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1 Background

Entry ratio tables are often a convenient mechanism for capturing informa-
tion that is subject only to scale transforms. For example, the National
Council on Compensation Insurance, Inc. (NCCI) stores excess loss factors
(ELFs) in entry ratio tables. To determine an ELF at an attachment point,
you simply divide the attachment point by the mean loss, and use that “entry
ratio” value to look up the ELF in the table. A key assumption is that the
underlying size of loss distribution changes only by a uniform scale transform
over time (or by a transform that is close enough to a scale transform; c.f.
Venter [3] for a discussion of scale adjustments and excess losses).

In fact, there can be forces at work that change the shape of size of loss
distributions in ways that are not captured by scale transforms. For example,
large claims might have greater trend factors than small claims (differential
severity trend). Also, the frequency of small claims might decrease more than
the frequency of large claims over some period of time (differential frequency
trend). Not surprisingly, both of these possible effects act to “stiffen” the size
of loss distribution, that is, increase the probability that a claim is “large,”
given that a claim occurs. A surprising result of our analysis is that the
adjustments to entry ratio tables to take these phenomena into account,
when they occur, often work in opposite directions. When large claims have

*Much thanks goes to Greg Engl and John Robertson, also of NCCI. Greg reviewed
numerous drafts and his input improved the work throughout. John was key in promoting
the topic within NCCI's actuarial research agenda. Both made direct and significant
contributions to the paper.
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greater trend factors than small claims, it might be necessary to increase
the entry ratio table ELFs for large entry ratios. But when small claim
frequency declines more rapidly than large claim frequency over a period of
time, it might be necessary to reduce the tabular ELFs for large entry ratios.

In this note we specify a generic, spreadsheet-friendly, format for an en-
try ratio table and consider the effects of differential trend and differential
frequency changes. Each is illustrated by a real world Workers Compensa-
tion (WC) case study. We then describe general techniques for modifying
an entry ratio table to account for not only a change in scale but also a
change in the relativity between the mean and the median loss (or any fixed
percentile loss) or a proportional shift in the hazard rate function of the loss
distribution. The findings suggest that entry ratio tables work surprisingly
well even for non-uniform trend and that in some important instances just a
small adjustment can extend the shelf life of an entry ratio table.

2 Background

Before we get into the details of the paper, we present a thought experiment
to illustrate some of the issues. Suppose we have 100 claims, 99 of which are
for $1 and the other is a $10M claim. Consider what happens if over the next
year inflation is expected to double the cost of the $10M claim, but leave the
other 99 unchanged. Observe that the mean cost per claim is expected to
roughly double, going from about $100K to about $200K. Recall that the
excess ratio is simply the ratio of the sum of losses in excess of a per claim
loss limitation to the total of all first dollar and up losses. The following is a
sketch of the graph of the old and new excess ratios, expressed as functions
of the loss limitation amount:
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Differential Severity Example
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s
N

\0'\
1 10M 20M

Loss Amount

Excess Ratio

In practice, excess ratios are often captured in “entry ratio” tables, i.e.
tables in which losses have been normalized to a mean value of 1. In this case,
when we normailize the old and new losses by dividing by their respective
means, the graph of the tabular excess ratios looks something like:
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Observe that the new tabular values all lie at or above the old, which
makes intuitive sense. Indeed, the inflation targeted the big claim, thereby
“thickening” the tail of the loss distribution and necessitating the use of
higher excess ratios next year. Because inflation changed the cost of claims
selectively by size, this is a case of what the paper calls “Differential Severity”.

Now suppose we begin with those same old 100 claims, but this time we
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consider what happens when, due to a safety initiative, half the $1 claims do
not emerge the next year. Because the change impacts claim frequency selec-
tively by size, this is a case of what the paper calls “Differential Frequency”.
Notice that this experience change again roughly doubles the mean cost per
case. Here the chart of the old and new excess ratio as a function of the loss
limitation amount looks like:

Differential Frequency Example
Excess Ratio Functions
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and when normalized to entry ratio tabular values becomes:
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Because the safety initiative is expected to be successful only for small
claims, intuition again suggests a thickening of the tail. Observe, however,
that the new tabular excess ratio values start out equal, then lie above, and
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eventually fall below the old. This suggests that, despite the similar impact
on the mean cost per claim, something genuinely different is happening in
the two scenarios. Actuaries should take heed that intuition can be a fallible
guide to updating entry ratio tables.

3 Notation and Terminology

We start with a definition and, to keep the discussion self-contalned we
derive some straightforward and familiar formulas: !

Definition 1 A random variable X is a loss variable if it has finite mean
p = E[X] > 0 and has a density [PDF] f that is continuous when restricted
to [0, +00) and whose support is contained in [0, +oo) We denote the distri-
bution function of X by F(z) = [ f(y)dy , whence &£ = f(z) on [0, +00).
The survival function of X is S =1— F. The excess mtw function of X is
given by R(z) = ﬂM“(X =20 — L m(y_:)f w)dy forz > 0. We denote by F the

function given by F(a:) M for x > 0. We use subscripts on ux, fx,

Fx, Sx, Rx, and FX when necessary to indicate dependence on X.

The following proposition expresses the excess ratio function in terms of
F and F.

Proposition 2 R(z) = 1 — F(z) — £[1 - F(z)], for allz > 0.

Proof. From the definition of R(z) we have

R(z) = i / "y - 2)fw)dy

= 2| [wrwar-s [ s

= 2]u- [Curtty - o500
= 1- -llz/oxyf(y)dy - %S(l‘)

= 1-F(z)- E[l — F(z)].
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as required. This completes the proof. =

It is well known that the mean of a nonnegative random variable, X, can
be expressed in terms of its survival function as E[X] = [;° S(z)dz. It is
easy to see that a similar result also holds for excess ratio functions.

Proposition 3 Let X be a loss variable with survival function S and excess
ratio function R, then

Jo S(y)dy
R(z) = %—"——, forallz > 0.
Jo S(y)dy
Proof. Let X have density f, then noting that % = —f(y) and using

integration by parts, we have

/ wS(y)dy = ySWIC + / ooyf(y)ﬂly
= —z8(z)+ / ony(y)dy
= —x/wf(y)dy+/wyf(y)dy

/ " - )W)y,

where the second equality follows from:

E|X] < 00 = [read “implies”]
o0 o0

o [T 1wy < [Tui@y—0as s - oo
z T

w
zS(x)

Thus
Jety—o)fwdy _ [ S)dy
E[X] 17 Sy)dy

R(z) =
as required. m
Corollary 4 4 (z) = iu(zl, forallz > 0.

Proof. By the Fundamental Theorem of Calculus:

dR d ([ZSydy\ -S(z)
-&;(x)=g§( 7 )_ po

as required. =
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Proposition 5 Let X be a loss variable with density fx and distribution
function Fx and let o, 3 > 0 be any two positive constants. Set:

Y =aX?

then for every x,y > 0:
1~ 1
L fr(y) = ;%;y_ﬁﬁfx ((5)9)

2. Fy(y) = Fx ((2)?)

3

wP fx (w)dw

(
3. Fy(y) =

o B

KxB
4. Rx(z) = Ryé(a'}ix)

Proof. We note that

R = <) =piox? s =recs (5 -2 (2)°)

proving 2.
1
For 1, just differentiate 2, using the change of variable z = (£)? = g—; =
L(pyETli o 1,5,
] (a) a G?Ey .

foly) = ddFyY _ dFx g@(jg)y) _ dF;z(z)Z_Z i ((g)%) 1 yl_g_é

And for 3 just integrate using the change of variable

(z)% P dw 1
w=(=~) ®aoav =2 —=——
o dz o388
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we have:

Fly) = *——

Finally:
Y = aXP=>YF=0afX =>4y =a%ux

a%uxRx(x) = a%E[Max(X—x,O)]

= a%E[Max((Z) 7 z,0)]
a

= E[Max(Y% - a%x,O)]

= MYgRyg,(a%x)

= abuxR (aba)

= Rx(z)= Ry%(a%x)

completing the proof. m
The special case § = 1 applies when normalizing losses, in particular
when dividing by the mean loss to get entry ratios:

Corollary 6 Let X be a loss variable with density fx and distribution func-
tion Fx, and let a > 0, then

fx(%)
L faX(y) = 'X_C,L
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2. Fox(y) = Fx(¥)
3. Fux(y) = Fx(¥)
4. Rox(y) = Rx(%)

Proof. All but number 3 are clear from Proposition 5, and 3 is very nearly
so:

Fux(y) = *——— = Fx(2)

as required. ®
We associate to a loss variable X with (finite) mean g = py = E[X] an
entry ratio table, which we term the rAB = rABx table. The table consists

of the two functions:

r

Ax() = Fxulr) = u [ Flue)ds = Fi(ur)

Bx(r) = Fiu(r) = [ of(ua)ds = Fx(ur)
0

Clearly, for any positive scalar &« > 0 if Y = aX, then

Y o oX X L A, = Ay and By = By = rABy = rABy

Ky CQphx W
and indeed the entry ratio table is invariant under such a transformation of

scale.
The dependent variable r is termed an “entry ratio” and corresponds to

losses (but has applications to any positive real valued distribution, e.g. a
wage distribution) normalized to a mean of 1. We often speak of these two
functions as determining the A and B “columns” of the entry ratio table.
Note that:

Bx(oo) = lim Bx(r) =1
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Column A is sometimes described as the percent of claims at or below the
corresponding entry ratio (r), while column B is described as the percent of
losses corresponding to the claims in column A. This r 4B setup is employed
in WC benefit on-level calculations, and is especially practical for spread-
sheets that deal with calculations that involve normalized loss variables.

