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Abstract.
In the present paper we review and extend two stochastic models for loss reserving and study their
impact on extensions of the additive method and of the chain-ladder method. The first of these models
is a particular linear model while the second one is a sequential model which is composed of a finite
number of conditional linear models. These models lead to multivariate extensions of the additve
method and of the chain-ladder method, respectively, which turn out to resolve the problem of
addidvity.

Keywords. Loss reserving; dependent lines of business; additivity; multivariate additve method;
multivariate chain-ladder method.

1. INTRODUCTION

For a portfolio consisting of several lines of business, it is well-known that the chain-
ladder predictors for the aggregate portfolio usually differ from the sums of the chain-ladder
predictors for the different lines of business; see Ajne [1994] and Klemmt [2004]. It is one of
the purposes of the present paper to point out that the non-coincidence between a chain-
ladder predictor for the aggregate portfolio and the sum of the corresponding chain-ladder
predictors for the different lines of business has its origin in the univariate character of the

chain-ladder method which neglects dependence between the different lines of business.

The problem of dependence between different lines of business has already been
addressed by Holmberg [1994]. His paper is remarkable since it adopts a general point of

view and considers

— correlation within accident years,

— correlation between accident years, and

— correlation between different lines of business.

Nevertheless, the major part of Holmberg's paper is devoted to correlation within and
between accident years and the author expresses the opinion that, in practical applications,
the great majority of the effects causing correlation between different lines of business are

already captured in the correlation within and between accident years. It is another purpose
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of the present paper to show that correlation between different lines of business can be
modelled and that the resulting models, combined with a general optimality criterion, lead to
multivariate predictors which are superior to the univariate ones. Here and in the sequel, the
term univariate tefers to prediction for a single line of business and the term maultivariate refets
to simultaneous prediction for several lines of business or for different types of losses (like

paid and incurred losses) of the same line of business.

The papers by Ajne [1994] and Holmberg [1994] were slightly preceded in time by a
paper by Mack [1993] which, similar to the paper by Hachemeister and Stanard [1975],
turned out to be path-breaking in the discussion of stochastic models for the chain-ladder
method. In the model of Mack, dependence within accident years is expressed by
conditioning, but it is also assumed that the accident years are independent. The assumption
of independent accident years was subsequently relaxed in the model of Schnaus presented
by Schmidt and Schnaus [1996]. Both of these models are univariate and hence do not

reflect dependence between lines of business.

After the publication of the paper of Mack [1993], about a decade had to pass befote the
emergence of the first bivariate models related to the chain-ladder method. One of these
models, due to Quarg and Mack [2004], expresses dependence between the paid and
incurred losses of a single line of business (a topic which had already been studied before by
Halliwell [1997] within the theory of linear models) and has been used as a foundation for
the construction of certain bivariate predictors which are now known as Munich chain-
ladder predictors. The other of these models, due to Braun [2004], expresses dependence
between two lines of business and has been used to construct new estimators for the
prediction etrors of the univariate chain-ladder predictors, but it has not been used to

construct bivariate predictors. Each of these models extends the model of Mack.

Quite recently, Prohl and Schmidt [2005] as well as Hess, Schmidt and Zocher [2006]
proposed multivariate models which reflect dependence between an arbitrary number of
lines of business. The model of Prohl and Schmidt extends the model of Braun in essendally
the same way as the model of Schnaus extends the model of Mack, while the model of Hess,
Schmidt and Zocher extends in a rather straightforward way the particular linear model
which may be used to justify the additive method; see Radtke and Schmidt [2004]. These
models, combined with a general optimality criterion, lead to multivariate versions of the

chain-ladder method and of the additive method, respectively, which turn out to resolve the
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problem of additivity.

In the present paper we review these recent multivariate models and methods of loss
reserving. In order to avoid the accumulation of technicalities, we start with a systematic
review of the univariate case (Section 2) and of prediction in conditional linear models
(Section 3). We then pass to the multivariate case (Section 4) and show that, the optimal
multivariate predictors for the single lines of business sum up to the corresponding
predictors for the aggregate portfolio (Section 5). We also show how the unbiased estimators
of variances and covariances proposed by Braun [2004] can be adapted to the multivariate
models considered here (Section 6). We conclude with some complementary remarks
(Section 7) and a numerical example illustrating the multivariate chain-ladder method
(Section 8).

Throughout this paper, let (Q, F,P) be a probability space on which all random
variables, random vectors and random matrices are defined. We assume that all random
variables are square integrable and that all random vectors and random matrices have square
integrable coordinates. Moreover, all equalities and inequalities involving random variables

are understood to hold almost surely with respect to the probability measure P.

2. UNIVARIATE LOSS PREDICTION

In the present section we review two univariate stochastic models which are closely

related to two current methods of loss reserving.

We consider 2 single line of business which is described by a family {Z; 4}; seto,,..n) Of
random variables. We interpret Z;, as the loss of accident year i which is reported or settled
in development year k, and hence in calendar year i + k, and we refer to Z,; as the incremental loss

of accident year i and development year k.

