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Abstract 
In recent years a number of "data mining" approaches for modeling data containing nonlinear and other 
complex dependencies have appeared in the literature. One of the key data mining techniques is decision trees, 
also referred to as classification and regression trees or CART (Breiman et al, 1993). That method results in 
relatively easy to apply decision rules that partition data and model many of the complexities in insurance data. 
In recent years considerable effort has been expended to improve the qualit 3" of the fit of regression trees. 
These new methods are based on ensembles or networks of trees and cart 3, names like TREENET and 
Random Forest. Viaene et al (2002) compared several data mining procedures, including tree methods and 
logistic regression, for prediction accuracy on a small fixed data set of fraud indicators or "red flags". They 
found simple logistic regression did as well at predicting expert opinion as the more sophisticated procedures. 
In this paper we will introduce some available regression tree approaches and explain how they are used to 
model nonlinear dependencies in insurance claim data. We investigate the relative performance of several 
software products in predicting the key claim variables for the decision to investigate for excessive and/or 
fraudulent practices, and the expectation of favorable results from the investigation, in a large claim database. 
.Mnong the software programs we will investigate are CART, S-PLUS, TREENET, Random Forest and 
Insightful Miner Tree procedures. The data used for this analysis are the approximately 500,000 auto injury 
claims reported to the Detailed Claim Database (DCD) of the Automobile Insurers Bureau of Massachusetts 
from accident years 1995 through 1997. The decision to order an independent medical examination or a 
special investigation for fraud, and the favorable outcomes of such decisions, are the modeling targets. We find 
that the methods all provide some predictive value or lift from the available DCD variables with significant 
differences among the methods and the four targets. All modeling outcomes are compared to logistic 
regression as in Viaene et al. with some model/software combinations doing significantly betxer than the 
logistic model. 
Keywords: Fraud, Data Mining, ROC Cu~,e, Variable Importance, Decision Trees 
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I N T R O D U C T I O N  

In recent years a number of approaches for modeling data containing nonlinear and other 
complex dependencies have appeared in the literature. Many of the methods were 
developed by researchers from the computer science, artificial intelligence and statistics 
disciplines 1. The methods have been widely characterized as data mining techniques. These 
procedures include several that should be of interest to actuaries dealing with large and 
complex data sets. The procedures of interest for the purposes of this paper are various 
varieties of classification and regression trees or CART. Viaene et al (2002) applied a wider 
set of  procedures, including neural networks, support vector machines, and a dassical 
general linear model, logistic regression, on a small single data set of insurance dairn fraud 
indicators or "red flags" as predictors of suspicion of fraud. They found simple logistic 
regression did as well at predicting expert opinion on the presence of fraud as the more 
sophisticated procedures. Stated differently, the logistic model performed well enough in 
modeling the expert opinion of fraud that there was litde need for the more sophisticated 
procedures:. 

A wide variety of statistical software is now available for implementing fraud and other 
predictive models through clustering and data mining. In this paper we will introduce a 
variety of Regression Tree data mining approaches 3 and explain how they are used to model 
nonlinear dependencies in insurance claim data. We also investigate the relative performance 
of several software products that implement these models. As an example of relative 
performance, we test for the key claim variables in the decision to investigate for excessive 
and/or fraudulent practices in a large claim database. The software programs we 
investigate are CART, S-PLUS, TREENET, Random Forests, and Insightful Tree and 
Ensemble from the Insightful I~finer package. Naive Bayes and Logistic models are used as 
benchmarks. The data used for this analysis are the auto bodily injury liability daims 
reported to the Detailed Claim Database 0DCD) of the Automobile Insurers Bureau of 
Massachusetts from accident years 1995 through 1997 ~. Three types of variables are 
employed. Several variables thought to be related to the decision to investigate are included 
here as reported to the DCD, such as outpatient provider medical bill amounts. A few 
variables are included that are derived from publicly available demographic data sources, 
such as income per household for each claimant's zip code. Additional variables are derived 
by accumulating proportional statistics from the DCD; e.g., the distance from the claimant's 
zip code to the zip code of the first medical provider or claimant's zip code rank for the 
number of plaintiff attorneys per zip code. The decision to order an independent medical 
examination or a special investigation for fraud, and a favorable outcome for each, are the 
modeling target. 

Eight modeling software results will be compared for effectiveness based on a standard 
procedure, the area under the receiver operating characteristic curve (AUROC). We find 
that the methods all provide some predictive value or lift from the DCD variables we make 
available, with significant differences among the eight methods and four targets. Modeling 
outcomes can be compared to logistic regression as in Viaene et al. but the results here are 
different. They show some software/methods can improve significantly on the predictive 
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ability of the logistic model. That result may be due to the relative richness of this data set 
and/or the types of independent variables at hand compared to the Viaene data. We show 
how "important" each variable is within each software/model tested s and note the type of 
data that are important for this analysis. This entire exercise should provide practicing 
actuaries with guidance on regression tree software and market methods to analyze complex 
nonlinear relationship commonly found in all types of insurance data. 

The paper is organized as follows. Section 1 introduces the general notion of non-linear 
dependencies in insurance data. Section 2 describes the data set of  Massachusetts auto bodily 
injury liability claims and variables used for illustrating the models and software 
implementations. Descriptions and illustrations of the data mining methods applied in the 
paper appear in Section 3 while the specific software procedures are covered in Section 4. 
Comparative outcomes for the variables ("importance") and software ("AUROC") are 
reported in Sections 5 and 6. We provide some interpretation of the results in terms of the 
decision to investigate within the Massachusetts data as an illustration of the usefulness of 
the modeling effort in Section 7. Implications for the use of the software models are 
discussed in section 8. Contusions are shown in Section 9. 

S E C T I O N  1. N O N L I N E A R I T Y  IN I N S U R A N C E  DATA 

Actuaries are nearly inseparable from data and data manipulation techniques. Data come in 
all forms as a matter of course. Numeric (loss ratios), categorical (injury types), and text 
(accident description) data all flood insurers on a daily basis. Reserving and pricing are two 
major functions of casualty actuaries. Reserving involves compiling and understanding 
through mathematical techniques historical patterns of a portfolio of insurance claims in 
order to predict an ultimate value. Pricing involves taking the best estimates of historical 
cost data on claims and expenses, combining that data with financial asset pricing models 
that include projecting future values in order to arrive at best estimates of all costs of 
accepting underwriting risk. Of  course, actuaries continually look back at both analytic 
exercises to determine the accuracy of those estimates as the real accounting data develops 
over time. 

Traditionally, actuarial models were confined to linear, multiplicative or mixed algebraic 
equations in the absence of the powerful computing enviromnent we enjoy today. Those 
mostly manual methods provided crude approximations that sufficed when alternative 
methods were unavailable or non-existent. Simple deviations from linear relationships, such 
as escalating inflation, could be handled by simple transformations of the data (log 
transform) that allowed linear techniques to be applied to the data. Gradually, over time 
these transformation techniques became more sophisticated and could be applied to many 
problems with a variety of non-linear data ~'. 

Trend fines of time series data, such as dalrn severity or frequency, are generally amenable to 
linear techniques. However, data where interactions and cross correlations are essential to 
the modeling of the dynamics of the process underlying the data, require more 
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comprehensive techniques that yield more precision on more types of data complexities. 
Figure 1-1 shows a particular non-linear relationship between two insurance variables that 
would be difficult, if not impossible, to modal with simple techniques. One purpose of  this 
paper is to demonstrate a range of so-called artificial intelligence or statistical learning 
techniques that have been developed to handle complicated relationships within data sets. 

An Insurance Nonlinear Function: 
Provider Bill vs. Probability of Independent Medical Exam 
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Figure 1 -1 

Nearly all regression and econometric academic courses address the topic of  nonlinearity, at 
least briefly. Students are instructed in methods to detect nonlinearity and how to model it. 
Detection generally involves using scatter plots of independent versus dependent variables 
or evaluating plots of residuals. Two methods of  modeling nonlinearity that are generally 
taught: are 1) transformation of variables and 2) polynomial regression (Miller and Wichem 7, 
1977, and Neter et al, 1985). For instance, if an examination of  residual plots indicates that 
the magnitude of  the residuals increases with the size of  an independent variable, the log 
transformation is recommended. Polynomial regressions are considered useful 
approximations when a curvilinear relationship exists but its exact form is unknown. 

A generalization of linear models "known as Generalized Linear Models or GLM (McCullagh 
and Nelder, 1989) enabled the modeling of  multivariate relationships in the presence of  
certain kinds of  non-normality (i.e. where the random component is from the exponential 
family of distribution). The link function of GLMs formalizes the incorporation of certain 
nonlinear relationships into the modeling procedure: The transformations incorporated into 
the common GLMs are: 

The identity link: h(Y) = Y 
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The log link: h(Y) = lnC~ 
1 

The inverse link: h(Y) = - -  (1) 
Y 

The logit link: h(Y) = l n ( l _ ~  ) 

The probit link: h(Y) = ~(Y),  • denotes the normal CDF 
O f  these transformations, the log and logit transformation appear frequently in the insurance 
literature. Because many insurance variables are right skewed, the log transformation is 
applied to attained approximate normality and homogeneity of  variance. In addition, apriori 
or domain considerations (e.g., the relationship between the independent variables and the 
dependent variable is believed to be mulfiplicative) sometimes suggest the log 
transformation. The logit transform is commonly used when the dependent variable is 
binary. 

Unformnatdy, while the techniques cited above add significantly to the analyst's ability to 
model nonlinearity, they are not sufficient for many situations encountered in practice. In 
actual insurance data, complex nonlinear relationships are the rule rather than the exception. 
Some of the reasons the traditional approaches often do not provide a satisfactory 
approximation to nonlinear functions are: 

• The form of the nonlinearity may be other than one of  those permitted by the 
-known transformations which produce linearity. Figure 1-1 displays one such non- 
linear function based on the insurance database used in this analysis. 

• While a polynomial of  adequate degree can approximate many complex functions, 
extrapolation beyond the data, or interpolation within the data, may be problematic, 
particularly for higher order polynomials. 

• Determining the appropriate transformation (or polynomial) can be difficult if not 
impossible when there are many independent variables, and the appropriate relation 
between the target and each independent variable must be found. 

• The relationship between a dependent variable and an independent variable may be 
confounded by a third variable due to interaction or correlations that are not simple 
to approximate. 