We are particularly interested in determining how Ex(r), which we also
refer to as the normalized excess ratio, behaves subject to a non-scale “trend”
adjustment. For convenience we often expand the entry ratio table to include
a third column E, readily derived from the others by applying Proposition 2
and Corollaries 4 and 6 to X/pu:

Ex(r) = Rxu(r)=1-Bx(r) —r(1- Ax(r))

Py = Pty - 2500 g, () = ur) -1

The following picture, reminicent of the area interpretation of integration
by parts (c.f. Lee [2]), illustrates the usual way of visualing the rAB table
and illustrates the formula for the normalized excess ratio:

E(r)=1- B(r) —r(1 — A(r))

in terms of r, A, and B:
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area=E(r)
(A(D.0

0.0 [ (CRY)
I

1-A()

area=B(1)

;\fﬁ‘—/ .0

0.0 A® (A(,0)

We will let Y denote a loss variable that captures the effect of applying
“trend” to X. We also set:

G = Fy
g = [
v = E[Y].

Our goal is to determine rABy from rABx. We are particularly interested
in the absolute and relative impacts on the normalized excess ratio:

6(r) = bxy(r) = Ey(r) — Ex(r)
_ ()
p(r) = ()’

We clearly have:
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Taking derivatives and applying L’Hopital (twice), we have:

dé
- = G(vr) — F(ur)
&~ vgtor) - ufu)
dp _ Ex(r)G(vr) — Ey(r)F(ur) + 6(r)
dr Ex(r)?
1+ lim p(r) = 1+ lim ;&3) =1+ lim %
= 1+lm ) —Fl(l:,,)(i(f Db
B , G(vr)—1
= 1+ rll.r{.lo (F(,ur) -1 1)
B Gwr)=1 . wvg(vr)

im = lim ———=
r—oo Fur) =1 r=oo uf(ur)

14

y ¥
= — lim —£
ps—oo f(s)

(since r — 00 & s = pr — 00 ).

For large entry ratios, the impact of trend on the normalized excess ratio
column, Ex(r) vs. Ey(r), is dictated by the impact of trend on the mean and
on the largest losses. For any loss variable X let My denote the maximum
loss (in the case of no finite maximum loss amount, we set Mx = oo ).

Proposition 7 Suppose X and Y are two loss variables with Mx, My < 0o
and %X > %{Y—, then there exists b > 0 such that Ey(b) < Ex(b) and 0 =

EY(T)XS Ex(;:) forr >b.
Proof. Setting b = Mt < Mx we have
By Bx

buy < Mx=
Ey(b) = Ryu,(b) = Ry(uyb)
Ry(My) =0 < Rx(bux) = Rx/u, (b) = Ex(b)
b=
by = My = Ey(r) = Ry, (1)
Ry(pyr) =0 < Ex(r)

and r

Thy

itV v
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as required. =
We will find a use for the following later in Section 4:

Proposition 8 Suppose X andY are two loss variables with the same maz-
imum loss Mx = My < oo and with py > py, then there erists a > 0
such that Ry(r) > Rx(r) for 0 < r < a and there exists b > 0 such that
Ey(b) < Ex(b) and 0 = Ey(r) < Ex(r) forr > b.

Proof. Since py > uy, the existence of b follows from Proposition 7. For
the existence of a, we have from Corollary 4:

de( )__—_1 —1 dRy
dr

Cbx By dy

(0)

Now clearly Ry(0) = Rx(0) = 1 and since Ry and Rx are continuously
differentiable there exists ¢ > 0 with

Rx(:l:) -1 - Rx(l‘) - Rx(O)

T z-0 :
< Ry(y; : éiy(O) = Ry(yy) =L for every z,y € (0,a).

In particular:

Rx(T') -1 < Ry(’l‘) -1

0 < r<a= " -
= Rx(T) —-1< Ry(’r‘) -1 = Rx('f') < Ry(’l‘).

This completes the proof. m

4 Differential Severity Trend

Let the function h(z) defined on [0, 00) be such that A(z) > 1 and £ > 0
on [0,00). In this section we assume f(z) > 0 for £ > 0. Think of h(z) as
a severity trend factor that increases with the size of loss . The random
variable of the trended loss is Y = 9(X), where the transformation ¥ (z) =
h(z)r has 2 = h(z) + g% > 1 for £ > 0 and is order preserving and
invertible (and expands distances). Thus:

G(¥(z)) = Pr(Y < ¢(z)) = Pr(y(X) < ¥(2)) = Pr(X < z) = F(z).
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We clearly have ¥(z) > ¢ = v = E[Y] = Ey(X)] > E[X] = p and
F(z) = G(¢(z) > G(z) Observe that:

a e Y(z) > Y(a)
a = Y(z) — ¢Y(a) = h(z)x — h(a)a > h(a)z ~ h(a)a
h(a)(z~a)2z—a

v v

= vRy(¥(z)) = E[Maz(Y — ¢(z),0)]
= B[Mas((X) - $(z),0)] > E[Maa(X - 3,0)] = uRx(z)
> Ry(¥(@) 2 (£) Rx(@)

But the relationship between the normalized excess ratios Ey(r) and
Ex(r) is more subtle.

Let hy = lim,_,o h(z) and h,, = h(0), then 1 < h,, < hpr < 00 and we
have:

hmpt = hmE[X] < E[R(X)X] = E[¢(X)] = E[Y] = v < hyE[X] = hap

= hm<z<hM
i

= there exists exactly one a > 0 such that h(a) = z
©

However, we see that since F' and ¥ are both monotonic increasing,
whence invertible, and so too is G = F o9~*. Whence for r > 0 we have the
equivalence:

0 = j—f = G(vr) — F(ur) & G(vr) = F(ur) © vr = ¢(pr)

& h(uryur =vr

& h(p,r),u=1/©h(,ur)=Z-zh(a)@a=ur¢>r=

®ie

Now 0 = §(0) = lim,_,, 6(r) and so it follows that, unless §(r) = 0 for every
r > 0, the function §(r) has either a unique minimum or a unique maximum
on (0,00), and consequently &(r) is either always > 0 or always < 0, for all
r > 0. We claim that §(r) > 0 for all » > 0. To verify this, select 3 such that
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hm <B <% andlet b=ps = h=1(B) > 0; then:

a = r,u,b:s,u,1<ﬂ=h(b)<Z=h(a)=>b<a

Y(ow) = $(b)=h(B)p=pb< —b=-su=vs
= F(sp) = G(y(sp)) < G(vs)
dé
> - (s) =G(vs) — F(sp) >0
It follows that d(r) is increasing at s = ;% and therefore on the entire interval
(0, ﬁ) Since §(0) = 0, this clearly forces 6(;;‘—) > 0 and consequently §(r} > 0
for all 7 > 0, as claimed.

We see that the graph of §(r) is N-shaped, i.e. is concave with 0 = 6(0) =
lim, o 6(r), with a unique maximum at r = %. We have established:

Proposition 9 In the case of the differential severity trend model G(y(z)) =
F(z) and f(z) > 0 for > 0, as defined above, Ey(r) — Ex(r) > 0 for all
r > 0.

Let o =0 <71 <719 <.+ <7)p be asequence of entry ratios and set
A; = Ax(ri), Bi = Bx(r;),0 <i < M.

Suppose that A, = Ax(r;) > Ax(riz1),1 < ¢ < M and Ay = 1. Set

AA; = A;— A;_1,AB; = Bi— B; ;. Note that p35i,1 < i < M, is the mean

value of the untrended loss over the interval [ur;_;, ur;]. For 1 <i < M, set

s a3 (42)

B; Z AB.
k=1

ko
f

. . . s AB; \
Since 1) is order preserving, it is reasonable to assume that ¢ (“A—A‘f) is
a good estimate of the mean value of the trended losses on the interval
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[¥(uri—1), ¥(prs)], (the smaller the interval, the more accurate the estimate).
M M
~ ~ AB;
By = ZABk = ZAAi (1/; ("AA,-))
k=1 k=1
< AB;
= > (6~ 60t (v (v37))

= épr (Y(primi) <Y < o(pr:)) (1/) (ui—i—:))

Q

D Pr((pri1) <Y < 9(pr)) BY [(uriea) <Y < 9(urs)]
k=1
= E[Y]=v

And we have the estimate By ~ v. The sequence {A;} can be viewed as the
cumulative percentage of cases over the intervals of the trended losses and
thus approximates the A column of the entry ratio table of the trended losses.

The sequence {Bi} approximates the cumulative losses for the trended loss

cases from the corresponding intervals. So the sequence {E} is proportional
to the B column of the entry ratio table of the trended losses. Also, we have
observed that the sequence {y(ur;)} provides the endpoints of the corre-
sponding intervals of the trended losses which have overall mean = v = By
So setting:

= A, Bi= 2,
By Bu
we have approximated the r AB table for the trended losses rABy =~ rAB in
the case of differential severity trend. This differential severity trend adjust-
ment to the rAB table is a simple three-step process (1-fix A, 2-estimate B,
3-normalize r and B). In practice, this approximation can yield small negative
values for §(r) which by Proposition 9 should be set equal to 0.

PICLNy

i

0<i<M

4.1 'WC Case Study of Differential Severity Trend

The tables for excess ratios in WC are specific to the five types of WC in-
jury: Fatal, Permanent Total Disability [PTD], Permanent Partial Disability
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[PPD], Temporary Total Disaility [TTD], and medical only. It is standard to
itemize WC losses into medical and indemnity (or wage replacement) compo-
nents. While indemnity benefits are limited, either implicitly or by statutory
maximum aggregates, the medical portion is unlimited and subject to broadly
inclusive statutes as regards the medical procedures covered. In any event,
it has been noted that as the claim size rises, the percentage of the benefit
that goes for medical also rises. This is generally observed within all the
injury types (except medical only). A series of charts below provide a more
detailed picture of this phenomenon. Combine that observation with the fact
that medical losses are subject to greater upward inflationary pressure than
wages, and you have a scenario in which to apply the differential severity
trend model of the previous section.