We assume that the incremental losses Z; ; are observable for calendar years i +k < n and
that they are non-observable for calendar years 7 + & 2 # +1. The observable incremental losses

are represented by the following run-off triangle:
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Besides the incremental losses, we also consider the cumulative losses S; ; which are defined by
Ld
Si,lc = ZZ,’[.
=0

Then the cumulative losses §;; are observable for calendar years i +k<#n and they are
non-observable for calendar years i + % 2 7+ 1. Just like the observable incremental losses,

the observable cumulative losses are represented by a run-off triangle:

Accident Development Year

Year 0 1 k n—1 n—1 n
0 So,o SO,I e Sn,k Sﬂ,n-i Tt SO,n—l SO,n
1 S10 Sis Sia S i Sy

: Sx 0 Si,l Sx k Si,n-i

n—k Sn-—k,o S;.-k,] e Sn-u

n—1 Sa10 Sa-1a

n Suo

Of course, the incremental losses can be recovered from the cumulative losses.

2.1 Univariate Additive Model

Let us first consider the univariate additive model:

Univariate Additive Model:  There exist  real  numbers vy, Vvy,...,V, >0 and
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Gy, O1, ..., Oy > 0 as well as real parameters Ly, €y, ..., €, such that

E[Z;4]=vis

and
viop, ifi=jand k=1

COV[Zi,k,Zj,I] = { 0 else

bolds for all i, j, k1 €{0,1,..., n}.

For i,k€{0,1,..., 7} such that ; + k2 n+1, the estimators and predictors

n—k
SAD _ Zj:OZth
LI n—k
2oVi
5AD £AD
Zix =ViCk
SAD & paD
Sk =Sipitvi 2 G
I=n—i+]
are said to be the estimators and the predictors of the (univariate) additive method. Under the
assumptions of the additive model, these estimators and predictors are indeed reasonable, as

will be shown in Section 4 below.

2.2 Univariate Chain-Ladder Model

Let us now consider the univariate chain-ladder model due to Schnaus which was
proposed by Schmidt and Schnaus [1996] and is a slight but convenient extension of the
model of Mack [1993].

The chain-ladder model is a sequential model since it involves successive conditioning
with respect to the o -algebras Gy, Gy, ..., G,-1 Where, for each ke€{0,1,...,n}, the o-
algebra

Gr-1

represents the information provided by the cumulative losses S;; of accident years
J€1{0,1,..., 7= k+1} and development years / € {0, 1,..., k—1}, which is at the same time
the information provided by the incremental losses Z;; of accident vears

j€{0,1,...,n—k+1} and development years / € {0,1,..., k—1}.
We assume that §;; >0 holds forall /,k€{0,1,..., 7}.
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Univariate Chain-Ladder Model: For each k€ {1, ..., n}, there exists a random variable @y

and a strictly positive random variable Gy such that
ESS; 4] = Sipm1 P
and

Sigacy fi=j
Gi-1 - B
cov?* (854,85 4) =
(Si:S0) {0 else
holds forall 1,7 €{0,1, ..., n—k+1}.
For i,ke{0,1,..., n} such that i + > n+1, the estimators and predictors

n—k
ACL Z,‘:oSM

P = n—k
2 7=0 Sj.lr—l
SCL ko
Sik =Sin-i [1 &
l=n—-i+1
(such that Sf,],“_i =S, i) are said to be the estimators and the predictors of the (univariate)

chain-ladder method. Under the assumptions of the chain-ladder model, these estimators and

predictors are indeed reasonable, as will be shown in Section 4.

3. ESTIMATION AND PREDICTION IN THE CONDITIONAL
LINEAR MODEL

In the present section we consider a random vector X and a sub-G-algebra G of #. The

G -algebra G represents information which is provided by some other random quantities.

Conditional Linear Model: There exists a G -measurable random matrix A and a G-

measurable random vector B such that
E9[X] = AB.

The random matrix A is assumed to be observable and is said to be the design matrix and
the random vector P is assumed to be non-observable and is said to be the parameter vector or

the parameter for short.

In the subsequent discussion, we assume that the assumption of the conditional linear
model is fulfilled.
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We assume further that some of the coordinates of X are observable whereas some other
coordinates are non-observable. Then the random vector X, consisting of the observable
coordinates of X and the random vector X, consisting of the non-observable coordinates

of X satsfy
Eg[xll =A,p
Eg[le =A,p
for some submatrices A; and A, of A.
We also assume that the matrix A; has full column rank, that the random matrices
2, =varf[X]
I, =covi[X,,Xi]
are known, and that Z;; is (almost surely) invertible.

Since the random vector X, is non-observable, only the random vector X can be used

for the estimation of the parameter B.

3.2 Gauss-Markov Estimation
Let us first consider the estimation problem for a random vector of the form CB, where

C is a G -measurable random matrix of suitable dimension.

A random variable Y is said to be an estimator of CP if it is a measurable transformation

of the observable random vector X;. For an estimator Y of CB, the random variable
ES[(V-CBy(¥ -CB)]

is said to be the G -conditional expected squared estimation error of Y. Since
ES[(Y - CBY(¥ - CB)] = trace(var[¥]) + £5 [ ¥ - CB] ES[ ¥ - CB]

the G -conditional expected squared estimation error is determined by the G -conditional
variance of the estimator and the G -conditional expectation of the estimation error. An

observable random vector Y is said to be

— 2 linear estimator of CP if there exists a G -measurable random matrix Q such that
? = QX, .
— a G -conditionally nnbiased estimator of CP if ES[Y]= ES[CB].
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— a Gauss-Markov predictor of CP if it is a G -conditionally unbiased linear esimator of Cp
and minimizes the G -conditional expected squared estimation error over all G-

conditionally unbiased linear estimators of CB.

