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Abstract. 
The present paper provides a unif3"ing survey of some of the most important methods and models of 
loss reserving which are based on run-off triangles. The starting point is the thesis that the use of run- 
off triangles in loss reserving can be justified only under the assumption that the development of  the 
losses of ever3, accident year follows a development pattern which is common to all accident years. This 
assumption can be viewed as a primitive stochastic model of loss reserving. 
The notion of a development pattern rams out to be a unifying force in the comparison of methods 
which to a large extent can be summarized under a general version of the Bornhuetter-Ferguson 
method. It is shown that the loss-development method and the chain-ladder method as well as the 
Cape-Cod method and the additive method can be viewed as special cases of the general Bornhuetter- 
Ferguson method. 
Some of these methods can be justified by general principles of statistical inference applied to suitable 
and more sophisticated stochastic models. It is shown that credibility prediction and Gauss-Markov 
prediction as well as maximum-likelihood estimation can contribute in a substantial way to the 
understanding of various methods of loss reserving. 

Keywords. Bornhuetter-Ferguson principle; credibiliq, prediction; development pattern; Gauss-Markov 
prediction; loss reser~fing; maximum-likelihood estimation. 

1. INTRODUCTION 

We start  with  the  general  model l ing  o f  loss -deve lopment  data by a family o f  r a n d o m  

variables represent ing  incrementa l  or  cumulat ive  losses and with the  run -o f f  triangles 

represent ing  the  observable  incrementa l  or  cumulat ive  losses (Section 2). 

W e  then  in t roduce  the  central no t ion  o f  a deve lopmen t  pat tern  which  can be expressed  in 

three different  bu t  equivalent  ways and turns out  to be a powerful  and unifying concep t  for  

the  interpretat ion and  compar i son  o f  several m e t h o d s  and models  o f  loss reserving 

(Section 3). 

The  subsequen t  three sections are devoted to me thods ,  least-squares prediction,  and 

maximum-l ike l ihood  est imation.  

In  the sect ion on  m e t h o d s  (Section 4), we start with a general  vers ion o f  the  B o m h u e t t e r -  

Fe rguson  m e t h o d  which  provides  a general  f ramework  into which  several o ther  me thods ,  

Casualty Actuarial Society Forum, Fall 2006 269 



Methods and Models o f  Loss  Reserving 

like the loss-development method, the chain-ladder method, the Cape-Cod method and the 

additive method, can be embedded as special cases. We also consider two variants of the 

chain-ladder method which have no practical interest but are needed as a link between the 

chain-ladder method and certain stochastic models. 

In the section on least-squares prediction (Section 5), we study credibility prediction and 

Gauss-Markov prediction. It is shown that, under certain model assumptions, these methods 

of prediction yield predictors of the Bornhuetter-Ferguson type. 

In the section on maximum-likelihood estimation (Section 6), we study maximum- 

likelihood estimation for a large class of stochastic models for claim counts; It is shown that 

in many cases, but not always, the maximum-likelihood estimators of the expected ultimate 

cumulative losses are identical with the chain-ladder predictors of the ultimate cumulative 

losses. 

In the final section (Section 7) we collect some conclusions. 

Throughout this paper, let (f2, 5 r, P) be a probability space on which all random 

variables are defined. We also assume that all random variables are square integrable. 

Moreover, all equalities and inequalities involving random variables are understood to hold 

almost surely with respect to the probability measure P. 

2. L O S S  D E V E L O P M E N T  D A T A  

We consider a portfolio of risks and we assume that each claim of the portfolio is settled 

either in the accident year or in the following n development years. The portfolio may be 

modelled either by incremental losses or by cumulative losses. 

2.1 Incremental Losses 

To model a portfolio by incremental losses, we consider a family of random variables 

{Zi,k}i,k~{O,1 . . . . . .  } and we interpret the random variable Zi,k as the loss of acddentyear i 

which is settled with a delay of k ),ears and hence in development year k and in calendar year 

i + k. We refer to Zi,k as the incremental loss of accident year i and development year k. 

We assume that the incremental losses Zi,~ are observable for calendar years i + k < n and 

that they are non-observable ]?or calendar years i + k > n + 1. The observable incremental losses 

are represented by the following run-off"triangle : 
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A c c i d e n t  D e v e l o p m e n t  Y e a r  

Y e a r  0 1 . . .  k . . .  n - i  . . .  n - 1  n' 

o Zo,o Zo., . . .  Zo . ,  ...  Zo , . - i  "'" Zo,._~ Zo, .  

1 Zl.o Zl,1 .., Zl,k .,, Z l , n - i  "'" Z l , n - :  

i ! i ! ! 

i Zi,o Z i , l  "'" Z i , k  . . .  Z i , n - i  

i i : i 

n - k Z.-k.o Z~-k,1 ... Z~-k,* <' 

- 1  Z.-l,o Z . - u  

Zn,0 

The  prob lem is topredict the non-observable  incremental  losses. 

2 . 2  C u m u l a t i v e  L o s s e s  

To model  a portfolio by cumulative losses, we consider a family o f  random variables 

{Si,k}i,k¢{oa ...... 1 and we interpret  the random variable Si,k as the loss o f  acddentffear i which 

is settled with a delay o f  at most k years and hence not later than in development year k. We refer 

to Si,k as the cumulative loss o f  accident year i and deve lopment  3,ear k, to Si,n-i as a 

cumulative loss of the present calendar year n, and to Si,. as an ultimate cumulative loss. 

We assume that the cumulative losses Si,k are observable for calendar years i + k s n and that 

they are non-observable for calendar years i + k > n + 1. The observable cumulative losses are 

represented by the following run-offtriangle. 

A c c i d e n t  D e v e l o p m e n t  Y e a r  

Y e a r  0 1 . . .  k . . .  n - i . . .  n - 1 n 

o So,o So., ... Soa ... So._~ "" So._, So.  

i i ! i ! 
i S,'0 &, ... Si.k ... S,.,_i 
i : ! i 
n - k &-k.o S,_k., . . .  &-k . ,  

! : i 
n - 1 &-l.o S._,a 

n Sn,  0 

The  problem is topredirt the non-observable  cumulative losses. 
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2.3 Remarks 

Of course, modelling a portfolio by incremental losses is equivalent to modelling a 

portfolio by cumulative losses: 

- The cum'ulative losses are obtained from the incremental losses by letting 

"~ k 
, Si,k := Z Zid" 

1=0 

- The incremental losses are obtained from the cumulative losses by letting 

Z i k  : = I  si'k i f k = 0  
' [ Si,k - Si.k-1 else. 

In the sequel we shall switch between incremental and cumulative losses as necessary. 

Correspondingly, prediction of non-observable incremental losses is essenlially equivalent 

to prediction of non-observable cumulative losses: 

- I f  {Zi,k}i,kElO,l,...n}, i+k>-n+l is a family of predictors of the non-observable incremental 

losses, then a family of predictors of the non-observable cumulative losses is obtained by 

letting 
k 

L,k := Si,.-i + Z Z'i,l" 
l=n-i+l 

- If {Si,k}i,k~{O,l,...n}, i+k>n+l is a family of predictors of the non-observable cumulative 

losses, then a family of predictors of the non-observable incremental losses is obtained by 

letting 

I= f Si,n_i+l - if k = n - i + l 

L S i , k  - S , , k - ,  else. 

For the ease of notation and to avoid the distinction of cases as in the previous definition, 

we shall also refer to Zi, . - i  and Si,n_ i as predictors of Zi, . - i  and Si,.-i,  although these 

random variables are, of course, observable. 

Warning:  Whenever prediction is subject to an optimality criterion, it cannot be 

guaranteed in general that the previous formulas lead from optimal predictors of incremental 

losses to optimal predictors of cumulative losses or vice versa. 

The enumeration of accident ),ears and development ),ears starting with 0 instead of 1 is 

widely but not yet generally accepted; see Taylor [2000] as well as Radtke and Schmidt 
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[2004]. It is useful for several reasons: 

- For losses which are settled within the accident year, the delay of  settlement is 0. 

It is therefore natural to start the enumeration of  development )Tears with 0. 

- Using the enumeration of  development years also for accident years implies that the 

incremental or cumulative loss of  accident year i and development year k is observable if 

and only if i + k < n. In particular, the cumulative losses Si,,,-i are those of  the present 

calendar year n and are crucial in most methods of  loss reserving. 

After all, the notation used here simplifies mathematical formulas. 

3. D E V E L O P M E N T  P A T T E R N S  

The use of  run-off triangles in loss reserving can be justified only if it is assumed that the 

development of  the losses of  every accident ),ear follows a development pattern which is 

common to all accident years. This vague idea of  a development pattern can be formalized in 

various ways. 

In the present section we consider three tTpes of  development patterns which are 

formally distinct but can easily be converted into each other. These development patterns 

and their equivalence provide a key to the comparison of  several methods of  loss reserving. 

The assumption of  an underlying development pattern can be viewed as a primitive 

stochastic model of  loss reserving. 

3.1 Incremental  Quotas  

The development pattern for incremental quotas compares the expected incremental 

losses with the expected ultimate cumulative losses: 

Development Pattern for Incremental Quotas: There exist parameters 80, 81, . . . ,  8n with 

" 0 ~-'4=0 I = 1 SUCh that the idenli~ 

~k = E[Zi,k] 
~[si,.] 

holds for all k ~ {0, 1 . . . . .  n} and for all i ~ {0, 1 . . . . .  n}. 

