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AGGREGATING BIVARIATE CLAIM SEVERITIES WITH 

NUMERICAL FOURIER INVERSION 

DAVID L. H O M E R  

Abstract 

This chapter will apply continuous Fourier transforms to compute the bivariate aggre- 

gate claims distribution arising from a bivariate severity distribution and a univariate 

claim count distribution. 

1. INTRODUCTION 

This chapter will apply continuous Fourier transforms to compute the bivariate aggre- 

gate claims distribution arising from a bivariate severity distribution and a univariate 

claim count distribution. 

Section 1 provides a general description of univariate aggregate claims methods 

followed by a general description of bivariate aggregate claims methods. 

Section 2 provides a brief summary of the univariate Fourier transform method 

applied by Heckman and Meyers [3] since this will provide the foundation for the 

bivariate method presented in section 3. The abbreviation "HM" will be used for 

"Heckman and Meyers". Section 4 presents examples. 

1.1. Univariate Methods 

There are several methods described in the actuarial literature for computing the uni- 

variate aggregate loss distribution arising from a univariate severity distribution and 

a univanate claim count distribution. These methods include HM's numerical Fourier 

Casualty Actuarial  Society Forum, Winter  2006 207 



RWP on Correlations and Dependen&s Among All  Risk Sources Report 

inversion [31, discrete Fourier transforms as discussed by Wang [10] and Robertson 

[8], and Panjer 's recursive techniques [7]. 

Heckman and Meyers' numerical Fourier inversion method uses a severity distri- 

bution with claim size intervals of constant density and a possible point mass at the 

maximum claim size. The claim count model is Binomial, Poisson, or Negative Bi- 

nomial. This method works best when the expected claim counts are large because 

the numeric integral computed by this method coverges more quickly when the claim 

counts are large. 

The basic discrete Fourier transform method requires a discrete claim size distri- 

bution with claim sizes at equally spaced intervals. It works best when the expected 

claim counts are small because of computer memory constraints. The interval size 

must be small enough to accurately represent the claim size distribution while the 

largest claim size represented must be large enough to capture the aggregate distri- 

bution. This generally means a large number of intervals are required and limited 

computer memory can make computations for large claim counts impractical. 

Robertson's method is a clever adaptat ion of the basic discrete Fourier transform 

for application with claim size distributions with equally spaced intervals of constant 

density. This is nearly the same claim size model used by HM, but with a few 

additional limitations. There is no point mass allowed at the maximal claim size and 

the intervals of constant density must have uniform width. The claim count model is 

a finite list of probabilities. This method works best when the expected claim counts 

are small because of computer memory constraints. 

Additional calculations are required to correct the basic discrete Fourier trans- 

form for the non-discrete severity density. In practice, the cost of the additional 

calculations may outweigh the benefit, if any, of using severities with intervals of con- 

stant density. However, since Robertson's method is exact it is extremely useful for 

checking methods like the HM method which has an error term. The testing must 

be done with examples with a moderate number of expected claims since the HM 

method works best with a large number and Robertson's method works best with a 

small number. In this paper we will use a two-dimensional application of Robertson's 
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method to compute the error of the two-dimensional extension of HM. 

The recursive technique uses a discrete severity distribution with uniformly spaced 

claim sizes. The claim count model includes the Binomial, Poisson and Negative 

Binomial distributions3. This method works well when the expected claim counts 

are small for reasons similar to those given for discrete Fourier transform methods. 

In the methods described above, a pair of risk collections--each with its own 

severity and claim count distr ibution--would be aggregated assuming the collections 

were independent. Heckman and Meyers also allow a mixing parameter that  reflects 

parameter risk in the scale of the aggregate distribution and induces a correlation 

between collections. Wang [10] and Meyers [6] discuss the univariate aggregation of 

correlated collections. 

