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1. E X E C U T I V E  SUMMARY 

As a result of  the recent accounting scandals and the stock market boom/bust ,  there has 

been an increased desire by shareholders, regulators and rating agencies for transparency in 

financial statements. Within the non-life / property and casualty insurance sector, the largest 

liability on an insurer's balance sheet is the loss reserve. There is an increased desire to 

better understand the uncertainty associated with estimates of unpaid claims underlying the 

loss reserve. _A single point estimate gives no sense of the degree of certainty (or 

uncertainty) as to the likelihood that actual claim liabilities will ultimately be close to the 

estimate. Therefore actuaries are increasingly asked to supply a range of reasonably possible 

outcomes. In the U.S., Appointed Actuaries are required to identify significant risks and 

uncertainties that could result in material adverse deviation in the loss reserve, and to specify 

the materiality standard for the specific company. There is little guidance on how to 

estimate the range of reasonable estimates, or on what this materiality standard should be. 

This paper seeks to explore ways to measure reserve volatility and to assist the actuary in 

these areas. In the context of the paper we develop a framework that is designed to answer 

two distinct questions: 

• By what amount must two estimates of unpaid claim liabilities differ to be considered materially different 

from each other? 

• What is the magnitude of the reasonab~probable total deflation in actual claim h'abilitiesfrom the 

estimate of expected claim liabiaties? 

Both of these questions are related to the volatility of the claim generation process 

characterizing non-life / property and casualty exposures, but they focus on different issues 

that arise from the uncertainty the volatility creates. Note that materiality in the context of 

actuarial opinions has a different meaning. For actuarial opinions, materiality is related to an 

adverse claim liability deviation that would significantly affect the viability of a company. 

Our use of the term materiality is explained in our Conceptual Framework in Section 2.3. 

The first question gives rise to a Range of Reasonable Estimates, ideally reflecting 

uncertainties as to the parameters and model selected to produce estimates of the expected 
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claim liabilities. The second question gives rise to a Range of Reasonably Probable Outcomes, 
incorporaung process as well as parameter and model risk. Both ranges depend on 

standards that must give due consideration to statistical, financial, and solvency perspectives. 

In addition to providing a framework for analyzing the two questions posed above, the 

paper reports on our empirical research, in which we explored several alternative methods 

for measuring process, parameter, and model risk, and for translating the amount of  

measured risk into benchmark ranges. The empirical test results raise many practical 

measurement issues that will .require further research to resolve. While the paper presents 

empirical results for illustration and comparison, the ranges derived are subject to 

substantive limitations and should therefore not be considered a recommendation. 

1.1 Research Approach 

We designed our study using the framework of  statistical hypothesis testing. We used 

data from the 2003 Annual Statement of  a sample of  U.S. insurers for the personal auto 

liability, homeowners, workers compensation and other liability lines of  business. To 

measure uncertainty in the unpaid claims we used two stochastic methods on individual lines 

of  business: the Bootstrapping methodology of  England and Verrall, and the Mack 

stochastic methodology 1. The coefficients of  variation resulting from our analysis provide a 

measure o f  the reserve volatility. As explained in more detail in subsequent sections of  this 

paper, we endeavored to bifurcate total volatility into process and parameter risk. Next, we 

used two approaches to estimate materiality standards. The two approaches are a 

percentile/threshold approach and a tail value at risk (TVar) approach. Finally, these 

monoline results were combined to recognize the risk diversification benefits of  multi-line 

writers. We used a Copula 2 type approach to aggregate the claim liability distributions. We 

note specifically that we have not used statistical hypothesis testing as our approach. Instead, 

we use the terminology or the framework associated with hypothesis testing to explain the 

results of  our study for the reader's benefit. 

1.2 Results 

We derived indicated reserve ranges on two bases: the "range of  estimation" basis, which 

is used to estimate the range of  reasonable estimates, and the "range of  outcomes" basis, 

The Bootstrapping and Mack methods are described in subsequent sections of the text as well as in 
Appendix A. 
2 Copula theory is described in subsequent sections of the text as well as in Appendix C. 
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which is used to estimate the range of  reasonably probable outcomes. As shown in the table 

below, the outcome standards are higher than the estimation standards by an average of  

75%. 

Standards o f  Materiality - Mack  

Range of Estimation Range of Outcome 

Lower Upper Lower Upper 
Line of Business Tail Test ~ ~ Taft Test 

Personal Auto Liability -5.8% 6.7% -10.2% 12.2% 

Homeowners -9.7% 11.4% - 17.5% 21.5% 

Workers Compensation - 13.6% 16.4% -20.8% 26.2% 

Other Liability -16.4% 20.2% -28.0% 37.7% 

One reason for the difference between the two types of  ranges is that outcome standards 

include process and parameter risk whereas estimation standards only include parameter risk. 

Finally, we created a fictitious company that writes all four lines of  business to see the 

benefit o f  risk diversification. 

Standards o f  Matetial ity - M a c k  

Type Lower Tail Upper Tail 

Range of E stima don - 12.4% 15.4% 

Range of Outcomes -14.4% 18.1% 

1.3 Conclusions and Implications 

The major conclusions of our studies were as follows: 

• Materiality can have different implications when viewed from a statistical, financial or 

solvency perspective. 

• Materiality standards should clearly be different in a Range of Estimation context than in 

a Range of Outcomes context. 
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• Standards of materiality should vary by line of business. Lines of business that 

historically exhibit higher volatility should have higher standards of materiafity (i.e., wider 

ranges). 

• Materiality standards can be arrived at using a framework of statistical hypothesis testing 

and applying techniques such as percentile/threshold and or TVar. 

• Any approach to stud)ring or deriving standards of matefiality requires the measure of an 

appetite for adverse outcomes such as benchmark percentile/threshold of adverse 

dexfiation or benchmark exceedence ratio. In terms of the hypothesis testing framework, 

this relates to one's tolerance level for making a "Type I" or a "Type II" error. 

SpecificaUy, all else being equal, a wide materiality standard range allows a higher 

probability of accepting the hypothesis that two reserve estimates are not materially 

different when in fact they are (i.e., it involves a higher probability of a Type II error). 

Conversely, a lower materiality standard increases the risk of a Type I error (i.e., 

concluding that two estimates are statistically different when in fact they are not). 

• It is our recommendation that these benchmarks be derived based on combined industry 

data. Then materiality standards can be derived for individual companies using these 

benchmarks and their own implied volatility. 

• The percentile/threshold and the TVar approaches used in this study yield different 

standards of materiality appfied on the same data as they essentially measure volatility 

differently. The latter is a more conservative approach. 

• Diversification for multi-line writers reduces overall volatility of liabilities compared to 

mono-line writers, requiring lower levels of surplus, and thus multi-line writers should 

have lowers standards of statistical and financial materiality compared to mono-lme 

writers. 

• The results of  our analysis showed that financially impaired companies in general should 

have narrower standards of materiality compared to financially healthy companies. 

• Some of the other conclusions that we reached as a by-product of our extensive use of 

standard stochastic methodologies are as follows: 

• Standard volatility-measuring techniques overstate the volatility of the underlying loss 

exposure (loss generating .process) when used on data without any adjustment for 

exogenous and endogenous factors impacting the company. For example, these methods 
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are influenced by trends, changes in case reserving levels, changes in claim settlement 

rates, and other factors. Adjustments should be carried out to scrub the mangles of 

these factors before these methodologies can be applied. 

• The standard Mack and Bootstrapping stochastic methods usually give different 

measures (answers) for volatility of the underlying loss data. Our research on industry 

data showed that the Bootstrapping method has a tendency to overreact to sudden 

changes in data. 

• Both the Mack and Bootstrapping stochastic methodologies give different results for 

volatility when applied to paid and incurred loss data of the same underlying loss 

exposure. Both methods apply with more confidence to paid loss development data. 

The results of these stochastic methods when applied to incurred loss development data, 

where negative development is prevalent, are not very credible 

• The standard stochastic methodologies such as Mack and Bootstrapping do not perform 

well in differentiating between process and parameter risk. Loss data should be adjusted 

to a stationary basis in order to achieve a credible differentiation between process and 

parameter risk. 
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2. I N T R O D U C T I O N  

2.1 Background' 
Actuaries today are being asked by the investment  and regulatory communities no t  only 

to specify their best estimate of  a property and casuahy insurer's claim liabilities 3, but  also to 

specify a range of  reasonably possible outcomes around their best estimate. These requests 

in part are being driven by a spate of  reserve increases taken by major insurers (particularly 

those writing U.S. business) in the last few years, which has heightened the issue of  "reserve 

risk." In general there is a movement  towards understanding the uncertainty or variability 

associated with estimates of  claim liabiliues, as the range around the estimate provides 

insight as to the solidity of  the reserves recorded on the bahnce  sheet (i.e., what  percentile 

within the.  range of  estimates does the carried reserve represent4?). Understanding the 

variability is important  t o  the external stakeholders beating the risk (shareholders and 

policyholders), and to the directors of  the company who are responsible for managing its 

risk and capital. A single point  esumate gives no  sense of  the degree of  certainty (or lack of  

certainty) as to the likelihood that the actual claim liabilities will ultimately be dose  to the 

estimate. 

Additionally, an issue that actuaries and dixectors of  insurance companies often face is 

how to reconcile differences between alternative estimates of  claim liabilities: management 's  

estimate, internal actuarial estimates, and external actuarial estimates. In such instances, 

directors are faced with the difficult task of  choosing a reserve to record based on one of  the 

alternative estimates. How should they make this decision? Are these estimates different 

enough that one can assume that they are truly differences in opinion, or do they merely 

reflect differences in methods and assumptions that  are within a range of  reasonableness? 

3 Throughout this paper we refer generically to claim liabilities as being the uncertain amount that will 
ultimately be paid by the insurer to settle claims arising from insurance coverage that it has provided. The 
term is meant to be inclusive of defense, adjustment, and other settlement costs in addition to direct 
payments to the claimant. 
4 In this paper we do not address the issue of how an estimate of liabilities is translated into a reserve on the 
balance sheet. Generally the literature is vague on this subject, specifying for example that the company 
should record its "best estimate". While some may interpret this as implying that the reserve should be set 
equal to the mean estimate, others might interpret it as requiring that the reserve be set at the median, or 
some other percentile that includes a margin. For purposes of exposition we have therefore assumed that 
there is a pre-ordained mapping from the selected distribution of claim liability outcomes to an appropriate 
reserve;'the focus of our inquiry is on the selection of the distribution itself. 
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Given two estimates that are different, are the differences between the two estimates 

material, and will the booking of reser~-es based on either of the estimates cause the users of 

the financial statement to draw different conclusions? 

These issues have gained importance lately with changes to the year-end 2005 U.S. 

opinion process for non-fife companies. The Model Law developed by the National 

Association of  Insurance Commissioners, which has been adopted by a few states at this 

juncture but is expected to be adopted by most states, specifies that opinions should include 

an Actuarial Opinion Summary that details the opining actuary's own point estimate and 

range, if one was generated. 

2.2 P u r p o s e / O b j e c t i v e  o f  t he  P a p e r  

This paper is intended to address the following two questions, both of which arise as 

practical issues in actuarial practice today: 

1. By what amount must two estimates of claim liabilities differ to be considered materially different 

from each other? This question often arises in the context of reserve opinions, for 

example when a re~-iewing actuary is companng his or her estimate to management's 

estimate underlying the held reserve. For sufficiently small differences the 

conclusion should be that the two.estimates are not significantly different. However, 

at some point the difference between the two estimates becomes sufficiently large 

that it is significant. 

2. What is the magnitude of the reasonably probable total deviation (adverse or favorable) in actual 

claim liabilities from the current estimate of e:~pected claim h'abilities? This question arises in 

the context of solvency, for example when one is stress-testing the balance sheet 

against the possibifity of adverse dexfiation from the expected level of claim Liabilities 

that would have a significant impact on the company. 

Both of these questions are related to the volatility embedded in the claim generation 

process characterizing non-fife / property and casualty exposures, but they focus on 

different issues that arise from the uncertainty that the volatility creates. In responding to 
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either question, actuaries need benchmark standards for matetiality,, typically expressed as a 

percentage of  the claim liabilities s, to guide their responses. 

This paper reports on our research into the issues associated with establishing standards 

for matefiality associated with claim liability estimates. In our research we explored several 

alternative methods for developing benchmarks for materialit3,. Rather than restrict 

ourselves to theoretical considerations, we tested the various methods empirically using 

public data for individual companies and various lines of  business. The empirical test results 

raise many practical issues that must be considered in such an exercise. 

This paper is meant to promote discussion on this topic and related issues. Our approach 

is not meant to be definitive, and our empirical results are subject to substantive limitations. 

The latter are provided for illustration and comparison, and should not be taken as a 

recommendation. We expect that our approach will continue to evolve with further 

exploration on the topic. 

2.3 Conceptual Framework 

The kistotical loss development data the actuary can use to estimate claim Labilities are a 

relatively small sample of  realizations of  the claim generation process. The actual claims 

generated in each accident or underwriting year are the result of  (a) randomness, and Co) 

differences in environmental influences. These influences are both exogenous (the socio- 

economic conditions at the time) and endogenous (underwriting and claim handling 

procedures in place at the time). From the available data, the actuary is asked to discern the 

expected value of  the claim liabilities, and the distribution of  possible outcomes around that 

expectation. With imperfect knowledge, the actuary can only provide an estimate of the 

expected value and the underlying distribution, creating a second level of  uncertainty above 

that inherent in the claim generation process itself. 

Within a rese~,ing context, actuaries attempt to esdmate the true, but unknown, expected 

claim liabilities by appl#ng an actuarial model to the available historical data. It helps to 

think about the uncertainty involved in estimating claim liabilities in terms of  the following 

continuum: 

s In certain contexts, materiality standards might also be expressed as a percentage of net income or 
capital. 
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Actual Claim H True Expected ~ Model Estimate of Expected ] 
Liabilities Claim Liabilities Claim Liabilities 

The true expected claim liabilities could be considered as the indication from the 

"perfect" actuarial model where: 

- -  there is no uncertainty associated with the models inputs; and 

- -  all the assumptions employed by the actuarial model are correct. 

The potential differences between the actual claim liabilities and the true expected claim 

liabilities are due to process risk while the potential differences between the true expected 

claim liabilities and the actuary's model estimate are due to parameter risk and model risk. A 

detailed description of all the risks associated with the measurement ot: claim liabilities 

follows. 

• Process risk represents the fundamental uncertainty due to the presence of randomness 

when losses are generated. Even when an actuary can achieve a "perfect" model, the 

random nature within which losses are generated would prohibit that actuary from 

calculating the actual claim liability amount. 

• Parameter risk is the uncertainty associated with the unknown parameters of statistical 

models, even if the selection of the model is correct (i.e., we might know with certainty 

that the link ratios at a certain maturity follow a log-normal distribution, but we are not 

sure about the correct parameters associated with that distribution); and 

• Model risk is the risk associated with the uncertainty that the loss generating process is 

not represented correctly by the particular model selected. 

Some actuarial literature separates that risk between model risk and specification risk; the 

former relates to the question if the selected model is correct while the latter relates to the 

question if the distributions employed by the model are correct). Model risk is the most 

difficult type of risk to measure since every stochastic model is based on the premise that its 

fundamental assumptions are correct. Traditional stochastic reserving models, including 

Mack and Bootstrapping, ignore model risk. One way of approximating model risk is 

hindcast testing. With hindcast testing a model employs a subset of the historical data to 
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project losses for the remainder of  the historical period and compare the actual and 

projected results. The resulting residuals provide a proxy for model risk. 

In the context of  uncertain claim liabilities, materiality must be examined from several 

different perspectives. 

• The statistical perspective on materiality reflects the fact that one is estimating the shape 

and parameters of  an unknown claim liability distribution. 

• The financial perspective on matefiality relates to the question: Would users of  the 

financial statements draw different conclusions if the figures presented were different? 

This perspective draws on the other elements of  the balance sheet, and the income 

statement. 

• The solvency perspective on materiality links the uncertainties associated with the claim 

Labilities to the capital and claims-paying capacity of  the enterprise. 

Materiality questions arise most commonly in the context of  alternative actuarial 

estimates, relating to the first question posed at the outset of  our pape*f: Given the 

uncertainty in the estimation process, is the difference between one actuarial estimate of  the 

claim liabilities and another acmatial estimate significant? In the context o f  this question we 

are concerned with the uncertainty of  the expected liabilities (and not random variations 

between actual and expected, i.e., process risk); only parameter and model risk are relevant. 

In other words, the relevant distribution is the distribution of  the estimated mean. 

The Range of Reasonable Estimates is the range within which alternative estimates of  the 

expected claim liabilities would be deemed to be immaterial, in the sense that (a) the 

difference between the estimates is not statistically significant, and (b) the difference 

in the resulting reserves is not financially material. Within this range one could not 

say that one estimate was acmariaUy "better" than the other. An actuary reviewing 

the reserves of  a company would accept the reserves if  his or her own estimate were 

within this range. 

Materiality can also arise in the context of  solvency and risk management, in which one 

should consider the total risk embedded in the claim liability estimation process, including 

parameter, modal and process risks. In this case we are interested in the actual liability 

outcomes, so we need to measure all types of  risk that could have an adverse effect on a 

company's surplus. 
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The Range of Reasonably Probable Outcomes is the range within which the alternative 

actual claim outcomes are expected to fall with reasonable confidence, in the sense 

that (a) the outcomes outside of the range which, while possible, have low statistical 

probability, and (b) for a reasonably well capitalized company, outcomes within the 

range would not threaten the solvency of the company. 

In this paper we focus on materiality standards for the range of reasonable estimates and 

the range of reasonably probable outcomes. In the first context we refer to the relevant 

materiality as estimation matoiality, which ideally will reflect only model and parameter risk. In 

developing estimation materiality standards we considered only the statistical perspective. 

We did not consider the financial or solvency perspective; however, as a refinement it might 

be appropriate to consider the financial perspective. 

The htter range relates principally to the financial and capital management (or solvency) 

perspective on materiality and links the uncertainty associated with the actual claim liability 

distribution to the finances of the company. All types of risk (model, parameter, process) 

that could have an adverse effect on the income and capital needs of the company should be 

measured here. In this context we refer to the relevant matefiality standard as outcome 

matetiality. When measuring outcome materiality we considered the statistical and solvency 

perspective, but not the financial perspective. 

We note that there is not a clear distinction between the concepts of Range of Reasonable 

Estimates and Range of Reasonably Probable Outcomes. The underl)4ng precept of our 

analysis is reserve volatility, which is captured in the definition of Range of Reasonable 

Estimates. The Range of Reasonably Probable Outcomes is a slightly broader concept in 

that it tries to incorporate reserve volatility in conjunction with management input and the 

financial condition of the company (i.e. surplus). 

Additionally, in setting materiality standards we did not consider other sources of risk, 

such as market, credit, operational or insurance underwriting risk. 

In summary, for a given set of claim liabilities, the objective is to develop: 

a) an appropriate standard for a range of reasonable estimates, reflecting appropriate 

criteria for estimation matoiali~ and 
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b) an appropriate standard for a range of reasonably probable outcomes, reflecting 

appropriate criteria for outcome matetiality. 

To develop these ranges, it is necessary to estimate the claim liability distribution and to 

separate process from parameter and model risk. As we discuss later in the Methodology 

section, the claim liability distributions in this paper are estimated with stochastic reserving 

methods, which provide distributions for both the actual claim liabilities and the estimate of 

the expected claim liabilities. 

Once appropriate claim liability distributions have been produced, the two ranges 

embodying our matefiality standards can be obtained from them. In the case of each 

distribution, this requires the selection or derivation of a threshold [5]. The threshold can be 

based either on a specified percentile of the distribution (generally, a VaR approach), or on a 

specified expected exceedence value (generally, a TVaR approach) 

The percentile threshold approach is a point measure in the sense that it measures the 

probability of an outcome being worse than a given monetary threshold (e.g., probability of 

ruin). While the percentile threshold approach measures the probability that a particular 

value will be exceeded say once every 100 years, the expected "exceedence" threshold 

approach measures the expected value of the exceeded amount (every 100 years) when the 

threshold is exceeded. The expected exceedence threshold approach provides values higher 

than the percentile threshold approach, as it is influenced by the outcomes of remote loss 

outcomes. In the chart shown below the percentile threshold approach focuses on finding 

the shaded region, whereas the expected exceedence threshold approach focuses on 

estimating the expected value of losses exceeding the threshold, as a percentage of expected 

liabilities. Essentially, these two paradigms measure "tail" risk differently. 

We formulate the problem of analyzing estimation materiality in the framework of 

statistical hypothesis testing. Although we do not actually perform hypothesis testing, this 

framework has the advantage of helping to explain the variables required to calculate 

materiality and analyze the results obtained from our analysis. The only divergence between a 

true statistical hypothesis testing and the methodology employed in this paper is that, while 

statistical hypothesis testing compares the distributions of two estimates of the mean, in this 

paper we compare the distribution of expected claim liabilities to an alternative point 

estimate of the mean that is considered to be certain. In that respect our employed 

approach resembles the meas~arement of a statistical confidence level. 
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Consider a distribution of  expected claim liabilities where: 

Ca = the mean of  the distribution 

m I = the upper bound of  the range of  reasonable estimates 

m 2 = the lower bound of  the range of  reasonable estimates 

We can set up the problem in this framework as follows: 

H.  (Null Hypothesis): The two estimates of  the expected claim liabilities are the same 

• H, (Alternate Hypothesis): The two estimates are not the same 

A formulation of  the problem pictorially is as follows: 

Cot 

Reserves in the range Ca-  m.~ to Ca+ ml are not considered significantly different 

The Type I error in statistical hypothesis testing measures the probability of  rejecting the 

null hypothesis when the null hypothesis is true. Typically, m l  and m2, defining the range of  

reasonable estimates, are determined by selecting a significance level, reflecting an acceptably 

low probability of  a Type I error. The significance level is measured by "r" (in our paper), 
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shown by the shaded region in the chart above. Note that as the stringency of the 

significance level is tightened, the range of reasonable estimates expands. 

If  the alternative estimate of the expected claim liabilities falls outside of the range of 

reasonable estimates (in other words if the alternative estimate amount falls in the shaded 

region in the chart above) then we can reject the null hypothesis that the original estimate 

underl)fing the reserve and the alternative estimate are essentially the same. 

The formulation for analyzing outcome materiality follows a more traditional confidence 

level construct. However, the picture is essentially the same as that shown above. We seek 

to define a range of reasonably probable outcomes, such that the likelihood of actual claim 

liabilities being outside of that range is reasonably small. However, rather than defining the 

range purely from a statistical perspective, we define it with reference to a solvency 

perspective as well. The benchmark level of outcome materiality is based on an empirical 

analysis of the t3qoical relationship of reserves to risk-based capital, and the level of adverse 

deviation that would cause the insurer to "rum" by failing the risk-based capital adequacy 

t e s t .  

In the context of outcome materiality, a higher probability of rum corresponds to a 

smaller range of reasonably probable outcomes. 

For both types of ranges, we develop empirical measures of m 1 and m 2 ha this paper. 

They may be interpreted as an explicit function of three primary variables amongst others: 

m = f (~, r, ~) where: 

is the implied volatility of the claim liabilities for line of business under 

consideration, or the uncertainty of the estimated mean; 

r is the selected threshold. The corresponding factor in statistical hypothesis 

testing is the probability of Type I error; and 

is the implied percentile of the carried reserves in relationship to the 

expected claim liabilities. 

m (defining the upper or lower bound of the range) is directly proportional to ~. A more 

volatile book of business will require a larger allocation of surplus and thus will have a higher 

m. In other words, the more volatile a book  of business, the greater the uncertainty 

associated with the claim liability estimates. As a result, the corresponding m should be 
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greater for this line to consider the greater uncertainty of  the loss process. In Step 1 of  the 

Methodology section we outline how we calculated the implied volatility of  each line o f  

business. 

~, the implied percentile of  the carried reserves, is another important factor. If  the carried 

reserves are booked at a higher percentile of  the claim liability distribution then a lower 

standard of  outcome materiality is acceptable. 

As r increases m should decrease, a higher r (i.e., a larger shaded area) reflects a higher 

level of  conservatism. A higher r also implies a higher probability of  ruin (i.e., it is easier for 

actual claim liabilities to fall in the shaded region). A higher r also implies that it is easier to 

conclude that the alternative estimate of  claim Liabilities is different from the original 

estimate underlying the reserve. 

Other factors that should be considered in selecting the thresholds that define the 

materiality standards may be the following: 

• tTpe of  exposures involved 

• prirnat 3, / reinsurance limits 

• size of  reserves / expected loss / no. of  exposures or claims 

• average age of  reserves 

• expectation o f  parameter risk associated with the particular LOB 

• probable maximum loss 

• asset variability 

• net income variability 

In our study, we have not specifically analyzed the impact of  these issues in the 

calculation of  the standards of  materiality. GeneraUy, the impact of  the above factors on the 

standards will depend on whether they add to or decrease the volatility of  the claim liabilities, 

or increase or decrease the uncertainty associated with the financial and solvency status of  

the company. 
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Both of the stochastic reserving models employed in our analysis measure process and 

parameter risk but neither of them measures explicitly model risk. Further research is 

needed in the area of the measurement of model risk. 
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3. M E T H O D O L O G Y  

3.1 Overview 

The overall approach is as follows: 

Step 1 - Obtain sample balance sheet and historical claim development data for selected 

companies and lines of business. 

Step 2 - Apply stochastic methods to the historical claim development data to measure 

the distribution of the actual claim liabilities, and the distribution of the 

estimated expected claim liabilities for each company and each line of business. 

Step 3 - Select estimation and outcome thresholds. For outcome materiality thresholds, 

base selections on typical balance sheet solvency impacts for selected 

companies. 

Step 4 - Develop ranges embod)dng the materiality standards, based on both percentile 

thresholds and expected exceedence ratio thresholds. 

Step 5 - Recognize risk diversification benefits among multiple lines by incorporating 

correlation andaggregaimg the individual line of business distributions to build 

an aggregate distribution to arrive at ranges embod)4ng the overall materiality 

standards at a legal entity level. 

The following sections will elaborate on each step. 

3.2 Step 1 - D a t a  and D a t a  L imi ta t ions  

U.S. insurers are required to file Annual Statements with state regulatory authorities. The 

required format includes income statements, balance sheets, cash flows and schedules 

focusing on aspects such as historical claim development (Schedule P), reinsurance 

recoverables (Schedule F) and investment (Schedule D). As noted prexdously, a Statement of 

Actuarial Opinion must accompany each Annual Statement. Annum Statements and 

Statements of Actuarial Opinion are in the public domain and can be viewed at each state's 
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Department of Insurance. We used an internal Annual Statement database, based on data 

obtained annually from A.M. Best. 

We used data from various sections of the Annual Statement. The claim liability 

development triangles and premiums were obtained from the Schedule P for each company. 

Measurement of capital came from the "Five-Year Historical Data" exhibit. 

We analyzed four lines of  business: Personal Auto Liability, Homeowners, Workers 

Compensation and Other Liability-Occurrence policy forms. These lines were selected to 

reflect the spectrum from short-tail to long-tail, and the spread in volatility. 

Within the U.S. non-life insurance sector, it is common for an insurer to operate through 

multiple legal entities under common management, often referred to as a group. Multiple 

entities within a group offer flexibility in terms of capitalization, pricing and regulatory 

domain. An insurer must file an Annual Statement and a Statement of Actuarial Opinion for 

each legal entity. Therefore our analysis is done at the legal entity, not group level. 

There are often inter-company pooling arrangements whereby an insurer allocates results 

to entities which may or may not have written the business. The pooling percentages may 

vary by line and year. The pooling applies to each aspect of the Annual Statement, including 

the Schedule P data triangles we use, that is, the analyzed triangles may represent a 

percentage of a larger mangle. Therefore, when we consider the relative size of the sample 

entities, we need to adjust for pooling. All figures presented are adjusted to reflect the effect 

of  pooling. 

We included insurers that cover the spectrum from small single-state or regional to Large 

national companies. For our purposes, we define size in relation to the premium earned 

from 1994-2003 for each line. Companies with premium below $3 billion are considered 

small for that line, companies above $10 billion are defined as big, and the rest are medium. 

For example, a large national writer such as Hartford Financial includes a legal enfit% 

Harford Fire Insurance Company, which we consider small, medium and large depending on 

the line of business under consideration. (See the table below; figures in $000's) 
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Line of Business Net  Earned Premium for Line Size Categorization for Line 

Workers Compensation $11,818,872 Big 

Personal Auto Liability $10,463,646 Big 

Homeowners $ 4,913,186 Medium 

Other Liabili~- $ 2,914,352 Small 

The segmentation by size is intended to group companies with expected similar reserve 

volatility. All things being equal, we expect claim liabilities on larger volumes of business to 

be less volatile than smaller books of business. 

We took the data "as is," meaning that extensive cleansing of the data was not 

undertaken. In several instances we adjusted anomalous data, with care not to sanitize the 

data. Even with these adjustments, some of the data appears to be implausible; companies 

with implausible data were excluded from our analysis. 

While we restricted our analysis to publicly available Annual Statement data, it should be 

noted that insurers have additional information available intemally. Companies often 

segment their business into more homogenous groups than Annual Statement ]me of 

business, The concepts applied here on a line of business basis are illustrative and can also 

be utilized for different segmentation. 

3 .3  S t e p  2 - U s e  s t o c h a s t i c  m e t h o d s  t o  m e a s u r e  v o l a t i l i t y  o f  u n p a i d  c l a i m  

liabilities 

We used the Bootstrapping methodology as described by England and Verall [6] and the 

Mack Stochastic methodology [12] to estimate the volatility of claim Liabilities. For a brief 

description of these methods please refer to Appendix A. The CV (Coefficient of Variation) 

is our chosen measure of  volatility. The Mack method generates the first two moments of 

the claim liability distribution, the mean and the standard dex~iation, while the Bootstrapping 

method produces an empirical distribution of claim liabilities, so CVs are easily calculated in 

both cases. The input historical claim development tmngles used for both methods are paid 

loss development triangles (including only allocated loss adjustment expense). In addition, 

we augmented the Bootstrapping method described in the paper to recognize development 

beyond the maturity of the tmngle (i.e., in the tail). We have assumed a tail that extends to 
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10-12 years for Homeowners and Personal Auto Liability, 15-20 years for Occurrence 

Liability and 40-50 years for Workers Compensation. The tail was estimated by fitting an 

inverse power curve to the development factors for ages of 48 months and beyond, based 

on Richard E. Sherman's [14] approach as outlined in "Extrapolating, Smoothing, and 

Interpolating Development Factors." A uniform tail was selected to apply to all accident 

years within a company. Additionally, for the Mack method we selected standard errors 

associated with the tail volatility. The selection was essentially based on the empirical results 

of  the Bootstrapping method. We compared the CVs produced by the Bootstrapping 

method for each line of business in our sample database with the inclusion of a tail factor 

and exclusion of the tail factor. The difference in the CVs including and excluding the tail 

factor was then selected as a measure of the standard error associated with the tail factor. 

As stated above, the Bootstrapping method provides more t han  just the mean and 

variance of the claim liability distribution; it generates the entire distribution. In almost all 

cases the mean of the distribution generated from the Mack and Bootstrapping methods was 

different from the carried reserve amount, therefore we performed a linear transformation to 

force the mean of the distribution to be equal to the carried reserves, while preserving the 

CV of the distribution. When we describe the "percentile/carried reserve," we are assuming 

the carried reserve is the best estimate. This is an assumption, not an assertion. Readers are 

directed to "Management's Best Estimates of Loss Reserves" [10] by Rodney Kreps that 

notes the mean of the distribution is "probably not a good estimate, as it is almost surely 

l o w .  '~ 

We note that the use of paid claim development data in our analysis is essentially dictated 

by the inherent limitation of the Bootstrapping and Mack stochastic reserving methodologies 

used in our analysis. These methodologies do not respond well to reported loss (case 

reserves + paid losses) data. Indeed both methods produce unreasonable results when used 

on reported loss triangles which occasionally have age-to-age loss development factors 

below 1.0 followed by positive development (age-to-age development factors above 1.0). 

Both of these methods require a somewhat smooth progression of age-to-age loss 

development factors from immature to mature valuations, declining from high loss 

development factors for immature data to low development factors for mature data. 

Another limitation is that both methodologies assume an essentially stationary process, 

i.e., that there are no endogenous and exogenous influences on the loss generating process 

such as company-specific changes in operations, claim settlement rates, premium/exposure 
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growth or changes, large settlements, evol~q.ng interpretations of liabilities in the court 

system, hurricanes, and so forth. Realistically, the toss development data reflected in the 

triangles of a company are hardly ever stationary, as they include both exogenous and 

endogenous influences, which cause additional volatility in the loss development triangle. As 

a result, stochastic reser~fng methodologies that rely on the volatility inherent in the loss 

triangle almost always overstate the volatility of the underlying loss generating process. In 

order to adjust for this distortion, we adjusted the volatility estimates arrived from the use of 

these stochastic reserving methodologies downward. The adjustment factors were calculated 

using industry-wide paid loss triangles from A.M. Best (27 to 30 company composite, 

depending on the line of business), adjusting the triangles for industry exposure changes and 

frequency trend and other exogenous influences. The frequency trend is applied to adjust 

for observed declines in claim frequency due to safer workplaces, safer cars, and so forth 

over the years. We then postulate that this process should create stationary triangles, absent 

of any exogenous and endogenous factors described above. Thus the volatility present in 

these stationary triangles will be the true volatility produced by the loss generating process. 

We measured this volatility in the industry-wide triangles, by line of business, and used it to 

adjust downwards our overall volatility results produced by the stochastic methods employed 

in this paper. While we believe these adjustments are reasonable, refinements in the 

techniques used to better achieve the desired stationarity can certainly improve upon them. 

We also independently tested the assumption that the process risk implied by the 

stochastic methods employed in our analysis is overstated, by comparing the claim volatility 

calculated by the stochastic methods to the claim volatility obtained via hindcast testing. We 

employed an independent historical data set for 20 companies and measured the 

performance of deterministic reserving techniques as they tried to estimate the claim 

liabilities for these companies. We first estimated the claim liabilities using information that 

was available at a given point in time and then looked at the available run-off information to 

see what the actual claim liabilities amounts were with hindsight. The observed estimation 

error over time and across all companies provides a proxy for the total risk associated with 

the evaluation of claim liabilities. For the workers compensation line, the hindcast tests 

results indicate a CV of total risk equal to 8.1%. By comparison, we obtained a parameter- 

only risk CV of 11.0% from the Mack method. Most of the companies in the hind-cast 

testing were rather large, with reserves in excess of $100 million, so the associated process 
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risk for these companies should be quite low. The fact that the total risk CV from the hind- 

cast testing is lower when compared to the parameter risk CV from the Mack method 

suggests that the process risk and parameter risk implied by our stochastic methods could be 

overstated. The inability of traditional stochastic reserving methods to separate the 

variabilitydue to changes in endogenous and exogenous influences, from the true claim 

volatility due to the claim generating process, is the main reason for this presumed 

overstatement of process and parameter risk. 

3.4 Step 3 - Select Significance Threshold Levels 
For outcome materiahty, we calculated threshold significance levels for both financially 

healthy companies and financially impaired ones. Financially impaired companies should get 

an earlier warning flag when something is wrong with their reserves compared to financially 

healthy companies, since the underlying assumption is that an adverse claim liability 

deviation &uses a greater financial "hurt" to financially impaired companies. 

We employed the "bright line test," which we understand is utilized by the NAIC, in the 

measurement of outcome benchmark significance levels. The bright line test measures the 

difference between the surplus as regards to the policyholders and the RBC (Risk Based 

Capital) capital amount, proposed by the NAIC, that would downgrade the company to the 

next lower RBC level. If the claim Labilities of a company sustain an adverse deviation 

greater or equal to the capital level difference mentioned above, that company would be 

downgraded to the next lower RBC level. That capital level difference to the next lower RBC 

level, given a distribution around carried reserves, provides a maximum standard of 

materiahty for the company (i.e., the officers of that company would, at least, want to know 

under what adverse claim Lability deviation the company would be downgraded to the next 

lower RBC level). They might want though to set up an earher warning flag, based on their 

experience with the company's financial results, so the adverse deviation from the bright line 

test can serve, at least, as a maximum standard of matefiality. 

An assumption in the above analysis is that these companies did not experience 

significant changes in their distribution of exposures, by line, during the historical period of 

the analysis. The implied volatility from the claim liabilities for each company was calculated 

on an all lines combined basis considering both process and parameter risk. An outcome 

materiahty significance level threshold was calculated for an upper tail test within the 

percentile threshold context and an exceedence ratio threshold was calculated within the 
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TVar context, given a level of volatility associated with the carried reserve. The outcome 

materiality significance level threshold for a lower tail test for the percentile threshold 

approach was calculated judgmentaUy based on the assumption that the magnitude of the 

standards of materiality should be higher for an upper tail test when compared to a lower taft 

test. 

For the corresponding estimation materiality significance level threshold we employed a 

7.5% rule of thumb benchmark for the upper tail test. That 7.5% represents the average of 

the 5% to 10% significance levels usually employed in statistical h)q~othesis testing. 

Interestingly, we tested the validity of this assumption (7.5%) by estimating the benchmark 

significance level threshold using parameter risk only from the outputs of the Mack method 

and found that the resulting estimation materiality benchmark significance level threshold 

was, on average, similar to the 7.5% that we assumed. 

The resulting thresholds for financially healthy companies were as follows: 

Percenti le Threshold 

Benchmark Significance Levels 

JdWet_T~ 

Estimation materiality 10.0% 7.5% 

Outcome mareriality 8.0% 6.0% 

Tail  Value at R i sk  

Benchmark Exceedence Ratio 

Excess Excess 

n/a 2.0% 

n/a 1.5% 

All other things being equal, the resulting outcome materiality standards are higher from 

the corresponding estimation materiality standards, a logical relationship when considering 

the higher amount of risk associated with outcome materiality standards. For the majority of 

the healthy companies the resulting outcome materiality benchmark significance level, for 

the upper tail test, was 0.0%. This result highlights the fact that most of the healthy 

companies are so well capitalized that they need to suffer an adverse claim liability deviation 

in excess of the 99.9% percentile of their claim liability distribution in order to get 

downgraded into the next lower RBC level. 

We also performed the above analysis on a group of 16 companies that were financially 

impaired. These companies were either in rehabilitation or liquidation. For arriving at the 

outcome materiality benchmark significance levels for the financially impaired companies we 
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used the bright line test as well as one year adverse development from Schedule P data. As 

expected, we estimated much higher benchmark significance levels and benchmark 

exceedence ratios compared to the healthy company figures mentioned above. The outcome 

materiality benchmark significance levels for adverse deviation for the financially impaired. 

companies were 18% compared to 6% for financially healthy companies. 

Specifically, we performed the following steps to conae up with the outcome materiality 

benchmark significance levels and benchmark exceedence ratios. 

We employed 39 financially healthy companies from our A.M. Best data base. The 

calculation of an upper tail test outcome materiality benchmark significance level threshold, 

for the Percentile Threshold approach, followed the steps outlined below: 

1) For each of these companies we measured the total risk, for all lines combined, 

associated with their claim liability distribution. That claim liability distribution was 

calculated from loss and ALAE Schedule P Part 3 triangle data using the Mack stochastic 

reserving method. We further assumed that the mean Ca of the stochastic distributions 

is equal to the carried reserves for the companies. 

2) From the Bright Line Test we calculated the adverse claim liability deviation that 

would downgrade each company into the next lower RBC level. That adverse claim 

liability deviation m represents a maximum standard of materiality. 

3) We then added the mean of the distribution to the adverse claim liability dexfiation. 

The area under the claim liability distribution in excess of Ca + m represents the upper 

tail outcome materiality benchmark significance level. It measures the probability of 

extreme claim liability outcomes that a company must experience before it gets 

downgraded into the next lower RBC level. 

For the calculation of an outcome materiality exceedence ratio for the TVar approach the 

first two steps outlined above were identically repeated. As a last step we measured the 

average of claim liability outcomes that exceed the carried reserves by the standard of 

materiality. These excess losses were calculated as a ratio to the expected claim liabilities, 

producing the exceedence ratio threshold. 
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3.5 Step  4 - E s t i m a t e  Ma te r i a l i t y  S t a n d a r d s  for e a c h  I n d i v i d u a l  L i n e  

Based on the selected outcome materiahty benchmark significance levels and exceedence 

ratios we then catcuhted the outcome materiality standards for each company in our sample 

database. The calculation proceeds as follows: 

1) For each company triangle we generate a claim liability distribution using both the 

Bootstrapping and the Mack method. 

2) We normalize each loss reserve distribution so that the mean of the distribution is 

equal to the carried reserve of the company. 

3) The outcome materiality standard is equal to the difference between the percentile 

implied by the outcome materiality benchmark significance level, as described above, 

and the percentile implied by the carried reserve. 

4) The outcome materiality standard implied by the TVar approach is calculated as the 

difference between the percentile implied by the benchmark exceedence ratio and 

the percentile implied by the carried reserve. 

5) The estimation materiality standards are calculated in a similar fashion using the 

estimation materiality benchmark significance levels and exceedence ratios. 

3.6 Step 5 - R e c o g n i z e  R i s k  D i v e r s i f i c a t i o n  Benef i t s  A m o n g  M u l t i p l e  

L i n e s  

Few companies are monoline writers. For multi-line writers, the standards of materiality 

should incorporate the risk diversification associated with underwriting more than one lines 

of business. Aggregate claim liability distributions can be calculated from the individual line 

distributions. In our analysis we incorporate a Copula type of approach that performs the 

aggregation procedure. More information regarding the Copula approach is included in 

Appendix C. 

The Mack and Bootstrapping stochastic reserving methods mentioned above measure the 

claim volatility for an individual line of business. In case where more than one lines of 

business are considered we need a model that aggregates the individual lines distributions. 

The mean of the aggregate distribution is the sum of the indixddual lines means. However 

we cannot arrive at the percentiles of the aggregate distribution by simply adding the 

Casua l ty  A c t u a r i a l  Soc ie ty  Forum, Fal l  2006  27 



Consideralions Regarding Standards of Materiali(y 

individual lines percentiles. Straight summation makes sense only in the case of 100% 

correlation across all lines, a highly unlikely situation. The volatility of the aggregate 

distribution is influenced by two factors: 

• The claim volatility for each individual line of business: The larger the claim volatility for 

each individual line, the larger the volatility of the aggregate distribution, all other things 

being equal; and 

• The correlations across lines: The larger the correlation among individual lines, the 

larger the volatility of the aggregate distribution, all other things been equal. 

Statisticians have shown that the aggregate distribution of any combination of n random 

variables can be written as a function of the n indixfidual variables distributions (Sklar theorem 

1996). This function is called Copula. We are employing one Copula model in our analysis 

that provides a convenient way of calculating the aggregate distribution of several lines of 

business. Two components are needed for the Copula model: 

• The distributions of the individual lines of business; and 

• The correlation coefficients among these lines. 

The Copula model employed in our analysis is the Normal Copula. For the Normal 

Copula a correlation matrix based on the assumed correlations among the various lines must 

be selected. The correlation matrix for the Normal Copula should be positive-defirfite (i.e., 

invertible) for the Copula to work. 

The selected correlation among the various lines is based on modeling of economic variables 

such as general/price inflation, wage inflation, auto inflation, and medical inflation. This is 

done by first building forecasting models for auto inflation and medical inflation as a 

function of general/price inflation. The models have an autoregressive component in that 

the inflationary component being modeled reverts back to it long term mean. Next we 

modeled the impact of each of these inflationary components on each line of business. The 

model used was a geometric model employed by Robert P. Butsic [3] to model the impact of 

different inflationary components on losses of different lines of business including social 

inflation. Once the impact of these inflationary components on each line of business is 

ascertained then we can construct a distribution of losses for each line of business by 

forecasting these economic variables. The correlation matrix is then estimated by empirically 

measuring the correlation between the simulated losses for each line of business. Our 
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assumed correlation matrix is included in Appendix C. The advantage of such models is that 

correlation between the claims experience is an emergent property. 
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4. RESULTS and CONCLUSIONS 

4.1 Reserve Volatility 

As can be seen in Exhibit 4.1.1, the vohfility is relatively small for Personal Auto Liability 

(PAL), somewhat larger for Homeowners (HO), larger still for Workers Compensation 

(WC), and even larger for Other Liability Occurrence (OLO.) The rehtive magnitude is as 

expected. The H O  line is impacted by catastrophes and the H O  claim liabilities are more 

volatile when compared to the OLO liabilities. OLO is impacted by some high severity 

claims so intuitively is more volatile. WC also has high severity c hires but there is enough 

frequency/consistency that overall it is less volatile than OLO. 

Exhibit 4.1.1 

Comparison of Parameter Risk CVs from Mack and Bootstrapping Methods 
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The Bootstrapping method is more sensitive to outlier development factors and so it 

generates significandy larger CVs for some companies, as displayed in Exhibit 4.1.2. 

Exhibit 4.1.2 
Compar ison of  Parameter Risk CVe f rom Mack and Bootstrapping Methods 
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Individual Companies Iorted by premium 

As discussed in Section 3.3, the Mack method is dependent on the assumed volatility in 

the tail. We tested our tail volatility assumption to determine how sensitive the analysis is to 

our supposition. We increased the volatility in the tail by 50% and 100%. For Workers 

Compensation and Other Lability Occurrence, the increased tail volatility drove the Mack 

CVs closer to the Bootstrapping CVs. On the other hand, the adjustment created a 

difference for Personal Auto and Homeowners, whereas the CVs were quite similar before 

increasing the tail volatility. These results are displayed in Exhibit 4.1.3 (see next page) 
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As shown in the Exhibit 4.1.4, total, parameter and process risk all generally follow the same 

Comparison of Total, Process and Parameter Risk CVa under Mack Method 
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relationship: process is usually larger than parameter risk, and naturaUy, total risk is the 

largest. 

We expected that parameter risk is invariant of size, while process risk should decrease by 

the size of the company. Our analysis calculates process risk that is independent of size. 

That result suggests that the stochastic methods employed in our analysis could possibly 

overstate process risk. 

We summarize the results by size, expecting larger books of business to be less volatile, 

however this was not the case. For Personal Auto Liability, the most volatile companies 

were generally the larger ones. There was not much variation in the size of selected Workers 

Compensation companies with two-thirds of them categorized as small. The results were 

mixed with high CVs coming from both small and large companies. Each bar in Exhibit 

4.1.5 represents a company and is sorted from by premium volume, with smaller companies 

on the left. 

Exhibit 4.1.5 Parameter Variability - Mack M e t h o d  
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An analysis by size of company that employs a larger sample of companies is 

probably needed to draw more credible conclusions in the comparison of claim volatility by 

size of company. 

4.2 Materiality Standards 

The following graphic summarizes the estimation materiality standards, based on the 

Mack method, for the four lines of business under consideration. All the standards shown in 

the remainder of the paper were calculated, unless otherwise noted, as a percentage of 

carried reserves and using the Percentile Threshold approach. 

The resulting estimation materiality standards are higher than what actuaries are 

accustomed to, partly because these techniques overstate volatility unless adjustments are 

made for exogenous and endogenous factors. 

Estimation MatarialRy Standards based on the Mack Method Exhibit 4.2.1 
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.l 

la 
| 

I 

.| 
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For Personal Auto the standards are close to the +/-5% range of expected that is often 

emplo~zed, as a rule of thumb. For the remainder of the lines the resulting standards are 

much higher. The calculated standards of materiality could be overstated due to the 

suspected overstatement of "the process and parameter risk produced by the Mack method. 

Exhibit 4.2.1 (see previous page) graphs the upper and lower tail estimation materiality 
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standards by company and by line. For the more volatile lines the wider range of  the 

materiality standards is evident. 

The following table compares the estimation matefiality standards produced by the Mack 

and Bootstrapping models. The actual upper and lower tail estimation materialit 3, standards 

are calculated as follows: 

Estimation Standards of Materiafity- Bootstrapping vs. Mack 

Mack Bootstrapping 

Lower Upper Lower Upper 
Line of Business ~ ~ ~ Tail Te_~t 

Personal Auto Liability -5.8% 6.7% -5.4% 6.3% 

Homeowners -9.7% 11.4% -8.8% 10.5% 

Workers Compensation -13.6% 16.4% -19.0% 25.3% 

Other Liabilit 3, -16.4% 20.2% -25.7% 32.7% 

The resulting estimation matefiality standards between the two methods are relatively 

close for the Personal Auto and Homeowners lines of  business. For the two long-tail lines, 

workers compensation and other liability, the Bootstrapping statistical standards are 40% to 

60% higher when compared to the Mack standards. 
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The additional tail volatility implied by the Bootstrapping method produces the higher 

estimation materiality standards. Exhibit 4.2.2 compares the estimation materiality standards 

for the two stochastic methods employed in the analysis. 
Exhibit 4.2.2 

C o m p a r i s o n  o f  E s t i m a t i o n  M a t e r i a l i t y  S t a n d a r d  - M a c k  vs .  B o o t s t r a p p i n g  
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Upper tail Mack 
Lower tail Mack 

~ U p p e r  tail Bootstrapping 
o ,  Lower tail Bootstrapping 

Line 

The comparison of  estimation and outcome standards of  materiality is summarized in the 

following table, for the Mack method, for both lower and upper tail tests: 

Estimation vs. Outcome Materiality Standards- Mack 

E s t i m a t i o n  s t a n d a r d s  O u t c o m e  s t a n d a r d s  

Lower Upper Lower Upper 
Line Of Business ~ TaRTest ~ Ta~ Test 

Personal Auto Liability -5.8% 6.7% -10.2% 12.2% 

Homeowners -9.7% 11.4% -17.5% 21.5% 

Workers Compensation - 13.6% 16.4% -20.8% 26.2% 

Other Lability -16.4% 20.2% -28.0% 37.7% 

The outcome materiality standards are, on average, 75% higher when compared to the 

estimation materiality standards. There are two reasons that explain this relationship: (1) 
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outcome materiality standards employ the calculation of both process and parameter risk 

while estimation materiality standards employ parameter risk only. The inclusion of process 

risk increases the outcome materiality standards; and (2) the benchmark significance level is 

higher for the estimation materiality standards when compared to the benchmark 

significance level for the outcome materiality standards. All other things been equal, the 

resulting outcome materiality standards should be higher since the corresponding probability 

of Type I error is lower. Exhibit 4.2.3 provides a comparison of the outcome and estimation 

materiality standards. 

Exhib i t  4.2.3 

Estimation vs. Outcome Materiality Standards - Mack 
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The following table compares the upper tail outcome matefiality standards for financially 

healthy and financially impaired companies. 

Outcome Materiality Standards- Upper Tail 
Healthy vs. Liquidated Companies - Mack 

Line of Business Financially Healthy Financially Impaired 

Personal Auto Liabili~ 12.2% 6.8% 

Homeowners 21.5% 11.7% 

Workers Compensation 26.2% - 14.0% 

Other Liability 37.7% 19.2% 

The outcome materiahty standards are much higher for the financially healthy companies 

when compared to the corresponding standards for the financially impaired companies. For 

a financially impaired company, a lower outcome materiality standard is reasonable since it 

provides an earlier wanting flag if an adverse claim liability deviation is experienced by that 

company. The lower standards compensate for the greater reserve uncertainty associated 

with the reserves of  a financially impaired company coupled by lower reserve to surplus 

Outcome Materislity Standards - Healthy vs. Impaired companies - Mack Exhibit 4.2.4 
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ratios. Moreover, our selected significance level benchmarks of  18% for financially impaired 

companies vs. 6% for financially healthy ones, allows for a greater probability of Type I error 
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for the financially impaired companies, decreasing in effect their respective outcome 

materiality standards. Exhibit 4.2.4 (see previous page) compares the upper tail outcome 

materiality standards for financially healthy and financially impaired companies. 

The following table compares the upper tail estimation materiality standards for the two risk 

measures employed in our analysis, the Percentile Threshold approach and the TVar 

approach. 

E s t i m a t i o n  Mater ia l i ty  S tandards  - M a c k  

Line of  Business  Percentile Threshold Tail  Value at Risk 

Personal Auto Liability 6.7% 0.0% 

Homeowners 11.4% 2.6% 

Workers Compensation 16.4% 6.6% 

Other Liability 20.2% 10.3% 

The standards implied by the TVar approach are considerably lower when compared to the 

standards produced by the Percentile Threshold approach. The reason of that observed 

difference lies on the varying fundamental assumptions of the two risk measures. The 

Percentile Threshold approach measures the probabilit 3, that the actual claim liability amount 

would exceed a selected dollar threshold. It does not consider the magnitude of the resulting 

deficiency..A $1 reserve deficiency gets the same weight as a $1 million reserve deficiency 

under the Percentile Threshold approach. On the other hand, the TVar approach measures 

the expected risk of material adverse deviation. The higher the risk of material adverse 

deviation, the higher measure of risk is calculated by the TVar approach. In other words, 

the TVar approach penalizes a company for the probability of extreme claim liability 

outcomes. Since for most of the property and casualty (general non-life) insurance 

companies there is a small chance of very large dairn liability outcomes, the TVar approach, 

on average, assigns more reserve risk to the companies when compared to the Percentile 

Threshold approach. The higher risk associated with the TVar approach results in lower 

standards of materiality since an earlier warning flag is more appropriate in the presence of 
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more reserving risk. Exhibit 4.2.5 compares the upper tail estimation materiality standards 

for the two measures of risk employed in our analysis. 

25% 

Upper Estimation Materiality Standards Exhibit 4.2.5 

i 15% 

~ 10% 

PAL HO WC 

• Upper tail Tail Value st Risk r-I Upper tail Percentile Threshold 

OLO 

We also created a fictitious company that writes the four lines of business under 

consideration with a reserve distribution approximating the distribution of the whole 

industry. Employing a Normal Copula approach we calculated the CVs of the claim 

liabilities for the company. The resulting total risk CV is 11.0% while the parameter risk CV 

is 10.2%. The risk diversification associated with the underwriting of four, instead of one, 

lines of business results into combined CVs that are lower when compared to the CVs from 

the two long tail lines of business (workers compensation and other liabilit3, ). Exhibit 4.2.6 

(see next page) compares the resulting aggregate CVs from the four monoline writers to the 

CVs of the fictitious multi-line company. 
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C o e f f i c i e n t  o f  V a r i a t i o n  Exhibit 4.2.6 
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Exhibit 4.2.7 compares the estimation standards of materiality of the fictitious four lines 

writer to the four monoline writers. The resulting upper tail statistical standard is 15.4% 

while the lower tail statistical standard is 12.4%. These standards are affected by the higher 

weight given to the long tail lines (30% for Personal Auto Liability, 6% fo/r Homeowners, 

35% for Workers Compensation and 29% for Other Liability Occurrence.) 

Exhibit 4.2.7 
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The following table compares the outcome and estimation materiality standards for a writer 

of  the four lines of  business. 

Standards o f  Materiafity - M a c k  

Type Lower Tail Upper Tail 

Estimation matefiality standards 

Outcome matetiality standards 

-12.4% 15.4% 

-14.4% 18.1% 

The outcome materiality standards are, on average, 15% higher when compared to the 

estimation materiality standards. This relationship is reasonable in light of  process risk 

which is considered in the outcome materialit 3, standards but not in the estimation 

materiality standards. 

The following table summarizes the estimation matetiality standards, for the four lines of  

business under consideration, as a percentage of  individual company surplus. 

Estimation Matetiality Standards - Mack 
(as a % o f  surplus)  

Line of Business Lower Tail Upper Tail 

Personal Auto Lability -7.3% 8.5% 

Homeowners -8.6% 10.1% 

Workers Compensation -18.2% 21.9% 

Other Liability -18.9% 23.4% 

The resulting percentages for the upper tail test are in the area of  10% for short tail lines 

and in the area of  20% for long tail lines. Exhibit 4.2.8 (see next page) compares the 

estimation materiality standards, as a percentage of  both surplus and carried reserves, for 

each line of  business analyzed. 
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The following table compares the implied volatility for each line of  business analyzed, 

measured by the coefficient of  variation, to the resulting estimation materiality standards for 

the upper tail test in the Percentile Threshold approach. 

Comparison of Parameter Risk CVs and Estimation Materiality Standards - Mack 

Line of business CV Upper tail estimation 
materiafitV standards 

Personal Auto Lability 4.6% 6.7% 

Homeowners 7.7% 11.4% 

Workers Compensation 11.0% 16.4% 

Other Liability, 13.4% 20.2% 

The standards of  materiality increase for the more volatile lines. The uncertainty 

associated with the calculation of  the claim liabilities for a volatile line is quite high, and the 

large associated standards of  materiality reflect that uncertainty. All other things being equal, 

two independent actuarial estimates that measure volatile claim liabilities should be given the 
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benefit of  the underlfing uncertainty before considered materially different from one 

another. Another way to intuitively think about this result is that lines of business, or books 

of business, which show a high level of volatility usually have a higher percentage of total 

surplus allocated to them and thus have a higher cushion to absorb adverse deviation. That 

results in a higher standard of materiality as a percentage of reserves. 

As we pointed earlier, the results quoted above might be overstated as the stochastic 

methods employed in this paper presumably overstate process and parameter risk. Thus 

both the CVs and the materiality standards derived above are overstated. We performed the 

adjustments to reduce the overstatement, described earlier in this paper, on three companies 

for three different lines of business to get an approximate impact of the overstatement of 

volatility by the stochastic methods. The impact of the overstatement of the CV was 

calculated by subtracting the CV obtained from the true volatility of the adjusted industry 

ufiangle from the CV of the unadjusted.individual company triangle. Using the benchmark 

significance levels we calculated the adjusted standards of materiality. This procedure was 

performed separately for each line of business. The results are presented in the following 

tables: 

Outcome Materiality Standards- Mack, Upper Tail or Adverse Deviation 

Line of Business Before Adjustment After Adjustment 

Personal Auto Liabilit 3, 12.2% 5.7% 

Workers Compensation 26.2% 18.0% 

Other Liability 37.7% 16.7% 

Estimation Materiality Standards- Mack, Upper Tail or Adverse Deviation 

Line of Business Before Adjustment After Adjustment 

Personal Auto Liability 6.7% 3.6% 

Workers Compensation 16.4% 12.5% 

Other Liability 20.2% 11.5% 

As these tables show, the impact of this overstatement can be significant. To make a 

thorough assessment of the impact of the adjustment is beyond the scope of this paper. 
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APPENDICES 

A. Technical Appendix - Stochastic Methods Employed 

The deterministic methods provide a best estimate of the claim liabilities. In comparison, 

stochastic methods provide a claim liability distribution around the best estimate, in addition 

to the best estimate. We employed two stochastic methods in our analysis. Each of these 

methods represents the two families of stochastic methods described below: 

"Chain  Ladder"  family of methods.  These methods employ cumulative loss and 

expense triangle data and generany are based on the premise that the underlying assumptions 

of the chain ladder method (CLM) are correct. The Thomas Mack method is probably the 

best-known representative of this family. It provides the first two moments of the claim 

liability distribution (i.e., the mean and the variance of the distribution) 

"Simula t ion"  family of methods. These techniques provide an empirical distribution 

of the claim liabilities. Our representative of this family is Bootstrapping, a powerful, yet 

simple, technique that employs simulations and avoids the fitting of complicated analytical 

models. 

A more detailed description of these two methods follows: 

Mack method 

The Mack method [12] specifies the first two moments of the claim liability distribution 

only. It essentially calculates the standard error of the claim liability distribution based on the 

inherent uncertainty of the underlying data. Our research employed the following notation: 

Let C i, denote the cumulative loss payments for accident year i, 1 _< i_< I and development 

year k, 1 _<k~I, where I is the total number of accident years. The values of  Ci, are known 

for i+k ~ I+1. We want to estimate the values of Cik for i+k > 1+1. The value of the 

reserves for accident ),ear i is: 

R i = C i l  -Ci ,  l + l - i ,  (A.1) 

Casualty Actuarial Society Forum, Fall 2006 45 



Considerations Regarding Standards of Matermlity 

where C il represents the true ultimate loss for accident year i. The expected ultimate loss 

amount for accident year i is calculated by the formula: 

Oil =Ci . l+l- i  xf/+l- i  x...xfl_l, (A.2) 

where 2_<isI and f ,  are the observed volume weighted ATA factors from maturity k to k+ l  

for 1 sk~I-1. Notice the bolded figure Cil that represents an estimate of the ultimate loss 

for accident year i employing historical ATA factors f ,  for 1 ~k~I-1. The true value of the 

ultimate loss for accident year I is denoted by Cit and depends on the actual A T A  factors f ,  

whose values are currently unknown. 

There are three major assumptions that form the base of this paper: 

E( ci.**~ / C il ,...,C ik ) = fk for 1 g i s I and 1 ~ k ~ I-1, i.e. the expected value of the loss (1) c,, 

development factor ci.,+l equals ft where f,  is the unknown "true" development ' 

factor which is the same for all accident years. Moreover the loss development factor 

ci.~+j equals fk irrespective of the prior development C a, . . . ,C i~. 
Ci.k 

(2) The variables {Cil,... ,Cil } and { C j l , . . . , C j l } f o r  different accident years i , j are 

independent (i.e. the loss payments in an accident year are independent from the loss 

payments in another accident year). Under this assumption, the ATA estimators f ,  are 

unbiased i.e. E(fk ) = f t .  

(3) The 3 'a major assumption of the paper sadsfies the principle of the theory of point 

estimation that among all the unbiased estimators of  the ATA factors preference should 

be given to the one with the smallest variance. This principle can be restated as: 
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V a r ( C  j. k + 1 / C jl . . . . .  C jk ) = C jk X OL 2 (A.3) 

where 1 ~j ~I, 1 ~k~I-1 with unknown proportionality constants cc~ for 1 _<k_<I-1. 

With the help of  the previous stated assumptions, we calculated the mean squared error 

(rose) of  the ultimate losses for accident year i. This mse of  the ultimate loss is defined as: 

mse(C it ) = E[(C it - C it ) 2 / C ik for i+k_< I+ 1]. (A.4) 

That mean square error is a conditional expectation of  the actual triangle data, since Mack 

measures future claim volatility given a run-off triangle. It can easily be shown that the rose 

of  the ultimate losses and the reserves for a particular accident year i are equal, i.e. mse(CiI ) 

= mse(Ri). The square root of  the mean squared error of  the reserves is called the standard 

error (s.e.) of  the reserves. Based on the previously stated assumptions the standard error of  

the reserves is calculated for every accident year i, s.e.(Ri), and for all accident years 

combined, s.e.(R). The resulting formulas are as foUows: 

I-1 ak 2 1 
~ ( ~  + I-k ) ,and (A.5) (s.e.(Cil)) 2 = C~ k=l+l-i f ;  Ci k Y~ Cjk 

j=l 

I I I - 1  2 a 2 1 f  2 

Z Z Z l-k 
(s'e'(R))2 = i = 2  {(s.e.(R/)) 2 + C i t  ( j = i + l  C j t )  k = l + l - i  Y. Cnk 

n=l 

, ( • . 6 )  

I - k Cj ,k+i  
1 Z 

where:Ot~ - I - k - I  J = l  C sk ( C jk  - f k ) 2 ,  1-<k<I-2. 
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Using the identity that: E(X - c) 2 = Var(X) + [E(X) - c] 2 where c is a constant, we can 

re-write the mean square error as: 

mse(Ri) = Var(Ri I D) + [ E(Ri I D) - R i ]2, (A.7) 

where D is the observed triangle data, (i.e., we can decompose the total claim liabilities 

risk into the sum of pure future random error Var(R i I D) and the dexdation between the 

model estimated claim liabilities and the true Expected Claim liabilities (i.e., the 

parameter risk)). All the components of the mean square error can be calculated based on 

the implicit assumption of the Mack model that the chain ladder estimated link ratios are 

unbiased, minimum variance estimators of the true unknown loss development factors. 

Bootstrapping method 

Bootstrapping [6] is based on theory developed by England and Verrall. In some of 

their earlier ~grk, they proved that the reserve estimates from the CLM are identical to 

reserves produced by an over-dispersed Poisson generalized linear model (GLM). As a 

result, the residuals produced from a chain ladder model fitted to a historical triangle can 

be treated as residuals of a regression model. The residuals of regressions should be 

approximately independent and identically distributed around zero. The Bootstrapping 

technique samples, with replacement, the residuals of the CLM. The resulting simulated 

residuals can be considered as residuals from a triangle that have approximately the same 

statistical characteristics as the triangle that produced the original residuals. Using 

appropriate residuals (the so-called Pearson residuals) we can produce new sets of 

incremental payments and subsequently new reserve indications from each simulation. 

The Bootstrapping algorithm steps are as follows: 

Using all years volume weighted loss development factors (LDFs) from the original 

triangle, a "fitted" triangle is calculated by applying these LDFs to the latest diagonal of 

the original triangle. 

Fitted incremental values are compared to actual incremental values to calculate 

unscaled residuals. The formula for thePearson  residual is = (actual - fitted) / 

sqrt(fitted). 

48  C a s u a l t y  A c t u a r i a l  S o c i e t y  Forum, Fa l l  2006  



Considerations Regarding Standards of Materiali~ 

f S - .  
• . . ~ • 

Residuals are normalized by an appropriate scale factor: , where n Is the number 
Vn-p • . n - p  

of data point in the triangle and p is the number of the parhmeiers in the over-dispersed 

Poisson GLM model• The scaling factor adjusts for the difference in the degrees of 

freedom between the parameter free Bootstrapping model and the over-dispersed Poisson 

GLM model• 

The model re-samples these scaled residuals with replacement. The re-sampling is 

performed once per simulation• Using these re-sampled residuals, an incremental 

"bootstrap" loss triangle is created based on the Pearson residuals formula. These 

incremental losses are converted to cumulative, from which all years volume weighted 

LDFs are calculated. These are then used to "complete the square," by application of the 

LDFs to the latest diagonal• Reserves are then calculated for each simulation, and a 

distribution is assembled using the results of all the simulations. This step captures 

parameter risk only. 

Process risk is introduced by treating each incremental from the bootstrap triangle as 

the mean of a gamma random variable with variance proportional to the mean. The 

subsequent steps are identical to those shown above. 

Tail variability is modeled by using an inverse power curve fit (the so-called Sherman 

inverse power curve). The parameters of a linear regression are fitted to available age to 

age factors (ATA) from all accident years as follows: 

A T A = I  + a x t - h ,  (A.8) 

where a and b are the fitted parameters while t represents the development year. The 

fitting procedure employs the natural logarithms of the ATA factors and the resulting 

formula is: 

ln(ATA-1) = ha(a) - b In(t). (A.9) 

With the use of a linear regression the a and b parameters are Calculated based on a 

least square error approach. The development factors in the tail of the triangle vary at 
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each simulation since the ATA factors from the historical years vary at each simulation 

too.  

Separate  fits are used  for  pa rame te r  and total risk. The  length  o f  the tail is d i f ferent  by  

line, as desc r ibed  in the b o d y  o f  the  paper.  

B .  Technical Appendix - Financially Impaired Companies 

The  following companies  were  analyzed to establish upper  bounds  on  the significance 

level. These  companies  were  impaired in 2002 according to Best 's  Insolvency Study, 

P rope r ty /Casua l ty  U.S. Insurers 1969-2002. 

A.M. Best  # Company  name  as listed in A.M. Best  database  State 

03627 
02681 
03754 
00685 
12181 
02141 
02412 
10561 
02592 
02239 
02812 
11860 
02352 
02348 
00213 
10626 
02880 
02376 
03658 
10420 
00858 
02489 
12110 
00942 
10630 

" " J I :  ' 

Aberdeen Insurance Co TX 
Acceptance Insurance Co NE 
American Growers NE 
American Professionals Insurance Co IN 
Aries Insurance Co, Inc FL 
Casualty Reciprocal Exchange MO 
Equity Mutual Insurance Co MO 
Grange Mutual Insurance OR 
Highlands Casualty Co TX 
Highland Insurance Co TX 
Highlands Lloyds TX 
Legion Indemnity Co IL 
Legion Insurance Co PA 
National Automobile & Casualty Insurance Co CA 
NN Insurance Co WI 
Oak Casualty IL 
Pacific Automobile Insurance Co CA 
Pacific National Insurance Co CA 
PAUL~ Insurance Co CA 
Security Indemnity Insurance Co NJ 
State Capital Insurance Co NC 
Statesman Insurance Co IN 
Vinanova Insurance Co PA 
Wasatch Crest Mutual Insurance Co UT 
Western Specialt), Insurance Co IL 
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C. Technical Appendix - Copula 

Copula theory provides a convenient way to calculate the aggregate distribution of  several 

random variables, given a predetermined correlation matrix among these variables. We 

started with n=4 lines of  business where the mean of  the claim liabilities ~t, (an (nxl)  

vector), and the nxn correlation matrix C of the claim liabilities between lines are already 

given. An assumption that needs to be satisfied is that the correlation matrix C is positive 

definite (an nxn matrix C is positive definite if  it is symmetric and if x '  Cx >0 for every n- 

dimensional column vector x # 0). In the following steps we will describe the normal copula 

methodology. 

1. The chirn liability distribution for each line of  business is calculated based on the 
Mack or Bootstrapping methods. 

2. Employing the so-called Cholesky decomposition method, we can calculate a 
randomly generated n-variate normal vector X with each of  its vectors satisf3,ing 
the predetermined correlation matrix C. The required steps for this Cholesky 
decomposition are as follows: 

1. Since C is a positive definite matrix we can prove, with the help of  
intermediate algebra, that C can be factored as follows: 

C = L x L ' , (where L is a lower triangular matrix from the Cholesky 

decomposition and L ~ is the transpose of  L); 

2. We introduce a linear transformation X, i.e. X = B + L x z , ,  where z is 
an nxl vector from a standard normal distribution, i.e. z ~ N(0,1); 

3. Then: E(X) = la + E(L) x E(z) = ~, since E(z)--O & 

Var(X) = E((X-B)x(X-p.)' ) = E((L x z)x(L x z) '  ) = 
E ( (Lx  (z x z ) ' )  x L ' )  = E ( L x  L ' )  = C; 

since Var(z)= E(z x z ' )  = I (i.e. the identity matrix-) and L x L '  = C; 
and 

o The end result is an n-variate normal vector X, where X ~ 
N(B,C), i.e. the n-variate normal vector X has the required 
mean ~t and the required correlation matrix C. 

Copula theory has been gaining acceptance among actuaries. For example [13], 

"Correlation and Aggregate Loss Distributions With An Emphasis On  the Iman-Conover 

Method", written by Stephen J. Mindenhall and published in the Winter 2006 CAS Forum, 

explains in more detail the multivariate Normal Copula approach described above. 

Casualty Actuarial Society Forum, Fall 2006 J 51 



Considerations Regarding Standards of Materiality 

We assumed the following correlations between lines: 

Personal Auto Workers Other 
Liability Homeowners Compensation Liability 

Personal Auto Liability 1.00 0.40 0.38 0.60 

Homeowners 0.40 1.00 0.40 0.40 

Workers Compensation 0.38 0.40 1.00 0.19 

Other Liabili~ 0.60 0.40 0.19 1.00 

D .  T e c h n i c a l  A p p e n d i x  - D e t a i l e d  C a l c u l a t i o n  o f  M a t e r i a l i t y  S t a n d a r d  

Step 1: Historical paid loss triangle, company A and application of stochastic methods 

We start with a historical paid loss triangle for the legal entit T A. We assume that A is a 

m o n o - l i n e  w~,'ter. We denote the random variable of the unpaid claim liabilities by X. 

Employing the Mack method we can calculate the first two moments of the claim liability 

distribution, i.e. the mean, E(X), and the corresponding coefficient of variation, CV(X). 

Using the Bootstrapping method we calculate an empirical distribution of the chim 

liabilities. As a byproduct of this empirical distribution we can calculate the mean and the 

coefficient of variation of the claim liabilities. 

For the calculation of estimation materiality standards only parameter risk was considered 

while for the calculation of outcome materiality standards two tTpes of risk (i.e., process and 

parameter risk) were considered. 

Step 2: Calculation of benchmark significance levds/exceedence ratios 

In all the steps of our analysis, except the second step, we employ data from individual 

companies in order to calculate standards of matefiality. For the calcuhtion of the 

benchmark significance levels and benchmark exceedence ratios, we employ a subset of the 

industry-wide data, not company specific data. The benchmarks were calcuLated separately 

for a group of 39 financially healthy companies and a group of 16 financially impaired 

companies. These benchmarks were employed in the calculation of outcome matefiality 

standards. 

52  C a s u a l t y  A c t u a r i a l  S o c i e t y  Forum, Fa l l  2 0 0 6  



Considerations Regarding Standards of Materiality 

For each company in our database we employed the Mack method to calculate the mean, 

E(X), and coefficient of variation, CV(X), of their respective total risk claim liability 

distribution. For the calculation of these distributions we employed loss and ALAE triangles 

from Schedule P, Part 3 Summary. For simplicity, we added the losses for all lines of 

business written by a company before calculating its claim liability distribution. We implicitly 

assumed that each company had not experienced any change in its exposures, among their 

various lines of business, over the past 10 years. A more detailed, but also more time- 

consuming approach for each company would be to calculate the claim liability distribution 

for each of their individual lines and then calculate the aggregate distribution based on the 

combination of these individual lines distributions. 

Another underlying assumption is that each company's claim liability distribution has a 

log-normal form. 

We then recorded the risk based capital amount (RBC) for each company, as provided in 

their respective annual statements, on the "Five-Year Historical Data" page. Based on the 

RBC amount we calculated the different NAIC-mandated regulator),, or company action 

levels. So for example if ~ company had an RBC amount of $10,000 then we have the 

following levels: 

RBC Action Levels 

No action required (> 100%) 

"Required Policyholder Surplus" 

$10,000 or more 

Company action required (75%- 100%) $7,500 to $10,000 

Regulatory action required (50%-75%) $5,000 to $7,500 

Regulatory control authorized (35%-50%) $3,500 to $5,000 

Regulatory control mandated (<35%) $3,500 or less 

As a next step, we measured the difference between the surplus as regards to 

policyholders and the RBC capital amount that would downgrade each company to the next 
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lower RBC action level. So for example, if the surplus of the company is $12,500 then the 

calculated difference is $2,500(=12,500-10,000), while if the surplus of the company is 

$6,000 then the calculated difference is $1,000(=6,000-5,000.) If the company sustained an 

adverse claim liability deviation greater or equal to the calculated difference it would be 

downgraded to the next lower RBC level. The difference indicated above can serve as a 

maximum standard of materiality, within the solvency perspective of materiality. 

For each company under consideration we calculated a maximum standard of materiality 

m. We also assumed that the claim liability distribution of each company is log-normal, while 

the mean and variance of these distributions have already been calculated by the Mack 

method. Given the first two moments of a log-normal claim liability distribution we can 

easily calculate percentiles. 

The benchmark significance level is the area in the tail of the company's claim liability 

distribution, in excess of the mean plus the maximum materiality standard (i.e. E(X)+m.) 

This area represents the probability of extreme claim liability outcomes that, if materialize, 

would downgrade the company to the next lower RBC level. 

The bench~nark exceedence ratio is equal to the expected losses in excess of E(X)+m, as a 

ratio to the expected claim liabilities E(X). This ratio represents the expected risk of material 

adverse dex4ation as a percentage of carried reserves that, if materialize, would downgrade 

the company to the next lower RBC level. 

Steps 3a and 3b describe in more detail how to calculate the percentiles and expected 

losses, in excess of a given threshold, for a log-normal distribution. 

Finally, we calculated the weighted average, across all companies, benchmark significance 

levels and benchmark exceedence ratios using the carried reserves of each company as a 

weight. For healthy companies the weighted average benchmark significance level is 6.0% 

while the weighted average benchmark exceedence ratio is 1.5%. These benchmarks were 

employed for the calculation of upper tail test outcome materialit 3, standards. For the lower 

tail test outcome materiality standards we selected judgmentally a benchmark significance 

level equal to 8.0%. The selection of higher benchmark significance level for the lower tail 

test makes sure that the resulting outcome standards of materiality are higher for the upper 

tail test when compared to those of the lower tail test. 

The benchmark significance levels and benchmark exceedence ratio for the estimation 

materiality standards were calculated based on judgment, as explained in the text. 
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Step 3a: Estimation materiality standards, Company A 

Mack - Percentile Threshold approach 

We have already calculated: 

(a) The mean of the claim liability distribution, E(X); 

Co) The coefficient of variation of the claim liability distribution CV(X); and 

(c) The benchmark significance level r for estimation materiality. This is 7.5% for the 

upper tail test and 10.0% for the lower tail test. 

We make the additional assumption that the claim liabilities follow a log-normal 

distribution with parameters 11 and ~, i.e. X ~ LN(I.t,O ). The logarithm of X then is normally 

distributed with parameters ~t and (r, i,e. ln(X) ~ N(~t,~). From introductory statistical 

theory we can calculate }.t and ~ by: 

}.t = h~(g(x)) - -~  ,where O = ln~+cv(x) 2) (I).1) 

The purpose of the percentile threshold approach is to calculate a range of reasonable 

estimates around the carried reserves that is outside the upper and lower tails of  the 

distribution, as defined by the benchmark significance levels. 

For the calculation of the upper tail estimation materiality standard, we subtracted the 

mean reserves from the 92.5th (=1-0.075) percentile implied by the benchmark significance 

level: 

Materiality standard - Upper tail = E(X) exp.(0.925)* or-¢r~2 * - E(X), (D.2) 

where ¢(0.925) represents the 92.5 'h percentile of the standard normal distribution 

function. The first component of the preceding formula represents the 92.5 'h percentile of 

the log-normal distribution X of the claim Labilities. 

For the calculation of the lower tail estimation materiality standard we subtract the 10 'h 

percentile implied by the benchmark significance level from the mean reserves: 

Materiafity s tandard - Lower tail = E(X') - E(X) * exp~°(0"10)*a-a~2 , (D.3) 
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- where ~(0.10) represents the 10.0 th percentile of  the standard normal distribution 

function. The second component of  the preceding formula represents the 10.0 th percentile 

of  the log-normal distribution X of  the claim liabilities. 

For the purpose of  this analysis we employed a mean of  the claim liabilities equal to the 

carried reserve for legal entity A. 

Bootstrapping - Percentile Threshold approach 

The Bootstrapping stochastic method calculates an empirical distribution of  the claim 

liabilities. The Bootstrapping method produces a few thousand random realizations of  the 

empirical claim liabilit T distribution though a simulation approach. The first step is to 

linearly transform the stochastic claim liability distribution to make sure that the mean of  

that distribution is equal to the carried reserves for legal entity A. The transformed 

distribution has the same coefficient of  variation as the original stochastic empirical 

distribution. The percentile function in excel can calculate the various percentiles of  the 

resulting transformed distribution. 
~*J R.) " 

The upper tail estimation materiality standard is calculated as follows: 

Matefiality standard - Upper tail = 

92.5 'h percentile of  simulated claim liability distribution - E(X). 

The lower tail estimation materiality standard is calculated as follows: 
. I t ,  

Materialitj standard - Lower tall = 

E(X) - 10 'h percentile of  simulated claim liability distribution. 

Mack - Expected exceedence/TVar approach 

For the Mack approach we were provided with the mean, E(X), and the coefficient of  

variation, CV(X), of  the claim liability distribution. Again we assume that the claim liabilities 

X follow a lognormal distribution with parameters ~t and (~. The selected benchmark 

exceedence ratio is equal to 2.0%. 

The purpose of  the expected exceedence approach is to calculate a standard of  materiality 

that when added to the carried reserves, the expected losses in excess of  these carried 

reserves plus the materiality standard, is equal to 2.0% of  the carried reserves, (for estimation 

materiality standards.) In other words, if  the company experiences actual losses in excess of  

the expected losses plus the standard of  materiality, then the expected material adverse 
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dexdation is equal to 2.0% of the carried reserves. A risk of material adverse dexdation exists 

when the actual losses exceed expected losses (i.e., E(X~)), by the selected materiality 

standard. By construction the TVar measure of risk focuses only on the upper tail of  the 

distribution. 