In this case study we assume constant annual trend factors of ¢, = 1.075
for indemnity and ¢; = 1.095 for medical, applicable to all injuries and all loss
sizes. Normalized WC loss data by injury type was itemized into medical and
indemnity components and used to produce the following charts, by injury
type, that show the percentage of the total [=medical + indemnity] loss
by entry ratio (the role of the fitted curve will be described later). It is
worth noting that the percentages shown in the charts are determined over a
common interval width of entry ratio. Since there are typically more claims
at lower entry ratios, one consequence is more claims per plotted point at
the lower entry ratios, whence the greater spread of the plotted points at the
higher entry ratios.
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PPD
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For each injury type = %, a simple curve (akin to a mixed exponential
survival curve, and shown on the charts) was fit to the patterns of decreasing
indemnity proportion 7;(r) by entry ratio r as the loss size increases:

m(r) = Qa; (bieair + Cieﬂir + (1 — b,' — c,-)e"”r)
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Injury 7 a; b; Ci Q; Bi Vi
Fatal 1 09280 0.6240 0.3761 -0.0051 -0.1416 -—0.4599
PTD 2 0.6928 0.7905 0.2095 -0.2542 -0.0007 -—0.4599
PPD 3 0.5811 0.3827 0.6173 0 —0.0281 0
TTD 4 0.6237 0.0397 0.9603 0 —-0.0475 -0.4599
We set hi(r) = m;(r)to + (1 — m;(r)) 1, then:
1<t0<t1,% <0=>1<hi(7‘) and %= ‘:Z:(to—tl) > 0.

and so each injury type other than medical only provides a differential sever-
ity trend model.

Letting X; denote the random variable of losses by injury type and Ny,
the corresponding claim counts, the usual formula (readily obtained from
Definition 1; see Gillam [1]) for the combined excess ratio over the injury

types at attachment A is:
Z in#XiEXi (ﬁ:)

Z NXJ"X;

Of course, to accomodate differential severity trend one could produce new
rAB tables as detailed above. A simpler alternative is to determine the
difference:

X Sratio(A) = X Sratio(X,, X2, X3, X4, X5; A) =

AXSratio(A)
= XSratio(Y:, Y, Ys, Yy Ys; A) — X Sratio*(X1, Xo, X3, X4 Xs; A)

S (&) S (2]
lZwm T > Nriby,
3 v (5 () =2 (1)

l > Mvi,

)3 Nyl.uy,.éx.-»:- ()

l ;Mw

]
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expressed in terms of the dx,y, and where the * attached to XSratio* is
meant to emphasize that one would consistently use the newer claim counts
Ny, and means py, in doing the calculation. While in principle you would
need updated r AB tables to precisely determine the d x,y; terms, if there were
a simplified form to approximate that term based on inflation data or other
cost trend considerations, this would provide the ability to refine the excess
ratio calculation:

X Sratio(Y,YsYs, Y, Y55 A)
= XSratio*(Xy, X2, X3, X4, X5; A) + AX Sratio( A)

without recourse to new rAB tables.

The use of entry ratio tables is a very good way to account for inflation
when calculating excess ratios. Indeed, even compounded over a five year
time interval, the AX Sratio adjustment in this case study is very small. The
following chart is indicative of what the calculation described here produces.
Of course, a bigger difference between medical and indemnity trend or a
longer time interval will produce bigger adjustments. Because excess ratios
decline with increasing attachment points, as the attachment point increases
the adjustment will typically increase as a percentage of the excess ratio.

5 Year Adjusment
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5 Differential Frequency Trend

Let the function h(z) defined on [0, 00) be such that 0 < h(z) < 1, with A
piecewise continuous and non-decreasing on [0,00). So as to relate h with
the ‘untrended’ loss variable X, we also assume that there exist a,b > 0 such
that h(a) < h(b) with h continuous at a and at b and with f(z) > 0 for
every z € (a,b). Observe that this clearly forces a < b, and so there exist
br € (a,b) such that lerlolo br = b. But then, since h continuous at b:

h(@) < h(b) = hla) < h(b) = h (Jimby) = lim h(b)
= there exists M € N such that h(bx) > h(a) for every k > M.

In particular, letting ¢ = by we have:

¢ = by €(ad)
= f(c) > 0,h(c) > h(a) = h(c)f(c) > 0= 0< E[h(X)] < E[1] = 1.

We consider the ‘trended’ loss model defined by the PDF:
_ M=) f(z)

9(=) = Tatxy = M@ @)

Think of h(z) as a proportional decline in the incidence rate that decreases
with the size of loss z. For the trended loss variable Y, we have:

a a

Pr(Y <a) = /g(a:)d:v = /ﬁ(z)f(a:)dx = Pr(ﬁ(X) < a).

0 0

And accordingly, for the differential frequency trend model we take Y =
h(X). Also, if h is differentiable (except at perhaps finitely many points),
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integration by parts gives:

G) = [ o)z = [He)f@)as
0 0

> h(y)F(y).

For the differential frequency trend model we cannot have F'(z) > G(z)
for all x > 0, since by the above that would force the contradiction

G(z) 2 h(@)F(z) 2 Mz)G(2)
= 12> Tz(x) for all z > 0 such that f(z) > 0 with 1 > TL(a) for some a > 0 such that f(c
~ h(X)
1< EhX)|=E|zF7=| =1
» 1< 0] =2 |y ] =1+
In particular, differential trend models and differential frequency models are
disjoint from one another

Remark 10 The reader should note that unless we make the stronger as-
sumption that h is continuous on [0, 00), we cannot be assured that this Y is
a loss variable, as that term is defined here. The weaker assumption on h is
to include the case in which h is a step function. The reader may prefer to
demand that h be continuous, in which case some of the arguments can be
simplified.

Proposition 11 In the case of the differential frequency trend model g(z) =
h(z)f(z), as above, v > p.

Proof. Note that the function E(x) is plecewise continuous and non-decreasing
on [0,00). We claim that h{0) < 1, since otherwise:

h(z) > 1 for every z > 0 = g(z) = E(x)f(z) > f(z) for every x > 0.
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But then g(z) and f(z) are two piecewise continuous funtions on {0, co) with
the same finite integral = 1. So the relation g(z) > f(z) entails that g(z) =
f(z) except possibly at points of discontinuity of g. So ﬁ(z) = 1 except for
a discrete set of values or where f(z) = 0. By our model assumptions, there
exist a, 8 > 0 such that h(a) < h(B) with h continuous at a and at 3 and
with f(z) > 0 for every z € (a, 8). It follows that ﬁ(m) =1 on (&, 3), except
for perhaps a discrete set of points:

= there exist a;, b; € (@, §) such that
a¢ = lima;, B = limb; and Tz(ai) = Tz(bi) =1
= ﬁ(a) =h (1imai) = limﬁ(ai) = liml=1
i—00 1—00 1—00
= limh(b) =h ( lim b,-) = h(B)
= h(a) = h(@)E[h(X)] = h(B)E[h(X)] = h(8)
= h(a) =h(B) > h(a) =< [read “contradiction”].

This contradiction shows that 7(0) < 1. Similarly, we claim that (a) > 1
for some a > 0, since otherwise:

h(z) < 1forall z > 0= g(x) =h(z)f(z) < f(z) forall z > 0

and again g(z) and f(z) are two piecewise continuous funtions on [0, co) with
the same finite integral. This again entails that they are equal except possibly
at points of discontinuity. Then again h(z) = 1 except for a discrete set of
values or where f{z) = 0 and just as before we arrive at a contradiction. So
we have

R(0) < 1<h(a)
= there exists b > 0 such that h(z) < 1 on [0, b)
and h(z) > 1 on (b,o0).

Next we claim that there exists ¢ > 0 such that h(c) # 1 and f(c) > 0 since
otherwise

z >0, f(z) > 0=> h(z) = 1 = h(z) = E[A(X)]
But by our model assumptions, there exist «, 8 > 0 such that h(a) < h(5)
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with h continuous at o and at 8 and with f(z) > 0 for every z € (e, B):
= there exists ¢ € (a, a—;—ﬂ) ,d € <a+ﬁ,,8)
such that h(c) # h(d), f(c) >0, f(d) >0
= E[h(X)] = h(c) # h(d) = E[h(X)].

It follows that there exists ¢ > 0 such that E(c) # 1 and f(c) > 0 and we
have:

3
!
=
il
\8

zg(z)dz ~ / 2f(z)ds = / 2 (g() - f(z)) dz

/x h(z) —1 f(a:)dx
0

- /g;((a:)—l) f(z)dz +

z (ﬁ(m) - 1) f(z)dz

&\8

It
o
0\8
2
&
.
8
|
\8
.
~
&
I
N———
—_
!
—

~—
I

= v>u

as required. m

As in the case of differential severity trend in the preceding section, we
again are considering a change that increases the mean severity. Suppose we
use a fixed entry ratio table to calculate excess ratios. Then for a fixed at-
tachment point A, we have declining entry ratios f > é and the lookup into

the same entry ratio table leads to excess ratios that increase from Ex (-’3)
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to Ex (%) In the case of differential severity trend, we observed in Propo-
sition 9 of the previous section that the increase is consistently understated.
In the case of differential frequency trend, however, we will show that the
increase may be either overstated or understated. This may at first seem
somewhat counterintuitive for the two “trends” to move the mean upward
but the normalized excess ratio tabular amounts in perhaps opposite direc-
tions. However, the entry ratio lookup is dominated by the change in the
mean. For differential severity trend the overall trend factor consistently un-
derstates the impact of trend on the largest loss amounts, which helps explain
why the calculation consistently understates the excess ratio. But the case
of differential frequency trend is quite different: selectively removing smaller
sized losses will have a leveraged upward impact on the overall mean severity
while leaving the size of the largest claims unchanged.

With differential frequency trend we have, from the proof of Proposition
11:

s 2 b vRy(@) - uRx(@) = [ (v - 2) (otv) - F(v)) dy

= [[w-o (i) 1) 1@y 20
= Ry(x)zng(a:).

But again the relationship between Ey(r) and Ex(r) is more subtle.

In the case that X has a maximum loss M = Mx < 00, since Tz(x) is non-
decreasing on [0, 00) and there exists ¢ > 0 such that ﬁ(c) >0 and f(c) > 0,
and we have ¢ < M and Tz(d) > 0 for every d > ¢, whence:

My = sup{z|g(z) > 0} = sup{z|h(z)f(z) > 0} = sup{z|f(z) > 0} = M.

So too must Y have maximum loss M and Proposition 8 assures us that
Ey(r) < Ex(r) for large enough r. More precisely, we have:

Proposition 12 In the case of the differential frequency trend model g(z) =
h(z)f(z), as defined above, in which X has a mazimum loss Mx < oo, there
exists b > 0 such that Ey(b) < Ex(b) and Ey(r) < Ex(r) for allr > b.

