
A Multivariate Bayesian Claim Count 
Development Model With Closed Form 
Posterior and Predictive Distributions 

Stephen J. Mildenhall 

Abstract 

We present a rich, yet tractable, multivariate Bayesian model of claim count develop- 
ment. The model combines two conjugate families: the gamma-Poisson distribution 
for ultimate claim counts and the Dirichlet-multinomial distribution for emergence. 
We compute closed form expressions for all distributions of actuarial interest, includ- 
ing the posterior distribution of parameters and the predictive multivariate distribution 
of future counts given observed counts to date and for each of these distributions give 
a closed form expression for the moments. A new feature of the model is its explicit 
sensitivity to ultimate claim count variability and the uncertainty surrounding claim 
count emergence. Depending on the value of these parameters, the posterior mean 
can equal the Bornhuetter-Ferguson or chain-ladder reserve. Thus the model provides 
a continuum of models interpolating between these common methods. We give an 
example to illustrate use of the model. 
JEL Classification: G - Financial Economics; G220 - Insurance; Insurance Compa- 
nies 
Keywords: Loss Development, Chain-Ladder Method, Bornhuetter-Ferguson Method, 
Dirichlet-multinomial, Poisson-gamma 

1 I N T R O D U C T I O N  

We present a Bayesian model of  claim count development. The model is rich 

enough to provide a realistic model for the practitioner but at the same time it 

is mathematically tractable and we give explicit equations for the posterior and 

predictive distributions. The predictive distribution is an example of  a general- 

ized power series distribution and a generalized hypergeometric distribution. The 
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method in the paper will be of interest to practicing actuaries because it is easy to 

implement and it provides explicit posterior distributions for unreported claims, 

and hence Bayesian means and confidence intervals, and a rationale for choosing 

between existing reserving methods. The model is theoretically interesting be- 

cause the posterior mean generalizes three common reserving methods (the peg, 

the Bornhuetter-Ferguson and the chain-ladder) in an intuitive and insightful man- 

ner. 

Actuaries today are asked to provide a distribution of potential outcomes or 

a confidence interval around the point estimates they have traditionally supplied. 

The push towards greater quantification of uncertainty is particularly marked in 

the property and casualty loss reserving practice. Understanding reserve uncer- 

tainty and linking the pricing actuary's prior estimate of ultimate losses to the 

reserving actuary's posterior estimates is therefore becoming more and more im- 

portant. 

These recent demands on the profession have played up some shortcomings of 

the traditional chain-ladder method of determining loss reserves. The chain-ladder 

method is simple to apply and easy to explain, and is the de facto standard reserve 

method. Mack's 1993 paper [15] showing how to compute the standard error of 

chain ladder reserves was an important enhancement to the method. However, 

the chain-ladder is still not well suited to providing explicit posterior distribu- 

tions, nor does it provide diagnostic information to assess model fit. The latter 

point is a severe weakness in practice. There is no one chain-ladder method; the 

technique can be applied to a variety of different loss development triangles in 

slightly different ways. (Academic discussions usually assume link ratios are sta- 

ble over time--something rarely seen in practice--and use the weighted average 

of all years link ratios.) When the various chain-ladder related estimates do not 

agree there is no statistical guidance on which method to prefer. The shortcom- 

ings of the chain-ladder have been discussed in the literature. Mack [14] identifies 

the stochastic assumptions which underlie the chain-ladder method. Venter [25] 

discusses the assumptions required for the chain-ladder estimates to produce least- 

squares optimal reserve estimates, and discusses some alternative methods when 
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the conditions are not met. Renshaw and Verrall [22] describe a statistical proce- 

dure which is exactly equivalent to the chain-ladder in almost all circumstances. 

We will discuss their model more in Section 6. 

In order to address these shortcomings, and respond to the demand for more 

precise quantification of uncertainty, both practicing actuaries and academics have 

explored alternative models. Zehnwirth [30] and Zehnwirth and Barnett [31] con- 

struct general linear models of reserve development based on log-incremental 

data. Kunkler [12] uses a mixed model to include zero claims in a log-incremental 

model. England and Verrall [7] and Wright [29] discuss generalized linear mod- 

els, the latter taking an operation time point of view. Norberg [19] models the 

claims process as a non-homogeneous marked Poisson process. There has been 

considerable interest in Bayesian models of development. Reserving involves the 

periodic update of estimates based on gradually emerging information--a natu- 

rally Bayesian situation. Bayesian methods have been explored by Robbin [23], 

de Alba [5], Dellaportas and Ntzoufras [20], Renshaw and Verrall [22], and Ver- 

rail [26, 27], amongst others. Stephens et al. [24] use a survival time approach 

to modeling claim closure in a Bayesian framework. As Robbin points out, the 

mathematics of Bayesian models often becomes intractable. One advantage of 

this paper's model is the closed mathematical form of all the distributions of inter- 

est. For the less tractable models the WinBUGs MCMC system has been applied. 

See Verrall [27] for a very detailed explanation of how to do this. 

Despite all of these advances, no model has come close to challenging the 

chain ladder method. In part this reflects the difficulties a new method faces be- 

fore it becomes accepted practice. It also reflects the technical complexity of 

some of the alternative models. Practicing actuaries can be uncomfortable with 

the assumptions I and the number of parameters. The chain-ladder method has 

one parameter for each development period: the link-ratios and the tail factor. Re- 

gression models may produce a model with fewer parameters, but the model itself 

is often selected from a very large number of potential models. This can lead to 

generalization error where a particular model can over-fit artifacts in a small data 

1A difficulty with explicit assumptions is the disquiet they can cause! 
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set. The advantages of "simple" models are discussed in Balasubramanian [2] and 

Domingos [6]. 

There is, therefore, a need for a simple statistical model of loss development 

to augment and enhance the chain-ladder method. A new model should have a 

similar number of parameters to the chain-ladder, should be fit to the data using 

a statistical technique such as maximum likelihood, should be able to incorporate 

prior information from the pricing department, and should be easy to update with 

observed loss information as it becomes available. We will present such a model 

for claim count development in this paper. The model is introduced in Section 

2. The explicit form of the marginal distributions of claims reported in each pe- 

riod is proved in Section 3. Sections 4 and 5 prove results about the conditional 

and predictive distributions. Section 6 discusses where our model fits within the 

continuum of reserving models, from the "book plan" peg method through the 

chain-ladder method. Section 7 discusses parameter estimation. Section 8 ap- 

plies the model to a specific triangle. Finally, Section 9 will discuss extending the 

model to loss development, rather than just claim count development. 

This paper focuses on the theoretical development of a new claim count model. 

However, I want to stress that this model is easy to use in practice and that it 

provides useful and powerful reserving diagnostics. 

Notation 

The following notational convention will be use extensively in the paper. For any 

n-tuple x l , . .  •, xn define 

x ( t )  = x ' ( t )  = 
i=1 i = t + l  

and let x := x(n). Thus x = x(n) = x(t) + x'(t) for all t = 1 , . . . , n .  This 

notation will apply to B, b, 7r, and v. It will be re-iterated before it is used. 

The letters p and q := 1 - p  will be used as parameters of a gamma distribution 

and will never have subscripts. 
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2 THE GPDM BAYESIAN CLAIM COUNT MODEL 

This section introduces the new gamma-Poisson Dirichlet-multinomial (GPDM) 

claim count model. The GPDM is a combination of a gamma-Poisson random 

variable to model total ultimate claims and a Dirichlet-multinomial multivari- 

ate distribution to model incremental claims by report period. For a particular 

accident year, let Bi be the incremental number of claims reported in period 

i = 1 , . . . ,  n. We assume that nth report is ultimate and will not model further 

claim emergence. Let 

B(n) = B1 +. . .  + Bn (1) 

denote the ultimate number of claims. 