Available optimization routines in Excel TM, such as SOLVER, can help us calculate the 

standard of materiality m. When we add this standard of materiality to the carried reserves 

E(X) then the expected losses in excess of E(X)+m are equal to 2% of the carried reserves. 

The formula for the expected losses, in excess of the carried reserves plus the materiality 

standard (i.e. E(X)+m), is as follows: 

{ 1  - E[X;E(X)+m] }x E(X), (3.4) 
E(X) 

where E[X;E(X)+m] represents the expected losses from the claim liability distribution 

limited to E(X)+m (the so called limited expected value function.) 

With an assumption of a log-normal distribution for X - LN([t,(~), we calculated the 

expected losses limited to an upper limit c as follows: 

E[X;c] = exp ~+a~2 x ¢ (  ln(c)-p-a2 ) + c x [1 - ¢(ln(c)-/l )], (D.5) 
o' o "  

where *(x) is the standard normal cumulative distribution function. 

Again, for the purpose of our analysis we employed a mean of the claim liabilities equal to 

the carried reserve for legal entity A. 

Bootstrapping - Expected exceedence/TVar approach 

The empirical distribution produced by the Bootstrapping stochastic reserxdng method is 

linearly transformed, as explained in the "Bootstrapping- Percentile Threshold approach" section. 

With the help of SOLVER, we can calculate a standard of materiality m that when added to 

the mean E(X) of the claim liability distribution, the expected losses in excess of E(X')+m 

are equal to 2.0% of the carried reserves. Again, when a company experiences actual losses 

that exceed expected losses (i.e., E(X)) by the selected materiality standard amount m, then 

the expected risk of material adverse deviation is equal to 2.0% of the carried reserves. 
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The analysis proceeds as follows: We start with a few thousands simulations of  the 

transformed empirical distribution. From each simulated value we subtract the mean of  the 

distribution plus the materiality standard (i.e. E(X)+m.) If  the difference: 

Simulated value - E(X) - m, 

is positive, then the difference represents a material adverse deviation, since the simulated 

losses exceed the expected loss amou m plus the materiality standard amount. If, on the 

other hand, the difference is negative, then we set it equal to zero since we are interested 

only in material adverse deviations. We average the material adverse deviations over all the 

simulated values and we divide this average material adverse deviation by the expected claim 

liability amount. SOLVER ensured that we selected a standard of  materiality m that would 

produce exactly a 2.0% expected risk of  material adverse deviation, as a percentage of  carried 

reserves. 

Step 3b: Outcome materiality standards, Company A 

For the calculation of  the outcome materiality standards, we employ exactly the same 

methodologies described in step 3a for the two stochastic methods, the Mack and 

Bootstrapping, and the two measures of  risk, the percentile threshold approach and the 

expected exceedence/TVar approach. The only difference is in the benchmark sigmficance 

level r for outcome materiality. This is 6.0% for the upper taft test and 8.0% for the lower taft 

test. The outcome benchmark exceedence ratio is 1.5%. 

Step 4: Outcome materiality standards, Company B 

We as sumed  that  company  B was a mult i - l ine writer. The additional analysis, 

compared to the mono-line company A case, relates to the calculation o£ the aggregate claim 

liability distribution from the combination o£ all lines written by company B. 

As a first step, we calculate the claim liability distributions for each o£ the n lines of  

business written by company B. Moreover, we assume an nxn correlation matrix C that 

describes the correlations among these various lines. Based on the Cholesky decomposition 

methodology described in section "Normal Copula theory basics", we can calculate an n-variate 

normal array X that satisfies the correlation matrix C provided. As a last step, we re-sort the 

n lines claim liability distributions produced by the Mack and Bootstrapping methods based 

on the ranking of  the nxl  vectors in X. This way, we can achieve the predetermined 

correlation among the various lines claim liabilit 3, disrributions. We then add all these re- 
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sorted line distributions together to create an aggregate distribution that represents the 

combined all-lines liabilities for company B. 

Hax4ng produced the aggregate distribution for all lines combined we then calculate 

estimation and outcome materiality standards for company B employing the same techniques 

described in steps 3a and 3b. 

The following Exhibits 1 through 5 illustrate the calculation of outcome material@ 

standards for company A for both the Mack and Bootstrapping stochastic methods and both 

the Percentile Threshold and TVar measures of risk approaches. 
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Variance and Covariance Due  to Inflation 

David R. Clark, FCAS 

Abstract 
Motivation. This paper looks at the problem of measuring correlation between reserve segments. The 
research was motivated by the 2005 CAS Working Part), on Reserve Variabilin,. 
Method. Using a random-walk time series model for inflation, we can estimate the variance of a stream 
of inflation-sensitive payments. The same calculations can be performed to estimate the covariance 
between two streams of payments. 
Results. Formulas are presented for estimating and calculating the variance in reseta~es attributable to 
inflation. All of these calculations are performed analytically, without requiting simulation. 
Conclusions. Covariance between reserve segments due to common sensitivity to inflation can be 
easily modeled. This provides acom, enient and intuitive way of calculating dependence between 
reserve segments in order to estimate variance at a company level. 
Availability. Excel spreadsheet examples of the calculations described in this paper are available from 
the author. 

Keywords. Inflation, Reserving, Time-Series, Correlation, Covafiance 

1. I N T R O D U C T I O N  

\x This paper  addresses the quest ion o f  h o w  to estimate the correlation be tween  the future 

payments  in two or  m o r e  different  reserve segments.  

The  mot iva t ion  for this paper  was the Working  Party on  Reserve Variability [6], which  

outl ined the  many current  approaches  for estimating variability for a single reserve segment  

- typically based on  a single deve lopment  mangle.  A n  area o f  research identified by the 

Work ing  Party was the quest ion o f  correlation be tween  two or  m o r e  reserve segments .  

The  approach  that we will follow for evaluating correlation will be  based on  first principles 

about  one  o f  the  underlying causes o f  correlation. That  is, we begin by asking why we think 

that  there  is a correlat ion structure that needs to be considered.  F r o m  first principles, we  

know that  inflation has an impact  on the amoun t  o f  loss dollars to be paid, and that  different  

reserve segments  may be affected by the same inflation index. For  example,  a medical  claim 

for an injured worker  and a bodily injury claim under  Au to  Liability may bo th  be dependen t  

u p o n  a c o m m o n  medical  inflation driver. 
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This basic concept is illustrated in the graph below. The bars represent a forecast of  loss 

payments over a ten year time horizon; the line represents the "expected" inflation index 

built into the forecasted payment stream. If  we know the variability in the inflation index 

(represented by the bell curves), then we can calculate the variance of the future loss 

payments due to inflation 1. 
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As the bell curves around the inflation index illustrate, the variance due to inflation increases 

for longer time horizons. The uncertainty in the estimate of  a loss payment ten years in the 

futm:e is greater than the uncertainty in the estimate of a loss payment one year in the future. 

The extension to correlation then follows. If  we know that two or more reserve segments 

are affected by the same inflation index, then we know that they will be correlated with each 

other. 

J This concept is not new: see the papers by Taylor [5], Hodes et al [4], or Brehm [2] listed in the 
references. 
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The question then turns to the source of  the inflation index used in this variance calculation. 

The inflation index should ideally be extracted from the insurance loss data itself, but in 

practice insurance data is rarely stable enough to provide a reliable estimate. A reasonable 

alternative is to use an external source for the inflation index. 

We will follow the inflation model as outlined in the research work commissioned by the 

Casualty Actuarial Society (see [1]). This research assumes that inflation follows a mean- 

reverring random walk. Briefly, this means that the inflation rate in one year is dependent on 

the inflation rate in the prior year, but that it will eventually "revert" to a long-run average 

inflation rate. More informally, a mean-reverting model allows us to talk about pedods of  

high or low inflation rather than just individual years being higher or lower than average. 

Because we are limiting the discussion to the variance and covariance due to inflation, we are 

able to produce closed-form solutions for all of  the variance and covariance terms. All of  

this can alternatively be incorporated into a larger simulation model if that is preferred. 

After describing the basic model of  inflation variability (section 2). and the formulas for 

variance and covariance of  the reserve segments (section 3), we will look at a method for 

refining the calculation to include different sensitivities to inflation by reserve segment 

(section 4), and then finally hQw to integrate variance due to inflation with variance from 

other sources (section 5). 
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2. BASIC M O D E L  

We assume that loss inflation rates follow a mean-reverting time series model. This is 

described using an autoregressive AR(1) model. 

X ,  = I . t . ( 1 - r ) +  X , _ , . r  +e ,  

X, logar i thmof l+ i ,  (i,= the inflafion rate at tirnet) 

, , / /  logarithm of the l+long-term average inflation rate i 

factor representing the strength of  the reversion 

(or "persistence") 

r = 0 would be a pure "random draw" model 

r = 1 would be a pure "random walk" model 

e, normally distributed error term, with variance 0 .2 

Because the model can be transformed into a linear relationship, the parameters can be 

calculated easily with linear regression. 

If  we select, for example, a component of  the consumer price index (CPI), then the variables 

a r e :  

, (cp,,2q 1 I cp''-~'~ ln~ c~''°-''l Independent Variable (X~_O: .n~c->7~p . n ~ } . . . ,  ~ ,  

Dependent Variable (X3: l lCplts)~. [ c e . 4 ~  • I cp.,,) n ~ ) ;  m~ce--~# ---, m ~ !  
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The slope of the regression line is the parameter r. We can estimate the long-ran average 

inflation rate by the intercept/(1-r), though we will see that the magnitude of this average 

does not affect our variability calculations. 

The standard error of the regression (the average deviation of the actual dependent variables 

from the values predicted by the fitted line) is our estimate of sigma, a .  

We will illustrate this calculation using the medical component of the CPI, though the 

reseta, ing actuary is free to use any loss-inflation index deemed appropriate. Table 1 below 

shows this calculation based on data available through the Bureau of Labor Statistics. We 

calculate the logarithms of changes in the CPI, and then perform a simple linear regression 

on the X, and X~. 1 columns. 

This data is, of  course, meant purely for illustration and the analyst should decide carefully as 

to what external inflation index is most representative for the losses to be paid. 
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Year (t) 

1970 
1971 
1972 
1973 
1974 
1975 
1976 
1977 
1978 
1979 
1980 
1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 
1989 
1990 
1991 
1992 
1993 
1994 
1995 
1996 
1997 
1998 
1999 
2000 
2001 
2002 
2003 
2O04 

CPI Inflation % 

34.0 
36.1 
37.3 
38.8 
42.4 
47.5 
52.0 
57.0 
61.8 
67.5 
74.9 
82.9 
92.5 

100.6 
106.8 
113.5 
122.0 
130.1 
138.6 
149.3 
162.8 
177.0 
190.1 
201.4 
211.0 
220.5 
228.2 
234.6 
242.1 
250.6 
260.8 
272.8 
285.6 
297.1 
310.1 

Table 1 

Xt X,.I 

6.18% 
3.32% 0.0327 0.059932 
4.02% 0.039427 0.0327 
9.28% 0.088728 0.039427 

12.03% 0.113581 0,088728 
9.47% 0.090514 0.113581 
9.62% 0.091808 0.090514 
8.42% 0.080852 0.091808 
9.22% 0.088224 0.080852 

10.96% 0.104026 0.088224 
10.68% 0.101481 0.104026 
11.58% 0.109574 0.101481 
8.76% 0.083944 0.109574 
6.16% 0.059806 0.083944 
6.27% 0.060845 0.059806 
7.49% 0.072218 0.060845 
6.64% 0.064282 0.072218 
6.53% 0.063289 0.064282 
7.72% 0.074366 0.063289 
9.04% 0.086565 0.074366 
8.72% 0.083627 0.086565 
7.40% 0.071401 0.083627 
5.94% 0.057743 0.071401 
4.77% 0.046565 0.057743 
4.50% 0.04404 0.046565 
3.49% 0.034325 0.04404 
2.80% 0.027659 0.034325 
3.20% 0.031469 0.027659 
3.51% 0.034507 0.031469 
4,07% 0.039896 0.034507 
4.60% 0.044985 0.039896 
4.69% 0.045853 0.044985 
4.03% 0.039477 0.045853 
4.38% 0.042826 0.039477 

X = In(l+ Inflation %) 

Slope 0.831857 r 
Intercept 0.010527 II*(1-r) 

Long-Term 0.062605 p, 

Std Error 0.014738 o 
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3. CALCULATING T H E  VARIANCE OF PAYMENTS 

We proceed by showing the calculation of variance for a single payment and then building 

the model step-by-step up to the covariance between two streams of payments. 

3.1 Calculating the Variance of a Single Payment 

A one year inflation factor (1 +i,) is lognormally distributed, which means that a loss payment 

one year in the future - if unaffected by random factors other than inflation - would also be 

lognormally distributed. 

With no "mean reversion" (r =0), the coefficient of variation, CV, of the loss payment 

would be ~]exp(o "2 ) -  1. An inflation factor two years out CPI(2) = (1 + i I ). (1 + i 2 ) would 

also be lognormally distributed, but the CV would increase to 4exp(2-0  .2 ) - 1 .  

The simplicity of this expression is due to the assumption that ii and i 2 are independent and 

identically distributed, and also the fact that the product of two lognormal random variables 

is also a lognormal random variable. 
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If  we introduce the concept of mean reversion such that r > 0 ,  then the formula for the CV 

of  the single year factor does not change, but the two-year inflation index CPI(2) becomes: 

( ( 1 + i , )  ~r 
CPI(2) = (l+i,)'~E[l+il]) ' ( 1+ i2) .  

The CV,=a increases to become 4exp{(1 + (1 + r)2).  or2}- 1 . 

The index for subsequent years is created in a similar manner. For n=3, we have 

((1+/,))' .,.(((l+i])y (1+/2)/r 
CPI(3) = (l+it)" E[l+i,] ) "(1+,2/ ~E[l+i,]) E[l+i2] ) "(1+i3) '  

The CV.=, becomes 4 e x p l ( l + ( l +  r)  2 + ( l + r  + r 2 ) 2 ) - ¢ 7 2 I - 1 .  

In the special case in which r =1. we have a CV.=3 of ~]exp{(1 + 22+  32) '0r2}-  1 . 

More generally, the CV for n years of inflation is given by: 

CV,, = ~ / e x p t n - a 2 } - I  f o r r = O .  

I {I 2r,,rn,  
CV,, = exp-(l_-r) 2 (l_r)3 (1-r~:~_-r2).). j -  for r<l 

or, alternatively 
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CV,, = exp 6 0 .2 - 1  for r =1 

A more detailed derivation of  these formulas is given in Appendix A. 

We note that when the reversion term r is close to 1, changes in the inflation rate are 

"persistent," meaning that the inflation level will not return to its long-run average very 

quickly. In these cases, the variance of  a loss payment in the distant future will have a much 

greater variance than under the "random draw" model with r = 0. 

The table below shows the CV implied for a single pa3~ment at various points in the future 

using different assumptions about the reversion parameter r. 

Sigma = 0.024996 

CVn for Selected Revers ion Paramete rs  

n r = 0 r = .50 r = .80 r = 1 

1 0 .0250 0 .0250 0 .0250 0 .0250  
2 0.0354 0.0451 0.0515 0.0559 
3 0 .0433 0 .0629 0 .0799 0 .0937  
4 0 .0500 0 .0785 0 .1090 0 .1376  
5 0.0559 0.0923 0 .1380 0 .1870  

3.2 Calculating the Covariance Between Two Payments 

Suppose that we have an inflation factor for a given number of  years n, and a second factor 

for n+k. We quickly recognize that there must be a strong correlation since n of  the n+k 

years are common to both factors. Using the same mean reversion model, the correlation 

coefficient can be written2: 

2 The term Cov,,.k is a "scaled" value which is the dollars of covariance divided by the means of the losses 

at times n and n+k. This is sometimes called the "coefficient of covariation" and is convenient notation 
because of the parallel to the coefficient of variation (CV) used earlier. 
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Col,~n. k 
Pn.n+k -- cv. .cv.+, 

The term in the numerator is proportional to the covariance, and is given as follows: 

n r . ( l + r k ) . ( l  r " ) +  0" 2 

Cov.,  k = exp ( l - - r )  2 ( l _ r ) 3  (1-~--r)2.-7~_r;)). - 1  f o r r <  1 

or, altemafive~ 

" [  2 ~, 3 J J 
f o r r =  1 

Note also that Cov, , . ,= CV~ when k =0. 

S i g m a  = 0 .025000  
R e v e r s i o n  = 0 .500000  

Matrix of Correlation Coefficients 
1 2 3 4 5 
1 0 .83188775  0 .89611104  0 .59742763  0 .52484632  

0 .83188775  1 0 .91052622  0 .80678419  0 .71882568  
0 .69611104  0 .91052622  1 0 .94009581 0 .85838825 
0 .59742763  0 .80678419  0.94009581 1 0 .95526523  
0 .52484632 0 .71882568  0 .85838825  0 .95526523  1 

3.3 Calculating the Variance of a Stream of Payments 

Given these terms, we are able to set up a matlix of  correlation coefficients, or covariances, 

m order to calculate the variance for a sum of payments. The hill correlation structure 

between the individual payments due to inflation is captured in this matrix. 
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If we have a vector of N loss payments, /3, and an N-by-N matrix of covariance terms such 

that M(i,j)= Covi.j_ i for i < j ,  then we can calculate the variance for the stream of 

payments as: 

Var(P) = /3.M./3r P = sum of all payments in the vector 

Or equivalently, 

N N 

Var(P) = Z Z P ( i ) . M ( i , j ) . P ( j )  
i=l j=l 

3.4  C a l c u l a t i n g  t h e  C o v a r i a n c e  B e t w e e n  T w o  S t r e a m s  o f  P a y m e n t s  

If we have two vectors of loss payments a/3 and B/3, both with N elements, then the 

covariance of the two sums can be calculated in a similar manner. 

Cov(AP, BP) = ap.M.Bp r. 

The correlation between the two payouts will be a single number, and generally a number 

approaching 1.000, indicating a very strong correlation. This is because our model assumes 

that both payment streams are directly affected by the inflation rate, and that inflation is the 

source of variability. In Section 4, we soften the first assumption by allowing different 

degrees of sensitivity to inflation by line of business. In Section 5, we show how to bring in 

other sources of variability. 
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4. MEASURING T H E  SIGNIFICANCE OF INFLATION BY 
SEGMENT 

As mentioned above, the vatiance/covariance model assumes that the C*PI direcdy affects 

the amount of loss payment. This may not be exactly true, and we would want the ability to 

control the degree to which loss development is dependent on inflation. 

The degree of inflation for a given risk class (RC) will be controlled by a parameter Rc Y, 

which is applied as an exponent to the CPI. This parameter could be set equal to zero for 

the cases in which a risk class is unaffected by inflation. 

Adjusted Inflation Index for Risk Class A: CPI * r 

In calculating the time-series parameters for this adjusted index, the reversion parameter r is 

unchanged regardless of the y;  the sigma will change to become o"--) ~-Or. This 

adjustment is easily incorporated into the CV calculation. 

CV, = exp ( i n r )2  (1_r)3 (l----r)T'(--~-r2))" .or2 

Similarly, the covariance term, when there are two risk classes, A and B, with different 

degrees of dependence on inflation, is modified as below: 

( l_ r )3  ~ ( l _ r ) 2 . ( l _ r 2 ) j a y . s y . o r  = - 1  
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We note that this expression is the same as the earlier calculation when a Y=e Y = 1, and the 

covariance is zero when either A Y or a y is zero. 

The next question to address is the method for estimating the parameter 2/ for a given 

business segment. We begin by defining a simple model for loss payments from a triangle. 

The formulas below give a model ignoring inflation: 

C y,d 

Where c s. d 

Ory 

= incremental loss paid in accident year y and development 

period d .  For example, G999.3 would be the amount paid 

for accident year 1999 between 24 and 36 months. 

= a measure of  exposure for accident year y ,  such as onlevel 

premium. This can be supplied from external sources or be 

estimated from the triangle itself. 

= a parameter representing the amount of  development in 

development period d .  

This model is introduced for simplicity only. When we combine this simple two factor (AY 

and development period) model with an assumption that incremental payments follow an 

over-dispersed Poisson distribution, then the results match an all-year weighted average 

chain-ladder calculation. 

In order to include an inflation index in this model, we expand the expression with a term 

including a CPI curve. 

c ~  = o t . ~ . . f l a . C P l ( y + d - 1 )  r 

From this expanded model, we immediately notice that the no-inflation model is a special 

case when y = O, so that c,. a = c~: a" I f  payments are directly proportional to inflation, then 
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we would expect y = 1 ; and if we expect a "leveraged" effect of  inflation (say, in excess 

layers) then y > 1. 

Given an explicit model, as above, we are then able to estimate the parameter 7 that 

maximizes a likelihood function or minimizes some other error function. We also have 

available the goodness-of-fit statistics to test the value of  including inflation. 

To illustrate, we will 

AY 1 2 3 
1998 13,822 26 ,045  34,915 
1999 13,710 27 ,104 36,777 
2000 14,409 28 ,805 38,328 
2001 t5,120 28 ,945  38,692 
2002 13,344 25 ,970 34,922 
2003 13,506 25,926 
2004 14,765 

work with a small triangle of  [cumulative] paid data: 

~ ~ z 
41,064 45 ,228 47 ,942  49,730 
43,309 47 ,266 49,501 
44,772 49,022 
45,169 

The incrementalpaid 

AY 1 g -3 
1998 13,822 12,223 8,870 
1999 13,710 13,394 9,673 
2000 14,409 14,396 9,523 
2001 15,120 13,825 9,747 
2002 13,344 12,626 8,952 
2003 13,506 12,420 
2004 14,765 

losses from this ufiangle are then given by: 

4 S 6 Z 
6,149 4,164 2,714 1,788 
6,532 3,957 2,235 
6,444 4,250 
6,477 

Based 3 on maximum likelihood estimation-, we have the following fitted parameters: 

Y g~ ~ ~n 
1998 49,730 1 0.2737 
1999 51,347 2 0.2573 
2000 53,571 3 0.1814 
2001 54,089 4 0.1227 
2002 49,018 5 0.0800 
2003 48,824 6 0.0490 
2004 53,946 7 0.0360 
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These fitted values are equivalent to calculating the ot ' s  as the chain-ladder ultimates. The 

fitted values from this model, corresponding to the actual incremental payments, are shown 

in the triangle below. 

AY ! ~ 
1998 13,611 12,796 9,023 
1999 14,054 13,212 9,316 
2000 14,662 13,784 9,720 
2001 14,804 13,917 9,813 
2002 13,416 12,612 8,893 
2003 13,363 12,563 
2004 14,765 

4 _5 fi z 
6,099 3,978 2,435 1,788 
6,298 4,107 2,514 
6,571 4,285 
6,634 

The model  is then expanded for the inflation adjustment. 

y g, d ~= CPI Index 
1998 49,730 1 0.2761 242.1 1.000 
1999 48,043 2 0.2424 250.6 1.035 
2000 46,709 3 0.1593 260.8 1.077 
2001 43,867 4 0.1003 272.8 1.127 
2002 37,028 5 0.0609 285.6 1.180 
2003 34,448 6 0.0348 297.1 1.227 
2004 35,499 7 0.0239 310.1 1.281 

2 
1.655 

Index ~ 

1.000 
1.059 
1.131 
1.218 
1.315 
1.403 
1.506 

With the fitted values including this inflation parameter are as follows: 

AY ~ 2 
1998 13,732 12,764 8,962 
1999 14,046 13,172 9,327 
2000 14,587 13,796 9,783 
2001 14,759 13,978 9,808 
2002 13,440 12,595 8,887 
2003 13,348 12,578 
2004 14,765 

_4 fi _6 Z 
6,075 3,981 2,430 1,788 
6,331 4,106 2,519 
6,571 4,285 
6,625 

For example, the first development period for AY 2003 has a fitted value equal to: 

13,348 = 34,448 x.2761 x 1.403. 

s For this calculation, we will assume that each cell follows an Over-Dispersed Poisson (ODP) distribution 
with a common variance/mean ratio ~.  Appendix A gives the full details of this model. 
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The parameter value 1.655 acts as a "leveraging" effect on inflation, meaning that payments 

increase at a faster rate than the CPI would indicate. However, in this example, as with most 

real data sets, there is significant uncertainty in the estimate of the ~' parameter. The loss 

development triangle simply is not a sufficient base for estimating it credibly. Informally, the 

reason for this is that we can pick almost any value for ~' and then fit O~y and fla vectors 

that reasonably approximate the historical loss development (see Appendix B for further 

insight as to why this is the case). It is for this reason that we recommend that the ~' 

parameter be selected by the model user rather than via a fitted model. 

The example given above shows that the parameter }', for measuring the sensitivity to 

inflation, often lacks great predictive value, that is c~,a is not much better than c'.~..a" This 

suggests that the use of an external inflation index in calculating v~iability needs to be 

justified on a priori theoretical grounds and not solely on statistical tests. As a starting 

assumption, ~' = 1 for each risk class is most reasonable. 

The difficulty in estimating the parameter ~' does not mean that losses are unaffected by 

inflation, but merely that a triangle format is not a sufficient basis to discern what the 

relationship to inflation is. 

5. COMBINING OTHER SOURCES OF VARIABILITY 

The discussion to this point has been limited to the variability strictly due to inflation. 

Naturally the variability of loss payments is driven by many other sources, and we need to be 

able to combine these different sources into a single calculation. Some of these other 

sources would include: 

• Changes in an injured person's condition (recovery, deterioration, death) 

• Newly reported claims not originally in the triangle ("true" IBNR) 

• Legal or regulatory changes impacting the coverage provided in the insurance policy 

These types of variability are, arguably, independent of changes in the rate of inflation 

and can therefore be treated as statistically independent. 
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The most common method for including all types of  variability is through the use of  a 

large simulation model; however, that is not necessary if we are interested just in the means 

and variances of  the payments. 

Section 5 will follow the same logic as Section 3, by starting with a single payment and 

then showing step-by-step how the calculations are generalized to produce a full covariance 

matrix on payment streams. 

53 Calculating the Variance of a Single Payment 

Suppose that we have a random variable for the payment amount at a specific time t, and 

denote this expected amount C t . The timing of  the payment is known with certainty, and 

we have an estimate of  its mean E(Ct)and variance Var(C t ) from sources other than 

inflation. These values may have come from a stochastic reser~dng model, or may have been 

simply selected by a reserving actuary. 

The next step is to assume that we have an estimate of  the inflation index at time t, based 

on the equations from Sections 3 and 4 above. 

CV, = exp (1-r~7OZ-;r2)). -a '  -1 

The inflation index will be represented by a second random variable b,, with a mean of  

one E(b, ) = 1 and a variance of  Var(b, ) = CV, 2. We make the further assumption that the 

inflation index is statistically independent of  the other sources of  variance in C,. 

The variance of  the product of  the two random variables is then calculated as follows. 

Var(b, . C, ) = Var(b, ). Var(C, ) + Var(b, ). E(C, )2 + E(b, )2. Var(C, ) 

The derivation of  this expression is given in Appendix C. 

For the reader familiar with the literature of  the Casualty Actuarial Society, the 

description to this point should not be surprising. In fact, the formulas are identical with 

what is usually referred to as "mixing" parameters, and the use of  the notation "b" is a 

deliberate choice to be consistent with this idea. 
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The inflation index can be viewed as a "parameter variance" component with the total 

variance above regrouped as follows. 

V a r ( b , . C , )  = V a r ( C , ) . E ( b 2 , ) +  V a r ( b , ) . E ( C , )  2 
~____w.___.._~ ,.____.w_____~ 

Process Variance Parameter Variance 

5.2 Calculating the Covariance of a Two Payments 

If  we have two payments, taking place at different times, t and t+k, then the covariance 

between these two payments is calculated in a formula that generalizes the variance formula 

above. 

Cov(b, " C,,b,+k " C,.k ) = Cov(b, ,b,.k ). Cov(C, ,  C,.k ) 

+ Cov(b,,b,+k ). e(c, )+ e(b,)e(b.k ). Cov(Cc,C,. ) 

For the special case of  k=O, this expression reduces to the variance formula above. 

5.3 Calculating the Variance of a Stream of Payments 

The variance of  a stream of payments is a linear combination of  the variance and 

covariance terms calculated above. 

We again start with a vector of  N expected loss payments,/3 = {E(C t )}~=,. We now 

assume that we also know the covafiance matrix from sources other than inflation, 

M c (i, j )  = Cov(C i , C i ). 

As in Section 3.3, we also create an N - b y - N  m a t ~  of  covarianee terms for the inflation 

indices corresponding to each loss payment: M b (i, j )  = Cov(b i , b i ). 

The covafiance matrix, representing each pair of  loss pa)nnents in the payment stream 

~Bt¢, is calculated by applying the formula from Section 5.2 on an element-by-element basis. 

Mb. c (i, j )  = M h (i, j ) .  M c (i, j )  + M b (i, j ) .  E (C  i ). E(C i )+ M c (i, j )  

The variance of  the sum of all payments in the stream is then calculated as the sum of  all 

entries in this combined matrix Mb. c . 

Once again, this may be viewed as a combination of  a matrix of  expected "process 

variance" and a matrix of  "parameter variance" elements. 
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Mh. c (i, j )  = M c (i, j ) .  {I + M b (i, j )}+  M h (i, j ) .  E(C, ). E(Cj ) 

Process Variance Parameter Variance 

We may also note that the sum of the "parameter variance" elements is identical to what 

we denoted War(P) =/3 .  M . / 3 r  in Section 3.3. 

At this point the reader may have a concern about where all of  these numbers come 

from. The matrix of  covafiances related to inflation M h is created using the formulas from 

Section 3, but do we really have all of  the covariances from other sources needed for M c ? 

It may be that these are not available and a further simplification is needed. 

The easiest way to simplify this process is to include an assumption that the ultimate loss 

C and the variance of  the ultimate loss War(C) are known. We further assume that the 

payment pattern on a percent basis is fixed and certain. That is, the dollar amount of  

ultimate loss may vary, the same percent will always be paid in the first year. By this 

assumption, all of  the C t payments are perfectly correlated and have the same coefficient of  

variation (standard dexdation divided by mean) CV c . The elements of  the Mcmatf ix  are 

then easily defined as follows. 

(i, j )  = E(C,) .  E(C,). 
The overall covariance matrix then simplifies greatly. 

Mbc(i,j) = Mb(i,j).Mc(i,j)+Mh(i,j).E(C~).E(Cj)+Mc(i,j ) 

becomes 

Mb.c(i,j) = {CW~ +O+CVc2).Mb(i,j)}.E(Cl).E(Cj) 

5.4 Calculating the Covariance between Two Streams of Payments 

The example of  how to combine the variance due to inflation with variance from other 

sources can now be generalized to the discussion of  the covariance between two reserve risk 

classes such as different lines of  business. 

If  we have two risk classes A and B, each with selected pa)wnent streams such that we 

create an NxN matrix of  covariance terms between each of  the payments. As with the single 
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payment  stream example, this can be set up as a matrix. 

Mas(i , j )  = Cov(aCi,sCj) 

To combine this with the variance due to inflation, we then use the following formula. 

Mh.as (i, j) = M b (i, j ) .  M AB (i, j) + M h (i, j) .  E(A C, ). E(B Cj )+ M as (i, j) 

If  the two reserve segments are not  correlated based on any factors other than inflation, 

then all the elements of  this matrix are zero, and no calculations are necessary. 

We may also simplify the matrix if, as in the pre~dous section, we introduce the 

assumption that the percent payment  pattern for each risk class is fixed and known. The  

mat.fix MAB then becomes a constant  amount  times the cross-product of  the payments. 

The correlation coefficient PAB for sources other than infladon is introduced. 

Mas(i , j )  = E(ACi) .E(sC, ) . {pas .CVa.CVs}  

This again leads to a simpler version of  the covariance matrix. 

Mb.as(i,J) = {PAS "CVa "CVs +(l+ pas .CV, .CVs) .Mh(i , j ) } .E(AC,) .E(sC,)  

The covariance term between the two risk classes is the sum of  all of  the terms in this 

matrix. 

The correlation coefficient Pb.aS (including bo th  inflation and other sources) between 

these two risk classes is then calculated as follows. 

sum{Mh.AB } Pas " CVA " CVB + (1 + Pas " CV, . CVs )" Y'=aB 
Pl,.aB = = 

x/sum{Ms.a}'sum{Mh.s} x/{CV2A +O+CV~)'Z2A}'{CVff +O+CV~) 'Y~}  

where Y~ = sum{Ms(i,j).  E(ACi). E(aCj)}/ E(aC) 2 
• . 2 X 2 = sum{M s (t, j) .  E(BC ̀  ). E(sC j)}/e(, s C) 

Y?AB = sum{Ms(i,J)" E(ACi)" E(sC,)}I{E(aC)" E ( s C ) }  

These expressions can also be written in matrix notation. 

x l  = Var(aP)  = 

r 4  = V , , r ( s P )  = 

= Cov( P, = T 
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In these formulas, we have included the same inflation covariance matrix M h . However, 

if  we include adjustment factors other than a Y=B Y =  1 , then we would need to adjust the 

matrices as shown in Section 4. 

With this formula, we are able to combine the correlation due to inflation with correlation 

from other sources without having to define all of  the inter-dependencies between individual 

payments. I f  the user is uncomfortable with assuming that the payout patterns do not  vary, 

then the more general formulas can be run. 

6. RESULTS A N D  DISCUSSION 

Having completed a fairly rigorous description of  the formulas for calculating covariance 

due to inflation, it is worthwhile showing a simplified numerical example to illustrate how 

this can be implemented in practice. 

We begin with the inflation model defined in Section 2, in which we calculated: 

Reversion parameter r = .831857 

Variability Sigma cr = .014738 

If  bo th  reserve risk classes A and B are directly proportional to this inflation index, such 

that a Y=s ? '=  1, then we have an inflation covariance matrix M h as show below (each 

element of  the matrix being one calculation of  the formula in Section 3.2). 

Matrix of Covarlance Factors Mh 
0.00022 0.00040 0.00055 0.00067 0.00078 0.00086 0.00094 0.00100 0.00105 0.00109 
0.00040 0.00095 0.00140 0.00178 0.00210 0.00236 0.00258 0.00276 0.00291 0.00304 
0.00055 0.00140 0.00233 0.00311 0.00375 0.00429 0.00473 0.00510 0.00541 0.00567 
0.00067 0.00178 0.00311 0.00443 0.00553 0.00644 0.00720 0.00784 0.00837 0.00881 
0.00078 0.00210 0.00375 0.00553 0.00722 0.00864 0.00982 0.01080 0.01161 0.01229 
0.00086 0.00236 0.00429 0.00644 0.00864 0.01069 0.01240 0.01382 0.01501 0.01600 
0.00094 0.00258 0.00473 0.00720 0.00982 0.01240 0.01477 0.01675 0.01840 0.01977 
0.00100 0.00276 0.00510 0.00784 0.01080 0.01382 0.01675 0.01941 0.02163 0.02348 
0.00105 0.00291 0.00541 0.00837 0.01161 0.01501 0.01840 0.02163 0.02456 0.02699 
0.00109 0.00304 0.00567 0.00881 0.01229 0.01600 0.01977 0.02348 0.02699 0.03014 

We then introduce two reserve segments, having ten year payment patterns as below. 
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Year 
Risk Class A Risk Class B 

aP sP 

1 46.40% 15.20% 
2 12.10% 11.60% 
3 8.40% 10.50% 
4 6.80% 10.00% 
5 5.70% 9.40% 
6 4.90% 9.10% 
7 4.50% 8.90% 
8 4.00% 8.60% 
9 3.70% 6.40% 
10 3.50% 8.30% 

From this infomaation, we can calculate the CVs from inflation as follows: 

£2 a = Var(aP ) = a/3.Mb.a/5 = .04702 

Y.~ = Var(BP ) = B P . M b . s P  = .08032 

r.L = Cov(AP, =AP.v . P = .o61o 

The correlation coefficient from inflation only is then estimated as follows. 

Z~s .06102 
= - .989 

~ A . y ~  .0470' .0803 

This very significant correlation is, again, due to the fact that inflation is the only factor 

contributing to the variance of either reserve risk class. 

We can generalize this by including variability from other sources. We will assume that 

the risk classes A and B have CVs from sources other than inflation of .100 and .160 

respectively, and that these are independent. Further, we will include the simplifying 

assumption that the ultimate losses axe variable but that the percentage payout patterns are 

fixed. The resulting correlation coefficient, reflecting all sources of variance is given below. 

jOb.AB ~- ,l(cv2 +(l+CV2) (cv; +(1+ cv;) 
.0610 2 

= = .188 
4(1002 +(1+.1002). .04702).( .1602 +(1+.1602). .08032 ) 

All of  these numbers are'meant pttrely for illustration purposes, but they do show that the 

formulas produce results in reasonable ranges. 
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The general process for estimating variance and covariance due to inflation can be 

summarized in the steps below: 

• Select an external index, such as a component of  the CPI 

• Estimate the variance (o" 2) and reversion ( r )  parameters for the inflation index 

• Select a default inflation-sensitivity parameter ~ for each risk class 

• Estimate the future loss payment stream for each risk class 

• Calculate the variance of  each risk class due to inflation 

• Calculate the covariance between each pair of  risk classes 

7. CONCLUSIONS 

The formulas outlined in this paper provide a very simple method for estimating the 

sensitivity of  losses and reserves to movement in inflation rates. The advantages of  this 

approach may be summarized as below: 

1) The basic idea is very easy to explain: loss payments move with inflation 

2) Variability due to inflation can be linked to economic forecast models 

3) The calculation of  variances and correlation can be performed in an Excel 

spreadsheet in closed-form 

The chief disadvantage that is identified is that external inflation indices, such as 

components of  the consumer price index (CPI) have not been shown to be significant 

explanatory variables for movement in insurance loss amounts. 

In spite of  the difficulty in estimating the sensitivity parameter y,  however, we have a 

reasonable baseline value of  y = 1. The model therefore can provide a correlation structure 

between reserve risk classes based on external knowledge of  inflation with a minimal need 

for arbitrary assumptions. 
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Appendix A: Derivation of Key Formulas 

This appendix provides a more detailed derivation of the key variance and covariance 

formulas given in the body of the paper. 

The formulas in this paper are able to be written in a compact form by capitalizing on a 

useful property of the lognormal distribution; namely that the product of lognomml random 

variables is again a lognormal random variable. Analogously, the sum of normal (Gaussian) 

random variables is again a normal random variable. 

The autoregressive model, AR(1), is written in a recursive linear form, after taking the 

logarithms of the inflation trend factors. 

X, = Xt_ j . r + b + a . e ,  

X, logarithm of 1 +it (i~= the inflation rate at time t) 

e, standard normal random variable, e, 0¢ Normal(O,1) 

The distribution of X,,  conditional upon a known value for X,_j, is then given as 

X t I X,_l ~ Normal(X,_ 1 • r+b, a).  

The variance of the conditional random variable is then 

Var(X, IX,_,) = o" .  

The random variable for the logarithm of the inflation rate two or more years out is 

found by expanding the recursive expression: 

X, IX,_ 2 = (X,_2.r + b + cr.e,_,).r + b + or.e, 

X, IX,_3 = ((X,_3.r + b + cr.e,_2).r + b + cr.e,_l).r + b + or.e, 

This expanding of the recursive formula can be generalized as 

t 

X, IXo = X o'r '  + £ ( b + o ' . e i ) . r ' - ' .  
i= l  

The variance for this more general form is therefore given as below. 

t - i  X, IX o' ~ Normal X o.r'  + b . ~ . r  , a .  
i=l V i=l .I 

The variance for the random variable conditional upon a point "t" years prior is then: 
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' 1 - -  r 2t 
Var(X, [ X o) = a 2. ~_, r2"('-i' = a2 

i=1 1 -- r 2 
i f r < l  

or Var(X,  I Xo)  = o'2" t if  r = l 

These and subsequent simplifications are possible based on three fundamental identifies. 

~ ' ~ k  = l + 2 + 3 + . . . + ( n - i ) + n  = 
F/. (rt + 1) 

k=l 2 

n 
)--,k 2 = 12 +22 +32 + . . . + ( n _ l ) 2  +n2 = n . ( n + l ) . ( 2 n + l )  
k=l 6 

~ rk_ t = l + r l  +r2 +r3 +. . .+r,_2 +r,_  ] l - r "  
,~=l 1 --  r 

The random variable X, represents the inflation rate " f '  years in the future, and the 

expression Var(X,  ] X o ) is the variance around that rate. For our purposes, we need the 

variance of  the inflation index at this future point; the index includes the variances of  all o f  

the annual inflation rates from the base time to the future period. 

For this next step, we must remember that the inflation rate at a given point in the future 

is correlated with the inflation rates at subsequent points. This implies that the normal error 

terms e i are included multiple times in the summation below. 

(Xl+X2+...+Xn[Xo) = Z ( x j [ X o ) =  Xo.rJ+ b+a.ei).r j-i 
j=! .= 

If  we make the substitution S, = (Xj + X 2 + . . . +  X n IX0) ,  then the random variable 

can be written more compactly as below. 

S, = E ( S , ) + a .  e i . r  j-i = E ( S , ) + a .  e,+,_/, r '-] 
i=| J 

In order to calculate the variance for this summation, we make use of  the following 

relationships. 
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Var(S.) = E(S2.)-E(S.) a and E(e,)=O Vi 

The variance for the sum of these annual rates therefore requires the collapsing of the 

double summation. 

Var(S.) = .2"  Z r '-i =G2. " l - r '  2 
l=l ~, i=1 .J 

This summation can be further simplified as shown below: 

V a r ( S . ) -  G2 ~'~ 0 - 2 r ' / +  r 2' ) 
( l -r)  2 ~=, 

{ ( l - r )  2 "~. 1 - - ~ )  "~. 1-i-~r2 ) J  

Mtematively, for the special case in which r = 1, we Gm write 

Var(S.) = a 2 n. (n + 1). (2n + 1) 
6 

The final step for the variance calculation is to translate the variance of the normal 

random variable X, into the expression for the CV of the lognormal random variable. 

We can accomplish this by making note of the following relationship 4. 

CV(e x)2 _ Var(e x) = eV.4X)_l 
E(eX) 

This provides the translation to all of  the formulas given in section 3.1 of the paper. 

By analog),, there is an expression for the [standardized] covariance of two random 

variables. 

4 As the reader might expect, this i'elationship holds when X is a normal random variable, but it is not 
generally true for other distributions. 
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Cov(eX,e y ) eCo,.(x,y)_ 1 
Cov*(eX,e ')  = E{eX).E(e r) = 

For this covariance expression, we recall that we are looking for the relationship between 

twosumsofrandomvariables (X, + X= +. . .X . )  and (Xt + X2 +...+ X .  +.. .+ X.+k) , 

which we may again denote S. and S.+ k for convenience. 

S n = E(Sn)+0.. en+t_j.2r `-I 
i=l J 

S,,+, = E(S.+,)+0..~{e.÷,+,_,.  r i-' 
j=l['= i=l J 

= E(s.+,)+0.. e.+,_,.yr'-' + Z e,. y ri-,~ 
i=l j I i=1 J 

The logic for calculating the covariance term Cov(S., S.+ k ) is similar to that used for the 

variance above. 

Cov(S.. S.+~ ) = E(S. .  S.÷~ ) -  E(S. ). E(S.+, ) 

= r ' - '  
( l -  r)  2 s=J 

0.2  

(1 - r )  2 

_ . ( , - r " l l  

0 .2 

(1 - r )  2 

- ( 1 - r 2 " ] ~  

For the special case in which r = 1, we can write 

n n 

cov(S,,,s,,+~) = 0 . 2 . Z { j . 0 + k ) }  = 0 .2 .Z{j2  + j .k}  
j=l  j f l  
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= 0" 2 . { n . ( n + l _ ~ ( 2 n + l ) _  n-(n+l)2 k}.  

This completes the derivation of the covariance terms given in section 3.2 of the paper. 

As a final observation, we may note that the CV and Covariance expressions are 

dependent upon (7 and r (the reversion parameter), but do not involve the intercept b or 

the starting point X 0. In other words, we can estimate the variance relative ,to the mean 

level of the reserves without haxqng to know the current or long-term inflation rates. 
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A p p e n d i x  B: Cha in -Ladder  O D P  Mode l  

The over-dispersed Poisson (ODP) model is useful to illustrate the ideas in this paper 

since it conveniendy balances to the well known chain-ladder reserving method. 

We define an incremental loss payment in year y and development period d to be 

distributed as ODP. The distribution is defined as follows: 

Probability Function: 
/ \ c ,  e l#  e -#y .e l  ¢ 

Mean: ) = a,. 

Variance: Var(cy.a ) = 4" fl,..a 

The parameter 4 is the "dispersion parameter" and represents a constant variance-to- 

mean ratio. This parameter will be assumed to be fixed and known, and constant for all 

accident years and development periods. Mathematically it is just a scaling factor that 

changes a standard Poisson distribution, defined on the integers {0, 1, 2, 3, ...} to an ODP 

distribution, defined on evenly spaced values {0, 4 , 2  4 ,  3 4 ,  ... }. 

The mean of each cell in the development triangle will then be defined as: 

= & . ) =  

In order to calculate the maximum likelihood estimation (MLE) values for these 

parameters, we need to evaluate the following expression. 

LogLikelihood = f~= °~'{~.ln(~y . ,a)-~. ln(#)  °e"'fla ~ - l n ( ( c , . a / ¢ )0}  

However, since we are assuming that the dispersion parameter is fixed, we do not need to 
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include it in ou~ likelihood calculation. Instead, we use a quasi-likelihood (o~LL) expression 

including only the portion of  the LogLikelihood that is dependent on ~.~. and fla. 

QLL = ~n~'!'{c,.a . ln(ot.~. . f a ) -  ot,. . f a } 
y=l d=l 

The derivatives with respect to the two parameters axe set to zero. 

n-v+l fc "1 
= E ~ ' - - - -  a = 0 

00~y d=l O~y 

and 

3QLL .-a+l fc = V r ' a - a  

afa t fa 'J 
= O.  

The derivatives imply that the MLE values satisfy two conditions: 

n-v+l n-v+l n-d+l n-d+l 

EC>a = E ~ . . ~ a  and ECy.a = Eot , . .~a  Vy ,  d .  
d=l d=l y=l y=l 

That is, the row and column totals o f  the fitted values must equal the row and column 

totals of  the original incremental triangle. Because these conditions do not result in a unique 

n n 

set of  parameters, we can add one more constraint E fie = 1, which results in ot I = E cl.a. 
d=l d=l 

These constraints then mean that the M.LE parameters are equivalent to the values in a 

standard chain-ladder reserve estimate. 

This model can then be expanded to include estimates of  trend based on the cP i :  

I.t, d = E ( % d ) =  a y . f l d . C P l ( y + d - 1 )  r 

QLL = ~ ."~ l {c : . .a . ln (o t , . . f l a .CPl (y+d- l ) r ) -o t , . . f l a .CPl (y+d- l ) r  }. 
y=l d=l 

We find from this expression that the following conditions must again be met: 

n-v+l ,n-v+l n-d+l n-d+l 

E c:..a = E g ~ . . a a n d  ~_c:..e = ~.,I.t.~..a V y, d .  
d=l d=l y=l y=l 
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We must also add the derivative with respect to the CPI curve, ), : 

OQLt 
o), 

n n-y+l 

= ~ ~}:,,,.ln(CPlO,+a-1))-% .p~ .ln(CPlO,+d-1)).cPIO,+a-ly} 
y,,I d=l 

= 0 

Which is equivalent to 

~.'~'~y,o .ln(CPl(y+d-1))} 
y=l d=l 

n n-y+l 
= E Y'{U,.o.ln(Cel(y+d-1))}. 

y=l d~l 

Unfortunately, there is no longer a convenient closed-form solution for calculating the 

model parameters, though it can be somewhat simplified using the relation below: 

n-d+l 

E Cy,d 
y=l 

n-d+l~ 

y=l 

The parameters in the model including the external CPI values must be estimated via an 

iterative calculation. This does not create any great difficulty in our model. 

What is more interesting, however, is the relatively little improvement in model fit that is 

seen when the CPI values are introduced. It makes intuitive sense that loss payments should 

follow inflation, so why does introducing inflation as an explanatory variable add so little to 

the goodness of  fit? 

The answer is that a standard chain-ladder or MLE calculation is already estimating many 

parameters: one for each accident year ay  and one for each of  the first n-1 development 

periods fla (by constraining these to add to 1.00 we reduce the model by one parameter). 

This means that in a triangle with n years, we will have n(n + 1) / 2 data points to estimate 

2 n - 1  parameters; for a 10-year triangle we have 55 incremental payments to estimate 19 

parameters. The effects of  inflation are "buried" in our otherwise over-parameterized 

model. 
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To see this more clearly, we will introduce one more model in which the inflation rate i 

is assumed to be constant, and is estimated as a parameter of  the model. 

ll:..a = E(c:..a ) = ~t:..fla.(l+i) '+a 

The quasi-likelihood function is given as follows. 

n n-v+l  

aLL = E Z{c>d'ln(oti'fla'(l+i):+d)--gr:''fla "(l+i)r+a} 
y=l d=l 

Taking the derivative with respect to the inflation rate i ,  we have 

n n - v + l f  • (y+d) ) aQLL _ ~" ~' f , . ~  
[ -(-1~0 a,. "fla . (y+d) . ( l+i )  :+a-'} = 0 ..;:r=, 

Or equivalendy, 

b QLL . . . . .  
ai - Z £{(Y+d) ' (cva- l l , ' ,a)}  

~=1 d=l 

= 0 

We may note that this condition for the derivative of  the loglikelihood with respect to i will 

automatically be met if we first calculate Cry and fld via the chain-ladder method (assuming 

no  inflation), and then adjust the numbers as: 

ay  = a~. ' (1 +i)-:" fld = fla" (1 + i )  -d 

Such that  a , . .  f l~.  (1+ i) y+d = g , . .  (1 + i)-". fla" (1 + i) -a. (1 + i) r+a = or:.. fld 

The MLE for a model with a constant inflation rate is therefore equal to the chain-ladder 
model  with no inflation. 
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Appendix C: Variance and Covariance of Products of Random Variables 

The general form of the variance of a single random variable X,  and its covariance with 

a second random variable Y, are expressed in the following familiar equations. 

Va~(X) = e ( x ~ ) - E ( x )  ~ 

Cov(X,V) = E ( x . v ) - E ( x ) .  E(v) 

The varhnce of the product of these two random v ~ b l e s  has a somewhat more 

complex expression: 

Var(X.Y) = E(X2.y2)-E(X)2.E(Y) 2 

If X and Y are independent, then this can be re-written as follows. 

Var(X . Y) = Var(X ). Var(V)+ Var(X ). E(Y) 2 4- Var(]*). E(X )2 

= =} 

= E(X=).E(r2)+E(X)=.e(y) ~ 

- E(x=).e(y)=-e(x)=.e(y=) 

e(x ~ ). E(r~ )- E(x ) ~ . e(v) ~ 

- E(X=).E(r) = +E(X) ~.E(v) = 

_ E(x)~.E(v~)+E(x)~.E(v) ~ 

{E(X=.Y=)-E(X)=.e(Y) ~} 

- {e(x=)-e(x)=}.e(y) ~ 

- {E(y=)-e(y)=}.e(x) ~ 

Vat(X).  Var(V) = Wr (  X . V ) -  W r ( X  ). e(V) 2 - Var(V). e ( X  )5 

Casualty Actuarial Society Forum, Fall 2006 93 



Variance and Covariance in Reserves Due to Inflation 

In a similar fashion, the covariance between two products of random variables can be 

calculated using the expression below. 

Cov(Xt . Y~,X2 . Y2) = E(X, . YI . X2 . Y2)-  E(X, ) .  E(Y~). E(X2).  E(Y2)\ 

Again, if the X 's  and Y's are independent, the covariance formula can be re-written as 

follows. 

Cov(X, . r , , x~ .r~)  = Cov(X,.~',).Co~(X~.r~) 

+ C o v ( X  1 " X 2 )" e(r| ). E(Y 2 ) + Cov(r,. r 2). E(X, ). E(X 2 ) 

The proof follows a similar logic as above for the variance calculation. 

P,,,¢ Cov(X, . X~). Co,,(Y, . Y:) 

= {E(X, • X~) -  E(X, ). E(X~)}. {E0', • r : ) -  e(r, ). e(v:)} 

E(X, . X~). E(~, . r~)+ E(X,).  e(X~). ~(V,). E(r~) 

- E (XI .X : ) . e ( r , ) .E ( r , )  

- E(Y, .Y2).E(X,) .E(X2) 

{E(x, • x :  ). E(~,. v: ) -  E(X, ). E(X: ). E(V, ). E(V: )} 

- {E(X, • X~). E(V, ). E(V:)- E(X,)- ~(X:) .  E(V, ). E(V~)} 

- {E(V,. r~)- E(X,). E(X~)-  E(X,). E(X~). E(V, ). E(V~)} 

Coy(X, . r : ,x~  .r~) 

- Co~(X,. x~). E(r,). E(r~) 

- Co,(r, • r~). E(X,). E(X~) Q.E.D. 
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"Adjusting & Other" Reserves  Accord ing  to the "Loss-  
Activity Method" 

Paul B. Deemer, FCAS, MAAA 

Abstract 
This paper presents an additional method for calculation "adjusting & other" claim handling 
expenses. The method is contrasted with other methods present in actuarial literature. 

Keywords. Reserving, ULAE, Adjusting and Other Expenses, Claim Handling. 

1. INTRODUCTION 

Within the scope of the reserving exercise, establishing reserves for Adjusting & Other 

("A&O") loss related expenses generally comes last, and in many respects are an after thought. 

The primary reason for this is the necessity of having established proper reserve levels for losses 

before attempting to establish reserves for expenses related to managing these losses. An 

additional factor in the low attention given to this reserve component is the relatively few 

methods available. This paper presents an additional method for reserving these losses. 

The actuarial literature addressing the task of reserving Adjusting & Other loss related 

expenses includes "aggregate" methods which use loss data at a high level and are, generally 

speaking, less rigorous. These methods include the classical "paid-to-paid" method and the 

variation proposed by John Kittel. Other methods, such as those offered by Wendy Johnson, 

Donald Mango and Craig _Allen are more intensive in the usage of data and assumptions. The 

"loss-activity" approach is properly considered with the former, and thus a detailed comparison 

is offered. Nonetheless, I will present a discussion contrasting the "loss-activity" method to the 

Johnson method. 

2. APPROACHES TO "ADJUSTING & OTHER" RESERVING 

2.1 The Reserving Mindset  

As a preface to this paper, it is necessary to frame the discussion with the most general 

parameters and motivation for loss reserving. The reserving exercise is an effort to reflect 

ultimate financial reality under all insurance obligations for which the enterprise is liable (losses) 
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or due (premiums). At times the actuarial usage of professional jargon is loose, which can result 

in a redundant or misleading understanding. What is assumed in the following presentation is: 

1. At a certain date, the organization ceases earning new exposures. 

2. The organization is not responsible for events occurring beyond that point in time. 

3. The organization is responsible for events occurring prior to that point in time, even 

if made aware of them after that date. 

4. "Runoff", as used below, reflects this situation: the organization is settling liabilities 

previously incurred and not incurring new obligations. This term is not used to imply 

a "fire-sale" of liabilities, "discounting" or any other term related to an insurance 

insolvency. 

With this backdrop, it can be seen that the reserving mindset is focused on the ultimate 

answer when all uncertainties and contingencies have emerged (for losses, all claims are dosed). 

As time passes the financial uncertainties of which reserving is concerned will move, to an ever 

larger degree, from estimate to actual. The reserving exercise is an attempt to determine the 

ultimate values at point where uncertainty remains. 

It is important to establish that a valid methodology for reserving "Adjusting & Other" loss 

related expenses should explicitly recognize that these reserves are for expenses which are 

second-order in relation to underlying losses. Stated another way, unless we have a reported 

claim, a notice of loss or efforts expended in relation to a reported potential daim, there can be 

no claim handling expenses. First we have to have claims. Further, it is fundamentally intuitive 

that "adjusting & other" costs have a linear relationship to claim activity. The more claims being 

reported, the larger the claim function will need to be to handle the volume and vice-versa. This 

is embedded in the most widely used "adjusting & other" reserving method, the classical "paid- 

to-paid" method. 

2.2 Destination: "A&O" Cost Per Unit of"Loss-Activity" 
Total "A&O" expenditures in a given year are a known item available from accounting 

exhibits. What is needed, to make these expenses useful within the context of reserving, is an 

accurate proxy of what to contrast these costs with. As claim department salary is the vast 

majority of the "A&O" expense, the crucial task is finding a numerical proxy for the claim 
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department's use of their time. For this method, I have called this proxy "loss-activity". "Loss- 

Activity" is defined to be the sum of five components: 

1) Current Accident Year Paid + Case Reserve Repotted Losses: These are claims 

incurred and reported in the most recent accident year. For property claims, they will 

generally be reported and closed within the year and the reported value is a good 

representation of their value. For casualty claims, many of these will not be dosed at the end 

of the year and will be subject to future revisions. In the context of financial reporting, an 

example would be the direct and assumed loss payments plus the direct and assumed case 

basis unpaid losses (Schedule P, Part 1) for Accident Year 2004 in the 2004 Annual 

Statement. 

2) Current Accident Year Paid Defense and Cost Containment (DCC): This is the 

DCC (formerly ALAE) component of newly reported claims; as no reserves are established 

at the case level for this component, paid data suffices. If the claim practice was to establish 

case reserves for DCC, they should be included here. In the context of financial reporting, 

an example would be the direct and assumed defense and cost containment payments 

(Schedule P, Part 1) for Accident Year 2004 in the 2004 Annual Statement. 

3) Prior Accident Years' Reported Losses: This represents the reporting of lagged IBNR 

claims or adjustment in value of claims reported in previous years. Note: as with component 

2, we would also want to include DCC changes if case reserves were present for that 

component. In the context of financial reporting, the approach would be similar to that for 

component (1); only we are looking for the change in paid losses + case reserves for 2003 

and prior accident years from the 2003 Annual Statement to the 2004 Annual Statement. 

4) Prior Accident Years' Paid Losses: This represents the payment in the current 

calendar year on claims which are from prior accident years which have not yet closed or in 

some cases had not yet been reported. In the context of financial reporting, the approach 

would be similar to that for component (3); only we are looking for the change in paid losses 

for the 2003 and prior accident years from the 2003 Annual Statement to the 2004 Annual 

Statement. 

5) Prior Accident Years' Paid Defense and Cost Containment: This represents the 

payment of DCC on claims which are from prior accident years and have not yet closed. In 

the context of financial reporting, the approach would be similar to that for component (3); 
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only we are looking for the change in paid DCC for the 2003 and prior accident years from 

the 2003 Annum Statement to the 2004 Annual Statement. 

While an initial look at these components leaves one wondering as to the reason for 

what appears to be an artificial summation of data, further consideration using first 

principles will reveal that these are an excellent proxy for all of the activity of a claim 

department within a given year. It should be noted that all loss and expense components are 

included gross of salvage, subrogation and reinsurance recoveries. 

2.3 Application 
The next step is to relate the total claim handling expense in a year to the total "loss-activity" 

and thus get a ratio which tells us the "A&O" cost per unit of activity. 

" A & 0"  Cost Ratio = 
Total " A & 0" Expenses 

Total "Loss - Activity" 

To derive the indicated "A&O" reserve, we multiply the Cost Ratio times the anticipated 

future "loss-activity". Revisiting the definition of "loss-activity", we see that in a prospective 

look the first two components fall away. 

1) Current Accident Year Reported Losses = 0 

2) Current Accident Year Paid Defense and Cost Containment = 0 

3) Total Unreported Losses 

4) Total Unpaid Losses 

5) Total Unpaid Defense and Cost Containment 

For purposes of reserving, we no longer have losses occurring; all losses have occurred and 

what remains is the reporting of IBNR claims and the settling of chinas which have and have 

note been reported. Thus, components (1) and (2) are zero. Component (3) is equal to the 

calculated ultimate losses less the paid + case reserve losses already reported; component (3) 

includes pure IBNR claims and development on reported claims. The fourth component is 

equal to the calculated ultimate losses less paid to date losses, which includes all pure IBNR 
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claims and the settling of  claims which have been reported. Component (5) is the calculated 

ultimate DCC less the paid to date DCC. Collectively, components (3) + (4) + (5) are the 

anticipated future "Loss-Activity". The A&O reserve is the product of  the future "Loss- 

Activity" and the calculated Cost Ratio: 

"A&O" Reserve = Cost Ratio * Anticipated "Loss-Activity" 

3. APPLICATION OF T H E  M E T H O D  

I now present this method applied to the loss experience of  a medium sized insurance 

company writing a mix of  property and casualty coverages across both commercial and personal 

lines. As indicated, all numbers can be easily located within an actuary's reserving work papers 

or a company's Schedule P data. 

Historical Loss Activity ($ Millions) 
All Data Gross of Salvage and Subrogation 

Prior 

Calendar 
Year 
2000 

Current AY 
Reported 

Losses 
(1) 

207.3 

Current AY 
DCC Paid 

(2) 
0.8 

Prior AYs 
Losses 

Reported 
(3) 

16.1 
2001 241.6 1.9 32.4 
2002 225.1 1.6 36.1 
2003 244.4 2.0 53.7 
2004 2.1 281.6 33.2 

Prior AYs AYs 
Losses DCC Total "Loss 

Paid Paid Activity" 
(4) (5) 1+2+3+4+5 

74.9 7.4 306.5 
106.2 8.1 390.2 
105.3 10.9 379.0 
118.8 14.3 433.2 
120.1 19.1 456.1 

All of  the "Loss-Activity" components suggest an organization which is growing, which is 

indeed the case. To pull these numbers from actuarial reserving work papers, the simplest 

method is to take the difference of the two most recent diagonals in the loss triangles. For 

reported losses, the most recent accident year is allocated to column (1), and the remainder of  

the incremental diagonal to column (3). For paid losses, the most recent accident year is 

disregarded and the remainder of the incremental diagonalis in column (4). For paid DCC, the 

most recent accident year is in column (2) and the remainder of the incremental diagonal is in 

column (5). 
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Year 
2000 
2001 
2002 
2003 
2004 

Historical "Adjusting & Other" Cost Ratios 

"Adjusting 
& Other" 
Paid ( $ i )  
17.68 

Total "Loss 
Activity" ($M) 
306.5 

Cost Ratio 
5.8% 

18.69 390.2 4.8 
21.32 379.0 5.6 
24.93 433.2 5.8 
26.16 456.1 5.7 

The 2001 cost ratio is clearly an exceptional value. Upon closer inspection, this is largely due 

to the presence of significant property-catastrophe losses (see the "Current AY Losses 

Reported" column). These losses are present in the denominator of the Cost Ratio calculation 

and serve to lower the indicated ratio, This relationship (between "adjusting & other" costs and 

shock losses in a calendar year) is a distortion to this reserving exercise. Thus, it is preferable to 

remove the effect of these events from both the losses and the "adjusting & other" expenses. If 

data is not available to remove the impact of the shock loss event, data points containing 

significant property catastrophe or other aberrationallosses should be given diminished (or even 

zero) credibility when selecting a final Cost Ratio. For purposes of this demonstration, property- 

catastrophe losses have been excluded from the calculation of total "loss-activity". 

Historical Cost Ratios 
(Adjusted for CY 'Shock' Loss Activity) 

"A&O" 
Year Paid 
2000 17.22 
2001 18.49 
2002 21.32 
2003 24.93 
2004 26.16 

Adjusted 
"LOSS 

A C T M T Y "  
"A&O" Cost 

Ratio 
298.5 5.8% 
344.6 5.3 
379.0 5.6 
433.2 5.8 
456.1 5.7 

If the method and proxies are valid, we would expect to find a "per-unit" cost that is not 

trending upward or downward in any material way, as is the case with this approach. Using a 
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straight average of the five data points, we have a cost of $0.0564 per $1.00 of "loss-activity". 
With our Cost Ratio in hand, we next need to calculate the amount of anticipated future "loss- 

activity" in order to produce an indicated "A&O" reserve. The future loss activity is easily 

attained from the reserving work papers. As noted, the first two components of "loss-activity" 
are zero since the reserving exercise is not concerned with obligations incurred in the future. 

1) Current Accident Year Reported Losses = 0 

2) Current Accident Year Paid Defense and Cost Containment = 0 

3) Tota l  Unrepor ted  Losses = Ult imate Losses - Paid-to-Date Losses - Case Reserve 

Losses  = $100.0 M 

4) Total  Unpa id  Losses = Ultimate Losses - Paid-to-Date Losses = $438.0 M 

5) Tota l  Unpa id  Defense and  Cost Con ta inment  = Ult imate DCC - Paid to Date 

D C C  = $69.5 M 

As noted above, if the company's practice is to establish case reserves for DCC expenses, 

then the DCC component would be handled identical to losses. For the company in the 

example, case reserves for DCC are not established. Adding up the components, there is 100 + 

438 + 69.5 = 607.5 M in future "loss-activity". This is larger than the company's carried 

reserves, due to the inclusion of both unreported and unpaid losses. The product of this 

anticipated future "loss-activity" and the Cost Ratio is the indicated reserve under this method: 

Future  C~Loss-Activity" X Cost Ratio = 607,500,000 X 5.64% = 34,263,000 

3.1 A p p a r e n t  D i f f i c u l t i e s  U s i n g  t h e  " L o s s - A c t i v i t y "  A p p r o a c h  

3.1.1 Inc lus ion  of both reported and paid losses for the older accident  years. 

Certainly there may be some losses in both buckets, but for claims which are still open 

after a year this is arguably very appropriate. These claims may litigate and settle in a future 

year after the reserve is established. This requires claim staff resources. Thus if we only use 

reported losses we would be blind to this activity unless the established reserve was to 

change. Additionally, if we did not use reported losses we would not reflect the establishment of 

IBNR claims, which is very material to the casualty lines of business. For these reasons, the 

method uses both paid and reported losses, consistent with the reasoning presented by John 

Kittel in his 1986 paper. Shifting from a "going-concern" mindset to a "runoff '  mindset 
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makes it apparent that establishment of the case reserve and the payout on that reserve are 

both activities which'require claim department staff to effect. 

3.1.2 Validity of the margina l  cost applied prospectively. 

It could be argued that the newly reported claims represent a disproportionate cost in the 

denominator of the Cost Ratio calculation. The argument is an implicit question as to 

whether the Cost Ratio on "small" claims which open and close in a short time frame is the 

same as the Cost Ratio on large claims that are open longer. I do not think there is a material 

distortion - if for no other reason than a significant portion of claim department time in a 

given year is spent disposing of a high volume of newly reported claims. Thus, it is not 

unreasonable to suggest that even if the nominal "adjusting & other" dollars per claim is 

drastically different, the cost relative to claim value (Cost Ratio) is still reasonable for both. It 

is sensible to argue that bigger claims are going to naturally involve more adjuster time, along 

with other A & 0 costs. But the sheer magnitude of the claim value will cause this method 

to post A & 0 reserves accordingly. Additionally, it must be pointed out that the logic 

behind this question breaks apart as you move farther away from an average claim value (in 

either direction) and actually could be thus interpreted to suggest the opposite. 

3.1.3 Properly handling inflationary influences. 

We point out that both the numerator and the denominator of the Cost Ratio are subject 

to inflationary pressures, so there is a degree of "canceling out" which makes gives the ratio 

a degree of immunity from this type of distortion. Over time, it may be argued, the 

inflationary pressures on losses are stronger than the inflationary pressures on adjuster 

salaries and other A&O costs. This may be true, but it disregards efficiency gains due to 

technology and training. If this was an issue, over time it would serve to be pulling the Cost 

Ratio downward and with the historical data analyzed in developing this method, this has 

not been the case. 

3.2 Other Methodologies 

3.2.2 Paid-to-Paid Method Comparison 
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The most widely used method in Property-Casualty actuarial practice for establishing A&O 

reserves is the so-called "paid-to-paid" method. It involves comparing paid A&O expenses to 

paid losses for the same calendar year. This ratio is then applied to the unpaid losses to 

determine the needed A&O reserve. Generally there is a significant adjustment necessary to 

reflect the fact that some of the "A&O" expenses on open claims has already been borne in the 

establishment of the case reserves. Thus, an assumption of what percentage of the "A&O" cost 

is incurred at opening of the claim is needed. The full paid-to-paid ratio is applied to true IBNR, 

and the paid-to-paid ratio times the adjustment factor is applied to the case reserves. This is 

problematic, and widely known to be so. For reasons of contradistinction and not novelty, I 

point out: 

1. The denominator of the paid-to-paid ratio (paid losses) is a rough proxy for claim 

department activity. As we isolate scenarios involving operational changes this method 

of  quantifying claim department activity breaks down. For example, in stronggrowth 

scenarios, the paid losses increase slowly whereas the paid A&O grows generally in line 

with the earned exposures, thus increasing the ratio. The artificially high ratio is then 

applied to the unpaid losses, which are a correct representation of financial reality - 

including the exposure growth. Without correction, this will lead to an overstated A&O 

reserve. There are other distortions to which the paid loss denominator is susceptible 

such as making no recognition for the effort expended on older claims unless a payment 

is made. This is material for casualty lines of business. The denominator of the Cost 

Ratio is five components which touch on claim department activity. Paid losses is one of 

these, but handling IBNR claims, paying ALAE and the case reserves for the current 

accident year reported losses are also a part. Looking at scenarios involving operational 

change this method of quantifying claim department activity holds up better. Using the 

same example, in strong growth scenarios, the current accident year reported losses (a 

dominant piece of the denominator) increase in line with the exposure growth, 

consistent with the change in A&O paid. 

2. The "percentage paid at open" adjustment factor is not at this time, to my knowledge, 

prospectively quantifiable with any scientific method. A look at the compliment of this 

ratio ("percentage notpaid at open") more quickly leads one to the conclusion that this 

cannot be quantified with any precision. To do so would involve more than just a 

collection of motion studies. With these drawbacks in mind, it is seen to be a highly 
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3. 

suspect component of the method, which effectively (and arbitrarily) reduces the paid- 

to-paid ratio in order to apply it to case reserves where some A&O expense has already 

been expended. This drawback can result in significantly distorted A&O reserve 

indications. Traditional usage has gone with the 50/50 rule: 50% "A&O" incurred at 

open, 50% at closed. This is clearly violated by partial payment lines such as workers 

compensation and lines involving tremendous litigation such as General Liability. The 

"loss-activity-method" does not involve speculation about the amount of A&O cost 

incurred when the claim was opened. This is because the future "loss-activity", to which 

the Cost Ratio is applied, includes (1) unreported losses, (2) unpaid losses and (3) unpaid 

Defense and Cost Containment. This acknowledges, and implicitly assumes, that the 

dominant A&O cost (claim department salary) has a fairly constant marginal cost. Indeed 

this can be seen from first principles; claim department time has a (relatively) fixed cost 

since as a functional unit it is a collection of salaried professionals. These three buckets 

do well quantifying future needs of  claim department time to establish reserves on 

unreported claims as they come in, adjust the claim values as situations warrant and 

payout all unpaid loss and DCC reserves. Taking a close algebraic look at the "loss- 

activity" method, the 50/50 proportion can be found present in the handling of  the 

IBNR segment. We note that this is because the Cost Ratio is applied to both the 

"unreported" and the "unpaid" losses, which for the "pure" IBNR component are 

identical. But the two methods are working in opposite directions. For the traditional 

method, the paid-to-paid ratio is multiplied by 50% and applied to the case reserves. This 

implies many things, but the most obvious is that the current calendar year claim activity 

was involved with new claims half the time. In a steady state, this may be generally valid, 

but outside of stable parameters, it is problematic. The "loss-activity" method allows the 

data to specify the weighting as the data emerges. 

Beyond the difficulty with quantifying the "percentage paid at open", a change in case 

reserve adequacy poses further challenges to the classic approach. It is crucial because 

the method assumes the case reserves are a good representation of the effort already 

expended to investigate and establish reserves on reported claims. When faced with 

shifting case reserve adequacy, it is necessary to "lift the hood" on the method. But 

where? Infusion of an adjustment becomes very arbitrary, both in terms of  technique 

and of calibration, Further, it.will compound the difficulties highlighted above for 

assuming a percentage paid at open. Changes in case reserve adequacy are a 
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comparatively minor issue for the "loss-activity" method. The method assumes the 

overall loss reserving exercise has correctly detected the change in adequacy and thus the 

ultimate losses (and the corresponding unpaid losses) are correct. It is acknowledged that 

in terms of the denominator of the "A&O" Cost Ratio, the current year reported losses, 

and reported losses from prior years would be affected by a change in case reserve 

adequacy. But this change is partially self-correcting as claim department time is involved 

in re-evaluating case reserves previously established and the future "loss-activity" against 

which the Cost Ratio is applied is diminished (assuming the ultimate losses are correct). 

The paid component of "loss-activity" is entirely unaffected. This means the Cost Ratio 

enjoys a degree of immunity to changes in case reserve adequacy. In other words, if the 

ultimate losses are correct at the outset, the method will generally roll with the punches 

successfully. 

3.2.3 Johnson Method Comparison 

Another technique used in actuarial practice is the method expounded by Wendy Johnson. 

Her method uses a numerical proxy for claim department activity which is philosophically 

similar to the approach of the "loss-activity" method. The "weighted number of open claims" is 

the number of older claims open at the beginning of the year along with the number of claims 

reported during the year 

1. The Johnson method's marginal cost must be trended forward, since it is a cost per open 
daim, which places reliance on a trend factor. We note that the forces appearing as "trend" in 

the curve fit to the marginal cost for each year are beyond traditional inflationary effects and 

not necessarily the same in the event of runoff, as discussed above in looking at the proper 

mindset for reserving. The "loss-activity" method assumes the reserving exercise has 

properly estimated ultimate losses and thus trending of the Cost Ratio is not warranted. 

2. I also note that in application, the number of claims reported during the current year will 

be the vast majority. Thus, unless working with a severely protracted line of insurance (such 

as her example with medical malpractice), the year end pending claim counts will receive 

very little weight. This is further bolstered when looking at the distribution of paid losses. 

For companies with significant casualty portfolios, the current calendar year paid losses will 

have a Large percentage of payouts from prior years' claims. 
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3.2.4 Kittel Method Comparison 

The last technique I will look at is the method developed by John Kittel. His method is a 

variant on the paid-to-paid method. In his paper, he acknowledges many theoretical difficulties 

with the paid-to-paid approach, and concentrates on the flaws with paid losses as the proxy. He 

proposes replacing this with an average of  reported losses and paid losses, particularly in 

instances where the organization is growing. 

As it is a subtle variant of  the paid-to-paid approach, my criticisms of  the main method 

apply as well with one limited exception. The Kittel method will be more "accurate" than the 

paid-to-paid method in certain scenarios such as strong growth or intensive inflation, where 

the accruing unpaid liabilities exceed the movement in paid losses. 

4. C O N C L U S I O N S  

I have a presented a new method for calculating "adjusting & other" loss expense reserves. 

The method is technically sound and simple to calculate, and it is hoped that it will find a place 

in the reserving actuary's methods for this reserving task. 
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Loss Reserving Us ing  Claim-Level  D a t a  
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Abstract 
While the actuarial literature devoted to stochastic loss reserving has been developing at an impressive 
rate, much of this literature has been devoted to the statistical analysis of summarized loss triangles. 
This restriction limits the benefits that modem statistical techniques can bring to the subject of loss 
reserving. This paper will sketch one possible framework for estimating future claims payments using 
claim-level data. The first part of the paper will discuss the use of covatiates (or "predictive variables") 
to improve one's estimates of future payments, especially in cases where the mix of business being 
analyzed has changed over time. The second part of the paper van describe how the bootstrapping 
technique can be applied to claim-level data to estimate reserve vatiabiliq'. 

Keywords. Reserve Variability; Future Payment Variability; Generalized Linear Model; Over-Dispersed 
Poisson Model; Bootstrap; Claim-Level Data; Covariates; Predictive Variables; Changing Mix of 
Business; Chain-Ladder 

INTRODUCTION 

The  recent  actuarial literature has enjoyed a growing discussion of  statistical methods  for 

performing loss reserve analyses. This discussion has increased the statistical rigor o f  the 

subject, and has expanded the set o f  tools available for estimating reserve variability. 

However,  much  o f  this recent  discussion has been devoted to the statistical analysis o f  

summarized loss triangles. We feel that  this limits the potential  improvements  that predictive 

model ing can bring to the subject. We will focus on  two reasons here. First, summarized loss 

triangles do not  allow the analyst to incorporate  predictive variables in his or her  reserve 

analysis. Second, using summarized data limits the accuracy with which an analyst can 

estimate the variability o f  his or her  loss reserve estimates. It is reasonable to expect that  by 

not  "summariz ing  away" the size-of-loss and loss development  information implicit in fun- 

summarized) claim-level data, potentially bet ter  point  and variability estimates can result. 

Many o f  the comments  in the Discussion o f  England and Verrall 's recent  survey paper  on 

stochastic loss reserving [4] expressed this sentiment.  Shah's commen t  is representative: 

The  triangulation data that  these [Generalized Linear Modeling] techniques 
have been applied to are just a consequence of  history. They come f rom an 
era when  comput ing  power  was expensive. Therefore,  I question the value o f  
actually appl3dng such techniques to such limited data. Such sophisticated 
techniques may be more  useful if  applied to the underlying claims data, as has 
been alluded to by several speakers. In x~iew of  this, there is a danger that  the 
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results may be viewed as more scientific than they really are, and may be 
given more credibility than is truly justified for them. 

Tripp's comment also seems to us to be on the mark: 

Why do we throw away information? ... Looking at the life side of  our 
profession, you realise that work like this takes place at policy level detail If  
you look within the general insurance part of the actuarial profession, there is 
a body of  thinking that has grown up around premium rating and a body of  
thinking that has grown up around reserving. Are we getting 'over-siloed'? 
Could aspects of the methodology and the thinking that has gone into using 
GLMs for premium rating be brought more into play when it comes to 
reserving, where, at present, we tend to use aggregated claims data? I wonder 
whether we are missing out on using information that is available from 
exposure descriptions and from the circumstances of  individual claims. 

Motivated by the concerns expressed in these quotes, this paper is an attempt to develop 

the idea that using un-summarized data will allow one to unleash the full power of  modem 

predictive modeling techniques on the problem of estimating future claim payments. The 

goals of improving one's reserve point estimates as well as variability estimates will be 

discussed sequentially in the two parts of this paper. 

In Part I we review the well known shortcoming of traditional reserving methods when 

applied to books of  business that have changed over time. A danger of  using summarized loss 

triangles is that they can mask heterogeneous loss development patterns. They also prohibit 

the use of  predictive variables that might be correlated with loss development. We sketch a 

reserving technique - inspired by the chain-ladder method - that operates on claim-level data. 

Using simulated data we illustrate how this technique can reflect heterogeneous loss 

development patterns that the chain ladder misses, resulting in an improved estimate. 

We believe that the potential for improved estimates of future loss payments is sufficient 

motivation to consider the use of claim-level data for reserving. Doing so obviously requires 

additional effort (not to mention specialist software that goes beyond spreadsheets). But, as 

Part II of  this paper will discuss, it brings a significant side benefit as well. 

Namely: once we have claim-level data available for analysis, we can employ, the 

bootstrapping technique (a type of simulation that involves repeatedly sampling with 

replacement from one's data) to easily compute confidence intervals around our estimates of 

outstanding losses. Indeed bootstrapping will give us estimates of the entire distribution of 

our outstanding loss estimator, no matter how complex. 

Bootstrapping has been discussed in the recent literature as a promising avenue for 

estimating reserve variability. But because of the summarized loss triangles that serve as a 
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starting point for most current discussions of  reserving, the resampling step of bootstrapping 

is typically applied to the residuals of various models fit to loss triangles. The idea pursued 

here is to resample the underlying data points, and then apply one's chosen reserving 

technique to each of the resulting pseudo-datasets. This is a flexible and perhaps conceptually 

simpler method of  bootstrapping. Also, because its resampling step occurs prior to the 

building of any model, the pseudo-datasets that it employs are not in themselves dependent on 

the correctness of  the model being fit to the data. 

