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Abstract 

This chapter discusses an approach to the correlation problem where losses in different lines of 
insurance are linked by a common variation (or shock) in the parameters of  each line's loss model. 
The chapter begins with a simple common shock model and graphically illustrates the effect of  the 
magnitude of the shocks on correlation. Next it describes some more general common shock models 
that revolve common shocks to both the claim count and clatm severity distributions. It derives 
formulas for the correlation between lines of insurance in terms of the magnitude of the common 
shocks and the parameters of the underlying claim count and claim severity distributions. FinaUy, it 
shows how to estimate the magnitude of the common shocks. A feature of this estimation is that it 
uses the data from several insurers. 
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1. Introduction 

In the study of  insurer enterprise risk management, "correlation" has been an important, but 

elusive phenomenon. Those who have tried to model insurer risk assuming independence 

have almost always understated the variability that is observed in publicly available data. 

Most actuaries would agree that "correlation" is the major missing link to the realistic 

modeling of  insurance losses. 

This chapter discusses an approach to the correlation problem where losses in different lines 

of  insurance are linked by a common variation (or shock) in the parameters of  each line's 

loss model. Here is an outline of  what is to follow. 

• I will begin with a simple common shock model and graphically illustrate the effect of  

the magnitude of  the shocks on correlation. 

Next I WIU describe some more general common shock models that involve common 

shocks to both the claim count and claim severity distributions. I will derive formulas 

for the correlation between lines of  insurance in terms of  the magnitude of  the common 

shocks and the parameters of  the underi#ng claim count and claim severity distributions. 

• Finally, I will show how to estimate the magnitude of  the common shocks. A feature of  

this estimation is that it uses the data from several insurers. 

2. A Simple Common Shock Model 

Let X1 and X 2 be independent positive random variables. Also let f lbe  a positive random 

variable with mean 1 and variance b. If  b > 0, the random variables f i x  1 and f i x  2 tend to be 

larger when fl is  large, and tend to be smaller when f l is  small. Hence the random variables 

ffX~ and fiX2 are correlated. Figures 1-4 below illustrate this graphically. 

I will refer to the f l  as the "common shock" and refer to the b as the magnitude of  the 

common shocks. Figures 1-4 illustrate graphically that coefficient of  correlation depend 

upon b and the volatility of  the random variables X1 and X v 
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I will now derive formulas for the coefficient of correlation between the random variables 

fiX 1 and fiX_,. This derivation will be detailed and I believe that it is worth the reader's time 

to master these details in order to appreciate much of what is to follow. 

Let's begin with the derivation of two general equations from which I will derive much of 

what follows. These equations calculate the global covariance (or variance) in terms of the 

covariances (or variances) that are given conditionally on a parameter 8. 

c,,,,[x, r ]  = E[x.  YI-  E[x]. e[:~] 
=~,[~[x.~'lel]-~,[~[xlel].~,[E[rlel] 
= ~o [~[x.  r I e l -  E[x I el. E[Y I eli 
+~,[~[xle].e[rle]]-e,[e[xle]].~,[E[rle]] 
=E~[Cov[X,Yle]]+Cov~[~[xle],~[rle]] 

0) 

An important special case of this equation occurs when X = Y. 

Var[X]  = E, [ v~4x le l ]+w~ [ e [ x  I e]] (2) 

Now let's apply Equations 1 and 2 to the common shock model given at the beginning of 

this section. 

o,,,[px,,/~xal = ep [o,,,[px,, #x-, I #]]  + o,,,p [e[/~x, I P],E[Px= I P]] 
= ~[#:co4x, ,xd]+c~,E#E[x, ] ,#Elxd]  
=Ep[#:. 0] + e[x,l.,~[x:l.co,,p [/k,0] 
=~[x,] .E[xd-b 

(3) 

V,,r [#X, ] = E, EF,,4#X, I#] ]*  ~% E~[#X' I#]] 
= E,, [#: .  V,,,'[X, ]] * V,,,',, [,8. E[X,] ]  

= Var[X,].E# Eft-'] + E[X,]2.Var# [fl] 

=Var[X,].(I+O)+ E[X,] 2 .b 

(4) 

Similarly: Var[~X-,] = Var[X-,] .(I+b)+ E[X2]-, .b. (5) 
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Equations 3-5 can now be plugged into the following equation for the coefficient of  

correlation. 

codfx,,l x..] 
p I f  x, ,  f x  2 ] = 4Var [fiX, ]. Far [ f iX 2 ]] (6) 

Plugging Equations 3-5 into Equation 6 yields a simple expression if we give X, and X 2 

identical distributions with a common coefficient of  variation, CV. 

b (7) 
(CV)' . ( l + b ) + b  

The coefficients of correlation given in Figures 1-4 were calculated using Equation 7. 