We have the following result:

3.1 Proposition (Gauss-Markov Theorem for Estimators). There exists a unigue Gauss-
Markov estimator Y™ (CB) of CB and it satisfies

YM(CB) = CAIZI A AiZ X,
In particalar, Y™ (CB) = CYM(B).
Proposition 3.1 implies that the coordinates of the Gauss-Markov estimator
M = (AiZTA) T ATEX,

of the parameter B coincide with the Gauss-Markov estimators of its coordinates.

3.2 Gauss-Markov Prediction
Let us now consider the predicdon problem for a non-observable random vector of the

form DX,, where D is a matrix of suitable dimension.

A random variable Y is said to be a predictor of DX, if it is a2 measutable transformation

of the observable random vector X. For a predictor Y of DX,, the random variable
ES[ (¥ ~DX,)(Y - DX,)]
is said to be the G -conditional expected squared prediction ervor of Y. Since
ES [(¥ - DX,)'(Y ~DX,)] = trace(var[¥ - DX,]) + E[ ¥ - DX, | E¢[¥ - DX, ]

the G -conditional expected squared prediction error is determined by the G -conditional
variance and the G -conditional expectation of the prediction error. An observable random

vector Y is said to be

— a linear predictor of DX, if there exists a G -measurable random matrix Q_such that
Y = QX,.

— G -conditionally unbiased predictor of DX, if E¢ [Y] = E5[CB].

— a Gauss-Markoy predictor of DX, if it is a G -conditionally unbiased linear predictor of

DX, and minimizes the G -conditional expected squared prediction error over all G-
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conditionally unbiased linear predictors of DXj,.

We have the following result:

3.2 Proposition (Gauss-Markov Theorem for Predictors). There exists a unique
Gauss-Markov predictor ‘?GM(DXZ) of DX, and it satisfies

YM(DX,) = D(A M + .25 (X, - AS™M)).
In particular, YM(DX,) = DYSM(X,).
Proposition 3.2 shows that the Gauss-Markov predictor
XM = ABM + 2,31 (X, - ApM)

of the non-observable random vector X, depends not only on the Gauss-Markov estimator
BGM of the parameter B but also on the G -conditional covariance X;, between the non-
observable random vector X; and the observable random vector X;. Moreover, the final
assertion of Proposition 3.2 implies that the coordinates of the Gauss-Markov predictor of
the non-observable random vector coincide with the Gauss-Markov predictors of its

coordinates.

For a single non-observable random variable, the Gauss-Matrkov predictor has been
determined by Goldberger [1962); see also Rao and Toutenburg [1995]. We also refer to the
paper by Halliwell [1996] and to the discussion of his paper by Schmidt [1999a] and Hamer
[1999] and the author's response by Halliwell [1999]. Related results can aiso be found in
Radtke and Schmidt [2004] and in Schmidt [1998, 2004].

The proof of Propositions 3.1 and 3.2 can be achieved in exactly the same way as in the
unconditional case (which cotresponds to the case G = {D,Q}, where the G -conditional
expectations, variances and covariances are nothing else than the ordinary expectations,

variances and covariances).

It is sometimes also of interest to predict a random vector of the form

An obvious candidate is the predictor
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R X,
Y™(DX) = (D, DZ)[XEM)'

Extending the definitions and repeating the discussion with X in the place of X, itis easily
seen that the predictor YM(DX) is indeed the Gauss-Markov predictor of DX see also
Hamer [1999] for the even more general case of Gauss-Markov estimation/prediction of the
target quantity Dof + DX + D;X,.

4. MULTIVARIATE LOSS PREDICTION

We are now prepared to consider multivariate loss prediction.

We consider m lines of business all having the same number of development years. The

m lines of business may be interpreted as subportfolios of an aggregate portfolio.

For the line of business p €{}, ..., m}, we denote by

20
and
5%
the incremental loss and the cumulative loss, respectively, of accident year 7 € {0,1,..., 7}

and development year k€ {0,1,..., n}.

For i,ke€{0,1,..., n}, we thus obtain the m-dimensional random vectors
Zix =(Z%) )retm
and
Sip = (S,(,’;,) )pe(l,...,M)

of incremental losses and cumulative losses of the combined subportfolios. The observable
incremental losses and the observable cumulative losses are represented by the run-eff

triangles
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Accident Development Year
Year 0 1 k n—1 n-1 n
0 Z,, Z,, e gy o 2y v Zogy Ly,
1 Zl,o Zl.] Zl,k Zl.n—i Zl.n-l
i Z, Z, v Ziy o Ly
n—k Zn—lz,o Zn-lr,l Zn—l«,k
n—1 Z,.0 Z,,,
n Zn,O
and
Accident Development Year
Year 0 1 k e m—1 e on=1 n
0 Soo  Sou o Sox oo So-i o Sou1 So
1 sl,o Sl,l e Sl,k sl,n—i Sl,n-l
i Sio S T O T
n—k Sik0 Suors Sair
n—1 S.10 sn-l,;
n S.0

We can now present multivariate extensions of the models considered in Section 2:

4.1 Multivariate Additive Model

Let us first consider a multivariate extension of the additive model which applies to the

combined subportfolios and was proposed by Hess, Schmidt and Zocher [2006].

