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Abstract 
Motivation. This paper looks at the problem of measuring correlation between reserve segments. The 
research was motivated by the 2005 CAS Working Part), on Reserve Variabilin,. 
Method. Using a random-walk time series model for inflation, we can estimate the variance of a stream 
of inflation-sensitive payments. The same calculations can be performed to estimate the covariance 
between two streams of payments. 
Results. Formulas are presented for estimating and calculating the variance in reseta~es attributable to 
inflation. All of these calculations are performed analytically, without requiting simulation. 
Conclusions. Covariance between reserve segments due to common sensitivity to inflation can be 
easily modeled. This provides acom, enient and intuitive way of calculating dependence between 
reserve segments in order to estimate variance at a company level. 
Availability. Excel spreadsheet examples of the calculations described in this paper are available from 
the author. 

Keywords. Inflation, Reserving, Time-Series, Correlation, Covafiance 

1. I N T R O D U C T I O N  

\x This paper  addresses the quest ion o f  h o w  to estimate the correlation be tween  the future 

payments  in two or  m o r e  different  reserve segments.  

The  mot iva t ion  for this paper  was the Working  Party on  Reserve Variability [6], which  

outl ined the  many current  approaches  for estimating variability for a single reserve segment  

- typically based on  a single deve lopment  mangle.  A n  area o f  research identified by the 

Work ing  Party was the quest ion o f  correlation be tween  two or  m o r e  reserve segments .  

The  approach  that we will follow for evaluating correlation will be  based on  first principles 

about  one  o f  the  underlying causes o f  correlation. That  is, we begin by asking why we think 

that  there  is a correlat ion structure that needs to be considered.  F r o m  first principles, we  

know that  inflation has an impact  on the amoun t  o f  loss dollars to be paid, and that  different  

reserve segments  may be affected by the same inflation index. For  example,  a medical  claim 

for an injured worker  and a bodily injury claim under  Au to  Liability may bo th  be dependen t  

u p o n  a c o m m o n  medical  inflation driver. 
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This basic concept is illustrated in the graph below. The bars represent a forecast of  loss 

payments over a ten year time horizon; the line represents the "expected" inflation index 

built into the forecasted payment stream. If  we know the variability in the inflation index 

(represented by the bell curves), then we can calculate the variance of the future loss 

payments due to inflation 1. 
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As the bell curves around the inflation index illustrate, the variance due to inflation increases 

for longer time horizons. The uncertainty in the estimate of  a loss payment ten years in the 

futm:e is greater than the uncertainty in the estimate of a loss payment one year in the future. 

The extension to correlation then follows. If  we know that two or more reserve segments 

are affected by the same inflation index, then we know that they will be correlated with each 

other. 

J This concept is not new: see the papers by Taylor [5], Hodes et al [4], or Brehm [2] listed in the 
references. 
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The question then turns to the source of  the inflation index used in this variance calculation. 

The inflation index should ideally be extracted from the insurance loss data itself, but in 

practice insurance data is rarely stable enough to provide a reliable estimate. A reasonable 

alternative is to use an external source for the inflation index. 

We will follow the inflation model as outlined in the research work commissioned by the 

Casualty Actuarial Society (see [1]). This research assumes that inflation follows a mean- 

reverring random walk. Briefly, this means that the inflation rate in one year is dependent on 

the inflation rate in the prior year, but that it will eventually "revert" to a long-run average 

inflation rate. More informally, a mean-reverting model allows us to talk about pedods of  

high or low inflation rather than just individual years being higher or lower than average. 

Because we are limiting the discussion to the variance and covariance due to inflation, we are 

able to produce closed-form solutions for all of  the variance and covariance terms. All of  

this can alternatively be incorporated into a larger simulation model if that is preferred. 

After describing the basic model of  inflation variability (section 2). and the formulas for 

variance and covariance of  the reserve segments (section 3), we will look at a method for 

refining the calculation to include different sensitivities to inflation by reserve segment 

(section 4), and then finally hQw to integrate variance due to inflation with variance from 

other sources (section 5). 
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2. BASIC M O D E L  

We assume that loss inflation rates follow a mean-reverting time series model. This is 

described using an autoregressive AR(1) model. 

X ,  = I . t . ( 1 - r ) +  X , _ , . r  +e ,  

X, logar i thmof l+ i ,  (i,= the inflafion rate at tirnet) 

, , / /  logarithm of the l+long-term average inflation rate i 

factor representing the strength of  the reversion 

(or "persistence") 

r = 0 would be a pure "random draw" model 

r = 1 would be a pure "random walk" model 

e, normally distributed error term, with variance 0 .2 

Because the model can be transformed into a linear relationship, the parameters can be 

calculated easily with linear regression. 

If  we select, for example, a component of  the consumer price index (CPI), then the variables 

a r e :  

, (cp,,2q 1 I cp''-~'~ ln~ c~''°-''l Independent Variable (X~_O: .n~c->7~p . n ~ } . . . ,  ~ ,  

Dependent Variable (X3: l lCplts)~. [ c e . 4 ~  • I cp.,,) n ~ ) ;  m~ce--~# ---, m ~ !  
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The slope of the regression line is the parameter r. We can estimate the long-ran average 

inflation rate by the intercept/(1-r), though we will see that the magnitude of this average 

does not affect our variability calculations. 

The standard error of the regression (the average deviation of the actual dependent variables 

from the values predicted by the fitted line) is our estimate of sigma, a .  

We will illustrate this calculation using the medical component of the CPI, though the 

reseta, ing actuary is free to use any loss-inflation index deemed appropriate. Table 1 below 

shows this calculation based on data available through the Bureau of Labor Statistics. We 

calculate the logarithms of changes in the CPI, and then perform a simple linear regression 

on the X, and X~. 1 columns. 