At this point we can observe that the common shock model, as formulated above, implies 

that the coefficient of  correlation depends not only the magnitude of  the shocks, but also the 

volatility of  the distributions that receive the effect of  the random shocks. 

3. T h e  C o l l e c t i v e  R i s k  M o d e l  

The collective risk model describes the distribution of  total losses arising from a two-step 

process where: (1) the number of  claims is random; and (2) for each claim, the claim severity 

is random. In this section I will specify a particular version of  the collective risk model. In 

the next section I will subject both the claim count and claim severity distributions to 

common shocks across different lines of  insurance and calculate the correlations implied by 

this model. 

Let's begin by considering a Poisson distribution with mean )~ and variance 2 for the claim 

count random variable, N. Let 2" be a random variable with mean 1 and variance c. The 

claim count distribution 1 for our version of  the coUective risk model will be defined by the 

two-step process where; (1) 2"is selected at random; and (2) the claim count is selected at 

random from a Poisson distribution with mean 2"2. The mean of  this distribution is ,,~. I will 

refer to the parameter c as the contagion parameter. 

1 ifzhas a gamma distribution, it is well known that this claim count distribution is the negative binomial 
distribution. None of the results derived in this paper will make use of this fact. 
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Using Equation 2, one calculates the variance of N as: 

Var[N 1 = E, EVar[N ] X]3+ Var, E E[N I X]3 
= • [Z)~] + Var z [Z)~] (8) 

= ) ~ + c . ~  2 

Let Z, be a random variable for claim severity for the ff claim. We will assume that each Z, is 

identically distributed with mean/2 and variance o 2. For random claim count, N, let: 

X= Z, + .... + Z> 

The mean of  X is 2/1. Using Equation 2 we calculate the variance of  X as: 

Var[X] = E x, [Var[XINl]+Var,. [E[XIN]] 
[N.o:]+Var, IN-Vl 

= a 'O ' :  +/a-" "( a + ' ' ' ~ 2  ) (9) 

= a.(a-' +/aa)+c.a a V 2 

At this point, I would like to introduce a notion of  risk size and specify my assumptions on 

how the parameters of  this model change with risk size. 

1. The size of  the risk is proportional to the expected claim count, ,~. 

2. The parameters of  the claim severity distribution, ]1 and o;, are the same for all risk 

sizes. 

3. The contagion parameter, c, is the same for all risk sizes. 

I do not claim that these assumptions are applicable to all situations. For example, 

increasing the size of  an insured building will expose an insurer to a potentially larger 

property insurance claim. 

I do believe these assumptions are applicable in the context of  this chapter, enterprise risk 

management. As an insurer increases the number of  risks that it insureds, its total expected 

claim count, ~, increases. If  each risk that it adds on is similar to its existing risks, it is 
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reasonable to expect 1/and O'to be the same. One way to think of the contagion parameter, 

c, is as a measure of the uncertainty in the claim frequency. I believe it is reasonable to think 

this uncertainty applies to all risks simultaneously. 

While a set of assumptions may sound reasonable, ultimately one should empiricaUy test the 

predictions of such a model. I will do so below after I complete the description of my 

proposed model. 

If the risk size is proportional to the expected claim count, ,,~, under the above assumptions 

it is also proportional to the expected loss ,~./,t. In this chapter let's define the loss ratio as 

the ratio of the random loss X to its expected loss E[X] =)bfl. 

Equation 10 shows that the standard deviation of the loss ratio, R = X/E[X] decreases 

asymptotically to x/Tc as we increase the size of the risk. Figure 5 below illustrates this 

graphically. 

