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1 I n t r o d u c t i o n  

An in-depth review of the NCCI excess loss factors (ELFs) was recently 
completed and changes were implemented in the 2004 filing season. The most 
significant change was to incorporate the latest data, but the methodology 
was thoroughly reviewed and a number of methodological changes were made 
as well. Among the methodological items considered were: 

1. Individual Claim Development 
Our intent here was to follow the method in Gillam and Couret [5] and 
merely update the parameters. However our treatment of reopened 
claims is new as is the way we implement individual claim development. 
This is covered in detail in section 2. 

2. Organization of Data 
The prior procedure fit countrywide loss distributions by injury type 
and then adjusted the means of those distributions to be appropriate for 
each individual state. We extend this idea to match the first two mo- 
ments. The prior procedure implicitly gives each state's data a weight 
proportional to the number of claims in the given state, and thus even 
the largest states do not get very much weight in the countrywide dis- 
tributions. We give much more weight to individual states' own data 
and thus fit state specific loss distributions. For credibility reasons the 

*We gratefully acknowledgc the creative contributions of the many people involved in 
this project, including, bu~ not limited to, NCCI staff and NCCI's Retrospective Rating 
Working Group. 
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prior loss distributions combined permanent total injuries with major 
permanent partial injuries, and minor permanent partial injuries with 
temporary total injuries. We fit fatal, permanent total (PT), perma- 
nent partial (PP), temporary total (TT), and medical only distributions 
separately. In order to do this we use data at third, fourth, and fifth re- 
port for fatal and permanent total injuries. Mahler [10] also uses data 
at third, fourth, and fifth report. For permanent partial, temporary 
total, and medical only injuries, where there is adequate data, we only 
use data at fifth report. This is covered in section 3. 

3. Fitting Method 
We follow Mahler [10] and rely on the empirical data for the small 
claims and only fit a distribution to the tail. We fit a mixed exponential 
distribution to the tail. Keatinge [8] discusses the mixed exponential 
distribution. Rather than fitting with the traditional maximum likeli- 
hood method we choose to fit the excess ratio function of the mixed 
exponential to the empirical excess ratio function using a least squares 
approach. This yields an extremely good fit to the data. It should be 
noted that we do not fit the raw data, but rather the data adjusted to 
reflect individual claim development as described in section 2. This re- 
sults in a data set that has already been smoothed significantly and so 
we were not concerned that the mixed exponential tail might drop off 
too rapidly. Mahler [10] noted that the excess ratios are not very sen- 
sitive to the splice point, i.e. the point where the empirical data ends 
and the tail fit begins. Thus we preferred to not attach too far out into 
the tail so that we could have some confidence in the tail probability, 
i.e. the probability of a claim being greater than the splice point. We 
generally chose splice points that resulted in a tall probability between 
5% and 15%. This is covered in section 4. 

. Treatment of Occurrences 
We put a firmer foundation under the modeling of occurrences by bas- 
ing it on a collective risk model. In the end we find that the difference 
between per claim excess ratios and per occurrence excess ratios is al- 
most negligible. This is quite a sharp contrast with the past. Once, per 
occurrence excess ratios were assumed to be 10% higher than per claim 
excess ratios. This was later refined by Gillam [4] to the assumption 
that the cost of the average occurrence was 10% higher than the aver- 
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age claim. Gillam and Couret [5] then refined this even further to apply 
by injury type: 3.9% for fatal injuries, 6.6% for permanent total and 
major permanent partial injuries, and 0% for minor permanent partial 
and temporary total injuries. Our analysis shows that per occurrence 
excess ratios are less than .2% more than per claim excess ratios. This 
is covered in section 5. 

In section 6 we discuss updating the loss distributions. The current pro- 
cedure is to update the loss distributions annually by a scale transformation 
and to refit the loss distributions based on new data fairly infrequently. The 
scale transformation assumption is extremely convenient and is discussed by 
Venter [12]. What is needed is a method to decide when a scale transforma- 
tion is adequate and when the loss distributions need to be refit. We conclude 
by reviewing the methodology changes. While the focus of this paper is on 
methodology, we also take the opportunity to briefly discuss the impact of 
the changes. 

2 Individual  Claim Deve lopment  

When evaluating aggregate loss development it is not necessary to account 
for the different patterns that individual claims may follow as they mature 
to closure. In aggregate it does not matter whether ten claims of $100 each 
all increase by $10 or whether just one claim increases by $100 to produce 
an ultimate loss of $1,100 and an aggregate loss development factor (LDF) 
of 1.1. But if you are interested in the excess of $110 per claim, it makes 
all the difference. Gillam and Couret [5] address the need to replace a single 
aggregate LDF with a distribution of LDFs in order to account for different 
possibilities for the ultimate loss of any immature claim. They refer to this 
as dispersion, and the name has stuck. Here, the term dispersion refers to 
a way of modelling ultimate losses that replaces each open claim with a loss 
distribution whose loss amounts correspond to the possibilities expected for 
that individual claim at closure. 

The loss distribution used to determine the ELF should reflect the loss 
at claim closure. The calculation is done by injury type and uses incurred 
losses. It must reflect maturity in the incurred loss beyond its reporting 
maturity fully to closure, including any change in claim status (open/closed) 
and change in the incurred loss amount. Moreover, it must accommodate 
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the reality that not all claims mature in the same way. Age to age aggregate 
incurred LDFs are determined from 18t to 5 th report by state, injury type, 
and separately for indemnity and medical losses. The source is Workers 
Compensation Statistical Plan Data (WCSP), as adjusted for use in class 
ratemaking. As WCSP reporting ceases at 5 th report, 5 th to ultimate incurred 
LDFs, again separately for indemnity and medical losses, are determined from 
financial call data, typically in concert with the overall rate-level indication. 

Individual claim WCSP data by injury type and report is the data source 
for the claim severity distributions. PP, TT, and medical only claims are 
included at a 5 th report basis. The far less frequent but often much larger 
Fatal and PT claims are included at 3 rd, 4 th and 5 th report basis. The WCSP 
data elements captured include state, injury type, report, incurred indemnity 
loss, incurred medical loss, and claim status. This detailed WCSP loss data is 
captured into a model for the empirical undeveloped loss distribution. That 
model consists of a discrete probability space to capture the probability of 
occurrence of individual claims together with two random variables for the 
claims' undeveloped medical and indemnity losses as well as four characteris- 
tic variables for state, injury type, report, and claim status. Eventually, this 
is refined into a model for the ultimate loss severity distribution that con- 
sists of a probability space together with one random variable for the claims' 
ultimate loss as well as two characteristic variables for state and injury type. 

Because dispersion is exclusively focussed on open claims, without some 
accommodation, claims reported closed but that later reopen would not be 
correctly incorporated in the dispersion model. Accordingly, it is advisable 
to account for reopened claims prior to dispersing losses. The loss amounts 
considered are the total of the medical and indemnity losses for each claim. 
The methodology adjusts those loss amounts and probabilities by claim sta- 
tus and injury type, so as to model the impact of reopening claims. The 
details for the specific calculations used can be found in Appendix A and 
Appendix C. It is based on the observation that the few closed claims that 
reopen after a 5 th report (0.2%) are not typical, but are on average larger (by 
a factor of 8) and have a smaller CV (by a factor of 0.4). Appendix A shows 
quite generally how to calculate the resulting means and variances when a 
subset of claims have their status changed from closed to open. 

The probability, mean, and variance of the three subsets of the loss model: 

1. claims reported closed at 5 th report 

2. claims reported open at 5 th report 
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3. claims that reopen subsequent to a 5 th report 

completely determine the probability, mean, and variance of the complemen- 
tary subsets: 

1. claims 'truly closed' at 5 th report (those reported closed that do not 
reopen) 

2. the complement set of 'truly open' claims. 

That is, there is only one possibility for the probability, mean, and vari- 
ance of the truly open and closed subsets, even though there are multiple 
possibilities for what particular claims reported closed at 5 ~h later reopen. In 
fact, those values can be explicitly determined from the formulas derived in 
Appendix A. 

Knowing the probabilities of the truly open and closed subsets, we adjust 
the loss model by proportionally shifting the probabilities. The probability 
of each open claim is increased by a constant factor while the probability of 
each closed claim is correspondingly decreased by another factor. Knowing 
the mean and variance of the truly open subset lets us adjust the undevel- 
oped combined medical and indemnity loss amounts of the open claims to 
match the two revised moments for open claims; this is done via a power 
transformation as described in Appendix C. The closed claim loss amounts 
are similarly adjusted. The result is a model of empirical undeveloped losses 
that reflects a trued up claim status as of a 5 th report, in the sense that no 
closed claims will reopen. That model, in turn, provides the input to the 
dispersion calculation. This approach is a refinement from that of Gillam 
and Couret [5] who account for the reopening of just a very few closed claims 
by dispersing all closed claims by just a very little. The idea here is to per- 
form the adjustment prior to dispersion so that it is exactly the set of 'truly 
closed' claims whose losses are deemed to be at their ultimate cost and it is 
the complement set of 'truly open' claims that are dispersed. 

In the resulting model for the empirical undeveloped loss distribution, 
the claim status variable is assumed to be correct in the sense that the 
loss amount for each closed claim is taken to be the known ultimate loss 
on the claim. Dispersion is applied only to open claims. Accordingly, the 
LDF applicable to all claims is adjusted to one appropriate for open claims 
only, and all development occurs on exactly the open claims. For each state, 
injury type, and report, one average LDF is determined from the medical and 
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indemnity LDFs to apply to the sum of the medical and indemnity incurred 
losses of each claim. That combined incurred LDF is then modified to apply 
to just the open claims. More precisely, the relationship used to focus an 
aggregate LDF onto just the open claims is simply: 

Lc = Aggregate undeveloped loss for closed claims 

Lo = Aggregate undeveloped loss for open claims 

A = Aggregate LDF applicable to all claims 

= Open only LDF 

A(Lc+Lo)  = L c + A L o = ~ A = A + ( A - 1 )  L--A~ 
Lo 

The adjusted to open only LDFs are determined and applied by state, injury 
type, and report. 

Even though the adjusted LDFs are applied to all open claims indepen- 
dent of loss size, because the proportion of claims that remain open correlates 
with size of loss, the application of dispersion varies by the size of loss layer. 
Typically, larger losses are more likely to be open, and this application of 
development factors will have a greater impact in the higher loss layers. It 
follows that the application of loss development changes the shape of the 
severity distribution, making it better reflect the ultimate loss severity dis- 
tribution. 

The next step is to apply dispersion to open claims. The technique used 
to disperse losses is formally equivalent to that used by Gillam and Couret [5]. 
The technique bears some similarity to kernel density estimation in which an 
assumed known density function (the kernel) is averaged across the observed 
data points so as to create a smoothed approximation. More precisely, the 
idea is to replace each open claim with a distribution of claims that reflect 
the various possibilities for the loss that is ultimately incurred on that claim. 
The expected loss at closure is just the applicable to ultimate LDF times the 
undeveloped loss. The LDF is varied according to an inverse transformed 
gamma distribution and multiplied by the undeveloped loss to model the 
possibilities for the ultimate loss. 

The NCCI Detailed Claim Information (DCI) database was used to build 
a data set of observed LDFs beyond a 5 th report. We studied DCI claims open 
at 5 th report for which a subsequent DCI report was available. The observed 
LDF was determined as the ratio of the incurred loss at the latest available 
report divided by the incurred loss at 5 th report. If the claim remained open 
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at that latest report, the observed LDF was considered "right censored." 
Censored regression of the kind used to study survival was used to fit this 
data. Open claims were identified as the censored observations, i.e. closed 
claims were deemed "dead" and open claims "alive" in the survival model. 
The survival model was used to determine an appropriate form to represent 
the distribution. 

More precisely, the SAS PROC LIFEREG procedure was used to estimate 
accelerated failure time models from the LDF observations. Letting Y denote 
the observed LDF, the model was specified by the simplest possible equation 
Y = • + ~, where ~ represents a constant and ~ a variable error term. 
That is, the model specifies just an intercept term with no covariates at 
all. That model specification was selected because it corresponds to the 
application of a constant LDF ( ~ ) to open claims. Moreover, the error term 
of the model corresponds precisely with dispersion, as that term is used here. 
Consequently, this application of survival analysis is somehat unconventional 
inasmuch as the issue is not the survival curve or the goodness of fit of 
the parameter estmate ~ that is key. Rather, the interest here is on the 
distribution of the error term c. The SAS LIFEREG procedure is well suited 
to this because not only does it account for censored observations, it also 
allows for different structural forms to be assumed for the error term s when 
estimating accelerated failure time models. 

