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A b s t r a c t .  

In the present paper we review and extend two stochastic models f o r  l o s s  resenting and study their 
impact on extensions of the additive method and of the chain-ladder method. The first of these models 
is a particular linear model while the second one is a sequential model which is composed of a finite 
number of conditional linear models. These models lead to multivariate extensions of the additive 
method and of the chain-ladder method, respectively, which turn out to resoh-e the problem of 
additiviq'. 
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1. INTRODUCTION 

For a portfolio consisting of  several fines of  business, it is well-known that the chain- 

ladder predictors for the aggregate portfolio usually differ from the sums of  the chain-ladder 

predictors for the different lines of  business; see Ajne [1994] and Klemmt [2004]. It is one of  

the purposes of  the present paper to point out that the non-coincidence between a chain- 

ladder predictor for the aggregate portfolio and the sum of  the corresponding chain-ladder 

predictors for the different lines of  business has its origin in the univariate character of  the 

chain-ladder method which neglects dependence between the different fines of  business. 

The problem of  dependence between different lines of  business has already been 

addressed by Holmberg [1994]. His paper is remarkable since it adopts a general point of  

view and considers 

- correlation within accident ),ears, 

- correlation between accident years, and 

- correlation between different lines of  business. 

Nevertheless, the major part of  Holmberg's paper is devoted to correlation within and 

between accident ),ears and the author expresses the opinion that ,  in practical applications, 

the great majority of  the effects causing correlation between different fines of  business are 

already captured in the correlation within and between accident years. It is another purpose 
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of  the present paper to show that correlation between different lines of  business can be 

modelled and that the resulting models, combined with a general optimality criterion, lead to 

multivariate predictors which are superior to the univariate ones. Here and in the sequel, the 

term univaffate refers to prediction for a single line of  business and the term multivariate refers 

to simultaneous prediction for several lines of  business or for different t3-pes of  losses (like 

paid and incurred losses) of  the same line of  business. 

The papers by Ajne [1994] and Holmberg [1994] were sfighdy preceded in time by a 

paper by Mack [1993] which, similar to the paper by Hachemeister and Stanard [1975], 

turned out to be path-breaking in the discussion of  stochastic models for the chain-ladder 

method. In the model of  Mack, dependence within accident years is expressed by 

conditioning, but it is also assumed that the accident years are independent. The assumption 

of  independent accident years was subsequendy relaxed in the model of  Schnaus presented 

by Schmidt and Schnaus [1996]. Both of  these models are univariate and hence do not 

reflect dependence between lines of  business. 

After the publication of  the paper of  Mack [1993], about a decade had to pass before the 

emergence of  the first bivariate models related to the chain-ladder method. One of  these 

models, due to Quarg and Mack [2004], expresses dependence between the paid and 

incurred losses of  a single line of  business (a topic which had already been studied before by 

HaUiwell [1997] within the theory of  linear models) and has been used as a foundation for 

the construction of  certain bivariate predictors which are now -known as Munich chain- 

ladder predictors. The other of  these models, due to Braun [2004], expresses dependence 

between two lines of  business and has been used to construct new estimators for the 

prediction errors of  the univariate chain-ladder predictors, but it has not been used to 

construct bivariate predictors. Each of  these models extends the model of  Mack. 

Quite recently, Pr6hl and Schmidt [2005] as well as Hess, Schmidt and Zocher [2006] 

proposed multivariate models which reflect dependence between an arbitrary number of  

lines of  business. The model of  Prthl  and Schmidt extends the model of  Braun in essentially 

the same way as the model of  Schnaus extends the model of  Mack, while the model of  Hess, 

Schmidt and Zocher extends in a rather straightforward way the particular linear model 

which may be used to justify the additive method; see Radtke and Schmidt [2004]. These 

models, combined with a general optimality criterion, lead to multivariate versions of  the 

chain-ladder method and of  the additive method, respectively, which turn out to resolve the 
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problem of additivit3'. 

In the present paper we review these recent multivariate models and methods of  loss 

reserving. In order to avoid the accumulation of  technicalities, we start with a systematic 

review of  the univariate case (Section 2) and of  prediction in conditional linear models 

(Section 3). We then pass to the multivariate case (Section 4) and show that, the optimal 

multivariate predictors for the single lines of  business sum up to the corresponding 

predictors for the aggregate portfolio (Section 5). We also show how the unbiased estimators 

of  variances and covariances proposed by Braun [2004] can be adapted to the multivariate 

models considered here (Section 6). We conclude with some complementary remarks 

(Section 7) and a numerical example illustrating the multivariate chain-ladder method 

(Section 8). 

Throughout this paper, let (D, 5 r, P) be a probability space on which all random 

variables, random vectors and random matrices are defined. We assume that all random 

variables are square integrable and that all random vectors and random matrices have square 

integrable coordinates. Moreover, all equalities and inequalities involving random variables 

are understood to hold almost surely with respect to the probability measure P. 

2. U N I V A R I A T E  L O S S  P R E D I C T I O N  

In the present section we review two univariate stochastic models which are closely 

related to two current methods of  loss reserving. 

We consider a single fine of  business which is described by a family {Zi,k}i,k~{o,1 ...... } of  

random variables. We interpret Zi,k as the loss of  acddentyear i which is reported or settled 

in development year k, and hence in calendar year i + k, and we refer to Zi,k as the incrementalloss 
of accident year i and development year k. 

We assume that the incremental losses Zi,k are observable for calendar },ears i + k < n and 

that they are non-observable for calendar }'ears i + k > n + 1. The obsetwable incremental losses 

are represented by the following run-offtriangl~. 
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A c c i d e n t  D e v e l o p m e n t  Y e a r  

Y e a r  0 1 . . .  k . . .  n - i . . .  n - 1 n 

0 Z0 ,  0 Z0,1 . . .  Z o ,  k . . .  ZO,n_ i . . .  Z o , n _  1 Z o ,  n 

1 Z,,o Zl,l ... Zl,k ... &, . - i  "'" &,.-i 
i i ! i i 
i Zi.o Zi,1 . . .  Z i , ,  . . .  Z i , , - i  

! ! i ! 

n - k Z , _ , .  o Z . _ , a  . . .  Z . _ , , ,  

n - 1 Z . q , ,  Z . -1 ,1  

n l w ,  0 

Besides the incremental losses, we also consider the cumula t i ve  losses Si,lt which are defined by 

k 
Si,k := 5". Z,,,. 