The assumption means that, for every development year k ~ {0, 1 . . . . .  n}, the incremental 

quotas 
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E[Zi,,] 
O~,k = E[si,.] 

are identic~ for all accident years. 

In the case of  a run-off triangle for paid losses or claim counts, it is usually reasonable to 

assume in addition that Ok > 0 holds for all k ~ {0, 1 . . . . .  n}. In the case of  incurred losses, 

however, this additional assumption may be inappropriate since, due to conservative 

reserving,nghe expected incremental losses of  development years k e {1 . . . . .  n} may be 

negative. 

3 .2  C u m u l a t i v e  Q u o t a s  

The development pattern for cumulative quotas compares the expected cumulative losses 

with the expected ultimate cumulative losses: 

Deve lopment  Pat tern for Cumulat ive  Quotas:  There exist parameters To, YI . . . . .  % with 

. = 1 such that the identity 

EIS i , k ]  
~* = E [ & . ]  

holds for  all k ~ {0, 1 . . . . .  n} and for  all i ~ {0, 1 . . . . .  n}. 

The assumption means that, for ever 3, development year k ~ {0, 1 . . . . .  n}, the cumulative 

quotas 

are identical for all accident years. 

"[i,k m 
s.[si,,] 
E[Si,.] 

In the case of  a run-off mangle for paid losses or claim counts, it is usually reasonable to 

assume in addition that 0 < Y0 < Yx < . . .  < '/,- In the case of  incurred losses, however, this 

additional assumption may be inappropriate since, due to conservative reserving, the 

sequence of  the expected cumulative losses may be decreasing. 

The development patterns for incremental and cumulative quotas can be converted into 

each other: 

- If  80, ~)1 . . . . .  ~), is a development pattern for incremental losses, then a development 

pattern for cumulative losses is obtained by letting 
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k 

I=0 

I f  70, 71 . . . .  , ~'. is a development pattern for cumulative losses, then a development 

pattern for incremental losses is obtained by letting 

70 i f  k = 0  
0k := 

7k -Yk-i else. 

Furthermore, the condition 9k > 0 is fulfdled for all k ~ {0,1,. . . ,  n} if  and only if 

0 < 7 0  <5'1 < . . - < 7 . .  

3 .3  F a c t o r s  

The development pattern for factors compares subsequent expected cumulative losses: 

Deve lopment  Pat tern for Factors: There existparameters ~Pl . . . . .  cp. such that the idenli[y 

~[s;.k] 
cpk = E[S,.k_1] 

holds for a]l k ~ {1 . . . . .  n} andfirall  i ~ {0, 1 . . . . .  n}. 

The assumption means that, for every development ),ear k e {1 . . . . .  n}, the factors 

E[SI.A 
cpi.k = E [ s , , ~ _ , ]  

are identical for all accident ),ears. 

In the case of  a run-off triangle for paid losses or claim counts, it is usually reasonable to 

assume in addition that ~0k > 1 holds for all k ~ {1 . . . . .  n}. In the case of  incurred losses, 

however, this additional assumption may be inappropriate since, due to conservative 

reserving, the sequence of  the expected cumulative losses may be decreasing. 

The development patterns for cumulative quotas and for factors can be converted into 

each other: 

- I f  70, 71 . . . . .  7. is a development pattern for cumulative losses, then a development 

pattern for factors is obtained by letting 

Yk 
(Ok : = - - .  

7k-~ 
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- I f  qh,- . . ,  q), is a development pattern for factors, then a development pattern for 

cumulative losses is obtained by letting 

" 1 

(such that 3% = 1 ). 

Furthermore 7 the condition g0 < "tl < . . .  < "{, is fulfilled if and only if q~k > 1 holds for all 

k ~ {1 . . . . .  n}. 

Combining this result and that of  the previous subsection, it is evident that also the 

development patterns for incremental quotas and for factors can be converted into each 

other. We omit the corresponding formulas since they will not be needed in the sequel. 

3.4 Estimation 

At the first glance, there is little hope to estimate the parameters of  the development 

patterns for incremental or cumulative quotas since the only obvious estimators of  8k and 

)'k are the observable quotients 7--,0,k/S0,n and S0,k/S0,~, respectively. 

Fortunately, the situation is quite different for the development pattern for factors: For 

every development year k E {1 . . . . .  n}, each of  the individual devdopmentfactors 

Si,k 
~i,k := Si,k_l 

with i ~ {0, 1,... ,  n -  k} is a reasonable estimator of  cpk, and this is also true for ever 3, 

weighted mean 

n--k 
(0k := Z ~vi,/%* 

j=0 

with random variables (or constants) satisf34ng ~ " - k W  /q=0 j,k = 1. The most prominent 

estimator of  this large family is the chain-ladder factor 

~--.-k S +?L := ~.i=0 i,, 
Z.-k S j=O j,k-1 

which can also be written as 
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~ C L = ~  k Sj,k-1 
,e.-k S ~°i'* j=0 L~h=0 h,k-I 

and is used in the chain-ladder method. 

Due to the correspondence between the three development pattems, it is then clear that 

in the same way estimators of factors can be converted into estimators of cumulative quotas 

and hence into estimators of incremental quotas. 

3.5 R e m a r k s  

In the case of a run-off triangle for paid claims or claim counts, the intuitive cumulative 

interpretation of the development patterns of incremental or aggregate quotas would be their 

interpretation as incremental or cumulative probabilities. This interpretation is helpful, but it 

is not quite correct since the parameters of the development pattern are defined as quotients of 
expectations instead of expectations of quotients and since these quantities are in general distinct. 

One may thus argue that the definitions of development patterns are inconvenient since 

they do not exacdy correspond to intuition. In the following two sections, however, it will be 

shown that the definitions given here are nevertheless reasonable since they provide a 

powerful and unif34ng concept for the interpretation and the comparison of many methods 

and models of loss reserving. 

4. M E T H O D S  

The present section provides a unifying presentation of the most important methods of 

loss reserving. The starting point is a general version of the Bornhuetter-Ferguson method 

which is closely related to the notion of a development pattern for cumulative quotas and 

turns out to be a unifying principle under which various other methods of loss reserving can 

be subsumed. 

4.1 B o r n h u e t t e r - F e r g u s o n  M e t h o d  

The Bomhuetter-Ferguson method is based on the assumption that there exist 

parameters ct0, ~l . . . . .  or. and Y0, T1,..., Yn with y. = 1 such that the identity 

E[Si,k] = ~k~i 
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holds for all i , k  ~ {0, 1 . . . .  , n}. Then we have 

E[si,.] = ~i 

and hence .: 

~[s,A = ~,E[s~,.] 

such that the parameters Y0, Yl . . . . .  y,  form a development pattern for cumulative quotas. 
,b 

The Bqrnhuetter-Ferguson method is also based on the additional assumption that p t~r  

estimators 

dto, ~1 . . . . .  ~ .  

of the expected ultimate cumulative losses E[Si,n] andprior estimators 

. i % ,  9,  . . . . .  9 .  

of the development pattern are given and that % = 1. 

Comment: Prior estimators may be obtained from information provided by various 

sources: 

- Internal informatiom This is any information which is contained in the run-off triangle of  the 

portfolio under consideration. Internal information could be used, e. g., by estimating the 

development pattern from the given run-off triangle. 

- Externalinformation: This is any information which is not contained in the run-off mangle of  

the portfolio under consideration, External information could be obtained, e.g., from 

market statistics, from other portfolios which are judged to be similar to the given one, or 

from premiums or other volume measures of  the portfolio under consideration; see 

Section 4.6. 

O f  course, prior estimators may also be obtained by combining internal and external 

information. In any case, the choice of  prior estimators is an important decision to be made 

by the actuary. 

The  Bornhuetter-Ferguson predictors of the cumulative losses S,,k with i + k > n are defined 

as 

~ := &.-i +(gk- ~.-,)~. 

The definition of  the Bornhuetter-Ferguson predictors reminds of  the identity 
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E[ Si,, ] = E[ Si.-i ] + (~'k - ~-~ ) ~  

which is a consequence of  the model assumption. 

The definition of  the Bornhuetter-Ferguson predictors shows that the prior estimators 

are dominant for young accident )'ears whereas they are less important for old development 

)'ears. Also, in the extreme case where the prior estimators are completely determined by 

external information, the major part of  the run-off triangle is ignored and only the 

cumulative losses of  the present calendar year are used. This is reasonable when the quality 

of  the data from older calendar years is poor. 

Example A. We consider the following reduced run-off triangle for cumulative losses 

which contains the cumulative losses of  the present calendar year and is complemented by 

the prior estimators of  the expected ultimate cumulative losses and of  the development 

pattern: 

Accident Development Year k 

Year/  &i 0 1 2 3 4 5 

0 3517 3483 
1 3981 3844 
2 4598 3977 
3 5658 3880 
4 6214 3261 
5 6325 1889 

9. 0.280 0.510 0.700 0.860 0.950 1.000 

Computing now the Bornhuetter-Ferguson predictors, the run-off triangle is completed as 

fo]Jows: 

Accident Development Year k 

Year i dt i 0 1 2 3 4 5 

0 3517 3483 
1 3981 3844 4043 

2 4598 3977 4391 4621 

3 5658 3880 4785 4389 5577 

4 6214 3261 4442 5436 5995 6306 

5 6325 1 8 8 9  3344 4546 5558 6127 6443 

~k 0.280 0.510 0.700 0.860 0 .950 1.000 

Casualty Actuarial Society Forum, Fall 2006 279 



Methods and Models of Loss Reserving 

When the cumulative losses of the present calendar ),ear are judged to be reliable, it may 

be desirab!e to modif 3, the Bornhuetter-Ferguson predictors in order to strengthen the 

weight of the cumulative losses of the present calendar ),ear and to reduce that of the prior 

estimators of the expected ultimate cumulative losses. This goal can be achieved by iteration. 