1.2. Bivariate Methods 

The actuarial literature also describes the computation of bivariate aggregate dis- 

tributions. Homer and Clark [4] describe bivariate examples using two-dimensional 

discrete Fourier transforms. Sundt [9] extends Panjer recursions to multiple dimen- 

sions. Walhin [11] describes an application of two-dimensional Panjer recursions. 

Like their univariate counterparts, these methods work best when the expected claim 

counts are small due to computer memory constraints. 

This chapter extends the HM method to bivariate aggregate distributions. As with 

the univariate method, this extension works best when the expected claim counts are 

large because the numeric integrals computed converge more quickly with large claim 

counts. 

The following sections will provide a brief review of the HM univariate method, 

develop the bivariate method, and present some examples. 

1The claim count model for recursion technique includes a larger group of distributions which are 
the members of the (a, b, 0) or (a, b, 1) classes as described by Klugman et al [3]. The HM method 
can be modified to use (a, b, x) members. 
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2 .  UNIVARIATE N U M E R I C A L  F O U R I E R  INVERSION 

2.1. Univariate Collective Risk Model 

The collective risk model describes aggregate claims for a collection of risks with a 

claim count or frequency distribution and a claim size or severity distribution. The 

individual claims sizes Xk are independent and identically distributed (lid). The 

individual claim sizes are also independent of the claim count N. The aggregate 

losses are 

Z = X1 + ... + XN. (2.1) 

This model may be used to describe the aggregate losses for a single line or book of 

business. 

2.2. Univai-iate Aggregate Characteristic Function 

The aggregate loss distribution is conveniently described through its characteristic 

function in terms of the characteristic function of the claim size distribution and the 

probability generating function of the claim count distribution. 

Recall that the characteristic function (cf) for a distribution is defined as 

¢x(t)  = E(eitX), (2.2) 

and that the probability generating function (pgf) for a discrete distribution is defined 

a s  

PGFN(t )  = E(tN). (2.3) 

The aggregate loss characteristic function ¢z(t) is equal to the composition of the 

claim count probability generating function PGFN(t )  with the claim size character- 

istic function ¢x(t),  

C z ( t )  = E(e ~'z) 
: E(eXI+...+xN) 

= EN(¢X(t)NIN) 

= PGFN(¢x( t ) ) .  (2.4) 
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The cdf F(z) of Z can be obtained from ¢z(t) when it is continuous 

F(z) = ~1 + -~rl fo~lOz(t)lsin(zt - arg(¢z(t))) (2.5) 

Although ¢(t) is complex, Equation 2.5 is real valued; I¢1 is the modulus of ¢ and 

arg(¢) is its argument. The right hand side of 2.5 yields F(z) - Pr(Z = z)/2 at steps 

when F(z) is not continuous. Given ¢(t), F(z) is obtained via numeric integration. 

Equation 2.5 is equivalent to HM equation 6.5. By applying a scale change of 

variable t --~ t /a and substituting f(t) = I¢(t/a)l and g(t) = arg(¢(t/a))) into 

equation 2.5 we get HM equation 6.5, 

1 1 [o~ f(t) 
F(z) = -~ + - Jo sin(tz/a - g(t))dt. (2.6) 

t 

2.3. Univariate Severity Model 

The severity density is approximated to make the calculation of ¢x(t) easy. It is 

approximated with n intervals (ak, ak+l) of constant density dk (k = 1, ...n) and an 

optional point mass p at the maximal claim size a~+l such that 

n 

E dk(ak+l -- ak) + p = 1. (2.7) 
k=l 

Figure 2.1 shows a sample severity density with two intervals (al, a2) and (a2, a3) and 

a point mass at aa. With this severity model we easily obtain 

C x ( t )  = Ex(~ "x) 
• _ eztak 

= f i d k e ' t a k + l i t  + p £ t a n + l .  (2.8) 
k = l  

2.4. Univariate Numerical Inversion 

Heckman and Meyers integrate 2.5 using five point Gaussian quadrature with spe- 

cial treatment of the portion of the integral 1,ear zero. We will extend this to two 

dimensions using five point quadrature first along one dimension and again along the 

second dimension. 
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F I G U R E  2.1 