1=0 

Then  the cumulative losses Si,k are observable for calendar years i + k < n and they are 

non-observable  for calendar years i + k > n + 1. Just  like the observable incremental losses, 

the observable cumulative losses are represented by a run-of f  triangle: 

A c c i d e n t  D e v e l o p m e n t  Year 

Year 0 1 ... k ... n - i ... n - 1 n 

o So,o So,1 ... so,, ... So.,_i .." So.,-~ So,, 

1 Sl,o Sl,l . . .  Sl,k . - .  Sl,n-i "'" S l ,n - I  

i ! i ! i 

i Si,o Si,1 . . .  Ss,k . . .  S i ,n - i  

i i i i 
n -  k S._, ,o S . - ka  . . .  S ._ , , ,  

n - 1 S._1,o S . - l a  

n Sn~o 

O f  course, the incremental losses can be recovered from the cumulative losses. 

2.1 Univariate Additive Model  

Let us first consider the univariate additive model: 

Un iva r i a t e  Addi t ive  Model :  There  ex i s t  real  n u m b e r s  v0, vl . . . . .  v .  > 0 a n d  
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¢So, ~1 . . . . .  a .  > 0 as u,ell as realparameters ~o, ~1 . . . . .  ~.  such that 

E[Zi,k] = vigk 

and 

= ~ v i c k  i f  i = j  and k = l  
cov[ Zi  ,k ~ Zj,I  ] 

L 0 else 

holds for all i , j , k , l  ~ {0, 1 . . . . .  n}. 

For  i, k ~ {0, 1 . . . . .  n} such that  i + k > n + 1, the est imators and predictors  

x-', n-k Z 
GAD := /~j=O j,k 

~ n - k  V " 
j=O 1 

Zi, k := 
k 

: =  &.-i + v , E 
l=n-i+l 

are said to be the est imators  and the predictors  o f  the (univaffate) additive method. U n d e r  the 

assumpt ions  o f  the additive model ,  these es t imators  and predictors are indeed reasonable,  as 

will be s h o w n  in Section 4 below. 

2.2 Univar iate  Cha in -Ladder  M o d e l  

Let  us n o w  consider  the univariate chain-ladder model  due to Schnaus  which  was 

p roposed  by Schmidt  and Schnaus [1996] and is a slight bu t  convenien t  extension o f  the 

model  o f  Mack [1993]. 

T h e  chain- ladder  model  is a sequential  model  since it involves successive condi t ioning  

with respect  to the c~ -algebras Go, G1 . . . . .  ~ . - t  where,  for  each k ¢ {0.1 . . . . .  n}, the a - 

algebra 

Gk-1 

represents  the in format ion  provided by the cumulat ive losses Sj,I o f  accident  years 

j ~ {0, 1 . . . . .  n - k + 1} and deve lopmen t  years l ~ {0, 1 . . . . .  k - 1}, which  is at the same t ime 

the informat ion  provided by the  incremental  losses Zi,l o f  accident  years 

j ~ {0, 1 . . . . .  n - k + 1} and deve lopmen t  years l e {0, 1 . . . . .  k - 1}. 

We  assume that  Si,k > 0 holds  for all i , k  ~ {0, 1 . . . . .  n}. 
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Univar ia te  C h a i n - L a d d e r  Model :  For each k ~ {I . . . . .  n}, there exists a random variable q~k 

and a sttict[y positive random variable ~k such that 

E ~*-~ [Si,k ] = Si,k-~ ~, 

and 

covq,_l(Si,,,Sj,k) = { ~i,,_lo k i f  i = 

holds for all i, j ~ {0, 1 . . . . .  n - k + 1}. 

For i, k ~ [0, 1 . . . . .  n} such that i + k > n + 1, the estimators and predictors 

n-k 
(ocL := Ej=oS,,k 

yT-kS j=O j,k-1 

k 

: =  si._i l-I 
l=n-i+l 

^CL (such that S;,.-i = Si,.-i) are said to be the estimators and the predictors of  the (univariate) 

chain-ladder method. Under the assumptions of  the chain-ladder model, these estimators and 

predictors are indeed reasonable, as will be shown in Section 4. 

3. E S T I M A T I O N  A N D  P R E D I C T I O N  I N  T H E  C O N D I T I O N A L  
L I N E A R  M O D E L  

In the present section we consider a random vector X and a sub-a-algebra G of  F. The 

cr -algebra G represents information which is provided by some other random quantities. 

Cond i t iona l  L inea r  Model :  There exists a G-measurable random matrix A and a G" 

measurable random vector fJ such that 

EaIX] = Ap.  

The random matrix A is assumed to be observable and is said to be the design malrix and 

the random vector ~ is assumed to be non-observable and is said to be the parameter vector or 

the parameter for short. 

In the subsequent discussion, we assume that the assumption of  the conditional linear 

model is fulfilled. 
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We assume further that some of the coordinates of X are observabk whereas some other 

coordinates are non-observable. Then the random vector X1 consisting of the observable 

coordinates of X and the random vector X2 consisting of the non-observable coordinates 

of X satisfy 

E a[xl] = A1 I~ 

Ea[X2] = A2 

for some submatrices A1 and A2 of A. 

We also assume that the matrix A1 has full column rank, that the random matrices 

£ n  := vara[Xl] 

£21 := cova[X2,Xl] 

are -known, and that ~'~ll is (almost surely) invertible. 

Since the random vector Xa is non-observable, only the random vector X1 can be used 

for the estimation of the parameter 13. 

3.2 G a u s s - M a r k o v  E s t i m a t i o n  

Let us first consider the estimation problem for a random vector of the form CI3, where 

C is a q -measurable random matrix of suitable dimension. 

A random variable ¢/ is said to be an estimator o f  C~ if it is a measurable transformation 

of the observable random vector X 1. For an estimator Y of C~,  the random variable 

[ ( i "  - c - 

is said to be the q -conditional expected squared estimation error of ¢/. Since 

E~ [ ( ¢ / - C ~ ) ' ( ¢ / - C J ~ ) ]  = trace(vara[~']) + E ~ [ q I - C ~ ] ' E a [ ¢ I - C ~ ]  

the q-conditional expected squared estimation error is determined by the q-conditional 

variance of the estimator and the q-conditional expectation of the estimation error. An 

obsetwable random vector ~r is said to be 

- a linear estimator of C]3 if there exists a q-measurable random matrix Q. such that 

~' = Q_x,. 