In this application, the estmated parameter for the intercept was not 
used since the LDF factors by state, injury type and report were taken from 
ratemaking data. What was of interest is the form and parameters that spec- 
ify the error distribution. The Weibull, the Lognormal, the Gamma, and the 
generalized Gamma distribution were considered. In fact, the two-parameter 
Weibull, two-parameter Gamma, and the two-parameter Lognormal are all 
special cases of the three-parameter generalized Gamma (the Weibull and 
Gamma directly via parameter constraint, the Lognormal only asymptoti- 
cally). The solutions for the generalized gamma implied that its three pa- 
rameters enabled it to outperform the two parameter distributions. The 
three-parameter model guided the specification of the functional form and 
parameter values for the LDF distributions used in the dispersion calculation. 

With the eventual goal to calculate excess ratios, it was important to 
assess whether the error term varies by size of loss. Gillam and Couret [5] 
assume that the CV of the dispersion distribution does not vary by size of 
loss. In addition to specifying different structural forms for the error term, 
models were fit to quintiles of the data, where by a quintile we mean that 
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H i s t o g r a m  o f  C e n s o r e d  L D F  a n d  

P D F s  o f  U n c e n s o r e d  S u r v i v a l  D i s t r i b u t i o n s  
Based on DCl PPD Claims with both a 5 ~ and Subsequent Report 

1.75 

1.25 

t I 
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the observations were divided into five equal volume groups according to 
claim size. It was observed that the CV of the error term did not show 
any significant variation by size of loss. This affirmed the prior assumption 
of a constant CV, and that assumption was again used in this dispersion 
calculation. 

The LIFEREG procedure outputs the parameters that specify the dis- 
persion pattern, by injury type, that relates a fifth report loss amount with 
the probable distribution of the incurred cost at "death" of the claim, i.e. 
at claim closure. Combining that with average LDFs from ratemaking, the 
uncensored distribution of the ultimate loss severity canbe  calculated. For 
any fixed open claim, the uncensored LDF distribution values times the (un- 
developed) loss amount corresponds with the probable values for that claim 
at closure. It follows that the uncensored LDF distribution corresponds to 
age to ultimate LDFs applicable on a per open claim basis. The above chart 
illustrates how the survival model anticipates rightward movement of the 
reported empirical losses and fills out the right hand tail. 
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Because the mean LDF was already known, our primary focus was on the 
CV. This follows the approach of Gillam and Couret [5], whose decision to use 
a two-parameter gamma distribution for the reciprocal of the LDF was also 
followed. The use of the gamma to model the reciprocal amounts to the use of 
an inverse gamma for the LDF. That choice was reaffirmed by the DCI data 
and is illustrated somewhat in the above chart. We actually used a three- 
parameter inverse transformed gamma distribution, as the survival model 
suggested that would yield a better representation of the LDF distribution. 
The first two parameters, denoted a, r in Klugman, et. al. [9] determine the 
CV of the distribution, which varies by report and injury type as indicated 
in the following table: 

Injury 
Fatal & PT 
Fatal & PT 
Fatal & PT 

PP 
TT 

Med Only 

Report ~ T CV 
3 5.7134 0.8 0.7 
4 6.8664 0.8 0.6 
5 8.7775 0.8 0.5 
5 8.7775 0.8 0.5 
5 12 3 0.1 
5 12 3 0.1 

The third parameter, denoted/5 in Klugman, et. al. [9], determines the 
mean LDF and was directly solved for to make that mean equal the age 
to ultimate aggregate open claim LDF by state, report, and injury type. 
Even though open TT and Med only claims are not assumed to develop in 
aggregate (mean LDF = 1), the open TT and Med only claims are dispersed, 
but with a small CV. 

Gillam and Couret [5] used a CV of 0.9 for the LDF on open claims; 
that selection was dictated to some degree by the need to account for po- 
tential unobserved large losses. The current ratemaking methodology makes 
separate provision for very large losses. This, in turn, enables this ELF re- 
vision to rely less on judgment and more on empirical data. The empirical 
data suggested the lower CVs used for the LDF distributions. All else equal, 
lowering the CV lowers the ELF at the largest attachment points. Much sen- 
sitivity analysis was done to assess the impact of this change in the assumed 
CV. It was determined that the selection did not represent an unreasonable 
reduction in the ELFs. 

As is typical with kernel density models, Gillam and Couret [5] used a 
closed form integration formula to implement dispersion. However, in order 
to be able to perform the downstream data adjustments (in particular, ad- 
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justing to State conditions as discussed in the next section), we instead used 
the device of representing each open claim by 173 variants. The variants 
are determined by multiplying the undeveloped loss amount by 173 different 
LDFs. The variant LDFs have mean equal to the applicable overall LDF (as 
applicable to open claims only) and a CV of 0.5 for 5 th report Fatal, PT, and 
PP claims. The mean LDF applicable for medical only and TT cases is 1, 
as those cases are assumed not to develop in aggregate beyond a 5 th report. 
So even open medical only and TT claims ar e dispersed, albeit so as not to 
change the aggregate loss (and with a smaller CV of 0.1 for the LDF distrib- 
ution). The choice of 173 points was done to enable the calculation to better 
capture the tail. Very small and very large LDFs are included in the model 
(corresponding to the 0.0000018t and 99.999999 th percentile of the inverse 
transformed gamma) albeit with a correspondingly very small weight (about 
0.000001) being assigned to such variants. Dispersion does not change the 
contribution of any claim to the aggregate developed loss. It was determined 
that the use of 173 points provided a very close approximation to the contin- 
uous form. Additional details on that calculation can be found in Appendix 
B. 

To summarize, the dispersion calculation starts with a finite probabil- 
ity space of claims together with a random variable giving the undeveloped 
claim values. Then both the probability measure and the random variable 
are adjusted to account for reopened claims. That gives a modified proba- 
bility space of claims. Replacing each open claim with a distribution of 173 
expected loss amounts at closure yields a developed dispersed probability 
space of claims with a random variable giving the ultimate claim value. This 
is done for each injury type and for all NCCI states. The next section de- 
scribes how those random variables are adjusted to state specific conditions 
so as to yield the empirical distributions used in fitting the data to severity 
distributions. 

3 Organization of Data  

The idea of estimating excess ratios by injury type goes back at least to 
Uhthoff [11] and has been used as well by Harwayne [6], Gillam [4], and 
Gillam and Couret [5]. While we follow this approach as well, it should 
be noted that ,alternatives have recently been identified by Brooks [2] and 
Mahler [10]. 
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Owing to the relatively few fatal and permanent total claims it is de- 
sirable to combine data across states. Differences between states preclude 
doing this without adjustment however. Gillam [4] addressed this by group- 
ing states according to benefit structure. For an interesting recent approach 
incorporating benefit structure see Gleeson [7]. With the current dominance 
of medical costs this approach is less satisfactory. In the prior approach, 
Gillam and Couret [5] addressed the problem "by dividing each claim by the 
average cost per case for the appropriate state-injury-type combination." We 
refer to this data adjustment technique as mean normalization. This results 
in a countrywide database with mean of 1. Loss distributions were then fit 
to this normalized database. The countrywide loss distributions are then 
adjusted via a scale transformation (see Venter [12]) to be appropriate for 
each particular state. Thus the data for different states is adjusted to have 
the same mean. A natural variant of this would be median normalization, 
the thought being that the median might be more stable than the mean. A 
natural extension is to try and match more than one moment. We considered 
five data adjustment techniques altogether: 

1. Mean Normalization 
As mentioned above, for a given injury type, each claim in state i, de- 
noted by xi (here xi denotes the incurred loss on a claim from state i 
developed to ultimate), is transformed by xi ---* x i /# i ,  where #i denotes 
the mean of the x~. The normalized claims for all states are now com- 
bined into a countrywide database. To get a database appropriate for 
state j, each normalized claim is then scaled up by the mean in state 
j,  i.e. x i /# i  -+ #~" Xi/p i 

2. Median Normalization 
This is analogous to mean normalization, but claims are now normal- 
ized by the median rather than the mean. 

3. Logarithmic Standardization 
A natural generalization of mean normalization would be to standard- 
ize claims, xi --+ *~__~v_L. To avoid negative claim values when transform- 

Orl 

ing the standardized database to a particular state we standardize the 
logged losses, log xi --+ ~ where now #i, ai denote the mean and 

a i , 

standard deviation of the logged losses. This results in a standardized 
countrywide database, which can then be adjusted to a given state j by 
logx,-~L --+ a i .  ~ + #J" Appendix C discusses this in more detail. 

O" i O" i 
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. Generalized Standardization 
This is analogous to logarithmic standardization except that instead of 
the mean and variance, percentiles can be used. For example, instead of 
the mean we could use the median and instead of the standard deviation 
we could use the 85 th percentile minus the median. 

. Power Transform 
Lastly, we considered a power transform, xi ---+ ax~i, where the values 
of a and b are chosen so that the transformed values have the mean 
and variance of state j .  That this is possible is shown in Appendix C. 
Thus for each state i there is a different power transform that takes 
the unadjusted state i claims and adjusts them to what they would 
be in state j ,  in the sense that the transformed claims from state i 
match the mean and variance in state j. Combining all of the adjusted 
claims results in an expanded state j specific database. Notice that the 
unadjusted state j claims appear in the expanded state j database and 
so the expanded state j database is indeed an expansion of the state j 
data. It should also be noted that the power transform generalizes both 
mean normalization and logarithmic standardization and the moments 
are matched in dollar space rather than in log space. This is discussed 
in more detail in Appendix C. 

Extensive performance testing was conducted to decide which data ad- 
justment techniques to use. The idea was to postulate realistic loss dis- 
tributions for the states, based on realistic parameters, simulate data from 
the postulated loss distributions and see which techniques best recovered 
the postulated distributions. Initial tests showed that median normalization 
and generalized standardization performed poorly and so further tests con- 
centrated on the remaining techniques. Based on our performance tests we 
chose to use logarithmic standardization for Fatal and Permanent Total (PT) 
claims and the power transform for Permanent Partial (PP), Temporary To- 
tal (TT), and Medical Only claims. It seemed that when there were only 
a limited number of claims and the difference in CVs between states was 
large the exponent in the power transform could occasionally be quite large, 
leading the power transform to underperform logarithmic standardization. 

Gillam and Couret [5] call modeling PT and PP claims separately the 
"common sense approach." Owing to the scarcity of PT claims they have in 
the past been combined with Major PP claims. Due to our improved data 
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adjustment techniques we are able to separate PT from PP. We also used 
data at 3 rd, 4 th, and 5 th report for Fatal and PT claims because of their 
relative scarcity, whereas we only used data at 5 ~h report for the other injury 
types. 

In the prior approach, each state's weight in the countrywide database 
was proportional to the number of claims it contributed to the countrywide 
total. This seems implicitly like assigning a state's data a credibility of n/N, 
where n is the number of claims in the state and N is the countrywide 
total. Further, this implicit credibility did not vary by injury type. This 
makes sense when there is only one countrywide database. We however, use 
a different database for each state and give each state's data a weight of 
v'rn-/N in the state specific database, where n is the number of claims in the 
state and N is a standard based on actuarial judgment. Our view was that 
most states would have enough data to fit loss distributions for Medical Only, 
but that no state would have enough claims to fit a Fatal loss distribution 
and only the largest states would have enough PT claims. We thought it 
reasonable that three quarters of the states would have enough Medical Only 
claims, half of them would have enough TT claims and about a quarter of 
them would have enough PP claims. With this in mind, we chose N, the 
standard for full pooling weight, to be 2,000 for Fatal claims, 1,500 for PT 
claims, 7,000 for PP claims, 8,500 for TT claims and 20,000 for Medical Only 
claims. It is intuitively sensible that the standard for Medical Only should 
be higher than for PT because excess ratios are driven by large claims and 
most PT claims are large whereas most Medical Only claims are typically 
small. 

4 Fitting 

Traditionally a parametric loss distribution would be fit to the entire data 
set by maximum likelihood. The first problem with this approach is that 
distributions which fit the tail well may not fit the small claims so well and 
thus there is a trade-off between fitting the tail well and fitting the small 
claims well. The need for a fitted loss distribution is really only in the tail as 
the number of small claims is quite large. Mahler [10] has recently used the 
empirical distribution for small claims and spliced a fitted loss distribution 
onto the tail. This is the approach we follow as well and we describe it in 
detail in Appendix E. Fitting the tail alone is of course much easier and the 
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fits are much better than they have been in the past. The second problem 
with the traditional approach is that maximizing the likelihood function is 
somewhat indirect. While maximum likelihood fits typically result in loss 
distributions with excess ratio functions that do fit the data well, there is no 
intrinsic interest in the likelihood function itself. The primary objective is a 
loss distribution whose excess ratio function fits the data well and so instead 
of maximum likelihood we use least squares to fit the excess ratio function 
directly. Appendix D gives some general facts about excess ratio functions. 
In particular, Proposition 12 shows that a distribution is determined by its 
excess ratio function and so there is no loss of information in working with 
excess ratio functions rather than densities or distribution functions. 