+ v : ) + c . a : . v  2 
Standard Deviation [R] = a-+~ ) x/Tc 

2. /1 
(10) 
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4. Common Shocks in the Collective Risk Model 

I will now apply the ideas underlying the common shock model described m Section 2, to 

the collective risk model described in Section 3. I will start with the claim count 

distributions. 

Let N 1 and N 2 be two claim count random variables with E[N~] = '~i and Var[N a = Ai + c, "~  

f o r / =  1 and2.  

Let a b e  a random variable with E[a]  = 1 and Var[o~ = g. 

I now introduce common shocks into the joint distribution o f N  I and N 2 by selecting N 1 and 

_N 2 from claim count distributions with means t~ ,~ and t~,~ respectively and variances 

O~ ~ + c 1 • (a. 21) 2 and o~ ~ + c 2 • (or. Ao) 2. Let's calculate the covariance matrix for N1 and N2. 
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Using Equation 2 to calculate the diagonal elements yields: 

V~r [N, l  = E~[Var[N, IO¢]]+VaG[E[N, la ' ] ]  

=~o[~.~  +c .~.a-']+Voro[~.x,] 
= 2  + c , ' 2 2 . ( l + g ) + 2 a . g  

=a  +g:-(c, +g+, , 'a)  

(11) 

Using Equation 1 to calculate the off-diagonal elements yields: 

c0,,{~v,, N2] = ~o [c0,,[ N,, N_~ i ~1] .c0vo [E[N, I ~I,e[N: I~]] 
= ~o [0] + C0vo [a.a,,a.4 ] 
= a ;~4  

(12) 

Now let's add independent random claim severities, Z 1 and Z 2 to  our common shock model. 

Here are the calculations for the elements of the covariance matrLx for the total loss random 

variables X 1 and X 2. 

Var[X ] =  Ex, [Var[X I N ] ]*Var \ .  [E[X, i N , ] ]  

= & IN, • ~,:]+ Vor,, IN, .V,] 
=;t, .<-0 +;,-' "(a +a-' .(c, + , + c  "a)) 

= ~, - ( ~  +;~)+  ;t-" "V~ .(c +S+~, "s) 

(13) 

Cov[X,,X~_] = Eo [Cov[X,,X~ i ~]] + Co,o [ e [ x ,  j ~ ] , ~ [ x :  I~]] 
= ~o[0]+c0,,,[~.~ ./~,,~.4-v_,] 
=a'& ./a, .& "/4 

(14) 

Finally, let's multiply the claim severity random variables, Z 1 and Z2, by a random variable f l  

with E[I~ = 1 and VarL~ = b. Here are the calculations for the elements of the covariance 

matrix for the total loss random variables X l and X 2. 
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V,r[X,]= EB[v,,tx , IPl]*V, rp[EIX I/~1] 

=F,[~, p~.(< = +v~).a:  p2.v~ (c, .g. , . ,  , ) ] .v , , , [x , .p .v , l  

=(4. (a,-' + d ) +  e .~  .(c, + ,+c  .,)). ~[e2] + 4: • ~,~ • v~,[e] 
=,~,. (/~,2 + rY,")' (1+ b)+ A:'/~,-" "(c i + g+b+c ,  "g+c i .b+ g 'b+c ,  " g ' b )  

(15) 

c0.[ x,. xd  = ~. [o,,[ x,. x~ I/~1] + c0~ [ e[ x, I pl. E[ x .  I Pl] 
= ~p [g. &./~.,,, .z_./~. ~2] + c0,,p [4./~. ~ , , , / ~ * , d  

=g.d~ ./1, .& ./~_, . E [  fla ] + dq . ll, . ~_ "14 . Var[fl]  

=2, % .k 14.(a+ g+a.g) 

(16) 

I now complete my description of this version of  the collective risk model with the following 

two assumptions. 

1. b and g are the same for all risk sizes. 

2. b and g are the same for all lines of  insurance. 

The parameters b andg represent parameter uncertainty that applies across lines of  

insurance and it seems reasonable to assume that this uncertainty, is independent of  the size 

of  risk. I made the second assumption to keep the math simple without sacrificing the main 

themes of  this chapter. In practice I have allowedg to vary by line of  insurance. I will leave 

it as an exercise to the reader to show that you can replace g in Equations 14 and 16 with 

,4~1" gz when the coefficient of correlation between 0 6 and a~, is equal to one. 