Multivariate Additive Model: There exist positive definite diagonal matrices Vo, Vy, ..., V,, and
posilive definite symmetric matrices o, Xy, ..., Z, as well as parameter vectors g, 1, ...,C, such that

E[Zi,lc] = ViCk

and
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VI2E VY2 i i=jand k=1
coMZipZ,i) =1 V0 fi=jan

() else
holds forall i, j, k1 €{0,1, ..., n}.

In the subsequent discussion, we assume that the assumption of the multivariate additive
model is fulfilled and that the matrices Vg, Vi,...,V, are known.

Because of the assumption on the expectations of the incremental losses, the multivariate
addidve model is a linear model. This can be seen as follows: Define

Co
&1

|
ﬁ l C_pk
;hl

Ca

and, forall 7,k €{0,1,..., n}, define
A;=(0 O ... OV, O ... O)

where the matrix V; occurs in position 1+ k. Then we have

E[Z;4]= AisB
for all 7,ke{0,1,...,n}. Let Z, and A; denote a block vector and a block matrix
consisting of the vectors Z;; and the matrices A;; with 1+ k< » (arranged in the same

order) and let Z, and A, denote a block vector and a block matrix consisting of the vectors

Z; ; and the matrices A, ; with 1+ k 2z +1. Then we have
E[Z,]=AB
E[Z,]=AB.

Therefore, the multivariate additive model is indeed a linear model.

The following result provides formulas for the Gauss-Markov estimators of the

parameters of the multivariate additive model:

4.1 Theotem. Foreach k€ {0,1, ..., n}, the Gauss-Markoy estimator é,,GM of Gy satisfies
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. n—k ~1 n—k
G- ( 2‘6 Vfl‘/zz;lv}/zj Zo (V) 2ERV )V 'Z .
7= J=

Proof. Because of the diagonal block structure of Z;; = var[Z;] and the block structure

of A; we obtain

n—k
AZHA, = diag[ Y v/EvY 2J
ke{0,...,n}

J=0

and

n—k
AZZ, = ( S (VYiEvyY Z)V;‘Zm)
=0 €

kel0,...,n}

Now the Gauss-Markov Theorem for estimators yields

. n—k 1k
BM = (AIZiiA) ' AIEHZ, =[(z V}-“z;’V}“) ) <V}/’z;‘V}“>V;‘Z,~,]
j=0 j=0 kelo,...n)
and hence
. n—k -1 n—k
g =(Z V}/Zz;‘V}”j 2 (V/PEV V2
=0 Jj=0
forall ke{0,1,..., n}. ad

The following result provides formulas for the Gauss-Markov predictors of the non-
observable incremental losses and for the Gauss-Markov predictors of the non-observable

cumulative losses:

4.2 Theorem. For all i,k€{0,1,...,n) such that i+ k2 n+1, the Gauss-Markov predictor
Z,GIA of Z;y satisfies

251 =v, £
and the Gauss-Markov predictor é,GIA of S; 4 satisfies

N k.
Sic,;l?d=si,n—i+\,i > CIGM

I=n—i+1

Proof. Since X, =cov[Z,,Z,] =0, the first assertion is immediate from the Gauss-

Markov Theorem for predictors and the second assertion follows from the final remark of
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Section 3. 0

The Gauss-Markov Theorem for predictors implies that

— the Gauss-Markov predictors of the sum of the non-observable incremental losses of a

given accident year,

— the Gauss-Markov predictors of the sum of the non-observable incremental losses of a

given calendar year, and
— the Gauss-Markov predictors of the sum of all non-observable incremental losses
are obtained by summation over the Gauss-Markov predictors of the corresponding single

non-observable incremental losses.

For 7,k€{0,1,..., n} such that 1 + k2 n+1, the estimators and predictors
N n—k -1 n—k
©-(Svrmvy | Swrmvvi,

Jj=0 j=0
ZR =V
N koo,
SﬁbD =8+ V; Y C;\D

l=n—i+1

are said to be the estimators and predictors of the mwltivariate additive method. Except for

m=1 or k=n they usually differ from the estimators and predictors

n n—k -1,k
Cs ¢=[ZV1‘] 22
j=0 =0

Zi,k = Viélz

. koo
Sia=S8i.-i+V; 2 &

I=n—i+1

whose coordinates coincide with those of the univariate additive method.

4.2 Multivariate Chain-Ladder Model

Let us now consider a multivariate extension of the chain-ladder model which applies to
the combined subportfolios and was proposed by Prohl and Schmidt [2005]). This model is a
slight but convenient extension of the model of Braun [2004]; see also Kremer [2005].