This data is, of  course, meant purely for illustration and the analyst should decide carefully as 

to what external inflation index is most representative for the losses to be paid. 
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Year (t) 

1970 
1971 
1972 
1973 
1974 
1975 
1976 
1977 
1978 
1979 
1980 
1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 
1989 
1990 
1991 
1992 
1993 
1994 
1995 
1996 
1997 
1998 
1999 
2000 
2001 
2002 
2003 
2O04 

CPI Inflation % 

34.0 
36.1 
37.3 
38.8 
42.4 
47.5 
52.0 
57.0 
61.8 
67.5 
74.9 
82.9 
92.5 

100.6 
106.8 
113.5 
122.0 
130.1 
138.6 
149.3 
162.8 
177.0 
190.1 
201.4 
211.0 
220.5 
228.2 
234.6 
242.1 
250.6 
260.8 
272.8 
285.6 
297.1 
310.1 

Table 1 

Xt X,.I 

6.18% 
3.32% 0.0327 0.059932 
4.02% 0.039427 0.0327 
9.28% 0.088728 0.039427 

12.03% 0.113581 0,088728 
9.47% 0.090514 0.113581 
9.62% 0.091808 0.090514 
8.42% 0.080852 0.091808 
9.22% 0.088224 0.080852 

10.96% 0.104026 0.088224 
10.68% 0.101481 0.104026 
11.58% 0.109574 0.101481 
8.76% 0.083944 0.109574 
6.16% 0.059806 0.083944 
6.27% 0.060845 0.059806 
7.49% 0.072218 0.060845 
6.64% 0.064282 0.072218 
6.53% 0.063289 0.064282 
7.72% 0.074366 0.063289 
9.04% 0.086565 0.074366 
8.72% 0.083627 0.086565 
7.40% 0.071401 0.083627 
5.94% 0.057743 0.071401 
4.77% 0.046565 0.057743 
4.50% 0.04404 0.046565 
3.49% 0.034325 0.04404 
2.80% 0.027659 0.034325 
3.20% 0.031469 0.027659 
3.51% 0.034507 0.031469 
4,07% 0.039896 0.034507 
4.60% 0.044985 0.039896 
4.69% 0.045853 0.044985 
4.03% 0.039477 0.045853 
4.38% 0.042826 0.039477 

X = In(l+ Inflation %) 

Slope 0.831857 r 
Intercept 0.010527 II*(1-r) 

Long-Term 0.062605 p, 

Std Error 0.014738 o 
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3. CALCULATING T H E  VARIANCE OF PAYMENTS 

We proceed by showing the calculation of variance for a single payment and then building 

the model step-by-step up to the covariance between two streams of payments. 

3.1 Calculating the Variance of a Single Payment 

A one year inflation factor (1 +i,) is lognormally distributed, which means that a loss payment 

one year in the future - if unaffected by random factors other than inflation - would also be 

lognormally distributed. 

With no "mean reversion" (r =0), the coefficient of variation, CV, of the loss payment 

would be ~]exp(o "2 ) -  1. An inflation factor two years out CPI(2) = (1 + i I ). (1 + i 2 ) would 

also be lognormally distributed, but the CV would increase to 4exp(2-0  .2 ) - 1 .  

The simplicity of this expression is due to the assumption that ii and i 2 are independent and 

identically distributed, and also the fact that the product of two lognormal random variables 

is also a lognormal random variable. 
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If  we introduce the concept of mean reversion such that r > 0 ,  then the formula for the CV 

of  the single year factor does not change, but the two-year inflation index CPI(2) becomes: 

( ( 1 + i , )  ~r 
CPI(2) = (l+i,)'~E[l+il]) ' ( 1+ i2) .  

The CV,=a increases to become 4exp{(1 + (1 + r)2).  or2}- 1 . 

The index for subsequent years is created in a similar manner. For n=3, we have 

((1+/,))' .,.(((l+i])y (1+/2)/r 
CPI(3) = (l+it)" E[l+i,] ) "(1+,2/ ~E[l+i,]) E[l+i2] ) "(1+i3) '  

The CV.=, becomes 4 e x p l ( l + ( l +  r)  2 + ( l + r  + r 2 ) 2 ) - ¢ 7 2 I - 1 .  

In the special case in which r =1. we have a CV.=3 of ~]exp{(1 + 22+  32) '0r2}-  1 . 

More generally, the CV for n years of inflation is given by: 

CV,, = ~ / e x p t n - a 2 } - I  f o r r = O .  

I {I 2r,,rn,  
CV,, = exp-(l_-r) 2 (l_r)3 (1-r~:~_-r2).). j -  for r<l 

or, alternatively 
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CV,, = exp 6 0 .2 - 1  for r =1 

A more detailed derivation of  these formulas is given in Appendix A. 

We note that when the reversion term r is close to 1, changes in the inflation rate are 

"persistent," meaning that the inflation level will not return to its long-run average very 

quickly. In these cases, the variance of  a loss payment in the distant future will have a much 

greater variance than under the "random draw" model with r = 0. 

The table below shows the CV implied for a single pa3~ment at various points in the future 

using different assumptions about the reversion parameter r. 

Sigma = 0.024996 

CVn for Selected Revers ion Paramete rs  

n r = 0 r = .50 r = .80 r = 1 

1 0 .0250 0 .0250 0 .0250 0 .0250  
2 0.0354 0.0451 0.0515 0.0559 
3 0 .0433 0 .0629 0 .0799 0 .0937  
4 0 .0500 0 .0785 0 .1090 0 .1376  
5 0.0559 0.0923 0 .1380 0 .1870  

3.2 Calculating the Covariance Between Two Payments 

Suppose that we have an inflation factor for a given number of  years n, and a second factor 

for n+k. We quickly recognize that there must be a strong correlation since n of  the n+k 

years are common to both factors. Using the same mean reversion model, the correlation 

coefficient can be written2: 

2 The term Cov,,.k is a "scaled" value which is the dollars of covariance divided by the means of the losses 

at times n and n+k. This is sometimes called the "coefficient of covariation" and is convenient notation 
because of the parallel to the coefficient of variation (CV) used earlier. 
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Col,~n. k 
Pn.n+k -- cv. .cv.+, 

The term in the numerator is proportional to the covariance, and is given as follows: 

n r . ( l + r k ) . ( l  r " ) +  0" 2 

Cov.,  k = exp ( l - - r )  2 ( l _ r ) 3  (1-~--r)2.-7~_r;)). - 1  f o r r <  1 

or, altemafive~ 

" [  2 ~, 3 J J 
f o r r =  1 

Note also that Cov, , . ,= CV~ when k =0. 