- a q-conditionally unbiased estimatorof CI3 if Eg[¢/] = E~[CI3]. 
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- a Gauss-Markov predictor of  C~ if it is a G-conditionally unbiased linear estimator of CI3 

and minimizes the ~-condJtional expected squared estimation error over all G- 

conditionally unbiased linear estimators of C~. 

We have the following result: 

3.1 Proposition (Gauss-Markov Theorem for Estimators). There exists a unique Gauss- 

Markov estimator qGM(c~) of C~ and it satisqes 

~,GM (CI3) = C(A'IZ~AI)-I A'IY-7~XI. 

In particular, qGM (CI3) = cqGM (~). 

Proposition 3.1 implies that the coordinates of the Gauss-Markov estimator 

fiGM := (A;Y-I-IAa)-IAIEI-~XI 

of the parameter ~ coincide with the Ganss-Markov estimators of its coordinates. 

3.2 G a u s s - M a r k o v  P r e d i c t i o n  

Let us now consider the prediction problem for a non-observable random vector of the 

form DX2, where D is a matrix of suitable dimension. 

A random variable ¢/ is said to be a predictor of DX2 if it is a measurable transformation 

of the observable random vector X1. For a predictor ~r of DX2, the random variable 

E q ~(¢/- DX2)'(¢/- DX2)I 
is said to be the G-conditional expected squared prediction error of ¢/. Since 

E q [ (¢ / -  DXz)'(~r _ DX2)1 = trace (var q [~r _ DXz ]) + E q [~r _ DX2 ~'E ~ [4/_ DXz J 

the G-conditional expected squared prediction error is determined by the ~-conditional 

variance and the g -conditional expectation of the prediction error. An observable random 

vector 4/ is said to be 

- a linear predictor of DX2 if there exists a q-measurable random matrix Q_ such that 

~' = Q.X,. 

- ~-conditional[y unbiasedpredictor of DX 2 if Eq[¢/] = Eq[CI3]. 

- a Gauss-Markov predictor of DXz if it is a G -conditionally unbiased linear predictor of 

DX2 and minimizes the ~-conditional expected squared prediction error over all ~;- 
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conditionally unbiased linear predictors of DX2. 

We have the following result: 

3.2 Proposition (Gauss-Markov Theorem for Predictors). There exists a unique 

Gauss-Markov predictor "yGM(DX2) of DX2 and it satisfies 

Y~(DX~)  : I ~ ( A ~  TM + ~ . ; ;  (X~ - A ~ ) ) .  

In particular, qGM (DX2) = DY TM (X2). 

Proposition 3.2 shows that the Gauss-Markov predictor 

:= A2 cM + Z2,Z ; (x l  - cM) 

of the non-observable random vector X2 depends not only on the Gauss-Markov estimator 

[~GM of the parameter ~ but also on the G-conditional covariance E21 between the non- 

observable random vector X2 and the observable random vector X1. Moreover, the final 

assertion of Proposition 3.2 implies that the coordinates of the Gauss-Markov predictor of 

the non-observable random vector coincide with the Gauss-Markov predictors of its 

coordinates. 

For a single non-observable random variable, the Gauss-Markov predictor has been 

determined by Goldberger [1962]; see also Rao and Toutenburg [1995]. We also refer to the 

paper by Halliwell [1996] and to the discussion of his paper by Schmidt [1999a] and Hamer 

[1999] and the author's response by HaUiwell [1999]. Related results can also be found in 

Radtke and Schmidt [2004] and in Schmidt [1998, 2004]. 

The proof of Propositions 3.1 and 3.2 can be achieved in exactly the same way as in the 

unconditional case (which corresponds to the case G = {0,ff2}, where the G-conditional 

expectations, variances and covatiances are nothing else than the ordinary expectations, 

variances and covariances). 

It is sometimes also of interest to predict a random vector of the form 

ox. o, 

An obvious candidate is the predictor 
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(x,) 
~/GM(Dx):=(D1 D2) ~ M  " 

Extending the definitions and repeating the discussion with X in the place of X2, it is easily 

seen that the predictor ~rGM(Dx) is indeed the Gauss-Markov predictor of DX; see also 

Hamer [1999] for the even more general case of Gauss-Markov estimation/prediction of the 

target quantit 3, D013 + DIX1 + DzX2. 

4. M U L T I V A R I A T E  L O S S  P R E D I C T I O N  

We are n o w  prepared to consider  mult ivariate  loss predict ion.  

We consider m lines of business all having the same number of development years. The 

m lines of business may be interpreted as subportfolios of an aggregate portfolio. 

For the line of business i7 ¢ {1 . . . .  , m}, we denote by 

and 

the incremental loss and the cumulative loss, respectively, of accident )'ear i ~ (0, 1 . . . .  , n} 

and development year k ~ {0, 1 . . . . .  n}. 

For i,k ~ {0, 1, ..., n}, we thus obtain the m-dimensional random vectors 

(7(p)~ Zi , k  := ~ i , k  /pc{1 ...... } 

and 

(c(p) Si,k := ~"i,k h,~{l,...,,,} 

of incremental losses and cumulative losses of the combined subportfofios. The observable 

incremental losses and the observable cumulative losses are represented by the run-off 

triangles 
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Accident  Deve lopment  Y e a r  

Y e a r  0 1 . . .  k . . .  n - i . . .  n - 1 n 

0 Zo,o Zoa ... Zo,, ... Zo,.-i ' "  Zo,.-i Zo,. 

1 Zl,o Zla  .. .  Zl,k . . .  Z l , . - i  ... Z~.._, 

: i : i i 
i Zl,o Zi,l . ' .  Z i , k  . . .  Z i , n -  i 

n - k  Z.-,.0 Z . - ,  a ... Z._,., 

i : i 
n - 1  Z . - l , o  Z . - l a  

n Zn,  0 

and 

A c c i d e n t  D e v e l o p m e n t  Y e a r  

Y e a r  0 1 . . .  k . . .  n - i . . .  n - 1 n 

0 So,o Soa  .--  So,~ . . .  So, . - i  ' "  So . . -1  So , .  

1 Sl,o S l a  -- .  $1, ,  . . .  Sl , . - i  "'" S1. -1  
i : i ! i 
i Si,o Si,1 . . .  S i , k  . . .  S i , n - i  

: i i : 
n - k  S.-k,o S.-ka ... S._,,, 

n - 1 S . -1 ,o  S.-1,1 

n Sn, 0 

We can n o w  present  multivariate extensions o f  the models  considered in Section 2: 

4.1 Multivariate Additive Model 

Let us first consider  a multivariate extension o f  the additive model  which  applies to the 

combined  subportfol ios  and was p roposed  by Hess,  Schmidt  and Z o c h e r  [2006]. 