Before stating a result that deals with the relationship between Ey(r)
and Ex(r) in the case Mx = oo, it is instructive to make a few observations.
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Note that since the non-decreasing function h is bounded above by 1, it is
reasonable (but not necessary) to have the decline in frequency flatten out
for large losses, say in the sense that the denvatlve -~ 0 asz — co. We
also observe that:

Proposition 13 In the case of the differential frequency trend model g(z) =
h{(z)f(z), as above, the limit lim, ., h(z) = X\ exists and <A

Proof. Since h is non decreasing and bounded above by 1, existence of the
limit is apparent. We evidently have:

A(z) < Afor all z > 0 = v = E[Xh(X)] < E[X)] = AE[X] = \u = E <A

as required. =
Proposition 14 Assume Mx = oo, then for any p > 1 for which the limit
limg_,o %(pf)l exists:

S(pz) 1

lim <

5 5(z)
Proof Note that Mx = oo is equivalent to S (z) > 0 for every z > 0 and so

”; is always well defined. Thus the expression lim,_,, ‘—gé(”—z)l makes sense

and further our assumptlon is that the limit exists for some p > 1. Note
that the integral fo z)dz = p < oo. Suppose, by way of contradiction,

that lim, é(%l >1 Then, using the change of variable z = pz, we would
have:

there exists ¢ > 0 such that pS(pz) > S(z) for every z > ¢

= / " pS(pr)dz > / " S(@)da

= i/coo S(z)dzx < /Coo S(pz)dzx

/:o S(pz)dz = %/oo S(pz)pdz

- 1 S(z)dz

p > 1=- / S(z)dz < = / S(z)dz
= = S:zda:<—/ S(2)dz =<«
> [ s@as <2 [ st
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This contradiction completes the proof. =

Remark 15 Appendiz A considers the implications of the eristence of the

limit lim, o %((—’;—“5)2. The discussion shows that if you assume that the limit

lim, o % 3) erists for all p > 1 and is not identically O for all p > 1, then
the tail be;zamor is essentially determined up to just a single parameter. More
precisely, consider the one-parameter survival function:

{5 151}

For T(8; ) such limits exist and are particularly manageable as we clearly

have 5
TBpz) _(pz)" 4 T(B; py)
>1 = = =
p:ﬁyx = T(IB,J,‘) x_ﬁ P yl_wo T(,B, )
It turns out that for a loss variable X with S = Sx and for which there exist

e > 1,k € N such that limg_ p, = 1 and lim,—o SS‘Z;)” eTists for every

k € N, then for all p > 1:

S(pz)
either xll.nolo 5) = 0
S(pz) 5 ( (efb‘))
or lim ——=- = where = —In{ lim >1.
o S@) P P=—\Mswm ) 2

We see that under these assumptions, the conditional probability of survival
S(x) 2W for y > z and z large is asymptotically the same as that of T(B;z) for
some unique 3, with 1 < 8 < co.

Example 16 For the “thin-tailed” exponential density S(z) = e~ % we have,
for any constant p > 1, that
S(pzx) e

Jim, S@) Jim —=

ok

. _{p=1)z
=lme ¢ =0

Z—00

/8

Example 17 For the “thicker tailed” Pareto density S(z) = (G;LI)Q we have,
for any constant p > 1, that

o \* o
lim 209 _ i (i;’i= lim (0“’) =pe.
T—00 S(:]}) Z-+00 (m) T—00 0+px
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Example 18 This example shows that the inequality in Proposition 14 can-
not, in general, be improved. Consider the survival function:

(z +¢) (In(z +e))*

/S x)dx—/mdu where u =z + e

0
ze/
1

loo
= 6['——] =e <00
w

1

S(z) =

=
]

dw where w = In(u)

3=

with finite mean. We have, with several applications of L’Hopital:

lim S(px) lim e (z +e) (In(z+e))®
s 5(@) | =mee \ (ot e) (In(pz + 0))° e

- i ((2e) lerar)
n:o(;ii)sza (i)

lnx+@)

m—»oo In(pz + €)

pT +e
z—»oo px + pe

DIFDIE DI DI “:_-
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Example 19 Define the function:

( T 0<z<l1 )
2z —1 1<z<?2
3 2<zr<A4
h(x):J 1+% 4<z<8 \

k+1 21 < 7 <2 and k > 1 even
| k-2+55 2'<z<2 andk>1 odd )

then the reader can readily verify that h is continuous and non-decreasing
with h(0) = 0 and lim;_,oc h(z) = co. It follows that S(z) = ™™= is a
survival function. Let X be a nonnegative random variable with S = Sx.
The reader can verify the following:

h(4z) = h(z)+2 forz>2

{k+2 k>10dd}

ky
h(2) = k+1 k>1 even

And we find that for x > 2:

S(z) _ e ) — oh(@-h(z) _ -2
S(z) e~h=)
S(4z) 1
= A4) = z_m 3G) " &

Since M(4) = & < 1 it is at least possible for this distribution to have a finite
mean; and indeed, the reader can readily verify that:

Inz

>—-1
z > 2= h(z) 3
= S(z)<ez” 3

-5
= / Sa:)dx</ ex lnzdx-e(2 1><c>o
In2

= ﬂx=/0 S(z)dr < o0
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and we see that X s a loss variable. Observe that:

o [ REY+2 k>10dd
M) = { h(2%71) k> 1 even

S(2-251)  S(2k) e h(H

= S(zk—l) - S(2k—1) T e—h(2k-1)
_ eh(zk—l)_h(zk) _ 6_2 k > 1 odd

1 k>1 even
= zl&xg ‘53(2;) fails to exist.

Finally, observe that should lim,_, ., %((4—’)2 exist, that is not sufficient to guar-

T

antee that lim,_, %(% exists for 8 > 4. Indeed, setting z), = %‘5 we have:

B £ >3o0dd
h(5zk) — h(zx) = { 5 k>3 even }
o S02) | heeorhe _ [ €75 k>3 odd
EN) e 2 k>3 even
= ;cll»nolo 'SL;((E::E)) fails to exist.

This example is meant to provide some additional insight into the nature of
the assumption made in the very special case considered in the above remark,
namely that lim,_,, %(%1 exists for all p > 1.

-~

The two limits limyo A(x) > 2 > 1 (Propositions 11 and 13) and

= H
. S(% . . ..
limg oo _;(sz)) = limz—e %Z—g < £ <1 play a key role in determining the

sign of §(r) for large enough entry ratio r, as demonstrated in the following:

Proposition 20 In the case of the differential frequency trend model g(z) =
Tz(a:) f(z), as defined above, assume that Mx = oo, that h is differentiable on
(0,00) (except at perhaps finitely many points) and that there exists ¢ > 0 with
% =0 forallx>c. Letp= /% and assume that the limit A = lim,_ o, %&%l

exists. Then

Ar(c) > 1=> there ezists b> 0 such that Ey(r) > Ex(r) forallr > b
/\ﬁ(c) < 1= there exists b > 0 such that Ey(r) < Ex(r) for all v > b.
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Proof. To compare Ey(r) and Ex(r) for large entry ratios, we again inves-

tigate the derivative of 6(r):

d_6
dr

Il

=/h

G(vr

)_

s [

F(ur)

z)dz + / (h(x)—l) f(a)dz

Observe that the first integral is always > 0 and converges to 0 as r — oo
and that the second integral is an increasing function of r for r large enough
to force h(ur) > 1 and the second integral also converges to 0 as r — oo.
Letr > < %, our assumptions together with 4 % = 0, give us:

Gr) =

h(vr)F(ur) — / F(z)=—dz

vr

dh

0
c

= hO)F(ur) - / Fl) 2 dh

= h(c)F(vr) —

Taking the limit as r — oco:

0
~ for some constant v > 0.

1 = h(c)-
1- () -
G(vr) h(c)F(vr) —

482

h(c)F(vr) +1 - h(c)

—h(c)(1 = F(vr)) + 1
s =
. —-h(c) A= Fr))+1-—

—h(c)S(vr) + S(ur).

F(ur)
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Now suppose Mh(c) > 1 :

)\TL(C) > 1= lim M >1
A5 SG@)
there exists b > 0 such that h(c)S(pz) > S(z) for every z > pb
p = E = h(c)S(vr) > S(ur) for every ur > pb

= TL(C)S(VT) > S(ur) for every r > b

= —E(c)S(yr) < —8(ur) for every r > b
ds
dr

And it follows that 6(r) is decreasing for r > b. Since §(r) — 0 as r — oo it
follows that Ey(r) — Ex(r) = é(r) > 0 for 7 > b. We have established:

= = —Rh(c)S(vr) + S(ur) < 0 for every r > b.

/\ﬁ(c) > 1 = there exists b > 0 such that
Ey(r) — Ex(r) = 6(r)>0= Ey(r) > Ex(r) for all r > b.

Reversing inequalities in the above argument shows:

Ah(c) < 1= there exists b > 0 such that
Ey(r)— Ex(r) = 6(r)<0= Ey(r) < Ex(r) forallT >b

completing the proof. =
An immediate consequence is that distributions with an infinite but com-
paratively thin tail act like distributions with finite support:

Corollary 21 In the case of the differential frequency trend model g(z) =

Tz(a:) f(z), as defined above, assume that Mx = oo, that h is differentiable on

(0,00) (except at perhaps finitely many points), that there exists ¢ > 0 with
5(

‘f—"; = 0 for x > ¢, and further that lim,_, —géi)—z) = 0. Then there exists

b > 0 such that Ey(r) < Ex(r) for allT > b.

Example 22 As o general example of a differential freqgency trend model we
may take h = F, then g(z) = oF'(z) f(z) for a uniquely determined constant
a. But clearly F? is itself a distribution function and setting:

G = F?
aG dr
. 2Fd:v Ffisa PDF=a=2
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and the increase in the mean is:

v—p = 7(1 - G(y))dy - 7S(y)dy
0 0

{(1 - F(y)*)dy - ZS(y)dym

(1 - F))(1+ F(y))dy - / S(y)dy

I

S@)(1 + Fy))dy — / S()dy
0

S(y)(A + F(y) — 1)dy

o5 8 o8 o~ 8 o~—_38

S(y)F(y)dy.