Mahler [10] uses a Pareto-exponential mixture to fit the tail. We use two 
to four term mixed exponentials. The mixed exponential distribution is de- 
scribed by Keatinge [8]. All things being equal, the mixed exponential is a 
thinner tailed distribution than has been used in the past. It has moments of 
all orders, whereas some loss distributions in use do not even have finite vari- 
ances. However, the loss data used to fit the mixed exponential is driven by 
the inverse transformed gamma distribution of LDFs, as described in section 
2, and the inverse transformed gamma is not a thin tailed distribution. This 
prevents the tail of the fitted loss distribution from being too thin. The mixed 
exponential also has an increasing mean residual life, and this is quite typi- 
cal of Workers Compensation claim data. Fat tailed distributions may make 
sense in the presence of catastrophic loss potential, but recently NCCI has 
made a separate CAT filing so the new ELFs are for the first time explicitly 
non-CAT. From a geometrical perspective, the density function over the tail 
region should be decreasing and have no inflection points, as occurs where the 
first derivative of the density function is negative and its second derivative 
is positive. The mixed exponential class of distributions has alternating sign 
derivatives of all orders. And conversely any distribution with alternating 
sign derivatives of all orders can be approximated by a mixed exponential to 
within any desired degree of accuracy. Functions with this alternating deriv- 
ative property are called completely monotone and this characterization of 
them follows from a theorem by Bernstein. (See Feller [3].) We initially 
considered using other distributions besides the mixed exponential, but the 
mixed exponential fits were so good that it was not necessary to consider 
other distributions further. 

Mahler [10] noted that the excess ratios are not very sensitive to the splice 
point, i.e. the point where the empirical data ends and the tail fit begins. We 
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found that  to be the case as well. We were concerned with large losses being 
under represented in the data. Thus we preferred to not a t tach too far out 
into the tail so that  we could have some confidence in the tail probability, 
i.e. the probability of a claim being greater than the splice point. So we gen- 
erally chose splice points that  resulted in a tail probability between 5% and 
15%. While this gave us some confidence in the tail probability, we were still 
concerned about  claims in the $10 million to $50 million range being under 
represented in the data. (Claims larger than $50 million would be accounted 
for in the separate CAT filing.) The new excess ratios are based on one to 
three years of data, depending on the injury type, but  the largest WC claims 
and events occur with return periods exceeding three years. WC catastro- 
phe modeling indicates that  claims and occurrences in the $10 million to $50 
million range are underrepresented in the data  used to fit the new curves. 
Because of this, we included an additional provision for individual claims 
and occurrences between $10 million and $50 million. This new provision 
is broadly grounded in the results of several WC catastrophe models, and 
known large WC occurrences. Previous excess ratio curves included a provi- 
sion for anti-selection of 0.005, which has been eliminated in the new curves. 
The new provision, per-claim or per-occurrence, is .003 up to $10 million, 0 
for $50 million or greater, and declines linearly from .003 to 0 between $10 
million and $50 million. Thus the final adjusted excess ratio is 0.997 times 
the excess ratio before this adjustment,  plus this adjustment. Tha t  is, if L is 
the loss limit and R(L) is the unadjusted per claim or per occurrence excess 
ratio, then the adjusted excess ratio is given by 

.997R(L) + .003  if L _< $10M 
R'(L) = . 9 9 7 R ( L ) -  .00a r~ $40M-- + .00375 if $10M < L < $50M 

.997R(L) if L > $50M 

5 Model l ing  Occurrences 

Data  is typically collected on a per claim basis. This makes it a challenge 
to produce per occurrence excess ratios. The first a t tempt  to address this 
was to merely increase the per claim excess ratios by 10% to account for oc- 
currences. For low at tachment  points this could lead to excess ratios greater 
than 1. Cillam [4] improved this approach by assuming only that  the aver- 
age occurrence cost 10% more than the average claim. This affects the entry 
ratio used to compute the excess ratio. Gillam and Couret [5] then refined 
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this approach still further by breaking down the 10% by injury type: 3.9% 
for fatal injuries, 6.6% for permanent  total  and major permanent  injuries, 
and 0% for minor permanent  partial and temporary  total  injuries. These 
approaches, while reasonable, rely heavily on actuarial judgment.  

The first a t tempt  to base per occurrence excess ratios more solidly on 
per occurrence da ta  was by Mahler [10], who a t tempted  to group claims 
into occurrences based on hazard group, accident date, and policy number. 
NCCI has a CAT 1 code which identifies claims in multiple claim occurrences. 
Singleton claims (occurrences with only one claim) have a CAT code of 00, 
all claims in the first multi-claim occurrence would have a CAT code of 01, 
claims in the second multi-claim occurrence would have a CAT code of 02, 
etc. Unfortunately there were several problems with the CAT code: 

. missing CAT codes 
For singleton claims it is permissible to report  a blank field for the CAT 
code. This would then be converted to a 00. However there was no 
way of knowing whether a blank field was deliberately reported as a 
blank or inadvertently omitted. 

. orphans 
There were claims observed with nonzero CAT codes, but  with no other 
claims with the same CAT code. One carrier, for example, appeared to 
have numbered the claims in a multiple claim occurrence sequentially. 

. 

. 

variance in injury dates 
Claims were observed with the same CAT code, but  with different 
injury dates. In one case the injury dates were 14 months apart.  

grouping of CAT claims 
It is permissible to group small med only claims in reporting. This is 
not permissible however in the case of CAT claims. Nevertheless there 
was some evidence of grouped reporting for CAT claims. 

Further complicating things was the fact tha t  even with optimal report- 
ing, multiple claim occurrences appear  to be extremely rare. Based on an 
examination of data  from carriers known to report  their da ta  well, it would 
appear  tha t  .2% is a reasonable estimate of the portion of all claims that  

1Here a catastrophe is merely an occurrence with more than one claim. The term 
'catastrophe' in this context has no implications as to the size of the occurrence. 
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occur as part  of multi-claim occurrences. Based on the above problems, we 
decided not to t ry  and build a per occurrence data  base, but  rather  to use a 
collective risk model. From the per claim loss distributions we could easily 
get an overall per claim severity distribution. We estimated the frequency 
distribution for multiple claim occurrences from carriers thought to have 
recorded the CAT code correctly. The mean number of claims in a multiple 
claim occurrence is about 3, but most multiple claim occurrences consist of 
two claims. 

Unfortunately the severity distribution of claims in multiple claim oc- 
currences seemed to be different from the severity distribution of singleton 
claims. First, the mix of injury types in multiple claim occurrences was more 
severe than in singleton claims. Second, even when fixing an injury type, 
claims occurring as part  of a multiple claim occurrence were more severe. 
We chose to address this issue by assuming that  the severity distribution of 
claims in multiple claim occurrences differed from the distribution of single- 
tons only by a scale transformation. This assumption goes at least as far 
back as Venter [12]. 

More formally, let Xi be the random variable giving the cost of a singleton 
claim of in jury  type i and let Fx~ be the distribution function of Xi.  If S 
is the random variable giving the overall cost of a singleton occurrence then 
Fs = ~ wiFx~, where wi is the probability that  a singleton claim is of injury 
type i. Tha t  is, the per claim severity distribution is a mixture of the injury 
type distributions. If Y~ is the random variable giving the cost of a claim of 
injury type i in a multiple claim occurrence then we assume that  Y~ differs 
from Xi by a scale transform, i.e. Yi = aiXi for some constant ai. If Z is 
the random variable giving the overall cost of a claim in a multiple claim 
occurrence then Fz  = ~ w~Fv~, where w~ is the probability that  a claim in a 
multiple claim occurrence is of injury type i. Then M = Z1 + .  • • + ZN is the 
cost of a multiple claim occurrence, where N is the random variable giving 
the number of claims in a multiple claim occurrence and the Zi are iid random 
variables with the same distribution as Z. Finally, the per occurrence severity 
distribution is given by F = rFs  + (1 - r)FM, where r is the probability that  
an occurrence consists of a single claim. 

Because r is so close to 1 there is very little difference between per claim 
and per Occurrence loss distributions. Per occurrence excess ratios are no 
more than .2% more than per claim excess ratios. This is a sharp contrast 
with the prior approaches. 
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6 Updating 

Overall excess ratios are computed as a weighted average of the injury type 
excess ratios. Let R(L) be the overall excess ratio at a loss limit of L, and 
let R/(r) be the excess ratio for injury type i at an entry ratio of r, then 

R(L) = Z w~P~(L/~), 
i 

where wi is the percentage of losses of type i and Pi is the mean loss of type 
i. The injury type weights, wi, and average costs per case, #i, are updated 
annually, but the injury type excess ratio functions, R/, are updated only 
infrequently. The idea is that the shape of the loss distributions changes 
much more slowly than the scale. The annual update thus involves adjusting 
the mix of injury types and adjusting the loss distributions by a scale trans- 
formation. Updating via a scale transformation is extremely convenient and 
is discussed by Venter [12]. 

The key question is how to determine when a simple scale transformation 
update is adequate and when the loss distributions need to be refit. If X 
is the random variable corresponding to last year's loss distribution and Y 
is the random variable corresponding to this year's loss distribution, then 
the scale transformation updating assumption is that there is some constant, 
c, such that Y and cX have the same distribution. Then the normalized 
distribution, Y/#y  has the same distribution as cX/c#x = X /#  x and thus 
Va (Y/uy) = v a r ( x / u . )  = a x / # x  = CV~. So if successive year's loss 
distributions really did differ only by a scale transform then the CV would 
remain constant over time. Thus monitoring the CV over time might give a 
criterion for when it is necessary to update the underlying loss distributions 
and not just the injury type weights and average costs per case. 

Since the injury type loss distributions are normalized to have mean 1, 
applying a uniform trend factor would have no impact. Thus the losses used 
for fitting are typically not trended to a future effective date. This is ex- 
tremely eonvenient in that it does not require us to decide in advance when 
the loss distributions need to be updated. However, if the trend is not uni- 
form, then it could result in a change in the shape of the loss distributions. 
This could for instance happen if there was a persistent difference in medical 
and indemnity trends and the percentage of loss due to medical costs varied 
by claim size, as it typically does, even after controlling for injury type. How 
significant this phenomenon is remains an open question. It is in some sense 

530 Casualty Actuarial Society Forum, Fall 2006 



The 2004 NCCI Excess Loss Factors 

limited as medical trends cannot exceed inflation forever without the med- 
ical sector consuming an unacceptably large fraction of GDP. Nevertheless, 
this does suggest that monitoring the difference in cumulative medical and 
indemnity trends might provide a guide as to when the shape of the loss 
distributions needs to be updated. 

7 Conc lus ion  

With the present revision we have implemented several changes to the method- 
ology as summarized in the table below. We retained the general approach 
to dispersion of individual claim development due to Gillam and Couret [5], 
using an inverse transformed gamma for the distribution of LDFs, but low- 
ering the CV from .9 to .5. Instead of fitting a loss distribution to all of 
the claims, we followed Mahler [10] and fit only the tail, using the empirical 
distribution for the small claims. For the tail we used a mixed exponential 
as compared to the prior transformed betas fit to the entire distribution. 
Instead of combining PT with Major PP claims, we fit PT and PP claims 
separately, using data at 3 rd, 4 eh, and 5 th report for Fatal and PT claims. 
The prior approach used only data at 5 th report. To adjust the data from 
one state to be comparable with another state we used logarithimic stan- 
dardization for Fatal and PT claims and power transforms for PP, TT, and 
Med Only. The prior approach was to use mean normalization for all injury 
types. We then fit state specific loss distributions rather than the countywide 
ones used before. Finally, to go from per claim data to per occurrence ELFs 
we used a collective risk model of occurrences. This contrasts sharply with 
prior approaches based on estimates of how much the mean occurrence cost 
exceeded the mean claim cost. The prior approach implicitly assumed a 3.9% 
load for Fatal claims, a 6.6% load for PT/Major PP claims, and a 0% load 
for TT and Med Only claims. 
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new approach prior approach 
dispersion CV = .5 CV = .9 
fitting fit tail only fit whole distribution 
form of distribution empirical/mixed expo- transformed beta 

nential 
injury types PT, PP separate com- 

data 3 ra, 4 *h, 5 *h report for F, 
PT 

PT, Major PP 
bined 
5 th report 

data adjustment logarithmic mean normalization 
standardization, power 
transform 

applicability of dis- state specific countrywide 
tributions 
per occurrence collective risk 3.9% F, 6.6% PT/Maj 

PP 

While the changes made to the ELF methodology were significant, they 
were more evolutionary than revolutionary. Nevertheless, the new ELFs are 
quite a bit lower than the old ones at the larger limits in many states. We 
examined carefully the impact of the change in the dispersion CV and the 
use of mixed exponential rather than transformed beta distributions. Had we 
used a dispersion CV of 0.9 rather than 0.5, the ELFs would have been higher 
than the new ones. But at the higher limits, where the decrease was most 
pronounced, ELFs based on a CV of 0.9 would still be much closer to the new 
ELFs than the old. We also refit the old transformed beta distributions to 
the new data and found that even with the old distributional forms, fit to the 
entire distribution, the result is a much thinner tail than in the distributions 
underlying the old ELFs. We thus concluded that changes in the empirical 
loss distributions underlying the prior and the revised ELFs are what drive 
the reduction in ELFs. The prior review of ELFs relied on data that preceded 
the decline of WC claim frequency that so dominated WC experience in the 
1990s, and beyond. There are solid theoretical reasons to suggest that this 
is just the sort of dynamic that can significantly change the shape of the loss 
distributions in a fashion that may not be captured by scale adjustments and 
as such require the development of new ELFs. 
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A P P E N D I X  

A Adjusting for Reopened Claims 

This appendix details some calculations referenced in section 2 on devel- 
oping individual claims, in particular on the t reatment  of reopened claims. 
We consider a set of observed individual claims grouped by their open/closed 
claim status and determine how the first two moments of the open and closed 
subsets change when some claims are 'reopened,'  i.e. when some claims are 
reclassified from the closed to the open subset. The discussion applies quite 
generally to show how the first two moments are impacted by a change in 
a characteristic, like claim status, to a selected subset of observations. The 
mean and variance of a finite set of observed values have natural  generaliza- 
tions to vector valued observations. It is convenient to express the findings 
as they apply in a multi-dimensional context, even though the specific appli- 
cation in this paper requires only the one-dimensional case. 