PART I: SUMMARIZED DATA AND THE PROBLEM OF A 
CHANGING MIX OF BUSINESS 

A common criticism of traditional loss reserving techniques is that they can be slow to 

incorporate changes in the company's mix of  business into their estimates of outstanding 

losses. This is the point of  the actuarial road trip joke involving the salesperson with his foot 

on the gas, the underwriter with his foot on the brake, and the actuary navigating by looking 

out the rear window. 

Bomhuetter and Ferguson state the problem well in "The Actuary and IBNR" [1]: 

The product mix can be an important factor, not so much because two 
somewhat dissimilar items are combined, but because they may have 
different rates of growth, For example, a company may have personal and 
commercial automobile loss development experience combined over the 
years although, if  it were looked at separately, commercial business would 
require higher loss development factors. As long as the relative exposure 
between the two categories remains constant there is no problem; however, 
picture the situation if personal automobile increased at a 5% annual rate 
while commercial automobile, although relatively small, is growing at a 25% 
annual rate. 

The obvious thing to do in such a situation would be to analyze commercial and personal 

auto reserves separately. That is, divide the data into two separate loss triangles and proceed 

as usual. This is helpful as far as it goes, but the approach has its limits. Bomhuetter and 

Ferguson continue: 

Of  course, the volume of data is an important factor in determining what 
kinds of breakdowns of the data are feasible. If  the data are subdivided so 
finely that most groups have only a small volume of data, the subdivisions 
may accomplish nothing usefial. Or to quote Mr. Longley- Cook's delightful 
analog3,, "We may liken our statistics to a large crumbly loaf cake, which we 
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may cut in slices to obtain easily edible helpings. The method of  slicing may 
be chosen in different ways-across the cake, lengthwise, down the cake, or 
even in horizontal slices, but only one method of  slicing may be used at a 
time. If we try to slice the cake more than one way at a time, we shall be left 
with a useless collection of crumbs." 

For example, it might be nice to set up separate reserve analyses by both coverage and 

region. But even adding the single additional dimension of  "region" might significandy 

diminish the credibility of the data and thereby threaten the integrity of  one's outstanding loss 

estimate. The goal of the first part of  this paper is to suggest a way beyond this impasse. 

Our discussion of changing mixes of  business is intended only to motivate the method 

discussed below. Hopefully the method's usefulness is not restricted to this scenario. For 

example, it might also be useful when, for example, a company moves into a new region or 

two companies merge. 

E N T E R  PREDICTIVE MODELING 

In modem terms, Longley-Cook's image of  the crumbly cake is an illustration of the bias- 

variance ttadeoff in predictive modeling. Stated briefly, a complex model (or multiple models 

fit on sub-segments of  the data) will make predictions that are less biased, but at the same time 

less certain - i.e., more variable - than a simpler model. The tradeoffis that our model should 

have sufficient complexity to reflect true statistical regularities in the data (thereby reducing 

bias), yet not have so much complexity that random patterns in the data overwhelm the model 

and lead t o unreliable results (high variance). This is perhaps a special case of  Einstein's 

dictum, "Everything should be made as simple as possible, but not simpler." 

An analogy with ratemaking might be helpful. Consider a simple rating plan with the 

following rating factors: 

• Age {<26,26-50, >50years} 
• Credit {bad, average, good} 
• Claim in past 3 years {yes, no} 

This rating plan has 3"3"2=18 cells. The most naive - and over-parameterized - way to 

proceed would be to simply estimate the loss ratio relativity of each of  these cells and base 

one's rating factors on these parameters. Note that this is equivalent to fitting a regression 

model with 17 indicator variables. But as Longley-Cook warns, the data in each of  these cells 

114 Casualty Actuarial Society Forum, Fall 2006 



Loss Reserving Using Claim-Level Data 

is ~nlikely to have sufficient credibility to produce stable results. Therefore the variance 

around the resulting rating factor estimates will be large. 

For this reason, the modem approach to ratemaking is to employ Generalized Linear 

Models [GLMs]. Rather than estimate 3"3'2-1=17 parameters, a GLM model in this scenario 

would estimate 2+2+ 1 =5 parameters. Extending Longley-Cook's analogy, we now get to have 

our cake and make multivariate estimates with it too. Rather than estimate each of  the 17 

rating factors each with its own "crumb" of  data, we use the loaf to estimate a more modest 5 

parameters. 

There are three major advantages of deriving one's rating factors from the parameters of a 

multivariate model, rather than estimating them direcdy from small "crumbs" of  data: 

• The resulting rating factors will have less variability (less parameter risk). 
• A larger number of  rating factors can be used without running into Longley-Cook's 

"crumbly cake" problem. 
• Factors such as Age and Credit can be treated as continuous predictive variables, rather 

than being arbitrarily divided into discrete bins. 

Returning to loss reserving, it is good and accepted practice to perform separate reserve 

analyses by line of  business and by such important subdivisions as Workers Comp Medical vs. 

Indemnity claims. As we have discussed, this can only be taken so far. But what if (a) claim 

development patterns vary by a multitude of  factors such as Report Lag, Credit Score, Prior 

Claim, Policy Age... and Co) the mix of  business measured by these factors has changed over 

time? As Bomhuetter and Ferguson point out, it is essential to reflect this shifting mix of 

business in one's analysis. But as Longley-Cook points out, dividing the data by many of these 

dimensions will quickly lead to serious credibility problems. 

In the light of  the ratemaking analogy above, it is perhaps natural to suggest that the way 

forward is to somehow incorporate a multivariate predictive model into one's reserve analysis. 

We will sketch one such model below. This model is offered very much in the spirit of  taking 

a first step. We expect that it could be improved or replaced with a better one. Nevertheless, 

we hope that sketching a sample multivariate loss reserving model that admits covariates will 

spark further thoughts on the subject. 
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T H E  LEVEL OF DATA N E E D E D  

Multivariate loss reserving requires that one analyze disaggregated data, at the policy or 

claim level, rather than summarized loss development triangles. The reason for this is clear: 

predictive variables such as Age, Credit, and Prior Claim pertain to the policy that made the 

claim. To incorporate policy-level variables such as these, policy-level data must be used in the 

analysis. There is no way to "attach" such eovariates to summarized data. Similarly, if we wish 

to incorporate variables such as Report Lag or Injury Type into the analysis, claim-level data 

must be used. Traditional loss triangles do not allow one to use this potentially useful 

predictive information. 

To summarize what has been said so far: 

• The traditional approach of  separating one's data and performing separate analyses on 
the resulting loss triangles is an incomplete answer to the problem of a shifting mix of 
business. 

• A plausible approach to this problem is to incorporate covariates into one's reserving 
technique - that is, build a multivariate reserving model. 

• Doing so requires that we use data at the policy or claim (or indeed claimant) level. 

For the remainder of  this paper phrases such as "reserving using claim-level data" will sem, e 

as shorthand for "reserving using policy- or claim- or claimant-level data". 

MODEL DESIGN 

In this section we propose a claim-level generalization of  the simple chain ladder reserving 

method. As stated above, this is merely one of many possible starting points. For all of its 

faults, the chain ladder has the virtues of  being simple and familiar. Generalizing the chain 

ladder therefore gives us an intuitive way of illustrating the benefits of using claim-level data to 

estimate future claim payments. 

As discussed above, We assume we have data at the policy, claim, or claimant level. Of  

course, the finer the level of  summarization of  one's data, the broader the array of predictive 

variables one can include in one's model. Deciding on the level of  data is a practical decision 

that does not substantially affect the discussion below. Let us therefore assume that our data 

is at the claim level. 
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We therefore assume that we have a database with one record per claim, and multiple 

variables on each record. These variables can be categorized into three types: 

• Predictive variables 
• Target variables 

• Informational variables 

(Credit Score, Injury Type, Policy Age...) 
(Loss at 24 months, Loss at 36 months...) 

(Accident Year, Zip Code, Agent Number...) 

The "informational" variables can sometimes be used to derive further predictive variables 

(e.g., by using zip code to match such demographic variables as Population Density onto the 

records). Other times, they are used simply for analytic purposes (e.g., displaying total losses 

by accident year). 

Let us establish some notation. We attempt to be consistent with the notation of England 

and VerraU. Let Cj denote cumulative losses evaluated as o f j  months. For example C24 

denotes the losses (associated with a particular claim) evaluated as of  24 months. {Cj } will 

serve as the target variables in our model design. 

Let {X1, X 2 . . . .  , XN} represent the predictive variables. Each value of  each predictive 

variable X i will appear on each claim-level record. We also assume that the values of  each of  

the predictive variables are measured either at policy inception, or at the claim report date 

(whichever is appropriate). 

Let U k denote the total ultimate losses for accident year k0 summed across all policies: 

Uk=~C ~. Let R k denote the outstanding losses (ultimate losses minus losses paid to date) for 

accident year k. Let U and R denote the sums of  U k and R k respectively across all accident 

years. The goal of  loss reserving is to calculate an estimate r of R as well as an estimate of  

variability of, or confidence interval around, R. R is often referred to as a "reserve estimate", 

but to distinguish it from the quantity that is actually booked in the financial statements, it is 

probably better to call it the "total outstanding losses" or "total future pa)nments" (see [2]). In 

the remainder of  this paper, the three terms will be used synonymously. 

In predictive modeling it is typically the case that we are presented with a single target 

variable Y (such as pure premium or claim frequency or size of loss) and multiple predictive 

variables {X1, X 2 . . . . .  XN}. We might fit a GLM model of  the form: 

~ )  = Is ,x ,  + ls~x., + . . . +  !s~,.x~. s ~ . x  
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Where I* denotes E[Y], the expected value of  the target variable Y; and g(.) is the link 

funcdon. 

Here, the situation is not so simple. For one thing, we are presented with multiple target 

variables {C1, C2, ..., Cj } rather than a single target Y. In addition, this (single) target variable 

is t3,pically the quantity we are ultimately interested in predicting. Here, we are interested in 

predicting either losses at ultimate or losses as of a certain development period, such as 10 or 

20 years. Let us assume that for practical purposes, Cj represents losses at ultimate. That is, 

C2~Co 0. (That is, let us assume that no tail factors are needed for our analysis.) Then C 2 is 

what we are ultimately interested in predicting; and {C1, C2, ..., C2_1} are intermediate 

quantities used as stepping stones to estimate Cj. 

The reason for this complexity is that Cj is missing on most of the claim-level records in 

our dataset. Using it as "the" target value analogous to Y in the GLM example above would 

require us to throw away data points for which Y is unknown. Let us frame our discussion in 

terms of  a'n 'example. Suppose we have claim-level records for accident years 1990, 1991,..., 

1999. On the 1990 records, we have losses evaluated as of 12, 24, ..., 120 months. On the 

1991 records, we have losses evaluated as of  12, 24, ..., 108 months; while losses as of  120 

months ate unknown ("missing"). On the 1999 records, we have only losses evaluated as of 

12 months;  {C24, C36, ..., C120} are all missing. 

O f  course we have the option of  using only the AY 1990 claim records to build a single 

GLM model; and use this model to predict the ultimate values of  the 1991-1999 claims. But in 

doing so we would throw away the loss development pattern information that t*aditional 

reserving/nethods rely on. This is not a satisfactory option. 

Many approaches are possible at this point, but we choose to build - continuing with the 

same example - 9 successive GLM models, "layered" one on top of  the other. Speaking 

figuratively, we "regress" C24 on C12; C36 on C24; and so on. Each of these 9 GLM models is 

analogous to the  9 link ratios in the corresponding chain ladder model that could be run on 

the summarized 10-by-10 loss triangle. Let us denote these 9 models M24 , M36 , ..., M120. The 

M36 model will 'take as an input either losses evaluated at 24 months (for AY 1990-98); or the 

predicted value of  the M24 model (for AY 1999). This is analogous to the way a link ratio is 

applied in a chain-ladder analysis. O f  course in addition to Cj_I, the Mj model takes as inputs 

all of  the predictive variables {X1, X2, ... , XN}. 
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Let us make this abstract discussion more concrete. The motivation for introducing 

predictive variables is to capture differences in different claims' expected loss development 

patterns. Given that our basic idea is to "incrementally" model these (potentially 

heterogeneous) development patterns /l h the chain ladder, it makes sense to model each 

claim's development from period j-1 to periodj  as a function of  several covariates: 

Cj 
- -  = ~ ( X l ,  X2 ..... X N )  
C~_t 

For mathematical convenience, we will further assume that this claim-level "link ratio" is in 

fact a (pre-specified) monotonic funct ionfof  a linear combination of  the covariates: 

C--L = f ( a +  fltX, + fl, vX2 +...+ f lNX~)  
C~_~ 

Tiffs is of  course the familiar linear modeling trick: we reduce the job of  estimating the 

function ~ to estimating the parameters {ct, ~1, [32,'.., J3N}" The monotonic function j~') 

might, for example, be the natural exponent function exp(') or the identity function id(.). The 

use of  linear models (as opposed to, say, generalized additive models or neural networks) is not 

essential to the basic idea sketched here. But it is fairly flexible and powerful approach that 

avoids unnecessary complexity. 

The above equation implies that the expected development from period f l  t o j  of  any given 

claim is a generalized linear function of  the covariates {X1, X 2 . . . .  , XN}. We do not need to 

assume that each claim at period j-1 will have the same expected development to period./'. Nor 

do we need to assume that the mix of  these (inhomogeneous) claims will stay the same from 

one accident year to the next. 

Suppose, on the contrary, that we did assume perfect claim homogeneity in the sense that 

all claims have the same expected development. This is tantamount to assuming no variance 

in claim-level link ratios; and this in turn implies that no covariate X/could possibly play a 

statistically significant role in predicting link ratio. Therefore the above equation reduces to a 

constant: 

Cj = f ( t z )  = Link _Ratio 
C j_, 
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Thus the chain ladder's link ratio is equivalent to our generalized linear model form with no 

covariates. 

A few more assumptions will let us use the machinery of Generalized Linear Models to 

estimate the parameters {ct, [31, }2 ..... [SN}. Let us assume that the funcfionfis the exponential 

function. This is equivalent to assuming the log link function from GLM theory. Let us 

further assume that the variance of Cj+ 1 is proportional to its mean. CHris assumption is not 

essential to the general technique we're t34ng to develop. This familiar assumption is being 

made for convenience, and could be altered without substantially affecting the discussion to 

follow.) In other words, we are assuming the over-dispersed Poisson GLM model form: 

k L c -  ]3 

Equivalently, 

E[~j_t]=exp{tr+fliXi +fluX2 +.. .+ fl,vX~,} 

Or, 

c~ = exp{g+ p,x, + #,,x= +...+ #Nx,, }+ a 
Cj_~ 

where 8 is an overdispersed Poisson-dismbuted error term. Given the quantities {C~1, C a, 

X~, X2 . . . . .  X~,-}, we can estimate the parameters {ct, [31, [32,... , }N} of model Mj using any 

standard GLM package. To be explicit, we would make the following specifications: 

• Target: (Cj / Cj.,) 
• Covariates: {X1, X=,..., X\,} 
• Weight: C~, 
• Distribution: Poisson 
• Link: Log 

Recasting the above equation as follows will allow us an alternate way of conceptualizing 

the above model form. Let us multiply both sides of the equation by C5,: 

cj = c,_,. exp{a+ PlX, +fl,~x= +...+#NXN}+e 
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which is equivalent to: 

C~ =exp{log(C,_,)+ct + fl, X, + fl~,X 2 +...+ flNXN }+ e 

This is perhaps a more useful conceptualization of our model. The target variable is C~ 

there is no weight variable, and log(Cfl) se~,es as the "offset term". Explicidy: 

• Target: C; 

* Offset: log(C5, ) 
. Covariates: {X.  X 2 . . . .  , Xx} 

• Weight: none 

• Distribution: Poisson 

• Link: Log 

(Note that all standard GLM packages allow one to specify an offset term.) The offset 

term essentially functions as a regressor whose corresponding "beta" parameter is constrained 

to be 1. This conceptualization illustrates the chain ladder-esque idea that we are building a 

model that estimates the expected value of  Cj as a "generalized linear link function" exp(a + 

~IX1 + ~2X2 +... + ~N XN) applied to C~,, the (known or estimated) losses as of  j-1. 

HOW TO HANDLE IBNR 

Note: this short section, and the appendix it refers to, outlines a method for extending the 

model design to handle IBNR claims. The authors suggest skipping it on the first reading. 

Indeed, this section can be skipped altogether if the reader takes the attitude that the model 

outlined can be used for losses on reported claims only; with IBNR claims being estimated in a 

separate analysis. 

This model design also allows us a way of incorporating incurred but not reported (IBNR) 

losses into our model. For simplicity, let us assume that all claims that are unreported at 12 

months are reported by 24 months. Therefore there will be records in our data with C12=0 

and C24>0. In the M24 model, we add to the database one record for each in-force 1999 

policy that had no claim as of 12 months from its effective date. On this record, we would 

force the offset term log(Clz) to be zero. We would also include on all records an indicator 

variable X 0 as a covariate in M24 that takes on the value 1 if C12=0 , and 0 otherwise. Finally, 

we would neutralize all predictive variables that measure claim-level information. 
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("Neutralize" typically means that we recode missing variables to the median value.) As with 

all of the other AY 1999 records in the database the values of {C24 , C36 , ..., C120} are all 

missing. 

Doing this will "allocate" a portion of  the 12"-)24 IBNR (estimated from the AY 1990- 

1998 data) to each 1999 m-force policy that has no claim reported as of 12 months. The Y0 

parameter of  the X 0 indicator functions in place of  the offset term, which was forced to be 

zero on each of  the 1999 zero-claim records. In other words, exp(¥~ is the. average expected 

12--)24 IBNR for each AY 1999 policy. The expected IBNR for an individual policy is 

e~%xP( a + ~1X1 + ~2X2 + ' "  + ~N XN) = exp(a + 3'0 + ~1X1 + ~2X2 +.-. + [~N XN). The 
successive models M.s6, M,s,... will "develop" this allocated IBNR loss along with the other 

losses. 

An example might clarify this discussion. Suppose that the total IBNR (as of  24 months) 

from AY 1990-98 was $400,000 and that during this time period, there were 4000 policies 

without claims as of 12 months. This is an average of $100 per claim-free policy. The value of  

'/0 would therefore be log(100)m4.6. 

Note that this method of  treating IBNR assumes that the covariates {X1, X2, ..., XN} 

affect the allocation and development of  IBNR in the same way that they affect the 

development of  other losses. We could refine the model by including the interactions 

{X0*X1, Xo*X2, ... } as further model covariates. These covariates would be non-zero only 

for the records co~responding to policies with no losses as of  12 months. This idea is more 

full)' exp~cated in the Appendix. 

SIMULATION APPROACH 

We will now apply the above model to a (very rudimentary) simulated dataset. The 

advantage of  using simulated data is twofold. First, by construction we know which covariates 

are truly related to the various claims' differential development over time. Because of this, we 

can illustrate the operation of  the model without the distr;action of  haxq_ng to convince 

ourselves that a set of  covamtes is reasonably complete or significantly correlated with the 

claims' differential loss development. 
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Second, we can simulate our data "to ultimate", and set aside the (otherwise unknown) 

losses at ultimate as a standard against which we can compare our model's predictions with the 

predictions of  the traditional chain-ladder model. 

Of  course a major disadvantage of using simulated data is that our sample results will give 

little indication of  the degree to which out proposed model will produce improved predictions 

on real-world data. 

However, it is our hope that the potential of this approach will be intuitive to many readers. 

The authors' experience in building predictive models for ratemaking and underwriting 

applications suggests that it is nearly always possible to find traditional and non-traditional 

predictive variables that are significantly correlated with size-of-loss. Given that Larger claims 

are known to develop more slowly, one expects that that many of these same predictive 

variables will be correlated with loss development patterns. 

SIMULATION ASSUMPTIONS 

We illustrate our model with a simulated dataset that is very simple, yet with sufficient 

structure to illustrate the potential advantage of  this model over the traditional chain ladder. 

By construction, our claim-level dataset has the following characteristics: 

• Near -homogenei ty  of data: the claims in our book of  business all have identical 
expected loss development patterns except for one characteristic: whether the 
policyholder that made the claim had "good" credit or "bad" credit. 

• Differential development:  The claims of  bad credit policies are expected to develop 
more slowly than the claims of  good credit policies. 

• Changing mix of business: A greater proportion of  bad credit policies have been 
written in recent years. 

As Bomhuetter and Ferguson point out, the differential loss development of  bad/good 

credit policies' claims would present no special problem to the traditional methods were it not 

for the changing mix of  business. However, the greater proportion of  bad credit policies 

written in more recent years implies that the overall development patterns will shift from year 

to year. In particular, the expected development pattern for the most recent accident year will 

not be adequately represented by an average development pattern derived from the prior 

accident years' claims in a loss triangle. 
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The simulation incorporates the idea that a measurable quantity - here, credit - is 

correlated with loss development. Therefore by including credit in our reserving model, we 

are reflecting the shifting mix of  business in our analysis. Put another way, the shifting 

proportion of bad credit policies is a "leading indicator" of  a slow-down in the book's loss 

development. Using credit as a covariate in our reserving model allows us to quantify this 

slow-down, rather than judgmentally adjust for it after a traditional reserving exercise. 

We simulate 5000 data points, each representing one daim. By design there are 500 claims 

for each of  the accident years 1990, 1991, ..., 1999. Each of the 5000 records has 10 loss 

fields C12, C24 . . . .  , C120. We will describe how the values of  {C12, C24, ..., C120} are assigned 

to each claim. 

Finally, two simplifying assumptions are made. First, we assume that there is no IBNR: all 

claims are reported by 12 months from the beginning of  the accident year. (See the discussion 

above and the Appendix for a discussion estimating IBNR in the current model framework.) 

Second, weassume that losses are fully developed as of 120 months: for each accident year k, 

U~=Zq20- 

Next we describe our simulation of  the loss fields {C12 , C24, . . . ,  C120}. We draw the losses 

at 12 months (C1,.) from a lognormal distribution; and then successively apply 9 randomly 

generated "link" factors to these losses. The means and standard deviations of the 

distributions used to generate the losses and link factors were selected by judgment. 

In more detail, the 5000 values of C12 were drawn from a lognormal distribution with 

parameters gt= 8 and o= 1.3: 

log(C12) ~ n(8, 1.3) 

For good credit claims, the values of  {C~4, ..., C~z,} were determined by the following 

algorithm: 

Cj+l = Cj * ( l i n k f l  °°e * ei) 

The similar algorithm for bad claims is: 

Cj+l = C i * (link bad * ej) 

where 
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link ~ a  = {1.8, 1.17, 1.13, 1.08, 1.05, 1.03, 1.02, 1.015, 1.008} 

and link b~a = (link~'°a-1)*1.25 + 1: 

• link b'a = {2, 1.2125, 1.1625, 1.1, 1.0625, 1.0375, 1.025, 1.01875, 1.01}. 

Finally, ej is a normally distributed "shock" term with mean 1 and a standard deviation that 

is a function of the value of the link ratio. 

The development patterns (1/LDF) implied by the above expected link ratios are graphed 

below. This graph illustrates that by construction, bad credit claims develop more slowly than 

good credit chinas. 

Loss Development Patterns 

i 
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2 4 6 8 10 

de~lopment pedod 

In summary, each claim at each time period is assigned its own randomly generated link 

ratio; but the e:,pectedlink ratios for bad/good credit claims are the ones stated above. (A word 

about motivation: the number of  claims, size-of-loss distribution, and the general magnitude 

of the link ratios were judgmentally chosen to result in a summarized loss triangle similar to an 

actual Workers Comp loss triangle studied by one of the authors. The differing link b'a and 

link ~"~a development patterns were selected purely judgmentally.) 
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So far, we have  discussed the "homogenei ty"  and  "differential deve lopment"  assumptions .  

Regarding the  "changing  mix o f  business",  we randomly apply the "bad"  and "good"  link 

ratios in the following proport ions  across the accident years: 

1990 30% 70% 
1991 35% 65% 
1992 40% 60% 
1993 45% 55% 
1994 50% 50% 
1995 55% 45% 
1996 60% 40% 
1997 65% 35% 
1998 70% 30% 
1999 75% 25% 

Note  that  the  simulation approach we have laid out  allows us to assign values o f  {C12, C24, 
• .., C12,,} to each claim, regardless of acddentyear. W e will apply bo th  our  mode l  and the  

traditional chain ladder to the data elements  that would be available in an actual reserving 

exercise - namely  those  that  fo rm the upper  half  o f  the loss triangle. At  the  same time, we can 

use the data elements  that  would  be u n k n o w n  in an actual resenting exercise - the  lower half  

o f  the triangle - as the " t ruth"  against we can judge the success o f  bo th  our  m e t h o d  and  the 

chain ladder. 

The  simulated data, summar ized  to the accident 3,ear level, is displayed below: 

3,522 6,562 7,766 8,85~ 9,627 10,144 10,473 10,700 10,875 10,970 10,970 0 
3,527 6,623 7,876 9,011 9,817 10361 10,705 10,942 11,123 ~ i ( :  11,223 99 
3,681 6939 8235 9,428 10274 10933 11,194 11,444,ii~635~!~:1~g: 11,739 295 
3,780 7,152 8539 9,791 10666 11 262 11 642 ! 1  902:12,10ff 1272i~':; 12,210 567 
2,912 5,563 6 644 7 629 8,329 8,808 19 484~[:.!i~':~. ! 9,571 763 
3,724 7,167 8 573 9,850 10,763 i1'393 12,397 1,684 
3,213 6,202 7,423 8,540 ~ ,:9,337 9 ; 8 8 5  10~3211-~10,~73"~ i0;65(}" i 0 , ~  10,757 2,217 
3,335 8,445 7727 11,187 3,460 
3,596 12,204 5,229 
3,327 9;~?,!:10,483:. ,~ ~0 ~ " :  ~j ! !~:  i;1,~323 ~ ,t::!,~2 11,432 8,105 

22,369 

1.964 1 . 2 0 9  1.149 1.094 1.060 1.036 1.022 1.017 1.009 1.000 
3.436 1.750 1.448 1.268 1.152 1.067 1.049 1 .026  1.009 1.000 

The  " u n k n o w n "  data elements (those that  would be known as o f  12 /31 /2000  or after) are 

shaded,  and will no t  be used to fit models.  No te  that  the  "ult imate" co lumn  is the  same as the 
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"at 120 months" column, and represents the "true", though unknown ultimate losses (uk). 

Similarly, the "o / s"  column represents the "true" outstanding losses as of 12/31/1999 (rk). 

Thus the "true" value that we wish to estimate is 0=)~ 0k =$22.369M. 

Note that the link ratios computed from this summarized data are essentially weighted 

averages of the link ~ and link ma ratios stated above. This is representative of  the way 

important patterns can be "summarized away" when the data is summarized to the triangle 

level. 

MODEL RESULTS 

We applied our sequence of 9 Poisson GLM models to the 5000 simulated data points. 

The exact steps of  this process are sketched below: 

Step 1: Regress the 4500 data points with non-missing values of C24 (i.e. the claims from 

AY 1990-98) on credit score, using log(Clz) as the offset term. This model is then applied to 

the 500 claims with unknown values of  La4 (i.e. the AY 1999 claims) to producepredictedvalues 

of C24. 

Step 2: Regress the 4000 data points with non-missing values of  C3, ~ (i.e. the claims from 

AY 1990-97) on credit score, using log(C24 ) as the offset term. This model is then applied to 

the 1000 claims with unknown values of Lu, (i.e. the AY 1998-99 claims) to produce predicted 

values of Cue Note that the AY 1998 values of C36 are based on actualvalues of Ca4; whereas 

the AY 1999 values of C.~c, are based on predicted values of C24- 

Step 9: Regress the 500 data points with non-missing values of  C1~, (i.e. the claims from 

AY 1990) on credit score, using log(C1,Q as the offset term. This model is then applied to the 

4500 claims with unknown values of C~2 . (i.e. the AY 1991-99 claims) to produce prrdicted 

values of C~,. Note that the AY 1990 values of C~2, are based on actualvalues of C~.s; whereas 

the AY 1991-99 values of  C1_,, are based on predicted values of Cu,s. 

Step 10: The ultimate loss estimate is the sum of Cta, across, all daims and across all 

accident years: u=Y.Y. C12,,. The estimate of  total outstanding losses r equals u minus the total 

claims paid as of  12/31/1999. 
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The way in which the model Mjis applied to the predicted values of  model Mj_I is analogous 

to die way the chain ladder's link ratios are multiplied together to produce loss development 

factors. 

The results of these 10 steps, summarized to the accident year level, are displayed below. 

They can be compared to the display of  the "truth" above: 

22,333 

link 1.954 1,208 1.152 1.093 1.059 1.036 1.023 1.017 1.009 1.000 
LDF 3.422 1.751 1.450 1.255 1.151 1.087 1.049 . 1.026 1,009 1.000 

Note that the implied LDFs at the bottom of this display were calculated by dividing the 

predicted ultimate values by the losses for that accident year as of 12/31/99. The implied link 

ratios were then derived from the implied LDFs. 

Finally, the results of a chain ladder exercise are displayed in the following table: 

3,327 10,793 
20,972 

link 1.906 1.192 1.146 1.090 1.055 1.033 1.022 1,016 1.009 1.000 
LDF 3.244 1.702 1.428 1.246 1.143 1.083 1.048 1.025 1.009 1.000 

(Note that this calculation can be verified by the reader m a spreadsheet. The spreadsheet- 

based results will differ £rom the above o/s loss estimate by $2000 (0.01°/0). This is due to 

rounding errors: the above table was generated by a computer program using un-rounded 

losses in the upper triangle.) 
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For convenience, the results of both methods - together with the simulated "truth" - are 

displayed below: 

3,522 6,562 7,766 8,850 9,627 10,144 10,473 10,700 10,875 10,970 
3,627 6,623 7,876 9,011 9,817 10,361 10,705 10,942 11,123 
3,681 6,939 8,235 9,428 10,274 10,833 11,194 11,444 
3,780 7,152 8,539 9,791 10,666 11,262 11,642 
2,912 5,563 6,644 7,629 8,329 8,808 
3,724 7,167 8,573 9,850 10,763 
3,213 6,202 7,423 8,540 
3,335 6A45 7,727 
3,596 6,975 
3,327 

1.906 1.192 1.146 1.090 1.055 1.033 1.022 1.016 1.009 1.000 
~ ; ~  1.428 1.246 1.143 1.063 1 .048 1.025 1.009 1.000 

1.964 1.209 1.149 1.094 1.060 1.036 1 .022 1.017 1.009 1.000 
3.436 1.750 1 .449 1.260 1.152 1.087 1.049 1.026 1.009 1.000 

1.954 1 .208 1 .152 1.093 1 .059 1.036 1.093 1 .017 1.009 1.000 
3.422 1.751 1.450 1.258 1.151 1.067 1.049 1.026 1.009 1.000 

I0,970 O 
11,220 9¢  9 :  99 
11,734 289 29S 294 
12,200 558 567 572 
9,537 728 763 765 

12,298 1 ,535  1,634 %629 
10,637 2,097 2,217 2.205 
11,031 3,304 3,460 3,475 
11,873 ~ 5,229 5,237 
I0,792 ~ 8,105 

20,972 22,369 22,333 
I -5.25~ -o.15~ I 

Because the chain ladder is slow to pick up the changing mix of  business (i.e., increasing 

proportion of bad credit policies that produce slower-developing claims), its estimates axe too 

low for each accident year. This effect is most pronounced for the later accident years 

(shaded). In this example, the chain ladder's total outstanding loss estimate is approximately 

6% too low. 

By comparison, the proposed method's total outstanding loss estimate is almost exactly 

correct. It goes without saying that this is because our losses were simulated to develop in the 

multipiicative fashion assumed by the chain ladder; and because by construction only one 

covariate - credit - has a statistically significant relationship with loss development. Of  course 

real-world data present no such conveniences. The above results axe therefore suggestive at 

best. Still, the point remains that the proposed method is able to reflect changes in the mix of 

business (assuming that these changes can be measured by covariates capable of being 

collected and put  into a model) that the chain Ladder misses. 

THE PROPOSED METHOD IS A PROPER GENERALIZATION OF 
THE CHAIN LADDER 

By now it should be clear that the proposed loss reserving framework is intended to 

function as a GLM/micro-data-based analog of  the chain ladder. One can go further and state 

that it is a true generalizanon of the chain ladder, in the sense that it produces the same results 

as the chain ladder when no covaxiates are present. 
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We verified this with the simulated data analyzed above. That is, we simply fit the above 

sequence o f  9 GLM models, replacing the credit variable with a constant. The proposed  

method  results in exactly the same results as the chain ladder. These results are summarized 

below. 

It is generally a bad idea to exclude a statistically significant covariate f rom the GLM 

models. Here we see that doing so reproduces the chain ladder's (understated) reserve 

estimate. This lends a statistical perspective to where the chain ladder goes wrong when 

applied to a book of  business whose  development  patterns have changed over time. 
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PART II: THE PROBLEM OF ESTIMATING RESERVE 
VARIABILITY 

From a statistical perspective, R is an estimator of  outstanding losses. It is a funct ion o f  the 

values o f  the r andom variables {Cn, )(i, Xa, ...,  Xx} for each data point. In other  words,  it is 

a complicated funct ion o f  several r andom variables. Like any such estimator, it has a 

probability distribution that  is a complicated function o f  the distributions o f  the under l ) ing  

r andom variables. 

As we have demonst ra ted  above, it is fairly straightforward to calculate the expected value 

o f / L  This is our  outstanding loss estimate. It summarizes what  the data (and our model)  tells 

us to expect about  the amount  o f  future claim payments.  But  we would also like a measure o f  

how strongly we should believe this estimate. To do this, we need further informat ion - o ther  

than the expected value - about  the distribution of  our estimator o f  outstanding losses. For  

example, what  are the cutoffs o f  a 95% confidence interval around the estimate? 

This p rob lem - sometimes referred to as the problem of  reserve vaffability - has received a lot 

of  at tention in the recent  loss reserving fiterature. The  recent  report  of  the CAS Working  

Party on  Quantifying Variability in Reserve Estimates [2] puts the matter  this way: 

A risk bearing entity wishes to know its financial position on  a particular 
date. In order  to do this, among other  items it mus t  unders tand the future 
payments  it will be liable to make for obligations existing at the date of  the 
valuation. For  an insurance situation, these future payments are not  known 
with certainty at the time o f  the valuation. 

The  fundamenta l  question that  the risk beat ing entity asks itself is: 
Given any value (estimate of future payments) and our current state of knowkdge, what is 
the probability that the finalpayments udll be no larger than the given value? 

A flail answer to this quest ion would involve the assessment of  model  risk, and is beyond 

the scope of  this paper. But  even a limited answer would go beyond supplying a mere 

confidence interval or variability estimate. Ideally, we would like an estimate o f  the entire 

probability distribution of  the outstanding loss estimator. 

This seems like a lot to ask. After  all, bo th  the loss distribution underlying our claims data 

as well as our estimators of  outstanding losses are fairly complex. Surprisingly, m o d e m  

statistics supplies us with  a simulation-based technique - called bootstrapping - that  allows us to 

estimate this distribution with fairly little effort. 
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E N T E R  T H E  BOOTSTRAP 

The Boots t rap was int roduced by Bradley Ef ron  in the late 1970s. Since then, it has 

become  a commonly  used technique in any number  of  problems in applied statistics. The  

classic text is Ef ron  and Tibshirani [3]. Put  briefly, boots t rapping is a simulation-based 

technique for estimating potentially "difficult" distributional properties - such as the standard 

deviation or the 90 ~ percentile - of  potentially complex estimators. We  typically do not  know 

the " t rue"  distribution o f  such estimators. The  basic idea of  the Boots t rap is therefore to use 

the actual, empirical distribution (i.e., the data) as a proxy for the true, u n k n o w n  distribution. 

Once  this conceptual  leap is made,  many otherwise intractable problems become fairly 

straightforward exercises in statistical computing.  

A n  analogy lies at the heart  of  bootstrapping.  Jus t  as our  actual distr ibution is one o f  an 

infinite n u m b e r  ofpossibk draws f rom the " t rue"  theoretical distribution; we can take a large 

n u m b e r  o f  resamples of  our actual distribution to form an arbitrarily large n u m b e r  o f  "pseudo- 

datasets". 

[Actual distribution : "true" distribution :: resampled datasets : actual distribufior~ 

Just  as we would know everything we need to know about  the "true" distribution if  we 

could draw a large number  of  samples f rom it, we can estimate m u c h  o f  what  we would like to 

know about  the " t rue"  distribution by treating the actual distr ibution as a proxy, and drawing 

multiple resamples f rom it. 

We  can illustrate this idea by applFing it to a very simple p rob lem for which we know the 

answer in advance. Suppose we draw 500 observations X={X1, . . . ,  Xs,~, } f rom a normal  

distribution with ~t=S000 and o=100: n(5000,100). Let  ra denote  the sample average o f  this 

data: 

1 5ooo 
m = - - E X  i 

tit i = l  

m is an estimate o f  the true value 8, just as we derived an estimate o f  the " t rue"  outstanding 

losses in the previous sections, ra therefore tells us "what  we th ink"  about  the true value o f  ~t 

based on  the data. We would also like a measure o f  "how sure we are". In this simple 
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example, the obvious thing to do is construct  a confidence interval by appealing to the 

elementary fact that: 

a ioo 
s.d.(m) =-~nn = ~ = 4.47 

Let  us apply boots t rapping to this problem to see how close we can come to the answer 

(4.47) that  we know in advance. 

The  following table records some facts about  our data: 

• # obs: 500 

• Mean: 4995.79 
• Stdev: 98.78 
• 2.5 m % a ~ :  4812.30 
• 97.5 'h %~: 5195.58 

We can resample f rom this dataset a large n u m b e r  of  times to create multiple "pseudo-  

datasets". "Resampling" means sampling with replacement  as many times as there are points  

in your initial dataset (here, 500). Explicitly: pull a point  at r andom from {X1,... , Xs, N,}; 

record it; throw it back in; repeat  this until  we have out  first pseudo-dataset  containing 500 

observations. Let  us denote  this pseudo-dataset  Ji'~l. 

We now repeat this process as many times as we would like, say 999 additional times. We 

therefore have 1000 pseudo-datasets .X'~ .... ~1~,~,- We can compute  the sample average m on 

each one o f  these datasets. Denote  these {m* t ... .  m%N~ }. These  1000 estimates consti tute an 

estimate o f  the a~'stdbution of  our est imator m. With  this distribution {m* t .... re%K,, } in hand,  

we can very easily estimate nearly any distributional property o f  ra that  we would like. In 

particular: the sample standard deviation o f ra  based on  our  1000 resamples is 4.43: 

1 I000( 1 io0o -~2 

s .d . (m)=~i~i tm*i--~-~,~_im*,J  = 4 . 4 3  

This differs f rom the true value (4.47) by less than a percentage point.  

Boots t rapping in this toy example is therefore a complete  success. The  key point  to note  is 

that the unlike our analytic formula for s.d.(m), the boots t rapping technique does not  assume 

any knowledge of  the underlying distribution o f  X. All that was required was comput ing  
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power. Because o f  this, it is possible to execute essentially the same process on the loss data 

analyzed in the previous sections. 

BOOTSTRAPPING RESERVE ESTIMATES 

Having introduced the concept  and run through a simple example, there is little to say in 

this section, other  than to report  the results. Let S denote our database o f  5000 claims. We 

resampled S 500 times to get the 500 pseudo-datasets ~'1 .... S*s, .. We then ran the above 9 

GLM models on  each o f  these 500 pseudo-datasets and computed  outstanding losses on each 

pseudo-dataset: {R*I,..., R's,,,}. Although it might seem excessive to fit 4500 GLM models 

to estimate the distribution o f  outstanding losses, doing so took less than 15 minutes on  a 

standard laptop equipped with the shareware statistical software package R. 

The estimated distribution of  the outstanding loss estimator R is plotted below: 

total reserves -a l l  10 years 

I I I I I I I 

19000 20000 21000 22000 23000 24000 25000 

The bars are simply a histogram o f  the 500 estimates o f  outstanding losses. The solid curve 

is a superimposed normal distribution. The dotted curve is a kernel density estimate o f  the 

distribution underl3fing the histogram. Some basic statistics o f  this distribution are reported 

below: 

• Mean: $21.751M 

• Median: $21.746M 

• Stdev: $0.982M 
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• C.V.: 4.5% 

This kernel density estimate in the graph suggests that the distribution of  our outstanding 

loss estimator is normal, to a reasonable degree of  approximation. The fact that the mean is 

nearly equal to the median reinforces this judgment. Therefore a 950/0 confidence interval 

around our reserve estimate can be calculated in one of two ways: 

• Record the 2.5 and 97.5 percentiles of  the bootstrap distribution. 
• Calculate 21.751M _+ (1.96)*(0.982M). 

Both of these methods produce the same answer, to within the nearest $100K: 

($19.8M, $23.7M) 

In short (ignoring model risk), we have 95% confidence that the true outstanding loss is 

within + 9% of our estimated value. We remind the reader that this result is based on a 

rudimentary simulation, and is only intended to be suggestive. 

DISCUSSION 

Before concluding this paper, we would like to make four points about the bootstrapping 

technique illustrated above. First, bootstrapping is uncommonly generous to the practitioner 

in that it gives one an estimate of  the entire distribution of an arbitrarily complex estimator 

without asking for any knowledge of  the distributions underlying the data. Nearly an 3 , question 

we would tTpicaUy ask about the outstanding loss distribution (standard deviation, skewness, 

percentiles, probability of nfin...) can be addressed with mere computation. 

Second, the bootstrap method illustrated above is not specific to our GLM-based reserving 

technique. Indeed, if the claim-level data is available, one can also use this technique to 

bootstrap chain-ladder, Boruhuetter-Ferguson, or any other reserve estimates. To do this, we 

would summarize each of our pseudo-datasets to the triangle level; and apply our favorite 

technique to each of  the resulting triangles. The 1000 outstanding loss estimates (assuming 

1000 pseudo-datasets, as in the above illustration) resulting from each of  the 1000 pseudo- 

triangles will constitute the distribution of  our outstanding loss estimate. 

Third, bootstrapping has been the subject of some discussion in the recent loss reserving 

literature. But there is an important difference between these discussions and the technique 
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illustrated here. To the best of our knowledge, these discussions have been offered in the 

context of analyses of summarized loss triangles, not claim-level data. 

The excellent survey paper by England and Verrall [4] is an example. England and Verrall 

apply a GLM model to a summarized loss triangle, and resample the standardized residuals of 

this model. They resample the distribution of  residuals (there will be 55 data points for a 10- 

by-10 loss mangle) a large number of  times. Each time they add the pseudo-dataset of  

residuals to the original loss mangle to form a pseudo-history to which they can again apply 

their GLM. Doing so allows them to estimate the prediction error of  their estimate. 

The difference between England and Verrall's approach and the approach illustrated here is 

generic, and found in most textbook discussions of bootstrapping. When bootstrapping 

model predictions, it is possible either to bootstrap cases (our approach) or residuals (England- 

Verrall). When dealing with small loss mangles it is not meaningful to bootstrap cases. 

However bootstrapping cases is meaningful when claim-level data is available. 

As noted in the final paragraph of  the introduction, our approach of  resampling cases 

occurs prior to any reserving model being fit to the data. In other words, the very validity of 

our pseudo-datasets does not depend on the adequacy of the model being fit. In this sense, 

the cases-based resampling strategy is less sensitive to the correcmess of ones model than the 

residual-based resampling strategy. 

One final comment: bootstrapping is not the last word on the topic of reserve variability. 

In particular, nothing we have said addresses the problem of modelfisk. Suppose, for example, 

that we bootstrapped the traditional chain ladder applied to our simulated data. The 

bootstrapped confidence interval would not reflect the bias due to excluding the credit 

covariate in our reserving model. What is perhaps the biggest challenge in reserve variability is 

therefore left untouched by this discussion. Still, by giving us a practical way of estimating the 

predictive distribution of outstanding losses, bootstrapping potentially allows one to devote 

more attention to model risk. 

CONCLUSION 

The traditional summarized loss mangle is in general not a "sufficient statistic" for 

estimating outstanding losses. There will be times when we can do better by basing reserve 

and reserve variability estimates on un-summarized claim-level data. 
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As the first half of  our paper illustrates, loss mangles can suppress heterogeneous loss 

development patterns that could be used to improve our predictions of outstanding losses. At 

the same time, summarized data does not allow us to use predictive variables that might be 

correlated with different loss development patterns. 

Fttrthermore, as noted in the second half of  our paper, loss mangles potentially summarize 

away variability information that could be used to make improved estimates of reserve 

variability. Using claim-level data allows us to bootstrap cases, not merely residuals from 

models applied to loss mangles with small numbers of observations. 

In short, the use of  claim-level data, together with relevant predictive variables, has the 

potential to improve actuaries' estimates of  outstanding losses. In addition, it makes available 

a powerful and conceptually simple method for estimating reserve variability. 
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APPENDIX: ADDING IBNR TO T H E  MODEL 

This appendix outlines a method by which one can enhance the model to predict INBR 

losses. Alternately, one can simply use the model outlined in the body of  this paper to model 

the development of reported claims (as is done in the simulation example to follow); and build 

a separate model to estimate IBNR. 

The 12--)24 model (M24) not modified to reflect IBNR takes the form: 

C24 =exp{Iog(Cn)+ ct + fl, X, + flNX2 +... + fluX u }+ g. 

The idea is to introduce a record for each policy with no losses as of 12 months (C1_,=0) 

from its effective date. (Note that the other records in our database are at the claim level.) We 

set the offset term log(Clz) on these records to be zero. We also include on all records an 

indicator variable X, that takes on the value 1 if Cn=0, and 0 otherwise. Finally, on the (claim- 

free) policy-level records we would neutralize all predictive variables that measure claim-level 

information. ("Neutralize" might mean that we recode missing values of  a variable to the 

median value of  that variable.) 

For the 1990-98 policy-level records, we let {C24, C u,, ..., Cta,} equal the total IBNR 

evaluated at these various evaluation points. As with all of  the other AY 1999 records in the 

database the values of  {C=4, C3,, ..., C1,~,} are all missing. We add the indicator variable X, in 

the model. At this point our model takes the form: 

C24 = exp{log(Cn)+ g+7oXo +fl, Xl +flnX2 + . . . + f l n X n } + e  

Note that in this model form, the offset term only "applies" to the claim-level records with 

a non-zero value of  C1,; similarly, the term y ~ ,  "applies" only to the policy-level records with 

Cn=0. The remaining terms apply to both types of  records. In other words, each of the [3 

parameters simultaneously models development of  losses reported as of 12 months, as well as 

allocates IBNR losses at 24 months. 

If this dual functioning of  the [3 parameters is unsatisfactory, it is possible to let the [3 

parameters only model the development of reported claims (as in the original model with no 

IBNR component) by introducing interaction terms. Suppose that X1...Xx_p are the policy- 

level covariates (such as policy age and credit score) in the model. (Claim-level variables such 
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as report lag or injury type do not apply to policy-level records.) We add the interaction terms 

X.*X>..  X,,*X~:p into the model: 

C24 =exp{log(C,2)+ a + yoX o + ISjX, +... + f luX ~ + 7~o * X, +... + yu_,/Yo * X ~_t,}+ e 

If  this seems somewhat complex, it is because we have really designed "two models in 

one". The 12--)24 development of a claim C*~= is given by the following equation: 

C'24 = exp{log(C*,2 )+ a +/31 X, + ... +flt¢ X u } 

All of  the terms with X,  drop out because X,, is assumed to be 0 on (claim-level) records 

with non-zero Cn. In other words, we are back to the model form given at the beginning of  

this appendix. 

On the other hand, the allocated IBNR at 24 months for a policy with no loss at 12 months 

is given by the following equation: 

C24 = exp{a +70+(fl, +YI)X, +...+ (flu_,,+yu_,,)Xu_,, + r}  

Here × denotes the terms {[3x~+lXx~+t + ... + ~,-X,x}. These terms reduce to a constant × 

because the claim-level variables {X,x~+~ ...Xx} were neutralized on the policy-level records. 

In addition, note that the offset term was forced to be zero on these policy-level records. 

It might be helpful to note that exp{~t+y,,+x} is the average IBNR allocated to each of the 

policies that were claim-free as of  12 months. The multiplier exp{(~t+y~)Xl+...+(~x.p+~,x_ 

~)X.x.p} adjusts each policy's allocated IBNR based on the values of  the policy-level covariates 

Xv..X.x>. As with expected claim development, the fact that the allocation of IBNR is 

"tailored" to the individual policy according to that policy's characteristics allows the model to 

reflect changes in the mix of  business being analyzed. 

Models M 3 6  , . . . ,  Mt,~, can similarly be modified to handle the further emergence and 

development of  IBNR. 
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Parameter Estimation for Bomhuet ter /Ferguson  

Thomas Mack, Munich Re 

Abstract: The Bomhuetter/Fergnason loss reserving method consists of selecting a development pattern and, for 
each accident year, an initial ultimate loss ratio. From these, the reserve estimate is derived. In this paper, the 
usual way to obtain the development pattern from the cl~in ladder link ratios is criticized because it assumes a 
multiplicat~ve connection between past and future loss amounts whereas the Bornhuetter/Ferg, ason method 
establishes an additive connection (i.e. an independence). Therefore, an alternative approach to derive and select 
a deveh)pment pattern is proposed. 
Furthermore, the raw data usually contain some implicit information about the underwriting cycle. This paper 
shows how this information can be extracted from the data and used in the selection of the initial ulurnate loss 
ratios. 
Altogether the proposed approach is believed to align with the concepts of Bornhuetter and Ferguson better 
than the conventional approach does. The result is a standalone reserving method which does not rely upon the 
use of chain ladder elements. 

Keywords. Loss reserving, Bornhuetter/Fergmson, Development pattern, Initial ultimate loss ratio 

1. I n t r o d u c t i o n  

Let C,., denote  the cumulative loss amoun t  (either paid or  incurred) o f  accident year i after k 

years o f  development ,  1 <_ i, k _< n, and v i be the p remium volume o f  accident year l". Then  C,.,,+l.i 

denotes the current  loss amoun t  o f  accident year i. Let further S,., = C,. k - C/.k. t denote  the 

incremental  loss amoun t  (with C,.o = 0) and U i the  (unknown) ultimate loss amoun t  o f  accident 

year i. Then  R / =  U i - C+.,+I., is the (unknown true) loss reserve for accident year i. Fo r  an easier 

exposit ion o f  the ideas, we assume in the beginning that n is large enough  such that there is no  

significant loss deve lopment  beyond development  year n. We will eliminate this assumpt ion  at the 

end o f  section 3. 

B o m h u e t t e r / F e r g u s o n  (BF) introduced their me thod  to estimate R,. in 1972 in order  to cope 

with a major  weakness o f  the chain ladder (CL) method.  Therefore,  we will first examine this 

weakness: The  CL uses link ratios f* in order  to project the current  loss amo u n t  C~,+~., to 

ultimate, i.e. it estimates U ~  = C i . , + ~ _ , f r + : _ . . . . . f % f : .  Therefore,  the CL reserve is 

= c.,+,., = c,.,+,_, ( L = _ ,  ..... 2 , , - 1 ) .  
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This means that the reserve is heavily dependent  upon the current loss amount  C~.,+~.,. This 

can lead to a nonsensical reserve / ~  = 0 for accident years where currently no claims are paid 

or reported which is not  unusual in excess-of-loss reinsurance for the mos t  recent accident 

year(s). 

The  BF method avoids this dependency upon the current loss amount  C,.,+~_,. The indicated 

BF reserve is defined as 

where 

:= (1-a..,_,) ¢ 

Oi = vi4, with an aptioti estimate qi of  the ultimate loss ratio (ULR) qi := U,/vi for 

accident year i, 

b k e [0, 1] is the percentage of  ultirnate losses expected to be "known after development 

year k. 

Note  that qi is called the apriori (or initiaO estimate of  the ULR, in contrast to the posterior 

estimate (C,.,+,.~ + ({i~V)/v, of  the ULR. This a priori estimate is different from the posterior 

e s~na te  if  and only if  C~. . . . .  # b,+l_~v,~,. The percentages (b v b. .. . . .  b,) constitute the expected 

cumulative development pattern (with b, = 1 due to our preliminary assumption regarding n) and 

1- b,+,_, is therefore the expected outstanding loss percentage of  accident year i. 

Thus, in order to apply the BF method,  the actuary has to estimate the parameters q, and b k for 

all i and k. In practice, the b k are derived from the CL link ratios in the following way: 

b=, ,  .... . i . 1 - ' .  

The method itself does not  provide an objective approach for the determination of  the a 

priori estimate 4,. In practice, the q, are estimated in a variety of  ways, often based upon last 

year's estimate and /o r  pricing and market information. At  worst, this practice can make the 

estimate qi appear manipulated in order to achieve a reserve of  a desired size. At best, the use of  

the CL pattern makes it difficult to view the BF method as a standalone reserving method. 

Moreover, the use of  the CL link ratios assumes that the unknown losses are a direct multiple 

of  the already known losses at each point  of  the development. This contradicts the basic idea of  

142 Casualty Actuarial Society Forum, Fall 2006 



Parameter Estimation for Bornhuetter/ Ferguson 

the independence between Q,+,., and /~7 v which was fundamental to the origin of  the BF 

method. 

Therefore, this paper develops an alternative approach to estimating the BF parameters qi and 

b k without the use of  CL concepts along with rather clear guidance on bow to arrive at an a priori 

estimate for the ultimate loss ratio q,. Through this approach, the BF method becomes a true 

alternative to the CL method. 

2, E s t i m a t i o n  o f  t h e  D e v e l o p m e n t  P a t t e r n  

I f  we already have an a priori estimate for U i (e.g. from the traditional approach as outlined 

above), we are able to estimate the appropriate development pattern. From the BF reserve 

formula 1~, Be = ( I -b , . ,_ , )  UI we deduce 

i . , , , - 1 - ~ '  = 0 , - ¢  ci.~+,_i 

- < - - W - ~  -- 0 ,  

As previously stated, the =-sign is a strict equality only if the a priori estimate 0, equals the 

posterior C,.+, i + g .  i.e. if C~..+,_, = a.+l_,0,. M s  , , ~  not be the case eor every ; but should be 

true on average, at least approximatdy, otherwise the pattern bl,/~2 ... would not fit to the data. 

Therefore, the previous approximate equation suggests the estimator 

as weighted average of  the ratios C J 0 , .  This direct way of  estimating the cumulative pattern b~, 

b2, ... may lead to inversions, i.e. ¢ > • . , ,  because each ¢ is based on a different number of  

accident years. In order to avoid such inversions, we use the corresponding increments 

•+l-k ~ ' | - k  

and obtain bk by adding up the ~k, i.e. take 

/;k =[~, + . . .+~ ,  

and supplement it with b.+, = 1. 
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This is the development pattern as suggested by the BF reserve formula itself. This pattern is 

different from the CL pattern as can be seen e.g. from the numerical example below. Of  course, 

the ~, should be smoothed and decreasing towards 0. This can be achieved by smoothing 

selections much as one would do when selecting CL link ratios. We ~ apply such a procedure 

together with the estimation of the ulumate loss ratio in the next section. But the actuary who 

wants to stay with the traditional BF way to arrive at an estimate for Ui can stop reading here and 

just use the specific BF pattern derived above. 

3. E s t i m a t i o n  o f  t h e  In i t i a l  U l t i m a t e  L o s s  R a t i o s  

As said in the introduction, the BF method aims at developing an estimate for q, which does 

not directly depend on the losses Ci,+l. i known to-date and can be similarly obtained by another 

actuary. The procedure proposed here employs a three-steps approach. The first step considers 

the average incremental loss ratio (ILR) 

~+l-Jt ~+l-k 

of development year k observed to-date. The sum @ + ... + ~,  of all average ILRs is an a priori 

estimate of the ultimate loss ratio of an average accident year (if the development is assumed to 

be finished after n years). Note that in determining this a priori estimate, the known loss 

experience C,.~+,., of any fixed accident year i is taken into account only marginally (as opposed to 

the CL estimate for Ui). 

In the second step, we leverage the fact that the ultimate loss ratio ql of accident year i is 

highly influenced by the level of the rate adequacy of that particular year. The rate adequacy is 

determined by two factors: the rate level and the loss level, which together yield the level of the 

loss ratio. But whereas in rate making we have to determine a sufficient absolute rate level - 

sufficient to pay all costs of the business -, for reserving purposes it is sufficient to judge the 

relative level of rate adequacy of an accident year as compared to the other accident years. With 

this information we can translate the (almost) -known loss ratio of the oldest accident year(s) into 

predictions for the more recent accident years. Thus, we have to estimate the rate level change 

and the loss cost trend only. This is much easier because, at the time of reserving, we know the 

degree to which any rate changes have been realized and we know already some part of the losses 

of each accident year. This information should therefore be Used for the assessment of the rate 

adequacy in addition to the information from the time of rate making. 
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Thus, we analyze what the run-off data tell us about the rate adequacy. I f  an accident 3,ear i 

has a below average rate adequacy (as compared to the other accident years considered), then the 

premium volume v, is smaller than it should be for an average accident ),ear. Therefore, most o f  

its observed individual incremental loss ratios 

Sj., S,. 2 S~.,,÷,_j 

V i V t V t 

will be higher than the corresponding averages 

tk,, th 2 ..... tk +,_,, 

at least after we have eliminated any unusually large individual losses as is normally done with any 

loss reserving method. In order to arrive at a single figure indicating the emerged relative rate 

adequacy level o f  accident 3rear i (as compared to the average level o f  all accident years 

considered) we use the weighted average 

# + 1 - /  #l+l-i "+'-, ;,,, I v  c,..+,_,l., 
r ' : = Z  = = .+ , - , .  

o f  the ratios o f  S,.ffv, and tb k . Thus, r, is the rat io o f  the current individual loss rat io C,.,+, Jv~ o f  

accident year i divided by the corresponding a priori average loss ratio. Therefore, r, can be called 

a loss ratio index. 

As seen from the premium perspective, r, indicates the factor by which the premium v~ has to 

be multiplied in order to adjust it to the average rate adequacy level o f  the accident years i = I, 

. . . ,  n considered. From this perspective, r, can be called an on-kvelpremiumfactor. Again, the factor 

r, does not  necessarily bring the premium v i to the sufficient absolute size; it only achieves that - 

in relation to v L instead of  v, - all accident years have approximately the same ultimate loss ratio 

U,/(v/r) -~ tk, + ... + t~,,, may the latter be profitable or not. At this stage we can already state that, if  

the rfls and the r~, 's are plausible, then 

(& +... + rk Jr, 

is a reasonable a priori estimate o f  the ultimate loss ratio q, = U J v  i (if the development is 

assumed to be finished after n years). 

As a third step, we have to check the plausibility oft;,.. Initially we realize that the paid data and 

the incurred data will field different values for r,. But o f  course, these should be identical because 

they relate to the same premium v, and losses U, for either set o f  data. Without additional 
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knowledge, we would therefore use the straight average (r,/~d + r ," ' ) /2 o r -  as we deal with 

factors - rather the geometric mean 

~ m r  
g / - x t r ,  .r/ . 

The calculation o f  the r,'s should be based on the data o f  a rather large portfolio in order to 

have the factors r, he as refiable as possible. This large portfolio could be comprised of  several 

ran-off  triangles for which the reserving is done separately, but which are assumed to have 

undergone similar changes in rate adequacy level. 

Normally, we also have some information from pricing available, i.e. the rate changes effected 

and an estimate of  the loss trend. The ratio r,/r,. I o f  any two consecutive years should be checked 

against the ratio of  the loss trend and the effective rate change imbedded in v, (in combination 

these represent the indicated change o f  the rate adequacy level). For instance, if  from year 1"-1 to 

year i a loss increase o f  +10% is expected but a rate change of  only +5% has been achieved, the 

ratio r//r/_ 1 should be close to 1.10/1.05 indicating a deterioration o f  the loss ratio by 4.8% (= 

1.10/1.05 - 1). I f  not, we have to make a decision between these two ratios, e.g. form a 

credibility-weighted average o f  both values. 

For the most  recent accident years i=n and i=n-1 we probably will trust the pricing 

information more than the r-estimate from the data, as the latter only relies on one or two entries 

in the triangle. At  an extreme, r, could be 0, which would be nonsensical and must obviously be 

adjusted. The size of  r 7 for the first accident year can in principle be chosen arbitrarily, because its 

rate adequacy level (loss ratio level) will be taken into account in a subsequent adjustment of  hk ,  

see below. Therefore it can be left as it comes out o f  the formula in order to keep the t~, at the 

intuitive incremental loss ratio level. 

What really matters are the relativities r,/r,. 1. Therefore, we first select the values for these 

relativities based on all information available and then, starting with a selection for fi', derive 

from these the resulting selections r/" for each accident year i. With these selected rT, all adjusted 

premium volume figures vK; 1 < i < n, should ultimately lead to (approximately) the same rate 

adequacy level, i.e. yidd similar values o f  UJ(vti). 

At next year's reserve calculation, the data triangle xxdll contain an additional diagonal which 

will result in changes to .all r,. But the ratios r,/r,.l have the same interpretation as before. 

Therefore, due to the arbitrariness o f  rl" , we can keep the "old" r," and - as long as no changes in 
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the ratios r,7/r S are indicated - also keep the other r 7 and just add a new r,,'+l based on a plausible 

ratio r.'+,/~. 

Before using r7 for the estimation of  q, we have to adjust the average incremental loss ratios 

th k because these were based on the unadjusted premium volume figures v,. Therefore we replace 

~ with 

Often this will result in minor  changes only. Major changes may happen for the last two or three 

development  years or generally with data where the sizes of  v, or r," vary significantly. 

The  adjusted ILRs ~ ,  of  the last few development years could stiU produce unmtuitive 

results, again due to the limited number  of  data points. O f  course, these incremental values 

should be smooth  and decreasing towards 0. Therefore, a smoothing approach is reasonable, and 

we denote the ILRs finally selected with phi. 

At  this point  we will abandon the unrealistic assumption of  not  having any development  

beyond development  year n. This is simply achieved by selecting an average tail ratio phi+, (which 

may be 0 or even negative, like any other ~ ) ,  to supplement the ILRs ,h~, 1 5 k _< I1, already 

selected. 

Using these selected ILRs, we now have 

,~':= ,a, +...+,~" + <+, 

as an adjusted estimate for the ULR at average rate adequacy level. O f  course, the paid data 

should have the same estimated ULR rh'as the incurred data. I f  that is not  the case, we must  

adjust some ~ ,  especially the.,, to achieve the equality the, d = th;,,. This finally yields the a priori 

esdrnate 4,: = r'rh* for the ULR of  acddent  },ear i a n d  the corresponding amount  U, := v,r,'th" . 

In contrast to the traditional BF procedure, this procedure gives the actuary the possibility to 

consolidate the general pricing and market information available with the trends and relativiues 

contained in the paid and incurred data triangle. Moreover, this procedure uses a detailed 

decomposiuon o f  the inidal ultimate loss ratio qi = r,'#h~ +... + ~h**~) into its components  rate 
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adequacy and development pattern. This makes the procedure easier to be followed or peer- 

reviewed by any other actuary. 

4. Estimation of the Development Pattern (continued) 

Now, we insert the result D i = v,r/'th" of the previous section into the formula derived for ~k 

in section 2 and obtain 

, + l - k  n + l - k  

Xs~ Xsj, ._ 

_ t = l  _ _  i = l  _ _  PP/k 

k n ~ - - k  H + l - k  - -  ~ " 

X 0, X ~,c~" 
i = l  t = l  

Here we see that the numerator r~ k may differ from the finally selected rh~, as the 

denominator reflects the selected ILRs. Therefore it is logical to select 

rh" 

This finally leads to 

a;:= ~ +...+ ~ = < + . . . +  < . 
,~ +... + ~., 

This is the genuine BF development pattern which is different from the CL pattern (see the 

numerical example below). 

5. Putting it all Together 

Altogether, we have the following steps of calculation: 

th k = E ,L~I -kS i , /E"+I-% i raw incremental loss ratio (ILR) at devdopment year k 

u+l -z  ~+l--i 
r, = E , = ,  S ' k / Z k = ,  (v 'mk) rawon-levelpremiumfactorforaccidentyeari  

r 7 = selected on-level premium factor for accident year i (same for paid and incurred) 

r~ = selected average ILR at development year k 

A u + l - k  n + l - k  , (smoothedversionof,~,=X,=, S , / X , =  ' (~,r~)) 

qi = r* (rh~ + ... + ,,h~ + the+ I ) apriori ULR for accident year i, including tail ratio the+ I 
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V i 

/i, 

= v,(ti = v r" (rk; + . + tk*+,) apriori estimate of  ultimate losses for accident year i 

_ r~; + ... + t ~  avg. cumulative percentage paid (incurred) at development year k ,;,, +... +,;,~., 

= (I-b,;+,_/)01 =vr,*(t~:+u_i+. . .+;a:+,)  loss reserve for accident year i 

\Vith this way of  estimating its parameters q, and bk, the BF method is truly a standalone 

reserving method which is completely independent  of  the CL method. As shown in section 2, 

this way of  calculating the pattern b ,  b2, ... can also be used if the a priori estimates ~, and 

Ui = v, ql are arrived at in a different (e.g. traditional) way. Thus, even if  one does not  like to 

work with m k and r,, one should at least adopt the estimation of  the pattern as outlined above and 

avoid using the CL pattern. 

6. Numerical Example 

Data from General Liability Excess business are used to demonstrate the method. Exhibit  A 

contains the premiums v, and the incremental amounts Si., o f  the incurred and the paid losses for 

the accident years 1992 - 2004 and development years 1 to 13. Some negative amounts have been 

kept in order to demonstrate that this does not  lead to distortions. Exhibits B and C show the 

detailed results of  the calculations for the incurred and the paid data respectively. These two 

exhibits are subdivided into three column blocks and two row blocks indicating the order of  

calculation: Columns (.4.) through ((2) and rows (1) through (2) are the given data in aggregated 

form. From these the various components  are calculated in the foUowing order: 

Rows (3) through (4), 

Columns (D) through (G), 

Rows (5) through (9), 

Columns (H) through 0VI). 

In the headings of  column (H) and row (9), (8#) stands for the last number  in row (8), i.e. ~ ' .  

M+l-k 
The suffix +k in rows (2), (3) and (5) stands for summation over i, i.e. ~-~i=l , The term "post." 

in columns (L) and (M) stands for "posterior". The bold headings ti*, m~* and Ta i i - ILR indicate 

those positions where selections were required. These selections have been made in the following 

way: 
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Before selecting ri* we looked at Exhibit D where the raw r i from column (E) are plotted for 

both paid and incurred data. The graph shows that the two sets o f  data are reasonably consistent, 

except for accident year 2004. Therefore, for i = 1992, .. . ,  2002, we selected ri* as the geometric 

mean between the paid r i and the incurred r~. For i = 2003 and 2004, we have set ri* = 0.50 for 

both, incurred and paid. The latter choice is not  based on any further information. It is just an 

example. As mentioned earlier, information from pricing should also be used when making the 

selection. But even without this, the resulting ri* seem to give a realistic picture o f  the rather 

extreme rate adequacy level changes over the years considered. These ri* correspond to the 

following adequacy changes: 

i-1--+i 92-+93 93-"494 94-+95 95--496 96--}97 97--+98 98--+99 99-400 00--+01 01-+02 (12--'+(13 03.-+04 

r i . / t i . l t l t  0.89 0.95 (i.94 1.52 1.49 i .26 1.54 0.72 0,66 0.79 11.67 1.00 

If  we interpret r, a loss ratio index, the above figures imply that we assume a decrease of  the loss 

ratio index r i from 1992 to 1993 of  11% (= 0.89 - 1) and an increase o f  52% from 1995 to 1996. 

ink* has been taken from row (6) (m-~) for development years k = 1, . . . ,  7. _All the other ink* 

have been selected in order to make the development smoothly decreasing. O f  course, other 

selections would have been possible. The Tai I - ILR for incurred has been selected to be 0 and 

the Ta i I - ILR for paid has been selected such that the sum r~* of  all paid ILRs equals that o f  the 

incurred-ILRs which is 137.9%. Note  that the traditional way to apply BF will yield exactly the 

same reserve PS as obtained in column (K) if we use 1.379%* as initial loss ratio and the pattern 

from row (9). 

Finally, Exhibit E shows a comparison between the raw development pattern as proposed 

here and the pattern derived from the raw CL factors. More precisely, the BF pattern is a plot o f  

/~,. _- r~, +... + r~, using the raw ILR's m k o f  row (4), whereas the CL pattern is a plot o f  ,g +...+& 

^ n-k ] n-k 

b~C:L = ( )~+ l ' . . . ' f , ) - '  with ) k - - - - -~=lCk+l /~ lC i .  k . We see that the raw BF pattern is clearly 

different from the raw CL pattern for either data set. 

7. F i n a l  R e m a r k s  
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As with any reserving method,  this approach to estimating the parameters (i.e. the reserve) 

relies on implicit assumptions. One  main assumption has already been addressed in the 

beginning: the data observed to-date and the amounts still outstanding are independent. This 

assumption is a cornerstone of  the BF method. As the assumption should hold at any point  in 

time, it essentially means that all incremental amounts 3"/. 1, ..., Si.,, of each accident year are 

assumed to be independent.  This would be violated if  claim payments or bookings of  case 

reserves were not  done in the same way each year, especially if high payments in one calendar 

year would be followed by rather delayed payments in the following year(s). Similarly, the 

independence of  the accident years is implicitly assumed in the estimation of  m v This 

independence assumption is normally less problematic but  could also be violated by calendar ),ear 

effects. A more critical assumption is that the development pattern is consistent across all 

accident years. O f  course, this assumption is not  unique to this approach, as it is also implicit in 

the traditional BF method,  as well as in the CL. This assumption should be especially borne in 

mind when selecting the accident years upon which the parameter estimates are to be based. 

The way in which the parameters ~ and m k are estimated consists o f  starting with an estimate 

for m k which then is used to estimate r,. The  latter is adjusted and then used to arrive at an 

improved estimate for m v Thus, it may be tempting to again use this improved estimate of  m h to 

improve the estimate for r,. But one must  be cautious here. External judgment has already been 

applied in developing these parameters, and therefore any further changes based on the run-off  

data would only serve to dilute the (presumably desired) impacts of  those judgments. Similarly, a 

purist might be tempted to iterate the estimations without  any adjustments in between, i.e. to 
^ 

start with rb k and r,. as given in section 4, and with mk as in section 3, but then to use the latter 

rl = ~-~.k. , 
_ ~+ l - i  ~+ l - i  2 

for calculating S , , / ~ , = ,  (v ,m,) .  This would then be iterated by calculating new 

estimates, first for m k then for r i by using the corresponding estimates obtained immediately 

before. Indeed, this procedure will quickly converge upon and )field exactly the same reserves as 

the CL does (for a full triangle only). This is not  surprising, since proceeding in this way implies 

that we fully believe all the information contained in the data, without any input of  external 

information. Thus we see that the input of  external information is vital for the BF method. 

For the CL, a methodology of  assessing the variability of  the reserves has been established in 

recent years. See e.g. the papers by Murphy or Mack in the 1994 CAS Spring Forum. Therefore, 

one would like to have this for BF, as well. For this purpose, we refer to the fact that our way of  

modeling the BF method can be seen as a cross-classified model, as in automobile rating, based 

upon the assumption E(Si .Jv  ~ = rfa k . Thus it can be treated using Generalized Linear Models. 

Casualty Actuarial Society Forum, Fall 2006 151 



Parameter Estimation for Bornhuetter/ Ferguson 

However, this would use the "wrong" volume v i instead of  vT~ Moreover, an appropriate 

assumption for the variance is necessary, too. Therefore, it may seem easier to use the alternative 

approach of  embedding this BF model into the classical credibility IBNR model (see the author's 

paper "Improved Estimation of  IBNR Claims by Credibility Theory" in the journal Insurance: 

Mathematics & Economics of  1990). In this way, the rate level r~ would be treated as a random 

variable. In any case, the issue of  reserve variability deserves a separate paper. 
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Reserve Calculation for Paid Data 
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Estimating Predictive Distributions for Loss Reserve Models 

By 

Glenn Meyers, FCAS, MAA, Ph.D. 

Abstract 
This paper demonstrates a Bayesian method for estimating the distribution of future loss payments 
of individual insurers. The main features of this method are: (1) the stochastic loss reserving model 
is based on the collective risk model; (2) predicted loss payments are derived from a Bayesian 
methodology that uses the results of large, and presumably stable, insurers as its prior information; 
and (3) this paper tests its model on large number of insurers and finds that its predictions are well 
within the statistical bounds expected for a sample of this size. The paper concludes with an analysis 
of reported reserves and their subsequent development in terms of the predictive distribution 
calculated by this Bayesian methodology. 

Key Words 
Reserving Methods, Reserve Variability, Uncertainty and Ranges, Schedule P, Suitability Testing, 
Collective Risk Model, Fourier Methods, Bayesian Estimation, Hypothesis Testing 

1. Introduction 

Over the years, there have been a number of stochastic loss reserving models that provide 

the means to statistically estimate confidence intervals for loss reserves. In discussing these 

models with other actuaries, I find that many feel that the confidence intervals estimated by 

these methods are too wide. The reason most give for this opinion is that experienced 

actuaries have access to information that is not captured by the particular formulas they use. 

These sources of information can include intimate knowledge of claims at hand. A second 

source of  information that many actuarial consultants have is the experience gained by 

setting loss reserves for other insurers. 

As one digs into the technical details of  the stochastic loss reserving models, one finds many 

assumptions that are debatable. For example Mack, [1993], Barnett and Zehnwirth [2000], 

and Clark [2003] all make a number of simplif3dng assumptions on the distribution of an 

observed loss about its expected value. Now it is the essence of  predictive modeling to 

make simplif)dng assumptions. Which set of  simplif3dng assumptions should we use? 

Arguments based on the "reasonability" of  the assumptions can (at least in my experience) 

only go so far. One should also test the validity of  these assumptions by comparing the 

predictions of  such a model with observations that were not used in fitting the model. 
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Given the inherent volatility of loss reserve estimates, testing a single estimate is unlikely to 

be conclusive. How conclusive is the following statement? 

"Yes, the prediction falls somewhere within a wide range." 

A more comprehensive test of  a loss reserve model should involve testing its predictions on 

many insurers. 

The purpose of this paper is to address at least some of the issues raised above, 

• The methodologies developed in this paper WIU be applied to the Schedule P data 

submitted on the 1995 NAIC Annual Statement for each of 250 insurers. 

The stochastic loss model underlying the methods of this paper will be the 

collective risk model. This model combines the underlying frequency and severity 

distributions to get the distribution of  aggregate losses. This approach to stochastic 

loss rese~ing is not entirely new. Hayne [2003] uses the collective risk model to 

develop confidence regions for the loss reserve, but they assume that the expected 

value of the loss reserve is known. This paper makes explicit use of the collective 

risk model to first derive the expected value of the loss reserve. 

Next, this paper will illustrate how to use Bayes' Theorem to estimate the predictive 

distribution of future paid losses for an individual insurer. The prior distributions 

used in this method will be "derived" by an analysis of loss mangles for other 

insurers. This method will provide some of the "experience gained by setting loss 

reserves for other insurers" that is missing from existing statistical models for 

calculating loss reserves. An advantage of such an approach is that all assumptions 

(i.e., prior distributions) ~md data will he clearly specified. 

Next, this paper will test the predictions of the Bayesian methodology on data from 

the corresponding Schedule P data in the corresponding 2001 NAIC Annual 

Statements. The essence of the test is to use the predictive distribution derived 

from the 1995 data to estimate the predicted percentile of losses posted in the 2001 

Annual Statement for each insurer. While the circumstances of each individual 
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insurer may be different, the predicted percentiles of the observed losses should be 

uniformly distributed. This will be tested by standard statistical methods. 

• Finally, this paper analyzes the reported reserves and their subsequent development 

in terms of the predictive distributions calculated by this Bayesian methodology. 

The main body of the paper is written to address a general actuarial audience. My intention 

is to make it clear "what" I am doing in the main body. I will discuss additional details 

needed to implement the methods described in some of the sections in the Appendix. 

2. Exploratory Data Analysis. 

The basic data used in this analysis was the earned premium and the incremental paid 

losses for accident years 1986 to 1995. The incremental paid losses were those reported as 

paid in each calendar year through 1995. 

The data used in this analysis was taken from Schedule P of the 1995 NAIC Annual 

Statement, as compiled by the A.M. Best Company. I chose the Commercial Auto line of 

business because the payout period was long enough to be interesting but short enough so 

that ignoring the tail did not present a significant problem. The estimation of the tail is 

beyond the scope of  this paper. 

I selected 250 individual insurance groups from the hundreds that were reported by A.M. 

Best, based on the following criteria. First, there had to be at least some exposure in each 

of the years 1986 to 1995. Second, the payment pattern had to, in my judgment, "look 

reasonable." 

Occasionally, the reported incremental paid losses were negative. In this case, I treated the 

losses as if they were zero. I believe this had minimal effect on the total loss reserve. 

Let's look at some graphic summaries of the data. Figure 1, below, shows the distribution 

of insurer sizes, ranked by 10-year average earned premium. It is worth noting that 16 of 

the insurers accounted for more than half of the total premium of  the 250 insurers. 

Figure 2, below, shows the variability of  payment paths (i.e., proportion of total reported 

paid loss segregated by settlement lag) for the accident 3,ear 1986. This figure makes it clear 
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that payment paths do vary by insurer. How much these differences can be attributed to 

systematic differences between insurers, versus how much can be attributed to random 

processes, is unclear at this point. 

Figure 3, below, shows the aggregate payment patterns for four groups, each accounting 

for approximately one quarter of the total premium volume. 

Figure I 
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Insurer Rank 
Ranked by 10-Year Average Annual Net Premium 

Insurers ranked 1-6, 7-16, 17-40 and 41-250 each accounted for about one quarter 

of the total premium 
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F i g u r e  2 
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• Each plot represents approximately one quarter of the total premium volume. 

• The variabilit 3, of the incremental paid loss factors increases as the size of  the 

insurer decreases. 
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• Segment 1 - Insurers ranked 1-6, Segment 2 - Insurers ranked 6-16, 

Segment 3 - Insurers ranked 17-40, Segment 4 - Insurers ranked 41-250. 

• There is no indication of any systematic differences in payout patterns by size of 

insurer. 
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3. A Stochastic Loss Reserve Model 

The goal of  this paper is to develop a loss reserving model that makes testable predictions. 

And then actually perform the tests. Let's start with a more detailed outline of how I 

intend to reach this goal. 

The model for the expected payouts ~ be fairly conventional. It ~ be similar to 

the "Cape Cod" approach first published by Stanard [1985]. This approach 

assumes a constant expected loss ratio across the 10-year span of the data. 

2. Given the expected loss, the distribution of actual losses around the expected Hill 

be modeled by the collective risk model - a compound frequency and severity 

model. As mentioned above, this approach has precedents with Hayne [2003]. 

This Hill conclude Section 3. 

3. In Section 4, I will turn to estimating the parameters for the above models. The 

initial estimation method ~ be that of maximum likelihood. 

I will then discuss testing the predictions of the model in Section 5. Initially, the 

tests will be on the same data that was used for fitting the models. ('The tests on 

data in the 2001 Annual Statements will come later.) As mentioned above, the test 

will consist of calculating the percentiles of each of the observed loss payments and 

testing to see that those predictions are uniformly distributed. 

As we proceed, I will focus on the 40 largest insurers. I do this because, in my judgment, 

the models are responding mainly to random losses for the smaller insurers. As we shall 

see, the results of the fitted models for the 40 largest insurers will form the basis for the 

Bayesian analysis that will be applied to each insurer, large and small. Implicit in this 

approach is the assumption that main systematic differenc.es in the loss payment paths are 

somehow captured by the largest 40 insurers. 

Let's proceed. 
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Assume that the expected losses are given by the following model; 

E [Paid LossAr,t~a ] = Premium.4r x E L R  x Devta , 

where: 

(1) 

A Y  (1986 = 1, 1987 = 2,...) is an index for accident year. 

