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Abstract.
The present paper provides a unifying survey of some of the most important methods and models of
loss reserving which are based on run-off triangles. The starting point is the thesis that the use of run-
off triangles in Joss reserving can be justified only under the assumption that the development of the
losses of every accident year follows a development pattern which is common to all accident years. This
assumption can be viewed as a primitive stochastic model of loss reserving.
The notion of a development pattern turns out to be a unifying force in the comparison of methods
which to a large extent can be summarized under a general version of the Bornhuetter-Ferguson
method. It is shown that the loss-development method and the chain-ladder method as well as the
Cape-Cod method and the additive method can be viewed as special cases of the general Bornhuetter-
Ferguson method.
Some of these methods can be justified by general principles of statistical inference applied to suitable
and more sophisticated stochastic models. It is shown that credibility prediction and Gauss-Markov
prediction as well as maximum-likelihood estimation can contribute in 2 substantal way to the
understanding of various methods of loss reserving,

Keywords. Bornhuetter-Ferguson principle; credibility prediction; development pattern; Gauss-Markov
prediction; loss reserving; maximum-likelihood estimation.

1. INTRODUCTION

We start with the general modelling of loss-development data by a family of random
variables representing incremental or cumulative Josses and with the run-off triangles

representing the observable incremental or cumulative losses (Section 2).

We then introduce the central notion of a development pattern which can be expressed in
three different but equivalent ways and turns out to be a powerful and unifying concept for
the interpretation and comparison of several methods and models of loss reserving
(Section 3).

The subsequent three sections are devoted to methods, least-squares prediction, and

maximum-likelihood estimation.

In the section on methods (Section 4), we start with a general version of the Bornhuetter-

Ferguson method which provides a general framework into which several other methods,
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like the loss-development method, the chain-ladder method, the Cape-Cod method and the
additive method, can be embedded as special cases. We also consider two variants of the
chain-ladder method which have no practical interest but are needed as a link between the

chain-ladder method and certain stochastic models.

In the section on least-squares prediction (Section 5), we study credibility prediction and
Gauss-Markov predicdon. It is shown that, under certain model assumptions, these methods

of prediction yield predictors of the Bornhuettet-Ferguson type.

In the section on maximum-likelihood estimation (Secdon 6), we study maximum-
likelihood estimation for a large class of stochastic models for claim counts: It is shown that
in many cases, but not always, the maximum-likelihood estimators of the expected ultimate
cumnulative losses are identical with the chain-ladder predictors of the ultimate cumulative

losses.
In the final secton (Section 7) we collect some conclusions.

Throughout this paper, let (Q, F, P) be a probability space on which all random
variables are defined. We also assume that all random variables are square integrable.
Moreover, all equalities and inequalities involving random variables are understood to hold

almost surely with respect to the probability measure P.

2. LOSS DEVELOPMENT DATA

We consider a portfolio of risks and we assume that each claim of the portfolio is settled
either in the accident year or in the following # development years. The portfolio may be

modelled either by incremental losses or by cumulative losses.

2.1 Incremental Losses

To model a portfolio by incremental losses, we consider a family of random variables
{Z:4)}ixeton,..ny and we interpret the random variable Z;; as the loss of acwident year i
which is settded with a delay of & years and hence in development year k and in calendar year

1+ k. We refer to Z; as the incremental loss of accident year i and development year £.

We assume that the incremental losses Z;; are observable for calendar years 1 +k < n and
that they are non-observable for calendar years i + k 2 n+1. The observable incremental losses

are represented by the following run-off triangle :
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Accident Development Year ‘
Year 0 1 k e n—1i . n-1 n
0 Zo,o Zo,1 Zo,k ZO,n—i ZO,n—l Z[),n
1 Zx,o Zy, e Zl,k e Zl,n—i v Ly
7 Zio Ziy o Ziy o Zigei

: : : N
n—k Zoko Zooiy A
n-1 Zyag Ly
n Z,o

The problem is to predict the non-observable incremental losses.

2.2 Cumulative Losses

To model a portfolio by cumulative losses, we consider a family of random variables
{S; 4Yiketoy, .,y and we interpret the random variable S;; as the loss of acident year i which
is settled with a delay of a# most k years and hence not Jater than in development year k. We refer
to S;p as the cumulative loss of accident year i and development vear %, to §;,; as a

cumulative loss of the present calendar year n, and to S;, as an ultimate cumulative loss.

We assume that the cumulative losses S;; are observable for calendar years i + k < n and that
they are non-observable for calendar years /+ % 2> n+1. The observable cumulative losses are

represented by the following run-off triangle:

Accident Development Year

Year 0 1 k e m—1 e o on=1 =n
0 So,o SO,I Su,h SO,n—i SO,n—l SO,n
1 Sio Si1 v Sia PR R Y

7 Sio Sia e S T Y

n—k Su-k0 Sk o Sucka

n-1 So0 Sa-nn

n Sn,O

The problem is to predict the non-observable cumulative losses.

Casualty Actuarial Society Forum, Fall 2006 271



Methods and Models of Loss Reserving

2.3 Remarks

of cou}!se, modelling a portfolio by incremental losses is equivalent to modelling a

portfolio by cumulative losses:

~ The cumulative losses are obtained from the incremental losses by letting
5 ‘
S,',k = z Z,- g
I=0

- The incremental losses are obtained from the cumulative losses by letting

S,' fk=0
Zix 5={ + 1

S,"k et S,',/,_l else.

In the sequel we shall switch between incremental and cumulative losses as necessary.

Correspondingly, prediction of non-observable incremental losses is essentially equivalent
to prediction of non-observable cumulative losses:

- If {ZA,-,,,},-,,,e(o,l,“_,,), i+k2zns1 is 2 family of predictors of the non-observable incremental
losses, then a family of predictors of the non-observable cumulative Josses is obtained by
letting

A k A
Sik=Sipit 2 Zig
l=n—i+1

- If {.§',—_k Yike(0,. n), ivkznst is a family of predictors of the non-observable cumulative
losses, then a family of predictors of the non-observable incremental losses is obtained by
letting

2, = gi,n—i+l =Sipi f k=n—i+l
! §i,k et gi,k—l CISC.

For the ease of notation and to avoid the distinction of cases as in the previous definition,

we shall also refer to Z;,—; and S, ,-; as predictors of Z;,; and §;,;, although these

random variables are, of course, observable.

Warning: Whenever prediction is subject to an optimality criterion, it cannot be
guaranteed in general that the previous formulas lead from optimal predictors of incremental

losses to optimal predictors of cumulative losses or vice versa.

The enumeration of accident years and development years starting with 0 instead of 1 is

widely but not yet generally accepted; see Taylor [2000] as well as Radtke and Schmidt
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[2004]. It is useful for several reasons:

- For losses which are settled within the accident year, the delay of settlement is 0.
It is therefore natural to start the enumeration of development years with 0.

- Using the enumeration of development years also for accident years implies that the
incremental or cumulative loss of accident year 7 and development year k is observable if
and only if 7 +k < n. In particular, the cumulative losses S;,_; are those of the present

calendar year 7 and are crucial in most methods of loss reserving.

After all, the notation used here simplifies mathematical formulas.

3. DEVELOPMENT PATTERNS

The use of run-off triangles in loss reserving can be justfied only if it is assumed that the
development of the losses of every accident year follows a development pattern which is
common to all accident years. This vague idea of a development pattern can be formalized in

various ways.

In the present section we consider three types of development patterns which are
formally distinct but can easily be converted into each other. These development patterns

and their equivalence provide a key to the comparison of several methods of loss reserving.

The assumption of an underlying development pattern can be viewed as a primitive

stochastic model of loss reserving.

3.1 Incremental Quotas

The development pattern for incremental quotas compares the expected incremental

losses with the expected ultimate cumulative losses:

Development Pattern for Incremental Quotas: There exist parameters Sy, 9y,..., 9, with
D70S =1 such that the identity
_ElZi4]

T

holds for all k€ {0,1,..., n} and forall i €{0,1,..., n}.

The assumption means that, for every development year 2€{0,1,..., 7}, the incremental

quotas

Casualty Actuarial Society Forum, Fall 2006 273



Methods and Models of Loss Reserving

E[Zis]

i = FS ]

are identical for all accident years.