Suppose we have a finite set of claims C and that  a vector xc E ~n is 
associated with each c E C. Suppose each c E C is also assigned a probability 
of occurrence wc > 0 For any nonempty subset A C C, we make the following 
definitions 

Probabil i ty of the set A = IAI~ = ~ w a  
aEA 

Mean of A = ~A - -  v-iIzllw WaXa E 
aEA 

1 
Variance of A = a~ = ]AI----- ~ ~ w~ Ilxa - / / , A l l  2 ~_~ 0 

aEA 

and we make the usual convention that  for the empty set I¢1~ = a~ = 0 and 

#¢ = 0 is the 0-vector. 
Observe that  the mean is a vector and the variance a scalar and that  

for n = 1 this defines the mean and variance associated with the probability 
density function f (a)  = ~ on A when we view the subset A as a probability IAI~ 
space in its own right. A natural  WC application of multi-dimensionality is 
the case n = 2 in which the first coordinate measures the indemnity loss 
amount  and the second component the medical loss of a claim c E C. Note 

Casualty Actuarial  Society Forum, Fall 2006 533 



The 2004 NCCI Excess Loss Factors 

_ 1 

IAI,,, 

_ 1 

IAL 
_ 1 

IAL 
_ 1 

IAL, 

And thus 

that we have the usual relationship between the mean, the variance and the 
second moment: 

1 1 
0-~ - IA  L ~ ovo IIx~ - ~AII ~ = ~ ~ ovo (xo - ~A)" (~o - . n )  

aEA aEA 

- -  ~ E OVa (Xa " Xa - -  21-t A " Xa "4- # A  " ~ A )  

aEA 

( i ~ovozo + ~ I1.,,112 - ~ o~a~ ovo Ilxoll 2 - 2 #A " [ - - ~  ~ A  / 

- - - ~ - ' ~ '  ov,, Ilzoll ~' - 2 (#A"  #A)  + IlaAIl" 
aEA 

1 ~ovo i1~oll ~_ II.AII 2 - - -  o~a ~--} ov° IIz°l12 - 2 I1~,,11 ~ + II~AII 2 - IAI,,, o~,,, 

1 
II~'dl~ + 0-~ = IAI--~ ~ ov° IIx~l12 

aEA 

There axe the evident relationships with the union and intersection of 
subsets A, B C_ C; for the mean we have: 

[~AUB 
1 l ( z  ) 

- IA U BI,., ~ ovcz~ - IA U BI,,, ov,:,.xa + ~ ovbxb -- ~ OV~x~ 
cEAuB \ a E A  bEB cEANB 

1 
- IA u BI---I-: (IAI,., P'A + IBI,., #B -- IA n BI,., ~anB) 

And thus 

[AMBI~ [A[~ 
~AuB + I-X.O~T-~AnB = IA u BL /~A + i 

and similarly for the variance: 

IBI~ 
IA u BI., ~B" 

iA U BI., (ll~Ausll ~ + 0-~u~) = Y~ ovc llzoll 2 
cEAuB 

aEA bEB cEARB 

[A L (H#A[[ 2 -'[- 0 "2) "~-[B]~ ([[#Bll 2 + a~) 

- Id n Bl~ (lI,A~Bll 2 + 0 - ~ )  
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And thus 
[ANB],~ 2 

O'2uB + -------~w U 
_ [A[,,, o .~+  [ B l ~ o .  ~ 

]A t..j B],~ ]A U BI,~ 

1 
-I [A U B[----~ ([AL' Iluall~ + [g[,,, II~BII ~ - [A A B[,,, IIUA~Bll ~) 

-I lUAu, H 2 

We are especially interested in the case when C is a disjoint union, so we 
make the assumption: 

C = A U B  A N B = ¢  A # ¢  

Think of the decomposition as reflecting a two-valued claim status, like open 
and closed. The goal is to determine how the mean and variance change 
after "moving" a subset D from A to B. The example of this paper is when 
the claim decomposition reflects claim closure status as of a 5 th report,  (A = 
closed and B=open)  and D is a set of closed claims that  reopen after a 5 th 
report.  

In this case of a disjoint union, it is especially easy to express # c  and a~  
in terms of the corresponding statistics for A and B. From the above formula 
for the mean of a union: 

uc  = UA~B + o = #AuB + ~ - - ~ L U a ~ B  

_ IAL IBL 
[A U Blw #A -5 [A U B]'--"~ #s" 

[AL 
= W#A+(1- -W)  UB w h e r e w = ~ • ( 0 , 1 ] .  

The second moments are similarly weighted averages, with the same sub- 
set weights w and 1 - w. From what we just  saw for the mean of a disjoint 
union combined with the above formula for the variance of a union: 

IANB[,~ 2 
= 4 ° , ,  + o = +  -ygl o 

= w o ~ ,  + (1 - ~ )  , , ~  + w IlUAII ~ + (1 --  ~ ) I l u ~ t l  ~ -- IlwuA + (1 - w)  #s [ [  2 

= w , , ~  + (1 - w ) 4  + w  II~all ~ + (1 - w) I I~BII  ~ 

- w  2 II~AII = - Zw (1 - w )  # A "  UB --  (1 --  ~ ) ~  IluBII ~ 

= Wa2A + (1 -- w ) a  2 + w (1 -- w) (II~All = - 2#a " # s  + IluBII =) 
= Wa2A + (1 - w) a 2 + w (1 - w)II~A - l ' . l l  = 
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This expresses the variance of a disjoint union in terms of the means and 
variances of the subsets. 

Notice tha t  these formulas for lAG and cr~ show how the mean and variance 
of the subset A are constrained by those of the superset  C. For the remainder 
of this appendix we assume ac  > 0 and so we have: 

gr A 
a=c = wa=a + ( 1 -  + w ( 1 -  w) lllAa - lAall= > wa=a w - -  <_1 

\ c r c /  

Observe tha t  assigning the difference vector 5 and scalar ratio r as: 

then we also have: 

lAC = 

But then: 

aS  = 

(7 A 
5 = #A -- lAC r = - -  

f f C  

w5 
W ( # c + a ) + ( 1 - w ) p s  ~ lAB = # c -  l~- w 

( % )  # A -- # S = lAC + 5 -- lAC 1 -- T-----W- -- 1 - w  

5 I 11511 Wa2A + (1--W) a~ + W(1--W) ~--W >-- Wa2A + W l T w  
I 

==> ( 1 - w r 2 )  c r ~ -  1 - w  > w115112---- =>r_< ~ and HSIl_<crc< (1-w)(1-wr2)w 

and we see how, for any nonempty  subset A, the mean difference vector 5 is 
constrained by the probabil i ty allocation together  with the deviation rat io r 
and the s tandard  deviation of C. 

Now suppose we have "local information" on how the proper subset D C 
A fits within A, captured in the two numbers  p, r and the difference vector 
5: 

IDC p - 
IAL 

TO'A ~-  ~ D  

(5 = lAD - -  lA m 

w 115115 
1 - w  
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in which we specify that  r = 1 should a A  : 0. From what we've just seen, 
applying the above to any nonempty subset D C A, the following two in- 
equalities must hold: 

CA, /(1 -- p) (1 -- pr 2) 
II~ll _< 

V P 

Define the sets: 

=~ 

A \ D  = {a e Ala ~ D} 

B U D  

c=.~u~ ~n~=¢ .~#¢#.~ 
In terms of the above open/closed claim example, this second decomposition 
represents the "truly closed" verses the "truly open" claims, as of a 5 ~h report. 

With  transparent notation, we seek to determine the subset probability 
and the moments ~,  #~, #~, a~, aS in terms of the original subset probability 
and moments w, #A, #B, aA, aB together with the local information p, r and 
5. The calculations only require some persistence: 

I D l ~  =~ [DI,  ~ = p [A[,~ ~ .4 ,~ = [ A [ ~  - tD] , .  = IA[,~ - p IAJ,~ = (1  - p ) 1 . 4  
' = rAI---:- 

=> ~ = - - - - - - ~ =  ~ = ( 1 - p )  w 
JcL 4AL JcL 

Continuing in turn, we have: 

I ' tA : RPD + (1 -- p) #a  = p (#A + 5) + (1 -- p) #a  

(1 -- p) #~ = #A -- P#A -- p5 = (1 -- p) #A -- p5 

And since we now know ~ and #a, we determine #~ from: 

And we get a~ from: 

2 (1 - p)I1#.  # 11 o-~. = v 4  + (1 - p) ~ + p 
2 2 

2 a A  - -  P a D  

= i - 7  , 
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And finally, we can obtain aB from: 

cr~ = ~a} + (1 - ~ ) a }  + ~ (1  - ~ ) I I # , ~ -  #roll = 

~ - -  k = ~  ~ l l ~ a - ~ m l l  = 

The requisite formulas for the adjusted moments and subset probabilities 
are summarized in the following proposition: 

P ropos i t i on  1 Let C = A tO B be a decomposition of C into mutually ez- 
elusive subsets, as above, and suppose D is a proper subset of A and set 

IAto, 
W 

ICl~ 
p = _IDL 

IAI~ 
5 = # o - - # a .  

A A 

Then for the alternative decomposition C = A tO B where 

.4 = A \ D =  {a ~ Ala ~ D} 

= B t O D  

~ = 
I c L  

we have: 
A A 

¢ = A N B  

= (1 - p ) w  

#B = 
1 - z ~  

~ - po~, 2 
c r ~  = 

1 - p  

2 __ 
a B 1 - ~  

pl l~-~ol l  = 

~11~-~11 ~ 
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Proof .  Clear from the above. • 
It is straightforward to generalize the formulas that express the mean and 

variance of a disjoint union of two sets to apply to partitions of more than 
two sets. The formula for the mean is immediate: 

r~ IAiL 
C = O A i  A i N A j = ¢ f o r i ¢ j  Wi-- 

d=l ICL 
1 1 ~ 1 ~e-~ [Ail., 

1 ~--~]Ai]oa#Ai=~-~WilZAi 
]dL'° i=1 i=1 

_ m > O  

and for the variance we first consider the expression for the second moment: 

II**cII ~ + ~ - IcL X~-oli*~, ~ -  ici~ ~ "° >°tl, 
cEC i=1 aCAi 

1 OI ) 
- I C [ . } - ~ I A ~ I ~  , ~,11 ~+~ Ai 

i=1 
r~ ~ 

i=1 i=1 i=1 
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and we find that: 

i=1 

m 

i=1 

m 

,=1 

frL 

i=1 

m 

i=1 

i=1 

m 

i=1 

m 

i=1 

m 

i=1 

i=1 i=1 

= Wi ( # A , "  #Ai) "q- ~ Wiff2,- Wi#Ai " Wi"Ai 
i=1 

i = l  i=1 i<j j 

~ (Wi--W2) (/-ZAI "l~Ai) -- 2 ~ W i W j  (l.~Ai "I~A,) 
i=1 i<j 

m 

~ W i  (1-- Wi) (#Ai " I-~Ai) -- 2 ~-~WiWj (#ai " #a$) 
i=1 i<j 

~ W i  Wj (#A "#Ai) - - 2 ~ W i W j  (IZAI'.Aj) 
i=1 \ j~i 2' i<j 

Z W i W j  (#A, " #A, q- #aj " IZaj) -- 2 ~-~Wi213j (#a, " #aj) 
~<j i<j 

~ WiWj (l~ai " #ai "}- #aj " #aj -- 2#ai " lZaj) 
i<j 

~ W i W j  ("A, --#Aj) " (#A, --#Aj) 
i<j 

~ W i W j I # A , - - . A ,  2 
i<j 

and the generalization of the formula for the variance of a partition is: 

0 -2 = ~WiO'21"]'-~WiWj IZA,--#Aj 2. 
i=l i<j 

Consider the special case of the set of m mean vectors M = {#A, } expressed 
as a disjoint union of singleton subsets in which the vector/z& is assigned 
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the probability wi. Then the formula gives: 
m 

i=1  i<j 
m 2 

(0) Wi OF ~ WiWj #a,  -- ~aj  
i=l i<j 

2 
= ~ W i W j  #Ai - - # A j  

i<j 

But this is just the second term in the earlier expression for a~ and we find 
that 

m 

i=1  

which generalizes the usual decomposition of the variance into the sum of the 
within and the between variance. This has application to cluster analysis, 
where it affords a useful geometrical interpretation. In cluster analysis it 
is common to work with vectors so as to capture the influence of multiple 
data fields. So as above assume each claim c E C is assigned a vector of 
values that captures information about the claim that we seek to organize 
into a classification scheme. Viewing the m subsets Ai _C C as defining 
clusters of vectors, the set of m mean vectors M = {#A,} is the set of 
'centroids' of those clusters. The goal of cluster analysis is to separate the 
data into like clusters, but there is both a local and a global perspective to 
that classification problem: selecting like data in each cluster (minimize the 
within clusters variance) and separating the clusters (maximize the between 
clusters variance). The above shows that the two are one and the same when 
the Euclidean metric is used to measure the distance between observations. 
Indeed, decreasing the within clusters variance is the same as increasing the 
between centroids variance, as the two sum to the constant 0-~. 