M u l t i v a r i a t e  A d d i t i v e  M o d e l :  There exis t  positive definite diagonal m a ~ c e s  Vo, Vl . . . . .  V.  and  

postTive definite (ymmetnc  matn'ces Y'o, Y'l . . . . .  Y. .  as well  as parameter  vectors ~o ,  ~1 . . . . .  ~ .  such tha t  

E[Zl,k] = ViG 

a n d  
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X11/Zx-, xi1/2 
c o v [ Z i , k , Z j , l ]  = U ~ k ' j  i f  i = j and k = l 

0 else 

holds for all i, j ,  k,l ~ {0, 1 . . . . .  n}. 

In the subsequent discussion, we assume that the assumption of  the multivariate additive 

model is fulfilled and that the matrices V0, V1 . . . . .  V, are known. 

Because of  the assumption on the expectations of  the incremental losses, the multivariate 

additive model is a linear model. This can be seen as follows: Define 

e~0 

~k-1 IS:= ~, 

~k+l 

and, for all i, k ~ {0, 1 . . . . .  n}, define 

Ai,k:=(O 0 ... 0 Vi 0 ... O) 

where the matrix Vi occurs in position 1 + k. Then we have 

E [Zi,k ] = Ai,k~ 

for all i , k e { 0 , 1  . . . . .  n}. Let Z1 and A1 denote a block vector and a block matrix 

consisting of  the vectors Zi,k and the matrices Ai,k with i + k _< n (arranged in the same 

order) and let Z2 and A2 denote a block vector and a block matrix consisting of  the vectors 

Zi,k and the matrices Ai,k with i + k _> n + 1. Then we have 

E[Z~] = Ad3 
E[z~] = A~I~. 

Therefore, the multivariate additive model is indeed a linear model. 

The following result provides formulas for the Gauss-Markov estimators of  the 

parameters of  the multivariate additive model: 

4.1 Theorem.  For each k ~ {0,1 . . . . .  n}, the Gauss-Markov estimator ~ M  of ~k satires 
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-1 n-k n-k 
( "e xtl l lv-l,~rl l 2 ~ "e mtl  l 2 v - i v i  l 2 ~ ~,-1,z = / ~ , j  ~k , j  I / - .ak ' j  " k  *j  I ' j  L'j.k • 
kj=0 ) j=0 

Proof. Because of the diagonal block structure of Y'n = var[Z1] and the block structure 

of A1 we obtain 

,,',,.r:,,, :aiad2VJ'2VvJ'q 
kj=0 )k~{0,....,l 

and 

n-k 
'K" Ixr l /2"g~- lv1/2\  v - l ' 7  A'lZ#Z,=[~,.~--- -k j , ~ ,  

ke{O } 

Now the Gauss-Markov Theorem for estimators yields 

¢¢ ' n-k n-k 
~CM = (A~Z71XA1)qA,ly.TlXZ, ,~ wl/2v-iVi/2 ~ ,e Wi/2v- lVl /2 ,w- , ,7  = / / z - , U  " ' *  ., l ~ j ,,,,k j ) v j  ,t..,j.k| 

kk, j=o .) /=O Jke{O,...,n} 

and hence 

~M = ¢v~*. .v2v-,v!/2Y' r÷*, . , , .~- ,V, /~,V- , .  t o" ; ,  , o , k  

for all k e  {0,1 . . . . .  n}. q 

The following result provides formulas for the Gauss-Markov predictors of the non- 

observable  incrementa l  losses and  for the  Gaus s -M arkov  predictors o f  the  non-obse rvab le  

cumulative losses: 

4.2 Theorem.  For all i , k  e {0, 1 . . . . .  n} such that i + k > n + 1, the Gauss-Markov predictor 
^ G M  

Zi.* of Zi.k satisfies 

"~M = v, ~ Zi ,k  

Si,* of Si,k satisfies and the Gauss-Markov predictor ^ GM 

k .G~ ~ .  
Si, k = Si,n_ i + V i 

l=n-i+l 

Proof. Since Y'21 = cov[Zl,Z2] = O, the first assertion is immediate from the Gauss- 

Markov Theorem for predictors and the second assertion follows from the final remark of 
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Section 3. 

The Gauss-Markov Theorem for predictors implies that 

- the Gauss-Markov predictors of  the sum of  the non-observable incremental losses of  a 

given accident year, 

- the Gauss-Markov predictors of  the sum of the non-observable incremental losses of  a 

given calendar ),ear, and 

- the Gauss-Markov predictors of  the sum of all non-observable incremental losses 

are obtained by summation over the Gauss-Markov predictors of  the corresponding single 

non-observable incremental losses. 

For i, k ~ {0, 1 . . . . .  n} such that i + k > n + 1, the estimators and predictors 

= 

tf=0 ' " ' "  J , . , o .  

i,k 
k ^ AD Si,k = S;,n-i + Vi X ~1 AD 

l=n-i+l 

are said to be the estimators and predictors of  the multivariate additive method. Except for 

m = 1 or k = n they usually differ from the estimators and predictors 

(.-k .~-1 . - k  

 ':=I,x0v'j ,.oXZ" 
7"i,k := Vi~k 

k 

Si,* := Si,n-i + Vi ~ ~l 
l=n-i+l 

whose coordinates coincide with those of  the univariate additive method. 

4.2 Multivariate Chain-Ladder Model 

Let us now consider a multivariate extension of  the chain-ladder model which applies to 

the combined subportfolios and was proposed by Pr6hl and Schmidt [2005]. This model is a 

slight but convenient extension of  the model of  Braun [2004]; see also Kremer [2005]. 

