned that if the data volume is not overwhelming large, the
percentage of claims left open for the older years now may not match the percentage of
claims left open at 120 months or so on the more recent years once they reach the 120
month stage. For example, if only four or so claims are left open on the older years, they
will lack statistical validity (a form of credibility) in predicting what will be open when the
more recent years reach the same development stage. Therefore, they will lack validity in
predicting the tail factors for the more current yeats.

All that being said, under the right circumstances this can be a useful method. One must

simply make sure that the set of underlying assumptions hold in whatever circumstance the
actuary is using this method.
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A.4 The Maximum Possible Loss Method

This method is a variant of the unclosed count method. It, however, does not so much
create a tail factor as it does establish a maximum tail for the older years. The core idea of
this method is that, given that the maximum net liability of an insurer is some net retention
‘R’, the hability for all the open claims should not be more than the sum of R-paid to date
across all the open claims. So, to use it, given that an accident year is sufficiently mature for
no IBNR claims to be teasonably possible, the remaining amounts to reach the retention (R-
paid to date) are summed across all remaining open claims in the accident year. The result is
not so much an estimate of the tail factor as an upper bound on tail development for that
specific year. So, if application of the tail factor to a given year suggests more development
than is ‘possible’ per the remaining amounts to reach the retention in the accident year, the
ultimate unpaid loss for that accident year might be capped at the amounts remaining to
reach the retention.

In the (fairly unusual) event that there are enough claims left open for this to be a statistically
valid predictor of the development of the more recent years, it could be used in estimating
the tail factor for all the accident years. But, one would have to be certain that this finding
was statistically consistent with the initial tail factor analysis. For example, if the initial tail
factor came from a curve fitting, it might be reasonable statistically that the curve fitting was
simply using the wrong curve. However, if the initial tail factor came from a ‘paid over
disposed’ method that also used the actual data in the triangle itself, the tail findings would
suggest the data is internally inconsistent. In that case, greater care must be taken to
understand which method is most accurate for the tail factor to be applied to the more
recent years.

A.4.1 Pros and cons

This method improves on the average unpaid loss method by virtue of the fact that the
amount to reach the retention need not be estimated. Rather, it is fact. However, it only
produces an upper bound, not an actual best estimate.

Like the average unpaid loss method, there are often statistical reliability issues when making
inferences about the tail factors of the more recent years. But, one cannot readily dispute
the results as an upper bound for the older years on which the method is applied, at least as
long as one is certain the prospect of additional IBNR claims is immaterial. So, like the
average unpaid loss method, one must be very careful to make sure the proper assumptions
hold when using it. But, unlike the average unpaid loss method, it has far more certainty
surrounding the loss sizes.
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Appendix 2-Developing Case Reserves on the Older Years

This method is also not so much a method for estimating the tail factors to use in incurred
ot paid loss development as it is a method for estimating ultimate losses in the very mature
years. The scenario this addresses is that of a medium-to-low credibility (medium-to-low
volume of losses in telation to the net retention) loss triangle. In that scenatio it is not
unusual for the remaining unpaid loss in the mature to vafy significantly depending on
whether a large claim, or a few large claims, or no large claims happen to have occurred and
still be open in the late development stage. In such citcumstances, the standard application
of a tail factor may not work simply because thete are not enough open claims in the mature
years, ot even open claims expected in the tail factor, for the law of large numbers to apply.
In that case, some recognition of the specific cases remaining open (assuming no further
reopenings or IBNR claims) will make the resulting ultimate loss predictions for the older
years more accurate.

The process is fairly simple. Given a ratio of what it actually costs to close cases vs. the case
reserves held from the ‘paid loss to reserve disposed of® method, one simply multiplies that
ratio times the case reserve to obtain an estimate of the unpaid loss on each of the very
mature years. The ultimate loss estimate for each of those years would simply be the derived
unpaid loss estimate plus the paid-to-date for each year.

A word of caution is in otder, however. Remember that this method was used to estimate
the ultimate loss because the law of large numbers did not work. Therefore, the unpaid
losses detived using this method lack credibility in estimating the tail factor for the less
mature years. So, if this method is used because the remaining unpaid losses are driven by
‘luck of the draw’™, it is illogical to use the unpaid losses from this method to estimate a tail
factor for the less mature years.

Pros and cons

This method’s inherent advantage is it’s usefulness in low credibility situations. It’s
disadvantage is that it does not truly produce a tail factor, just some estimates of ultimate
loss for the older years. Further, it assumes no reopenings or true IBNR claims. So, it must
be used with great caution and respect for it’s limitations.

2 The astute reader will note that the adjusted case reserves are exactly what is used to develop a tail factor
in the ‘paid loss to reserve disposed of” method. But note that in that instance the tail is presumably based
on case reserves that are large enough to have reasonable credibility.
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A DATABASE IN 3-D
Alfred D. Commodore, ACAS

Abstract

Three-dimensional geometry and calculus are useful conceptual and analytical
tools for working with valuations of insurance statistics. Geometry can be used to
provide a pictorial represemtation of a database and illustrate differences between
calendar, exposure/accident and policy year concepts. Calculus can be used to estimate
on-level, trended and developed statistics used in ratemaking and reserving. Also, three
dimensions lead to several practical two-dimensional methods when the generality of-
three dimensions is not required.

1. INTRODUCTION

An insurer keeps track of various information over the course of doing business.
Databases are maintained recording the result of exposure base, premium and claims
transactions for financial reporting, statistical reporting, ratemaking and reserving
purposes, for example. The goal of this paper is to develop a pictorial representation of a
database as three dimensions (3-D) with values attached to points. The result is a simple,
conceptual and analytical tool useful for working with valuations of insurance statistics.
Our approach is summarized as follows:

Section 2 develops 3-D as a pictorial representation of a database.

Section 3 includes conceptual applications of Section 2 using an example from
ratemaking.

Section 4 includes closing comments.

The Appendix provides further discussion of the 3-D approach and analytical
applications of Section 2 using methods from basic calculus.

2. ADATABASE IN 3-D

A variety of exposure base, premium and claims transactions make up a database
and are collected to produce reports. In this section we: 1) represent a database as points
in 3-D with values attached; and 2) represent a report as a collection of points in 3-D with
a collective value attached.

2.1 A Database in 3-D

For the transaction: “On a policy issued 1-1-04 covering a claim incurred 8-1-04,
pay $5,000 on 2-1-05.”; we identify three dates and a value: 1) “1-1-04”, the policy date
or date the policy was written or issued; 2) “8-1-04”, the exposure date or date the policy
was in force and exposed to loss; 3) “2-1-05”, the valuation date or date the transaction
was made; and 4) “$5,000 paid losses”, the amount and type of statistic. By defining
xyz-space coordinates x, y and z as policy date, exposure lag and valuation lag,
respectively — so that x+y and x+y+z are defined as exposure date and valuation date,
respectively — we can represent the transaction as the “valued” point in 3-D, ((1-1-
04,7,6).5000), length 1 on an axis equal to 1 month,
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TABLE 1
TRANSACTION, ((X,Y,Z),S), 3-D COORDINATES
binatio Interpretations*
*X,y,2 * policy date, exposure lag, valuation lag
o X4y, X+y+z o exposure date, valuation date
eyt+z, z * policy age, exposure age
*Policy, exposure and valuation date are synonymous with issue/written, in-force and ion date, respectively. Exposure

date and lag become claim (or accident) date and lag, respectively, when dealing with claim statistics. Note the two
interpretations for the z-coordinate as a type of lag and age.

2.1.a. In 3-D represent the transaction: “To a policy written, exposed and
valuated at times X, X,ty, and x,+yo,+z, respectively, assign s,
statistic units.”; as valued point ((X,Y0,24),S0).

Table 1 lists the various definitions and interpretations of xyz-coordinate combinations
used throughout the paper. We plot several transactions on a policy issued 1-1-04 next,
length 1 on an axis equal to 1 month ',

2.1.a.1. The initial transaction to record $4,320 in written premium is made at
issue so that the valuation date equals the policy date;, ((1-1-
04.0,0),4320).

2.1.a.2. The transaction to record $12 in earned premium on 3/1/04 is made
at the time the policy is in-force on 3/1/04; ((1-1-04.2.0).12)%

2.1.a3. On 6/1/04 corrective transactions are made since the policy was
actually written for $8,640 and recorded in error. Transaction ((1-1-
04.0.5),4320) corrects for written premium transaction 2.1.a.1 and
transaction ((1-1-04.2.3).12) corrects for earned premium transaction
21.a2

2.1.a.4. An endorsement for additional coverage for $400 written premium is
processed mid-term on 9/1/04; ((1-1-04,8,0).400).

2.1.a.5. The policy is cancelled without penalties on 12/1/04 with a full
refund of a month’s premiums unearned on the base policy for
$720(=$8,640/12) and on the endorsement for $100(=$400/4); ((1-1-
04,0.11).-720) & ((1-1-04.8,3).-100).

2.1.a.6. The transaction to record a claim incurred 8/1/04 is made on 8/15/04;

((1-1-04.7.0.5).1).

A transaction’s policy and valuation dates are recorded in practice. Exposure date
— unless associated with a date of loss — is not recorded and is an abstract concept we
introduce for purposes of the presentation. Imagine that an annual policy is made up of
365 separate daily policies, 8,760 separate hourly policies, etc., until we view the policy
as a post’ continuum. We introduced exposure date so that transactions tracked by policy
in practice could be tracked by post in theory.

! We invite the reader to express each transaction in the form provided by 2.1.a by identifying the three
dates and value, and plot all transactions in the same 3-D diagram.

% This transaction is “implicit” as no actual record is made to record earnings.

3 Mnemonic for “a Policy expQSed to loss at a point in Time”.

392 Casualty Actuarial Society Forum, Winter 2006



A Database in 3-D

We extend 2.1.a to apply to a database of transactions. For simplicity we assume
all the transactions in the database are for the same statistic.

2.1b. In 3-D represent a database of transactions for a single statistic by

D=Pp.

In 2.1.b, P is the collection of points, (x,y,z), resulting from plotting transactions
using 2.1.a and f is the rule assigning value to points of P, f(x,y,z), derived as the sum of
the statistic over all transactions assigned to point (x,y,z). Thus, D=(P,f) is a collection of
points of the form, ((x,y,2),Ax,y,2)). Figure 1(a) is a generic database D with the fvalues -
assumed color-coded to simplify the illustration. Note:

2.1b.1 D ranges from the collectible (e.g., written premium transactions in company
records) to the hypothetical (e.g., written premium projections).

2.1.b.2 D (or more precisely P in D=(P,f)) appears differently by type of statistic.
Under some basic conventions D is; 1) confined to the x-axis for written
statistics; 2) confined to the xy-plane for earned statistics; and 3)
unrestricted in space for claim statistics. *

2.1.b.3 D appears differently by coverage for the same statistic. Private Passenger
Auto Physical Damage paid losses close rather quickly when compared to
Workers Compensation paid losses. Transaction activity that occurs long
after the accident date is reﬂected in larger z-coordinate values for points in
D. Thus, we would expect D" for auto paid losses to be generally closer to
the xy-plane than D** for Workers Compensation paid losses.

2.2 A Reportin 3-D

A report involves collecting statistical information from specific database
transactions. In 3-D this amounts to identifying a subset of space along with the total
statistic value associated with that subset. The report: “Accident Year 2001 as of
12/31/2002 totaled $31.3 Million Paid Losses.”; is a very basic type of report we call a
valuation characterized by: 1) a data organization (i.e., Accident Year 2001); 2) a
status (i.e., “as of 12/31/2002”); and 3) a statistic level (i.e., $31.3 Million Paid Loss).

2.2.a. In 3-D represent a valuation by O.V.s.

In 2.2.a, O and V (O containing V) are subsets of space determined by the valuation’s
data organization and status, respectively, and level s assigned to V is the total statistic
for points PAV. > We often write V for O.V.s, O and s understood.

* The conventions arise under the assumptions written, earned and claim statistic transactions ((x,y,z),s) are
made only at policy inception (i.e., x+y+z equals x), moment in force (i.e., x+y+z equals x-+y) and after the
date of loss (i.e., x+y+z exceeds x+y), respectively, and so reduce to forms ((x,0,0),s), ((x,y,0),s) and
((x,y,2>0),s), respectively - assuming non-negative coordinates x, y and z. 2.1.a3 includes
counterexamples for the written and eamed statistic conventions. As for a counterexample to the claim
statistic convention, confine hypothetical transactions to record ultimate claim counts to the xy-plane,

5 K PAV=0, then s is undefined. We consider two valuations distinct if they differ at either of O or V but
equivalent if their V’s have the same intersection with P. We can talk about the level or equivalence (to
another subset) of an arbitrary subset A by considering the valuation where A=O=V.
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TABLE 2
VALUATION, O.V.S, ILLUSTRATED
Valuation Data Organizations, Valuation Statuses,
O, as Subsets of Space V, as Sul of O

o Policy issued at time t with term k: All points * Asof date £ V is all points of O with valuation
with policy date x=t and exposure lag y at most k, date x+y+z at most ¢£.

@t y<k,2).
o Post/Accident at exposure lag ¢ on a policy issued  » At policy age a: Vis all points of O with policy
attime t: All points with policy date x=t and age y+z at most a.

exposure/accident lag y=¢, (t.,z).
» Exposure/Accidents at time t: All points with o At exposure/accident age e: V is all points of O

exposure/accident date x+y=t, (x,t-x,z). with exposure/accident age z at most e.
o Time t: All points with valuation date x+y+z=t, * Over calendar period t1 to t2: V is all points of O
(X,y,t=x-y). with valuation date x+y+z from t1 to t2, inclusive.

« Policy, Exposure/Accident or Calendar Periodt! o At ultimate: V equals O. This is equivalentto £, a

to t2: All points with policy, exposure/accidentor  and e becoming infinite in the as-of-date-t, at-

valuation date from t1 to 2, inclusive. policy-age-a and at-exposure-age-e statuses,
respectively.

Note: Level s is the collective value of PAV. See Table 1 for various date, lag and age definitions.

Thus, using 2.2.a our valuation example is represented by drawing all points, (x,y,z), with
accident date x-+y in the year 2001 and assigning $31.3 Million Paid Losses to the subset
with valuation date x+y+z at most 12/31/2002.° We close this section with comments on
the primary valuation data organizations and statuses, which we define with drawing
instructions in Table 2 and illustrate in Figure 1.

22.a.1. A policy provides coverage during its term, coverage at any point mid-term
referred to as a post’. Figure 1(b) shows the annual policy written 12/31/04,
which by Table 2 is drawn as all points with policy date x equal to 12/31/04
and exposure lag y at most 1 year. The post (and the claim it covers) on
6/30/05 is drawn as all points in the policy with exposure/claim date x+y
equal to 6/30/05.

2.2.2.2. An exposure® is coverage from all policies in force at a point in time and so
concurrent claims are covered by an exposure. Figure 1(b) shows the
exposure (and concurrent claims) on 1/1/03, drawn as all points with
exposure date x+y equal to 1/1/03.

2.2.23. A point in time, itself, is drawn as all points with a given valuation date.
Figure 1(b) shows time 12/31/02 as all points with valuation date x+y+z
equal to 12/31/02.

2.2.a.4. Finally, policies, exposures and times combine to form periods of the same.
Figure 1(b) shows Calendar Year (CY) 2002, Exposure/Accident Year
(E/AY) 2003 and Policy Year (PY) 2004.

2.2.a.5. Valuation statuses for data organizations in 2.2.a.1-2.2.a.4 indicate which
points to collect for a total statistic. As-of-date, at-policy-age and at-
exposure-age statuses collect transactions for a data organization thru a
certain valuation date, age of underlying policies and age of underlying

¢ The valuation is drawn in Figure 2.

7 Introduced in Section 2.1 and equal to the intersection of a policy and an exposure as point sets.

8 We use the term “exposure” as a coverage concept. Other uses (e.g., type of insured, insurance coverage
limit) are found in the literature,
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exposures, respectively. For example, in Figure 1(c) the status: 1) as-of-
date-w=1/1/04 collects transactions with valuation date x+y+z < 1/1/04; 2)
at-policy-age-w=18 months collects transactions with policy age y+z < 18;
and 3) at-exposure-age-w=18 months collects transactions with exposure age
z < 18. Over-calendar-period status identifies transactions made on or
between two dates, and at-ultimate status takes into account all transactions,
past, present and future.

3. APPLICATIONS

In this section we apply D=(P,f) conceptually using the geometry of P to illustrate
ideas from ratemaking. Analytical applications, where we consider how f behaves on P
using calculus in 1, 2 or 3 dimensions as required, are reserved for the Appendix.

XYZ Company proposes a rate change for PY 2004 to be effective 1-1-04. They
estimated ultimate losses and ultimate earned premiums (written using the current
manual) for PY 2004 to be $45.0 million and $67.3 million, respectively. With a
permissible loss ratio target of 65%, a rate level change of 2.9%(=45.0/67.3/0.65-1) was
indicated. We sketch their approach as follows, using Figure 2 as a guide.

3.a. LOSS PROJECTION (Figure 2(a)); PY 2004 ultimate losses are
estimated from AY(=EY) 2001 losses. As of the latest valuation, 12-
31-02, AY 2001 paid losses are $31.3 million. Development to
ultimate would add another $9.6 million. Finally, $4.1 million trends
or conforms the AY 2001 experience to the PY 2004 basis. The result
is $45.0 (=31.3+9.6+4.1) million in estimated ultimate losses for PY
2004.

3b. PREMIUM PROJECTION (Figure 2(b)): PY 2004 ultimate earned
premium is estimated from CY 2001 earned premium. CY 2001
earned premium was $60.3 million. Of that amount, $45.9 million was
eamned on policies written under the current manual that became
effective 1-1-01. The remaining $14.4 million would be increased
$0.6 million if underlying policies had been written using the current
manual. Finallly, $6.3 million trends the CY 2001 experience to the
PY 2004 basis. The result is $67.3 (=60.3+0.6+6.3) million in
estimated ultimate earned premium for PY 2004.

In practice we might use several AYs and CYs in pricing PY 2004, applying some
weighted average of the results to derive our final estimate. Moreover, instead of using
AY 2001 losses and CY 2001 premium, we could use losses and premiums from the
same data organization.
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4. CONCLUSIONS

We represented a database pictorially by assuming three dates and a statistic value

could be associated with each transaction. Note:

4a.

4b.

4.c.

4.d.

In constructing a database in 3-D we first draw all policies then populate those
policies with transactions. A policy, exposure and post/claim are infinite in height.

We generally assume D consists of points with non-negative xyz-coordinates. By

allowing z to be less than zero we can represent transactions made prior to policy

issuance. For example, transaction ((1-1-04,0,-1),$1,000) is a $1,000 premium-
renewal received 1 month in advance of the 1-1-04 renewal date.

In 3-D the origin should, in principle, correspond to a date before or on the
effective date of the very first policy written. Policy term may be unlimited (e.g., a
title insurance policy) and the picture for a policy is independent of the claim
“trigger” (e.g., ocourrence or claims-made triggers).

The list of valuation data organizations and statuses in Table 2 is not exhaustive,
but representative of the valuations that often arise in practice. A variety of
valuations can be found in Schedule P of the NAIC Annual Statement. CY, AY,
EY and PY valuations can be found in Schedule P, Parts 1, 2, 6 and 7,
respectively. Moreover, we consider PY, EY and CY the fundamental data
organizations, with AY a special case of EY when we are dealing with claim
statistics.

Development triangles in Schedule P for AY, EY and PY are on an as-of-date-t
basis. We could also set up development triangles on an at-policy-age or at-
exposure/accident-age basis. All three approaches partition a data organization
using planes at ever increasing height in the z or “development” direction.
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FIGURE 1
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FIGURE 2
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APPENDIX
ANALYTICAL APPLICATIONS

Let D=(P,/) be a database in 3-D ® and 0.V s. a valuation. We assume set V and
density f sufficiently defined so that we may calculate s as the integral of f over V. We
apply densities for various statistics for D in 1-, 2- and 3-dimensions, dimensions limiting
valuation variety.’® Five basic analytical applications are described below:

A.l. Developed, On-Level & Trended Statistics. Developing involves
determining the change in level for two valuations of the same data
organization. On-leveling involves determining the change in level for
some V under different rules f; & f>. Finally, trending involves
determining the change in level for V; & V; under the same rule f,

A2. Average Value and Average Point: Define the average value of V as
s/|V| and the average point or center of V as that with average
coordinates, v*=(x*,y*,z*) ! The center provides the average policy,
exposure/claim and valuation date, for example. The center for f{x,y)
constant or uniform over certain V in the xy-plane is readily determined
as follows:

a. For V a rectangle or parallelogram, x* is the midpoint of the
x range and y* the midpoint of the y-range for V.

b. For V an isosceles right triangle, x* is 1/3 into the x-range
and y* 1/3 into the y-range of V, starting from the vertex at
the right angie.

For the examples that follow, in xyz-space length 1 on an axis equals 1 year
and x=0 and x=1 correspond to dates 1/1/00 and 1/1/01, respectively.

EXAMPLE 1. As an example of an on-level calculation, we estimate the
change in earned premium for CY 2001 at actual and current rate levels,
given: i) policies are annual term; ii) the manual effective 1/1/01
represents the current rate level; and iii) Dgp for earned premium is
confined to the xy-plane with density fze(x,y)=(4000x)($100) for policies
written prior to 1/1/01 and fp(x,y)=(4000x)($100)(1.2), thereafter.* In
Figure 3(a) we show CY 2001 split by rate level. The desired factor is
On-level EP + Actual EP, calculated as follows:

® With R the set of real numbers, fPc R°~> R! implies D is the graph of /| a subset of R*xR’.

1% Two subsets A and B of space are said to be equivalent if they have the same intersection with P, written
“A=B". For example, D confined to the x-axis, xy-plane and xz-plane implies CY=E/AY=PY, CY=E/AY
and E/AY=PY, respectively.

" 1Vi>0 is the content (i.e., length, area or volume) of V and v* is defined only when £>0 on V with x*, y*
and z* calculated as the integral of x/7s, y/7s and zffs over V, respectively.

12 Here: i) 4000x is the density for written exposure base units (e.g., car years, payroll, stadium seats, etc.)
eamned uniformly with respect to lag y; ii) $100 is the average written premium; and iii) factor 1.2
represents a 20% increase in rate level on 1/1/01.
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lp2-y 1el 2 p2-x
OEP | AEP = j j 480,000 xdxdy /[ j 400,000 xdydx + _[ j480,000xdydx]
0J1-y 0J1-x 1 Jo

1.059= $480,000 / [$400,000(1/3)+$480,000(2/3)].

If exposure writings were uniform instead of increasing (e.g., replace
4,000x with constant 4,000 in the two densities) then the on-level factor
becomes:

1.091= $480,000 / [$400,000(1/2)+$480,000(1/2)].

Example 1 is taken from [1]. In that paper the authors perform the same on-level
factor calculations, however using a geometric orientation based on the traditional
parallelogram method. For D confined to the xy-plane, the transformation sending point
(x.) to (x+y,y) results in illustrations under the traditional parallelogram method.”

EXAMPLE 2. As an example of a trend calculation, we estimate the
change in ultimate loss ratios between PY 2001 @12/31/01 and PY 2004,
given: i) %z-year policy terms; and it) 3% accident year loss cost trend; and
iii) 1% on-level policy year premium trend. We assume:

¢ ultimate loss and ultimate earned premium densities take the forms
Sur(,y)y=wix(1.03)*" and fep(x,y)=wpx(1.01)*, respectively, w, 1
and p exposure base unit, loss cost and premium constants,
respectively“; and

¢ loss and premium levels for V are estimated by s=Av*)|V| where v*
is the uniform center of V, so that 1(103)*"* /p(1.01)* is the loss
ratio estimate for V.

Applying (A.2.a) & (A.2.b) to Figure 3(b), the centers under uniformity
for PY 2001 @12/31/01 and PY 2004 are (1.389,0.222)"* and (4.5,0.25),

respectivel‘?'. The desired trend factor estimate is therefore 1.06378 (=
(1.03475161D) / | 01451389

Example 2 supports a common calculation made in practice. Using actual in
place of approximate integrations results in a trend factor of 1.06380. Integration has the
advantages of following directly from the density assumptions and differentiating
between V’s with the same uniform center.

3 For example, apply the transformation to Figure 3. Several 2-D plotting methods also arise from
“collapsing” 3-D. In particular, we note mappings of (x,y,z) to 2-D planes (x.y), (x+y,y), (X,y+2), (x+y,2)
and (x+y+z,y).

14 1(1.03)" is the result of an exponential fit of a series of accident year average loss costs. With the on-
leveling adjustment treated separately, p(1.01)' is the result of an exponential fit of a series of policy year
average earned premiums at current rate level.