Example 23 Let X be an exponential denisty with f(z) = e and set

h(z) = ;&. Then from numerical integration applied directly to the defi-

nitions:

E[R(X)] = 0.404
p =1
v = 1477

The following graphs the excess ratio functions Rx(z) = Ex(z), Ry(z), and
Ey(z); from the graph we see that: Ey(z) < Ex(z) = Rx(z) < Ry(z).
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Ra(x)
Ry(%) 0.5
Ex(x)

Example 24 Consider the case of 10 losses per year: 9 of amount 1 and 1
of amount 2 and let X denote the corresponding random variable. Suppose
there is a decline in frequency to a rate of just 2 losses per year: 1 of amount
1 and 1 of amount 2 with random variable Y. The following graphs the excess
ratio functions Ex(r), and Ey(r). In this case we see that Ey(1) > Ex(1)
and Ey(1.5) < Ex(1.5) > 0.

1 ",
=,
0.8 AN
0.8 N :
) \\ — EY(r)
0.7 S
0.8 ™ . —=— Ex(1)
0.5 AN
0.4 N
N
0.3 .
0.2 \>
0.1 AN
. ' . \ |
0 0.5 1 1.5 2
r
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Example 25 Consider a Pareto density with survival function S(z) = (z%o)a
and a linear frequency decline of the form h(z) = Min (%g, 1) . We provide
the results of a direct evaluation via numerical methods for two cases:

9 = 2,a=5c=2d=1

4 = 0.5,v0695p= E ~ 1.39

1 . S(z) -~

— = lim —= =5.1 04 =

3 zg{-loS(px) 5.16 > 2.04 = h(c)
Ey(z) < Ex(z)

and:

0 = 2,a=5,c=10,d=5

g = 0.5,0%0575p= % ~1.149
1

)

. S(z) ' ~
= 1 ~1. . ~
Lim S(pz) 1.978 < 2.728 = h{c)

Ey(it) > Ex(I)

In both cases, Proposition 17 holds for any b > 0. This gives an instance
for which the same untrended loss variable and two functions for h, both of
linear frequency decline proportions with the same range of [%, 1], can produce
opposite sign impacts on the normalized excess ratio function.

As to the r AB table for this differential frequency trend model, as before

let
ro=0<rm<r< - <ry

be a sequence of entry ratios and set
A; = Ax(ri), Bi = Bx(r:),0 <i < M.

Suppose that A; = Ax(r;) > Ax(ri-1),1 < i < M and Ay = 1. Set
AA;, = A; — A;_,AB; = B; — B;_;. Again note that uﬁ%,l <i<M,is
the mean value of the untrended loss over the interval [/l/l‘,;_;, wr;] , which we
assume can be taken as an estimate for the mean of the trended loss. This
would hold provided that, within sufficiently narrow entry ratio layers, the
removed claims (and whence the retained) are representative of all claims in
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that layer. This would hold exactly, for example, in case the function h is a
step function that is constant on the intervals [r;_;,7;). For 1 <i < M, set

E(#’h‘)Az‘, Agi = Zi - ;{i—l

.

~ ~ ( AB,
Ei = Z AE}C
k=1

Assuming then that ,u%f is a good estimate of the mean value of the trended

losses on the interval [ur;_q, uri] , we have:

By _ i ABy _ i A4, (HAB,C)
AM k=1 AM k=1 AM AAk
M
AB,
= Z Pr(pri—1 <Y < pry) (u———)
k=1 AAk

M
ZPr (ure—1 <Y S ure) EfY |pure—1 <Y < pry
k=1

= E[Y]=v

Q

and we infer, as before, that v =~ %‘: and that the two sequences {/L} and

B;} are nearly equal to the cumulative cases and losses of not necessarily
normalized trended losses. So they only need to be rescaled to give the A and
B columns of the trended losses. Whence they are very nearly proportional
to the A and B columns of the entry ratio for the trended losses (and albeit
with different proportionality constants). So setting:

pokn_pdu 2 A g B ooy
Am

'l'=

-~ b

Bum

2
S

we have approximated the rAB table for the trended losses: rABy =~ rAB.
Finally, note that this simple three-step differential frequency trend adjust-
ment to the 7 AB table (adjust A, estimate B, renormalize r, A, and B) can be
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done quite generally to account for a change in frequency by size of loss and
does not formally demand that % > 0 on (0,00), although order preserving
is needed to justify the calculation.

5.1 WC Case Study of Differential Frequency

The tables for excess ratios in WC are produced by five types of WC in-
jury: Fatal, Permanent Total Disability [PTD], Permanent Partial Disability
[PPD], Temporary Total Disaility [TTD], and medical only [MO]. The WC
system in the US has seen a persistent decline in claim frequency over the
past 10-15 years. The decline is observed within each of the injury types
and over the spectrum of US industries. There is no consensus on how long
this pattern can persist, or even on its underlying causes. One pattern that
has emerged, both in NCCI investigations as well as from studies by the De-
partment of Labor, is that this decline has not been uniform by size of loss.
Small WC claims have declined proportionally more than have large WC
claims. That is the motivation for this look at how differential frequency
trend impacts entry ratio tables.
A recent NCCI study produced the following table of percentage changes
in claim frequency (per unit of wage-adjusted payroll exposure):
Fatal PTD PPD TTD MO
Smallest third of claims —6.2% —524% -23.7% -—-32.8% -26.7%
Middle third of claims —7.9% —18.5% —12.8% -204% -29.9%
Largest third of claims —10.3% 4.3% -87% —85% —13.8%
With the exceptions of the fatal and medical only injury types, the table
conforms to the by now familiar pattern of a smaller decline in frequency with
increasing claim size. These percent changes were used to define a propor-
tional change in frequency function h;(r) as a step function of entry ratio r
for each injury type i. Even a smoothed version of hi(r) would not likely con-
form to the differential frequency trend model assumptions for injury types
Fatal [¢ = 1] and Medical Only[i = 5 :
Range of r hi(r)  ho(r)  ha(r)  ha(r)  hs(r)
0<A(r)< i 09382 0.476 0.7628 0.6718 0.7329
1<A@r) < % 0.9211 0.8151 0.8723 0.7957 0.7014
% < A(r)<1 08967 1.043 0.9134 0.9151 0.8624
Even though the assumptions of the differential frequency trend model
are technically not met in this case study, the discussion still makes it clear
how to determine, for each injury type, a trended entry ratio table from the
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untrended table. The graphs below show the excess ratio functions Ex,(r),
and Ey,(r) by injury type ¢ before (X;) and after (V;) trend. With the
exceptions of the fatal and medical only injury types, we again see that
Ey(r) — Ex(r) < 0. For each injury type except perhaps medical only, the
two curves are very close, which indicates that little or no frequency trend
adjustment to the rAB table is indicated.
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TTD--Frequency Decline on XSratio
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As in the earlier case study, it is straightforward to combine differen-
tial frequency trend impacts by injury type into a combined impact on the
normalized excess ratio.
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6 Matching the Mean and Median Loss

Suppose we are presented with an entry ratio table rABy together with some
constant € # 0, we next discuss how to build the entry ratio table rABx-.
Here we consider the trended random variable to be Y = (X ) = X* where
the transformation (z) = z° has %’f = ex°"! and is order preserving for
€ > 0 and order reversing for ¢ < 0. Thus, as we did for differential severity
trend, we have:

G(Y(z)) = Pr(Y <9(2))
= PO S ={ Bix 39 S e e s0 )
Let o =0<r; <79 <---< 1)y be asequence of entry ratios and set
A; = Ax(r;),B; = Bx(r;),0<i < M.
As before, suppose that A; = Ax(r;) > Ax(ri-1),1 <i< Mand Ay = 1.

Set AA; = A, — A;_1,AB; = B; — B;_;. Note that u%—%,l <i< M, is the
mean value of the untrended loss over the interval [ur;_1, ur;]. For1 <i < M,

set
~ AB\\ _ AB;\¢
BB = A4 <”’ (“KE)) = ad (“AA,)
B = Y aB.
k=1

£
Assuming, as usual, that (uﬁ%) is a good estimate of the mean value of the

fl

trended losses within the interval [;frf_l, /frf] leads to the familiar estimate
S EM and, as before, the two sequences {A;} and {§,} approximate
the cumulative claim and loss percentages of the trended losses. A change
of scale to normalize the trended losses corresponds to adjusting the two
sequences {A;} and B,-} by constant factors. So the sequences are very
nearly proportional to the A and B columns of the entry ratio for the trended
losses. Setting:

epe N B,

R=bl A=A, andBi=2, 0<i<M
Bu M

=-m

X
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we have approximated the r AB table for the trended losses: rABy = rABxe =
rAB.