Lag = 1, 2, ..., 10 is the settlement lag reported after the beginning of the accident 

year. 

Paidgoss is the incremental paid loss for the given accident year and settlement lag. 

Premium is the earned premium for the accident year. 

E L R  is an unknown parameter that represents the expected loss ratio. 

Dev~a is an unknown parameter that depends on the settlement lag. 

As with Stanard's "Cape Cod" method, the EL/{ parameter will be estimated from the 

data. 

The "Cape Cod" formula that I used to estimate the expected loss is by no means a 

necessary feature of this method. Other formulas, like the chain ladder model, can be used. 

A common adjustment that one might make to Equation 1 is to multiply the ELR by a 

premium index to adjust for the "underwriting cycle." I tried this, but it did not 

appreciably increase the accuracy of the predictionsfir this data and limepeffod. Thus I chose 

to use the simpler model in this paper. But one should consider using a premium index in 

other circumstances. 
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Le t  X ar ,~  be a random variable for an insurer's incremental paid loss in the specified 

accident year and settlement lag. Assume that X.~r,~ has a compound negative binomial 

(CNB) distribution, which I will now describe. 

• Let Zt~, be a random variable representing the claim severity. Allow each claim 

severity distribution to differ by settlement lag. 

• Given E[Paid Loss]At, ~ ,  define the expected claim count, ~-Ar.~, by 

(2) 

• Let NAt.z** be a random variable representing the claim count. Assume that the 

distribution of  NAr.z,g is given by the negative binomial distribution with mean 

2.arab, and variance '~Ar.~ + c. 2 ,ar .~ .  

• Then the random variable XAra~, is defined by 

X.y,~, = Z~,,, + Z,~, z +... + Z~,~.,,.~. 

While the above defines how to express the random variable, X.ay,~a, in terms of  other 

random variables NAra,g and Zt~, later on we will need to calculate the likelihood of  

observing x ava ~ for various accident years and settlement lags. The details of  how to do 

this are in the technical appendix. Here I will give a high-level overview of  what will be 

done below. 

The distributions of  Z ~  were derived from data reported to ISO as part of  its regular 

increased limits ratemaking activities. Like the substantial majority of  insurers that 

report their data to ISO, the policy limit will be set to $1,000,000. T h e  distributions 

varied by setdement lag with lags 5-10 being the most severe. See Figure 4 below. For 

this application I discretized the distributions at intervals b, which depended on the size 

of  the insurer, b was chosen so the 2 j4 (16,384) values spanned the probable range of  

losses for the insurer. 
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2. I selected the value of 0.01 for the negative binomial distribution parameter, c. My 

paper, Meyers [2006], analyzes Schedule P data for Commercial Auto and provides 

justification for this selection. 

3. Using the Fast Fourier Transform (FFT), I then calculated the entire distribution of a 

discretized XA.y.~,, rounded to the nearest multiple of b. The use of Fourier 

Transforms for such calculations is not new. References for this in CAS literature 

include my joint paper, Heckman and Meyers [1983], along with Wang [1998]. 

4. Whenever the probability density of a given observation xm, a~ a given 

E EPaid LossAr.~ ], was needed I rounded the XAr.~g tO the nearest multiple of h and 

did the above calculation. The resulting distribution function is denoted by: 

(3) 

This specifies the stochastic loss reserving model used it this paper. The parameters that 

depend on the particular insurer are the ELR and the 10 Dev~, parameters. I will now turn 

to showing how to estimate these parameters, given the earned premiums and the Schedule 

P loss triangle. 

Clark [2003] has taken a similar approach to loss reserve estimation. Indeed, I credit Clark 

for the inspiration that led to the approach taken in this section and the next. Clark used the 

Weibull and loglogistic parametric models where I used Equation I above. In place of the 

CNB distribution described above, Clark used what he calls the "overdispersed Poisson" 

(ODP) distribution 1. He then estimated the parameters of his model by maximum 

likelihood. This is where I am going next. 

] A random variable has an overdispersed Poisson distribution if it is an ordinary Poisson random variable 
times a constant scaling factor. 
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F i g u r e  4 

Limited Average Severity by Settlement Lag 
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4. Maximum Likelihood Est imation of Model Parameters 

The data for a given insurer consists of eamed premium by accident year, indexed by 

A Y =  1, 2,..., 10, and a Schedule P loss mangle with losses {xAy.~ } and 

Lag = 1,...,(11 - AY). With this data, one can calculate the probability, conditional on the 

parameters ELR and DevAr.~, of obtaining the data by the following equation. 

})-- fl 
AY=I  Lag=l 

(4) 

Generally one calls L( . )  the likelihood function of the data. 

For this model, maximum likeLihood estimation refers to finding the parameters E L R  and 

DevL,, that maximize Equation 4 (indirectly through Equation 1). There are a number of 

mathematical tools that one can use to do this maximization. The particular method I used 

is described in the Appendix. 

After examining the empirical paths plotted in Figures 2 and 3, I decided to put the 

following constraints in the Dev~, parameters. 

1. Dev 1 <_ Dev v 

2. Devj >_ Devj. 1 for j  = 2, 3, ...,9. 

3. DevT/Dev s = Devs/Dev 9 = Devg/Devlo. 

1o 

4. ~ Dev~ =1. 
i=1 

The third set of constraints was included to add stability to the tail estimates. They also 

reduce the number of free parameters that need to be estimated from eleven to nine. The 

last constraint eliminated an overlap with the ELR parameter and maintained a conventional 

interpretation of that parameter. 

Figure 5 plots the fitted payment paths for each of the 250 insurers. You might want to 

compare these pa}xnent paths with the empirical payment paths in Figure 2. 

Figure 6 gives histograms of the 250 ELR estimates. 
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Figure 5 

Maximum Likelihood Estimates of 

Incremental Paid Development Factors 
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Note the wide variability of the fitted payment paths for the smallest insurers. 
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Figure 6 

Maximum- Likelihood Estimates of  the ELR Parameters 
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5. Testing the Model 

Given parameter estimates, E L R  and DeVAy.L,~, one can use the model specified by Equations 

1-3 above to calculate the percentile of an), observation x.ar.L.,, by first calculating the 

expected loss, then the expected claim count, and finally the distribution of losses about the 

expected loss by the CNB distribution. Whatever the expected losses, accident year or 

settlement lag, the percentiles should be uniformly distributed. One can also include the 

calculated percentiles of several insurers to give a more conclusive test of  the model. 

The hypothesis that any given set of  numbers has a uniform distribution can be tested by the 

Kolmogorov-Smimov test. See (for example) Klugman, Panjer and Willmot (KPW) [2004, 

p.428] for a reference on this test. The test is applied in our case as follows. Suppose you 

have a sample of numbers, F1, F 2 . . . . .  F,, between 0 and 1, sorted in increasing order. One 

then calculates the test statistic: 

If  D is greater than the critical value for a selected level, at, we reject the hypothesis that the 

F,'s are uniformly distributed. The critical values depend upon the sample size. Commonly 

used critical values are 1.22/x~n for at = 0.10, 1 .36 /~n  for at = 0.05, and 1 .63 /~n  for 

a = 0.01. 

A graphical way to test for uniformity is a p-p plot, which is sometimes called a probability 

plot. A good reference for this is KPW [2004, p.424]. The plot is created by arranging the 

observations F,, F 2 . . . . .  F,, in increasing order and plotting the points (i/ (n+ l ),F) on a 

graph. I f  the model is "plausible" for the data, the points will be near the 45 ° line running 

from (0,0) to (1,1). Let da be a critical value for a Kolmogorov-Smimov test. Then the p-p 

plot for a plausible model should lie within + da of the 45 ° line. 

A nice feature ofp-p  plots is that they provide, to the trained eye, a diagnosis of problems 

that may arise from an iU-fitting model. Let's look at some examples. Let x be a random 

sample of  1,000 numbers from a lognormal distribution with parameters/~ = 0 and G =  2. 

Let's look at some p-p plots when we mistakenly choose a lognormal distribution with 
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different/a's and o's. On Figure 7a, sort(plnorm(x, Ia, o)) on the vertical axis will denote the 

sorted Fi's predicted by a lognormal distribution with parameters/a and ¢y. 

F i g u r e  7a 

S a m p l e  p - p  p lo t s  

Correct Distribution Predicted tail is too light 

P- -, c~ 
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(1:1000)/1001 (1:1000)/10131 

On the first graph,/a and aare the correct parameters, and the p-p plot lies on a 

45 ° line as expected. 

On the second graph with or= 1, the low predicted percentiles are lower than 

expected, while the high predicted percentiles are higher than expected. This 

indicates that the tails are too light. 
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• On  the third graph with o" = 4, the low predicted percentiles are higher than 

expected, while the high predicted percentiles are lower than expected. This 

indicates that the tails are too heavy. 

• On  the fourth graph, with/a = 1, almost all the predicted percentiles are lower 

than expected. This indicates that the predicted mean is too high. 

I f  a random variable X has a continuous cumulative distribution function F(x), the F/'s 

associated with a sample {xi} will have a uniform distribution. There are times when we 

want to use a p-p plot with a random variable X, which we expect to have a positive 

probability at x = 0. The left side of  Figure 7b shows a p-p plot for a distribution with 

P r { X = 0 }  = 0.25. The Kolmogorov-Smimov test is not applicable in this case. However 

we can "transform" the Fi's into a uniform distribution by multipl)dng the F i = F(xi) by a 

random number that is uniformly distributed whenever x i = 0. We can then use the 

Kolmogorov-Smimov test of  uniformity. The right side of  Figure 7b illustrates the effect 

of  such an adjustment. All of  the p-p plots below will have this adjustment. 

Figure 7b 

Sample p-p plots 
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Now let's try this for real. 

Figure 8 gives a p-p plot for the percentiles predicted for the data that was used to fit each 

model for the top 40 insurers. Overall there were 2,200 ( -  40 x 55) calculated 

percentiles. The Kolmogorov-Smimov D statistic for this sample was 0.042. This is 

higher than the critical values of 0.035 at the cr = 1% level and 0.029 at 5% level. So we 

must reject the hypothesis that our model gives a good fit to the data. By examining 

Figure 8, we see that the fitted model has tails that are a bit too heavy. 

Let me make a personal remark here. In my many years of fitting models to data, it is a 

rare occasion when a model passes such a test with data consisting of thousands of 

observations. I was delighted with the goodness of fit. Nevertheless, I investigated 

further to see what "went wrong." Figure 9 shows p-p plots for the same data segregated 

by settlement lag. These plots appear to indicate that the main source of the problem is in 

the distributions predicted for the lower settlement lags. 

Figure 10 shows p-p plots for the percentiles predicted for the data used in fitting the 

smallest 210 insurers. Suffice it to say that these plots reveal serious problems with using 

this estimation procedure with the smaller insurers. I think the problem lies in fitting a 

model with nine parameters to noisy data consisting of 55 observations. On the other 

hand, the procedure appears to work fairly well for large insurers with relatively stable loss 

payment patterns. See Figures 2, 3, 5 and 6. I suspect the same problem with small 

insurers occurs with other many-parameter models such as the chain ladder method. 
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Figure 8 

P-P Plot for the Top 40 Insurers 
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• The Kolmogorov-Smirnov D statistic for this sample of 2,200 observations was 

0.042. Compare this with the critical value of 0.035 at the 1% level and 0.029 at 

the 5% level. The sample consisted of 2,200 individual observations. 

• The lines that are 0.035 above and below the 45 ° lines enclose the confidence 

band for the p-p plot at the 1% level. 
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Figure 9 

P-P Plots for the Top 40 Insurers by Settlement Lag 
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Figure 10 

P-P Plots by Settlement Lag for Insurers Ranked 41-250 
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These p-p plots reveal serious problems with fitting the model to smaller insurers. 
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6. Predicting Future Loss Payments Using Bayes' Theorem 

The failure of the model to predict the distribution of losses for the smaller insurers and the 

comparatively successful predictions of the model on larger insurers leads one to ask the 

following. Is there any information that can be gained from the larger insurers that would be 

helpful in predicting the loss payments of the smaller insurers? That is the topic of this 

section. 

Let Q = {ELR, Dev~ Lag = 1, 2,..., 10} be a set of models, indexed by co, that determine 

the expected losses in accordance with Equation 1. These models are distinguished only by 

the values of their parameters, and not by the assumptions or methods that were used to 

generate the parameters. Using Equation 4, one can combine each expected loss model 

to E Q with the parameters as assumptions underlying Equations 2 and 3 to calculate the 

likelihood of the a given loss triangle {xAr~,}. Each likelihood can be interpreted as: 

L = Probability {data[model}-- Pr{{xAv,t~} 0}.  (6) 

Then using Bayes' Theorem one can then calculate: 

Probability {model I data} ~ Probability {data [model} ×Prior {model}. 

Stated more mathematically: 

CO 

Each co E ~ will consist of forty {DevL,,, } combinations taken from maximum likefihood 

estimates of the top 40 insurers above. I judgmentally selected equal probabilities for each 

co.E f2. Each of the forty {Dev~,} combinations will be independently crossed with nine 

potential ELRs starting with 0.600 and increasing by steps of 0.025 to 0.800. Thus ~ has 

360 parameter sets. I judgmentally selected the prior probability of the ELRs after an 

inspection of the distribution of maximum likelihood estimates. See Figure 11 and Table 1 

below. 
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Figure 11 

Comparing the Selected Prior Distribution of  E L R  with the 

Maximum Likelihood Estimates of  ELR for the Top  40 Insurers 
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Table 1 

Prior Probabilities for ELR 

E L R  Prior E / ~  Prior E L R  Prior 
0.600 3/24 0.675 4/24 0.750 1/24 
0.625 4/24 0.700 3/24 0.775 1/24 
0.650 5/24 0.725 2/24 0.800 1/24 
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So we are given a loss triangle {x, ar.t,,}, and we want to find a stochastic loss model for our 

data. Here are the steps we would take to do this. 

2. The posterior probability of each co E D is given by 

go~n 

In words, the final stochastic model for a loss triangle is a mixture of all the models to E f~, 

where the mixing weights are proportional to the posterior probabilities. 

Here are some technical notes. 

• In doing these calculations for the 250 insurers, it happens that almost all the weight 

is concentrated on at most a few dozen models. So, instead of including all models 

to in the original f l ,  I sorted the models in decreasing order of posterior probability 

and dropped those after the cumulative posterior probability summed to 99.9%. 

• When calculating the final model for any of the top 40 insurers, I excluded that 

insurer's parameters {DevzJ from ~ and added the parameters for 4P'  largest 

insurer in its place. I did this to reduce the chance of overfitting. 

The stochastic model of Equation 8 is not the end product. Quite often, insurers are 

interested in statistics such as the mean, variance, or a given percentile of the total reserve. I 

will now show how to use the stochastic model to calculate these "statistics of interest." 

At a high level, the steps for calculating the "statistics of interest" are as follows. 

1. Calculate the statistic conditional on ro for each accident year and settlement lag of 

interest. 

2. Aggregate the statistic over the desired accident years and settlement lags for each go. 

3. Calculate the unconditional statistic by mixing (or weighting) the conditional 

statistics of Step 2, above, with the posterior probabilities of each to. 
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These steps should become dearer as we look at specific statistics. Let's start with the 

expected value. 

1. For each accident year and settlement lag, calculate the expected value for each to 

using Equation 1. 

E[Paid Lo.rs ar.~l r_.o] = Premium m, × ELR(to)x Dev~(to). 

2. To get the total expected loss for each to, sum the expected values over the desired 

accident ),ears and settlement lags. 

.ay,,t~ 

3. The unconditional total expected loss is the posterior probability weighted average of  

the conditional total expected losses, with the posterior probabilities given by 

Equation 8. 

Note that for each o2, the conditional expected loss will differ. Our next "statistic of 

interest" will be the standard deviation of these expected loss estimates. This should be of 

interest to those who want a "range of reasonable estimates." 

The first two steps are the same as those for finding the expected loss above. In the third 

step we calculate E[PaidLoss] as above but, in addition, we calculate the second moment: 

3. SM[E[Paid l-.~.]J= E E[Paid Lo.r.rl~]2×Pr{~{xAr..~}}. Then: 

As the second example begins to illustrate, the three steps to calculating the "statistic of  

interest" can get complex. 
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Our third statistic of interest is the standard deviation of the actual loss. Before we begin, it 

will help to go over the formulas involved in finding the standard deviation of sums of 

losses.  

First, recall from Equation 2 that our model imputes an expected claim count, ;~ar.~ by 

dividing the expected loss by the expected claim severity for the settlement lag. 

Next recall the following bullet from the description of the CNB distribution above. 

• Let NAr.~ be a random variable representing the claim count. Assume that the 

distribution of NAra~ is given by the negative binomial distribution with mean 

"~'AY, Iwg and variance ~AY,Log + C" ~Y,t*g" 

The negative binomial distribution can be thought of as the following process. 

1. Select the random number, Z, from a gamma distribution with mean 1 and 

variance c.. 

2. Select NAya~, from a Poisson distribution with mean Z.A.Ar.z,¢ 

Consider two alternatives for applying this to the claim count for each settlement lag in a 

given accident year. 

1. Select zindependentlY for each settlement lag. 

2. Select a single Z and apply it to each settlement lag. 

If  one selects the second alternative, the multivariate distribution of {Nara~,} is called the 

negative multinomial distribution. This does not change the distribution of losses of an 

individual settlement lag. It  does generate the correlation between the claim counts by 

settlement lag. 

I will assume that the multivariate claim count for settlement lags within a given accident 

year has a negative multinomial distribution. The thinking behind this is that the Z is the 

result of  an economic process that affects how many claims occur i n a given ),ear. 

Clark [2006] provides an alternative method for dealing with correlation between settlement 

lags. 
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Let Fz~ be the cumulative distribution for Z~a. Mildenhall [2006] shows that (stated in the 

notation of this paper) the distribution of  __~"Xm',L,, has a CNB distribution with expected 

claim count 2At,r0, = ~ 2Ar,~ * and claim severity distribution 
t,g 

F~,.~. = ~xA~.~  .Fz~ I Z X . ~ . ~  • 
1~g t~ 

Now let's describe the three steps to calculate the standard deviation of the actual loss. 

1. For each accident year and settlement lag, calculate the expected claim count, 

X ar,~(to) using Equation 2. 

2. The aggregation for each co takes place in two steps. 

a. Calculate the first and second moments of each accident year's actual loss. 

Z[Pai~ Los, , ,  I,o] : XA,.To, (CO)" Z [ZT., ]. 

SM[Paid Lo-,,,, I co] = &-.:,, (<") sM[z,,,.~o, ] + 0  + <) &,.T,, (<<') ~ z [ZA:.To, ]". 

b. Sum the first and second moments over the accident years. 

Z[Pai<; LO'ICO] : E E[Paid Lo',-- I <"]' 
A Y  

SM[Paid LOssl col -- E SM[Paid ~ ' , d  co]. 
A Y  

3. E[Paid Loss]= E E[Paid Lo.ioq x  r{col{xAy.,  } }. 
O)E i'~ 

SM[Paid Loss]-- ~, SM[Paid Lossico]xPr{coi{xAr,~}}. 

Standard Deviation[Paid Loss]= ~SM[Paid Loss]- E[Paid Loss] 2 . 
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The final "statistic of interest" is the distribution of actual losses. We are fortunate that the 

CNB distribution of each individual XAra, ais already defined in terms of its Fast Fourier 

Transform (FFT). To get the FFT of the sum of losses, we can'simply multiply the FFTs of  

the summands. Other than that, the three steps are similar to those of calculating the 

standard deviation of the actual losses. To shorten the notation, let X denote PaidLass. 

1. For each accident year and settlement lag, calculate the expected claim count, 

2Ar.~(to ) using Equation 2. 

2. The aggregation for each to takes place in two steps. 

a. Calculate the FFT, 

l l - A Y  I l l - A Y  

for each accident year. 

b. The FFT for the sum of all accident years is given by: 

A Y  

3. The distribution of actual losses is obtained by inverting the FFT: 

o.~fl 

See the Appendix for additional mathematical details of  working with FFTs. 

Figures 12 and 13 below show each of the three statistics for two insurers for the 

outstanding losses for accident years 2,...,10 up to settlement lag 10. The insurer in Figure 

12 has ten times the predictive mean reserve as the insurer in Figure 13. Figure 14 plots the 

predictive coefficient of variation against the predictive mean reserve. The decreased 

variability that comes with size should not come as a surprise. The absolute levels of 

variability will be interesting only if I can demonstrate that this methodology can predict the 

distribution of future results. That is where I am going next. 
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Figure 12 

Predictive Distribution of Actual Losses for Total Reserve 
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• Predictive Mean = 401,951,000 (roughly ten times that in Figure 13). 

• Coefficient of  Variation for the Actual Loss = 6.9%. 
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Figure 13 

Predictive Distribution of Actual Losses of Total Reserve 
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• Predictive Mean = 40,277,000 (roughly one tenth of  that in Figure 12). 

• Coefficient of  Variation for the Actual Loss = 12.6%. 
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Figure 14 

Predictive Coefficient of Variation Plotted 

With the Predictive Mean for 250 Insurers 
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7. Testing the Predictions 

The ultimate test of a stochastic loss reserving model is its ability to correcdy predict the 

distribution of future pa3~nents. While the distribution of future payments will differ by 

insurer, when one calculates the predicted percentile of the actual payment, the distribution 

of these predicted percentiles should be uniform. 

To test the model, we examined Schedule P from the 2001 NAIC Annual Statement. The 

losses reported in these statements contain six subsequent diagonals on the four 

overlapping years from 1992 through 1995. Earned premiums and losses in the 

overlapping diagonals for the 1995 and 2001 Annual Statements agreed in 109 of the 250 

insurers, so I used these 109 insurers for the test. 

Using the predictive distribution described in the last section, I calculated the predicted 

percentile of the total amount paid for the four accident years in the subsequent six 

settlement lags. These 109 percentiles should be uniformly distributed. Figure 15 shows 

the corresponding p-p plot and the confidence bands at the 5% level as determined by the 

Kolmogorov-Smirnov test. The plot lies well within that band. While one can never 

"prove" a model is correct with statistics, one gains confidence in a model as we fail to 

reject the model with such statistical tests. I believe this test shows that the Bayesian CNB 

model deserves serious consideration as a tool for setting loss reserves. 
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Figure 15 

P-P Plot of  Predicted Percentiles for 

Paid Losses from 1996 to 2001 
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• The critical values for a Kolmogorov-Smimov test at the 5% level are +13.03%. 
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8. Comparing the Predictive Reserves with Reported Reserves 

This section provides an illustration of the kind of analysis that can be done externally with 

the Bayesian methodology described in this paper. Readers should exercise caution in 

generalizing the conclusions of this section beyond this particular fine of business in this 

particular time period. 

This paper makes no attempt to pin down the methods used in setting the reported reserves. 

However there are many actuaries that expect reported reserves to be more accurate than a 

formula derived purely from the paid data reported on schedule P. As stated in the 

introduction to this paper, those who set those reserves have access to more information 

that is relevant to estimating future loss pa3~nents. 

The comparisons below will be performed to two sets of insurers - the entire set of  250 

insurers and the subset of 109 insurers for which the overlapping accident years 1992-95 

agree. Testing the latter will enable us to compare the predictions based on information 

available in 1995 with the incurred losses reported in 2001. 

The first test looks at aggregates summed over all insurers in each set. Table 2 compares the 

predictions of this model with the actual reserves reported on the 1995 annual statement. 

The "actual reserve" is the difference between the total reported incurred loss, as of 1995 for 

the "initial" reserve, and 2001 for the "retrospective" reserve, minus the total reported paid 

loss, as of 1995. 

Table  2 

Predicted and Reported Loss Reserves 

Reported 1995 Reserve (000) 

Predictive Initial Retrospective 
Mean (000) @ 1995 @ 2001 

250 Insurers AY 1986-1995 14,873,303 16,221,998 - 9.1% - -  

109 Insurers AY 1992-1995 1,798,794 1,976,299 - 9.9% 1,842,104- 2.4% 

o For the 250 insurers, the reported initial reserve was 9.1 Y0 higher than the predictive mean. 

For the 109 insurers the corresponding percentage was 9.9%. The lowering of the 
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percentage reserves from 1995 to 2001 to 2.4% suggests that for the industry, reserves were 

redundant for Commercial Auto in 19952. 

For the remainder of this section let's suppose that the expected value of the Bayesian CNB 

model described above is the "best estimate" of future loss payments. From the above, 

there are two arguments supporting that proposition. 

1. Figure 15 in Section 7 above shows that the Bayesian CNB model successfully 

predicted the distribution of payments for the six years after 1995 well within the 

normal statistical bounds of error. 

2. The final row of Table 2 shows that the expected value predicted by the Bayesian 

CNB model, in aggregate, comes closer to the 2001 reserve than did the reported 

reserves for 1995. 

Now let's examine some of the implications of this proposition for reported reserves. 

There are many actuaries who argue that reported reserves should be somewhat higher than 

the mean. See, for example, Paragraph 2.17 on page 5 of Report of  the Insurer Solvency 

Working Part 3, of  the International Actuarial Association [2004]. Related to this, I recently 

saw a working paper by Grace and Leverty [2006] that tests various hypotheses on insurer 

incentives. 

If  insurers were deliberately setting their reserves at some conservative level, we would 

expect to see that the reported reserves are at some moderately high percentile of the 

predictive distribution. Figure 16 shows that some insurers appear to be reserving 

conservatively. But there are also many insurers for which the predictive percentile of the 

reported reserve is below 50%. But by 2001, the percentiles of the retrospective reserve for 

1995 were close to being uniformly distributed. 

2 There are some potential biases in these figures. First, the predictive means may be somewhat understated 
since they ignore development after ten ),ears. Second, the downward development from 1995 to 2001may 
continue in future years. 
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Figure 16 

Predictive Percentiles of Reported Reserves 
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The greater number of  insurers reserved above the 50 m percentile indicates that some 

insurers have conservative estimates of their loss reserves posted in 1995. 

The right side of this figure shows that the spread of the reserve percentiles spans all 

insurer sizes. 
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I f  there is a bias in the posted reserves, we would see corrections in subsequent years. The 

109 insurers for which we have subsequent development provide data to test potential bias. 

To perform such a test, I divided the 109 insurers into two groups. The first group 

consisted of  all insurers that posted reserves in 1995 that was lower than their predictive 

mean. The second group consisted of  all insurers that posted reserves higher than their 

predictive mean. 

As Figure 17 and Table 3 show, the first group shows an upward adjustment and the second 

group shows a more pronounced downward adjustment. The plots show that we cannot 

attribute these adjustments to only a few insurers. However, there are some insurers in the 

first group that show a downward adjustment, and other insurers in the second group that 

show an upward adjustment. 

The fact that the total adjustments only go part way to the predictive mean suggests that 

some insurers may be able to make more accurate estimates with access to information that 

is not provided on Schedule P. 
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Figure 17 

Analysis of Subsequent Reserve Changes for 109 Insurers 
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Table 3 

Summary Statistics for the Plots Above 

Reported Reserve @ 1995 

< Predictive Mean (000) > Predictive Mean (000) 

Number of Insurers 66 43 

Total Predictive Mean 926,134 872,660 

1995 Reserve @ 1995 803,175 1,173,124 

1995 Reserve @ 2001 856,393 985,711 
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9. Surm,nary and Conclusions 

This paper demonstrates a method, which I call the Bayesian CNB model, for estimating 

the distribution of future loss payments of individual insurers. The main features of  this 

method are as follows. 

• The stochastic loss reserving model is based on the collective risk model. While other 

stochastic loss reserving approaches make use of the collective risk model, this 

approach uses it as an integral part of  estimating the parameters of the model. 

• Predicted loss payments are derived from a Bayesian methodology that uses the results 

of  large, and presumably stable, insurers as its "prior information." While insurers do 

indeed differ in their claim payment practices, the underlying assumption of this 

methodology is that these differences are reflected in this collection of large insurers. 

• Loss reserving models should be subject to testing their predictions on future 

payments. Tests on a single insurer are often inconclusive because of the volatile 

nature of  the loss reserving process. But it is possible to test a stochastic loss reserving 

method on several insurers simultaneously by comparing its predicted percentiles of  

subsequent losses to a uniform distribution. This paper tests its model on 109 insurers 

and finds that its predictions are well within the statistical bounds expected for a 

sample of  this size. 

• By making the assumption that the Bayesian C2X/B model provides the "best estimate" 

of future loss payments, the analysis in this paper suggested that there are some 

insurers that post reserves conservatively, while others post reserves with a downward 

bias. Readers should exercise caution in generalizing these conclusions beyond this 

particular line of business in this time period. 

I view this paper as an initial attempt at a new method for stochastic loss reserving. To 

gain general acceptance, this approach should be tested on other lines of insurance and by 

other researchers. This method requires considerable statistical and actuarial expertise to 

implement. It also takes a lot of  work. In this paper, I have tried to make the case that we 

should expect that such efforts could )deld fruitful results. 
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Appendix 

This appendix gives the mathematical details that implement the methodologies described in 

Sections 3 and 4. 

A.3.1 Discretizing the Claim Severity Distributions 

The first step is to determine the discretization interval length h. h, which depended on the 

size of the insurer, was chosen so the 2 TM (16,384) values spanned the probable range of 

annual losses for the insurer. Specifically, let h, be the sum of the insurer's ten-year premium 

divided by 2 TM. The b was set equal to 1,000 times the smallest number from the set 

{5, 10, 20, 25, 40, 50, 100, 125, 200, 250, 500, 1000} that was greater than b~/lO00. This last 

step guarantees that a multiple, m, of  ,5 would be equal to the policy limit of  1,000,000. 

The next step is to use the mean-preserving method (described in KPW, p. 656) to discretize 

the claim severity distribution for each settlement lag. Letpa a represent the probability of a 

claim with severity h'i for each settlement lag. Using the limited average severity (LAS~) 

function determined from claim severity distributions provided by ISO, the method 

proceeds in the following steps. 

1. poa**= l-L~S~(h)/h. 

2. P,.z,, = (2"LAS~ (h't) - LASza (h'(i- 1)) - LASt~ (h'(i + 1)))/h for i = 1, 2 ..... m-1. 

3. p,,.~ = 1 - ~ p ; .~ .  
i=0 

2 TM 1 4. p i k = O f o r i = m +  l, . . . ,_ - . 

A.3.2 Calculating the Conditional Density of the CNB  Distribution 

Tho pu ose of  section is to show how to calculate I E[Pai  ]). 
The calculation proceeds in the following steps. 

1. Set ~z_~ ={po.t~,...p2,,_,t~, }. 

2. Calculate the Fast Fourier a'ransfo= (rvr)  of ~., %~. (~). 

3. Calculate the expected claim count, A.~Ya~g, for each accident year and settlement lag 

using Equation 2, AAr.~ - E [  Paid LossAy.~ ] / E [ Z ~  ]. 
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4. Calculate the FFT of each aggregate loss random variable, X.,ya~,, using the formula 

This formula is derived in KPW [2004, Equation 6.28]. Note the different but 

equivalent parameterization. The probability generating function for the negative 

binomial distribution is given in Appendix B of KPW. It is written as 

P~ (~:) = (1 - fl (~:- 1))-'. In this paper's notation A = f l .r  and c = 1/r. 

5. Calculate q.4r,~ = * - '  (~  4r.£a (~l.4r,£a )) , the inverse FFT of the expression in 

Step 4 above. 

6. Set i equal to the multiple of b that is nearest to xAva~ ~. Then 

(~VB(X4y.£,,,lU[Paid L°ss.4g.£a])= thei  ~b component of~'L4Y.~;. 

Note that calculating this probability requires one to first calculate a vector of length 16,384 

by inverting an FFT and reading off a single component. (To increase efficiency, one should 

calculate Oz~ ' ( ~ )  for each settlement lag in advance.) Using the R computing language 

('aax~'.r-pro)ect.orK~ on my 3GHz personal computer with 1GB Ram, I estimate it takes 

about 1/20 a' of a second to evaluate a single CNB probability. Evaluating a likelihood for a 

loss triangle with 55 x,~ra~s 1,000 times (typical for what follows below) takes about 45 

minutes. Implementing this methodology requires the patience that I was fortunate to 

develop in the early days of actuarial computing. 
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A.4 Maximizing the Likelihood for the C N B  Model 

The purpose of this section is to show how to find the E L R  and {Dev i } parameters that 

maximize the likelihood 

10 l l - A Y  

L ( { x A r . ~ } ) =  I - [  r I  CNB(xm ' .~[E[Pa idL°s sAr .La] ) '  (4) 
AY=I  Lag=l 

subject to the following constraints in the Dev~ parameters. 

1. Dev 1 < Dev z. 

2. Devj > Dev~ for./" = 2, 3 . . . .  ,7. 

3. Deur/Devs = Devs/Dev9 = Devg/Devlo. 

10 

4. E Devl =1. 
i=1 

The maximization was done using the R programming language 0p#m function using the 

Nelder-Mead parameter search method. This method is described in KPW [2004, p.664] 

and is considered tobe  robust but slow. At this stage of the research, I value "robust" over 

"fast." 

Primarily because of habits I developed using Excel Solver, I elected not to use standard 

constraints provided by the function. Instead I coded a "tdev to De/ '  function that mapped 

all of ~ginto a subset of R n that satisfied those constraints. Here is a description of 

tdev to Dev. 

1. Dev~ = e -a'd / 2 .  

2. Dev'z = Dev; .( l + e-'~'~ ). 

t ~ ' ~  t s -ldev. 3. Dev i -- Min 1 -  Devj ,Devi_ 1 -e ' for i=2,...,7. 
j=~ ./ .J 

) ] 4. Dev s = Min 1 -  Devj ,Dev,_ 1 • e for i=8, 9, 10. 
D, J=* ) J 

lo 

s. V,,,=D</Xv,4. 
j=l 

lo 

6. E L R = t d e v ~ . E D e v  5 . 
j=! 
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As noted in the previous section, the CNB model requires a lot of time to calculate. This 

time can be sigr0ficandy reduced if one has a good set of starting values for the optim 

function. To get these starting values, I replaced the CNB distribution with the 

"overdispersed Poisson" (ODP) distribution given in Clark [2003] to find the 

ELR and {Dev i } parameters that maximize the logarithm of following expression. 

l l - A Y  

L({xm, ~ } )  = fl'° 1-'I EFPaidL LossAr,~jT. ex*r~'E[P'at~"ra~]-e['°~ t~"*"~] 
~IY=I /.ag =1 

The maximization proceeds in the following steps. 

1. Pick a starting vector in g E R 9 e.g. (1,1,1,1,1,1,1,1,1). 

2. Set ~=tdev to Dev(~) and use it to calculate E[Paid Loss~y.t~ ]. 

3. Use E[PaidLassAr.ta]to calculate the ODP likelihood above. 

4. Use the Nelder-Mead algorithm to calculate an updated vector i .  

5. Return to Step 2 and repeat until convergence. 

6. After convergence is obtained with the ODP likelihood, use the current i as a 

starting value for the CNB likelihood in Equation 4. 

7. Set ~ =racy to Deu(g) and use it to calculate E[PaidLossAr,ta]. 

8. Use E[PaidLossAr.ta]to calculate the CTVB likelihood above. 

9. Use the Nelder-Mead algorithm to calculate an updated vector i .  

10. Return to Step 7 and repeat until convergence. 

11. Set ~ =tdev to Dev(~) to obtain the maximum likelihood estimate of 

Z .Rand{D,,}. 

Run time was short for the ODP. For the CNB, I found that it generally took, on average, 

1,000 iterations of  Steps 7-10 to achieve R's optim function default convergence criteria. 

With the warning that individual results may vary, I felt comfortable in limiting the number 

of iterations to 300. 

I am providing code to calculate the above maximum likelihood estimates on sample data to 

be placed on the CAS website with the publication of this paper. 
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A M e t h o d  For Projec t ing  Indiv idual  Large Cla ims  

Karl Murphy FIA and Andrew McLennan FIAA, FIA 

Abstract 
Motivation. The paper will address the issue of  estimating the uncertainty in the run off of individual 
large claims in insurance portfolios, which is often the primary source of  uncertainty in the reserving 
risk component of insurance risk. 
Method. The paper begins by reviewing current methodologies for estimating the uncertainty in loss 
reserves. Methods until now have focused on aggregate modeling of gross or net of reinsurance loss 
reserves, and no direct connection between the distribution of gross and net reserves. 
The paper develops a non-parametric framework to simulate the distribution of  ultimate position of 
large claims, both reported and large IBNR claims. The method samples the development of individual 
claims based on the historic development of large claims, incorporating information at an aggregate 
level surrounding reserving strength. The model also predicts when claims will setde, and the dining of  
claim payments. 
Results. The method developed is not intended to replace existing aggregate modeling, but is an 
improvement to traditional methods which estimate the variability of gross of  reinsurance loss reserves, 
and is a useful tool to allow for reinsurance recoveries more accurately. 
By indix4dually projecting the ultimate position of large claims, we can explicidy allow for policy or 
contract limits. Further, we can apply any reinsurance program structure to the gross results, including 
allowance for aggregate deductibles, incomplete placements, retrocessions to captive reinsurers, 
indexation clauses, and different treat 3, attachment rules (ie Losses Occurring During vs Risks 
Attaching). 
The paper then shows how the variability of  attritional claims can be estimated using traditional 
stochastic methods, and the attritional and large results can be combined to estimate the variability of 
the aggregate portfolio of  loss reserves. 
Keywords. Reserving, Large Claims, Reinsurance, Stochastic Modeling, Simulation, Capital Modeling, 
IBNR. 

1. INTRODUCTION 

With an increased focus on understanding variability in cLaims reserves, a series of papers 

have been published which develop and add to existing literature on stochastic resenting, in 

particular England and Verrall[1]. However, almost universally, these papers consider 

aggregate claims ta:iangles, and do not consider the range of possible outcomes of individual 

claims. We believe that for many classes of business, the primary source of uncertainty in 

reserve run-off stems from the uncertainty in large claims, and so a natural extension to the 

developments in stochastic claims reserving methods would be to produce stochastic 

outcomes of individual claims. 

The paper develops a practical framework to simulate the distribution of ultimate 

position of large claims, both reported and large IBNR claims. The method samples the 

development of  individual claims based on the historic development of large claims, and 
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applies this development to the current position of claims. The model also predicts when 

claims will settle, and the timing of daim payments. 

A practical by-product of having individually projected the ultimate position of large 

claims is that we can apply any policy contract limits to any claims, and any reinsurance 

program structure to the gross results in order to derive stochastic net results that are 

consistent with the gross without having to make simplifying approximations. For example, 

by having individual large claims information, excess of loss reinsurance can be properly 

allowed for. Other more complicated arrangements Can also be considered, including 

allowance for aggregate deductibles, incomplete placements, retrocessions to captive 

reinsurers, indexafion clauses, and different treaty attachment rules (i.e. "losses occurring 

during" treaties compared to "risks attaching" treaties). Reinsurance recoveries can then be 

allocated to specific contracts, enabling easier commutation and reinsurance bad debt 

calculations. 

The paper then shows how the variability of attritional claims can be estimated using 

aggregate stochastic methods, and the attfitional and large results can be combined to 

estimate the variability of the aggregate portfolio of loss reserves. By separating large and 

attritional claims in the estimation of the uncertainty in loss reserves, changes to the mix (by 

size and numbers) of large claims can be directly allowed for and modeled. 

The structure of the paper will be as follows: first we are going to briefly discuss the main 

existing stochastic methods for estimating reserving risk. We will then look at a new method 

which we believe better identifies the main source of uncertainty in reserving risk. We will 

then show how the method can make exact explicit allowance for any historic reinsurance 

programs that protect the portfolio. By doing this, we show how to provide a very explicit 

link between gross and net reserving risk. 

2. A BRIEF OUTLINE OF STOCHASTIC MODELLING 
TECHNIQUES 

This section of the paper is intended to be a general review of existing techniques; hence 

we have kept existing theory to a minimum, quoting other papers or literature where a more 

theoretical explanation is required. In particular, readers are directed to the recent paper by 

England and Verrall [1] which sets out most techniques in theoretical detail. 
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Many stochastic techniques to date are based on some form of chain ladder technique. 

Mack's model [2] was one of the first models used in practice to understand the variability 

in future claim amounts. Mack provided the first two moments of the future cumulative 

claim amounts, and assumed the model to be "distribution free". Ultimately, however, we 

are interested in the full predictive distribution of claims, rather than the first two moments. 

England and Verrall [1] provide a solution to this assuming the cumulative claims are 

normally distributed. 

Renshaw and Verrall [3] introduced a statistical model assuming the incremental claim 

amount in each accident period and development period are independent random variables 

with an over-dispersed Poisson distribution. 

Verrall [4] developed on the over-dispersed Poisson chain ladder model with the over- 

dispersed negative binomial model. A key difference between this and the over-dispersed 

Poisson model is the assumption that incremental claim payments are dependent on the 

cumulative claim amount at the previous period, similar to Mack's model. 

In general, techniques to date have been designed for use on aggregate, portfolio level 

triangles of claim payment or incurred triangles. Making adequate, explicit allowance for 

reinsurance in practice has been, at best, an after-thought, often made using a deterministic 

gross to net ratio for each accident period, selected using information from aggregate 

modeling of  the central estimate using traditional actuarial techniques. Techniques described 

above assume that all claims develop, on average, in a similar way, or that the mix of claims 

with different development patterns is constant throughout history. Due to the highly 

volatile occurrence and size of large claims, this may not be appropriate. 

3. A METHOD FOR PROJECTING INDIVIDUAL LARGE CLAIMS 

3.1 I n t r o d u c t i o n  

One of the key assumptions in the aggregate stochastic methods described above is that 

the mix of claims with different development patterns over origin periods is stable. No 

allowance is made, for example, for increased variability for an accident year with "known" 

poor large claims experience. Also, no allowance is made for the status (i.e. open/settled) of 

large claims. 
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Perhaps more important]),, aggregate stochastic methods do not prmdde a process for 

linking the variability of gross and net of reinsurance reserves, where non-trivial treaties 

(such as quota shares) are in place. 

We propose a model designed to cope with the problems described above, by separating 

the major source of uncertainty, large claims, from the remaining attritional losses, with a 

separate projection of individual large claims. 

The remainder of this section will detail the specifics of our proposed method: 

uncertainty in known (reported) large claims, uncertainty in the numbers and amounts of 

unknown (un-reported, and reported, but not  yet large) large claims, attritional claims and 

the aggregation of results. 

3.2 Known Large Claims 

We must first define by what we mean as "large". There are a number of practical 

considerations in choosing the threshold of large claims. The main concern is if we are going 

to use the results for calculating reinsurance recoveries under an Excess of Loss (XoL) 

program, we must choose a threshold below any historic excess of loss programs. Secondly, 

as we shall see, we need a significant pool of claims to sample from. To balance the above 

points, in the limit, we could apply this method to all claims in the portfolio, however 

computational and time limitations necessitate a cap on the size of the pool. It is important 

to frame question of choosing a threshold within context of the portfolio, for example, by 

considering the size of claims which are managed by the complex or large claims unit. In 

general, we have found this method produces reasonable results with as few as 200 

individual large claims with the oldest years hax4ng had up to ten years of development. 

We include all claims which were "ever" large in our method, that is to say, we include 

claims which could ultimately be small (or nil) but which were once estimated to be large. 

We propose to adopt a stochastic chain ladder projection on individual large claims, 

where the simulated chain ladder factors are sampled from the observed chain ladder factors 

in historic large claims. Further, when simulating the development factor of the claim, we 

also sample the subsequent status of the claim. We therefore simulate chain ladder factors 

for open claims from historic claims which were open at the same point in development. 

Closed claims can be simulated at subsequent development periods from similar closed 

claims to allow for the possibility of re-opening; to the extent that they are present in the 
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historic data. 

Consider the following claims. For simplicity, assume all claims are settled by 

development year 3. To finalize the projection of large claims, we need to project claim D 

and E for one year and claim F for two 3,ears. 

Table I 

Claim 
A 
B 
C 
D 
E 
F 

Incurred Amounts 

Development Year 
I 2 

400,000 800,000 800,00( 
500,000 1,600,000 850,00( 

1,000,000 1,000,000 1,500,00( 
200,000 500,000 
300,000 200,000 
150,000 
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Table 2 

Development Factors 
Year 1 to Year 2 to 

• Claim 

A 
B 

D .  
E 
F .  

Year2 Year 3 
2.00 
3.20 
1.00 
2.50 
0.67 

1.0C 
0.52 
1.5C 

Table 3 

i 

Claim 
A 
B. 
C ' - 

D 
E 
F 

Claim Status 
Development Year 
1 2 

Open Closed 
Open Open 
Open Open 
Open Open 
Open Closed 
Open 

Closet 
Closec 
Closet 

To develop claim D to ultimate, we pick a claim that was open at development year 2. In 

this case, B and C were open at development year 2, and so we can either develop claim D 

by a chain ladder factor of  0.53 or 1.5. 

To develop claim E to ultimate, we pick a claim that was closed at development year 2. In 

this simple example, only claim A was closed at the same point. Therefore, to simulate the 

ultimate position of  claim E, we pick the chain ladder factor from claim A, that is 1.0. 

To develop claim F, we must first project the position to development year 2 from open 

claims. Therefore, it can simulate chain ladder factors from any of  claims A to E, with equal 

probability. If  the claim follows the experience of  claim B, C or D to development year 2, 

the claim remains open, and develops by a chain ladder factor of  3.2, 1.0 or 2.5 respectively. 

I f  the claim follows the experience of  either claim A or claim E, then the claim closes and 

develops by a chain ladder factor of  2.0 or 0.67. Developing the position from year 2 to year 

3 depends on whether the simulated claim closed in year 2 or remained open. If  it remained 

open (i.e. was simulated ~rom either B, C or D), then the development from years 2 to 3 is 
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simulated from claims B or C (with equal probability) in a similar manner to claim D; if it 

closed (i.e. was simulated from A or E), then the development is simulated from claim A 

only (in a similar manner to claim E). 

Based on this set of  data, the possible range of outcomes for claim D is $265,625 to 

$750,000, for claim E is $200,000, and for claim F is $100,000 to $720,000 (the lower end of 

the range is attained if the simulation chooses claim E and then A, the upper end of it 

chooses claim B and then C). Note that the implied total ultimate chain ladder factor for the 

maximum simulated value of claim F is 4.8. This is more extreme than any ultimate chain 

ladder factors seen to date. 

By explicitly identif3,ing open and closed claims, we are adding extra information to the 

basic chain ladder model. The model will then capture the increased volatility of origin years 

which have a larger number or amount of large claims than average, and the reduced 

volatility of origin years with fewer large claims. 

3.3 IBNR Large Claims 

The above section deals with the uncertainty around claims which are already large. This 

is clearly only part of  the picture. We must also deal with claims which become large at some 

point in the future. These claims can arise from genuinely new claims which have been 

incurred but not reported, and claims which have been reported, but which are not yet (or 

have never been) large. 

Both the number and size of these claims need quantifying. The following sections detail 

how the method deals with these. 

3.3.1 IBNR Large Claim Numbers 

In dealing with the known large claims, we allow for the possibility that a currently large 

claim will ultimately settle below the large threshold. In our large number projection, we 

need a definition of large claim numbers that can cope with these outcomes. We deal with 

this by projecting a triangle of claim numbers, where a claim is counted once in the 

development year it became large. Claims which subsequently fall below the threshold are 

included in this triangle. We therefore are not making any assumption about how many of 

these claims will ultimately settle for less than the threshold in this step of the projection. 

Standard stochastic chain ladder techniques can be applied to this data if desired, however 
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we believe this may not  be appropriate in thisparticular case. In particular, due to the 

generally small number of claims which are reported as large in development years one and 

two, the projected number of large claims for the most recent origin periods may be 

artificially unstable. 

Further, we must ask ourselves if it is intuitive to suggest that if the most recent origin 

period has twice as many large claims per unit of exposure reported in development year one 

as the historical average, then it will have twice the number of large claims per unit of  

exposure ultimately. This does not seem to make sense in practice. Given that most 

aggregate stochastic methods are based on chain-ladder projections, in this instance the 

mean number of large claims may tend to be over-stated. 

We suggest a more appropriate model for large claims numbers would be to assume the 

claim f~equency per unit of exposure in each development period is independent of previous 

or subsequent development periods. The definition of exposure could include earned policy 

count, vehicle years, rate-adjusted earned premium or ultimate number of atttitional claims. 

Assuming the number of claims in a unique origin and development period follows a 

Poisson (or negative binomial) distribution, a number of claims that become large in each 

future time period can be simulated. 
V 

3.3.2 IBNR Large Claim Severity 

A number of options are available to simulate the ultimate size of individual IBNR large 

claims. 

The method we suggest is to sample from the (simulated) known large claims, where the 

claims are selected from the claims which became large in that development period. It may 

be necessary to group older development periods together to gain a significant pool of 

claims to sample from. By adopting this approach, we are allowing for any potential 

differences in average claim size by reporting development period, including the propensity 

for a claim to be ultimately small, and avoid the need to specify the claim size distribution. 

Appropriate adjustments for inflation are also required; a further refinement would allow the 

inflation factor selected to be stochastic. 

A simplification to this method could be to sample from all simulated known claims, 

however if we are interested in the finalization date of claims, for example to calculate 
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reinsurance recoveries under an excess of  loss program with an indexation clause, we can 

run the risk of  claims being finalized before they were reported as being large. 

Instead of  sampling from the simulated known claims, it is possible to parameterize the 

probability of  a reported large claim finalizing as large, the finalization period of a large claim 

and the severity of  ultimately large claims. These can be calculated from historic data, usually 

using a Bernoulli distribution for the probability of  a reported large claim finalizing as Large, 

a discrete distribution for the finalization period, and an appropriate distribution (perhaps 

Pareto or generalized Pareto) for the severity. These various distributions can then be 

reviewed against other market or portfolio benchmarks if available. 

3.4 Combining Known and IBNR Large Claims 

Now that we have separately generated the simulated ultimate position of  known large 

claims and IBNR large claims, combining these results gives us the full picture of  large 

claims in the run-off of  reseta~es. 

It is possible to apply a dependency structure to allow for correlations between the run- 

off of the known claims and the number and severity of  large IBNR claims. Appl)4ng a 

positive correlation has an intuitive appeal; however it is very difficult to estimate the 

strength or shape of  this relationship. We recommend at the very least scenario testing the 

results using various correlation strength and dependency shapes. 

3 ,5  N o n - L a r g e  C l a i m s  

To understand the variability of the aggregate reserve distribution, we need to allow for 

the variability of  the non-hrge claims. 

To do this we recommend using an aggregate triangle where each claim is "capped" at a 

certain value. For example, if a capping level of  $100,000 is chosen, then the capped triangle 

contains all development up to the point where it reaches $100,000, and any amount in 

excess of  this is omitted from the triangle. A claim which is reserved at $50,000 in year 1, 

$99,000 in year 2 and $150,000 in year 3 is included as $50,000, $99,000 and $100,000 for 

each respective development year. We prefer the use of  a capped triangle as opposed to a 

triangle where large claims have been completely removed f o r a  number of  reasons, as we 

find it produces more stable results, and the historic triangle does not change when new 

diagonals of data are added (as large claims drop below the threshold and new large claims 
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develop). In the example above, if large claims are removed from the triangle, then the 

development from the example claim is $50,000, $99,000, $0. 

Once a capped triangle has been calculated, one of the traditional aggregate stochastic 

resenting methods described in Section 2 can be used to determine a range of outcomes for 

the "capped" reserve. This aggregate distribution can then be calculated as the sum of the 

capped claims and the excess of cap large claim amounts, 

When selecting the capping level for the atmtional claims, we recommend using a levd 

above the "large" claim threshold, By selecting a cap above the large claim threshold, we are 

using information about the claims which are currently just below the cap and have a good 

chance of increasing above the cap at some stage in their development. 

Again, it may be appropriate to introduce a dependency between the run-off of the 

capped and excess of cap claims. 

4. R E F I N E M E N T S  TO T H E  M E T H O D  A N D  KEY ASSUMPTIONS 

4.1 Model Refinements 

There are a number of refinements to the basic method .that are worth outlining for 

completeness. 

When simulating the known large claims, consideration should be given to measuring the 

development period as the time since the claim became large rather than as the time since 

accident (such that it is on a reporting period basis). This may be more appropriate for large 

claims due to the claim management and legal processes these claims are subject to, and 

generally these progress in a similar manner from the time a claim becomes large rather than 

from the time the accident occurs. Alternatively, a further split can be made by considering 

those reported "early" and "late", although this tends to reduce the sample from which to 

simulate from further. 

We suggest splitting the large claims into at least two layers, to allow for different 

development patterns in the extremely large claims. For example, whereas a claim movement 

from $500,000 to $5 million is possible, it is perhaps less likely for a claim of $Smillion to 

increase to $50 million. Including the development factors from smaller large claims in the 

pool to project the extremely large claims may overstate the variability of possible outcomes 
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for these claims. In determining which claims are in the upper layers (and indeed in the 

original large definition), it is important to standardize the historical claims for inflationary 

effects so as to not bias the claims towards more recent origin periods. It is also important to 

recognize claims can be in different layers at different development periods. 

Selecting the very large threshold(s) is a difficult choice, and there is no one single correct 

method. We have found a tl~reshold that varies by development period, such that between 

10% and 20% of claims are in the top layer produces enough claims to sample from, and 

produces reasonably reliable results. 

4.2 Key Assumptions 
There are a series of assumptions underlying the model, which are worth pointing out so 

that their appropriateness or otherwise can be assessed. 

We are assuming the historic observed chain ladder, and settlement patterns, contain the 

entire population of possible values. Clearly, over 1 period, this is not appropriate. However, 

as we are interested in the ultimate position of claims, often over a significant time period, 

the possible number of ult~nate development factors (i.e. the product of the 1 period 

factors) even for a small number of possible factors (e.g. 50 at each period) becomes very 

large, and this assumption is not unreasonable. 

We assume that chain ladder factors from one period to the next are independent, other 

than for changes in layer and claim stares. This assumption is consistent with most other 

stochastic reserving methods. Further, we have assumed that individual claims develop 

independently within each period. This is potentially optimistic as there may be changes to 

internal case estimation procedures which affect all open claims, and there are external 

factors which also affect all open claims such as legal changes and economic factors. These 

global external effects can be allowed for within the model by overla34ng these effects on the 

underlying process. By projecting claim status into the future, the effects can be applied only 

to open claims, as would happen in practice. If these effects are overlaid on the claims, it is 

important to remove any historic effects from the data to avoid double counting these 

shocks. Applying future inflation effects on top of the underlying projection is useful if tiffs 

modeling is carried out as part of  a wider capital modeling project, as it links in the reserving 

risk with the global economic scenarios. 

As seen with the above simple example, for very new claims, the method can produce 
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very wide ranging results. If the resulting range is thought to be too unstable, for example 

when considering the implied reinsurance recoveries at high layers, it may be appropriate to 

either adjust the range of possible results, or use a method similar to that developed for the 

IBNR large claims described above. 

5. ALLOWANCE FOR HISTORIC R E I N S U R A N C E  STRUCTURES 

As we have now projected the ultimate position of all large claims, we can calculate any 

reinsurance recoveries exactly. For known large claims, we know all the reinsurance details 

which attach to the claim, and any quota share arrangements can be applied to the aggregate 

results. 

It may be necessary to introduce a further refinement m the modal if, say, the excess of 

loss treaty is placed on a risks attaching basis. For known large claims, we will know the 

underwriting year of the policy. For IBNR large claims, the underwriting year to which the 

claim attaches can be simulated. Typically the probability would be in proportion to the 

exposure that each underwriting year contributes to the accident year. 

6. R E C O N C I L I A T I O N  OF RESULTS W I T H  AGGREGATE 
M O D E L L I N G  

Invariably, this work will form part of  a larger piece of work; usually an outstanding 

claims review or part of  a capital modeling project. The actuary may form a view of the 

reserves based on aggregate deterministic methods. This will not correspond with the results 

of  the above method, or indeed any of the methods described in Section 2. This is less than 

ideal, as the practitioner would like to understand the variability around their central 

estimate, rather than some other result. 

One way of ensuring consistency is to scale results by origin year so that the mean 

simulated result equals the actuary's best estimate of reseta, es, or try a different method. This 

can be done by either applying a multiplicative scaling factor for each accident year, or 

alternatively by adding on a fixed loading for each accident year. This can lead to undesirable 

results, either with negative reserves in some instances of additive scaling, or extreme results 

if the multiplicative scaling factor is large. 
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If  the outstanding claims review uses consistent data (in terms of separately modeling 

capped and excess claims, and considers ultimate counts as well as amounts), then there are 

additional diagnostics available to the actuary, such as the following: 

• Large Claim Frequency; 

• Large Ultimate Claim Frequency; 

• Large Excess Ultimate Claim Size; 

• Large Excess Ultimate Burning Cost / Loss Ratio; 

• Capped Claim Burning Cost / Loss Ratio; 

• Large Excess Cost as a Percentage of the Total Claims Cost. 

With these, the actuary has the ability to understand which piece of the projection is 

producing results inconsistent with the aggregate modeling. 

7. CASE STUDY 

7.1 Introduction 

The concepts described above are more readily visualized as a case study. The data 

modeled is from a UK auto account, and contain 16 years of historic data. For individual 

large claims above £100,000, the data included the accident date, report date, and the year- 

end paid and incurred positions, as well as a history of the claim status. 

The layers were chosen such that 80% of the claims in each development period were in 

the lower layer, and 20% in the upper layer. The actual layer limits can be seen in Appendix 

1. 

7.2 Analysis of  the Gross Results 

Figure 1 shows the simulated development of a china which has just been reported as 

being large, with a current incurred position of £125,000. The lighter shades of gray 

represents the more extreme percentiles, with the dotted lines representing the 90 th, 75 th, 50 th, 

25 th and 10 th percentiles. The mean development is represented by the solid line. As can be 

seen, we expect the case reserve to be ultimately inadequate, with the expected ultimate 

amount being just above £300,000. However, using the method described in this paper, can 
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see that 90% of the time, the claim will settle for £700,000 or less. Occasionally, however, 

the claim develops much more significantly. Figure 2 shows an individual simulation where 

the claim gxows to more than £1,000,000. 

Simulated Incurred Development of Individual Claim 

7 0 0 , 0 0 0  - 

600,000- 

5 0 0 , 0 0 0  - 

4 0 0 , 0 0 0  - 

3 0 0 , 0 0 0  - 

2 0 0 , 0 0 0  - 

1 0 0 , 0 0 0  

Development Period Since R e p o r t e d  L a r g e  

Figure 1 
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Even for claims that have been reported as large for several years, there is uncertainty 

over the development. Figure 3 shows the simulated development for a claim that has been 

reported large for four years, using the same percentile descriptions as for Figure 1. On 

average, the claim is expected to run off at an increase to the current incurred. Note that the 

variability around this is still quite significant. 
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Simulated Incurred Development of Individual Claim 
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Figure 3 

We mentioned in Section 4 that we would typically expect to see different loss 

development factors for individual "small" large claims than for "large" large claims. This is 

illustrated in Figure 4. - 
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Cumulative Chain Ladder Factors 
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Figure 4 

The darker line represents the distribution of  cumulative loss development factors for 

"small" large claims in the first development period, the lighter line the distribution for 

"large" large chinas. As expected, it is much more unlikely to have a large development 

factor for the "large" large claims, although it is quite possible. 

To analyze full accident year results, we have estimated the uncertainty surrounding the 

attritional claims using Mack's method on a triangle based on a combination of  incurred and 

paid data. Figure 5 shows the percentile plot of  the total unpaid liabilities of  the capped 

claims. 
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0 

Simulated Distribution of Total Capped Reserve 

3 4 5 6 7 8 9 10 
Millions 

Total 
Capped 
Reserve 

Figure 5 

The table below shows the results of  our projections and compares the results with those 

obtained by modeling the aggregate triangle using a Mack bootstrap. The 75th and 95th 

percentiles are given as percentages of the mean reserve. The coefficient of variation (C.o.V.) 

indicates the variability in the results. 
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Table 4 

Individual Claim Projection Method 

Mean 75 m 95 m 
Accident Year Reserve C.o.V. percentile percentile 

1998 (and Prior 499,65.~ 60.28% 120.51% 212.559[ 
199~, 2,836,911 16.52% 107.26% 135.45~ 
200{ 4,525,56C 21.08% 109.64% 137.95~ 
2001 6,582,89~ 24.46% 112.33% 14&18~ 
200, 7,073,142 28.99% 114.39% 153.25~ 
200' 12,608,97C 32.81% 113.21% 161.58~ 

200~ 12,265,893 25.46% 113.75% 147.099[ 
200.4 15,134,996 30.66% 114.44% 154.1991 
Tota 61,528,02C 

Mack Boo. trap 

CoN. 
75 ~ 95 "~ 

percentile percentile 

15.60% 110.21% 126.61~ 
8.65% 105.73% I 14.2991 

25.06% 116.66% 141.34~ 
23.08% 115.10% 138.96~ 
27.41% 117.91% 146.3791 
18.46% 112.19% 130.81~ 

29.15% 118.97% 149.76~ 
30.97% 120.17% 153.40~ 

12.53% 107.29% 121.70q 13.56% 109.04% 123.04q 

It can be seen that  similar estimates are p roduced  by the two me t hods  for the C.o.V. o f  

the total gross reserve. However  the results for individual accident  years can be  significantly 

different.  Figures 6, 7 and 8 show the gross reserve distributions for 2003, 2004 and 2005 

respectively. In  all three graphs, the individual claim project ion m e t h o d  produces  a 

distr ibution which  is heavier in the upper  tail than the aggregate modeling.  

O n  investigation, the cohor t  o f  claims in 2003 contain a higher  p ropor t ion  o f  open  large 

claims than  average, including one  claim o f  £6m,  which  results in the greater  uncertainty 

than implied by the aggregate projection. The  extra informat ion provided  by the individual 

claim project ions  arguably enables a more  realistic project ion o f  the true underlying 

uncertainty in the liabilities. 
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G r o s s  Reserve  D is t r i bu t i on  (Or ig in  Yea r  2003)~,. . . . .  
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Gross Reserve Distribution (Origin Year 2004) 
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Gross Reserve Distribution (Origin Year  2005)  
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Figure 9 shows the cumulative distribution of  the aggregate unpaid liabilities across all 

accident years based on the two methods. It can be seen that the two methods produce very 

similar results for the total gross reserve although the individual claim projection method 

produces a slightly heavier upper tail. This is highlighted in Figure 10, which compares the 

two distributions in the upper tail. 
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One reason for the heavier upper tail produced by projecting the individual large claims 

can be seen in Figure 11 (using the same percentile description as m Figure 1). The graph 

implies that the ultimate large claim proportion is increasing in recent years, the 

appropriateness of  which can be tested in the aggregate modeling. This trend, if  true, will not 

be allowed for adequately m the aggregate stochastic methods. 

7.3 Analysis of  the Net  Results 

Once we are comfortable with the gross results, we can calculate reinsurance recoveries 

on individual claims using the appropriate reinsurance terms. Table 5 shows the net results 

for the individual claim projection method. 
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Table 5 

Accident 
Year 

1998 (ant 

• , "Prior' 4651519 , 46.96% 
199~ . 97~,976 26.68%,' 
2001 2,983,3813 13.90% 
2001 3,496,184 '18.09% 
200: 3.457,1513 23.91% 
200" i 5,755,89C 17.85% 
200~ . 8,5180805 16.93% 
200. ~ .  9,999,956 16.62% 

Tota 35,654.8613 8.19% 

Ind iv idua l  C la im Projec t ion  Method 

Mean 
Reserve  C.o.V. 75 th percent i le  95 th percent i le  

1'19.36% • . "2~.79q~ 
108.93% ; . ' 147.16qf 
109.34% -. 124.26~ 
112.00% 131.59q[ 
116.35%' " 141.11~ 
111.07% 131.46~ 
110.45% . 129.51 q~ 
110.57% 128.90~ 
105.26% 114.12~ 

F i g u r e  12 s h o w s  t he  n e t  a n d  g r o s s  r e s e r v e s  for  t he  2 0 0 5  a c c i d e n t  year.  T h e  g r o s s  r e s e r v e s  

h a v e  b e e n  s ca l ed  t o  h a v e  t he  s a m e  m e a n  as t h e  n e t  r e se rves .  A s  w o u l d  b e  e x p e c t e d ,  the  

n e t t i n g  d o w n  has  r e s u l t e d  i n  a l a rge  r e d u c t i o n  in  var iab i l i ty .  
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C o m p a r i s o n  of Net and  Gross  Reserves  (All Years )  
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Figure 13 shows the overall net and gross reserves. The net reserve again shows a 

substantial reduction in variability. 

It has already been noted that one of  the additional benefits of  the method described in 

this paper is the ability to accurately examine the performance of  reinsurance cover. Figure 

14 shows the distribution of  recoveries associated with an aggregate deductible of  £2.25m 

attaching to a layer of  £400k in excess of  £600k for the 2002 accident year. As can be seen, 

approximately 10% of  the time the deductible is fully blown and losses pass through to the 

reinsurer. 
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This allows us to consider the value of  this contract and whether it represents value for 

money. 

The method described in this paper also provides the complete predictive distributions of  

the gross ultimate position and ultimate reinsurance recoveries of  individual large claims. 

Therefore the mean net ultimate position for each simulated claim can be correctly 

calculated. Some netting down methodologies we have seen used i n  practice implicitly 

assume that the mean of  the reinsurance recoveries equals the mean of  the gross claim less 

the retention. The one-sided nature of  reinsurance means that this is flawed. The error 

associated with this assumption can be seen in Table 5, which shows the gross, reinsurance 

(RI) and net ultimate incurred position for two claims, with an excess of  £1,000,000. The 

ultimate figures have been calculated on the our stochastic basis and also on a deterministic 

basis. The final two columns correspond to the stochastic calculations, where the mean net 

position takes into account the variability of  the ultimate gross position. 
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Table 6 

Nettin[ Down. Comparison of Methodolo[ties 
Deterministic 

Mean Ultimate Mean Ultimate 
Current Gross Reinsurance Deterministic Reinsurance Mean Net 
Incurred Ultimate Recoveries Net Ultimate Recoveries Ultimate 

Claim 1 500 ,000  829,180 0 829,180 226,604 506,967 
Claim 2 1,000,000 1,337,416 337,416 1,000,000 464,964 872,45~ 

In this case, the deterministic basis is likely to lead to an overestimation of  the net 

position, and is therefore a conservative basis. While in itself this is not a cause for concern, 

a desirable property of  any reserving exercise would be to ensure a consistent basis for gross 

and net reserves. 

8. I N T E G R A T I O N  A N D  APPLICATION W I T H I N  CAPITAL 
M O D E L S  

In recent years, there has been considerable time invested in the development of  capital 

models to understand and quantify the risks faced by an insurance business. A significant 

piece of  this work has been an analysis of  reserving risk, which forms part of  the wider 

insurance risk. In our experience of  the UK market, there are two main methods used by 

practitioners to estimate net of  reinsurance reserving risk. Both methods project gross 

aggregate triangles, with a different approach to netting down for reinsurance recoveries. 

The first method arrives at net results using a deterministic net to gross ratio applied to 

the stochastic gross results. This method has the advantage of  simplicity and transparency, 

however it in effect gives no credit for the expected reduction in volatility that non- 

proportional reinsurance should provide. 

The second method projects both gross and net triangles, with some link between the 

projections in an attempt to ensure consistency and nonsensical simulations are avoided (for 

example, simulations where net reserves are higher than gross). While this should allow for 

the reduction in variability not captured by the first method, it is likely that the reinsurance 

has changed over the years (for example, reinsurance excess points have changed), and the 
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observed historical figures may not be appropriate to apply to the newer accident years. 

In forecasting the ultimate large claim severity, it is important to allow for parameter 

uncertainty. We would further recommend indudmg development uncertainty. Currently, 

most ultimate loss generators are parameterized from some projected ultimate claim figures, 

allowing for IBNER, which is assumed to be known and fixed. Parameter error, using 

various techniques is included in the forecasting of the large claims. However the ultimate 

position of the claims used to parameterize the distribution are not known or fixed. To not 

make allowance for this will understate the true uncertainty of the underlying distribution. 

9. C O N C L U S I O N S  

Existing methods available to help gain understanding of the variability of insurance 

liabilities have focused on aggregate gross data, with no explicit allowance for changing mix 

of claims, and with no obvious adjustment to allow for non-trivial reinsurance. We have 

developed a method based on a small number of key assumptions to explicitly project the 

development of individual large claims. We show how various refinements can be made to 

the standard method and implement this method via a case study using actual data from a 

UK motor injury portfolio. 

By explicitly projecting indixfidual claims we show how to make appropriate allowance for 

policy limits and the reduction in variability arising from non-proportional reinsurance. By 

separately considering attritional and large claims, we can directly allow for changes in the 

mix of claims in our portfolios. 

A range of diagnostics is available to the practitioner to aid understanding of the results, 

and to ensure it is not applied in a mechanical fashion. 

Appendix  1 - Example  Data 

The following table shows the layer limits used in the Case Study. The lower layer lower 

bound is the threshold above which claims are individually simulated. The upper layer lower 

bound defines the boundary between 'small' large claims and 'large' large claims, in order to 

partition the development factors. Development Periods 11 and above have been grouped 

due to scarcity of data. 
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Table 7 

Development Lower Layer Upper Layer 
Period Lower Bound Lower Bound 

1 100,000 360,00( 
2 100,000 500,00( 
3 100,000 520,00( 
4 100,000 400,00( 
5 100,000 680,00( 
6 100,000 500,00( 
7 100,000 630,00( 
8 100,000 320,00( 
9 100,000 310,00( 

10 100,000 260,00( 
11 + 100,000 120,00( 
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Motivation. For property casualty insurers, loss reserves are by far their largest liability. These are actuarial 
estimates of  future loss payments resulting from accidents that have already occurred. In fact, the actual future 
loss payments may des'late - sometimes substantially - from the amount that was estimated. Senior managers, 
shareholders, rating agencies, and regulators all have an interest in knowing the magnitude of  these potential 
deviations - deviations whose distributions we here call loss reserve u n c e r t M n ~  - -  since firms with large potential 
deviations need more capital or reinsurance than other firms with smaller potential deviations. Actuarial journals 
provide several proposed procedures for measuring loss reserve uncertainty. But in practice they are rarely used, 
since they typically require specialized software and use statistically complex procedures that are unfamiliar to 
most actuaries. Moreover, in at least some cases, these procedures provide estimates of  loss reserve uncertainty 
that depend on vet')" strong assumptions that virtually assume the conclusions obtained. 
Method. In this report I provide a simple method for measuring loss reserve uncertainty that is easily 
implemented with a spreadsheet model, that relies on data available for all US insurers and all lines of  business, 
and that makes relatively few easily accepted assumptions. 
Results. The method for estimating loss reserve uncertainty explained and demonstrated here has five important 
advantages. First, it is simple, and easy to implement. This report even provides the relevant Excel formulas for 
implementing crucial steps in the method. Second, it avoids severe statistical problems that affect numerous m, al 
methods, as explained in detail. Third, the method is validated (rather than merely illustrated) by applying it to 
simulated data in which answers are known, and demonstrating that its estimates agree closely with these known 
answers. Fourth, the measure of  loss reserve uncertainty used here - the standard deviation of  loss reserves as a 
percentage of  the estimated resen-e -- is scalable, so that it can be applied to reserves estimated by other 
methods. Fifth, the resulting measure of  loss reserve uncertainty can be directly compared across different lines 
of  business in a single firm, or for the same Line of  business across different firms. 
Conclusion. The method presented here appears to be the first instance of  a method for estimating loss reser,,es 
and loss reserve uncertainty that is thoroughly validated by comparing its estimates to those of  a simulation with 
known parameters. Its results can assist CEO's, CFO's, Chief Risk Officers, actuaries, rating agencies, regulators, 
and stock analysts in estimating the variability of  loss rese~,es, in estimating a firm's capital adequacy, in 
forecasting the distribution of  possible loss reserve payments during the next calendar year, and in determining 
whether current or past calendar year deviations from expected loss payments are sufficiently large to deseta'e 
special attention. 
Availability. To obtain the model presented here, email Bjll.Panning@.\X'illis.com. 

Keywords. Loss reserve uncertainty, regression, resenting, Enterprise Risk Management 
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1. WHAT LOSS RESERVE UNCERTAINTY IS A N D  WHY IT MATTERS 

1.1 Defining Loss Reserve Uncertainty 
Property-casualty loss reserves are estLmates of  the total future payments that will be required to 

settle claims on accidents that have already occurred. Because such estimates are inherently 

imprecise, for reasons discussed later on, insurers may ultimately pay out more or less to chimants 

than is forecast in the firm's current reserve. Loss reserve uncertainty (LRU) is a measure  of  

the magni tude  of  this potent ia l  difference between forecast and actual loss payments .  

In this paper I propose, explain, and justify a particular method of  estimating loss reserve 

uncertainty. This method has several important virtues. First, it is simple, and so can be 

implemented on a spreadsheet and applied to universally avaihble data. Second, the method is 

accurate, since it addresses and avoids a number of  pitfalls in statistical estimation that would 

otherwise produce biased and misleading results. Third, the resulting estimates are comparable 

across different lines of  business and different firms. Fourth, the measure of  LRU is scalable, so 

that it is applicable to reserves that have been estimated in different ways. FinaUy - and this is 

particularly significant - the method has been thoroughly validated by demonstrating that its 

estimates of  reserves and loss reseta*e uncertainty closely match the known parameters underlying 

I0,000 simulated loss reserve triangles. 

1.2. Why Loss Reserve Uncertainty Matters 

A method for estimating LRU that has these characteristics is likely to be extremely useful to 

insurers, investors, regulators, and raring agencies, for estimating surplus adequacy, for pricing and 

capital allocation, and for determining the potential significance of  reseta~e developments. 

1.2.1. Es t ima t ing  Surplus Adequacy.  

The uncertainty of  an insurer's loss reserve has direct implications for its required surplus or 

reinsurance. The greater an insurer's LRU, the greater the surphis or reinsurance it needs to cope 

with potential scenarios in which ultimate losses exceed forecast losses. In the absence of  an 

accepted measure of  LRU, these various audiences have relied on indirect measures of  surphis 

adequacy such as premium-to-surplus or reseta, e-to-surplus ratios relative to peer companies or to 

industry averages. Such relative evaluations can be quite misleading in an industry that exhibits 

profound swings in pricing and reserve adequacy. 

The problem of  estimating surplus adequacy is a fundamental issue in Enterprise Risk 

Management, which attempts to estimate the total capital needed by an insurer to withstand 
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potential losses from all sources of  risk. Before total enterprise risk can be managed, it must first be 

measured. For most  property casualty firms, the principal sources of risk are loss reserve 

uncertainty, asset risk (principally due to equities), pricing risk (potential differences between 

forecast losses and the incurred losses initially booked), and credit risk on receivables and 

recoverables. O f  these, LRU is often one of  the largest and one of the most difficult to estimate. 

1.2.2. Pricing and Capital Allocation. 

Many insurers allocate capital to different lines of  business and evaluate pricing adequacy by the 

return on capital achieved in each line. Although firms may employ different methods for allocating 

capital among different lines of  business, there is consensus that the capital allocated to a particular 

line should reflect the degree to which estimated losses are uncertain. Consequently, the capital 

allocated to a line of  business should reflect the rapidity with which its reserve runs off and the 

magnitude of uncertainty involved. Measuring loss reserve uncertainty can therefore inform and 

improve capital allocation and pricing. 

1.2.3. Manager ia l  Feedback .  

An insurer's loss reserve is a forecast of  all future loss payments, including those anticipated 

during the next calendar year, from accidents that have already occurred. The measure I propose 

can be adapted to estimate the uncertainty of this calendar year estimate. What  makes this 

important is that this estimated uncertainty provides a useful benchmark against which any 

difference between actual and forecast loss payments can be evaluated. For example, if calendar 

year paid losses are 20% higher than forecast, this is of  httle concern when the standard deviation of  

those forecast losses is 15%. But if, instead, the standard deviation is 6%, then the 20% deviation 

should trigger sigrfificant managerial concern. Since managerial attention is a scarce and valuable 

resource, the ability of  this method to distinguish significant dexfiations from those that are not  

should prove to be quite useful. 

2. PRIOR STUDIES OF LOSS RESERVE U N C E R T A I N T Y  

Given the potential importance of  measuring LRU, it is not surprising that the number  of  papers 

on the subject has grown significantly during the past decade. Relevant papers include Ashe (1986), 

Barnett and Zehnwirth (2000), Braun (2004), Brehm (2002), England and Verrall (1999, 2001, 2002), 

Halliwell (1996), Hayne (2003), Hodes, Feldblum, and Blumsohn (1996), Holmberg (1994), Kloek 

(1998), Mack (1993, 1994, 1995, 1999), Murphy (1994), Taylor (1987, 2004), Taylor and Ashe (1983), 

and VerraU (1994). Rather than describing each paper individually, I shall comment  on this body of 

work taken as a whole. 
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2.1 Chain Ladder Focus 

First, a central assumption of  much of  this literature is that the chain ladder method for 

estimating reserves is the obligatory starting point for estimating reserve uncertainty. For example, 

in their excellent review of  a variety of  models and techniques for estimating reserves and reserve 

uncertainty, England and Verrall (2002) note that a principal objective of  the models they review is 

"to give the same reserve estimates as the chain-ladder technique" (p. 448). By contrast, there are 

relatively few studies like Stanard (1985), Narayan and Warthen (1997), Bametr and Zehnwirth 

(2000), and Taylor (2003) that focus on the key assumptions and comparative adequacy o f  the chain 

ladder method. Here I make no attempt to ensure that my proposed method agrees with the chain 

ladder method in estimating the unknown parameters of  some paid loss triangle. The point is to 

obtain estimares that are correct, whether or not they a Lyree with a widely-used method. 

To validate the method I shall use known parameters to simulate thousands of  paid loss triangles 

and determine whether my proposed method is able to accurately estimate these parameters and the 

corresponding simulated reserves and simulated reserve uncertainty. Agreement with the chain 

ladder method is simply irrelevant to this validation procedure, especially since the chain laddet 

method has itself not been definitively validated in a comparable manner. 

2.2 Absence of  Estimation Criteria 
Second, apart from the special place accorded to the chain ladder method, much of  the literature 

seems to assume a kind of  algorithmic democracy, in which one technique for estimating reserves or 

LRU is considered as good as any other. (This assumption reaches its inevitable conclusion when 

the results obtained from different methods are averaged.) With few exceptions, there is no 

discussion of  criteria that must be met in order for estimates of  reserves or LRU to be accurate. The 

notable exceptions here are Ashe (1986), Barnett and Zehnwirth (2000), Halliwell (1996), Taylor 

(1987), and Taylor and Ashe (1983), but even here the relevant issues are typicaUy either assumed or 

discussed very briefly. Here I explain at some length conditions that are crucial to accurate 

estimation, and show specifically what must be done to meet those conditions. 

It is important here to recogruze the significant differences between estimating reserves on the 

one hand and estimating LRU on the other. Some methods for estimating reserves are totally 

incapable of  being extended to estimating LRU. Moreover, there is an enormous difference, at least 

in my view, between methods that principally focus on estimating reserves but only incidentally 

focus on LRU, and methods that principally aim to estimate LRU. The former are especially 

prevalent, and invite strong assumptions with little guidance on ways to test their validity or to 

estimate the sensitivity of  LRU estimates to slight changes in these assumptions. The latter are rare, 

and include the method presented here. 
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2.3 Complexity 

Third, the procedures proposed to estimate LRU are typically quite complex. Moreover, some 

recommended procedures, such as generalized least squares (GLS) and generalized linear models 

(GLM) in fact typically require very strong a priori assumptions about variances and covariances. 

Checking and, when necessary, appropriately modifying these assumptions is indeed feasible, but at 

the expense of  making a complex procedure even more vulnerable to the temptation to over-fir the 

model, thereby "finding" what one has really assumed. Here I utilize a much simpler procedure that 

is less elegant but. in this respect, more robust. 