15 The center for EY 2001 is the weighted average of centers for its components from PY 2000 and PY
2001. Thus, solving for (X,,yo) in: (1.25,.25)=.25(1-1/6,.50-1/6)+.75(X,.¥o); yields (X,,¥.)=(1.389,.222).
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EXAMPLE 3. We provide the calculations behind the XYZ Company
loss and premium values presented in 3.a and 3.b from Section 3. In
Figure 3(b) we show the “footprint” of C/E/AY 2001 and PY 2004 in the
xy-plane. Assume Y year policy terms. Let Dgr, for paid losses be 3-
dimensional with density, fpr(%,y,2)=196,000(3400)e™*****¥* Let Dgp for
earned premium be 2-dimensional with density feeu(xy) =
196,000($575)e* for x prior to 1/1/01 and fees(x,y) = 196,000(3600)e**
thereafter. The three loss and three premium integrations required are as
follows:
0.52-y3-x-y

AY2001_PL@12/31/02= _[ j' j For(x, 3, 2Mzdxdy=$31329071
0l-y 0
0.52~yw

AY2001_PL@ultimate= I _[ J' o (5,3, 2¥dzdxdy=$40852,442
01-y0
055 w
PY2004_PL@ultimate= I I I fo (%, y, 2)dzdxdy = $45,036,196
040
52-y

S1
Cr2001_EP@actuat= [ (fepotwy)asdy+ | [fioestos ey
0l-y 01
=$14,444,165 + $45,977,558 = $60,421,723
52~y
CY2001_EP@on level = I J' Fiapy (x, )dedy = $61,049,730
0l-y
505
PY2004_EP@on—level = I j' JSEpy (x, y)dydx =$67,301,286.
40

Example 3 densities were developed from assumptions on the rate at which
units are written and earned, and the relationship between premiums and losses for a
given risk. The densities took the forms fza(x,y) = w(x)e(x,y)p(x,y) and frr(x,y,2) =
w(x)e(x,y)l(x,y)q(z), where:

w(x)=10°¢""*is the rate at which units are written at time x;
e(x,y)=1.96=2(.98) is the rate at which units written at time x are
eamned at lag y. The integral of e(x,y)dy over term 0<y<1/2 equals
98% due to a 2% cancellation rate on average;

o p(x,y) is the post premium: the product of a base rate ($575 for x prior
to 1/1/01 and $600 thereafter) and premium relativity e®*,

e I(xy)is the 0(}:»ost loss cost: the product of base loss cost $400, loss cost
relativity e°”* and inflation factor thru the date of loss &®1%*"),

o q(z)= €™ is the portion of loss I(x,y) paid at lag z. The integral of q(2)
over 0<z<co equals 100%.
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FIGURE 3
EXAMPLES 1, 2 & 3 DIAGRAMS
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Reinsurance Involving Partial Risk Transfer
Addressing the Accounting Difficulties

Spencer M. Gluck, FCAS, MAAA

Abstract: The paper proposes a measure for risk transfer, the portion or percentage of risk transferred (“PRT”)
that varies between 0% and 100%. Such measure would provide a supetior basis for a binary decision between
reinsurance accounting and deposit accounting (with a likely critical value of 50%). A preferred approach would be
to use PRT as the basis for continuous accounting.  The paper differentiates between “natural” reinsurance
contract provisions that do not limit risk transfer and “structural” contract provisions that may limit risk transfer.
The PRT measures the risk-limiting impact of the structural provisions by comparing risk distributions before and
after the application of structural provisions. PRT is 100% for contracts without structural provisions. The risk to
be measured is defined as potential adverse deviation from the amounts reflected in accounting values. Fixed
reinsurance contract provisions that are accounted for without uncertainty provide no potential for adverse
deviation and do not affect PRT. The paper includes a discussion and critique of the FAS 113 definition of risk
transfer, and finds two fundamental flaws: (1) the definition is based on an absolute measure of the riskiness of the
ceded cash flows, so that reinsurance of low risk subject portfolios often fails even though nearly all the risk is
transferred, while reinsurance of high risk subject portfolios often passes even though the risk transfer is severely
Limited; and (2) the focus on reinsurer profitability includes fixed amounts that are unrelated to nisk, and thereby
includes an implicit standard for reinsurance pricing that is an inappropriate role for accounting. The paper includes
examples of the application of PRT and several other risk transfer measures to a range of underlying cash flows and
reinsurance contract structures.

Introduction and Summary

Reinsurance contracts frequently contain any number of risk limiting provisions, which may call
into question the validity of reducing net losses and premiums by showing them as having been
ceded to the reinsurance, i.e. “reinsurance accounting”. Many or most such contracts cede

some, but not all of the relevant risk, which the author describes as partial risk transfer.'

There are concerns that some partial risk transfer contracts have been used to manipulate
financial statements. Yet there are many legitimate uses of partial risk transfer, and more that
may develop in the future as sophisticated tools for risk management. Furthermore, there may
be risks for which reasonably priced reinsurance is available only with risk-limiting provisions.
The author's view is that opportunities for financial statement

manipulation arise from inaccurate accounting. The author’s proposal for more accurate
accounting would substantially eliminate opportunities for manipulation while allowing the

legitimate use and further development of structured risk transfer techniques.

! More common terms are “structured risk” and “finite risk”. The author prefers partial risk transfer, which
corresponds more directly with the basis of the approach. Partial risk transfer includes many traditional risk sharing
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Currently, the accounting choice is whether or not the contract in question has enough risk
transfer to qualify as reinsurance, and therefore be eligible for reinsurance accounting. FAS

113[1], for U.S. GAAP, and SSAP 62[2), for SAP,? provide guidance for making this choice.

The author’s central thesis is that the degree of risk transfer in a reinsurance contract can be
described by a relatively simple and intuitive measure called “the percentage of risk transferred”
or “PRT”, which should be the basis for the above decision. The central provisions for
defining risk transfer in FAS 113 are found to be fundamentally flawed.

Section I:

¢ develops the underlying basis for the central thesis,
® contrasts the approach with FAS 113,

® defines the approach specifically, and

e applies the approach, along with several others, to a range of hypothetical cash flow models

and hypothetical reinsurance contracts.

The second aspect of the central thesis is that the two available accounting choices are
appropriate for 100% risk transfer and 0% risk transfer, but that neither is truly approprate for
partial risk transfer. Section II illustrates how the measure developed in Section I can be used to

develop appropriate accounting for partal risk transfer contracts.

2 The relevant language is generally identical in FAS 113 and SSAP 62. For brevity, references hereinafter will be to
FAS 113.
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Section I - Defining and Measuring Risk Transfer in Reinsurance Contracts
11 Risk Transfer and Accounting

The effects of risk transfer accounting are subdivided into two basic categories:
¢ Effects on overall reported equity and income; and

e Effects on reported net premiums and losses.
111 Risk and Balance Sheets/Income Statements

In the most straightforward case, consider the reinsurance premium net of ceding commission
to be the sum of the mean discounted ceded losses and the reinsurer's margin. The initial
impact of reinsurance on balance sheets and income statements consists of a cost - the
reinsurer's margin, and a gain - the difference between the ceded losses and their mean
discounted value. While reinsurance accounting and deposit accounting differ on the timing of
the recognition of the cost, our primary focus is on the gain, or more specifically, on the cession
of incutred losses and loss reserves. The impact on incurred losses will be controlled by the

impact on loss reserves.

Loss reserves for most P/C liabilities are recorded at estimated nominal (undiscounted) value,
i.e., an estimate of the sum of future outgoing cash flows. It is important to distinguish the
reserve from the liability itself. The liability is more complex, the sum total of the insurer’s
obligations under the relevant policies. The reserve is simply a valuation of the liability, possibly

a surrogate for a market value.

If the same future cash flows were not estimates, but simply future payment obligations that
were fixed in amount and timing, then it is clear that the value of those obligations would be the
discounted value of the future payments, and the liability would be accounted for as such. The
accounting difference between an at-risk insurance liability and the corresponding no-tisk

liability is precisely the discount. The (unrecognized) discount then is the required risk load. It
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exists precisely because the liabilities are subject to insurance risk and would not exist if they

were not.

Under an “economic value” accounting concept (not currently applicable under U.S. GAAP or
SAP), the implicit risk margin in the unrecognized discount may be replaced by an explicitly
discounted reserve and an explicit risk margin. The issues to be discussed subsequently
regarding ceding the reserve and its associated risk margin would be equally applicable if the risk

margin wete converted from implicit to explicit.
112 Risk and Net Premiums and Losses

For shorter tail business, where loss reserves and their implicit risk margin are small, the choice
of accounting will have little impact on overall equity or income. However, the characterization
of premiums and losses as having been ceded (or not) affects the reported net premiums, losses,
and loss reserves. Various measures of capital adequacy used by rating agencies, regulators, and
other publics use net premiums, net losses, net loss reserves, etc. as measures of the risk to
which a company is exposed.” Accounting for premiums and losses as ceded when the

corresponding risk has not been ceded, or has been partially ceded, distorts these measures.
1.1.3 Reinsurance Accounting vs. Deposit Accounting

When accounting for a ceded reinsurance contract (pethaps we should say a purported
reinsurance contract), we cutrently have two options: reinsurance accounting or deposit

accounting.

Under reinsurance accounting, reserves are ceded on the same basis that they are established: in
most cases at undiscounted, and therefore implicitly risk-loaded, value. Since the net recorded
Liability for the ceded cash flows is reduced to zero, the undetlying assumption is clear — that the

liability itself has been ceded, both at the recorded estimate and at all other possible outcomes.
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The risk load has been 100% eliminated, which is appropmiate only if 100% of the risk has been
ceded. Similarly, since premiums and losses have been 100% ceded, capital adequacy measures,

regulatory ratios, etc. also assume a 100% cession of the related risk.

For contracts that do not qualify for reinsurance accounting, the AICPA Statement of Position
98-7[3] and SSAP No. 75[4] provide rules for deposit accounting under GAAP and SAP,
respectively. The "interest method" is prescribed for all reinsurance contracts under SAP. Under
GAAP, the same method is prescribed except for contracts that transfer underwriting but not
timing risk, or that have indeterminate risk. The interest method assumes that no reinsurance

transaction has occurred, in other words, that 0% of the risk has been ceded.
114 The Relevant Risk

For equity and income, the choice between reinsurance accounting and deposit accounting
hinges on whether it is appropriate to eliminate (by cession) the risk load imbedded in the
catried loss reserves. To discuss whether this risk has been ceded, we must define the relevant

risk more precisely. What risk does this risk load provide for?

The author believes that it is faitly clear that the relevant risk is the risk of inaccuracy in the
estimate that is on the balance sheet. If we consider only downside risk to be important, then it
is the risk of inadequacy of the estimate. If we view the balance sheet value as a surrogate for
market value, the risk load is the amount in addition to the discounted value required to fund the
mean losses that a1, assumer of the liability would require to compensate for the risk of

inadequacy in the mean estimate.

This description of risk is consistent with a concept of risk as related to economic ot financial
losses. The risk as defined above is the risk of the insurer realizing losses subsequent to the

statement date related to the loss reserves to be ceded.

3 This paper does not necessarily endorse the validity of any particular capital adequacy measure. For example,
capital adequacy measures that use net premiums as a surrogate for underwriting risk have a number of
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While the previous paragraphs refer to loss reserves, we will normally view risk prospectively, i.e.
at the inception of the reinsurance contract, before statement values are established. How do we
define the risk of future losses? If the expected losses create an underwriting loss, then actual
losses worse than expected create a future loss. If the expected losses create an underwriting

profit, then actual losses worse than breakeven create a future loss.

All further analysts herein will be based on a definition of risk as adverse deviation from actual
or expected statement values. For prospective losses, adverse deviation 1s measured relative to

expected losses or underwriting breakeven losses, whichever is higher.

Note that fixed amounts, which create no accounting uncertainty as to their value, are not
relevant. In particular, ceded premiums, to the extent that they are not contingent on losses, will
be accounted for in their normal straightforward manner with no risk of accounting inaccuracy.
The size of those fixed premiums, and therefore of the reinsurer’s profit margin, does not affect
the question of whether the insurer has retained or ceded the risk for its losses, only the question
of at what cost. Whatever the cost, that cost will be expensed under normal accounting

procedures, and therefore creates no additional nsk for the insurer.
1.1.5 Partial Risk Transfer

Many reinsurance contracts have risk-sharing provisions (e.g., retrospective rating, adjustable
commissions, profit sharing, refundable experience accounts), and/or risk limiting provisions
(e.g., aggregate limits, sub-limits, additional premiums). These provisions may reduce, but not
necessarily eliminate, the transfer of risk. In such cases, neither of the assumptions underlying

the available accounting options — 100% risk transfer or 0% risk transfer — is precisely accurate.

The question before us is stated narrowly: Given that we have only these two options, which
shall we use? A likely answer is: The one that is more neatly accurate. In other words, does the

contract more neatly transfer 100% of the risk or 0% of the risk?

imperfections and potential distortions that shall not be discussed further.
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In order to answer this question, we need to estimate, for any reinsutance contract, the portion,
ot percentage, of the risk that has been transferted (“PRT”). In fact, a reasonable definition of
PRT is fairly simple, and the modeling required to estimate the value is no more complex ot

difficult than the modeling required to perform risk transfer testing under FAS 113 as currently

written. Both require the same risk model of the undetlying cash flows.

Once the PRT has been estimated, the choice of accounting treatment can be decided by
comparing the PRT to a critical value. A critical value of 50% would seem to best answer the

question of which accounting treatment is more neatly accurate, though other critical values

might be chosen.

The above test will provide a practical, intuitive answer to the narrow question which will, in the
author’s opinion, represent a significant imptrovetmnent to cutrent practice. It will minimize the
degree of accounting inaccuracy to the extent possible under the constraint that we have only
the two accounting treatments to choose from. Nonetheless, it must be recognized that neither
of the available accounting treatments is in fact designed fot partial risk transfer, and both will
be inaccurate to some degree. The definition and estimation of the PRT can also provide the
basis for practical accounting for partial risk transfer. While this is a larger change to current
accounting practice, the difficulties that arise from inaccurate accounting for partial risk transfer
cannot be eliminated until partial risk transfer teinsurance is formally recognized and appropriate

accounting is promulgated.

A previous reference to measuring risk transferred by comparing “before” and “after”
distributions is noted in the report of the CAS Valuations, Finance and Investment Committee
(“VFIC”) [5]. The reference is to an approach described for testing the basis risk in catastrophe
derivatives [6].

12 The FAS 113 Definition of Risk Transfer — Discussion and Critique

The well known FAS 113 definition of adequate risk transfer is that it must be “reasonably possible

that the reinsurer may realise a significant loss from the transaction” [1]. The determination must be
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based on all cash flows to the reinsurance contract, whether characterized as losses, premiums,
expenses, etc., but transactional expenses and the reinsurer’s expenses are not included. The
terms “reasonably possible” and “significant loss” are not specifically defined, but some guidance is
given and the well known “10/10” rule is frequently applied to test whether a contract meets the
FAS 113 definition.

The 10/10 rule has frequently been discussed and criticized and a number of potentially superior
risk measures have been suggested. The author’s critique is more fundamental: The FAS 113
definition of risk transfer is fundamentally flawed, not just because of problems with the risk

measures, but because the wrong risk is being measured.
The two fundamental defects:

1. The definition of risk transfer does not contain the concept of risk transfer. Rather, the
FAS 113 definition sets an absolute standard of the required level of assumed risk. A
test of risk transfer requires a compatison of “before” and “after” risk. No single
absolute standard can produce results that are meaningful regardless of the riskiness of

the underlying cash flows.

2. The definition is influenced by fixed profit margins paid to the reinsurer. As discussed
in the previous section, in determining proper accounting from the cedant’s perspective,
the relevant risk is the risk that the amounts carried in the cedant’s financial statements
are inadequate. Fixed profit margins are irrelevant. Furthermore, it is inapproprate for
the risk transfer analysis to be influenced by the analyst’s implicit second-guessing of the

reinsurance pricing, which is unavoidably the case when applying the FAS 113 definition.
Each of these defects is further explored below:

1.2.1 Measuring Risk Rather than Risk Transfer

+ While the definition is stated from the reinsuret’s perspective, the exclusion of transactional and reinsurer’s
expenses actually convert it to the cedant’s perspective. .\ more accurate expression would be “reasonably posstble

412 Casualty Actuarial Society Forum, Winter 2006



Reinsurance Involving Partial Risk Transfer

A problem that may atise from the FAS 113 definition that has been frequently discussed by
others is that obvious risk transfers of low risk portfolios may not pass. FAS 113 provides that
obvious 100% risk transfer contracts need not be tested. The specific language is that the
previous test would not apply if “#he reinsurer bas assumed substantially all of the insurance risk relating to
the reinsured portion of the underlying insurance contracts” [1]. Unstructured quota-share contracts are
generally accepted to fall within this “safe harbor”. While such contracts need not be tested, it

would nevertheless be desirable if such contracts would pass the test.

A number of practiioners have explored risk measures that should be superior to the 10/10
rule. Whatever the risk measure, a critical value must be selected, and “obviously nisky enough”
contracts should pass. Even with a faitly low threshold, unstructured quota-shares of stable,
profitable business may still fail — the solution will still be imperfect and the exception will still

be required.

But the corresponding problems at the other end of the risk spectrum, which have rarely been
explored, may be even more significant. Imagine that the underlying ceded cash flows are
extremely risky long-tailed payments. Because of the long tail, the distinction between
discounted and undiscounted reserves (the implicit risk margin) is large and the choice of
accounting treatment is highly material. Let us further assume that the reinsurance contract is
highly structured so that only 20% of the risk is transferred. If we have set the critical value of
the risk measure low enough  so that a modestly risky quota-share will pass (as we must), then
20% of the risk on these extremely risky cash flows will also pass. If so, the cedant will be

eligible for reinsurance accounting and will record on its books a 100% cession of the
relevant reserves including a 100% elimination of the risk margin, even though in fact

80% of the risk has been retained -- a material accounting inaccuracy. This example is

hardly purely hypothetical.

that the cedant may realize a significant gain from the transaction.”
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The example demonstrates that there is no absolute standard of riskiness, no matter how good
the risk measure, that can apply equally to all incoming cash flows which themselves contain

various degtees of risk.
12.2 Re-Pricing the Reinsurance

The author has already presented a first principles case that the relevant risk 1s the risk in the
cedant’s financial statements, and that fixed premium amounts are irrelevant to the issue of

whether the cedant’s risk has been transferred. Risk relates only to uncertainty.

A significant problem with the FAS 113 definition is that the risk analysis in this approach
inherently includes an opinion on the appropriateness of the reinsurance pricing. Thete should
be no better measurement of value than the actual price agreed to by a willing buyer and a
willing seller in a free market. Furthermore, there may be any number of valid reasons, in
volatile and cyclical markets, for a buyer to agree to pay a more conservative price at any given
time. Accounting should be concerned with propetly recording the actual price paid, not

passing judgment on it, and any inherent “re-pricing” of the reinsurance is undesirable.

For example, in the past year, we have seen several cases where risk transfer has been questioned
by auditors for straightforward casualty excess-of-loss contracts without adjustable provisions.
Assuming that the FAS 113 “safe harbor” does not clearly apply in this case, the auditors were
simply diligently applying the provisions of FAS 113. In these cases, the FAS 113 test failed
simply because the analyst’s risk model implied that the reinsurance was overpriced. Apparently,

the consensus of the assuming and ceding companies was otherwise.

1.3 The Percentage of Risk Transfer (“PRT”) Approach
To define PRT’s between 0% and 100%, we first require a definition of 100% risk transfer. The

author presumes that the meaning of 0% risk transfer is self-evident, and no more discussion is

necessary.
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13.1 Defining 100% Risk Transfer: Natural vs. Structural Contract Provisions

Practitioners have a fairly good idea regarding the meaning of 100% risk transfer as well. The
safe harbor provision of FAS 113 provides a starting point. Recalling that language, the
reinsurer must have “assumed substantially all of the insurance risk relating to the reinsured portion of the
underlying insurance contracts.” The definition may be adequate, but could be clarified. For
example, it should be clear that a traditional pet-claim excess-of-loss reinsurance contract is
covered, even though the pet-claim retentions and limits in the reinsurance contract do not
necessarily correspond to provisions in the undetlying insurance contract, and might not be
considered as defining the “reinsured portion.” Yet per-claim tetentions and limits are not

generally believed to be risk-limiting structures.

To more specifically define 100% risk transfer, we introduce the concept of “natural provisions”
of a reinsurance contract. These would be generally defined as provisions that do not limit the
losses ceded to the contract in a way that the cedant’s own liability, as it relates to premiums and
losses that would be ceded to such contract, is not similarly limited. We introduce the term
“structural provisions” to refer to provisions that involve risk-limiting or risk sharing. Any
reinsurance contract containing only natural provisions would be deemed to contain 100% risk

transfer.

The author’s suggested list of natural provisions:

® Percentage multipliers (e.g. quota-share, surplus share);

® Deductibles, retentions, limits, on a per claim, per claimant, or per risk or per basis;
¢ Deductibles, retentions, limits, on a per occurtence basis in some cases;

¢ Exclusions applied on a policy or coverage basis;

¢ Deductibles or retentions in the aggregate for all or subsets of the subject losses.

We describe the losses that would be ceded to a contract applying only the natural provisions as

being in their “natural form”.
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Structural provisions are those that limit the ceded losses in ways that the cedant’s own hability

for such losses is not similarly limited or that create additional cash flows contingent upon the

natural form losses. Common provisions of this type include:

Aggregate limits, applied to the total of natural form losses or sub-limits applying to a subset

of the natural form losses;

Corridors, whether applying to the total natural form losses or a subset;
Limits on an occurrence basis in some cases;

Exclusions on a type of claim basis;

Additional premiums;

Experience accounts and profit sharing provisions;

Retrospective rating;

Sliding scale commissions;

Limited reinstatements;

Reinstatement premiums.

Neither list is necessarily exhaustive, and new types of provisions may be developed. Ultimately,

the determination of whether a provision is considered natural or structural will have to be made

by applying the basic principles. Hopefully, it will usually be a fairly straightforward matter.

Note, for example, that per occurrence limits have been included in both lists. In the context of

catastrophe reinsurance, occutrence limits are natural. There is no cession of premiums or

losses that implies that a tisk has been eliminated when in fact it has not. On the other hand, in

the context of quota-share reinsurance, a catastrophe occurrence limit or exclusion is structural.

Ceding premiums and losses under the quota-share implies that the risks associated with those

premiums and losses are also ceded, and the provision limits the risk that is transferred.

Note that for the most part, aggregate provisions are considered structural. An exception has

been suggested for aggregate deductibles or retentions as these are not viewed as risk-limiting.
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The teader may notice that the list of structural provisions includes a number of risk-sharing and
risk-limiting provisions that ate common features of traditional reinsurance. In particular,
limited reinstatements and reinstatement premiums are universal in catastrophe reinsurance and
common in some other high risk reinsurance; nevertheless, they are technically structural as they
limit ceded risk in a way that the cedant’s own sk is not limited. However, as commonly
practiced, the exhaustion of available reinstatements occurs only at very remote probabilities and
reinstatement premiums ate not typically a large percentage of ceded losses; therefore, the risk

limiting effect of these provisions is not likely to be substantial.

Having now defined 100% risk transfer, we are ready to measure partial risk transfer, for

contracts containing structural provisions.

13.2 The Applicable Cash Flows

Given that natural provisions are not risk-limiting, the analysis of risk transfer is an analysis of
the impact of structural provisions. For ease of expression, we will use the familiar terms

2 <

“gross”, “ceded”, and “net”, relative to the structural provisions, with all values reflecting the

natural provisions.

Let L be a random vector (i.e. a string of values) representing the cash flows for losses subject to

a reinsurance contract.

Gross:
Let: g(L) = the net present value of the losses that would be ceded to that contract

applying only natural provisions, gross of structural provisions.

For convenience, we have combined the processes of applying the natural provisions and taking

the net present value into a single function.
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Ceded:
Let: ¢(L) = the net present value of the cash flows ceded to the contract, applying all

provisions, both natural and structural.

The ceded cash flows may include premium refunds or other favorable cash flows not accounted
for as ceded losses, e.g. favorable commission adjustments (for compactness, we will refer to all
such adjustments as refunds). For certain calculations we require these to be separately
identified. Therefore, we define ¢{L) as the net present value of refunds, and ¢ofL) = c(L) -
cL) as the net present value of other ceded cash flows, 1.e. loss recoveries less unfavorable

adjustments.

Net:
Let: n(L) = g(L)-c(L) = the net present value of the net cash flows to the cedant arising

from natural losses, i.e. the net cash flows due to structural provisions.5

Also, let nofL) = g(L) - coL), and n{L) = -c{L). As for the ceded, we have separately

identified the net cash flows arising from refunds.

FAS 113 requires that all cash flows, no matter how characterized, be included in the
analysis. In the above, all such cash flows would be included in ¢(L), and consequently in #(Z).
That approach can be used here as well; however, fixed cash flows will have no impact. Only

contingent cash flows, i.e. cash flows that can vary based on the value of L, ate essential.

1.3.3 The Risk Model

5 Sign convention: Ceded losses under g(L) and ¢L) have positive values reflecting positive cash flows to the
cedant. Positive values of #(L) are unfavorable, reflecting decreased cash flows to the cedant due to the structural
provisions. For example, if the structural provision is a loss limitation, then ¢(L) will sometimes be smaller than
g(L). The resulting positive value of #(L) indicates an unfavorable cash flow effect. If the structural provision is a
premium refund, then ¢(L) may sometimes exceed g(L). The resulting negative value of #(L) indicates a favorable
cash flow effect.
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As with FAS 113, we require a risk model giving the probability distribution of L and the
resulting probability distributions of g(L), ¢(L), and n(L).