Now abstract from this and suppose only that you are provided an entry
ratio table © in the form of three finite increasing sequences of M numbers:

o = 0<m<r<---<ry
Ay = 0< A <A< <Ay=1
By = 0<Bi<By<---<By=1

We will assume that these table values were constructed using some loss
variable X and so © at least conforms to the properties of an entry ratio table.
Given € > 0 we can formally construct a new entry ratio by mimicking the
above and assuming, with no loss of generality, that uy, = 1. For1 <i < M,
set AA;, = A; — A,_1 and AB; = B; — B;_; and define

~ AB;\*©
k=1

And construct a new table © from the increasing sequences:

€ ~.
ﬁ:r’,AzzA,,a.ndBl=§l,0§'L§M
BM BM

The significance of this construction for adapting entry ratio tables to chang-
ing conditions will become clear from the following:

Proposition 26 Let 1 < z; < z2 < -+ < Xpr be an increasing sequence of
M > 1 numbers. Then for any fized number w with 0 < w < 1 and integer
k, 1< k< M, there exist o, B > 0 such that setting y; = ax;® we have:

1 M
szi=l and Y =W

i=1

M
Proof. Let z; = 2,1 < i < M and define p(v) = %;z;’ then ¢ is a
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continuous function of v and invoking the Intermediate Value Theorem[IVT:

p(0) = 1
2y > 1= lim p(v) =00

v—00

1 1
1 < =< 00, IVT = there exists 8 > 0 such that ¢(8) = ™

Now set a = ;wg, then we have:
k

w .
Y = axiﬂz—ﬂxiﬂ=wziﬁ,1§z§M
Tk

1 M w M 8
= ML=y LA
i=1 =1
B

= wgo(B)=%= 1 and g =wzp =wlf =w
completing the proof. =

This means that, quite generally, for discrete loss data the power trans-
form Y = aX? enables us not only to normalize to mean 1 but also to simulta-
neously specify the entry ratio w(= r) of any selected percentile £(= A(r)).
As a very general example, suppose you are provided an rAB table and some
loss data with random variable X. Suppose further that you observe a me-
dian = m and mean = pu, so the observed entry ratio of the median = %
Now suppose further that in the given rAB table you observe that A(%) is

well removed from % This suggests to you that the given r AB table may not
be suited to the task, say, of looking up excess ratios Rx(z) for the given loss
data. Now assume that the given entry ratio table rAB has A(w) = § for
some w < 1—this is not unreasonable since loss distributions typically have
median less than the mean. From Proposition 23, there is a power transform
Y = aX? whose median has entry ratio equal to w. But this, in turn, sug-
gests that the given entry ratio table 7AB may be suitable as an entry ratio
table for the transformed losses Y = aX?, i.e. rAB = rABy, inasmuch as
the transformed losses have the ratio of mean to median implicit in the table.
While a power transform may not be the exact relationship for how losses
trend, it is reasonable to assume some structural relationship between the

given r AB table and the given losses. By Proposition 5, Rx(z) = Ry%’ (a%x)

and we find that all we require to customize the table lookup of excess ratios
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is an entry ratio table for Y. But the above discussion provides an algorithm
for determining the entry ratio table of a power transform. So let rAB be
determined, as above, from the original rAB table under the power trans-
formation & = %, then rAB ~ rABye = rABY%. This enables us to look up

the excess ratio Ryé (a?l”x). Finally, note that all this simplifies to the usual

process of looking up the entry ratio of the loss limit, but in the adjusted
entry ratio table:

Y = aXf=Y?5 :a%XﬁuY% =a'fl’;tx

= Rx(z)= Ryé(a%x) =E 4 <5;i95>

1%
afz T
vt (a%,ux v# (ﬂx)

= Rx(z) zﬁ(f—)
Bx o

So to summarize, this example illustrates a general technique to deal with
the case in which “trend” has impacted the shape of the severity distribution
as evidenced by a change in the relationship between the mean and the
median loss. In fact, the discusgoi details how to “trend” the old entry
ratio table, rAB, to a new table rAB.

The challenge with this approach comes in finding o and 5. At first, it
would seem to require a calculation involving the complete loss variable X,
or at least a very robust and representative claim subsample. And such cal-
culation (the proof of Propostion 23 coupled with a binary search algorithm
might prove useful), if doable at all, would suggest that direct calculation of
the excess ratio, or even an entirely new rAB table, may be more practical.
However, notice that only £ is required to construct +AB from rAB and it
is a straightforward spreadsheet application to try different values for 8 until
the resulting rAB satisfies ;f(w) = % This approach may well provide a 3
that works even when w > 1 and the technique can be applied equally well
to other percentiles than the median. Consequently, the technique is both
general and constructive.

Example 27 This example considers an entry ratio table rAB (columns
r,A,B) that reflects a loss distribution for which the median is about %th of
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the mean. Assume that later data revealed that the entry ratio of the median
loss had grown from 0.8 0 0.85. A power transform with 8 = 2 is illustrated.
Appendiz B includes the table and displays a trended entry ratio table rAB
(columns T, A, B) which may better fit the newer data. The following chart
shows the corresponding change in the normalized cumulative distribution
function, from A — A:

Power Transform Example
1.00
075
0.50
0.25 -
0.00 T T T T T T r

000 050 100 15 200 250 300 350 400

Entry Ratio r

We just. saw how a calculation similar to that of the differential severity
trend approach can adapt the r AB table to a power transform Y = aX?. We
conclude this section by describing how the set up of the differential frequency
trend calculation can adapt the rAB table to a proportional hazard transform
Sy = (9x)”. In the notation used for differential frequency trend, we have:

dSy _ ~ _
9(z) = ~—— = aSx(2)* f(z) = h(z) = aSx(z)*".
~ Now abstract from this as above and suppose again that you are provided
an entry ratio table © in the form of three finite increasing sequences of M

496 Casualty Actuarial Society Forum, Fall 2006



Trending Entry Ratio Tables

numbers:

o = 0<rm<re< - <ry

Ay = 0< A1 <A< <Ay=1

Bo = 0<B1<B2<"'<BM=1.
Given a > 0 we can formally construct a new entry ratio table by employing
the three-step process for the frequency differential trend, again assuming for

convenience and with no loss of generality that the mean of the loss variable
of the given table is 1. Set AA; = A; — A;.1,AB; = B; — B;_; and define

Ai = 1—(1—Ai)a,Agi=gi—Zi_1, OSZSM

- ~ /AB
= Ak (2B
Ab (AA)

B, = Y AB,1<i<M
k=1

From which we construct a new table © from the increasing sequences:

1

jsol}

ke 2 A o |
T = LMaAi= 'L,B‘iz lvosZSM
BM M

My
tn

M

Example 28 This example begins with the same entry ratio table TAB as
the previous ezample. A proportional hazard transform a = g, selected to
again adjust the median to an entry ratio of about 0.85-the table is included
in Appendiz.B. The following chart shows the corresponding change in the
normalized cumulative distribution function, from A — A:
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Proportional Hazard Transform Example
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The t;@o examples illustrate the rather different ways in which the power
transform (which bears a formal similarity with the differential severity trend
set up) and the proportional hazard transform (which bears a formal similar-
ity with the differential frequency trend set up) achieve raising the relativity
of the median to the mean loss. The power transform disproportionately in-
creases the larger losses, including increasing the maximum loss amount from
3 to around 3.3, so that proportionally fewer losses above 0.8 are needed for
an overall mean = 1. By contrast, the proportional hazard adjustment re-
moves the largest losses, including dropping the maximum loss amount from
3 to about 2.3, forcing the smaller losses to increase in order to maintain an
overall mean = 1. Accordingly, it is advisable to consider the impact of trend
on the largest losses when selecting a trend adjustment to update an entry
ratio table.

It is also worth comparing what the WC case studies suggest in regard
to the justification for trending an entry ratio table. Medical inflation has
outstripped overall wage growth very consistently and the reasons why are
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well understood. Also, WC medical coverage is not subject to the statutory
limitations imposed on wage-replacement benefits. Finally, in the case of
excess ratios, the direction of the change in the tablular values is consistent
and readily explained. So in the case of differential severity trend, there is a
strong argument to be made that the underlying dynamics are persistent.

The case of differential frequency trend provides a contrast. The decline in
WC claim frequency, while persistent over the past decade, is neither readily
explained nor well understood. Experts disagree on whether the decline
will, or even can, continue. While no one is surprised that medical inflation
outstrips wage growth, the observation that the WC frequency decline is
greater for smaller claims is a fairly new and a largely unforseen observation.
In the case of excess ratios and differential frequency trend, the direction of
the change in the tablular values is neither consistent nor straightforward.
While the dymanics of differential severity trend are extemely unlikely to
reverse, that cannot be said for differential frequency trend.

As with any trend adjustment, there is the concern that missing turning
points will result in trend adjustments leading to worse estimates rather than
better estimates. This is especially so when the direction of the numerical
change is itself problematic. In the case of entry ratio tables, there is a built in
correction for short term changes in severity that works very well. And so any
“trend” adjustment must be justified over a long time window as improving
the estimate. This study suggests that while a fairly strong argument can
be made for incorporating the differential severity trend adjustment to WC
entry ratio tables, the case is much weaker for differential frequency trend.

7 Conclusion

In the case of a differential severity trend in which large losses trend upward
faster (slower) than do smaller losses, the use of an entry ratio table assumes
an average trend which corresponds with a severity distribution whose tail is
not thickening (thinning) in response to the non-uniform trend. Ideally, the
normalized excess ratios from the rAB table should be increased (decreased)
to offset this.

In the case of a differential frequency trend in which the frequency of small
losses declines faster (slower) than for large losses, the impact of the frequency
decline on the mean severity is leveraged. Over the range of attachment
points, the use of an untrended entry ratio table may sometimes overstate or
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sometimes understate the change in the excess ratio.

The two models described here, the differential severity trend and differ-
ential frequency trend scenarios, are meant to act independently of one an-
other. Differential severity trend assumes that all trend is due to inflationary
movement and none is due to a change in claim emergence. Differential fre-
quency trend holds loss amounts fixed while applying a proportional change
in the density. Therefore, it is perhaps not too surprising that while both act
to increase the mean severity, they can impact the normalized excess ratio
in opposite directions and may offset one another when updating an entry
ratio table.

Another very general technique that can be used to accomodate a non-
uniform trend is to use a power transformation or a proportional hazard
transformation, in lieu of just dividing by the mean loss when performing
the lookup into the entry ratio table. The technique provides another way
to trend an entry ratio table. More precisely, the ratio between the mean
loss and a fixed percentile loss may be observed to change over time. And
this calculation gives a way to periodically modify the entry ratio table to
accomodate that movement.
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APPENDIX A

In this appendix we invoke the notation and assumptions of the Differ-
ential Frequency Trend (section 4) of the main paper and let X be a loss
variable with survival function S(z) for which Mx = oo. We consider the
implications of the assumption that the limit A(p) = lim, —é(—)l exists for
all p > 1. Proposition 14 of the paper gives:

Proposition 29 Let X be a loss variable with Mx = oo and S = Sx, then

for any p > 1 for which the limit A(p) = lim,_, é(%l exists:

1
AMp) < - < 1.
(k) p
Note that when the limit A(p) = lim,_, %L(—)z exists:
i ST _ L S(0) S(en)

o S(@) | e S(pz) S(@)

__ S(p(px)) \.  S(pz)
I =) A5

(o Sem)
- (. 555)
= A?) =),

More generally, we have:

Proposition 30 Let X be a loss variable with My = 0o and S = Sx, then

for any m € N, if the limit A\(p) = lim,_,o %(g)l exists then

Ap™) = lim gzm;) = A(p)™.