3. A MEASURE OF LOSS RESERVE U N C E R T A I N T Y  A N D  ITS MERITS 

No single method of  estimating loss reserve uncertainty is appropriate under all circumstances. 

Much depends upon the type and extent o f  data available for such an analysis. For example, 

actuaries within an insurance firm may have access to data that is far more extensive and detailed 

than the data available to external analysts. Given these differences in available data, internal and 

external analysts may appropriately utilize different methods to estimate loss reserve uncertainty. 

Nonetheless, I believe that the results obtained from the method presented here can be applied 

direct]), to reserve estimates obtained using other methods and more extensive data. 

The procedure I propose has two steps. The first is estimating the loss reserve itself, in dollars. 

The second is estimating the standard deviation of  that loss reserve, again in dollars. Because both 

of  these estimates are in dollars, comparisons across lines of  business or across different firms are 

essentially meaningless, since differences in these numbers will ptindpally be affected by differences 

in the volume of  business in each line or each firm. But if we instead express resen, e uncertainty as 

a coefficient o f  variation (the standard deviation of  the estimated reserve as a percentage of  the 

estimated reserve), we arrive at a measure that has three important properties. 

First,  it can  be compared  across different lines of  bus iness  wi thin  a particular firm. A line 

of  business in which the coefficient o f  variation is 6% is clearly less risky (in this respect, at least) 

than one in which the coefficient o f  variation is, say, 15%. 

Second,  this measure  of  L R U  can be compared  across different firms for the same line of  

business .  If  the coefficient o f  variation for workers' compensation is smaller for one firm than for 

another, it is pretty clear that this line of  business is less risky for the first firm than for the second. 

This fact has enormous implications for the measurement of  capital adequacy. 

The results of  both of  these comparisons must be interpreted carefially, since they depend on the 

volume of  business written as well as on supposedly intrinsic differences between different lines of  
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business. As the central limit theory implies, the coefficient of  variation for a line of  business will 

tend to decrease with the volume of  business written. This principle is confirmed by the fact that, 

for a particular line of  business, the coefficient o f  variation for the industry as a whole is typically 

smaller than that same measure for any particular firm. 

Third,  I believe that  this measure  of  L R U  can be appl ied to reserves that  have been  

es t imated  by methods  other  than  the  one r e c o m m e n d e d  here.  My argument here is very 

simple. Suppose that I u~tize the method and data proposed here to forecast future loss payments 

(i.e., the reserve) for some insurer and obtain a value R. Suppose also that the firm's own actuaries, 

utilizing a different method and far more extensive data, obtain an estimated reserve value of  R*, 

where R* = aR (i.e., some positive constant times the value R obtained using the method and data 

recommended here). Under rather broad conditions it is the case that if R* = aR, then the standard 

deviation S* = aS, where S* is the standard deviation of  the R* and S is the standard deviation of  R. 

If  this is so, then it is necessarily true that S*/R* = S/R. In other words, the coefficient o f  variation 

S/R will be (approximately) the same regardless of  the method used to estimate reserves. 

4. DATA N E E D E D  TO MEASURE LOSS RESERVE UNCERTAI NTY 

Comparing LRU across different lines of  business and, in particular, across different firms, 

requires that data that is commonly available and consistently defined. The data utilized here 

consists o f  the paid loss triangles reported in Schedule P, Part 3, o f  the Annual Statement required 

by the National Association of  Insurance Commissioners. This data is publicly available for all 

insurance companies licensed in the United States. 

Table 1 is an example of  such data. The rows of  this table are accident  years: the calendar years 

in which accidents occurred. The columns are deve lopment  years: calendar years in which claims 

payments for those accidents were actually made. A single accident can r.rigger multiple claim 

payments occurring in different development years. For example, an auto accident in November 

1995 could trigger a payment for physical damage to the insured's vehicle in December of  that same 

year, and an additional claim payment, for bodily injury medical costs, in 1996. Litigation, if it 

occurs, may delay claim payments into later )'ears. Table 1 shows that, for all accidents occurring in 

1994, $ 624 million in claims were paid that same year, a cumulative total o f  $ 2.1 billion had been 

paid by the year-end 1996, and $ 2.9 billion by year-end 2003. 
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Table 1: Cumulative Paid Losses (millions) 

Development Year 
Year 

Losses 
Were 

Incurred 
1994 
1995 
1996 
1997 
1998 
1999 
2000 
2001 
2002 
2003 

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 

624 1,595 2,066 2,366 2,559 2,685 2,765 2,818 2,860 2,895 
695 1,503 1,975 2,295 2,496 2,631 2,727 2,784 2,831 

668 1,477 1,968 2,263 2,447 2,562 2,645 2,707 
696 1,540 2,055 2,357 2,551 2,699 2,806 

770 1,670 2,225 2,583 2,822 2,985 
690 1,515 2,051 2,436 2,666 

544 1,321 1,859 2,191 
563 1,355 1,852 

593 1,416 
621 

Table 2: Accident Year x Development Year Cumulative Paid Losses (millions) 

Development Year 
t 0 1 2 3 4 5 6 7 8 9 

0 624 1,595 2,066 2,366 2,559 2,685 2,765 2,818 2,860 2,895 
1 695 1 ,503 1,975 2,295 2,496 2,631 2,727 2,784 2,831 
2 668 1 ,477 1,968 2,263 2,447 2,562 2,645 2,707 
3 696 1,540 2,055 2,357 2,551 2,699 2,806 
4 770 1 ,670 2,225 2,583 2,822 2,985 
5 690 1,515 2,051 2 ,436 2,666 
6 544 1,321 1,859 2,191 
7 563 1 ,355 1,852 
8 593 1,416 
9 621 

In Table 2, which is a reformatted version of Table 1, each row after the first has been shifted to 

the left, and development years have been renumbered, from zero to nine, to represent the number 

of years that have elapsed since the year in which the accident occurred. (I shall refer to these 

development years as DY0, DY1, and so on, and to accident years, also renumbered, as AY0, AY1, 

and so on.) The rearranged data in Table 2 more clearly shows how the claim payments for an 

accident yea develop over time, represented by the number of development years subsequent to the 
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year of  the accident. As before, these are cumulative claim payments. Table 2 is typical o f  the data 

commonly used to estimate loss reserves for a single line of  business. To estimate reserves, one 

must estimate, for all accident years, the difference between the amounts already paid and the 

ultimate amounts that will have been paid when all claims are finally settled. (This may occur well 

after DY9; if'so, then years prior to AY0 will also have to be analyzed, using separate data. Here I 

ignore all prior years.) 

5. T H E  SOURCES OF LOSS RESERVE U N C E R T A I N T Y  

Property-casualty loss reserves are estimates - forecasts -- o f  the total future payments that will 

be required to settle claims on accidents that have already occurred. The actual future payments may 

deviate from the forecast amount for several reasons, each of  which reflects a different risk. 

5.1 Types of  Risk 

To distinguish between the different types of  risk that are practically important in estimating 

LRU, it may be helpful to consider a simple phenomenon with which we are all familiar: flipping a 

coin. Let us postulate that we receive payoffs that correspond to the proportion of  heads that are 

flipped. In the first place, even if we know for certain that the probability of  flipping heads is p, the 

fact remains that the proportion of  heads actually flipped can deviate substantially from p. This is 

process risk. By contrast, pa rameter  risk reflects the fact at the true probability of  flipping heads 

is unknown to us, and must either be assumed or inferred from the outcomes we observe. We may, 

for example, infer that a coin with five heads in ten flips is fair and another with eight or nine flips in 

ten is biased. Parameter risk reflects the possibility that in both instances we may be wrong. In 

most practical situations we are exposed to both process risk and parameter risk, and find it difficult 

to distinguish between the two. 

Note, by the way, that it is process risk that gives rise to parameter risk. If a coin with a true 

probability of  1/2 of  flipping heads always produced five heads in ten flips, then parameter risk would 

not exist. 

FinaUy, the inferential process -- inferring whether a coin is biased by observing the outcome of  

multiple flips -- itself relies on a crucial assumption that is seldom made explicit: that the probability 

of  the coin flipping heads is constant and independent of  prior and subsequent flips. If, by contrast 

(as many gamblers assume), the probability of  flipping heads is mean-reverting, so that flipping tails 

is more likely after a long series of  heads, or if (by contrast) outcomes are positively serially 

correlated, so that flipping tails becomes even more likely after a preceding series of  tails, then the 

previously described inferences from observed outcomes are too simple to reflect reality. The point 
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here is that making inferences from the outcomes we observe depends upon an exphcit or implicit 

mental model o f  how those outcomes are generated. If our mental model is wrong, and assumes 

serial correlation where it is absent or assumes the absence of  serial correlation where it is present, 

we may draw the wrong conclusions from what we observe. This possibility that our mental model 

is wrong is called model  risk. All three types of  risk - process risk, parameter risk, and model risk - 

are important in estimating loss reserve uncertainty. 

5.2 Process Risk 

Some degree of  uncertainty is inherent in the process of  settling claims payments. The amount 

actually paid in a given development year is a complex result of  numerous factors - among them the 

uncertain outcomes and costs o f  medical diagnoses and treatments, and of  court proceedings or 

settlement negotiations. None of  these factors can be easily forecast. Consequendy, even at an 

aggregate level, attempts to predict future claim payments are inescapably imprecise. Process risk 

explains why our models fit past paid losses only imperfecdy, and why they require an error term in 

the prediction equation discussed below. 

5.3 Parameter Risk 

Actuarial methods necessarily use past experience to forecast future patterns. But past 

experience can be misleading. The culprit here is the relatively short period of  time - ten years - 

covered by a r)~pical paid loss mangle, so that parameter estimates are derived from a relatively small 

number of  observations. The paid losses in the triangle are all affected by process risk, but the small 

number of  observations creates substantial sampl ing  error. The result is that past data may, simply 

by chance, reflect unusuaUy favorable or unfavorable claims experience, and thereby affect the 

model parameters we are trying to estimate. 

As an example, consider the step in the chain ladder method in which one of  several weighting 

methods is used to produce a ratio of  cumulative losses in DY5 to cumulative losses in DY4. This 

and other similar ratios are key parameters in the chain ladder model. But note that in DY5 there 

are only five cumulative AY losses from which ratios can be formed. I f  one or more of  these five 

cumulative loss numbers is affected by an unusually large, or unusually small, daim pa}maent in DY5 

or in any preceding DY, then the resulting ratio will be atypically large or small. As this example 

suggests, this problem of  sampling error is more acute for firms and lines of  business that have few 

claims invohdng large payments than for firms with many small claims. Sampling error is likely to be 

less relevant to private passenger auto than to, say, product hability or D&O. 

Especially in low-frequency high-severity lines of  business, then, sampling error can lead to 

distorted estimates of  key loss reserve parameters. This important consequence of  sampling error 
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can be called parameter risk, since it pertains to the accuracy with which we can use past data to 

estimate key parameters in our model of  reserves or reserve uncertainty. Unlike process risk, which 

is inherent in the claims setdement process, parameter risk reflects our ignorance of  the true 

parameters that characterize that process and the consequent need for. us to use imperfect data to 

estimate them. 

5.4 Model  Risk 

All reserve estimates require extrapolation from the past to the future. We use data from the past 

to create a model o f  the evolution of  claims payments, and we then use this model to forecast future 

payments. Implicit in this process axe two crucial assumptions. One is that we have correctly 

modeled the past: that we have included all the relevant variables and specified the correct functional 

form of  the model. A second implicit assumption is that the pattern of  future claims payments will 

continue to conform to this model. That is, the way claims are settled in the future will closely 

resemble the way they have been settled in the past. This implicit assumption may become 

misleading if there are fundamental changes - known as regime changes  - in the claims settlement 

process at a particular firm (perhaps as a consequence of  regulatory or judicial decisions), or in the 

types of  claims being settled (which may change over time due to changes in business mix). These 

two components of  reserve uncertainty can be called model risk, since they pertain to the capability 

of  a model to correctly extrapohte from the parameters of  past experience to estimates of  future 

payments. 

Regime changes that have occurred in the past can often, although not invariably, be identified 

and corrected by means of  a thorough analysis o f  the differences (residuals) between the fitted 

values of  past paid losses obtained from a model and the actual paid losses that have been observed. 

(The paper by Barnett and Zehnwirth (2000) provides an excellent example of  the analysis of  

residuals.) If these residuals exhibit a trend or a sudden temporal shift, then there is good reason to 

suspect that a regime change has occurred. This possibility can be confirmed by testing a more 

advanced model that incorporates temporal changes in the value of  key parameters. Unfortunately, 

there are tradeoffs in introducing additional variables, since doing so is likely to increase our estimate 

of  LRU. Introducing additional variables may better fit past loss payments, but at the expense of  

greater uncertainty in forecasting future loss payments. The brutal fact is that a simplified but 

imperfect model of  past losses may be superior to a more complex model in its ability to precisely 

forecast future loss payments. 

246 Casualty Actuarial Society Forum, Fall 2006 



Measuring Loss Reserve Uncertain(y 

It is important to note, however, that regime changes occurring in the future can im, alidate the 

results o f  our analysis, which consist of  forecasts and estimates concerning that future. The risk 

measures proposed here implicitly assume a stable future environment, and do not  incorporate the 

risk o f  future regime changes. If such changes do occur, then the results obtained by the method 

presented here may become totally irrelevant to the changed circumstances. 

5.5 Summary 
Process risk essentially reflects the fact that some aspects of  the claims setdement process are 

inherently unpredictable. Pa rame te r  risk reflects the fact that, even if we have a correct model o f  

the evolution o f  paid losses, our estimates o f  the parameters of  this correct model will necessarily be 

somewhat imprecise. Mode l  risk reflects the possibility that the model we are using may itself be 

incorrect, so that our ability to predict future loss payments from past paid losses may be impaired. 

A satisfactory approach to estimating LRU should address all three o f  its sources. In particular, it 

should provide systematic ways to avoid, minimize, or detect model risk in the past, and it should 

quantify both process and parameter risk. 

6. CRITERIA FOR ACCURATELY ESTIMATING RESERVES A N D  
RESERVE U N C E R T A I N T Y  

The method presented here uses linear regression to fit past loss pa)anents, forecast future loss 

payments, and estimate LRU. But the use o f  linear regression - or any other method,  for that 

matter -- will not  produce accurate estimates o f  reserves and LRU unless certain crucial problems 

are avoided or corrected. Despite their huge potential impact on estimates o f  loss reseta, es and 

LRU, and the enormous attention devoted to them by even elementary econometrics texts, these 

problems are typically assumed away if they are discussed at all. Here I describe these problems, 

their relevance, and what can be done about them. 1 

6.1 Linear Regression 

In linear regression we initially assume a simple relationship between some dependent variable Y 

(here specified as paid losses) and one or more independent variables X. The relationship between 

the two is represented by the equadon Y = ~X + ~, where ~ is one or more parameters to be 

estimated, and ~ is an error term that represents random disturbances or deviations from the 

z In this section I rely heavily on Kennedy (2003), a superb elementat 3, presentation of the essentials of econometrics, 
and on Greene (2000), one of the most widely used advanced texts. 
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predicted relationship between Y and X. In the simplest possible model, X consists o f  a single 

independent variable. I shall refer to this as model 1. 

In this simple model, process risk is represented by E, which consists o f  disturbances that are 

assumed to have an expected value of  zero and a standard deviation that is constant across all 

observat ions .  Parameter risk is reflected in the fact that the resulting estimated value o f  [3, 

represented by b, is assumed to be correct, so that b = }, which may not  be true. Finally, model risk 

is represented in several ways. For example, model 1 directly assumes that the relationship between 

Y and X is indeed linear, that all variables pertinent to Y are included in ~ and that J3 is constant. 

All of  these may in fact be false, but  can typically be checked by thoroughly examining the residuals 

from the model - the deviations between actual and fitted paid losses. 

6.2 Bias 

If important variables affecting Y are omitted from model 1, the error term is likely to have a 

nonzero mean, the fitted and forecast values from the model will be biased - their estimated values 

will systematically deviate from their true values. In the absence o f  specific data concerning the 

omitted variables, we can take their influence into account by adding an intercept term to the 

original model, which now becomes Y = c( + ~X + ~. I shall refer to this model as model 2. Since 

the unnecessary use o f  an intercept term affects our estimate o f  LRU, we should use model 2 only 

when there is convincing evidence that the error terms from model 1 have a mean that significantly 

differs from zero. 

6.3 Varying Parameters 

Another  source o f  model risk is change over time in the value o f  ~. This may occur due to 

changes in (a) the firm's claims settlement process, Co) judicial decisions or regulatory requirements, 

(c) the composition o f  the firm's policyholders in that line of  business, or (d) the structure o f  a 

firm's reinsurance program (since paid losses are reported net of  reinsurance recoverable). These 

and other possible changes may produce sudden or gradual changes over time in the true value ~, 

but  these changes that will not  be reflected in its estimated value b. Fortunately, situations o f  this 

sort exhibit a characteristic pattern of  residuals, and can be corrected by using a slightly more 

complex model in which ~ is assumed to change linearly over dine, so that ~ --- ~,, + ~lt, where t = 

0, 1, . . . n is a time index. When this is substituted into the original model we have a new model, 

which I shall refer to as model 3: Y = ~ + ~ltX + *. If ~1 =0, then this model collapses into the 

original, simpler model 1. 
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6.4 Correlated Disturbances 

Linear regression models assume that the disturbance terms for each obse~,ation are 

uncorrelated with one another. For the data in Table 2, it sensible to assume - as many others have 

-- that the disturbances in different accident years are uncorrelated. The important question is 

whether  the disturbance terms within the same accident year are correlated across development 

years. I win show that they are in cumulative data. 

Suppose that, for a given line o f  business and a given accident year, the expected paid losses are 

$40, $30, $20, and $10 in development years zero through three. However, in any given 

development year the actual paid losses will deviate from these expected paid losses due to a variety 

o f  random factors whose net effect in those development years is ,,, ~1, '2, and e3, respectively. 

There are good reasons for assuming that these four random terms are independent o f  one another 

and o f  all other similar random terms affecting other accident years and development yeas .  

However, if we create a table o f  cumulative paid losses, as in Table 2, we will create correlations 

among these random terms, since the new disturbance term for AY1, for example, is now ¢. + ~1, 

which is clearly positively correlated with E,,, the disturbance term for AY0. In cumulative data, then, 

an unusually large disturbance in any development year will be reflected in all subsequent cumulative 

paid losses for that accident year. 

The tTpical consequence o f  correlated disturbances, explained in both Kennedy and Greene, is 

that a given model will appear to fit the historical data better than it actually does, so that process 

error will be underestimated. This, in turn will result in LRU being underestimated as well. 

Fortunately, the remedy for the correlated disturbances in cumulative paid loss triangles is simple: 

we should use incremental paid losses rather than cumulative ones. Consequently, the data we will 

utilize to estimate reserves and reserve uncertainty will be incremental, like that shown in Table 3, 

which is derived from Table 2. (The boxes in Table 3 are explained later.) Hal.lowell's (1996) 

alternative solution is discussed below. 
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Table 3: Accident Year x D e v e l o p m e n t  Year  Inc remen ta l  Pa id  Losses (millions) 

Development Year 
t 0 1 2 3 4 5 6 7 8 9 

o 62----TI 971 
1 695 808 473 
2 668 !809  491 
3 6961844 515 
4 770 900 555 
5 690 825 536 
6 544 777 537 
7 563 792 497 
8 593 ~823 
9 62__1 1 _ _  

300 193 126 80 
319 201 135 96 
295 184 115 83 
302 194 148 107 
358 239 162 
384 231 
332 

53 42 
57 47 
63 

35 

6.5 H e t e r o s k e d a s t i c i t y  

Linear regression assumes that the disturbance terms for past observations are homoskedasdc - 

i.e., have a constant variance or standard deviation as measured here in dollars (and not  in 

percentage terms). This assumption is clearly violated in paid loss triangles like Table 3, for the 

variability of  disturbances typically decreases from one devdopment  year to the next. 

Heteroskedasde (non-constant) disturbances reduce the precision of  reserve est~nates and especially 

o f  estimates o f  LRU. 

There are two remedies for heteroskedasticity that are relevant to the problem at hand. One  is to 

use a procedure known as Generalized Least Squares (GLS), which is a variation of  linear regression 

that incorporates the use of  an assumed or estimated variance-covafiance matlax of  disturbances 

(Halliwell, 1996; Taylor and Ashe, 1983). One  typical assumption, for example, is that the standard 

deviation of  disturbances is proportional to the observed losses themselves. Besides its complexity, 

there is a fundamental problem with the use of  GLS for estimating reserves and LRU. Whether the 

variance-covariance matrix is assumed or estimated, the use of  GLS introduces additional parameter 

risk that is not  taken into account in the est~nate of  LRU. Moreover, however useful GLS may be 

in increasing the accuracy of  resetwes estimates, when it is applied to the problem of  estimating LRU 

it comes dangerously close to assuming precisely what we are trying to estimate. 

A second and far simpler remedy is to assume - quite plausibly - that the standard deviation of  

disturbance terms is constant within the same development year. What  this implies, in practice, is 

the need to perform separate regressions on each development year. While this procedure may be 
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less elegant than performing a single comprehensive regression for the whole paid loss triangle, it 

avoids the need to make problematic assumptions about variances and covariances. 

6.6 Zero Correlation Between Disturbances and Independent Variables 
Halliwell (1996) correctly points out that the classical linear regression model required that the 

independent variables be non-stochastic. However, both Greene (2000) and Kmenta (1977, pp. 

297ff.) demonstrate that this stringent and seldom-met condition can be replaced by one that is far 

less demanding, namely, that the disturbance terms be independent o f  the values of  the independent 

variables. However, even if the correlation is slightly positive rather than zero, the effect on the 

resulting estimates o f  reserves and LRU is imperceptible, as I shall demonstrate later on. 

6.7 Implications and Summary 

In using linear regression to estimate reserves and LRU, it is essential to avoid the various pitfalls 

just described. If  one or more of  these problems do occur, then estimates of  reserves and LRU may 

be seriously affected. It should be noted that this conclusion applies not only to the use of  linear 

regression, but to the use of  other estimation procedures as well. 

The immediate implications for modeling reserves and LRU can be summarized as follows: (a) if 

bias appears to be a problem, use model 2 rather than model 1; (b) if the model parameters appear 

to change over time, use model 3; (c) to avoid correlated errors, use incremental paid loss triangles; 

(d) to avoid heteroskedasticit3, , analyze different development years separately; (e) the use of  non- 

stochastic independent variables, as advocated by Halliwell (1996) is unnecessary provided that there 

is no correlation between disturbances and the independent variables. 

7. ESTIMATING LOSS RESERVES 

I will present the full procedure for estimating reserves in this section, and for estimating LRU in 

the next one. In both, the presentation will focus initially on DY0 through DY7 and subsequendy 

on DY8 and DY9, where data is minimal and extrapolation from the results for preceding DY's 

becomes necessary. 

7.1 Fitting and Forecasting Losses for DY1 to DY7 

The procedure I use here is linear regression. As explained in the previous section, we will 

analyze each DY separately. The independent variable X used to fit each DY is the column of  paid 
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losses in DY0, shown in the left box in Table 3. We will illustrate the procedure by fitting DY2, the 

right box in Table 3, as the dependent variable. In model 1, these are the only two variables) 

In the absence of  specialized statistical software, one would typically perform the linear 

regression in Excel to obtain the regression coefficients and fitted values. Then  one would obtain 

forecast values and, finally, calculate their forecast standard deviations. This final step can be 

especially complex. Here I introduce a method first suggested by Salkever (1976), later 

recommended t~y Kennedy, and described briefly but clearly by Greene (pp. 308-310), that makes it 

possible to do all three steps simultaneously. 

Tab le  4: Fi t t ing and  Forecas t ing  DY2 

I v I I  x I 
DY2 DY0 D9 D8 

471 
473 
491 
515 
555 
536 
537 
497 

624 0 0 
695 0 0 
668 0 0 
696 0 0 
770 0 0 
690 0 0 
544 0 0 
563 0 0 
593 0 -1 
621 -1 0 

b 0.77 477 456 
s% 0.03 62 62 

RZ, sec,t 0.99 59.0 
t-stat is t ic  24.3 7.7 7.4 

Table 4 shows the key steps in the Salkever algorithm. First, augment  the dependent variable Y 

with zeros so that it is the same length as DY0. Second, for each of  the zeros added to Y, create 

2 Some readers have asked why I don't propose using DY 1 and DY2 in estimating DY3, and so on. The answer is 
simple: very soon one has more variables than observations. This point is actually a specific case of an important 
and more general principle: increasing the number of independent variables can actually increase loss reserve 
uncertainty by reducing degrees of freedom. 
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additional columns in the independent variable X, in each of  which there is a single entry, -1, 

corresponding to one of  the zeros in Y. These additional variables are known as "dummy"  

variables, and so I have labeled them as D9 and D8, since their nonzero entries correspond to AY9 

and AY8. In this example X now consists o f  three variables. Third, perform the linear regression 

(LINEST in Excel, with no intercept). The results are shown at the bot tom of  Table 4, with one 

slight difference from those obtained in Excel: I have reversed the left-to-right order o f  the first two 

rows of  regression results, so that they now appear in the same order as the three variables in X, 

thereby doing what Microsoft should have done. 

7 .2  R e s u l t s  

The first column of  results is identical to what one would have obtained by simply regressing Y 

against X. The estimated regression coefficient b is 0.77, which indicates that the losses in DY2 are 

about 77% of  those in DY0. The standard error o f  b, in the second row, tells us that b has an 

estimated standard deviation o f  0.03. The t-statistic, in the fourth row, is the ratio o f  b to its 

standard error. As a general rule o f  thumb, t-statistics with absolute values greater than 2.0 are 

considered significandy different from zero. The two numbers in the third are R z and the standard 

error o f  the estimate, which is the estimated standard deviation o f  the error terms, the differences 

between fitted and actual values o f  Y. In the absence of  an intercept R z is typically high, so the 

standard error o f  the estimate is a better measure o f  goodness of  fit. 

Tab le  5: Fi t ted Values  & Regres s ion  Coefficients  
For  E a c h  D e v e l o p m e n t  Year 

D e v e l o p m e n t  Year 
t 0 1 2 3 4 5 6 7 

0 800 480 303 
1 890 534 337 
2 855 513 324 
3 891 535 338 
4 986 592 374 
5 884 530 335 
6 697 418 264 
7 722 433 
8 760 
9 

187 124 85 54 
208 138 95 61 
200 133 91 58 
209 139 95 
231 153 
207 

b 1.28 0.77 0.49 0.30 0.20 0.14 0.09 
seb 0.05 0.03 0.02 0.01 0.01 0.01 0.00 
s e , ,  91 59 40 15 12 9 4 
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The real value o f  the Salkever procedure lies in the remaining two columns o f  regression results. 

The regression coefficients in the first row are the forecast  pa id  losses  for AY9 and AY8, 

respectively, and the values in the second row are the corresponding forecast  standard errors) 

The results from applying this procedure to DY1 through DY7 are summarized in Table 5. The 

top part shows the fitted values of  past loss payments; the lower part shows the regression 

coefficients and other summary measures of  goodness of  fit. (In all cases R 2 was 0.99.) For DY1 

through DY7, all estimated coefficients b were relatively precise, as indicated by their small standard 

errors. In each DY goodness of  fit, as measured by the standard error of  the estimate, is likewise 

small relative to the average paid loss. Particularly noteworthy, though, is the fact that the standard 

error of  the estimate varies dramatically across development years. This validates our concern about 

heteroskedasticity, described in section 6.5. 

1.4 
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D e v e l o p m e n t  Year  

The overall pattern of  the regression coefficients is shown in Figure 1. These regression 

coefficients can be used in a fashion similar to chain ladder link ratios. The regression coefficient 

for any given DY is the estimated incremental dollars paid in that DY relative to the dollars paid in 

DY0. In DY1, for example, one can anticipate paying, on average, about 28% more than was paid 

out in DY0. For  a g iven  AY, then,  the  r ema i n i ng  p a y m e n t s  c an  be  e s t ima t ed  by add ing  up  

the  coeff icients  for the  r e m a i n i n g  DY's  and  t hen  mul t ip ly ing  by the  a m o u n t  pa id  in DY0. In 

this example, the sum of  the coefficients is 3.43 when one includes the tail. For AY9 the estimated 

3 Readers who attempt to replicate these results may obtain slightly different parameter estimates, since the data in 
Tables 3 and 4 are rounded values. The actual data is available from the author on request. 
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remaining paid losses are 3.43 times the $621 million loss in DY0, or $2.130 billion, so that the 

estimated ultimate AY total is $2,751 billion. 

7 .3  A n a l y s i s  o f  R e s i d u a l s  

Tab le  6: Res idua ls  f rom Fit ted Values  

D e v e l o p m e n t  Year  
t 0 1 2 3 4 5 6 7 

0 171 -9 -3 5 
1 -82 -62 -18 -7 
2 -47 -22 -29 -16 
3 -47 -19 -36 -15 
4 -86 -37 -16 8 
5 -59 5 49 24 
6 80 119 68 
7 70 64 
8 63 

2 -5 -1 
-4 1 -3 

-18 -8 4 
10 12 
9 

Table 6 shows the residuals -- the difference between actual and fitted values - for the data 

analyzed here. Two questions are central to the analysis o f  these residuals. First, do they exhibit 

patterns that may alert us to variables or unusual conditions not  reflected in Model 1? Second, are 

the magnitudes o f  any particular residuals significant or noteworthy? 

Tab le  7: S tandard ized  Res idua l s  

D e v e l o p m e n t  Year  

t 0 1 2 3 4 5 6 7 

0 1.9 -0.2 -0.1 
1 -0.9 -1.0 -0.5 
2 -0.5 -0.4 -0.7 
3 -0.5 -0.3 -0.9 
4 -0.9 -0.6 -0.4 
5 -0.6 0.1 1.2 
6 0.9 2.0 1.7 
7 0.8 1.1 
8 0.7 

0.3 0.1 -0.6 -0.3 
-0.5 -0.3 0.1 -0.8 
-1.1 -1.6 -0.9 1.1 
-1.0 O.9 1.3 
0.5 0.8 
1.5 
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Table 6 provides a basis for answering the first question, and Table 7, which shows standardized 

residuals (residuals divided by the DY standard error), facilitates answering the second. Table 7 

shows, for example, that only one standardized residual has an absolute value greater than 2, which 

can be expected to occur about five percent of  the time, or in about two instances of  the 42 values 

shown in the table. Although the signs of  the residuals show a suspicious pattern across accident 

years, the magnitude of  the deviations is not sufficiently great to add additional variables to the 

analysis. (It is also the case, as numerous studies have shown, that we psychological anticipate that 

truly random variables will be even more "random" than is in fact the case. The signs and 

magnitudes of  the residuals in Table 7 are quite consistent with an assumption of  random residuals.) 

The fact that an extensive discussion of  the art of  residual analysis is beyond the scope of  this 

paper should by no means obscure its fundamental importance. The estimation of  loss reserves and 

LRU should not be a mechanical application of  a standard algorithm to standard data. As 

experienced actuaries and analysts know, the scientific model-building that lies at the core of  

actuarial science must necessarily be accompanied by skillful judgment in determining how those 

models are applied and interpreted for particular firms and lines of  business. 

7.4 Forecasting the Tails 

Table 8 shows the forecast future paid losses obtained from applying model 1 to the data in 

Table 3 as well as the estimated payments for the tails, DY8 and beyond. The procedures used to 

obtain these tail estimates makes two important assumptions. The first is that the regression 

coefficients from DY4 and beyond decrease exponentially. Figure 1 already demonstrated that this 

assumption does not hold for earlier DYs. Focusing on DY4 and beyond makes it possible to apply 

this procedure to lines of  business with long tails. The second assumption is that the rate of  

exponential decay can be estimated from the coefficients already obtained for DY4 through DY7. I 

now describe the two steps needed to derive forecasts from these assumptions. 

In step one we extrapolate the regression coefficients already obtained to DYs beyond DY7. 

Because we have assumed that the coefficients decrease exponentially, it is appropriate to use 

logarithmic regression. We create a variable W that consists of  the regression coefficients for DY4 

through DY7, shown previously in Table 5. We also create a variable V consisting simply of  the 

numbers 4, 5, 6, and 7. Then we obtain estimates a and b of  the coefficients c~ and 13 in the 

logarithmic regression lnW = c~ + [3V + ,. From this we obtain b, the estimated value of  13, which is 

256 Casualty Actuarial Society Forum, Fall 2006 



Measuring Loss Reserve Uncertain(y 

the logarithm of the rate of exponential decay. In this analysis I use d = expCo ) = 0.66 as the 

esth'nated rate at which the coefficients decrease from one year to the next in the tail: 

Table 8: Forecast  Future  Paid Losses  

Development  Year 

t 0 I 2 3 4 5 6 7 8 9 Tail 

0 48 

1 27 53 

2 35 24 47 

3 61 43 29 57 

4 105 67 47 31 62 

fi 137 94 60 42 28 56 

6 163 108 74 47 32 21 42 

7 274 169 112 77 49 33 22 44 

8 456 288 178 118 81 52 35 23 46 

9 796 477 302 186 124 85 54 37 24 48 

Development 
Year Total  796 933 863 696 600 517 390 305 230 504 

In step two we create robust forecasts of  the paid losses in subsequent development years by 

using an average of  three separate forecasts. For each accident year, the paid loss for DY8 is 

forecast as P8 = (P4 d4 + Ps d~ + Pc, dZ)/3. The three terms in parentheses are three different forecasts 

of  P8 created from the actual or forecast paid losses in DY4, DY5, and DY6. The forecasts for P9 

are made in the same way, except that the exponents of  d are each increased by one. Finally, the 

forecast value for the tail, consisting of  paid losses for all development years after nine, is calculated 

as the forecast for Pit, multiplied by l / ( l -d) ,  the formula for the sum of the infinite exponentially 

decreasing series (l + d + d 2 + ...). The results of  this procedure have already been shown in Table 

8. The estimated reserve for these data, based on Model I, is $5,835 million. 

4 Technically, unless the logarithmic regression perfectly fits the data, one should include a slight adjustment for the 
error term in order to obtain the mean estimated value ofb. By deliberately failing to include this adjustment I 
instead obtain the median value of b, which is presumably more robust. In most cases the difference is miniscule 
and difficult to explain to a non-technical audience. 
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8. E S T I M A T I N G  LOSS R E S E R V E  U N C E R T A I N T Y  

As in estimating loss reserves, here we deal first with DY1 through DY7, and then tackle DY8 

and beyond. We will first estimate the uncertaint 3, o f  the total forecast payments for each DY. 

Then we will estimate total LRU by appropriately aggregating the uncertainties obtained for each 

DY. 

8.1 E s t i m a t i n g  t h e  U n c e r t a i n t y  o f  D Y  F o r e c a s t  T o t a l s  

For DY1 there is only one future payment to be forecast, and we can obtain that forecast and its 

forecast standard deviation directly from the Salkever method. 

Table  9: Calculat ing the Standard Deviat ion of  Forecas t  Paid  Losses  for DY2 

Step 1: Assemble  the Input  Data: X, X0, s, I 

DY0 

X= i 624 I The  s tandard  error o f  the  

695 I es t imate ,  se,,,, shown  in 
i 
668 I Tables  4 and 5: 

696 [ s--- 59 

770 I 

690 I The  Identi ty Matrix I 

544 I (for DYn it is n x n) 

563 I 
- 

X0 = 593 I I= 

621 I 

Step 2: Calculate the Variance-Covariance 

Matrix VCV 

VCV = s2[I + X#I 'X)"Xo ' ]  

= [ 3,838 369 J 
369 3,872 

Step 3: Calculate the square root o f  the 

sum of  the entries in the VCV matrix 

(I~ VCV) t/2 = 8,447 t/~ = 92 

This  is the s tandard  deviat ion of  the sum 
of forecast  paid  losses for DY2 

For subsequent DYs the problem is more complex, since forecast future payments within a DY 

share the same parameters and are therefore correlated since they share common parameter risk. 

What this means, in concrete terms, is that if the regression coefficient b is too high relative to its 

true value 9, then all forecasts will be too high, and so will be correlated with one another, although 

not perfectly. When we estimate LRU we must take into account not only the forecast standard 

errors for each entry in the lower right portion of  the loss resela, e mangle, but also the estimated 
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covariances among these forecasts. Fortunately, the Salkever procedure provides a relatively simply 

way to do this. 

The estimation procedure for DY2 and subsequent DYs is shown in Table 9. The input data are 

shown at the top of  the table. One is the column of paid losses in DY0. Recall that in Table 4 the 

first eight entries of  DY0 were used to fit the eight paid losses already observed in DY2, and the 

remaining two entries were used to forecast future paid losses. Here we need to split DY0 into two 

separate parts, which we label X and ~ ,  to correspond to the notation used by Greene (2000, p. 

309). Another input, s, is the standard error of  the estimate for DY2, already reported in Tables 4 

and 5. Finally, we need an identity matrix I, a square matrix of size n, where n is the number of  the 

DY, with one's on its main diagonal and zero's elsewhere. From these inputs we obtain VCV= s2[I 

+ X,(X'X)-'~,'], the variance-covariance matrix for forecast errors. We then sum these entries and 

take the square root of  that result to obtain the standard deviation of the DY2 sum of forecast paid 

losses, which here is 92. 

The standard deviations of  the sum of forecast paid losses for DY3 to DY7 are calculated in the 

same way. s Note that as we move from one DY to the next we must increase the number of  entries 

in ~ ,  by one, correspondingly decrease the number in X by one, and increase the dimension of  I by 

one. The results are reported in Table 11, to which we shall return after we first obtain standard 

dexfiations for paid losses in DY8 and beyond. 

8.2 Estimating the Standard Deviations of Forecast Tail Paid Losses 

Salkever's method, applied to DY1 through DY7, provided forecasts of  future paid losses (shown 

in Table 8) as well as standard errors (standard deviations) for these forecast values, are shown in 

Table 10. The table also shows the estimated standard errors of  forecast losses for DY8 and 

beyond, which we calculated as follows. 

As with regression coefficients, the assumption is that the standard errors decrease exponentially 

in the tail. As before, we use logarithmic regression to estimate the rate of decrease. Here, however, 

the dependent variable U consists of  the average standard error for each DY from DY1 to DY7, and 

the independent variable T consists of the numbers from 1 to 7. For the regression lnU = ct + J3T + 

~, we obtain an estimate b such that the rate of  decrease g = exp(b) = 0.61. In a manner identical to 

the one used for paid losses, we forecast the standard deviations for DY8 in each AY as E8 = (E4g 4 

+ Esg 3 + E,gZ)/3, an average of  three forecasts. Here each E within parentheses is the standard 

s The Excel array formula for VCV, where range names are shown in boldface type, is this: V C V =  S*(l .2+ 
~ fULT~fULT(XZ E RO,MINVERSE ~ ~ fULT(TRAN SPOSE(X) ,X))),TRANSPOSE (XZ E RO))). 
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error o f  the forecast (for cells with forecast values) or the standard error o f  the estimate (for cells 

with observed values). 

Tab le  10: S tandard  Errors  of  Forecas t  Pa id  L o s s e s  

D e v e l o p m e n t  Year  
t 0 1 2 3 4 5 6 7 8 9 Ta i l  
0 5 
1 2 5 
2 3 2 5 
3 5 3 2 5 
4 10 5 4 2 5 
5 13 10 5 4 3 5 
6 16 12 10 4 4 2 5 
7 42 16 12 10 4 4 2 5 
8 62 42 16 12 10 5 4 2 5 
9 96 62 43 16 12 10 5 4 3 5 

The last step requires that we obtain the standard errors o f  the sum of  forecast paid losses for 

development )Tears eight, nine, and the tail. To do this requires that we estimate what the variance- 

covariance matrices for those years might look like. We can in fact do this by examining the 

matrices already calculated for earlier development years. 

The function of  the variance-covariance matrix is to reflect interrelationships among the forecast 

errors. These interrelationships exist because the various forecast values all depend upon a common  

underlying parameter, [3, whose esfmate ,  b, may incorporate error. Any error in b will 

simultaneously affect all the forecast values. Moreover, as the number  of  observations on which 

estimates of  } is based decreases, the interrelationships among forecast errors increase. 

Were it not  for these interrelationships among forecast errors, we could very easily calculate the 

standard deviation o f  total forecast paid losses by assuming that these forecasts and their errors were 

independent. In this case, the standard de~qation of  total forecast paid losses for development year 

n, which has n forecast values, would be o* = (noi2) '/' = o,n '~, where o* is the standard deviation of  

total forecast paid losses assuming independence, and o i is the standard error o f  individual forecasts, 

here assumed to be equal (which is approximately true). In fact, however, we need to take into 

account the fact that the off-diagonal elements in the variance-covariance matrix are non-zero. Here 

we assume that these elements are identical in value (again, approximately true) and equal to koi z, 

where k is some constant to be estimated. In this case, the correct standard deviation of  total 

forecast paid losses, o, is o,(n+kn(n-1)) '/2. If we now calculate the ratio o f  o to o* we obtain the 
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quanti ty ( l + k ( n - l ) )  '/', wlfich is a multiplier: i t  is the amoun t  by which  o*, which  assumes 

independence ,  mus t  be mult ipl ied to obtain o, which  does not. This approximat ion,  w h e n  applied 

deve lopmen t  years one  through seven, p roduces  results that  are nearly an exact  ma tch  to those 

obta ined by having the actual variance-covariance matrix. 

The  key to applying this me thod  is having  a value for k, wi thout  which the mult ipl ier  cannot  be 

calculated. The  procedure  used here  was, first, to obta in  the value of  k f rom the variance-covariance 

matrices calculated for deve lopment  years one  th rough  seven, second, to use l inear regression to fit 

these values to an independen t  variable consis t ing  o f  the number  one through seven, and  third, to 

forecast  values of  k for deve lopmen t  years e ight  and nine and for the tail, for which the independen t  

variable was nine plus the tail 's weighted average length in years. 6 

T a b l e  11: S t a n d a r d  E r r o r s  o f  F o r e c a s t  P a i d  L o s s e s  
By  D e v e l o p m e n t  Yea r ,  T o t a l  R e s e r v e ,  a n d  C a l e n d a r  Y e a r  

D e v e l o p m e n t  Year 1 2 3 4 5 6 7 8 9 tail 

A. Sum of  Forecast  Paid  Losses  796 933 863 696 600 517 390 305 230 504 

B. Standard Deviat ion of Forecast  96 92 81 37 34 33 17 18 15 45 

C. Coefficient of  Variat ion (=B/A)  12% 10% 9% 5% 6% 6% 4% 6% 6% 9% 

D.  Calendar Year 2004 Forecast  Paid Losses  

E. Standard Devia t ion  of CY Forecast  

F. CY Coefficient  of Variat ion ( - -E /D)  

Total 

5,835 

175 

3.0% 

2,070 

124 

6.0% 

8.3 Results 

Table 11 shows the combined  results o f  a p p l # n g  these-procedures.  Line A shows the sum o f  the 

forecast paid losses for each deve lopmen t  year, as previously reported in Table  8. Line B shows the 

6 Recall that d is the estimated ratio, in the tail, of the paid loss in one development year to the paid loss in the prior 
development year, so that d < 1. The average length of the tail, L, is calculated as a ratio in which the numerator is the 
infinite series 1 +2d+3d2+4d3+..., and the denominator is the infinite series l+d+d2+d3+ . . . .  The numbers 1, 2, and 
so on are the number of years subsequent to development year 9 in which payments occm, and each year is weighted by 
the percentage of total tail payments occttrrmg in that year. The denominator is total tail payments. The value of the 
numerator is 1/(l-d) 2, and the value of the denominator is 1/(l-d), so that the value of their ratio, L, is 1/(l-d). 
Consequently, for purposes of estimating k to calculate the multiplier for the tail, the number of the tail development 
year is 9 + 1/(1-d), which in this case is 12. 
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standard deviations o f  the values in line A. These differ from the values shown in Table 10, which 

are the standard dexfiations o f  the individual components  of  the sums in line A. Both, however, 

reflect parameter risk as weU as process risk. The Total in line B is obtained by taking the square 

root of  the summed squares o f  the values in that row. This assumes independence, which is 

appropriate since by using incremental paid losses we have eliminated correlations across 

development years. 

Line C shows the coefficients of  variation, the standard deviations divided by the forecast paid 

losses. For the total estimated reserve of  $5.8 billion, the standard deviation of  $175 million is 

approximately 3.0% of  the reserve. The fact that a consistent methodology was here used to 

estimate both the reserve and its standard deviation underscores a point made earlier: even  if o ther  

methods or in fo rma t ion  are u s e d  to obta in  a different  e s t ima ted  reserve,  this  e s t ima te  of  

loss reserve uncer ta in ty ,  the  coefficient o fvar ia t ion ,  shou ld  none the l e s s  r e m a i n  valid. 

Line C also validates the concern about heteroskedasticity discussed in section 6.5. In Table 5 we 

shows that the standard deviations of  the disturbance terms in our regression results varied 

considerably, in dollar terms, across different development years. Line C shows that 

heteroskedasticiry remains even when the standard dexdation of  the disturbance terms are expressed 

as a percentage o f  forecast paid losses (i.e., as coefficients o f  variation). What  this means is that the 

convenient assumptions often utilized in generalized linear models (GLM) or generalized least 

squares (GLS) may not  be valid. In practice, these estimation procedures focus principally on 

estimating loss reserves, so that estimates of  LRU are purely secondat T. By contrast, the model 

presented here focuses principally on estimating LRU, and estimates o f  loss reserves are o f  

secondary importance. 7 

Table 11 also shows, in line D, the sum of  the forecast paid losses for calendar year 2004, which 

consists of  the sum of  the forecast losses in Table 8. The standard deviation o f  this value, shown in 

line E, is $124 million, or about 6% of  the estimated calendar year total forecast payments o f  $2.07 

billion. This calendar year measure of  LRU can be especially important for helping managers to 

determine whether actual calendar year paid losses (for AY1 to AY9) deviate sigmficandy from their 

forecast total. 

I hasten to observe that the Coefficient o f  Variation (Table 11, Line C) and the Calendar Year 

Coefficient o f  Variation (Table 11, Line F) are both atTpically low. Although I have deliberately not  

identified the firm nor the line of  business analyzed here, I will point out that this firm has a high 

volume of  business in this line and deliberately targets its exposures to the less risky end of  the risk 

7 This distinction is not trivial. Estimates of loss reserves may in fact be improved by using estimates of LRU that 
are relatively correct hut nonetheless absolutely wrong by orders of magnitude. 
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spectrum. In a subsequent report I will describe the typical parameters and risk measures for the 

principal firms in each line of  business. 

Finally, I simply note that the Calendar Year Coefficient o f  Variation (CYCV), 6%, shown in 

Table 11 Line F, is greater than the Total Reseta,e Coefficient o f  Variation (CV) shown at the far 

right o f  line C. This result is consistent with what one would anticipate, since the Total Reserve CV 

includes all forecast future loss payments, which are imperfectly correlated, whereas the entry on line 

F includes only the forecast future loss payments occurring in the next calendar year. The Total 

Reserve CV is therefore considerably more diversified than the CYCV, and consequently is smaller. 

9. VALIDATING T H E  RESULTS 

Here I validate the results just obtained by demonstrating that the same methods accurately 

estimate the future paid losses and LRU's of  10,000 simulated paid loss triangles with known 

parameters and outcomes. 

To create simulated paid loss triangles I begin with an underlying deterministic payout pattern in 

which paid losses decrease exponentially from an initial value in DY0 that is identical for all accident 

),ears. (In this particular simulation, paid losses in each DY are half those in the preceding one.) I 

then add to each of  these expected payments a random deviation drawn from a normal distribution, 

with a mean of  zero and a standard deviation that increases linearly from 10% of  the expected paid 

loss in DY0 to 100% in DY9 and 110% in DY10 and beyond. The simulations in fact generate the 

entire path of  paid losses to the point where they become miniscule. Consequently, the ultimate 

paid losses can, in principle and in fact, depart considerably from the expected values established by 

the underlying pattern, and the standard deviations of  these simulated variations can be calculated. 

The results o f  the simulation are shown in Table 12. The first half of  the table reports the 

accuracy of  the method used here in forecasting DY sums of  future loss payments. Line A shows 

the DY sums of  expected future loss payments before random disturbances are added. Line B 

shows the average, over the 10,000 scenarios, of  the simulated DY sums of  future loss payments. 

Section C reports the results of  using the procedure used in this paper to estimate DY sums of  

forecast future loss payments. 

When the independent variable is stochastic, and consists o f  the simulated loss payments in 

development )'ear zero, the results are only trivially different from those obtained by using as the 

independent variable the expected (i,e., deterministic) loss payments in DY0 as if they were in fact 

known. This  confirms the assert ion in sect ion 6 that  the  use  o f  a s tochas t i c  i ndependen t  

variable is not  a problem if its d is turbances  are i n d e p e n d e n t  of  those  that affect  the 
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dependent  variable. The admittedly ad hoc procedure used here to calculate the tail values 

overestimates them somewhat. This is undoubtedly due to the fact that us ing  the exponential  

decay function to project tail payments  rules out negative payments ,  while the s imulat ion 

does not. Nonetheless, forecasts of  paid losses in the next calendar year, shown in the last column 

in Table 12, are remarkably accurate. 

Table 12: Monte Carlo Results for Estimating Reserves and Reserve Uncertainty 

DY: 1 2 3 4 5 6 7 8 9 10+ Total CY 

DY Sum of Future Loss Payments 
A. Underlying mean values 400 400 300 200 125 75 44 25 14 16 1,598 800 

B. Average simulated values 399 401 301 200 124 75 44 25 14 16 1,599 799 

C. Average forecast values 

-- using stochastic X 397 397 298 198 124 75 43 34 22 33 1,622 796 

-- using fixed X 400 400 300 200 125 75 44 34 22 33 1,633 802 

Standard Deviation ¢SD~ of DY Sum of Future Loss Pavments 

D. True SD from parameters 80 85 69 50 34 21 13 8 5 5 151 112 

E. SD of simulated payments 80 85 71 50 34 21 13 8 5 5 152 112 

F. Parameter risk multipliers 1.1 1.1 1.2 1.3 1.4 1.6 

G. True SD plus parameter risk 89 77 60 43 30 21 

H. Estimated SD 

-- using stochastic X 91 97 82 62 45 32 19 18 13 31 189 127 

-- using fixed X 82 92 79 61 44 31 19 17 13 31 180 118 

The second part of Table 12 verifies the accuracy of the procedure for estimating the standard 

deviations of forecast future loss payments. Line D shows the actual standard deviations used in the 

simulation, and line E shows the standard deviation of the simulated losses. As one would hope 

from a properly conducted simulation, the two are virtually identical. Line F shows the multipliers 

for parameter risk obtained from the modeled variance-covariance matrices, and line G shows the 

true standard dexfiations in line D multiplies by the corresponding values in line F. These values in 

line G are the values one would hope to obtain in estimating LRU. The actual estimates obtain, 

both with a stochastic X and a fixed X, are shown in section H. The two sets of  estimates in this 

section agree closely with each other and with the target values in line G. However, it appears that 

using a fixed X, as recommended by Halliwell (1996) ~ improves the estimates for DY1 and 

DY2. For the total reserve, both stochastic and fixed X's produce a similar result, and substituting 
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one for the other would have an imperceptible effect on the coefficient o f  variation (CV). For 

stochastic X the CV is 11.65%, and for fLxed X it is 11.02%. 

10. SUMMARY A N D  CONCLUSIONS 

The method I have presented here for estimating loss reserve uncertainty - the coefficient of  

variation o f  estimated future loss payments -- has a number  o f  merits. First, it can be used to 

address significant issues in surplus management,  in pricing and. capital allocation, and in the 

management  o f  uncertainty. Second, it uses a measure o f  loss reserve uncertainty that facilitates 

comparison across different lines o f  business and can be applied to reserve estimates obtained 

through alternative methods. Third, it uses a publicly-available source o f  data that facilitates 

comparison across different fu'ms. Fourth, the method avoids a number  of  serious pitfalls that can 

distort estimates o f  reserves or LRU. Fifth, the method is simple, at least as compared to some of  

the alternative methods advocated in the rdevant  literature. In particular, its use o f  Salkever's 

method provides an extremely useful shortcut for obtaining results. And sixth, the method 

accurately captures the key parameters of  simulated paid loss trajectories. The reserve estimates are 

extremely accurate, and the estimates of  reserve uncertainty, which include parameter risk, agree 

closely with benchmark calculations. 

At the same time, the method proposed here has important limitations. First, I have used linear 

regression as a model for forecasting future loss payments. Linear regression is often advocated as a 

maximum likelihood procedure for estimating model coefficients. This is indeed the case when 

residuals are assumed to have a normal dismbution. Here I make no such assumption, and so rely 

on linear regression as a procedure that estimates parameters so as to minimize squared error 

between fitted and actual values of  the dependent variable. This is quite legitimate, but  potentially 

disturbing to statistical perfectionists. Second, I make no assumption concerning the nature of  the 

distribution o f  disturbances. The inferences from the model I present concern only the mean and 

standard deviation o f  loss reserves. The information needed to derive, say, an 80 'h percentile o f  the 

distribution o f  ultimate loss payments cannot be obtained from the method presented here. 

I hope that I have convinced readers that the method presented here for estimating loss reserve 

uncertainty that is both accurate and reasonably simple to implement. I also hope that my 

presentation o f  it is accessible to a large number  o f  professional colleagues, who are invited to apply 

it in their own work and to extend it to novel uses. 
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Methods  and Models  of  Loss Reserving 
Based on Run-Off  Triangles: 

A Unifying Survey 

K l a u s  D .  S c h m i d t  

L e h r s t u h l  ffir V e r s i c h e r u n g s m a t h e m a t i k  

T e c h n i s c h e  Universi t~i t  D r e s d e n  

Abstract. 
The present paper provides a unif3"ing survey of some of the most important methods and models of 
loss reserving which are based on run-off triangles. The starting point is the thesis that the use of run- 
off triangles in loss reserving can be justified only under the assumption that the development of  the 
losses of ever3, accident year follows a development pattern which is common to all accident years. This 
assumption can be viewed as a primitive stochastic model of loss reserving. 
The notion of a development pattern rams out to be a unifying force in the comparison of methods 
which to a large extent can be summarized under a general version of the Bornhuetter-Ferguson 
method. It is shown that the loss-development method and the chain-ladder method as well as the 
Cape-Cod method and the additive method can be viewed as special cases of the general Bornhuetter- 
Ferguson method. 
Some of these methods can be justified by general principles of statistical inference applied to suitable 
and more sophisticated stochastic models. It is shown that credibility prediction and Gauss-Markov 
prediction as well as maximum-likelihood estimation can contribute in a substantial way to the 
understanding of various methods of loss reserving. 

Keywords. Bornhuetter-Ferguson principle; credibiliq, prediction; development pattern; Gauss-Markov 
prediction; loss reser~fing; maximum-likelihood estimation. 

1. INTRODUCTION 

We start  with  the  general  model l ing  o f  loss -deve lopment  data by a family o f  r a n d o m  

variables represent ing  incrementa l  or  cumulat ive  losses and with the  run -o f f  triangles 

represent ing  the  observable  incrementa l  or  cumulat ive  losses (Section 2). 

W e  then  in t roduce  the  central no t ion  o f  a deve lopmen t  pat tern  which  can be expressed  in 

three different  bu t  equivalent  ways and turns out  to be a powerful  and unifying concep t  for  

the  interpretat ion and  compar i son  o f  several m e t h o d s  and models  o f  loss reserving 

(Section 3). 

The  subsequen t  three sections are devoted to me thods ,  least-squares prediction,  and 

maximum-l ike l ihood  est imation.  

In  the sect ion on  m e t h o d s  (Section 4), we start with a general  vers ion o f  the  B o m h u e t t e r -  

Fe rguson  m e t h o d  which  provides  a general  f ramework  into which  several o ther  me thods ,  
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like the loss-development method, the chain-ladder method, the Cape-Cod method and the 

additive method, can be embedded as special cases. We also consider two variants of the 

chain-ladder method which have no practical interest but are needed as a link between the 

chain-ladder method and certain stochastic models. 

In the section on least-squares prediction (Section 5), we study credibility prediction and 

Gauss-Markov prediction. It is shown that, under certain model assumptions, these methods 

of prediction yield predictors of the Bornhuetter-Ferguson type. 

In the section on maximum-likelihood estimation (Section 6), we study maximum- 

likelihood estimation for a large class of stochastic models for claim counts; It is shown that 

in many cases, but not always, the maximum-likelihood estimators of the expected ultimate 

cumulative losses are identical with the chain-ladder predictors of the ultimate cumulative 

losses. 

In the final section (Section 7) we collect some conclusions. 

Throughout this paper, let (f2, 5 r, P) be a probability space on which all random 

variables are defined. We also assume that all random variables are square integrable. 

Moreover, all equalities and inequalities involving random variables are understood to hold 

almost surely with respect to the probability measure P. 

2. L O S S  D E V E L O P M E N T  D A T A  

We consider a portfolio of risks and we assume that each claim of the portfolio is settled 

either in the accident year or in the following n development years. The portfolio may be 

modelled either by incremental losses or by cumulative losses. 

2.1 Incremental Losses 

To model a portfolio by incremental losses, we consider a family of random variables 

{Zi,k}i,k~{O,1 . . . . . .  } and we interpret the random variable Zi,k as the loss of acddentyear i 

which is settled with a delay of k ),ears and hence in development year k and in calendar year 

i + k. We refer to Zi,k as the incremental loss of accident year i and development year k. 

We assume that the incremental losses Zi,~ are observable for calendar years i + k < n and 

that they are non-observable ]?or calendar years i + k > n + 1. The observable incremental losses 

are represented by the following run-off"triangle : 
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A c c i d e n t  D e v e l o p m e n t  Y e a r  

Y e a r  0 1 . . .  k . . .  n - i  . . .  n - 1  n' 

o Zo,o Zo., . . .  Zo . ,  ...  Zo , . - i  "'" Zo,._~ Zo, .  

1 Zl.o Zl,1 .., Zl,k .,, Z l , n - i  "'" Z l , n - :  

i ! i ! ! 

i Zi,o Z i , l  "'" Z i , k  . . .  Z i , n - i  

i i : i 

n - k Z.-k.o Z~-k,1 ... Z~-k,* <' 

- 1  Z.-l,o Z . - u  

Zn,0 

The  prob lem is topredict the non-observable  incremental  losses. 

2 . 2  C u m u l a t i v e  L o s s e s  

To model  a portfolio by cumulative losses, we consider a family o f  random variables 

{Si,k}i,k¢{oa ...... 1 and we interpret  the random variable Si,k as the loss o f  acddentffear i which 

is settled with a delay o f  at most k years and hence not later than in development year k. We refer 

to Si,k as the cumulative loss o f  accident year i and deve lopment  3,ear k, to Si,n-i as a 

cumulative loss of the present calendar year n, and to Si,. as an ultimate cumulative loss. 

We assume that the cumulative losses Si,k are observable for calendar years i + k s n and that 

they are non-observable for calendar years i + k > n + 1. The observable cumulative losses are 

represented by the following run-offtriangle. 

A c c i d e n t  D e v e l o p m e n t  Y e a r  

Y e a r  0 1 . . .  k . . .  n - i . . .  n - 1 n 

o So,o So., ... Soa ... So._~ "" So._, So.  

i i ! i ! 
i S,'0 &, ... Si.k ... S,.,_i 
i : ! i 
n - k &-k.o S,_k., . . .  &-k . ,  

! : i 
n - 1 &-l.o S._,a 

n Sn,  0 

The  problem is topredirt the non-observable  cumulative losses. 
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2.3 Remarks 

Of course, modelling a portfolio by incremental losses is equivalent to modelling a 

portfolio by cumulative losses: 

- The cum'ulative losses are obtained from the incremental losses by letting 

"~ k 
, Si,k := Z Zid" 

1=0 

- The incremental losses are obtained from the cumulative losses by letting 

Z i k  : = I  si'k i f k = 0  
' [ Si,k - Si.k-1 else. 

In the sequel we shall switch between incremental and cumulative losses as necessary. 

Correspondingly, prediction of non-observable incremental losses is essenlially equivalent 

to prediction of non-observable cumulative losses: 

- I f  {Zi,k}i,kElO,l,...n}, i+k>-n+l is a family of predictors of the non-observable incremental 

losses, then a family of predictors of the non-observable cumulative losses is obtained by 

letting 
k 

L,k := Si,.-i + Z Z'i,l" 
l=n-i+l 

- If {Si,k}i,k~{O,l,...n}, i+k>n+l is a family of predictors of the non-observable cumulative 

losses, then a family of predictors of the non-observable incremental losses is obtained by 

letting 

I= f Si,n_i+l - if k = n - i + l 

L S i , k  - S , , k - ,  else. 

For the ease of notation and to avoid the distinction of cases as in the previous definition, 

we shall also refer to Zi, . - i  and Si,n_ i as predictors of Zi, . - i  and Si,.-i,  although these 

random variables are, of course, observable. 

Warning:  Whenever prediction is subject to an optimality criterion, it cannot be 

guaranteed in general that the previous formulas lead from optimal predictors of incremental 

losses to optimal predictors of cumulative losses or vice versa. 

The enumeration of accident ),ears and development ),ears starting with 0 instead of 1 is 

widely but not yet generally accepted; see Taylor [2000] as well as Radtke and Schmidt 
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[2004]. It is useful for several reasons: 

- For losses which are settled within the accident year, the delay of  settlement is 0. 

It is therefore natural to start the enumeration of  development )Tears with 0. 

- Using the enumeration of  development years also for accident years implies that the 

incremental or cumulative loss of  accident year i and development year k is observable if 

and only if i + k < n. In particular, the cumulative losses Si,,,-i are those of  the present 

calendar year n and are crucial in most methods of  loss reserving. 

After all, the notation used here simplifies mathematical formulas. 

3. D E V E L O P M E N T  P A T T E R N S  

The use of  run-off triangles in loss reserving can be justified only if it is assumed that the 

development of  the losses of  every accident ),ear follows a development pattern which is 

common to all accident years. This vague idea of  a development pattern can be formalized in 

various ways. 

In the present section we consider three tTpes of  development patterns which are 

formally distinct but can easily be converted into each other. These development patterns 

and their equivalence provide a key to the comparison of  several methods of  loss reserving. 

The assumption of  an underlying development pattern can be viewed as a primitive 

stochastic model of  loss reserving. 

3.1 Incremental  Quotas  

The development pattern for incremental quotas compares the expected incremental 

losses with the expected ultimate cumulative losses: 

Development Pattern for Incremental Quotas: There exist parameters 80, 81, . . . ,  8n with 

" 0 ~-'4=0 I = 1 SUCh that the idenli~ 

~k = E[Zi,k] 
~[si,.] 

holds for all k ~ {0, 1 . . . . .  n} and for all i ~ {0, 1 . . . . .  n}. 

The assumption means that, for every development year k ~ {0, 1 . . . . .  n}, the incremental 

quotas 
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E[Zi,,] 
O~,k = E[si,.] 

are identic~ for all accident years. 

In the case of  a run-off triangle for paid losses or claim counts, it is usually reasonable to 

assume in addition that Ok > 0 holds for all k ~ {0, 1 . . . . .  n}. In the case of  incurred losses, 

however, this additional assumption may be inappropriate since, due to conservative 

reserving,nghe expected incremental losses of  development years k e {1 . . . . .  n} may be 

negative. 

3 .2  C u m u l a t i v e  Q u o t a s  

The development pattern for cumulative quotas compares the expected cumulative losses 

with the expected ultimate cumulative losses: 

Deve lopment  Pat tern for Cumulat ive  Quotas:  There exist parameters To, YI . . . . .  % with 

. = 1 such that the identity 

EIS i , k ]  
~* = E [ & . ]  

holds for  all k ~ {0, 1 . . . . .  n} and for  all i ~ {0, 1 . . . . .  n}. 

The assumption means that, for ever 3, development year k ~ {0, 1 . . . . .  n}, the cumulative 

quotas 

are identical for all accident years. 

"[i,k m 
s.[si,,] 
E[Si,.] 

In the case of  a run-off mangle for paid losses or claim counts, it is usually reasonable to 

assume in addition that 0 < Y0 < Yx < . . .  < '/,- In the case of  incurred losses, however, this 

additional assumption may be inappropriate since, due to conservative reserving, the 

sequence of  the expected cumulative losses may be decreasing. 

The development patterns for incremental and cumulative quotas can be converted into 

each other: 

- If  80, ~)1 . . . . .  ~), is a development pattern for incremental losses, then a development 

pattern for cumulative losses is obtained by letting 
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k 

I=0 

I f  70, 71 . . . .  , ~'. is a development pattern for cumulative losses, then a development 

pattern for incremental losses is obtained by letting 

70 i f  k = 0  
0k := 

7k -Yk-i else. 

Furthermore, the condition 9k > 0 is fulfdled for all k ~ {0,1,. . . ,  n} if  and only if 

0 < 7 0  <5'1 < . . - < 7 . .  

3 .3  F a c t o r s  

The development pattern for factors compares subsequent expected cumulative losses: 

Deve lopment  Pat tern for Factors: There existparameters ~Pl . . . . .  cp. such that the idenli[y 

~[s;.k] 
cpk = E[S,.k_1] 

holds for a]l k ~ {1 . . . . .  n} andfirall  i ~ {0, 1 . . . . .  n}. 

The assumption means that, for every development ),ear k e {1 . . . . .  n}, the factors 

E[SI.A 
cpi.k = E [ s , , ~ _ , ]  

are identical for all accident ),ears. 

In the case of  a run-off triangle for paid losses or claim counts, it is usually reasonable to 

assume in addition that ~0k > 1 holds for all k ~ {1 . . . . .  n}. In the case of  incurred losses, 

however, this additional assumption may be inappropriate since, due to conservative 

reserving, the sequence of  the expected cumulative losses may be decreasing. 

The development patterns for cumulative quotas and for factors can be converted into 

each other: 

- I f  70, 71 . . . . .  7. is a development pattern for cumulative losses, then a development 

pattern for factors is obtained by letting 

Yk 
(Ok : = - - .  

7k-~ 
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- I f  qh,- . . ,  q), is a development pattern for factors, then a development pattern for 

cumulative losses is obtained by letting 

" 1 

(such that 3% = 1 ). 

Furthermore 7 the condition g0 < "tl < . . .  < "{, is fulfilled if and only if q~k > 1 holds for all 

k ~ {1 . . . . .  n}. 

Combining this result and that of  the previous subsection, it is evident that also the 

development patterns for incremental quotas and for factors can be converted into each 

other. We omit the corresponding formulas since they will not be needed in the sequel. 

3.4 Estimation 

At the first glance, there is little hope to estimate the parameters of  the development 

patterns for incremental or cumulative quotas since the only obvious estimators of  8k and 

)'k are the observable quotients 7--,0,k/S0,n and S0,k/S0,~, respectively. 

Fortunately, the situation is quite different for the development pattern for factors: For 

every development year k E {1 . . . . .  n}, each of  the individual devdopmentfactors 

Si,k 
~i,k := Si,k_l 

with i ~ {0, 1,... ,  n -  k} is a reasonable estimator of  cpk, and this is also true for ever 3, 

weighted mean 

n--k 
(0k := Z ~vi,/%* 

j=0 

with random variables (or constants) satisf34ng ~ " - k W  /q=0 j,k = 1. The most prominent 

estimator of  this large family is the chain-ladder factor 

~--.-k S +?L := ~.i=0 i,, 
Z.-k S j=O j,k-1 

which can also be written as 
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~ C L = ~  k Sj,k-1 
,e.-k S ~°i'* j=0 L~h=0 h,k-I 

and is used in the chain-ladder method. 

Due to the correspondence between the three development pattems, it is then clear that 

in the same way estimators of factors can be converted into estimators of cumulative quotas 

and hence into estimators of incremental quotas. 

3.5 R e m a r k s  

In the case of a run-off triangle for paid claims or claim counts, the intuitive cumulative 

interpretation of the development patterns of incremental or aggregate quotas would be their 

interpretation as incremental or cumulative probabilities. This interpretation is helpful, but it 

is not quite correct since the parameters of the development pattern are defined as quotients of 
expectations instead of expectations of quotients and since these quantities are in general distinct. 

One may thus argue that the definitions of development patterns are inconvenient since 

they do not exacdy correspond to intuition. In the following two sections, however, it will be 

shown that the definitions given here are nevertheless reasonable since they provide a 

powerful and unif34ng concept for the interpretation and the comparison of many methods 

and models of loss reserving. 

4. M E T H O D S  

The present section provides a unifying presentation of the most important methods of 

loss reserving. The starting point is a general version of the Bornhuetter-Ferguson method 

which is closely related to the notion of a development pattern for cumulative quotas and 

turns out to be a unifying principle under which various other methods of loss reserving can 

be subsumed. 

4.1 B o r n h u e t t e r - F e r g u s o n  M e t h o d  

The Bomhuetter-Ferguson method is based on the assumption that there exist 

parameters ct0, ~l . . . . .  or. and Y0, T1,..., Yn with y. = 1 such that the identity 

E[Si,k] = ~k~i 
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holds for all i , k  ~ {0, 1 . . . .  , n}. Then we have 

E[si,.] = ~i 

and hence .: 

~[s,A = ~,E[s~,.] 

such that the parameters Y0, Yl . . . . .  y,  form a development pattern for cumulative quotas. 
,b 

The Bqrnhuetter-Ferguson method is also based on the additional assumption that p t~r  

estimators 

dto, ~1 . . . . .  ~ .  

of the expected ultimate cumulative losses E[Si,n] andprior estimators 

. i % ,  9,  . . . . .  9 .  

of the development pattern are given and that % = 1. 

Comment: Prior estimators may be obtained from information provided by various 

sources: 

- Internal informatiom This is any information which is contained in the run-off triangle of  the 

portfolio under consideration. Internal information could be used, e. g., by estimating the 

development pattern from the given run-off triangle. 

- Externalinformation: This is any information which is not contained in the run-off mangle of  

the portfolio under consideration, External information could be obtained, e.g., from 

market statistics, from other portfolios which are judged to be similar to the given one, or 

from premiums or other volume measures of  the portfolio under consideration; see 

Section 4.6. 

O f  course, prior estimators may also be obtained by combining internal and external 

information. In any case, the choice of  prior estimators is an important decision to be made 

by the actuary. 

The  Bornhuetter-Ferguson predictors of the cumulative losses S,,k with i + k > n are defined 

as 

~ := &.-i +(gk- ~.-,)~. 

The definition of  the Bornhuetter-Ferguson predictors reminds of  the identity 
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E[ Si,, ] = E[ Si.-i ] + (~'k - ~-~ ) ~  

which is a consequence of  the model assumption. 

The definition of  the Bornhuetter-Ferguson predictors shows that the prior estimators 

are dominant for young accident )'ears whereas they are less important for old development 

)'ears. Also, in the extreme case where the prior estimators are completely determined by 

external information, the major part of  the run-off triangle is ignored and only the 

cumulative losses of  the present calendar year are used. This is reasonable when the quality 

of  the data from older calendar years is poor. 

Example A. We consider the following reduced run-off triangle for cumulative losses 

which contains the cumulative losses of  the present calendar year and is complemented by 

the prior estimators of  the expected ultimate cumulative losses and of  the development 

pattern: 

Accident Development Year k 

Year/  &i 0 1 2 3 4 5 

0 3517 3483 
1 3981 3844 
2 4598 3977 
3 5658 3880 
4 6214 3261 
5 6325 1889 

9. 0.280 0.510 0.700 0.860 0.950 1.000 

Computing now the Bornhuetter-Ferguson predictors, the run-off triangle is completed as 

fo]Jows: 

Accident Development Year k 

Year i dt i 0 1 2 3 4 5 

0 3517 3483 
1 3981 3844 4043 

2 4598 3977 4391 4621 

3 5658 3880 4785 4389 5577 

4 6214 3261 4442 5436 5995 6306 

5 6325 1 8 8 9  3344 4546 5558 6127 6443 

~k 0.280 0.510 0.700 0.860 0 .950 1.000 
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When the cumulative losses of the present calendar ),ear are judged to be reliable, it may 

be desirab!e to modif 3, the Bornhuetter-Ferguson predictors in order to strengthen the 

weight of the cumulative losses of the present calendar ),ear and to reduce that of the prior 

estimators of the expected ultimate cumulative losses. This goal can be achieved by iteration. 

For example, if on the right hand side of the previous formula the prior estimators ~i are 
^ BF replaced by the Bornhuetter-Ferguson predictors Si, . ,  then the resulting predictors are the 

Benktander Hovinen predictors 

siB, H :=Si,n-i +[]lk--Vn-i) i,n 

which in the case ~'.-1 < "~k increase the weight of the cumulative losses of the present 

calendar ),ear and reduce that of  the prior estimators of the expected ultimate cumulative 

losses. 

More generally, the Bornhuetter-FeNusonpredictors of order m ~ N0 are defined by letting 

t S i , n _ i + ( ~ l k - ~ n _ i ) ~ i  if ra=O 

S!'~} := t Si,.-i + (gk - ?._i)~,~-1) if m > 1. 

Then we have ~[oJ ~;~kF and S[l~ ^BH , = = Si,k , and induction $4elds 

S[;} = (1 - (1 - "}.-i )" ) 9k ~ + (1 -^?.-i}" ai,kt'Bl: 
w 

" Si'"-i + "1 " .m (~tn= ^ Si,.-i ) 

-=~k ~_, + O-~-D~(% ~._~ ) 

for all m ~ N 0 .  In the particular case where &i = $ i , ~ - i / ~ - i  or ~ - i  =1, the iteration is 

without interest since in that case the identit 3, 

Si n-i 

~n-t' 

holds for all m ~ No. By contrast, the iteration is of considerable interest in the case where 

0 < ~'.-i < 1 since in that case we obtain 

l i e :  

and convergence of the sequence of the iterated Bomhuetter-Ferguson predictors is 

280 Casualty Actuarial Society Forum, Fall 2006 



Methods and Models of Loss Reserving 

monotone but may be increasing or decreasing. 

Example  B. The following table contains the prior estimators of  the expected ultimate 

cumulative losses, the iterated Bomhuetter-Ferguson predictors 

S!.7 > = ~ (I 

and their limits: 

Accident Prior Iterated Bomhuetter-Ferguson Predictors Limit 

Year/  dt i ~ )  ~s) ~25) ~.~) ~,~) ~ )  ... ~ j ~ o ) . . .  

0 3517 3483 3483 3483 3483 3483 3483 3483 3483 

1 3981 4043 4046 4046 4046 4046 4046 ... 4046 ... 4046 

2 4598 4621 4623 4624 4624 4624 4624 4624 4624 

3 5658 5577 5553 5546 5544 5543 5543 5543 5543 

4 6214 6306 6351 6373 6384 6389 6392 6394 6394 

5 6325 6443 6528 6389 6633 6664 6687 ... 6730 ... 6746 

The iteration steps 0 and 1 correspond to the Bomhuetter-Ferguson method and to the 

Benktander-Hovinen method, respectively. The table illustrates that convergence is 

monotone but may be increasing or decreasing, and that convergence is usually fast for old 

accident years and slow for young accident ),ears. 

4.2 Loss-development Method 
The loss-development method is based on the assumption that there exist parameters 

?0, Yl . . . .  , y. with y. = 1 such that the identity 

~[si,k] = ykE[Sl.] 

holds for all i ,k  ~ {0, 1 . . . .  , n}. Then the parameters Y0, Yl . . . . .  T~ form a development 

pattern for cumulative quotas. 

The loss-development method is also based on the additional assumption that prior 

estimators 

of  the development pattern are given and that ~. = 1. 

The  loss-developmentpredictors of the cumulative losses Si,k with i + k > n are defined as 
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Si n-i ~ = 5'* : '  • 

The definition of  the loss-development predictors reminds of  the idenfit 3, 

E[Si,,] = ~, E[&.] 
'Yn-i 

which is a consequence of  the model assumption. 

When compared with the Bomhuetter-Ferguson predictors, the importance of  the 

cumulative losses of  the present calendar year and of  the prior estimators of  the 

development pattern is increased in the loss-development predictors since the latter do not 

involve any prior estimators of  the expected ultimate cumulative losses. 

Example  C. We consider the following reduced ran-off mangle for cumulative losses 

which contains the cumulative losses of  the present calendar year and is complemented by 

the prior estimators of  the development pattern: 

Accident Development Year k 

Year i 0 1 2 3 4 5 

0 3483 
1 3844 
2 3977 
3 3880 
4 3261 
5 1889 

5'k 0.280 0.510 0 .700 0 .860 0.950 1.000 

Computing now the loss-development predictors, the run-off mangle is completed as 

follows: 

Accident Development Year k 

Year i 0 1 2 3 4 5 

0 3483 
1 3844 4046 

2 3977 4393 4624 

'. 3 3880 4767 5266 5543 

4 3261 4476 5499 6074 6394 

5 1889 3440 4722 5802 6409 6746 

5'k 0.280 0.510 0.700 0.860 0.950 1.000 

The loss-development predictors can be written as 
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This shows that the loss-development predictors are nothing else than the Bornhuetter- 

Ferguson predictors with respect to the prior estimators 

(~LD :----- ~LD 

of the expected ultimate cumulative losses. In other words, the loss-development method is 

a particular case of  the Bornhuetter-Ferguson method with prior estimators of  the expected 

ultimate cumulative losses which are based on internal and external information. 

Moreover, in the case where 0 < 9~-i < 1, the loss-development predictors are precisely 

the limits of  the sequences of  the iterated Bornhuetter-Ferguson predictors with respect to 

arbitrary prior estimators of  the expected ultimate cumulative losses, as has been shown in 

Section 4.1. 

4.3 Chain-ladder Method 

The chain-ladder method is based on the assumption that there exist parameters 

qh . . . . .  q)~ such that the identity 

~[si,k] = ~kE[Si,k-,] 

holds for all i e {0, 1 . . . . .  n} and k e {0, 1 . . . . .  n}. Then the parameters ~01 . . . . .  q), form a 

development pattern for factors. 

The chain-ladderpredictors of  the cumulative losses S,.,, with i + k > n are defined as 

k 
~;,~' :=&. - i  FI ,~L 

l=n-i+l 

where 

n-k ~L := Y.j=0si,k 

y--k s j=O j ,k - I  

is the chaiz-ladder factor introduced in Section 3. The definition of  the chain-ladder predictors 

reminds of  the identity 

k 
~[si.,] = EtSi.-i] FI ~, 

I=n-i+l 
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which is a consequence of  the model assumption. 

When compared with the loss-development predictors, it is remarkable that the chain- 

ladder predictors are not determined by the cumulative losses of  the present calendar year 

but involve, via the chain-ladder factors, a//cumuladve losses of  the run-off  triangle. 

E x a m p l e  D. We consider the following run-off triangle for cumulative losses: 

Computing first 

Accident Development Year k 

Year/  0 1 2 3 4 5 

0 1001 1855 2423 2988 3335 3483 
1 1113 2103 2774 3422 3844 
2 1265 2433 3233 3977 
3 1490 2873 3880 
4 1725 3261 
5 1889 

the chain-ladder-factors and then the chain-ladder predictors, the run-off  

triangle is complete d.as-ftllows: 

Accident 

Year i 

Development Year k 

0 1 2 3 4 5 

0 1001 1855 2423 2988 3335 3483 
1 1113 2103 2774 3422 3844 4013 

2 1265 2433 3233 3977 4454 4650 

3 1490 2873 3880 4780 5354 5590 

4 1725 3261 4334 5339 5980 6243 

5 1889 3587 4767 5873 6578 6867 

ACL ~k 1.899 1 .329  1.232 1.120 1.044 

It has been pointed out in Section 3 that the different development patterns and their 

estimators can be_ converted into each other. In particular, letting 

n 1 

converts a development pattern for factors into a development pattern for cumulative 

quotas and letting 

1 

/=k+l (P/ 

converts the estimators of  a development pattern for factors into estimators of  a 
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development pattern for cumulative quotas. Thus, letting 

~c~_ A ! 
"-2~,  ¢o~ ~ 

the chain-ladder predictors can be written as 

Y,-i 

This shows that the chain-ladder predictors are nothing else than the loss-development 

predictors with respect to the chain-ladder cumulative quotas ~Ctas prior estimators of  the 

cumulative quotas. Furthermore, we have 

~CL = Si n-i .^CL ^CL ~.~CL 
i,k , + (~ k -- Yn-i I')i,n " 

This shows that the chain-ladder predictors are precisely the Bornhuetter-Ferguson 

predictors with respect to the prior estimators ~ct of  the cumulative quotas and the prior 

estimators 
~/CL .= ~i?L 

of  the expected ultimate cumulative losses. In other words, the chain-ladder method is a 

particular case of  the loss-development method and hence of  the Bornhuetter-Ferguson 

method with prior estimators of  the development pattern and the expected ultimate 

cumulative losses which are completely based on internal information. 