In the case of a run-off triangle for paid losses or claim counts, it is usually reasonable to
assume in addition that 9; >0 holds for all £€{0,1,..., n}. In the case of incurred losses,
however, this additional assumption may be inappropriate since, due to conservative
reserving,"the expected incremental losses of dcvelopmeﬁt years ke{l,...,n} may be

negative,

3.2 Cumulative Quotas
The development pattern for cumulative quotas compares the expected cumulative losses
with the expected uldmate cumulative losses:
Development Pattern for Cumulative Quotas: There exist parameters Yo, Y1, ..., Y, with
Ya =1 such that the identity
,, = F15ia]
E[Sx’,n]

holds for all k€ {0,1, ..., n} andforall i €{0,1,..., n}.

The assumption means that, for every development year k€{0,1,..., 7}, the cumulative
quotas
. = B8]
*ES

are identical for all accident years.

In the case of a run-off triangle for paid losses or claim counts, it is usually reasonable to
assume in addition that 0 < yy <7¥; <... <Y,. In the case of incurred losses, however, this
additional assumption may be inappropriate since, due to conservative reserving, the

sequence of the expected cumulative losses may be decreasing.

The development patterns for incremental and cumulative quotas can be converted into

each other:

- If 8¢,9,,..., 9, is a development pattern for incremental losses, then a development

pattern for cumulative losses is obtained by letting
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£
Ye=2 9.
1=0

- If Y0,%i5...,¥Yn is a development pattern for cumulative losses, then 2 development

pattern for incremental losses is obtained by letting
if k=0
9, = { Yo 1
Ve~ Yaa else.

Furthermore, the condition 9; >0 is fulfilled for all k€{0,1,...,#2} if and only if
0<yy <Y1 <ere < Ype

3.3 Factors
The development pattern for factors compares subsequent expected cumulative losses:

Development Pattern for Factors: There exist parameters Or, ..., O, Such that the identity

_ E[Si4]
"=F [Si 5]

holds for all ke {1, ..., n} and forall i €{0,1, ..., n}.

The assumption means that, for every development year k € {1,..., n}, the Sfactors
_E [Si4]
Pt =F [Siaa]

are identical for all accident years.

In the case of a run-off triangle for paid losses or claim counts, it is usually reasonable to
assume in addition that ¢ >1 holds for all k€ {l,..., n}. In the case of incurred losses,
however, this additional assumption may be inappropriate since, due to conservative

reserving, the sequence of the expected cumulative losses may be decreasing.

The development patterns for cumulative quotas and for factors can be converted into

each other:
- If Yo,Y1,...,¥» is a development pattern for cumulative losses, then a development
pattern for factors is obtained by letting

57

P = Vi1
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- If @p,...,¢, is a development pattern for factors, then a development pattern for

cumulative losses is obtained by letting

(such that y, =1).
Furthermor'é: the condition yg < v <...<Y, is fulfilled if and only if @; >1 holds for all
kefl,..., n}.

Combining this result and that of the previous subsection, it is evident that also the
development patterns for incremental quotas and for factors can be converted into each

other. We omit the corresponding formulas since they will not be needed in the sequel.

3.4 Estimation

At the first glance, there is little hope to estimate the parameters of the development
patterns for incremental or cumulative quotas since the only obvious estimators of 93 and

¥ are the observable quotients Zy 4 / So,, and Sp / So .., respectively.

Fortunately, the situation is quite different for the development pattern for factors: For

every development year k€ {1, ..., n}, each of the individual development factors
. Sk
i = Si
with i €{0,1,...,7—k} is a reasonable estimator of @, and this is also true for every

weighted mean

n—k

Gr= 2 W04
=0

. . e —k .
with random variables (or constants) satisfying 2 70W,; =1. The most prominent

estimator of this large family is the chain-ladder factor

(bCL — Z"—k S
(I
Z ks Sj k-1

which can also be written as
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n—k S.
ACL _ J k-1 N
o =2 ey N
720 2o Shpn

and is used in the chain-ladder method.

Due to the correspondence between the three development patterns, it is then clear that
in the same way estimators of factors can be converted into estimators of cumulative quotas

and hence into estimators of incremental quotas.

3.5 Remarks

In the case of a run-off triangle for paid claims or claim counts, the intuitive cumulative
interpretation of the development patterns of incremental or aggregate quotas would be their
interpretation as incremental or cumulative probabilities. This interpretation is helpful, but it
is not quite correct since the parameters of the development pattern are defined as gwosients of

expectations instead of expectations of quotients and since these quantities are in general distinct.

One may thus argue that the definitions of development patterns are inconvenient since
they do not exactly correspond to intuition. In the following two sections, however, it will be
shown that the definitions given here are nevertheless reasonable since they provide a
powerful and unifying concept for the interpretation and the comparison of many methods

and models of loss reserving.

4. METHODS

The present section provides a unifying presentation of the most important methods of
loss reserving. The starting point is a general version of the Bornhuetter-Ferguson method
which is closely related to the notion of a development pattern for cumulative quotas and
tutns out to be a unifying principle under which various other methods of loss reserving can

be subsumed.

4.1 Bornhuetter-Ferguson Method

The Bornhuetter-Ferguson method is based on the assumption that there exist

parameters O, @, ..., &, and Yo, ¥1,..., Y, With ¥, =1 such that the identity

E[Si 4] = 1a04;
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holds for all 7,k € {0,1,..., n}. Then we have

E[Sia)= 0
and hence‘ .
E[Si ) =1:E[S; ]
such that t};{é parameters Y05 Y15 .. ¥n form a development pattern for cumulative quotas.

The Bornhuetter-Ferguson method is also based on the additional assumption that prior

estimators

3

do,dl,...,a"

L

of the expég;ed ultimate cumulative losses E[S; ,] and prior estimators
Jos¥1s s 9
of the development pattern are given and that ¥, =1.
Comment: Prior estimators may be obtained from information provided by various
sources:

— Internal information: This is any information which is contained in the run-off triangle of the
portfolio under consideration. Internal information could be used, e. g, by estimating the
development pattern from the given run-off triangle.

— External information: This is any information which is no# contained in the run-off triangle of
the portfolio under consideration. External information could be obtained, e. g., from
market statistics, from other portfolios which are judged to be similar to the given one, or
from premiums or other volume measures of the portfolio under consideration; see
Section 4.6.

Of course, prior estimators may also be obtained by combining internal and external

information. In any case, the choice of prior estimators is an important decision to be made

by the actuary.

The Bombuetter-Ferguson predictors of the cumulative losses S;; with i+ k&2 » are defined

as
&BF L s N
Sik = Sigmi + (Vi =¥y ) G

The definition of the Bornhuetter-Ferguson predictors reminds of the identity
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E[S:41= E[S;pi ]+ (1 = F0-i) i

which is a consequence of the model assumption.

The definition of the Bornhuetter-Ferguson predictors shows that the prior estimators

are dominant for young accident years whereas they are less important for old development

years. Also, in the extreme case where the prior estimators are completely determined by

external information, the major part of the run-off triangle is ignored and only the

cumulative losses of the present calendar year are used. This is reasonable when the quality

of the data from older calendar years is poor.

Example A. We consider the following reduced run-off triangle for cumulative losses

which contains the cumulative losses of the present calendar year and is complemented by

the prior estimators of the expected ultimate cumulative losses and of the development

pattern:
Accident Development Year £
Year / a; 0 1 2 3 4 5
0 3517 3483
1 3981 3844
2 4598 3977
3 5658 3880
4 6214 3261
5 6325 1889
Vi 0.280 0.510 0.700 0.860 0.950 1.000

Computing now the Bornhuetter-Ferguson predictors, the run-off triangle is completed as

follows:

Accident Development Year £

Year / &; 0 1 2 3 4 5

0 3517 3483
1 3981 3844 4043
2 4598 3977 4391 4621
3 5658 3880 4785 4389 5577
4 6214 3261 4442 3436 5995 6306
5 6325 1889 3344 4546 5558 6127 6443
¥4 0.280 0.510 0.700 0.860 0.950 1.000
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When the cumulative losses of the present calendar year are judged to be reliable, it may
be desirable to modify the Bornhuetter-Ferguson predictors in order to strengthen the
weight of the cumulative losses of the present calendar year and to reduce that of the prior

estimators of the expected ultimate cumulative losses. This goal can be achieved by iteration.