UNIVARIATE SEVERITY DENSITY - -  INTERVALS OF CONSTANT DENSITY 

dl 

T 

i ........... I / ' 
al a2 a3 

claim size 

3. BIVARIATE NUMERICAL FOURIER INVERSION 

3.1. Bivariate Collective Risk Model 

The collective risk model can be extended to model two collections of risks and their 

dependencies. There are two forms for this extension. 

The first form is the bivariate severity form. It is useful for modeling aggregate 

losses together with the corresponding aggregate adjustment expenses. This form 

uses a single claim count distribution and a bivariate claim size distribution. While 

the bivariate pair (Xk, Yk) may have any dependency structure, the pairs arising from 

different claims are assumed to be lid. The claim size pairs are also independent from 

the claim count N. The aggregate loss pair is 

(Zx, Zy) = (Xl + ... + XN, Y1 + ... + YN). (3.1) 

The second form is the bivariate count form. It is useful for modeling two risk col- 

lections with different but related claim counts. The claim size severities Xk and Y3 

are separately lid and also independent from each other. The claim counts for each 
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risk collection arise from a bivariate claim count distribution. The claim count pair 

(M, N) is independent from each of the claim sizes. The aggregate pair is 

(Zx, Z~) = (X1 + ... + XM,  Y1 +. . .  + YN). (3.2) 

This chapter will focus on the bivariate severity form, but the methods presented here 

can also be applied to the bivariate count form. 

3.2. The Bivariate Aggregate Characteristic Function 

The aggregate characteristic function for the bivariate severity form of the collec- 

tive risk model is a composition of the claim count pgf with the bivariate severity 

characteristic function. 

Cz~,z~(s, t) = E(e'sZx+itz~) 

= E(e'*(Xl+...+XN)+it(rI+...+YN)) 

_~ E(eisXl+itrl..eisX~+~trN) 

= EN(¢X ,y (S , t )NIN)  

= PGFN(¢X ,V( s , t ) )  (3.3) 

For the bivariate count form, V~;ang [10] gives the aggregate characteristic function. 

Cz~,z~(s, t) = PGFM, N(¢X(S),  Cv(t)). (3.4) 

Where PGFM,N(S, t) is the bivariate claim count pgf. 

Appendices A and B develop an expression for F(zx ,  zu) in terms of Cz,,z~(s, t) 

when F is continuous, 

F ( x , y )  = (F(x )  + F(y ) )  - ~ + ~-~2I, (3.5) 

where 

I = fo fo 2 (l¢(s, t)l cos(sx + ty  - arg(¢(s, t))) - 

dsdt 
I¢ (s , - t ) l cos (sx  - ty  - arg(¢(s , - t ) ) ) )  

~is)(it)" 
(3.6) 
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When F is not continuous, the right hand side of 3.5 yields F(zx, z~) + m/4 ,  where 

m is a correction for probability mass that lies along the lines Z, = zx and Zy = zu, 

and 

Pr(Z ,  > zx A Z~ = z~) 

+Pr(Z~ > zy N Zx = z~) 

- P r ( Z ~  < z, n Z~ = zy) 

- P r ( Z y  < zy n Zx = zx). 

(a.7) 
(3.8) 
(3.9) 

(3.10) 

3.3. Bivariate Severity Model 

In an extension of the univariate severity model, the bivariate severity density will 

be approximated with rectangles of constant density. That is, the severity domain 

will be divided into mn rectangles (aj, aj+l) x (bk, bk+l) of constant density dj,k (j  -- 

1...m)(k = 1...n). Like the one dimensional case, this simplifies the calculation of 

Cx,r(s, t), 

Cx,r(s,t) = E(e "x+~tr) 

j = l  k = l  abk a 

- ~  eiSa3+l _ e~Sa3 eitbk+l _ eisbk 

= dj,k is it (3.11) 
j = l  k=l 

Figure 3.1 shows a sample bivariate density. 