The multivariate chain-ladder model involves successive conditioning with respect to the 

-algebras G0, Gt . . . . .  G.-I where, for each k ~ {0, 1 . . . . .  n}, the a -algebra 
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~k-I  

represents the information provided by the cumulative losses Si,t of accident years 

j ~ {0, 1 . . . . .  n - k + 1} and development ),ears l ~ {0, 1 . . . . .  k - 1}, which is at the same time 

the information provided by the incremental losses Zi,t of  accident years 

j e {0, 1 . . . . .  n - k + l }  and development years l ~ {0, 1 . . . . .  k - l } .  

For all i, k ~ {0, 1 . . . . .  n}, we denote by 

Ai,k := diag(Si,,) 

the diagonal random matrix whose diagonal elements are the coordinates of  the random 

vector Si,k. 

We assume that all coordinates of  Si,k are strictly positive. Then each Ai,k is invertible 

and the identity 

Si,k -1 = Ai,k-1 (Ai,k-1 Si,k ) 

holds for all i e {0, 1 . . . . .  n} and k ~ {0, 1 . . . . .  n}. 

Multivariate Chain-Ladder  Model:  For each k ~ {0,1 . . . . .  n}, there eaqsts a random 

parameter vector ~k and a posilive definite (ymmettic random maOix ~'k such that 

E a~-' [S/ ,k] = Ai,k-1 - Ok 

and 

AI /2  '~ A I / 2  
cov ~*-~fS S l _ / ~ i k - l ~ k ~ i ~ - I  = J  t i,k, J'kJ-- ~ O ' [  , Zfe/sei 

holds for all i , j  ~ {0, 1 . . . . .  n - k + 1}. 

In the subsequent discussion, we assume that the assumption of  the multivariate chain- 

ladder model is fulfilled. 

The multivariate chain-ladder model consists of  n conditional linear models 

corresponding to the development years k e {1 . . . . .  n}. This can be seen as follows: Fix 

k ~ {1 . . . . .  n}, let S1 and Al denote a block vector and a block matrix consisting of  the 

random vectors Si,k and the random matrices Ai, k with i _< n - k  (arranged in the same 

order) and let S2 := S.-k+l,k and A2 := An-k+l,k. Then the random vectors Sl and S2 and 

the random matrices A1 and A2 depend on k and we have 
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E a~-' [Sl ] = Al*k 

£a*-, [S2] = A2¢k- 

Therefore, the multivariate chain-ladder model consists indeed of n conditional linear 

models. 

The following result provides formulas for the Gauss-Markov estimators of the 

parameters in the multivariate chain-ladder model: 

4.3 Theorem.  For each k ~ {1 . . . . .  n}, the Gauss-Markov esHmator ~GM of ~#k satioqes 

-1 n-k n-k 
- ( X " A 1 / 2 =  A1/2 ~ X~IA1/2 X Al/2 ~A-1 e -- | d.~ ~i,k-ll"JkL~i,k-I ] /~  k~ j , k -1  kLtj ,k-I  JLl j ,k - lOj ,k"  

k.j=0 J j=0 

Theorem 4.3 is immediate from the Gauss-Markov Theorem for estimators. 

The following result provides formulas for the Gauss-Markov predictors of the 

cumulative losses of the first non-observable calendar year: 

4.4 Theorem: For each i ~ {1, n}, the Gauss-Markovpredictor ^ GM . . . .  Si,n-i+ 1 o f  Si,n_i+ 1 sali~es 

^ GM ^ GM 
Si,n_i+ 1 = Ai ,n_i~i ,n_i+ 1 . 

Theorem 4.4 is immediate from the Gauss-Markov Theorem for predictors. 

For i ,k ~ {1 . . . . .  n} such that i + k 2 n + 1, the estimators and predictors 

, C L  ( n ~ k A l / 2  Z - IA ! /2  "~-I . £ kC A~2_ l~ . ~ iA~ f f_ 1 )AT tk_ iS j ,  k 

^CL ~CL ~CL 
Si,k '= Lai,k-l~'k 

with 

^CL . = I  diag(Si,"-i) i f  k = n - i + l  

Ai'k-1 ' [diag(SC}_l) else 

are said to be the estimators and predictors of the mulHvanate chain-ladder method. Except for 

m = 1 or k = n they usually differ from the estimators and predictors 

( . - k  .~-I ._~ 

,.oXS" 
ii,k := Aj,k~, 
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:=Idiag(Si,,_i) i f  k = n - i + l  

/~i,k-1 [diag(,~i,kq) else 

whose coordinates coincide with those of  the univatiate chain-ladder method. 

In the case i + k = n + 1, the multivariate chain-ladder predictors are justified by Theorem 

4.4, but another justification is needed in the case i + k > n + 2; this can be achieved by 

minimizing the Gk-1-conditional expected prediction error over the collection of  all 

predictors Si,k of  Si,k satisf)4ng 

S i , k  ^ C L  ^ := Ai,k_l~k 

for some {~k-1-conditionally unbiased linear estimator ~k of  ~k; see Schmidt [1999b] for 

the univariate case. We have the following result: 

4.5 Theorem.  For all i, k ~ {1 . . . . .  n} such that i + k k n + 1, the chain-ladder predictor Si,, ^ ct  

minimizes the qk-1 -conditional expectedprediction error over allpredictors Si,k of Si.k sati~5,ing 

S i , k  " ^ C L  * • = Ai,k-l~, 

for some Gk-1 -conditionally unbiased linear estimator ~k  of II**. 

A proof  of  Theorem 4.5 will be given in the Appendix. 

The optimalit 3, of  the multivariate chain-ladder method guaranteed by Theorem 4.5 is 

sequential and one-step ahead. Of  course, one would like to have a condition ensuring some 

kind of  global optimality of  the chain-ladder predictors; however, even in the univariate case, 

no such condition seems to be "known. 

To illustrate the situation without introducing additional notation, let us recall two results 

for the univariate case: 

- The assumption of  the univariate chain-ladder model is fulfilled in the model of  Mack 

[1993] in which it is assumed that the accident ),ears are independent and that the 

parameters {Pk and ~k are non-random; see Schmidt and Schnaus [1996]. Under the 

assumptions of  the model of  Mack, it can be shown that all chain-ladder predictors are 

unbiased, but it can also be shown that many other predictors are unbiased as well. 