B Discrete  Individual Claim Development  

We want to populate the tails of the LDF distribution so that the dispersion 
model contemplates a claim developing quite dramatically. Accordingly, we 
seek a finite set of probabilities 

0 < P l  <P2 < "'" < P n  < 1 
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that  cover (0, 1) with an emphasis on populating the right and left hand 
tails near 0 and 1. We are confronted with a practical working limit of no 
more than 200 points. We have also observed that  100 equally spaced points 
will result in the dispersion reflecting too confined a range, about 1/3 to 
3-fold for the full range of dispersion. To cover a wider range, we use 171 
non-uniform probabilities, and focus on the tails. Then treating the proba- 
bilities Pi as defining percentiles, we determine the corresponding percentile 
values ui from a gamma distribution. That  finite sequence {ui} of values 
is the starting point to capture a gamma density. But this representation 
is then refined, replacing the percentiles with the means over the 172 inter- 
vals [0, ul), [ul, u2 ) , . . . ,  [Ulro, ulrl) and [ulrl, oo). The new sequence of values, 
again denoted as {ui}, is an optimized discrete approximation to a gamma. 
It is "weighted" in the sense that  mean value u~ has associated with it the 
frequency weight vi, where .. 

vl = p1, v2 = P2 - P~, ..., v171 " ~ -  P171 -- P170, V172 = 1 - P~u. 

The interval widt h provides the weight assigned to the corresponding per- 
centile value and is selected to be at most ~ so that  the usual "percentiles" 
are "covered." By definition, inverting and transforming those observations 
produces a discrete approximation to values from an inverse transformed 
gamma distribution. These are the candidates for the set of loss develop- 
ment factors used for dispersion. Parameters were selected so as to achieve 
a target mean LDF as well as a target CV for the LDFs. In order to assure 
the correct mean, one more observation is added, forcing the weighted mean 
of the sequence {uill < i < 173} to be exactly the appropriate open claim 
only LDF. There is the concern that  if that  final observation is allotted too 
,little weight, it will have the  potential for becoming an outlier. So the added 
observation has weigh~,.~0 ,and4he other weights are adjusted by a factor of 
9_~9 making the,173 weights {vii1 < i < 173} again total  to 1. From this 
I00 
construction, it is expected that  the {uill < i < 173} will exhibit a slightly 
smaller variance than the theoretical inverse transformed gamma, and that  
is indeed observed to be t h e  case in the calculations. For example, when 
targeting a CV of 0.500, the model yielded a CV of 0.495. 

This discussion does not describe the (comparatively minor) adjustment 
for reopened claims. The reopened claim adjustment is achieved by first 
using the results of Appendix A to determine means and variances after 
reclassifying. SQme closed claims .as open, and then matching two moments 
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using the power transform as detailed in Appendix C.2. In this way, the 
"truly open" claims are dispersed. 

We now fill in the details of the algorithm used to build the dispersion 
model. The first step is to specify the a and r parameters,  by injury type 
and report,  for the inverse transformed gamma. The parameters were se- 
lected from an analysis of LDF distributions as presented in section 2. The 
parameterizatious follow that  of the Appendix of Klugman et al. [9]. 

Recall tha t  the a and r parameters determine the CV and once they are 
set, the ~ parameter  dictates the mean. 

The next step is to build a discrete approximation to a Gamma distrib- 
ution with parameters a and 8=1. This is captured in two finite sequences, 
u and v. The u sequence captures the values while the v sequence stores 
the corresponding probability of occurrence 'Weights." We identify the "per- 
centile" u-value of the distribution function associated with the following list 
of probabilities Pi, 1 < i < 171 : 

P0 = 0 

Pi = P i - I +  10-6 1 < i < 1 0  

pi = p ~ _ l + 1 0  -~ 1 1 < i < 1 9  

p~ = p~_l + 10 -4 20 < i < 28 

Pi = Pi-l + lO -a 2 9 < i < 3 7  

Pi = Pi-~ +10 -2 3 8 < i < 8 6  

Ps6+i = 1 -Ps6- i  1 < i < 85. 

These probabilities were selected to give greater granularity to the right 
and left tails. This corresponds to 171 finite intervals: [u0 = 0, Ul) , . .  •, [ui, ui+l) for 
0 < i < 170 and the right hand tail interval [uln, oo). We let F(a;  u) de- 
note the incomplete gamma function as fornially defined in the Appendix of 
Klugman et al. [9], where that  function is also noted to be the distribution 
function of a gamma distribution with parameters a and 8 = 1 (and for the 
transformed gamma with parameters a ,  ~ = 1, and r = 1). A binary search 
routine is used to associate the value u~ with the probability Pi, finding ui 
that  satisfies: 

IF(a; ui) - P i l  < 0.00000000001 1 < i < 171. 

The first difference of the p~ gives the frequency probability vi of an obser- 
vation falling within the interval [ui-1, ui)," i:e. between l~ercentile Pi-1 and 
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Pi. The mean value over each of the 172 intervals is readily determined from 
the observation that given f ( a ,  1; x) = x~e------k~ ~r(~), we get 

x'~+le -~  P(a+ 1) x'~+le -x  x ~ + l e - X  
xf(oe, 1;x) = xP(c~) - P(c~-----y- x r ( a  + 1) = a x P ( a  + 1) = a f ( a + l ,  1;x) 

and thus 

f xf(ee, 1; x)dx = f a f ( a  + 1, 1; x)dx = aF (a  + 1; z). 

0 0 

This lets us specify the sequence u of length 172 whose components are 
the mean value of the inverse transformed gamma over the 172 intervals. The 
sequence v, also of length 172, with components equaling the corresponding 
frequency provides a sequence of weights to apply to the corresponding LDF 
values captured in the sequence u. 

Denote the applicable development factor for open claims as ~. The next 
step in building the dispersion model is to specify a sequence A of length 173 
whose component values (properly weighted) are distributed as an inverse 
transformed gamma distribution of mean A (and CV determined from the 
corresponding a and r parameters). The formula for the expectation of an 
inverse transformed gamma random variable, X, allows us to calculate the 0 
parameter: 

E[x]-O'F(a-~)  ( P ( a )  "~ 
r(~) ~ ° =~ \ r ( g - ) ) /  

The dispersion model uses the inverse transformed gamma as the LDF dis- 
tribution. By definition, a distribution is inverse transformed gamma exactly 
if, when transformed and inverted, it conforms to a gamma distribution like 
that approximated by the sequences u and v of discrete values and weights, 
respectively. Following the parametrization of the Appendixof Klugman et 
al. [9], to make the finite sequence A contain values distributed as the inverse 
transform gamma, we just use the equivalence: 

1 
=ui ~"'-a-=ui~ =-'r ~=> A i : - T .  \ < /  U u( u( 

Since we are using a discrete approximation, and to assure we do get the 
correct expected developed loss, we augment the A sequence by an additional 
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value in order to force, the weighted mean to be ~. More precisely we set 
vlra = 1-56,1 rescale the other weights by setting vj = l~60vj for 1 _< j _< 172, 

( ~ vqr2 ) and set Alra = 100 - z.,j=l vjAj , which assures that: 

173 173 

j = l  j=l 

Having the A and v sequences in hand, completing the dispersion loss 
severity model is then very straightforward. Individual claim data  are cap- 
tured from WCSP data  into observations that  include state, injury type, 
claim status, a weight w, and a loss amount l, as described in section 2. 
Closed and open claims are separated into two subsets of observations, Lc 
and Lo respectively. Then for each open claim of weight w and undeveloped 
loss amount e_~uai to I in Lo, 173 "dispersed" observations are captured into 
the da ta  set Lo using the sequences A and v to assign the observations with 
weights equal to the product w x vi and d.d.eveloped loss amounts equal to 
the product Ai x l, 1 < i < 173. Losses in Lo are adjusted to be at least $1. 
Finally, forming the union Lc tJ Lo of two sets, each consisting of observa- 
tions of individual claim data  at closure, results in the dispersion model for 
ultimate claim severity. 

C Data Adjustment Techniques 
Let xil, x i2, . . . ,  xin~ be the incurred loss amounts on the claims (of a given 

± injury type) in state i and let #i = n~ }-]j xij be the sample mean. Under 
mean normalization we divide each claim amount by the state sample mean 
to get xij/#i. Pooling all the mean normalized claims for all states gives us a 
countrywide mean normalized database, {xij/#i}. This database has mean 
1 of course. If we fix a state k and multiply each mean normalized claim 
amount in the countrywide database by #k we get a database, {#kxij/#i}, 
that  has mean #k. This database augments the claims in state k with out of 
state claims that  have been adjusted to the state k level. We now generalize 
this simple idea to the case of standardization as well as the power transform. 
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C.1 Logarithmic Standardization 

A natural way to generalize mean normalization would be to standardize 
claims, i.e. to subtract the state sample mean from every claim and divide 
by the standard deviation, xi --+ ~ - ~ .  Pooling all of the standardized claims 
would result in a countrywide standardized database with mean 0 and stan- 
dard deviation 1. Then for a given state k, we might multiply each stan- 

dardized claim by crk and and add #k to get a database, t~ak~-t'~' + #k}, 

appropriate for state k. Unfortunately, this can result in negative claim 
amounts so we prefer to work with logged losses and standardize them by 
mapping logx~ ~ ~ where now #i, ai denote the sample mean and 
standard deviation of the logged losses. This results in a standardized data- 

base of logged losses, ~ ~ ~ To get a database appropriate for a given 
t ~i J" 

state k it is natural to multiply each standardized logged loss by ak, add #k, 

and then exponentiate to get a database, t ~f exp(ak. ~ + #k)}. The linear 

transformation, ~ --+ ak ~ +# , results in a database that matches 
~'i cr i k 

the mean and variance of the logged losses in state k, but upon exponenti- 

ation we lose this property. That is, the database, { p( 

may not have the same mean and variance as the claims in state k. How- 
ever, under reasonable conditions we can find #, a such that the database, 

{exp(a ~ #)~ will have the and variance in state k. We + mean pro- 

ceed now to establish this. We begin with a lemma. 

L e m m a  2 Let x l ,x~ , . . .  ,xn be a finite sequence of real numbers, not all 
equal, and let ~ : (0, oo) ---* ~ by 

txi 

~ ( t ) -  ,,~=1 / 7'1 ' 

n E t2x~ 
i=l 

then 

1. ~o(1)= 1 

2. ~o is strictly increasing on (0, 1) and strictly decreasing on (1, oo) 
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3. l imt_~  ~o(t) = k /n ,  where k is the number of i such that xi = max{xyll  _< 
j<n}.  