For example, if on the right hand side of the previous formula the prior estimators ~i are 
^ BF replaced by the Bornhuetter-Ferguson predictors Si, . ,  then the resulting predictors are the 

Benktander Hovinen predictors 

siB, H :=Si,n-i +[]lk--Vn-i) i,n 

which in the case ~'.-1 < "~k increase the weight of the cumulative losses of the present 

calendar ),ear and reduce that of  the prior estimators of the expected ultimate cumulative 

losses. 

More generally, the Bornhuetter-FeNusonpredictors of order m ~ N0 are defined by letting 

t S i , n _ i + ( ~ l k - ~ n _ i ) ~ i  if ra=O 

S!'~} := t Si,.-i + (gk - ?._i)~,~-1) if m > 1. 

Then we have ~[oJ ~;~kF and S[l~ ^BH , = = Si,k , and induction $4elds 

S[;} = (1 - (1 - "}.-i )" ) 9k ~ + (1 -^?.-i}" ai,kt'Bl: 
w 

" Si'"-i + "1 " .m (~tn= ^ Si,.-i ) 

-=~k ~_, + O-~-D~(% ~._~ ) 

for all m ~ N 0 .  In the particular case where &i = $ i , ~ - i / ~ - i  or ~ - i  =1, the iteration is 

without interest since in that case the identit 3, 

Si n-i 

~n-t' 

holds for all m ~ No. By contrast, the iteration is of considerable interest in the case where 

0 < ~'.-i < 1 since in that case we obtain 

l i e :  

and convergence of the sequence of the iterated Bomhuetter-Ferguson predictors is 
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monotone but may be increasing or decreasing. 

Example  B. The following table contains the prior estimators of  the expected ultimate 

cumulative losses, the iterated Bomhuetter-Ferguson predictors 

S!.7 > = ~ (I 

and their limits: 

Accident Prior Iterated Bomhuetter-Ferguson Predictors Limit 

Year/  dt i ~ )  ~s) ~25) ~.~) ~,~) ~ )  ... ~ j ~ o ) . . .  

0 3517 3483 3483 3483 3483 3483 3483 3483 3483 

1 3981 4043 4046 4046 4046 4046 4046 ... 4046 ... 4046 

2 4598 4621 4623 4624 4624 4624 4624 4624 4624 

3 5658 5577 5553 5546 5544 5543 5543 5543 5543 

4 6214 6306 6351 6373 6384 6389 6392 6394 6394 

5 6325 6443 6528 6389 6633 6664 6687 ... 6730 ... 6746 

The iteration steps 0 and 1 correspond to the Bomhuetter-Ferguson method and to the 

Benktander-Hovinen method, respectively. The table illustrates that convergence is 

monotone but may be increasing or decreasing, and that convergence is usually fast for old 

accident years and slow for young accident ),ears. 

4.2 Loss-development Method 
The loss-development method is based on the assumption that there exist parameters 

?0, Yl . . . .  , y. with y. = 1 such that the identity 

~[si,k] = ykE[Sl.] 

holds for all i ,k  ~ {0, 1 . . . .  , n}. Then the parameters Y0, Yl . . . . .  T~ form a development 

pattern for cumulative quotas. 

The loss-development method is also based on the additional assumption that prior 

estimators 

of  the development pattern are given and that ~. = 1. 

The  loss-developmentpredictors of the cumulative losses Si,k with i + k > n are defined as 
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Si n-i ~ = 5'* : '  • 

The definition of  the loss-development predictors reminds of  the idenfit 3, 

E[Si,,] = ~, E[&.] 
'Yn-i 

which is a consequence of  the model assumption. 

When compared with the Bomhuetter-Ferguson predictors, the importance of  the 

cumulative losses of  the present calendar year and of  the prior estimators of  the 

development pattern is increased in the loss-development predictors since the latter do not 

involve any prior estimators of  the expected ultimate cumulative losses. 

Example  C. We consider the following reduced ran-off mangle for cumulative losses 

which contains the cumulative losses of  the present calendar year and is complemented by 

the prior estimators of  the development pattern: 

Accident Development Year k 

Year i 0 1 2 3 4 5 

0 3483 
1 3844 
2 3977 
3 3880 
4 3261 
5 1889 

5'k 0.280 0.510 0 .700 0 .860 0.950 1.000 

Computing now the loss-development predictors, the run-off mangle is completed as 

follows: 

Accident Development Year k 

Year i 0 1 2 3 4 5 

0 3483 
1 3844 4046 

2 3977 4393 4624 

'. 3 3880 4767 5266 5543 

4 3261 4476 5499 6074 6394 

5 1889 3440 4722 5802 6409 6746 

5'k 0.280 0.510 0.700 0.860 0.950 1.000 

The loss-development predictors can be written as 
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This shows that the loss-development predictors are nothing else than the Bornhuetter- 

Ferguson predictors with respect to the prior estimators 

(~LD :----- ~LD 

of the expected ultimate cumulative losses. In other words, the loss-development method is 

a particular case of  the Bornhuetter-Ferguson method with prior estimators of  the expected 

ultimate cumulative losses which are based on internal and external information. 

Moreover, in the case where 0 < 9~-i < 1, the loss-development predictors are precisely 

the limits of  the sequences of  the iterated Bornhuetter-Ferguson predictors with respect to 

arbitrary prior estimators of  the expected ultimate cumulative losses, as has been shown in 

Section 4.1. 

4.3 Chain-ladder Method 

The chain-ladder method is based on the assumption that there exist parameters 

qh . . . . .  q)~ such that the identity 

~[si,k] = ~kE[Si,k-,] 

holds for all i e {0, 1 . . . . .  n} and k e {0, 1 . . . . .  n}. Then the parameters ~01 . . . . .  q), form a 

development pattern for factors. 

The chain-ladderpredictors of  the cumulative losses S,.,, with i + k > n are defined as 

k 
~;,~' :=&. - i  FI ,~L 

l=n-i+l 

where 

n-k ~L := Y.j=0si,k 

y--k s j=O j ,k - I  

is the chaiz-ladder factor introduced in Section 3. The definition of  the chain-ladder predictors 

reminds of  the identity 

k 
~[si.,] = EtSi.-i] FI ~, 

I=n-i+l 
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which is a consequence of  the model assumption. 

When compared with the loss-development predictors, it is remarkable that the chain- 

ladder predictors are not determined by the cumulative losses of  the present calendar year 

but involve, via the chain-ladder factors, a//cumuladve losses of  the run-off  triangle. 

E x a m p l e  D. We consider the following run-off triangle for cumulative losses: 

Computing first 

Accident Development Year k 

Year/  0 1 2 3 4 5 

0 1001 1855 2423 2988 3335 3483 
1 1113 2103 2774 3422 3844 
2 1265 2433 3233 3977 
3 1490 2873 3880 
4 1725 3261 
5 1889 

the chain-ladder-factors and then the chain-ladder predictors, the run-off  

triangle is complete d.as-ftllows: 

Accident 

Year i 

Development Year k 

0 1 2 3 4 5 

0 1001 1855 2423 2988 3335 3483 
1 1113 2103 2774 3422 3844 4013 

2 1265 2433 3233 3977 4454 4650 

3 1490 2873 3880 4780 5354 5590 

4 1725 3261 4334 5339 5980 6243 

5 1889 3587 4767 5873 6578 6867 

ACL ~k 1.899 1 .329  1.232 1.120 1.044 

It has been pointed out in Section 3 that the different development patterns and their 

estimators can be_ converted into each other. In particular, letting 

n 1 

converts a development pattern for factors into a development pattern for cumulative 

quotas and letting 

1 

/=k+l (P/ 

converts the estimators of  a development pattern for factors into estimators of  a 
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development pattern for cumulative quotas. Thus, letting 

~c~_ A ! 
"-2~,  ¢o~ ~ 

the chain-ladder predictors can be written as 

Y,-i 

This shows that the chain-ladder predictors are nothing else than the loss-development 

predictors with respect to the chain-ladder cumulative quotas ~Ctas prior estimators of  the 

cumulative quotas. Furthermore, we have 

~CL = Si n-i .^CL ^CL ~.~CL 
i,k , + (~ k -- Yn-i I')i,n " 

This shows that the chain-ladder predictors are precisely the Bornhuetter-Ferguson 

predictors with respect to the prior estimators ~ct of  the cumulative quotas and the prior 

estimators 
~/CL .= ~i?L 

of  the expected ultimate cumulative losses. In other words, the chain-ladder method is a 

particular case of  the loss-development method and hence of  the Bornhuetter-Ferguson 

method with prior estimators of  the development pattern and the expected ultimate 

cumulative losses which are completely based on internal information. 

The chain-ladder method can be modified by replacing the chain-ladder factors (0 cL by 

an), other estimators of  the form 

n-k 
O* := X w,,,¢~,~ 

j=0 

with random variables (or constants) satisf)fng ~ " - k W  Zaj=O j,k = l. 