Here we have not included mass points or mass lines, but it is possible to do so. 

3.4. Bivariate Numerical Fourier Inversion 

We will make use of two-dimensional five point Gaussian quadrature. Appendix C 

provides additional descriptions of two-dimensional quadrature. Sample code will also 

be provided in a spreadsheet that can be downloaded from the CAS Web site. It will 

follow key elements of the HM code fairly closely. 
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F I G U R E  3.1 

BIVARIATE SEVERITY DENSITY--RECTANGLES OF CONSTANT DENSITY 

dl A b l ~  
I I I 

al a2 a3 
X claim size 

In particular, HM split the line into 256 intervals of width h = 27ra/xma,. We will 

split the grid into rectangles of widths hx = rc/xmax and hy = rr/ym~ respectively. We 

are using half of the HM interval and trying to economize on the total number of rect- 

angles. We leave out the additional factor of a which is the standard deviation of the 

aggregate distribution and is not required. Heckman and Meyers additionally split the 

first interval into 5 smaller intervals (0, h/16), (h/16, h/8), (h/8, h/4), (h/4, h/2), (h/2, h). 

This is helpful because the integrand changes rapidly near zero. 

As suggested by HM it is speculated that the key source of error in this method 

is truncation error, since the integrals are from zero to infinity, but our algorithm 

must stop at a finite values. Errors in our sample calculations will be computed with 

comparisons to known values. 
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4. BIVARIATE EXAMPLES 

This section presents two examples. The first example applies the 2d inversion tech- 

nique to a bivariate severity and a claim count distribution allowing only a single 

claim. Thus, the aggregate distribution is the same as the bivariate severity and the 

error is readily computed. 

The second example applies the 2d inversion to the same bivariate severity with a 

moderate number of expected counts. This result is compared to an exact calculation 

produced by a two dimensional version of Robertson's method [8]. 

4.1. Example 1--Exactly One Claim 

Table 4.1 shows a sample bivariate severity distribution. If we also assume the claim 

count distribution has a 100% probability of 1 claim the resulting aggregate distribu- 

tion computed by our method is shown in Table 4.2. This method should reproduce 

Table 4.1. The error is shown in Table 4.3. 

T A B L E  4.1 

SAMPLE BIVARIATE SEVERITY CUMULATIVE DISTRIBUTION FUNCTION 

F(x,y) y 
0 200 600 800 1.200 

0 
200 
400 
600 

1,000 
2,000 
3,000 
5,000 

0.0000 0.0000 0.0000 0.0000 0.0000 
0.0000 0.4705 0.7557 0.7845 0.8120 
0.0000 0.4858 0.8243 0.8621 0.8990 
0.0000 0.4917 0.8540 0.8964 0.9380 
0.0000 0.4953 0.8735 0.9190 0.9640 
0.0000 0.4991 0.8949 0.9440 0.9930 
0.0000 0.4996 0.8978 0.9474 0.9970 
0.0000 0.5000 0.9000 0.9500 1.0000 
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TABLE 4.2 

AGGREGATION OF SAMPLE BIVARIATE SEVERITY CDF WITH 100% 
PROBABILITY OF 1 CLAIM 

Y(zx, Zy) Zy 
0 200 600 800 1,200 

Zx 
0 

200 
400 
600 

1,000 
2,000 
3,000 
5,000 

0.0000 0.0047 0.0076 0.0079 0.0082 
0.0011 0.4652 0.7485 0.7774 0.8046 
0.0012 0.4850 0.8236 0.8617 0.8985 
0.0012 0.4909 0.8535 0.8961 0.9377 
0.0012 0.4946 0.8731 0.9189 0.9639 
0.0012 0.4984 0.8945 0.9439 0.9929 
0.0012 0.4989 0.8975 0.9474 0.9969 
0.0012 0.4993 0.8996 0.9499 0.9999 