The GPDM is defined as a combination of two conjugate models. The ul- 

timate number of claims B(n) conditional on A = A has a Poisson distribu- 

tion with mean A. A, the prior ultimate claim count, has a gamma distribu- 

tion. Conditional on B(n) and parameters 1-I 1 = " i l l , ' ' ' ,  Y In -x  = "f in-I ,  7rn = 

n - 1  
1 - ~--~i-1 "fii, the claim emergence vector (B 1 , . . . ,  Bn) has a multivariate multi- 

nomial distribution with parameters B(n), "ill,. - •, "fin. Here "fit is the expected pro- 

portion of claims reported in period t and B(n) is the number of ultimate claims. 

I I 1 , . . . ,  IIn-1 have a Dirichlet prior distribution. The full vector of parameters is 

0 = (A, 1-[1 . . . . .  H,-1) .  Conditional on 

n - 1  

(~ ~--- 0 : =  ( / ~ , " f i l , - ' -  , ' f i n - l )  T" n = 1 - -  ~- '~  "fii" (2 )  

i=1 

the GPDM probability density is 

e-~Ab(n) 
bl bn Pr(B1 . . . .  , B n  I (~) = O) - 7[- 1 . "fin 

b l ! . . .  bn~ 

n 
where b(n) = 2 i = 1  b,~ and the two b(n)! terms have cancelled. 

(3) 

Casual ty  Actuar ia l  Society Forum, Winte r  2006 455 



A Multivariate Bayesian Claim Count Development Model 

The prior densities for the parameter vector {3 = (A, lI1,..., l-In-i) are 

A ,-~ Gamma(r, p/q), q = 1 - p ,  

Pr(A = A) - P~ r-1  -,~p/q 
q~F(r)A e 

and 

(4) 

(5) 

( I - i1 , . . .  , l i n _ l )  ,-~ Dirichlet(vl,..., Vn), (6) 
r ( v  1 -Jr-... -t- ?Jn) vl-1 --Vn--1 (7) 

Pr(1-I, = ~rl , . . . , I In-1 = rrn-1) = ~((vl)-.--F(--~) rq " " ~ n  • 

A and the Hi are a priori independent. 

The form of the gamma distribution in Eqn. (4) is chosen so that the negative 

binomial predictive distribution for B(n) has density 

Pr(B(n) = b(n)) = ( r  + b(n) - l )  b(n) pr qb(n). (8) 

Thus E(B(n))  = rq/p and Var(B(n))  = rq/p 2. If E(B(n))  = m then p = 

r/(r + m), q = m/(r  + m) = 1/(1 + m/r) and Var(B(n))  = m(1 + m/r). The 

coefficient of variation of the gamma distribution is 1 /v~.  The expression 1/r is 

sometimes called the contagion, see Mildenhall [17, Section 2.2]. 

Compared to traditional methods of reserving the GPDM includes two new 

parameters: r which controls the variability of ultimate claim counts and the ex- 

tra Dirichlet paramter which controls the variability of claim emergence. The 

Bornhuetter-Ferguson method of reserving, by contrast, assumes a prior estimate 

of the ultimate number of claims but no measure of its variability. The chain- 

ladder does not assume a prior estimate of ultimate claims but gives full credibil- 

ity to observed claim emergence, corresponding to a high degree of confidence in 

estimates of IIi. These two extra parameters determine the behavior of the GPDM 

model. 

Pricing actuaries often have prior estimates of expected frequency because the 

frequency-severity approach is a common pricing method. Thus reserving actu- 

aries can usually obtain a prior mean for the number of ultimate claims expected 
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from a block of business. We want to be able to incorporate this information into 

our claim count model. Eqn. (3) assumes that the ultimate claim count, B(n),  

has a negative binomial distribution. The r parameter for B(n) is a measure of 

the inhomogeneity of insureds or of non-diversifiable parameter risk; it could be 

estimated based on line of business studies. The negative binomial has been sug- 

gested as a more flexible alternative to the Poisson distribution for modeling claim 

counts by many authors, including Klugman, Panjer and Willmot [10]. Also see 

the references in Johnson et al. [9]. 

The second part of Eqn. (3) is the multinomial with Dirichlet conjugate prior. 

Basic properties of Dirichlet-multinomial (DM) are given in Bemardo and Smith 

[3] and Johnson et al. [8, Section 35.13.1]. For more details on the Dirichlet see 

Kotz et al. [11]. The Dirichlet distribution has n free parameters (compared to 

only n - 1 free 7r, because of the condition ~-~i 7h = 1), and the extra parameter 

controls uncertainty in the proportions. When n = 2 the Dirichlet becomes a beta 

distribution. 

The DM distribution with parameters (b(n);vl, . . . ,  vn) has predictive proba- 

bility density function 

b(n)~ r ( E v d  f I  r(b, + v d 
Pr(B1 = b l , . . . , B n = b n ) =  bli:77.~n!i,(b(n)+}-~v4 ) 4=1 F(v4) (9) 

where b(n) = Y;,4 b,. We can write Eqn. (9) more succinctly using the Pochham- 

mer symbol (r)k. For a real r and non-negative integer k define 

(r)k := r(r + 1 ) ' ' '  (r + k -- 1) = r ( r  + k) r(r) Oo) 

Then Eqn. (9) becomes 

b(n)! 1 n 

Pr(B1 = bl , . .  B~ = bn) = II(v4)b,. ( l l )  
"' bli-7:-bn! ( E  V*)b(n) 4=1 

We will use the Pochhammer symbol extensively. 
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The marginal distributions of the DM are beta-binomial mixtures. Let v = 

}--~i vi. Then 

E(Bi) = m v J v ,  (12) 

= b ( n )  +_____2 - Var(B~) (13) 
1 + v  \ v 2 ] 

Cov(Bi, Bj)  = b(n) + v b(n)vivj  (14) 
1 + v  v 2 

V~ Vj 
Corr(B~, t33) = - (v - vi)(v - vj)" (15) 

The marginal and conditional distributions of a DM are also DMs. See Johnson et 

al. [8, Section 35.13.1] for these facts. 

The next lemma, and its obvious generalizations, follows from the properties 

of the Dirichlet and multinomial distributions. We will use it several times in 

various guises. 

Lemma 1 Let B1, . . . , B~ I 19 be a GPDM. Then B1 + B2, Ba, . . . , Bn 19' = 

(A, rq + rr2, r ra , . . . ,  rrn) is also a GPDM. 

Proof" This follows from [8, Chapter 35 Section 13.1]. • 

We end this section by computing the predictive distribution of B1,. 

given no observations. Let v = ~ vi. Then 

• ~ g n  

Proposition 1 Let B 1 , . . . ,  B,~ 119 be a GPDM. Then 

b(n) 'F(v)  ~ i  F (b i+  v~) ( r  + b ( n ) -  l )  
Pr(B1 = bl . . . .  , Bn = bn) - P(b(n) + v) z=l bi!F(vi) b(n) prqb(n). 

(16) 

Proof" We have 
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Pr(B1 = bl .... , Bn = bn) 

I " ' I P r ( g l ' " " B n  I{~)f(/~)f(~x,...,Trn)d/~dTrx...dTrn-x 

( e-;~ A b(n) Ar_l e_P:ffq = / / ~ ~ ) (bib(//,) , 7F} 1 7(bn) pr 
" [7-t ,n! ' r(--7)7 

F(v) 
I - I  7rv'-l d~dTrl " " drrn-1 

× I I  r(vi------7 i=1 

b(~)! r (v )  p~ 
b,!.., b~! I-[ F(vd F(r)q%(n)! 