S i g m a  = 0 .025000  
R e v e r s i o n  = 0 .500000  

Matrix of Correlation Coefficients 
1 2 3 4 5 
1 0 .83188775  0 .89611104  0 .59742763  0 .52484632  

0 .83188775  1 0 .91052622  0 .80678419  0 .71882568  
0 .69611104  0 .91052622  1 0 .94009581 0 .85838825 
0 .59742763  0 .80678419  0.94009581 1 0 .95526523  
0 .52484632 0 .71882568  0 .85838825  0 .95526523  1 

3.3 Calculating the Variance of a Stream of Payments 

Given these terms, we are able to set up a matlix of  correlation coefficients, or covariances, 

m order to calculate the variance for a sum of payments. The hill correlation structure 

between the individual payments due to inflation is captured in this matrix. 
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If we have a vector of N loss payments, /3, and an N-by-N matrix of covariance terms such 

that M(i,j)= Covi.j_ i for i < j ,  then we can calculate the variance for the stream of 

payments as: 

Var(P) = /3.M./3r P = sum of all payments in the vector 

Or equivalently, 

N N 

Var(P) = Z Z P ( i ) . M ( i , j ) . P ( j )  
i=l j=l 

3.4  C a l c u l a t i n g  t h e  C o v a r i a n c e  B e t w e e n  T w o  S t r e a m s  o f  P a y m e n t s  

If we have two vectors of loss payments a/3 and B/3, both with N elements, then the 

covariance of the two sums can be calculated in a similar manner. 

Cov(AP, BP) = ap.M.Bp r. 

The correlation between the two payouts will be a single number, and generally a number 

approaching 1.000, indicating a very strong correlation. This is because our model assumes 

that both payment streams are directly affected by the inflation rate, and that inflation is the 

source of variability. In Section 4, we soften the first assumption by allowing different 

degrees of sensitivity to inflation by line of business. In Section 5, we show how to bring in 

other sources of variability. 
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4. MEASURING T H E  SIGNIFICANCE OF INFLATION BY 
SEGMENT 

As mentioned above, the vatiance/covariance model assumes that the C*PI direcdy affects 

the amount of loss payment. This may not be exactly true, and we would want the ability to 

control the degree to which loss development is dependent on inflation. 

The degree of inflation for a given risk class (RC) will be controlled by a parameter Rc Y, 

which is applied as an exponent to the CPI. This parameter could be set equal to zero for 

the cases in which a risk class is unaffected by inflation. 

Adjusted Inflation Index for Risk Class A: CPI * r 

In calculating the time-series parameters for this adjusted index, the reversion parameter r is 

unchanged regardless of the y;  the sigma will change to become o"--) ~-Or. This 

adjustment is easily incorporated into the CV calculation. 

CV, = exp ( i n r )2  (1_r)3 (l----r)T'(--~-r2))" .or2 

Similarly, the covariance term, when there are two risk classes, A and B, with different 

degrees of dependence on inflation, is modified as below: 

( l_ r )3  ~ ( l _ r ) 2 . ( l _ r 2 ) j a y . s y . o r  = - 1  
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We note that this expression is the same as the earlier calculation when a Y=e Y = 1, and the 

covariance is zero when either A Y or a y is zero. 

The next question to address is the method for estimating the parameter 2/ for a given 

business segment. We begin by defining a simple model for loss payments from a triangle. 

The formulas below give a model ignoring inflation: 

C y,d 

Where c s. d 

Ory 

= incremental loss paid in accident year y and development 

period d .  For example, G999.3 would be the amount paid 

for accident year 1999 between 24 and 36 months. 

= a measure of  exposure for accident year y ,  such as onlevel 

premium. This can be supplied from external sources or be 

estimated from the triangle itself. 

= a parameter representing the amount of  development in 

development period d .  

This model is introduced for simplicity only. When we combine this simple two factor (AY 

and development period) model with an assumption that incremental payments follow an 

over-dispersed Poisson distribution, then the results match an all-year weighted average 

chain-ladder calculation. 

In order to include an inflation index in this model, we expand the expression with a term 

including a CPI curve. 

c ~  = o t . ~ . . f l a . C P l ( y + d - 1 )  r 

From this expanded model, we immediately notice that the no-inflation model is a special 

case when y = O, so that c,. a = c~: a" I f  payments are directly proportional to inflation, then 
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we would expect y = 1 ; and if we expect a "leveraged" effect of  inflation (say, in excess 

layers) then y > 1. 

Given an explicit model, as above, we are then able to estimate the parameter 7 that 

maximizes a likelihood function or minimizes some other error function. We also have 

available the goodness-of-fit statistics to test the value of  including inflation. 

To illustrate, we will 

AY 1 2 3 
1998 13,822 26 ,045  34,915 
1999 13,710 27 ,104 36,777 
2000 14,409 28 ,805 38,328 
2001 t5,120 28 ,945  38,692 
2002 13,344 25 ,970 34,922 
2003 13,506 25,926 
2004 14,765 

work with a small triangle of  [cumulative] paid data: 

~ ~ z 
41,064 45 ,228 47 ,942  49,730 
43,309 47 ,266 49,501 
44,772 49,022 
45,169 

The incrementalpaid 

AY 1 g -3 
1998 13,822 12,223 8,870 
1999 13,710 13,394 9,673 
2000 14,409 14,396 9,523 
2001 15,120 13,825 9,747 
2002 13,344 12,626 8,952 
2003 13,506 12,420 
2004 14,765 

losses from this ufiangle are then given by: 

4 S 6 Z 
6,149 4,164 2,714 1,788 
6,532 3,957 2,235 
6,444 4,250 
6,477 

Based 3 on maximum likelihood estimation-, we have the following fitted parameters: 

Y g~ ~ ~n 
1998 49,730 1 0.2737 
1999 51,347 2 0.2573 
2000 53,571 3 0.1814 
2001 54,089 4 0.1227 
2002 49,018 5 0.0800 
2003 48,824 6 0.0490 
2004 53,946 7 0.0360 
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These fitted values are equivalent to calculating the ot ' s  as the chain-ladder ultimates. The 

fitted values from this model, corresponding to the actual incremental payments, are shown 

in the triangle below. 