To remedy these problems requires methods where: 
• Any nonlinear relationship can be approximated. 
• The analyst does not need to -know the form of the nonlinearity. 
• The effect of  interactions can be easily determined and incorporated into the model. 
• The method generalizes well on out-of-sample data for interpolation or extrapolation 

purposes. 

The regression tree methods included in our analysis meet these conditions. Section 3 of 
this paper describes how each of  our methods models nonlinearity. We now turn to a 
description of  the data set we will use in this analysis. 
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SECTION 2. DESCRIPTION OF THE MASSACHUSETTS AUTO BODILY 
INJURY DATA 

The database we will use for our analysis is a subset of the Automobile Insurers Bureau of 
Massachusetts Detail Claim Database (DCD); namely, those claims from accident years 
1995-1997 that had closed by June 30, 2003 (AIB, 2004). All auto claims s arising from injury 
coverages: Personal Injury Protection (PIP)/Medical  payments excess of PIP 9, Bodily Injury 
Liability (BIL), Uninsured and Underinsured Motorist. While there are more than 500,000 
claims in this subset of DCD data, we will restrict our analysis to the 162,761 third party BIL 
coverage claims. This will allow us to divide the sample into training, test, and holdout sub 
samples, each containing in excess of 50,000 claims TM. The dataset contains fifty-four 
variables relating to the insured, daimant, accident, injury, medical treatment, outpatient 
medical providers (2 maximum), attorney presence, and three claims handling techniques for 
mitigating daims cost for their presence, outcome, and formulaic savings amounts. 

The claims handling techniques tracked are: Independent Medical Examination (IME), 
Medical Audit (MA) and Special Investigation (SIU). IMEs are performed by licensed 
physicians of  the same type as the treating physician u. They cost approximately $350 per 
exam with a charge of $75 for no shows. They are designed to verify claimed injuries and to 
evaluate treatment modalities. One sign of a weak or bogus claim is the failure to submit to 
an IME and, thus, an IME can serve as a screening device for detecting fraud and build-up 
claims. MAs are peer reviews of the injury, treatment and billing. They are typically done by 
physicians without a claimant examination, by nurses on insurers' staff or by third party 
organizations, but also from expert systems that review the billing and treatment patterns 12. 
Favorable outcomes are reported by insurers when the damages are mitigated, the billing and 
treatment are curtailed, and when the claimant refuses to undergo the IME or does not 
show. In the latter two situations the insurer is on solid ground to reduce or deny payments 
under the failure-to-cooperate clause in the policy) 3 

Special Investigation (SIU) is reported when claims are handled through non-routine 
investigative techniques (accident reconstruction, examinations under oath and surveillance 
are examples), possibly including an IME or Medical Audit, on suspicion of fraud. For the 
most part, these claims are handled by Special Investigative Units (SIU) within the claim 
department or by some third party investigative service. Occasionally, companies will be 
organized so that additional adjusters, not specifically a part of  the company SIU, may also 
conduct special investigations on suspicion of fraud. Both types are reported to DCD and 
we refer to both by the shorthand SIU in subsequent tables and figures. Favorable outcomes 
are reported for SIU if the claim is denied or compromised based on the SIU investigation. 

For purposes of  this analysis and demonstration of non-linear models and software, we 
employ twenty-one potentially predicting variables and four target variables. Thirteen 
predicting variables are numeric, two from DCD fields (F), eight derived from internal 
demographic type data (DV), and three variables derived from external demographic data 
(DM) as shown in Table 2-1. 
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Auto Injury Liability Claim Numeric  Variables 

Variable N Type 

Provider I_BILL 162,761 F 
Provider 2_BILL 162,761 F 
ARe 155,438 DV 
Report La~ 162,709 DV 
Treatla~ 147,296 DV 
HouseholdsPerZipcode 118,976 DM 
AveralgeHouseValue Per Zip 118,976 DM 
IncomePerHousehold Per Zip 118 ,976 DM 
Distance ~IP1 Zip to CLT. Zip) 72,786 DV 
Rankattl (rank art/zip/ 129,174 DV 
Rankdoc2 (rank prov/zip/ 109,387 DV 
Rankci~. (rank claimant city,) 118,976 DV 
Rnkpcity (rank provider ci~') 162,761 DV 
Valid N (lJstwise) 70,397 

Minimum M~Lximum 

0 1,861,399 
0 360,000 
0 104 
0 2,793 
1 9 
0 69,449 
0 1,000,001 
0 185,466 
0 769 
1 3,314 
1 2,598 
1 1,874 
0 1,305 

Std. 
Mean Deviation 

2,671.92 6,640.98 
544.78 1,805.93 
34.15 15.55 
47.94 144.44 
3.29 1.89 

10,868.87 5,975.44 
166,816.75 77,314.11 
43,160.69 17,364.45 

38.85 76.44 
150.34 343.07 
110.85 253.58 
77.37 172.76 
30.84 91.65 

N = Number of non missing records; F=DCD Field, DV = Internal derived variable, DM = External derived 
variable 
Source; Automobile Insurers Bureau of Massachusetts, Detail Claim Database, A Y  1995-1997 aud Authors' Cakulations. 

Table 2-1 

Eight  predicting variables, and four target variables (IME and SIU, Decis ion and Favorable 
Outcome  for each), are categorical variables, all taken as reported f rom D C D  and as shown 
in Table 2-2. 
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Variable 

Policy Type 
Emergent, Treatment 162,761 
Health Insurance 162,756 
Provider I - Type 162,761 
Provider 2 - T}'pe 162,761 

2001 Territory 162,298 

Attorney 162,761 
Suspl (SIU Done / 162,761 

Susp2 (IME Done / 162,761 

Susp3 (SIU Favorable) 162,761 

Susp4 (IME Favorable / 162,761 

Injury Type 162,298 

N = Nttmber of non missing records 

Auto Injury Liability Claim CateBorical Variables 
N 

Type Type Description 
162,761 F Personal 92%, Commercial 8% 

F None 9%, Onl,v 22%, w Outpatient 68% 
F Yes, 15%, No 26%, Unknown 60% 
F Chiro 41%, Physical Th. 19%, Medical 30%, None 10% 
F Chiro 6%, Physical Th. 6%, Medical 36%, None 52% 
F Rating Territories 1 (2.2%) Through 26 (1.3%); Territory 1- 

16 by increasin~ risk, 17-26 is Boston 
F :kttorne~, present (89%), no attorney (11%) 
F Special Invesfi~tion Done (70/0/, No SIU (93%) 

Independent Medical Examination Done (8%), No IME 
F (920/o / 

Special Investagation Favorable 0.4%), Not Favorable/Not 
F Done (95.6% / 

Independent Medical Exam Favorable (4.4%), Not 
F Favorable/Not Done (96.6% / 

Injury Types (24) including manor visible (4O/o), strain or 
F sprain, back and/or neck (81%), fatality (0.4%), disk 

herniation (1%) and others 
F= DCD Field 

Note: Descriptive percentages may not add to 100% due to rounding 
Source: Automobile Insurers Bureau of Massachusetts, Detail Claim Database, A Y  1995-1997 andAuthors' Calculations. 

Table 2-2 

Similar claim investigation variables are now being collected by the Insurance Research 
Council in their periodic sampling of  countr3avide injury claims (IRC, 2004a, pp 89-104) 14. 
Nationally, about 4% and 2% of BI claims involved IMEs and SIU respectively, only one- 
half to one-quarter of  the Massachusetts rate. Most likely, this is because (1) a majority of  
other states have a full tort system and so BIL contains all injury claims and (2) 
Massachusetts is a fairly urban state with high claim frequencies and more dubious claimslk 
In fact, the most recent IRC study shows (IRC, 2004b, p25) Massachusetts has the highest 
percentage of  BI claims in no-fault states that are suspected of  fraud (23%) and/or  buildup 
(41%). It is therefore, entirely consistent for the Massachusetts claims to exhibit more non- 
routine claim handling techniques. Favorable outcomes average about 67% when an IME is 
done or a claim is referred to SIU. We now turn to descriptions of  the types of  models, and 
the software that implements them, in the next two sections before we describe how they are 
applied to model the IME and SIU target variables. 

S E C T I O N  3. M O D E L S  F O R  N O N - L I N E A R  D E P E N D E N C I E S  

H o w  models  handle nonlinearity 
Traditional actuarial and statistical techniques often assume that the functional rdationship 
between the independent variables and the dependent variable is linear or that some 
transformation of  the data exists that can be treated as linear. Insurance data often contain 

8 Casualty Actuarial Society Forum, Winter 2006 



Distinguishing the Forest from the TREES 

variables where the relationship among variables is nonlinear. Typically when nonlinear 
relationships exist, the exact nature of  the nonlinearity (i.e., where some transformation can 
be used to establish linearity) is not known. In the field of  data mining, a number of  
nonparametric techniques have been developed which can model nonlinear relations without 
any assumption being made about the nature of  the nonlinearity. We cover how each of  our 
methods reviewed in this paper models nonlinearities in the following two examples. The 
variables in this example were selected because of  a known nonlinear relationship between 
independent and dependent variables. 

Ex. 1 The dependent variable, a numeric variable, is total paid losses and the 
independent variable is provider 2 bill. Table 3-1 displays average paid losses at various 
bands of  provider 2 bilP ~. 
Ex. 2 The dependent variable, a binary categorical variable, is whether or not an 
independent medical exam is requested and the independent variable again is provider 2 
bill. 