P r o o f .  We have ~o(1) - ~ - 1, thus proving item 1. 
To prove item 2, first note that 

- -  ~ E n  _ n 2 d~ (Enl ~2xl) (2 En, txi) (i=,xitXi-1) ( E i = l  ~xl) ( E n l 2 x i  ~2xi-1) 

dt 
(E - )= n t 2xi 

i=l 

n ( E :  t2~,) 2 [(E:I ( i=l xitxi-1) --(E~__ltXi) ( i=lXit2xi--1)] 

As the term 2 =1 t~' /n -1 t 2~' is positive, we note that, after rela- 

belling indices for convenience, ~ has the same sign as 

"y(t) = (Eni=l t2xl) (Ejn=lXjt  xi-`) - - (Ejn=l  txj) (Eni=lXi t2xi-l) 

= xjt x,t 
l <_i,j<_n l <_i,j<n 

E (Xj -- xi)t 2xi+*~-I 
l<_i,j<n 

E (xj -- xilt2xi+xJTi + 
l<i<j<n 

E (xj -- xi)tz't x'+xa-1 Jr 
l<_i<j<_n 

E ( x j -  xi)tx't xi+x'-I + 
l<_i<j<n 

E (Xj -- xi)txit xi+xj-I -- 
l<_i<j<n 

E (Xj -- xi)t 2*'+x~-I 
l<j<i<_n 

(x) - xi)t~'t ~+~'-1 
l<_j<i<_n 

E (xi -- xj)txJt xi+x'-I 
l<_i<j<_n 

= E (xj -- xiltX't x'+x~-I 
l<i<j<_n 

= E (xa - x i ) ( t  ~' - t~')t ~+~' - ' .  
l<_i<j<_n 

Observe that for t < 1, the differences xj - xi and t ~' - t xj, not all of which 
are O, have the same sign, which implies that 7(t) > O. Similarly, for t > 1, 
those differences have opposite signs, hence ")'(t) < O, thus proving item 2. 
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To prove i tem 3, we sort and relabel the xi as necessary so tha t  :x~ = 
. . . .  xk = max{x/} and xi < Xl for i > k. We then find tha t  

 o(t) = 
/ = 

i = k + l  / 

(i=~l tXi) 2 t2Xl (i=~l 1-~-i n=~k+l txl-xl) 

) n E  t2xi nt2Xl 1 + t 2(xi-~l) n k + t2(x~-~x) 
i=1 i = k + l  / i = k + l  

Since xi - xl < 0 for i > k it follows tha t  

lim qo(t) = lim = 
t---+O0 t---+O0 / n k +  t2(xi-~l) n k +  0 

i = k + l  ] i = k + l  

as claimed. This completes the proof of i tem 3 and the lemma. • 
Now interpreting Xl, x 2 , . . . ,  x~ to be the standardized logged losses this 

l emma allows us to prove the following proposit ion which shows tha t  stan- 
dardization of logged losses, followed by a linear t ransformat ion and re- 
exponentiat ion does what  we want under reasonable conditions. 

P r o p o s i t i o n  3 Let x l , x 2 , . . . , x ~  be a finite sequence of real numbers, not 
all equal, and let k be the number Of i such that xi = max{x j l l  < j < n}. 
Then for any pair of positive real numbers, #, a, such that #2/ (#2+a2)  > k /n ,  
there exists a unique pair of real numbers, m,  s, with s > 0 such that the finite 
sequence, e m+sxl , e m+sx2 , . . . ,  e mh-sxn , has mean p and standard deviation a. 

More precisely, if  Yi= e m+Sx', then 

. . . .  yi - tt)_ 2. n 
i=1 i=1 

P r o o f .  From the lemma, there exists a unique t > 1 with qo(t) = _._e.L_ #2+a2  • 
n Observe tha t  since ~ i=1  tx~ > 0 we can define 

(En. ) 
s = l n t > 0  and r e = I n  ~ . i=l txi 
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T h e n  se t t ing  yi = e m+sx* for 1 < i < n, we have  

( - Y ~ = n  (~J = n  t ~ ' =  n ~ -  = # "  n i=l i=l i=l E i = l  txi txl  i = 1  

We also have  

n #  2 

E L ,  y? 

n #  2 (n#)  2 

E~=~(e"t~') 2 ne"m E~LI t~' 
(~m ELIte') ~ ~ v ' ~  t~,~ ~ __ \ l - . ~ i = l  ! 

n 
?~e2m E i = l  t2xl 

#2 
~o(t) = #2 + 0-2 

which implies  I Y~i~l y/2 = #2 + 0-2 and  thus  

n 

i = 1  

n E'{=~ t 2~' 

n 

= - n y2 2#yi+#2) 
i----1 

= - y ' ~  
n y~ -- 2 #  Yi + #2 

i=l i=l 
= # 2 + a 2 _ 2 # # + # 2  

0 -2" 

To prove  uniqueness ,  let ~ ,  ~ be  ano the r  such pair ,  and  set  ~)i = e r~+ax~ for 
1 < i  < n. I t  follows t h a t  

#______~2 (1 n ^ = ~i----1Yi) ( e r h  L . ~ i = I k  ~ ' ~ n  (pa~xi~2] ) ( ~ i _ _ l ( e ~ ) X i ) 2  

= 1 n ^2 - -  2dz n ne E ,= i (~ )  =*, n P "  ~)=~, = ~(~)" #2 + 0-2 "~ Y~i=l  Yi z..~i=l~ 

Since a > 0 implies  e ~ > 1, it follows t h a t  e a = t = e* and  thus  a = s. 
Finally,  we have  

Yi ~--- erh+sxi = erh+sxl ~-- erh-m+m+sxl  = grh-mgm+sxi  = e t a - m y  i 

1 n e ~ - m  n 
for 1 < i < n, which implies # = ~ }--~-i=1 ~)i = " 7 -  Y~i=I Yi = e ~ - m # .  Since 
# ~ 0, it follows t h a t  ~ = m and  the  p roof  is complete .  • 

I t  is possible  to  general ize the  previous  resul t  f rom a finite sample ,  x l ,  x 2 , . . . ,  x,  
to  a d i s t r ibu t ion  wi th  finite suppor t .  T h e  a r g u m e n t  mi r rors  t h a t  for the  dis- 
cre te  case. As before,  we begin  wi th  a l emma.  
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L e m m a  4 Let f be a conti~zuous probability density on the finite interval, 
[a,b],and let ~o : (O, oo) ~ ~ by 

= b 

6 

then 

1. ~o(1) = 1 

2. ~o is strictly increasing on (0, 1) and strictly decreasing on (1, oo) 

3. limt-~oo ~o(t) = 0. 

12 P r o o f .  We have ~0(1) = T = 1, thus proving item 1. 
To prove item 2, first note that  

-- (~btxf(X)dX)2 (~b2xt2X-lf(x)dx)] / (~bt2xf(x)dx) 2 

--(~btxf(x,d~) (,~bxt2X-if(x)dx)] 

is positive, we note that  ~ has 

the same sign as 

~/(t) = ( ~ b t 2 ~ f ( x ) d x ) ( ~ a b x t ~ - l f ( x ) d x ) - - ( ~ a b t ~ ] ( x ) d x ) ( ~ b x t 2 ~ - l f ( x ) d x ) .  
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7(0 

Relabelling dummy variables for convenience, we get 

: (~abt2xf(x)dx)(~aabytY-lf(y)dy) - (~abtyf(y)dy)(ibxt2X-lf(x) dx) 

= y t 2 ~ + u - l f ( x ) f ( y ) d x d y  - x t 2 ~ + u - l f ( x ) f ( y ) d x d y  

= i b f a b ( y - - x ) t 2 x + Y - i f ( x ) f ( y ) d x d y  

= i 
= (y - z ) ( t~+~-~ _ t 2 y + ~ - i ) f ( z ) f ( y ) d z d y  

= (y - z ) ( t  x - t ~ ) t ~ + y - i I ( z ) I ( y ) d z a y .  

Observe that  for t < 1, the differences y - x and t ~ - t y have the same sign, 
which implies that  7(t) > 0. Similarly, for t > 1, those differences have 
opposite signs, hence 7(t) < 0, thus proving item 2. 

To prove item 3, first consider the case when f ( x )  > 0 for all x • [a, b]. 
Since f is continuous on [a, b], it is uniformly continuous on [a, b]. Thus, for 
any e > O, there is a partition 

such that  

n 
[a,b] = [..J[ai, bi] with a = al ,a i  < bi = ai+l,b,~ = b 

i=1  

Xl,X2 • [ai, bi] ~ I f ( x 1 ) -  f (x2)l ~ e. 

Let a : m i n ( f ( x ) l x  • [a,b]} > 0 and let ai  = m i n { f ( x ) l x  • [ai, bi]}, then 
{ f ( x ) l x  • [a~, bi]} C_ [~i, (~i + e]. We claim that  

fb, tX dx  fbj  tX dx  
lim J ~ i  J'~J = 0 .  

t--.oo f~  t2~dx 
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To see this assume tha t  bi <_ aj, then 

f:b: tXdx f:; t~dx t ~ b, t ~ b, 
ln t a i  1 " ~  a j  

f :  t2~dx ~ t  l~ 
2 ((tb'--t~")(tb'--t~'))  

= ln---t ( t-~ 7--'-~ ) 

2 ((tb'-b'--t~'-b')(1--t~'-b')) 
= ln--t (-t 2(-b- b,--~ -----t 2 (--~ -%-~ )-) " 

Thus  

lim 
t---+O0 

as claimed. 

f :  t2zdx 
= lira 2 " / ( 0 - 0 ) ( 1 - 0 ) ~  

From what  we've jus t  claimed, for every i and j ,  there  exists a ti,j such 
tha t  for all t > ti,j we have 

f :  t2~dx 
Then  for all t > ti,j we have 

f~t=.f(x)dx 
< 

OlC < 
- n~(~,  + ~)(~j + ~)" 

(. ,  + ,)(.~ + ,) f:: t~dx f:j t~dx 

a f :  t:~dx 

= - -  

a n2(ai + e)(aj + e) n 2" 
Thus  for t > max{t /d} , it follows tha t  

~(t )  

( f t x f ( x )dx )  ~i~=lftxf(x) dx 

b b 

f tzZf(x)dx f t2~f(z)dx 
Q a 

bl b j  

f t~f(x)dx f t~f(x)dx 

E E 
l<ij<n f t2xf(x)dx l<i,j<n 

a 
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Thus, limt__.co ~o(t) = 0 in the case when f(x) > 0 for all x E [a, b]. Finally, 

if we set g(x) /(~)+1 then g is a positive, continuous probability density = b - a + l  

function on [a, b] and we have 

b 2 

0 = ( b - a + l ) ~ i m  b 

f t2Xg(x)dx 
a 

= (b- ~ + i)~/m 

f t2x(/(~)+l~dx 
~. b - a +  l ,' 

a 

(! )" (! ! tx(f(x) + 1)dx t=f(z)dx + t=dx 
= lim = lim 

t--*oo b t-*co b b 

f t2~(f(x) + 1)dx f t2~f(x)dx + f t2~dx 
a a a 

= lim t~f(z)dx + \  ~nt ]] 
t -*co b 

I t2b- - t2a  ~ f t2xf(x)dz + \ lnt ) 
a 

: lim t~-bf(x)dz+\ lnt 7] 
t -*co b 

f t2(~-b)f(x)dx + [ 1-t 2(a-b) "~ 
a k ,nt ] 

= lim ( f tx-bf(x)dx)2=lim (ftZf(x)dx)2 
t -+co  b t - * c o  b 

f t2(x-b)f(x)dx f t2~f(x)dx 
a a 

= lim ~v(t). 
t--*co 

This completes the proof of the lemma. • 
Now interpreting f to be the density of the standardized logged losses the 

lemma allows us to prove the analog of Proposition 3 in the continuous case, 
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namely that  there is a linear transformation of the standardized logged losses 
such that  after re-exponentiation we get the desired mean and variance. 

P r o p o s i t i o n  5 Let f be a continuous probability density on the finite in- 
terval, [a, b]. Then for any pair of positive real numbers, #, a, there exists a 
unique pair of real numbers, m, s, with s > 0 such that 

g(y)=lf(lny-m)sy 

is a continuous probability density on [e re+a*, e ~+b*] with mean # and standard 
deviation a. 

2 
P r o o f .  From the lemma, there exists a unique t > 1 with ~(t) = ~ - - ~ .  

Observe that  qo(t) > 0 implies f : t ~ f ( x ) d x  > 0, thus we can define 

Let c = e r~+a~ and d = e m+b~. We also introduce the change of variable 
x = ~ ~. y = e m+Sx, hence ~ = ys, which implies dy = ysdx. Then 

s d x  

g(y)dy = ysdx = f (x )dx  = 1. 

Further,  we have 

d b 1 b 
f yg(y)dy = fa y ~ y f ( X ) y s d x = ~  y f (x)dx  

bem+S~f(x)d z e m (eS)~ f (x)dx  

/: )/: = e m tXf(x)dx = f : t~7(x)dx  t~f(x)dx = #. 

Since f is continuous, g is continuous as well and we have shown that  g is a 
continuous probability density function on [c, aq = [e m+~*, e m+b~] with mean 
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#. As in the discrete case, we note that  

#2 

fJ:g(y)~y 

d 2 

f~(em+'*)2f(x)dx fb(emt')2f(x)dx 
b 2 2 (em f: t'f(x)dx) ( f t t ' f ( x )dx )  

e2"~ f: t2:f(x) dx S~ t2"f(x) dx 
#2 

= ~o(t) - #2 + a2, 

which implies f :  y2g(y)dy = #2 + cr2. Thus 

(Z :+.-:(x)..)' 