× f ~,b*+v'-l'aTrl . . .  dTFn-1 
~=1 

- r (b(n)  + v) ,=1 bdr (vd  b(n) prqb(~) 

since the inner integral with respect to A equals F(b(n) + r)q b(n)+r and 1 + p/q = 

1/q. • 

Eqn. (16) can also be written more compactly as 

Pr(B1 bl, ,Bn bn) r b(r)b(n) r I  (Vi)b, (17) 
. . . .  ' = =P q ~ i = 1  bi[ 

3 MARGINAL DISTRIBUTIONS 

The GPDM is a tractable distribution because it is possible to write down closed- 

form and easy-to-compute expressions for its conditional marginal distributions 

and its predictive distribution of future claims given observed claims to date. The 

marginals are necessary to compute likelihoods from whole or partial claim count 

development triangles. The predictive distributions provide a conditional distribu- 

tion for ultimate claims given counts to date. We now prove these two important 

results, starting with marginal distributions in this section. 

Casualty Actuarial Society Forum, Winter 2006 459 



A Multivariate Bayesian Claim Count Development Model 

The marginal and conditional distributions of an GPDM are hypergeometric 

distribution and use the Gaussian hypergeometric functions 2F1 (a, b; e; z). Math- 

ematicians and actuaries today may not be as familiar with hypergeometric func- 

tions as their counter-parts would have been 50 or 100 years ago. Given this lack 

of familiarity expressions involving 2F1 can be a little forbidding. It is important 

to remember that 2F1 is no more mysterious than the other functions built-in to 

most calculators and spreadsheets. Indeed, it is very easy to program 2Fa into 

a spreadsheet and use it like a built-in function. The properties of 2Fa we use, 

together with pseudo-code to compute it, are given in Appendix A. 

The next proposition computes the marginal distribution of B1, • •. ,  Bt for t < 

n. Obviously an analogous result would hold for any subset of the B~. Remember 

that v = ElLa vi, v'(t) = ~'~ b(t) E ~ = I  b, and 7r(t) E t , = l  7I" i. i = t + l  Vz' ~- = 

Proposition 2 Let B a , . . . ,  Bn [ O have a GPDM distribution. I f  t <_ n - 1 then 

the marginal distribution of(B1 . . . .  , Bt [ (3) is also GPDM with 

Pr(B1 = b l , . . .  , g t = b t I (~  = ()k, 711, • • , T r n - 1 ) )  

= Pr(B~ = b l , . . . ,  Bt = bt I (Tr(t)/~, Tra ~r, 
~(t)  . . . .  ' ~( t )  ))" 

The predictive marginal of ( B1 . . . . .  Bt ) is" 

p(v) r(b(t) + r) f i  r(b~ + vi) 
Pr(B1 = b l  . . . .  ,Bt = bt) =jqb(t)V(b(t)  +v)  P(r) z=l  r(vdb,!  

× 2ra(v'(t), b(t) + ~; b(t) + v; q) 

= ~r.b(,)(~)b(,) r I  (v,)b, v v (v)b(,) ,=1 ~ uFa(v'(t),b(t) + r ; b ( t ) + v ; q ) .  

(18) 

(19) 

(2Q) 

Proof." Using Lemma 1 we can sum the unobserved variables (Bt+l,.  • •, B,,) and, 

without loss of generality, assume that t = n - 1. 
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Then  Pr (B1  = b l , . . . ,  Bt  = bt I 1~ ) 

= E e r ( B 1  -=- b l , . . . ,  g n  -= bn I (~) 
bn >_0 

bo>o b(~)! , ~ - ,  b~! ] _ bn! ] 
bl bt 

_ 7rl . . .  7r t /kb(t)e-Tr(t):~ 

b l ! . . ,  bt! 
= b(t)!  (Tq /Tr ( t ) )b~ ' ' "  (Trt/rr(t))bt)(Tr(t)/k)b(t)e-~(t):~ 

b l ! . . ,  bt! b(t)!  
7F 1 Tit )~ 

= P r ( B 1  = b l , . . . , B t  = bt I (rr(t))~, 9 r ( t ) " ' "  7r(t) '" 

Next, using Proposition 1 and remembering t = n - 1, we have Pr(B1 = 

bl , . . . , B t  = bt ) 

= E Pr (B1  = b l , . . . ,  Bt  = bt, Bn  = bn) 
bn >_O 

b(n)'F(v) ~ i F ( b i + v , ) ( r + b ( n ) - l )  
= ~ F(b(n)+ v) bdF(vd b(n) prqb(n) 

bn>O i = 1  

r v ~ob(,) 1-~ r(b~ + vd ~ b(n)! r(b~ + v~) P(r + b(n)) b~ 
= ( )" ~ 1~ F~r-(v-~ o~.o_ bn! r(vn)r(b(n) + ~) ~ q 

r ~r (v ) r (b ( t )+  ~) ~ r(b, + ~,) x-~  (vn)~o(b(t)+ r)~° ~o 
= P q"r(b(t------y7 v--)t--(r--) 11~=1 b,!r(vd 82->>0 - ~  7V)b--~. w q 

b~,, r(v)r(b(t) + r) ~r  r(b, + v~) 
= prq, ,  r(b(t-----7 7 v--}r--(r-) 1I~=1 b,!r(v~) :F1 (vn, b(t) + ~; b(t) + v; q) 

since b(n) = b(n- 1) + bn = b(t) + bn. • 

To evaluate Eqn. (20) use the log-gamma function and convert the product of 

gamma functions into a sum and difference of log's and then exponentiate. This 

avoids potential over- or under-flow problems. 
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It  follows that the marginal distribution of/~1 is 

Pr(B1 bl) ~--- ~r.bl F(v)F(bl -+- r) F(bl -q- 1)1) 2F1(1)2~ bl -q- r; bl + v; q). (21) 
= u ~ r (bl  + v ) r ( r )  bl!F(vl) 

Since the two components of a GPDM are a priori independent Eqn. (l 2) implies 

the mean of B1 is 

E(B1) = E(E(Ba I B(n))) 

= E(B(n)II~) = E(AII1) = E(A)E(II1) 

= vlrn/v. (22) 

The variance of B1 can be computed using Eqn. (13): 

Vat(B1) = E(Var(B~ I B ( n ) ) ) +  Var(E(B1 I B(n)))  

1) 1(V ~) v~m(1 + re~r) 
- - ) E ( B ( n ) )  + vl(v - V,)E(B(n)2 ) + 

v2(1 + v) v(1 7 v 2 
?'TlVl rn2v,(v(1 -1"- r - 1 )  --  vl(1 - / ' - 1 1 ) ) )  

= + (23) 
v v2(1 + v) 

since E(B(n))  = m, Var(B(n)) = m(1 + mr -1) and E(B(n)  2) = m + m2(1 + 

r - l ) .  Similarly, the covariance of B1 and B2 can be computed using Eqn. (14): 

Coy(B1, B2) = E(Cov(B1, B2 I B(n))) + Cov(E(B1 I B(n)), E(B2 I B(n))) 

F + v l = - E  L i ~ v  v2 j +Cov(vlB(n)/v,  v2B(n)/v) 

= m2Vl1)2,r-lv( - 1) (24) 
v2(1 + v) 

Eqn. (14) shows that the covariance between two marginals of a Dirichlet-multi- 

nomial is always negative. Eqn. (24) shows that the covariance between two 

marginals of a GPDM is negative if v < r, and positive othLrwise. It becomes 

positive because the effect of the common mixing through the gamma prior for A 

overwhelms the negative correlation given B(n). 
We will show in Section 6 that when r = v the GPDM produces the Bornhuetter- 

Ferguson reserve; whenr  > v, and there is less uncertainty in the prior ultimate 
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than emergence, it favors the peg method; and when r < v it favors the chain- 

ladder method. Which of these methods is indicated depends on the data being 

analyzed. Common practice favors the chain-ladder and Bornhuetter-Ferguson 

methods; the peg method is rarely used. Thus we expect to find that r < v in data. 

When r --+ oc the variance of the gamma prior tends to zero and the ulti- 

mate claim count distribution tends to a Poisson with mean A. The the marginal 

distribution of B1 , . . . ,  Bt becomes 

r (v)  f i r ( b i + v  d 
Pr(B1 = b l , . . . ,  Bt = bt) = e-aA b(t) F(b + v~) i=1 I'(vi)b,! (25) 

x ,Fl(v'(t); b(t) + v; q) 

where 1F1 is a confluent hypergeometric function. 