The multivariate chain-ladder model involves successive conditioning with respect to the
o -algebras Gy, Gy, ..., G,1 Where, for each k€{0,1,..., 7}, the o -algebra
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G
represents the information provided by the cumulative losses S;; of accident years
J€1{0,1,...,n—k+1} and development years [ € {0, 1, ..., k—1}, which is at the same time
the information provided by the incremental losses Z;; of accident years
J€{0,1,...,n—k+1} and development years / € {0, 1,..., k-1}.
Forall i,ke{0,1,..., n}, we denote by
A;, = diag(S;4)
the diagonal random matrix whose diagonal elements are the coordinates of the random

vector S, 4.

We assume that all coordinates of S;; ate strictly positive. Then each A; is invertible
and the identity

Si,k = Ai,lz—l (Ai-,}e—lsi,k)
holds forall 1 €{0,1,...,n} and k€ {0,1,..., n}.

Multivariate Chain-Ladder Model: For each ke{0,1,...,n}, there exists a random

parameter vector By, and a positive definite symmetric random matrixc Ly, such that
ES08; 4] = Ai gy ~ By
and

AV2ZE AV =
COVg"‘[Si,k,S,-,k]= i TR =g
(0] else

holds forall i, 7 €{0,1,...,n—k+1}.

In the subsequent discussion, we assume that the assumption of the multivariate chain-
ladder model is fulfilled.

The multvariate chain-ladder model consists of #» conditional linear models
corresponding to the development years k€ {l,...,#n}. This can be seen as follows: Fix
kefl,...,n}, let §; and A denote a block vector and a block matrix consisting of the
random vectors S;; and the random matrices A;; with i <n—k (arranged in the same
order) and let 8, =S, 4,14 and A, :=A, 4,14 Then the random vectors §; and S, and

the random matrices A; and A, depend on % and we have
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ESS|= A\,
ES# [Sz] = A,®,.

Therefore, the multivariate chain-ladder model consists indeed of » conditional linear

models.

The following result provides formulas for the Gauss-Markov estimators of the

parameters in the multivariate chain-ladder model:
4.3 Theotem. Foreach ke {1, ..., n), the Gauss-Markov estimator @E M of @y satisfies
-1
n—k
M = ( > AL m:&ﬂ) 2 (AT L) A8
=
Theorem 4.3 is immediate from the Gauss-Markov Theorem for estimators.

The following result provides formulas for the Gauss-Markov predictors of the

cumulatve losses of the first non-observable calendar year:

4.4 Theorem: Foreach i € {1, ..., n}, the Gauss-Markov predictor Sf,},‘f,»ﬂ of Sin-iv1 Satisfies

| Stins = Aip O,
Theorem 4.4 is immediate from the Gauss-Markov Theorem for predictors.
For i,ke{l,..., n} such that i + k2 n+1, the estimators and predictors
&= (Z" A LECAL j-l 2 (AL TP A )AThS s
= jar
S A bt
with
Ac e {diag( inmi) i k=n—i+1
dxag(S,,, 1) else

are said to be the estimators and predictors of the multivariate chain-ladder method. Except for

m=1 or k=n they usually differ from the estimators and predictors

- =k gL’
D, '=(ZA,‘,H] 2 Sk
Jj=0 j=0

S,',[, = I‘Sj,kd"k
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with
. {diag(si,"_,- ) if k=n—i+l
k=1 =

diag(S;sy) else
whose coordinates coincide with those of the umivaniate chain-ladder method.

In the case i + k= z+1, the multivariate chain-ladder predictors are justified by Theorem
4.4, but another justification is needed in the case i+% 2 n+2; this can be achieved by
minimizing the Gj;-conditional expected prediction error over the collection of all

predictors §;; of S, satisfying
. foL
Sip = AT D,

for some G- -conditionally unbiased linear estimator d);, of ®;; see Schmidt [1999b] for

the univariate case. We have the following result:

4.5 Theotem. For all i,k €{l,..., n} such that i+ k2 n+1, the chain-ladder predictor SCx
minimizes the Gy_, -conditional expected prediction error over all predictors $ ik Of Sip satisping

éi,k = AE}:—léﬁ
Sor some G-, -conditionally unbiased linear estimator &, of @
A proof of Theorem 4.5 will be given in the Appendix.
The optimality of the multivariate chain-ladder method guaranteed by Theorem 4.5 is

sequential and one-step ahead. Of course, one would like to have a condition ensuring some
kind of global optimality of the chain-ladder predictors; however, even in the univariate case,

no such condition seems to be known.

To illustrate the situation without introducing additional notation, let us recall two results

for the univariate case:

— The assumption of the univariate chain-ladder model is fulfilled in the model of Mack
[1993] in which it is assumed that the accident years are independent and that the
parameters ¢, and ©; are non-random; see Schmidt and Schnaus [1996]. Under the
assumptions of the model of Mack, it can be shown that all chain-ladder predictors are
unbiased, but it can also be shown that many other predictors are unbiased as well.
Therefore, unbiasedness does not distinguish the chain-ladder predictors among all other

predictors.
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— One might hope that the chain-ladder predictors minimize the G,;-conditional expected
squared predictor error over all predictors of the form
§i,k =S8 i ﬁ (o
I=n-i+1
where, for each [ e{n-i+1,...,k}, ¢; is a G;-conditionally unbiased linear estimator
of ;. Again, under the assumptions of the model of Mack, it has been shown in
Schmidt [1997] that this kind of optimality may fail for the chain-ladder predictors.