For example, if on the right hand side of the previous formula the prior estimators &; are
replaced by the Bornhuetter-Ferguson predictors SPE, then the resulting predictors are the
Benfktander Hovinen predictors

&BH | A - ¢BF
Sik = Sini + (k= V0-i) Sim
which in the case ¥, <¥; increase the weight of the cumulative losses of the present

calendar year and reduce that of the prior estimators of the expected ultimate cumulative

losses.
More generally, the Bormbuetter-Ferguson predictors of order m € Ny are defined by letting
sm Siei + (Yo =i ) i if m=0
’ Simi ¥ (ke =Fni)Sim ) if m21.

Then we have SA',(BZ = S,Bf and 5,(}2 = S,B H, and induction yields

m o Sl"'
8 =(1-(1=9,-)” )yk? +(1=,)" SEF

n—i

o Simi . o Sinmi
=Yk'r'+(l‘7n—:) (S:k ———)

n—t n=f

A St n—i ~ A S,‘,,,_,‘
=Yk ,Y +(1 Yn—t) (Yk Yn—i)(ai "_A—J

n—i n—i

for all m e Ny. In the particular case whete &; = S;,—; /¥,-i of ¥,-; =1, the iteration is

without interest since in that case the idendrty

holds for all m € Ngy. By contrast, the iteration is of considerable interest in the case where

0 < ¥,-; <1 since in that case we obtain

lim S( m = %‘"'i

m—x Yn-i

and convergence of the sequence of the iterated Bornhuetter-Ferguson predictors is
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monotone but may be increasing or decreasing.

Example B. The following table contains the prior estimators of the expected ultimate

cumulative losses, the iterated Bornhuetter-Ferguson predictors

é f =1 A m Py Sin-—i
St =_5,;’"‘ A=9ui)™ (ai"—-j ‘ J

and their limits:

Accident  Prior Iterated Bornhuetter-Ferguson Predictors Limit
Yeari 6, 89 SU 280 S9 89 . 5w

0 3517 3483 3483 3483 3483 3483 3483 . 3483 . 3483
1 3981 4043 4046 4046 4046 4046 4046 ... 4046 ... 4046
2 4598 4621 4623 4624 4624 40624 4624 ... 4624 . 4624
3 5658 5577 5553 5546 5544 5543 5543 . 5543 . 5543
4 6214 6306 6351 6373 6384 6389 6392 ... 6394 .. 6394
5 6325 6443 6528 6589 6633 6664 6687 ... 6730 .. 6746

The iteration steps 0 and 1 correspond to the Bornhuetter-Ferguson method and to the
Benktander-Hovinen method, respectively. The table illustrates that convergence is
monotone but may be increasing or decreasing, and that convergence is usually fast for old

accident years and slow for young accident years.

4.2 Loss-development Method

The loss-development method is based on the assumption that there exist parameters

Yos Y1 +--» ¥Yn With 7, =1 such that the identity
E[Six] = V4E[Si 0]

holds for all 7,k€{0,1,...,7n}. Then the parameters Yo, 7(,...,Y, form a development

pattern for cumulative quotas.

The loss-development method is also based on the additional assumption that prior

estimators
?0) ?1» cers ”Yﬂ
of the development pattern are given and that ¥, =1.

The loss-development predictors of the cumulative losses S;; with 7+ k& 2 7 are defined as
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LD 2 Si,n-t
Sk =~
Yn-i

The definition of the loss-development predictors reminds of the identity

E[Si,n]

n—t

E[Sik] ="k
which is a consequence of the model assumption.

sih . . .
When compared with the Bornhuetter-Ferguson predictors, the importance of the
cumulative losses of the present calendar year and of the ptrior estimators of the
development pattern is increased in the loss-development predictors since the latter do not

involve any prior estimators of the expected ultimate cumulative losses.

Example C. We consider the following reduced run-off triangle for cumulative losses
which contains the cumulative losses of the present calendar year and is complemented by

the prior estimators of the development pattern:

Accident Development Year £

Year / 0 1 2 3 4 5

0 3483
1 3844

2 3977

3 3880

4 3261

5 1889

?,, 0280 0.510 0.700 0.860 0.950 1.000

Computing now the loss-development predictors, the run-off triangle is completed as

follows:

Accident Development Year £

Year; 0 1 2 3 4 5

0 3483
1 3844 4046
2 3977 4393 4624
3 3880 4767 5266 5543
4 3261 4476 5499 6074 6394
5 18890 3440 4722 5802 6409 6746

Ve 0.280 0.510 0.700 0.860 0.950 1.000

The loss-development predictors can be written as
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$H = Sinmi + (4 = 90-0) 810

This shows that the loss-development predictors are nothing else than the Bornhuetter-
Ferguson predictors with respect to the prior estimators

6P = §1°

of the expected ultimate cumulative losses. In other words, the loss-development method is
a particular case of the Bornhuetter-Ferguson method with prior estimators of the expected

ultimate cumulative losses which are based on internal and external information.

Moreover, in the case where 0 <7,_; <1, the loss-development predictors are precisely
the limits of the sequences of the iterated Bornhuetter-Ferguson predictors with respect to
arbitrary prior estimators of the expected ultimate cumulative losses, as has been shown in

Section 4.1.

4.3 Chain-ladder Method

The chain-ladder method is based on the assumption that there exist parameters

¢1, ..., ¢, such that the identity
E[Sit] = QeE[Si 41]
holds for all 7 €{0,1,...,7} and £€{0,1,..., #}. Then the parameters @y, ..., 9, form a
development pattern for factors.
The chain-ladder predictors of the cumulative losses §; 3 with 7 +k 2 n are defined as
. k
ch.:kL = Si,n—i H (bICL
I=n—i+1
where
Zn-—lc S .
ACL j=0 1.k
288 ha
is the chain-ladder factor introduced in Section 3. The definition of the chain-ladder predictors
reminds of the identty

EISis)= E(Sina] TT o

I=n—i+1
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which is a consequence of the model assumption.

When compared with the loss-development predictors, it is remarkable that the chain-
ladder predictors are not determined by the cumulative losses of the present calendar year

but involve, via the chain-ladder factors, a// camulative losses of the run-off triangle.

Example D. We consider the following run-off triangle for cumuladve losses:

Accident Development Year £

Year 0 1 2 3 4 5

0 1001 1855 2423 2988 3335 3483
1 1113 2103 2774 3422 3844

2 1265 2433 3233 3977

3 1490 2873 3880

4 1725 3261

5 1889

Computing first the chain-ladder factors and then the chain-ladder predictors, the run-off

triangle is completed.as-féllows:

Accident Development Year &

Year / 0 1 2 3 4 5

0 1001 1855 2423 2988 3335 3483
1 1113 2103 2774 3422 3844 40713
2 1265 2433 3233 3977 4454 4650
3 1490 2873 3880 4780 5354 5590
4 1725 3261 4334 5339 5980 6243
5 1889 33587 4767 5873 6578 6867

(pr 1.899 1329 1.232 1.120 1.044

It has been pointed out in Section 3 that the different development patterns and their

estimators can be converted into each other. In particular, letting

o1
Yi = P
1111 O

converts a development pattern for factors into a development pattern for cumulative

quotas and letting

N 1
Te = -
1=Hk+1 P1

converts the estimators of a development pattern for factors into estimators of a

284 Casualty Actuarial Society Forum, Fall 2006



Methods and Models of Loss Reserving

development pattern for cumulative quotas. Thus, letting

the chain-ladder predictors can be written as

CL _ ACL Si,n-i
ik =Yk “CL °
Yn-i

This shows that the chain-ladder predictors are nothing else than the loss-development
predictors with respect to the chain-ladder cumulative quotas it as prior estimators of the

cumulative quotas. Furthermore, we have
CL +CL _ 2CL\&CL
St = Simei + (GE =155
This shows that the chain-ladder predictors are precisely the Bornhuetter-Ferguson

predictors with respect to the prior estimators 955 of the cumulative quotas and the ptior

estimators
~CL CL
a; = -9,‘,"

of the expected ultimate cumulative losses. In other words, the chain-ladder method is a
particular case of the loss-development method and hence of the Bornhuetter-Ferguson
method with ptior estimators of the development pattern and the expected ultimate

cumulative losses which are completely based on internal information.