4 POSTERIOR DISTRIBUTIONS 

In this section we consider the posterior distribution of O given observed devel- 

opment data: 

Pr(O ] data) = Pr(data I O)Pr(O) 
Pr(data) o( Pr(data [ O)Pr(O).  (26) 

When we are trying to identify the posterior distribution we can ignore any vari- 

able which is not a function of the parameters O. 

Our data consists of multivariate observations of development data B 1 , . . . ,  Bn. 

However for all but the oldest accident year we only have a partial observation 

B 1 , . . . ,  Bt for some t < n with which to update the distribution of O. Recall that 

the prior distribution of O = (A, I I1 , . . . ,  IIn) is 

Pr(O) = F(r,p/q) x Di(Vl , . . . ,  Vn) (27) 

where A has a gamma distribution, the proportions IIi have a Dirichlet distribution 

and the two distributions are a priori independent. The next proposition shows 

how to update the prior distribution of O given a partial observation of claim 

counts. Let rr(t) = E~=I ~i, 9T¢(t) = E~n__t+l rri and b(t) = Y'~i=lt bi. 
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Proposition 3 Let B1,. .  •, Bn I (9 have a GPDM distribution and let t < n. Then 

the posterior distribution of(9 given a partial observation B1, • • •, Bt has density 

PT((9 = (k, 7 1 " i ,  • . .  71"n_l) I B1 = b l , • . . ,  Bt = bt) = 
I~ /~b(t)+r-le-'~(P/q+rr(t))Tr}l+Vl-1 ~bt+vt -1  v t + l - 1  vn-1  (28) 

• " • " t  7 r t + l  " " " 71"n 

where 

t 

= r(v + b(t)) (qr+b(~/r(r + b(t)) I I  r(b~ + vd 
z = l  

/I )1 x F(v d x 2 F l ( V ' ( t ) , b ( t ) + r ; b ( t ) + v ; q )  (29) 
i = t + l  

In Eqn. (28) the distribution of A is dependent on the distribution of observed 

claims through the term 7r(t), so the two have become entangled. This is the 

reserving conundrum: counts through t periods are higher than expected; is this 

because we have observed a greater proportion of ultimate claims than expected 

or because ultimate claims will be higher than expected? Our model will show 

how to answer this question. When t = n, and we have a full observation, the 

posterior is no longer entangled because 7r(n) = 1; the posterior distribution is 

again a product of independent gamma and Dirichlet distributions• 

Proof." Using Eqn. (3), the prior distribution for (9, and the multinomial expansion 

in the penultimate step, we have Pr((9 [ B1,. • •, Bt) 

c< P r ( B a , . . . ,  Bt [ (9)Pr((9) 

5-" vn--1 1 7r~1.. " 7rb ,~Ab(n)e_)~Ar_le_pA/qTr~l_l . . .  rrn 
bf l . . ,  b,! 

bt + 1 ~...,bn 

- bt+l bn ) 
b>~O A b  E 0 7 r t +  1 . . .  7r n Ab( t )+r_le_A( l+p/q  ) 

(3( ~ b b b • \ ~ + ~ + . . . +  ~= bt+l! '"bn! 

~blq-Vl-1 ,rrbt+vt-1 V t + l - 1  . . 7rVn-1 
X iL 1 " " " " t  7 r t + l  " - - n  

. . . .  71" t T ' t +  1 • . . 71" n 

= /~b(t)+r-le-A(Tr(t)+p/q)Tr~l+Vl-1 arbt+vt-1 V t + l - 1  Vn--1 
• " " "'t 7 r t + l  • • • 71"n • 
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To evaluate the constant n use the exact form of the conditional and unconditional 

marginal distributions given in Proposition 2. • 

Figure 1 is a contour plot of the prior and posterior distribution of (II1, A). 

The left hand column shows the prior distributions with prior mean 250 and 

E(II1) = 0.5. The middle column shows the posterior given an observation 40 

below expected and the right hand column the posterior given an observation 40 

above expected. The four rows show different degrees of precision in the priors. 

Row 1. r = l0 and v = 15, so both priors have a moderately high uncertainty. Since 

r < v the model gives weight to the chain-ladder method, so the posterior 

distributions lie north-east to south-west. Both are still relatively diffuse, 

reflecting the lack of information in the priors. The correlation between 1-I1 

and A in the posterior densities is very clear. 

Row 2. r = 10 and v = 50, so the emergence is known with more prior certainty 

than the ultimate. The prior is now stretched along the y-axis, ultimate 

claims. Since emergence is known more precisely, this method is closer 

to the chain-ladder method (100% confidence in observed losses). In the 

picture we see the two posterior distributions lie north-east to south-west, 

corresponding to the chain-ladder method 

Row 3. r = 50 and v = 15, so the prior ultimate is known with more certainty than 

the emergence. Now the prior is stretched along the x-axis, emergence. 

This method is closer to the peg method. The two posterior distribution 

lie east-west, corresponding to the less weight given to the observed claim 

information. 

Row 4. r = v = 50, so both ultimate and emergence are known with more confi- 

dence. Compared to row 1 the prior is far more concentrated. Since r = v 

this method reproduces the Bornhuetter-Ferguson--see below. 

In the left hand column A and 1-I1 are uncorrelated in all four examples. 

The next corollary computes the exact Bayesian reserve: the expected number 

of unreported claims given claims to date. It is an important result and we will 

discuss it further in Section 4. The corollary assumes n = 2 and t = 1; using 

Lemma 1 we can reduce any particular reserving problem to this case. 
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Figure 1: Prior and posterior density of I11 vs A = E(B(n))  for various values 
of r and v and observed counts. Prior mean equals 250 and E(IIt) = 0.5. Left 
hand column shows prior density. Middle column shows posterior given observed 
counts 40 below expected; right hand column posterior given counts 40 above 
expected. 
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Corollary 1 Let n = 2 and t = 1. Then 

v2(bl + r) 2El(v2 + 1, bl + r + 1; bl + v + 1; q) 
E ( B 2 1 B i = b l ) = q  ~ - v -  2 F l ( v 2 , b l + r ; ~ - + v ; q i  (30) 

Proof." By definition 

E(B2 I B1 = 51) = E((1 - II1)A I ((9 I B1)). (31) 

Now use the explicit form of the posterior distribution of ((9 l B1) given in the 
proposition and integrate with respect to A to get 

/ol/j E(B2 I Bt = bl) = ~ )~bl+re- '~(Tr l+P/q)Tr~l+vl- l (1  --  7rl)V2d)~dTrl (32) 

fo F(bl + r + 1) 7r~X+v1_l( 1 _ 7rl)V:&rl. (33) 
---- t~ (71-1 q_ p/q)b,+r+l 

Substitute w = 1 - 7rl and re-arrange to get 

/o ~qbl+r+~I'(bl + r + 1) wV~(1 -- w)b~+vl-l(1 -- qw)-(b~+r+l)dw. (34) 

The result follows from Euler's integral representation of hypergeometric func- 
tions Eqn. (65). • 

_1) 
We can write Eqn. (30) as 

(bl + r) (2El  (v2, b______l _q-r__ + 1; bl +_v;__q) 
\ 2Fl(v2, bl + r; bl + v; q) 

(35) 

using Whittaker and Watson [28, Chapter 14, Ex. 1]. Since bl is claims observed 
to date, the Bayesian expected ultimate is 

E(A [ B1 = bl) = bl f  + r ( f  - 1) (36) 

where f is the ratio of hypergeometric functions. Thus f is acting like a loss 
development factor, but one which is a function of bl. It is interesting that the 
Bayesian estimate does not go through the origin because of the constant r term. 

Using the same approach we can compute all moments of the posterior distri- 
bution. 