AY ! ~ 
1998 13,611 12,796 9,023 
1999 14,054 13,212 9,316 
2000 14,662 13,784 9,720 
2001 14,804 13,917 9,813 
2002 13,416 12,612 8,893 
2003 13,363 12,563 
2004 14,765 

4 _5 fi z 
6,099 3,978 2,435 1,788 
6,298 4,107 2,514 
6,571 4,285 
6,634 

The model  is then expanded for the inflation adjustment. 

y g, d ~= CPI Index 
1998 49,730 1 0.2761 242.1 1.000 
1999 48,043 2 0.2424 250.6 1.035 
2000 46,709 3 0.1593 260.8 1.077 
2001 43,867 4 0.1003 272.8 1.127 
2002 37,028 5 0.0609 285.6 1.180 
2003 34,448 6 0.0348 297.1 1.227 
2004 35,499 7 0.0239 310.1 1.281 

2 
1.655 

Index ~ 

1.000 
1.059 
1.131 
1.218 
1.315 
1.403 
1.506 

With the fitted values including this inflation parameter are as follows: 

AY ~ 2 
1998 13,732 12,764 8,962 
1999 14,046 13,172 9,327 
2000 14,587 13,796 9,783 
2001 14,759 13,978 9,808 
2002 13,440 12,595 8,887 
2003 13,348 12,578 
2004 14,765 

_4 fi _6 Z 
6,075 3,981 2,430 1,788 
6,331 4,106 2,519 
6,571 4,285 
6,625 

For example, the first development period for AY 2003 has a fitted value equal to: 

13,348 = 34,448 x.2761 x 1.403. 

s For this calculation, we will assume that each cell follows an Over-Dispersed Poisson (ODP) distribution 
with a common variance/mean ratio ~.  Appendix A gives the full details of this model. 
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The parameter value 1.655 acts as a "leveraging" effect on inflation, meaning that payments 

increase at a faster rate than the CPI would indicate. However, in this example, as with most 

real data sets, there is significant uncertainty in the estimate of the ~' parameter. The loss 

development triangle simply is not a sufficient base for estimating it credibly. Informally, the 

reason for this is that we can pick almost any value for ~' and then fit O~y and fla vectors 

that reasonably approximate the historical loss development (see Appendix B for further 

insight as to why this is the case). It is for this reason that we recommend that the ~' 

parameter be selected by the model user rather than via a fitted model. 

The example given above shows that the parameter }', for measuring the sensitivity to 

inflation, often lacks great predictive value, that is c~,a is not much better than c'.~..a" This 

suggests that the use of an external inflation index in calculating v~iability needs to be 

justified on a priori theoretical grounds and not solely on statistical tests. As a starting 

assumption, ~' = 1 for each risk class is most reasonable. 

The difficulty in estimating the parameter ~' does not mean that losses are unaffected by 

inflation, but merely that a triangle format is not a sufficient basis to discern what the 

relationship to inflation is. 

5. COMBINING OTHER SOURCES OF VARIABILITY 

The discussion to this point has been limited to the variability strictly due to inflation. 

Naturally the variability of loss payments is driven by many other sources, and we need to be 

able to combine these different sources into a single calculation. Some of these other 

sources would include: 

• Changes in an injured person's condition (recovery, deterioration, death) 

• Newly reported claims not originally in the triangle ("true" IBNR) 

• Legal or regulatory changes impacting the coverage provided in the insurance policy 

These types of variability are, arguably, independent of changes in the rate of inflation 

and can therefore be treated as statistically independent. 
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The most common method for including all types of  variability is through the use of  a 

large simulation model; however, that is not necessary if we are interested just in the means 

and variances of  the payments. 

Section 5 will follow the same logic as Section 3, by starting with a single payment and 

then showing step-by-step how the calculations are generalized to produce a full covariance 

matrix on payment streams. 

53 Calculating the Variance of a Single Payment 

Suppose that we have a random variable for the payment amount at a specific time t, and 

denote this expected amount C t . The timing of  the payment is known with certainty, and 

we have an estimate of  its mean E(Ct)and variance Var(C t ) from sources other than 

inflation. These values may have come from a stochastic reser~dng model, or may have been 

simply selected by a reserving actuary. 

The next step is to assume that we have an estimate of  the inflation index at time t, based 

on the equations from Sections 3 and 4 above. 

CV, = exp (1-r~7OZ-;r2)). -a '  -1 

The inflation index will be represented by a second random variable b,, with a mean of  

one E(b, ) = 1 and a variance of  Var(b, ) = CV, 2. We make the further assumption that the 

inflation index is statistically independent of  the other sources of  variance in C,. 

The variance of  the product of  the two random variables is then calculated as follows. 

Var(b, . C, ) = Var(b, ). Var(C, ) + Var(b, ). E(C, )2 + E(b, )2. Var(C, ) 

The derivation of  this expression is given in Appendix C. 

For the reader familiar with the literature of  the Casualty Actuarial Society, the 

description to this point should not be surprising. In fact, the formulas are identical with 

what is usually referred to as "mixing" parameters, and the use of  the notation "b" is a 

deliberate choice to be consistent with this idea. 
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The inflation index can be viewed as a "parameter variance" component with the total 

variance above regrouped as follows. 

V a r ( b , . C , )  = V a r ( C , ) . E ( b 2 , ) +  V a r ( b , ) . E ( C , )  2 
~____w.___.._~ ,.____.w_____~ 

Process Variance Parameter Variance 

5.2 Calculating the Covariance of a Two Payments 

If  we have two payments, taking place at different times, t and t+k, then the covariance 

between these two payments is calculated in a formula that generalizes the variance formula 

above. 

Cov(b, " C,,b,+k " C,.k ) = Cov(b, ,b,.k ). Cov(C, ,  C,.k ) 

+ Cov(b,,b,+k ). e(c, )+ e(b,)e(b.k ). Cov(Cc,C,. ) 

For the special case of  k=O, this expression reduces to the variance formula above. 

5.3 Calculating the Variance of a Stream of Payments 

The variance of  a stream of payments is a linear combination of  the variance and 

covariance terms calculated above. 

We again start with a vector of  N expected loss payments,/3 = {E(C t )}~=,. We now 

assume that we also know the covafiance matrix from sources other than inflation, 

M c (i, j )  = Cov(C i , C i ). 

As in Section 3.3, we also create an N - b y - N  m a t ~  of  covarianee terms for the inflation 

indices corresponding to each loss payment: M b (i, j )  = Cov(b i , b i ). 

The covafiance matrix, representing each pair of  loss pa)nnents in the payment stream 

~Bt¢, is calculated by applying the formula from Section 5.2 on an element-by-element basis. 