The chain-ladder method can be modified by replacing the chain-ladder factors o5t by

any other estimators of the form
n—k .
Gr =2 Wi
J=0
with random variables (or constants) satisfying Z;’-;z Wir=1

4.4 Grossing-up Method

The grossing-up method is based on the assumption that there exist parameters
Yos Y15 -+ Yn With ¥, =1 such that the identity

E[S; ] = Y:E[SiA]

holds for all 7,k€{0,1,...,7#}. Then the parameters Yo, ¥i,...,¥» form a development

Casualty Actuarial Society Forum, Fall 2006 285



Methods and Models of Loss Reserving

pattern for cumulative quotas.

The grossing-up predictors of the cumulative losses S; ; with 7 + k& 2 # are defined as

o R S
5 =g S
Yn—i
where
1 if k=n

AGU n—k-1
Yoo =9 X Sia

3ok §GU
=0 OJjn
is the grossing-up cummlative guota of development year £. The definition of the grossing-up

predictors reminds of the identity

E[Si,n—i]

n—i

E[S;i¢)=1s

which is a consequence of the model assumption.

The computation of the grossing-up cumulative quotas and of the grossing-up predictors

for the ultimate cumulative losses proceeds by recursion along the accident years, which

yields
98V =1 and S5V =5,,
9 = 20mt and SV =St
oS B
06U _ Som2*Sia2 0 ecU _ Samz
TS+ 8% U

As can be seen from the definition, the grossing-up predictors are nothing else than the loss-
development predictors with respect to the grossing-up cumulative quotas 757 as prior

estimators of the cumulative quotas. Furthermore, we have
46U ~GU _ ~GU\ 6GU
Sik =Sipmi v —¥a)Sin

which shows that the grossing-up predictors are precisely the Bornhuetter-Ferguson
predictors with respect to the prior estimators 757 of the cumulative quotas and the prior

estimators
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6V .= oU

P = Oin

of the expected ultimate cumulative losses. In other words, the grossing-up method is a
particular case of the loss-development method and hence of the Bornhuetter-Ferguson
method with prior estimators of the development pattern and the expected ultimate

cumulative losses which are completely based on internal information.

Since the previous remark applies as well to the chain-ladder predictors, the questdon
arises whether there is any difference between the grossing-up predictors and the chain-
ladder predictors. The answer to this question is that there is no difference at all since it can
be shown that the grossing-up cumulative quotas and the chain-ladder cumulative quotas are

identical for all development years; see e. g. Lorenz and Schmidt [1999].

The grossing-up method thus provides a computational alternative to the chain-ladder
method, but this alternative seems to be of little practical interest if any. The reformulation
of the chain-ladder method provided by the grossing-up method is, however, of considerable

interest with regard to the comparison of methods:

First, among all methods for cumulative losses considered here, the chain-ladder method
appears to be somewhat singular since it uses estimators of a development pattern for
factors instead of cumulative quotas, but its equivalence with the grossing-up method shows
that this singularity is only due to the most intelligent formulation of an algorithm which

avoids recursion and is hence more easily understood.

Second, the grossing-up method provides an substantial link between the chain-ladder

method and the marginal-sum method; see Subsection 4.5.

4.5 Marginal-Sum Method

The marginal-sum method is based on the assumption that there exist parameters

Qg, 0y,..., &, and B9, 9y, ..., 9, with 3.7 1 9; =1 such that the identity
E[Z;4]= B0,
holds for all 7,k € {0,1,..., n}. Summation yields
E[S; ]=a;

and hence

E[Z; 4] = B4 ELS; 4]
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such that the parameters 8, 9y, ..., 9, form a development pattern for incremental quotas.

. A A A A A A .
Observable random variables G}, a{ﬁs,..., &M and a5, M, 8™ are said to be

marginal-sum estimators if they are solutions to the marginal-sum equations
n—=i n-i

Z diél = 2 Zi,l
1=0 1=0

forie{0,1,..., n} and

n—k . A n—k
ajslt = 2 Z/ k
j=0 j=

for ke {0,1,..., n} as well as

The marginal-sum equations remind of the identities

z (X,,-S] = Z E[Z,J]
1=0

I=0

and
n—k n—k
208 =3 E[Z;,]
j=0 =0

as well as

9, =1

M=

k=0
which are immediate from the model assumptions.

The question arises whether marginal-sum estimators exist and are unique. The answer to

this question is affirmative: Marginal-sum estimators exist and are unique, and they satisfy

&MS - gou
and
s 76Y if k=0
YV —9SY if k21
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In view of the discussion of the grossing-up method, the previous idendties imply that the

marginal-sum estimators satisfy

& =85
and
gMs _ et if k=0
L e .
i =9 if k21
Thus, letting
LI
e =
1=0
we obtain
e =i

forall ke {0,1,..., n}.

The marginal-sum predictors of the cumulative losses S, 4 with i + 4% 2 # are defined as

S‘wMS _ aMS Si,n—-i
£ =Yk ~MS

n~i

Then we have

&MS __ aCL
Sik =Sk

This shows that the marginal-sum method is equivalent to the chain-ladder method.

4.6 Cape-Cod Method

The Cape-Cod method is based on the assumption that there exist parameters

Yo Yis-.-s ¥» With ¥, =1 such that the idendty
E[S; k)= Y:E[S:.4]

holds for all i,k€{0,1,...,7n}. Then the parameters Yo, 7),..., ¥, form a development

pattern for cumulative quotas.

The Cape-Cod method is also based on the additional assumption that premiums ot other

volume measures Ty, My, ..., T, € (0,0) of the accident years are known, that the expected

Casualty Actuarial Society Forum, Fall 2006 289



Methods and Models of Loss Reserving

ultimate cumulative loss ratios

K; = E[E‘i]
T

are identical for all accident years, and that prior estimators Yo, %1, ..., ¥, of the development

pattern are given and satisfy ¥, =1.
The Cape-Cod predictors of the cumulative losses S, with i + k> 7z are defined as
$% = Simei + (Gt = Fami) MR
where

n
&CC = Z)‘=Osf’"‘f

z;=o§’n-jﬂj

is the Cape-Cod loss ratio, which is an estimator of the expected ultimate cumulative loss ratio

(common to all accident years).

The Cape-Cod predictors are nothing else than the Bornhuetter-Ferguson predictors with
respect to the prior estimators

A CC

afC = q; k¢

of the expected ultimate cumulative losses. In other words, the Cape-Cod method is a
particular case of the Bornhuetter-Ferguson method with prior estimators of the expected

ultimate cumulative losses which are based on both internal and external information.

Example E. We consider the following reduced run-off triangle for cumulative losses
which contains the cumulative losses of the present calendar year and is complemented by

the premiums and the prior estimators of the development pattern:

Accident Development Year £

Year ; T 0 1 2 3 4 5

0 4025 3483
1 4456 3844

2 5315 3977

3 5986 3880

4 6939 4261

5 8158 1889

¥ 0280 0.510 0.700 0.860 0.950 1.000
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The previous triangle differs from those considered before since the value of S, is 4261

instead of 3261, which indicates that there might be an outlier in accident year 4. Using the

table
i Sis-i '95-:‘ i Y5 M
0 3483 1.000 4025 4025
1 3844 0950 4456 4233
2 3977 0.860 5315 4571
3 3880 0.700 5986 4190
4 4261 0510 6939 3539
5 1889 0.280 8158 2284
> 21334 22842

C

we obtain k¢ = 0934, Computing now the prior estimators of the expected ultimate

cumulatve losses and the Cape-Cod predictors, the run-off triangle is completed as follows:

Accident Development Year £

Year / Q; 0 1 2 3 4 5

0 3758 3483
1 4162 3844 4052
2 4964 3977 4424 4672
3 5591 3880 4775 5278 5557
4 6481 4261 5492 6529 7113 7437
5 7619 1889 3641 5089 6308 6994 7375

0.280 0.510 0.700 0.860 0.950 1.000

~2>
~

The previous table should be compared with the following one which is the same run-off

triangle completed with the loss-development predictors:

Accident Development Year £

Year i 0 1 2 3 4 5

0 3483
1 3844 4046
2 3977 4393 4624
3 3880 4767 5266 5543
4 4261 5848 7185 7937 8355
5 1889 3440 4722 5802 6409 6746
Y 0.280 0510 0.700 0.860 0.950 1.000

The example indicates that the development of the Cape-Cod predictors over the
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accident years is much smoother than the development of the loss-development predictors
which means that the Cape-Cod method reduces outlier effects. The smoothing effect is of
course due to and depends on the premiums or other volume measures which are used

instead.