The chain-ladder method can be modified by replacing the chain-ladder factors (0 cL by 

an), other estimators of  the form 

n-k 
O* := X w,,,¢~,~ 

j=0 

with random variables (or constants) satisf)fng ~ " - k W  Zaj=O j,k = l. 

4.4 Grossing-up Method 

The grossing-up method is based on the assumption that there exist parameters 

Y0, Y1 . . . . .  y.  with y. = 1 such that the identity 

E[Si,,] = ~,,~[si,,] 

holds for all i , k  ~ {0, 1 . . . . .  n}. Then the parameters Y0, Yt . . . . .  y. form a development 
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pattern for cumulative quotas. 

The  gmssing-up predictors of the cumulative losses Si,k with i + k >_ n are defined as 

: =  s,,._, 
^GU 
~'.-i 

where 

1 if k = n  

"K~n-k-I S ~ G U =  f-aj--O i,k 
xp.-k-t ~qu else 
/-a j=O ) ,n 

is the grossing-up cumulative quota of development ),ear k. The definition of the grossing-up 

predictors reminds of the identity 

E[&~] = v, E[&._A 
]t,,-i 

which is a consequence of the model assumption. 

The computation of the grossing-up cumulative quotas and of the grossing-up predictors 

for the ultimate cumulative losses proceeds by recursion along the accident years, which 

yields 

~ u  = 1 and ^cu S~,. = S0,. 

^ c u  So,.-1 Sl .-1 "/.-1 = and $1, cU = ' 
^GO ^GU S~,. "/.-1 

^GU So . - 2  + Sl n-2 ^GU S2 n-2 
~'.-2 and = ' ' , S2,n ^GU ^GU ^GU 

So,. + S1,,, 3'.-2 

As can be seen from the definition, the grossing-up predictors are nothing else than the loss- 

development predictors with respect to the grossing-up cumulative quotas ~,~u as prior 

estimators of the cumulative quotas. Furthermore, we have 

L,% u s + , . cu  AGU,~GU = i,n-i ~]tk - -] tn- i )ai ,n  

which shows that the grossing-up predictors are precisely the Bornhuetter-Ferguson 

predictors with respect to the prior estimators 9~ U of the cumulative quotas and the prior 

estimators 
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• ~ Gn 

of the expected ultimate cumulative losses. In other words, the grossing-up method is a 

particular case of the loss-development method and hence of the Bornhuetter-Ferguson 

method with prior estimators of the development pattern and the expected ultimate 

cumulative losses which are completely based on internal information. 

Since the previous remark applies as well to the chain-ladder predictors, the question 

arises whether there is any difference between the grossing-up predictors and the chain- 

ladder predictors. The answer to this question is that there is no difference at all since it can 

be shown that the grossing-up cumulative quotas and the chain-ladder cumulative quotas are 

identical for all development years; see e. g. Lorenz and Schmidt [1999]. 

The grossing-up method thus provides a computational alternative to the chain-ladder 

method, but this alternative seems to be of little practical interest if any. The reformulation 

of the chain-ladder method provided by the grossing-up method is, however, of considerable 

interest with regard to the comparison of methods: 

First, among all methods for cumulative losses considered here, the chain-ladder method 

appears to be somewhat singular since it uses estimators of a development pattern for 

factors instead of cumulative quotas, but its equivalence with the grossing-up method shows 

that this singularity is only due to the most intelligent formulation of an algorithm which 

avoids recursion and is hence more easily understood. 

Second, the grossing-up method provides an substantial link between the chain-ladder 

method and the marginal-sum method; see Subsection 4.5. 

4.5 M a r g i n a l - S u m  M e t h o d  

The marginal-sum method is based on the assumption that there exist parameters 

ct0, oq . . . . .  ct n and 80, 81 . . . . .  8~ ~xdth ~'~/---o 8 / =  1 such that the identh 3, 

E[ Zi,k ] w_ 8ktx i 

holds for all i ,k  ~ {0, 1 . . . . .  n}. Summation )fields 

E [ Xi,n ] = OL i 

and hence 

E[Z~,,] = 8kE[Si,.] 
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such that the parameters 80, 81, . . . ,  8 ,  form a development pattern for incremental quotas. 

Observable random variables &0 Ms, &MS .... ^ MS 6MS 6MS ^ MS ,IX, and ~'0 , m  , . . . , 8 ,  are said to be 

marginal-sum estimators if the), are solutions to the ma~inal-sum equations 

n - i  ^ n - i  

Z 6i8t = Y. Zi,t 
/ = 0  1=0 

for i e {0, 1 . . . . .  n} and 

for k ~ {0, 1 . . . . .  n} as well as 

n - k  n -k  

E %5~ = X z~,, 
j = O  j = O  

n ^ 

~ S t  = 1. 
1=0 

The marginal-sum equations remind of  the identities 

n - i  n - i  

Z ixis, = E ~ [ z n ]  
I = 0  l = 0  

and 

as well as 

n - k  n -k  

Z aiSk = Y-/~[zi,k] 
j = 0  . t=0 

n ^ 

~ 0 k  =1 
k=0  

which are immediate from the model assumptions. 

The question arises whether marginal-sum estimators exist and are unique. The answer to 

this question is affirmative: Marginal-sum estimators exist and are unique, and they satisfy 

aims _ ~Gu 
- -  Gn 

and 

~)~s = 19°Gu if k = 0 

L ~,~ - ?{8 if k >_ 1. 
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In view of  the discussion of  the grossing-up method, the previous identities imply that the 

marginal-sum estimators satisf 3, 

6~s  = UL 
t ,n  

and 

Thus, letting 

f .~CL if  k - 0 ~ s  
" 1  

[.~CL_~C_t if  k > l .  

we obtain 

/ = 0  

@~s = ~CL 

for all k ~ {0,1 . . . . .  n}. 

T h e  marginal-sumpredictors of the cumulative losses Si,k with i + k > n are defined as 

^ M S  " 

Yn-i 

Then we have 

This shows that the marginal-sum method is equivalent to the chain-ladder method. 

4 .6  C a p e - C o d  M e t h o d  

The Cape-Cod method is based on the assumption that there exist parameters 

Y0, "li . . . . .  y. with y. = 1 such that the identit 3, 

EIS/,k] = ~kElSi,.] 

holds for all i , k  ~ {0, 1 . . . . .  n}. Then the parameters Y0, gl . . . . .  g. form a development 

pattern for cumulative quotas. 

The Cape-Cod method is also based on the additional assumption that  premiums or other 

volume measures ~0, rq . . . . .  r~. ~ (0,oo) of  the accident years are known, that the expected 
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ullimate cunmlalive loss ralios 

L~i  J 

are identical for all accident years, and thatpn'or estimators %,  "~x . . . . .  "~. of the development 

pattern are given and satisfy ~'. = 1. 

The Cape-Codpredictors of the cumulative losses Si,, with i + k _> n are defined as 

~Cf ;: Si,n_i + (~k -- 9n-i)7~i ~CC 

where 

" S ~cc := Y~j=0 J, .- i  

is the Cape-Cod loss ralio, which is an estimator of  the expected ultimate cumulative loss ratio 

(common to all accident years). 

The Cape-Cod predictors are nothing else than the Bornhuetter-Ferguson predictors with 

respect to the prior estimators 

ecc := ~/~cc 

of  the expected ultimate cumulative losses. In other words, the Cape-Cod method is a 

particular case of  the Bornhuetter-Ferguson method with prior estimators of  the expected 

ultimate cumulative losses which are based on both internal and external information. 

Example  E. We consider the following reduced run-off triangle for cumulative losses 

which contains the cumulative losses of  the present calendar year and is complemented by 

the premiums and the prior estimators of  the development pattern: 

Acddent  Development  Year k 

Year /  ~i 0 1 2 3 4 5 

0 4025 3483 
1 4456 3844 
2 5315 3977 
3 5986 3880 
4 6939 4261 
5 8158 1889 

~k 0,280 0.510 0.700 0.860 0.950 1.000 
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The previous triangle differs from those considered before since the value of  S4a is 4261 

instead of  3261, which indicates that there might be an outlier in accident ),ear 4. Using the 

table 

i Si,s-i ~5-i 7~i ~5-i ~i 

0 3483 1 .000 4025 4025 

1 3844 0 .950 4456 4233 

2 3977 0 .860 5315 4571 

3 3880 0 .700 5986 4190 

4 4261 0 .510  6939 3539 
5 1889 0 .280 8158 2284 

21334 22842 

we obtain ~cc = 0.934. Computing now the prior estimators of  the expected ultimate 

cumulative losses and the Cape-Cod predictors, the run-off triangle is completed as follows: 

Accident  Deve lopment  Year k 

Year i dt i 0 1 2 3 4 5 

0 3758 3483 
1 4162 3844 4052 

2 4964 3977 4424 4672 

3 5591 3880 4775 5278 5557 

4 6481 4261 5492 6529 7113 7437 
5 7619 1 8 8 9  3641 5089 6308 6994 7375 

?k 0.280 0.510 0.700 0.860 0 .950 1.000 

The previous 

triangle completed with the loss-development predictors: 

table should be compared with the following one which is the same run-off 

Accident  Deve lopment  Year k 

Year i 0 1 2 3 4 5 

0 3483 
1 3844 4046 

2 3977 4393 4624 

3 3880 4767 5266 5543 

4 4261 5848 7185 7937 8355 
5 1889 3440 4722 5802 6409 6746 

?k 0.280 0.510 0.700 0.860 0.950 1.000 

The example indicates that the development of  the Cape-Cod predictors over the 
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accident years is much smoother than the development of the loss-development predictors 

which means that the Cape-Cod method reduces outlier effects. The smoothing effect is of 

course due to and depends on the premiums or other volume measures which are used 

instead. 

The following considerations may help to understand the smoothing effect of  the Cape- 

Cod method: Assume that, for every accident ),ear i, the expected ultimate cumulative loss 

ratio is estimated by 

I~i'.= __~;L,D = Si,n_i 

~i ~n- i  ~i " 

Then the Cape-Cod loss ratio can be written as a weighted mean 

" S ~:cc Y~i=0 i,,-~" " " " " = = y, Y . - J = i  

" ^ ,"=0 " " ~ ~./=0Y.-in./ i= ~h=0Y,-hn h 

and the identity 

Si,n-i  = Y n-i rti ¢¢i 

suggests to decompose the cumulative loss &,.-i of  the present calendar year into its regular 

part  

Ti,n-i "= f n - i  ~ i  I~Cc 

and its outlier effect 

Xi ,n_  i .= Si,n_ i - Ti,n_ i 

and then to apply the loss-development method to the regular part while keeping the outlier 

effect fixed over all subsequent development years. Since 

~ P  + Xi. ,_,  - ^  T~ ,_.... , (S,.,_, - T,.,_,) 
-- Yk 9 . - i  + 

= Si,n-i  or (gk -- 9 n - i )  ~ ,n - i  
Y,-i  

= Si,n-i  or (Yk - Yn- i  ) ~ i  ~cc 

= cc 

we see that the resulting predictors are precisely the Cape-Cod predictors. 

292 Casualty Actuarial Society Forum, Fall 2006 



Methods and Models of Loss Reserving 

The Cape-Cod method can be modified by replacing the Cape-Cod loss ratio ~cc by any 

other estimator of  the form 

j=0 

" W with random variables (or constants) satisfying ~"-j=0 j = 1. 

4.7 A d d i t i v e  M e t h o d  

The additive method is based on the assumption that there exist "known parameters 

n0, nl . . . . .  n.  e (0,oo) and unknown parameters ~0, ~1 . . . . .  ~. such that the identity 

E[Zi,k] = G~i 

holds for all i ,k ~ {0, 1 . . . . .  n}. 

I f  the parameters r~ 0, gl, . . . ,  a .  are interpreted as premiums or other volume measures of  

the accident years, then the assumption means that, for every development year k, the 

expected incremental loss ralios 

:= E I  Zi ; 1 
gi,* L'-'~-i J 

are identical for aH accident years. Letting 

oti := r~i ~ ~k 
k=O 

and 

we obtain 

k 
Y,=o~, 

Tk : = -  

E[Sl,k] = T, ui  

for all i ,k ~ {0, 1 . . . . .  n} such that cti = E[Si,.] and the parameters To, T1 . . . . .  T. form a 

development pattern for cumulative quotas. 

The addilivepredictors of the incremental losses Zi,k with i + k >_ n are defined as 

2 AD .= ~AD=i 
i,k 
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and the addilivepredictors of  the cumulative losses Si,k with i + k > n are defined as 

k 
s l . - ,  + D i,k "----- , 

l=n-i+l 

where 

x'~ "-k Z := z- =0 i? 

Y Tk0 i 
is the additive incrementalloss ratio of  development ),ear k. 

Example  F. We consider the following run-off triangle for cumulative losses 

which is complemented by the premiums: 

Accident  D e v e b p m e n t  Year k 

Year/ 71i 0 1 2 3 4 5 

0 4025 1 0 0 1  1 8 5 5  2 4 2 3  2 9 8 8  3 3 3 5  3483 
1 4456 1 1 1 3  2 1 0 3  2774 3 4 2 2  3844 
2 5315 1 2 6 5  2 4 3 3  3 2 3 3  3977 

3 5986 1 4 9 0  2 8 7 3  3880 
4 6939 1 7 2 5  3261 
5 8158 1889 

We thus obtain the following run-off triangle for incremental losses which is complemented 

by the additive incremental loss ratios: 

Accident Development Year k 

Year i 7ti 0 1 2 3 4 5 

0 4025 1001 854 568 565 
1 4456 1113 990 671 648 
2 5315 1 2 6 5  1168 800 744 
3 5986 1490 1 3 8 3  1007 
4 6939 1 7 2 5  1536 
5 8158 1889 

347 148 
422 

~k 0.243 0.222 0.154 0.142 0.091 0,037 

Computing now the additive predictors of  the non-observable incremental losses, the run° 

off  triangle of  incremental losses is completed as follows: 
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Accident Development Year k 

Year i ~i 0 1 2 3 4 5 

0 4025 1001 854 568 565 347 148 
1 4456 1113 990 671 648 422 165 

2 5315 1265 1168 800 744 484 197 

3 5986 1490 1383 1007 850 545 221 

4 6939 1725 1536 1069 985 631 257 

5 8158 1889 1811 1256 1158 742 302 

~k 0.243 0.222 O. 154 O. 142 0.091 0.037 

Accordingly, the run-off  triangle of  cumulative losses is completed as follows: 

Accident Development Year k 

Year i ~i 0 1 2 3 4 5 

0 4025 1001 1855 2423 2988 3335 3483 
1 4456 1113 2103 2774 3422 3844 4009 

2 5315 1265 2433 3233 3977 4461 4658 

3 5986 1490 2873 3880 4730 5275 5496 

4 6939 1725 3 2 6 1  4330 5315 5946 6203 

5 8158 1889 3700 4956 6114 6856 7158 

Letting 

and 

~-,k ~AD 

Z.  ;^o 
i=o %1 

o 

l=0 

the additive predictors of  the non-observable cumulative losses may be written as 

:= s , ._ ,  + . ^ D ,  ^ ^ o  , --gn-i)O~i . 

This shows that the additive predictors of  the cumulative losses are nothing else than the 

Bornhuetter-Ferguson predictors with respect to the addilive cumulalive quotas ~,~D and the 

prior estimators &AD of the expected ultimate cumulative losses. In other words, the 

additive method is a particular case of  the Bomhuetter-Ferguson method with prior 

estimators of  the cumulative quotas and of  the expected ultimate cumulative losses which 
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are based on both internal and external information. 

satisfy 

The expected cumulative loss ratios 

K, 
L~i d 

n 

1=0 

Since the expected incremental loss ratios are identical for all accident years, it follows that 

also the expected cumulative loss ratios are identical for all accident years. Therefore, the 

additive loss ratio 

n ^ 

I = 0  

can be interpreted as an estimator of  the expected ultimate cumulative loss ratio 

n 

K= E g ,  
/ = 0  

common to all accident years. Moreover, the prior estimators dr/AD can be written as 

~t~ D := rt, ~AD 

and it can be shown that 

n 
~AO= Ei=oSi.-J ' 

'~--~n ^ A D  ~ " 
j = O Y n - j  j 

This shows that the additive predictors of  the non-observable cumulative losses are nothing 

else than the Cape-Cod predictors with respect to the additive cumulative quotas ~ D .  In 

other words, the additive method is a particular case of  the Cape-Cod method with prior 

estimators of  the cumulative quotas which are based on both internal and external 

information. 

The observation that the additive method is a special case of  the Cape-Cod method is due 

to Zocher [2005]. 
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4.8 Remarks 

The following table compares the different methods of loss reserving considered in this 

section with regard to the choices of the prior estimators of the expected ultimate 

cumulative losses ct i and of the cumulative quotas Yk : 

E x p e c t e d  U l t i m a t e  C u m u l a t i v e  Q u o t a s  

Cumulative Losses Arbitrary ~,¢t ~kpa~ 

Arbitrary Bomhuetter-Ferguson 
Method 

~i~ Loss-Development Chain-Ladder 
Method Method 

~, ~c¢ Cape-Cod Additive 
Method Method 

Note that the prior estimators ~]t,~ and xi ~:cc depend on the choice of the prior estimators 

%, ~1 ..... L. 

Of  course, the four other combinations which apparendy have not been given a name in 

the literature could be used as well, and even other choices of the prior estimators of the 

expected ultimate cumulative losses and of the cumulative quotas could be considered. 

The discussion of the present section and, in particular, the above table shows that the 

Bomhuetter-Ferguson method provides a general principle under which several methods of 

loss reserving can be subsumed. The focus 

- on prior estimators of the expected ultimate cumulative losses and 

- on prior estimators of the cumulative quotas 

provides a large variability of loss reser~fing methods. The above table contains important 

special cases but could certainly be enlarged. Moreover, 

- any convex combination of prior estimators of the expected ultimate cumulative losses 

)fields new prior estimators of the expected ultimate cumulative losses, and 

- an), convex combination of prior estimators of the development pattern for cumulative 

quotas )fields new prior estimators of ".he development pattern. 

This point is made precise in the following example: 

Example  G. Let ct0,dtl . . . . .  ~t, be prior estimators of (:to, oh . . . . .  0t, and let 
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90, "~1 . . . . .  ~'n be prior estimators of  Y0, Yl . . . . .  y.  such that each of  these prior estimators is 

completely based on external information. Then the prior estimators 

a~ := a,~ + a ~  + ,,~(rci~ cc) 

with a~ + a2 + a3 = 1 and 

with /~ + b2 + b3 = 1 are prior estimators of  tx0, cq . . . . .  or. and g0, gl . . . . .  Y., respectively, 

which through the weights al, a2, a3 and bl, bz, b3 express the reliability attributed to the 

prior estimators {~t i ,  P, LD ^ CC ai. . ,  xiK and}a, ~ct,  }IAD, respectively. 

5. LEAST-SQUARES PREDICTION 

Least-squares prediction is one of  the general principles of  statistical inference. It is 

similar to least-squares estimation but differs from the latter since the target quantity is a 

non-observable random variable instead of  a model parameter. 

The main aspects of  least-squares prediction are credibility prediction and Gauss-Markov 

prediction; in either case, the problem is to determine optimal predictors with respect to the 

expected squared prediction error. 

An extension of  Gauss-Markov prediction is conditional Gauss-Markov prediction in 

which unconditional first and second order moments are replaced by conditional moments. 

5.1 Credibility Prediction 

In the context of  loss reserving, credibility prediction aims at predicting any linear 

combination T of  (observable or non-observable) incremental losses by a predictor of  the 

form 

n n - j  
~ = a +  X X ai.,&,,. 

j = 0 / = 0  

These predictors are said to be admissib/e. Note that 

- the class of  all admissible predictors does not depend on the sum to be predicted, 

- the admissible predictors are not necessarily linear in the obse~,able incremental losses 

since the coefficient a may be distinct from 0, and 
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- the admissible predictors are not assumed to be unbiased. 

The general form of  the prediction problem is reasonable since it includes, e. g., prediction 

of  the ultimate cumulative losses Si,,, which are sums of  the obsen, able incremental losses 

Zi,o, Zia . . . . .  Zi,,,-i and the non-obsen, able incremental losses Zi,,,-i+l . . . . .  Zi,,,. 

For a sum T of  incremental losses, an admissible predictor is said to be a credibili O, 

predictor of  T if it minimizes the expected rquaredprediction error 

EI(:P -T)q 
over all admissible predictors T. 

The following results are well-known: 

(1) For ever), sum T of incremental losses, there exists a credibility predictor 7 ~cR and the 

credibility predictor is unique. 

(2) I f  T1 and T2 are sums ofincremen:al losses and if q and c2 are real numbers, then the 

credibility predictor of  

7' := qTl + c2Tz 

satisfies 

which means that credibifity prediction is finear. 

If  Tis a sum of incremental losse:~, then an admissible predictor T* is the credibility 

predictor of  T if and only if it satis ties the normal equations 

E[7 ~*] = EIT] 

(3) 

and 

E[P'z~,,] = r [ rz~ , , ]  

for all j , l ~ { 0 , 1  . . . . .  n} such that j + l < n .  

(4) The credibility predictor of  any sum of incremental losses is unbiased. 

Because of  (2) it is sufficient to determine the credibilit T predictors of  the incremental losses 

Zi,k. In the case where i + k _< n, we have 
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In the case where i + k > n + 1, we write 

n n-h 
^ cR + Z Z ai,k,h,.. Zh,,. Z~,k = ai,k 

h=0 ra=0 

and determine the coefficients from the normalequalions 

I . .-h ] 
E ai,k + Z Z ai,k,h,-Z~,.I = E[Z,A 

b=O m=O -1 

and 

/1 Z ai,k,h,.Zh,m Zi,~ = E[Zl,k Zi,~] 
h=O ra=O 

which may equivalently be written as 

and 

n n-h 
ai.k + ~-a ~.~ at,k,h.mE[Zb,ra] = E [ Z i , k ]  

b=0 m=0 

n n--b 

E • ai,k,h,mCov[Z&m. Zj,l] = cov[Zi,k Zj,l] 
b=0 m=0 

foraU j , l ~ { 0 , 1  . . . . .  n} such that j + l < n .  

We thus see that the credibility predictor of a non-observable incremental loss is 

completely determined by the first and second order moments of the incremental losses. 

Solving the normal equations proceeds in two steps: 

- The normal equations involving covariances form a system of linear equations for the 

coefficients ai,k,h,m. The fact that a credibility predictor of Zi,, exists implies that this 

system of linear equations has at least one solution. 

- Inserting any such solution into the normal equation involving expectations )4elds the 

coefficient ai,k. 

It should be noted that the system of linear equations may have several solutions (which is 

the case if and only if the covariance matrix of the observable cumulative losses is singular). 

This means that the credibility predictor of Zi,k, which is "known to be unique, can be 

represented in several ways. 

In most credibility models for loss reserving which have been considered in the literature, 
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it is assumed that an 3, two incremental losses f rom different accident years are uncorrelated. 

In  this case, the credibilit 3, predictor o f  a non-observable  incremental  loss Zi,k can be 

writ ten as 

n-i 
^ CR 

Z;,k = ,<k + Z ai,k,i,mZi,~ 
m=O 

and its coefficients can be determined from the reduced normal  equations 

n-i 
ai/,+ ~., a,,k,&mE[Zi,m] = E[Zi ,k]  

m=O 

and 

n-i 
Z ai,k,i,m COV['~i,m, Z j , l  ] = Cov[Zi,k Zj,I] 

ra=0 

for all l ~ {0, 1 . . . . .  n - i}. 

As an example, let us n o w  consider credibility predict ion in the credibility model  o f  

Witting, which is a model  for claim counts: 

Credibility Model of Witting: 

O) Any  two incremental losses of different acadent years are uncorrelated. 

n 0 There existparameters 80, 01 . . . . .  O. ~: (0,1) with ~l=0 t = 1 such that, for eve{7 acddent year 

i ~ {0, 1 . . . . .  n] ,  the condilionaljoint d~'soibulion ofthefami!y {Zi,k},~{0,1 ...... ~ with respect to the 

ullimate cumulalive loss Si,. is the mullinomial disOibulion with parameters Si,. and 

80, 81 . . . . .  8 . .  

For  the remainder o f  this subsection we assume that  the assumptions o f  the credibility 

model  o f  Witting are fulfilled. Then  we have 

E(Z~,k I Si.) = S~,..% 

cov(Z~ ,, Zit I Si . )  = ~ -S~'"8'2 + S~,~8, 
' ' " [ - S i , . S , S t  

ai := E[&.] 

oi := var[Si,.] 

Letting 

i f  k = l  

else. 

we obtain 
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E[Zi ,k]  = a~Sk 

= ~ (ai -o t i )8~  + otiSk if k = l 
cov[ Z i  ,k ~ Zie] 

L (oi - a i )SkS/  else. 

The first of  the previous identities shows that the parameters 80, 81 . . . . .  8 n form a 

development pattern for incremental quotas. Inserting the previous identities into the 

normal equations, we obtain, for all i, k ~ {0, 1 . . . . .  n} such that i + k _> n + 1, 

and hence 

Z;,k = 8 ,  
~, 1 + ~rn_i'[ i 1 + ~n-i'Ct 

k 
= si,._, + E 

l=n-i+l 

, . _ i ,  
=Si,.-i +('/k -'fn-i) ai 4 l + ~._izi ~-i 

k 8 ~ where "/k = ~l=0 J and xi := (~i - a i )  / a i .  This shows that the credibilitv predictor of the 

non-observable cumulative loss Si,k is the Bornhuetter-Ferguson predictor with respect to 

the prior estimators 

of the development pattern for cumulative quotas and the prior estimators 

~CR.= I ~ G t i .  + ~n-'Ti Si,n-i 
1 + ~n_iZt 1 + Yn_t'~i ~tn_ i 

of the expected ultimate cumulative losses, which are weighted means of external 

information provided by the unknown parameter et i and internal information provided by 

the loss-development predictor ~ D  = Si,.-i / "/.-i. 

Example  H. If, in addition to the assumptions of the model of Witting, it is assumed 

that every ultimate cumulative loss Si,. has the Poisson distribution with expectation oti, 

then we have xi = 0 and the credibility predictors of ever), non-observable cumulative loss 

Si,k satisfy 

and are thus identical with the Bomhuetter-Ferguson estimators with respect to the prior 
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estimators ~,, := 7k and dt i := 0t i. In this case, the assumptions of  the Poisson model are 

fulfilled and maximum-likelihood estimation could be used as an alternative to credibilit 3, 

prediction; see subsection 6.1 below. 

Similar results obtain in the credibility model of  Mack [1990] and in a special case of  the 

credibilit 3' model of  Hesselager and Witting [1998]; see Radtke and Schmidt [2004]. 

5.2 G a u s s - M a r k o v  P r e d i c t i o n  

A predictor T of  a linear combination T of  (obseta,able or non-obseta-able) incremental 

losses is said to be 

- a ]inearpredictorif there exists a family {aj,l}j,l¢{O,l,...n} ,l+j<_n of coefficients such that 

n n - j  

= Z Z ai,,zi,l 
j=O/=0 

an unbiased predictor of T if 

E[2 ~] = E [ T ]  

- a Gauss-Markovpredictor of T if it is an unbiased linear predictor of  T which minimizes 

the expected squared prediclion error 

E[(~'- T) 2 ] 

over all unbiased linear predictors T of  T. 

The existence of  a Gauss-Markov predictor of  T cannot be guaranteed in general. (For 

example, if  E[Zi,k] = 0 holds for ever), observable ever), incremental loss and if T is such 

that E[T] ~ 0, then there exists no unbiased linear estimator of  T.) Therefore, we consider 

Gauss-Markov prediction only under the assumptions of  the linear model. 

Let Z1 denote a random vector consisting of  the observable incremental losses and let 

Z2 denote a random vector consisting of  the non-observable incremental losses (arranged 

in an), order). 

Linear Model: 

(i) There exist matrices A l  and ,42 and a vector ~ such that 

~ [ z . , ]  = .a,13 

e[z~] = A~I3 
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(~) The matrix A1 has full column rank. 

(~fi) The malrix 

X,, := var[Z,l 

is invertible. 

For the remainder of  this subsection, we assume that the assumptions of  the linear model 

are fulfilled. 

Under the assumptions of  the finear model, the following results are well-known: 

(1) For every sum T of incremental losses, there exists a Gauss-Markov predictor 7 T M  

and the Gauss-Markov predictor is unique. 

(2) If  T1 and T2 are sums of  incremental losses and if ca and c2 are real numbers, then the 

Gauss-Markov predictor of  

r . ' = c l r  1 +£2T 2 

satisfies 

which means that Gauss-Markov prediction is finear. 

Because of  (2) it is sufficient to determine the Gauss-Markov predictors of  the incremental 

losses Zi,k. In the case where i + k _< n, we have 

zIG, p =Zi ,  k • 

In the case where i + k _> n + 1, we obtain 

Zi,k* GM ---- a'i,k I a~ GM + Cov[ Zi,k , Z l  ] ~.ll ( Z l  _ A1~GM) 

where a~,k is the row vector of  the matrix A2 satisf3"ing E [Zi,k] = a~,k ~J, 

~CM := (AIT.~ A,) - '  A;Y-;~ Z,  

is the Gauss-Markov eslimator of ~ (based on the observable incremental losses) and 

cov[Zi,k,Zl] is the row vector with entries cov[Zi,~,Zjg] with j , l  ~ {0,1 . . . . .  n} and 

j + l  <_ n; see Goldberger [1962] and Rao and Toutenburg [1995] as well as Halliwell [1996, 

1999], Hamer [1999] and Schmidt [1998, 1999a, 2004]. 
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As an example, let us now consider Gauss-Markov prediction in the linear model of  

Mack: 

IAnear M o d e l  of  Mack :  There existparameters r¢o, rq . . . . .  ~. ~ (0,oo) and ~o, ~l . . . . .  ~. as 

wellas Co, 01 . . . . .  cs. ~ (O,m) such that 

E[ Zi,k ] = ~i~k 

and 

c°v[Zi'k'Zj'l] = { ~ i~k* glsgif i = j and k = l 

holds for all i , j , k , l  ~ {0, 1 . . . . .  n}. 

For the remainder of  this subsection we assume that the assumptions of  the linear model 

of  Mack are fulfilled. Define 

and, for all i ,k ~ {0, 1 . . . . .  n}, 

' (0  ai,k := . . .  0 7ti 0 . . .  O) 

where zti occurs in position 1 + k. This shows that the linear model of Mack satisfies indeed 
the assumptions of  the linear model. For the Gauss-Markov estimator of  13 we obtain 

r'Enj=oZj, 0 

ET=0   
ET=oZ ,, 

[~GM = n 
~j=0 J 

Z0,. 
7t o 

Since cov[Zi,~,Zj,t]=O holds for all i , j , k , l~{O,  1 . . . . .  n} such that i + k > n + l  and 

j + l < n, it follows that the Gauss-Markov predictor of  the non-obsen,  able incremental 

loss Zi,k satisfies 
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and hence  

~ '  n--/t Z 
GM I-~ j=O j ,k 

Zi ,k  = ~i  - -  n-k 
~ j = 0  rtj  

^ GM ~ A D  
Z}  ,k = i ,k 

and linearity o f  Gauss -Markov  predict ion yields 

This  shows that  the  additive m e t h o d  is justified by Gauss -Markov  predict ion in the linear 

model  o f  Mack. 

5.3 Condit ional  Gauss-Markov Prediction 

In  the  present  subsect ion we consider  a sequential model  for the chain- ladder  method.  

This  model  is a sequential model  since it involves successive condi t ion ing  with respect  to the 

o -algebras G0, ql . . . . .  q , - I  where,  for each k ~ {1 . . . . .  n}, the c - a l g e b r a  

Gk-l 

represents  the in format ion  provided by the cumulative losses Sj,j o f  accident  years 

j ~ {0, 1 . . . . .  n - k + 1} and deve lopmen t  years l ¢ {0, 1 . . . .  , k - 1}, which  is at the same t ime 

the  in format ion  provided by the incrementa l  losses Zj , t  o f  accident  years 

j ~ {0, 1 . . . . .  n - k + 1} and deve lopment  years l e {0, 1 . . . . .  k - 1}. 

S e q u e n t i a l  C h a i n - L a d d e r  M o d e l :  For each k ~ {1 . . . . .  n}, there exists a random variabk q~, 

and a strict~vpositive random variable ok such that 

E q'-* (S / , , )  = Si , , - i  ,,0, 

and 

COVqt_ 1 (Si,kSJ, k ) = ~ Si.k_l(~k i f  i = j 

t 0 else 

holds for all i , j  ~ {0, 1 . . . . .  n -  k + 1}. 

In  the case where  the r a n d o m  variables cpl . . . . .  q~. are all constant ,  in tegrat ion yields 

E[Si,k] = q~kE[Si,k-l] such that  the parameters  q~l . . . . .  cp. fo rm a deve lopmen t  pat tern  for 
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factors. In the general case, the random parameters Ipl . . . . .  q~. may be interpreted as a 

random development pattern for factors. 

The sequential chain-ladder model may be considered as a sequence of  n conditional 

linear models corresponding to the development )'ears k ~ {1 . . . . .  n}. Each of  these 

conditional linear models consists of  an observable part 

/ '°'-I 1 

E ~*-~ (&-k,k) ~,&-k,k-~ J 

and a non-observable part 

E G'-' (S.-k+,,,) = &-k+,,k-1 q~k 

Then Gk-1 -conditional Gauss-Markov estimator (0~ M of the random parameter cpk satisfies 

n-k S 
(o~M= /--,=0 i,* 

y.-k S j=0 j,k-~ 

and hence coincides with the chain-ladder factor (0k ¢t. 

Furthermore, for ever), accident year i > n -  k + 1, the Gk-I-conditional Gauss-Markov 

predictor ~GM of  the non-observable cumulative loss Si,k satisfies 

^GM ^ GM S;,k = Si,k-1 ~ ,  
^ CL 

= Si ,k-1 ~ k  • 

The previous formula, however, is only useful when Si,k-1 is observable, which is the case if  

and only if i + k - 1 < n and hence i = n - k + 1. 

Turning the point of  view from development ),ears to accident years, we see that the 

~{.-i}-conditional Gauss-Markov predictors of  the first non-observable cumulative losses 

Si,n_i+ 1 s a t i s f y  

~ G M  ^ CL 
i,n-i+l = Si,n-i ~)n-i+l 

and hence coincide with the chain-ladder predictors. 

In the case i +  k = n+  1, the chain-ladder predictors are thus justified by conditional 
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Gauss-Markov estimation, but another justification is needed in the case i + k _> n + 2. This 

can be achieved by minimizing the ~k-1 -conditional expected prediction error 

2) 

over the collection of all predictors Si,i of  Si,i satisfying 

for some ~k-i-conditionally unbiased linear estimator ~k of q~, and it turns out that the 

minimum over this restricted class of predictors is attained for the chain-ladder predictor 

~c}. The sequential optimalit 3, criterion adopted here reflects vet 3, well the sequential 

character of the chain-ladder method and of the chain-ladder model. The criterion is also 

reasonable since prediction for the first non-observable calendar year is much more 

important than prediction for subsequent calendar years: Predictors for the first non- 

observable calendar year cannot be corrected later whereas predictors for subsequent 

calendar years will be corrected an)way since already one year later additional loss experience 

and hence a new run-off triangle will be available. 

The sequential chain-ladder model is due to Schnaus and was proposed by Schmidt and 

Schnaus [1996] where it is studied in detail; see also Schmidt [1997, 1999b, 2006]. The 

sequential chain-ladder model is a slight but convenient extension of the chain-ladder model 

of Mack [1993]. A systematic comparison of several models for the chain-ladder method is 

given in Hess and Schmidt [2002]. 

5.4 Remarks 

Although least-squares prediction is a central topic in econometrics, it appears that this 

method has been ignored in loss reserving until recently. It is the merit of  Hal~well [1996] 

that least-squares prediction is by now considered as a most useful tool in loss reserving; see 

also Schmidt [1999a], Hamer [1999], Halliwell [1999], Radtke and Schmidt [2004], and 

Schmidt [2006]. 

6. MAXIMUM-LIKELIHOOD ESTIMATION 

Another general principle of statistical inference is maximum-likelihood estimation. The 

maximum-likelihood principle is applicable only if the joint distribution of all observable 
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random variables is known with the exception of  certain parameters. 

The models considered here are models for claim counts. The basic model is the Poisson 

model which is a special case of  the general multinomial model. 

6.1 P o i s s o n  M o d e l  

The Poisson model is 

assumptions: 

(i) 

(~) 

a model for claim counts and consists of the following 

Poisson model: 

The family { Zi, k } i,k e{O,1 . . . . . .  } of all incremental losses is independent. 

" 0 There eadstsparameters CXo, al . . . . .  or. e (0,oo) and ~o, 01 . . . . .  ~ .  e (0,1) with Y'q=0 l = 1 

such that for all i ,k  e {0, 1 . . . . .  n} the incremental loss Zi,k has the Poisson distn'bution with 

expectation otiOk. 

We assume in this subsection that the assumptions of  the Poisson model are fulfilled. 

Because of  (ii) we have 

Summation yields 

and hence 

E[Zi,k] = 0~iak. 

E[S~,.] = ai 

~[z~,,] = ,%g[s~,.] 

such that the parameters "90, ~1, ...,  ~), form a development pattern for incremental quotas. 

In the Poisson model the joint distribution of  all incremental losses is known except for 

the parameters. In fact, we have 

[ ] "  "( '°tS'""'~ . n ^-at, Sk ~ i k !  / 
1, =I-IIl/  .--:Tv-., J. 

L i=0 }=0 ' i=0 }=0 k, zi.k. ,1 

To estimate the parameters we can thus use the maximum-likelihood method. The 

maximum-likelihood method is based in the joint distribution of  a# observable incremental losses 

which is given by 
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. .-i ] . .- i(  (ai8k)';'*] 
P[igOk~=o{Zi,k=Zi,k} =I- IH e-tXi$* 

_l i=0~=0\ zi,k ! " 
.) 

It follows that the likelihood function L is given by 

._ n n-i(e-a,8,(OLi~k)Zi." ) 
L(ao, cq ..... a. ,  Oo, ~x ... . .  ~. I z) ._ H H 

i=0 k=0 k, z--'i,k- J 

,'iJ. 
where Z := {Zi,~}i,k~{oa ...... },i+k_<n. Interpreting the maximum-likelihood principle in a wide 

sense (which ignores the second order conditions for a maximum), observable random 

variables 

aoML, . ML - M~ Oil , . , . ,  Otn 

and 

~ ,  gp" ..... ~ 

are said to be maximum-likelihood estimators if they annihilate all first order partial derivatives of 

the likelihood function (or, equivalently, of  the log-likelihood function) and satisfy the 

constraint 

L ~MI. = 1. 
/=0 

Straightforward computation shows that the maximum-likelihood estimators satisfy the 

marginal sum equations 

n-i n-i 
X a,g, = X z i , ,  
1=0 I=0 

with i e { 0 , 1  . . . . .  n} and 

n-k n-k 
Z a,5~ = Z z,,~ 
1=0 1=0 

with k ~ {0, 1 . . . . .  n} and, of course, the constraint 

n ^ 

Zot  = 1. 
1=0 

Therefore, the maximum-likelihood estimators coincide with the marginal sum estimators. It 

now follows from the properties of the marginal sum estimators that in the Poisson model 

the maximum-likelihood estimators of the expected ultimate cumulative losses are identical 
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with the chain-ladder predictors of the ultimate cumulative losses. This was first observed by 

Hachemeister and Stanard [1975]. 

However, if, in addition to the assumptions of the Poisson model, it is assumed that the 

expected ultimate cumulative losses are all identical such that 

~ i  = 0 .  

holds for all i ~ {0, 1,.. . ,  n}, then maximum-likelihood estimation is still possible but the 

maximum-likelihood estimators turn out to satisfy 

n l n-k 

ct = l~=o n = -- 7 + l j=~O Z j "I 

and 

n-k 
1 ~ Zj,k 

~)k = n - k + l  j=o 
n-k 

t~ 1 Z Z j,t 
= n - l + l  j=0 

In particular, the maximum-likefihood estimators of the expected ultimate cumulative losses 

are not identical with the chain-ladder estimators of the ultimate cumulative losses; see 

Schmidt and Zocher [2005]. 

6.2 M u l t i n o m i a l  M o d e l  

The multinomial model is a model for claim counts and consists of the following 

assumptions: 

Mul t inomia l  model:  

(i) The acddent years are independent. 

" 0 (ii) There existparameters ~o, ~)1 . . . . .  ~). ~ (0,1) with ~t=0 t = 1 such that, for every accident year 

i ~ {0, 1 . . . . .  n}, the conditional joint distribution of the family {Zi,k}k~{0,1 ...... ) with respect to the 

ultimate cumulative loss Si,. is the multinomial disMbution with parameters Si,. and 

0o, ~1 . . . . .  8 . .  

We assume in this subsection that the assumptions of the multinomial model are fulfilled. 

Because of (il) we have 

E[Zi,k IS/..] = O,S~,. 
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and hence 

..~- ~ [ z ~ , , ]  = o , ~ [ s , . , ]  

such that tt'ie parameters 80, ~)1 . . . . .  8 .  form a development pattern for incremental quotas. 

The multinornial model is appealing since it suggests that ever3, claim of  any accident year 

is reported'or 'setded with probabili W 9k in development year k. It thus reminds of  the urn 

model in which Si,,, balls are drawn with replacement from an urn consisting of  balls with 
I f  

1 + n different colours corresponding to the development years. 

Letting . 

Oti := E[Si,.] 

it is easy to see that the multinomial model contains the Poisson model as the special case in 

which every ultimate cumulative loss Si,. has the Poisson distribution with expectation 0ti. 

Moreover, under the assumptions of  the multinomial model, it can be shown that the 

incremental losses of  any accident year are independent if and only if the family of  all 

incremental losses is independent and every incremental loss has the Poisson distribution 

with expectation cti8 k. Therefore, the main advantage of  the multinomial model over the 

Poisson model is the fact that it allows for dependence between the incremental losses of  a 

given accident ),ear. 

If, in addition to the assumptions of  the multinomial model, the distributions of  the 

ultimate cumulative losses are assumed to belong to a parametric family of  distributions, 

then the joint distribution of  all incremental losses is known except for the parameters and 

maximum-likelihood estimation can be used to estimate the expected ultimate cumulative 

losses. 

In the case where each of  the ultimate cumulative losses has a Poisson distribution, we 

are back to the Poisson model and the maximum-rikelihood estimators of  the expected 

ultimate cumulative losses are identical with the chain-ladder predictors of  the ultimate 

cumulative losses. 

The same'result obtains in the case where each of  the ultimate cumulative losses has a 

negativebinomial distribution; see Schmidt and Wiinsche [1998]. Negativebinomial 

distributions are of  interest since they are mixed Poisson distributions (with respect to a 

mixing gamma distribution), and mixed Poisson distributions in turn are of  interest since 

their variances exceed their expectations, which is the case for most empirical claim count 
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distributions. 

In fact, a much more general result is true: If, in addition to the assumptions of  the 

multinomial model, each of  the ultimate cumulative losses has a Hofmann distribution, then 

the maximum-likelihood estimators of  the expected ultimate cumulative losses are identical 

with the chain-ladder predictors of  the ultimate cumulative losses; see Schmidt and Zocher 

[2005]. The definition and the discussion of  Hofmann distributions are beyond the scope of  

this paper, but we remark that Hofmann distributions were introduced by Hofmann [1955] 

and that every Hofmann distribution is at the same time a mixed Poisson distribution and a 

compound Poisson distribution and can be computed by recursion; see e. g. Hess, Liewald 

and Schmidt [2002]. 

Since the class of  all Hofmann distributions is a wide class of  mixed Poisson 

distributions, the multinomial model with ultimate cumulative loss numbers having a 

Hofmann distribution is a very general model for claim counts in which the maximum- 

likelihood estimators of  the expected ultimate cumulative losses are identical with the chain- 

ladder predictors of  the ultimate cumulative losses. 

6.3 Remarks 

Alternatively, the Poisson model can be extended to a general stochastic model in which 

the family {Zi,k)i,k~{o,a ...... ~ is independent and the distribution of  every incremental loss 

belongs to an exponential family. In such models, the theory of  generalized linear models 

can be applied. 

7. C O N C L U S I O N S  

The notion of  a development pattern, which can be expressed in three different but 

equivalent ways, provides a powerful tool for the comparison of  different methods and of  

different model of  loss reserving. 

The general Bornhuetter-Ferguson method provides a general framework into which 

several methods of  loss reserving can be embedded via 

- a particular choice of  the prior estimators of  the development pattern for cumulative 

quotas and/or  

- a particular choice of  the prior estimators of  the expected ultimate cumulative losses. 
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Moreover ,  there are man), stochastic models  in which  

- the credibility predictors  or  

- the Gauss  Markov  predictors  or  

- the maxirfium-likelihood est imators o f  the expected ult imate cumulat ive losses 

can be in ter~r&ed as Bom hue t t e r -F e r guson  predictors.  

Th e  chdice o f  a stochastic model  or o f  a m e t h o d  o f  predict ion is a choice which  has to 

be made  b~, t h e  actuary and which may have a considerable impact  o n  the  result. In  the 

Poisson  model,,  e. g., credibilit 3, predict ion and maximum-l ike l ihood es t imat ion are possible 

bu t  lead to different  results; here the  choice o f  the statistical m e t h o d  could be  based on  the 

judgement  that  ei ther external in format ion  or  internal  in fo rmat ion  is more  reliable. Still in 

the Poisson  model ,  the  form o f  the maximum-l ike l ihood est imators  o f  the  expected ultimate 

cumulat ive losses depends  on  the assumpt ion  that  the  expected ult imate cumulat ive losses 

may be different  or  are identical. 

We also remark  that  the  chain-ladder m e t h o d  and the  additive m e t h o d  can be  extended 

to the multix, ariate case which  cor responds  to a port fol io  consis t ing o f  several subport fol ios  

represent ing dependen t  lines o f  business. Moreover ,  the multivariate chain- ladder  m e t h o d  

and the multivariate additive me thod  can be justified by mult ivariate models  ex tending  the 

univariate models  considered in the present  paper.  A detailed discussion o f  these 

multivariate me t h o d s  and models  may be found in Schmid t  [2006]. 
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Optimal and Additive Loss Reserving 
for Dependent Lines of Business 

Klaus D. Schmidt 
Lehrstuhl fiir Versicherungsmathematik 

Techrdsche Universidit Dresden 

A b s t r a c t .  

In the present paper we review and extend two stochastic models f o r  l o s s  resenting and study their 
impact on extensions of the additive method and of the chain-ladder method. The first of these models 
is a particular linear model while the second one is a sequential model which is composed of a finite 
number of conditional linear models. These models lead to multivariate extensions of the additive 
method and of the chain-ladder method, respectively, which turn out to resoh-e the problem of 
additiviq'. 

Keywords. Loss reserving; dependent lines of business; additivity; multivariate additive method; 
multivariate chain-ladder method. 

1. INTRODUCTION 

For a portfolio consisting of  several fines of  business, it is well-known that the chain- 

ladder predictors for the aggregate portfolio usually differ from the sums of  the chain-ladder 

predictors for the different lines of  business; see Ajne [1994] and Klemmt [2004]. It is one of  

the purposes of  the present paper to point out that the non-coincidence between a chain- 

ladder predictor for the aggregate portfolio and the sum of  the corresponding chain-ladder 

predictors for the different lines of  business has its origin in the univariate character of  the 

chain-ladder method which neglects dependence between the different fines of  business. 

The problem of  dependence between different lines of  business has already been 

addressed by Holmberg [1994]. His paper is remarkable since it adopts a general point of  

view and considers 

- correlation within accident ),ears, 

- correlation between accident years, and 

- correlation between different lines of  business. 

Nevertheless, the major part of  Holmberg's paper is devoted to correlation within and 

between accident ),ears and the author expresses the opinion that ,  in practical applications, 

the great majority of  the effects causing correlation between different fines of  business are 

already captured in the correlation within and between accident years. It is another purpose 
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of  the present paper to show that correlation between different lines of  business can be 

modelled and that the resulting models, combined with a general optimality criterion, lead to 

multivariate predictors which are superior to the univariate ones. Here and in the sequel, the 

term univaffate refers to prediction for a single line of  business and the term multivariate refers 

to simultaneous prediction for several lines of  business or for different t3-pes of  losses (like 

paid and incurred losses) of  the same line of  business. 

The papers by Ajne [1994] and Holmberg [1994] were sfighdy preceded in time by a 

paper by Mack [1993] which, similar to the paper by Hachemeister and Stanard [1975], 

turned out to be path-breaking in the discussion of  stochastic models for the chain-ladder 

method. In the model of  Mack, dependence within accident years is expressed by 

conditioning, but it is also assumed that the accident years are independent. The assumption 

of  independent accident years was subsequendy relaxed in the model of  Schnaus presented 

by Schmidt and Schnaus [1996]. Both of  these models are univariate and hence do not 

reflect dependence between lines of  business. 

After the publication of  the paper of  Mack [1993], about a decade had to pass before the 

emergence of  the first bivariate models related to the chain-ladder method. One of  these 

models, due to Quarg and Mack [2004], expresses dependence between the paid and 

incurred losses of  a single line of  business (a topic which had already been studied before by 

HaUiwell [1997] within the theory of  linear models) and has been used as a foundation for 

the construction of  certain bivariate predictors which are now -known as Munich chain- 

ladder predictors. The other of  these models, due to Braun [2004], expresses dependence 

between two lines of  business and has been used to construct new estimators for the 

prediction errors of  the univariate chain-ladder predictors, but it has not been used to 

construct bivariate predictors. Each of  these models extends the model of  Mack. 

Quite recently, Pr6hl and Schmidt [2005] as well as Hess, Schmidt and Zocher [2006] 

proposed multivariate models which reflect dependence between an arbitrary number of  

lines of  business. The model of  Prthl  and Schmidt extends the model of  Braun in essentially 

the same way as the model of  Schnaus extends the model of  Mack, while the model of  Hess, 

Schmidt and Zocher extends in a rather straightforward way the particular linear model 

which may be used to justify the additive method; see Radtke and Schmidt [2004]. These 

models, combined with a general optimality criterion, lead to multivariate versions of  the 

chain-ladder method and of  the additive method, respectively, which turn out to resolve the 
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problem of additivit3'. 

In the present paper we review these recent multivariate models and methods of  loss 

reserving. In order to avoid the accumulation of  technicalities, we start with a systematic 

review of  the univariate case (Section 2) and of  prediction in conditional linear models 

(Section 3). We then pass to the multivariate case (Section 4) and show that, the optimal 

multivariate predictors for the single lines of  business sum up to the corresponding 

predictors for the aggregate portfolio (Section 5). We also show how the unbiased estimators 

of  variances and covariances proposed by Braun [2004] can be adapted to the multivariate 

models considered here (Section 6). We conclude with some complementary remarks 

(Section 7) and a numerical example illustrating the multivariate chain-ladder method 

(Section 8). 

Throughout this paper, let (D, 5 r, P) be a probability space on which all random 

variables, random vectors and random matrices are defined. We assume that all random 

variables are square integrable and that all random vectors and random matrices have square 

integrable coordinates. Moreover, all equalities and inequalities involving random variables 

are understood to hold almost surely with respect to the probability measure P. 

2. U N I V A R I A T E  L O S S  P R E D I C T I O N  

In the present section we review two univariate stochastic models which are closely 

related to two current methods of  loss reserving. 

We consider a single fine of  business which is described by a family {Zi,k}i,k~{o,1 ...... } of  

random variables. We interpret Zi,k as the loss of  acddentyear i which is reported or settled 

in development year k, and hence in calendar year i + k, and we refer to Zi,k as the incrementalloss 
of accident year i and development year k. 

We assume that the incremental losses Zi,k are observable for calendar },ears i + k < n and 

that they are non-observable for calendar }'ears i + k > n + 1. The obsetwable incremental losses 

are represented by the following run-offtriangl~. 
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A c c i d e n t  D e v e l o p m e n t  Y e a r  

Y e a r  0 1 . . .  k . . .  n - i . . .  n - 1 n 

0 Z0 ,  0 Z0,1 . . .  Z o ,  k . . .  ZO,n_ i . . .  Z o , n _  1 Z o ,  n 

1 Z,,o Zl,l ... Zl,k ... &, . - i  "'" &,.-i 
i i ! i i 
i Zi.o Zi,1 . . .  Z i , ,  . . .  Z i , , - i  

! ! i ! 

n - k Z , _ , .  o Z . _ , a  . . .  Z . _ , , ,  

n - 1 Z . q , ,  Z . -1 ,1  

n l w ,  0 

Besides the incremental losses, we also consider the cumula t i ve  losses Si,lt which are defined by 

k 
Si,k := 5". Z,,,. 

1=0 

Then  the cumulative losses Si,k are observable for calendar years i + k < n and they are 

non-observable  for calendar years i + k > n + 1. Just  like the observable incremental losses, 

the observable cumulative losses are represented by a run-of f  triangle: 

A c c i d e n t  D e v e l o p m e n t  Year 

Year 0 1 ... k ... n - i ... n - 1 n 

o So,o So,1 ... so,, ... So.,_i .." So.,-~ So,, 

1 Sl,o Sl,l . . .  Sl,k . - .  Sl,n-i "'" S l ,n - I  

i ! i ! i 

i Si,o Si,1 . . .  Ss,k . . .  S i ,n - i  

i i i i 
n -  k S._, ,o S . - ka  . . .  S ._ , , ,  

n - 1 S._1,o S . - l a  

n Sn~o 

O f  course, the incremental losses can be recovered from the cumulative losses. 

2.1 Univariate Additive Model  

Let us first consider the univariate additive model: 

Un iva r i a t e  Addi t ive  Model :  There  ex i s t  real  n u m b e r s  v0, vl . . . . .  v .  > 0 a n d  

322 Casualty Actuarial  Society F o r u m ,  Fall 2006 



Optimal and Additive Loss Reserving 

¢So, ~1 . . . . .  a .  > 0 as u,ell as realparameters ~o, ~1 . . . . .  ~.  such that 

E[Zi,k] = vigk 

and 

= ~ v i c k  i f  i = j  and k = l  
cov[ Zi  ,k ~ Zj,I  ] 

L 0 else 

holds for all i , j , k , l  ~ {0, 1 . . . . .  n}. 

For  i, k ~ {0, 1 . . . . .  n} such that  i + k > n + 1, the est imators and predictors  

x-', n-k Z 
GAD := /~j=O j,k 

~ n - k  V " 
j=O 1 

Zi, k := 
k 

: =  &.-i + v , E 
l=n-i+l 

are said to be the est imators  and the predictors  o f  the (univaffate) additive method. U n d e r  the 

assumpt ions  o f  the additive model ,  these es t imators  and predictors are indeed reasonable,  as 

will be s h o w n  in Section 4 below. 

2.2 Univar iate  Cha in -Ladder  M o d e l  

Let  us n o w  consider  the univariate chain-ladder model  due to Schnaus  which  was 

p roposed  by Schmidt  and Schnaus [1996] and is a slight bu t  convenien t  extension o f  the 

model  o f  Mack [1993]. 

T h e  chain- ladder  model  is a sequential  model  since it involves successive condi t ioning  

with respect  to the c~ -algebras Go, G1 . . . . .  ~ . - t  where,  for  each k ¢ {0.1 . . . . .  n}, the a - 

algebra 

Gk-1 

represents  the in format ion  provided by the cumulat ive losses Sj,I o f  accident  years 

j ~ {0, 1 . . . . .  n - k + 1} and deve lopmen t  years l ~ {0, 1 . . . . .  k - 1}, which  is at the same t ime 

the informat ion  provided by the  incremental  losses Zi,l o f  accident  years 

j ~ {0, 1 . . . . .  n - k + 1} and deve lopmen t  years l e {0, 1 . . . . .  k - 1}. 

We  assume that  Si,k > 0 holds  for all i , k  ~ {0, 1 . . . . .  n}. 
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Univar ia te  C h a i n - L a d d e r  Model :  For each k ~ {I . . . . .  n}, there exists a random variable q~k 

and a sttict[y positive random variable ~k such that 

E ~*-~ [Si,k ] = Si,k-~ ~, 

and 

covq,_l(Si,,,Sj,k) = { ~i,,_lo k i f  i = 

holds for all i, j ~ {0, 1 . . . . .  n - k + 1}. 

For i, k ~ [0, 1 . . . . .  n} such that i + k > n + 1, the estimators and predictors 

n-k 
(ocL := Ej=oS,,k 

yT-kS j=O j,k-1 

k 

: =  si._i l-I 
l=n-i+l 

^CL (such that S;,.-i = Si,.-i) are said to be the estimators and the predictors of  the (univariate) 

chain-ladder method. Under the assumptions of  the chain-ladder model, these estimators and 

predictors are indeed reasonable, as will be shown in Section 4. 

3. E S T I M A T I O N  A N D  P R E D I C T I O N  I N  T H E  C O N D I T I O N A L  
L I N E A R  M O D E L  

In the present section we consider a random vector X and a sub-a-algebra G of  F. The 

cr -algebra G represents information which is provided by some other random quantities. 

Cond i t iona l  L inea r  Model :  There exists a G-measurable random matrix A and a G" 

measurable random vector fJ such that 

EaIX] = Ap.  

The random matrix A is assumed to be observable and is said to be the design malrix and 

the random vector ~ is assumed to be non-observable and is said to be the parameter vector or 

the parameter for short. 

In the subsequent discussion, we assume that the assumption of  the conditional linear 

model is fulfilled. 
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We assume further that some of the coordinates of X are observabk whereas some other 

coordinates are non-observable. Then the random vector X1 consisting of the observable 

coordinates of X and the random vector X2 consisting of the non-observable coordinates 

of X satisfy 

E a[xl] = A1 I~ 

Ea[X2] = A2 

for some submatrices A1 and A2 of A. 

We also assume that the matrix A1 has full column rank, that the random matrices 

£ n  := vara[Xl] 

£21 := cova[X2,Xl] 

are -known, and that ~'~ll is (almost surely) invertible. 

Since the random vector Xa is non-observable, only the random vector X1 can be used 

for the estimation of the parameter 13. 

3.2 G a u s s - M a r k o v  E s t i m a t i o n  

Let us first consider the estimation problem for a random vector of the form CI3, where 

C is a q -measurable random matrix of suitable dimension. 

A random variable ¢/ is said to be an estimator o f  C~ if it is a measurable transformation 

of the observable random vector X 1. For an estimator Y of C~,  the random variable 

[ ( i "  - c - 

is said to be the q -conditional expected squared estimation error of ¢/. Since 

E~ [ ( ¢ / - C ~ ) ' ( ¢ / - C J ~ ) ]  = trace(vara[~']) + E ~ [ q I - C ~ ] ' E a [ ¢ I - C ~ ]  

the q-conditional expected squared estimation error is determined by the q-conditional 

variance of the estimator and the q-conditional expectation of the estimation error. An 

obsetwable random vector ~r is said to be 

- a linear estimator of C]3 if there exists a q-measurable random matrix Q. such that 

~' = Q_x,. 

- a q-conditionally unbiased estimatorof CI3 if Eg[¢/] = E~[CI3]. 
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- a Gauss-Markov predictor of  C~ if it is a G-conditionally unbiased linear estimator of CI3 

and minimizes the ~-condJtional expected squared estimation error over all G- 

conditionally unbiased linear estimators of C~. 

We have the following result: 

3.1 Proposition (Gauss-Markov Theorem for Estimators). There exists a unique Gauss- 

Markov estimator qGM(c~) of C~ and it satisqes 

~,GM (CI3) = C(A'IZ~AI)-I A'IY-7~XI. 

In particular, qGM (CI3) = cqGM (~). 

Proposition 3.1 implies that the coordinates of the Gauss-Markov estimator 

fiGM := (A;Y-I-IAa)-IAIEI-~XI 

of the parameter ~ coincide with the Ganss-Markov estimators of its coordinates. 

3.2 G a u s s - M a r k o v  P r e d i c t i o n  

Let us now consider the prediction problem for a non-observable random vector of the 

form DX2, where D is a matrix of suitable dimension. 

A random variable ¢/ is said to be a predictor of DX2 if it is a measurable transformation 

of the observable random vector X1. For a predictor ~r of DX2, the random variable 

E q ~(¢/- DX2)'(¢/- DX2)I 
is said to be the G-conditional expected squared prediction error of ¢/. Since 

E q [ (¢ / -  DXz)'(~r _ DX2)1 = trace (var q [~r _ DXz ]) + E q [~r _ DX2 ~'E ~ [4/_ DXz J 

the G-conditional expected squared prediction error is determined by the ~-conditional 

variance and the g -conditional expectation of the prediction error. An observable random 

vector 4/ is said to be 

- a linear predictor of DX2 if there exists a q-measurable random matrix Q_ such that 

~' = Q.X,. 

- ~-conditional[y unbiasedpredictor of DX 2 if Eq[¢/] = Eq[CI3]. 

- a Gauss-Markov predictor of DXz if it is a G -conditionally unbiased linear predictor of 

DX2 and minimizes the ~-conditional expected squared prediction error over all ~;- 
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conditionally unbiased linear predictors of DX2. 

We have the following result: 

3.2 Proposition (Gauss-Markov Theorem for Predictors). There exists a unique 

Gauss-Markov predictor "yGM(DX2) of DX2 and it satisfies 

Y~(DX~)  : I ~ ( A ~  TM + ~ . ; ;  (X~ - A ~ ) ) .  

In particular, qGM (DX2) = DY TM (X2). 

Proposition 3.2 shows that the Gauss-Markov predictor 

:= A2 cM + Z2,Z ; (x l  - cM) 

of the non-observable random vector X2 depends not only on the Gauss-Markov estimator 

[~GM of the parameter ~ but also on the G-conditional covariance E21 between the non- 

observable random vector X2 and the observable random vector X1. Moreover, the final 

assertion of Proposition 3.2 implies that the coordinates of the Gauss-Markov predictor of 

the non-observable random vector coincide with the Gauss-Markov predictors of its 

coordinates. 

For a single non-observable random variable, the Gauss-Markov predictor has been 

determined by Goldberger [1962]; see also Rao and Toutenburg [1995]. We also refer to the 

paper by Halliwell [1996] and to the discussion of his paper by Schmidt [1999a] and Hamer 

[1999] and the author's response by HaUiwell [1999]. Related results can also be found in 

Radtke and Schmidt [2004] and in Schmidt [1998, 2004]. 

The proof of Propositions 3.1 and 3.2 can be achieved in exactly the same way as in the 

unconditional case (which corresponds to the case G = {0,ff2}, where the G-conditional 

expectations, variances and covatiances are nothing else than the ordinary expectations, 

variances and covariances). 

It is sometimes also of interest to predict a random vector of the form 

ox. o, 

An obvious candidate is the predictor 
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(x,) 
~/GM(Dx):=(D1 D2) ~ M  " 

Extending the definitions and repeating the discussion with X in the place of X2, it is easily 

seen that the predictor ~rGM(Dx) is indeed the Gauss-Markov predictor of DX; see also 

Hamer [1999] for the even more general case of Gauss-Markov estimation/prediction of the 

target quantit 3, D013 + DIX1 + DzX2. 

4. M U L T I V A R I A T E  L O S S  P R E D I C T I O N  

We are n o w  prepared to consider  mult ivariate  loss predict ion.  

We consider m lines of business all having the same number of development years. The 

m lines of business may be interpreted as subportfolios of an aggregate portfolio. 

For the line of business i7 ¢ {1 . . . .  , m}, we denote by 

and 

the incremental loss and the cumulative loss, respectively, of accident )'ear i ~ (0, 1 . . . .  , n} 

and development year k ~ {0, 1 . . . . .  n}. 

For i,k ~ {0, 1, ..., n}, we thus obtain the m-dimensional random vectors 

(7(p)~ Zi , k  := ~ i , k  /pc{1 ...... } 

and 

(c(p) Si,k := ~"i,k h,~{l,...,,,} 

of incremental losses and cumulative losses of the combined subportfofios. The observable 

incremental losses and the observable cumulative losses are represented by the run-off 

triangles 
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Accident  Deve lopment  Y e a r  

Y e a r  0 1 . . .  k . . .  n - i . . .  n - 1 n 

0 Zo,o Zoa ... Zo,, ... Zo,.-i ' "  Zo,.-i Zo,. 

1 Zl,o Zla  .. .  Zl,k . . .  Z l , . - i  ... Z~.._, 

: i : i i 
i Zl,o Zi,l . ' .  Z i , k  . . .  Z i , n -  i 

n - k  Z.-,.0 Z . - ,  a ... Z._,., 

i : i 
n - 1  Z . - l , o  Z . - l a  

n Zn,  0 

and 

A c c i d e n t  D e v e l o p m e n t  Y e a r  

Y e a r  0 1 . . .  k . . .  n - i . . .  n - 1 n 

0 So,o Soa  .--  So,~ . . .  So, . - i  ' "  So . . -1  So , .  

1 Sl,o S l a  -- .  $1, ,  . . .  Sl , . - i  "'" S1. -1  
i : i ! i 
i Si,o Si,1 . . .  S i , k  . . .  S i , n - i  

: i i : 
n - k  S.-k,o S.-ka ... S._,,, 

n - 1 S . -1 ,o  S.-1,1 

n Sn, 0 

We can n o w  present  multivariate extensions o f  the models  considered in Section 2: 

4.1 Multivariate Additive Model 

Let us first consider  a multivariate extension o f  the additive model  which  applies to the 

combined  subportfol ios  and was p roposed  by Hess,  Schmidt  and Z o c h e r  [2006]. 

M u l t i v a r i a t e  A d d i t i v e  M o d e l :  There exis t  positive definite diagonal m a ~ c e s  Vo, Vl . . . . .  V.  and  

postTive definite (ymmetnc  matn'ces Y'o, Y'l . . . . .  Y. .  as well  as parameter  vectors ~o ,  ~1 . . . . .  ~ .  such tha t  

E[Zl,k] = ViG 

a n d  
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X11/Zx-, xi1/2 
c o v [ Z i , k , Z j , l ]  = U ~ k ' j  i f  i = j and k = l 

0 else 

holds for all i, j ,  k,l ~ {0, 1 . . . . .  n}. 

In the subsequent discussion, we assume that the assumption of  the multivariate additive 

model is fulfilled and that the matrices V0, V1 . . . . .  V, are known. 

Because of  the assumption on the expectations of  the incremental losses, the multivariate 

additive model is a linear model. This can be seen as follows: Define 

e~0 

~k-1 IS:= ~, 

~k+l 

and, for all i, k ~ {0, 1 . . . . .  n}, define 

Ai,k:=(O 0 ... 0 Vi 0 ... O) 

where the matrix Vi occurs in position 1 + k. Then we have 

E [Zi,k ] = Ai,k~ 

for all i , k e { 0 , 1  . . . . .  n}. Let Z1 and A1 denote a block vector and a block matrix 

consisting of  the vectors Zi,k and the matrices Ai,k with i + k _< n (arranged in the same 

order) and let Z2 and A2 denote a block vector and a block matrix consisting of  the vectors 

Zi,k and the matrices Ai,k with i + k _> n + 1. Then we have 

E[Z~] = Ad3 
E[z~] = A~I~. 

Therefore, the multivariate additive model is indeed a linear model. 

The following result provides formulas for the Gauss-Markov estimators of  the 

parameters of  the multivariate additive model: 

4.1 Theorem.  For each k ~ {0,1 . . . . .  n}, the Gauss-Markov estimator ~ M  of ~k satires 
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-1 n-k n-k 
( "e xtl l lv-l,~rl l 2 ~ "e mtl  l 2 v - i v i  l 2 ~ ~,-1,z = / ~ , j  ~k , j  I / - .ak ' j  " k  *j  I ' j  L'j.k • 
kj=0 ) j=0 

Proof. Because of the diagonal block structure of Y'n = var[Z1] and the block structure 

of A1 we obtain 

,,',,.r:,,, :aiad2VJ'2VvJ'q 
kj=0 )k~{0,....,l 

and 

n-k 
'K" Ixr l /2"g~- lv1/2\  v - l ' 7  A'lZ#Z,=[~,.~--- -k j , ~ ,  

ke{O } 

Now the Gauss-Markov Theorem for estimators yields 

¢¢ ' n-k n-k 
~CM = (A~Z71XA1)qA,ly.TlXZ, ,~ wl/2v-iVi/2 ~ ,e Wi/2v- lVl /2 ,w- , ,7  = / / z - , U  " ' *  ., l ~ j ,,,,k j ) v j  ,t..,j.k| 

kk, j=o .) /=O Jke{O,...,n} 

and hence 

~M = ¢v~*. .v2v-,v!/2Y' r÷*, . , , .~- ,V, /~,V- , .  t o" ; ,  , o , k  

for all k e  {0,1 . . . . .  n}. q 

The following result provides formulas for the Gauss-Markov predictors of the non- 

observable  incrementa l  losses and  for the  Gaus s -M arkov  predictors o f  the  non-obse rvab le  

cumulative losses: 

4.2 Theorem.  For all i , k  e {0, 1 . . . . .  n} such that i + k > n + 1, the Gauss-Markov predictor 
^ G M  

Zi.* of Zi.k satisfies 

"~M = v, ~ Zi ,k  

Si,* of Si,k satisfies and the Gauss-Markov predictor ^ GM 

k .G~ ~ .  
Si, k = Si,n_ i + V i 

l=n-i+l 

Proof. Since Y'21 = cov[Zl,Z2] = O, the first assertion is immediate from the Gauss- 

Markov Theorem for predictors and the second assertion follows from the final remark of 
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Section 3. 

The Gauss-Markov Theorem for predictors implies that 

- the Gauss-Markov predictors of  the sum of  the non-observable incremental losses of  a 

given accident year, 

- the Gauss-Markov predictors of  the sum of the non-observable incremental losses of  a 

given calendar ),ear, and 

- the Gauss-Markov predictors of  the sum of all non-observable incremental losses 

are obtained by summation over the Gauss-Markov predictors of  the corresponding single 

non-observable incremental losses. 

For i, k ~ {0, 1 . . . . .  n} such that i + k > n + 1, the estimators and predictors 

= 

tf=0 ' " ' "  J , . , o .  

i,k 
k ^ AD Si,k = S;,n-i + Vi X ~1 AD 

l=n-i+l 

are said to be the estimators and predictors of  the multivariate additive method. Except for 

m = 1 or k = n they usually differ from the estimators and predictors 

(.-k .~-1 . - k  

 ':=I,x0v'j ,.oXZ" 
7"i,k := Vi~k 

k 

Si,* := Si,n-i + Vi ~ ~l 
l=n-i+l 

whose coordinates coincide with those of  the univariate additive method. 

4.2 Multivariate Chain-Ladder Model 

Let us now consider a multivariate extension of  the chain-ladder model which applies to 

the combined subportfolios and was proposed by Pr6hl and Schmidt [2005]. This model is a 

slight but convenient extension of  the model of  Braun [2004]; see also Kremer [2005]. 

The multivariate chain-ladder model involves successive conditioning with respect to the 

-algebras G0, Gt . . . . .  G.-I where, for each k ~ {0, 1 . . . . .  n}, the a -algebra 
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~k-I  

represents the information provided by the cumulative losses Si,t of accident years 

j ~ {0, 1 . . . . .  n - k + 1} and development ),ears l ~ {0, 1 . . . . .  k - 1}, which is at the same time 

the information provided by the incremental losses Zi,t of  accident years 

j e {0, 1 . . . . .  n - k + l }  and development years l ~ {0, 1 . . . . .  k - l } .  

For all i, k ~ {0, 1 . . . . .  n}, we denote by 

Ai,k := diag(Si,,) 

the diagonal random matrix whose diagonal elements are the coordinates of  the random 

vector Si,k. 

We assume that all coordinates of  Si,k are strictly positive. Then each Ai,k is invertible 

and the identity 

Si,k -1 = Ai,k-1 (Ai,k-1 Si,k ) 

holds for all i e {0, 1 . . . . .  n} and k ~ {0, 1 . . . . .  n}. 

Multivariate Chain-Ladder  Model:  For each k ~ {0,1 . . . . .  n}, there eaqsts a random 

parameter vector ~k and a posilive definite (ymmettic random maOix ~'k such that 

E a~-' [S/ ,k] = Ai,k-1 - Ok 

and 

AI /2  '~ A I / 2  
cov ~*-~fS S l _ / ~ i k - l ~ k ~ i ~ - I  = J  t i,k, J'kJ-- ~ O ' [  , Zfe/sei 

holds for all i , j  ~ {0, 1 . . . . .  n - k + 1}. 

In the subsequent discussion, we assume that the assumption of  the multivariate chain- 

ladder model is fulfilled. 

The multivariate chain-ladder model consists of  n conditional linear models 

corresponding to the development years k e {1 . . . . .  n}. This can be seen as follows: Fix 

k ~ {1 . . . . .  n}, let S1 and Al denote a block vector and a block matrix consisting of  the 

random vectors Si,k and the random matrices Ai, k with i _< n - k  (arranged in the same 

order) and let S2 := S.-k+l,k and A2 := An-k+l,k. Then the random vectors Sl and S2 and 

the random matrices A1 and A2 depend on k and we have 
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E a~-' [Sl ] = Al*k 

£a*-, [S2] = A2¢k- 

Therefore, the multivariate chain-ladder model consists indeed of n conditional linear 

models. 

The following result provides formulas for the Gauss-Markov estimators of the 

parameters in the multivariate chain-ladder model: 

4.3 Theorem.  For each k ~ {1 . . . . .  n}, the Gauss-Markov esHmator ~GM of ~#k satioqes 

-1 n-k n-k 
- ( X " A 1 / 2 =  A1/2 ~ X~IA1/2 X Al/2 ~A-1 e -- | d.~ ~i,k-ll"JkL~i,k-I ] /~  k~ j , k -1  kLtj ,k-I  JLl j ,k - lOj ,k"  

k.j=0 J j=0 

Theorem 4.3 is immediate from the Gauss-Markov Theorem for estimators. 

The following result provides formulas for the Gauss-Markov predictors of the 

cumulative losses of the first non-observable calendar year: 

4.4 Theorem: For each i ~ {1, n}, the Gauss-Markovpredictor ^ GM . . . .  Si,n-i+ 1 o f  Si,n_i+ 1 sali~es 

^ GM ^ GM 
Si,n_i+ 1 = Ai ,n_i~i ,n_i+ 1 . 

Theorem 4.4 is immediate from the Gauss-Markov Theorem for predictors. 

For i ,k ~ {1 . . . . .  n} such that i + k 2 n + 1, the estimators and predictors 

, C L  ( n ~ k A l / 2  Z - IA ! /2  "~-I . £ kC A~2_ l~ . ~ iA~ f f_ 1 )AT tk_ iS j ,  k 

^CL ~CL ~CL 
Si,k '= Lai,k-l~'k 

with 

^CL . = I  diag(Si,"-i) i f  k = n - i + l  

Ai'k-1 ' [diag(SC}_l) else 

are said to be the estimators and predictors of the mulHvanate chain-ladder method. Except for 

m = 1 or k = n they usually differ from the estimators and predictors 

( . - k  .~-I ._~ 

,.oXS" 
ii,k := Aj,k~, 
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:=Idiag(Si,,_i) i f  k = n - i + l  

/~i,k-1 [diag(,~i,kq) else 

whose coordinates coincide with those of  the univatiate chain-ladder method. 

In the case i + k = n + 1, the multivariate chain-ladder predictors are justified by Theorem 

4.4, but another justification is needed in the case i + k > n + 2; this can be achieved by 

minimizing the Gk-1-conditional expected prediction error over the collection of  all 

predictors Si,k of  Si,k satisf)4ng 

S i , k  ^ C L  ^ := Ai,k_l~k 

for some {~k-1-conditionally unbiased linear estimator ~k of  ~k; see Schmidt [1999b] for 

the univariate case. We have the following result: 

4.5 Theorem.  For all i, k ~ {1 . . . . .  n} such that i + k k n + 1, the chain-ladder predictor Si,, ^ ct  

minimizes the qk-1 -conditional expectedprediction error over allpredictors Si,k of Si.k sati~5,ing 

S i , k  " ^ C L  * • = Ai,k-l~, 

for some Gk-1 -conditionally unbiased linear estimator ~k  of II**. 

A proof  of  Theorem 4.5 will be given in the Appendix. 

The optimalit 3, of  the multivariate chain-ladder method guaranteed by Theorem 4.5 is 

sequential and one-step ahead. Of  course, one would like to have a condition ensuring some 

kind of  global optimality of  the chain-ladder predictors; however, even in the univariate case, 

no such condition seems to be "known. 

To illustrate the situation without introducing additional notation, let us recall two results 

for the univariate case: 

- The assumption of  the univariate chain-ladder model is fulfilled in the model of  Mack 

[1993] in which it is assumed that the accident ),ears are independent and that the 

parameters {Pk and ~k are non-random; see Schmidt and Schnaus [1996]. Under the 

assumptions of  the model of  Mack, it can be shown that all chain-ladder predictors are 

unbiased, but it can also be shown that many other predictors are unbiased as well. 

Therefore, unbiasedness does not distinguish the chain-ladder predictors among all other 

predictors. 

C a s u a l t y  A c t u a r i a l  Soc i e ty  Forum, Fall  2006  335 



Optimal and Additive Loss Reserving 

- One might hope that the chain-ladder predictors minimize the G,-1-conditional expected 

squared predictor error over all predictors of the form 

k 
~,,, :=s,,,_, FI (0, 

l=n-i+l 

where, for each l ~ { n -  i + 1 . . . . .  k), (0t is a Gt-conditionally unbiased linear estimator 

of cOt. Again, under the assumptions of the model of Mack, it has been shown in 

Schmidt [1997] that this -kind of optimality may fail for the chain-ladder predictors. 

Thus, even in the univariate case and under the stronger assumptions of the model of Mack, 

it remains an open question whether there exists a condition which is less restrictive than the 

sequential optimality criterion of Theorem 4.5 and still ensures some -kind of global 

optimality of the chain-ladder predictors. 

5. A D D I T I V I T Y  

Let 1 denote the m-dimensional vector with all coordinates being equal to 1. For 

i, k e {0, 1 . . . . .  n} define 

Zi ,k  := l 'Zi, ,  

Si,k := l'Sl,k. 

We shall now study prediction of the non-observable incremental losses Zi , k  and of the 

non-observable cumulative losses Si,k of the aggregate portfolio. 

5.1 Multivariate Additive Model  

In the multivariate additive model it is immediate from the Gauss-Markov Theorem for 

predictors that, for all i , k  ~ {0, 1 . . . . .  n} such that i + k > n + 1, the Gauss-Markov predictor 

2G, M of Z i , ,  and the Gauss-Markov predictor ~ffM of Si,k satisfy 

GM 1,~AD 
Zi ,k  = i ,k 

~,~ ,,~^D 
= a oi.  k . 

This means that the Gauss-Markov predictors for the aggregate portfolio are obtained by 

summation over the Gauss-Markov predictors for the single lines of business. Therefore, the 

multivariate additive method is consistent in the sense that there is no problem of additivity. 

Warning:  One might believe that the Gauss-Markov predictors for the aggregate 
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portfolio could also be obtained by appl)4ng the univariate additive method to the aggregate 

portfolio. This, however, is not the case since the multivariate additive model for the 

combined subportfolios does not lead to a univariate additive model for the aggregate 

portfolio. 