Corollary 2 Let n = 2, t = 1 and let a, b be non-negative integers. Then 

qa (bl + r)a(bl + Vl)b 2Fl(v2, bl + r + a; bl + v +b;q)  
E(AaHbl) (37) 

(bl + V)b 2F1(v2, bl + r; bl + v; q) 
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5 P R E D I C T I V E  D I S T R I B U T I O N S  

The next proposition gives an expression for the predictive distribution 

(B,+I,..., Bn I B1,... B,). 

~2 
Remember that b(t) = Et i=l  b,, b'(t) = Ei=t+l bi and v = ~,~1 vi. 

Proposition 4 Let B1 , . . . ,  Bn [ 0 have a GPDM distribution and let 1 < t < 

n - 1. Then the conditional distribution o f (B t+l , . . . ,  Bn) given B1 , . . . ,  Bt is 

(b(t) + r)b,(t) f i  (vi)b, qb'(t) 
(b(t) + v)b,(t) ** T 2Fl(v'(t), b(t) + r; b(t) + v; q)-l. (38) 

i=t+l 

Proof" Recall that 

Pr(Bt+x, . . . ,  B,~ [ B1, . . .  Bt) 

= I P r ( B t + l ' " " B n  [ B1 , . . .B t ,  O)f(ID I B1 , . . .B t )dO 

f Pr(B1,. .  B~ I o )  Pr(B1 . . . .  ,Bt [ O)f(O) 
= Pr----Fffll,. T: : de B, I e)  N[b17:7. :B,) 

Pr(B1 . . . . .  B,)  

P r (B1 , . . . ,  Bt ) 

Combine this with Proposition 2 and the definition of the GPDM and then cancel 

to complete the proof. • 

Proposition 4 shows the predictive distribution does not depend on the indi- 

vidual observed values b l , . . . ,  bt but only on their sum b(t) = bl + . . .  bt. Thus the 

GPDM model has a kind of Markov property that the future development depends 

only on the total number of claims observed to date, and not on how those claims 

were reported over time. 

Considering the probability distribution of the sum Bt+l +" • • + Bn given B 1 

• .. + Bt gives us the following corollary which we shall need later. This corollary 

can also be proved using induction and properties of the binomial coefficients. 
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Corollary 3 

( h  (vi)b,) (Vl + " "  + Vn)b (39) 
E2 \t=*l b,! ) :  

bl +...+bn=b 

Using Lemma 1 we can add Bt+l, .. •, B,~ and reduce to the case n = 2, t = 1. 

Then Eqn. (38) gives the conditional distribution of unreported claims B2 given 

claims reported to date b. This provides a closed form expression for the posterior 

distribution which is exactly the distribution required for claim count reserving. 

Corollary 4 

(b + r)b2 (V2)b2 2Fl(V2, b + r; b + v; q)_a. Pr(B2 = b2 I B1 = b) = qb2(b+ V)b2 b2[ (40) 

The probabilities Pr(B~ = j [ B1 = b) can be computed recursively using 

Pr(B2 = j + 1 I B1 = b) - -  Pr(B2 = j I B1 - - - -  b)j q 
+ 1  

(b + r + j)(v2 + j) 
( b + v + j )  

(41) 

for j _> 0 and 

Pr(B2 = 0 I Ba = b) = 2Fl(v2, b + r ; b + v ; q )  -1. (42) 

Figure 2 shows six examples of the density B2 [ B1 for various values of v and 

r. They are the two key shape parameters. For comparison, each plot also has a 

Poisson with the same mean 30.305 as the r = 100, v = 1 frequency. 
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Figure 2 : ( B 2  I B1) for various values of r and v. n = 100, b = 65, and 
vl/v = 0.6. 
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It follows from Eqn. (40) that the probability generating function 2 of B2 I 

J~l : bis 
2F1 (v2, b + r; b + v; zq) (45) 

G ( z ) =  2Fl(ve, b+ r ;b+ v;q) " 

Therefore B2 I B1 = b is a generalized power series distribution and a generalized 
hypergeometfic probability distribution according to the classification in Johnson 
et al. [8]. It does not, however, appear in Table 2.4 of [8]. 

Differentiating G, using Equations 63 and 64 for the derivatives of the hyper- 
geometric function, gives the factorial moments of B2 I B1 = b: 

E(B21BI=b)  = qv2(b+r) 9 F l ( v 2 + l , b + r + l ; b + v + l ; q )  (46) 
b + v  2Fl(v2, b + r ; b + v ; q )  ' 

which reproduces Corollary l, and more generally 

p(k)(B2 I B1 = b) = qk(v2)k(b q- r ) k  2Fl(V2 --k k, b + r + k;b + v + k; q) 
(b + v)k 2Fl(v2, b + r; b + v; q) 

(47) 

6 THE CONTINUUM OF RESERVING METHODS 

Corollary 1 is very important. It provides a Bayesian estimate of unreported 
claims given claims to date which is exactly the quantity the reserving actu- 

-'The probability generating function of a nonnegative discrete random variable X is defined 
as 

a(z) = E(:x). 

The (descending) kth factorial moment of  a random variable X is defined as 

#(k) (X)  = E ( X ( X  - 1 ) . . .  (X  - k + 1)). 

Factorial moments can be computed from the probability generating function by differentiating: 

dkG(z)  
#(k) -- dz"""'g-- Iz=l" (43) 

It is easy to compute the central moments and moments about zero from the factorial moments. 
For example 

Var (X)  = #(2) + ,u - #2. (44) 

See Johnson et al. [9] for more general relationships. 
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ary must estimate. In this section we show that special or limiting cases of the 

GPDM include the peg, the Bornhuetter-Ferguson, Benktander, and the chain- 

ladder methods. Then we compare the GPDM to traditional methods over prac- 

tical ranges of the parameters r and v. The model confirms the suggestion in 

Renshaw and Verrall [22] that the chain-ladder is just one of many appropriate 

methods. A schematic showing how the GPDM interpolates between other re- 

serving methods is shown in Figure 3. 

Emergence Variability, v 

low 

high 

v>>r / 
~CL Method J r  = v, BF Method 

v > r  / . I  
, -~k-Benk tander /  ~ ~3Fl~le;'hod oc 
M e t h ~  J 

,-,Peg Method 

J v<<r 
Perverse 

P 

high low 
Ultimate Count Variability, r 

Figure 3: Schematic showing the behavior of the GPDM reserve as (r, v) vary. 
Low r (resp. v) corresponds to high uncertainty in ultimate counts (resp. claim 
emergence). The r = v diagonal is exactly the Bornhuetter-Ferguson method. 

Using Lemma 1 we can reduce each accident year to the case n = 2, t = 1. 

B1 denotes observed claims and B2 unreported claims. (B1, B~ ] 8)  has a GPDM 

distribution; 19 = (A, II1). A has a gamma distribution with mean m, the prior 
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expected number of ultimate claims, and variance m(1 + m/r).  1-It has a beta 

distribution with parameters Vl and v2. Let v = vl + v2 and rr := g(l'I1) = Vl/V. 

Per Section 2, the parameters of the gamma distribution are r and p/q where 

p = r / (r+m) and q = 1 - p  = m/(r+m).  Higher values o f r  and v correspond to 

lower variances of A and II1 respectively. As r --+ c¢ the claim count distribution 

tends to a Poisson. 

We are going to compare the six estimates of unreported claims: GPDM, peg, 

chain-ladder, Bornhuetter-Ferguson, k-Benktander, and linear least squares. Con- 

ditional on observed claims to date of b estimated unreported claims for each 

method are denoted b'.(b) where • = g,p,c, b,k,l indicates the method. The 

estimate of ultimate claims corresponding to each method is therefore simply 

b + b',(b). 

1. The GPDM method 

b'g(b) = E(B2 I B1 = b ) =  ( b + r ) ( ~ ( v 2 ' b + r - - + ! ; b + v " q )  ) 
\ 2Fl(v2, b+r;b+v;q )  - 1 . .  