The following considerations may help to understand the smoothing effect of the Cape-
Cod method: Assume that, for every accident year 7 the expected ultimate cumulative loss
ratio is estimated by

$LD
a Si,n _ Si,ﬂ—i

A Ya—i T

a

Then the Cape-Cod loss ratio can be written as a weighted mean

n A 4 n A
2]:0 Yn-;M;  j=0 Z},:o Yn-bm,

n A
~CC Z;:o Sjn-j o YT s
K = = Kj

and the identty
Sin-i =Vn-i T K;

suggests to decompose the cumulative loss §; ,; of the present calendar year into its regular
part

A A Cc
77',"-.‘ =YK

and its outlier effect

X in—i = Si,n—i - 7:',,,—,'

and then to apply the loss-development method to the regular part while keeping the oudier

effect fixed over all subsequent development years. Since

73'5&[) +Xipi =Yk TE’H +(8ipi = Tini)

n~-i

A A T; n—{
= Si,n—i + (Yk “Yn—i) = -
= Sinmi + (e~ i) &<

dCC
= Si,k

we see that the resulting predictors are precisely the Cape-Cod predictors.
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The Cape-Cod method can be modified by replacing the Cape-Cod loss ratio kC by any

other estimator of the form

with random variables (or constants) satisfying 3.7, W; =1.

4.7 Additive Method

The addidve method is based on the assumption that there exist known parameters

g, My, ...» T, € (0,00) and unknown parameters Co, £y, ..., §, such that the identty
E[Zi4)=Cam;
holds for all ,k€{0,1,..., n}.

If the parameters T, 7y, ..., T, are interpreted as premiums or other volume measures of

the accident years, then the assumption means that, for every development year %, the

Cin=E [%]

excpected incremental loss ratios

are identical for all accident years. Letting

a; =Tn; z C_,),
k=0
and
i = ZLO C/
20C
we obtain
E[Si 4] = Y401

for all #,k€{0,1,...,7} such that a; = E[S;,] and the parameters Yo, Yi,..., Y, form a

development pattern for cumulative quotas.
The additive predictors of the incremental losses Z; , with i+k2n are defined as

5AD ._ $AD
Ziy =G m
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and the additive predictors of the cumulative losses §;; with i+ %> n are defined as
SAD . sAD
Sik =Simi+ 2 Zi
I=n—i+}

where

~k
éQD — ZZ':o Zig

. n—k
2iam;
is the additive incremental loss ratio of development year k.

Example F. We consider the following run-off triangle for cumulative losses

which is complemented by the premiums:

Accident Development Year £

Year / m; 0 1 2 3 4 5
0 4025 1001 1855 2423 2988 3335 3483
1 4456 1113 2103 2774 3422 3844

2 5315 1265 2433 3233 3977

3 5986 1490 2873 3880

4 6939 1725 3261

5 8158 1889

We thus obtain the following run-off triangle for incremental losses which is complemented

by the additive incremental loss ratios:

Accident Development Year £

Year / n; 0 1 2 3 4 5

0 4025 1001 854 568 565 347 148
1 4456 1113 990 671 648 422

2 5315 1265 1168 800 744

3 5986 1490° 1383 1007

4 6939 1725 1536

5 8158 1889

ék 0.243 0222 0154 0.142 0.091 0.037

Computing now the additive predictors of the non-observable incremental losses, the run-

off triangle of incremental losses is completed as follows:
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Accident Development Year £

Year / n; 0 1 2 3 4 5

0 4025 1001 854 568 565 347 148
1 4456 1113 990 671 648 422 165
2 5315 1265 1168 800 744 484 197
3 5986 1490 1383 1007 850 545 221
4 6939 1725 1536 1069 985 631 257
5 8158 1889 18711 1256 1158 742 302
é f 0.243 0222 0.154 0.142 0.091 0.037

Accordingly, the run-off triangle of cumulative losses is completed as follows:

Accident Development Year £
Year / T 0 1 2 3 4 5
0 4025 1001 1855 2423 2988 3335 3483
1 4456 1113 2103 2774 3422 3844 4009
2 5315 1265 2433 3233 3977 4461 4658
3 5986 1490 2873 3880 4730 5275 5496
4 6939 1725 3261 4330 5315 5946 6203
5 8158 1889 3700 4956 6114 6856 7158
Letting
k FAD
/}«,kAD o PIINS
=S D
6!
and

~ AD & £ AD
a,A = T[,'ZC[
1=0

the additive predictors of the non-observable cumulative losses may be written as

SAD +£AD _ ~AD\ » AD

Sik = Si-i + (Ve — ¥ ) G
This shows that the additive predictors of the cumulative losses are nothing else than the
Bornhuetter-Ferguson predictors with respect to the addifive cumulative quotas 75> and the
ptior estimators de of the expected ultimate cumulative losses. In other words, the

additive method is a particular case of the Bornhuetter-Ferguson method with prior

estimators of the cumulative quotas and of the expected ultimate cumulative losses which
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are based on both internal and external information.

The expected cumulative loss ratios

satisfy
K; = i Ci-

Since the expected incremental loss ratios are identical for all accident years, it follows that
also the expected cumuladve loss ratios are identical for all accident years. Therefore, the

additive loss ratio

. . - ~ AD .
common to all accident years. Moreover, the prior esimators ;" can be written as

&P = m, kAP

and it can be shown that

~ AD Z:eo Si M=J
K= n  AAD ’
2z =0V n—j T
This shows that the additive predictors of the non-observable cumulative losses are nothing
else than the Cape-Cod predictors with respect to the additive cumulative quotas 742, In
other words, the additive method is a particular case of the Cape-Cod method with prior

estimators of the cumulative quotas which are based on both internal and external

information.

The observation that the additive method is a special case of the Cape-Cod method is due
to Zocher [2005).
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4.8 Remarks

The following table compares the different methods of loss reserving considered in this
section with regard to the choices of the prior estimators of the expected ultimate

cumulative losses @; and of the cumulative quotas v;:

Expected Ultimate Cumulative Quotas

Cumulative Losses Arbitrary YEL ';’tD

Arbitrary Bornhuetter-Ferguson
Method

§o Loss-Development Chain-Ladder

h Method Method

n, &> Cape-Cod Additve

Method Method

Note that the prior estimators S,%,,D and m; &< depend on the choice of the prior estimators
A N
Yos Y1s+ees Y-

Of course, the four other combinations which apparently have not been given a name in
the literature could be used as well, and even other choices of the prior estimators of the

expected ultimate cumulative losses and of the cumulative quotas could be considered.

The discussion of the present section and, in particular, the above table shows that the
Bornhuetter-Ferguson method provides a general principle under which several methods of

loss reserving can be subsumed. The focus

- on prior estimators of the expected ultimate cumulative losses and
~ on prior estimators of the cumulative quotas

provides a large variability of loss reserving methods. The above table contains important

special cases but could certainly be enlarged. Moreover,

- any convex combination of prior estimators of the expected ultimate cumulative losses

yields new prior estimators of the expected ultimate cumulative losses, and

- any convex combination of prior estimators of the development pattern for cumulative

quotas yields new prior estimators of ‘he development pattern.
This point is made precise in the following example:

Example G. Let &, @,,...,4, be prior estimators of g, Qy,...,0, and let
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40> ¥1s-++5 ¥ be prior esimators of Yo, Y1, ..., ¥ such that each of these prior estimators is

completely based on external information. Then the prior estimators
&; = a0 + azf‘,%,,D + a3 (m;k<C)
with @ +a; +a3 =1 and
Vi = bie+ b +b7E°

with & + b, + &5 =1 are prior estimators of @, &, ..., a, and Yo, ¥1,..., Y, respectively,
which through the weights @, 4;, 43 and &, b, b; express the reliability attributed to the

C

prior estimators @, S,'L, D 2.k and ¥y, 755, 742, respectively.