Nonlinear Example Data 
Provider 2 Bill (Banded) 

Zero 
1 - 250 
251 - 500 
501 - 1,000 
1,001 - 1,500 
1,501 - 2,500 
2,501 - 5,000 
5,001 - 10,000 
10,001+ 

All Claims 

Avg Provider 2 Bill Avg Total Paid 
9,063 

Percent IME 
6% 

154 8,761 8% 
375 9,726 9% 
731 11,469 10% 

1,243 14,998 13% 
1,915 17,289 14% 
3,300 23,994 15% 
6,720 47,728 15% 

21,350 83261 15% 

545 11,224 8% 

Table 3-1 

Trees 
Trees, also known as classification and regression trees (CART) fit a model by recursively 
partitioning the data into two groups, one group with a higher value on the dependent 
variable and the other group with a lower value on the dependent variable. Each partition 
of  the tree is referred to as a node. When a parent node is split, the two children nodes, or 
"leaves" of  the tree, are each more homogenous (i.e., less variable) with respect the 
dependent variable 17. A goodness o f  fit statistic is used to select the split which maximizes 
the difference between the two nodes. When the independent variable is numeric, such as 
provider 2 bill, the split takes the form of  a cutpoint, or threshold: x > c and x < c as in 
Figure 3-1. 
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CART Example of Parent and Children Nodes 
Total Paid as a Function of Provider 2 Bill 

1 ~ Split 

I 
i i 

Figure 3-1 

The cutpoint c is found by evaluating all possible values for splitting the numeric variable 
into higher and lower groups, and selecting the value that optimizes the split in some 
manner. When the dependent variable is numeric, the split is typically based on the value 
which results in the greatest reduction in residual sum of squares. For this example, all values 
of provider 2 bill are searched and a split is made at the value $5,021. All claims with 
provider 2 bill less than $5,021 go to the left node and "predict" a total paid of $10,770 and 
all claims with provider 2 bill greater than $5,021 go to the right node, and "predict" a total 
paid of $59,250. This is depicted in Figure 3-1. The tree graph shows that the total paid 
mean is significantly lower for the claims with provider 2 bills less than $5,021. 

One statistic often used as a goodness of fit measure to optimize tree splits is sum squared 
error or the total squared deviation of actual values around the predicted values. The selected 
cutpoint is the one which produces the largest reduction in total sum squared errors (SSE). 
That is, for the entire database the total squared deviation of paid losses around the 
predicted value (i.e., the mean) of paid losses is 4.95x10 is. The SSE declines to 4.66x10 is 
after the data are partitioned using $5,021 as the cut-point. Any other partition of the 
provider bill produces a larger SSE than 4.66x1013. For instance, if a cut'point of  $10,000 is 
selected, the SSE is 4.76x1013. 

The two nodes in Figure 3-1 can each be split into to children nodes and these can then be 
further split. The sequential splitting continues until no improvement in the goodness of fit 
statistic occurs. The nodes containing the result of  all the splits resulting from applying a 
sequence of decision rules are the final nodes often referred to as terminal nodes. The 
terminal nodes provide the predicted values of the dependent variables. When the dependent 

10 Casualty Actuarial Society Forum, Winter 2006 



Distinguishing the Forest from the TREES 

variable is numeric, the mean of the dependent variable at the terminal nodes is the 
prediction. 

The curve of the predicted value resulting from a tree fit to total paid losses is a step 
function. As shown in Figure 3-2A, with only two terminal nodes, the fitted function is flat 
until $5,021, steps up to a higher value and then remains flat. Figure 3-2B displays the 
predicted values of a tree with 7 terminal nodes. The steps or increases are more gradual for 
this function. 

CART Example w/th Two and Seven Nodes 
Total Paid as a Function of Provider 2 Bill 

|t 

' 1 4  - 

o 

o 

Figure 3-2A Figure 3-2B 

The procedure for modeling data where the dependent variable is categorical (binary in our 
example) is similar to that of  a numeric variable. For instance, one of the fraud surrogates is 
independent medical exam (IME) requested. The target class is claimants for whom an IME 
was requested and the non-target group of (presumably) legitimate claims is that where an 
IME was not requested. At each step, the tree procedure selects the split that best improves 
or lowers node impurity. That is, it attempts to partition the data into two groups so that 
one partition has a significantly higher proportion of the target category, IME requested, 
than the other node. A number of statistical goodness of fit statistics measures is used in 
different products to select the optimal split. These include entropy/deviance and Gini 
index (which is described later in this paper). Kantardzic (2003), Breiman et al (1993) and 
Venibles and Ripley (1999) describe the computation and application of the Gini index and 
entropy/deviance measures is. A score or probability can be computed for each node after a 
split is performed. This is generally estimated based on the number of observations in the 
target groups versus the total number of observations at the node. The score or probability 
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is frequently used to assign records to one of  the two classes. Typically, if the model score 
exceeds a threshold such as 0.5, the record is assigned to the target class; otherwise it is 
assigned to the non-target class. 

Figure 3-3A displays the result of  using a tree procedure to predict a categorical variable 
from the AIB data. The graph shows that each time the data is split on provider 2 bill; one 
child node has a lower proportion and the other a higher proportion of  claimants receiving 
IMEs. The fitted tree function is used to model a nonlinear relationship between prmfider 
bill and the probability that a claim receives an IME as shown in Figure 3-3B. 

CART Example with Seven Nodes 
IME Proportion as a Function of Provider 2 Bill 

I . t 
! 

e 

Figure 3-3A 

CART Example with Seven Step Functions 
IME Proportion as a Function of Provider 2 Bill 

Figure 3-3B 

Tree models use categorical as well as numeric independent variables in modeling complex 
data. However, because the levels on categorical data may not be ordered, all possible two- 
way splits of  categorical variables must be considered before the data are partitioned. 

E n s e m b l e  M o d e l s - B o o s t i n g  
Ensemble models are composite tree models. A series of  trees is fit and each tree improves 
the overall fit of  the model. In the data mining literature the technique is often referred to as 
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"boosting" (Hastie et al 2001, Freidman, 2001). The method initially fits a small tree of say 5 
to 10 terminal nodes on a training dataset. Typically, the user specifies the number of 
terminal nodes, and every tree fit has the same number of terminal nodes. The error, or 
difference between the actual and fitted values, is computed and used in another round of 
fitting as a dependent variable. The error is also used in the computation of the weight in 
subsequent rounds of fitting, with records containing larger errors receiving higher weighting 
in the next round of estimation. 

One algorithm for computing the weight is described by Hastie et a119. Consider an ensemble 
of trees 1, 2, ...,M. The error for the m 'h tree measures the departure of the actual from the 
fitted value on the test data after the m 'h model has been fit. When the dependent variable is 
categorical, as it is in the fraud application in this paper, a common error measure used in 
boosting is: 

N 

~"w I(y, * F ( x ) )  
err = ' =' N (2) 

~ w  
I=1 

where N is the total number of records, w, is a weight (which is initialized to 1 /N in the first 
round of fitting), I is an indicator function equal to zero if the category is correctly predicted 
and one if the class assigned is incorrect, y, is the dependent variable, x is a matrix of 
predictors and Fm(x ) is the prediction for the i 'h record of the m 'h tree. 

Then, the coefficient alpha is a function of the weight: 

log(1 - e r r  m ~m = ) 
err ,  

and the new weight is: 
w,.m+ 1 =wm exp(aml(y, #Fm (x))) 

(3) 

The process is performed many times until no further statistical improvement in the fit is 
obtained. 

The specific boosting procedures implemented differ among different software products. 
For instance, TREENET (Freidman, 2001) uses stochastic gradient boosting. Stochastic 
gradient boosting incorporates a number of procedures which attempt to build a more 
robust model by controlling the tendency of large complex models to overfit the data. A key 
technique used is resampling. A new sample is randomly drawn from the training data each 
time a new tree is fit to the residuals from the prior round of model estimation. The 
goodness of fit of the model is assessed on data not included in the sample, the test data. 
Another procedure used by TREENET to control overfitfing is shrinkage or regulaffzation. A 
simple way to implement shrinkage is to apply a weight which is greater than zero and less 
than one to the contribution of each tree as it is added to the weighted average estimate. 
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Alternatively, the Insightful Miner Ensemble model employs a simpler implementation of 
boosting which applies non-stochastic boosting and uses all the training data in each round 
of fitting. 

The final estimate resulting from an ensemble approach will be a weighted average of  all the 
trees fit. Using a large collection of trees allows: 

• Many different variables to be used. Some of these would not be used in smaller 
models a'. 

• Many different models are used. The predictive modeling literature (Hasfie et al., 
2001, Francis, 2003a, 2003c) indicates that composites of multiple models perform 
better than the prediction of a single model -~1. 

• Different training and test records are used (with stochastic gradient boosting). This 
makes the procedure more robust to the influence of a few extreme observations. 

The method of fitting many (often 100 or more) small trees results in fitted curves which are 
almost smooth. Figures 3-4A and 3-4B display two nonlinear functions fit to total paid and 
IME variables by the TREENET ensemble model. 
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Ensemble Prediction of Total Paid 
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Figure 3-4B 

E n s e m b l e  M o d e l s - B a g g i n ~  
Bagging is an ensemble approach based on resampling or bootstrapping. Bagging is an 
acronym for "bootstrap aggregation" (Hastie et al., 2000). Bagging does not use the error 
from the prior round of fitting as a dependent variable or weight in subsequent rounds of 
fitting. Bagging uses recursive sampling of records in the data to fit many trees. For 
instance an analyst may decide to take a 50% of the data as a training set each time a model 
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is fit. Under bagging, 100 or more models may be fit, each one to a different sample. The 
trees fit are not necessarily small trees with 5 to 10 terminal nodes as with boosting and each 
tree may have a different number of  terminal nodes. By averaging the predictions of  a 
number of  bootstrap samples, bagging reduces the prediction variance. The implementation 
of  bagging used in this paper is known as Random Forest. In addition to using only a 
sample of  the data each time a tree model is fit, Random Forest also samples from the 
variables. For the analysis in this paper, one third of  the variables were sampled for each 
tree fit. 

Figures 3-5A displays an ensemble Random Forest tree fit to total paid losses and Figure 3- 
5B displays a tree fit to IME. 

Random Forest Prediction of Total Paid 
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Figure 3-5 A 
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Random Forest Prediction of IME 
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Figure 3-5 B 

Naive Baves 
The Naive Bayes method is a relatively simple and easy to implement method. In our 
comparison, we xdew it as a benchmark data mining method. That is, we are interested in 
how more complex methods improve performance (or not) against an approach where 
simplifying assumptions are made in order to make the computations more tractable. We 
also use logistic regression models as a second benchmark. 

The Naive Bayes method was developed for categorical data. Specifically, both dependent 
and independent variables are categorical. Therefore, its application to fitting nonlinear 
functions will be illustrated only for the categorical target variable IME. In order to utilize 
numeric predictor variables it was necessary to derive new categorical variables based on 
discretizing, or "binning", the distribution of data for the numeric variables = . 

The key simplifying assumption of the Naive Bayes method is the assumption of 
independence. All predictor variables are assumed to act independendy in influencing the 
target variable. Interactions and correlations among the predictor variables are not 
considered: 

Bayes rule is used to estimate the probability that a record with given independent variable 
vector X = {x} is in category C = {c,} of the dependent variable. 