Given the book of business that the insurer expects to write and intends to cede, and the
teinsurer intends to reinsure, the goal of the risk model is to reflect all of the uncertainty in L,

including the uncertainty in both the amount and timing of the payments.

Risk is often sub-divided into “process” and “parameter” risk.

Process Risk: Given that L is the result of a random process, the process risk refers to the risk
arising from the randomness of that process. Typically, the random process will be described by
a mathematical model which allows the analyst to calculate (often by simulation) the effects of

the random process.

Parameter Risk: The remaining risk relates to the uncertainty about the model of the random
process. The term “parameter risk” is often used to broadly describe this remaining risk. More
generally, the risk relates to the uncertainty in both the patameters and the form of the risk
model. For example, if the total of the payments in L is modeled as a lognormal distribution
with a certain mean and variance, there will be uncertainty as to whether the parameters (i.e.
mean and variance) are correct as well as whether the lognormal is the cotrect form for the
distribution. The portion of the risk model relating to uncertainty in payment timing may be

more complex and more uncertain in its parameters and form.

Underlying types of risk that conttibute to parameter tisk may include:
¢ Data Risks: The amount, stability, and applicability of available data.
® Market Risks: Uncertain matket impact on pricing, underwriting, risk selection.

¢ Economic Risks: The impact of uncertain future inflation, employment, etc.

Actual risk model structures and estimation are beyond the scope of this paper.
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An important exception is that it would be inappropmate to include the risk that the company
will write a different from expected book of business, e.g., a different mix of classes, coverages,
policy limits, etc. This is not a risk that reinsurance is necessarily expected to absorb. Reinsurers
may include provisions, some of which may be structural in form, to protect them against the
cedant altering its book of business. For example, a sub-limit on a hazardous class of business
may be set at a level that is remote relative to the intended book, but would be significantly risk-
limiting if that class were to grow dramatically. The impact of the provision is approptiately

measured against the intended book only.

1.3.4 Adverse Deviation from Accounting Values

Adverse deviation is defined relative to the financial statements. Typically, financial statement
values correspond to a single loss scenario. Accordingly, we define adverse deviation relative to
a base cash flow scenario, corresponding to the expected losses or the underwriting breakeven

losses, whichever is higher. Let @ be the vector representing the base cash flow stream.
Base Values:

Gross: Define the base value for g(L) as by = g(a). Frequently by = E[g(L}], but not

necessarily in all cases.

Net: Define the base value for #(L) as bx = no(a) minus the carried asset for refunds under
cash flow scenario 4 (assuming reinsurance accounting). Note that an asset has a negative sign
relative to net losses. Here we are using the distinction between cash flows related to refunds

(nr) and other cash flows (n). The distinction is necessary since the carried asset for refunds is

frequently less than 7:{@) — see example 2 below. If n{a) were included in the base, it would
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result in an adverse deviation whenever the refund was less than its expected value, even if no

asset were carried for the refund.

Note that bs will often be neither n{a) nor E[a(L)], and may frequently be zero. Two examples

for illustration:

1. The structural feature is an aggregate limit larger than Ya. n(L)is zero for YL < the
limit, and positive for YL > the limit. E[n(L)] is therefore positive, but at scenario 4,
there are no net losses. 72o(@) is zero, and thus b» = 0.

2. The structural feature is a premium refund based on an expetience account that accrues
interest. At scenario 4, a refund would be due, given accrual of interest, meaning that
n{a) would be negative. Further assume that no refund would be due at scenario & if
accrual of interest were ignored. Under these circumstances, normally no asset is catried

for the premium refund, and therefore ba = nofa) [ n(a).
Adverse Deviation:

The adverse deviations for g(L), #(L), and (L) are defined as:
ds = g(L) - bs , if positive, and zero otherwise;
dr = n(L) - bx , if positive, and zero otherwise; and
d.= ds-d.

Negative values are eliminated for dg to teflect the basic principal that risk is defined by adverse
results only. A negative value for dx indicates that the effect of structural provisions is more
favorable than is reflected in the accounting values (typically a premium refund larger than the
asset — if any — carried for it), which does not increase the cedant’s downside risk. Negative
values for dr are eliminated so that favorable effects of structural provisions cannot decrease the

risk transfer measure.

Note that:
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g(L) = n(L) + C(L); and
dg = du+d.

Note also that if fixed cash flows have been included in ¢{L) and therefore in n(L), they will be
identical in the base values and all other values and will not affect the adverse deviations.
In keeping with previously stated principles, these adverse deviations represent the relevant risk

we intend to measure.
1.3.5 Risk Measures and Co-Measures 1

Given a random variable, X, a risk measure, 7(X) is a function applied to the distribution of X

that returns a single value.

Next assume that X is itself the sum of 2 number of random variables, i.e.:

X=YX

For a broad class of risk measures, there are corresponding "co-measures" that can be applied to
the sub-variables Xi.° The most common example of a risk measure and co-measure is variance
and covariance. Co-measures provide a mathematically sound basis for allocating risk among

sub-variables that may be dependant.

Fort risk measure #(X), denote the corresponding co-measure applied to the sub-variable X as

7i(Xi). The essential property of co-measures is additivity, i.e.:

r(X) =0 r(X),

regardless of the nature of any dependencies among the Xi’s.

6 See Kreps [7].
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In our specific case, r{dg) = rafdn) + ro{dc). Thus, co-measures provide a basis for allocating the
risk in the losses gross of structural provisions to the net and ceded losses after the application
of structural provisions.

Another useful property of co-measutes is that, for any constant k,

if Xi = kX, then r(Xi)/m(X)="F

Thus, a co-measure applied to an x% quota-share is x% of the risk measure applied to a 100%

share.

A more complete definition of co-measures along with examples of actual risk measures and co-

measutes follows the next section.

1.3.6 The Percentage of Risk Transferred (“PRT™)
Simply stated, the PRT is the portion of the risk associated with the natural losses, gross of the
structural provisions, which is still ceded after the application of the structural provisions.
Specifically:

Let 7 be a risk measure with corresponding co-measure.

The percentage of risk transferred is then defined as:

r.(d,)
rd,)

PRT =1.0-

or equivalently,
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_rd)
- rd,)

PRT

With PRT defined, adequate tisk transfet to qualify as reinsurance would be defined as a value
of PRT in excess of a selected ctitical value. A natural choice for the critical value may be 50%,

as previously discussed.
13.7 Some Advantages of the PRT Approach
1. Risk transfer is reduced to a simple single number with an intuitive meaning.

2. Safe harbors for obvious risk transfer contracts are an integral part of the risk transfer

definition, rather than exceptions.
3. The approach is equally valid regardless of the relative riskiness of the subject losses.

4. The approach is unaffected by profit margins and expenses. The approach avoids the
second-guessing of the reinsurance pricing that is implicit in the FAS 113 definition.

1.4 Risk Measures and Co-Measutes 11
14.1 Definitions and Examples:

Define a risk measure r applied to a random variable X as:

r(X) = E[ w(X) - I(X) 1 Condition (X)],
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where [ is a linear function and % is a weighting function. Note that the weights, 7, may be a
function of X and are unrestricted as to form. The condition may also be functionally

dependant on X.

For a sub-vatiable X, the cortesponding co-measutre is:

ri (Xi) = E[ w(X) - {(X;) 0 Condition (X) ]

Note that the weights and the condition depend only on X, not X;, and are identical to the
weights and condition in 7(X).

As an example, consider variance:

Variance(X) = E[(X - E(X)] = E[(X - E(X)) (X - E(X))]

In this form, the first occurrence of (X - E(X)) can be considered the weight and the second

occutrence the linear function. There is no condition.
Next, consider covariance:
Covariance(Xi,X) = Variance(X:) = E[(X - E(X)) - (Xi - E(X))]
Note that the weight is dependant only on X and is identical to the weight used in variance, and
the linear function is applied to Xi. Thus, covatiance satisfies the definition of a co-measure

telative to variance.

By adding a condition, we define the semi-variance:

7 This is one formulation consistent with the framework presented in [7). The separate condition is convenient for
our use, but could have been subsumed in the weights.
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Semi-variance(X) = E[ (X - E(X)F | (X > E(X)],

with the average restricted to the values greater than the mean. The corresponding co-measure
1s:

Semi-variance(X:) = E[ (X - E(X)) - (Xi - E(Xi)) 1 (X > E(X)]

Again, the condition is based on X, not X:.

14.2 Measures and Co-Measures Applied

We next consider actual applications, applied to the problem at hand.

Mean Square Adverse Deviation (“MSAD”)

Define:
MSAD(d;) = E[d¢0d; > 0].

Recall that dg = g(L) - by for positive values. Often, by = E[g(L}], in which case,
MSAD(dg) = Semi-variance(g(L)).

The cotresponding co-measure applied to dx is:

MSADn (dn) = E[dn'dgudg> 0]

The condition is again based on dg rather than d». Therefore, the average may (and often will)

include values of dn = 0.
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Expected Adverse Deviation (“EAD”)
Eliminating the quadratic weight from MSAD leaves us with the simpler Expected Adverse
Deviation:

EAD(dg) = E[ dgﬂdg > 0],

with the corresponding co-measure:

EADwd:) = E[du0 dz > 0].
Tail Value at Risk (“TVaR”)

TVaR is a popular risk measure for capital adequacy. Itis similar to EAD, except the
borderline condition is a percentile of the distribution. Normally, relatively high percentiles are

used, reflecting a belief that the most significant risk is exposure to extreme events.

Define VaR-p (dy), the “Value at Risk,” as the p™ percentile of the distribution of dj.
Then

>

TVaR-p(dy) = E[ds 0 dg > VaR-p(d; )]
with the corresponding co-measute:

TVaR-pods) = E[dn1ds > VaR-p(dy )]
Of the above three choices, the author’s preference is for MSAD.

TVaR and other tail-oriented measures are often used for measuring capital needs. In the
context of measuring risk transfer, the measures have several drawbacks. One is that the
selected percentile is arbitrary, which may not be desirable for a single measure to be widely
applied. Another is that these measures, when used with relatively high percentiles, are
responsive only to a small portion of the distribution, and many structural risk-limiting

provisions may be ignored.
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EAD is at the other end of the spectrum, considering the entire downside of the distribution
without any greater weight to values in the tail. Most models for pricing risk assume that more

extreme values have greater impact.

MSAD, like EAD, includes the entire downside of the distribution, and will therefore be
responsive to any tisk limiting provisions. MSAD is quadratically weighted, so that values
toward the tail of the disttibution have more impact. It is a relatively conventional risk measure,
closely related to semi-variance, with the difference that deviations are measured from an

accounting value which may differ from the mean.

Some practitioners believe that the quadratic weighting of MSAD does not give sufficient
weight to the tail. The structure of co-measures can accommodate more complex weighting
schemes, including tail-heavier weights, as well as risk loading methods based on transformations
of the probability distribution. The VFIC paper [5] discusses two such transforms, the Wang
Transform [8], and an Exponential Transform [9]. While such transforms are normally applied
to the entire distribution, they could applied as measures and co-measutes to the distributions of

dy and dx to develop corresponding PRTs.

1.5  Examples Comparing Risk Transfer Measures: PRT vs. “Absolute” Risk

Measures

The following examples use four measures to evaluate risk transfer: PRT and three different
“absolute” risk measures. The absolute measures in this case refer to risk measures applied to
the distribution of reinsurer’s profit, as defined by FAS 113. They are described as absolute
measures since they apply to the riskiness of a single distribution, as contrasted with PRT which
is based on a comparison of riskiness in “before” and “after” distributions. The measures are

applied to four different illustrative models of undetlying subject losses with different degrees of
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volatility, and up to five different reinsurance contract structures. All measures are based on

10,000 simulations.
1.5.1 The Risk Transfet Measures

In all cases below, the reinsurer’s result is calculated according to the FAS 113 rules, i.e., the net
present value of all cash flows to the reinsurer, however characterized, but without deducting
transaction costs and without allowance for the reinsurer’s internal expenses. All present values

are at 4%. We will characterize a net loss to the reinsurer as a negative result.

1. VaR-90: The reinsurer’s result as a percentage of ceded premium at the 90" percentile
(adverse) of the distribution (given the above sign convention, this is actually the 10®

percentle). Applying a critical value of -10% yields the “10/10” rule.

2. TVaR-90: The expected value of the reinsurer’s result as a percentage of ceded
premium, given reinsurer’s result less than VaR-90. There is no standard critical
value. 10% of the ceded premium has been suggested as a “more correct” 10/10 rule;
however this is invariably less strict than the 10/10 rule. The VFIC paper suggests -

25%, though this seems unusually high.* A range of -10% to -15% appears more in line with

other measures.

3. Expected Reinsurer’s Deficit (“ERD”): The expected value of the reinsurer’s result
as a percentage of ceded premium, given a reinsurer’s result less than zero, multiplied

by the probability that the reinsurer’s losses are greater than zeto. Equivalently:

ERD = _[ xf (x)dx / NPV (Cededpremium)

x<0

8 The VFIC paper calculates a TVaR-90 of 42% for a quota-share with 10% volatility, similar to one of the examples
used herein. However. that quota-share may be under priced. A graph appears to indicate that the reinsurer’s
median discounted profit is zero, meaning that the reinsurer’s mean profit will be less than zero, even before
consideration of transaction costs or the reinsurer’s internal expenses. This illustrates the difficulties with using risk
transfer measures sensttive to the reinsurance pricing.
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Again, there is no standard critical value. In subsequent discussion we will use a

range of -1.0% to -2.0%.
4, PRT, using MSAD as the risk measure.
1.5.2  The Subject Business Models
M1:  Low volatility, short payment pattern.
M2:  Modest volatility, modest payment pattern.
M3:  Higher volatility, longer payment pattern (e.g., ptimary casualty).

M4:  High risk, long payment pattern (e.g., excess casualty).

Table 1 summarizes the assumptions for the various models:

430 Casualty Actuarial Society Forum, Winter 2006



Reinsurance Involving Partial Risk Transfer

Table 1
Summary of Subject Business Models
Model
M1 M2 M3 M4

Premium $100 $100 $100 $100
Expenses $30 $30 $30 $30
Expected Losses $68 $69 $73 $83
Ccv 5% 10% 20% 40%
Underwriting Profit 2.0% 1.0% -3.0% -13.0%
Profit Including Discount 3.6% 4.3% 6.0% 11.3%
Payout 1 90% 50% 20% 1%
2 10% 30% 20% 3%
3 15% 10% 5%
4 5% 10% 7%
5 10% 7%
6 10% 7%
7 8% 7%
8 6% 7%
9 4% 7%
10 2% 6%
1 6%
12 6%
13 6%
L3 5%
15 5%
16 5%
17 4%
18 3%
19 2%
20 1%

In all cases, the aggregate loss distribution is presumed to be lognormal. Payment patterns are at

fixed percentages for all scenarios.

The assumptions are illustrative, not based on any specific source. In the author’s opinion, none

of the subject business is assumed to be unusually profitable.
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1.5.3 The Reinsurance Contracts

Quota-Share Contracts:

C1. With aggregate limit 35% over expected losses.
C2: With aggregate limit 10% over expected losses.
C3:  With “cotridor” (losses not covered) from 5% to 15% over expected losses and

aggregate limit 35% over expected losses.

Table 2
Quota-Share Contracts
Model
Contract M1 M2 M3 M4
C1 Ceded Premium $100 $100 $100 $97
Ceding Commission 30% 30% 30% 30%
Loss Ratio at Limit 103% 104% 108% 118%
Cc2 Ceded Premium $100 $100 $97 $92
Ceding Commission 30% 30% 30% 30%
Loss Ratio at Limit 78% 79% 83% 93%
C3 Ceded Premium $100 $99 $97 $94
Ceding Commission 30% 30% 30% 30%
Loss Ratio at Limit 103% 104% 108% 118%
Loss Ratio at Corridor Bottom 73% 74% 78% 88%
Loss Ratio at Corridor Top 83% 84% 88%  98%

Note that the ceding commission rate has been <et equal to the expense ratio on the subject
business. Ceded premiums have been reduced from $100 proportional to the reduction in

expected losses from limits and corridors.

432 Casualty Actuarial Society Forum, Winter 2006



Reinsurance Involving Partial Risk Transfer

Structured Aggregate Excess of Loss Contracts:

C4:  Aggregate retention and limit;
Attaches within expected losses;
Upfront premium plus additional premiums as a percentage of ceded losses;
Fixed margin is deducted from upfront premium;

Refundable experience account accrues interest at 4%.

C5:  Same as C4, plus another layer of additional premiums on subject losses extending

beyond the policy limit.
Table 3
Structured Aggregate Excess of Loss Contracts
Model
Contract M3 M4
C4 Upfront Premium $9.00 $5.50
Margin $3.00 $4.00
Retention 63.0% 76.0%
Loss Ratio at Limit 98.0%  136.0%
A.P.Rate 59.0% 47.5%
AP Attachment L/R 73.0% 83.0%
AP Exhaustion L/R 98.0%  136.0%
C5 2nd A.P.Rate 12.5% 12.5%
2nd AP Attachment L/R 93.0%  126.0%
2nd AP Exhaustion L/R 113.0%  146.0%

These contracts have no ceding commission.
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15.4 Risk Transfer Measutes Applied to Subject Business

Before applying the risk transfer measures to the reinsurance contracts, it is interesting to first
apply these measures to the subject business to be ceded (excluding PRT, which is not defined

in this case):

Table 4
Summary of Risk Transfer Measures
Applied to Subject Business
Model
M1 M2 M3 M4
Loss Probability 14.15% 24.91% 28.97% 25.50%
VaR-9%0 -0.73% -4.35% -10.85% -19.13%
TVaR-9%0 -2.46% -7.98% -19.54% -38.73%
ERD -0.26% -1.09% -2.85% -5.13%

The difficulties with the absolute risk transfer measures can be anticipated. All measures
produce values well below any likely threshold for M1. 10% volatility without unusual
profitability seems like a level of risk that should “pass™, but the 10/10 rule and TVaR-90 fail
for M2 as well, while the ERD passes only marginally at the low end of the range.
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15.5 Risk Transfer Measures Applied to Quota-Share Contracts

We next apply the various measures to the three quota-shate reinsurance contracts.

Table 5
Summatry of Risk Transfer Measures
Quota-Shate Contracts
Model
Contract M1 M2 M3 M4
c1 Loss Probability 13.83% 24.78% 29.27% 29.19%
PRT-MSAD 100.00%  100.00% 94.85% 63.86%
VaR-90 -0.71% -4.17% -10.88%  -17.77%
TVaR-9%0 -2.43% -7.94% -17.78% -21.60%
ERD -0.26% -1.06% -2.65% -3.82%
c2 Loss Probability 13.83% 24.78% 34.86% 34.27%
PRT-MSAD 98.98% 78.65% 51.44% 31.72%
VaR-90 -0.70% -4.35% -6.49% -7.24%
TVaR-90 -2.33% -5.40% -7.48% -9.95%
ERD -0.25% -0.83% -1.77% -1.91%
C3 Loss Probability 13.83% 27.69% 34.86% 25.12%
PRT-MSAD 67.99% 52.21% 62.16% 48.82%
VaR-9%0 -0.68% -1.53% -5.65%  -14.22%
TVaR-90 -1.26% -2.38% -12.60% -17.72%
ERD -0.14% -0.43% -1.66% -2.88%

The contract C1 aggregate limit 35% over the mean has no discernable impact when applied to
the lower volatility M1 and M2 models. As the volatility increases with M3 and M4, the risk
limiting impact of the aggregate limit increases. This effect can be seen as the percentage of risk
transferred decreases to 95% for M3 and down to 64% for the volatile M4 model.

The C1 contract applied to M1 fails the risk transfer test for all of the absolute risk measures,
even though substantially all the risk is transferred. For M2, most still fail or marginally pass. As
the undetlying business gets riskier in the M3 and M4 models, results on these tisk transfer tests

improve significantly, even as the aggregate limit becomes less remote and has
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level of risk in the underlying business than to the degree of risk transfer.

The same pattern persists as we move to more significant risk limiting features. In each case, the
risk limiting impact of the features becomes mote significant when applied to the higher
volatility cash flows, as is reflected in the declining PRT. In each case, the absolute risk

measures increase due to the increased undetlying risk, even though a smaller percentage of that

risk is being transferred.

1.5.6 Risk Transfer Measutes Applied to Structured Aggregate Excess

Contracts

Next, consider the application of the highly structured reinsurance contracts C4 and C5 to the

riskier cash flows of models M3 and M4.

Summary of Risk Transfer Measures
Structured Aggregate Excess Contracts

Model
Contract M3 M4
C4 Loss Probability 24.80% 21.16%
PRT-MSAD 22.89% 18.35%
VaR-90 -10.51% -10.91%
TVaR-90 -15.76% -21.00%
ERD -2.53% -3.09%
C5 Loss Probability 24.80% 21.16%
PRT-MSAD 19.36% 13.19%
VaR-90 -10.74% -10.73%
TVaR-90 -11.56% -11.91%
ERD -2.17% -1.94%

While risk transfer measures based on absolute risk levels may often “fail” a contract which

transfers neatly all the risk when it is applied to relatively stable business, the effect is just the
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opposite when applied to higher volatility business. In these cases, contracts with features that

eliminate most of the risk can still pass.

In the case of C4, only 23% and 18% of the risk is transferred for M3 and M4, respectively. Yet
the 10/10 test is a marginal pass and the other tests would also appear to pass at likely critical

values.

Even though less than 25% of the risk 1s transferred, the C4 contracts are faitly risky for the
reinsurer, especially relative to their small margins. The accounting distortion is that the losses

accounted for as ceded are oversized relative to the risk absorbed by the reinsurer.

The C4 contract leaves the reinsurer with substantial tail risk, which is addressed in C5. Another
layer of additional premium attaches just above the 90® percentile and extends beyond the policy
limit, protecting the reinsurer from the acceleration risk caused by worsening loss ratios beyond
the policy limit. The technique succeeds in further risk reduction, now bringing the PRTs to
19% and 13%. Yet the 10/10 rule is unaffected (as intended in the design of the feature). The
more sophisticated TVaR and ERD tests respond to the additional risk reduction, with the
more tail-oriented TVaR showing the greatet effect. Despite the additional risk limitations, the
ERD still produces a passing score and the TVaR may as well, depending on choice of critical

value.

1.5.7 Conclusion

In conclusion, the PRT test appears to logically and consistently identify the impact of structural
features that limit risk transfer. The measures based on absolute standards
invariably underestimate risk transfer for more stable subject business and overestimate nisk

transfer for more volatile subject business.
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1.6  Examples Using PRT with Various Risk Measures and Co-Measures

The following tables present the results of PRT, applied to the same models and contracts as
the previous section, with one exception. We have removed the aggregate limit from the 3
contract (the corridor). We use the following risk measures (with their corresponding co-

measures):

MSAD

e EAD
TVaR-90
TVaR-95
TVaR-98

The results are presented without a great deal of additional comment. With each nsk measure,
the pattern of PRTs as the risk models and contracts change conform to a reasonable pattern

of decteasing risk transfer as the risk-limiting provisions become more significant.

The results are not identical, however. The measures respond to the “heart” and the “tail” of

the distribution to different degrees, consistent with their design.
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Table 7
PRT's -- Comparison of Risk Measures
Quota-Share Contracts
Model
Contract M1 M2 M3 M4
C1 MSAD 100.00% 100.00% 94.85% 63.86%
EAD 100.00% 100.00% 97.92% 78.14%
TVaR-90 100.00% 100.00% 95.84% 61.56%
TVaR95 100.00% 100.00% 93.13% 52.25%
TVaR98 100.00% 100.00% 85.94% 43.72%
C2 MSAD 98.98% 78.65% 51.44% 31.72%
EAD 99.63% 87.82% 64.46% 43.90%
TVaR-90 99.47% 76.45% 44.00% 29.53%
TVaR95 99.16% 64.80% 38.16% 25.37%
TVaR98 98.31% 54.41% 32.65% 21.27%
C3 MSAD 67.51% 40.25% 61.89% 83.62%
EAD 79.97% 46.61% 55.05% 71.67%
TVaR-90 71.55% 34.37% 64.16% 84.14%
TVaR95 58.01% 34.00% 70.58% 87.42%
TVaR98 46.51% 41.60% 75.93% 90.01%
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Table 8
PRT's -- Compatison of Risk Measures
Structured Aggregate Excess Contracts
Model
Contract M3 M4

C4 MSAD 22.89% 18.35%
EAD 23.84% 17.93%
TVaR-90 23.23% 19.27%
TVaR95 21.76% 18.85%
TVaR98 19.53% 17.50%
C5 MSAD 19.36% 13.19%
EAD 21.711% 14.52%
TVaR-9%0 18.97% 13.31%
TVaR95 15.85% 11.35%
TVaR98 12.82% 10.41%

Some observations:

¢ In most cases MSAD produces results similar to TVaR-90.

® Aggregate limits affect only the tail of the distribution, and are most penalized by the more
tail-oriented TVaR measures, for example the low aggregate limit of the C2 contract applied
to the moderately high risk M3 model.

® The combination of low corridor and no limit (C3), when applied to high risk models M3 and
M4, decreases tisk more in the heart of the distribution than the tail. In this case, the least
tail-oriented measure, EAD), indicates the greatest reduction in risk transfer.