Mb. c (i, j )  = M h (i, j ) .  M c (i, j )  + M b (i, j ) .  E (C  i ). E(C i )+ M c (i, j )  

The variance of  the sum of all payments in the stream is then calculated as the sum of  all 

entries in this combined matrix Mb. c . 

Once again, this may be viewed as a combination of  a matrix of  expected "process 

variance" and a matrix of  "parameter variance" elements. 
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Mh. c (i, j )  = M c (i, j ) .  {I + M b (i, j )}+  M h (i, j ) .  E(C, ). E(Cj ) 

Process Variance Parameter Variance 

We may also note that the sum of the "parameter variance" elements is identical to what 

we denoted War(P) =/3 .  M . / 3 r  in Section 3.3. 

At this point the reader may have a concern about where all of  these numbers come 

from. The matrix of  covafiances related to inflation M h is created using the formulas from 

Section 3, but do we really have all of  the covariances from other sources needed for M c ? 

It may be that these are not available and a further simplification is needed. 

The easiest way to simplify this process is to include an assumption that the ultimate loss 

C and the variance of  the ultimate loss War(C) are known. We further assume that the 

payment pattern on a percent basis is fixed and certain. That is, the dollar amount of  

ultimate loss may vary, the same percent will always be paid in the first year. By this 

assumption, all of  the C t payments are perfectly correlated and have the same coefficient of  

variation (standard dexdation divided by mean) CV c . The elements of  the Mcmatf ix  are 

then easily defined as follows. 

(i, j )  = E(C,) .  E(C,). 
The overall covariance matrix then simplifies greatly. 

Mbc(i,j) = Mb(i,j).Mc(i,j)+Mh(i,j).E(C~).E(Cj)+Mc(i,j ) 

becomes 

Mb.c(i,j) = {CW~ +O+CVc2).Mb(i,j)}.E(Cl).E(Cj) 

5.4 Calculating the Covariance between Two Streams of Payments 

The example of  how to combine the variance due to inflation with variance from other 

sources can now be generalized to the discussion of  the covariance between two reserve risk 

classes such as different lines of  business. 

If  we have two risk classes A and B, each with selected pa)wnent streams such that we 

create an NxN matrix of  covariance terms between each of  the payments. As with the single 
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payment  stream example, this can be set up as a matrix. 

Mas(i , j )  = Cov(aCi,sCj) 

To combine this with the variance due to inflation, we then use the following formula. 

Mh.as (i, j) = M b (i, j ) .  M AB (i, j) + M h (i, j) .  E(A C, ). E(B Cj )+ M as (i, j) 

If  the two reserve segments are not  correlated based on any factors other than inflation, 

then all the elements of  this matrix are zero, and no calculations are necessary. 

We may also simplify the matrix if, as in the pre~dous section, we introduce the 

assumption that the percent payment  pattern for each risk class is fixed and known. The  

mat.fix MAB then becomes a constant  amount  times the cross-product of  the payments. 

The correlation coefficient PAB for sources other than infladon is introduced. 

Mas(i , j )  = E(ACi) .E(sC, ) . {pas .CVa.CVs}  

This again leads to a simpler version of  the covariance matrix. 

Mb.as(i,J) = {PAS "CVa "CVs +(l+ pas .CV, .CVs) .Mh(i , j ) } .E(AC,) .E(sC,)  

The covariance term between the two risk classes is the sum of  all of  the terms in this 

matrix. 

The correlation coefficient Pb.aS (including bo th  inflation and other sources) between 

these two risk classes is then calculated as follows. 

sum{Mh.AB } Pas " CVA " CVB + (1 + Pas " CV, . CVs )" Y'=aB 
Pl,.aB = = 

x/sum{Ms.a}'sum{Mh.s} x/{CV2A +O+CV~)'Z2A}'{CVff +O+CV~) 'Y~}  

where Y~ = sum{Ms(i,j).  E(ACi). E(aCj)}/ E(aC) 2 
• . 2 X 2 = sum{M s (t, j) .  E(BC ̀  ). E(sC j)}/e(, s C) 

Y?AB = sum{Ms(i,J)" E(ACi)" E(sC,)}I{E(aC)" E ( s C ) }  

These expressions can also be written in matrix notation. 

x l  = Var(aP)  = 

r 4  = V , , r ( s P )  = 

= Cov( P, = T 
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In these formulas, we have included the same inflation covariance matrix M h . However, 

if  we include adjustment factors other than a Y=B Y =  1 , then we would need to adjust the 

matrices as shown in Section 4. 

With this formula, we are able to combine the correlation due to inflation with correlation 

from other sources without having to define all of  the inter-dependencies between individual 

payments. I f  the user is uncomfortable with assuming that the payout patterns do not  vary, 

then the more general formulas can be run. 

6. RESULTS A N D  DISCUSSION 

Having completed a fairly rigorous description of  the formulas for calculating covariance 

due to inflation, it is worthwhile showing a simplified numerical example to illustrate how 

this can be implemented in practice. 

We begin with the inflation model defined in Section 2, in which we calculated: 

Reversion parameter r = .831857 

Variability Sigma cr = .014738 

If  bo th  reserve risk classes A and B are directly proportional to this inflation index, such 

that a Y=s ? '=  1, then we have an inflation covariance matrix M h as show below (each 

element of  the matrix being one calculation of  the formula in Section 3.2). 

Matrix of Covarlance Factors Mh 
0.00022 0.00040 0.00055 0.00067 0.00078 0.00086 0.00094 0.00100 0.00105 0.00109 
0.00040 0.00095 0.00140 0.00178 0.00210 0.00236 0.00258 0.00276 0.00291 0.00304 
0.00055 0.00140 0.00233 0.00311 0.00375 0.00429 0.00473 0.00510 0.00541 0.00567 
0.00067 0.00178 0.00311 0.00443 0.00553 0.00644 0.00720 0.00784 0.00837 0.00881 
0.00078 0.00210 0.00375 0.00553 0.00722 0.00864 0.00982 0.01080 0.01161 0.01229 
0.00086 0.00236 0.00429 0.00644 0.00864 0.01069 0.01240 0.01382 0.01501 0.01600 
0.00094 0.00258 0.00473 0.00720 0.00982 0.01240 0.01477 0.01675 0.01840 0.01977 
0.00100 0.00276 0.00510 0.00784 0.01080 0.01382 0.01675 0.01941 0.02163 0.02348 
0.00105 0.00291 0.00541 0.00837 0.01161 0.01501 0.01840 0.02163 0.02456 0.02699 
0.00109 0.00304 0.00567 0.00881 0.01229 0.01600 0.01977 0.02348 0.02699 0.03014 