5. LEAST-SQUARES PREDICTION

Least-squares predicton is one of the general principles of statistical inference. It is
similar to least-squares estimation but differs from the latter since the target quantity is a

non-observable random variable instead of a model parameter.

The main aspects of least-squares prediction are credibility prediction and Gauss-Markov
prediction; in either case, the problem is to determine opdmal predictors with respect to the

expected squared prediction error.

An extension of Gauss-Markov prediction is conditional Gauss-Markov prediction in

which unconditional first and second order moments are replaced by conditional moments.

5.1 Credibility Prediction

In the context of loss reserving, credibility prediction aims at predicting any linear
combination T of (observable or non-observable) incremental losses by a predictor of the
form

N n n-j
T=a+3 3 a;1Z;.
j=01=0

These predictors are said to be admissible. Note that

— the class of all admissible predictors does not depend on the sum to be predicted,

- the admissible predictors are not necessarily linear in the observable incremental losses

since the coefficient 4 may be distinct from 0, and
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- the admissible predictors are not assumed to be unbiased.

The general form of the prediction problem is reasonable since it includes, e. g., prediction
of the ultimate cumulative losses S;, v/hich are sums of the observable incremental losses

Zios Ziys-..r Zi i and the non-observable incremental losses Z; ,_is1,...s Zi n-
o A =t i n—i+1 in

For a sum T of incremental losses, an admissible predictor is said to be a credibility

predictor of T if it minimizes the expected squared prediction error
E[(T-T)’]
over all admissible predictors T.

The following results are well-known:

(1) For every sum T of incremental losses, there exists a credibility predictor T and the

credibility predictor is unique.

(2) If T} and T, are sums of incremen-al losses and if ¢; and ¢, are real numbers, then the

credibility predictor of
T =qi +c;T,
satisfies
TR clﬁCR n szch‘
which means that credibility prediction is linear.

(3) If Tis a sum of incremental losses, then an admissible predictor T* is the credibility
predictor of T if and only if it satisfies the normal equations

E[T"]=E[T]
and
E[T"Z,;,]1= E[T Z;,)
forall 7,/ €{0,1,...,n} such that j+/ < n.

(4) The credibility predictor of any sum of incremental losses is unbiased.

Because of (2) it is sufficient to determine the credibility predictors of the incremental losses

Z; 4. In the case where i + k< n, we have

5CR _
Zi,lc - Zi,k'

Casualty Actuarial Society Foruzy, Fall 2006 299



Methods and Models of Loss Reserving

In the case where i + k2 n+1, we write

n n-h
5 CR
Zik =aip+ 2 Y GiphmLim
b=0 m=0

and determine the coefficients from the normal equations
n n=h
E[ai,k +2 3 ai,k,b,mZb,m] =E[Z;4]
=0 m=0
and

n n—b
E[(ai,k +X Y a; kbm Zb,m)zj,l:l =E[Z, Z;1]

h=0 m=0

which may equivalently be written as

n n-h

ip+ 2 2 appmElZy )= E[Zi4]
b=0 m=0
and
n n—h
2 Y aigpmCOV[Zy m, Zjy)=cov[Zix Z; ]
=0 m=0

forall j,/ €{0,1,..., 7} such that j+I<n

We thus see that the credibility predictor of a non-observable incremental loss is
completely determined by the first and second order moments of the incremental losses.

Solving the normal equations proceeds in two steps:
— The normal equations involving covariances form a system of linear equations for the
coefficients 4; ;5. The fact that a credibility predictor of Z;, exists implies that this

system of linear equations has at least one solution.

— Inserting any such solution into the normal equation involving expectations yields the

coefficient 4, .

It should be noted that the system of linear equations may have several solutions (which is
the case if and only if the covariance matrix of the observable cumulatve losses is singulat).
This means that the credibility predictor of Z;;, which is known to be unique, can be

represented in several ways.

In most credibility models for loss reserving which have been considered in the literature,
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it is assumed that any two incremental losses from different accident years are uncorrelated.
In this case, the credibility predictor of a non-observable incremental loss Z;; can be
written as
n=f
5CR
Ziy =dip+ 2 4ipimZim
m=0
and its coefficients can be determined from the reduced normal equations

n=i

g+ 2 4 ppmElZim] = E[Z;4]

m=0
and
n—f
)3 % ki m OV i, Z j,I] =cov[Z;i4 Z j,l]
m=0

forall /€{0,1,..., n—1i}.

As an example, let us now consider credibility prediction in the credibility model of

Witting, which is a model for claim counts:
Credibility Model of Witting:
@) Any two incremental losses of different accrdent years are uncorrelated.
(i) There exist parameters Sq, 8y, ..., 8, & (0,1} with 3 ;_ O =1 such thas, for every accident year

i€{0,1,..., 1}, the conditional joint distribution of the family {Z; 4 ie(o1...m) With respect to the

ultimate cumulative loss  S;, is the multinomial distribution with parameters S;, and

90, 81,..., 9,

For the remainder of this subsection we assume that the assumptions of the credibility
model of Witting are fulfilled. Then we have

E (Z{,Ie | S{,n) = Si,nslc

2 . . _
COV(Z,"/,, Zi,l ISi,n) ={ Sx,nSk + S,,nSk if k=1

=S 3 else.
Letting
a; = E[S; ]
o; = var[§; ;]
we obtain
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E[Zi4] = 09
p— . 2 . 3 —
COV[Z,"/,, Z,'J] - (O',' 0.,)9/, + a,S,, if k=1
(0',‘ —-Q; )91(91 else.

The first of the previous identities shows that the parameters 8¢, 9y,..., 9, form a
it
development pattern for incremental quotas. Inserting the previous identities into the

normal equations, we obtain, for all 7,k€{0,1,..., n} such that i+ k2 n+1,

ZAE} — Sk( 1 o + Yn—iTi St,n—iJ

1+ Y n-iTi ! 1+ Yn-iTs Yn-i
and hence

k
ACR 5CR
Sk =Simit+ X Zin
I=n—i41

1 Yu-iTi Si,n—i
=S i (Ve — Vi it
i n—i (Yk ¥ )(l'f"yn—iti a 149, Yn-i )

where v, = Zf:o 9, and 1, :=(0; — ;) / ;. This shows that the credibility predictor of the
non-observable cumulative loss §;; is the Bornhuetter-Ferguson predictor with respect to

the prior estimators

A

T = Vi

of the development pattern for cumulative quotas and the prior estimators

. T Sini
a,CR = 1 o + Yn-iTi in—i
1+ Yu-iTs 1+ YoiTi Vou-i

of the expected ultimate cumulative losses, which are weighted means of external
information provided by the unknown parameter d, and internal information provided by
the loss-development predictor S,!j,l,) =8 gmi [ Vnmi

Example H. If, in addition to the assumptions of the model of Witting, it is assumed
that every ultimate cumulative loss §;, has the Poisson distribution with expectation a,
then we have 1; =0 and the credibility predictors of every non-observable cumulative loss
Sl"k sadsfy

S‘lc,:kk = Sx,n-—i + (le —Yn— )(l,‘

and are thus identical with the Bornhuetter-Ferguson estimators with respect to the prior
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estimators ¥, :=Y; and @&; :=0,. In this case, the assumptions of the Poisson model are
fulfilled and maximum-likelihood estimation could be used as an alternative to credibility

prediction; see subsection 6.1 below.

Similar results obtain in the credibility model of Mack [1990] and in a special case of the
credibility model of Hesselager and Witting [1998]; see Radtke and Schmidt [2004].

5.2 Gauss-Markov Prediction

A predictor T of a linear combination T of (observable or non-observable) incremental

losses is said to be

— a linear predictor if there exists a family {4} ; je(0,1....n), 1+j<n Of coefficients such that

A n n-j
T=3% 3 4Z;
=0 /=0
— an unbiased predictor of T if
E[T]= E[T]

— a Gauss-Markov predictor of T if it is an unbiased linear predictor of T which minimizes

the exgpected squared prediction error
E((F-T)']

over all unbiased linear predictors T of T.