P(cj Ix,)=P(x, Icl)P(cl)/P(x,) (4a) 
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Because of the Naive Bayes assumption of conditional independence, the probability that an 
observation ~11 have a specific set of values for the independent variables is the product of 
the conditional probabilities of observing each of the values given category c, 

P(X I cs ) =I'-I P(x, I c, ) (4b) 
J 

The method is described in more detail in Kantardzic (2003). To illustrate the use of Naive 
Bayes in predicting discrete variables, the provider 2 bill data was binned into groups based 
on the quintiles of the distribution. Because about 50 percent of the daims have a value of 
zero for provider 2 bill, only four categories are created by the binning procedure. The new 
variable was used to estimate the IME targets. Figure 3-6 displays a bar plot of  the predicted 
probability of an IME for each of the groups. Figure 3-7 displays the fitted function. This 
function is a step function which changes value at each boundary of a provider 2 bill bin. 

Bayes Predicted Probability IME Requested vs. Quintile of Provider 2 Bill 

~ . t a c ~ x  - 

) . 1 ¢ c ~ x  - 

: ,xcc~x- 

Provider 2 Bill Ouintile 

Figure 3-6 
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S E C T I O N  4. S O F T W A R E  F O R  M O D E L I N G  N O N - L I N E A R  D E P E N D E N C I E S  

N o n a d d i t i v i t v :  i n t e r a c t i o n s  

Conventional statistical models such as regression and logistic regression assume not  only 
linearity, but also additivity of  the predictor variables. Under  additivity, the effect of  each 
variable can be can be added to the model one at a time. When the exact form of  the 
relationship between a dependent and independent variable depends on the value of  one or 
more other variables, the effects are not  additive and one or more interactions exist. For 
instance, the relationship between provider 2 bill and IME may vary by type of  injury (i.e. 
traumatic injuries versus sprains and strains). Interactions are common in insurance data 
(Weisberg and Derrig, 1998, Francis, 2003c). 

With conventional linear statistical models, interactions are incorporated with multiplicative 
terms: 

Y = a + blX 1 + b2X2 + b3*XI*X 2 (s) 

In the case of  a two-way interaction, the interaction terms appear as products of  two 
variables. I f  one of  the two variables is categorical, the interaction terms allow the slope of  
the fitted line to vary with the levels of  the categorical variable. I f  both  variables are 
continuous the interaction is a bilinear interaction (Jicard and Turrisi, 2003) and the slope of  
one variable changes as a linear function of  the other variable. I f  both  variables are 
categorical the model is equivalent to a two factor A N O V A  with interactions. 
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The conventional approach to handling interactions has some limitations. 
• Only a limited number of types of interactions can be modeled easily. 

• If many predictor variables are included in the model, as is often the case in many 
predictive modeling applications, it can be tedious, if not impossible, to find all the 
significant interactions. Including all possible interactions in the model without 
regard to their significance likely results in a model which is over-parameterized. 

The tree-based data mining techniques used in this paper each have efficient methods for 
handling interactions. 

• Interactions are inherent in the method used by trees to partition data. Once data 
have been partitioned, different partitions can and typically do split on different 
variables and capture different interactions among the predictor variables. When the 
decision rules used by a tree to reach a terminal node involve more than one variable, 
in general, an interaction is being modeled. 

• Ensemble methods incorporate interactions because they are based on the tree 
approach. 

• Naive Bayes, because it assumes conditional independence of the predictors, ignores 
interactions. 

• Logistic regression incorporates interactions in the same way ordinary least squares 
regression does, with product interaction terms. In this fraud comparison study, no 
attempt was made to incorporate interaction terms as this procedure lacks an 
efficient way to search for the significant interactions. 

Multiple predictors 
Thus far, the discussion of the tree-based models concerned only simple one or two variable 
models. Extending the tree methods to incorporate many potential predictors is 
straightforward. For each tree fit, the method proceeds as follows: 

• For each variable determine the best two-way partition of the data. 
• Select the variable which produces the best improvement in the goodness of fit 

statistic to split the data at a particular node. 
• Repeat the process until no further improvement in fit can be obtained. 

Software for modeling nonlinear dependencies and testing the models 
Four software products were included in our fraud comparison: They are CART, 
TKEENET, 
S-PLUS (R) and Insightful M i n e r  23. 

CART and TREENET are Salford Systems stand-alone software products that each 
performs one technique. CART (Classification and Regression Trees) does tree analysis and 
TREENET applies stochastic gradient boosting using the method described by Freidman 
(2001). All the software tested produce SAS cod e  24 that can be used to implement the model 
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in a production stage. All the products contain a procedure for handling missing values 
using surrogate variables. At any given split point, CART and TREENET find the variable 
that is next in importance in influencing the target variable and they use this variable to 
replace the missing data. The specific statistic used to rank the variables and find the 
surrogates is described in Brieman et. al. (1993). Different versions of CART and 
TREENET handle different size databases. The number of levels of categorical variables 
affects how much memory is needed, as more levels necessitate more memory. The 128k 
version of each product was used for this analysis. With approximately 100,000 records in 
the training data, occasional memory problems were experienced and it became necessary to 
sample fewer records. One of the very useful features of the Salford Systems software is 
that all the products rank variables in importance :5. 

S-PLUS and R are comprehensive statistical languages used to perform a range of statistical 
analyses including exploratory data analysis, regression, ANOVA, generalized linear models, 
trees and neural networks. Both S-PLUS and R are derived from S, a statistical programming 
language originally developed at Bell Labs. The S progeny, S-PLUS and R, are popular 
among academic statisticians. S-PLUS is a commercial product sold by Insightful which has 
a true GUI interface that facilitates easier handling of some functions. Insightful also 
supplies technical support. The S-PLUS programming language is widely used by analysts 
who do serious number crunching. They find it more effective, especially for processes that 
are frequently repeated. R is free open source statistical software that is supported largely by 
academic statisticians and computer science faculty. It has only limited GUI functionality 
and the data mining functions must be accessed through the language. Most code written 
for S-PLUS will also work for R. One notable difference is that data must be converted to 
text mode to be read by R (a bit of  an inconvenience, but usually not an insurmountable 
one). Fox (2002) points out some of the differences between the two languages, where they 
exist. The S-PLUS procedures used here in the fraud comparison are found in both S-PLUS 
and R. However one ensemble tree method used, Random Forest, appears only to be 
available in R. The S-PLUS (R) procedures used were: the tree function for decision trees 
and the glm (generalized linear models) for logistic regression. S-PLUS (R) incorporates 
relatively crude methods for handling missing values. These include eliminating all records 
with a missing value on any variable, an approach which is generally not recommended 
(Francis 2005, AUsion 2002). S-PLUS also creates a new category for missing values (on 
categorical variables) and allows aborting the analysis if a missing value is found. In general, 
it is necessary to preprocess the data (at least the numeric variables where there is no missing 
value method 2~) to make a provision for the missing values. In the fraud comparison, a 
constant not in the range of the data was substituted into the variable and an indicator 
dummy variable for missing was created for each numeric variable with missing values. S- 
PLUS and R are generally not considered optimal choices for analyzing large databases. 
After experiencing some difficulty reading training data of about 100,000 records into S- 
PLUS, the database was reduced to contain only the variables used in the analysis. Once the 
data was read into S-PLUS, few problems were experienced. Another eccentricity is that the 
S-PLUS tree function can only handle 32 levels on any given categorical variable, so in the 
preprocessing the number of levels may need to be reduced 27. The R Random Forest 
function incorporates a procedure that can be used to rank variables in importance. The 
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procedure produces an impurity statistic which can be used to rank the variables. The 
impurity is based on the Gini index for classification applications and mean squared error for 
numeric dependent variables. The S-PLUS tree funcdon contains no built-in capability for 
ranking variables in importance. Therefore using the S-PLUS language, an algorithm was 
coded into S-PLUS to rank the variables. The method is described in Francis (2001) and 
Potts (2000). The procedure quantifies how much the error increases when a variable is 
removed from the model; the larger the increase in errors, the more important the variable. 

The Insightful Miner is a data mining s.uite that contains the most common data mining 
tools: regression, logistic regression, trees, ensemble trees, neural networks and Naive 
Bayes ~. As mentioned earlier, Insightful also markets S-PLUS. However, the Insightful 
Miner has been optimized for large databases and contains methods (Naive Bayes) which are 
not part of S-PLUS (R). The Naive Bayes, Tree and Ensemble Tree procedures from 
Insightful Miner are used here in the fraud comparison. The insightful Miner has several 
procedures for automatically handling missing values. These are 1) drop records with 
missing values, 2) randomly generate a value, 3) replace with the mean, 4) replace with a 
constant and 5) carry forward the last obseta-ation. Each missing value was replaced with a 
constant. In theory, the data mining methods used, such as trees, should be able to partition 
records coded for missing from the other obse~-ations with legitimate categorical or numeric 
values and separately estimate their impact on the target variable (possible after allowing for 
interactions with other variables). Server versions of the Insightful Miner generate C code 
that can be used in deploying the model, but the version used in this analysis did not have 
that capability. As mentioned above some preprocessing was necessary for the Naive Bayes 
procedure. Since Insightful Miner contains no procedure for ranking variables in 
importance, no rankings were provided for the Iminer methods. 

Validatine and Testin~ 
v 

It is common in data mining circles to partition the data into three groups (Hastie et al., 
2001). One group is used for "training", or fitting the model. Another group, referred to as 
the validation set, is used for "testing" the fit of the model and re-estimating parameters in 
order to obtain a better model. It is common for a number of iterations of testing and 
fitting to occur before a final model is selected. The third group of data, the "holdout" 
sample, is used to obtain an unbiased test of the model's accuracy. An alternative approach 
to a validation sample that is especially appropriate when the sample size used in the analysis 
is relatively modest, is cross-validation. Cross-validation is a method involving holding out a 
portion of the training sample, say one fifth of the data, fitting a model to the remainder of 
the data and testing it on the held out data. In the case of 5-fold cross validation, the 
process is repeated five times and the average goodness of fit of the five validations is 
computed. The various software products and procedures have different methods for 
validating the models. Some (Insightful Miner Tree) only allow cross-validation. Others 
(TREENET) use a validation sample. S-PLUS (R) allows either approach -~ to be used (so a 
test sample of about 20% of the training data was used as we had a relatively large database). 
Neither validation sample nor cross-validation was used with Naive Bayes, Logistic 
Regression or the Ensemble Tree. 
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In this analysis, approximately a third of the data, about 50,000 records, was used as the 
holdout sample for the final testing and comparison of the models. Two key statistics often 
used to compare models accuracy are sensitivity and spedficity. Sensitivity is the percentage of 
events (i.e., claims with an IME or referred to a special investigation unit) that were 
predicted to be events. The q~ecifid~y is the percentage of nonevents (in our applications 
claims believed to be legitimate) that were predicted to be nonevents. Both of these 
statistics should be high for a good model. Table 4-1, often referred to as a confusion 
matrix (Hasfie et. al., 2001), presents an example of the calculation. 