¢ The first highly structured contract, C4, dramatically reduces risk in the heart and the tail of
the distribution and all measures are similar.

® The second highly structured contract, C5, has an additional feature that mitigates the tail
tisk. Especially for risk model M4, risk transfer is significantly lowered. The effect of the tail-
protecting feature is the smallest for the EAD and the largest for the more tail-oriented

measures.
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In conclusion, PRT is demonstrated to work acceptably well with a variety of risk measures.
Assuming that it is desitable to have a single measure to be used universally, the author’s
preference continues to be for MSAD, which works consistently and appeats to strike the best
compromise between responsiveness to the whole downside of the distribution and emphasis on

the significance of the tail.
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Section IT — Accounting fot Partial Risk Transfer Reinsurance
21  The Case for Continuous Accounting

The problem addressed so far is to find the best possible solution given the significant

accounting constraint that there are two types of accounting available — one that is appropriate
for 100% risk transfer and another for 0% risk transfer — and that our only option is to choose
one or the other. The difference between these approaches can sometimes be very large — and

for large enough contracts it can be material to the company’s financial statements.

If the difference between the two accounting treatments is material, then it is likely that half that
difference is material as well. Regardless of which accounting treatment is used, the accounting
for a contract with 50% risk transfer will be materally inaccurate, one way or another. The
author’s suggestion of a critical value of 50% to define adequate risk transfer is simply to cut the

worst case inaccutacy to the lowest possible number.

Using the 50% critical value, there could continue to be motivation to design 51% risk transfer
contracts to take advantage of the 100% risk transfer accounting. 49% tisk transfer contracts are
no less problematic. The cedant may get no credit in its financial statements or solvency tests
for a significant reduction in risk. And a reinsurer that assumes a 49% risk transfer contract that
1s ineligible for reinsurance accounting will be assuming significant risk while its financial

statements reflect that it has assumed none.’

Another significant problem is the point of discontinuity itself. If the difference in accounting
treatment has a large impact, and the estimated PRT is close to the critical value, then a large
material difference will turn on a decision requiting a precision of estimation that simply doesn’t

exist.

" on

9 This last point illustrates that there is no such thing as a "safe", "conservative” choice for a critical value.
Whenever deposit accounting is conservative for the cedant, it is aggressive for the reinsurer.
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Thus, the binary choice between reinsurance accounting and deposit accounting may not be an
adequate solution. A continuous solution would provide more appropriate accounting for
partial risk transfer contracts. The availability of PRT can provide a basis for such a continuous

accounting solution.

2.2 Goals of Partial Risk Transfer Accounting

The author has considered the following two goals of appropriate accountng for partial risk

transfer:

¢ Income statements and balance sheets that are undistorted in total, i.e., accurate total income
and equity; and

e Proper characterization of ceded premiums and ceded losses.
2.3  Bifurcation to Achieve Continuous Accounting

2.3.1  Proportional Bifurcation
The simplest approach, which would require no new development of basic accounting rules, is
to apply a weighted average of the two accounting procedures already available, i.e. proportional
bifurcation. The approach would be to simply divide all 100% values proportional to PRT and
1-PRT, with the amounts proportional to PRT accounted for as treinsurance and the amounts

proportional to I-PRT accounted for using deposit accounting. For the deposit accounting, the

"interest method," which corresponds best to zero risk transfer, would be most appropriate.

The First Objective -- Income and Equity:
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As discussed much earlier, the income and equity effects of reinsurance are gains related to the
cession of losses and costs related to the reinsurer's margin. Since there are no gains from
ceding losses under deposit accounting, under proportional bifurcation using PRT, the initial
gain from ceding losses would be reduced proportional to the reduction in risk transfer, exactly
as intended. As for the cost of the reinsurer's margin, this is expensed up front under
reinsurance accounting but implicitly expensed over the life of the cash flows under deposit
accounting. Thus proportional bifurcation will cause a deferral of a portion of this cost. This is
not necessatily our intent, and could be remedied with a slightly more complex solution.
However, to the extent that this is considered an imperfection, it is not a serious one, and may

not warrant the additional complexity.

The Second Objective -- Losses and Premiums:
Net losses under proportional bifurcation will be in proportion to the percentage of the risk

retained, exactly as intended.

Net premiums resulting from the proportional subdivision of premiums will not be perfectly
reflective of net underwriting risk retained, so the second objective will not be perfectly satisfied

for net and ceded premium.

Two imperfections related to the proportional subdivision of premium: The first imperfection is
that the reinsurer's margin would be expected to be reduced if the risk is reduced. It would
probably be preferable to allocate the margin entirely to reinsurance accounting, rather than sub-
divided. The second imperfection, related to over-funding, is in the opposite direction. As will
be discussed in a subsequent section, income, equity, and ceded losses are not distorted by over-
funding. However, if the reinsurance is over-funded with a refund provision, then the premium

allocated to reinsurance accounting will be overstated to some degree.

In the author's view, none of the imperfections noted is likely to be significant, and simple
proportional bifurcation will provide a major improvement in accounting accuracy compared
with current practice. A modestly more complex solution can be devised for the income issue

and the first premium issue discussed above, although the second premium issue is more
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difficult. In any case none of the imperfections are likely to be latge enough to warrant the

additional complexity.
2.3.2 What Contracts Should Be Bifurcated?

Bifurcation would increase accounting workloads and complexity and it makes sense to limit its
application. Many reinsurance contracts have structural features that have modest risk-limiting
effects. At the other extreme, there may be some contracts determined to have minimal risk
transfer. In order to avoid unnecessary bifurcation, the author suggests that contracts with PRT
> 80% or PRT < 20% be accounted for with reinsurance accounting or deposit accounting,

respectively, with bifurcation limited to 20%<PRT<80%.

Such a threshold would also reduce the need for unnecessary testing. It will be faitly obvious in
some cases that structural provisions will not reduce risk transfer by more than the threshold

value, and minimal testing may be required.
2.3.3 Should Risk Transfer Be Reevaluated?

If PRT were to become an explicit factor in reinsurance accounting, the PRT would
presumably be evaluated at the inception of the reinsurance contract and that value would
become fixed for accounting purposes at the inception of the contract. The issue of possible
reevaluation of the PRT would not be retrospective from inception, but only prospectively
telating to remaining loss reserves. To the extent the PRT changed, that change would affect

only the remaining loss reserves, not any previously accounted for amounts, such as premiums

or loss payments.

In the author's view, this idea is cambersome and impractical and would appear to be an idea to

be avoided. However, the discussion is included for the theoretical completion of the concept.
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The amount of remaining risk transferred for ceded loss reserves will change as the contract
progresses over time. The change in the remaining risk transferred can be illustrated with 2
simple aggregate limit example. Suppose that an aggregate limit set above the expected loss ratio
is originally estimated to have a 40% risk-limiting effect (i.e. 60% PRT). Two years later, the
ultimate losses are known with much more accuracy and have developed below the original
expected losses. The aggregate limit now appears quite remote and 95% of the remaining risk is
transferred. Or conversely, losses have developed much worse than the original expected losses
and ultimate losses are now estimated to be at the aggregate limit, leaving no mote coverage
available. To the extent that there are still ceded reserves, almost none of the risk related to the
remaining reserves is transferred. While these situations may be realistic, it would be hatd to
imagine that the increase in accounting accuracy would warrant reevaluating risk transfer on all

contracts.

But perhaps it should be considered 1n a few special cases. An obvious candidate is a multi-line
contract combining long and short tail business. For example, assume that such a contract,
mixing property and casualty but not readily bifurcated in the more traditional sense, 1s estimated
at its inception to transfer 50% of the risk and is accounted for with a 50% proportional
bifurcation. Let us further assume that almost all the tisk comes from exposure to property
catastrophes, and that at the end of the year there has been no such catastrophe. There may be a
significant cession of casualty reserves at a discount, but little ot no risk transfer remaining.
Conversely, if property catastrophe losses have occurred, a much larger degree of risk may be

ceded on the remaining casualty reserves.
24  Comments on Related Topics
241 Over-Funding
A common technique for reducing risk to the reinsurer is over-funding, i.e., charging a

conservative premium with refund provisions. The refund may be based on an “experience

account” which includes interest credited on ceded funds. This technique may allow a reinsurer
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and cedant to come to terms without resolving differences of opinion on likely losses, or may

simply be used to lower the risk premium charged.

Over-funding may be accomplished by charging a large upfront premium, through a contingent
additional premium feature, or a combination of the two. To the extent that contingent
additional premiums are charged, the outgoing cash flows will be included in the calculation of

PRT and the value of PRT will be reduced.

To the extent that over-funding is accomplished through an increase in upfront premiums, it will
probably have no effect on PRT, as only downside risks are measured, and premium refunds

usually have no impact. This may appear counterintuitive, as over-funding cleatly reduces the

tisk to the reinsurer.

Nevertheless, contingent refunds cannot cause a future loss for the cedant. To the extent that
the risk related to ceded losses is covered by the reinsurance, it is appropriate to cede the losses
and their associated risk margin, i.e. to apply reinsurance accounting. Whether the risk related to
the ceded losses is covered from funds provided by the cedant or risk taken by the reinsuret is
immaterial. As long as the cedant has expensed the premiums ceded, there is no increased risk of

inadequacy in the financial statement values.

Under current accounting, the cedant records an asset for future refunds only to the extent that
the current ceded loss estimate indicates that a refund will be due without including future investment
income crediicd fo an experience account. This asset, when applicable, prevents over-funding from
"causing a deferral of income. The exclusion of future investment income is also necessary —
including it in the calculation of the asset would have a similar effect to discounting the loss

reserve while retaining the risk.

In conclusion, premium refunds are not important when determining PRT since they do not

affect downside risk. When reinsurance accounting is applied to reinsurance that includes over-
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funding, the net effects on balance sheets, income statements, and ceded losses are not

significantly distorted."
2.4.2 Underwriting Risk and Timing Risk

Both GAAP and SAP require the separate consideration of whether underwriting and timing
risk have been transferred, as well as whether the overall degree of risk transfer 1s adequate. The
approach herein is focused only on the overall risk. In the author's view, the distinction between
underwriting and timing risk is often artificial. If a continuous approach to risk transfer
accounting were adopted so that the degree of risk transfer were specifically reflected, perhaps

the distinctions between underwriting and timing risk would be unnecessary.
2.4.3 Accounting for Retroactive Reinsurance

There are substantial restrictions in GAAP and Statutory accounting when the liabilities ceded
are related to losses incurred in the past, e.g., loss portfolio transfers (“LPT’s”). In fact, GAAP
essentially applies deposit accounting to all retroactive reinsurance, as if no risk transfer is
possible. This punitive accounting undoubtedly has its historical roots in past abuses, but

otherwise appeats to have no sound basis.

LPT’s are often legitimate risk transfer motivated reinsurance contracts. There are any number
of valid motivations, such as moving risky liabilities to better diversified and capitalized
companies. LPT’s are still done despite punitive accounting. But it would be hard to imagine

that the accounting is not suppressing the market for legitimate retroactive reinsurance.

As we have demonstrated in the examples, FAS 113 is not effective in preventing financial
engineering for prospective reinsurance, nor would it be effective for retroactive reinsurance if

the present restrictions were eliminated. The improved accounting recommended herein would

16 Overall equity and income will be undistorted, as will ceded losses and loss reserves. Ceded premiums may be
overstated to some degree. As with other imperfections on the premium side, this problem may not be significant
enough to warrant a more complex procedure.
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effectively prevent the type of abuses that were committed long ago, and the punitive

accounting, which is itself highly inaccurate, could be eliminated.
2.4.4 Policing

Punitive accounting for retroactive reinsurance under GAAP might be considered an example of
policing by accounting — the idea is not to account accurately, but to prevent abuse.

Regulators have more direct police powers. Insurance executives may have to increasingly
describe the intent of reinsurance transactions. While improved disclosure by financial
executives is beneficial, the author is not entirely comfortable with police powers to regulate

intent.

With more accurate accounting, regulation of intent would be less necessary. Bad behavior will
still be possible; policing will still be needed. But with better accounting rules, policing can be
about following the rules.
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A Multivariate Bayesian Claim Count
Development Model With Closed Form
Posterior and Predictive Distributions

Stephen J. Mildenhall

Abstract

We present a rich, yet tractable, multivariate Bayesian model of claim count develop-
ment. The model combines two conjugate families: the gamma-Poisson distribution
for ultimate claim counts and the Dirichlet-multinomial distribution for emergence.
We compute closed form expressions for all distributions of actuarial interest, includ-
ing the posterior distribution of parameters and the predictive multivariate distribution
of future counts given observed counts to date and for each of these distributions give
a closed form expression for the moments. A new feature of the model is its explicit
sensitivity to ultimate claim count variability and the uncertainty surrounding claim
count emergence. Depending on the value of these parameters, the posterior mean
can equal the Bornhuetter-Ferguson or chain-ladder reserve. Thus the model provides
a continuum of models interpolating between these common methods. We give an
example to illustrate use of the model.

JEL Classification: G - Financial Economics; G220 - Insurance; Insurance Compa-
nies

Keywords: Loss Development, Chain-Ladder Method, Bornhuetter-Ferguson Method,
Dirichlet-multinomial, Poisson-gamma

1 INTRODUCTION

We present a Bayesian model of claim count development. The model is rich
enough to provide a realistic model for the practitioner but at the same time it
is mathematically tractable and we give explicit equations for the posterior and
predictive distributions. The predictive distribution is an example of a general-
ized power series distribution and a generalized hypergeometric distribution. The
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method in the paper will be of interest to practicing actuaries because it is easy to
implement and it provides explicit posterior distributions for unreported claims,
and hence Bayesian means and confidence intervals, and a rationale for choosing
between existing reserving methods. The model is theoretically interesting be-
cause the posterior mean generalizes three common reserving methods (the peg,
the Bornhuetter-Ferguson and the chain-ladder) in an intuitive and insightful man-
ner.

Actuaries today are asked to provide a distribution of potential outcomes or
a confidence interval around the point estimates they have traditionally supplied.
The push towards greater quantification of uncertainty is particularly marked in
the property and casualty loss reserving practice. Understanding reserve uncer-
tainty and linking the pricing actuary’s prior estimate of ultimate losses to the
reserving actuary’s posterior estimates is therefore becoming more and more im-
portant.

These recent demands on the profession have played up some shortcomings of
the traditional chain-ladder method of determining loss reserves. The chain-ladder
method is simple to apply and easy to explain, and is the de facto standard reserve
method. Mack’s 1993 paper [15] showing how to compute the standard error of
chain ladder reserves was an important enhancement to the method. However,
the chain-ladder is still not well suited to providing explicit posterior distribu-
tions, nor does it provide diagnostic information to assess model fit. The latter
point is a severe weakness in practice. There is no one chain-ladder method; the
technique can be applied to a variety of different loss development triangles in
slightly different ways. (Academic discussions usually assume link ratios are sta-
ble over time—something rarely seen in practice—and use the weighted average
of all years link ratios.) When the various chain-ladder related estimates do not
agree there is no statistical guidance on which method to prefer. The shortcom-
ings of the chain-ladder have been discussed in the literature. Mack [14] identifies
the stochastic assumptions which underlie the chain-ladder method. Venter [25]
discusses the assumptions required for the chain-ladder estimates to produce least-

squares optimal reserve estimates, and discusses some alternative methods when
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the conditions are not met. Renshaw and Verrall [22] describe a statistical proce-
dure which is exactly equivalent to the chain-ladder in almost all circumstances.
We will discuss their model more in Section 6.

In order to address these shortcomings, and respond to the demand for more
precise quantification of uncertainty, both practicing actuaries and academics have
explored alternative models. Zehnwirth [30] and Zehnwirth and Barnett [31] con-
struct general linear models of reserve development based on log-incremental
data. Kunkler [12] uses a mixed model to include zero claims in a log-incremental
model. England and Verrall [7] and Wright [29] discuss generalized linear mod-
els, the latter taking an operation time point of view. Norberg [19] models the
claims process as a non-homogeneous marked Poisson process. There has been
considerable interest in Bayesian models of development. Reserving involves the
periodic update of estimates based on gradually emerging information—a natu-
rally Bayesian situation. Bayesian methods have been explored by Robbin {23],
de Alba [5], Dellaportas and Ntzoufras [20], Renshaw and Verrall [22], and Ver-
rall [26, 27], amongst others. Stephens et al. [24] use a survival time approach
to modeling claim closure in a Bayesian framework. As Robbin points out, the
mathematics of Bayesian models often becomes intractable. One advantage of
this paper’s model is the closed mathematical form of all the distributions of inter-
est. For the less tractable models the WinBUGs MCMC system has been applied.
See Verrall [27] for a very detailed explanation of how to do this.

Despite all of these advances, no model has come close to challenging the
chain ladder method. In part this reflects the difficulties a new method faces be-
fore it becomes accepted practice. It also reflects the technical complexity of
some of the alternative models. Practicing actuaries can be uncomfortable with
the assumptions' and the number of parameters. The chain-ladder method has
one parameter for each development period: the link-ratios and the tail factor. Re-
gression models may produce a model with fewer parameters, but the model itself
is often selected from a very large number of potential models. This can lead to
generalization error where a particular model can over-fit artifacts in a small data

1A difficulty with explicit assumptions is the disquiet they can cause!
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set. The advantages of “simple” models are discussed in Balasubramanian [2] and
Domingos [6].

There is, therefore, a need for a simple statistical model of loss development
to augment and enhance the chain-ladder method. A new model should have a
similar number of parameters to the chain-ladder, should be fit to the data using
a statistical technique such as maximum likelihood, should be able to incorporate
prior information from the pricing department, and should be easy to update with
observed loss information as it becomes available. We will present such a model
for claim count development in this paper. The model is introduced in Section
2. The explicit form of the marginal distributions of claims reported in each pe-
riod is proved in Section 3. Sections 4 and 5 prove results about the conditional
and predictive distributions. Section 6 discusses where our model fits within the
continuum of reserving models, from the “book plan” peg method through the
chain-ladder method. Section 7 discusses parameter estimation. Section 8 ap-
plies the model to a specific triangle. Finally, Section 9 will discuss extending the
model to loss development, rather than just claim count development.

This paper focuses on the theoretical development of a new claim count model.
However, 1 want to stress that this model is easy to use in practice and that it

provides useful and powerful reserving diagnostics.

Notation
The following notational convention will be use extensively in the paper. For any
n-tuple xq, . .., z, define
t n
z(t) = in, (t) = Z ;
i=1 i=t+1

and let z := z(n). Thus z = z(n) = z(t) + £'(¢) forall t = 1,...,n. This
notation will apply to B, b, 7, and v. It will be re-iterated before it is used.
The letters p and q := 1 — p will be used as parameters of a gamma distribution

and will never have subscripts.
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2 THE GPDM BAYESIAN CLAIM COUNT MODEL

This section introduces the new gamma-Poisson Dirichlet-multinomial (GPDM)
claim count model. The GPDM is a combination of a gamma-Poisson random
variable to model total ultimate claims and a Dirichlet-multinomial multivari-
ate distribution to model incremental claims by report period. For a particular
accident year, let B; be the incremental number of claims reported in period
1 = 1,...,n. We assume that nth report is ultimate and will not model further

claim emergence. Let

denote the ultimate number of claims.
The GPDM is defined as a combination of two conjugate models. The ul-
timate number of claims B(n) conditional on A = X has a Poisson distribu-

tion with mean A. A, the prior ultimate claim count, has a gamma distribu-

tion. Conditional on B(n) and parameters I, = m,...,II,,_1 = m_1, 7 =
1-— Z?_‘ll 7;, the claim emergence vector (B, ..., By,) has a multivariate multi-
nomial distribution with parameters B(n), 71, . . ., 7,. Here m, is the expected pro-

portion of claims reported in period ¢ and B(n) is the number of ultimate claims.
IT;, ..., 11,-, have a Dirichlet prior distribution. The full vector of parameters is
O = (A I0,...,1I,_,). Conditional on

n—1
O=0:=(\m,...,Tn1) 7rn=1——Z7ri. )
i=1

the GPDM probability density is

= )b(m)
Pr(Bi..., B |©=0) = ;oo 3)

where b(n) = Y"1, b, and the two b(n)! terms have cancelled.
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The prior densities for the parameter vector © = (A, II;,...,II, {) are
A ~ Gamma(r,p/q), g=1-0p, 4
Pr(A=)\) = qTI’i—T(T)x-le-*P/q (5)
and
(I, ..., M,-1) ~ Dirichlet(v1, . .., vp), 6)

Plos+--+wn) 41

Pr(lly = my,...,llpoy = mpq) = T(vy) - T(on) m coqnml @)

n

A and the I1; are a priori independent.
The form of the gamma distribution in Eqn. (4) is chosen so that the negative
binomial predictive distribution for B(n) has density

Pe(B(r) = ) = (7 ) ®
Thus E(B(n)) = rq/p and Var(B(n)) = rq/p*. If E(B(n)) = m then p =
r/(r+m), g=m/(r+m)=1/(1+m/r)and Var(B(n)) = m(1+ m/r). The
coefficient of variation of the gamma distribution is 1/+/7. The expression 1/ is
sometimes called the contagion, see Mildenhall [17, Section 2.2].

Compared to traditional methods of reserving the GPDM includes two new
parameters: r which controls the variability of ultimate claim counts and the ex-
tra Dirichlet paramter which controls the variability of claim emergence. The
Bornhuetter-Ferguson method of reserving, by contrast, assumes a prior estimate
of the ultimate number of claims but no measure of its variability. The chain-
ladder does not assume a prior estimate of ultimate claims but gives full credibil-
ity to observed claim emergence, corresponding to a high degree of confidence in
estimates of II;. These two extra parameters determine the behavior of the GPDM
model.

Pricing actuaries often have prior estimates of expected frequency because the
frequency-severity approach is a common pricing method. Thus reserving actu-
aries can usually obtain a prior mean for the number of ultimate claims expected
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from a block of business. We want to be able to incorporate this information into
our claim count model. Eqn. (3) assumes that the ultimate claim count, B(n),
has a negative binomial distribution. The r parameter for B(n) is a measure of
the inhomogeneity of insureds or of non-diversifiable parameter risk; it could be
estimated based on line of business studies. The negative binomial has been sug-
gested as a more flexible alternative to the Poisson distribution for modeling claim
counts by many authors, including Klugman, Panjer and Willmot [10]. Also see
the references in Johnson et al. [9].

The second part of Eqn. (3) is the multinomial with Dirichlet conjugate prior.
Basic properties of Dirichlet-multinomial (DM) are given in Bernardo and Smith
[3] and Johnson et al. {8, Section 35.13.1]. For more details on the Dirichlet see
Kotz et al. [11]. The Dirichlet distribution has n free parameters (compared to
only n — 1 free 7, because of the condition ), m; = 1), and the extra parameter
controls uncertainty in the proportions. When n = 2 the Dirichlet becomes a beta
distribution.

The DM distribution with parameters (b(n);v1, ..., v,) has predictive proba-
bility density function

Pr(By=by,...,B,=b,) = b(n)! L(> w) > (b, +v)

=1
where b(n) = 3, b,. We can write Eqn. (9) more succinctly using the Pochham-

mer symbol (). For a real r and non-negative integer k define

F(r—t—k).

Me=r(r+1)--(r+k-1)= )

(10
Then Eqn. (9) becomes

b(n)! 1 n
Bl ba! (2 01)oim) E(vi)bi- (11)

We will use the Pochhammer symbol extensively.

Pl‘(Bl =b1,...,Bn=bn)=
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The marginal distributions of the DM are beta-binomial mixtures. Let v =
>_;vi. Then

E(B,) = mu,/v, (12)
Var(B;) = b(lnl-’;v (b(n)vlig ~ vi)) (13)
cm4Bh£g)=-Mflz”b“2?”f (14)

DAY

(v —vi){v —v;)’

Corr(B;, B,) = — (15)

The marginal and conditional distributions of a DM are also DMs. See Johnson et
al. [8, Section 35.13.1] for these facts.

The next lemma, and its obvious generalizations, follows from the properties
of the Dirichlet and multinomial distributions. We will use it several times in

various guises.

Lemmal Let By,...,B, | © be a GPDM. Then B, + B3, Bs,...,B, | © =
(A, 7y + 7o, M3, ..., W) is also a GPDM.