Therefore, unbiasedness does not distinguish the chain-ladder predictors among all other 

predictors. 
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- One might hope that the chain-ladder predictors minimize the G,-1-conditional expected 

squared predictor error over all predictors of the form 

k 
~,,, :=s,,,_, FI (0, 

l=n-i+l 

where, for each l ~ { n -  i + 1 . . . . .  k), (0t is a Gt-conditionally unbiased linear estimator 

of cOt. Again, under the assumptions of the model of Mack, it has been shown in 

Schmidt [1997] that this -kind of optimality may fail for the chain-ladder predictors. 

Thus, even in the univariate case and under the stronger assumptions of the model of Mack, 

it remains an open question whether there exists a condition which is less restrictive than the 

sequential optimality criterion of Theorem 4.5 and still ensures some -kind of global 

optimality of the chain-ladder predictors. 

5. A D D I T I V I T Y  

Let 1 denote the m-dimensional vector with all coordinates being equal to 1. For 

i, k e {0, 1 . . . . .  n} define 

Zi ,k  := l 'Zi, ,  

Si,k := l'Sl,k. 

We shall now study prediction of the non-observable incremental losses Zi , k  and of the 

non-observable cumulative losses Si,k of the aggregate portfolio. 

5.1 Multivariate Additive Model  

In the multivariate additive model it is immediate from the Gauss-Markov Theorem for 

predictors that, for all i , k  ~ {0, 1 . . . . .  n} such that i + k > n + 1, the Gauss-Markov predictor 

2G, M of Z i , ,  and the Gauss-Markov predictor ~ffM of Si,k satisfy 

GM 1,~AD 
Zi ,k  = i ,k 

~,~ ,,~^D 
= a oi.  k . 

This means that the Gauss-Markov predictors for the aggregate portfolio are obtained by 

summation over the Gauss-Markov predictors for the single lines of business. Therefore, the 

multivariate additive method is consistent in the sense that there is no problem of additivity. 

Warning:  One might believe that the Gauss-Markov predictors for the aggregate 
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portfolio could also be obtained by appl)4ng the univariate additive method to the aggregate 

portfolio. This, however, is not the case since the multivariate additive model for the 

combined subportfolios does not lead to a univariate additive model for the aggregate 

portfolio. 

5.2 Mul t ivar ia te  C h a i n - L a d d e r  M o d e l  

In the multivariate chain-ladder model it is immediate from the Gauss-Markov Theorem 

for predictors that, for all i ¢ {1 . . . . .  n}, the Gauss-Markov predictor sGMi+ l of Si,.-i+l 

satisfies 

~GM ,,~CL 
i ,n- i+l  = I oi ,n_i+ 1. 

This means that the Gauss-Markov predictors for the aggregate portfolio are obtained by 

summation over the multivariate Gauss-Markov predictors for the different lines of 

business. Moreover, it is easy to see that, for all i ,k  ~ {0, 1 . . . . .  n} such that i + k > n + 2, 

the predictor 

Si',k := 1'S cL 

1,,~ CL #kCL 
= at t-ai,k_l.~V" k 

/~CL X' ~*CL 
= ~Oi,k_l]  uv'k 

minimizes the ~k-I-conditional expected prediction error over all predictors Si.k of S/.k 

satisf3dng 

:=  . Lai ,k- l ' .~  k 

"CL , ~ = (S;.,_,) ~ 

for some ~k-l -conditionally unbiased linear predictor ~k of ~k. Therefore, the multivariate 

chain-ladder method is consistent in the sense that there is no problem of additivit T. 

Warning:  As in the case of the multivariate additive model, it would be a serious mistake 

to predict the non-observable cumulative losses of the aggregate portfolio on the basis of the 

observable cumulative losses of the aggregate portfolio since such an approach would ignore 

the correlation structure between the different lines of business; see Pr6hl and Schmidt 

[20051. 
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6. E S T I M A T I O N  O F  T H E  V A R I A N C E  P A R A M E T E R S  

In the case m = 1, which is the univariate case, the variance parameters 5.0, 1~1 . . . . .  Y-. 

drop out in the formulas for the Gauss-Markov predictors in the multivariate additive model 

and in the multivariate chain-ladder model. 

In the case m > 2, only the variance parameter y.n drops out in the formulas for the 

Gauss-Markov predictors in the multivariate additive model and in the multivariate chain- 

ladder model; in this case, the variance parameters 5,.o, ~1,--. ,Y'n-I must be estimated. 

6.1 M u l t i v a r i a t e  A d d i t i v e  M o d e l  

Under the assumptions of  the multivariate additive model and for k _< n - 1, the random 

matrix 

~.;,~._ 1 ~ v - ' / ' , z  • - 7 - ~ _ h z .  i , i , * - v ~ ) ( z ~ , * - v ~ k ) ' v ;  '/~ 
• "--'~ j=0 

is a positive semidefinite estimator of  the positive definite matrix Y.,; moreover, its diagonal 

elements are unbiased estimators of  the diagonal elements of  Y-, whereas its non-diagonal 

elements slightly underestimate the corresponding elements of  Y-k. 

Although unbiasedness of  an estimator is usually considered to be desirable, this property 

would not be helpful in the present situation since any estimator of  Y.~ has to be inverted 

and since the inverse of  an unbiased estimator of  Y'k is very likely to be biased an}way. 

Moreover, the relative bias of  the estimators proposed before can be shown to be very small. 

By contrast, for any estimator of  I;k, the property of  being positive semidefinite is a 

necessary, although not sufficient, condition for being positive definite and hence invertible. 

In fact, the estimator of  Yk proposed before is always singular when k > n - m + 2 since in 

this case the dimension of  the linear space generated by any realizations of  the random 

vectors ¥~/2(Zi,k-Vj~k) with j ~ { 0 , 1  . . . . .  n-k} is at most m - 1  such that there exists 

at least one nonzero vector which is orthogonal to each of  the realizations of  these random 

vectors; moreover, the realizations of  the random vectors V)/2 (Zi, k - V j ~ k )  may be linearly 

dependent also for some k -< n - m + 1, which implies that the corresponding realization of  

the estimator of  Y'k proposed before may be singular also for some k _< n - m + 1. 