5.2 Mul t ivar ia te  C h a i n - L a d d e r  M o d e l  

In the multivariate chain-ladder model it is immediate from the Gauss-Markov Theorem 

for predictors that, for all i ¢ {1 . . . . .  n}, the Gauss-Markov predictor sGMi+ l of Si,.-i+l 

satisfies 

~GM ,,~CL 
i ,n- i+l  = I oi ,n_i+ 1. 

This means that the Gauss-Markov predictors for the aggregate portfolio are obtained by 

summation over the multivariate Gauss-Markov predictors for the different lines of 

business. Moreover, it is easy to see that, for all i ,k  ~ {0, 1 . . . . .  n} such that i + k > n + 2, 

the predictor 

Si',k := 1'S cL 

1,,~ CL #kCL 
= at t-ai,k_l.~V" k 

/~CL X' ~*CL 
= ~Oi,k_l]  uv'k 

minimizes the ~k-I-conditional expected prediction error over all predictors Si.k of S/.k 

satisf3dng 

:=  . Lai ,k- l ' .~  k 

"CL , ~ = (S;.,_,) ~ 

for some ~k-l -conditionally unbiased linear predictor ~k of ~k. Therefore, the multivariate 

chain-ladder method is consistent in the sense that there is no problem of additivit T. 

Warning:  As in the case of the multivariate additive model, it would be a serious mistake 

to predict the non-observable cumulative losses of the aggregate portfolio on the basis of the 

observable cumulative losses of the aggregate portfolio since such an approach would ignore 

the correlation structure between the different lines of business; see Pr6hl and Schmidt 

[20051. 
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6. E S T I M A T I O N  O F  T H E  V A R I A N C E  P A R A M E T E R S  

In the case m = 1, which is the univariate case, the variance parameters 5.0, 1~1 . . . . .  Y-. 

drop out in the formulas for the Gauss-Markov predictors in the multivariate additive model 

and in the multivariate chain-ladder model. 

In the case m > 2, only the variance parameter y.n drops out in the formulas for the 

Gauss-Markov predictors in the multivariate additive model and in the multivariate chain- 

ladder model; in this case, the variance parameters 5,.o, ~1,--. ,Y'n-I must be estimated. 

6.1 M u l t i v a r i a t e  A d d i t i v e  M o d e l  

Under the assumptions of  the multivariate additive model and for k _< n - 1, the random 

matrix 

~.;,~._ 1 ~ v - ' / ' , z  • - 7 - ~ _ h z .  i , i , * - v ~ ) ( z ~ , * - v ~ k ) ' v ;  '/~ 
• "--'~ j=0 

is a positive semidefinite estimator of  the positive definite matrix Y.,; moreover, its diagonal 

elements are unbiased estimators of  the diagonal elements of  Y-, whereas its non-diagonal 

elements slightly underestimate the corresponding elements of  Y-k. 

Although unbiasedness of  an estimator is usually considered to be desirable, this property 

would not be helpful in the present situation since any estimator of  Y.~ has to be inverted 

and since the inverse of  an unbiased estimator of  Y'k is very likely to be biased an}way. 

Moreover, the relative bias of  the estimators proposed before can be shown to be very small. 

By contrast, for any estimator of  I;k, the property of  being positive semidefinite is a 

necessary, although not sufficient, condition for being positive definite and hence invertible. 

In fact, the estimator of  Yk proposed before is always singular when k > n - m + 2 since in 

this case the dimension of  the linear space generated by any realizations of  the random 

vectors ¥~/2(Zi,k-Vj~k) with j ~ { 0 , 1  . . . . .  n-k} is at most m - 1  such that there exists 

at least one nonzero vector which is orthogonal to each of  the realizations of  these random 

vectors; moreover, the realizations of  the random vectors V)/2 (Zi, k - V j ~ k )  may be linearly 

dependent also for some k -< n - m + 1, which implies that the corresponding realization of  

the estimator of  Y'k proposed before may be singular also for some k _< n - m + 1. 

In practical applications, it is thus necessary to check whether the estimators proposed 
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before are invertible or not, and to modify those estimators which are not invertible. Such 

modifications could be obtained by extrapolation or by the use of  external information; see 

below. 

6.2 Multivariate Chain-Ladder Model 

Under the assumptions of  the multivariate chain-ladder model and for k < n -  1, the 

random matrix 

1 ~k AI/2 / ¢  xCL :=7_b ~i,k-l~°~,k--Aj.*-~k)(Si,k A ,~,,A1/2 
- -  z a  j )k_ l  , ~  k ] I.-t i , k - I  

" - -  ~ j = 0  

is a positive semidefinite estimator of  the positive definite matrix Y'k; moreover, its diagonal 

elements are unbiased estimators of  the diagonal elements of  Y~k whereas its non-diagonal 

elements slightly underestimate the corresponding elements of  Xk and hence differ from the 

unbiased estimators proposed by Braun [2004]. 

The comments on the variance estimators proposed for the multivariate additive model 

apply as well to the variance estimators proposed for the multivariate chain-ladder model. 

6.3 Extrapolation 

In the case where the proposed estimators of  the variances for late development years 

are singular or almost singular, it could be reasonable to replace these estimators with 

estimators obtained by extrapolation from the estimators for the first development years 

which are usually invertible. 

6.4 Iteration 

In both models, one may try to improve the estimators of  the variances and hence the 

Gauss-Markov estimators of  the parameters by iteration, as proposed by Kremer [2005]. 

However, the iterates of  some of  the estimators of  the variances may again be singular, and it 

seems to be difficult to prove that the resulting empirical Gauss-Markov estimators of  the 

parameters are indeed improved by iteration. 

6.5 E x t e r n a l  I n f o r m a t i o n  

In both models, another possibility for the estimation of  the variance parameters 

Y'0, Y'l . . . . .  Y~,-1 consists in the use of  external information, which is not contained in the 
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run-off triangle and could be obtained, e. g., from the run-off triangle of a similar portfolio 

or from market statistics. 

7. REMARKS 

Another bivariate model of loss reserving is the model of Quarg and Mack [2004]. Under 

the assumptions of their model, Quarg and Mack propose bivariate chain-ladder predictors 

for the paid and incurred cumulative losses of a single .line of business with the aim of 

reducing the gap between the univariate chain-ladder predictors for the, paid and incurred 

cumulative losses; see also Verdier and Klinger [2005] for a related model. None of these 

two models is contained in the multivariate models proposed in the present paper. 

Since no conditions at all are imposed on the character of the different lines of business 

in the multivariate models presented here, the multivariate method and the multivariate 

chain-ladder method could, in principle, also be applied to the paid and incurred cumulative 

losses of a single line of business. 

Let us finally note that the problem of additivity can also be solved in quite different 

models like credibilit 3, models; see Radtke and Schrmdt [2004] and Schmidt [2004]. 

8. A NUMERICAL EXAMPLE 

In this section we present a numerical example for the multivariate chain-ladder method 

in the case of m = 2 subportfolios and n = 3 development years. 

8.1 The Data 

The following run-off triangles contain the observable cumulative losses S]~ ), S],~ ), and 

S/,, of  the two subportfolios and of the aggregate portfolio, respectively: 

Subporffo~o 1 

AY DY 
0 1 2 3 

0 2423 3123 3 5 6 7  3812 
1 2841 3422 3952 
2 3700 3977 
3 5231 
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Subpo~fo~o 2 

AY DY 

0 1 2 3 

0 3546 6 5 7 8  7 6 5 0  8123 
1 4001 7 5 6 6  8822 

2 4040 7813 
3 43O0 

Aggregate Po~fofio 

AY DY 

0 1 2 3 

0 5969 9701 11217 11935 
1 6842 10988 12774 
2 7740 11790 
3 9531 

8.2 Univariate Chain-Ladder Method 

Applying the univariate chain-ladder method to each of  these run-off triangles 3fields the 

univariate chain-ladder factors (CLF) and the univariate chain-ladder predictors of  the non- 

observable cumulative losses: 

Subpo~fofio 1 

AY DY 

0 1 2 3 

0 2423 3 1 2 3  3 5 6 7  3812 
1 2841 3 4 2 2  3 9 5 2  4223 
2 3700 3 9 7 7  4 5 6 9  4883 
3 5231 6 1 4 0  7 0 5 4  7538 

CLF 1.1738 1.1488 1.0687 
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Subpo~fo~o 2 

AY DY 
0 1 2 3 

0 3546 6578 7650 8123 
1 4001 7 5 6 6  8822 9367 
2 4040 7813 9099 9662 
3 4300 8148 9490 10076 
CLF 1.8950 1.1646 1.0618 

Aggregate Po~fofio 

AY DY 
0 1 2 3 

0 5969 9701  11217 11935 
1 6842 10988 12774 13592 
2 7740 11790 13672 14547 
3 9531 15063 17467 18585 
CLF 1.8950 1.1646 1.0618 

8.3 Multivariate Chain-Ladder Method 

We now combine the run-off triangles of the two subportfolios into a single run-off triangle 

which contains the vectors Si.k of cumulative losses: 

Combined Subportfolios 

AY DY 

0 1 2 3 

(2423 / /3123/ (3567~ 
0 k3546] k6578] k7650] 

/2841 / (3422] /3952] 
1 ~4001] k7566] k8822] 

I3700/ 13977  
2 k4040] k7813] 

[5231 / 
3 k4300] 

( 3812~ 
8123] 

Transforming the vectors Si,, of cumulative losses into diagonal matrices, we obtain the 

following run-off triangle for the matrices Ai, k = diag(Si,,) which is completed by the 

vectors ~ ,  of univariate chain-ladder factors: 
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Combined Subportfolios 
AY DY 

0 1 2 3 

0 (24203 354~)(312g 657~) 
1 (28401 4000) (342~ 756~) 
2 (3700 4040) (397~ 781~) 
3 ('"a .0~) 

/1.1738 / /1.14881 (1.0687 / 
~k ~1.8950] ~1.1646] ~1.0618] 

For the estimators of the variances we thus obtain 

~ L  35.4968 
= -14.3861 

-14.3861) 
5.9200 

and hence 

~ t  =(  0.2637 0.0926 / 
0.0926 0.0325] 

(~CL) -1 ( 1.8616 4.5239) 
= 4.5239 11.1624 

(~L) -1 (25876.4330 
= k .73727 .6467  

-73727.6467 / 
210097.0596 ] 

Note that estimators of the variances Y'0 and Y'3 are not needed. App134ng the multivariate 
chain-ladder method to the combined subportfolios )4elds the multivariate chain-ladder 

predictors of the non-observable cumulative losses: 
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Combined Subportfolios 
AY DY 

0 1 2 3 

{2423~ /3123 / [3567~ [3812 / 
0 ~3546] ~6578] ~7650] ~8123] 

[2841 / /3422 / [3952 / /4223 / 
1 ~4001] ~7566] ~8822] ~93671 

/5231] /6105 / {7013 / [ 7495 / 
3 ~4300] ~81671 ~95121 ~10100] 

[1.1670 / {1.1489 / (1.0687] 
~k ~1.8994] ~1.1646] ~1.0618] 

8.4 Comparison 
Predictors for non-observable aggregate cumulative losses may be computed by the 

following three methods: 

- Method A: Apply the univariate chain-ladder method to the aggregate portfolio. 

- Method B: Apply the univariate chain-ladder method to each of the subportfolios and 

take sums of the univariate predictors. 

- Method C: Apply the multivariate chain-ladder method to the combined subportfolios 

and take sums of  the multivariate predictors. 

For example, for the ultimate aggregate cumulative loss of  accident year 3, 

- Method A )felds the value 18585. 

- Method B yields the value 7538 + 10076 = 17614. 

- Method C )fields the value 7495 + 10100 = 17595. 

The following table presents several reserves obtained by these three methods: 
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R e s e r v e  M e t h o d  A M e t h o d  B M e t h o d  C 

Accident Year 1 818 817 817 

Accident Year 2 2757 2754 2754 

Accident Year 3 9054 8084 8064 

Total 12628 11655 11635 

Calendar Year 4 8231 7452 7436 

Calendar Year 5 3279 3131 3129 

Calendar Year 6 1118 1071 1070 

Total 12628 11655 11635 

Due to round-off errors, some of the total reserves differ slightly from the sums of  the 

reserves over accident ),ears of  calendar years. In the present example, the results obtained 

by Methods B and C are quite similar, but they differ considerably from those obtained by 

Method A. 

8 . 5  P r e l i m i n a r y  C o n c l u s i o n s  

Of  course, one should not draw general conclusions from a single numerical example. 

Nevertheless, the present example and experience with other sets of  data justify the 

following rule of  thumb: 

- Method C is optimal when the model assumptions and the optimality criteria for the 

multivariate chain-ladder method can be accepted. 

- Method B may in many cases provide a reasonable approximation to Method C. 

- Method A may be disastrous since it ignores correlation between the different lines of  

business. 

Experience with other sets of  data also indicates that the similarities and differences between 

the three methods may vary with 

- the lines of  business under consideration, 

- the number of  lines of  business, and 

- the number of  development years. 

It is therefore indispensable for the actuary to acquire practical experience for every 

combined portfolio of  interest. 
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A P P E N D I X  

Here we give a p roof  o f  Theorem 4.5. 

Proof .  Consider an), q*-I-conditionally unbiased linear estimator ~ ,  o f  ~ , .  Then there 

exist q , - i -measurable  matrices Q.0,k-1, Q.1,,-1 . . . . .  Q_,-ka-1 satisfying 

n-k 
~'* = E Q. ._ ,S j , ,  

j=0 

~--, n-k 1,% A and /..j=oM-j,k-1 j,k-I = I. Also, letting 

CL .-- (~kA1 /2  Z -1A1/z ~-1 'A  1/2 Z -1A1/2 \A  -1 

we obtain 

~CL n-k CL 
= y~ Q.i,k-lSs,, 

j=0 

~'~n-k f .~CL A and /%j=o%~j,k_l j,k-1 = I. We thus obtain 

n-It 
,,-~ CL \A (Q.j.,-1 - q _ j , , - .  s,*-i = O. 

j=0 

Since 

n-k -1 
CL _ ( ~ , / 2 , e - , . , / ,  "1 (varq,-,[Sik]) - '  

this yields 

,.- [S . ,S , , , ] (O . . , , , _ , )  
j=0 I=0 

j=O 

= ~.~ (Q_j,k-1 ¢"~ CL "~A [ r A1/2 *j"-IA1/2 l 
- " ,< . j ,k - I  ] j ,k - ]  | / _ .  s,k-1 k s,k-I I 

j=O \ s=O , .), 
=O.  

Since i + k >_ n + 1, we also have coy 0- '  I s  j , , ,  Si,, ] = 0 and thus 
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^ eL COVq,-,E~i,k_Si,k,S;,,] = covG,-,[aCL_I~k -- Lai,/e-I'~'k~CL t.kCL, Si,k ] 

^CL C O V G J , _ , E I ~ k _ , C L , s , , , ]  = A i , k _  1 

^ CL n - k  . = Ai,k-' X (Q_j,k-1- Q_jC',~-I ) cOVG'-I [Sj.k,Si,k] 
j=0 

= O .  

Using the two identities established before, we thus obtain 

COVG,_, r ~ ~CL ~CL Si,k]  COVG,_I [ g  ^CL SI.k]'CL L ° / k  - o i , ,  o , ,  = . . ,  - Si, k , 

_ . ~ C L  . . . .  ~ , -~  F , , ~  , ~ C L  , , ~ C L " I , ~ c t .  
-- ~t i ,k-I  ~ "  L"vk --  "~"k , ~Vk ..]t'~i,k-I 

= 0  

and hence 

^ CL -- Si,/t ] .  vaV*-*ESi,'-S',']=vara*-'[S"-Si,'] + ' ° ' q * - ' F ~ : c L ,  -'" t : ' , , *  

We thus obtain 

EG*-'[(Si.,-Si,,) ' (S,.,-Si.,)]=trace(var%-'[Si.i-Si.,]) 

= trace(varY,_, [ ~ i , , _  ~CL ] ) +  trace(vara,_l [~CL _ S i , , ] )  

> t race(var  %-' [S i  CL -- Si, ̀  ] )  

t ^ CL = 1 (S, .  - S , . ) ]  

which proves the theorem. 
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A Nonlinear Regression Model of Incurred But Not 
Reported Losses 

Scott Stelljes, ACAS, MAAA 

Abstract 

The process of loss development has been studied by casualty actuaries for many years. When an 
accident period is closed, the ultimate claim liabilities are unknown because many of the claims are 
still unreported and some that are reported remain unsettled. The difference between ultimate losses 
and reported losses is known as "Incurred But Not Reported" loss or IBNR. The reserve for IBNR 
losses is the largest liability on an insurer's balance sheet. Quantifying the uncertainty in estimates of 
IBNR is of great importance to the financial health of casualty insurance companies. 

Most of the current methods for estimating ultimate losses focus on estimation of loss 
development factors which relate the emergence of losses to the amount of losses already reported. 
This paper presents a model for predicting incremental losses as a function of exposures, calendar 
period and development age. 

A nonlinear regression model is used for estimating the 95% confidence interval of IBNR for an 
accident period. The model predicts the incremental pure premium for a development interval as a 
function of development age, calendar quarter and exposure. The estimated IBNR is the sum of 
forecasted incremental pure premiums. The regression model produces confidence interval estimates 
for the model parameters and for IBNR. 

The regression model is applied to trended losses. We assume that the trend has been estimated 
by some reasonable time series method that produces confidence interval estimates of trend factors. 
Many good methods are available. We use the confidence interval estimate of the trend factors to 
adjust the IBNR estimates for uncertainty in loss trend. 

The model presented here assumes normally distributed residuals. Although the underlying loss 
severities are probably not normal, the central limit theorem implies that this assumption would be 
appropriate if the number of claims is large. Thus, the model will most likely work well for high 
frequency lines of business such as personal auto. 

We will present methods for estimating parameters, confidence intervals for the parameters, and 
the distribution of IBNR. These methods will be illustrated using simulated automobile bodily injury 
liability data. Model predictions will be compared to actual emerged losses. 

Based on a comparison of predicted IBNR to the "actual" IBNR from the simulated data, the 
model appears to produce unbiased predictions and reasonable confidence interval estimates of 
IBNR. We conclude that the distribution of incremental pure premiums is close to normal and there 
is not a significant correlation between development age intervals. Thus, traditional regression 
methods can be used to estimate the distribution of forecasted incremental pure premiums and 
consequently, IBNR. 

Keywords: Non-linear regression, IBNR, reserving. 
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1. I N T R O D U C T I O N  

Many actuaries and their clients are unsatisfied with point estimates of IBNR reserves. 
Better decisions can be made if one has a range of possible outcomes and associated 
probabilities. Confidence interval estimates would satisfy this need. We will introduce a 
nonlinear regression model that produces confidence interval estimates of IBNR. The 
models are fitted to incremental pure premiums - the incremental change in case incurred (or 
paid) losses for an accident period during a development interval divided by the 
corresponding calendar period earned exposures. This approach was inspired by Buhlman's 
complementary loss ratio method as presented by Stanard [3]. 

1.1 Research Context 

The context of this paper is reserving methods and reserving uncertainty and ranges. 

1.2 Objective 

The objective of this research is to produce a model of loss development that models 
losses as a function of exposures, can be applied to either paid or incurred losses, and 
produces a confidence interval estimate of IBNR. 

The current literature includes some papers, e.g., Murphy [1] that present regression 
models to predict age-to-age loss development factors and measure the uncertainty in the 
predicted factors but there are very few that present models of loss dollars. Barnett and 
Zehnwirth [2] is an excellent example of a dollar based model, but it is applied to the 
logarithms of incremental losses and this becomes a problem when there is negative loss 
development. Recoveries lead to negative paid development and case reserve estimation 
errors can result in negative case development. In order to use a log link, it is necessary to 
discard information. Less information is discarded if the analysis is performed on paid losses 
but much of the data in the tail of a case incurred development triangle is negative. Many 
reserving actuaries believe that there is useful information in case incurred losses and they 
often compare estimates derived from paid and incurred data. 

Furthermore, Narayan [4] remarks that dollar based regression models do not take into 
account changing levels of exposure. This is a serious flaw because the amount of loss in an 
accident period is highly correlated to the number of earned exposures. 

Thus, there is a need for a dollar based regression model that can be applied without 
using a log link and that makes appropriate adjustments for changing levels of exposure. 

In this paper, we present a nonlinear regression model that predicts incremental pure 
premiums as a function of development age. The model is applied to losses that have been 
adjusted for loss trend using a separate trend model. The trend model can be any time series 
model that produces confidence intervals for furore trend factors. In the examples, we 
assume that future trend is represented by a geometric Brownian motion process but this is 
not necessarily the only model for future loss trend. Adjusting losses for trend is not 
necessary in a link ratio method because future development is predicted as a function of 
case or paid losses. The link ratios are multiplied by losses which are already stated at the 

3 5 4  C a s u a l t y  A c t u a r i a l  S o c i e t y  Forum, Fa l l  2 0 0 6  



A Nonlinear Regression Model of Incurred But Not Reported Losses 

appropriate cost level. The factors produced by our model are applied to exposures so it is 
necessary to adjust losses for trend. 

The model presented in this paper does not require the use of  any link function, so it can 
be applied either to paid or case incurred loss data. Furthermore, since we use pure 
premiums with exposure weights, the model relates losses to exposures. 

1.3 Out l ine  

The remainder of  the paper proceeds as follows. 

Section 2: Presentation of  data. A simulated data set including a loss triangle and earned 
exposures is presented along with some observations. The nonlinear model is presented and 
the estimation of  parameters is explained. 

Section 3: The model is fitted to the simulated data and used to produce confidence 
interval estimates of  ultimate incurred losses for each accident quarter. An analysis of  
residuals is presented. 

Section 4: Conclusions. 

Section 5: References. 

2. B A C K G R O U N D  A N D  M E T H O D S  

A nonlinear regression model will be presented and used to analyze simulated loss 
development data. The model will be fitted to incremental pure premiums. The incremental 
pure premium for an accident quarter/development quarter is def'med as the change in case 
incurred loss during the development quarter divided by the calendar quarter earned 
exposures. 

In section 2.1, we will present the simulated loss development data. The data was 
simulated based on method 4 in Narayan [4] with some modifications. See Appendix B for a 
description of  the method used to simulate the data. Narayan and other authors simulated 
thousands of  sets of  data for the purpose of  comparing methods. We simulated a single 
triangle for the purpose of  showing sample calculations. The simulation is not intended to 
validate the model. The simulated data is intended to resemble personal auto bodily injury 
data in accident quarter/development quarter format. 

Section 2.2 is a presentation of  the nonlinear regression model. 

In section 2.3, we present the mathematics of  estimating confidence intervals for the 
model parameters and IBNR. 

2.1 Loss Deve lopmen t  Data  

Exhibit 2.1.1 shows a small portion of  the simulated loss data in the traditional triangular 
array. The losses shown in Table 1 are cumulative case incurred losses. I.e., the amount 
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shown for each development quarter is the sum of all paid losses from the beginning of the 
accident quarter through the end of the development quarter and the outstanding case 
reserves as of the end of the development quarter. The column to the left of the losses 
shows earned expos~es. The second table shows the incremental pure premiums. These are 
the incremental losses divided by earned exposures. For example, the entry for accident 
quarter 1, development interval 1-2 is (1,713,179-1,244,722)/50,333. 

EXHIBIT 2.1.1 
Tabl 1. Cumulative Losses by Accident Quarter and Development Age 
Accident Earned Development Age 
Quarter E_.~oosures 1_ 2 3 4 

1 50,333 1,244,722 1,713,179 1,996,372 2,065,006 
2 50,801 1,417,101 2,004,222 2,341,886 2,437,727 
3 51,187 1,143,473 1,646,289 2,130,201 
4 51,146 1,055,290 2,268,788 
5 51,527 1,508,450 

5 
2,166,446 

Table 2. Incremental Pure Premiums 
Accident 
Qua~er 

1 
'2 
3 
4 
5 

Earned Development Interval 
Exposures 0-1 1 -._.22 2-3 

50,333 24.73 9.31 5.63 
50,801 27.90 11.56 6.65 
51,187 22.34 9.82 9.45 
51,146 20.63 23.73 
51,527 29.27 

3-__k4 4-_.~s 
1.36 2.02 
1.89 

Exhibit 2.1.2 shows the averages and variances and Pearson correlations of 
incremental pure premiums by development age for some simulated data. The data 
exhibits a typical loss development pattern. We see that the average incremental pure 
premiums start high and decrease rapidly as the development age increases, converging to 
zero. There are some negative incremental losses resulting from recoveries, settling of 
claims for less than the case reserve, and reductions to case reserves. The table also shows 
that the variance decreases as development age increases. Thus, most of the uncertainty in 
loss development is in the early stages. The correlation matrix shows that the correlation 
of incremental pure premiums between different ages is usually insignificant. 
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EXHIBIT 2.1.2 
Sample of Simulated Incremental Pure Premiums - Ages 1-7 

Age 0-1 1-2 2-3 3-4 4-5 5-6 6-7 
Average 28.70 12.13 7.67 4.67 3.49 2.84 2.48 
Variance 87.26 23.19 8.40 3.99 2.81 4.33 3.24 

Pearson Correlations 
0-1 1-2 2-3 3-4 4-5 5-6 6-7 

0-1 1.00 0.38 0.13 0.45 0.14 0.63 0.21 
1-2 1.00 0.31 0.44 -0.01 0.29 0.25 
2-3 1.00 0.15 0.11 -0.01 0.15 
3-4 1.00 0.47 0.45 0.20 
4-5 1.00 0.16 0.00 
5-6 1.00 0.11 
6-7 1.00 

Exhibit 2.1.3 shows a scatter plot of the incremental pure premiums and the average 
incremental pure premiums by age. 

EXHIBIT 2.1.3 

Incurred Incremental Pure Premiums 

1-2 24 

• Incr. PP 

-= -  A v e r a g e  

In the scatter plot, the incremental pure premiums appear to be distributed around the 
average symmetrically. This and the fact that the correlations are not significant imply that 
the data fits the assumptions of regression models as stated in [5] reasonably well. The non- 
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constancy of  the variances is a violation of  the assumptions underlying ordinary regression 
but that problem can be solved by using a weighted regression model. 

A weighted regression model is one in which a weight is assigned to each observation in 
the data. The more weight given to an observation, the more influence it has on the 
parameter estimates. We need to use a weight function that is inversely proportional to the 
variance of  the data. It would also be advantageous to obtain exposure weighted parameter 
estimates. So, we will use weights that are a function of  development age and exposures. 

We will now define some of the variables that will be used in the analysis. First, the 
accident quarter will be represented by t which will take values of  1, 2, ..., 40. The 
development quarters will be represented by x which will be assigned the value of  the 
development age (in quarters) at the end of  the interval. For example, x = 1 will correspond 
to the 0-3 months development interval. Calendar quarters will be represented by u and will 
be calculated as u = t + x -  1. The incremental losses for accident quarter t and development 

interval x will be represented by L,. x . Car months will be represented by c,. 

Appendix A shows the flail set of  simulated loss development data. 

2.2 The  Mode l  

Our model of  incremental pure premiums is a nonlinear regression model. Nonlinear 
regression models are statistical models of  the form: 

y = f ( 2 ,0 )  + g (2.2.1) 

In (2.2.1), ~ is a vector of  predictor variables, 0 is a vector of  parameters, f is a nonlinear 

function, and g is a normal random variable with mean 0. Usually, g is assumed to have a 

constant variance cr 2 . I f  the variance of  the error term is not constant, a weight function 
that is inversely proportional to the variance may be specified. 

The parameters of  a nonlinear regression model are estimated by solving the normal 
equations. This usually requires using a numerical method such as the Gauss-Newton 
algorithm. 

There are many commercial statistical software packages available that will perform the 
calculations and also provide approximate confidence intervals for the parameters and for 
predicted observations. The SAS system was used to perform the calculations to estimate 
confidence intervals for the model parameters and predicted IBNR. 

We fit the following model to the incremental incurred pure premium data: 

y=[aexp(flx)+ r e x p ( d x ) ]  1 + -- ~ (2.2.2) 
W 
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where y = L"x. exp(ru)  is the incremental pure premium for accident quarter t in 
c, 

development age intervalx adjusted for loss trend, u represents the calendar quarter, r is 

the loss trend, tz, f l ,  7 ,  and 8 are the model parameters, w = x 15. c, is the weight function. 

This weight function was selected based on an analysis of the residuals from an unweighted 
regression model. 

We assume here that the trend r has been estimated by some reasonable method and that 
we have confidence interval estimates for the trend factors that we will apply to the IBNR 
estimates. The confidence intervals for the IBNR estimates will be adjusted to reflect the 
uncertainty in the trend factors. 

It is tempting to include loss trend as a fifth parameter in the model in order to obtain 
prediction intervals for trend-adjusted IBNR direcdy. The resulting model equation would 
be 

y=[aexp(,ax)+ rexp(ax)].exp(ru)+ls 
W 

Unfortunately, there are two problems with this model. One is that the model sometimes 
produces unrealistic estimates of trend due to a lack of credibility. The other problem is that 
we would be extrapolating the model instead of interpolating it. Extrapolation can be 
misleading even in the case of linear models and it is strongly discouraged in the case of 
nonlinear models. Of  course, we need to extrapolate the trend factors but there are 
mathematically sound time series models available for this purpose. 

2.3 Estimation of  Parameters 

The SAS system used the Gauss-Newton method to estimate the least squares estimates 
of the model parameters. The following presentation of the mathematics of the Gauss- 
Newton method is based on Seber and Wild [5]. 

To estimate the least squares parameters, we need to minimize the sum of squared errors 
of the n observations: 

(2.3.1) 

In the case of our model, ~ = (tx,fl, y , a )  and f ( x ; 0 )  = aexp(flx)+yexp(ax). We 

find the minimum of S ( 0 )  by setting all of its partial derivatives to 0. 

Minimizing the sum of squared errors is a straightforward procedure for linear models 
but when f is nonlinear we must use numerical methods to estimate the parameters. One 
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commonly used method is the Gauss-Newton method which works well in the case of 
normally distributed residuals. 

<x,;0)' We de e the following ma ces: [[ and 

. . . . .  i(x.;O))' 

F is an n x p matrix where n is the number of observations and p is the number of 

parameters, f (~)has  dimension n x l .  

Suppose e (°) is an approximation to 8 .  We approximate f (~)by the first order terms of 

its Taylor series in a small neighborhood near 8(a): 

e (~)  ~ f ( 8  (a))+ F ( 0 - 8  (a)) (2.3.2) 

The residual vector is r (8)  = y - f  ( 8 (°,) ~ r  (8(a)) - F (8 - 8(°)). Substituting 

S(O)=r'(~)r(~) leads to 

The right hand side of (2.3.3) is minimized with respect to ~ when 

This produces iterative approximations of 8(°): 

~7 ('+0 = 8 (<0 + a (°) (2.3.4) 

To use the Gauss-Newton method, one must provide 8 (0) , the initial approximation to 
8 .  The algorithm will converge provided the first approximation is sufficiently close to the 

fitted value, 0. 

After fitting data to the model presented in Section 2.2, we estimated confidence intervals 
for the parameters and for the predicted observations. Seber and Wild [5] present formulas 
for approximate confidence intervals for the model parameters and for a predicted 
observation. 

The 95% confidence interval for parameter ~ is given by 
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4 +(s . c . ) ' / 2 . t (N-P , .025)  (2.3.5) 

where s 2 is the mean square error and c;i is the i t* diagonal element of (F'WF) -l . 

The 95% confidence interval for a predicted observation corresponding to age x i is given 

by 

::t +s ' (1--+ f'(F'WF)-' f i] l]2.g(N-P, .025)  
\w, ) 

(2.3.6) 

wherefis  the i t* row of F ,  i.e. the vector of estimated first derivatives evaluated atx i and 

Wis a Nx N matrix with w i as the i t* diagonal entry and all other entries equal to 0. 

t ( N -  P,.025) is the value of Student's t distribution for N -  P degrees of freedom and 

probability .025. 

The confidence intervals for predicted observations can be used to produce a confidence 
interval for IBNR. Based on the assumption that the incremental pure premiums for 
different development intervals are independent, the variance of IBNR pure premium is the 
sum of the variances of the incremental pure premiums for the remaining development 
intervals. From equation (2.3.6) we see that the variance of the incremental pure premium 

for one development intervalis s : . ( ~ +  f ' (F 'WF)  -1 f ) .  The expected value of IBNR 

pure premium is the sum of the expected incremental pure premiums. 

3. RESULTS AND DISCUSSION 

The model presented in section 2 was fitted to the data presented in section 1. Only data 
for the latest 20 calendar quarters was used to estimate parameters. This is consistent with 
common actuarial practice of using recent calendar quarters rather than all of the available 
data so that predictions are responsive to recent changes in development patterns. We also 
used only data for age>l since we do not need to estimate IBNR for that age interval. Thus, 
590 observations were used to fit the model. 

We used the estimated parameters to produce confidence interval estimates of IBNR for 
each accident quarter. 

In section 3.1 we will show confidence intervals for the estimated parameters. The 
confidence intervals for predicted IBNR will be presented in section 3.2. In section 3.3 we 
present an analysis of the residuals. 

3.1 Conf idence  Interval Es t imates  o f  Parameters  

The estimated parameters and standard errors for our simulated data are: 

Casualty Actuarial Society Forum, Fall 2006 361 



A Nonlinear Regression Model of Incurred But Not Reported Losses 

&=3.1994, s(&)=0.5807 

/~ =-0.0754, s(/~) = 0.0096 

= 29.4446, s(~) = 5.5549 

d~=-0.5480, s(8)=0.0767 

(3.1.1) 

A 95% confidence interval for each parameter is of the form 

( # - s  (t~)t ( .025,n- p),  ~ +s  (6})t (.025, n - p)) .  There were 590 observations and we 

estimated 4 parameters. The resulting confidence intervals are: 

&: (2.0596,4.3392) 

/~: (-0.0942,-0.0566) 

~: (18.5334,40.3557) 

8 :  (-0.6986,-0.3974) 

(3.1.2) 

The Mean Square Error from the estimation is 2,987,236. 

An advantage of having confidence interval estimates of the parameters is that when 
more data becomes available, we can test whether the current parameters should be rejected. 
We would reject the current estimates only if the new estimates lie outside the intervals in 
(3.1.2). This procedure will lead to more stable estimates of ultimate losses and IBNR. 

3.2 Confidence Interval Estimates of IBNR 

The estimation of IBNR was performed in two steps. First, we use equation (2.3.6) to 
calculate an expected value and standard error for the incremental pure premium for each 
development quarter until age 40 (for simplification, we assume that this is ultimate). This 
results in deflated IBNR estimates. The second step is to find a confidence interval for the 
inflation adjusted IBNR. This was done using a simulation. 

Step 1: Predicted incremental pure premiums 

The expected value of each predicted incremental pure premium is calculated by substituting 
the estimated parameters from (3.1.1) into the model equation, 

33 = &.exp(/~x) + )~. exp(~x)where x is the age of the development quarter. 

In order to estimate the standard errors, we need the matrix defined in section 2.3: 
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0.000000112875 

-0.000000001771 
(FWF)-I = |  0.000000486556 

[-0.000000010876 

-0.000000001771 

0.000000000031 

-0.000000006728 

0.000000000158 

0.000000486556 

-0.000000006728 

0.000010329411 

-0.000000127258 

-0.000000010876" 

0.000000000158 

-0.000000127258 

0.000000001968 

As an example, we will calculate the IBNR prediction interval for accident quarter 2. 
x = 40 for the remaining development quarter. The expected IBNR pure premium is 

3.1994 x exp(-0.0754 x 40)+ 29.446 x exp (-0.5480 x 40) 

=.15676. 

We will need the above matrix and the derivatives of the model function evaluated at 
x = 40 to calculate the standard error of the predicted IBNR. The derivatives are: 

a f  = exp(flx) 
&z 

af 
- -  = czx.exp (fix) ap 

c3f = exp(ax)  
ay 

Ofl~fs= )'x .exp (ax) 

Evaluating the derivatives at age 40 and the estimated parameters, we obtain: 

fl-~f (40) = 0.0490 

a~--f~ffl (40) = 6.2704 

gO--~fy (40) = 3.02 x 10 -z° 

~ d  (40) = 3.56x10-7 

Let the element in the j,h row and k m column of (F'WF)-' be denoted mjk. We calculate 
t F - 1  f, ( r  wr)  f, from ~2.3.6) as: 
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£ (F'WF)-tf 

Of Of ¢mn Of Of +m13 Of Of +m,4 Of Of 
=m,, 0-7"0-7 0-7"  oat oa 

+m2l Of Of + m== Of Of + m=, of . of + m=, of Of 
 T-d op op op or op oa 

+mn of of +m32of of +m Of of +m cOf Of 

+m,, Of Of Of ~f of Of Of Of 
+m42 "7~e" T~ +m43 ~ "  T -  +m44 08 Oat oo op oo 07 08 08 

= 3.88134x10 -I° 

The weight is w,. = c/xl "5 = 50, 801.40 t's = 12, 851,749. The mean square error is 

2,987,236. t(586,.05 / 2) = 1.96402. Substituting this information into equation (2.3.6) we 

obtain 0.94925 as the width of the 95% confidence interval for the IBNR for accident 

quarter 2. Thus, the confidence interval for the IBNR pure premium is (-0.79249,1.10601). 

The confidence interval for the dollars of IBNR is (-40259,  56186). For an accident 

quarter with more than one development quarter remaining, we would need to repeat these 
calculations for each remaining development quarter and sum the estimated expected values. 
Next, the estimated IBNR will be adjusted for loss trend. 

Step 2: Including trend 

Because we fitted the model to losses trended to the current calendar quarter, the dollars 
need to be adjusted to future cost levels. We also need to adjust the width of the confidence 
intervals for the uncertainty in the trend. 

The trend was estimated from a time series method. The estimated trend had a mean of 

.005 per calendar quarter with a standard deviation of .004,J7 where tis the number of 
quarters projected. We assume that the trend process is a Geometric Brownian Motion. 

There are a number of ways to find the simultaneous confidence interval for loss 
development and trend. For example, we could use a Bonferronni confidence interval but 
this would result in an excessively wide confidence interval. Instead, we performed a 
simulation to estimate the variance of inflation adjusted IBNR. 

We simulated incremental pure premiums before adjusting for inflation from a normal 

distribution with mean fi . exp( f lx )+  ~ .exp(Sx)  and variance given by equation (2.3.6). 

We simulated trend factors for each calendar quarter as a Geometric Brownian Motion with 
drift .005 and volatility .004. The inflation adjusted incremental pure premiums were 
calculated as the product of the simulated unadjusted pure premiums and the simulated 
trend factors. Next, the incremental pure premiums were summed over all remaining 
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development quarters to obtain IBNR pure premium. The simulation was repeated 10000 
times and the mean and standard deviation of the IBNR was calculated for each accident 
quarter. IBNR pure premium multiplied by exposures produces IBNR dollars. 

Table 3.2.1 shows the results of the simulation. The actual IBNR is the difference 
between the age 40 evaluation (which we treat as ultimate here) and the evaluation at the end 
of the 40 'h calendar quarter from the simulated loss development data. The expected total 
IBNR is 30105084. The standard deviation of the total IBNR is 1350093. The 95% 
confidence interval for total IBNR is (27458951,32751218). The actual total IBNR is 
30120821. 
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Table 3.2.1 

Accident 
Qua~er 

2 50,801 
3 51,187 
4 51,146 
5 51,527 
6 52,348 
7 52,480 
8 53,148 
9 53,924 
10 54,403 
11 54,557 
12 55,083 
13 55,292 
14 55,899 
15 56,067 
16 57,025 
17 57,071 
18 57,317 
19 57,907 
20 58,285 
21 59,096 
22 59,193 
23 59,524 
24 59,745 
25 60,427 
26 60,155 
27 60,568 
28 60,708 
29 60,262 
30 60,606 
31 60,580 
32 60,648 
33 61,159 
34 61,462 
35 61,934 
36 61,716 
37 61,837 
38 62,285 
39 62,728 
40 63,180 

Expected 
Value Deviation' 

Standard; 95% Confidence Interval 

8,190 24,518 
16,643 35,835 
26,310 44,192 
36,541 51,941 
49,099 58,839 
61,528 65,232 
75,340 71,800 
91,671 78,552 

109,065 85,433 
124,874 91,436 
144 622 96,258 
168 450 103,341 
192 189 108,233 
215 948 115,108 
247 643 123 187 
279 736 129 481 
311 248 134 933 
346 819 143 714 
388 878 149 405 
433 974 157 772 
479 592 165 473 
530 342 173 337 
583 879 177 894 
645 944 188 083 
705 701 195 557 
776 239 207 953 
852 632 215 059 
925 896 222 578 

1,012,197 233 755 
1,109,304 251 368 
1,213,637 258 802 
1,344,114 277 079 
1,492,000 292 032 
1,660,873 312,021 
1,858,275 333,112 
2,123,409 361,113 
2,514,004 394,000 
3,055,695 450,062 
3,892,584 522,958 

Actual 
Lower U~er IBNR 

-39,864 56,244 -3,686 
-53,593 86,879 20,450 
-60,304 112,925 11,254 
-65,262 138,344 73,738 
-66,225 164,422 98,397 
-66,325 189,381 37,099 
-65,385 216,065 156,305 
-62,287 245,629 237,876 
-58,380 276,511 -95,408 
-54,338 304,086 384,465 
-44,040 333,284 260,118 
-34,095 370,995 299,600 
-19,944 404,322 175,632 
-9,659 441,555 3,570 
6,201 489,086 237,988 

25,957 533,515 224,736 
46,784 575,712 268,971 
65,144 628,493 712,233 
96,050 681,706 428,225 

124,746 743,202 819,832 
155,270 803,915 930,364 
190,607 870,076 564,488 
235,213 932,546 412,411 
277,309 1,014,580 421,418 
322,416 1,088,985 699,647 
368,659 1,183,819 794,518 
431,123 1,274,140 995,212 
489,652 1,362,140 944,400 
554,046 1,470,349 945,867 
616,632 1,601,976 1,084,176 
706,395 1,720,879 1,703,397 
801,049 1,887,178 1,107,447 
919,627 2,064,372 1,133,824 

1,049,324 2,272,423 1,882,576 
1,205,388 2,511,161 1,567,491 

• 1,415,642 2,831,177 1,962,887 
1,741,778 3,286,231 1,938,616 
2,173,589 3,937,801 2,836,989 
2,867,605 4,917,563 3,843,696 
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3.3 Analysis of Residuals 

It is important to examine the residuals from a regression model to check the 
consistency of the data with the assumptions of the model. In this section we will look at 
plots of the residuals to look for patterns. We will also see the results of  a Shapiro-Wilk test 
of normality, a histogram and a probability plot. 

These tests are shown for demonstration purposes only. The data used to demonstrate 
the methodology in this paper is simulated and will pass the normality test. Real data might 
not pass tests of normality but if the deviation from normality is not too extreme, then the 
estimated confidence intervals are still reasonable. 

The unmodified residuals, r~ = Yi - .Fi ,  do not have constant variance because the data do 

not have constant variance. The tests will be performed on studentized residuals, defined as 

~/std (r~). Seber and Wild [5] show the following formula for the standard errors of the 

residuals. 

std(r~)=s.(--~- f,' (F'WF)" f~) (3.3.1) 

Exhibits 3.3.1 through 3.3.3 show the scatter plots of the studentized residuals against 
predicted value, development age, and calendar quarter. The plots do not show any obvious 
patterns and the studentized residuals seem to have constant variance. Thus, the weight 
function appears to be appropriate and there does not appear to be any reason to modify the 
model. 

Exhibit 3.3.4 is a histogram of the smdentized residuals. Exhibit 3.3.5 is a normal 
probability plot (calculated using methodology from [6]). The shape of the histogram 
appears to be consistent with a normal distribution. The probability plot is nearly linear 
which supports the assumption that the residuals have a normal distribution. A Shapiro-Wilk 
test was performed on the residuals and produced a statistic of 0.9983 with a p-value of 
0,8445. Thus, we cannot reject the hypothesis that the residuals have a normal distribution. 
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Ex~bit3.3.1 

Studentized Residuals vs. Predicted Values 

5 
4 , 

21 . . ~ t, * - - t  

-2 • 
- 3  o 4 • 

--4 

0 2 4 6 8 10 12 14 

Predicted Value 

Ex~bit3.3.2 

Studentized Residuals vs. DevelopmentAge 

4 ,_ 
3 

1 $~ _ * $  * . 4 ,  * *  
"~ o 

-2 
-3 
-4 

0 10 20 30 40 

Age 

368 Casualty Actuarial Society Forum, Fall 2006 



A Nonlinear Regression Model of Incurred But Not Reported Losses 

Exhibit 3.3.3 

Studentized Residual vs. Calendar Quarter 
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Exhibit 3.3.5 
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4. CONCLUSIONS 

Our model has satisfied the objective stated in section 1.2. The model could be fitted 
either to paid or case incurred losses. Since the observations are incremental pure premiums 
and the weights axe a function of exposures, the model makes appropriate adjustments for 
changing levels of exposures. By using nonlinear regression, we have avoided the need for a 
log link and we have been able to keep negative observations in the data. The model appears 
to produce unbiased estimates of IBNR and reasonable 95% confidence intervals. 

The plots displayed in section 3.3 indicate that incremental pure premiums have an 
approximately normal distribution. 

The assumptions we made work well with auto bodily injury data. We have assumed that 
the data satisfy the usual assumptions of nonlinear regression models including independent 
normal errors. We have also used a functional form that fits our data well but might not fit 
other lines. We would like to close with a few suggestions for fitting models to other lines. 

The assumption of normal errors should be reasonable for high frequency lines of 
business. The assumption that the errors are uncorrelated should also be reasonable most of 
the time. If these assumptions are rejected, there are nonlinear models that may be used. 
Seber and Wild [5] discuss models with non-normal and autocorrelated errors. 

Seber and Wild [5] has a chapter on growth models which lists many functional forms 
other than the form presented in this paper. Some of these models might fit the pure 

370 Casualty Actuarial Society Forum, Fall 2006 



A Nonlinear Regression Mode/of Incurred But Not Reported Losses 

premiums of other lines of business. Some of the models could be applied to cumulative 
instead of incremental data. 

Another class of models that will fit pure premium development is generalized linear 
models. In this type of model, the development age interval could be represented as a 
categorical variable. These models would allow the analyst to consider a great variety of error 
distributions and error correlation structures. One drawback to this approach is that there 
are more parameters to estimate which means that the confidence interval for IBNR will be 
wider. Dobson [7] is an excellent reference on generalized linear models. 
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A p p e n d i x  A - S imulated  Loss  D e v e l o p m e n t  Data  - Earned  E x p o s u r e s  and 
Incrementa l  Case  Incurred L o s s e s  

Accident Development Quarter 
Quarter Exposures 1 2 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
4O 

3 4 5 6 7 8 9 10 
50,333 1,244,722 468,457 283,193 68,634 101,440 125,515 159,525 68,010 64,419 40,378 
50,801 1,417,101 587,121 337,864 95,841 243,190 65,263 94,623 47,772 188,347 31,533 
51.187 1.143.473 502.816 483.911 174,352 70,477 140.000 86.071 93,975 58,041 -13,132 
51,146 1,055,290 1,213,499 496,421 393,358 173,547 116,010 101.531 115,414 31.102 64,744 
51,527 1,508,450 834,730 302.691 409.622 423,103 143,476 67,506 146,727 146.017 38,057 
52,346 1.192,516 1,074,133 478,010 172,336 69.719 -9,197 206,481 221,841 -2,220 170,525 
52,480 1.067,318 438,952 368.962 214,718 274.665 86,113 39.208 121,683 62,838 8.398 
53,146 758,275 513,455 255,088 159,199 60,798 102,129 97,269 107,077 134.067 86.292 
53.924 1,664,156 31.358 491,390 196,506 202,088 27,387 48,404 -41,016 77.453 57,713 
54,403 1,537,825 422,697 301,334 210,821 254.271 149,386 225,652 104,121 81.082 76.196 
54,557 2,026,667 738,848 252,783 251,618 193,254 96,790 170,517 106,026 -121,070 152,682 
55.083 1,296,855 495,927 439.098 125,722 96,000 111,872 213,356 188,106 123,309 67.820 
55,292 1,995,401 821,508 552,503 226,522 145,695 389,146 333,936 118,922 136,678 104,544 
55.899 2,078,843 786,272 529,533 329,974 179.953 135,260 180,141 106,218 165,608 63,277 
56,067 1,952,667 859,868 632,198 264,522 231,370 216,887 22,205 117,571 81,594 149,627 
57,025 1.258,033 650,068 387.309 183,986 152,797 244.063 68.088 103.095 56,465 80,728 
57.071 1,627,621 320.911 303,800 327,057 236,332 161,152 205,081 147,898 288,069 127.213 
57,317 1,681,507 446.643 359,407 248.809 270.162 229,530 58,483 -7,112 246,925 85.944 
57,907 2,508.300 1,018,661 99.969 436.712 156.983 241.768 303.837 -9.729 194.850 181,037 
58.285 1,238,641 812,792 542.250 329,100 246,551 61.085 173.928 17.813 183,213 64,235 
59,096 1,793,043 482.793 546,164 313,044 353,857 327,614 90.275 235.255 32,150 -8,168 
59.193 1,433.225 532,545 589,099 306.945 330.835 50,915 285,934 84.085 48,543 144.367 
59.524 1,516,012 753,758 581,957 365,421 217,070 239,708 -63,906 191,485 107,079 181,666 
59,745 1,803,164 519,924 295,180 225,283 222,089 122,650 -57,787 170,330 46,008 56,351 
60,427 1,347,360 328,992 357,630 157.580 135,900 -80,274 117,487 208.666 121.095 179,925 
60.155 810,643 604,364 214,555 155.748 114.459 93,877 397 95,471 40,225 82,597 
60.568 1,850.892 980,308 613,338 369,051 298.488 272.379 196.454 107,684 175,612 251.126 
60.708 3,006,298 1.044.056 843,024 581,194 261,303 209.512 255.504 255.482 95,327 -22,389 
60.262 986,119 672.498 590,640 43,019 -8.877 -32,562 119,151 17.117 205,731 144,380 
60,606 2,630.383 1,101.593 805,938 238,565 228,041 253,614 194,571 157.225 190,266 -153.391 
60,580 1,515,313 601,512 511,685 304,718 142,590 143,733 206,446 79,617 -47,845 62,197 
60,648 3.517,816 1,048,147 260.427 466,379 114,732 589.058 125.985 381.048 361,346] 9,249 
61.159 1.673,500 513,290 333,639 305,302 308,506 232.796 81,397 104.474[ 119.655 -44,314 
61.462 1,207,813 739.162 524,302 392,092 363,797 230,703 398,177J 149.413 19,749 166.569 
61,934 2,202,629 528.671 378,846 162.033 150.420 225,454 r 174,285 201,873 193,199 7.944 
61,716 1.051,422 470,986 415.687 433,785 152,892] 263.161 151,337 -23,299 23,005 183,878 
61,837 2,355.630 1,302,388 824.821 307,806 r 79,979 117,519 208,110 162,036 207,896 141,836 
62,285 2,016.667 990,682 153.863J 290,379 -10,658 120,430 7,588 268.320 71,027 123.875 
62,728 1,468.675 925.175[ 157,502 266.297 252.103 380,364 226,500 76,920 43,621 26.222 
63,180 1,952,713 r 712.475 446,253 551,239 361,511 276,575 355,898 -8.263 66,140 96,505 

372 Casualty Actuarial Society Forum, Fall 2006 



A Nonlinear Regression Model of Incurred But Not Reported Losses 

Accident 
Quarter Exposures 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
29 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
4O 

Development Quader 
11 12 t3 14 15 16 17 18 19 20 

50,333 55,132 56,286 39,158 54,447 32,780 64,401 47,793 -30,285 60,984 -1,923 
50,801 97,899 120,746 56,487 16,116 50,122 42,810 11,512 77,062 7,181 72,151 
51,187 91.825 66,621 -46,239 10,535 -6,023 59,325 4,497 19.837 5,313 7,916 
51,146 166,882 134,068 17,951 101,782 64,696 64.331 -98,606 -37,817 60.282 -3,207 
51,527 119,089 -11.801 42.615 -73,816 72.867 -9,629 91,001 47.562 22,359 -16,392 
52.348 16,662 112,356 -26,328 108,397 162.915 95,642 107,603 30,439 10,858 99.144 
52,480 95,445 53,315 65,328 34,802 -4,403 -49,160 -32,400 40,083 -11,567 51,725 
53,148 156,630 -14,316 19,746 -8,727 25,872 -1,430 53,704 73,004 -26,364 61,378 
53,924 39,927 78,793 150,847 42,018 83,246 57,028 13,857 62,675 59,835 39,645 
54,403 52,923 759 -8,435 45,026 37,059 126,682 -15,224 47,275 54,888 10,951 
54,557 118,521 48,258 97,730 -8,982 168,831 30,198 100,201 -11,399 27,865 57,843 
55,083 52,455 117,838 19,476 61,249 42,336 -8,884 -42,245 5,514 40,494 -37,779 
55,292 108,005 101,991 50,016 -10,580 23,714 -14,118 101,221 66,648 131,158 33,186 
55.899 31,057 -37,318 t04,948 67,958 -7.386 95,217 -34.104 130,890 -6.798 28,246 
56,067 94.694 -5,199 55,050 -107,620 33,005 35,708 113,029 -23.751 33,324 82,253 
57.025 34,439 -82.833 -7,708 78,608 49,459 91,763 -36.547 48,994 3,417 39.090 
57,071 119,713 127,702 t20,055 98,658 33,349 36,053 79,890 72,189 80,971 2,954 
57,317 -42,024 90,633 88,686 69,705 102,187 89.757 114,280 125,545 21,101 58,920 
57,907 26,467 57,494 37,776 -1,643 120.996 -11,362 45,765 162,032 -7,833 9,218 
58.285 54,460 168.172 60,942 33,469 43,582 95,785 136,815 7.129 146,101 8,598 
59,096 108,307 118,119 130,671 t2,719 66,407 -49,728 103.805 -23,377 13,446 24,913 
59.193 170,747 121,252 122,821 -25,894 96,750 89,657 52,946 49,775 ~ 120,953 
59,524 205,422 -10.765 87.080 7.915 20,942 82.590 86,042 ~ 86,539 3,828 
59.745 57.883 -9,148 57,563 76,990 72,758 63,851 ~ 75,261 -8.698 -11.311 
60,427 98,081 67,455 30,353 194.721 26,902 16,334~ 62,868 80,394 2,462 19,806 
60,155 -5,192 53,749 114.555 37,095 35,3341 7,140 62,927 39.025 48,072 -549 
60,568 166,593 82,674 70,339 7 0 , 9 7 ~  79,356 -84,843 22,923 76,726 79,929 35,373 
60,708 188,567 168,677 129,1791 58,308 47,794 96,191 128,506 49,566 -28,134 58,887 
60,262 104,592 80,640] 95,315 34,245 49,974 81,604 39,399 32,106 55,537 -46,734 
60,606 99,495.r 58,402 48,409 56,793 -4,451 19,091 .5,279 19,722 53,159 39,365 
50,5801 139,467 180,552 45,404 72,414 3,441 36,563 126,913 50,865 37,834 56,248 
60.648 79,096 136,515 178,105 91,579 20,394 100,918 56,855 43,922 -7,463 34.194 
61,159 54.143 -81,040 20,949 1.608 60,381 111,910 13.739 102,704 27,132 104.321 
61.462 97,706 108,206 14,850 59,003 54,189 69,831 65,128 23,821 43,958 -11,047 
61,934 59,384 69,087 148,809 136,211 71,394 4,055 126,075 52,993 84,082 56,630 
81,715 139,013 56,147 92,809 125,058 7,067 90,151 101,031 27,566 -17,295 58,929 
61,837 4,048 253,659 157,930 58,979 100,435 19,044 -20,740 51,891 112,978 -55,242 
62,285 145,307 110,498 149,791 87,189 164,906 27,941 11,832 73,887 77,094 14,150 
52,728 133,332 164,332 -10,897 106,455 136,006 141,784 83,994 79,801 71,479 -24,821 
63,180 120,876 1,859 149,325 -46,560 52,798 85,751 68,371 100,238 --48,006 133,049 
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Accident Development Quarter 
Quarter Exposures 21 22 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
2O 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

23 24 25 26 27 28 29 30 
50,333 1,844 47,936 8,281 51,891 37,771 -4,045 27,774 14,035 871 56,156 
50,801 21,390 63,117 23,327 -12,069 14,680 41,491 15,434 11,107 19,559 10,661 
51,187 54,081 7,552 40,110 30,494 -6,797 730 29,749 25,467 30,419 7,913 
51,146 75,821 112,075 30,277 20,160 57,926 74,676 -23,786 20,074 6,919 18,023 
51,527 43,305 960 47,240 -7,478 -5,993 -31,465 45,344 28,740 25,218 10,956 
52,348 8,403 24,816 14,994 56,326 7,418 22,099 3,600 -46,942 78,616 16,230 
52,480 35,360 38,631 16,046 53,285 18,835 12,820 23,495 5,427 33,480 2,394 
53,148 27,648 103,471 -2,524 -3,970 71,300 28,587 -3,460 9,452 -8,909 -6,737 
53,924 54,178 71,192 59,018 52,434 -25,919 50,456 75,803 43,181 -2,099 17,733 
54,403 33,351 24,839 42,521 28,870 17,470 10,409 -7,892 -29,828 2,882 200 
54,557 65,973 -5,380 53,959 15,744 -3,427 4,913 8,390 -24,473 -32,538 52,557 
55,083 63,685 -10,583 64,637 78,643 30,741 11,856 15,134 1,757 18,412J 31,248 
55,292 82,088 7,445 121,478 -32,097 41,168 47,156 49,125 9,275J 44,273 23,737 
55,899 50,701 .22,139 55,822 44,064 65,745 -5,697 71,653J 59,301 .11,011 8,634 
56,067 -18,731 -14,131 44,114 86,453 31,838 25,910_.J -15,473 17,799 -2,589 34,604 
57,025 -22,239 89,127 13,948 20,393 -2,351[ 8,374 31,029 39,339 -8,451 1,222 
57,071 57,279 36,946 39,534 90,362J 14,387 -29,765 30,222 16,053 17,682 35,591 
57,317 79,551 77,137 47,330.r 29,128 -40,416 46,964 9,795 23,656 43,627 .433 
57,907 .36,342 .51,199j .629 38,859 .20,756 54,574 72,098 36,775 39,504 31,052 
58,285 43,739j- -6,134 54,269 25,913 .16,757 8,755 7,972 43,674 .3,448 64,314 
59,096r 75,294 .34,942 88,190 124,206 62,976 77,091 39,748 40,729 43,609 89,136 
59,193 11,060 75,017 61,132 105,644 56,274 15,014 .2,897 80,213 53,917 118,331 
59,524 29,866 45,800 38,868 68,925 7,687 -61,021 30,638 39,572 45,399 .11,739 
59,745 46,041 33,062 16,682 40,849 .18,453 7,949 58,613 48,743 .17,040 8,158 
60,427 25,489 .35,072 29,365 1,481 46,825 .43 39,986 80,497 51,650 .27,268 
60,155 136,480 50,523 73,985 .15,999 21,991 43,033 32,821 8,902 29,994 41,090 
60,568 .2,199 34,675 135,124 6,514 15,272 62,756 66,009 .10,230 .37,723 3,901 
60,708 115,933 100,646 55,828 25,764 .3,515 9,366 .23,401 89,137 46,630 75,698 
60,262 70,050 48,884 59,346 53,211 .3,141 6,048 29,235 13,746 38,350 43,614 
60,606 100,823 ..80,196 .23,695 19,793 20,686 .29,950 .5,204 99,580 36,328 56,872 
60,580 42,546 19,448 19,949 .29,940 17,116 55,736 756 21,693 8,254 48,025 
60,648 74,650 86,062 71,446 138,2o6 .8,941 75,564 27,495 84,913 .26,461 74,757 
61,159 16,045 110,447 129,009 -45,715 68,665 7,394 20,046 33,159 7,386 18,884 
61,462 4,309 -26,370 107,835 127,369 15,493 -50,769 -7,521 -25,623 -1,506 18,283 
61,934 83,466 73,782 56,185 -32,328 -38,556 27,399 -11,618 54,166 26,555 -750 
61,716 -27,140 93,574 66,551 13,086 30,072 -12,666 -11,496 -7,722 13,375 17,919 
61,837 30,283 14,515 -30,671 -60,204 31,067 15,254 78,382 95,606 7,715 9,987 
62,285 95,225 114,060 54,619 -67,884 7,563 -31,075 -36,590 9,379 78,245 14,113 
62,728 4,900 -81 43,622 78,577 92,489 28,945 -16,724 67,108 17,473 -6,230 
63,180 -21,730 80,710 55,218 15,476 39,584 3,858 18,112 22,462 13,209 33,635 
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Accident Development Quader 
Quarter Exposures 31 32 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
2O 
21 
22 
23 
24 
25 
28 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
4o 

33 34 35 36 37 38 39 40 
50,333 34,276 3,835 43,711 -1,640 29,076 13,319 -2,630 8,678 3,188 -5,821 
50,801 27,835 -5,203 29,996 -2,058 -5,783 18,323 -5,364 5 , 1 8 8 ~  
51,187 17,345 51,332 18,327 1,471 34,161 24,299 - 18,828 2..__.~.~,407 5,774 14,876 
51,146 23,792 20,703 18.035 26,068 48,501 -5,982 5,236J 30,317 -20,445 1,381 
51,527 52,198 -30,522 43.073 32,051 -18,894 33 ,613~ 54,075 34,899 24,632 -39,868 
52,348 35,800 -10,345 46,979 51,773 - 9 , 4 0 9 [  -22,677 20,537 25,987 12,417 62,164 
52,480 15,761 7,390 33,982 13,579.r 24,407 19,471 .3,988 .10,108 9,185 .1,869 
53,148 3,334 24,196 20,30~ 24,861 40,319 12,113 .13,820 42,130 35,297 15,405 
53,924 12,418 56,9583 52,833 26,726 32,933 5,232 29,185 37,027 45,244 8.695 
54,403 43,3351 .31,285 -54,687 .16,646 15,567 .15,554 .9,313 -13,437 29,191 736 
54,557[" 72,266 95,758 6,189 7,910 61,208 28,223 28,531 49,899 16,681 17,830 
55,083 39,707 25,525 25,741 13,780 17,106 49,171 1,081 16,032 24,045 16,702 
55,292 20,470 -17,379 28,954 5,100 45,000 38,726 -19,480 78,077 44,212 9,911 
55,899 22,377 1,924 -9,766 47,354 18,223 454 8,891 20,907 2,586 7,758 
56,067 -35,330 -18,262 -26,548 38,756 13,302 -9,275 -3,005 47,269 -34,312 -3,364 
57,025 12,632 12,743 38,517 4,169 12,911 -1,785 -20,735 78,244 30,557 -779 
57,071 38,585 45,591 11,315 -28,333 15,402 24,202 -25,715 11,080 9,528 36,913 
57,317 20,486 28,330 4,385 -14,482 35,357 22,167 -4,089 2,423 1,184 60,888 
57,907 68,328 82,874 121,115 -32,249 19,414 73,240 23,233 39,217 78,051 -12,467 
58,285 42,726 28,751 58.837 7,617 7,172 72,846 1,544 -5,147 29,124 8,197 
59,096 33,319 44.155 -39.904 29,104 50,092 10,920 13.243 23,352 35,124 14,389 
59,193 -24,229 54,258 48,576 51,990 44,191 48,506 57,887 -6,941 -18,202 -21,329 
59,524 48,463 18,459 7,095 13,631 6,314 18,901 46,450 -16,939 43,202 56,548 
59,745 35,148 16,789 -7,315 -9,671 21,791 14,107 28,696 9,512 8,829 15,567 
60,427 -18,598 26,696 11,564 14,065 -29,491 2,041 18,738 47,090 -6,041 -23,085 
60,155 -8,915 52,310 915 813 56,718 -15,282 -26,165 20,384 20,458 18,977 
60,568 22,553 42,332 9,009 -7,442 2,140 93,063 88,561 40,159 °5,060 -262 
60,708 -14,237 65,453 25,751 12,368 -49,710 41,335 -49,9t9 -30,620 69,756 11,831 
60,262 49,917 32,539 -8,986 48,452 15,625 28,530 15,743 23,349 -5,595 42,937 
60,606 60,504 65,845 93,343 -27,623 -3,656 51,672 33,114 50,928 101,765 39,729 
60,580 -47,046 46,028 24,302 56,096 -8,692 27,322 28,081 6,079 -23,284 20,008 
60,648 63,634 122,152 -1,646 -37.185 -19,352 96,570 10,367 35,026 41,909 50,868 
61,159 30,616 8,972 11.306 39,325 10,365 32,535 50,209 7,522 34,812 25,278 
61,462 19,812 3,141 33,675 12,108 -21,383 18,639 44,897 46,331 -32,125 -14,164 
61,934 -30,866 32,254 88,375 36,930 62,025 72,476 54,286 -50,512 12 -6,728 
61,716 -35,620 -2,115 31,594 37,150 -2,481 26,166 14,732 19,708 19,340 5,106 
61,837 35,752 60,881 -13,187 -21,121 39,280 -1,210 -23,822 11,76t 42,508 39,751 
62,285 -10,410 21,570 35,964 -13,033 -26,726 -20,093 -11,908 65.799 -11,499 -2,260 
62,728 70,218 -25,147 46,379 5,606 39,349 -13,438 70,889 53,260 -18,834 -12,364 
63,180 65,404 13,053 28,027 -40,448 -2,637 3,059 -7,238 41,295 -7,643 14,249 
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Appendix  B - Simulat ion Mode l  Used  to Generate  the Data  

The simulation model used to generate the loss and exposure data is based on method 3 
in Narayan [4] with some modifications. In this appendix, we will present an outline of  the 
model and the SAS code used to produce the data. Note that the SAS program will not 
produce the same data every time it is run because the random number seeds were 
randomized. 

Outline of  the simulation methodology: 
1. Initialize the values for exposures at 50,000 per quarter and the inflation index at 

unity. 
2. For each of  the 40 accident quarters: 

a. Generate a random number of  exposures from a Brownian motion process. 
b. Generate a random frequency from a Normal distribution. 
c. Generate a random number of claims from a Poisson distribution with a 

parameter equal to the product of  the exposures and the frequency. 
d. Generate an inflation index from a geometric Brownian motion. 
e. Initialize ultimate loss to zero. Then, for each claim 

i. Generate a random loss severity from a Lognormal distribution, 
multiply it by the inflation index and add it to the ultimate loss. 

3. For each accident quarter, 
a. calculate 40 random increment factors from the formula: 

incr = .33.age -uS +(.07.age -'7). Normal(O,1). This is not guaranteed to 

add up to unity but the simulated values add up very close to unity. This 
procedure is similar to step (i) in Narayan's method 4 except that we are 
using a random decay pattern instead of  a constant pattern. 

b. Multiply the ultimate loss by the increment factors to produce random 
incremental losses for 40 development quarters. 

SAS code." 

*random number seed; 
%let seed=0; 

*exposure parameters (Geometric Brownian Motion); 
%let expostart = 50000; 
%let grthmean = 0.005; 
%let grthstdv = .005; 

*frequency parameters 
%let frqmean = .01; 
%let frqstdev = .001; 

(Normal); 

*untrended severity parameters (LogNormal); 
%let mu = 8; 
%let s = 1.4; 

*inflation parameters 
%let cpi0 = I00; 
%let cpimu = .006; 

(Geometric Brownian Motion); 
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%let cpisig = .0035; 

/* First data step - generate exposures and ultimate losses for 40 
accident quarters.*/ 

data tril; 
*initialize exposures and cpi; 
expos = &expostart; 
cpi = &cpi0; 
do aqtr=l to 40; 

*generate exposures by brownian motion; 
expos = round(expos * (i + &grthmean + 
&grthstdv*rannor(&seed))); 

*generate a normally distributed claim frequency; 
freq = &frqmean + &frqstdev*rannor(&seed); 

*generate a Poisson number of claims; 
clms = ranpoi(&seed, freq*expos); 

*generate an inflation index by geometric brownian motion; 
cpi = cpi*exp(&cpimu + &cpisig*rannor(&seed)); 

*calculate aggregate loss (ultloss); 
ultloss = 0; 
do clmnum = 1 to clms; 
*calculate loss severity and add it to ultloss 

ultloss = ultloss + 
round(exp(&mu+&s*rannor(&seed))*cpi/&cpiO); 
end; 

output; 
end; 

proc sort data=tril; by aqtr; 

/* Second data step - calculate incremental incurred losses for 40 
development quarters for each accident quarter to produce a decumulated 
loss development data set. */ 

data decumtri; 
set tril; 
do age=l to 40; 

decay = .33*age**(-1.25) + (.07*age**(-.7))*rannor(&seed); 
incr_inc = ultloss*decay; 
time = aqtr + age - I; 
output; 

end; 

run; 
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Multilevel Non-Linear Random Effects 

Claims Reserving Models 

And 

Data Variability Structures 
Graciela Vera 

Abstract 

Characteristic of  many reserving methods designed to analyse claims data aggregated by contract 

or sets of  contracts, is the assumption that features typifying historical data are representative of 

the underwritten risk and of future losses likely to affect the contracts. Kremer (1982), Bomheutter 

and Ferguson (1972), de Alba (2002), and many others, consider models with development 

patterns common to all underwriting years and known mean-variance relationships. Data amenable 

to such assumptions are indeed rare. More usual are large variations in settlement speeds, exposure 

and claim volumes. Also typifying many published models are Incurred But Not Reported (IBNR) 

predictions limited to periods with known claims, frequently adjusted with "tail factors" generated 

from market statistics. Of concern could be analytical approach inconsistencies behind reserves for 

delay periods before and after the last known claims, under reserving and unfair reserve allocation 

at underwriting year, array or contract levels. 

As applications of Markov Chain Monte Carlo (MCMC) methods, the models proposed in this 

paper depart from the neat assumptions of quasi-likelihood and extended quasi-likelihood, and 

introduce random effects models. The primary focus is the close dependency of the 1BNR on data 

variability structures and variance models, built with reference to the generic model derived in 

Vera (2003). The models have been implemented in BUGS (http://www.mrc-bsu.cam.ac.ulCougs) 

Keywords: Markov Chain Monte Carlo, Non-linear Random Effects and GLM, Reserving. 

1. I N T R O D U C T I O N  

Insurance data reflect and react to financial uncertainty associated with external 

events, quantifiable time varying factors such as inflation and interest rate fluctuations, 

and non-quantifiable factors such as variations in litigation practices and underwriting 

policy terms. In an interesting historical account of  legislative changes introduced in 

Israel to deal with inflation, Kahane (1987) illustrates how external events can be given 

functional interpretation in a reserving model. Further examples can be found in Taylor 
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(2000). Data distortions due to external events could undermine all stochastic 

assumptions. Concerned with the analysis of  claims data, from the simplest aggregation 

levels, such as class of business, to multiple-nested groups, this paper deals with the 

construction of  claims reserving models capable of capturing variability structures in a 

claims portfolio. 

Hierarchical or multi-level claims reserving models are potential source of wide- 

ranging contribution to claims portfolio analysis beyond reserving. Identification of the 

causes of  data variability with reference to hierarchical model structures could provide a 

statistical framework for parametric analyses of claims across a number of underwriting 

years. This would enhance our ability to construct more discriminating models, set 

initial parameter values, review and update our assumptions on risk premium 

calculations, related management strategies for commutations, portfolio composition, 

analysis, etc. 

1.1 Research Context 

As one of the simplest claims reserving methods, the chain ladder has motivated an 

extensive body of work intended to establish statistical basis for the problem of 

reserving. Models that fall within the category of generalized linear models (GLM) 

(McCullagh and Nelder (1989)), such as Renshaw (1989), Renshaw and Verrall (1998), 

Verrall (1991), Wright (1990), Mack (1991) and many others, have extended the 

research beyond assumptions of  lognormality and explored applications from 

exponential family distributions. Carroll (2003) remarks "there are many instances 

where understanding the structure of variability is just as central as understanding the 

mean structure". The IBNR definition given in this paper is integral to the definition of 

the model itself, and its value is highly sensitive to model specification. Hence, the 

emphasis of  this research is in the identification of suitable representations for the mean 

and data variability structures beyond assumptions of known and specific mean-variance 

relationships. 

Reserving model structures depend on the intended use o f ~ e  predicted reserves and 

on the sector of  interest in the claims portfolio, such as insurance class, contract, specific 

loss, etc. The data assessment should determine the selection of the analytical approach. 
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For instance, an insurance contract provides cover against the hazards listed in the 

contract. Premium calculations reflect policy management expenses, expected returns 

and risk premiums for all the perils covered by the contract. Risk premium analyses, in 

general, are carried out by peril, ignoring the fact that a particular event could 

simultaneously hit more than one kind of cover. When reserve analysis of  all perils with 

a single model is viable, it could deliver, for example, relative cost measures capable of  

generating more competitive commercial premiums, hence allowing cover assessment 

on statistical basis, identification of cross-subsidies and unexplored niches, etc. 

Within the context of  hierarchical models, claims data can be differently interpreted 

depending on their levels of aggregation. For instance: 

• Each underwriting year data set could be described as a set or cohort of 

longitudinal data. 

• A claims array could be considered single-level longitudinal data for more than 

one subject. 

• A book of business segmented by class, type of loss and underwriting year, 

could be treated as multilevel longitudinal data or as multiple nested groups of 

single level longitudinal data. 

Davinian and Giltinan (1993 and 1996) provide an introduction to the theory of non- 

linear random effects models and an overview of various techniques for the analysis of  

non-linear models with repeated observations. More recently, Pinheiro and Bates (2000) 

reviews the theory and applications of linear and non-linear mixed effect models to the 

analysis of  grouped data. 

In this paper it is shown that the generic model in Vera (2003), briefly outlined 

below, is key to the extension of random effect models to the analysis of  reserves. If  the 

claims process for underwriting year w is reported at times t,,t: ..... re, such that 

o < t, < t: < ... < t . ,  and t, is the final settlement period, the generic model is given in terms 

of a percentage cash flow and a ultimate claim amount functions, denoted respectively 

by P~.,, and Cw. P,..,, = ~r(w,z)dz ,  where ,:(w,t) is a probability density function taking 
0 

Casua l ty  Ac tua r i a l  Soc ie ty  F o r u m ,  Fall 2006  381 



Multilevel Non-Ia'near Random Effects 

t ,  

values from positive real numbers, s..,, = I - P , . , ,  = ITr(w,z)dz, P,..,,-<1 for j<e and 

P..,, = 1 otherwise. Finally, h...,, and H...,, are the instant and cumulative hazard rate 

funct ions ,  de f ined  for underwri t ing  year  w and p a y m e n t  year  r ( r  = w + delay time - 1 ) by  

Io(,°(l-p.,)) I =( c )lop..,) 
h., r .,+1 = ( 

"- 1BN~/[,~_..,, ) ~ - ~ S  ) . . . . . . .  

H...,_.,+, = -In(l-P.  ........ ) 

0.1) 

Hence, the following are alternative representations of  the claims process for cumulative 

data Y..~_.., : 

Y. ........ = C.P... ...... (1.2) 

r.. ...... = c . . ( l -  o x p ( - < . . _ . . , ) )  0 . 3 )  

Y.. ..... = C. 0-S.. ,  ...... ) (1.4) 

Equivalently, for incremental data y.,  . . . .  

_ , p  y ........ - c ,  ( , .  . . . . .  - P ,  . . . . . . . .  ) 

y ........ = C . ( e x p ( - H . , . ~ _ . ) - e x p ( - H . , ,  . . . . .  )) 

=C * S - S  Y . . . . . . . . .  ( . . ,  . . . . . . . . . . . .  ) 

(1.5) 

(1.6) 

(1.7) 

The underwriting year and array I B N R  and reported I B N R  projections are respectively 

IBNI~..,,_..+O = C. S.,,_.,+j 
u 

I B N R ( r )  = ~=I1BNR~ ........ ) 

RIBN~. .  . . . . .  ) = IBNt~...,_.,+,) + (C.,S.. ...... - Y. ...... , ) 
u 

easNR(3)  = ~ e a ~ N ~  ......... ) 

(1 .8)  

(1 .9)  

where u is the number of  underwriting years in the array. R I B N R  links the reserving 

analysis to the accounting processes, by adjusting the I B N R  by the difference between 

the total claim amount incurred to date and its estimate. Due to the additional noise 
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induced by the adjustment, (1.9) is only applied in the final stages of the reserving 

analysis. In contrast to many published reserving methods, an important aspect of  the 

models is the unrestricted 1BNR projection periods, since the period before the last claim 

is generally unknown. The above equations could make explicit, and potentially 

highlight, the sources of  data variability. Settlement speeds differences between 

underwriting years should be captured by Pw.,-,.,, Hr ..... , or S, ..... ,. Although exposure 

levels are largely determined by underwriting volumes and contract terms, neither 

necessarily random, to accelerate convergence and formulate the final model variance 

function, random effects are introduced in C,. When more than one claims array are 

analyzed, the additional aggregation level and source of variability is array,  indexed by 

subscript r. 

1.2 Objective 

The examples' aim is to show that more than one model could fit historical data, but 

not all may reliably predict the reserves. The reliability of the I B N R  and ultimate claim 

amount predictions depends on the models' capacity to extract from the data claims 

volume and settlement speeds measures. This is possible when the variability of both 

can be represented parametrically and formulated into the variance model. The scope of  

the models is made evident by their formulation and by the data. As the variability in 

settlement speeds and claims volumes increase the underlying assumptions of  GLM are 

no longer sustainable, and more complex variance models and random effect parameters 

for the mean response become essential. To illustrate the process of  constructing 

variance models two data sets are selected. One is a claims array simulated from a 

mixed portfolio, and the second consists of  three arrays simulated from a marine hull, 

marine cargo and aviation hull portfolios. The second, selected to exacerbate the 

variability encountered in the first, in addition to large claims volume differences 

between underwriting years, contains also 20 negative incremental claims entries. 

Since the concepts of  population models (Zeger, Liang and Albert (1988)) are 

intended to average random variability between subjects, they are implemented around 

the percentage cash flow function. They can be used to obtain average (or array) I B N R  

predictions for a given ultimate loss. Other array or average results are the weighted 

average array or portfolio hazard rates. They provide thresholds, useful to quantify the 
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impact on the claims portfolio of excluding from it underwriting contracts associated 

with particular underwriting years or arrays. 

1.3 Outline 

The paper structure is as follows. Section 2 introduces random effect models for one 

array with a general formulation of  non-linear random effects models, and translated 

into a Bayesian framework in section 2.1.1. Noted in section 2.2 are amendments 

necessary to formulate multi-array models. 

The models selected to analyze the two data sets are presented in sections 3 and 4 

respectively. Denoted 1.0 and 2.0, in section 3.1 two preliminary models for one array 

are given, followed by numerical examples in section 3.3. The examples identify 2.0 as 

the basis for further analysis to construct the final models. In section 3.4.5 the results 

from two validation and two final models are discussed. Also in two stages, in section 4 

multi-array models are constructed for two mean response functions denoted 

respectively 7.0 and 8.0. The preliminary models, used to establish data variability 

structures, are introduced in section 4.1, followed by numerical examples in section 4.2. 

For mean response functions 7.0 and 8.0, results for precision parameters ~r :,  a~ and 

~r~ are obtained, identifying the three model versions by (a), (b) and (c). The final 

models, defined in section 4.3, are analyzed in section 4.5. They emphasise the 

contribution the generic model makes to the analysis of reserves, and to random effects 

models and variance models in general. 

Section 4.4 extends the claims array average percentage cash flow definition given 

in section 3.2 to introduce portfolio model average for the percentage cash flow. As 

immediate by-products of the reserving analysis, hazard rates are discussed in section 

4.6. The claims' hazard rate profile, essential for further portfolio analyses, can be used 

also as a portfolio management template. Discussion on the contribution made by the 

models proposed is given in section 5. 