(48) 

2. The peg method 

b'p(b) := (m - b) +. (49) 

The peg ultimate is insensitive to observed data--until  observed claims ex- 

ceed the peg! The peg is an extreme reserving method. It ignores actual 

emergence completely. 

3. The chain-ladder method 

b'(b) . -  (1 - 7r)b (50) 
71" 

see Mack [16] or Renshaw and Verrall [22]. 7r is usually estimated from 

the data as a product of link ratios. Each link ratio is the weighted average 

development from one period to the next over all available accident periods. 

The chain-ladder method is at the opposite extreme to the peg method. It 

completely ignores prior estimates of ultimate counts. 
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4. The Bornhuetter-Ferguson method estimate 

b'~(b) := m(1 - 7r) (51) 

see Mack [16]. This estimate of unreported claims is completely insensi- 

tive to the observation b. The Bornhuetter-Ferguson method is sometimes 

regarded as an extreme, but it is actually a middle-ground method between 

the chain-ladder and peg methods. 

5. The k-Benktander method, k = 0, 1, 2 , . . .  

b (b) : =  - (52) 

see Mack [16]. When k = 0 this reduces to the Bornhuetter-Ferguson. As 

k ~ oo, b~k(b) ---* b'c(b ). The Benktander methods are all linear in b. They 

are a credibility weighting of the Bornhuetter-Ferguson and chain-ladder 

methods. 

6. The linear least squares, or greatest accuracy credibility, estimate 

b'z(b ) := a +/3b (53) 

where a and/3 are chosen to minimize the expected squared error. This 

approach is described in Klugman et al. [10, Section 5.4] from a credibility 

perspective and in Murphy [ 18] from a linear least squares loss development 

perspective. Solving by differentiating E((B2 - a -/3B1) 2) with respect to 

a and/3 and setting to zero gives 

c~ = E(B2) - /3E(Ba)  /3 _ Cov(Bx, B2) (54) 
Var(B1) 

In order to actually compute a and/3 we need a bivariate distribution for 

B1 and B2; we use the GPDM. The variance and covariance are computed 

in Eqn. (23) and Eqn. (24). By construction b' z will be the least squares line 

through b;. When r = v, and B1 and B2 are uncorrelated, b[ reduces to the 

Bornhuetter-Ferguson. 
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Neither the chain-ladder nor the Bornhuetter-Ferguson method is sensitive to 

the relative variance of ultimate losses B1 + B2 and the proportion of claims ob- 

served II1. This is a weakness that can be illustrated by considering two hypothet- 

ical situations. In the first, the ultimate is estimated with low confidence but the 

claim reporting pattern is very predictable, so r < v. We would favor the chain- 

ladder estimate over the prior m. This corresponds to the second row in Figure 1. 

In the second situation, the ultimate claim count distribution is known with a high 

confidence, but the reporting pattern is estimated with less confidence, so r > v. 

Here we would weigh the prior estimate m more than the chain-ladder which re- 

lies on the proportion reported. This corresponds to the third row in Figure 1. 

Corollary 1 provides a probabilistic model of these intuitions that continuously 

interpolates from one extreme to the other. The GPDM captures and models the 

process behind the actuarial judgment of selecting appropriate reserves. By pro- 

viding a quantification of what is currently a judgmental process the model should 

be of great value to the practicing actuary. 

Here are six examples of how the GPDM behaves for different values of r and 

v. They are illustrated in Figure 3. 

1. For fixed r, b'g(b) ---+ m(1 - rr)(b + r ) / (mrr  + r) as v --+ oc. Proof." As 

I )  " - '+  O ~  

2F1 (z'2, b + r; b + v; q) = 2F1 ((1 - rr)v, b + r; b + v; q) 

---+ 2Fl(1,b + r;1; (1 - rr)q) 

= (1 - (1 - re)q) -(b+r) 

by Eqn. (66). Therefore 

b'g(b) --+ q(1 - 7r)(b + r) rn(1 - 7r)(b + r) 
1 - ( 1 - r r ) q  = m r r + r  (55) 

We can write this limit as a credibility weighting of the chain-laddei and 

Bornhuetter-Ferguson with credibility z = rarr/(mrr + r) given to the chain 

ladder: 

m ( 1 - ~ r ) ( b + r ,  ( rnrc ) ( 1 - r r ) b  ( ) 
= - t- r ((1-Tr)rn). (56) 

m,'r + r mTr + r rr m ~ +  r 
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This equation corresponds to the k-Benktander  method with 

k = log(r / (mTr  + r) )  (57) 
log(1 - ~r) 

2. As r --+ 0 the GPDM reserve tends to the chain ladder reserve, b'g(b) --+ 

b'c(b ). Proof." Use the l imit  of  the hypergeometr ic  function as r --+ 0 and 

q --+ 1. 

3. I f  r = v then the GPDM reserve equals the Bornhuetter-Ferguson reserve, 

b'g(b) = b~(b). Proof." Apply ing  Eqn. (66) to Eqn. (46) gives 

b ' g ( b ) -  qv2 _ qv2 (58) 
i - -q v 

Since r = v, q /p  = r e l y  and so 

b'g(b) - rnv~ _ rn(1 - ~) (59) 
v 

as required. The case r = v represents an exact  balance between the un- 

certainty in ult imate losses and claim count emergence which reproduces 

the Bornhuetter-Ferguson. By Eqn. (24) it also represents the case when t31 

and B2 are uncorrelated. 

4. I f  r = cry for a constant a then as v --~ oc the GPDM reserve converges to 

the Bornhuetter-Ferguson: b'g(b) --~ b'b(b ). 

5. For  fixed small v > 0 the GPDM reserve is close to the peg reserve as 

r ~ oc. See the figures below. 

6. As v --* 0 and r --* e~ the GPDM reserve tends to zero if  b > 0 and 

rn i f  b = 0. This is a perverse kind of  reserve[ It is possible  to prove 

this analytically,  but heurist ically the reason is that as v --~ 0 the Dirichlet  

distribution becomes concentrated at the corners. Thus the claims all tend 

to be reported at once. So if  any claims have been reported then no more 

are expected. On the other hand, if  none have been reported they should all 

still be held in reserve. 
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The fourth point needs elaborating because it appears to contradict the main 

result of Renshaw and Verrall [22]. Their model assumes incremental claims Bi 
have a Poisson distribution and hence emergence is modeled with a multinomial 

distribution. They prove their model reproduces the chain-ladder reserve when 

the parameters are determined using maximum likelihood. As r --+ c~ the GPDM 

ultimate has a Poisson distribution. As v ---+ oo the Dirichlet prior becomes a de- 

generate distribution, so the DM becomes a multinomial distribution conditional 

on ultimate counts B(n). In this situation B~ will also have a Poisson distribution 

and so in the limit the GPDM model appears to be the same as Renshaw and Ver- 

rail's, and yet it gives the Bornhuetter-Ferguson reserve and not the chain-ladder. 

The reconciliation of this apparent contradiction is that Renshaw and Verrall fit 

the emergence pattern (means of the multinomial) and the prior accident year 

means from the data. If  we interpret these parameters as prior estimates then their 

model produces exactly expected emergence--see [22, Eqn. (2.4)]. In the GPDM 

model the emergence pattern and accident year means are given a priori. As 

t,, r + oo both parameters become certain. If losses emerge exactly as expected 

then the chain-ladder and Bornhuetter-Ferguson methods agree and so the GPDM 

would also give the chain-ladder reserve. However, actual emergence from the 

GPDM need not be exactly equal to expected because the means and emergence 

are specified a priori. Note that in the Poisson-multinomial model (r, v --+ o¢) 

B1 and B2 are independent so the linear least squares method also reproduces the 

Bornhuetter-Ferguson. 