Thus, even in the univariate case and under the stronger assumptions of the model of Mack,
it remains an open question whether there exists a condition which is less restrictive than the
sequental optimality criterion of Theorem 4.5 and still ensures some kind of global

optimality of the chain-ladder predictors.

5. ADDITIVITY

Let 1 denote the m-dimensional vector with all coordinates being equal to 1. For
i,ke{0,1,..., n} define

Zi’/, = I’ZM,
S,’,k = 1'S,<,,,.
We shall now study prediction of the non-observable incremental losses Z;; and of the

non-observable cumulative losses S;; of the aggregate portfolio.

5.1 Multivariate Additive Model
In the multivariate additive model it is immediate from the Gauss-Markov Theorem for
predictors that, for all 1,k€{0,1,..., 7} such that i + k2 zn+1, the Gauss-Markov predictor
ZF ,;M of Z;; and the Gauss-Markov predictor S,Gfd of §; 4 satisfy
29 vt
SEM = 1§22
This means that the Gauss-Markov predictors for the aggregate portfolio are obtained by

summation over the Gauss-Markov predictors for the single lines of business. Therefore, the

multivariate additive method is consistent in the sense that there is no problem of additivity.

Warning: One might believe that the Gauss-Markov predictors for the aggregate
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portfolio could also be obtained by applying the univariate additive method to the aggregate
portfolio. This, however, is not the case since the multivariate additive model for the
combined subportfolios does not lead to a univariate additive model for the aggregate

portfolio.

5.2 Multivariate Chain-Ladder Model

In the multivariate chain-ladder model it is immediate from the Gauss-Markov Theorem
for predictors that, for all 7 €{l,..., n}, the Gauss-Markov predictor .SA',?x,-H of S;n-int

satisfies
SGM &CL
Siimmint = V87 .
This means that the Gauss-Markov predictors for the aggregate portfolio are obtained by
summation over the multivariate Gauss-Markov predictors for the different lines of
business. Moreover, it is easy to see that, for all ,k€{0,1,..., 7} such that i+k2n+2,
the predictor
. &CL
S,'_k = l'S,-,,,
ACL ACL
= l'Ai,k-ld)lt
&CL v A&CL
= (Sim) @
minimizes the G;-conditional expected predicdon error over all predictors §;; of §;;
satisfying
. foL 4
Sip =1A7, Dy
ACL 2
= (si,le—l)'(bk
for some G- -conditionally unbiased linear predictor @ of ®,. Therefore, the multivariate

chain-ladder method is consistent in the sense that there is no problem of additivity.

Warning: As in the case of the multivariate additive model, it would be a serious mistake
to predict the non-observable cumulative losses of the aggregate portfolio on the basis of the
observable cumulative losses of the aggregate portfolio since such an approach would ignore
the correlation structure between the different lines of business; see Préhl and Schmidt
[2003].
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6. ESTIMATION OF THE VARIANCE PARAMETERS

In the case m =1, which is the univariate case, the variance parameters Zg, Xy,...,Z,
drop out in the formulas for the Gauss-Markov predictors in the multivariate additive model

and in the multivariate chain-ladder model.

In the case m 22, only the variance parameter X, drops out in the formulas for the
Gauss-Markov predictors in the multivariate additive model and in the multivariate chain-

ladder model; in this case, the variance parameters Zg, X, ...,Z,; must be estimated.

6.1 Multivariate Additive Model

Under the assumptions of the multivariate additive model and for k< n—1, the random

matrix
5 nk - -
B3 =L ) ViVHZ s =V ENZ, 4 - V)V
=

is a positive semidefinite estimator of the positive definite matrix X;; moreover, its diagonal
elements are unbiased estimators of the diagonal elements of Z; whereas its non-diagonal

elements slightly underesdmate the corresponding elements of Z;.

Although unbiasedness of an estimator is usually considered to be desirable, this property
would not be helpful in the present situation since any estimator of Z; has to be inverted
and since the inverse of an unbiased estimator of Z; is very likely to be biased anyway.

Moreover, the relative bias of the estimators proposed before can be shown to be very small.

By contrast, for any estimator of Z;, the property of being positive semidefinite is a
necessary, although not sufficient, condition for being positive definite and hence invertible.
In fact, the estimator of X, proposed before is always singular when k2 7—m+ 2 since in
this case the dimension of the linear space generated by any realizations of the random
vectors V}/Z(Z,-,k —V]-Ck) with j€{0,1,...,n—k} is at most m—1 such that there exists
at least one nonzero vector which is orthogonal to each of the realizations of these random
vectors; moreover, the realizations of the random vectors V}/ HZig— Vjék) may be linearly
dependent also for some k< #—m+1, which implies that the cotresponding realization of

the estimator of Z; proposed before may be singular also for some k<n—-m+1.

In practical applications, it is thus necessary to check whether the esumators proposed
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before are invertible or not, and to modify those estimators which are not invertible. Such
modifications could be obtained by extrapolation or by the use of external information; see

below.