Ld(y -- #)2 g(y)dy = Ldy2 g(y)dy -- 2# Ldyg(y)dy + # 2 Ldg(y)dy 

: .  p 2 q _ a s _ 2 p 2 + # 2  

0 -2" 

To prove uniqueness, let rh, a be another such pair, and let 

l f ( l n y z r h  ) foryE [e,d]=[e'~+~a,e'n+bq. 

From a similar change of variable as above, it follows that  

#2 \ J c  ] 

#= +a 2 f:y2[l(y)dy f:e2('~+'=)f(x)dx 

:: :.:(x>.x)' (:: (e). 
= = = ~ ( e b .  

e2 ~ fb e2a~f(x) dx .afb .e( q2.. f(x)dx 

Since ~ > O, it follows that  e a > 1, implying that  e ~ = t = e 8 and thus ~ = s. 
Finally, we have 

S; L : # = e'n+a:f(x)dx = e'~+8:f(x)dx = e ,~-m em+,:f(x)dx = e'~-mp. 
J a  

Since # > O, it follows that  r~ = m, and the proof is complete. • 

Casualty Actuarial Society Forum, Fall 2006 555 



The 2004 N C C I  Excess Loss Factors 

R e m a r k  6 What holds for the continuous case with infinite support is not 
x 

so straightforward. For example, letting f (x)  = ~ be the exponential 
density on [0, oc), the interested reader can readily verify that the condi- 

tion 0 < ~ < V~I + v ~  is both necessary and sufficient for the exis- 
tence of positive numbers m and s as in the proposition. More generally, 
if f (x)  is a probability density on [a, ~ )  with moment generating function 

O 0  

Mx(t)  = / et~f(x)dx and we are given a target mean it and standard de- 
(2 

viation a, then one suggestion is to first try to determine s by solving the 
following implicit equation for the target coej~cient of variation: 

~T 

# Mx(S) 

x /Mx  (2s) - Mx (s) 2 

and, if successful, determine m from: 

C.2 T h e  Power  Transform 

A more subtle way to transform claims is with a power transform, x ~ ax b. 
With a = 1 /#  and b = 1 we can see that  the power transform general- 
izes mean normalization. Wi th  logarithmic standardization we first log the 
data, then standardize, and then re~exponentiate: x --+ log x --+ ~ --+ 

e x p ( l ° - ~ - ) .  But e x p ( l ° - ~ )  = e-U/~x 1/~ and so the power transform gener- 
alizes logarithmic standardization as well. Thus the power transform could 
potentially outperform both  mean normalization and logarithmic standard- 
ization. In addition, with the power transform there is no need to log the 
losses and then re-exponentiate. The moments are matched in dollar space 
rather  than in log space. The idea is to choose a and b so that  the trans- 
formed losses from one state match the mean and variance of the losses from 
another  state. In this way we can use the out of state losses to build an 
expanded database for each state. We now prove, under reasonable condi- 
tions, tha t  it is possible to choose a and b in the power transform so that  the 
transformed losses from one state do indeed match the mean and variance of 
another  state. 
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Proposition 7.Let xl ,  x 2 , . . . ,  xn be a finite sequence of positive real num- 
bers, not all equal and and let k be the number of i such that xi = max{x j l l  _< 

j < n}.  Then given # > 0 and 7 E [0, V/~-~k), there exist unique constants 

a > 0 and b > 0 such that the database {ax b} has mean # and C V  7. 

P r o o f .  If  7 = 0 then we must  take b = 0 and a = #, and the result holds. 
So assume 7 > 0. Let a = 7# > 0 and set 

zi = lnx i  for l g j S n. 

Then  clearly k is the number  of i such tha t  zi = max{z j l l  _< j _< n}. We 
have: 

(0j#) 
(7 2 n 

¢~ ~--{< ~ - 1  

#2 + a2 n 
4:> - - < - -  

i, 2 k 
# 2 / ( p 2  jr. a2)  > k / n  

and so by Proposit ion 3 there is a unique pair of real numbers  m, s with 
s > 0 such tha t  the finite sequence, e m+s~, e m+sz2, . . . ,  e 'n+Sz", has mean # 
and s tandard  deviation a. Let t ing a = e m and b ---- 8 we have: 

e m+sz' = e m (eZ') * = e m (e'nX') * -- ax~ for 1 _< j _< n 

and the existence of the constants a and b is proved. Uniqueness of a = e m 
and b = s follows from the uniqueness of m and s, and the proof  is complete. 

D Excess  Rat io  Funct ions  

We collect here some facts about  excess rat io functions. We show how to 
recover the distribution function from the excess ratio function, give a char- 
acterization of excess ratio functions, and discuss the mixed exponential  case. 
We s tar t  with some basic definitions and results. 
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Definition 8 A random variable X is a loss variable if it is nonnegative 
valued, has finite nonzero mean, and has a density f that is continuous when 
restricted to [0, +oo). We denote by F the distribution function of X.  The 
survival function of X is S = 1 - F. The excess ratio function of X is given 

O O  ~ . 

by R(r) = f~ (x - r ) f ( x )dz /E[Z]  for r >_ O. We denote by F the functwn 

given by F(r)  = fo x f (x )dx /E[X] .  We use subscripts on F, F, S, and R 
when necessary to indicate dependence on X .  

The following proposition expresses the excess ratio function in terms of 
F and F. 

P r o p o s i t i o n  9 Let X be a loss variable with mean #, then 

r [1 - F ( r ) ]  R(r) = 1 - .  ~rj - -~ 

Proof .  From the definition of R(r) we have 

R(r) = _1 (x - r ) f ( x )dx  
# 

= 1 x f ( x ) d x -  r f ( x )dx  
tt 

1[ // ,1 = - . -  ~ f ( ~ ) d z - r S ( r  

= 1 - ! [ r x f ( x ) d x _  ~-S(r) 
#ao # 

1 F(r) - ~[i - F(r)]. 

It is well known (see, for example, Billingsley [1], page 282) that the mean 
of a nonnegative random variable, X, can be expressed in terms of its survival 
function as E[X] = f o  S(x)dx.  It is easy to see that a similar result also 
holds for excess ratio functions. 

P r o p o s i t i o n  10 Let X be a loss variable with survival function S and excess 
ratio function R, then 

R(r) = f ~  S(x)dx 
£ S(x)dx 
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Proof .  Let X have density f ,  then noting that S'(x) = - f ( x )  and using 
integration by parts, we have 

~ ¢¢ S(x)dx  ~r °° : xS(x)]~  + x f ( x ) d x  

F = - r S ( r )  + xf(x)ex  

/7 I = - r  f ( x ) d x  + x f ( x ) d x  

f ° ° ( x  - r ) f ( x )dx ,  
Jr 

where the second equality follows as xS(x)  = x f ~  f ( y )dy  ~ f ~  y f ( y )dy  --* 
0 as x --* cc since X has finite mean. Thus R(r) = f ~ ( x - r ) f ( x ) d x / E [ X ]  = 

£ s(x)dx. • 
Survival functions and excess ratio functions share several elementary 

properties given in the next proposition. 

Proposition 11 I f  g is a survival function of a loss variable or an excess 
ratio function then 

1. g(O) = 1 (and g(x) = 1 for x < 0 if g is a survival function) 

2. g is non increasing 

3. limx_~ g(x) = 0 

The following proposition shows how to recover the distribution function 
from the excess ratio function. Thus the excess ratio function characterizes 
a loss distribution and so there is no loss of information in considering excess 
ratio functions rather than densities or distribution functions. 

Proposition 12 Let X be a loss variable with survival function S, and excess 
ratio function R, then d R ( r )  = - S ( r ) / E [ X ] .  Further, i f  we set g(x) = 
S (x ) /E[X]  then n(r )  = f ~  g(x)dx. 
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Proof .  For the first assertion, we have 

F 1 d (x - r ) f ( x )dx  
R(r) - E ( X )  dr 

F F ] - E ( X )  -~r - - ~ r  r f ( x ) d x  . 

d o o  By the Fundamental Theorem of Calculus, we have ~ f~ x f ( x ) d x  = - r f ( r )  
and d J ~  f ( x )  = -- f (r) ,  thus 

1 - r f ( r )  ~- r f ( r )  - f ( x ) d x  - S ( r )  R(r) = E ( X )  -- -E(X)  

For the second assertion, by Proposition 10 we have 

F //7 F R(r) = S(z)~z S(x)dx = j. E - ~ x =  g(x)dx 

This proposition also shows that the excess ratio function of a loss vari- 
able X is also the survival function of another random variable with density 
S(x) /E[X] .  We next give characterizations of survival functions and excess 
ratio functions. 

P r o p o s i t i o n  13 Let g : [0, +oo) --+ ]R be differentiable with g' continuous, 
g(O) = 1, and limx-+o¢ g(x) = O, and let 

1 /f x < 0  
~(x)= g(x) // x > 0 '  

then ~ is the survival function of some nonnegative random variable X with 
density, f ,  that is continuous when restricted to [0, +oo) i f  and only if  g' <_ O. 

Proof .  Suppose ~ = Sx for some nonnegative random variable X with 
density, f, that is continuous when restricted to [0, +co). Then for x > 0 

o ~  

g(x) = "~(x) = Sx (x )  = / f ( y ) d y ,  

x 

and so by the Fundamental Theorem of Calculus g'(x) = - f ( x )  < O. 

560 Casualty Actuarial Society Forum, Fall 2006 



The 2004 N C C I  Excess Loss Factors 

Conversely, suppose g' _< 0 and define 

0 if x < O  
f ( x )  = - g ' ( x )  if x > O  

then f restricted to [0, +oo) is continuous and 

f 7 f ( x ) d x  = - g ' ( x ) d x  = - g ( x ) l  o = - lim g(x) + g(O) = - 0  + 1 = 1, 
X - ~  O0 

- - 0 0  0 

so f is a probability density function of some nonnegative random variable 
X. For x < 0 we have S x ( x )  = 1 = ~(x) and for x _> 0 

o o  o o  

Sx(X)  = f f ( y ) d y  = / - g ' ( y ) d y  = -g(y)l°~ = - y-~oolim g ( y ) + g ( x ) =  g ( x ) =  ~(x). 

Thus ~ = Sx .  • 

P r o p o s i t i o n  14 Let g : [0, +oo) --+ IR be twice differentiable with g" contin- 
uous, g(O) = 1, and lim~--.oo g(x) = O, then g is the excess ratio function of 
some loss variable if and only if g' <_ 0 and g" > O. 

P r o o f .  Suppose g = R x  for some loss variable X with density f ,  survival 
function S, and mean #. Then by Proposition 12, 

g' = - S / #  <_ 0 and g" = - S ' / #  = f l #  > O. 

Conversely, suppose g' _< 0 and g" > O. Since g" >_ 0 we know that  g' is 
non decreasing. So if g'(0) = 0 then g'(x) = 0 for all x as g' < 0. This would 
imply that  g is constant and so g(x) -- g(0) = 1 for all x, but  this contradicts 
our hypothesis tha t  l im~_~ g(x) = O. Thus we must have g'(0) < 0. Observe 
also that  

f0 f0 Ig'(x)l dx = - g ' (x)dx = - g ( x ) l  o = - 0  + g(O) = 1, 

and so lim~--.oo g'(x) = 0. If we let 

0 if x < 0  
f ( x ) =  1 _,,ix~ if x > 0  -g , -~y  ~ ) 
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then f >_ 0 and f is continuous when restricted to [0, +oc). Further 

f ( x ) d x  = 1 g,(X)[o = 1 limcg'(x)+ ~ = - 0 + 1  = 1. 

Thus f is a density function for some nonnegative random variable X. Since 
for t_> 0 

Sx(t) = f (x )dx  = 1 g (x)l, lira g'(x)q ~ g,(0) g'(0) 

it follows that 

/7 /7 E ( X )  = Sx( t )d t  = g'(t) dt = 1 g,(0) g(x)lo 

(g,__~) g(O) _ 0 _  1 1 
1 lirnoo g(x) g'(O) g'(O----) = -g'(O---)" 

Thus, 0 < E ( X )  = 1 -g,--~ < oc and so X is a loss variable. Finally, by 
Proposition 10 we have 

Rx( t )  = ft°° Sx (x )dx  
f o  Sx(x)dx 

ft °° g'(x)dx g(x)l~ ° o -  g(t) 
= £ g'(x)dx = ~ - ~ - - ~ ( ~  = g(t). 

We can now characterize excess ratio functions in terms of survival func- 
tions. 

Proposition 15 Excess ratio functions are exactly the restrictions to [0, +oo) 
of survival functions of nonnegative random variables with densities that when 
restricted to [0, +co) have nonpositive, continuous derivatives. 