These mathematical limits of the GPDM method are mainly of academic in- 

terest. However, the way the GPDM interpolates between the common reserving 

methods for realistic values of r and v is of practical interest because it provides 

analytical guidance to supplement actuarial judgment. We now explore that inter- 

polation. 

Figure 4 shows a plot of b'~(b) against b for r = 25, rr = 0.45, m = 110 

and v = 0.1, 1, 10, 2g.. 100, 1000. Each plot also shows the peg, chain-ladder, 

Bornhuetter-Ferguson, k-Benktander and linear least squares reserves. The value 

of k is determined by Eqn. (57). Figure 4 ties back to the six points we made 

about b'g. 
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• The four standard methods do not change with v. The linear least squares 

method is sensitive to v and is a line through b' 9 as expected. 

• Point 1 is illustrated by v = 100 and v = 1000. The GPDM method tends to 

the predicted k-Benktander method line for larger k. If  we had plotted large 

v and small r the GPDM line would eventually convert up to the chain- 

ladder line, per Point 2. 

• Point 3 is illustrated by v = 25 = r; the GPDM line lies underneath the 

Bornhuetter-Ferguson line. 

• The fact that the GPDM favors the peg method when v < r and the chain- 

ladder method when v > r is shown in the increasing slope of the GPDM 

line from the first plot to the last. 

• Point 5 is illustrated by v = 1: b'g is close to the peg method. 

• Point 6 is illustrated by v = 0.1 which shows b'9 --+ 0 for larger b. 

Figures 5 and 6 are two views of the bivariate density of (B1, B2) computed 

with rn = 110 claims, r = 25 and rr = 0.45, so E(B1) = 49.5 and E(B2) = 109.5. 

The nine contour plots correspond to v = 0.1, 1, 2.5, 5, 10, 25, 100, 1000, 10000. 

As expected, when v < 25 B1 and/32 are negatively correlated. When v = 25 they 

are uncorrelated and when v > 25 they are positively correlated. The posterior 

distribution of B2 I B1 = bl is simply a re-scaled vertical slice through these 

distributions, so the reader should be able to connect these plots with the plots of  

b'a(b ). The cases v = 0.1 and v = 1 help explain how the GPDM reacts given 

extreme uncertainty in the payout pattern. The 3-d plot explains why the contour 

plot seems to disappear: the probability becomes concentrated along the axes. 

This completes our theoretical investigation of the properties of the GPDM 

distribution. We have produced easy-to-compute expressions for the marginal and 

conditional distributions and written down the mean of the posterior distribution of 

unreported claims given claims observed to date. Next we show how the GPDM 

can be used in practice by applying it to a particular claim count development 

triangle. 
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Figure 4: b'p(b) for r = 25, rr = 0.45, E(A) = 110 and v = 
0.1, 1, 10, 25,100, 1000, compared with the peg, chain-ladder, Bornhuetter- 
Ferguson, Benktander k and linear least squares methods, k = 1.826 determined 
by Eqn. (57). 
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Figure 5: Contour plots o f  the bivariate density (B1, B2) with r = 25, m = 110, 
rr = 0.45 shown for v = 0.1, 1, 2.5, 5, 10, 25 ,100 ,  1000, 10000. 
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Figure 6: Three dimensional  density plots o f  the bivariate density (B1, B2) with 
r = 25, m = 110, 7r = 0.45 shown for v = 0.1, 1, 2.5, 5, 10, 25 ,100 ,  1000, 10000. 
The z-scales  are all the same. The orientations vary by plot. 
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7 PARAMETER ESTIMATION 

The GPDM model for n periods of  development uses n + 2 parameters;  of  these 

the n development-related parameters vl, • • •, vn would usually be shared across 

multiple accident years. The prior mean m of the ultimate distribution would vary 

by accident year and r would generally be considered common.  Thus to model 

a development triangle with n accident years and development periods there are 

2n + 1 parameters.  If  there is a good exposure measure then prior mean could 

be modeled as a common frequency times exposure and that would reduce the 

number of  parameters to n + 2. 

Reasonable initial estimates for m should be available from the pricing de- 

partment. A view of r could be driven by a macro line-of-business level study. 

Alternatively we could take r to be very small corresponding to a non-informative 

prior for the ultimate. 

Kotz et al. [11] discuss using sample moments  to estimate the parameters  

vt of a Dirichlet-multinomial. Let ~l~t be the sample mean of the proportion 

of  claims observed in the tth period (computed with respect to the chain-ladder, 

for example),  and let AI~I be the mean of  the square of  the proportion of  claims 

observed in the first period. Then reasonable starting parameters are 

! , ! 

~t = ( j ~ I ~ l  - -  ~J21)'~l~t i = 1 . . . .  , n  -- 1 (60) 
AI 1 - ( a s h )  2 ' 

= (/1I~1 - M~1)(1 - E~=l~ k'Iit) (61) 
_AI~I - (~I{1) 2 

Alternatively taking Vl . . . . .  vn = 1 gives a prior emergence distribution 

equal over all periods, which could be regarded as a non-informative prior. 
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Table 1: Incremental Claim Count Data 

Year 1 2 3 4 5 6 7 8 9 10 b 
1990 
1991 
1992 
1993 
1994 
1995 
1996 
1997 
1998 
1999 

40 124 157 93 141 22 14 10 3 2 
37 186 130 239 61 26 23 6 6 
35 158 243 153 48 26 14 5 
41 155 218 100 67 17 6 
30 187 166 120 55 13 
33 121 204 87 37 
32 115 146 103 
43 111 83 
17 92 
22 

606 
714 
682 
604 
571 
482 
396 
237 
109 
22 

Table 2: Loss Development Factors 

AY 1 : 2  2 : 3  3 : 4  4 : 5  5 : 6  6 : 7  7 : 8  8 : 9  9 : 1 0  
1990 
1991 
1992 
1993 
1994 
1995 
1996 
1997 
1998 

4.100 1.957 1.290 1.341 1.040 1.024 1.017 1.005 1.003 
6.027 1.583 1.677 1.103 1.040 1.034 1.009 1.008 
5.514 2.259 1.351 1.081 1.041 1 .021 1.007 
4.780 2.112 1.242 1.130 1.029 1.010 
7.233 1.765 1.313 1.109 1.023 
4.667 2.325 1.243 1.083 
4.594 1.993 1.352 
3.581 1.539 
6.412 

Wtd. Avg. 5.055 1.930 1.350 1.134 1.035 1.023 1.011 1.007 1.003 
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8 EXAMPLE 

We now give an example to illustrate the use of the GPDM to estimate the distri- 

bution of unreported claims. 

The incremental claim count data is shown in Table 1 and the claim count de- 

velopment factors are shown in Table 2. The right hand column shows total counts 

observed to date b. This data was analyzed by de Alba [5]. Using a Bayesian 

model he found a mean of 919 outstanding claims with a standard deviation of 

79.51. 

We use Eqn. (20) to compute the likelihood of each row of the development 

triangle and then determine the maximum likelihood estimate parameters. Initial 

parameter values were r = 25, the chain ladder estimates for the prior means m~ 

by accident year, and the estimates of vt given in the previous section. The starting 

values and maximum likelihood estimates for m~ are shown in Table 3. Table 4 

shows the same thing for vt along with the incremental reporting patterns for both 

estimates. The maximum likelihood estimator for r is 1625458.8 which is much 

closer to Poisson than the starting value and v = 129.018 so the model has r > v. 

Clearly the development pattern for this triangle is quite erratic, and so a low v 

is expected. One reason that r is so large is the use of a different variable mi for 

each accident year. These parameters absorb some of the claim count variability 

and increase r. 3 

Table 5 shows the GPDM, chain ladder and Bornhuetter-Ferguson reserves, 

and the standard deviation and coefficient of variation of the GPDM reserve. The 

overall reserve is slightly lower than the chain ladder. It is interesting that the 

reserves are actually higher for the older years and lower for the more recent 

years. 