4.4 Grossing-up Method 

The grossing-up method is based on the assumption that there exist parameters 

Y0, Y1 . . . . .  y.  with y. = 1 such that the identity 

E[Si,,] = ~,,~[si,,] 

holds for all i , k  ~ {0, 1 . . . . .  n}. Then the parameters Y0, Yt . . . . .  y. form a development 
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pattern for cumulative quotas. 

The  gmssing-up predictors of the cumulative losses Si,k with i + k >_ n are defined as 

: =  s,,._, 
^GU 
~'.-i 

where 

1 if k = n  

"K~n-k-I S ~ G U =  f-aj--O i,k 
xp.-k-t ~qu else 
/-a j=O ) ,n 

is the grossing-up cumulative quota of development ),ear k. The definition of the grossing-up 

predictors reminds of the identity 

E[&~] = v, E[&._A 
]t,,-i 

which is a consequence of the model assumption. 

The computation of the grossing-up cumulative quotas and of the grossing-up predictors 

for the ultimate cumulative losses proceeds by recursion along the accident years, which 

yields 

~ u  = 1 and ^cu S~,. = S0,. 

^ c u  So,.-1 Sl .-1 "/.-1 = and $1, cU = ' 
^GO ^GU S~,. "/.-1 

^GU So . - 2  + Sl n-2 ^GU S2 n-2 
~'.-2 and = ' ' , S2,n ^GU ^GU ^GU 

So,. + S1,,, 3'.-2 

As can be seen from the definition, the grossing-up predictors are nothing else than the loss- 

development predictors with respect to the grossing-up cumulative quotas ~,~u as prior 

estimators of the cumulative quotas. Furthermore, we have 

L,% u s + , . cu  AGU,~GU = i,n-i ~]tk - -] tn- i )ai ,n  

which shows that the grossing-up predictors are precisely the Bornhuetter-Ferguson 

predictors with respect to the prior estimators 9~ U of the cumulative quotas and the prior 

estimators 
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• ~ Gn 

of the expected ultimate cumulative losses. In other words, the grossing-up method is a 

particular case of the loss-development method and hence of the Bornhuetter-Ferguson 

method with prior estimators of the development pattern and the expected ultimate 

cumulative losses which are completely based on internal information. 

Since the previous remark applies as well to the chain-ladder predictors, the question 

arises whether there is any difference between the grossing-up predictors and the chain- 

ladder predictors. The answer to this question is that there is no difference at all since it can 

be shown that the grossing-up cumulative quotas and the chain-ladder cumulative quotas are 

identical for all development years; see e. g. Lorenz and Schmidt [1999]. 

The grossing-up method thus provides a computational alternative to the chain-ladder 

method, but this alternative seems to be of little practical interest if any. The reformulation 

of the chain-ladder method provided by the grossing-up method is, however, of considerable 

interest with regard to the comparison of methods: 

First, among all methods for cumulative losses considered here, the chain-ladder method 

appears to be somewhat singular since it uses estimators of a development pattern for 

factors instead of cumulative quotas, but its equivalence with the grossing-up method shows 

that this singularity is only due to the most intelligent formulation of an algorithm which 

avoids recursion and is hence more easily understood. 

Second, the grossing-up method provides an substantial link between the chain-ladder 

method and the marginal-sum method; see Subsection 4.5. 

4.5 M a r g i n a l - S u m  M e t h o d  

The marginal-sum method is based on the assumption that there exist parameters 

ct0, oq . . . . .  ct n and 80, 81 . . . . .  8~ ~xdth ~'~/---o 8 / =  1 such that the identh 3, 

E[ Zi,k ] w_ 8ktx i 

holds for all i ,k  ~ {0, 1 . . . . .  n}. Summation )fields 

E [ Xi,n ] = OL i 

and hence 

E[Z~,,] = 8kE[Si,.] 
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such that the parameters 80, 81, . . . ,  8 ,  form a development pattern for incremental quotas. 

Observable random variables &0 Ms, &MS .... ^ MS 6MS 6MS ^ MS ,IX, and ~'0 , m  , . . . , 8 ,  are said to be 

marginal-sum estimators if the), are solutions to the ma~inal-sum equations 

n - i  ^ n - i  

Z 6i8t = Y. Zi,t 
/ = 0  1=0 

for i e {0, 1 . . . . .  n} and 

for k ~ {0, 1 . . . . .  n} as well as 

n - k  n -k  

E %5~ = X z~,, 
j = O  j = O  

n ^ 

~ S t  = 1. 
1=0 

The marginal-sum equations remind of  the identities 

n - i  n - i  

Z ixis, = E ~ [ z n ]  
I = 0  l = 0  

and 

as well as 

n - k  n -k  

Z aiSk = Y-/~[zi,k] 
j = 0  . t=0 

n ^ 

~ 0 k  =1 
k=0  

which are immediate from the model assumptions. 

The question arises whether marginal-sum estimators exist and are unique. The answer to 

this question is affirmative: Marginal-sum estimators exist and are unique, and they satisfy 

aims _ ~Gu 
- -  Gn 

and 

~)~s = 19°Gu if k = 0 

L ~,~ - ?{8 if k >_ 1. 
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In view of  the discussion of  the grossing-up method, the previous identities imply that the 

marginal-sum estimators satisf 3, 

6~s  = UL 
t ,n  

and 

Thus, letting 

f .~CL if  k - 0 ~ s  
" 1  

[.~CL_~C_t if  k > l .  

we obtain 

/ = 0  

@~s = ~CL 

for all k ~ {0,1 . . . . .  n}. 

T h e  marginal-sumpredictors of the cumulative losses Si,k with i + k > n are defined as 

^ M S  " 

Yn-i 

Then we have 

This shows that the marginal-sum method is equivalent to the chain-ladder method. 

4 .6  C a p e - C o d  M e t h o d  

The Cape-Cod method is based on the assumption that there exist parameters 

Y0, "li . . . . .  y. with y. = 1 such that the identit 3, 

EIS/,k] = ~kElSi,.] 

holds for all i , k  ~ {0, 1 . . . . .  n}. Then the parameters Y0, gl . . . . .  g. form a development 

pattern for cumulative quotas. 

The Cape-Cod method is also based on the additional assumption that  premiums or other 

volume measures ~0, rq . . . . .  r~. ~ (0,oo) of  the accident years are known, that the expected 
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ullimate cunmlalive loss ralios 

L~i  J 

are identical for all accident years, and thatpn'or estimators %,  "~x . . . . .  "~. of the development 

pattern are given and satisfy ~'. = 1. 

The Cape-Codpredictors of the cumulative losses Si,, with i + k _> n are defined as 

~Cf ;: Si,n_i + (~k -- 9n-i)7~i ~CC 

where 

" S ~cc := Y~j=0 J, .- i  

is the Cape-Cod loss ralio, which is an estimator of  the expected ultimate cumulative loss ratio 

(common to all accident years). 

The Cape-Cod predictors are nothing else than the Bornhuetter-Ferguson predictors with 

respect to the prior estimators 

ecc := ~/~cc 

of  the expected ultimate cumulative losses. In other words, the Cape-Cod method is a 

particular case of  the Bornhuetter-Ferguson method with prior estimators of  the expected 

ultimate cumulative losses which are based on both internal and external information. 

Example  E. We consider the following reduced run-off triangle for cumulative losses 

which contains the cumulative losses of  the present calendar year and is complemented by 

the premiums and the prior estimators of  the development pattern: 

Acddent  Development  Year k 

Year /  ~i 0 1 2 3 4 5 

0 4025 3483 
1 4456 3844 
2 5315 3977 
3 5986 3880 
4 6939 4261 
5 8158 1889 

~k 0,280 0.510 0.700 0.860 0.950 1.000 

290 Casualty Actuarial Society Forum, Fall 2006 



Methods and Models of Loss Reserving 

The previous triangle differs from those considered before since the value of  S4a is 4261 

instead of  3261, which indicates that there might be an outlier in accident ),ear 4. Using the 

table 

i Si,s-i ~5-i 7~i ~5-i ~i 

0 3483 1 .000 4025 4025 

1 3844 0 .950 4456 4233 

2 3977 0 .860 5315 4571 

3 3880 0 .700 5986 4190 

4 4261 0 .510  6939 3539 
5 1889 0 .280 8158 2284 

21334 22842 

we obtain ~cc = 0.934. Computing now the prior estimators of  the expected ultimate 

cumulative losses and the Cape-Cod predictors, the run-off triangle is completed as follows: 

Accident  Deve lopment  Year k 

Year i dt i 0 1 2 3 4 5 

0 3758 3483 
1 4162 3844 4052 

2 4964 3977 4424 4672 

3 5591 3880 4775 5278 5557 

4 6481 4261 5492 6529 7113 7437 
5 7619 1 8 8 9  3641 5089 6308 6994 7375 

?k 0.280 0.510 0.700 0.860 0 .950 1.000 

The previous 

triangle completed with the loss-development predictors: 

table should be compared with the following one which is the same run-off 

Accident  Deve lopment  Year k 

Year i 0 1 2 3 4 5 

0 3483 
1 3844 4046 

2 3977 4393 4624 

3 3880 4767 5266 5543 

4 4261 5848 7185 7937 8355 
5 1889 3440 4722 5802 6409 6746 

?k 0.280 0.510 0.700 0.860 0.950 1.000 

The example indicates that the development of  the Cape-Cod predictors over the 
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accident years is much smoother than the development of the loss-development predictors 

which means that the Cape-Cod method reduces outlier effects. The smoothing effect is of 

course due to and depends on the premiums or other volume measures which are used 

instead. 