The existence of a Gauss-Markov predictor of T cannot be guaranteed in general. (For
example, if E[Z; ;] =0 holds for every observable every incremental loss and if T is such
that E[T}# 0, then there exists no unbiased linear estimator of T.) Therefore, we consider

Gauss-Markov prediction only under the assumptions of the linear model.

Let Z; denote a random vector consisting of the observable incremental losses and let
Z, denote a random vector consisting of the non-observable incremental losses (arranged
in any order).

Linear Model:

@) There exist matrices Ay and Ay and a vector B such that
E[Z,]= 4B
E[Z,]= A,
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@) The matrix Ay has full column rank.
(iii) The matrix

Z“ = var[Zl]
is invertible.

For the remainder of this subsection, we assume that the assumptions of the linear model
are fulfilled.
Under the assumptions of the linear model, the following results are well-known:

(1) For every sum T of incremental losses, there exists a Gauss-Markov predictor TM
and the Gauss-Markov predictor is unique.
(2) If T; and T, are sums of incremental losses and if ¢ and ¢, are real numbers, then the
Gauss-Markov predictor of
T =ql; +c,T;

satisfies

TGM = C]EGM +‘_27~2GM

which means that Gauss-Markov prediction is linear.

Because of (2) it is sufficient to determine the Gauss-Markov predictors of the incremental

o

losses Z; 4. In the case where ¢ + k< n, we have
5GM _
Ziy' =Zig-

In the case where { + k2> n+1, we obtain

A

23" = 2, B™M + cov[Z,4, Z )T (Z, - 4B
where 4] is the row vector of the matrix A, satisfying E[Z; ;] = 4/ B,
B = (AZi) 4) AZiZ,
is the Ganss-Markov estimator of P (based on the observable incremental losses) and
cov[Z; 4, 2] is the row vector with entries cov[Z;;,Z;;] with j,l€{0,1,...,#} and

j +1 < n; see Goldberger [1962] and Rao and Toutenburg [1995] as well as Halliwell [1996,
1999), Hamer [1999] and Schmidt [1998, 1999a, 2004].
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As an example, let us now consider Gauss-Matkov prediction in the linear model of
Mack:

Linear Model of Mack: There exist parameters Ty, My, ..., T, € (0,00} and Gy, Gy, ..., C, as
well as Gy, Gy, ..., O, € (0,0) such that

E[Zi 4] =nCs
and
N0k {fll:j.llﬂdk:l
Z,' ,Z‘ =
covlZin Zjul {0 else
holds forall i, j k1 €1{0,1,..., n}.

For the remainder of this subsection we assume that the assumptions of the linear model
of Mack are fulfilled. Define

o
&
Be=|
Ca
and, forall 7,k e€{0,1,..., n},
a,=0 .. 0 m 0 ... 0

where T; occurs in position 1+ £. This shows that the linear model of Mack satisfies indeed

the assumptions of the linear model. For the Gauss-Markov estimator of B we obtain

Z:‘:o Zj 0
20T
~GM Zj':o Zj )
= S
Zon
Ty

Since cov[Z;4,Z;,]=0 holds for all {,;,k/€{0,1,...,7} such that i+k>7+1 and
J+I<mn, it follows that the Gauss-Markov predictor of the non-observable inctemental

loss Z;; satisfies
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and hence

and linearity of Gauss-Markov prediction yields

SGM GAD
Si,lc = Si,lc -

This shows that the additive method is justfied by Gauss-Markov prediction in the linear
model of Mack.

5.3 Conditional Gauss-Markov Prediction

In the present subsection we consider a sequential model for the chain-ladder method.
This model is a sequential model since it involves successive conditioning with respect to the
o -algebras Go, Gi; ..., G»-1 Where, foreach k€ {l,..., n}, the o -algebra

G-t

represents the information provided by the cumulative losses §,; of accident years
j€{0,1,...,n—k+1} and development years / € {0, 1, ..., £ —1}, which is at the same time
the information provided by the incremental losses Z;; of accident years
je{0,1,...,n—k+1} and development years [ € {0,1,..., k-1}.

Sequential Chain-Ladder Model: For each k € {1,..., n}, there exists a random variable ¢y
and a strictly positive random variable Gy such that

ESH (Si k) = Sik1 @&
and

Sip10x Hfi=]

Gi-1(S. .S )=
oV (S xSk {0 e

holds forall i, j €10,1,...,n—k+1}.

In the case where the random variables @i,...,¢, are all constant, integraton yields

E[S;4)= @4 E[S; 4-1] such that the parameters ¢;,...,9, form a development pattern for
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factors. In the general case, the random parameters ¢,...,9, may be interpreted as a

random development pattern for falctors.

The sequential chain-ladder model may be considered as a sequence of # conditional
linear models corresponding to the development years ke€{l,...,n}. Each of these

conditional linear models consists of an observable part

E (So ) So.k-1
ES#= (Sue) - St p-1

ES1(S,))  \Sn-kt
and a non-observable part
E9 (Spbe1 ) = Spkir 1 P

Then G- -conditional Gauss-Markov estimator (kaM of the random parameter @, satisfies

-k
AGM _ ZZ’:OS/J'
XS a

and hence coincides with the chain-ladder factor ¢§-.

Furthermore, for every accident year / 2 n—k+1, the Gj-,-conditonal Gauss-Markov

predictor f,cf" of the non-observable cumulative loss §;; satisfies
S = S oM
= 95 k-1 (PEL
The previous formula, however, is only useful when S, 4 is observable, which is the case if

andonlyif f+k—1<» and hence i=n—k+1.

Turning the point of view from development years to accident years, we see that the
Gin-i) -conditional Gauss-Markov predictors of the first non-observable cumulative losses

Sin-is1 satisfy
SGM 5CL
Sig=itt = Sini Pu=in
and hence coincide with the chain-ladder predictors.

In the case i1+%=n+1, the chain-ladder predictors are thus justified by conditional
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Gauss-Markov estimation, but another justificaton is needed in the case i + k2> n+ 2. This

can be achieved by minimizing the G;_; -conditional expected prediction error
ES+ ((gi,k - 5;,1:)2)
over the collection of all predictors 3},;, of S; 4 satisfying

N ACL
Si.k = Si,lc—l(Pk

for some G;_; -conditionally unbiased linear estimator ¢y of @ and it turns out that the
minimum over this restricted class of predictors is attained for the chain-ladder predictor
.SA',C;' . The sequental optimality criterion adopted here reflects very well the sequential
character of the chain-ladder method and of the chain-ladder model. The criterion is also
reasonable since prediction for the first non-observable calendar year is much more
important than prediction for subsequent calendar years: Predictors for the first non-
observable calendar year cannot be corrected later whereas predictors for subsequent
calendar years will be corrected anyway since already one year later additional loss experience

and hence a new run-off triangle will be available.

The sequential chain-ladder model is due to Schnaus and was proposed by Schmidt and
Schnaus [1996] where it is studied in detail; see also Schmidt [1997, 1999b, 2006]. The
sequential chain-ladder model is a slight but convenient extension of the chain-ladder model
of Mack [1993]. A systematic comparison of several models for the chain-ladder method is
given in Hess and Schmidt [2002].

5.4 Remarks

Although least-squares prediction is a central topic in econometrics, it appears that this
method has been ignored in loss reserving until recently. It is the merit of Halliwell [1996]
that least-squares prediction is by now considered as a most useful tool in loss reserving; see
also Schmidt [1999a), Hamer [1999], Halliwell [1999], Radtke and Schmidt [2004], and
Schmidt [2006).

6. MAXIMUM-LIKELIHOOD ESTIMATION

Another general principle of statistical inference is maximum-likelihood estimation. The

maximum-likelihood principle is applicable only if the joint distribution of all observable
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random variables is known with the exception of certain parameters.

The models considered here are models for claim counts. The basic model is the Poisson

model which is a special case of the general multinomial model.

6.1 Poisson Model

The Poisson model is a model for claim counts and consists of the following
assumptions:

Poisson model:
() The family {Z; 4}i kelon,..n) of all incremental losses is independent.