Sample Confusion Matrix: Sensitivity and Specificity 
True Class 

Prediction No Yes Row Total 
No 800 200 1,000 
Yes 200 400 600 
Column Total 1,000 600 

Correct Total Pement Correct 
Sensitivity 800 1,000 80% 
Specificity 400 600 67% 

Table 4-1 

In the example confusion matrix, 800 of 1,000 non-events are predicted to be non-events so 
the sensitivity is 80%. The specificity is 67% since 400 of 600 true positives are accurately 
predicted. 
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SECTION 5. SOFTWARE RANKINGS OF "IMPORTANT" VARIABLES IN 
T H E  DECISION TO INVESTIGATE: IME A N D  SIU 

The remainder of this paper is devoted to illustrating the usefulness and effectiveness of 
eight model/software combinations applied to our Example 2, the decision to investigate via 
IMEs or referral to SIU. We model the presence and proportion of favorable outcomes, of 
each investigative technique for the DCD subset of automobile bodily injury liability (third 
party) claims from 1995-1997 accident years. 3" We employ twenty-one potentially predicting 
variables of three types: (1) eleven typical claim variable fields informative of injury claims as 
reported, both categorical and numeric, (2) three external demographic variables that may 
play a role in capturing variations in investigative dairn types by geographic region of 
Massachusetts, and (3) seven internal "demographic" variables derived from informative 
pattern variables in the database. Variables of type 3 are commonly used in predictive 
modeling for marketing purposes. The variables used for these illustrations are by no means 
optimal choices for all three types of variables. Optimization can be approached by other 
procedures (beyond the scope of this paper) that maximize information and minimize cross 
correlations and by variable construction and selection by domain experts. 

The eight model/software combinations we xxtll use here are of two categories: six tree 
models, and two benchmark models (Naive Bayes and Logistic). They are: 

1) TREENET 5) Iminer Ensemble 
2) Iminer Tree 6) Random Forest 
3) SPLUS Tree 7) Naive Bayes 
4) CART 8) Logistic 

As described in Section 4, CART and TREENET are Salford Systems stand-alone software 
products that each performs one technique. CART (Classification and Regression Trees) 
does tree analysis, and TREENET applies stochastic gradient boosting to an ensemble of 
trees using the method described by Freidman (2001). The S-PLUS procedures used here in 
the fraud comparison are found in both S-PLUS and in a freeware version in R. These were: 
the tree function for decision trees, and the GLM (generalized linear models) for logistic 
regression. 

Insightful Miner is a data mining suite. The Naive Bayes, Tree and Ensemble Tree 
procedures, from Insightful Miner are used here in the fraud comparison. 

Model performance is covered in the next section, section 6, as we first cover the ranking of 
variables by "importance" in rdation to the target variables: the decision to perform an IME 
or a Special Investigation (SIU) and the favorable outcomes of each investigative technique. 
The training data of approximately 75,000 records was used in the ranking evaluations. 

Data mining modds are typically complex models where it is difficult to determine the 
relevance of predictors to the model result. One of the handy tasks that some of the data 
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mining software products perform is to rank the predictor variables by their importance to 
the model in predicting the dependent variable. Where the software did not supply a 
ranking, we omitted an importance ranking leaving five model/software determinations of 
importance for the twenty-one variables. Different procedures are used for different 
methods and different products. 

Two software products, CART and TREENET supply importance rankings. The 
procedures used are: 

CART: CART uses a goodness of fit measure, also referred to in the literature as an 
impurity measure, and computed over the entire tree, to determine a variable's importance. 
In this study the goodness of fit measure was the Gini Index defined below (Hastie, et al., 
p.271-272): 

i(t) = 1 - ~ p,  i--the categories of the dependent variable and p.is the probability of 
I 

class (6) 
Each split of  the tree lowers the overall value for the statistic. CART keeps track of the 
impurity improvement at each node for both the variable used in the split and for surrogate 
variables used as a replacement in the case of missing values. A consequence of this is that a 
variable not used for splitting may rank higher in importance than a variable that is. 

TREENET: Because it is composed of many small CART trees, TREENET uses the same 
method as CART to compute importance rankings. 

S-PLUS CR) does not supply an importance ranking, but the programming language can be 
used to program a procedure to compute rankings. A sensitix4ty value was computed for 
each variable in the model. The sensitivity is a measure of how much the predicted value's 
error increases when the variables are excluded from the model one at a time. However, 
instead of actually exduding variables and refitting the model, their values are fixed at a 
constant value. (See Francis, 2001 for a detailed recipe for applying the approach). The 
sensiti~fty statistic was used to rank the variables from the tree function. For the logistic 
regression, information about the variables contribution to sum of squared variation 
explained by the model was used to rank it. Like CART and TREENET, Random Forest 
uses an impurity measure (i.e., Gini Index) to produce an importance ranking. 

Insightful Miner does not supply importance rankings. Unlike S-PLUS (R), the analytical 
methods are not accessed through the language but through a series of icons placed on a 
palate. Thus, we were not able to custom program a ranking procedure for application with 
the Iminer's modeling methods. The resulting importance rankings were used in Tables 5- 
1A & 5-2A for the decisions to investigate and 5-1B and 5-2B for the favorable outcomes. 

Each of five model/software combination outputs allowed for the evaluation of the 
predicting variables in rank order of importance, when significant, together with a measure 
of the relative value of importance on a scale of zero (insignificant) to 100 (most significant 
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variable). Table 5-1A displays the importance results for predicting an IME using the five 
tree models while Table 5-1B displays those results for the remaining five model / sof tware  
combinations, including the benchmark Nai've Bayes and Logistic. The predicting variables 
are listed in the order o f  importance in the T R E E N E T  model,  where all variables are 
significant. The number  o f  significant variables found ranges from a low of  twelve variables 
(S-PLUS Tree) to all twenty one (TREENET) .  

Variable 

Provider 2 Bill 
Attorneys Per Zip 
Territo~" 
Health Insurance 
Injury Type 
Provider 1 Bill 
Provider 1 Type 
Report Lag 
Attorney 
Age 
Provider 2 Type 
Income Household/Zip 
Avg. Household Price/Zip . 
Providers per City 
Claimants per City 
Providers / Zip 
Households/Zip 
Treatment Lag 
Distance~lPl Zip to Clt Zip 
Emergency Treatment 
Policy. Type 

Software Ranking of Variables for IME Decision 
By Importance Rank and Value 
(1) 

T R E E N E T  

1 (100) 
2 (80) 
3 (71) 
4 (61) 
5 (50) 
6 (4"0 
7 (31) 
8 (31) 
9 (25) 
10 (23) 
11 (19) 
12 (18) 
13 (17) 
14 (17) 
15(16) 
16 (16) 
17 (16) 
18 (14) 
19 (13) 
20 (4) 
21 (3) 

(2) 
S Plus Tree 

2 (91) 
5 (26) 

(32) 
1 (lOO) 
6 (24) 
3 (51) 
9 (7) 
7 (16) 
12 (3) 

8 (9) 

11 (3) 
lo (4) 

(3) 
CART 

1 (100) 
13 (9) 
11 (11) 
3 (68) 
5 (47) 
4 (58) 

8 (18) 

17 (2) 

10 (13) 
15 (5) 
9 (15) 

18 (2) 
20 (0.1) 
7 (20) 
19 (2) 

(4) 
Random 

Forest 
1 (100) 
6 0 4) 
3 (59) 
2 (84) 
10 (18) 
4 (59) 
12 (15) 
8 (27) 
19 (5) 
17 (8) 
5 (42) 
11 (16) 

16 (9) 
7 (32) 
15 (13) 
13 (15) 
9 (24) 

14 (14) 
18 (6) 
20 (0) 

(s) 
Logisdc 

lO (1) 
11 (1) 

1 (100) 
2 (51) 

6 (8) 
13 (1) 
5 (18) 

3 (47) 
9 (2) 

12 (1) 
8 (2) 
7 (2) 

4 (24) 

Note: * represents insignificance of variable in the model. 
Table 5-1A 

The same set o f  model / sof tware  combinations was used with the same set o f  twenty-one 
predicting variables to predict the favorable outcome of  the IME. Table 5-1B shows the 
importance o f  each o f  the 21 predictors for modeling favorable outcomes o f  IMEs. 
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Variable 

Provider 2 Bill 
Attorneys Per Zip 
Territory 
Health Insurance 
Injury Type 
Provider I Bill 
Provider I Type 
Report Lag 
Attorney 
Age 
Proxdder 2 Type 
Income Household/Zip 
Avg. Household Price/Zip 
Providers per City 
Claimants per City 
Providers/Zip 
Households/Zip 
Treatment Lag 
Distance MP1 Zip to Clt Zip 
Emergency Treatment 
Vor~q Type 

Software Ranking of Variables for IME Favorable 
By Importance Rank and Value 
(1) (2) (3) 

TREENET S Plus Tree CART 

5 (64) 3 (22) 4 (37) 
11 (28) * 11 (6) 
2 (98) 2 (43) 12 (5) 
1 (100) 1 (100) 1 (100) 

(4) 
Random 
Forest 
5 (49) 
13 (28) 
1 (lOO) 
2 (71) 

(s) 
Logistic 

2 (13) 
11 (1) 
4 (9) 

1 (lOO) 
4 (76) 
7 (45) 
8 (38) 
6 (53) . 