Now I will illustrate the implications of  this model for loss ratios as we vary the size of  risk. 

My example will assume t h a t / / =  16,000, o '=  60,000 and c = 0.010 for each line of  

insurance. The additional parameters wal be b = g = 0.001. In the final sections, I will 

show that these are reasonable choices of  the parameters. 

First let's note that since b and g are small compared to c, introducing b and g into the model 

has little effect on the standard deviation of  the loss ratio, although what effect there is, 

increases with the size of  the risk. This is illustrated by Figure 6. 
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However, the coefficient of  correlation, as defined by: 

p[~,R~] = Co,[~,~] 
4Var[Ph l" Var[R, ] ' 

increases significantly as you increase the size of  the risk. In Figure 7 below, it is almost 

negligible for small risks. 

~b=g=O.~1 
~b=g-~ 
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When I show similar exhibits to other actuaries, I often find that their expectations of  the 

coefficient of  correlations are much higher. My best rationale for these expectations is that 

most expect a positive number between 0 and 1, and 0.5 seems like a good choice. 

Even so, these (perhaps) seemingly small correlations can have a significant effect for a 

multiline insurer seeking to manage its risk as I shall now illustrate. 
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Let's consider the covariance matrix for an insurer writing n lines of  business. 

Var[X,] Cov[X1,X2] 
Cov[Xa,X,] Var[X2] 

CodX.X:] Cov[X,,,x ] 

. . .  Cov[X,,X 

.. Cov[X=,X,,] I 

::: Va;i'X,,] ) 

The standard deviation of  the insurer's total losses, X 1 + ... +X,, is the square root of  the 

sum of  the elements of  the covariance matrix. If  b = g = 0, this sum consists of  the n 

variances along the diagonal. If b and/or  g # 0, then there are n 2 - n off-diagonal 

covariances included in the sum. As n increases, so does the effect of  even a "small" 

correlation. This is illustrated in Figures 8 and 9. 

Figure 8 
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Figure 9 
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5. An Empirical Test of the Model 

The collective risk model, as defined above, makes predictions about how the volatility and 

correlation statistics of  loss ratios vary with insurer characteristics. These predictions should, 

at least in principle, be observable when one looks at a sizeable collection of  insurance 

companies. In this section I will demonstrate that data that is publicly available on Schedule 

P is consistent with the major predictions of  this model. 

Data in Schedule P includes net losses, reported to date, and net premium by major line of  

insurance over a 10-year period of m e .  With Schedule P data for several insurers I 

calculated various statistics such as standard deviations and coefficients of  correlation 

between lines of  insurance for several insurers. Testing the model consisted of  comparing 

these statistics with available information about each insurer. 
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But first I will discuss some of  the difficulties with Schedule P data and discuss how, in work 

done jointly with Fred Klmker (see Meyers, Klinker and Lalonde [3] for details), we dealt 

with these difficulties. 

Schedule P premiums and reser~-es vary in largely predictable ways due to conditions that are 

present in the insurance market. These conditions are often referred to as the underwriting 

cycle. The underwriting cycle contributes an artificial volatility to underwriting results that 

lies outside the statistical realm of insurance risk. The measures insurance managers take to 

deal with the statistical realm of insurance risk, i.e. reinsurance and diversification, are 

different than those measures they take to deal with the underwriting cycle. 

We dealt with these difficulties by first using paid, rather than incurred, losses and estimating 

the ultimate incurred losses with industrywide paid loss development factors. Next we 

attempted to smooth out differences in loss ratios that we deemed "predictable." Appendix 

A in the Meyers et. al. paper referenced above describes this process in greater detail. 

After making the above adjustments, two other difficulties should be discussed. First, the 

use of  industrywide loss development factors removes the volatility that takes place after the 

report date of  the loss. As such, we should expect the volatilities we measure to understate 

the ultimate volatility. 

Second, Schedule P losses are reported net of  reinsurance. In addition, policy limits are not 

reported. Rather than incorporate this information directly into our estimation, we did 

sensitix~ity tests of  our model var)~ng limits and reinsurance provisions over realistic 

scenarios. 