(i) There exists parameters 0o, Oy, ..., O, € (0,00) and 89, 8y,..., 9, €(0,1) with X7 19, =1
such that for all i,k€{0,1,...,n} the incremental loss Z;; bhas the Poisson distribution with
expectation o;Sy.

We assume in this subsection that the assumptions of the Poisson model are fulfilled.

Because of (ii) we have
E[Zi4]= 0;9.
Summation yields
E[Sin]=0,
and hence
E[Z;4] = B4E[S;.]
such that the parameters 8¢, 8, ..., 8, form a development pattern for incremental quotas.

In the Poisson model the joint distribution of all incremental losses is known except for

the parameters. In fact, we have

p[ ANz = z,»,k}J HH( T &S—‘)r—}

i=0 k=0 =0 =0 Zig -

To estimate the parameters we can thus use the maximum-likelihood method. The
maximum-likelihood method is based in the joint distribution of a// observable incremental losses

which is given by
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=0 k=0 i=0 k=0 Zik-

n n—i n nei A -
P[n n {Zi,k = Zi,k}:l = Hn(e‘aisk (alsk)‘ )
It follows fl"xat the likelihood function L is given by

n =i Q. \Zik
Lo, @1rvos s 90, 91, 9, 12) nn( w_)

#=0 k=0 Ziy!

A
where Z:={Z;;}ix &l0,1,...1), i+ksn- Interpreting the maximum-likelihood principle in a wide

sense (which ignores the second order conditions for a maximum), observable random

variables
G, G, 6
and
Sy, gy, o
are said 10 be maxi; likelihood estimators if they annihilate all first order partial derivatives of

the likelihood function (or, equivalendy, of the log-likelihood function) and sausfy the

constraint

Straightforward computation shows that the maximum-likelihood estimators satisfy the

marginal sum equations

noi o n—i
a191 = z Zl !
=0 1=
with 7 € {0,1,..., 7} and
n—k . A n—k
;9 =2 Ziy
1=0 1=0

1=0

Therefore, the maximum-likelihood estimators coincide with the masginal sum estimators. It
now follows from the properties of the marginal sum estimators that in the Poisson model

the maximum-likelihood estimators of the expected ultimate cumulative losses are identical

42 Casualty Actuarial Society Forum, Season Year
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with the chain-ladder predictors of the ultimate cumulative losses. This was first observed by
Hachemeister and Stanard [1975].

However, if, in addition to the assumptions of the Poisson model, it is assumed that the

expected ultimate cumulative losses are all identical such that
o; =a

holds for all i €{0,1,..., #}, then maximum-likelihood estimation is still possible but the
maximum-likelihood estimators turn out to satisfy

” n—k
én I+1 ] Z
and
ﬂ—kz
A n-— k+l 2_:0 sk
Sk n n—k

ZZJI

,-071 l+1

In particular, the maximum-likelihood estimators of the expected ultimate cumulative losses
are not identical with the chain-ladder estimators of the ultimate cumulative losses; see
Schmidt and Zocher [2005].

6.2 Multinomial Model
The multinomial model is a model for claim counts and consists of the following
assumptions:
Multinomial model:
() The accident years are independent.
() There exist parameters 89, 8, ..., 8, € (0,1) with Y7 (O =1 such that, for every accident year
1€{0,1,..., n}, the conditional joint distribution of the family {Z; }re(0y,..n) with respect to the

ultimate  cumulative Jloss S, is the ltinomial distribution  with parameters S, and

SO’ 91;“-) Sn-

We assume in this subsection that the assumptions of the multinomial model are fulfilled.

Because of (i) we have

E[Z; 4 1S 0]= 84Sin
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and hence
e E[Z; 4] = 4E[S; 0]
such that tHe parameters 8¢, 9, ..., 9, form a development pattern for incremental quotas.

The mulﬁqonﬁal model is appealing since it suggests that every claim of any accident year
is reported‘;iv)rﬂsettled with probability 8, in development year k. It thus reminds of the urn
model in which S;, balls are drawn with replacement from an urn consisting of balls with

1
1+ # different colours corresponding to the development years.

Fie

Letting
o, =E [Si,n]

it is easy to see that the multinomial model contains the Poisson model as the special case in
which every. ultimate cumulative loss §;, has the Poisson distribution with expectation ;.
Moreover, under the assumptons of the muldnomial model, it can be shown that the
incremental losses of any accident year are independent if and only if the family of all
incremental losses is independent and every incremental loss has the Poisson distribution
with expectation @;3;. Therefore, the main advantage of the multinomial model over the
Poisson model is the fact that it allows for dependence between the incremental losses of a

given accident year.

If, in addition to the assumptions of the multinomial model, the distributions of the
ultimate cumulative losses are assumed to belong to a parametric family of distributions,
then the joint distribution of all incremental losses is known except for the parameters and
maximum-likelihood estimation can be used to estimate the expected ultimate cumulative

losses.

In the case where each of the ultimate cumulative losses has a Poisson distribution, we
are back to the Poisson model and the maximum-likelihood estimators of the expected
ultimate cumulative losses are identical with the chain-ladder predictors of the ultimate

cumulative losses.

The same result obtains in the case where each of the ultimate cumulative losses has a
negativebinomial distribution; see Schmidt and Wiinsche [1998]. Negativebinomial
distributions are of interest since they are mixed Poisson distributions (with respect to a
mixing gamma distribution), and mixed Poisson distributions in turn are of interest since

their variances exceed their expectations, which is the case for most empirical claim count
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distributions.

In fact, a much more general result is true: If, in addidon to the assumptions of the
multinomial model, each of the ultimate cumulative losses has a Hofmann distribution, then
the maximum-likelihood estimators of the expected ultimate cumulative losses are identical
with the chain-ladder predictors of the ultimate cumulative losses; see Schmidt and Zocher
[2005]. The definition and the discussion of Hofmann distributions are beyond the scope of
this paper, but we remark that Hofmann distributions were introduced by Hofmann [1955]
and that every Hofmann distribution is at the same time a mixed Poisson distribution and a
compound Poisson distribution and can be computed by recursion; see e. g. Hess, Liewald
and Schmidt [2002].

Since the class of all Hofmann distributions is a wide class of mixed Poisson
distributions, the multinomial model with ultimate cumulative loss numbers having a
Hofmann distribution is a very general model for claim counts in which the maximum-
likelihood estimators of the expected ultimate cumulative losses are identical with the chain-

ladder predictors of the ultimate cumulative losses.

6.3 Remarks

Alternatively, the Poisson model can be extended to a general stochastic model in which
the family {Z;}i4ef04,..) is independent and the distribution of every incremental loss
belongs to an exponential family. In such models, the theory of generalized linear models
can be applied.

7. CONCLUSIONS

The notion of a development pattern, which can be expressed in three different but
equivalent ways, provides a powetful tool for the comparison of different methods and of

different model of loss reserving,
The general Bornhuetter-Ferguson method provides a general framework into which
several methods of loss reserving can be embedded via

~ a particular choice of the prior estimators of the development pattern for cumulative
quotas and/or

- a particular choice of the prior estimators of the expected ultimate cumulative losses.
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Moreover, there are many stochastic models in which

W

- the credibility predictors or
— the Gauss Markov predictors or
- the maximum-likelihood estimators of the expected ultimate cumulative losses

can be interpréted as Borhuetter-Ferguson predictors.

‘The chéice of 2 stochastic model or of 2 method of prediction is a choice which has to
be made by ‘the actuary and which may have a considerable impact on the result. In the
Poisson model, e. g., credibility prediction and maximum-likelihood estimation are possible
but lead to different results; here the choice of the statistical method could be based on the
judgement that either external information or internal information is more reliable. Stll in
the Poisson model, the form of the maximum-likelihood estimators of the expected ultimate
cumulative losses depends on the assumption that the expected ultimate cumulative losses

may be different or are identical.

We also remark that the chain-ladder method and the additve method can be extended
to the multivariate case which corresponds to a portfolio consisting of several subportfolios
representing dependent lines of business. Moreover, the multivatiate chain-ladder method
and the multivariate additdve method can be justified by multivariate models extending the
univariate models considered in the present paper. A detailed discussion of these

multivariate methods and models may be found in Schmidt [2006).
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