TABLE 4.3 

ERROR FOR EXAMPLE 1 AGGREGATE CDF 

Error 

0 
z, 200 

400 
600 

1,000 
2,000 
3,000 
5,000 

Zy 
0 200 600 800 1,200 

0.0000 0.0047 0.0076 0.0079 0.0082 
0.0011 (0.0054) (0.0072)(0.0072) (0.0074) 
0.0012 (0.0008) (0.0007)(0.0005) (0.0005) 
0.0012 (0.0008) (0.0005) (0.0002) (0.0003) 
0.0012 (0.0007) (0.0004) (0.0001) (0.0001) 
0.0012 (0.0007) (0.0004) (0.0001) (0.0001) 
0.0012 (0.0007) (0.0004) (0.0001) (0.0001) 
o.oo12 (o.ooo7) (0.0004) (o.oool) (o.oool) 
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4.2. Ezample 2--Variable Claim Counts 

In this example we use the claim size distribution from Example 1 and a claim count 

distribution with a maximum claim size. This allows us to compute the exact answer 

using an alternative method based on Robertson's one-dimensional method. Ap- 

pendix D provides a brief discussion of a 2d Robertson method. In addition, sample 

R code showing the 2d Robertson calculation will be made available for download- 

ing. Table 4.4 shows the count distribution. Table 4.5 shows the exact calculation 

based on the Robertson method. Table 4.6 shows the result from numerical Fourier 

inversion. The error is shown in Table 4.7. The errors are substantially smaller that  

those from Example 1 and this is at t r ibuted to the larger claim counts forcing the 

integrand to converge to zero more quickly. 

5. CONCLUSION 

Numerical Fourier inversion is a viable technique for exploring claim dependencies. 

When the claim counts are large, it may be more efficient than other techniques such 

as discrete Fourier transforms, recursion, or simulation. 

Additional development is possible for alternate severity structures such as a 

bivariate distribution for primary and excess claim portions. Given the aggregate 

characteristic function, conditional expected values can also be computed. These 

calculations could have potential applications in reserving and surplus allocation. 
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T A B L E  4.4 

EXAMPLE 2--CLAIM COUNT DISTRIBUTION 

Count Probability Cumulative 
0 0.000 0.000 
1 0.000 0.000 
2 0.000 0.000 
3 0.000 0.000 
4 0.000 0.000 
5 0.000 0.000 
6 0.000 0.000 
7 0.000 0.000 
8 0.100 0.100 
9 0.100 0.200 

10 0.100 0.300 
11 0.100 0.400 
12 0.100 0.500 
13 0.100 0.600 
14 ~ 0.100 0.700 
15 0.100 0.800 
16 0.100 0.900 
17 0.100 1.000 

Mean 12.500 
Std 2.872 
Var 8.250 
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TABLE 4.5 

EXAMPLE 2--EXACT SOLUTION FROM 2D ROBERTSON METHOD 

F(zz, Zy) Zy 
1,000 2,000 4.000 6,000 10,000 

Zx 
1,000 
2,000 
3,000 
4,000 
5,000 
6,000 
8,000 

15,000 

0.0009 0.0195 0.0550 0.0566 0.0567 
0.0017 0.0577 0.3249 0.3924 0.3951 
0.0019 0.0688 0.4850 0.6649 0.6782 
0.0019 0.0724 0.5613 0.8193 0.8431 
0.0019 0.0737 0.5925 0.8928 0.9239 
0.0019 0.0744 0.6073 0.9287 0.9639 
0.0019 0.0747 0.6170 0.9547 0.9935 
0.0019 0.0747 0.6185 0.9601 1.0000 