12 (25) 
13 (24) 
10 (29) 
20 (7) . 
15 (16) 
19 (8) 
9 (36) 
17 (12) 
16 (15) 
14 (22) 
3 (78) . 
18 (9) 
21 (5) 

5 (10) 9 (15) 
4 (15) 2 (51) 
9 (16) 5 0 6) 
8(7) 18(o) 

* 19 (0) 
* 6 00 )  

11 (4) 17 (0) 
* lS  (0) 
* 8 (17) 

12 (3) 13 (2) 
13 (2) 7 (20) 
7 (7) 16 (0) 
14 (1) 10 (6) 
6 (8) 14 (1) 
10 (6) 3 (44) 

4 (67) 3 (13) 
3(70) * 
10 02) 5 (9) 
6 (45) 8 (6) 
18 (3) 7 (8) 
9 (33) * 
12 01) * 
8 (33) 10 g) 

15 (23) * 
16 (22) 13 (1) 
11 01) * 
7 (37) 9 (-'2) 
14 (28) 6 (8) 

17 (5) 12 (1) 

Note: * represents insignificance of variable in the model. 
Table 5-1B 

The  same set o f  five mode l / so f twa re  combinat ions  was used wi th  the same set o f  twenty- 
one  predict ing variables to predict  the use o f  spedal  invest igation or SIU. Tables 5-ZR and  
5-2B show the cor responding  ranking o f  variables by impor tance  for each o f  the five model  
combinat ions  and two target variables, decision and favorable. 
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Software Ranking of Variables for SIU Decision 
By Importance Rank and Value 

Variable 

Providers/Zip 
Provider 2 Type 
Territo9, 
Health lnsumnce 
Provider 1 Bill 
lnju~ Type 
Attorney 
Provider 1 Type 
Age 
Provider 2 Bill 
Report lag 
Average House Price 
Attorneys/zip 
Distance to Provider 

(1) 
TREENET 

1 (100) 
2 (98) 
3 (92) 
4 (64) 
5 (59) 
6 (52) 
7 (47) 
8 08) 
9 (31) 
10 (30) 
11 (28) 

Emergency, Treatment 
Income/Cap Household 
Claimants per City 
Treatment Lag 
Households/Zip 
Policy Type 
Providers per City 

12 (28) 
13 (22) 
14 (20) 
15 (19) 
16 (18) 
17 (17) 
18 (16) 
19 (16) 
20 (8) 
21 (6) 

(2) 
S Plus Tree 

1 (100) 
10 (3) 
5 (18) 
3 (33) 
2 (51) 
7(6) 

8 (4.5) 
4 (29) 

6 (8) 

11 (3) 

9 (34) 

12 (1) 

(3) 
CART 

8 (37) 
15 (34) 
3 (84) 
7 (52) 
2 (85) 
5 (59) 
17 (13) 
4 (69) 

1 (100) 
6 (54) 
15 (18) 
14 (20) 
19(4) 
13 (27) 
9 (4.5) 
12 (30) 
18 (12) 
16 (16) 

11 (30) 

(4) 
Random 

Forest 
3 (74) 
10 (30) 
1 (100) 
6 (50) 
2 (89) 
16 (5) 
18(4) 
s (81) 
17 (5) 
4 (74) 
8 (10) 

9 00) 
15 (18) 
19 (4) 
13 (21) 
11 (26) 
14 (20) 
12 (21) 
20 (1) 
7(44) 

(s) 
Logisuc 

6 (39) 

7G8) 
14 (2) 
2 (71) 
3 (63) 
1 (100) 

13 (5) 
11 (17) 

12 (7) 
4 (58) 
5 (49) 
9 (27) 

15 (2) 
8 (28) 

10 (22) 

Note: * represents insignificance of variable in the model. 
Table 5-2A 
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Variable 

Providers/Zip 
Provider 2 Type 
Territo~" 
Health Insurance 
Provider 1 Bill 
Injuq, Type 
Attorney 
Provider 1 Type 
Age 
Proxader 2 Bill 
Report lag 
Average House Price 
Attorneys/zip 
Distance to Provider 
Emergency Treatment 
Income/Cap Household 
Claimants per City 
Treatment Lag 
Households/Zip 
Policy T.vpe 
Providers per City 

Software Ranking of  Variables for SIU Favorable 
By Importance Rank and Value 
(6) (7) (8) 

TREENET $ Plus Tree CART 

10 (20) 10 (6) 12 (25) 
4 (41) * 7 (35) 
1 (100) 2 (94) 1 (100) 
13 (18) 6 (16) * 
6 (30) . 13 (4) . 15 (9) . 
3 (58) 5 (16) . 6 (39) 
14 (16) 12 (4) 9 (27) 
5 (40) 1 (100) 3 (50) . 
8 (22) * 17 (7) 
2 (66) 4 (18) 8 (32) 

. 7 (25) . 7 (14) 19 (2) . 
15 (16) * 13 (24) 
11 (19) 8 (14) 4 (45) 
16 (15) 9 (14) . 5 (39) 
21 (9) , 3 (72) 14 (17) 
17 (14) 11 (5) . 2 (61) 
12 (19) * 11 (25) 
19 (13) * 18 (4) 
18 (13) * 16 (9) . 
20 (10) * * 
9 (21) 14 (3) 10 (26) 

Note: * represents insignificance of variable in the model. 
Table 5-2B 

(9) 
Random 

Forest 
7 (24) 
9 08) 
1 (100) 
15 (10) 
5 (29) 
16 (8) 
18 (6) 
3 (33) 
13 (13) 
6 (26) 
2 (36) 

lO (17) 

14 (11) 
11 (16) 
12 (13) 
17 (6) 
8 (19) 

4 (31) 

(10) 
Logistic 

13 (2) 
5 (21) 
1 (100) 
7 (19) 
14 (1) 
3 (41) 
6 (20) 
2 (45) 
11(2) 
9 (3) 
12 (2) 

4 (25) 

15 (1) 

8 (5) 

lO (2) 

Clearly, in b o t h  instances o f  target variables the specific model  and software implementa t ion  
determines h o w  to unwind the cross correlations to extract the m o s t  in format ion  for 
predict ion purposes.  For  example, the distance be tween  the claimant 's  zip code and the first 
outpat ient  provider  (Distance) ranks low in impor tance  (19/21) in the T R E E N E T  
application for the I M E  decision target bu t  it is quite impor t an t  in the T R E E N E T  model  for 
favorable I M E  ou tcome  (3/21). Note ,  however ,  provider  2 bill is deemed highly impor tan t  
in all IME  n o n - b e n c h m a r k  applications. O n e  way to isolate the impor tance  o f  each 
predicting variable is to tally a summary  impor tance  score across models.  We  will use a 
score o f  (21-rank)*(importance),  wi th  all insignificant variables assigned zero impor tance ,  
summed  over  all relevant  model  combinat ions .  For  example, the variable proxqder 2 type 
would have a summary  score relating to the I M E  target across the five tree models  for a total 
impor tance  score o f  2,268. This scoring formula is t3"pical o f  the ad hoc me thods  c o m m o n  
to data mining  analytics. The  multiplicative form gives emphasis  to b o t h  the categorical rank 
and the impor tance  score in a dual m o n o t o n e  way. The  numer ic  value o f  the score is less 
impor tan t  than the final rankings o f  the variables. Tables 5-3A&B and 5-4A&B show the 
range o f  variable impor tance  summary  scores for all variables relative to the two targets, 
I M E  and SIU, respectively. The  ranks o f  the variables according to the two summary  scores 
are highly (Pearson) correlated as, for example,  the  decision summary  ranks and favorable 
summary ranks have correlat ion coefficients o f  0.65 for I M E  and 0.57 for SIU. The  tables 
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also indicate the variable category o f  original D C D  field (F), an internally derived variable 

(DV) and an external demographic variable (DM). The external demographic variables do 

not  seem to be very informative in the presence o f  the field and derived variables chosen. 

Important Variable Summarizadons for IME 
Tree Models Applied to Decision and Favorable Targets 

Total Decision Favorable 
Score Score Score 

Variable Total 
Variable type Score Rank Rank Rank 
Health Insurance F 17,206 1 2 1 

Provider 2 Bill F 10,820 2 1 4 

Territota? F 7,871 3 5 2 

Provider 1 Bill F 6,726 4 4 3 

Injury Type F 6,084 5 6 5 

Attorneys Per Zip DV 3,102 6 3 15 

Provider 2 Type F 2,873 7 8 9 

Report Lag DV 2,859 8 16 7 

Provider 1 Type F 2,531 9 10 6 

Distance MP1 Zip to Clt Zip DV 1,655 10 11 8 

Treatment Lag DV 1,331 11 17 16 
Emergency. Treatment F 1,216 12 7 10 

Claimants per Cit 3, DV 1,146 13 14 13 

Income Household/Zip DM 987 14 13 17 

Attorney F 971 15 9 19 

Households/Zip DM 957 16 19 11 
Age F 881 17 12 14 
Pro~ders/Zip DV 838 18 18 12 

Providers per City DV 719 19 20 18 

Avg. Household Price/Zip DM 262 20 15 20 

Policy. Type F 4 21 21 21 

Table 5-3 
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Important Variable Summarizations for SIU 
Tree Models Applied to Decision and Favorable Targets 

Variable Total 
Variable Type Score 
Territory F 15,242 
Provider 1 Type F 9,965 
Providers/Zip DV 6,676 
Provider I Bill F 6,240 
Provider 2 Bill F 6,030 
Injury Type F 5,845 
Provider 2 Type F 4,753 
Health Insurance F 4,262 
Emergency Treatment F 3,039 
Attorney F 2,705 
Report lag DV 2,642 
Providers per City. DV 2,275 
Attorneys/zip DV 2,183 
Distance to Provider DV 2,109 
Income/Cap Household DM 2,091 
Claimants per City DV 1,142 
Households/Zip DM 1,061 
Age F 830 
Treatment Lag DV 706 
Average House Price DM 648 
Policy Type F 19 

Total 
Score 

Decision Favorable 
Score Score 

Rank Rank Rank 

1 2 1 

2 4 2 
3 1 13 
4 3 10 
5 5 4 

6 7 3 
7 8 6 
8 6 15 
9 13 5 

10 9 14 
11 10 9 
12 12 10 
13 14 8 
14 11 14 
15 15 7 
16 18 16 
17 16 18 
18 19 17 
19 17 20 
20 20 9 
21 21 21 

Table 5-4 

A d d i t i o n a l  Analyse~ 
Mos t  software allow for additional diagnostic tools that focus on  the importance o f  
individual variable levels in the predictive model .  We focus on  two such features: partial 
dependency plots and pruning o f  trees. Both  features are designed to illustrate the 
contr ibution o f  each kvel o f  categorical variable and each interval o f  continuous variables 
created by the cut points. We illustrate the additional analyses using the Random Forest  and 
S-PLUS's tree software. 