Figure 7 shows the distribution of the GPDM reserve. This distribution is the 

sum of the reserve distributions for each accident year, assuming they are inde- 

pendent. Figure 8 shows the evolution of the predictive 6istribution of ultimate 

claims for the oldest accident year, as more and more claim information becomes 

available. 

3Exposure information was not available for this triangle, but estimating an exposure base 
produced a modeled ~ = 196.1, lowered the reserve to 889 from 895 and increased the standard 
deviation of the reserve to 55.4 from 40.5. The estimate of v declined slightly. 
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Table 3: Starting and maximum likelihood estimates of rn for each accident year. 

Year CLMean Prior Meanm 
1990 
1991 
1992 
1993 
1994 
1995 
1996 
1997 
1998 
1999 

606.0 
716.4 
689.0 
616.7 
596.2 
520.8 
485.1 
391.9 
347.9 
355.0 

606.0 
718.2 
692.5 
621.6 
601.8 
527.1 
487.9 
390.0 
339.8 
333.0 

Table 4: Starting and Maximum Likelihood Estimates for vi with implied incre- 
mental and cumulative proportion of claims reported 

t 
Initial vt 
Incremental 
Cumulative 
MLE vt 
Incremental 
Cumulative 

t 
Initial vt 
Incremental 
Cumulative 

MLE vt 
Incremental 
Cumulative 

1 2 3 4 5 
13.195 52.531 60.500 43.094 22.834 
0.064 0.253 0.292 0.208 0.110 
0.064 0.317 0.608 0.816 0.926 
8.477 32.702 36.891 26.322 13.367 
0.066 0.253 0.286 0.204 0.104 
0.066 0.319 0.605 0.809 0.913 

6 7 8 9 10 v = ~ v i  
6.636 4.428 2.225 1.384 0.686 207.514 
0.032 0.021 0.011 0.007 0.003 
0.958 0.979 0.990 0.997 1.000 
4.488 3.010 1.729 1.246 0.786 129.018 
0.035 0.023 0.013 0.010 0.006 
0.948 0.971 0.984 0.994 1.000 
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Table 5: Comparison of Reserve Estimates (r = 1625458.8, LL = -221.42) 

b~(b) Year b m b~(b) Std. Dev. CV b'c(b ) 
1991 714 718 4 5.018 1.191 2 
1992 682 693 11 7.671 0.728 7 
1993 604 622 18 9.300 0.529 13 
1994 571 602 31 11.688 0.380 25 
1995 482 527 45 12.910 0.287 39 
1996 396 488 92 15.965 0.174 89 
1997 237 390 153 16.774 0.110 155 
1998 109 340 231 17.344 0.075 239 
1999 22 333 311 18.072 0.058 333 
Total 4423 895 40.465 0.045 902 
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Figure 7: Distribution of total reserve. 
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Figure 8: Predictive distribution of ultimate losses for oldest accident year starting 
with prior and adding observed losses for each development period. 
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9 EXTENSION TO LOSS DEVELOPMENT 

The GPDM model applies to claim counts. Understanding claim counts can be 

a hard problem and the power of the model for working with counts should not 

be discounted. Nonetheless an extension to loss development is desirable. There 

will not be a similarly tractable model for loss development--just as there is no 

analog of the Poisson-gamma model for aggregate loss distributions. However, 

the general philosophy of the GPDM model, that the appropriate reserve depends 

on the relative variance of ultimate losses and loss emergence, carries over in- 

tact to losses and the problem is to determine a suitable bivariate distribution for 

observed and unobserved claims. Once that bivariate distribution is in hand nu- 

merical methods can be used to produce predictive reserve distributions. There 

are at least two approaches we could take. 

Firstly, like Renshaw and Verrall [22], we can just use the GPDM directly to 

model losses. This is actually a more rational assumption than it seems. For a 

large book of business with a "tame" severity distribution (for example, where 

all policies have a low limit) the severity quickly diversifies and the normalized 

distribution of ultimate losses converges in distribution to the distribution of A as 

the book gets larger, see Daykin et al. [4, Appendix C] or Mildenhall [17, Section 

2.10]. This method would be particularly appropriate when the maximum severity 
is of the same order of magnitude as the average severity because the diversifica- 

tion would occur more quickly. Working layer excess of loss reinsurance is an 

example. 
The second approach is to try and determine a bivariate distribution for B1 

and B2 and work with it numerically. Here we need a distribution of severity 

at tth report and ultimate. This could be estimated directly from a transactional 

loss database. The severity component would be combined with a mixed count 

emergence model like the GPDM. The aggregate distributions could be computed 

numerically using Fourier or fast Fourier transforms, or simulation. Alternatively, 

given the model specification and conditional severity distribution, we could use 

WinBUGs and MCMC techniques--see Verrall [27]. Understanding individual 

claim severity development is a great opportunity for further actuarial research in 

loss development. Since claim databases for most lines (except workers compen- 

sation) are much smaller than exposure databases this is also a practical thing to 

do. 
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10 CONCLUSIONS 

We have introduced the GPDM model of claim count development and computed 

many of its important actuarial properties. The GPDM model incorporates esti- 

mates of the variability of ultimate claims and the claim emergence pattern into its 

estimates of reserves. Selecting between different reserve estimates is something 

usually done via actuarial judgment. The GPDM model can help bolster actuarial 

judgment by supplying a well-defined analytic selection framework. 

The model includes the chain-ladder and Bornhuetter-Ferguson methods as 

special cases, and also closely approximates the peg method and k-Benktander 

methods. Thus it provides a rich modeling framework for the practitioner. 

The GPDM is a statistical model of claim development which can be fit using 

maximum likelihood. Given an exposure base, it can also be used to fit ultimates 

in the presence of covariates, again also using maximum likelihood. The model 

is easy to use and provides full posterior distributions rather than just a point 

estimate and standard deviation. 

A Appendix: Hypergeometric Functions 

The hypergeometric function 2F1 is defined as 

21~1(a, b; C; q) = ~ (a)k(b)k k 
k_>0 ~ q"  (62) 

The notation (a, b; c; q) indicates there are two variables in the numerator, one 

in the denominator and one argument (there are generalizations the reader can 

readily imagine). The series is absolutely convergent for Iql < 1 and conditionally 

convergent for Iql = 1. In our applications q is real and 0 < q < 1, so convergence 

is not an issue. Hypergeometric functions have been described as a staple of 

nineteenth century math; a glance at any table of mathematical equations will 

explain why. The facts we use are gathered from Abramowitz and Stegun [1, 

Chapter 15] and Lebedev [13]. 

The hypergeometric function is very easy to compute for Iql < 1. The follow- 

ing algorithm, taken from Press et al. [21], will compute 2Fl(a, b; c; q) for a > 0, 

b > 0, c > 0 and 0 < q < 1 to machine accuracy. 
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Initialize: f = i, 

do 

g = g * q* 

f = f + g 

a -- a + 1 

b = b + 1 

c -- c + 1 

i = i + 1 

while g > 0 

return f 

g = I, i = 1 

a * b / c / i  

Because the series defining 2F1 is absolutely convergent it can be differentiated 

term by term, giving 

d F  ab 
- 2 F l ( a + l , b + l ; c + l ; q )  (63) 

dq c 

and more generally 

dn F 
dq n 

(a) .(b).  
- -  - - -  2Fl(a + n ,b  + n ;c  + n; q). (64) 

(c)n 

Euler's integral representation of 2F1 is 

F(c) ~01 tb-l(1 - -  t)c-b-l(1 - -  tq)-adt (65) 
2Fl(a, b; c; q) - r(b)r(c - b) 

[l, Chapter 15.3]. We will use the result 

(66) 2Fl(a,b;b;q)  = 2Fl(b,a;b;q)  = (1 - q)-a 

from [1, Chapter 15.1]. This can be seen by considering the sum of the probabili- 

ties of a negative binomial distribution. 
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