In practical applications, it is thus necessary to check whether the estimators proposed 
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before are invertible or not, and to modify those estimators which are not invertible. Such 

modifications could be obtained by extrapolation or by the use of  external information; see 

below. 

6.2 Multivariate Chain-Ladder Model 

Under the assumptions of  the multivariate chain-ladder model and for k < n -  1, the 

random matrix 

1 ~k AI/2 / ¢  xCL :=7_b ~i,k-l~°~,k--Aj.*-~k)(Si,k A ,~,,A1/2 
- -  z a  j )k_ l  , ~  k ] I.-t i , k - I  

" - -  ~ j = 0  

is a positive semidefinite estimator of  the positive definite matrix Y'k; moreover, its diagonal 

elements are unbiased estimators of  the diagonal elements of  Y~k whereas its non-diagonal 

elements slightly underestimate the corresponding elements of  Xk and hence differ from the 

unbiased estimators proposed by Braun [2004]. 

The comments on the variance estimators proposed for the multivariate additive model 

apply as well to the variance estimators proposed for the multivariate chain-ladder model. 

6.3 Extrapolation 

In the case where the proposed estimators of  the variances for late development years 

are singular or almost singular, it could be reasonable to replace these estimators with 

estimators obtained by extrapolation from the estimators for the first development years 

which are usually invertible. 

6.4 Iteration 

In both models, one may try to improve the estimators of  the variances and hence the 

Gauss-Markov estimators of  the parameters by iteration, as proposed by Kremer [2005]. 

However, the iterates of  some of  the estimators of  the variances may again be singular, and it 

seems to be difficult to prove that the resulting empirical Gauss-Markov estimators of  the 

parameters are indeed improved by iteration. 

6.5 E x t e r n a l  I n f o r m a t i o n  

In both models, another possibility for the estimation of  the variance parameters 

Y'0, Y'l . . . . .  Y~,-1 consists in the use of  external information, which is not contained in the 
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run-off triangle and could be obtained, e. g., from the run-off triangle of a similar portfolio 

or from market statistics. 

7. REMARKS 

Another bivariate model of loss reserving is the model of Quarg and Mack [2004]. Under 

the assumptions of their model, Quarg and Mack propose bivariate chain-ladder predictors 

for the paid and incurred cumulative losses of a single .line of business with the aim of 

reducing the gap between the univariate chain-ladder predictors for the, paid and incurred 

cumulative losses; see also Verdier and Klinger [2005] for a related model. None of these 

two models is contained in the multivariate models proposed in the present paper. 

Since no conditions at all are imposed on the character of the different lines of business 

in the multivariate models presented here, the multivariate method and the multivariate 

chain-ladder method could, in principle, also be applied to the paid and incurred cumulative 

losses of a single line of business. 

Let us finally note that the problem of additivity can also be solved in quite different 

models like credibilit 3, models; see Radtke and Schrmdt [2004] and Schmidt [2004]. 

8. A NUMERICAL EXAMPLE 

In this section we present a numerical example for the multivariate chain-ladder method 

in the case of m = 2 subportfolios and n = 3 development years. 

8.1 The Data 

The following run-off triangles contain the observable cumulative losses S]~ ), S],~ ), and 

S/,, of  the two subportfolios and of the aggregate portfolio, respectively: 

Subporffo~o 1 

AY DY 
0 1 2 3 

0 2423 3123 3 5 6 7  3812 
1 2841 3422 3952 
2 3700 3977 
3 5231 
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Subpo~fo~o 2 

AY DY 

0 1 2 3 

0 3546 6 5 7 8  7 6 5 0  8123 
1 4001 7 5 6 6  8822 

2 4040 7813 
3 43O0 

Aggregate Po~fofio 

AY DY 

0 1 2 3 

0 5969 9701 11217 11935 
1 6842 10988 12774 
2 7740 11790 
3 9531 

8.2 Univariate Chain-Ladder Method 

Applying the univariate chain-ladder method to each of  these run-off triangles 3fields the 

univariate chain-ladder factors (CLF) and the univariate chain-ladder predictors of  the non- 

observable cumulative losses: 

Subpo~fofio 1 

AY DY 

0 1 2 3 

0 2423 3 1 2 3  3 5 6 7  3812 
1 2841 3 4 2 2  3 9 5 2  4223 
2 3700 3 9 7 7  4 5 6 9  4883 
3 5231 6 1 4 0  7 0 5 4  7538 

CLF 1.1738 1.1488 1.0687 
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Subpo~fo~o 2 

AY DY 
0 1 2 3 

0 3546 6578 7650 8123 
1 4001 7 5 6 6  8822 9367 
2 4040 7813 9099 9662 
3 4300 8148 9490 10076 
CLF 1.8950 1.1646 1.0618 

Aggregate Po~fofio 

AY DY 
0 1 2 3 

0 5969 9701  11217 11935 
1 6842 10988 12774 13592 
2 7740 11790 13672 14547 
3 9531 15063 17467 18585 
CLF 1.8950 1.1646 1.0618 

8.3 Multivariate Chain-Ladder Method 

We now combine the run-off triangles of the two subportfolios into a single run-off triangle 

which contains the vectors Si.k of cumulative losses: 

Combined Subportfolios 

AY DY 

0 1 2 3 

(2423 / /3123/ (3567~ 
0 k3546] k6578] k7650] 

/2841 / (3422] /3952] 
1 ~4001] k7566] k8822] 

I3700/ 13977  
2 k4040] k7813] 

[5231 / 
3 k4300] 

( 3812~ 
8123] 

Transforming the vectors Si,, of cumulative losses into diagonal matrices, we obtain the 

following run-off triangle for the matrices Ai, k = diag(Si,,) which is completed by the 

vectors ~ ,  of univariate chain-ladder factors: 
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Combined Subportfolios 
AY DY 

0 1 2 3 

0 (24203 354~)(312g 657~) 
1 (28401 4000) (342~ 756~) 
2 (3700 4040) (397~ 781~) 
3 ('"a .0~) 

/1.1738 / /1.14881 (1.0687 / 
~k ~1.8950] ~1.1646] ~1.0618] 

For the estimators of the variances we thus obtain 

~ L  35.4968 
= -14.3861 

-14.3861) 
5.9200 

and hence 

~ t  =(  0.2637 0.0926 / 
0.0926 0.0325] 