TABLE 4.6 

EXAMPLE 2--AGGREGATE CDF FROM NUMERICAL FOURIER INVERSION 

F(zx, z~) 0 

1,000 
zx 2,000 

3,000 
4,000 
5,000 
6,000 
8,000 

15,000 

Zy 
1,000 2,000 4,000 6,000 10,000 

0.0009 0.0195 0.0550 0.0566 0.0567 
0.0017 0.0577 0.3249 0.3924 0.3951 
0.0019 0.0688 0.4850 0.6649 0.6782 
0.0019 0.0724 0.5613 0.8193 0.8431 
0.0019 0.0737 0.5925 0.8928 0.9239 
0.0019 0.0744 0.6073 0.9287 0.9639 
0.0019 0.0747 0.6170 0.9547 0.9935 
0.0019 0.0747 0.6185 0.9601 1.0000 
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TABLE 4.7 

EXAMPLE 2--ERROR 

Error zy 
1,000 2,000 4,000 6,000 10,000 

1,000 
2,000 
3,000 
4,000 
5,000 
6,000 
8,000 

15,000 

0.00000 0.00000 0.00000 0.00000 0.00000 
0.00000 0.00000 0.00000 0.00000 0.00000 
0.00000 (0.00000) (0.00000) (0.00000) (0.00000) 
0.00000 0.00000 0.00000 0.00000 0.00000 
0.00000 0.00000 0.00000 0.00000 0.00000 
0.00000 0.00000 0.00000 0.00000 0.00000 
0.00000 0.00000 0.00000 0.00000 0.00000 
0.00000 0.00000 0.00000 0.00000 0.00000 
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APPENDIX A 

Two-DIMENSIONAL INTEGRATION FORMULA 

Consider the integral 

/7/7 I = e'~(e~'~¢(-s, - t )  - e-"~¢(-s,  t)) 

t)) d sd t  (A.1) -~-~*X(e"~¢(s,-t) - ~-"~¢(s, /-gT' 

Substitute the integral form for ¢ and apply Fubini's theorem to change the order of 

integration. Then, 

f foof f  I = e i*(*-u)(e it(y-v) - e 't(v-y)) 
J - oe  J - oe  J O ,10 

eit(v_u)) d s d t d F ( u ,  v) 
-£~(~-~)  'eit(~-~) - i s i t  (A.2) 

Since 

where 

fo  ° e . . . .  e-isX.ds = rsgn(x), 
is  

(A.3) 

-1,  x < 0  
sgn(x)= 0, x = 0  , 

1, x > 0  
(A.4) 
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I =  f _ :  f _ :  fo°~rrsgn(x- u)(e 't(u-v) - eit(v-Y))-~tdF(u,v ) 

= f_ : f_ : r r2sgn(x -u ) sgn(y -v )dF(u ,v )  

-Pr(Zu < zy n Z, = z~) 

- f ~  f~2dF(u,v) + Pr(Zy > z ~ n &  = z~) 

- i °~ f - L  rr2dF(u'v) + Pr(Z, > z ~ n &  = z~) 

+ f°~ i°°rr2dF(u,v ) 

= ~ ( F ( x , y )  - ( F ( z , ~ )  - F ( x , y ) )  - ( F ( ~ , y )  - F ( x , y ) )  

+(1 - F(oc,y) - F ( x ,  oo) + F(x,y)) + m). (A.5) 

Where  m is a correction for probabi l i ty  mass tha t  lies along the lines Zx = z~ and 

Z~ = zy when F(z,, zy) is not  continuous, since sgn(O) = O. 

m P r ( Z .  > zx n & = zy) 

+ P r ( &  > z~ n zx = z~) 

-Pr(Zx  <_ zx n Zy = zy) 

- P r ( Z y  < zy n Zx = zz), 

(A.6) 
(a.7) 
(A.8) 
(A.9) 

So, 

Finally, 

I = 7r2(4F(x, y) - 2 (F (x )  + F(y)) + 1 + m). 