The following considerations may help to understand the smoothing effect of  the Cape- 

Cod method: Assume that, for every accident ),ear i, the expected ultimate cumulative loss 

ratio is estimated by 

I~i'.= __~;L,D = Si,n_i 

~i ~n- i  ~i " 

Then the Cape-Cod loss ratio can be written as a weighted mean 

" S ~:cc Y~i=0 i,,-~" " " " " = = y, Y . - J = i  

" ^ ,"=0 " " ~ ~./=0Y.-in./ i= ~h=0Y,-hn h 

and the identity 

Si,n-i  = Y n-i rti ¢¢i 

suggests to decompose the cumulative loss &,.-i of  the present calendar year into its regular 

part  

Ti,n-i "= f n - i  ~ i  I~Cc 

and its outlier effect 

Xi ,n_  i .= Si,n_ i - Ti,n_ i 

and then to apply the loss-development method to the regular part while keeping the outlier 

effect fixed over all subsequent development years. Since 

~ P  + Xi. ,_,  - ^  T~ ,_.... , (S,.,_, - T,.,_,) 
-- Yk 9 . - i  + 

= Si,n-i  or (gk -- 9 n - i )  ~ ,n - i  
Y,-i  

= Si,n-i  or (Yk - Yn- i  ) ~ i  ~cc 

= cc 

we see that the resulting predictors are precisely the Cape-Cod predictors. 
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The Cape-Cod method can be modified by replacing the Cape-Cod loss ratio ~cc by any 

other estimator of  the form 

j=0 

" W with random variables (or constants) satisfying ~"-j=0 j = 1. 

4.7 A d d i t i v e  M e t h o d  

The additive method is based on the assumption that there exist "known parameters 

n0, nl . . . . .  n.  e (0,oo) and unknown parameters ~0, ~1 . . . . .  ~. such that the identity 

E[Zi,k] = G~i 

holds for all i ,k ~ {0, 1 . . . . .  n}. 

I f  the parameters r~ 0, gl, . . . ,  a .  are interpreted as premiums or other volume measures of  

the accident years, then the assumption means that, for every development year k, the 

expected incremental loss ralios 

:= E I  Zi ; 1 
gi,* L'-'~-i J 

are identical for aH accident years. Letting 

oti := r~i ~ ~k 
k=O 

and 

we obtain 

k 
Y,=o~, 

Tk : = -  

E[Sl,k] = T, ui  

for all i ,k ~ {0, 1 . . . . .  n} such that cti = E[Si,.] and the parameters To, T1 . . . . .  T. form a 

development pattern for cumulative quotas. 

The addilivepredictors of the incremental losses Zi,k with i + k >_ n are defined as 

2 AD .= ~AD=i 
i,k 
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and the addilivepredictors of  the cumulative losses Si,k with i + k > n are defined as 

k 
s l . - ,  + D i,k "----- , 

l=n-i+l 

where 

x'~ "-k Z := z- =0 i? 

Y Tk0 i 
is the additive incrementalloss ratio of  development ),ear k. 

Example  F. We consider the following run-off triangle for cumulative losses 

which is complemented by the premiums: 

Accident  D e v e b p m e n t  Year k 

Year/ 71i 0 1 2 3 4 5 

0 4025 1 0 0 1  1 8 5 5  2 4 2 3  2 9 8 8  3 3 3 5  3483 
1 4456 1 1 1 3  2 1 0 3  2774 3 4 2 2  3844 
2 5315 1 2 6 5  2 4 3 3  3 2 3 3  3977 

3 5986 1 4 9 0  2 8 7 3  3880 
4 6939 1 7 2 5  3261 
5 8158 1889 

We thus obtain the following run-off triangle for incremental losses which is complemented 

by the additive incremental loss ratios: 

Accident Development Year k 

Year i 7ti 0 1 2 3 4 5 

0 4025 1001 854 568 565 
1 4456 1113 990 671 648 
2 5315 1 2 6 5  1168 800 744 
3 5986 1490 1 3 8 3  1007 
4 6939 1 7 2 5  1536 
5 8158 1889 

347 148 
422 

~k 0.243 0.222 0.154 0.142 0.091 0,037 

Computing now the additive predictors of  the non-observable incremental losses, the run° 

off  triangle of  incremental losses is completed as follows: 
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Accident Development Year k 

Year i ~i 0 1 2 3 4 5 

0 4025 1001 854 568 565 347 148 
1 4456 1113 990 671 648 422 165 

2 5315 1265 1168 800 744 484 197 

3 5986 1490 1383 1007 850 545 221 

4 6939 1725 1536 1069 985 631 257 

5 8158 1889 1811 1256 1158 742 302 

~k 0.243 0.222 O. 154 O. 142 0.091 0.037 

Accordingly, the run-off  triangle of  cumulative losses is completed as follows: 

Accident Development Year k 

Year i ~i 0 1 2 3 4 5 

0 4025 1001 1855 2423 2988 3335 3483 
1 4456 1113 2103 2774 3422 3844 4009 

2 5315 1265 2433 3233 3977 4461 4658 

3 5986 1490 2873 3880 4730 5275 5496 

4 6939 1725 3 2 6 1  4330 5315 5946 6203 

5 8158 1889 3700 4956 6114 6856 7158 

Letting 

and 

~-,k ~AD 

Z.  ;^o 
i=o %1 

o 

l=0 

the additive predictors of  the non-observable cumulative losses may be written as 

:= s , ._ ,  + . ^ D ,  ^ ^ o  , --gn-i)O~i . 

This shows that the additive predictors of  the cumulative losses are nothing else than the 

Bornhuetter-Ferguson predictors with respect to the addilive cumulalive quotas ~,~D and the 

prior estimators &AD of the expected ultimate cumulative losses. In other words, the 

additive method is a particular case of  the Bomhuetter-Ferguson method with prior 

estimators of  the cumulative quotas and of  the expected ultimate cumulative losses which 
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are based on both internal and external information. 

satisfy 

The expected cumulative loss ratios 

K, 
L~i d 

n 

1=0 

Since the expected incremental loss ratios are identical for all accident years, it follows that 

also the expected cumulative loss ratios are identical for all accident years. Therefore, the 

additive loss ratio 

n ^ 

I = 0  

can be interpreted as an estimator of  the expected ultimate cumulative loss ratio 

n 

K= E g ,  
/ = 0  

common to all accident years. Moreover, the prior estimators dr/AD can be written as 

~t~ D := rt, ~AD 

and it can be shown that 

n 
~AO= Ei=oSi.-J ' 

'~--~n ^ A D  ~ " 
j = O Y n - j  j 

This shows that the additive predictors of  the non-observable cumulative losses are nothing 

else than the Cape-Cod predictors with respect to the additive cumulative quotas ~ D .  In 

other words, the additive method is a particular case of  the Cape-Cod method with prior 

estimators of  the cumulative quotas which are based on both internal and external 

information. 

The observation that the additive method is a special case of  the Cape-Cod method is due 

to Zocher [2005]. 
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4.8 Remarks 

The following table compares the different methods of loss reserving considered in this 

section with regard to the choices of the prior estimators of the expected ultimate 

cumulative losses ct i and of the cumulative quotas Yk : 

E x p e c t e d  U l t i m a t e  C u m u l a t i v e  Q u o t a s  

Cumulative Losses Arbitrary ~,¢t ~kpa~ 

Arbitrary Bomhuetter-Ferguson 
Method 

~i~ Loss-Development Chain-Ladder 
Method Method 

~, ~c¢ Cape-Cod Additive 
Method Method 

Note that the prior estimators ~]t,~ and xi ~:cc depend on the choice of the prior estimators 

%, ~1 ..... L. 

Of  course, the four other combinations which apparendy have not been given a name in 

the literature could be used as well, and even other choices of the prior estimators of the 

expected ultimate cumulative losses and of the cumulative quotas could be considered. 

The discussion of the present section and, in particular, the above table shows that the 

Bomhuetter-Ferguson method provides a general principle under which several methods of 

loss reserving can be subsumed. The focus 

- on prior estimators of the expected ultimate cumulative losses and 

- on prior estimators of the cumulative quotas 

provides a large variability of loss reser~fing methods. The above table contains important 

special cases but could certainly be enlarged. Moreover, 

- any convex combination of prior estimators of the expected ultimate cumulative losses 

)fields new prior estimators of the expected ultimate cumulative losses, and 

- an), convex combination of prior estimators of the development pattern for cumulative 

quotas )fields new prior estimators of ".he development pattern. 

This point is made precise in the following example: 

Example  G. Let ct0,dtl . . . . .  ~t, be prior estimators of (:to, oh . . . . .  0t, and let 

Casualty Actuarial Society Forum, Fall 2006 297 



Methods and Models of Loss Reserving 

90, "~1 . . . . .  ~'n be prior estimators of  Y0, Yl . . . . .  y.  such that each of  these prior estimators is 

completely based on external information. Then the prior estimators 

a~ := a,~ + a ~  + ,,~(rci~ cc) 

with a~ + a2 + a3 = 1 and 

with /~ + b2 + b3 = 1 are prior estimators of  tx0, cq . . . . .  or. and g0, gl . . . . .  Y., respectively, 

which through the weights al, a2, a3 and bl, bz, b3 express the reliability attributed to the 

prior estimators {~t i ,  P, LD ^ CC ai. . ,  xiK and}a, ~ct,  }IAD, respectively. 