Proof. The verification is a straightforward induction, the result has been
observed to hold for m = 1,2, we have:

. S(pmta) S(p™tz) S(p™x)
I =cm T S s@
_ g S (e"2) | S(e"a)
g0 S(pmz) z—00 S(z)
AP)A(P™)

AP)Mp)™ = Mp)™*!
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completing the induction and the proof. =
When such limits all exist, this generalizes to:

Proposition 31 Let X be a loss variable with Mx = oo and S = Sx, and
assume that the limit A\(p) = limg—.o §Sg(p_;)l exists for all p > 1. Then

Ap)? = A(p®) for any positive real number w.

1
prz

5 is assumed to

Proof. Observe that since the limit A(p%) = limg_,c0 2
exist, we must have:

CT I Gl ) o Gl ) WO Gl )

S(?) - S (p"—?m) S (p"ni:c S (p?x)

= lim ——Z = A(p)~.
i - (p)
But then for any positive integers m,n we have:

%) = tim S22 — i(g(_))_) = (@) =A@,

Whence A(p*) = A(p)* for any positive rational a. Now let w be a positive
real, then there are sequences of positive rationals:

ar,by € Q,keN
such that 0 < ay,a < ager, bk > by
and with lim ax = lim b, =w.
k—oa k—o00

This clearly forces a, < w < b; and since S is a continuous, non-increasing
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function, we have:
w < by = p™ < p¥ < pt
P < p¥z < pa forallz > 0
S (p™z) > S (p¥z) 2 S (pb’“:c) forallz >0
S(p*a) _ S(px) _ S (0™a)

S) ~ S — Sz

. S(p*z . S{(p¥z S (o™
}H{.‘o‘é_/z;;)_) Zm—s(fz—)) ZJBEOTS(;)*)
Mp)™ = Ap™) 2 A(p”) 2> Mp™) = A(p)*

M)* = Ap)mem > M) 2 Mp)'™==" = A(p)*
= AMp)” = A(p*)
and we see that A(p)¥ = A(p”) for any positive real number w, completing
the proof. m
An immediate consequence is:

Corollary 32 Let X be a loss variable with Mx = oo and S = Sx, and
assume that the limit A\(p) = limy_o %g(%)- exists for all p > 1 Then

Qg

LR

forallz >0

¢y

1. there exists p > 1 such that A(p) =0 < A(p) = 0 for every p > 1
2. there exists p > 1 such that A(p) # 0 < A(p) # O for every p > 1.

Consider the one-parameter survival function:
1 <1
1w = TEa)={ 5 751}
T(ow) _(e2) _ oy Tew)
T(x) P y—oo T(y)
Note that T(8;x) has a finite mean if and only if § > 1. By convention,

we include the (discontinuous) possibility that 5 = oo by setting T'(o0; z) =
z7® =0forz>1.

Bz > 1=

Proposition 33 Let X be a loss variable with Mx = co and S = Sx and
assume that the limit A(p) = limy..o0 %((%2 exists for all p > 1. Then

o Slper)
Mp) = JL“&?(T)_"’B

forallp > 1, where 8 =—1In(A(e)) > 1.
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Proof. Consider first the case when there is some p, > 1 such that A(p,) # 0.
Then from Proposition 29 and Corollary 32 we find that A(e) € (0,1). Then
for any real p > 1 we have:

AMp) = A(elnp) = )\(e)l“” = (e—ﬁ)l“” — (elnp)—ﬂ - p_ﬁ
where \(e) = e & f=—In(\(e))

and since by Proposition 29:

(e)<1=>e</\(1) ln(e)<1n<)‘()) ~In(\(e)) =

the result follows in this case. For the remaining case A(p) = 0 for all
p > 1 we have from Corollary 32, with minimally abusive notation and our
conventions:

~In(x(e)) = —In(0)=
{3 - . S(p.’r)

= lim

—_— = = p >
m 5@ O=p = foralp>1

and the result holds in this case as well. The proof is complete. m

Corollary 34 Let X be a loss variable with Mx = oo and § = Sx and
assume that the limit A(p) = limy—o —g(pi exists for all p > 1 and further

that there.zs some py > 1 such that A\(py) # 0. Then
S(ex) _ . T(Bipw) _

% S(z) s T(B;z)
forallp > 1, wherel < = —In(A(e)) < o0.

AMp) = hm

Proposition 35 Let X be a loss variable with Mx = oo and S = Sx, then
the following are equivalent:

1. lim, o %(3})2 erists for all p > 1

2. there exist p, > 1,k € N such that limg_ o, = 1 and lim,_, ﬂsﬁ(ﬁz

exists for every k € N.
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Proof. It is apparent that 1 = 2. To establish the meaningful direction
2 = 1, we begin with the claim that:

ay > 0 for all k € N and klim ay = 0 = {maylk,m € N} is dense in [0, 00).
Indeed, given € > 0, b € (0, 00):

klimak=0:~3k€N90<ak<-;-

and setting

b = mak=>bm+1—bm=ak<§
= there exists m € N such that b,, € (b—¢€,b+¢€)
= mo€(b-¢eb+e),k,bmeN
Since this holds for any € > 0, it follows that {max|k,m € N} is dense
in [0,00) as claimed. And since the log function In : [1,00) — [0,00) is
bicontinuous and bijective, we see that

o, > 1for all k € N and klim o = 1= {pP*|k,m € N} is dense in 1, 00).
Now we have our assumption:

there exist p, > 1,k € N such that
S(pez)

klir{.lo o, = 1land 551530 —SW exists for every k € N

and we select any p > 1 and seek to prove that this assumption is sufficient to
imply that the limit lim, ., %&? exits. So assume, by way of contradiction,

that lim,_, %(%2 does not exist. We have, by density:
there exist ax,br € {o"|,me N} keN
such that 1 < aj,ar < agy1,ax < p and with klim ar =p
=00

and such that by > bgy1, b, > p and with klim by, = p.
—00

Now S is a continuous, non-increasing function on [0, c0) and so we have:

p<b; foralljjkeN

arz < pz < bz for all z > 0, and for all j,k € N

S (axz) > S (px) > S (bjz) for all z > 0, and for all j,k €N

S (axx) > S {pzx) > S (b;z)
S(x) — S(z) — S(=)

ag

¢ 4 4a

for all x > 0, and for all j,k € N.
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Consider the two sets:

A = {zlirgo Séf(’;”;),k € N}

- ]

The above inequalities clearly force:
B<a<l foralla€ Aandforal g€ B.

Observe that by Proposition 29:

S(aka:) 1
% 5@ S a

= a<lforallae A

We also have, for any k € N, that:

a < p
= grx<prforallz>0
= S(agx) > S(pz) forallz >0
S (axz) _ S (px)
> f
= 5k 2 5@) orallz >0
. S(agz) _ S(pz)
1 > > .
= Jim St) = 3@) = Oforallz >0
‘We claim that lim,_, ﬂS‘Z—;’)ﬁZ > 0 for every k € N, since otherwise:
lim M = 0 = existence of the limit lim —S—@ =0=3<«.
% S() % 5()

And we established:

0 < a<lforallac A
= AcC(0,1).

Now set:
a=infA,B=supB
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then clearly 0 < f < a < 1. We claim that:
a=p.

Indeed, suppose, again by way of contradiction, that o # 3. Then we would

have:
8 < a.

Now

A C(0,1) = there exists ¢ € {aglk € N} with 1 >y = lim S(cz) S0

s 5(z)
and we have, for any given ¢ > 0 :

1 > 7>O:3n€Nsuchthat'y%>1—e

klim o, = 1= dm € Nsuch that pm<c%
= pp<Cc
= ppz<czrforallz>0
= S(ppz) > S(cz) forallz >0
S(oa) _ Slea) .
> for all
= S(z) 2 5@ orallz >0
= lim%x—)>lim§£ﬁ=7

z—o S(z) T e—eo S(x)
N (l'm S(pmx)> ~ im 20R2)

s S(2) ) e S@) -

Proposition 29 = 1> —1— > lim 5(pmz) > 7% >1—c¢
Pm  e—x S(z)
And we have established:
For any given ¢ > 0 there exists ¢; > 1
S
such that the limit lim Slerz) exists and is in (1 —¢,1).

s—co S(z)

We next claim that:

There exists ¢, > 1 such that lim S(cp;x) € (B,a).
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Let B8; = ‘—’%é, then clearly 0 < 8, < a and (B;,a) C (B,a). Now let
6§ =Ilna —InpB, > 0. Then letting € = 1 — e~® we have ¢ > 0 and so by an
earlier claim there exists ¢; > 1 such that

. S(‘Plfz)
5@y € G-el)
= In (}L‘&%;Q) € (=6,0).

Set n=—1In (limx_,oo %%)ﬂ), then:

_ . S(py2) _
- = In (zh—»l{.lo 6) € (-6,0)=(InB; ~lne,0),0<n<$
Ing ha Ina InB 4 (lna—Infg Ina-Ing
_— = - > =
-n N ) 0

n Uj n
. Ina Ing,
= there exists [ € N such that l € { —,

-n -n
= —nle(nfylna)=e™ € (8;,0) C (6,0)

1

il

and it follows that, setting ¢, = ¢} we have:

e = elln(limz_,‘oo S_g(f’gl) _ (eln(limz_.m ssgwiz))>l

_ . S(p1) l_ - S(pix) L S(pew)
= (}L“é‘o S(@) ) = IS T A TS
= lim Slepr) _ e™e(B,a)

z=e S(z)

and the claim is established. Recalling how o and 8 were defined, we have:

lim S(paz) € (B,a) = (sup B, inf A)

% S5(a)
. S(bjz) . S(pyx) . S(agz)
T SRTSE e 5@ e 8w

Vi, keN
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and we also have that:

S(akz) _ S(py2)
Qg > (p2 = S(.’L‘) .<. S( )
= lim 5 (az) < lim 5 (0p2) <a=infA =«

S S B
S (bjz) _ S(poz)
R A OND)

m 502 o o S (0a)
= lm ey 2 hmgny

> f=sup B =<«

and we are lead to:
ar Ly < b;forallk,j eN.
But this, in turn, leads to
Jim ap = p=lim b =g, =p

S(poz) 1. S(pz)
= existence of the limit lim = lim
—00 S( ) T—=00 S(.’I;)

>«

and with this contradiction we have established our claim that that o = 8.
Now by the definition of the set A and « = inf A we find that for any given
e>0:

S
there exists k; € N such that o + > lim fs,Cl(k‘)m )
= there exists ; > 0 such that
S S
ate > gzl;)z) > S((f;)’ for every z > x;
= there exists z; > 0 such that
a+te > 5(pz) for every z > ;.