(~CL) -1 ( 1.8616 4.5239) 
= 4.5239 11.1624 

(~L) -1 (25876.4330 
= k .73727 .6467  

-73727.6467 / 
210097.0596 ] 

Note that estimators of the variances Y'0 and Y'3 are not needed. App134ng the multivariate 
chain-ladder method to the combined subportfolios )4elds the multivariate chain-ladder 

predictors of the non-observable cumulative losses: 
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Combined Subportfolios 
AY DY 

0 1 2 3 

{2423~ /3123 / [3567~ [3812 / 
0 ~3546] ~6578] ~7650] ~8123] 

[2841 / /3422 / [3952 / /4223 / 
1 ~4001] ~7566] ~8822] ~93671 

/5231] /6105 / {7013 / [ 7495 / 
3 ~4300] ~81671 ~95121 ~10100] 

[1.1670 / {1.1489 / (1.0687] 
~k ~1.8994] ~1.1646] ~1.0618] 

8.4 Comparison 
Predictors for non-observable aggregate cumulative losses may be computed by the 

following three methods: 

- Method A: Apply the univariate chain-ladder method to the aggregate portfolio. 

- Method B: Apply the univariate chain-ladder method to each of the subportfolios and 

take sums of the univariate predictors. 

- Method C: Apply the multivariate chain-ladder method to the combined subportfolios 

and take sums of  the multivariate predictors. 

For example, for the ultimate aggregate cumulative loss of  accident year 3, 

- Method A )felds the value 18585. 

- Method B yields the value 7538 + 10076 = 17614. 

- Method C )fields the value 7495 + 10100 = 17595. 

The following table presents several reserves obtained by these three methods: 
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R e s e r v e  M e t h o d  A M e t h o d  B M e t h o d  C 

Accident Year 1 818 817 817 

Accident Year 2 2757 2754 2754 

Accident Year 3 9054 8084 8064 

Total 12628 11655 11635 

Calendar Year 4 8231 7452 7436 

Calendar Year 5 3279 3131 3129 

Calendar Year 6 1118 1071 1070 

Total 12628 11655 11635 

Due to round-off errors, some of the total reserves differ slightly from the sums of  the 

reserves over accident ),ears of  calendar years. In the present example, the results obtained 

by Methods B and C are quite similar, but they differ considerably from those obtained by 

Method A. 

8 . 5  P r e l i m i n a r y  C o n c l u s i o n s  

Of  course, one should not draw general conclusions from a single numerical example. 

Nevertheless, the present example and experience with other sets of  data justify the 

following rule of  thumb: 

- Method C is optimal when the model assumptions and the optimality criteria for the 

multivariate chain-ladder method can be accepted. 

- Method B may in many cases provide a reasonable approximation to Method C. 

- Method A may be disastrous since it ignores correlation between the different lines of  

business. 

Experience with other sets of  data also indicates that the similarities and differences between 

the three methods may vary with 

- the lines of  business under consideration, 

- the number of  lines of  business, and 

- the number of  development years. 

It is therefore indispensable for the actuary to acquire practical experience for every 

combined portfolio of  interest. 
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A P P E N D I X  

Here we give a p roof  o f  Theorem 4.5. 

Proof .  Consider an), q*-I-conditionally unbiased linear estimator ~ ,  o f  ~ , .  Then there 

exist q , - i -measurable  matrices Q.0,k-1, Q.1,,-1 . . . . .  Q_,-ka-1 satisfying 

n-k 
~'* = E Q. ._ ,S j , ,  

j=0 

~--, n-k 1,% A and /..j=oM-j,k-1 j,k-I = I. Also, letting 

CL .-- (~kA1 /2  Z -1A1/z ~-1 'A  1/2 Z -1A1/2 \A  -1 

we obtain 

~CL n-k CL 
= y~ Q.i,k-lSs,, 

j=0 

~'~n-k f .~CL A and /%j=o%~j,k_l j,k-1 = I. We thus obtain 

n-It 
,,-~ CL \A (Q.j.,-1 - q _ j , , - .  s,*-i = O. 

j=0 

Since 

n-k -1 
CL _ ( ~ , / 2 , e - , . , / ,  "1 (varq,-,[Sik]) - '  

this yields 

,.- [S . ,S , , , ] (O . . , , , _ , )  
j=0 I=0 

j=O 

= ~.~ (Q_j,k-1 ¢"~ CL "~A [ r A1/2 *j"-IA1/2 l 
- " ,< . j ,k - I  ] j ,k - ]  | / _ .  s,k-1 k s,k-I I 

j=O \ s=O , .), 
=O.  

Since i + k >_ n + 1, we also have coy 0- '  I s  j , , ,  Si,, ] = 0 and thus 
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^ eL COVq,-,E~i,k_Si,k,S;,,] = covG,-,[aCL_I~k -- Lai,/e-I'~'k~CL t.kCL, Si,k ] 

^CL C O V G J , _ , E I ~ k _ , C L , s , , , ]  = A i , k _  1 

^ CL n - k  . = Ai,k-' X (Q_j,k-1- Q_jC',~-I ) cOVG'-I [Sj.k,Si,k] 
j=0 

= O .  

Using the two identities established before, we thus obtain 

COVG,_, r ~ ~CL ~CL Si,k]  COVG,_I [ g  ^CL SI.k]'CL L ° / k  - o i , ,  o , ,  = . . ,  - Si, k , 

_ . ~ C L  . . . .  ~ , -~  F , , ~  , ~ C L  , , ~ C L " I , ~ c t .  
-- ~t i ,k-I  ~ "  L"vk --  "~"k , ~Vk ..]t'~i,k-I 

= 0  

and hence 

^ CL -- Si,/t ] .  vaV*-*ESi,'-S',']=vara*-'[S"-Si,'] + ' ° ' q * - ' F ~ : c L ,  -'" t : ' , , *  

We thus obtain 

EG*-'[(Si.,-Si,,) ' (S,.,-Si.,)]=trace(var%-'[Si.i-Si.,]) 

= trace(varY,_, [ ~ i , , _  ~CL ] ) +  trace(vara,_l [~CL _ S i , , ] )  

> t race(var  %-' [S i  CL -- Si, ̀  ] )  

t ^ CL = 1 (S, .  - S , . ) ]  

which proves the theorem. 
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