5. LEAST-SQUARES PREDICTION 

Least-squares prediction is one of  the general principles of  statistical inference. It is 

similar to least-squares estimation but differs from the latter since the target quantity is a 

non-observable random variable instead of  a model parameter. 

The main aspects of  least-squares prediction are credibility prediction and Gauss-Markov 

prediction; in either case, the problem is to determine optimal predictors with respect to the 

expected squared prediction error. 

An extension of  Gauss-Markov prediction is conditional Gauss-Markov prediction in 

which unconditional first and second order moments are replaced by conditional moments. 

5.1 Credibility Prediction 

In the context of  loss reserving, credibility prediction aims at predicting any linear 

combination T of  (observable or non-observable) incremental losses by a predictor of  the 

form 

n n - j  
~ = a +  X X ai.,&,,. 

j = 0 / = 0  

These predictors are said to be admissib/e. Note that 

- the class of  all admissible predictors does not depend on the sum to be predicted, 

- the admissible predictors are not necessarily linear in the obse~,able incremental losses 

since the coefficient a may be distinct from 0, and 
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- the admissible predictors are not assumed to be unbiased. 

The general form of  the prediction problem is reasonable since it includes, e. g., prediction 

of  the ultimate cumulative losses Si,,, which are sums of  the obsen, able incremental losses 

Zi,o, Zia . . . . .  Zi,,,-i and the non-obsen, able incremental losses Zi,,,-i+l . . . . .  Zi,,,. 

For a sum T of  incremental losses, an admissible predictor is said to be a credibili O, 

predictor of  T if it minimizes the expected rquaredprediction error 

EI(:P -T)q 
over all admissible predictors T. 

The following results are well-known: 

(1) For ever), sum T of incremental losses, there exists a credibility predictor 7 ~cR and the 

credibility predictor is unique. 

(2) I f  T1 and T2 are sums ofincremen:al losses and if q and c2 are real numbers, then the 

credibility predictor of  

7' := qTl + c2Tz 

satisfies 

which means that credibifity prediction is finear. 

If  Tis a sum of incremental losse:~, then an admissible predictor T* is the credibility 

predictor of  T if and only if it satis ties the normal equations 

E[7 ~*] = EIT] 

(3) 

and 

E[P'z~,,] = r [ rz~ , , ]  

for all j , l ~ { 0 , 1  . . . . .  n} such that j + l < n .  

(4) The credibility predictor of  any sum of incremental losses is unbiased. 

Because of  (2) it is sufficient to determine the credibilit T predictors of  the incremental losses 

Zi,k. In the case where i + k _< n, we have 
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In the case where i + k > n + 1, we write 

n n-h 
^ cR + Z Z ai,k,h,.. Zh,,. Z~,k = ai,k 

h=0 ra=0 

and determine the coefficients from the normalequalions 

I . .-h ] 
E ai,k + Z Z ai,k,h,-Z~,.I = E[Z,A 

b=O m=O -1 

and 

/1 Z ai,k,h,.Zh,m Zi,~ = E[Zl,k Zi,~] 
h=O ra=O 

which may equivalently be written as 

and 

n n-h 
ai.k + ~-a ~.~ at,k,h.mE[Zb,ra] = E [ Z i , k ]  

b=0 m=0 

n n--b 

E • ai,k,h,mCov[Z&m. Zj,l] = cov[Zi,k Zj,l] 
b=0 m=0 

foraU j , l ~ { 0 , 1  . . . . .  n} such that j + l < n .  

We thus see that the credibility predictor of a non-observable incremental loss is 

completely determined by the first and second order moments of the incremental losses. 

Solving the normal equations proceeds in two steps: 

- The normal equations involving covariances form a system of linear equations for the 

coefficients ai,k,h,m. The fact that a credibility predictor of Zi,, exists implies that this 

system of linear equations has at least one solution. 

- Inserting any such solution into the normal equation involving expectations )4elds the 

coefficient ai,k. 

It should be noted that the system of linear equations may have several solutions (which is 

the case if and only if the covariance matrix of the observable cumulative losses is singular). 

This means that the credibility predictor of Zi,k, which is "known to be unique, can be 

represented in several ways. 

In most credibility models for loss reserving which have been considered in the literature, 
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it is assumed that an 3, two incremental losses f rom different accident years are uncorrelated. 

In  this case, the credibilit 3, predictor o f  a non-observable  incremental  loss Zi,k can be 

writ ten as 

n-i 
^ CR 

Z;,k = ,<k + Z ai,k,i,mZi,~ 
m=O 

and its coefficients can be determined from the reduced normal  equations 

n-i 
ai/,+ ~., a,,k,&mE[Zi,m] = E[Zi ,k]  

m=O 

and 

n-i 
Z ai,k,i,m COV['~i,m, Z j , l  ] = Cov[Zi,k Zj,I] 

ra=0 

for all l ~ {0, 1 . . . . .  n - i}. 

As an example, let us n o w  consider credibility predict ion in the credibility model  o f  

Witting, which is a model  for claim counts: 

Credibility Model of Witting: 

O) Any  two incremental losses of different acadent years are uncorrelated. 

n 0 There existparameters 80, 01 . . . . .  O. ~: (0,1) with ~l=0 t = 1 such that, for eve{7 acddent year 

i ~ {0, 1 . . . . .  n] ,  the condilionaljoint d~'soibulion ofthefami!y {Zi,k},~{0,1 ...... ~ with respect to the 

ullimate cumulalive loss Si,. is the mullinomial disOibulion with parameters Si,. and 

80, 81 . . . . .  8 . .  

For  the remainder o f  this subsection we assume that  the assumptions o f  the credibility 

model  o f  Witting are fulfilled. Then  we have 

E(Z~,k I Si.) = S~,..% 

cov(Z~ ,, Zit I Si . )  = ~ -S~'"8'2 + S~,~8, 
' ' " [ - S i , . S , S t  

ai := E[&.] 

oi := var[Si,.] 

Letting 

i f  k = l  

else. 

we obtain 
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E[Zi ,k]  = a~Sk 

= ~ (ai -o t i )8~  + otiSk if k = l 
cov[ Z i  ,k ~ Zie] 

L (oi - a i )SkS/  else. 

The first of  the previous identities shows that the parameters 80, 81 . . . . .  8 n form a 

development pattern for incremental quotas. Inserting the previous identities into the 

normal equations, we obtain, for all i, k ~ {0, 1 . . . . .  n} such that i + k _> n + 1, 

and hence 

Z;,k = 8 ,  
~, 1 + ~rn_i'[ i 1 + ~n-i'Ct 

k 
= si,._, + E 

l=n-i+l 

, . _ i ,  
=Si,.-i +('/k -'fn-i) ai 4 l + ~._izi ~-i 

k 8 ~ where "/k = ~l=0 J and xi := (~i - a i )  / a i .  This shows that the credibilitv predictor of the 

non-observable cumulative loss Si,k is the Bornhuetter-Ferguson predictor with respect to 

the prior estimators 

of the development pattern for cumulative quotas and the prior estimators 

~CR.= I ~ G t i .  + ~n-'Ti Si,n-i 
1 + ~n_iZt 1 + Yn_t'~i ~tn_ i 

of the expected ultimate cumulative losses, which are weighted means of external 

information provided by the unknown parameter et i and internal information provided by 

the loss-development predictor ~ D  = Si,.-i / "/.-i. 

Example  H. If, in addition to the assumptions of the model of Witting, it is assumed 

that every ultimate cumulative loss Si,. has the Poisson distribution with expectation oti, 

then we have xi = 0 and the credibility predictors of ever), non-observable cumulative loss 

Si,k satisfy 

and are thus identical with the Bomhuetter-Ferguson estimators with respect to the prior 
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estimators ~,, := 7k and dt i := 0t i. In this case, the assumptions of  the Poisson model are 

fulfilled and maximum-likelihood estimation could be used as an alternative to credibilit 3, 

prediction; see subsection 6.1 below. 

Similar results obtain in the credibility model of  Mack [1990] and in a special case of  the 

credibilit 3' model of  Hesselager and Witting [1998]; see Radtke and Schmidt [2004]. 

5.2 G a u s s - M a r k o v  P r e d i c t i o n  

A predictor T of  a linear combination T of  (obseta,able or non-obseta-able) incremental 

losses is said to be 

- a ]inearpredictorif there exists a family {aj,l}j,l¢{O,l,...n} ,l+j<_n of coefficients such that 

n n - j  

= Z Z ai,,zi,l 
j=O/=0 

an unbiased predictor of T if 

E[2 ~] = E [ T ]  

- a Gauss-Markovpredictor of T if it is an unbiased linear predictor of  T which minimizes 

the expected squared prediclion error 

E[(~'- T) 2 ] 

over all unbiased linear predictors T of  T. 

The existence of  a Gauss-Markov predictor of  T cannot be guaranteed in general. (For 

example, if  E[Zi,k] = 0 holds for ever), observable ever), incremental loss and if T is such 

that E[T] ~ 0, then there exists no unbiased linear estimator of  T.) Therefore, we consider 

Gauss-Markov prediction only under the assumptions of  the linear model. 

Let Z1 denote a random vector consisting of  the observable incremental losses and let 

Z2 denote a random vector consisting of  the non-observable incremental losses (arranged 

in an), order). 

Linear Model: 

(i) There exist matrices A l  and ,42 and a vector ~ such that 

~ [ z . , ]  = .a,13 

e[z~] = A~I3 
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(~) The matrix A1 has full column rank. 