We then introduce two reserve segments, having ten year payment patterns as below. 
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Year 
Risk Class A Risk Class B 

aP sP 

1 46.40% 15.20% 
2 12.10% 11.60% 
3 8.40% 10.50% 
4 6.80% 10.00% 
5 5.70% 9.40% 
6 4.90% 9.10% 
7 4.50% 8.90% 
8 4.00% 8.60% 
9 3.70% 6.40% 
10 3.50% 8.30% 

From this infomaation, we can calculate the CVs from inflation as follows: 

£2 a = Var(aP ) = a/3.Mb.a/5 = .04702 

Y.~ = Var(BP ) = B P . M b . s P  = .08032 

r.L = Cov(AP, =AP.v . P = .o61o 

The correlation coefficient from inflation only is then estimated as follows. 

Z~s .06102 
= - .989 

~ A . y ~  .0470' .0803 

This very significant correlation is, again, due to the fact that inflation is the only factor 

contributing to the variance of either reserve risk class. 

We can generalize this by including variability from other sources. We will assume that 

the risk classes A and B have CVs from sources other than inflation of .100 and .160 

respectively, and that these are independent. Further, we will include the simplifying 

assumption that the ultimate losses axe variable but that the percentage payout patterns are 

fixed. The resulting correlation coefficient, reflecting all sources of variance is given below. 

jOb.AB ~- ,l(cv2 +(l+CV2) (cv; +(1+ cv;) 
.0610 2 

= = .188 
4(1002 +(1+.1002). .04702).( .1602 +(1+.1602). .08032 ) 

All of  these numbers are'meant pttrely for illustration purposes, but they do show that the 

formulas produce results in reasonable ranges. 
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The general process for estimating variance and covariance due to inflation can be 

summarized in the steps below: 

• Select an external index, such as a component of  the CPI 

• Estimate the variance (o" 2) and reversion ( r )  parameters for the inflation index 

• Select a default inflation-sensitivity parameter ~ for each risk class 

• Estimate the future loss payment stream for each risk class 

• Calculate the variance of  each risk class due to inflation 

• Calculate the covariance between each pair of  risk classes 

7. CONCLUSIONS 

The formulas outlined in this paper provide a very simple method for estimating the 

sensitivity of  losses and reserves to movement in inflation rates. The advantages of  this 

approach may be summarized as below: 

1) The basic idea is very easy to explain: loss payments move with inflation 

2) Variability due to inflation can be linked to economic forecast models 

3) The calculation of  variances and correlation can be performed in an Excel 

spreadsheet in closed-form 

The chief disadvantage that is identified is that external inflation indices, such as 

components of  the consumer price index (CPI) have not been shown to be significant 

explanatory variables for movement in insurance loss amounts. 

In spite of  the difficulty in estimating the sensitivity parameter y,  however, we have a 

reasonable baseline value of  y = 1. The model therefore can provide a correlation structure 

between reserve risk classes based on external knowledge of  inflation with a minimal need 

for arbitrary assumptions. 
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Appendix A: Derivation of Key Formulas 

This appendix provides a more detailed derivation of the key variance and covariance 

formulas given in the body of the paper. 

The formulas in this paper are able to be written in a compact form by capitalizing on a 

useful property of the lognormal distribution; namely that the product of lognomml random 

variables is again a lognormal random variable. Analogously, the sum of normal (Gaussian) 

random variables is again a normal random variable. 

The autoregressive model, AR(1), is written in a recursive linear form, after taking the 

logarithms of the inflation trend factors. 

X, = Xt_ j . r + b + a . e ,  

X, logarithm of 1 +it (i~= the inflation rate at time t) 

e, standard normal random variable, e, 0¢ Normal(O,1) 

The distribution of X,,  conditional upon a known value for X,_j, is then given as 

X t I X,_l ~ Normal(X,_ 1 • r+b, a).  

The variance of the conditional random variable is then 

Var(X, IX,_,) = o" .  

The random variable for the logarithm of the inflation rate two or more years out is 

found by expanding the recursive expression: 

X, IX,_ 2 = (X,_2.r + b + cr.e,_,).r + b + or.e, 

X, IX,_3 = ((X,_3.r + b + cr.e,_2).r + b + cr.e,_l).r + b + or.e, 

This expanding of the recursive formula can be generalized as 

t 

X, IXo = X o'r '  + £ ( b + o ' . e i ) . r ' - ' .  
i= l  

The variance for this more general form is therefore given as below. 

t - i  X, IX o' ~ Normal X o.r'  + b . ~ . r  , a .  
i=l V i=l .I 

The variance for the random variable conditional upon a point "t" years prior is then: 
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' 1 - -  r 2t 
Var(X, [ X o) = a 2. ~_, r2"('-i' = a2 

i=1 1 -- r 2 
i f r < l  

or Var(X,  I Xo)  = o'2" t if  r = l 

These and subsequent simplifications are possible based on three fundamental identifies. 

~ ' ~ k  = l + 2 + 3 + . . . + ( n - i ) + n  = 
F/. (rt + 1) 

k=l 2 

n 
)--,k 2 = 12 +22 +32 + . . . + ( n _ l ) 2  +n2 = n . ( n + l ) . ( 2 n + l )  
k=l 6 

~ rk_ t = l + r l  +r2 +r3 +. . .+r,_2 +r,_  ] l - r "  
,~=l 1 --  r 

The random variable X, represents the inflation rate " f '  years in the future, and the 

expression Var(X,  ] X o ) is the variance around that rate. For our purposes, we need the 

variance of  the inflation index at this future point; the index includes the variances of  all o f  

the annual inflation rates from the base time to the future period. 

For this next step, we must remember that the inflation rate at a given point in the future 

is correlated with the inflation rates at subsequent points. This implies that the normal error 

terms e i are included multiple times in the summation below. 

(Xl+X2+...+Xn[Xo) = Z ( x j [ X o ) =  Xo.rJ+ b+a.ei).r j-i 
j=! .= 

If  we make the substitution S, = (Xj + X 2 + . . . +  X n IX0) ,  then the random variable 

can be written more compactly as below. 