Proof: This follows from [8, Chapter 35 Section 13.1]. g

We end this section by computing the predictive distribution of By,..., B,

given no observations. Let v = 3 v;. Then
Proposition 1 Let By,..., B, | © be a GPDM. Then

_ _ b(n)!T(v) gy Db + ) (r+b(n) =1\ , 4
Pr(By =i Ba=bi) =i ]I e ( o )pfu_

Proof: We have
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PI'(B] = bl,...,Bn = bn)

/ /Pr Bi,.. B | ©)fONf(rs,. ... mn)dAdm . .. dTn_s

/ / —)\/\b(n) (n)' bn pr /\r—le-—p)\/q
n)! b!...by! mm T(r)g

) H u=lgzdmy ... dm,

*TIT(
( )! F(U) P
bo! TIT(vi) T(r)qrb(n)!

n
x / (/ —ML+p/q) \b(n) 47— 1d}‘)H vl o dma

b(n)IC(v) v T(b + i) (r+b(n) ) rghm
F(b( )+L) 1 bl'F(w) b(n)

since the inner integral with respect to A equals T'(b(n) +7)¢*™*" and 1 + p/q =
/g m

Eqgn. (16) can also be written more compactly as

Pr(B,=by,...,By=by) =p'’ (T)otm) 11 (’”ﬁ)”f. (17)

3 MARGINAL DISTRIBUTIONS

The GPDM is a tractable distribution because it is possible to write down closed-
form and easy-to-compute expressions for its conditional marginal distributions
and its predictive distribution of future claims given observed claims to date. The
marginals are necessary to compute likelihoods from whole or partial claim count
development triangles. The predictive distributions provide a conditional distribu-
tion for ultimate claims given counts to date. We now prove these two important

results, starting with marginal distributions in this section.
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The marginal and conditional distributions of an GPDM are hypergeometric
distribution and use the Gaussian hypergeometric functions o F}{a, b; ¢; z). Math-
ematicians and actuaries today may not be as familiar with hypergeometric func-
tions as their counter-parts would have been 50 or 100 years ago. Given this lack
of familiarity expressions involving o F} can be a little forbidding. It is important
to remember that 5 F} is no more mysterious than the other functions built-in to
most calculators and spreadsheets. Indeed, it is very easy to program , F} into
a spreadsheet and use it like a built-in function. The properties of 5 F7 we use,
together with pseudo-code to compute it, are given in Appendix A.

The next proposition computes the marginal distribution of By, ..., B; fort <

n. Obviously an analogous result would hold for any subset of the B,. Remember

thatv =3 - v, V() =Y a1 U b(E) = Zle b, and 7(t) = Zle o

Proposition 2 Let B, ..., B, | © have a GPDM distribution. Ift < n — 1 then
the marginal distribution of (B, ..., B; | ©) is also GPDM with

Pr(Bl=b1,...,Bt=bt|@=(/\.,7r1,...,7rn_1)) (18)
1 Tt

=PI'(Bl=b1,...,Bt=bt I (W(t))\,m,,ﬂ'—(t—)-)) (19)

The predictive marginal of (B, ..., B} is

I(v) b(t 77 D0+ 1)
Pr(By = bi,..., B, = b) = p'¢"®
(Bi=bi,...,Bi=b) =p'gq T(b(t) +v) TI(r T(v;)b;!

=1

SO b( ) +73b(E) +vi0) QO)

() =t
. b(t) e H bR (8), b(E) + 73 b(t) + v; q).
1) o
Proof: Using Lemma 1 we can sum the unobserved variables (B;,1, ..., B,) and,

without loss of generality, assume that ¢t = n — 1.
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Then Pr(Bl = bla---th = bt | @)

=Y Pr(Bi=by,...,By=b,|0)

bn 20
n b; -2y b(n) n-1 b b
T, e\ - oo
= b(n)! 1 = . n —)\)\b(n—l)
anO( " ];Il: b") b(n)! (zI—Il 1') <bn>0 n! )
b1
T T b))
by!.. btl>‘ €
= b(t)' ('/TI/’/T(t))bl . (Wt/ﬂ(t))bt) (W(t)/\)b(t)e—ﬂ'(t))\
' byl by b
TR = LN
= Pr(B, = by, B = b (O Ty )

Next, using Proposition 1 and remembering ¢t = n — 1, we have Pr(B; =
bl,...,Bt th)

= Pr(By=by,...,B,=b, By =by)

bn>0
“T(b 4w (rHbn) ~ 1\ |, o
1>2>:0r )+v S b\ (vy) ( b(n) )p g
o T(b; + v;) b(n)!  T(by+v,) T(r+bn)) .
b()H b;\T'(v;) Z_ by! T(vn)L(b(n) +v) T(r)b(n)! b
r by L(V)T(6(2) + 1) ﬁ ['(b; + v;) (Un)b, (B(t) + 7).
T(6(5) + v)T(r) 11 6iT(0) Fx~ (6(2) + v, ba! 7
- TOD(B(E) +7) 11 Db, + v;
PP I

since b(n) =b(n—1)+b, =b(t) +b.. m
To evaluate Eqn. (20) use the log-gamma function and convert the product of

gamma functions into a sum and difference of log’s and then exponentiate. This
avoids potential over- or under-flow problems.
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It follows that the marginal distribution of B; is

L(v)[(by + 1) P(by 4 v1)
F(bl + U)r(’f') bl!F(vl)

Pr(B; = b)) =p'q" oFi(ve, by + 1300 +v39). (21)

Since the two components of a GPDM are a priori independent Eqn. (12) implies
the mean of B is

E(B,) = E(E(B: | B(n)))
- E(B(n)I) = E(ATL) = E(A)E(TL)
= vym/v. (22)

The variance of B; can be computed using Eqn. (13):

Var(B,;) = E(Var(B; | B(n))) + Var(E(B; | B(n)))

v (v —vy) v2m(1 4+ m/r)

(
_ulv = v p g E

v (1 +v) 1+ v) E(B(n)) + v2
_muy | mPu(v(l+77h) =0 (1= r7))
Ty + v2(1 +v) (23)

since E(B(n)) = m, Var(B(n)) = m(1 + mr~1) and E(B(n)?) = m + m?(1 +
~1). Similarly, the covariance of By and B, can be computed using Eqn. (14):

Cov(B, By) = E(Cov(By, Bz | B(n))) + Cov(E(B1 | B(n)),E(B: | B(n)))
B(n) + v B(n)u,y;

=-E T+ o 2 + Cov(v1 B(n)/v,veB(n)/v)
Zu1ta(r~tu — 1)
v (1 +v) 24)

Eqn. (14) shows that the covariance between two marginals of a Dirichlet-multi-
nomial is always negative. Eqn. (24) shows that the covariance between two
marginals of a GPDM is negative if v < r, and positive othcrwise. It becomes
positive because the effect of the common mixing through the gamma prior for A
overwhelms the negative correlation given B(n).

We will show in Section 6 that when 7 = v the GPDM produces the Bornhuetter-
Ferguson reserve; when 7 > v, and there is less uncertainty in the prior ultimate
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than emergence, it favors the peg method; and when r» < wv it favors the chain-
ladder method. Which of these methods is indicated depends on the data being
analyzed. Common practice favors the chain-ladder and Bornhuetter-Ferguson
methods; the peg method is rarely used. Thus we expect to find that < v in data.

When r — oo the variance of the gamma prior tends to zero and the ulti-
mate claim count distribution tends to a Poisson with mean A. The the marginal
distribution of By, ..., B; becomes

1=t

Pr(BI:b],...,Btzbt)=e—)\)\b(t) b+v H

z=1

T'(b; +v;)
T (v))b,] (25)

x 1 Fy(v'(8); b(t) + v q)

where 1 ] is a confluent hypergeometric function.

4 POSTERIOR DISTRIBUTIONS

In this section we consider the posterior distribution of © given observed devel-
opment data:

Pr(data | ©)Pr(©)
Pr(data)

Pr(© | data) = x Pr(data | ©)Pr(0). (26)

When we are trying to identify the posterior distribution we can ignore any vari-
able which is not a function of the parameters ©.

Our data consists of multivariate observations of development data By, . . ., B,,.
However for all but the oldest accident year we only have a partial observation
B, ..., B, for some t < n with which to update the distribution of ©. Recall that
the prior distribution of © = (A, II;, ..., II,) is

Pr(©) =T(r.p/q) x Di(uv1, ..., vn) 27

where A has a gamma distribution, the proportions IT; have a Dirichlet distribution
and the two distributions are a priori independent. The next proposition shows
how to update the prior distribution of © given a partial observation of claim

counts. Let 7(t) = Yi_, m, #'(t) = Sor . mand b(t) = 3¢, b
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Proposition 3 Let By, ..., B, | © have a GPDM distribution and lett < n. Then
the posterior distribution of © given a partial observation By, . .., By has density

PI'(@:(A,Wl,...T['n_l)lBI =b1,...,Bt=bt)_

-1 - - 1 -
K/)\b(t)+r le A(p/q+7r(t))ﬂ.?1+v1 1. bt+’vg lﬁfril X W:)zn 1 (28)

where

t

k =T(v +b(t)) (q’“’(t)l"(r +5(0)) [T T + i)

1=1

n
x H L(v,) x oF1(V'(t),b(t) + r; b(t) + v; q)) 1 (29)
i=t+1
In Eqn. (28) the distribution of A is dependent on the distribution of observed
claims through the term 7(t), so the two have become entangled. This is the
reserving conundrum: counts through ¢ periods are higher than expected; is this
because we have observed a greater proportion of ultimate claims than expected
or because ultimate claims will be higher than expected? Our model will show
how to answer this question. When ¢ = n, and we have a full observation, the
posterior is no longer entangled because 7(n) = 1; the posterior distribution is
again a product of independent gumma and Dirichlet distributions.
Proof: Using Eqn. (3), the prior distribution for ©, and the multinomial expansion
in the penultimate step, we have Pr(© | By, ..., B;)

x Pr(By,.. Bt | ©)Pr(©)

§ : b1 . 7rZn)\b(n)e—)\/\'r—le—p)\/qﬂ,in—1 .. ﬂ'zn—l
b1
bet1yesb
b | b
A blm,y b \B(O+r=1,=M14p/q)
XL byl bl ¢
820 \bep1+-+bn=b ot n
bi4vi-1 bz+‘Ut 1_ve+1-1 .|
m . i1 T
2or!(1)?
_ b(t)+r—1_,-A1+p/q), b1+11—-1 b¢+vt 1, Ue1—1 vn—1
= ( T A € m 7rt+l P 7Tn"
b>0 ’
-1 - - 1 -
:)\b(t)+r 16 /\(1r(t)+p/q)7r11)1+v1 1. bt+v¢ lﬂ:fﬁl .”nzn 1'
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To evaluate the constant  use the exact form of the conditional and unconditional
marginal distributions given in Proposition 2. g

Figure 1 is a contour plot of the prior and posterior distribution of (I3, A).
The left hand column shows the prior distributions with prior mean 250 and
E(IT;) = 0.5. The middle column shows the posterior given an observation 40
below expected and the right hand column the posterior given an observation 40
above expected. The four rows show different degrees of precision in the priors.

Row 1.

Row 2.

Row 3.

Row 4.

r = 10 and v = 15, so both priors have a moderately high uncertainty. Since
r < v the model gives weight to the chain-ladder method, so the posterior
distributions lie north-east to south-west. Both are still relatively diffuse,
reflecting the lack of information in the priors. The correlation between II;
and A in the posterior densities is very clear.

r = 10 and v = 50, so the emergence is known with more prior certainty
than the ultimate. The prior is now stretched along the y-axis, ultimate
claims. Since emergence is known more precisely, this method is closer
to the chain-ladder method (100% confidence in observed losses). In the
picture we see the two posterior distributions lie north-east to south-west,
corresponding to the chain-ladder method

r = 50 and v = 15, so the prior ultimate is known with more certainty than
the emergence. Now the prior is stretched along the x-axis, emergence.
This method is closer to the peg method. The two posterior distribution
lie east-west, corresponding to the less weight given to the observed claim
information.

r = v = 50, so both ultimate and emergence are known with more confi-
dence. Compared to row 1 the prior is far more concentrated. Since r = v
this method reproduces the Bornhuetter-Ferguson—see below.

In the left hand column A and II, are uncorrelated in all four examples.

The next corollary computes the exact Bayesian reserve: the expected number
of unreported claims given claims to date. It is an important result and we will
discuss it further in Section 4. The corollary assumes n = 2 and t = 1; using
Lemma 1 we can reduce any particular reserving problem to this case.
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Prior, mean=250, pi=0.S, r=10, v=15

0o 02 4 06
Proportun Observad Propamon Observed. Propornon Uheerved

Prior, mean=250, pi=0.5, r=50, v=15 Posterior, observed=85 Pusterior, observed=165

Figure 1: Prior and posterior density of IT; vs A = E(B(n)) for various values
of r and v and observed counts. Prior mean equals 250 and E(II;) = 0.5. Left
hand column shows prior density. Middle column shows posterior given observed
counts 40 below expected; right hand column posterior given counts 40 above
expected.
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Corollary 1 Letn=2andt = 1. Then
Uz(b1 + T) 2F1(’U2 +1,b+r+L;bi+v+ 1,(])

B = = 0

BBz | Bi=b1) =¢ by +v oF1(ve, by + 7501 + v q) 30)
Proof: By definition

E(By | By=b) =E((1-I)A | (©] By)). 3D

Now use the explicit form of the posterior distribution of (© | B;) given in the
proposition and integrate with respect to A to get

1 poo
E(B; | Bi = b)) = K/ / A#re=AmAp/Ophitoi-1) o yvgadn  (32)
o Jo

1 F(b1+7“+1) bi4v;—1
= Gt

Substitute w = 1 — 7, and re-arrange to get

- 7T1)1'2d’ﬂ'1. (33)

1
sg" T (by + 7 + 1) / W' (1= w) (L = qu) e, (34)
0

The result follows from Euler’s integral representation of hypergeometric func-
tions Eqn. (65). g
We can write Eqn. (30) as

Fl(Uz b1+7'+1'b1+’l)'(I) )
b + 2 ) ) ) -1
(ba+r) ( 2F1 (v, by + 7,61 + 05 q)

using Whittaker and Watson [28, Chapter 14, Ex. 1]. Since b, is claims observed
to date, the Bayesian expected ultimate is

EA|Bi=b)=bf+r(f-1) (36)

where f is the ratio of hypergeometric functions. Thus f is acting like a loss
development factor, but one which is a function of ;. It is interesting that the
Bayesian estimate does not go through the origin because of the constant r term.

Using the same approach we can compute all moments of the posterior distri-
bution.

(35)

Corollary 2 Letn = 2,t = 1 and let a, b be non-negative integers. Then

b1 +7)a(bs +v1)p2F1(ve, b1 + 7+ 030 + v+ biq)
(bl + 'U)b 2F1(’U2, b1 + 7 b1 -+ ’U;q) )

E(A°L) =4 (37)
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5 PREDICTIVE DISTRIBUTIONS

The next proposition gives an expression for the predictive distribution
(Bis1,---,Bn | B,...By).

Remember that b(t) = Y7_ b, b'(t) = Sy, biand v = 3 v;.

Proposition 4 Ler By,..., B, | © have a GPDM distribution and let 1 < t <
n — 1. Then the conditional distribution of (B, 1, ..., By) given By,..., B, is

v bt +T‘b’ U
v ( ® ”” b(t) +r;b(t) +v;q)" . (38
O T O I;L (), b(¢) +73b(¢) + v; q) )

Proof: Recall that

Pr(BH-ly"'aBn l Bl,...Bt)
= /PI‘(BH.l,...,Bn | Bl,Bt,@)f(@ | Bl,Bt)d@

_ / Pr(Bi...., ,Bn | ®)Pr(By,...,B: | @)f(@)d@
Pr(Bl,...,BtIG)) Pr(Bl,...,Bt)

_ Pr(Bi.....B,)

- PI‘(Bl, ,Bt)

Combine this with Proposition 2 and the definition of the GPDM and then cancel
to complete the proof. g

Proposition 4 shows the predictive distribution does not depend on the indi-
vidual observed values by, .. ., b; but only on their sum b(t) = b; +- - - b;. Thus the
GPDM model has a kind of Markov property that the future development depends
only on the total number of claims observed to date, and not on how those claims
were reported over time.

Considering the probability distribution of the sum By, +- - -+ B, given By +

- -+ B, gives us the following corollary which we shall need later. This corollary

can also be proved using induction and properties of the binomial coefficients.
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Corollary 3
> (H (Ui)bi) IO A ) (39)
b,! bl
bi4+by=b \i=1
Using Lemma 1 we can add By, .. ., B, and reduce to the case n = 2,¢ = 1.

Then Eqn. (38) gives the conditional distribution of unreported claims B, given
claims reported to date b. This provides a closed form expression for the posterior

distribution which is exactly the distribution required for claim count reserving.

Corollary 4

b+ -
Polth =] By =) = R R Rl bt 60
=

The probabilities Pr(B; = j | B; = b) can be computed recursively using

g (b+r+j) vy +7)
j+1 (b+v+7)

Pr(B,=j+1| By =b)=Pr(By,=j| B, =b)
41

for 7 > 0 and

Pr(B, =0 B; =b) = 3Fi(vs, b+ 750+ v;9) 7" (42)

Figure 2 shows six examples of the density B, | B, for various values of v and
r. They are the two key shape parameters. For comparison, each plot also has a

Poisson with the same mean 30.305 as the 7 = 100, v = 1 frequency.
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Figure 2: (B, | By) for various values of r and v. n = 100, b = 65, and
'Ul/'U = 0.6.

470 Casualty Actuarial Society Forum, Winter 2006



A Multivariate Bayesian Claim Count Development Model

It follows from Eqn. (40) that the probability generating function? of B; |
Bl =bis
o F1(vg, b+ 1 b+ v; 2q)
T o Fi(vy,b+rb+viq)
Thereiore B, | By = bis a generalized power series distribution and a generalized
hypergeometric probability distribution according to the classification in Johnson
et al. {8]. It does not, however, appear in Table 2.4 of [§].

Differentiating G, using Equations 63 and 64 for the derivatives of the hyper-
geometric function, gives the factorial moments of B, | By = b:

G(z)

(45)

qua(b+r) 2Fi(va+1,b+r+Lb+v+1;q)
E(By | By =b) = 46
(B2 | By =) hro Fi(u b+ bt o) ,  (46)

which reproduces Corollary 1, and more generally

)b+ 1)k 2Fi(va+kb+T 4+ kb +v+kig)

#o(Bz | By =0) (b4 v 2Fi(vg, b+ 104+ v;q)

(47)

6 THE CONTINUUM OF RESERVING METHODS

Corollary 1 is very important. It provides a Bayesian estimate of unreported
claims given claims to date which is exactly the quantity the reserving actu-

The probability generating function of a nonnegative discrete random variable X is defined
as

G(z) = E(zY).
The (descending) kth factorial moment of a random variable X is defined as
e (X) = E(X(X = 1)-- (X —k +1)).
Factorial moments can be computed from the probability generating function by differentiating:

d*G(z)
) =~ | “3)

It is easy to compute the central moments and moments about zero from the factorial moments.
For example

Var(X) = peo) + p — p. (44)
See Johnson et al. [9] for more general relationships.
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ary must estimate. In this section we show that special or limiting cases of the
GPDM include the peg, the Bornhuetter-Ferguson, Benktander, and the chain-
ladder methods. Then we compare the GPDM to traditional methods over prac-
tical ranges of the parameters r and v. The model confirms the suggestion in
Renshaw and Verrall [22] that the chain-ladder is just one of many appropriate
methods. A schematic showing how the GPDM interpolates between other re-
serving methods is shown in Figure 3.

Emergence Variability, v

}
v
low | ~CL Method r = v, BF Method
v>r
T =QU, v — 00
~-Benktander / BF Method
v<r
~Peg Method
vLT
high Perverse
high low

Ultimate Count Variability, r

Figure 3: Schematic showing the behavior of the GPDM reserve as (r,v) vary.
Low r (resp. v) corresponds to high uncertainty in ultimate counts (resp. claim
emergence). The r = v diagonal is exactly the Bornhuetter-Ferguson method.

Using Lemma 1 we can reduce each accident year to the case n = 2,{ = 1.
B; denotes observed claims and B, unreported claims. (Bj, B; | ©) has a GPDM
distribution; © = (A, II;). A has a gamma distribution with mean m, the prior
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expected number of ultimate claims, and variance m(1 + m/r). II; has a beta
distribution with parameters v; and vy. Let v = v; + vy and 7 := E(II;) = vy /v.
Per Section 2, the parameters of the gamma distribution are r and p/q where
p=r/(r+m)and q = 1—p = m/(r+m). Higher values of r and v correspond to
lower variances of A and II; respectively. As r» — oo the claim count distribution
tends to a Poisson.

We are going to compare the six estimates of unreported claims: GPDM, peg,
chain-ladder, Bornhuetter-Ferguson, k-Benktander, and linear least squares. Con-
ditional on observed claims to date of b estimated unreported claims for each
method are denoted b/ (b) where x = g,p,c, b, k,! indicates the method. The
estimate of ultimate claims corresponding to each method is therefore simply
b+ Y. (b).

1. The GPDM method

B(b) = E(By | By =b) = (b+7) (2Fl(”"’b+’"+1;b+”;q) —1).

2F1(ve, b+ 10 +v;9)
(48)
2. The peg method
b,(b) := (m — b)". (49)
The peg ultimate is insensitive to observed data—until observed claims ex-

ceed the peg! The peg is an extreme reserving method. It ignores actual
emergence completely.

3. The chain-ladder method

(1-mb

be(b) = (50)

see Mack [16] or Renshaw and Verrall [22]. 7 is usually estimated from
the data as a product of link ratios. Each link ratio is the weighted average
development from one period to the next over all available accident periods.
The chain-ladder method is at the opposite extreme to the peg method. It
completely ignores prior estimates of ultimate counts.
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4. The Bornhuetter-Ferguson method estimate
by(b) := m(1 — =) (51)

see Mack [16]. This estimate of unreported claims is completely insensi-
tive to the observation b. The Bornhuetter-Ferguson method is sometimes
regarded as an extreme, but it is actually a middle-ground method between
the chain-ladder and peg methods.

5. The k-Benktander method, & = 0,1,2,. ..
b(b) = (1 = (1 = m)*)bi(b) + (L — 7)*B(b) (52)

see Mack [16]. When k£ = 0 this reduces to the Bornhuetter-Ferguson. As
k — oo, bj,(b) — b.(b). The Benktander methods are all linear in b. They
are a credibility weighting of the Bornhuetter-Ferguson and chain-ladder
methods.

6. The linear least squares, or greatest accuracy credibility, estimate
by(b) :==a + Bb (53)

where « and § are chosen to minimize the expected squared error. This
approach is described in Klugman et al. [10, Section 5.4] from a credibility
perspective and in Murphy [18] from a linear least squares loss development
perspective. Solving by differentiating E((Bz — oo — 8B;)?) with respect to
a and [ and setting to zero gives

_ Cov(By, By)

a=E(B) - BE(B) = (54)

In order to actually compute o and 3 we need a bivariate distribution for
B and Bs; we use the GPDM. The variance and covariance are computed
in Eqn. (23) and Eqn. (24). By construction ) will be the least squares line
through b’g. When r = v, and B; and B, are uncorrelated, b} reduces to the
Bornhuetter-Ferguson.
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Neither the chain-ladder nor the Bornhuetter-Ferguson method is sensitive to
the relative variance of ultimate losses B; + B, and the proportion of claims ob-
served I1;. This is a weakness that can be illustrated by considering two hypothet-
ical situations. In the first, the ultimate is estimated with low confidence but the
claim reporting pattern is very predictable, so r < v. We would favor the chain-
ladder estimate over the prior m. This corresponds to the second row in Figure 1.
In the second situation, the ultimate claim count distribution is known with a high
confidence, but the reporting pattern is estimated with less confidence, so r > v.
Here we would weigh the prior estimate m more than the chain-ladder which re-
lies on the proportion reported. This corresponds to the third row in Figure 1.
Corollary 1 provides a probabilistic model of these intuitions that continuously
interpolates from one extreme to the other. The GPDM captures and models the
process behind the actuarial judgment of selecting appropriate reserves. By pro-
viding a quantification of what is currently a judgmental process the model should
be of great value to the practicing actuary.

Here are six examples of how the GPDM behaves for different values of r and
v. They are illustrated in Figure 3.

1. For fixed 7, b(b) — m(1 — 7)(b+ r)/(mm + 1) as v — oco. Proof: As

U — 00
2F1(ve, b+ 1 b+ v;9) =2 Fi((1 = m)v,b+1;b+v;q)
—2F1(L,b+7;1;(1 - 7)q)
= (1= (1=m)gq)~*"
by Eqn. (66). Therefore

o - Lple) _mLonln s

We can write this limit as a credibility weighting of the chain-ladder and
Bornhuetter-Ferguson with credibility z = mn /(m# +r) given to the chain
ladder:

m(l—vr)(b-f—r):( m )(1—7r)b+( r

mT+7r mnw+7r T mm+r

) (1=m)ym). (56)
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This equation corresponds to the k-Benktander method with

_ log(r/(mm + 1))

k= log(1 — #) (57)

2. Asrt — 0 the GPDM reserve tends to the chain ladder reserve, b(b) —
b.(b). Proof: Use the limit of the hypergeometric function as r — 0 and

qg— 1.

3. If r = v then the GPDM reserve equals the Bornhuetter-Ferguson reserve,
b,(b) = by(b). Proof: Applying Eqn. (66) to Eqn. (46) gives

’ _ QU2 qu2
) =1 =2 (58)
Since r = v, ¢/p = m/v and so
) muy
b,(b) = —= =m(l ~7) (59)

v
as required. The case r = v represents an exact balance between the un-
certainty in ultimate losses and claim count emergence which reproduces
the Bornhuetter-Ferguson. By Eqn. (24) it also represents the case when B,
and B, are uncorrelated.