(~fi) The malrix 

X,, := var[Z,l 

is invertible. 

For the remainder of  this subsection, we assume that the assumptions of  the linear model 

are fulfilled. 

Under the assumptions of  the finear model, the following results are well-known: 

(1) For every sum T of incremental losses, there exists a Gauss-Markov predictor 7 T M  

and the Gauss-Markov predictor is unique. 

(2) If  T1 and T2 are sums of  incremental losses and if ca and c2 are real numbers, then the 

Gauss-Markov predictor of  

r . ' = c l r  1 +£2T 2 

satisfies 

which means that Gauss-Markov prediction is finear. 

Because of  (2) it is sufficient to determine the Gauss-Markov predictors of  the incremental 

losses Zi,k. In the case where i + k _< n, we have 

zIG, p =Zi ,  k • 

In the case where i + k _> n + 1, we obtain 

Zi,k* GM ---- a'i,k I a~ GM + Cov[ Zi,k , Z l  ] ~.ll ( Z l  _ A1~GM) 

where a~,k is the row vector of  the matrix A2 satisf3"ing E [Zi,k] = a~,k ~J, 

~CM := (AIT.~ A,) - '  A;Y-;~ Z,  

is the Gauss-Markov eslimator of ~ (based on the observable incremental losses) and 

cov[Zi,k,Zl] is the row vector with entries cov[Zi,~,Zjg] with j , l  ~ {0,1 . . . . .  n} and 

j + l  <_ n; see Goldberger [1962] and Rao and Toutenburg [1995] as well as Halliwell [1996, 

1999], Hamer [1999] and Schmidt [1998, 1999a, 2004]. 
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As an example, let us now consider Gauss-Markov prediction in the linear model of  

Mack: 

IAnear M o d e l  of  Mack :  There existparameters r¢o, rq . . . . .  ~. ~ (0,oo) and ~o, ~l . . . . .  ~. as 

wellas Co, 01 . . . . .  cs. ~ (O,m) such that 

E[ Zi,k ] = ~i~k 

and 

c°v[Zi'k'Zj'l] = { ~ i~k* glsgif i = j and k = l 

holds for all i , j , k , l  ~ {0, 1 . . . . .  n}. 

For the remainder of  this subsection we assume that the assumptions of  the linear model 

of  Mack are fulfilled. Define 

and, for all i ,k ~ {0, 1 . . . . .  n}, 

' (0  ai,k := . . .  0 7ti 0 . . .  O) 

where zti occurs in position 1 + k. This shows that the linear model of Mack satisfies indeed 
the assumptions of  the linear model. For the Gauss-Markov estimator of  13 we obtain 

r'Enj=oZj, 0 

ET=0   
ET=oZ ,, 

[~GM = n 
~j=0 J 

Z0,. 
7t o 

Since cov[Zi,~,Zj,t]=O holds for all i , j , k , l~{O,  1 . . . . .  n} such that i + k > n + l  and 

j + l < n, it follows that the Gauss-Markov predictor of  the non-obsen,  able incremental 

loss Zi,k satisfies 
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and hence  

~ '  n--/t Z 
GM I-~ j=O j ,k 

Zi ,k  = ~i  - -  n-k 
~ j = 0  rtj  

^ GM ~ A D  
Z}  ,k = i ,k 

and linearity o f  Gauss -Markov  predict ion yields 

This  shows that  the  additive m e t h o d  is justified by Gauss -Markov  predict ion in the linear 

model  o f  Mack. 

5.3 Condit ional  Gauss-Markov Prediction 

In  the  present  subsect ion we consider  a sequential model  for the chain- ladder  method.  

This  model  is a sequential model  since it involves successive condi t ion ing  with respect  to the 

o -algebras G0, ql . . . . .  q , - I  where,  for each k ~ {1 . . . . .  n}, the c - a l g e b r a  

Gk-l 

represents  the in format ion  provided by the cumulative losses Sj,j o f  accident  years 

j ~ {0, 1 . . . . .  n - k + 1} and deve lopmen t  years l ¢ {0, 1 . . . .  , k - 1}, which  is at the same t ime 

the  in format ion  provided by the incrementa l  losses Zj , t  o f  accident  years 

j ~ {0, 1 . . . . .  n - k + 1} and deve lopment  years l e {0, 1 . . . . .  k - 1}. 

S e q u e n t i a l  C h a i n - L a d d e r  M o d e l :  For each k ~ {1 . . . . .  n}, there exists a random variabk q~, 

and a strict~vpositive random variable ok such that 

E q'-* (S / , , )  = Si , , - i  ,,0, 

and 

COVqt_ 1 (Si,kSJ, k ) = ~ Si.k_l(~k i f  i = j 

t 0 else 

holds for all i , j  ~ {0, 1 . . . . .  n -  k + 1}. 

In  the case where  the r a n d o m  variables cpl . . . . .  q~. are all constant ,  in tegrat ion yields 

E[Si,k] = q~kE[Si,k-l] such that  the parameters  q~l . . . . .  cp. fo rm a deve lopmen t  pat tern  for 
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factors. In the general case, the random parameters Ipl . . . . .  q~. may be interpreted as a 

random development pattern for factors. 

The sequential chain-ladder model may be considered as a sequence of  n conditional 

linear models corresponding to the development )'ears k ~ {1 . . . . .  n}. Each of  these 

conditional linear models consists of  an observable part 

/ '°'-I 1 

E ~*-~ (&-k,k) ~,&-k,k-~ J 

and a non-observable part 

E G'-' (S.-k+,,,) = &-k+,,k-1 q~k 

Then Gk-1 -conditional Gauss-Markov estimator (0~ M of the random parameter cpk satisfies 

n-k S 
(o~M= /--,=0 i,* 

y.-k S j=0 j,k-~ 

and hence coincides with the chain-ladder factor (0k ¢t. 

Furthermore, for ever), accident year i > n -  k + 1, the Gk-I-conditional Gauss-Markov 

predictor ~GM of  the non-observable cumulative loss Si,k satisfies 

^GM ^ GM S;,k = Si,k-1 ~ ,  
^ CL 

= Si ,k-1 ~ k  • 

The previous formula, however, is only useful when Si,k-1 is observable, which is the case if  

and only if i + k - 1 < n and hence i = n - k + 1. 

Turning the point of  view from development ),ears to accident years, we see that the 

~{.-i}-conditional Gauss-Markov predictors of  the first non-observable cumulative losses 

Si,n_i+ 1 s a t i s f y  

~ G M  ^ CL 
i,n-i+l = Si,n-i ~)n-i+l 

and hence coincide with the chain-ladder predictors. 

In the case i +  k = n+  1, the chain-ladder predictors are thus justified by conditional 
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Gauss-Markov estimation, but another justification is needed in the case i + k _> n + 2. This 

can be achieved by minimizing the ~k-1 -conditional expected prediction error 

2) 

over the collection of all predictors Si,i of  Si,i satisfying 

for some ~k-i-conditionally unbiased linear estimator ~k of q~, and it turns out that the 

minimum over this restricted class of predictors is attained for the chain-ladder predictor 

~c}. The sequential optimalit 3, criterion adopted here reflects vet 3, well the sequential 

character of the chain-ladder method and of the chain-ladder model. The criterion is also 

reasonable since prediction for the first non-observable calendar year is much more 

important than prediction for subsequent calendar years: Predictors for the first non- 

observable calendar year cannot be corrected later whereas predictors for subsequent 

calendar years will be corrected an)way since already one year later additional loss experience 

and hence a new run-off triangle will be available. 

The sequential chain-ladder model is due to Schnaus and was proposed by Schmidt and 

Schnaus [1996] where it is studied in detail; see also Schmidt [1997, 1999b, 2006]. The 

sequential chain-ladder model is a slight but convenient extension of the chain-ladder model 

of Mack [1993]. A systematic comparison of several models for the chain-ladder method is 

given in Hess and Schmidt [2002]. 

5.4 Remarks 

Although least-squares prediction is a central topic in econometrics, it appears that this 

method has been ignored in loss reserving until recently. It is the merit of  Hal~well [1996] 

that least-squares prediction is by now considered as a most useful tool in loss reserving; see 

also Schmidt [1999a], Hamer [1999], Halliwell [1999], Radtke and Schmidt [2004], and 

Schmidt [2006]. 

6. MAXIMUM-LIKELIHOOD ESTIMATION 

Another general principle of statistical inference is maximum-likelihood estimation. The 

maximum-likelihood principle is applicable only if the joint distribution of all observable 
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random variables is known with the exception of  certain parameters. 

The models considered here are models for claim counts. The basic model is the Poisson 

model which is a special case of  the general multinomial model. 

6.1 P o i s s o n  M o d e l  

The Poisson model is 

assumptions: 

(i) 

(~) 

a model for claim counts and consists of the following 

Poisson model: 

The family { Zi, k } i,k e{O,1 . . . . . .  } of all incremental losses is independent. 

" 0 There eadstsparameters CXo, al . . . . .  or. e (0,oo) and ~o, 01 . . . . .  ~ .  e (0,1) with Y'q=0 l = 1 

such that for all i ,k  e {0, 1 . . . . .  n} the incremental loss Zi,k has the Poisson distn'bution with 

expectation otiOk. 

We assume in this subsection that the assumptions of  the Poisson model are fulfilled. 

Because of  (ii) we have 

Summation yields 

and hence 

E[Zi,k] = 0~iak. 