1 l I  m 
F(x,y) = (F(x) + F(y)) - -~ + 4~r2 4" 

(A.10) 

(A.11) 
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APPENDIX B 

EXPANSION OF I FOR NUMERICAL INTEGRATION 
Appendix A provides an expression for the bivariate cdf F(x, y). 

1 ~ I ,  (B.1) F(x, y) = ~ (F(x) + F(y)) - -~ + 

where, 

/7/7 I = (e ~sx (dt~¢(-s,  - t )  - e-~tY¢(-s, t) 

dsdt (B.2) 
- e  - " x  - t )  - 

It will be helpful to write ¢ in polar form and make use of a few symmetries. Let 

R(s,t)  = I¢(s,t)l (B.3) 

O(s,t) = arg(¢(s,t)), (8.4) 

then, 
¢(s, t) = R(s, t)e i°(*'t) = E(ei**+it~). (B.5) 

We have the complex conjugate of ¢ 

¢(s,t) = R(s,t)e -i°("'t) (8.6) 

= E(e '**+'t~) (B.7) 

= E(e -~s~-'ty) (S.8) 

= R ( - s , - t ) e  ~°(-s'-t). (B.9) 

Thus, 

O(s,t) = - O ( - s , - t )  (B.10) 

O(s,-t)  = -O( - s , t )  (B.11) 

R(s,t)  = R ( - s , - t )  (B.12) 

R ( s , - t )  = R ( - s , t ) .  (B.13) 
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Now writing I with ¢ in polar form 

I = fo~ fo~ (e~*X (ei'~R(-s,-t)e'O(-s,-t) - e-i'~R(-s,t)e'O(-s,t)) - 

dsdt (B.14) e-~Sx (e't~R(*' -t)e'°(~'-') - e - ~ R ( s '  t)e~°(~"))) ( i , )( it)  

and simplifying using equations B.10-B.13, 

/7/7 I = (R(s, t) (e ~sx+~'~-~(~'~ + ~-~x-~'~+'~(~")) - 

R(s , - t )  (e . . . .  it~-,o(,,-t) + e-i,~+,tu+io(,,-t)) ) dsdt (B.15) 
(is)(it) 

we can now write 

/7/7 I = ( R ( ~ ,  t ) 2 e o ~ ( ~ x  + t y  - e(~,  t ) )  - 

. dsdt (B.16) R(~,- t )2eo~(~x - t y  - e ( ~ , - t ) ) )  ( ~ ) ( i t ) "  

In terms of ¢ we have 

/7/7 I - -  ( l ¢ ( s ,  t)12 cos(sx + ty - arg(¢(s, t))) - 

dsdt (B.17) 
]¢(s, -t)12 cos(sx - ty - arg ¢(s, - t ) ) ) )  (is)(it)" 
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APPENDIX C 

GAUSSIAN QUADRATURE FOR TWO DIMENSIONS 

This section will develop the formulae for two-dimensional Gaussian quadrature. 

The basic form to be approximated is 

/J// I ---- f(x, y)dxdy. (6.1) 

Using a change of variables, change the integral domain from the rectangle [a, b] x [c, d] 

to [-1,1] × [-1,1]. 

1 
u - b - a ( 2 X -  a -  b). (C.2) 

1 
v = d - c  (2y -c -d ) "  (C.3) 

Equation C.1 becomes 

/ l j / 1  ( u ( b _ a ) + a + b  v ( d _ c ) + c + d )  (b_a)(d_C)dudv" (C.4) I =  f 
1 1 2 ' 2 4 

The integral C.4 is now computed as a double sum, 

5 5 ( x i ( b - a ) + a + b  x j ( d - c ) + c + d ~  (b -a ) (d -c )  
= E E w , w , / \  2 ' 2 / 4 + ~ (c.s) 

z=l j = l  

The error term e depends on how well f(x, y) can be approximated by polynomials of 

finite degree (nine or less for five point Gaussian quadrature). By choosing sufficiently 

small intervals e can be made small. See [2] for additional details. 