S, = E ( S , ) + a .  e i . r  j-i = E ( S , ) + a .  e,+,_/, r '-] 
i=| J 

In order to calculate the variance for this summation, we make use of  the following 

relationships. 
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Var(S.) = E(S2.)-E(S.) a and E(e,)=O Vi 

The variance for the sum of these annual rates therefore requires the collapsing of the 

double summation. 

Var(S.) = .2"  Z r '-i =G2. " l - r '  2 
l=l ~, i=1 .J 

This summation can be further simplified as shown below: 

V a r ( S . ) -  G2 ~'~ 0 - 2 r ' / +  r 2' ) 
( l -r)  2 ~=, 

{ ( l - r )  2 "~. 1 - - ~ )  "~. 1-i-~r2 ) J  

Mtematively, for the special case in which r = 1, we Gm write 

Var(S.) = a 2 n. (n + 1). (2n + 1) 
6 

The final step for the variance calculation is to translate the variance of the normal 

random variable X, into the expression for the CV of the lognormal random variable. 

We can accomplish this by making note of the following relationship 4. 

CV(e x)2 _ Var(e x) = eV.4X)_l 
E(eX) 

This provides the translation to all of  the formulas given in section 3.1 of the paper. 

By analog),, there is an expression for the [standardized] covariance of two random 

variables. 

4 As the reader might expect, this i'elationship holds when X is a normal random variable, but it is not 
generally true for other distributions. 
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Cov(eX,e y ) eCo,.(x,y)_ 1 
Cov*(eX,e ')  = E{eX).E(e r) = 

For this covariance expression, we recall that we are looking for the relationship between 

twosumsofrandomvariables (X, + X= +. . .X . )  and (Xt + X2 +...+ X .  +.. .+ X.+k) , 

which we may again denote S. and S.+ k for convenience. 

S n = E(Sn)+0.. en+t_j.2r `-I 
i=l J 

S,,+, = E(S.+,)+0..~{e.÷,+,_,.  r i-' 
j=l['= i=l J 

= E(s.+,)+0.. e.+,_,.yr'-' + Z e,. y ri-,~ 
i=l j I i=1 J 

The logic for calculating the covariance term Cov(S., S.+ k ) is similar to that used for the 

variance above. 

Cov(S.. S.+~ ) = E(S. .  S.÷~ ) -  E(S. ). E(S.+, ) 

= r ' - '  
( l -  r)  2 s=J 

0.2  

(1 - r )  2 

_ . ( , - r " l l  

0 .2 

(1 - r )  2 

- ( 1 - r 2 " ] ~  

For the special case in which r = 1, we can write 

n n 

cov(S,,,s,,+~) = 0 . 2 . Z { j . 0 + k ) }  = 0 .2 .Z{j2  + j .k}  
j=l  j f l  
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= 0" 2 . { n . ( n + l _ ~ ( 2 n + l ) _  n-(n+l)2 k}.  

This completes the derivation of the covariance terms given in section 3.2 of the paper. 

As a final observation, we may note that the CV and Covariance expressions are 

dependent upon (7 and r (the reversion parameter), but do not involve the intercept b or 

the starting point X 0. In other words, we can estimate the variance relative ,to the mean 

level of the reserves without haxqng to know the current or long-term inflation rates. 

88 Casualty Actuarial Society Forum, Fall 2006 



Variance and Covariance in Reserves Due to Inflation 

A p p e n d i x  B: Cha in -Ladder  O D P  Mode l  

The over-dispersed Poisson (ODP) model is useful to illustrate the ideas in this paper 

since it conveniendy balances to the well known chain-ladder reserving method. 

We define an incremental loss payment in year y and development period d to be 

distributed as ODP. The distribution is defined as follows: 

Probability Function: 
/ \ c ,  e l#  e -#y .e l  ¢ 

Mean: ) = a,. 

Variance: Var(cy.a ) = 4" fl,..a 

The parameter 4 is the "dispersion parameter" and represents a constant variance-to- 

mean ratio. This parameter will be assumed to be fixed and known, and constant for all 

accident years and development periods. Mathematically it is just a scaling factor that 

changes a standard Poisson distribution, defined on the integers {0, 1, 2, 3, ...} to an ODP 

distribution, defined on evenly spaced values {0, 4 , 2  4 ,  3 4 ,  ... }. 

The mean of each cell in the development triangle will then be defined as: 

= & . ) =  

In order to calculate the maximum likelihood estimation (MLE) values for these 

parameters, we need to evaluate the following expression. 

LogLikelihood = f~= °~'{~.ln(~y . ,a)-~. ln(#)  °e"'fla ~ - l n ( ( c , . a / ¢ )0}  

However, since we are assuming that the dispersion parameter is fixed, we do not need to 
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include it in ou~ likelihood calculation. Instead, we use a quasi-likelihood (o~LL) expression 

including only the portion of  the LogLikelihood that is dependent on ~.~. and fla. 

QLL = ~n~'!'{c,.a . ln(ot.~. . f a ) -  ot,. . f a } 
y=l d=l 

The derivatives with respect to the two parameters axe set to zero. 

n-v+l fc "1 
= E ~ ' - - - -  a = 0 

00~y d=l O~y 

and 

3QLL .-a+l fc = V r ' a - a  

afa t fa 'J 
= O.  

The derivatives imply that the MLE values satisfy two conditions: 

n-v+l n-v+l n-d+l n-d+l 

EC>a = E ~ . . ~ a  and ECy.a = Eot , . .~a  Vy ,  d .  
d=l d=l y=l y=l 

That is, the row and column totals o f  the fitted values must equal the row and column 

totals of  the original incremental triangle. Because these conditions do not result in a unique 

n n 

set of  parameters, we can add one more constraint E fie = 1, which results in ot I = E cl.a. 
d=l d=l 

These constraints then mean that the M.LE parameters are equivalent to the values in a 

standard chain-ladder reserve estimate. 