6.2 Multivariate Chain-Ladder Model

Under the assumptions of the multivariate chain-ladder model and for A< n—1, the
random matrix
n~k

= 7 L > AYE (S = 81 ®e) (S - A s aDe) AV,
j=0

is a positive semidefinite estimator of the positive definite matrix Z;; moreover, its diagonal
elements are unbiased estimators of the diagonal elements of Z; whereas its non-diagonal
elements slightly underestimate the corresponding elements of Z; and hence differ from the

unbiased estimators proposed by Braun [2004].

The comments on the variance estimators proposed for the multivariate additive model

apply as well to the variance estimators proposed for the multivariate chain-ladder model.

6.3 Extrapolation
In the case where the proposed estimators of the variances for late development years
are singular or almost singular, it could be reasonable to replace these estimators with

estimators obtained by extrapolation from the estimators for the first development years

which are usually invertible.

6.4 Iteration

In both models, one may try to improve the estimators of the variances and hence the
Gauss-Markov estimators of the parameters by iteration, as proposed by Kremer [2005].
However, the iterates of some of the estimators of the variances may again be singular, and it
seems to be difficult to prove that the resulting empirical Gauss-Markov estimators of the

parameters are indeed improved by iteration.

6.5 External Information

In both models, another possibility for the estimation of the variance parameters

ZosZ1s...,5,1 consists in the use of external information, which is not contained in the
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run-off triangle and could be obtained, e. g., from the run-off triangle of a similar portfolio

or from market statistics.

7. REMARKS

Another bivariate model of loss reserving is the model of Quarg and Mack [2004]. Under
the assumptons of their model, Quarg and Mack propose bivariate chain-ladder predictors
for the paid and incurred cumulative losses of a single line of business with the aim of
reducing the gap between the univariate chain-ladder predictors for the. paid and incurred
cumulative losses; see also Verdier and Klinger [2005] for a related model. None of these -

two models is contained in the multivariate models proposed in the present paper.

Since no conditions at all are imposed on the character of the different lines of business
in the multivariate models presented here, the multivariate method and the muldvariate
chain-ladder method could, in principle, also be applied to the paid and incurred cumulative

losses of a single line of business.

Let us finally note that the problem of additivity can also be solved in quite different
models like credibility models; see Radtke and Schmidt [2004] and Schmidt [2004].

8. ANUMERICAL EXAMPLE

In this section we present a numerical example for the multivariate chain-ladder method

in the case of m = 2 subportfolios and #» =3 development years.

8.1 The Data
(2)

The following run-off triangles contain the observable cumulative losses S,(},,), 4> and

Si & of the two subportfolios and of the aggregate portfolio, respectively:

Subportfolio 1

AY DY
0 1 2 3

0 2423 3123 3567 3812
1 2841 3422 3952

2 3700 3977

3 5231
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Subportfolio 2

AY DY

0 1 2 3
0 3546 6578 7650 8123
1 4001 7566 8822
2 4040 7813
3 4300

Aggregate Portfolio
AY DY

0 1 2 3
0 5969 9701 11217 11935
1 6842 10988 12774
2 7740 11790
3 9531

8.2 Univariate Chain-Ladder Method

Applying the univariate chain-ladder method to each of these run-off triangles yields the
univariate chain-ladder factors (CLF) and the univariate chain-ladder predictors of the non-

observable cumulative losses:

Subportfolio 1
AY DY
0 1 2 3

0 2423 3123 3567 3812
1 2841 3422 3952 4223
2 3700 3977 4569 4883
3 5231 6140 7054 7538
CLF 1.1738 1.1488 1.0687
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Subportfolio 2

AY DY

0 1 2 3
0 3546 6578 7650 8123
1 4001 7566 8822 9367
2 4040 7813 9099 9662
3 4300 8148 9490 10076
CLF 1.8950 1.1646 1.0618

Aggregate Portfolio
AY DY

0 1 2 3
0 5969 9701 11217 11935
1 6842 10988 12774 13592
2 7740 11790 13672 14547
3 9531 15063 17467 18585
CLF 1.8950 1.1646 1.0618

8.3 Multivariate Chain-Ladder Method

We now combine the run-off triangles of the two subportfolios into a single run-off triangle

which contains the vectors §;; of cumulative losses:

Combined Subportfolios

AY DY
1 2 3

o 2423 3123 3567 3812

3546 6578 7650 8123
) 2841 3422 3952

4001 7566 8822
5 3700 3977

4040 7813

5231
3 (4300)

Transforming the vectors §;; of cumulative losses into diagonal matrices, we obtain the

following run-off triangle for the matrices A;,; =diag(S;s) which is completed by the

vectors ®, of univariate chain-ladder factors:
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Combined Subportfolios
AY DY
0 1 2 3
0 2423 0 3123 0 3567 0 3812 0
0 3546 0 6578 0 7650 0 8123
1 2841 0 3422 0 3952 0
0 4001 0 7566 0 8822
5 3700 0 3977 0
0 4040 0 7813
3 5231 0
0 4300
& 1.1738 1.1488 1.0687
* 1.8950 1.1646 1.0618