E[S~,.] = ai 

~[z~,,] = ,%g[s~,.] 

such that the parameters "90, ~1, ...,  ~), form a development pattern for incremental quotas. 

In the Poisson model the joint distribution of  all incremental losses is known except for 

the parameters. In fact, we have 

[ ] "  "( '°tS'""'~ . n ^-at, Sk ~ i k !  / 
1, =I-IIl/  .--:Tv-., J. 

L i=0 }=0 ' i=0 }=0 k, zi.k. ,1 

To estimate the parameters we can thus use the maximum-likelihood method. The 

maximum-likelihood method is based in the joint distribution of  a# observable incremental losses 

which is given by 
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. .-i ] . .- i(  (ai8k)';'*] 
P[igOk~=o{Zi,k=Zi,k} =I- IH e-tXi$* 

_l i=0~=0\ zi,k ! " 
.) 

It follows that the likelihood function L is given by 

._ n n-i(e-a,8,(OLi~k)Zi." ) 
L(ao, cq ..... a. ,  Oo, ~x ... . .  ~. I z) ._ H H 

i=0 k=0 k, z--'i,k- J 

,'iJ. 
where Z := {Zi,~}i,k~{oa ...... },i+k_<n. Interpreting the maximum-likelihood principle in a wide 

sense (which ignores the second order conditions for a maximum), observable random 

variables 

aoML, . ML - M~ Oil , . , . ,  Otn 

and 

~ ,  gp" ..... ~ 

are said to be maximum-likelihood estimators if they annihilate all first order partial derivatives of 

the likelihood function (or, equivalently, of  the log-likelihood function) and satisfy the 

constraint 

L ~MI. = 1. 
/=0 

Straightforward computation shows that the maximum-likelihood estimators satisfy the 

marginal sum equations 

n-i n-i 
X a,g, = X z i , ,  
1=0 I=0 

with i e { 0 , 1  . . . . .  n} and 

n-k n-k 
Z a,5~ = Z z,,~ 
1=0 1=0 

with k ~ {0, 1 . . . . .  n} and, of course, the constraint 

n ^ 

Zot  = 1. 
1=0 

Therefore, the maximum-likelihood estimators coincide with the marginal sum estimators. It 

now follows from the properties of the marginal sum estimators that in the Poisson model 

the maximum-likelihood estimators of the expected ultimate cumulative losses are identical 
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with the chain-ladder predictors of the ultimate cumulative losses. This was first observed by 

Hachemeister and Stanard [1975]. 

However, if, in addition to the assumptions of the Poisson model, it is assumed that the 

expected ultimate cumulative losses are all identical such that 

~ i  = 0 .  

holds for all i ~ {0, 1,.. . ,  n}, then maximum-likelihood estimation is still possible but the 

maximum-likelihood estimators turn out to satisfy 

n l n-k 

ct = l~=o n = -- 7 + l j=~O Z j "I 

and 

n-k 
1 ~ Zj,k 

~)k = n - k + l  j=o 
n-k 

t~ 1 Z Z j,t 
= n - l + l  j=0 

In particular, the maximum-likefihood estimators of the expected ultimate cumulative losses 

are not identical with the chain-ladder estimators of the ultimate cumulative losses; see 

Schmidt and Zocher [2005]. 

6.2 M u l t i n o m i a l  M o d e l  

The multinomial model is a model for claim counts and consists of the following 

assumptions: 

Mul t inomia l  model:  

(i) The acddent years are independent. 

" 0 (ii) There existparameters ~o, ~)1 . . . . .  ~). ~ (0,1) with ~t=0 t = 1 such that, for every accident year 

i ~ {0, 1 . . . . .  n}, the conditional joint distribution of the family {Zi,k}k~{0,1 ...... ) with respect to the 

ultimate cumulative loss Si,. is the multinomial disMbution with parameters Si,. and 

0o, ~1 . . . . .  8 . .  

We assume in this subsection that the assumptions of the multinomial model are fulfilled. 

Because of (il) we have 

E[Zi,k IS/..] = O,S~,. 
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and hence 

..~- ~ [ z ~ , , ]  = o , ~ [ s , . , ]  

such that tt'ie parameters 80, ~)1 . . . . .  8 .  form a development pattern for incremental quotas. 

The multinornial model is appealing since it suggests that ever3, claim of  any accident year 

is reported'or 'setded with probabili W 9k in development year k. It thus reminds of  the urn 

model in which Si,,, balls are drawn with replacement from an urn consisting of  balls with 
I f  

1 + n different colours corresponding to the development years. 

Letting . 

Oti := E[Si,.] 

it is easy to see that the multinomial model contains the Poisson model as the special case in 

which every ultimate cumulative loss Si,. has the Poisson distribution with expectation 0ti. 

Moreover, under the assumptions of  the multinomial model, it can be shown that the 

incremental losses of  any accident year are independent if and only if the family of  all 

incremental losses is independent and every incremental loss has the Poisson distribution 

with expectation cti8 k. Therefore, the main advantage of  the multinomial model over the 

Poisson model is the fact that it allows for dependence between the incremental losses of  a 

given accident ),ear. 

If, in addition to the assumptions of  the multinomial model, the distributions of  the 

ultimate cumulative losses are assumed to belong to a parametric family of  distributions, 

then the joint distribution of  all incremental losses is known except for the parameters and 

maximum-likelihood estimation can be used to estimate the expected ultimate cumulative 

losses. 

In the case where each of  the ultimate cumulative losses has a Poisson distribution, we 

are back to the Poisson model and the maximum-rikelihood estimators of  the expected 

ultimate cumulative losses are identical with the chain-ladder predictors of  the ultimate 

cumulative losses. 

The same'result obtains in the case where each of  the ultimate cumulative losses has a 

negativebinomial distribution; see Schmidt and Wiinsche [1998]. Negativebinomial 

distributions are of  interest since they are mixed Poisson distributions (with respect to a 

mixing gamma distribution), and mixed Poisson distributions in turn are of  interest since 

their variances exceed their expectations, which is the case for most empirical claim count 
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distributions. 

In fact, a much more general result is true: If, in addition to the assumptions of  the 

multinomial model, each of  the ultimate cumulative losses has a Hofmann distribution, then 

the maximum-likelihood estimators of  the expected ultimate cumulative losses are identical 

with the chain-ladder predictors of  the ultimate cumulative losses; see Schmidt and Zocher 

[2005]. The definition and the discussion of  Hofmann distributions are beyond the scope of  

this paper, but we remark that Hofmann distributions were introduced by Hofmann [1955] 

and that every Hofmann distribution is at the same time a mixed Poisson distribution and a 

compound Poisson distribution and can be computed by recursion; see e. g. Hess, Liewald 

and Schmidt [2002]. 

Since the class of  all Hofmann distributions is a wide class of  mixed Poisson 

distributions, the multinomial model with ultimate cumulative loss numbers having a 

Hofmann distribution is a very general model for claim counts in which the maximum- 

likelihood estimators of  the expected ultimate cumulative losses are identical with the chain- 

ladder predictors of  the ultimate cumulative losses. 

6.3 Remarks 

Alternatively, the Poisson model can be extended to a general stochastic model in which 

the family {Zi,k)i,k~{o,a ...... ~ is independent and the distribution of  every incremental loss 

belongs to an exponential family. In such models, the theory of  generalized linear models 

can be applied. 

7. C O N C L U S I O N S  

The notion of  a development pattern, which can be expressed in three different but 

equivalent ways, provides a powerful tool for the comparison of  different methods and of  

different model of  loss reserving. 

The general Bornhuetter-Ferguson method provides a general framework into which 

several methods of  loss reserving can be embedded via 

- a particular choice of  the prior estimators of  the development pattern for cumulative 

quotas and/or  

- a particular choice of  the prior estimators of  the expected ultimate cumulative losses. 

Casualty Actuarial Society Forum, Fall 2006 313 



Methods and Models of Loss Reserving 

Moreover ,  there are man), stochastic models  in which  

- the credibility predictors  or  

- the Gauss  Markov  predictors  or  

- the maxirfium-likelihood est imators o f  the expected ult imate cumulat ive losses 

can be in ter~r&ed as Bom hue t t e r -F e r guson  predictors.  

Th e  chdice o f  a stochastic model  or o f  a m e t h o d  o f  predict ion is a choice which  has to 

be made  b~, t h e  actuary and which may have a considerable impact  o n  the  result. In  the 

Poisson  model,,  e. g., credibilit 3, predict ion and maximum-l ike l ihood es t imat ion are possible 

bu t  lead to different  results; here the  choice o f  the statistical m e t h o d  could be  based on  the 

judgement  that  ei ther external in format ion  or  internal  in fo rmat ion  is more  reliable. Still in 

the Poisson  model ,  the  form o f  the maximum-l ike l ihood est imators  o f  the  expected ultimate 

cumulat ive losses depends  on  the assumpt ion  that  the  expected ult imate cumulat ive losses 

may be different  or  are identical. 

We also remark  that  the  chain-ladder m e t h o d  and the  additive m e t h o d  can be  extended 

to the multix, ariate case which  cor responds  to a port fol io  consis t ing o f  several subport fol ios  

represent ing dependen t  lines o f  business. Moreover ,  the multivariate chain- ladder  m e t h o d  

and the multivariate additive me thod  can be justified by mult ivariate models  ex tending  the 

univariate models  considered in the present  paper.  A detailed discussion o f  these 

multivariate me t h o d s  and models  may be found in Schmid t  [2006]. 
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