S(x)’

And similarly, by the definition of the set B with & = 8 = sup B, we find
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that for any given € > 0

S(bi,2)

there exists ks N such that 8 — % < lim

© s 5(a)
= there exists z; > 0 such that

S (byz) _ S (pa)
< S = 3@
= there exists zo > 0 such that
S (pz)
S(z)

, for every z > z,

B—~¢€

a—¢ = fB—-€< , for every z > z,.

Therefore:

given any € > 0, there exists 3 > 0 such that
S
{ (px),xes} C (a—€a+e)

= the limit lim M = o exists =><
o 5(a)

and this final contradiction establishes that the limit lim;_, %(%l exists for
all p > 1 and completes the proof. m
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0.1
0.2
03
0.4
0.5
06
0.7
0.8
0.9

1.1
1.2
13
14
15
186
7
18
19

21
22
23
24
25
26
27
28
29

A

0
0.082907
0.163781
0.236026
0.303221
0.363143
0417715
0.467217
0.512363
0.554109
0.591878
0.826693
0.658777
0.688675
0.716234
0.741513
0.765774
0.788177
0.808417
0.828932
0.8470186
0.864609
0.88129
0.897579
0.912953
0.927842
0.942066
0.955979
0.970255
0.98386

1

B

o
0.004145
0.016276
0.034338
0.057856
0.084821
0.114835
0.147012
0,180871
0.218355
0.262236
0.288792
0.325688
0.383061
0.400266
0.43692
0.474524
0.51149
0.54886
0.584763
0.820025
0.856092
0.691955
0.728605
0.764738
0.801212
0.837484
0.874354
0.913613
0.952387
1

AA

0
0.082907
0.080874
0.072245
0.067195
0.069922
0.054572
0.048502
0.045146
0.041746
0.03777
0.034815
0.032084
0.029898
0.027559
0.025279
0.024261
0.022404
0.02124
0.018515
0.018084
0.017594
0.01668
0.016288
0.015375
0.014888
0.014224
0.013913
0.014276
0.013605
001614
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AB

0
0.004145
0.012131
0.018081
0.023518
0.026965
0.030015
0.032177
0.033859
0.035484
0.035881
0.036555
0.038897
0.037373
0.037204
0.036655
0.037604
0.036966
0.037169
0.036103
0.035263
0.036067
0.035883
0.03665
0.038131
0.036476
0.036272
0.03687
0.039259
0.038774
0.047613

APPENDIX B
Power Transform Example (B = 2)

F AB
0 0
0.316228 0.01853862
0.447214 0.03132221
0547723 0.03612254
0632456 003975295
0.707107 0.04019696
0.774597 004047166
083685 0.03991004
0.894427 0.03909732
0.948683 0.03848772
1 0.03681339
1.048809 0.03567449
1095445 0.03440628
1140175 003342733
1183218 0.03202034
1224745 0.03044021
1264911 0.03020417
130384 0.02877787
1341641 0.02809741
1378405 0.02654347
1414214 0.02525227
1449138 0.02519015
148324 0.02445823
1516575 002443335
1549193 002356912
1581139 002330379
1612452 0.02271451
1643168 0.02264905
1.67332 0.0236738
1702039 0.02206765
1.732051 0.02772158
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B

0
0.018539
0.049861
0.085983
0.125738
0.165933
0.206405
0.246315
0.285412
0.3239
0.360713
0.396388
0.430794
0.464222
0.496242
0.526682
0.556886
0.585664
0.813762
0.640305
0.665557
0.690747
0.715206
0.739639
0.763208
0.786512
0.809228
0.831875
0.855549
0.878517
0.906238

4]
0.110346
0.220682
0.331039
0.441385
0.551731
0.662077
0.772424

0.88277
0.993118
1.103462
1.213809
1.324155
1.434501
1.544847
1.855193

1.76554
1.875886
1.986232
2.096578
2.206925
2317211
2.427617
2.537963

264831
2.758656
2.869002
2.979348
3.089694
3.200041
3.310387

~

A4

[
0.082807
0.163781
0.236026
0.303221
0.363143
0.417715
0.467217
0.512363
0.554109
0.591878
0.626693
0.658777
0.688675
0.716234
0.741513
0.765774
0.788177
0.809417
0.828932
0.847016
0.864609
0.88129
0.897579
0.912953
0.927842
0.942066
0.955979
0.970255
0.98386

1

B

4]
0.020457
0.05502
0.004879
0.138745
0.183101
0.22776
0.271799
0.314942
0.357411
0.398034
0.437399
0.475365
0.512251
0.547584
0.581174
0.614503
0.646258
0.877263
0.706552
0.734417
0.762214
0.789202
0.816164
0.842171
0.867886
0.892951
0.917943
0.944066
0.96941

1
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o1
02
03
04
05
06
07
o8
0.9

11
12
13
14
15
16
1.7
1.8
19

21
22
23
24
25
26
27
28
29

A

0
0.08290724
0.16378083
0.23602591
0.30322066
0.36314275
0.41771473
0.46721704
0.51236273
055410853
0.59187827
0.62669301
0.65877703
0.68867534
0.71623406
0.74151327
0.76577385
0.78817739
0.80941703
0.82893218
0.84701571
0.86460927
0.88128965
0.89757855
0.91285335
0.92784159
0.94206597
0.95587917
0.97025501
0.98385987
1

512

B

0
0.004145
0.016276
0.034338
0057856
0 084821
0.114835
0.147012
0.180871
0.216355
0.252236
0.288792
0 325688
0.363061
0.400266
0.43692
0.474524
0.51149
0.54866
0 584763
0.620025
0 656092
0.681955
0728605
0 764736
0801212
0.837484
0.874354
0913613
0.952387
1

AA

0
0.082807
0.080874
0.072245
0.067195
0.059922
0.054572
0.049502
0.045146
0.041746
003777
0.034815
0.032084
0.029898
0.027559
0.025279
0.024261
0.022404
0.02124
0.019515
0018084

0.017594

0.01668
0.016289
0.015375

0.014888 -

0.014224
0.013813
0.014276
0.013605

001614
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Proportional Hazard Transform Example (o = 5/7)

AB

0
0004145
0.012131
0.018061
0023518
0.026965
0.030015
0032177
0033859
0.035484
0.035881
0 036555
0 036897
0.037373
0.037204
0.036655
0037604
0.036966
0037169
0.036103
0.035263
0 036067
0.035863
0.03865
0036131
0036476
0.036272
0.03687
0.039259
0.038774
0047613

4

]
0.059947
0.119936
0.174942
0.227453
0275514
0.320421
0.362208
0.401296
0.438371
0.472779
0.50531
0.536066
0.56548
0.593316
0.619536
0.645399
0 669971
0.693963
0.716689
0.73842
0.760279
0.781767
0.803602
0.825144
0.847071
0.869268
0.892555
0.918795
0.947527
1

AAd

0
0.05994702
005998875
0.055005747
0.052510987
0.048061374
0.044907259
0.041787246
0.03908775
0 037075025
0.034407898
0.032531155
0.030756108
0.02841379
0 027835655
0.026220703
0 025862853
0.024572019
0023991374
0.022726515
0.02173056
0.02185905
0.021488162
0.021835308
0.021541886
0.021926519
0.022197493
0.023287235
0.026239833
0.028732009
0.052472719

AB

[}
0.00299735
0.00899831
0.01375144
0.01837885
0.02162762
0.02469899
002716171
002931581
0,03151377
0.0326875
0.03415771
0.03536952
003676724
003757813
0.03802002
0.04008742
004054383
0.0419849
0.04204405
0.04237459
004481105
0.04619955
0.04912944
005062343
005371997
0.05660361
006171117
0.07215954
0.08488622
015479452

B

o
0.002997
0.011986
0.025747
0.044126
0.065754
0.080453
0.117614
0.14693
0.178444
0.211131
0.245289
0.280659
0.317426
0.355004
0.393024
0.433111
0473655
0.51564
0.557684
0.600059
0.64487
0.691069
0.740199
0.790822
0.844542
0.901148
0.962857
1.035017
1116903
1.271697

F
0
0.078635
0.15727
0.235905
0.31454
0.393175
0.47181
0.550445
0.629081
0.707716
0.786351
0.864986
0.943621
1.022256
1.100891
1.179526
1.258161
1.336796
1.415431
1.494066
1.572701
1.651336
1.7299714
1 808607
1.887242
1.965877
2.044512
2123147
2201782
2.280417
2.359052

0
0.059947
0.119936
0.174942
0.227453
0.275514
0.320421
0.362208
0.401296
0.438371
0472779

0.50531
0.536066
0.56548
0.593316
0.619536
0.845398
0.669971
0693963
0.716689
0.73842
0.760279
0.781767
0803602
0.825144
0.847071
0.869268
0.892555
0.918795
0.947527
1

B

0
0.002357
0.009433
0.020246
0.034698
0.051705
0071127
0.092486
0.115539
0.140319
0.166023
0.192883
0 220696
0.245608
0.279158
0.309055
0.340577
0.372459
0405474
0438535
0.471857
0.507084
0.543423
0.582056
0.621864
0.684108
0708617
0.757143
0.813886
0.878277
1
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