Proof .  Let g = R x  be an excess ratio function of a loss variable X. Then 
by Proposition 14, g' < 0 and g" > 0. Proposition 13 then implies there is a 
nonnegative random variable Y such that 

1 if x < 0  
Sv(x)  = g(x) if x > _ 0 '  

and Y has a density function, f ,  that is continuous when restricted to 
[0,+oc). For x >_ 0 we have g(x) = J ~ f ( y ) d y  and so g'(x) = - f ( x ) ,  
which implies that f '  = - g "  < 0 and f '  is continuous as g" is continuous. 
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Conversely, let X be a nonnegative random variable with a density func- 
tion, f ,  that when restricted to [0, +oo) has a continuous derivative and 
f '  < 0. Let g : [0, +oo) --+ ]R by 

g(x) =/f(y)dy 
X 

Then g' = - f  < 0, which implies that g" = - f '  > 0. Then by Proposition 
14, g is the excess ratio function of some loss variable. • 

In the exponential case things are particularly simple as the next propo- 
sition shows. 

P r o p o s i t i o n  16 Let f ( x )  = l e-~/m be an exponential density, then R(x)  = 
S(x)  = e -~/m. That is, for an exponential distribution the excess ratio func- 
tion is the same as the survival function. 

Proof .  This follows directly from applying Definition 8 and using integration 
by parts. • 

For finite mixtures we have the following proposition. 

P r o p o s i t i o n  17 Let f l ,  f2 , . . . ,  fn be densities with corresponding excess ra- 
tio functions R1, R2, . . . ,  P~ and means #1, # > . . . , P n .  Then given weights 
wi • (0, 1) with ~ wi = 1, the mixed density f = Will  + w2f2 + ""  + wnfn 
has excess ratio function 

R = WlR1 + w2R2 A- .. .  q- wnRn, 

where wi = wi# i /#  and # is the mean of the mixed distribution. 

Proof .  From the definition of the excess ratio function, we have 

if] R(r) = -~ ( x - r ) f ( x ) d x  

=1S  
(X r) [Eni=lWifi(X)] dx 

[ ° ° ( x  - r ) f i (x )dx  = 

= E7=1 ( ~ ) l ~ ° ° ( x _ r ) f i ( x ) d x  
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C o r o l l a r y  18 I f  f ( x )  ='Y~~=I w c ~  e-~/'~' is a finite mixed exponential den- 
sity, then its excess ratio function is given by 

R(x) = E wimie-=/m' 
E wimi  

E S p l i c i n g  L o s s  D i s t r i b u t i o n s  

We start  with a loss variable, X (see Definition 8). The interpretation is tha t  
this represents the empirical losses. We then choose a point l > 0, such that  
P r ( X  > l) > 0 and P r (X  = l) = 0. The point l, is called the splice point 
because we want to rely on X for claims less than l, but  we want to splice on a 
distribution for claims larger than l. We let Y = X - l conditional on X > l. 
Tha t  is, we truncate and shift X.  More formally, if X : ~ ---* [0, +oc)  then let 
fl0 = {w • fl lX(w) > l} and define Y :  f~0 --~ [0, +c~) by Y(w)  = X ( w )  - l. 
The following proposition expresses the survival function, the density, and 
expected value of Y in terms of X.  

P r o p o s i t i o n  19 Let X be a loss variable and let l be the splice point as 
above, then 

1. Sy ( r  - l) = 1-Fx(~) for r > l, 1-Fx(l) 

2. f y  (r - l) = ~ for r > l, and 1-fx(O 

3. E[Y] = l_Fx( l  ) 

P r o o f .  To prove item 1 we note first tha t  P r (X  > l) = P r (X  > l), then for 
r > l we have 

S r ( r  - l) = P r ( Y > r - l ) = P r ( X - l > r - l l X > l )  

= P r (X  > r l X  > l) - S x ( r )  _ 1 - Fx ( r )  
- S x ( l )  1 - Fx(1)" 

For i tem 2 we note that  

F y ( r  - Z) = 1 - S y ( ~  - l )  = 1 
1 - Fx (r )  _ Fx(~)  - F x ( 0  
1 - Fx(Z) 1 - Fx(1) 

564 Casualty Actuarial  Society Forum, Fall 2006 



The 2004 N C C I  Excess Loss Factors 

Then 

f y ( r -  l) = ~r Fx(1) J 1 - Fx(l)" 

For item 3 we have, 

E[Y] ~0 °° = y fy (y )dy  

/7 = (r - l ) f r ( r  - 1)dr 

= (," - 0 ~ _ F x ( O ]  

E[X] f t ° ° ( r -  l ) :x (r )dr  
1 - Fx(O E[X] 
E[X]Rx(1) 
1 - Fx(1) ' 

completing the proof. • 
We want to fit an excess ratio function (see Definition 8), R0, from a mixed 
exponentiM distribution to Ry.  More precisely, we want to  re~lace the empir- 
ical loss variable, X, with a loss variable X such that if Y = X - l  conditional 
on )f  > l then 

1. f 2 ( x )  = f x ( x )  for x _< l 

2. R p = R o .  

We now derive the distribution function, the probabili~ density function, 
and the excess ratio function of the spliced distribution X. 

P r o p o s i t i o n  20 The distribution function of the spliced random variable .~ 
is given by 

F2(r  ) = { Fx(r)  i f  r < 1 
1 - [ 1 - F x ( 1 ) ] S p ( r - l )  i f  r > l " 

Proof .  For r < l, we have f 2 ( x )  = f x (x ) .  Thus 

/0 /0 Ffc(r ) = f 2 ( x ) d x  = f x ( x ) d x  = Fx(r) .  
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From this and Proposition 19, we see that  for r > l 

and therefore 

S ? ( r -  l )  - -  I- F 2 ( r  ) = 1 - F 2 ( r )  
1 - F 2 ( l  ) 1 - F x ( l )  

FR(x ) -= 1 - -  [1 - Fx(l)]S?(r - l). 

This allows us to determine the distribution function of )(  since we know the 
empirical distribution Fx and our assumption that  R~ = R0 determines the 
distribution of Y as well by Proposition 12. We have thus shown that  the 
following two conditions 

1. •(x)  = fx(x)  for x <_ l 

2. R v =  Ro, 

uniquely determine a random variable ){. What  we have not shown is that  
the above two conditions are consistent, i.e. that  there exists a random 
variable, )(,  that  satisfies them. We do this by working with the density of 
X and show that  ){ is a loss variable as well. 

Proposition 21 The density of X is given by 

fx(r)  if r<_l 
& ( r )  = [1 - F x ( l ) l & ( r  - l )  i l  r > l " 

and this defines a valid density function of a loss variable with mean given 
by 

E[X] = E[XlFx(l ) + Sx(l) (ELY] + l ) .  

P r o o f .  Item 1 of the definition of ){ ensures that  f2 (r) = fx  (r) for r < I. 
For r > l, we have from Proposition 20 that  F2(r) = 1 - [1 - Fx(1)]Sp(r - l) 
and thus 

f2(r) ---- [i - Fx(1)]fg(r - l). 
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It remains to show that  fR is a valid density function. To show this, we 
compute 

~o ~ • (r)dr = f x ( r )dr  + [1 - Fx(1)] & ( r  - l)dr 

7o Io = fx ( r )dr  + [1 - Fx(1)] f?(r)dr  

= Fx(l)  + [1 - Fx(l)] = 1. 

From f 2  we can compute the mean of )~. 

E[~] = = x f x ( x ) d x  + Sx(1) x f p ( x  - l)dx 

Io Io = x I ~ ( x ) &  + &(O (x + OI,~(x)& 

= ~ o ' X f x ( x ) d x + S x ( l ) ( ~ o ~ X f p ( x ) d x + l )  

= E[X]Fx(1) + Sx(1) (ELY] + l ) .  

This shows that  X is a loss variable because by assumption Y is. 
Now we turn to the excess ratio function of X.  

P r o p o s i t i o n  22 The excess ratio function of the spliced random variable 
is given by 

~ [1 - nx(~)l  ¢ r < 1 R2(r  ) =  1 -  , X 
R2(1)Rp(r  - l) i f  r > l 

P r o o f .  Using Definition 8 we first note that  for r _< 1 we have 

~R(r  ) x f R ( x ) d x / E [ 2  ] E[X] = = ~ x f x ( x ) d x / E [ X ]  -= (r). 
E[X] 
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Then using this relation and Propositions 9 and 20 we have for r < l 

RR(r) = 1 -  F~(r) r [ 1 -  F~(r)] 
E[2] 

r [1 - Fx(r)] 
= 1 & ( r )  E[2] 

E[X][E[:~] . . r  ] = 1 Fx(r)  + E---~(1 - Fx(r))  

= 1 - E!X![1 - Rx(r)]. 
WlXJ 

Now for r > l, using Propositions 19, 20, and 21 we get 

/ R2(r  ) = ~ 1  ( x -  r ) f2 (x )dx  
E[X] 

[// ] _ 1=__ (x - r)[1 - Fx(1)l f?(x  - l)dx 
E[X] 1[£o 

= ----= (x - (r - l ) )Sx ( l ) fg (x )dx  
E[X] , 

Sx(1)E[~'] "f~°~_z(x - (r - l) ) f f . (x)dx- 

E[X] E[17"] 

s~ (0 E[2] R~ (0 
= E[:~] 1 - F~(0 R~(r - l) 

= R 2 ( 1 ) R g ( r -  l). 

We would typically start with a distribution X that has mean 1 and so 
we would naturally normalize )( and work with ) ( /~  where ~ = E[X]. We 
use the following slightly more general proposition. 

P ropos i t ion  23 Let X be a random variable with density f x  and distribu- 
tion function Fx,  and let (~ > O, then 

i. fx/.(x) = .fx(~x) 

2. Fx/o(x) = Fx(~z) 
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Proof .  We note that 

Fx/~(x) = Pr (X/a  < x) = Pr(X < ax) = Fz(ax)  

f f(y)dy = c~f(ay)dy. 
- -OO - - ~  

Thus fx/~(x) = afx(aX) and Fx/,(x)  = Fx(ax).  
From this and Proposition 20 we get the following. 

P r o p o s i t i o n  24 The distribution function of the normalized spliced random 
variable X /~, where ~ = E[)C], is given by 

{ Fx (ar )  if  r <_ l la  
F2/T'(r) = 1 - [ 1  - Fx(1)]Sf.(~r - l) if  r > l l a  " 

We can similarly recast Proposition 22. 

P r o p o s i t i o n  25 Let E[X] = 1, then the excess ratio function of the nor- 
malized spliced random variable X /~,where ~ = E[)(], is given by 

1-1[1-Rx(~r)] if  r < _ l / ~  
R~/a ( r )  = R , (Z )np ( -p r  - l) if  r > Z/'¢ 

Proof .  By Proposition 23 and the change of variables y = fix, we have 

R2/~(r) 
f ~ ( x  - r)f2/a(x)dx f ~ ( p x  - pr)f2(fzx)dx 

E[2/~] E[f(]/~ 
1 f;O~(y _ _  f~r)ffc(y)dy 

= -~ = RR(pr) .  
E[2]I~ 

Then by application of Proposition 22 we have 

; 1--E-~Xl[1--Rx(f~r)] if r_<l / f i  
R2/a(r) = R2(f~r) = [ R2(l)Rp(f~r - l) if r > I/fz 

In our case we fit a mixed exponential to the tail of the empirical random 
variable X. More precisely, we assume that Y is a mixed exponential. That 

Casualty Actuarial Society Forum, Fall 2006 569 



The 2004 N C C I  Excess Loss Factors 

is, using the  paramete r iza t ion  in Klugman,  et.  al. [9] (see page 43 on mix tu re  
models  as well), we assume 

f ~ ( x )  = ~ w , - - e  " 
m i  i 

and thus  
Fp(x) = E w , ( 1  - e -~lm') = 1 - E wie-xlm'" 

i i 

T h e n  by Corol lary 18, 

Rv(r)  = ~ wimie-r/m' 
E w i m i  

We now s ta te  Proposi t ions  24 and 25 in the  mixed exponent ia l  case. 

P r o p o s i t i o n  26 I f  Y has a mixed exponential distribution as above then the 
distribution function of the normalized spliced random variable X /~  is given 
by 

{ Fx(~tr) if  r < l /~  

F£/~(r) = F£/a(l/Tt) + [1 - F2/a(I/~t)] [1 - ~ w,e-(~r-O/"q if  r > l/~t " 

P r o o f .  F rom Propos i t ion  24 for r > I/~t we get 

F2/a(r ) = 1 - [1 - Fx( l )]Sp(~zr-  l) 

= 1 - [1 - Fx(1)][1 - Fp(~tr - l)] 

= 1 - [1 - Fx(1) - Ff,('fir - l) + Fx(1)Fp(~tr - / ) ]  

= Ux(l) + Fp(~tr - l) - Fx(1)Fp(~r - l) 

= Fx(l)  + [1 - Fx(1)] Fp(~tr - l) 

= F£(1) + [1 - F£( / ) ]  Ff.(~tr - l) 

I f  Y has a mixed exponential distribution as above and Proposition 27 
E[X] = 1, then the excess ratio function of the normalized spliced random 
variable X /'~ is given by 

1 -  ~ [ 1 - R x ( ~ r ) ]  if r <_I/# 
R2/a(r)  

' i f  T > " 
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