The quadrature values xi and wi are taken from Abramowitz and Stegun [1]. 
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T A B L E  C. 1 

ABSCISSAS AND WEIGHTS FOR FIVE POINT GAUSSIAN QUADRATURE 

k xk wk 
1 -0.90617 98459 38664 0.23692 68850 56189 
2 -0.53846 93101 05683 0.47862 86704 99366 
3 0.00000 00000 00000 0.56888 88888 88889 
4 +0.53846 93101 05683 0.47862 86704 99366 
5 +0.90617 98459 38664 0.23692 68850 56189 

A P P E N D I X  D 

Two-DIMENSIONAL ROBERTSON METHOD 

This appendix provides a brief discussion of extending Robertson's method [8] to 

two dimensions. It begins with a summary of the one dimensional method. 

Robertson's method computes the aggregate distribution for a finite claim count 

distribution and a claim size distribution with equal width and constant density 

intervals. The method is exact and it uses discrete Fourier transforms. 

A more basic application of the discrete Fourier transform requires a discrete claim 

size distribution with claim sizes at integral intervals. 

Robertsons's method uses the usual discrete Fourier technique to compute convo- 

lutions, but adds a correction to reflect the constant density claim size intervals. The 

method is quite clever and it is not hard to develop an intuition to see why it works. 

Consider a discrete random variable X with integral size intervals of width I. Now 

add a random variable U that is uniform on the interval I. The result X + U is a 

random variable with claim size interval,- of constant density. 

This observation can be applied to develop the aggregate distribution with claim 

size distribution Fx+u and claim count distribution P. Note that the sum of n 

independent copies of X + U has the same distribution as the sum of n independent 

copies of X plus n independent copies of U. The aggregate cumulative distribution 
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function is then 
n = n m a x  

F(z)  = E P(n)F(x~ U(z) (D.1) 

n~r~rnax 

= E P(n)(F(xn)(z) * Fu(')(z))" (D.2) 
n = 0  

quantity F(xn)(z) can be computed with the discrete Fourier transform and The 

Robertson explains how F(un)(z) can be obtained. For integral values of z the convo- 

lution of the two is 
d = z  

Fx ('~1 ~'~ E ( f ( x n ) ( j ) F ( v " ) ( z - j ) ) .  (D.3) +U~,~]  

j=0 

Now consider ~(n) for integral values of z, • X + U  

j = z  

Fx  ('~) t,~ _ ~( ' )  t ,  _ 1) = E(f(xn)(j)(F(vn)(z  - j )  - F(un)(z - j - 1)) (D.4) +U~,~I  . X + U ~  

j=0 

Robertson explains that  the differences (F(un)(z - j )  - F(v")(z - j  - 1)) are the factors 
n az_ j where, 

a~ = 1/n! n > 1, (D.5) 

ajl : 0 j __> 1, (D.6) 

a~ = (1 /n ) ( (n  -j)a']_7~ + (j + 1)ay -1 n > 2, j > 1. (D.r) 

The right hand side of equation D.4 is the convolution of f(~) with a~ and can be 

computed using discrete Fourier transforms. 

The twn-dimensional extension wor "ks in exactly the same way by considering the 

discrete random pair (X, Y) with integral size intervals of widths I and J. By adding 

an independent pair (U, V) where U is uniform on I and V is uniform on J,  we get 

the random pair (X + U, Y + V), which has claim size rectangles of constant density. 

The two-dimensional correction factors for the nth convolution are outer products of 

the one-dimensional correction factors, since U and V are independent. 

a ~ = " " (D.8) (i,j) a~ aj 
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Sample R-code will be submitted with this chapter for downloading. 
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