Here I present results for commercial automobile liability insurance. I feel this is a good 

choice because: (1) it is a shorter tailed line than general liability and the underestimation of  

volatility will not be as great; (2) the use of  reinsurance is not as great as it is in the general 

liability lines of  insurance; and (3) commercial auto is not as prone to catastrophes as the 

property lines of  insurance. 
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5.1 Standard Deviation of Loss Ratios vs. Size of  Insurer 

As illustrated in Figure 5, the collective risk model predicts that the standard deviation of  

insurer loss ratios should decrease as the size of  the insurer increases. In Figure 10 we can 

see that this prediction is consistent with the observed standard deviations calculated from 

the Schedule P data described above. In this figure we plotted the empirical standard 

deviation of  55 commercial auto insurers against the average (over the 10 years of  reported 

data) expected loss for the insurer 2. 

Figure 10 also includes the standard deviations predicted by the collective risk model. The 

series denoted by "LowLim" used claim severity distribution parameters taken from a 

countrywide ISO claim severity distributions evaluated at the $300,000 occurrence limit. In 

this series I set c = 0.007, g = 0.0005 and b = 0. See Section 6 below for my commentary on 

selecting b and g. 

Now we (at ISO) know from data reported to us that, depending on the subline (e.g. light 

and medium trucks or long-haul trucks), typically 65% to 90% of  all commercial auto 

insurance policies are written at the $1 million policy limit. But since I also believed that the 

Schedule P data understates the true volatility of  the loss ratios, I selected the $300,000 

policy limit for the test. 

For the sake of  comparison, the series "HiLirn" represents a judgmental adjustment that one 

might use to account for problems with the Schedule P data. I used claim severity 

distribution parameters taken from a countrywide ISO claim severity distributions evaluated 

at the $1,000,000 occurrence limit. In this series I set c = 0.010,g = 0.0010 and b = 0. 

Figure 11 provides a comparable plot of loss ratios simulated from a collective risk model 

using the same parameters I used for the "LowLim" series. 

The two plots both  suggest that the Schedule P data is well represented by the collective risk 

mode - -  for an individual line of  insurance. 

2 Since the expected loss varies by each observation of annual losses, the annual loss ratios are not identically 
distributed according to the collective risk model. I don't think this is a serious problem here since the volume 
of business is fairly consistent from year to year. 

246 Casualty Actuarial Society Forum, Winter 2006 



RWP on Correlations and Dependencies Among Al l  Risk Sources Report 
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5.2 C o e f f i c i e n t s  o f  C o r r e l a t i o n  vs .  t h e  S i z e  o f  t h e  I n s u r e r  

As Figure 7 illustrates, a second prediction of  the collective risk model is that the coefficients 

of  correlation will increase with the size of  the insurer. In Figure 12 below, we plotted the 

empirical coefficient of  correlation between commercial auto and personal auto for 38 

insurers of  both lines, against the average (over 10 years of  experience reported for the two 

lines of  insurance) expected loss. A comparable plot based on simulated data from the 

model underl)diag the URM is in Figure 13 3. 

We observe that the coefficient of  correlation is a veI T volatile statistic for both the empirical 

data and the simulated data which has a built-in assumption consistent with our hypothesis. 

This serves to illustrate the difficulty in measuring the effect of  correlation in insurance data. 

To provide a deeper analysis of  the correlation problem I will make the assumption that the 

common shock random variables 0~and f l  operate on all insurers simultaneously. For 

random loss ratios R 1 and R2: 

C°v[X"X2] =b+ g+b" g; (17) E[(R,-1).(R:-1)]= 4 

which I derived from Equation 16. 

Now we have already established that the standard deviation of  loss ratios decreases with the 

size of  the insurer. Thus the denominator of: 

- 1 ) ' ( R  2 - 1 ) ]  

should decrease. If  we can demonstrate with the Schedule P data, that the numerator does 

not also decrease, we can conclude that the prediction that coefficients of  correlation will 

increase is consistent with the Schedule P data. It is to this we now turn. 