4. If r = av for a constant « then as v — oo the GPDM reserve converges to
the Bornhuetter-Ferguson: b (b) — b;(b).

5. For fixed small v > 0 the GPDM reserve is close to the peg reserve as
r — o0o. See the figures below.

6. Asv — 0 and r — oo the GPDM reserve tends to zero if b > 0 and
m if b = 0. This is a perverse kind of reserve! It is possible to prove
this analytically, but heuristically the reason is that as v — 0 the Dirichlet
distribution becomes concentrated at the corners. Thus the claims all tend
to be reported at once. So if any claims have been reported then no more
are expected. On the other hand, if none have been reported they should all
still be held in reserve.
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The fourth point needs elaborating because it appears to contradict the main
result of Renshaw and Verrall [22]. Their model assumes incremental claims B;
have a Poisson distribution and hence emergence is modeled with a multinomial
distribution. They prove their model reproduces the chain-ladder reserve when
the parameters are determined using maximum likelihood. As r — oo the GPDM
ultimate has a Poisson distribution. As v — oo the Dirichlet prior becomes a de-
generate distribution, so the DM becomes a multinomial distribution conditional
on ultimate counts B(n). In this situation B, will also have a Poisson distribution
and so in the limit the GPDM model appears to be the same as Renshaw and Ver-
rall’s, and yet it gives the Bornhuetter-Ferguson reserve and not the chain-ladder.
The reconciliation of this apparent contradiction is that Renshaw and Verrall fit
the emergence pattern (means of the multinomial) and the prior accident year
means from the data. If we interpret these parameters as prior estimates then their
model produces exactly expected emergence—see [22, Eqn. (2.4)]. In the GPDM
model the emergence pattern and accident year means are given a priori. As
v,r — oo both parameters become certain. If losses emerge exactly as expected
then the chain-ladder and Bornhuetter-Ferguson methods agree and so the GPDM
would also give the chain-ladder reserve. However, actual emergence from the
GPDM need not be exactly equal to expected because the means and emergence
are specified a priori. Note that in the Poisson-multinomial model (r,v — 00)
B, and B; are independent so the linear least squares method also reproduces the
Bornhuetter-Ferguson.

These mathematical limits of the GPDM method are mainly of academic in-
terest. However, the way the GPDM interpolates between the common reserving
methods for realistic values of 7 and v is of practical interest because it provides
analytical guidance to supplement actuarial judgment. We now explore that inter-
polation.

Figure 4 shows a plot of b (b) against b for r = 25, 7 = 0.45, m = 110
and v = 0.1,1,10,25.100,1000. Each plot also shows the peg, chain-ladder,
Bornhuetter-Ferguson, k-Benktander and linear least squares reserves. The value
of k is determined by Eqn. (57). Figure 4 ties back to the six points we made
about by,
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o The four standard methods do not change with v. The linear least squares
method is sensitive to v and is a line through b}, as expected.

o Point 1 is illustrated by v = 100 and v = 1000. The GPDM method tends to
the predicted k-Benktander method line for larger k. If we had plotted large
v and small » the GPDM line would eventually convert up to the chain-
ladder line, per Point 2.

e Point 3 is illustrated by v = 25 = r; the GPDM line lies underneath the
Bornhuetter-Ferguson line.

o The fact that the GPDM favors the peg method when v < r and the chain-
ladder method when v > r is shown in the increasing slope of the GPDM
line from the first plot to the last.

e Point 5 is illustrated by v = 1: b} is close to the peg method.
e Point 6 is illustrated by v = 0.1 which shows &), — 0 for larger b.

Figures 5 and 6 are two views of the bivariate density of (B, B,) computed
withm = 110 claims, r = 25and 7 = 0.45, so E(B;) = 49.5 and E(B;) = 109.5.
The nine contour plots correspond to v = 0.1, 1, 2.5, 5, 10, 25, 100, 1000, 10000.
As expected, when v < 25 B, and Bs are negatively correlated. When v = 25 they
are uncorrelated and when v > 25 they are positively correlated. The posterior
distribution of By, | By = b; is simply a re-scaled vertical slice through these
distributions, so the reader should be able to connect these plots with the plots of
b,(b). The cases v = 0.1 and v = 1 help explain how the GPDM reacts given
extreme uncertainty in the payout pattern. The 3-d plot explains why the contour
plot seems to disappear: the probability becomes concentrated along the axes.

This completes our theoretical investigation of the properties of the GPDM
distribution. We have produced easy-to-compute expressions for the marginal and
conditional distributions and written down the mean of the posterior distribution of
unreported claims given claims observed to date. Next we show how the GPDM
can be used in practice by applying it to a particular claim count development
triangle.
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Figure 4: b(b) for r = 25, # = 045 E(A) = 110 and v =
0.1,1,10,25,100,1000, compared with the peg, chain-ladder, Bornhuetter-

Ferguson, Benktander £ and linear least squares methods. & = 1.826 determined
by Eqn. (57).
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Figure 5: Contour plots of the bivariate density (B;, By) with r = 25, m = 110,
7 = 0.45 shown for v = 0.1,1,2.5, 5,10, 25, 100, 1000, 10000.
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v=0.1

v=100 “v=1000 ““v=10000

Figure 6: Three dimensional density plots of the bivariate density (B;, By) with
r = 25, m = 110, m = 0.45 shown for v = 0.1, 1, 2.5, 5, 10, 25, 100, 1000, 10000.
The z-scales are all the same. The orientations vary by plot.
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7 PARAMETER ESTIMATION

The GPDM model for n periods of development uses n + 2 parameters; of these
the n development-related parameters vy, ..., v, would usually be shared across
multiple accident years. The prior mean m of the ultimate distribution would vary
by accident year and r would generally be considered common. Thus to model
a development triangle with n accident years and development periods there are
2n + 1 parameters. If there is a good exposure measure then prior mean could
be modeled as a common frequency times exposure and that would reduce the
number of parameters to n -+ 2.

Reasonable initial estimates for m should be available from the pricing de-
partment. A view of r could be driven by a macro line-of-business level study.
Alternatively we could take r to be very small corresponding to a non-informative
prior for the ultimate.

Kotz et al. [11] discuss using sample moments to estimate the parameters
vy of a Dirichlet-multinomial. Let 7], be the sample mean of the proportion
of claims observed in the tth period (computed with respect to the chain-ladder,
for example), and let Af}, be the mean of the square of the proportion of claims

observed in the first period. Then reasonable starting parameters are

~ (]\[{1 - ]”ﬁl)]\[{t .
v = M (ML) i=1,...,n—1 (60)
1 n—1 ’
ﬁn — (]‘[l,] _ ]\[21)(1 _/ t=1 Allf). (61)
‘Alél - (]\[ll)2

Alternatively taking v; =: .- = v, = 1 gives a prior emergence distribution

equal over all periods, which could be regarded as a non-informative prior.
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Table 1: Incremental Claim Count Data

Year [ 1 2 3 4 5 6 7 8 9 10| b

1990 {40 124 157 93 141 22 14 10 3 2606

1991 {37 186 130 239 61 26 23 6 6 714

1992 |35 158 243 153 48 26 14 5 682

1993 |41 155 218 100 67 17 6 604

1994 {30 187 166 120 55 13 571

1995 {33 121 204 87 37 482

1996 | 32 115 146 103 396

1997 |43 111 83 237

1998 | 17 92 109

1999 | 22 22

Table 2: Loss Development Factors

AY 1:2 2:3 3:4 4:5 5:6 6:7 7:8 8:9 9:10
1990 4100 1.957 1290 1341 1.040 1.024 1.017 1.005 1.003
1991 6.027 1.583 1.677 1.103 1.040 1.034 1.009 1.008
1992 5514 2259 1.351 1.081 1.041 1.021 1.007
1993 4780 2.112 1.242 1.130 1.029 1.010
1994 7233 1.765 1.313 1.109 1.023
1995 4.667 2325 1.243 1.083
1996 4.594 1.993 1.352
1997 3.581 1.539
1998 6.412
Wtd. Avg. | 5.055 1.930 1350 1.134 1.035 1.023 1011 1.007 1.003
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8 EXAMPLE

‘We now give an example to illustrate the use of the GPDM to estimate the distri-
bution of unreported claims.

The incremental claim count data is shown in Table 1 and the claim count de-
velopment factors are shown in Table 2. The right hand column shows total counts
observed to date b. This data was analyzed by de Alba [5]. Using a Bayesian
model he found a mean of 919 outstanding claims with a standard deviation of
79.51.

We use Eqn. (20) to compute the likelihood of each row of the development
triangle and then determine the maximum likelihood estimate parameters. Initial
parameter values were r = 25, the chain ladder estimates for the prior means m;
by accident year, and the estimates of v; given in the previous section. The starting
values and maximum likelihood estimates for m; are shown in Table 3. Table 4
shows the same thing for v; along with the incremental reporting patterns for both
estimates. The maximum likelihood estimator for r is 1625458.8 which is much
closer to Poisson than the starting value and v = 129.018 so the model has r > v.
Clearly the development pattern for this triangle is quite erratic, and so a low v
is expected. One reason that r is so large is the use of a different variable m; for
each accident year. These parameters absorb some of the claim count variability
and increase r.}

Table 5 shows the GPDM, chain ladder and Bornhuetter-Ferguson reserves,
and the standard deviation and coefficient of variation of the GPDM reserve. The
overall reserve is slightly lower than the chain ladder. It is interesting that the
reserves are actually higher for the older years and lower for the more recent
years.

Figure 7 shows the distribution of the GPDM reserve. This distribution is the
sum of the reserve distributions for each accident year, assuming they are inde-
pendent. Figure 8 shows the evolution of the predictive aistribution of ultimate
claims for the oldest accident year, as more and more claim information becomes
available.

3Exposure information was not available for this triangle, but estimating an exposure base
produced a modeled 7 = 196.1, lowered the reserve to 889 from 895 and increased the standard
deviation of the reserve to 55.4 from 40.5. The estimate of v declined slightly.
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Table 3: Starting and maximum likelihood estimates of m for each accident year.

Year | CL Mean | Prior Mean m
1990 606.0 606.0
1991 716.4 718.2
1992 689.0 692.5
1993 616.7 621.6
1994 596.2 601.8
1995 520.8 527.1
1996 485.1 487.9
1997 391.9 390.0
1998 3479 339.8
1999 355.0 333.0

Table 4: Starting and Maximum Likelihood Estimates for v; with implied incre-
mental and cumulative proportion of claims reported

t 1 2 3 4 5

Initial v, 13.195 | 52.531 | 60.500 | 43.094 | 22.834
Incremental | 0.064 | 0.253 | 0.292 | 0.208 [ 0.110

Cumulative | 0.064 | 0317 | 0.608 | 0.816| 0.926

MLE v, 8.477 | 32.702 | 36.891 | 26.322 | 13.367
Incremental | 0.066 | 0.253 | 0.286 | 0.204 | 0.104

Cumulative | 0.066 | 0.319 | 0.605| 0.809 | 0913

t 6 7 8 9 0]v="5u
Initial v, 6.636 | 4.428 | 2.225| 1.384| 0.686| 207.514
Incremental | 0.032 | 0.021{ 0.011| 0.007 [ 0.003

Cumulative | 0.958 | 0979 | 0990 | 0.997 | 1.000

MLE v, 4488 | 3.010| 1.729; 1.246 | 0.786 | 129.018
Incremental | 0.035} 0.023 | 0.013| 0.010| 0.006

Cumulative | 0948 | 0971 | 0984 | 0994 | 1.000
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Table 5: Comparison of Reserve Estimates (r = 1625458.8, LL = —221.42)

Year b | m |b(b) | Std. Dev. | CV | b (b) | by(b)
1991 | 714 [ 718 4 5.018 | 1.191 2 2
1992 | 682|693 11 7.671 | 0.728 7 7
1993 | 604 | 622 18 9.300 | 0.529 13 13
1994 | 571 | 602 31 11.688 | 0.380 25 25
1995 | 482 | 527 45 12.910 | 0.287 39 39
1996 | 396 | 488 92 15.965 | 0.174 89 90
1997 | 237 | 390 153 16.774 | 0.110 155 154
1998 | 109 [ 340 | 231 17.344 | 0.075 | 239 | 233
1999 221333 31 18.072 | 0.058 | 333 | 312
Total | 4423 895 40.465 | 0.045 | 902 | 876

0.010

0.009

0.008

0007

Probability Density
< (=] <
< [~ (=3
g 2 %

0.003

0.002

0001

650 750 850 950 1,050 1,150 1,250 1,350

Total Reserve

Figure 7: Distribution of total reserve.
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Figure 8: Predictive distribution of ultimate losses for oldest accident year starting
with prior and adding observed losses for each development period.
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9 EXTENSION TO LOSS DEVELOPMENT

The GPDM model applies to claim counts. Understanding claim counts can be
a hard problem and the power of the model for working with counts should not
be discounted. Nonetheless an extension to loss development is desirable. There
will not be a similarly tractable model for loss development—ijust as there is no
analog of the Poisson-gamma model for aggregate loss distributions. However,
the general philosophy of the GPDM model, that the appropriate reserve depends
on the relative variance of ultimate losses and loss emergence, carries over in-
tact to losses and the problem is to determine a suitable bivariate distribution for
observed and unobserved claims. Once that bivariate distribution is in hand nu-
merical methods can be used to produce predictive reserve distributions. There
are at least two approaches we could take.

Firstly, like Renshaw and Verrall [22], we can just use the GPDM directly to
model losses. This is actually a more rational assumption than it seems. For a
large book of business with a “tame” severity distribution (for example, where
all policies have a low limit) the severity quickly diversifies and the normalized
distribution of ultimate losses converges in distribution to the distribution of A as
the book gets larger, see Daykin et al. [4, Appendix C] or Mildenhall [17, Section
2.10]. This method would be particularly appropriate when the maximum severity
is of the same order of magnitude as the average severity because the diversifica-
tion would occur more quickly. Working layer excess of loss reinsurance is an
example.

The second approach is to try and determine a bivariate distribution for B,
and B, and work with it numerically. Here we need a distribution of severity
at tth report and ultimate. This could be estimated directly from a transactional
loss database. The severity component would be combined with a mixed count
emergence model like the GPDM. The aggregate distributions could be computed
numerically using Fourier or fast Fourier transforms, or simulation. Alternatively,
given the model specification and conditional severity distribution, we could use
WinBUGs and MCMC techniques—see Verrall [27]. Understanding individual
claim severity development is a great opportunity for further actuarial research in
loss development. Since claim databases for most lines (except workers compen-
sation) are much smaller than exposure databases this is also a practical thing to
do.
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10 CONCLUSIONS

We have introduced the GPDM model of claim count development and computed
many of its important actuarial properties. The GPDM model incorporates esti-
mates of the variability of ultimate claims and the claim emergence pattern into its
estimates of reserves. Selecting between different reserve estimates is something
usually done via actuarial judgment. The GPDM model can help bolster actuarial
judgment by supplying a well-defined analytic selection framework.

The model includes the chain-ladder and Bornhuetter-Ferguson methods as
special cases, and also closely approximates the peg method and k-Benktander
methods. Thus it provides a rich modeling framework for the practitioner.

The GPDM is a statistical model of claim development which can be fit using
maximum likelihood. Given an exposure base, it can also be used to fit ultimates
in the presence of covariates, again also using maximum likelihood. The model
is easy to use and provides full posterior distributions rather than just a point
estimate and standard deviation.

A Appendix: Hypergeometric Functions

The hypergeometric function o F} is defined as

2Fi(a,bciq) =) (el g (62)

<o (k!

The notation {a, b; ¢; q) indicates there are two variables in the numerator, one
in the denominator and one argument (there are generalizations the reader can
readily imagine). The series is absolutely convergent for |g| < 1 and conditionally
convergent for |q| = 1. In our applications g is real and 0 < ¢ < 1, so convergence
is not an issue. Hypergeometric functions have been described as a staple of
nineteenth century math; a glance at any table of mathematical equations will
explain why. The facts we use are gathered from Abramowitz and Stegun [1,
Chapter 15] and Lebedev [13].

The hypergeometric function is very easy to compute for |g| < 1. The follow-
ing algorithm, taken from Press et al. [21], will compute 2 F(a, b; ¢; q) for a > 0,
b>0,c>0and 0 < g < 1tomachine accuracy.
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Initialize: £ =1, g=1, 1i =1

do
g=g* g*a*b/c/1i
f=£f+g
a=a+1
b=Db+1
¢ =c + 1
i=1i4+1
while g > 0
return f

Because the series defining » F] is absolutely convergent it can be differentiated

term by term, giving

d_€=a—b2F1(a+1,b+1;c+1;q) (63)
dq ¢

and more generally

d"F _ (a)n(b)n
dq" (C)n

Euler’s integral representation of o F] is

2Fi(a+n,b+n;c+n;q). (64)

()

2Fi(a,byciq) = T(®)C(c-b)

1
/ 711 = 1)1~ tg) ™%t (65)
0
[1, Chapter 15.3]. We will use the result
2Fi(a, bib;q) = o F1(b,a;b;9) = (L — )™ (66)

from [1, Chapter 15.1]. This can be seen by considering the sum of the probabili-

ties of a negative binomial distribution.
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Incorporating Systematic Risk Into The RMK Framework

Trent Vaughn, FCAS, MAAA

Abstract

The RMK pricing algorithm provides a method for pricing insurance contracts or reinsurance deals. This
paper discusses the incorporation of systematic, or non-diversifiable, risk into the RMK framework.

1. A SIMPLE EXAMPLE OF THE RMK METHOD

Ruhm/Mango (2003) present a simple illustration of the RMK pricing algorithm.
Specifically, this simple example assumes that the insurance (or reinsurance) company
writes two risks, each with the following state-dependent loss vector:

State Risk 1 Loss Risk 2 Loss Portfolio Loss | Probability
1 $100 $100 $200 35%
2 $100 $200 $300 15%
3 $200 $100 $300 25%
4 $200 $200 $400 25%

The RMK algorithm incorporates an adjustment for risk by means of a set of outcome-
specific weights. For this example, Ruhm/Mango utilize the following set of risk-averse
outcome weights:

Portfolio Qutcome Risk-Averse Outcome Weight
$200 0.500
$300 1.000
$400 1.250

These risk-averse outcome weights are similar to Mango’s (2003) concept of a cost
Jfunction. Mango points out that such a function can be interpreted as a corporate utility
function; that is, in some sense, management has determined that a $300 aggregate loss is
“twice as bad” as a $200 aggregate loss.’

These risk-averse weights are then normalized (scaled so that their expected value is one)
to produce the following vector of normalized weights:

! Fama and Miller (1972) point out the many theoretical difficulties involved in interpreting and
determining a “corporate” utility-of-wealth function. However, for purposes of this paper, we will assume
that such a function has been determined by some means.
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Portfolio Outcome Normalized Weight
$200 0.563
$300 1.127
$400 1.408

The RMK method then determines the “risk load” for each of the two risks according to
the following formula:

Risk Load for Risk i = Cov(Ri,Z),

where Ri is the loss amount for each of the two risks (i =1, 2),
and Z is the vector of normalized weights.

Thus, the resulting risk load is $13.38 for Risk 1 and $12.11 for Risk 2. The final
premium is then determined by discounting the expected loss for each risk (at the risk-
free rate of interest), then adding the risk load. Assuming that losses are payable at the
end of one year, and a risk-free interest rate of 2%, the final RMK premiums are as
follows:

Premium for Risk 1 = $150/1.02 + $13.38 = $160.44
Premium for Risk 2 = $140/1.02 + $12.11 = $149.36

2. THE FINANCIAL PRICING METHOD

By comparison, let’s utilize a financial pricing method to price each of the risks in the
previous example. If we ignore default costs, then the financial premium formula
reduces to the following equation:

Premium = Present Vaiue of Expected Loss (at risk-adjusted rate) + Capital * Cost of
Capital

According to the Capital Asset Pricing Model (CAPM), the risk-adjusted discount rate
for the loss amount depends on the relationship between the loss random variable and the
return on the market portfolio. Let's assume the following state-specific returns (Rm) for
the market portfolio:

State Return on Market Portfolio (Rm)
1 +25%

2 +10%

3 +4%

4 -5%
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For each of the two risks, the present value of the expected loss at the risk-adjusted rate,
or PV(Ri), is determined according to the certainty-equivalent version of the CAPM:?

PV(Ri) = E(Ri)/ (1 + Rf) — [Lambda * Cov(Ri,Rm)] / (1+R¥),

Where E(Ri) is the expected loss amount for each of the two risks,
Rf'is the risk-free rate of interest,
And Lamda is the “market price of risk™ given by:

Lambda = [E(Rm) — Rf] / Var(Rm)

According to our assumptions regarding the return on the market portfolio, we calculate
the following values:

Cov(RI,Rm)=-5.25
Cov(R2,Rm) =-3.75
Lambda =5.56
PV(R1)=$175.65
PV(R2)=$157.68

In the financial formula, the “cost of capital” is primarily due to double taxation and
agency costs. Let's arbitrarily assume that the cost of capital is 10% of the required
capital. The required capital for each policy is generally determined by allocating the
total capital down to the risk, or policy, level. In the financial method, this allocation
method is generally based on some form of Option Pricing Theory (OPT). However, for
simplicity, let’s assume that a total capital amount is $200, and that it will be allocated in
proportion to the expected loss amount for each risk. The premium for each risk is then
given as follows:

Premium for Risk 1 = $175.65 + 10% of $103.45 = $186.00
Premium for Risk 2 = $157.68 + 10% of $96.55 = $167.33

3. EXPLAINING THE DIFFERENCES BETWEEN THE RMK AND FINANCIAL
PREMIUMS

In the previous two sections, the Financial method resulted in a much higher required
premium for each policy than the RMK method. There are two major reasons for this
discrepancy.

First, the RMK method requires a “calibration” to ensure that the resulting combined
ratio and return on equity are in accordance with the overall corporate objectives. Mango
(2003) discusses the issue of calibration in detail, but the procedure is outside the scope
of this paper. Presumably, the overall return implied by management’s risk-averse
outcome weights would determined; if this overall return falls short of corporate targets,
there would need to be a feedback loop back to management to adjust the weights. The

% See the Appendix to Chapter 9 of Brealey and Myers (2000) for a derivation of this formula.
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procedure would continue until a set of weights had been identified that resulted in an
acceptable corporate return.

Second, the financial method incorporates additional data and assumptions regarding the
state-return on the market portfolio. In other words, the financial method incorporates
the “systematic risk” of the loss variables, whereas the RMK method did not. Since these
loss variables possessed a negative covariance with the market return, the incorporation
of systematic risk resulted in an increase in the required premium.

This begs the question: can we adjust the RMK method from Section 1 to reflect the
market return data — and the “systematic risk” of the loss variables? This question will be
explored in the following section.

4. AMETHOD FOR REFLECTING SYSTEMATIC RISK IN THE RMK
ALGORITHM

Mango (2004) presents a simplified flow-chart method for incorporating systematic risk
into the RMK framework. Essentially, the method combines the results of the insurer’s
underwriting portfolio and the insurer’s asset portfolio to produce a state-specific net
income distribution. This net income distribution then serves as the reference portfolio
for the RMK application.

In order to determine this net income distribution, we need to develop some assumptions
regarding the insurer’s investment (or asset) portfolio. For this example, let’s assume
that 80% of the insurer’s assets are invested in risk-free bonds, earning the risk-free rate
of 2%; the remaining 20% of the insurer’s assets are invested in the market portfolio,
earning the state-specific returns provided in Section 2.

Since we are now dealing with net income, management’s risk preferences must be stated
in terms of various net income amounts (as opposed to aggregate loss amounts). Let’s
assume that management has developed the risk-averse outcome weights as a function of
various net income amounts. Again, there is an intuitive interpretation of this risk
aversion function.> For instance, let’s say that the outcome-specific weight is 1.25 for net
income of $50 and 0.25 for net income of $150; in this sense, management views a net
income result of only $50 as being “five times as bad” as a higher net income result of
$150.

In this case, the RMK method requires an iterative approach, since the resulting premium
amount impacts both the underwriting income and the investment income.* With the
asset allocation assumptions above — together with some assumed values for the risk-
averse outcome weights -- the resulting premium is $171.77 for Risk 1 and $160.47 for
Risk 2. The following chart and formulas provide the details of the calculation:

® And, again, we will ignore the theoretical and practical difficulties involved in determining this function.
* Investment income is impacted since total assets are equal to total premium plus total surplus.
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Aggregate | Market Net Mgt. Risk | Normalized
State Probability | Loss Return Income Weight Weight (Z)
1 0.35 $200 25% $167.37 0.25 0.230
2 0.15 $300 10% $51.41 1.25 1.149
3 0.25 $300 4% $45.02 1.25 1.149
4 0.25 $400 -5% -$64.56 2.00 1.839

Risk Load for Risk 1 = Cov(R1,Z) = $24.71
Risk Load for Risk 2 = Cov(R2.Z) = $23.22
Premium for Risk 1 = $150/1.02 + $24.71 =$171.77
Premium for Risk 2 = $140/1.02 + $23.22 = $160.47

Also, it may be helpful to illustrate the calculation of the net income amount for state 1.
In this state, the income variables are as follows:

Underwriting Income = Total Premium — Aggregate Loss = $332.24 - $200 = $132.24
Total Assets = Total Premium + Surplus = $332.24 + $200 = $532.24

Assets Invested in Market Portfolio: 20% of $532.24 = $106.45

Assets Invested in Bond Portfolio: = 80% of $532.24 = $425.79

Investment Income from Market Portfolio = 25% return on $106.45 = $26.62
Investment Income from Bond Portfolio = 2% return on $425.79 = 8.52

Total Income® = $132.24 + $26.62 + $8.52 = $167.38

Net income for the other states is determined in a similar manner.