Part ia l  D e p e n d e n c e  

The  partial dependence  plot  is a useful way to visualize the effect  o f  the values o f  a specific 
variable on a dependent  variable when  a complex model ing m e t h o d  such as Random Fores t  
is used. The partial dependence  plot  is a graph o f  the marginal effect o f  a variable on the 
class probability. For  a classification application (in Random Forest),  the partial plot  uses 
the logit or log o f  the odds ratio (the odds o f  being in the target category versus its 
compliment)  rather than the actual probability. 
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K 

f(x) = log p, (x) - ~ log(p, ) (7) 
/ = 1  

Figures 5-1 and 5-2 show the partial dependence plot for the two IME targets for the most 
important variable in Table 5-4, territory. 

Random Forest: IME Requested 

Partial Dependence  on Territory 
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Random Forest: IME Favorable 
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Partial  D e p e n d e n c e  on Terr i tory  
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Figure 5-2 

Both bar graphs have a distinctive right shift in the size of the partial dependency on the 
territon, variable. This result is not surprising given that Massachusetts automobile 
territories are set every two years based upon the calculation of a single 5-coverage pure 
premium index for each of 350 towns. Towns are then grouped into 16 nearly homogenous 
territories with the index generally rising from territory 1 (lowest) to territory 16 (highest). 
Territories 17-26 are 10 individual parts of Boston that vary widely in this calculated pure 
premium index (Conger, 1987). Figure 5-3 shows a bar graph of the pure premium indices 
for the 26 territories used in this analysis for comparison purposes. 

Massachusetts Rating Territories 

Five Coverage Pure Premiums 
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Figure 5-4 displays the proportion of dairns with an IME requested (not marginal effects) by 
territory, superimposed on the pure premium territory levels. In contrast to the similarity, of 
the marginal importance of the IME territory variable to the territory pure premiums, the 
proportions of claims with IME requested shown in Figure 5-4 show more uniformity across 
territories, indicating a real dependence on other important variables. 
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Massachusetts Rating Territories 

Five Coverage Pure Premium vs IME Request Ratios 
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Prunin~ the Trees 
Simple trees 3~ that extend to a large number of terminal nodes are difficult to assess the flail 
importance of individual variable levels because (1) later node splits may or may not be 
statistically significant depending on the software algorithms employed and (2) terminal 
nodes on the order of fifty plus may obscure the precise contribution of each variable level 
despite the importance value described above for the overall variable. 

The full tree produced by the software can be pruned back to the "best" tree with a pre- 
determined number of nodes. For example, Figure 5-5 shows a best 10 node pruned tree 
from S-PLUS. It begins with the health insurance variable as the "root" node (Y/N to the 
left and U to the fight) 32 and proceeds to make general node splits based only on the 
provider 2 bill amount. The universe of records is then classified by terminal node IME 
requested ratios ranging from 0.019 to 0.170. A similar pruned tree can be produced for the 
other three targets. 
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S-PLUS TREE: IME Requested 
Best Ten N o d e  Pruned Tree 

h~nllh into Jmnr.~'h 
I / 

mn2 hi 1<4Zr,,4 mn~) hJ<4R.q 

L i- j o.-, L 
mp2 hil l  3010.5 mp2 hill 11~qF~1.5 mp? hill 15.o,6.5 

0.019 0.100 0.100 

1 
0.060 0.072 0.150 0.090 0.170 0.120 

Figure S-S 

We next turn to consideration of  model performance as a whole in section 6 with an 
interpretation of  the models and variables relative to the problem at hand (example 2) in 
Section 7. 

S E C T I O N  6. R O C  C U R V E S  A N D  L I F T  F O R  S O F T W A R E :  T R E E S ,  N A I V E  
BAYES A N D  L O G I S T I C  M O D E L S  

The sensitivity and specificity measures discussed in Section 4 are dependent on the choice 
of  a cutoff value for the prediction. Many models score each record with a value between 
zero and one, though some other scoring scale can be used. This score is sometimes treated 
like a probability., although the concept is much closer in spirit to a fuzzy set measurement 
function 33. A common cutoff point is .5 and records with scores greater than .5 are classified 
as events and records below that value are classified as non-events 3~. However, other cutoff 
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values can be used. Thus, if a cutoff lower than 50% were selected, more events would be 
accurately predicted and fewer non-events would be accurately predicted. 

Because the accuracy of  a prediction depends on the selected cutoff point, techniques for 
assessing the accuracy of  models over a range of  cutoff points have been developed. A 
common procedure for visualizing the accuracy of  models used for classification is the 
receiver operating characteristic (ROC) curve 3~. This is a curve of  sensitivity versus 
specificity (or more accurately 1.0 minus the specificity) over a range of  cutoff points. It 
illustrates graplfically the sensitivity or true positive rate compared to 1- specificity or false 
alarm rate. When the cutoff point is very high (i.e. 1.0) all claims are classified as legitimate. 
The spedficity is 100% (1.0 minus the specificity is 0), but the sensitivity is 0%. As the 
cutoff point is lowered, the sensitivity increases, but so does 1.0 minus the specificity. 
Ultimately a point is reached where all claims are predicted to be events, and the specificity 
declines to zero (1.0 - specificity = 1.0). The baseline ROC curve (where no model is used) 
can be thought of  as a straight line from the origin with a 45-degree angle. If  the model's 
sensitivity increases faster than the specificity decreases, the curve "lifts" or rises above a 45- 
degree line quickly. The higher the "lift" or "gain"; the more accurate the model 3c'. ROC 
curves have been used in prior studies of  insurance claims and fraud detection regression 
models (Derrig and \Veisberg, 1998 and Viaene et al., 2002). The use of  ROC curves in 
building models as well as comparing performance of  competing models is a well established 
procedure (Flach et al (2003)). 

A statistic that proxddes a one-dimensional summary of  the predictive accuracy of  a m o d d  as 
measured by an ROC curve is the area under the ROC curve (AUROC). In general, 
AUROC values can distinguish good models from bad models but may not be able to 
distinguish among good models 0Vlarzban, 2004). A curve that rises quickly has more area 
under the ROC curve. A model with an area of  .50 demonstrates no predictive ability, while 
a model with an area of  1.0 is a perfect predictor (on the sample the test is performed on). 
For this analysis, SPSS was used to produce the ROC cuin-es and area under the ROC 
curves. SPSS generates cutoff values midway between each unique score in the data and 
uses the trapezoidal rule to compute the AUROC. A non-parametric method was used to 
compute the standard error of  the AUROC. The formula for the standard error 37 is: 

I A(I - A) + (n+ - l)(Ql - A 2 ) + (n_ - I)(Q2 - A 2 ) 
SE(A) (8) 

n+N 

Where n+ is the number of  events, n. is the number of  non-events, N is the sample size 

A is the AUROC and scores are denoted as x 

= = j x [n+>/ -  n+> z r/+= / /./r/+2 E x  t'/- • , + + + ] 
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1 
o , :  7 g +  Xx + : jxt  ,,: +o ,, + ,  :, 

Tables 6-1A&B show the values of  AUROC for each of  eight model/software combinations 
in predicting a decision to investigate with an IME (6-1A) and an SIU (6-1B). for the 
Massachusetts auto bodily injury liability claims that comprise the holdout sample, about 
50,000 claims. Upper and lower bounds for the "true" AUROC value are shown as the 
AUROC value + two standard deviation determined by equation (7). TREENET,  Random 
Forest both do well with AUROC values about 0.7, significantly better than the logistic 
model. The Iminer models (Tree, Ensemble and Nai've Bayes) generally have AUROC 
values significantly bdow the top two performers, with two (Tree and Ensemble) 
significantly below the Logistic and the Iminer Naive Bayes benchmarks. CART also scores 
at or below the benchmarks and significantly below T R E E N E T  and Random Forest. On the 
other hand, S-PLUS (R) tree scores at or somewhat above the benchmarks. 

Area Under the ROC Curve - IME Decis ion 
CART 
Tree 

0.669 
0.661 
0.678 

S-PLUS 
Tree 

AUROC 
Lower Bound 
Upper Bound 

Iminer 
Ensemble Random 

Forest 
AUR()C 0.649 703 
Lower Bound 0.641 695 
Upper Bound 0.657 711 

Iminer Tree 

Table 6-1A 

T R E E N E T  
0.688 0.629 0.701 
0.680 0.620 0.693 
0.696 0.637 0.708 

Iminer 
Naive  
Bayes 
0.676 
0.669 
0.684 

Logistic 
0.677 
0.669 
0.685 
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Area Under the ROC Curve - IME Favorable 
CART 
Tree 

AUROC 
Lower Bound 
Upper Bound 

AUROC 
Lower Bound 
Upper Bound 

0.651 
0.641 
0.662 

Iminer 
Ensemble 

0.654 
0.643 
0.665 

S-PLUS 
Tree Iminer Tree TREENET 
0.664 0.591 0.683 
0.653 0.578 0.673 
0.675 0.603 0.693 

Random 
Forest 
0.692 
0.681 
0.702 

Iminer 
Na/ve  
Bayes 
0.670 
0.660 
0.681 

Table 6-1B 

Logistic 
0.677 
0.667, 
0.687 

Tables 6-2A&B show the values o f  A U R O C  for the mode l / so f tware  combinat ions  tested 
for the SIU dependen t  variable. We first note  that, in general, the model  predict ions as 
measured by A U R O C  are significantly lower than for IME across all eight mode l / so f tware  
combinations.  This reduction in A U R O C  values may be a reflection o f  the explanatory 
variables used in the analysis; i.e., they may be more  informative about  d a l m  build-up, for 
which IME is the principal investigative tool, than about  claim fraud, for which SIU is the 
principal investigative tool. 