For the estimators of the variances we thus obtain

o _( 35.4968

T\-14.3861
$oL _ 0.2637
2 71 0.0926
and hence
acLYt _ 1.8616
(zl ) _( 4.5239

(iCL)_l _ [ 25876.4330
2 “\-73727.6467

-14.3861
5.9200

0.0926
0.0325

4,5239
11.1624

-73727.6467
210097.0596

Note that estimators of the variances Xy and X3 are not needed. Applying the multivariate
chain-ladder method to the combined subportfolios yields the multivariate chain-ladder

predictors of the non-observable cumulative losses:
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Combined Subportfolios

AY DY
0 2423 3123 3567 3812
3546 6578 7650 8123
. 2841 3422 3952 4223
4001 7566 8822 9367
) 3700 3977 4569 4883
4040 7813 9099 9661
3 5231 6105 7013 7495
4300 8167 9512 10100
2 1.1670 1.1489 1.0687
@, 1.8994 1.1646 1.0618

8.4 Comparison

Predictors for non-observable aggregate cumulative losses may be computed by the

following three methods:
— Method A: Apply the univariate chain-ladder method to the aggregate portfolio.
— Method B: Apply the univariate chain-ladder method to each of the subportfolios and

take sums of the univariate predictors,

— Method C: Apply the multivariate chain-ladder method to the combined subportfolios

and take sums of the multivariate predictors.
For example, for the ultimate aggregate cumulative loss of accident year 3,
— Method A yields the value 18585.
— Method B yields the value 7538 + 10076 =17614.
— Method C yields the value 7495+ 10100 =17595.

The following table presents several reserves obtained by these three methods:
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Reserve Method A Method B Method C
Accident Year 1 818 817 817
Accident Year 2 2757 2754 2754
Accident Year 3 9054 8084 8064
Total 12628 11655 11635
Calendar Year 4 8231 7452 7436
Calendar Year 5 3279 3131 3129
Calendar Year 6 1118 1071 1070
Total 12628 11655 11635

Due to round-off errors, some of the total reserves differ slightly from the sums of the
reserves over accident years of calendar years. In the present example, the results obtained
by Methods B and C are quite similar, but they differ considerably from those obtained by
Method A.

8.5 Preliminary Conclusions

Of course, one should not draw general conclusions from a single numerical example.
Nevertheless, the present example and experience with other sets of data justify the

following rule of thumb:

— Method C is optimal when the model assumptions and the optimality criteria for the
multivariate chain-ladder method can be accepted.

— Method B may in many cases provide a reasonable approximation to Method C.

— Method A may be disastrous since it ignores correlation between the different lines of

business.

Experience with other sets of data also indicates that the similarities and differences between

the three methods may vary with

— the lines of business under consideration,
— the number of lines of business, and

— the number of development years.

It is therefore indispensable for the actuary to acquire practical experience for every

combined portfolio of interest.
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APPENDIX

Here we give a proof of Theorem 4.5.

Proof. Consider any G- -conditionally unbiased linear estimator ®; of ®;. Then there
exist Gy, -measurable matrices Q o4-1, Q 1,015 -++» Q -t 41 satisfying

n—k

&, = Z Q4184
and Z::}Q ja-18 a1 =L Also, letting

n—k 1
Qi = (Z Ai,/ﬁlzilAi,/fx) (A EZE AT ) AT
s=0

we obtain
n—k
#CL _ CL
=2 QiS4
Jj=0
and Z"—k 7 lz-—lA} +-1 = L. We thus obtain

n—k

Z%)(Q b1~ QFi)A 4 = O.
=

Since
Qo[ EA2ERA | o (ar15.0)
5=0
this yields
N N n—k n—k !
covsH [d’k -O & L] Z z( Qi -Qf5 k_l)covg“[S,k,Su]( Q- 1)
j=01=0
n—k

= z_‘z)(Q,j,k_l - Q?,Iie-l )varg"-l [Sj,k](QS-:'];_l )I

n—k ~1
= (k- Q 5 )A (z Aiéi,Z;‘Aigilj
J=0 5=0 . .

=0.

Since i + & 2 n+1, we also have cov% [Sj,,,,Si,k] = O and thus
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cov9H [S, =S85, 8 k] = cov#* [A b - AT, Sy ]
=A%, cov9+ [‘Pk - d’lf:Lr si.k]
=A%k 1 "_:(Q Jke1— Q?.Iit—l ) covo [sj.*’ Si-"]
=0.
Using the two identities established before, we thus obtain
covi* [S + =85, 8% _s,,,]_covg‘ h [S,,, -85, 85

= A;,,,_, coviH! [@k -&*, 6 L]A: k-1
=0

and hence

ar [S,-,k - S,-,;,:I = var+! [S,-,k - S,C},' :l + var9+! [S,C,% - S,-_,,].

We thus obtain

Eo [(Sr,k —S,»,,,)' (8:x-8:4) ] trace(var* [ 8, ~$,..])
= trace(v Ga-1 [S,k -85 ])+trace(varg“‘ [SCL - :k])
2 trace(v g“ —S,ﬁ])
(558 -5,.) (55 - s..)]

which proves the theotem. |
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