5. POTENTIAL PROBLEMS WITH THE MANGO ADJUSTMENT FOR
SYSTEMATIC RISK

In some sense, the method in Section 4 does provide an adjustment for systematic risk,
since the insurer’s net income depends (to a certain extent) on the return on the market
portfolio. However, the sensitivity of the insurer’s net income to the market return will
depend on the insurer’s asset allocation. For example, if the insurer is invested entirely in
risk-free bonds, then net income will be unaffected by market return.

Moreover, in a practical situation, the insurance company invests in many more asset
types than simply a “market portfolio™ and risk-free bonds. Insurers may invest in
corporate bonds, some sampling of common and preferred stocks, real estate, etc. In
addition, the insurer’'s common stock portfolio may not be fully diversified, but invested
in only a handful of individual stock holdings. In this case, the net income approach will
reflect the risk characteristics of the insurer’s asset portfolio, but it would be incorrect to
say that it has “incorporated systematic risk” into the analysis.

* This is actually total income prior to federal income taxes. We are ignoring federal income taxes in this
example.
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As an alternative, we may wish to calculate the insurer’s net income distribution by fully
utilizing the return on the representative market portfolio -- that is, make the assumption
that the insurer is 100% invested in the market portfolio. This approach is still subject to
the following drawbacks:

1. Instead of using the assumption of 100% in the market portfolio, we could have
used some other hypothetical mixture, such 75% in the market portfolio and 25%
in risk-free bonds. 1t isn’t clear which representative mixture best incorporates
“systematic risk” into the net income distribution. And, in general, the resulting
risk loads (and premiums) will vary on the basis of the assumed allocation.

2. It becomes much harder to provide any intuitive meaning to the risk-averse
outcome weight. The subject of these outcome weights is now a complicated
intermingling of the market return volatility and the insurance portfolio volatility
— and may bear little resemblance to the actual net income result for the insurance
company in any particular state.

3. There are already a variety of financial approaches for reflecting the systematic
risk of a cash flow (e.g. CAPM, APT, Fama-French Three Factor Models). These
models are not based on judgmental assessments of management’s risk
preferences, but financial theories regarding equilibrium in capital markets. By
combining the adjustments for systematic risk and insurance risk into one step, we
are not able to utilize these financial theories regarding systematic risk.

It is possible, in theory, to determine a set of risk-averse outcome weights for the RMK
procedure that will duplicate the premiums from the financial model.® This, however,
provides little guidance to the actuary who is pricing a reinsurance deal “from scratch”.
That is, assuming that the answer is not known in advance, the pricing actuary must
determine a set of risk-averse outcome weights from a reference portfolio that has little
(if any) intuitive or practical meaning.

6. AN ALTERNATIVE METHOD FOR INCORPORATING SYSTEMATIC RISK
INTO RMK

As an alternative to the method in Section 4, we can accommodate systematic risk within
an RMK framework simply by discounting the expected losses at a risk-adjusted discount
rate. In other words, simply utilize the RMK risk loads from Section 1, but adjust the
discount rate for the losses in accordance with financial theory.

For instance, according to the certainty-equivalent version of the CAPM, the present
value of expected losses for each of the two risks was given as follows (per Section 2):

PV(R1) = $175.65
PV(R2) = $157.68

¢ Assuming that the surplus allocation in the financial model is additive, which it is in this case.
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According to the RMK method of Section 2, the risk loads (excluding systematic risk)
were $13.38 for Risk 1 and $12.11 for Risk 2. By adding these risk loads to the present
value (at the risk-adjusted rate) of losses, we get the following premiums:

Premium for Risk 1 =$175.65 + $13.38 = $189.03
Premium for Risk 2 = $157.68 + $12.11 = $169.79

By using this method, we can also “bridge the gap™ between the financial method and the
RMK method. Specifically, in the financial method in Section 2, we allocated capital in
proportion to expected losses. As an alternative, let’s allocate capital in accordance with
the risk-averse outcome weights assigned to the various aggregate loss amounts in
Section 1. In other words, allocate capital to each risk in proportion to that risk's relative
contribution to the covariance between the aggregate loss outcome and the Z-vector. For
instance, the percentage of capital allocated to Risk 1 is Cov(R1,Z) / Cov (Aggregate
Portfolio Outcome,Z) = $13.38 / $25.49 = 52.5%.’ According to the Z-vector from
Section 1, the $200 capital would then be allocated at $104.99 for Risk 1 and $95.01 for
Risk 2. The financial premiums then become:

Risk 1 Premium = $175.65 + 10% of $104.99 = $186.15
Risk 2 Premium = $157.68 + 10% of $95.01 = $167.18

Lastly, the final reconciliation issue is simply a problem of "calibration" (per the
terminology in Mango). That is, there is no reason to expect that the total capital ($200)
and cost of capital (10%) in the financial model will produce the same ROE as the RMK
method. But, on an individual policy level, the ratio between the premiums for each risk
is the same. Thus, we can complete the reconciliation by changing either the total capital
or the cost of capital in the financial model. Let's change the cost of capital to 12.75%,
which will complete the reconciliation:

Risk 1 Premium = $175.65 + 12.75% of $104.99 = $189.03
Risk 2 Premium = $157.68 + 12.75% of $95.01 = $169.79

7. SUMMARY

This paper has presented two proposed methods for incorporating systematic risk into the
RMK pricing algorithm. The Mango (2004) method is plagued by an assortment of
theoretical and practical problems. In short, the best method for incorporating systematic
risk into the RMK framework is simply to discount the expected losses at a risk-adjusted
hurdle rate. This risk-adjusted rate can be determined by any one of the common
financial pricing models, including the CAPM, the APT, or the Fama-French Three
Factor Model.

7 Also, note that this is just the ratio of each of the individual risk loads to the total risk load.

Casualty Actuarial Society Forum, Winter 2006 501



Incorporating Systematic Risk Into The RMK Framework

REFERENCES
Brealey, Richard A., and Myers, Stewart C., Principles of Corporate Finance, 6"
Edition, McGraw-Hill, 2000.

Fama, Eugene F., and Miller, Merton H., The Theory of Finance, Holt, Rinehart &
Winston, 1972.

Mango, Donald F., “Capital Consumption: An Alternative Method for Pricing
Reinsurance,” Winter Forum, Casualty Actuarial Society, 2003.

Mango, Donald F., Unpublished Power Point Presentation, 2004.

Ruhm, David, and Mango, Donald F., “A Risk Charge Based on Conditional
Probability,” Bowles Symposium, 2003.

502 Casualty Actuarial Society Forum, Winter 2006



A Portfolio Theory of Market Risk Load

Yingjie Zhang, PhD, FCAS

Abstract

In insurance pricing, it is convenient to split the total risk load for a policy
into the market risk load and the insurer specific risk load, and calculate
each separately. The market risk load represents an equilibrium price on a
competitive insurance market. A portfolio theory is developed along the line
of the classic CAPM, where a policy’s market risk load is a function of its
systematic risk and the risk load of the entire insurance market. The model
is mathematically proved. As a corollary a formula for the risk adjusted
discount rate is obtained. Issues about the real world application and testing

are also discussed.

1 Introduction

Risk load calculation is important in insurance princing. As long as risk is trans-
fered in an insurance transaction, a risk load should be included in the premium.
The purpose of the risk load is to reward the insurers for taking the insurance
risk. An insured pays a certain amount of premium to eliminate the uncertainty
in future loss costs, and an insurer collects the premium and assumes the responsi-
bility of paying any claims. Since both the insured and the insurer are risk averse,
the insured is willing to pay a premium greater than the expected loss, and the
insurer needs that additional premium to justify taking the risk. The size of the
risk load depends on the riskiness of the insured loss and the competition on the

insurance market.

In the actuarial literature the calculation of risk load has experienced consid-
erable change. In the classic premium principles, a risk load is determined by the
volatility of the insured loss itself, and the volatility is measured by the variance
or the standard deviation [15]. Although these methods are still used, they have

been considered inadequate. As pointed out in Feldblum [8], they measure the
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insured’s risk but not the insurer’s risk, inconsistant with the purpose of risk load.
More reasonable risk load formulas were proposed in [8] and [12], which took ac-
count of not only the volatility of the policy loss but also the company insurance
portfolio and the market competition. These articles were inspired by the mod-
ern financial theory, especially the Capital Asset Pricing Model (CAPM). Under
the assumptions that the insurance market is competitive and the market players
are “rational” decision makers, supply and demand determine an equilibrium risk
load. These methods better reflect the insurer perspective of risk loads. They are

among the first attempts to extend the modern financial theory to insurance.

A recent COTOR review article [6] lays out a framework for the study of all
risk components in premium. Underwriting risks come from various sources. Risks
resulting from the uncertainty in an insured loss and the economic conditions of
the insurance market do not rely on the particular insurer with which the policy is
insured. The frictional cost of capital, on the other hand, is one of the risk items
related to the capital structure of a particular insurer. So it is natural to split
the insurer total risk load into two classes, the market risk loads and the insurer

specific risk loads, which may be calculated separately. The following split is given
in [6]

premium = expected loss + market risk premium

+ risk management cost + expected default + expenses.

The total risk load consists of the second and the third term on the right hand
side. (The expected default is a reduction to premium, so is not considered part
of the risk load.) The market risk premium is just another name for the market
risk load. The risk management cost includes all risks steming from an insurer’s

holding capital.

The market risk load is the subject of this paper. (Here the word “market”
means the insurance market, not the total financial market.) The market equilib-
rium approach, whose power has been demonstrated repeatedly in modern finan-
cial theory, will be employed to derive a risk load model. (The same approach,
however, seems less effective in studying the insurer specific risk load, since com-
panies have different line-of-business composition and different capital adequacy.)

The paper is structured as follows. In Section 2, we examine the concept of market
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risk load in detail. The market risk load is determined by a market equilibrium
where no arbitrage opportunities exist. It is not related to the line-of-business
composition and the capital amount in any particular insurance company. Section
3 reviews various risk load models in the literature. We focus on the market equi-
librium approach and the CAPM-related models. The CAPM idea seems widely
applicable. But for a model to work it is necessary to reexamine the assumptions
and perferrably provide a mathematical proof. Each risk load model by and large
reflects one of the two pricing views: the actuarial view and the financial view.
The former addresses the risk/return of the insurance companies, and the latter
that of the shareholders.

In Section 4 we develope a portfolio theory for the market risk load. The
derivation is parallel to the CAPM. The market risk load for a policy is a function
of its systematic risk, defined in line with the § parameter in CAPM. The risk load
is also in proportion to the overall market risk load, so is influenced by the level
of competition on the insurance market, and in particular, by the underwriting
cycles. A corresponding equation for the risk adjusted discount rate is derived in
Section 5. Just like the CAPM, our model may not be a perfect fit in the real
insurance market. In Section 6 we discuss what may happen when some of the
theoretical assumptions fail. Modifications seem necessary to obtain more realistic
models. Empirical testing of this or any other insurance models is difficult, due
partly to the settlement lag and the data limitation. Finally, a mathematical proof

is given in the appendix.

2 Market Risk Load

Market risk loads represent equilibrium prices in a competitive market. To deve-
lope a theory for the market risk load, we assume there exists an ideal insurance
market. Insureds and insurers are risk averse. Insureds pay a premium to transfer
their future uncertain loss to the insurance market. They are willing to pay a risk
load in addition to the expected loss. The size of the risk load is commensurate
with the risk transfered. On the other hand, insurers enter the insurance market
to make a profit. They accept a premium, invest the proceeds in the financial mar-
ket, and pay any claims. Because of the uncertainty of the future loss, an insurer

demands a risk load over and above the expected loss. In a competitive market,
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the insureds shop around to pay the lowest possible risk load, while the insurers
collect the highest possible risk load from each policyholder and select the policies
to minimize the total insurance risk. Further assume the market is efficient, so
that insureds and insurers have perfect information regarding the expected loss
and the risk of any policy, and they can easily access the entire market. Under
these conditions there exists an equilibrium risk load for each policy. This is the

market risk load.

The real insurance market has inadequate competition and efficiency. The in-
sureds do not have sufficient information about price, so they may not find the
lowest one. Insurers are limited by underwriting expertise and regulation, so they
only write a few business lines and charge noncompetitive rates. Besides, without
a frictionless trading mechanism, it is not possible to reach the equilibrium prices.
Nevertheless, the market risk load is still a useful concept. It represents a fair
premium to both insureds and insurers. It may not be reached, but can be un-
boundedly approached with improvement in market competition and efficiency. In
a market segment where risk securitization is in place, the market risk load may
be practically realized. CAT call spreads and bonds are examples of successful

securitization.

The market risk load avoids the consideration of line-of-business composition
and capital structure of a particular insurer. (In other words, we imagine “ab-
stract” insurers that have unlimited and costless access to capital. They are able
to minimize the total insurance risk by diversification, and they charge risk loads
only to cover the uncertainty risk in the claims.) This allows a portfolio theory to
be developed. On the other hand. the insurer specific risk varies with a different
set of risk factors. The frictional cost of capital is one important component of
the insurer specific risk, examples of which include taxation and agency costs. [23]
gives a detailed analysis of the frictional cost. Premium charge for the frictional
cost is a function of the capital amount allocated to the individual policies. Re-
cent development in capital allocation includes [17], [20] and [27]. In practice,
many companies also charge policyholders additional premium to compensate for
their more risky line-of-business composition. Large and multiline insurers have
a higher degree of diversification, so demands relatively lower risk loads, while

small and monoline insurers require higher risk loads. It seems unreasonable to
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charge the policyholders for an insurer’s own inefficiency. Yet since the actual
competition on the market is inadequate, companies are able to obtain this extra
premium from unknowing policyholders. In actuarial literature, quantification of
insurer specific risk loads is less studied. The market equilibrium approach seems

powerless here.

In the rest of the paper we omit the insurer specific risk load, and focus only
on the market risk load. The term “risk load” and “market risk load” may be
used interchangeablly. We also ignore all expenses. Therefore, the premium has

the following expression
premium = expected loss + market risk load.

Venter [22] discusses constraints imposed on premium in a competitive market,
where any arbitrage activity must be short-lived. In equilibrium state the market
is arbitrage-free. A necessary condition for an arbitrage-free market is that the
premiums are additive, meaning that the total premium for a group of policies,
whether independent or not, equals the sum of the individual premiums. This
implies that the market risk loads are additive. Notice that when the insurer spe-
cific risk loads are included, the total risk loads do not have the additive property.
Because of the diversification effect, the insurer specific risk load of a portfolio is
likely to be lower than the sum of that of the individual policies. (It makes sense,
however, for the total risk load to be additive within an insurance company.) [6]

also has an interesting discussion on additivity.

Diversification is an important concept in modern financial theory. There are
many forms of diversification in the insurance world. The market risk loads provide
a simple one. When policies are combined into a portfolio, the portfolio risk load
is the sum of the individual risk loads. However, as long as the policy losses are
not perfectly correlated, the risk of the portfolio, represented by the standard
deviation or other reasonable measures, is less than the sum of the individual
risks. So it is to an insurer’s advantage to write a large volume of multiline
insurance portfolio. Greater diversification effect may be achieved by insuring

many negatively correlated risks.
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3 Review of Risk Load Models

On the surface the insurance market is analogous to the securities market. The
insurance policies are like the securities, and the insurers the investors. An in-
surer’s charging a risk load is similar to an investor’s demanding a risk premium
for a risky asset. Therefore, there is a great temptation in applying the securities

pricing techniques to the insurance pricing.

Much research has done to extend the classic CAPM to risk load calculation.
Among the P&C actuaries, the Feldblum article [8] was influential and inspired a
great deal of discussion. It provides a CAPM-like model to calculate the risk loads
by line. It argues that the CAPM has many advantages over other methods like
the standard deviation, the probability of ruin, or the utility functions. However,
as commented later on ([13] [21]), [8] contains some conceptual difficulties and the
risk load formula is not convincing. One significant conceptual flaw in [8] is that
it “simply borrows the CAPM notation while ignoring the underlying message
of the CAPM paradigm” [21]. This subtle and important point warrants further

explanation.

A basic CAPM assumption is that the investors are risk averse. They select
the securities to maximize the portfolio return and minimize its risk. The selection
process by many small investors produces a market equilibrium where the security
returns are given by the classic CAPM. The CAPM is intuitively appealing and
can be mathematically proved. It is also extensively tested with empirical data.
Many modifications are proposed in response to the unfavorable test results. The
current status of the issue is summarized well in [6] and [1]. The argument in (8],
however, ignores the shareholders of the firm and the returns required by the finan-
cial market. In that setting the classic CAPM is not applicable. [8] replaces the
investor/security pair by the firmi/line-of business-pair, and restates the CAPM
in terms of the latter. Without carefully examining the CAPM assumptions or
providing a mathematical proof, .his approach becomes simply “borrowing nota-
tion”, which often leads to erroneous results. In a different context, Mildenhall
[16] spells out the error of borrowing notations from the option pricing paradigm

to the insurance pricing.

The classic CAPM is a cornerstone of the modern financial theory. Its eco-
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nomic implication extends far beyond the formula itself. Even in situations the
model is not directly applicable, its insights may still prove useful. Meyers [12]
provides a risk load formula using the frequency and severity. The formula is de-
rived along the line of the CAPM, from the equilibrium in a competitive insurance
market. It is used by ISO in the calculation of the increased limit factors. The risk
load problem is closely related to that of the risk adjusted discount rate. Butsic
[3] derives a formula for the risk adjusted discount rate that looks similar to the
CAPM. While in the classic CAPM the risk adjustment usually increases the rate
of return (a positive (), the risk adjustment in a discount rate formula is nega-
tive, decreasing the discount rate for uncertain losses. (More discussion on this

in Section 5.) Kulik [11] reviews many other CAPM related insurance applications.

The CAPM is based on the mean-variance optimization. The market risk load
is also studied using other utility functions. The Biihlmann economic premium
principle is one example [2]. The economic premium is equivalent to the market
risk load. If P is an economic premium for an insured loss X, then P — E(X)
is the market risk load in our definition. [2] uses an exponential utility function.

[25] contains some new development.

Venter [22] proposes two risk load principles satisfying the additive condition:
the covariance principle and the adjusted distribution principle. Our portfolio the-
ory is an example of the former. The adjusted distribution principles have been
studied extensively. Two of the well-known adjustments are the PH-transform
and the Wang transform [24] [26]. An adjusted distribution readily produces risk
loads for multiple coverage layers, which are consistent in the following sense: a
higher layer always has a higher risk load relative to the expected loss in that
layer. Butsic [4] calculates the risk loads for excess layers using a generalized
PH-transform. Usually the transforms contain one ¢r more parameters to be de-
termined according to the market conditions. It may be able to use a market
risk load principle, such as developed in [2] or in this paper, to parameterize a

transform. [25] is insightful in this regards.
The COTOR [6] distinguishes twn views of the pricing paradigm. The actuar-

ial view assumes the insurers are risk averse. They make underwriting selections

and actively manage the risk/return of their insurance portfolio. The financial
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view looks at the broader financial market. The shareholders of the insurance
companies are risk averse. They choose to invest in the stocks of the insurance
companies as well as other industries according to a preset utility function. In
other words, the actuarial price is determined by the insurers with the insureds’
fairness in mind, while the financial economic price is set on the market of all fi-
nancial assets. The classic CAPM, being investor focused, has been used to build
financial pricing models [5] [7]. In contrast, the economic premium principle [2] is
purely actuarial. The goal of Feldblum (8] is also to construct an actuarial pricing

model.

It is pointed out in [6] that the two insurance pricing views are converging. But
so far they are still separate for the most part. The financial models ignore the
mutual selection between the firms and the policyholders. The actuarial methods
address the mutual selection but pay little attention to the shareholder welfare.
The two theories complement each other in pricing practice. In the following sec-
tion, we develope a portfolio theory within the actuarial pricing paradigm. Unlike
[8], we price for the market risk only. It is necessary to limit our scope to derive
a precise result. The model is similar to the classic CAPM. But it is about the
insurer/insured relationship instead of the investor/security relationship in the
CAPM.

4 A Portfolio Theory

We derive a risk load formula parallel to the classic CAPM. Our presentation
follows a standard text book [18] (Chapter 8). The setting and the result are

confined to the basic form.

Consider a one-period model where policies are written and premiums are col-
lected at time 0 and losses are paid at time 1. At time 0, a loss payment at time 1
is viewed as a random variable. Assume at time 0 the market has complete knowl-
edge of the random losses. In the context of mean-variance analysis, this means all

market players know the mean, the variance and the covariance of all policy losses.

Assume an insurance market contains N policies with random losses X1, ..., Xn,
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which will be paid at time 1. The total market loss is thus a random variable
XM = X{ 4 ---+ Xy. Assume the market premium for policy i is P;, which
is charged at time 0. Then the total market premium is PM = P; 4+ --. + Py.
Further assume there is a risk free asset with rate of return r;. So an insurer
collects premium F;, invests it in the risk free asset, receives P;(1 +r¢) at time 1

and pays any claim. The rate of return on premium is

P(L+r5) = Xi P -Xi
R="o TR :
' P d F

where the first term is the investment rate of return and the second the under-

writing rate of return. The mean and the covariance of the random returns are

E(X;
Wi = E(Rl) = (1 + T‘f) — LPQ s (41)
_ R = XXy oL X
oij = Cov(R;, R;) = Cov (Pz" Pj) = PP, Cov(X;, X;). (4.2)

Now assume an insurer is allowed to insure any fraction of a policy, as in quota
share treaties, and an insurer can borrow and lend any amount at the risk free
rate. An insurance portfolio thus consists of a; portion of loss X; and a bor-
rowed amount w, where 0 € a; € 1,7 = 1,..., N (more on this condition in the
appendix), and w may be positive or negative. a;F; is the premium charge for

insuring loss a; X;. A negative w means an amount of |w| is lended.

At time 0, the portfolio has a total asset equal to w + Zfio a; P;. When w is
negative, assume |w| is small so that w + Y% ; a;P; > 0. (An insurer can lend no
more than its collected premium.) The asset is invested risk free and receives a
rate of return ry. At time 1, a loss Zf\il a;X; is paid and the borrowed amount
returned together with an earned interest. So the rate of return of this portfolio
is

(w+ 3N aP)1+7f) = TN aiXs —w(l +7y)

Rportfolio =
portfolio w+Ef\i1aiPi
_ Tina(Bi +rp) - Xi)
w+zi1\_i_1a,~P,-

N
i=1 G PR

= === 4.3
w+ YL, ;P (43

Let us examine this setup. The return Rorf.1i0 is essentially a return on premium,
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except for the amount w in the denominator. The return on premium is a reason-
able measure of the insurer profit. In a competitive insurance market, not only
the insurers select insureds, but the insureds choose among the insurers as well.
The mutual selection mechanism forces the market to attain an equilibrium such
that no insurer is allowed an excessive return on premium, no matter what initial
wealth (capital) the insurer has. Each insured is charged an amount of premium
commensurate to its market risk. Ignoring the capital structure of the insurer is
both necessary and reasonable in studying the market risk loads. The inclusion
of an amount w in the portfolio asset is needed for a closed form solution. An in-
surer should be allowed to use borrowing and lending to adjust its risk and return
relationship. Lending at the risk free rate is practically achievable. but borrow-

ing at the rate is less realistic. A similar issue also appears with the classic CAPM.

The mean and the variance of the portfolic return are

Hportfolio = E ( Rportfolio)

= a; Py, (4.4)
w+ Ew 1 Z

a’l 1 i=1
2
OTportfolio = Var(Rportfolio)
1

N
= a,a;P,P,o;; . 4.5
(w+2£\;1ai3)2i;1 1@ 555045 (4.5)

We seek insurance portfolios that have a maximum ppertfolio for a given oporttolios
or a minimum Gportfolio for a given ppertolio- These are called the efficient port-
folios. More formally, a portfolio is efficient with respect to a given 7 = 0 if the

following quantity is maxmized

2
27 Hportfolio — Tportfolio * (4'6)

The number T represents the risk preference of an insurer. Notice that if a
portfolio is efficient then a multiple of the portfolio is also eflicient. This is easily
seen since multiplying a1,...,any and w by the same positive number does not
change either pportfolio OF ogmfono.

The mean-variance criterion (4.6) was used in the classic CAPM. It is also
applicable in our setting. The variance captures the volatility risk of a firm. (The
volatility is a significant risk. Reference [6], p.190, argues that volatility in earn-

ings is harmful because of increased tax liability, reduced opportunity of benefiting
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from deductions, and more costly funds from investors.) In addition, if a portfolio
consists of a large number of policies, its return is approximately symmetrically
distributed, alought the individual loss distributions are not symmetrical. (The
total loss for a line of business is often modeled with a lognormal distribution. If
the line is large the lognormal usually has a small CV, and the distribution is close
to be symmetrical.) So the variance (or the standard deviation) is an appropriate

risk measure.