Area Under the ROC Curve - SIU Decis ion 

AUROC 
Lower Bound 
Upper Bound 

AUROC 
Lower Bound 
Upper Bound 

CART S-PLUS 
Tree Tree 

0.607 
0.598 
0.617 

Iminer 
Ensemble 

0.539 
0.530 
0.548 

Iminer Tree TREENET 
0.616 0.565 0.643 
0.607 0.555 0.634 
0.626 0.575 0.652 

Random 
Forest 

Iminer 
Naive  
Bayes 
0.615 0.677 

Logistic 
0.612 

0.668 0.605 0.603 
0.686 0.625 0.621 

Table 6-2A 
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Area Under the ROC Curve - SIU Favorable 
CART 
Tree  

AUROC 0.598 
Lower Bound 0.584 
Upper Bound 0.612 

I m i n e r  
E n s e m b l e  

AUROC 0.57.5 
Lower Bound 0.530 
Upper Bound 0.548 

S-PLUS 
Tree  I m i n e r  Tree  T R E E N E T  
0.616 0.547 0.678 
0.607 0.555 0.667 
0.626 0.575 0.689 

R a n d o m  
Forest  
0.645 

Iminer 
Naive 
B a y e s  
0.607 

Logmic 
0.610 

0.631 0.593 0.596 
0.658 0.625 0.623 

Table 6-2B 

T R E E N E T  and Random Fores t  per form significandy better than all o ther  moda l / so f tware  
combinat ions on the favorable target variables. Both  per form significantly better than the 
Logistic. Iminer  Tree and Ensemble  again do poorly on  the I M E  and SIU Favorable holdout  
samples. 

Figures 6-1 to 6-4 show the ROC curves for T R E E N E T  compared  to the Logistic for bo th  
IME and SIU 38. As we can see, a simple display o f  the ROC curves may not  be sufficient to 
distinguish per formance  o f  the models  as well as the A U R O C  values. 
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Finally, Table  6-3 displays the  relative pe r fo rmance  o f  the  m o d e l / s o f t w a r e  combina t ions  
according to A U R O C  values and  their ranks. Wi th  Nai've Bayes and  Logistic as the  
benchmarks ,  T R E E N E T ,  R a n d o m  Forest  and  SPLUS Tree  do better  than  the b e n c h m a r k s  
while C A R T  Tree,  In'finer Tree,  and  Iminer  E n s e m b l e  do worse.  

Ranking of Methods By AUROC - Decision 
Method SIU AUROC 

Random Forest 0.645 
TREENET 0.643 
S-PLUS Tree 0.616 
Iminer NaPce Bayes 0.615 
Logistic 0.612 
CART Tree 0.607 
1miner Tree 0.565 
Iminer Ensemble 0.539 

;IU Rank IME  Rank I M E  
AUROC 

1 0.703 
2 0.701 
3 0.688 

4 5 0.676 
4 0.677 
6 0.669 
8 0.629 
7 0.649 

Table 6-3A 
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1 2 0.683 
2 1 0.692 
3 5 0.664 
4 3 0.677 

4 0.670 
6 7 0.651 

6 0.654 
8 0.591 

Ranldng of Methods By AUROC - Favorable 
Method SIU AUROC SIU Rank IME Rank IME 

AUROC 
TREENET 0.678 
Random Forest 0.645 
S-PLUS Tree 0.61 
Logistic 0.61C 
Iminer Naive Bayes 0.607 
CART Tree 0.598 
Iminer Ensemble 0.575 
Iminer Tree 0.547 

Table 6-3B 

Finally, Figures 6-5A&B show the relative performance in a graphic. Procedures would work 
equally on both  IME and SIU if  they lie on the 45 degree line. To the extent that 
performance is better on the IME targets, procedures would be above the diagonal. Better 
performance is shown by positions farther to the fight and closer to the top of  the square. 
This graphic dearly shows that T R E E N E T  and Random Forest procedures do better than 
the other tree procedures and the benchmarks. 
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S E C T I O N  7. C O N C L U S I O N  

Insurance data often involves both large volumes of information and nonlinearity of variable 
relationships. A range of data manipulation techniques have been developed by computer 
scientists and statisticians that are now categorized as data mining, techniques with principal 
advantages being precisely the efficient handling of large data sets and the fitting of non- 
linear functions to that data. In this paper we illustrate the use of software implementations 
of CART and other tree-based methods, together with benchmark procedures of Naive 
Bayes and Logistic regression. Those eight model/software combinations are applied to data 
arising in the Detail Claim Database (DCD) of auto injury liability claims in Massachusetts. 
Twenty-one variables were selected to use in prediction models using the DCD and external 
demographic variables. Four target categorical variables were selected to model: The decision 
to request an independent medical examination (IME) or a special investigation (SIU) and 
the favorable outcome of each investigation. The two decision targets are the prime claim 
handling techniques that insurers can use to reduce the asymmetry of information between 
the daimant and the insurer in order to distinguish valid claims from those involving 
buildup, exaggerated injuries or treatment, or outright fraud. 

Eight modeling software results were compared for effectiveness of modeling the targets 
based on a standard procedure, the area under the receiver operating characteristic curve 
(AUROC). We find that the methods all provide some predictive value or lift from the 
predicting variables we make available, with significant differences among the eight methods 
and four targets. Seven modeling outcomes are compared to logistic regression as in Viaene 
et al. (2002) but the results here are different. They show some software/methods can 
improve on the predictive ability of the logistic model. TREENET, Random Forest and 
SPLUS Tree do better than the benchmark Naive Bayes and Logistic methods, while CART 
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tree, Iminer tree, and Iminer Ensemble do worse. That some modal/software combinations 
do better than the logistic model may be due to the relative size and richness of this data set 
and/or the t3,pes of independent variables at hand compared to the Viaene et al. data. 

We show how "important" each variable is within each software/model tested and note the 
type of data that are important for this analysis. In general, variables taken directly from 
DCD fields and variables derived as demographic type variables based on DCD rid& do 
better than variables derived from external demographic data. Variables relating to the injury 
and medical treatment dominate the highly important variables while the presence of an 
attorney, age of the daimant, and policy type, personal or commercial, are less important in 
making the decision to im, oke these two investigative techniques. 

No general conclusions about auto injury claims can be drawn from the exercise presented 
here except that these modeling techniques should have a place in the actuary's repertory of 
data manipulation techniques. Technological advancements in database assembly and 
management, especially the availability of text mining for the production of variables, 
together with the easy access to computer power, will make the use of these techniques 
mandatory for analyzing the nonlinearity of insurance data. As for our part in advancing the 
use of data mining in actuarial work, we will continue to test various software products that 
implement these and other data mining techniques (e.g. support vector machines). 
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2 They also found that augmenting the categorized red flag variables with some other claim data (e.g. age, 
report lag) improved the lift as measured by AUROC across all methods but the logistic model still did as 
well as the other methods (Viaene et al., 2002, Table 6, p.400-40 l). 
3 A wider set of data mining techniques is considered in Derrig, R.A. and L A. Francis, Comparison of 
Methods and Software Modeling Nonlinear Dependencies: A Fraud Application, Congress of Actuaries, 
Paris, June 2006 
4 See section 2 for an overview of the database and descriptions of the variables used for this paper. 
5 The relative importance of the independent variables in modeling the dependent variable within these 
methods are analogous to statistical significance or p-values in ordinary regression models. 
6 See, for example, 2004 Discussion Paper Program, Applying and Evaluating Generalized Linear Models, 
May 16-19, 2004, Casualty Actuarial Society. 
7 This was the text used by the Casualty Actuarial Society for the exam on applied statistics during the 
19g0s 
8 Claims that involve only third party subrogation of personal injury protection (no fault) claims but no 
separate indemnity payment or no separate claims handling on claims without payment are not reported to 
DCD. 
9 Combined payments under PIP and Medical Payments are reported to DCD. 
J0 With a large holdout sample, we are able to estimate tight confidence intervals for testing model results 
in section 6 using the area under the ROC curve measure. 
H This fact is a matter of Massachusetts law which does not permit IMEs by one type of physician, say an 
orthopedist, when another physician type is treating, say a chiropractor. This situation may differ in other 
jurisdictions. 
12 Because expert bill review systems became pervasive by 2003, reaching 100% in some cases, DCD 
redefined the reported MA to encompass only peer reviews by physicians or nurses for claims reported 
after July l, 2003.. 
J3 The standard Massachusetts auto policy has a cooperation clause for IME both in the first party PIP 
coverage and in the third party BI liability coverage. 
14 The IRC also includes an index bureau check as one of the claims handling activities 
~5 Prior studies of Massachusetts Auto Injury claim data for fraud content included Weisberg and Derrig 
(1998, Suspicion Regression Models) and Derrig and Weisberg (1998, Claim Screening with Scoring 
Models). 
~6 See Section 5 for the importance of the provider 2 bill variable in the decision to investigate claims for 
fraud (SIU) and/or buildup (IME). 
~7 There are Tree Software models that may split nodes into three or more branches. SPSS classification 
trees is an example of such software. 
is For binary categorical data assumed to be generated from a binomial distribution, entropy and deviance 
are essentially the same measure. Deviance is a generalized linear model concept and is closely related to 
the log of the likelihood function. 
19 Hastie et al., p. 301 Note that Hastie et al. describe other error and weight functions. [endnote] 
.~0 Note that the ensemble tree methods employ all 21 variables in the models. See tables 5-1 and 5-2. 
2~ The ROC curve results in Section 6 show that TREENET generally provides the best prediction models 
for the Massachusetts data. 
22 The numeric variables were grouped into five bins or into quintiles in this instance. 
~,3 The software product MARS also was used to rank variables in importance. MARS implements 
multivariate adaptive regression splines and is described in Francis (2003). 
24 The SAS code is generally relatively easy to edit if some other language is used to implement the model 
25 See Section 5 for the importance of variables in our study. 
26 S-PLUS would convert the numeric variable into a categorical variable with a level for every nmnerie 
value that is in the training data, including missing data, but the result would have far too many categories 
to be feasible. 
27 Generally by collapsing sparsely populated categories into an "all other" category 
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2s It also contains some dimension reduction methods such as clustering and Principal Components which 
are also contained in S-PLUS. 
29 In general, some programming is required to apply either approach in S-PLUS (R) 
30 The data set is described in more detail in Section 2 above. 
31 Pruning is not feasible or necessary for the example tree methods such as TREENET or Random 
TREENET. 
32 The S-PLUS tree graph does not print out the values of categorical variables, although it displays the 
values of the numeric variables. For categorical variables letters are assigned and displayed instead of  the 
category values. 
33 See Ostaszewski (1993) or Derrig and Ostaszewski (1999). 
34 One way of  dealing with values equal to the cutoffpoint is to consider such observations as one-half in 
the event group and one-half in the non-event group 
35 A ROC curve is one example of a so-called "gains" chart. 
36 ROC curves were developed extensively for use in medical diagnosis testing in the 1970s and 1980s 
(Zhou et al. 2004 and more recently in weather forecasting (Marzban, 2004) and (Stephenson, 2000). 
37 The details of the formula were supplied by SPSS. 
38 All twenty ROC curves are available from the authors. 
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