3 It may seem odd that the predicted correlation curve is not smooth. It is not smooth because ti~e horizontal 
axis is the average of the commercial auto and the personal auto expected loss, while the actual split between 
the two expected losses varies significantly between insurers. 
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The data used in the test that (RI-1) .(R,-1) was independent of insurer size consisted of  all 

possible pairs (15,790 in all) of  q and r2, and the associated expected losses, taken from the 

same year and different insurers. I fit a line 4 to the ordered pairs 

(Average Size of the Insurer, (r,-1) • (r~-l)) 

and obtained a slope of  +1.95x10 -1''. This slightly positive slope means that an increasing 

coefficient of  correlation is consistent with the Schedule P data. 

Equation 17 also provides us with a way to estimate the quantity b + g + b g. One simply has 

to calculate the weighted average of  the 15,970 products of  (r1-1) ( r~l) ,  0.00054. Since the 

15,790 observations are not independent, the usual tests of  statistical significance do not 

apply. To test the statistical significance of  this result, I simulated 200 weighted averages 

using the "LowLim" parameters (except that b = g = 0) with the result that the highest 

weighted average was 0.000318. Thus we can reject the hypothesis that b + g + b g = 0. 

I did one final simulation with the "LowLim" parameters (except that b = 0 and 

g = 0.00054) and calculated 200 slopes, with the result that the slope of  1.95x10 -1" was just 

below the 49 'h highest. Thus this slope would not be unusual if the collective risk model is 

the correct model. 

6. T h e  R o l e  o f  J u d g m e n t  i n  S e l e c t i n g  F i n a l  P a r a m e t e r s  

Historically, most actuaries have resorted to judgment in the quantification of  correlation. 

This chapter was written in the hope of  suppl)4ng some objectivity to this quantification. 

My employer, Insurance Services Office (ISO), has worked on quantifying this correlation. 

We have conducted analyses similar to the one described above for several lines of  business 

using both Schedule P data and individual insurer data reported to ISO. In the end, no data 

set is perfect for the job and we end up making some judgments. Here are some of  the 

considerations we made in selecting our final models. Comments are always welcome. 

4 I used a weighted least squares fit, using the inverse of the product of the predicted standard deviations of the 
loss ratio as the weights. This gives the higher volume, and hence more stable, obseta, afions more weight. 

2 5 0  C a s u a l t y  A c t u a r i a l  S o c i e t y  Forum, W i n t e r  2 0 0 6  
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We have reason to believe that the data we observe understates the ultimate 

variability since there are some claims that have yet to be settled. As a result we 

judgmentally increased the c, b andg parameters in the final model. 

Since the estimation procedure described provides an estimate of  b + g + b g, it is 

impossible to distinguish between the claim frequency common shocks, as 

quantified byg, and the claim severity common shocks as quantified by b. A lot of  

work has been done with claim severity and claim frequency trend and one can look 

to uncertainties is these trends when selecting the final parameters. 

While one might argue that the distinction between claim frequency common 

shocks and claim severity common shocks is unimportant, the way we apply them 

does make a difference. For claim frequency we group the various lines of  

insurance judgmentally, with some support from the data. For example, the same 

common shock for claim frequency applies to personal and commercial auto, but 

different common shocks apply to the commercial liability lines. We apply claim 

severity shocks across all lines. Meyers, Klinker and Lalonde [2003] describe this 

model more fully. 

Accounting data such as Schedule P may not be the best source for such analyses, but if  we 

cannot see the effect of  correlation in the accounting data, I would ask, do we need to 

worry about correlation? I believe that the analysis in this chapter demonstrates that we do 

need to consider correlation between lines of  insurance. 

7. Acknowledgements 

This chapter is largely an exposition of  work that appeared in a series of  prior papers that I 

will now describe. A significant advance ha the correlation literature was made by Shaun 

Wang [4] with the publication of  his work on a project that was sponsored by the CAS. It 

is in this paper that I first heard the term "common shock model." I rather quickly 

followed up with two related papers. In Meyers[1], I originally developed the model that is 

described in Section 4 of  this paper, and in Meyers[2] I developed methodology to 

parameterize the model with data that was "theoretically" available. A few years later we - -  
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Meyers, Klinker and Lalonde [3] - -  followed up with another methodology to parameterize 

the model with data that was actually available. The original version of this methodolog T is 

described in Appendix A and Fred_rick Klinker deserves the lion's share of the credit for 

developing it. I would described Section 5 as a minor improvement to this methodology. 
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