Assume the N x N variance-covariance matrix X = (oy;) is positive definite.
(A variance-covariance matrix is always nonnegative definite. A necessary and
sufficient condition for ¥ to be positive definite is that none of the linear combi-
nations of the losses Xj,..., Xy is risk free. In particular, if a ground-up loss X
is split into a primary loss X? and an excess loss X¢, then either X or the pair
XP and X may be included in the model, but not all three.) If all insurers make
rational decisions so that each chooses an efficient insurance portfolio, according

to its own risk preference, then the following equation holds

b E(X) _ Con(Xi, X) ( M _ M’l) , (4.7)

Y ol+4ry Var(XM) 1+ry

This is our model for the market risk load. P; — E(X;)/(1 4 ry) is the risk load
(at time 0) for the ith policy and PM — E(XM)/(1 + rf) the overall market risk
load. The appearance of the factor 1 + 7 in the formula is because X; is valued
at time 1 while P; is at time 0. (X;/(1 4 7y) is called in [9] the (random) present
value of X;.) The equation will be proved in an appendix. The fact that all insur-
ers choose efficient portfolios implies that the entire insurance market portfolio is

efficient. Equation (4.7) actually follows from the efficiency of the market portfolio.

Equation (4.7) looks similar to the CAPM, and its proof is parallel to that of
the CAPM. But the difference is noticeable. The investor/security pair in the clas-
sic CAPM is replace here by the insurer/insured pair. The basic assumption in the
CAPM is that the investors are risk averse, and they select securities to minimize
the risk for a given return. Here in the market risk load theory the shareholder is
ignored. The insurers are assumed risk averse. They manage underwriting results
and take risk control measures to minimize the total risk contained in the insur-

ance portfolio.
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As discussed in Section 3, there are two distinct views of the insurance pricing.
The classic CAPM is a basis of the financial pricing approach, while the above
model takes an actuarial point of view. It has been noticed that the two pricing
views are not entirely consistent [6] [21]. Since the shareholders can easily select
the securities and diversify their investment portfolio, they do not require the com-
pany to mitigate its risk. And the risk control is undesirable because it is always
costly. But in practice, risk control and underwriting supremacy are among the
very goals of the company management. With the help of recent development in
Dynamic Financial Analysis, it becomes more probable to optimize the insurance
portfolio, to improve the reinsurance structure, or to make more efficient use of
the company capital. This apparent contradiction is explained in [6]. Because
of imperfection in the financial market, it costs the shareholders if a company
experiences financial distress or excessive profit volatility. Company value “will
increase as long as the costs associated with the practice of risk management do
not exceed the benefits of the risk management program” [6]. Neither the finanical
view nor the actuarial view alone gives a complete picture of the insurance price.

Integration of the two sides appears to be a challenging task.

The overall market risk load in (4.7) is usually positive due to risk aversion. For
most policies, the random loss is positively correlated with the overall market, so
the risk load is positive. The model provides an economic risk load in the sense of
Biihlmann [2]. The risk load reflects not only the risk of the loss itself but also the
market conditions. General economic environment and the level of competition on
the insurance market are reflected in the overall risk load PM — E(XM) /(1 +ry).
An underwriting cycle is just a cyclic change in the overall risk load. PM is high
when the market is “hard”, and is low when it is “soft”. Model (4.7) states that a
change in PM — E(XM)/(1 + r;) causes a proportional change in the risk load of
an individual policy. The overall market has a higher influence on an individual

risk load if the correlation is high.

As in the investment theory, it is the covariance Cov(X;, X™), ratlier than
the variance or the standard deviation of X;, that determines the risk load of X;.

Each X; can be split as follows

X; = XiSyS + Xiuns,
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where X¥° = Cov(X;, XM)/Var(X™) - XM is the systematic component and
XS = X;—X;”* the unsystematic component. It is easy to verify that Cov(X 2™, X M) =
0. Equation (4.7) implies that X" has no impact on the risk load of X;. An
unsystematic component may increase the total risk of a policy (calculated with
the standard deviation or other risk measures), but does not warrant an additional
risk charge, since it can be diversified away. In reality, however, diversification is
not achieved in a single insurance company. It can only be done in the entire
market. Increasing the premium volume and including more classes and territo-
ries, a company may attain a higher level of diversification. A small or monoline
insurance company has a competitive disadvange because its insurance portfolio
contains significant amount of unsystematic risk. However, even a very large insur-
ance portfolio has a much lower degree of diversification than an average financial
market player. Main reasons include that writing a policy is much more expensive
than buying a share of stock, and that the insurance risks are more numerous and

more heterogeneous.

In the investment world, an unsystematic risk means that it is uncorrelated
with the total financial market. In [5] and [7], the same concept is used in insur-
ance: the part of risk contained in the underwriting profit is called unsystematic
if it is uncorrelated with the total financial market. This paper focuses on the in-
surance market instead. We implicitly assume the aggregate impact of the broad
financial market on the policy losses is incorporated in the overall market risk
load PM — E(XM)/(1+rg). (The overall market risk load serves as a “catch-all”
term.) This definition of unsystematic risk is closer to the insurance practice. Un-
derwriters usually consider a policy’s correlation with other policies rather than
with investment assets. However, it is possible to generalize our model to include
all financial assets. Instead of assuming the premiums grow at the risk free rate,
we may allow them to be invested in any financial instruments. The theory should

develope similarly.

Schnapp [19] derives a pricing model similar to (4.7) using a heuristic ap-
proach. He noticed another conceptual difference between (4.7) and the classic
CAPM. Both models provide a “reward” to the risk takers commensurate with
the size of the risk. The CAPM defines “risk” in terms of the uncertainty in the

future stock price. But the uncertainty in price is a result of the uncertainty in
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company business. So the CAPM is about a “derived” risk. On the other hand,
in our model (4.7) “risk” is related to the randomness of the loss variable X;, the

“original” risk. It is a more fundamental form of risk.

Equation (4.7) is simplified if a policy is not correlated with the rest of the
market. If Cov(X;, XM — X;) = 0 then Cov(X;, X™) = Var(X;) and (4.7) reduces

to

_E(X) . 1 E(XM)
P = Tar, +Var(X;) - Var(Xi0) (PM - “1—+‘T—f‘) : (4.8)

This is a classic variance principle. Thus the variance principle is economically
sound if a policy is uncorrelated with the market. But it oversimplifies in gen-
eral. Equation (4.8) also provides a multiplier in the variance principle, which is

a function of the overall market conditions.

Model (4.7) also explains other real world observations. If X; is a random
loss of a catastrophe coverage, then the risk load is expected to be large. The
classic risk load priciples would support this by reasoning that Var(X;) is large.
Equation (4.7) may explain more. Since a catastrophic event may simultane-
ously triger many policies and multiple coverages like property, business inter-
ruption, workers compensation, life and medical, it has high correlation with
the overall market. So Couv(X;, XM — X;) is also large. Therefore, in (4.7),
Cov(X;, XM) = Var(X;) + Cov(X;, XM — X;) is a large number, which results in
a high risk load.

Notice that on the right hand side of model (4.7), E(X™), PM and Var(X™)

are all very large numbers. We may restate (4.7) in the following more manageable

format.
Fi 1 pM ]
E(Xi)—1+r,—’8i'<m”m>, (4.9)
where N o »
Bi = Cov (—*E(Xi)’ __—E(XM)> /Var (E—(X_M—)) . (4.10)

(3, has been called a loss beta in the literature, which parallels the asset beta in
the classic CAPM. §; is different from the underwriting beta in {7}, Section 4.
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5 Risk Adjusted Discount Rate

A risk load model directly leads to a formula for the risk adjusted discount rate.
If a policy loss is certain in both amount and timing, the risk load is zero and the
economic premium equals the present value of the loss discounted at the risk free
rate. If the loss is uncertain, however, the premium usually includes a positive
risk load, and the premium is conventionally viewed as the present value of loss
discounted at a rate lower than the risk free rate. This rate is called a risk adjusted

discount rate.

Calculation of risk adjusted discount rates has been discussed in the actuarial

literature. Butsic [3] derives an equation of the following form
risk adjusted discount rate = risk free rate — risk adjustment.

The size of the risk adjustment is in direct proportion to the riskiness of the claim
payment cash flow. This formula is in the same spirit as the classic CAPM. Here
the risk adjusted discount rate is used to discount uncertain claim payments, a
cash outflow, while the CAPM calculates a rate to discount the future cash inflow.
In the above equation the risk adjustment reduces the risk free rate. The CAPM,

on the other hand, produces an upward rate adjustment for risk.

We use equation (4.9) to calculate the risk adjusted discount rate. By defini-
tion, in our one-period model, a discount rate for X; is a rate r; satisfying
E(X;
b B
1+4+7;
A similar equation holds for the overall market discount rate r™. Subtituting

these into (4.9) we have

1 1 1 1
- =0 | —— — —— 1} . 5.1
l+r; 147y Ai <1+7‘M 1+rf) (5.1)
It is convenient to introduce the risk adjusted discount factors v; = 1/(1 + r;),
v =1/(1+7) and vM = 1/(1 + rM). Then equation (5.1) becomes

v = vy + B (’UM - ’l)f). (52)

In general, v™ is greater than vy and f; is positive. So equation (5.2) produces

a positive risk adjustment for the discount factor. Summing up both sides in
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equation (5.1), we have
s B rg—rM
147 Yl4rM

Assuming for a loss X; we have r; ~ r™_ then the above equation approximately
g q

reduces to
ri="Tf+ Bi (TM - Tf). (5.3)

The risk adjustment is negative because r™ is less than r;. Equation (5.3) is in
the form of Butsic [3]. Our derivation shows that (5.3) is only an approximation,

while equation (5.2), given in terms of the discount factors, is an exact relationship.

Note that the above discount rate correspond to the market risk load, not the
total risk load. Discounting by this rate yields the market value of losse. As men-
tioned in Section 1, the complete premium also includes the insurer specific risk
load. Therefore, a more precise term for the above rate would be the risk adjusted
market discount rate. The discount rate for the complete premium is even smaller

than the market discount rate, for an additional risk adjustment is included.

The practical use of the risk adjusted discounting is mostly for multiple-
payment claims. For instance, one often estimates the annual payout pattern
of a business line and then use a selected discount rate to calculate the present
value of liability. The above derivation shows it is inappropriate to use one dis-
count rate for all future years. There is a distinct discount rate for each year
commensurate with the riskiness of that year’s partial payment. Halliwell [9] ar-
gues against any use of the risk adjusted discounting. He proposes to start from

the random present value and use the utility theory.

6 Validity of the Model

The risk load model (4.7) has many desirable features and is mathematically
proved. But its validity does not directly follow, since the assumptions do not
all hold in the real world. In this section, we reexamine the key assumptions and
discuss issues related to empirical testing. (4.7) and the classic CAPM share many

practical problems. But there are also significant differences.

In Section 4 we assume the insurance market is competitive and is efficient

regarding the pricing information. In reality, most policyholders have little knowl-
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edge about price. They unknowingly overpay premiums. In the mean time, in-
surance companies are inadequately diversified because of expense and capital
concerns. They have to charge extra amount of risk loads for the remaining un-
systematic risk. Therefore, the actual market risk loads are probably higher than
needed. (On the other hand, recent industry data show that the P&C insurance
as a whole has been less profitable compared with other industries, which seems
to indicate the risk loads are charged too low. But this is an issue in the classic
CAPM paradigm, not related to our model.) This difficulty does not appear in the

context of the classic CAPM, because the financial market is much more efficient.

Another key assumption in (4.7) is that firms attempt to optimize the mean-
variance criterion (4.6). The mean-variance is also used in the classic CAPM. As
discussed in Section 4, it captures the volatility risk and is especially preferable
if the insurance portfolio consists of many small policies. However, this criterion
is less effective if the catastrophic or other large losses have a significant impact
on the firm. If the risk is highly skewed, the potential damage from tail events
is not captured by the variance alone. To remedy this problem higher moment
CAPMs have been developed, first in the investment world, and then extended
to insurance [10]. The same idea may be used here to add higher moments into

equation (4.7).

In practice, model (4.7) should not be applied to individual policies, unless
a policy is very large and is stable over time. It may be used to calculate the
market risk load for a line of business, or any stable portfolio of policies. Since it
is linear with respect to X; and P;, equation (4.7) can be stated with respect to any
insurance portfolio. All policies need not be written at the same point in time. But
the policies in the portfolio and those in the entire market should be comparable,
meaning their policy terms and effective dates are similarly distributed within a
common time period. It is also convenient to discount the loss of each policy to
the policy inception date using the risk free rate. The portfolio version of equation
(4.9) is

__@E’L_lzg .<__L_1) (6.1)
E(Xportfolio) portfolio E(XM) ' )
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where

_ X portfolio xM XM
Pparttoo = Cov (E(Xpmfouoy £ Ver (5gomy): €2

Note the change of notation here: Xponfolic and X M are not evaluated at the
end of the time period, but at the same time as the premiums are evaluated.
The ratio PM/E(X™M) is larger in a hard market and smaller in a soft one. If
Bportolio is positive, the market cycle produces similar cyclic change in the portfo-

lio price. Data from a rating agency may be used as a proxy for the overall market.

Since first derived forty years ago, the classic CAPM has been tested exten-
sively. The implications of the test results are widely debated. Not all empirical
evidences support the model. The unfavorable ones have led to many modifica-
tions of the original model, e.g., redefining 3 or adding other risk factors. But no
single model in any modified version has been statistically confirmed. Nonethe-
less, the CAPM is still widely used in the financial world. (1] (Chapter 13) and
[6] discuss historical development of testing the CAPM. Empirical testing of our
model (4.7) or (6.1) has parallel issues. It also poses additional problems because

of the nature of insurance business and the (generally inferior) data source.

The first problem with any tests is that insurance claims take many years to
settle. Exact values of Xportolio and X M are often not known within a reasonable
length of time. (In particular, since XM contains all liability claims, it takes even
longer to fully develope.) Using the latest estimates to substitute for the exact
values brings about additional randomness. So the quality of the test is inevitably

compromised.

Another difficulty is that the market risk load cannot be singled out from the
premium. In pricing, usually a total profit and contingency loading is explic-
itly built into the premium. (In formula, premium = expected loss + expense +
total loading.) The total loading is the sum of the market risk load, the insurer
specific risk load, and any profit provision over and above the risk loads. But
equation (6.1) should only include the market risk load, the value of which cannot

be recovered from the historical data.

520 Casualty Actuarial Society Forum, Winter 2006



A Portfolio Theory of Market Risk Load

Yet another challenge comes from the calculation of the expected losses E{Xportfolio)
and E(XM) (or the expected loss ratios E(Xporttotio/ Pportfolio) and E(XM /PMY).
These expected values find further use in estimating the variance and the covari-
ance in (6.2). An expected loss is a forecast made at one point in time, using all
available information up to that point, on the average future claim payment. It
is not observable from the experience. In the testing of the classic CAPM, the
expected returns are statistically estimated from the actual returns. On the fi-
nancial market stocks are actively traded everyday. Monthly average returns are
satisfactory estimates for the monthly expected returns. Average returns of many
months are available for the regression analysis. So the CAPM can be tested with
reasonable precision. (Chapter 13 of [1] describes a regression using 60 months of
data.) In insurance, however, observations are usually made once a year. Using
actual losses or loss ratios to estimate the expected values requires many years
of data. But such a time span normally would include several pricing cycles. So
there is not enough stable samples for the statistical estimation. A discussion of
the issue is also seen in [14]. Future expected losses are required inputs in many

DFA models. The current projection methods are little more than educated guess.

7 Conclusions

It is convenient to split the total risk load into the market risk load and the insurer
specific risk load. Market risk load can be studied using the market equilibrium
approach. Qur equation (4.7) is mathematically proved parallel to the classic
CAPM. Its compact form, intuitive meaning and consistency with real world ob-
servations make it an attractive model. Although modifications seem necessary
for more accurate calculations, I believe the model itself can provide a guidance
and insights to the insurance pricing, similar to the role the CAPM has played in

the financial world.

The expected value and the variance of ioss, and the covariance between losses,
are basic inputs for our model and all other DFA models. Estimation of these val-
ues requires both statistical and nontraditional tools. Better techniques need to
be developed for the models to become truely useful in company decision making

processes.
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Appendix: Proof of Equation (4.7)

We prove equation (4.7) under the assumptions stated in Section 4. Our presen-
tation follows the proof of the classic CAPM in [18], Chapter 8.

To increase readability vectors and matrices are used whenever needed. Let

us first introduce the following (column) vectors and a matrix

R=(Ry,..., RN)T is the vector of returns,
p=(u1,... ,;AN)T is the vector of mean returns,

¥ = (0i;) is the N x N variance-covariance matrix.

An insurance portfolio is represented by a pair (@, w), where a = (ay, .. .,an)7,
0<a;<1fori=1,...,N, and w+§:§v=1aij > 0. a; is the portion of loss
X; included in the portfolio, and w is the amount borrowed. Call a pair (a,w)
a pseudo-portfolio if the above condition 0 € a; < 1 is replaced by —1 < a; < 1,
and all other conditions stay the same. A pseudo-portfolio is not an insurance
portfolio if some a; < 0. We can think of an extended insurance market where an
insurer can bet with other insurers on the loss of a policy, so that it makes sense
to hold a; portion of a policy even if a; < 0.

For a given pseudo-portfolio (a,w), define a vector a = (a,...,an)T by

a; P;

3=1"3"2

(A.1)

Under the assumption w + Ejvzl a;P; > 0,if a; > 0, =0, or < 0, then o; > 0,
= 0, or < 0, respectively. Conversely, for a given a = (a,...,an)T, any pair
(a,w) satisfying (A.1) has the form

o
ai=—1;:~A, i=1,...,N,
N
w=(1- a;)- 4, (A.2)
j=1

where A is a positive number. It is easy to see w + ZIN=1 a; P, = A and o; and a;

have the same sign. If A is small, then all |a;|s are less than 1.
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In Section 4, the utility function (4.6) is a function of the pair (a,w), through
the equations (4.4) and (4.5). Denote this function by F;(a,w), that is,

Fr(a,w) =27 Hportfolio — agortfolio :
Equations (4.4) and (4.5) can be restated in terms of «, defined in (A.1},

T
Uportfolio = O U,

U;2>ortfolio =a'Ta.
So the utility function (4.6) has the following expression

_ . 2
GT((I) =27 Hportfolio — T portfolio

=2raTp - alza.

Consider the following two optimization problems. An efficient insurance port-

folio is determined by

N
max{F;(a,w)]|0<a; < 1,fori= 1,...,N,w+zai1:’,~ > 0}. (A3)

i=1

Or, stated in terms of «
max{Gr(a)]a; 20,fori=1,...,N} (A.4)

The following lemma shows (A.3) and (A.4) are equivalent.
Lemma 1 If a pair (a,w) is a solution of the optimization problem (A.3), then
a, given by (A.1), is a solution of the optimization problem (A.4). Conversely, if

a is a solution of (A.4), then there exists a number A > 0, so that the pair (a,w),
given by (A.2), is a solution of (A.3).

The proof is straightforward. We also need parallel statements for pseudo-

portfolios. An “efficint” pseudo-portfolio is a pair (@, w) defined by

N
max{Fr(a,w)| —1<a<lfori=1,..., Nw+ ZaiP,- > 0}. (A.3a)

=1

Stated in terms of o yields an unconditional optimization problem
max G (). (A.4a)

(A.3a) and (A.4a) are equivalent in the following sense.
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Lemma la If a pair (a,w) is a solution of the optimization problem (A.3a),
then the corresponding a is a solution of the optimization problem (A.4a). Con-
versely, if a is a solution of (A.4a), then there exists a number A > 0, so that the

corresponding pair (a,w) is a solution of (A.3a).

Since G,;(a) is a quadratic function, the optimization problems (A.4) and
(A.4a) are much easier to solve than (A.3) and (A.3a). Equation (4.7) will be
proved in two steps. First, assuming there exists an efficient insurance portfolio,
we show (4.7) holds. Then we prove an efficient insurance portfolio indeed exists;

in fact, the overall insurance market portfolio is efficient.

Step 1. We work with the insurance portfolios and the optimization problems

(A.3) and (A.4). The following assumption is needed.

Assumption A. There exists a solution {(a*, w*) to the optimization problem
(A.3), for some 7 = 7*, such that a* = (a3, ...,a})7 is a positive vector, that is,
a; >0foralli=1,...,N.

a* being a positive vector means that this portfolio contains a nonzero fraction
of every loss X;. The reason to make the assumption is as follows. If a is a positive
vector, then the corresponding « is also positive. So « lies in the interior of the
region {a|a; = 0,for i = 1,..., N, }. If the maximum in problem (A.4) is reached

at a, then « satisfies
7] :
%GT(G)ZO, 'l=1,...,N.

Taking partial derivatives of the quadratic function, yields

Tu—Xa =0 (A.5)
Since G (@) is a negative-definite quadratic function, (A.5) gives the one and only
o maximizing G{a).

Under Assumption A, the corresponding a* satisfies (A.5), i.e.,
™'u—-Za*=0.

Solving for a*, we have

a* =771y
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Since a* is a positive vector, the vector Z~!y must also be positive. So for any
T > 0, the vector

o= TE'lu.
is positive and satisfies (A.5). It is thus the only solution to the optimization
problem (A.4), with respect to 7. From the lemma we conclude that a pair (@, w)
is a solution to the optimization problem (A.3) if and only if the corresponding a

satisfies equation (A.5).

Now we invoke a market clearing mechanism to prove equation (4.7). Assume
there are K insurers, each selecting an efficient insurance portfolio according to its

own risk preference. Let the kth insurer hold a portfolio (a(*), w(k)), with respect

to 7%) > 0, where a(¥) = (a(lk), . .,ag\’;))T. Then (a®), w¥) is a solution of (A.3)
with 7 = 7). The corresponding a¥) = (a(lk), ... ,a%))T must satisfy (A.5),
™y - sa®) =, (A.6)

If the market clears, then the K portfolios add up to the overall market portfolio.
Thus

K
Y a® =, 1T (A7)
k=1

Let wM = w) 4+ ... 4+ w5, Call the pair a™ = (1,...,1)T and w™ the market

portfolio. Then the corresponding a™ is given by

M P,
N =TSN P
w +Z]:1Pj
Fi .
=W’ l=1,...,N. (AS)

We introduce the following notation for any &

N (k
R v + 5N VP
Then ¢® > 0 for k = 1,...,K, and from (A.7), & ¢® = 1. For any i =

1,..., N we have

(A.9)

(k)
k) (K) _ N (k) e, B
Zc A AVE N __®
k=1 k=1 w3 a P
K
B N N T
“ZU,M_HDM T M ipM T %
k=1
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Or in vector form X
> Halk) = oM. (A.10)
Let ™ = YK ¢(®)7(®) Then from (A.6) and (A.10),
™y =SaM. (A.11)
(A.11) implies the overall market portfolio is an efficient portfolio. Substituting
(4.1) and (4.2) into (A.11), yields

E(X')) P,
M i

l+rp——=Y

( ! P

N 1
1

il

i

1. ——1—-—C'ov(Xl, My,

" wM y pM
Or,
M((1 4 1/)P; = B(Xi)) = —eCov(X;, XM). (A.12)
((1+rp)B; i oM M ov(Xs,
Summing up (A.12) over ¢, yields
1
™M1+ rs)PM - E(XM)) = WCOU(XM, XMy, (A.13)

Dividing (A.12) by (A.13) on both sides and rearranging terms we obtain (4.7).

Step 2. (4.7) has been proved in Step 1 under Assumption A. Now we show the
assumption is indeed true; in fact the overall market portfolio is such an a*. We

start with the pseudo-portfolios and the optimization problems (A.3a) and (A.4a).

Let each of the K insurers hold an efficient pseudo-portfolio (a®), w®), with
respect to 7!) > 0. Lemma 1la says the corresponding a(¥) is a solution of the
unconditional optimization problem (A.4a). Thus a(®) satisfies (A.6). If the
(extended) market clears, (A.7) holds Again define a™ and ¢ by (A 8) and
(A.9). The condition w® + YN *)P, > 0 implies wM + PM > 0, aM > 0 for
i=1,...,N,and ¢® > 0 for k = 1,...,K Using the same argument as in Step
1, we again derive equation (A.11), with 7™ ZK ) > 0.

M

(A.11) means a™ is a solution to the optimization problem (A.4a), with re-

spect to 7M. But a™ corresponds to the overall market portfolio (@M, wM ). So
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(@M, wM) is a solution of the optimization problem (A.3a). Since each aM =1,

(@™, wM) is also a solution of the original problem (A.3). This proves Assump-
tion A holds with (a*,w*) = (a*,w™). Furthermore, from (A.11) we have
oM = Myl So ¥l is a positive vector. (A.6) gives a®) = r(FIn-1y
which is also a positive vector. Thus the corresponding a¥) is positive. This
proves the original efficient pseudo-portfolios (a(k), w(k)) are actually efficient in-
surance portfolios. Therefore, the argument in Step 1 is entirely valid here. Proof

of (4.7) is complete.

(The above proof reveals a very important property of the efficient portfolios:
the overall market portfolio is essentially the only efficient portfolio. Any other
efficient portfolio must be a fraction of the market portfolio; that is, it contains
the same fraction of all policies. A different borrowing amount w produces an
efficient portfolio corresponding to a different 7; and an efficient portfolio with

respect to any 7 is constructed this way with a suitable w.)
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