This model can then be expanded to include estimates of  trend based on the cP i :  

I.t, d = E ( % d ) =  a y . f l d . C P l ( y + d - 1 )  r 

QLL = ~ ."~ l {c : . .a . ln (o t , . . f l a .CPl (y+d- l ) r ) -o t , . . f l a .CPl (y+d- l ) r  }. 
y=l d=l 

We find from this expression that the following conditions must again be met: 

n-v+l ,n-v+l n-d+l n-d+l 

E c:..a = E g ~ . . a a n d  ~_c:..e = ~.,I.t.~..a V y, d .  
d=l d=l y=l y=l 
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We must also add the derivative with respect to the CPI curve, ), : 

OQLt 
o), 

n n-y+l 

= ~ ~}:,,,.ln(CPlO,+a-1))-% .p~ .ln(CPlO,+d-1)).cPIO,+a-ly} 
y,,I d=l 

= 0 

Which is equivalent to 

~.'~'~y,o .ln(CPl(y+d-1))} 
y=l d=l 

n n-y+l 
= E Y'{U,.o.ln(Cel(y+d-1))}. 

y=l d~l 

Unfortunately, there is no longer a convenient closed-form solution for calculating the 

model parameters, though it can be somewhat simplified using the relation below: 

n-d+l 

E Cy,d 
y=l 

n-d+l~ 

y=l 

The parameters in the model including the external CPI values must be estimated via an 

iterative calculation. This does not create any great difficulty in our model. 

What is more interesting, however, is the relatively little improvement in model fit that is 

seen when the CPI values are introduced. It makes intuitive sense that loss payments should 

follow inflation, so why does introducing inflation as an explanatory variable add so little to 

the goodness of  fit? 

The answer is that a standard chain-ladder or MLE calculation is already estimating many 

parameters: one for each accident year ay  and one for each of  the first n-1 development 

periods fla (by constraining these to add to 1.00 we reduce the model by one parameter). 

This means that in a triangle with n years, we will have n(n + 1) / 2 data points to estimate 

2 n - 1  parameters; for a 10-year triangle we have 55 incremental payments to estimate 19 

parameters. The effects of  inflation are "buried" in our otherwise over-parameterized 

model. 
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To see this more clearly, we will introduce one more model in which the inflation rate i 

is assumed to be constant, and is estimated as a parameter of  the model. 

ll:..a = E(c:..a ) = ~t:..fla.(l+i) '+a 

The quasi-likelihood function is given as follows. 

n n-v+l  

aLL = E Z{c>d'ln(oti'fla'(l+i):+d)--gr:''fla "(l+i)r+a} 
y=l d=l 

Taking the derivative with respect to the inflation rate i ,  we have 

n n - v + l f  • (y+d) ) aQLL _ ~" ~' f , . ~  
[ -(-1~0 a,. "fla . (y+d) . ( l+i )  :+a-'} = 0 ..;:r=, 

Or equivalendy, 

b QLL . . . . .  
ai - Z £{(Y+d) ' (cva- l l , ' ,a)}  

~=1 d=l 

= 0 

We may note that this condition for the derivative of  the loglikelihood with respect to i will 

automatically be met if we first calculate Cry and fld via the chain-ladder method (assuming 

no  inflation), and then adjust the numbers as: 

ay  = a~. ' (1 +i)-:" fld = fla" (1 + i )  -d 

Such that  a , . .  f l~.  (1+ i) y+d = g , . .  (1 + i)-". fla" (1 + i) -a. (1 + i) r+a = or:.. fld 

The MLE for a model with a constant inflation rate is therefore equal to the chain-ladder 
model  with no inflation. 
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Appendix C: Variance and Covariance of Products of Random Variables 

The general form of the variance of a single random variable X,  and its covariance with 

a second random variable Y, are expressed in the following familiar equations. 

Va~(X) = e ( x ~ ) - E ( x )  ~ 

Cov(X,V) = E ( x . v ) - E ( x ) .  E(v) 

The varhnce of the product of these two random v ~ b l e s  has a somewhat more 

complex expression: 

Var(X.Y) = E(X2.y2)-E(X)2.E(Y) 2 

If X and Y are independent, then this can be re-written as follows. 

Var(X . Y) = Var(X ). Var(V)+ Var(X ). E(Y) 2 4- Var(]*). E(X )2 

= =} 

= E(X=).E(r2)+E(X)=.e(y) ~ 

- E(x=).e(y)=-e(x)=.e(y=) 

e(x ~ ). E(r~ )- E(x ) ~ . e(v) ~ 

- E(X=).E(r) = +E(X) ~.E(v) = 

_ E(x)~.E(v~)+E(x)~.E(v) ~ 

{E(X=.Y=)-E(X)=.e(Y) ~} 

- {e(x=)-e(x)=}.e(y) ~ 

- {E(y=)-e(y)=}.e(x) ~ 

Vat(X).  Var(V) = Wr (  X . V ) -  W r ( X  ). e(V) 2 - Var(V). e ( X  )5 
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In a similar fashion, the covariance between two products of random variables can be 

calculated using the expression below. 

Cov(Xt . Y~,X2 . Y2) = E(X, . YI . X2 . Y2)-  E(X, ) .  E(Y~). E(X2).  E(Y2)\ 

Again, if the X 's  and Y's are independent, the covariance formula can be re-written as 

follows. 

Cov(X, . r , , x~ .r~)  = Cov(X,.~',).Co~(X~.r~) 

+ C o v ( X  1 " X 2 )" e(r| ). E(Y 2 ) + Cov(r,. r 2). E(X, ). E(X 2 ) 

The proof follows a similar logic as above for the variance calculation. 

P,,,¢ Cov(X, . X~). Co,,(Y, . Y:) 

= {E(X, • X~) -  E(X, ). E(X~)}. {E0', • r : ) -  e(r, ). e(v:)} 

E(X, . X~). E(~, . r~)+ E(X,).  e(X~). ~(V,). E(r~) 

- E (XI .X : ) . e ( r , ) .E ( r , )  

- E(Y, .Y2).E(X,) .E(X2) 

{E(x, • x :  ). E(~,. v: ) -  E(X, ). E(X: ). E(V, ). E(V: )} 

- {E(X, • X~). E(V, ). E(V:)- E(X,)- ~(X:) .  E(V, ). E(V~)} 

- {E(V,. r~)- E(X,). E(X~)-  E(X,). E(X~). E(V, ). E(V~)} 

Coy(X, . r : ,x~  .r~) 

- Co~(X,. x~). E(r,). E(r~) 

- Co,(r, • r~). E(X,). E(X~) Q.E.D. 
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