For the models in section 3, the results are fully reported in appendix A. Given the 

size of the data used in section 4, the reported results in this section are restricted to 

IBNR and ultimate claim amount projections for the selected preliminary and final 

models. 
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2. G E N E R A L  F O R M U L A T I O N  O F  N O N - L I N E A R  R A N D O M  

E F F E C T S  M O D E L S  

In non-linear hierarchical models, inter and intra-underwriting year variations are 

analysed as a two-stage process. In the first, the intra-underwriting year variation is 

defined by a non-linear regression model for the underwriting year covariance structure. 

In the second stage, the inter-underwriting year variation is represented by both, 

systematic and random variability. The models can be constructed within a Bayesian 

hierarchical structure by noting that the intra-underwriting variation is associated with 

the sampling distribution, while the prior distribution is relevant to the inter- 

underwriting variation. Because the models' notation will depend on the number of 

aggregation levels, in sections 2.1 and 2.2 the array and multi-array analytical 

frameworks are respectively given. 

2.1 Analytical Framework For a Claims Array 

For the purpose of defining the general model, ignoring whether claims are 

cumulative or incremental, the observation at development time t of response vector for 

underwriting year w is simply denoted by y, j ,  and the model is defined as follows: 

y..., =/aw., (#.) + a'.,., (2.1) 

where &,, is a non-linear function common to the entire array, while parameter vector #,. 

is specific to underwriting year w. t = t, ..... t.. ; with t.. representing the last period with 

known claims to date, w= l,...,u, and u is the number of  cohorts or underwriting years in 

the claims array. Hence 
yw=[y,..,,,...,yw.,.. ] r 

&. = [,u..,, ,..., &..,.. ] r 

c,. = [~,, ...,e,.,, ] r 

and 

cov(e,.)=a'R~. (2.2) 

R. is the intra-underwriting year covariance matrix for underwriting year w. 
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Inter-underwriting year variation accounted by ~. is assumed to be random and, rather 

than simply regarding 4, ~ #, for i ~ w, the model represents 

#. =A /~+B.b. 

where fl is a p-dimensional fixed parameter effects vector, and bw is a q-dimensional 

underwriting year or random effects vector. Parameters bw are independent and 

identically distributed with zero mean and variance covariance matrix £ .  Finally, A, 

and B~. are (n~xp) and (nwxq) design matrices for the fixed and random effects 

respectively. While missing data fxom the earliest payment years and irregular reporting 

time intervals are allowed by the model formulation, the code and model specification 

for data given at regular intervals are simpler. The length of the response vector for the 

array is M = ~-~n w and 
w=l 

y=[y, ..... y,,]r ~=[~ ..... ~,]r Z=diag[Y ...... 2~] 

/a = [/~ ...... ,%]r b=[br,...,br]r R=diagtR ...... R.] 

g=[c, ..... C.] r B=diag[B, ..... B.] 

. . . . .  4:]' 

Hence, the overall model becomes 

e (y )=y(# )  

v r(y) = 

¢ = A/~+ 8b (2.3) 

Corresponding to the two stages in the hierarchical models are two possible types of  

inferences or derived results: array and underwriting year cohort. Parameters common to 

all underwriting years relate to the array inferences, while underwriting year parameters 

measure underwriting year deviations from the claims array mean. Array inferences are 

generic when they represent insurance classes, and can help reassess or draft 

underwriting contracts, for instance. Alternatively, underwriting year parametric 

structures can set foundations for more discriminating premium rates reflecting 

systematic trends evident in the losses experienced. The latter can be viewed as a 

continuous calibration process. 
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Unless a book of business is closed, the number of observations in the most recent 

underwriting years could restrict the choice of  viable variance and covariance models, 

particularly with non-linear model structures. Inferences on parameters of non-linear 

mixed effects models implemented in S-Plus (Pinheiro, Bates and Lindstrom (1994)) are 

based on the linear mixed effect model approximation of  the log-likelihood function. 

This relies on the restricted maximum likelihood estimates derived from asymptotic 

results and on the approximate distribution for the maximum likelihood estimates. Since 

the maximum likelihood estimates in the linear mixed effect models are assumed to be 

asymptotically normal (Pinheiro and Bates (2000), Lindstrom and Bates (1990) and 

others), implementations with NLME library have to be approached with care to meet 

the criteria of  the generic reserving model. Alternative assumptions are also considered. 

In non-parametric models the distribution of  the random effects is left unspecified, 

hence completely unrestricted. Escobar and West (1992) propose a non-parametric 

approach, where ¢.are taken from distribution classes provided by the Dirichlet 

processes. Wakefield and Walker (1994) consider a non-parametric approach when 

random effect parameters are suspected to be neither normal nor Student t distributed, 

and allow for multimodality and skewness. Beal and Sleiner (1992) use a mixture of  

normal distributions and Wakefield (1996) a multivariate t-distribution for the random 

effect parameters and lognormal distribution for the response. The heavier tails in the t- 

distribution accommodate outlying cohorts. To define the parameters it is necessary to 

establish the curve's behaviour with parameter value changes, categorising the 

conditions, if any, for convergence, divergence, discontinuities etc (Ratkowski (1990)). 

The models' capacity to predict reserves depends on the stability of  the projected curves, 

which in turn depends on the variance model structure. The most complex are more 

easily implemented within a Bayesian framework, as outlined below. 

2.1.1 Three-Stage Models With Heterogeneous lntra-Underwriting Year 

Variation: A Bayesian Approach 

Gibbs sampler application to Bayesian hierarchical models removes obstacles 

associated with non-linear multi-parameter structures integration. First to consider the 

problem of fully Bayesian non-linear regression is Wakefield et al. (1994). Bayesian 

random effects models can be represented by the following three-stage structure: 
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First Stage: Intra-underwriting year variation: 

It accounts for variability within underwriting years, through scale parameter a 2 and, in 

some cases, through functions v~(~.,3(t),~9) or r . (p) ,  or both, such that ~.,8 and p are 

parameters, .'3(t) is some function of  t and r.  (p) is a correlation matrix. Hence, given 

y~ = .u (~.,) + ~., 

for the most general case 

R. (#.,, at,p) = v. ''= (~,,,.~ (,),a)r.(p)vw ''= (~.,~ (t),,9) (2.4) 

So ew are independently and identically distributed with zero mean and 

Cov(e.. I ~..,'7, O r, p) = ~2 R..(Ow, ,9 r, p) (2.5) 

T ;r The functional form of R..(#..,,gr,p) and covariance parameters ( = [ o , 8  ,p] are the 

same for all underwriting years. Implicit in z . (# . ,3( t ) , ,9 )  are functions of  u~(#.) or t, 

and of some or all parameters in ~... If  probability distribution function is denoted by 

f then 

(y. I •..,()~ f~.~..¢ (y.. [O. ,() 

Second Stage:Inter- underwriting year variation: 

The inter-underwriting year variation in the values of #., is represented by 

#.. = &.,O + B..b~ (2.6) 

The degree of complexity of design matrices A w and Bw will depend on the data and the 

percentage cash flow function. Random effect parameters are assumed to be 

independent and identically distributed: 

b.. - &~z (bw I Z) (2.7) 
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Zero mean assumption for b w is not essential and, with software packages such as 

BUGS, may not be attainable. Non parametric and semiparametric model specifications 

for ¢,can be considered. 

Third Stage: Hyperprior distribution: 

Definition of  parameters fl,( and X completes the model formulation. 

(fl,(,Y~)- fp.¢x (fl,(,Y~) (2.8) 

The joint posterior distribution of  all parameters upon which the Bayesian inferences 

are based is 

fa C b X,. ( f l , ( ,b,  X iy) = f , ' l a  C h (Yi f l , ( ,b)foix (b I Z) f~..,..~ (p,(,x) 
fy(y) (2.9) 

The marginal posterior distributions of interest are fa~ (Pl y), fbl>. (bly) and f~l, (Xl y). 

Implicit in the above are two simpler models: 

• For uncorrelated intra-underwriting year observations r,(p) = 1 ..... and ( = [a,<9 r jr .  

• I f  the model is homoscedastic, then r (p) = R, (¢w, <.or, p) = 1 ..... and ( = tr. 

As a simple example, consider 

a n d  

b IX ~ N(0,57) (2.10) 

pie',x0- 

1 v v  o o ( o o v )  
7 ' ~  t i ' T )  

(2.11) 

where parameters p',ro,X*,v*,o,v are known. When a linearization method is used x0 

could be replaced by o'2(2r2) -', such that 2=~. .  If  ~=_1 ~ f l . , u  .., the parameters' 

conditional distributions for correlated observations are: 
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<,,,,o,=,,.,w=,. =/('='t(.=' +/=;'++/=='+ ='/')'='/')' (.='a+/=;'+.'/'=),] 
1 / • T * ° * (r:'ly,~,p,~,.,w=~,...,~)-m (~,-~)(<-p) +~  ,~+~ 

(o --~ ly, fl, Y~,~,.,w=l,...,u)~ 

Go((~-~-),I( Or+ ==~.=l(Yw-bl..('.))rR.-'('..,oor,p)(Y.,-I~..('..))) I 

(2.12) 

Then, the conditional distributions of ¢., and ,9 are 

. =.e~(exp(-O.5cr-:(Y.-fw,(~..))rl~.'(~J.,~gr,p)(Y.-f..,(qJw))}) 
fsl,..a.=.~., .......... (o°ly,,a,E,a, CJ,., w = 1,..,u) ~ H /  ~ ".K 

- '[ "-'I=,~-'*"~I ~ J 

Variations on the above general model, with r ,  (p) = 1 ..... can be found in Wakefield 

(1996). In relation to the purpose of  this paper, in the first stage, where variability 

structures are established, the predicted values that contribute to the 1BNR(,.,,) (equation 

t .  

(1.8)) are simply defined as C~ Szr(w,z)dz. While for the final models, y~, or predicted 
t j  

losses for underwriting year w, are sampled from the distribution 

f,.:>e.=.,,,.(y~. I y,/~,~:,~r,¢,.) and applied to equation (1.9). 

2.2 General Formulation Of Multi-Array Bayesian Models 

Extending the general model for a single array, the three-stage multi-array 

hierarchical model requires the following notation. For underwriting year w in claims 

array r, where r = l,...,r, and w = l,...,u,, let the response vector be 

Y,..=[Y,.w.,~,..,Y,....,.. ] r 
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Hence, for the entire data set 

Y = [ Y,.,,", Y,.,,, ,", Yq.,", Yr,.,,~ ] r 

t = t, ..... t,~ are the reporting times, such that t denotes the last period with known claims n~ 

for underwriting year w. y .... will be replaced by Yr.. when the data analysed is 

cumulative. The length of the response vector is M, such that nr = ~n,.. and M = ~ n . .  
w=l rM 

We write 

where 

Y,..w = ,ur... (~.) + e~.,. 

¢~ = .4,~,o + &.b,.  + B~b~ (2.13) 

fl is a p-dimensional fixed effects parameter vector, b r is a q,-dimensional first level 

random effects vector and b~. a q.,-dimensional second level random effects vector, br 

and b~. could be defined to have zero mean and variance/covariance matrices E, and Z2 

respectively. Through design matrices A. ,  B,., and B~. information specific to each 

underwriting year data set can be brought into the analysis. By replacing (2.6) by (2.13) 

the three-stage models accounts also for array variation. 

The models in section 3, and those in section 4, show that more flexible covariance 

structures could provide insight into the data variability structures by exploring 

alternative definitions for ( =  [a2,~qr,p] T. However, to avoid degrading inferences on 

first moment components, the final model should assume common parameters ( for all 

underwriting years and arrays. Hence, the problem consists of  identifying any 

relationship evident between 3(t), ¢~., ~r., or any other function of  ¢,~., and the 

patterns of  variability revealed by parameters (=[a=,~gT,p] r. Outliers could lead to 

incorrect inferences, possibly indicate that the claims distribution is in fact muitimodal 

and the data should be segmented for analytical purposes. Although the models 

proposed do not include specific functions to capture payment year effects of the kind 

of systematic inflation, they can be easily amended to do so. 
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3. M O D E L S  F O R  O N E  A R R A Y  

3.1 Examples Of Preliminary Models For One Array  

Two preliminary models, denoted 1.0 and 2.0 respectively, are given below. Both 

have a power variance function. However, to assess variability assumptions and 

construct the final models, the power in model 2.0 is allowed to change with 

underwriting year. With the variance formulation of model 2.0 the standard variance 

parameter definition is disregarded, by using instead ( ,  = [ a ,~  r, p]r,  thereby weakening 

the inferential capability of the model. Hence, even if the IBNR and ultimate claim 

amount predictions for model 2.0 were satisfactory, model 2.0 should be treated as 

preliminary and used exclusively for exploratory purposes. 

3.1.1 M o d e l  1.0 

The first heteroscedastic model is defined as follows: 

with 

such that, ( = [or, 8] r 

and 

r . ,  = ~..,(#..)+ <., 

(Y,,., I@..,~')- N(/a.,, (#.,),o-2,u .., (<~.,)~(a,) 

. . . .  exp(L +l.,) 

la"'t"J-{l+exp(D+dw-exp(Kc +kc.,)ln(t')-exp(Kd +kd )*t')} 

_(  exp(Ks,)'~ 
where t " - ~ t + ~ )  

e~lO..,(~N(O, az ~,p(a) r I .l, l )1 ..... ) 

and 

#., = &.p+ 8.,b,, 
A.. = 17. 7 i ooioo ] 

~/'8., 'T= o o o I o 
0 o o 0 1 

0 0 o 0 0 

/ r < = [ . . , < , < , , ~ . . ] ,  b.I<,Z.,  - mTv(~:,,Z,,) 

,8=[I~,,I%,&L,D, Kc, Kd] ~, pIp',Zo~MVN(p',Eo) 

(3.1) 
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The hyperprior distributions are ~ - Ga(O.O01,O.O01), and 

fl'lfl", Y:" - MVN (fl", Y.:" ) (~o)-'lY: - Wi ((7 ~;)-I, 7) 
-1 * ~ , -1 b:,Ib",YZ~MVN(b",Z: ) (Z.,) IZ.,- i((4Y..,),4) 

for given parameters /~",b",Z~,Yo',Z',ZY. Functions C., &., and h.., describing the 

underlying claims process for model 2.0 are: 

C., = exp(L+lw) 

&., ={l+exp(D+d..-exp(Kc +kc..)ln(t')-exp(Kd+kd..)'t')}-' (3.2) 

S.., = 1- &., (3.3) 

exp (Ks= + Ks, ) 

3.1.2 Model 2.0 
In model 2.0 &,, (#,) is given by (3.1), but 

0 "  2 ¢xp(,9÷3 ) .) 

where ( .=[m&oo] ~. Having included random effect parameters in the variance 

function, the following further amendments to model 1.0 are needed: 

such that 

Aw= B., =lsx5 

~.t~,,¢,-N~,0. t~,t#,) "1 ..... ) 
b~=[aw,l..,d..,kc..,kd.] r , b..Ib'~,Z.,- MVN(b:.,Y...) 

- I  • ~ .  . - 1  

The power parameters in models 1.0 and 2.0 are formulated as multivariate normal, 

together with the mean response parameters. The reason becomes evident in section 3.4, 

where the relationship between the parameters is analysed to construct the final models. 
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3.2 Claims Array Average Percentage Cash Flow Model 

Non-linear mixed effect or population models (Zeger, Liang and Albert (1988)) are 

intended to deliver population parameter distributions to derive population inferences. 

The inter-subject variability allowed by the models assumes that the subject-specific 

parameters are identically and independently distributed. The generic claims reserving 

model describes the data as the product of  functions for the percentage cash flow and the 

ultimate claim amount, In the best scenario the ultimate claim amount function would 

account for differences in claim and exposure volumes. Since both could be largely 

determined by underwriting contract terms, for array inferences to be l:epresentative of  

the type of peril the contract covers, they are better based on the percentage cash flow 

functions alone. 

In the example that follows the general formulation of the random effects model, the 

random effects parameters are set to be b , i£-  N(0,Y), while observing that alternative 

definitions are feasible. In some applications or models it may not be possible to assume 

a zero mean for the random effects parameters, particularly when they are defined to 

belong to multivariate distributions. BUGS, for instance, cannot handle multivariate 

range restrictions, but can accommodate some simpler univariate centering forms. 

Replacing design matrices A. and B,. in models 1.0 and 2.0 by A and 

B respectively, the parameters for the claims array average percentage cash flow model 

have to be extracted from the parameter vector given by 

Hence, for model 2.0, the claims array average percentage cash t k ~  ¢ ~  is: 

-1 

1 1 1 , ,']l 
• I, t ku,..~ " )  t ku,.:~ ) )  t. t u..=~ ) )  ) j  

(3.5) 

with t" defined as before. To ascertain if (3.5) is representative of the array, the curve is 

compared to the plots for the percentage cash flow for all underwriting years in the 

array. 
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3.3 Numerical Examples Of Preliminary Models 1.0 Aand 2.0 

Extracted from a book of business containing more than one type of claim, the data 

selected for the examples display significant differences in the development patterns and 

exposure volumes across underwriting years, particularly evident in the last three 

underwriting years. (See graph 3.3.1 and tables A. 1 and A.2). Another characteristic is 

the zero claims in the first reporting period. To ensure they are not interpreted as 

missing data, they have been set to one. This artifice is often necessary with non-linear 

models for the mean response or when the mean response is formulated into the 

variance. 

laoo 

~ 2 o o  

laoo 

. . o  

4 . m  

o ~  

M i x e d  B o o k o f  B u s i n e l m  
C u m u l a t i v e  C l a i m s  D a t a  - T a b l e  3 A . 2  

. a  ~,.-4 t ' "  

/.~-~"',2~. I ] i. __ i 

1 3 8 7 9 11 13 15 17 

Pe rio d 

• u. Ym~ I 

U. Y I~  3 
U, Ye l  4 
u Y e ~  s 

Graph 3.3.1 Cumulative paid claims data aggregated on annual basis. 

Of interest in the examples are the repercussions of  hierarchical variance models. To 

facilitate the analysis of  the preliminary models, the 1BNR predictions do not include the 

accounting adjustment in (1.9) Graphs for observed claims and fitted values for the 

preliminary and final models would show that the fitted curves are almost 

indistinguishable and very close to the data. However, from table 3.3.1 and graph 3.3.3 

observe that the IBNR predictions at underwriting year level for model 1.0 cannot be 

reliably used. The plot for the percentage cash flow for underwriting year 4 is unlikely 

to converge to 1. The model compensates by producing a higher 1BNR. As graphical 

representations of spread, location and skewness for error distributions, the box plots 

show that, in contrast with model 1.0, with the introduction of  parameter 0% in the 

variance function, model 2.0 deals effectively with scale variability and with some of 

the outliers evident in the quantile plots. 
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Model 1.0 

Und. 3 
Year 4 

Model 2.0 

3 
Und. 4 
Year 

T a b l e  3 . 3 . 1  

Ultimate Claim Amount IBNR (I .8) 

Standard Standard 
Mean Mean Sq. Predictive Interval Mean Mean Sq. Predictive Interval 

Prod. Pred. 
Error 2.50°,6 I 97.50°/, Error 2.50*/, I 97.50°,6 

I I 

, 4,442,+ I 80.01 4,302,0o01 4,611,0001 95,4901 28,9901 53,9201 16l,lo0 
2 4,342,0001 73,4801 4,219.0001 4.487,0001 46,2601 ]8,9801 19,7701 87,900 

2,180,0O0 1 65,4701 2,059,0001 2,311.0001 22,8501 14,5501 3,4891 57+970 
2,179,0001 539,2001 1,889,0001 4,383,0001 173,1O0[ 467,0001 4,4871 2,116,000 

5 6.642,O00[ 115,1001 6,413,0O0] 6,863.00o[ 290,8001 51.360] 197,4001 397,800 
6 ]0,170,000 ~53.100 9,S9LO001 10,500.0001 607,2001 85,1001 457,7001 791,100 
7 12.650,000 131.400 12.38o,o0o I ,2.88o.o0o I 676,100 54.63o I 556.600 774.600 

Total 42,600,000 607,100 41,940,0001 44,830.0001 1~912.000 499,4001 1,546+000 3.915,000 

i 4,481,0o01 58,48014,37,,o00 4804,0o01 11,.5001 23,96o I 74.3401 168,000 
2 4.327,o001 48.00j 4,23~.o00j 4,424,0001 40,920 11.2601 2,,9901 66.4,0 

2,165,o001 39,6501 2,093,o001 2,249,0o0 1 16,4001 8,7561 5,3351 38,440 
2,007,0001 54.0901 1,909,o001 2,128,0001 31,5701 17,560[ 8,824[ 79,130 

5 6,644,O001 88,1901 6,474,000[ 6,822,o001 293,5001 42,590 217,8o01 382,600 
6 10,160.0o0] 257,300[ 9,668,000110,700,0001 6O6,400] 144,000[ 348,0001 933,100 
7 |2,790.o001 348.100 12,170.o00[ 13.580,000 771.200 200,400 458.100 1.259.o00 

Total 42,570,0001 471, O0 4 .720.000 43+590,O00 1,873.O00 268+6O0 1.421,000 2.502.000 

Ultimate losses and IBNR predictive distributions for models  1.0 and 2.0 

Model 1.0: Ultimate Claim Amount Model 1.0: Total IBNR 

"' \ 

]l / 
1 

/ 
/ . . . . . .  

• ;., .~., ++., .=, .a ,  2-' . . . . .  

++ /", /l 
mmm 

Model 2.0: Ultimate Claim Amount Model 2.0: Total IBNR 

iil jjjj/, / \ 

,/"-~\ 
/ \  

/ \ .  

G r a p h  3.3.2 Kernel  densities for ultimate losses and 1BNR totals for preliminary models 1.0 and 2.0. 
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G r a p h  3.3.3 Percentage cash flow plots and normalized residuals for models 1.0 and 2.0. 
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Hence, model 2.0 in general, and 0,. in particular, should be analysed to formulate the 

final variance model. The Kernel densities for ultimate claim amount and IBNR 

projections in graph 3.3.2 suggest possible bi-modality, particularly for model 1.0. 

Note that a variance derived directly from model 2.0 may not deal completely with the 

pattern evident in the plots for the normalized residuals (graph 3.3.3). Portfolio transfers 

or account consolidations often produce data sets where the settlement speeds of the 

new and old data differ significantly. The quantile and scatter plots point to the second 

observation in underwriting years 1, 2, 5 and 6 as possible outliers. These give an 

indication that the correction needed in the variance model may involve a function 

dependent on delay period t. In the next section the variance function for model 5.0 is 

derived form the output of model 2.0. With the variance function for model 6.0 it is 

aimed to deal with remaining outliers. 

3.4. Final One-Array Models 

The generic model conveniently separates the percentage cash flow and the ultimate 

claim amount functions and, through the percentage cash flow function, can extract from 

the data settlement speed characteristics. Deviations induced by large differences in 

underwriting volumes between underwriting years may not be captured by random 

effect models, and the introduction of  cluster structures may be necessary. The criteria 

needed to establish them remains to be determined. 

Book 
Year 

1 

2 

3 

4 

5 

6 

7 

Table 3.4.1 

Model 1.0 

Fixed parameters 

~5.7400 ,9 -6.2470 
Random parameters 

/ ,9. 
-0.4364 
-0.4592 
-1.1480 
-1.169C 
-0.0342 
0,39% c 
0.61011 

Model 2.0 

Fixed parameters 

L ,9 

14.890(~ -3.4710 

Random parameters 

I a. 

0.4214 -0.5061 

0.3865 -0.1910 

-0.306G -1.4670 

-0.3818 -0.8611 

0.8153 -0.0693 

1.2400 1.4680 

1.4700 1.6780 

Parameter estimates for variance model and C,. function. 
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From tables 3.3.1 and 3.4.1 note the approximate correspondence between the order of  

magnitudes of  C. and 9̀~, for model 2.0. Hence consider the following regression line: 

,9. = 4 + 821 ,. (3.6) 

Graph 3.4.1 

. e  oe.1 0 o , o  $ o e . 1  1 o e o  I J ~ o  

1. 

Line `9. = 8, + 821 w and scatter plot of 1. vs ,9 w . 

(3.6) gives [6.4]=[-0.79914,1.54866 ] . From table A.6, there is no evident relationship, 

similar to (3.6), between `9, and any of  d . ,  kcw or /cal,, directly or through a suitable 

transformation. Graph 3.4.1 displays the scatter plot of &versus Iwand regression line 

`gw=8,+821w. exp(`9+`9,,) lies between 0.007 and 0.166, such that the minimum and 

maximum values correspond to w=3 and w= 7 respectively. Had model 1.0 provided a 

better fit, the magnitudes of  exp(`9+,9,) could have influenced a decision to select a 

homoscedastic model. However, from table 3.3.1 note that C~=2.17million and 

C, = 12.79million. Hence, it is justifiable to integrate exp(`9+`9.)-- exp((`9+8,)+l w.82) in 

the variance function definition as follows: 

vary,.,) = ~,'&.., (¢..)~'(~'+"~) (3.7) 

r" r . , T "IT 
(3.7) satisfies covariance definition (2.5) because parameter vector ( =  Lcr, LSi,̀ 9~] J is 

invariant with underwriting year. It is intuitively obvious that if the variance parameters 
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for preliminary model 2.0 would have been defined as (.. = [a,., oar ] r instead of 

(w =[a, 'gr] r , a similar relationship to (3.6) would be evident between aw and/,.. This is 

further explored in section 4. Although the variance for final model 5.0 will be (3.7), to 

validate the model and explore alternative analytical approaches, the fmal model is 

preceded by other two. The first gives an appreciation of the IBNR reserve values that an 

analysis of the data segmented into K subsets would deliver, where subset membership 

criteria is determined by the values of c,  or ~,. Hence, the variance function considered 

is 

v~r,.,) = ,,,=,,.., ( < ) ~  

The second preliminary model assumes an autoregressive error structure. Variance 

function (3.7) may not successfully explain the variability evident in the normalized 

residual plot pattern of  model 2.0 (graph 3.3.3) and function ~,., (¢,)~(~'+,.e;) may need to 

be adjusted. Hence, the function proposed for model 6.0 is 

oxp(3; (,' ;:) 

3.4 .1  M o d e l  3 .0  - V a l i d a t i o n  M o d e l  

Model 3.0 is equal to model 1.0 in all respects, except that subset membership for 

each underwriting year is taken into account only at the point of  calculating the 

variance, and for subset k ~r, = is estimated independently from the rest of the data. For 

underwriting year w, member of  subset k 

r,.., =/~w.,(<)+<., 

with 

(Y..., I~-,( ,)-  N (~.., (<),~,=~.., ( < ) ' ~ )  

1 Ga(O.O01,O.O01) and such that (k = [ak,3] r , - '7 
O" k 
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3.4.2  M o d e l  4 .0  - V a l i d a t i o n  M o d e l  

In model 4.0 the option of using an autoregressive error structure is explored, to 

ascertain if this can effectively deal with scale variability between underwriting years: 

such that 

and ( = I m p ]  ~. 

r.., = & , ( ~ . , ) +  w..., 

W ., = pWw. ,_  ~ +, r ,  

vAR(Y,.., )= vAR(w,.., )=~ 

~wl~.,c- ~(o,.=0-~')) 

3.4 .3  M o d e l  5.0 - V a l i d a t i o n  M o d e l  

Final model 5.0 integrates regression (3.6) into the variance model: 

with 

r,., = u,,,(¢,.)+<., 

(~.,, I#.,,¢)- ~(~.,, (~.,),-= ~.,, (#.,)="~"'"*)) 

(( . . ; ) ,  where aT=[~,',a~], e . I < , ( ~ N  0,tr 2 u.(#..) "0(¢÷"~) I . . . . . .  ~-~Ga(O.O01,O.O01) and 

( = [a, o r i t .  Since/~,., is given by (3.1), in addition to the obvious changes in the design 

matrices, the other necessary amendments to model 2.0 are: 

P=[r~,,K*=,¢,e;,L,O, Kc, Ka] ~, plp',z0 - ~ N ( a ' , X o )  

e'lp",~o - ~'~(e",=') (z0)'l~;- w,((8=)',8) 

3.4.4  M o d e l  6.0 - F i n a l  M o d e l  

Final model 6.0 extends the variance model (3.7) as follows: 

(y...,l#.,¢)- N(~..,(# . . . . . . .  ) "=" '(~ )"{"'"*'°xP(*;('÷°x'-!~'V:~v ,°'~,, J )) 
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where ( = [ a , 0 r ]  r and O" =[O;,0~,0~,O~]. Hence the fixed effect parameter vector and 

related distributions are: 

,8=[Kst,Ks2,8;,,9"2,,93,,9:,L,D, Kc, Kd] z , fllfl',Xo~ MVN(,8",]~o) 

e ' l f ,x;"-  u ~ , ( f , x ; ' ) ( L ) - ' I x ;  - w,((,0 x;)-' ,10 ) 

3.4.5 Numerical Examples And Discussion For Validation Models 3.0 And 4.0 

And Final Models 5.0 And 6.0 

D a t a  s e g m e n t a t i o n  c r i t e r i a  d e s c r i b e d  b y  t h e  l a s t  c o l u m n  i n  t a b l e  3 . 4 . 5 . 1  a n d  a p p l i e d  

to model 3.0 is given by the values of lw fxom model 2.0. 

Book 
Year 

Book 
Year 

a 2 

Subset l- ~ 

Subset2- a~ 

Subs~ 3- v~ 

Deviance 

Model 2.0 
Fixed paramete~ 

14.890 -3.471 

Random parameters 

L A. 
0.4214 -0.5061 
0.3865 -0.1910 

-0.3060 -1.4670 
-0.3818 -0.8611 
0.8153 -0.0693 
1.2400 1.4680 
1.4700 1.6780 

Combined Effect 

L+~ exp(~+ J..) 

15.3114 -3.9771 
15.2765 -3.6620 
14.5840 -4.9380 
14.5082 -4.3321 
15.7053 -3.5403 
16.1300 -2.0030 
16.3600 -1.7930 

5.87E+09 

Model 3.0 
Fixed parameters 

L I ' 
14.290 -6.861 

Random parameters 

1.0300 
0.9940 
0.3015 
0.2259 
1.4240 
1.8620 
2.0660 

Combined Effect 

L+t~ exp(8+8,) 

15.320o 
15.2840 
14.5915 
14.5159 
15.7140 
16.1520 
16.3560 

7.496E+09 

3.328E+09 

3.182E+10 

2,936 2,937 

Subset 
Membership 

For 
Modcl 
3.0 

Tab le  3.4.5.1 Scale and deviance values and parameter  estimates for models 2.0 and 3.0. 

The table compares parametersL, Iw and L+t. for both models. Variance function power 

for model 3.0 is very small. For a model with variance ~ ,  instead of  ad~w,,= ( ~ , ) ~  , the 
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values of  L+z.. are not significantly different. Although that model version is excluded 

from this paper, it is observed that its results indicate that in model 3.0 information on 

the data variability structures is mainly contained in a~, and that neither model 

successfully deals with claim volume differences between underwriting years. 

Model 3.0 

1 
2 
3 

Und. 
Year 4 

5 

6 
7 

Total 

Model 4.0 

1 
2 
3 

Und. 
Year 4 

5 
6 
7 

Total 

Model 5.0 

1 
2 

Und. 3 
Year 4 

5 

6 

7 

Total 

Model 6.0 

1 
2 

Und. 3 
Year 4 

5 

6 

7 

Total 

Table  3.4.5.2 

Ultimate Claim Amount Reported IBNR (1.9) 

Standard Standard 
Me.an Mean Sq. Confidence Interval Mean Mean Sq. Confidence Interval 

Error Pred. 2,5o%197.5OO/o Error Pred. 250o~ I 

Validation Model 

4,480,00( 122,100 4,239,000 4.721,000 115,200 122,100 -125,400 
4,324,00( 115,800 4,097,000 4,556,000 -121,600 115,800 -347,900 
2,163,00C 76,730 2,012,000 2,315,000 -21,340 76,730 -172,300 
2,004,00C 80,470 1,847,000 2,164,000 -86,010 80,470 -243,900 
6,648,00( 280,700 6,103,000 7,214,000 358,600 280,700 -186,000 

10,300,00( 340,500 9,656,000 11,000,000 395,000 340,500 -251,900 
12,630,00C 318,900 12,020,000 13.280,000 988,900 318,900 376.800 
42.550.00C 607.500 41,400.000 43.810.000 1.629,000 607,500 473.400 

Validation Model - (AR) en'or structure 

4,451,00( 164,000 4,131,000 4,776,000 86,840 164,000 
4,315,00( 159,700 4,002,000 4,630,000 -130,300 159,700 
2,149,00( 157.300 1,842,000 2,462,000 -34,560 157,300 
1,995,00( 165,100 1,677,000 2,322,000 -94,990 165,100 
6,635.00C 180,900 6,277,000 6,989,000 345,800 180,900 

10,130,00C 211,700 9,732,000[ 10,570,000 226,500 211,700 
12,590,00C 229,9001 12.130.000 13,030,000, 945.900 229.900 
42,270,00C 469,50( 41.340.000 43.190.000! 1,345.000 469.500 

Final Model 

4,477,00C 114,30( 4,254,00( 4,703,000 112,700 114,300 
4,321,00C 105,80( 4,112,00( 4,527,000 -124,800 105,800 
2,162,00C 87,57( 1,990,00( 2,336,00( -22,300 87,570 
2,001,00C 92,29( 1,823,00C 2,188,00C -89,490 92,290 
6,645,00G 164,00£ 6,327,00~ 6,971,00( 356,000 164,000 

10,190,00¢ 328,100 9.576,00( 10,870,000 280,200 328,100 
12.750.00C 513.700 11,770,00( 13,800,000 1,110,000 513.700 
42,550.00C 675.90( 41.240.00C 43,920.0001 1.623.000 675,900 

Final Model 

4,418,000 37,32C 4,345,00( 4,492,00C 53,860 37,320 
4,426,00(I 42,00C 4.338,00( 4,504,00(] -19,530 42,000 
2,201,00C 26,94( 2,146,00( 2,253,000] 16,98( 26,940 
2,094,00C 36,93( 2,016.00( 2,161,00~ 3,306i 36,930 
6,525,00C 70,37C 6,395.00C 6,673,00( 235,70( 70,370 

10,470,00C 231,80( 10,040,00C I0,960,00C 560,00( 231,800 
12.370.00(] 283,30C 11,880.00C 13,0]O.OOC 724.40C 283,300 
42.500.000 393.10~ 41,800.00C 43.380,00C 1.575.00C 393.100 

-233,200 
-443,400 
-342,200 
-413,700 
-11,950 

-176,300 
486.100 
420.800 

-110,900 
-333,000 
-194.300 
-267,900 

38550 
-332.600 
127.000 
313.300 

-19,210 
-107,100 

-38,450 
-74,000 
106,000 
136,600 
235.500 
876.400 

Subset 
Membership 

For 
Model 

3.0 
97.50% 

356,600 1 
110,200 1 
130,700 2 
73,750 2 

924,700 3 
1,088,000 3 
1,637.000 3 
2,891.000 

411,400  
185,000 
277,800 
231,400 
699,800 
660,900 

1,391,000 
2.264,000 

338,300 
81,830 

151,900 
97,4.50 

681,600 
965,000 

2,162.000 
2,994.000 

127,700 
58,360 
69,290 
70,160 

384.200 
1,054,000 
1,365.000 
2.453.000 

Models 3.0 to 6.0: Ultimate losses and IBNR predictions and predictive distributions. 
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Model 3.0: Ultimate Claim Amount Model 3.0: Total IBNR 
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Preliminary models 

Model 
Predictive distributions 

Ultimate Claim Amount IBNR (I.8~ 

t Mean Deviation Interval Mean Deviation Interval 
2.5% 97.5% 2.5% 97.5% 

Log Likelihood AIC 

Confidence Confidence 
dean Interval Mean Interval 

2.5% 97.5% 2.5% 97.5% 

'° I 42~'°°° °°7'°° "9°°°° '483°~° '9'2'~ 499'°° '~4~'°°° 3'9'5°°° I I I 
2.0 42r570,000 471~ 00 41,720,000 43,590,000 1,873,000 268,600 Ir421,000 2,502,000 

BIC 

I Confidence 
Mean [ Interval 

12.5% 97.5% 

Devi. 

t',O 
Validation models 3.0 and 4.0 and final models 5.0 and 6.0 

O Model 

3.0 
4.0 
5.0 
6.0 

Predictive distributions 

Ultimate Claim Amount 

Mean Deviation Interval 
2.5% 97.5% 

Mean 

.Reported mNR (I.9) 
Standard [ P~dictive 
Deviation Interval 

2.5% 97.5% 

Log Likelihood 

I Confidance 
~ean Interval 

2.5% 97.5% 

AIC BIC 

Confidence I Confidence 
Mean Interval I Mean [ Interval 

2.5% 97.5% [2.5% 97.5% 

Devi. 

42~550,000 607,50( 411400t000 43,810,000 1,629~000 607,50(3 
42~270,000 469150( 41,340,000 43,190r00~ Ir345,000 469fi0~ 
42r550,000 675r90( 41~240r000 43,920,000 1~623,000 675190~ 
42,500~000 393~10( 41~800,000 43,380,1300 I,$75,000 393,10G 

473t400 
420~800 
313r300 
876r400 

2,891r00( 56.0 42.3 71.6 181.9 154.7 213.1 277.1 249.8 308.3 2,936 
2,264~00( 56.0 42.6 71.7 182.C 155.1 213.5 277.2 250.3 308.6 2,902 
2,994~00( 56.0 42.3 71.6 183.9 156.6 215.1 281.8 254.4 313.0 2~928 
2,453,00(3 56.0 42.3 71.5 187.9 160.5 219.0 291.2 263.8 322.3 2,887 

O 
---..1 

T a b l e  3 .4 .5 .3  C o m p a r i s o n  o f  resul ts  for  mode l s  1.0 to 6.0. 
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The ultimate claim amount and IBNR predictions for final models 5.0 and 6.0 and 

preliminary models 3.0 and 4.0 are compared in table 3.4.5.2. The boxplots for model 

5.0 are the most consistent with those of model 2.0. (see graphs 3.4.5.2 and 3.3.3), but 

the predictive intervals are slightly wider than for models 3.0 and 4.0. The 

autoregressive error structure in model 4.0 is insufficient to deal with scale variability. 

In contrast to model 6.0, models 2.0 to 5.0 do not resolve the downwards pattern in the 

quantile plots (see graph 3.4.5.3). From the percentage cash flow plots and the array 

average percentage cash flow curve it is evident that the curve is representative of  the 

array. The additional variance parameters increase the AIC and BIC values with respect 

to model 3.0, but decrease the deviance (table 3.4.5.3). The slight skewness of the IBNR 

and the ultimate claim amount kernel densities for model 2.0 is no longer so evident in 

models 3.0 to 6.0 (see graphs 3.3.2 and 3.4.5.1). 

4. MULTI-ARRAY MODELS 

To explore data variability structures and illustrate the process of designing multiple- 

array models, two mean response functions are used. For the preliminary models the 

variance functions considered are a 2 , ~r~ and cry, denoting the three model versions by 

a, b, and c respectively. In section 4.2, observations on the models and numerical 

examples highlight the motivation for their inclusion. In section 4.3 the values of  aL are 

analysed and the final multi-array models are introduced. Numerical examples and 

assessment of  the final models are given in sections 4.5 and 4.6. 

4.1 Examples Of Prel iminary Mult i -Array Models 

4.1.1 Models 7.0 (a), (b) and (c) 

Model 7.0 is proposed as example of hierarchical reserving models with a limited 

number of parameters in the percentage cash flow function. It is followed by two 

amended versions selected to further explore variability patterns in the data. 

Model 7.0(a) 

For claims array r and underwriting year w, the first homoscedastic model at delay 

time t is defined as follows: 
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such that, 

and 

u~.,.., (~,) =,xp(L + C,,). 

l + J  exp(D+d +d'.) ),  ( exp(Ks,)'~ 
- q  ~ / l r l / t + ~ / /  

. exp (Ks,) I 
• exp(Ks, ) 2 

(4.1) 

where 

CJ~. = A~fl + B,,..,b, + B~,b~ 

,,.,. l¢~.,a - U (0, ~'+ ...... ) (4.2) 

b~ =[C,¢,~2] ', 
b r = [ d r , k C r ]  I" , 

fl = [ Ksp Ks2L, D, Kc ] r , 

b,.lb;.,Y; ~ MVN(b~.,~ °) 

brle;,X, = amV(b;,Xr ) 

m ' , X o - ~ V ( / , x . )  

The configuration of the design matrices is determined by the order of the parameters 

in the fixed and random effect parameter vectors. For known parameters 
• * , •  • •  * • o  * °°  o *o • •  , ,a ,b~., b, ,Z0, Z~, Zr, So,Zr , Z~, the hyperprior distributions are: 

p'l/ ',x;" - a~v(e",x;') 

b;,l<,x;" - v~V(b",X;') 

b'lb'~°,Y.:" - MVN(b;',YT) 

{z o/-' Z'o - w , ( { , = / - '  . ,) 
<,::;' ,::o -.,,(0=ot-',,) 

< ~ . / - ' 1 ~ : - ' ; ( < = ~ : / - ' . 2 )  

and ~-~Ga(0.001,0.001). The claims process functions Cr, w and P~.,., for model 4.1 and 

the related survival and hazard functions &..., and hr.,., are: 
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C ..... exp(L+l:) 

,.., =. 

1+ 2(, exp(D+d, +d~,).]ln¢t+ exp(Ks,)~] 
I, exp(Kc+kc, +kc~.,)) t, t "<r<') 7) 

. exp(Ks,) 

. exp (Ks,) 2 

S ..... = 1- Pr.., 

1 7 ( ~  t_ in ¢, + exp (Ksl) ] ~ _ [  "/ 
t 2exp(D+d.+d:) t t <'(~'') )J j 

h"" '=¢t 'exp(Ksi )~(exp(Kc+kc '+kc '~) (~) ) (~  - r ~ j / ~ + - - ~ . }  +In 1+ 1 exp(Ks, +Ksi)]-it=,(r~:)+,) 
(4.3) 

Amended Versions Of Model 7.0(a) 

In the alternative versions of  model 

¢,.,. I ~b~.,a, -N(O,a~l ..... ) and 

.,,wi#..,a ~ N(0,a:l, .,. ) • 

7.0(a), denoted by 7.0(b) and 7.0(c), 

~,.w [t~.,o .- N(O,a~l ..... ) replace 

4.1.2 Models 8.0 (a), (b) and (e) 

In model 8.0 the percentage cash flow function has more parameters than model 7.0 

to assess if a more flexible percentage cash flow function could produce more reliable 

IBNR predictions. As with model 7.0, three versions are considered. 

Model 8.0(a) 

For claims array r, underwriting year w and development time t the model is given 

by: 
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such that, / /- OXp(,~+dr +<,)  
/a,..,, (~b ,)= exp (L + 1~.,)1+ ( lnt t ) /  

exp ~ 4 - -  - - 
t .xp ( -Kc-  kcr - kc:+) e x p ( - K d - k d r - k d : + ) J J  

and 

~b = A~,fl+ Br,.,b ~ + B~.b=, = d(a~,,fl.b,.b~,) 

, , . . . l#~.,a ~ N ( 0 , , r ' l  . . . . .  ) 

b., = [:.,a;,,,~7:,~.,]', 
b, =[a,,k,,~,] ~, 

=[L,D,K~,Ka]', 

The hyperprior distributions are: 

b=l:.,X~. ~ MVN (bT.., Y.,.,, ) 

b~Ib;,X,- MVN(b;,X,) 
m',Xo- U~(:,r.o) 

(4.4)  

(4.5) 

: l : ' , r ; "  - MVN(:,>7) (r0)-']X; - wi((4 >Z;)-' ,4) 

~=l~:,x:- ~=(~=,=/  I x . / %  ~.',((,x:/',,) 
~;1~:',=" ~ ~=(e',x:'/ (x./-'lx: - w,((,x:/-',,) 

and ~ ~ Ga(O.O01,O.O01), such that p",b~,bT,X'o,X~*,ZT,Z~',ECr',E7 are known. Functions 

C.. and &w., for model  8.0(a) and the related survival and hazard functions are: 

Cr .... oxp(L+C) 

{,~ oxp(~+~. ÷:.) l-' 
Pr..,., = exp(exp(Kc +kc. +kc'~,)lnt+exp(Kd+kd r + kd,~)t)J 

f oxp(~+a +:) ]-' 
St.. , =1 -  1+ " 

"' {exp(exp(Kc+kc ,+kc '~ , ) ln t+exp(Kd+kd~+kd: , ) t ) I  

hr (exp(Kc+kc +kc'~.) +exp(Kd+kd, +kd~))P~., (4.6) 
.w,t = I --l " " 

Amended Versions Of Model 8.0(a) 

Model versions 8.0(b) and 8.0(c) are derived from 8.0(a) as 7.0(b) and 7.0(c). 
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4.2 Numerical Examples And Discussion For Preliminary Models 7.0 And 8.0 

The claims data selected to illustrate the models in section 4 are reported in tables 

B. 1 to B.3. The data have been obtained through simulations based on a marine portfolio 

consisting of hull, cargo and aviation hull claims, labelled in graphs and tables as arrays 

1, 2 and 3 respectively. Evident from graph 4.2.1 are the data variability and a large 

number of negative entries in the incremental claims data. Claims reserving models for 

multiple-array Claims portfolios have to explain the variability emerging from the 

different array characteristics, settlement speeds and exposure levels. The broad range of 

the cumulative claim totals, from 1,013,800 to 85,287,218, suggest that such claim 

volume variability may not be effectively captured by the random effects parameters for 

the mean response model alone. 

Array 1 

Array 2 

.i'i! 
Array 3 

~ . , . y  

Graph 4.2.1 Incremental data bar plots by array and underwriting year for tables B.1, B.2 and B.3. 
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Array 
1 

Array 
2 

Array 
3 

By 
Array 

Total 

Model 7.0 (e) 
Ultimate Claim Amount IBNR (I.8) 

Under. Mean Standard Predictive Mean Standard 
Year Mean Sq. Interval Mean Sq. 

Predict 2.50% 97.50% Predict 
Error Error 

1 11,460,00( 560.30( 10,250.000 12,530,000 2.130.000 367.600 
2 18.660.00( 880,10( 16,790,000 20,390,000 3.103,000 592.200 
3 5 .703.00(  363,7001 4.959,000 6,413,000 1,006,000 249,000 
4 10,520,00( 699.0001 8,984.000 11.830.000 2,400.000 493,100 
5 79,440,00( 9,587.00( 59,530.000 96.770,000 21,190,000 6.833.000 
6 5,361.00C 646.10(  3.836,000 6,453.000 1.707.000 479.000 
7 10,340.00( 1,073.00( 8,789.000 12,900.000 2,199.000 788,100 
8 37,200,00C 8.030.00( 22,320,000 51.550,000 14,460.000 6.217,000 
9 57.000.00C 22.430.00¢ 20,850,000 100.700.000 28.180.000 17.890.000 
10 4,479.00C 1.919.00( 1.427.000 8.180.000 2,451,000 1,601,000 
1 3.259,00{ 160,000 2,928,000 3.555,000 460.700 105.900 
2 14,920,00( 718.600 13,810,000 16.590,000 1,661.000 455.000 
3 5 ,504.00(  456.900 4.520.000 6,358,000 1,787,000 311,800 
4 2 ,888.00(  213.50(  2,450.000 3,298,000 558,30t] 148.800 
5 9,255.00( 1.209.00( 7,091,000 11,620,000 2,261,000 864.500 
6 1.530.00C 232,80(  1,112,000 1,964,000 422,500 171.100 
7 1 ,896.000 6 6 , 6 1 0  1.800.000 2,063.000 293,300 44.510 
8 2 ,892,000 237.600 2.557.000 3.517.000 575.600 168,300 
9 1,264,00ff 133.600 1,083.000 1,612,000 299,500 99,010 
10 50.860.000 12.980.000 28.600,000 72.890,000 23,640.000 10.970,000 
1 22,570,00C 379.300 21.730.000 23.270,000 3,176,000 271.906 
2 10,270,00( 529.900 9,141.000 11,250,000 2.549.000 351.300 
3 7 ,549,00(  421,000 6,755.000 8.380,000 1,181.000 288.200 
4 7,465,000 748.000 5.903.000 8.828,00C 1,741,000 523.900 
5 8,308,000 570.900 7.056.000 9,387.000 2.950,000 408,700 
6 8,368.000 648.500 7.269,000 9.715,00C 1,642.00C 477.200 
7 8.719,000 1,810.000 4,564.000 11,610,000 3.735.000 1,376,000 
8 115,700~0ff 15.020.000 92.600.000 148,100.000 30,480,000 11,610,000 
9 7.997.000[ 1.149,000 6,085,000 10.260,000 2,621.000 925.900 
10 94.890.00C 42.140,000 22,790.000 188,100.000 43.200.000 33,030.000 

Array l 240.200.00( 26,480,00( 191.200,000 291,100.000 78.830,000 20.810.000 
Array 2 94.270.0OC 13,240.00C 71.450.000 117,200.00C 31.960,00~ 11.160.000 
Army3 291,800~0C 45.850,00C 215.600,000 389.100.00C 93,280.000 35.830.000 

626.200~0( 54,430.000 530,900,000 740,400,000 204,100.000 43.170,000 

Predictive 
Interval 

2.50% 97.50% 

1.338.000 2.827,000 
1,836,000 d,246,000 

489.400 1,498,000 
1,318,000 3,321,009 
7,172,000 33,700,000 

531.200 2,518,000 
1,256,000 4.081.000 
3.977,000 25,830.000 
4,647,000 63,910,000 

413,800 5,634.000 
236,100 657,100 

1,153,000 2.778.000 
1,108,000 2,369.000 

259,500 846.300 
819,200 3,993.000 
143,200 747.500 
251.100 413.400 
419.200 1.064,000 
213.300 579.900 

7.198.000 42,520,000 
2,555.000 3,660,000 
1.813.000 3.210.000 

646,200 1,759,000 
647.200 2.698,000 

2.060,000 3.712,000 
917,700 2,646,000 
683,200 5.940,000 

15.520,000 56.200.000 
1,228,000 4~85,000 
7.345,000 121,300.000 

42,460,000 119.300,000 
14.750.0OO 51.400,000 
48.710.000 175.000,000 

134.800.000 298.700,000 

2.63E+11 
5.31E+11 
8.09E÷10 
2.42E+11 
3.25E+13 
1.02E+11 
4.53E+11 
1.13E+13 
7.32E+13 
4.28E+11 
2.01E+10 
7.57E+11 
1.24E+11 
2.23E+10 
5.82E+11 
1.59E+10 

!4.42E+09 
'3.98E+10 
8.60E+09 
1.51E+13 
8.60E+10 
2.12E+11 
1.15E+II 
2.56E+11 
1.22E+11 
1.67E+11 
5.23E+11 

i5.84E+13 
2.07E+11 
3.62E+14 

I m  

Deviance 7.372 
lterat.: Start 31.000 

T a b l e  4.2.1 Mode l  statistics, ul t imate losses  and IBNR predictions,  and respect ive  predict ive  

distributions for M o d e l  7.0 (c). 

Portfolios displaying large differences in exposure levels or claims magnitudes are 

not at all unusual, even in treaties where underwriting contracts remain unaltered. Cost 

limitations or timing restrictions may impede exploring methods, possibly able to deal 

with high variability in exposure volumes, such as analyses at transaction level. In the 

models proposed, a good fit to historical data as assessment criterion of  the preliminary 

models, is as important as suitable variance models, as the latter determines the stability 

of  IBNR and ultimate claim predictions. This is more likely to be achieved by models 

7.0(c) and 8.0(c), as inspection of graph 4.2.2 and of actual and fitted claims confirm. 
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Model 7.0(a): Normalized Residuals Model 7.0 (a): Quamile Plot 
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G r a p h  4.2.2 Normal ized  residuals and quantile plots for models  7.0 and 8.0 (a) and (c). 

Plots  for 7 .0(b)  and 8 .0(b)  were  found to be  uninformat ive ,  and for this  reason  were  

e x c l u d e d  from graph 4.2.2.  W h i l e  the rankings  o f  ,r, ~ in m o d e l s  7 .0(b)  and 8 .0(b)  are 
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consistent, with ~r~ < a~ < or, = , the claims volume variability within each array present 

similar problems to those encountered with model 1.0. According to the quantile plots 

only the residuals from models with variance function #~. may satisfy the Shapiro-Wilk 

test W for near-normality (Shapiro and Wilk (1965)). Model 7.0(c) gives narrower 

intervals for the mean 1BNR at underwriting year, array levels and overall. (see table 

4.5.3). The close equivalence of ranking orders for c,~ and C,.. (table 4.2.1) confirms 

the expectation that either (~, = (a~.,,9,p) or (~. = (#,,%.,p) could reveal scale variability 

structures in the data. They do so more effectively than (~. = (o%,,9 ,p). In a variance 

model #=(/j,.,,.,(#,,,)),,~(,+8,), parameters a~ and 3, are less informative. 

Model 7.0(a): Ultimate Claim Amount 

a ~  

, \ 

° ~ °./-,  , . ; . ,  . . ~  , & .  , . / . . .  B.~, 

M o d e l  7 . 0 ( b ) :  U l t i m a t e  C l a i m  A m o u n t  

a . ~ 4  

10. .4 

b ,  • g., , .~°  . . . .  ° , . ~ °  

Model 7.0(c): Ultimate Claim Amount 

°a.. .a.. .£: ,~.. 
u . , m . ~  ¢,. ,m Amen ,  

Model 7 .0 (a ) :  IBNR 

T ~ ,  , . H R  

3 , ~  

M o d e l  7.0( 'o) :  I B N R  

T ~  mN~ 

M o d e l  7 . 0 (b ) :  I B N R  

o &.o , & .  a d . .  . .g~,  , . o . ,  , . & ,  ° & ,  , . & ,  
T~. ,  JBNR 

G r a p h  4 . 2 . 3  P r e l i m i n a r y  m o d e l  7 .0 :  K e r n e l  d e n s i t i e s  f o r  u l t i m a t e  l o s s e s  a n d  IBNR t o ta l s .  
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Model 8.0(a): Ultimate Claim Amount 

ilI. 
Model 8.0(b): Ultimate Claim Amount 

Model 8.0(c): Ultimate Claim Amount 

Model 8.0(a): IBNR 

a. 

Model 8.0(b): IBNR 

/ _ _ _  . . . . . . .  _J 

1 - a . 4  

o~o 6 ~  1.c,o l e . e  

3 ~  

Model 8.0(c): IBNR 

Graph 4.2.4 Preliminary model 8.0: Kernel densities for ultimate losses and IBNR totals. 

Graphs 4.2.3 and 4.2.4 and table 4.5.3 show that the kernels for mean IBNR and 

ultimate claim predictions are skewed. In the next section it is shown how ~r:~ and C,., 

can be used to construct the variance function for the final models. 

4.3 Final Multi-Array M o d e l s  

The preliminary models demonstrate that the data variability can be explored more 

freely when var(Y.w)=a ~. The values of a~. and C,.,. suggest a variability structure 

associated to scale differences between underwriting year data sets, around which a 

cluster structuie could be constructed for analytical purposes. However, some 

management decisions, such as commutations, would require more precise IBNR and 
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Cr. " predictions at underwriting year or contract levels. Reconciliation of reserves 

would be more difficult if the data of interest were not part of the same cluster. A better 

approach to deal with scale variability, and one that is totally coherent with the generic 

model, may involve formulating C .... into the variance model. To assess this, the 

following regression is applied to the output of models 7.0(c) and 8.0(c): 

ln(o',=..) = 8~ +8= In(<.,.) (4.7) 

M o d e l  7 . 0 ( c )  M o d e l  8 . 0 @ )  

2, I . . . . .  

,.(cr..) ,.(or..) 

Graph4.3.1 Lines 81+d;=ln(C~,,, ) and scatter plots of In(C,.) vs ln(o-,~,) on the y-axis. 

(4.7) gives [4,4]=[-8.7068,2.1934] for model 7.0(c) and [4,4]  =[-6.355,2.0347] for model 

8.0(c). Graph 4.3.1 displays the regression lines and the scatter plots of  ln(C,,) versus 

In (o-~.) for both models. Equation (4.7) suggests that the final models should be 

(4.8) 

such that ( = a  2 and /4.w.,(#~.) is given by equations (4.1) and (4.4) for models 7.0(d) 

and 8.0(d) respectively. From regression model (4.7) for model 7.0(c), exp(8,)= 0.000165 

could set the initial value for ~2. The outcome of  the analysis is not unexpected. In fact, 

the inclusion of  C~w in the variance function has the effect of  normalising the data, 

hence, reducing the reserving analysis with random effects models to a type of  problem 

that is more consistent with the typical published examples, concerned with the analysis 

of  repeated observations on subjects or trials that share some common characteristics. 
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See for instance Elashoff et al. (1982) and Aziz et al. (1978). For the final models the 

mean IBNR and ultimate claim amount predictions are replaced by estimates generated 

by their predictive distributions. The reported IBNR values are calculated along the lines 

of(1.9). Extending the definition of section 3.2, the portfolio average model for the 

percentage cash flow is given below. 

4.4 Portfolio And Array Average Models For The Percentage Cash Flow 

Section 3.2 identifies the percentage cash flow as the most suitable function in the 

reserving model where concepts on inferences on marginal distribution or population 

average models could be applied. Comparisons across a claims portfolio are more 

meaningful at percentage cash flow level. As observed in section 3, a model may be able 

to fit the data well even when the percentage cash flow function converges to a value 

different to 1. However, in such cases the ultimate claim amount and IBNR predictions 

would be incorrect. 

To formulate the average models for the percentage cash flow the parameter vectors 

for the portfolio and array average models, ¢, and CA, are respectively defined: 

and 

-1  n u 

such that, design matrices &,, Br. ,, and an are replaced respectively by A, B, and B2. 

Consider for example the mean response function for model 7.0(d). If  

- I  u =D+-' 
~l r = l  ~ r = l  i /  r = l  ~ 1  

r~ ,., k,.~ j . . . .  

(4.9) 

such that D, Kc, d,.,kc r, dr.. and kc~ are the percentage cash flow function parameters, then 

the portfolio average for the percentage cash flow function at time t is given by 
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, ~ ~ exp 

Additional insight may be gained by including in the plots a curve for the percentage 

cash flow average model for each array. Continuing with the example, for the array 

average model for array r in model 7.0(d) 

D r = o+a, +l~a '~  

l u, • Kc,, = Kc+kc + ~ _ l ~ .  

should replace D, Kcp ill equation (4.10). 

4.5 Numerical Examples And Discussion For Models 7.0(d) And 8.0(d) 

Models 7.0(d) and 8.0(d) provide close fit to the data. The portfolio reported IBNR 

and ultimate claim predictions for 7.0(d) and 8.0(d) are given on tables 4.5.1 and 4.5.2 

and summarised on table 4.5.3. They show that the final models' predictive intervals are 

narrower than for their earlier model versions. At underwriting year level, the mean 

response function of  model 7.0 is still the most useful of the two (see table 4.5.1). 

Graph 4.5.2 compares scatter plots for the percentage cash flow values for both models 

and shows that model 8.0(d) is the least successful in separating the volume and 

development pattern elements in the data. Note that the graphs' scales are not the same 

and that the projection period for model 7.0(d) is longer than for model 8.0(d). The 
3 10 

predictive interval for )- '~ 'C .... for model 8.0(d) is also wider. (See tables 4.5.2 and 
r = l  w=l  

4.5.3 and graph 4.5.1). Evident from graph 4.5.2 is the settlement speeds variability. A 

reduction in the reported IBNR predictive intervals is consistent with a reduction of  the 

normalized residuals and the Bayesian Information Criterion. Particularly relevant to the 
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claims process is the systematic correction of historical errors as claims evolve, since 

negative incremental entries frequently adjust earlier overstated claim entries. The box, 

scatter and quantile plots make apparent data anomalies generated by negative 

adjustments to paid claims and by large claim volume differences. As in section 3, 

neither can be addressed with autoregressive error structures. The negative incremental 

claim entries are responsible for the some of the outliers and, in particular, for the slight 

depression in the quantile plots, between -2  and -1 of the horizontal axis. 

Model 7.0(d) 
Ultimate Claim Amount Reported IBNR (1.9) 

Under. Mean Standard Predictive Mean Standard Predictive 
Year Mean Sq. Interval Mean Sq. Interval 

Predict. Error 2.50% 97.50% Predict. Error 2.50% 97.50% 
1 11,210,00( 769,200 9,777,000 12,780,000 1.529,000 769,20( 95,310 3,099,000 
2 17,710,00(  1,249,000 15,420,000 20,320,000 2,353,000 1,249,00( 56,370 4,962,000 
3 5 ,444 ,00C 413 ,80 t ]  4.704,000 6.318,000 872,000 413,80(] 131,300 1.746.000 
4 10 ,080 ,000  837,600 8.526,000 11,800,000 2.233,000 837,600 681,600 3.954.000 

~n-ay 5 82,510,00( 7,098,000 69,530,000 97,320,000 22.950,000 7.098,000 9,971,000 37,750,000 
1 6 5 ,419,00(]  523,300 4,480,000 6,556,000 1,814,000 523,300 874,500 2,951,000 

7 9,677,00(] 708,000 8A97,000 11,350,000 864,700 708.0013 -315,500 2,534,000 
8 41,090,00( 5,069,000 32,640.000 52.560,000 18,800,000 5,069,0013 10.350,000 30,270.000 
9 77,960,00( 12,940,000 57,800,000 108,600,000 43,250,000 12,940,00( 23.090,000 73,890,000 
10 5.935.00( 1.329,00( 3.974.000 9.123.000 3.690.000 1.329.00( 1.730.000 6.879.000 
1 2.954,00( 159,9013 2,655,000 3,284,000 82.640 159,9013 -217,200 412.100 
2 |4,730,00( 867,6013 13,140,000 16,560,000 2.603,000 867,6013 1,004,000 4,431,000 
3 5,511,00( 416.500 4,745,000 6,370,000 1 ,968,000 416,500 1,202,000 2,828,000 
4 2,795,00( 234,300 2,377,000 3 ,289 ,000  388,300 234,3013 -30,250 881,400 

~.rray 5 9,708,00( 836,20( 8,198,000 l 1,490,000 1,928,000 836,2013 418.600 3,708,000 
2 6 1,610,00~ 165,700 1,319.000 1 ,967,000 510,000 165,7013 218300 867.300 

7 1,903,00C 110,600 1,695,000 2,130,000 315,000 110,60( 106,900 541,700 
8 2,878,00( 206,00( 2,527,000 3,345,00( 489,700 206.00( 139,200 956.900 
9 1,256,00( 130,0013 1,089.000 1,527,00( 242,70( 130,0013 74,990 513,500 
10 55.000.000 12,350,0013 37.090.000 86.390.00( 26.260.000 12.350.00( 8.350.000 57.640.000 
1 21,060,00C 1,339,000 18.570,000 23,870.000 1,494,000 1,339,00( -1,002,000 4,302,000 
2 9,372,00( 709,50( 8,070,000 10,840,1)00 1,601,000 709.50( 298.900 3.064.000 
3 7,253,00( 509,80( 6,333,000 8,330,000 1.012,000 509.8013 92,520 2,089.000 
4 7,430,00( 611.50( 6,300,000 8,685,000 1.447,000 611,5013 316,900 2,702.000 

~.rray 5 7,978,00( 683,90( 6,742,000 9,428,00( 2,968,00(] 683,9013 1,731.000 4.417.000 
3 6 7 ,794,0001 585,20( 6,785,000 9,090,00( 509,4013 585,20( -499,700 1,806,000 

7 9,066,000 992,9013 7,317,000 11,150,00( 3,852,0013 992,90( 2.103,000 5.936,000 
8 115,400,000 14,440,00( 94,040,000 148.400,00( 30,070,0013 14,440,00( 8,752,000 63,110.000 
9 7,423,000 1.083,00(  6,060,000 10,240.0013 , 1,912,0013 1,083,00( 549,400 4,731,000 
10 144.200.000 30.660.00( 100.000.000 217,200,0013 82.050.0013 30.660,000 37.860.000 155.100.000 

~rray 267,000.000 15,930,00( 239,600.000 302,600.00( 98.350.00( 15,930,00C 70,950,000 133.900.000 
3y ~.rray 2 98,350,000 12,500.0013 80,030,000 130,000,0013 34,790,000 12,500.0013 16,460,000 66.480,000 
stn'aY ~rray3 336.900,000 34,040,0013 284.200.000 416,100,00( 126,900.000 34,040,0013 74.190000 206,100.000 
rotal ] 702.300.000 39.690,00( 636.000.000 790.200.000 260.100.00( 39.690.0013 193.700,000 347.900.000 

~,2 [ 0.002308 

Deviance 7,365 
lterat.: Start I 29,500 

T a b l e  4.5.1 Model 7.0(d): statistics,  ul t imate loss  and reported IBNR predict ions,  and predict ive  

intervals. 
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Under. Mean 
Year 

1 11,650,00( 
2 15,330,00( 
3 5,257,00( 
4 8,169,00( 

Array 5 88,310,00( 
1 6 5,174,00( 

7 12,640,00( 
8 43,080,00C 
9 100,800.00C 
10 3.732.00C 
1 3,378,00C 
2 13,820,00C 
3 3,567,00C 
4 3,102,00C 

Array 5 13,150,00C 
2 6 1,679,00C 

7 1.726,00C 
8 3,693,00C 
9 1,718,00C 
10 45,620.00C 
1 19,970.00C 
2 9,249,00C 
3 7,050,00C 
4 9,812,000 

Array 5 5,939,000 
3 6 9,454,000 

7 8,073,000 
8 125,800,000 
9 6,229,000 
10 141.100.000 

Array 1 294,200.000 
By Array 2 91.450.000 
Array Array 3 342.700.000 
Total 728.300.000 

a2 0.002137 

Deviance 7.323 
Iterat.: Sta~ 29,500 

Model 8.0(d) 
Ultimate Claim Amount Reported IBNR (1.9) 
Standard Predictive Mean Standard Predictive 

Mean Sq. Interval Mean Sq. Interval 
Predict. Error 2.50% 97.50% Predict. Error 2.50°/. 97.50% 

1,272,00C 9.664,000 14,610,000 1,964.000 1,272,000 -17.750 4,926,000 
925,1013 13,650.000 17,290,000 -33.230 925,100 -1.713.000 1,931,000 
529,3013 4,491,000 6,648.00(1 6 8 4 , 3 0 0  529,300 -81.330 2,075,000 
518,1013 7,230,000 9.284,000 3 2 4 , 4 0 0  5 1 8 ,1 0 0  -614,400 1,439,000 

24,820,00C 62,930.0<)0 159,600,000 28,750,000 24,820,000 3,371,000 I00,100,000 
2,195,0013 3,529,000 11,800,000 1,569,000 2,195,000 -76,040 8,196,000 
4,024,00C 8,691,000 24,190,000 3,827,000 4,024,000 -121,500 15,380,000 

20,980,0013 24,940,000 94.960,000 20,790.000 20.980,000 2,646.000 72,670,000 
56,840,0013 49.440.000 261.700,000 66,120.000 56,840,000 14,730,000 226,900,000 
2.999.000 2.169.000 11.6t0,000 1.488.000 2.999.000 -75.410 9.362.000 

642,300 2.746,000 5,221.000 5 0 6 , 3 0 0  6 4 2 . 3 0 0  -125.300 2.349.000 
1,035,00~ 12,190.000 16,230,000 1,690.000 1,035.000 58.680 4.094.000 

214,600 3,174,000 4,022.000 24,380 2 1 4 , 6 0 0  -368 .000  479,200 
537,100 2,413,000 4,534,000 6 9 4 , 7 0 0  537.100 5,700 2,126,000 

5,018,000 7,527,000 26,000,000 5,372,000 5.018,000 -252.300 18.220.000 
615.700 1.125,000 3.443,000 5 7 9 , 0 0 0  615,700 24.490 2,343,000 
386,700 1,429,000 2,971,000 137,900 3 8 6 , 7 0 0  -159,100 1,383,000 

1,482,000 2,337,000 7,675,000 1,305,000 1,482,000 -51,290 5,287,000 
1,104,000 880 ,500  4,346,000 703 ,800  1.104,000 -133,300 3,332,000 

29.960,000 26A90,000 132.500.000 16,880.000 29.960,000 -2.253,000 103,800.000 
1,316,000 17,640,000 22,840,000 407 ,000  1,316,000 -1,924,000 3,271,000 

996,600 7,773,000 I 1,710,000 1,477,000 996,600 1,074 3,937,000 
1,353,000 5,927,000 11,690,000 809 ,000  1,353,000 -314,100 5,446,000 
2,500,000 6,652,000 16,390,000 3,829,000 2,500.000 668,500 10,410,000 

756,800 5,010,000 7,855.000 9 2 8 , 5 0 0  756,800 -607 2,844,000 
2,978,000 6,651,000 17,840,1)00 2,169,000 2,978,000 -633,000 10,560,000 
2,031,000 5,703,000 13,670,000 2,859,000 2,031.000 489 ,100  8,458,000 

37,370,000 89,280,000 229,700,000 40.550,000 37,370,000 3,992,000 144,400,000 
1,520.000 4,957,000 10,410,000 717 .800  1,520,000 -554,400 4,897,000 

60,410,000 75,900,000 293,600,000 78.980,000 60.410,000 13.760.000 231.500,000 
66,190,000 217.800.000 475,200.000 125,500,000 66.190,000 49,160,000 306.500.000 
30.130.000 68.590.000 177.000.000 27.890.000 30.130.000 5.030.000 113.400.000 
72.200.000 252.700.000 525.000.000 132.700.000 72.200,000 42.750.000 315.000.000 

102.600.000 584.700.000 984.300.000 286,100.000 102.600.000 142.500.000 542.000.000 

T a b l e  4 .5 .2  Model 8.0(d): statistics,  ul t imate loss  and reported 1BNR predictions,  and predict ive 

intervals. 

Historical claims add to 442,249,345. The difference between the ultimate claim 

amounts and the reported IBNR predictions for the final models are approximately 442 

million. The order of  accuracy in the WinBugs system prevents an exact reconciliation 

with the total claim amount to date. When model 7.0(d) is appraised for consistency 

with an analysis by array, the ultimate claim amount and reported IBNR predictions 

show respectively 1.1% and 3.1% overall difference from the predictions on table 4.5.1. 

In section 4.6 the hazard rate profile extracted from the model is discussed. 
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Model 7.0(d): Ultimate Claim Amount 

ii] /"\ 
- / \  

Model 8.0(d): Ultimate Claim Amount 

!] / \ 

o ~g.o  

Model 7.0(d): Reported IBNR 

Model 8.0(d): Reported IBNR 

Graph 4.5.1 Kernel densities and predictive distributions for ultimate losses and reported IBNR. 

Model 7.0(d): Percentage Cash Flow 
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Model 8.0(d): Percentage Cash Flow by array 

|ml . .  

, - t , l  

. B * °  

Io 

b 

• .:.:;.- :q[:°°o° 

,,,- i!;:..,° 
o 

1 o  4 •Q 4 I o  
• 1o 4 l o  • l o  

Graph 4.5.2 Models 7.0(d) and 8.0(d): Scatter plots and average portfolio curve for percentage cash 

flow versus delay time. 
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t 
M o d e l  7.0(d):  Quan t i l e  Plot  

'il ..... 
Model 7.0(d): Box Plot 

Graph 4.5.3 

Model 8.0(d): Quantile Plot 

Model 8.0(d): Box Plot 

' 

l!!i   !iI t!I!1 
Quantile plots and box plots by underwriting year. Underwriting years are labelled 1 to 

30. The first 10 correspond to the marine hull, the next 10 to marine cargo and the last 

)0 to aviation cargo. 

Model 7.0(d): Normalized Residuals 
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Graph 4.5.4 Models 7.0(d) and 8.0(d): Scatter plots versus delay time, overall and by array. 
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Preliminary Models 

Model 
Distributions 

Ultimate Claim Amount 
Standard Predictive 

Mean Mean Sq. L Interval 
Predict. Error / 2.5% 97.5% 

I~NR (1.8~ 
Standard Predictive 

Mean Mean Sq. Interval 
Predict. Error 2.5% 97.5% 

Log Likelihood 

viean Confidence 
Interval 

2.5% 97.5% 

AIC BIC 

I Confidence Confidence 
Mean  Interval Mean Interval 

2.5% 97.5% 2.5% 97.5% 

70(a) I 697,800,o001 20,900,000 
7.0 (b) 688,900,000 17,810,000 
7.0 (c) 626,200,000 54,430,000 

651,600,000 735,100,0001 261,000,0001 18,360,000 
650,100,000 721,400,000 253,800,000 14,350,000 
530,900,000 740,400,000 204,100,000 43,170,000 

219,900,000 293,800,000[ 
222,600,000 280,000,000 
134,800,000 298,700,000 

8.0(a)l 635,000,000[ 56,760,000 
8.0 (b) 742,600,000 126,600,000 
8.0 (c) 71 ,200,000 86,900,000 

558,600,000 793,200,000 192,800,0001 55,59O,000 120,200,000 
587,000,000 1,107,000,000 298,100,000 125,500,000 144,500,000 
505,300,000 , 90,000,000 274,700,000 82,000,000 88,270,000 

Devi. 

7942 
7,866 
7,372 

7,912 
7,816 
7,335 

Devi. Model 

Fina|Models 

Predictive distributions 

Ultimate Claim Amount Reported IBNR (I .9~ 
Standard I Predictive Standard I Predictive 

Mean Mean Sq. [ Interval Mean Mean Sq. Interval 
Predict. Error | 2.5% 97.5% Predict. Error 2.5% 97.5% 

Log Likelihood AIC 

vie.an Confidence [ Confidence 
Interval Mean  Interval 

2.5% 97.5% [ 2.5% 97.5% 

BIC 

Confidence 
Mean Interval 

2.5% 97.5% 

7.0(d) 702,300,000 39,690,000 636,000,000 790,200,000 260,1001000 39~690r000 193,700,000 3471900,000 127.0 106.0 150.0 452.1 409.5 498.8 802.7 760.1 849.4 7,365 
8.0(d) 728,300,000 02,600,000 584,700,000 984,300,000 286, 00,000 02,600~000 142,500,000 542,000,000 27.0 06.0 50.0 5 2 0 .  477.6 565.7 9 9 .  948.6 ,037.0 7,323 

T a b l e  4,5,3 Compar i son  o f  results for models  7.0 and 8.0. 
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4 . 6  A v e r a g e  H a z a r d  R a t e  F o r  M o d e l  4 . 1 ( d )  

As a pure loss measure, hazard rate can help comparing underwriting year contracts, 

to formulate portfolio management strategies, determine future premiums, portfolio 

composition, commutation or closure policies, etc. Hazard rates by underwriting year, 

or weighted average hazard rates for each array or for the whole claims portfolio can be 

derived from a reserving analysis. For payment year r these are respectively: 

= _[ O('n (I~P~...,))I : "  ={.OzJ . . . . . . .  , 
h 

' ' - | J ,  & . . . . . . . .  , 1 - P ,  . . . . . . .  , 

a.:. ,~.,. [ IBNR~ ........ ,) 

I 

- 

n ,, ( IBN& , ,) 
G~, : Z Z h , , , ,  ...... /0  

sBN~-]S.. ..... ~ t ~ . :  . . . . . .  , 

=£h,.,.,_,.+,( IBNP~ ......... , , ]  

,.-, t. m N g f r )  ) 

Given in terms of the 1BNR, the above equations make explicit the changing nature of 

the average hazard as claims evolve. Table 4.6.1 lists the hazard rate values for payment 

years 13, 15 and 17 for model 7.0(d). Since underwriting year losses are at different 

stages in their development, a similar table to 4.6.1 can be used to assess the impact on 

the claims portfolio of, fo r  example, excluding from it underwriting year contracts 

related to underwriting year j~ of array i, and underwriting year .#'2 of  array i 2 . The 

average hazard rate for the reduced portfolio becomes: 

2 

£(G~, - h,. ,. ,_,.÷,)zBN~,..,. ,_,.+.> 
: ,  = G~,+ "" 

2 

1BNR(r)- ~ IBNR,.o.,,_s.+, ) 
n=l 

The exclusion of  the contracts from the claims portfolio reduces the portfolio hazard rate 

only when 

2 

~.(Gh, -h,..,..r_s.., )IBNR,,.O..,_I+,) < 0 

Table 4.6.1 shows that the exclusion of underwriting year 10 from any of  the three 

arrays would reduce the portfolio average hazard rate. The removal of underwriting year 
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data sets belonging to any of  the first seven underwriting years would have the opposite 

effect. While not included in table 4.6.1, from the reserving analysis the full distribution 

for the hazard rates can be obtained. 

Army 1 

Army 2 

Army 3 

By Array 

Overall 

Underwriting Ultimate 
Year Loss 

1 11 230,0013 0.0515 
2 17,660,00C 0.0548 
3 5,458,00~ 0.0589 
4 9,996,001] 0.0638 
5 82,800,001] 0.0695 
6 5,340,0013 0.0760 
7 9,662,0013 0.0816 
8 40,970,00C 0.0932 
9 77,950,00C 0.1046 
10 5,835,00C 0.1161 
I 2,963.00(1 0.0502 
2 14,650,001] 0.0543 
3 5,535,00C 0.0593 
4 2,787,001] 0.0635 
5 9,692,00C 0.0694 
6 1,623,00~ 0.0759 
7 1,900,00~ 0.0810 
8 2,866,001] 0.0895 
9 1238,00~ 0.0990 
10 55250.00(] 0.1152 
1 21,130,001] 0.0551 
2 9,844,000 0.0604 
3 7,251,00C 0.0626 
4 7,515,00~ 0.0653 
5 7,943,00(] 0.0699 
6 7,859,0013 0.0755 
7 9.352,00C 0.0856 
8 115,200,001] 0.0914 
9 7,536,001] 0.1000 
10 148.000,00(3 0.1147 

Array 1 266,900,00C 0.0906 
Array 2 98,510.00C 0.1034 
Array 3 341,600,00C 

707,000.00C 

Model 7,0(d) 

Hazard rates 
Payment Yearl3 Payment Year 15 Payment Year 17 

0.045( 
0.048~ 
0.0513 
0.055C 
0.059! 
0.064( 
0.0681 
0.0761: 
0.0842 
0.0933 
0.044~ 
0.047[ 
0.051~ 
0.054[ 
0.0592 ~ 
0.0639 
0.0673 
0.073S 
0.081~ 
0.0929 
0.048~ 
0.053~ 
0.054~ 
0.0564 I 
0.0597 
0.0641 
0.0711 
0.075~ 
0.081~ 
0.092~ 
0.0738 
0.0833 

0.0410 
0.0430 
0.0455 
0.0484 
0.0516 
0.0552 
0.0583 
0.0640 
0.0697 
0.0762 
0.0401 
0.0427 
0.0458 
0.0482 
0.0515 
0.0551 
0.0580 
0.0626 
0.0679 
0.0759 
0.0440 
0.0476 
0.0487 
0.0497 
0.0520 
0.0555 
0.0607 
0.0640 
0.0682 
0.0760 
0.0620 
0.0685 

o. 1041 0.0846 0.0700 
0.0992 0.0804 0.0668 

Table  4.6.1 Model 7.0(d): hazard rates for payment years 13,15 and 17. 

5. Concluding Remarks 

Reflective of the practical issues involved in the analysis of  reserves, the related 

literature is extensive and explores a variety of  theoretical frameworks. In general, 

having identified the salient data characteristics and gathered information on specific 

events that could have contributed to claims numbers and magnitudes, at the outset of  

every analysis a suitable analytical approach for the problem at hand has to be selected. 

Apart from any academic interest, it is likely that this search could have motivated some 

of  the developments in reserving analysis, and will continue to do so. Hence, 
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establishing the scope and limitations of  each is important. 

Through the generic model it is possible to give a functional interpretation to the 

claims data variability structure. As settlement speeds and scale variability increase, the 

assumptions and model structures encompassed by GLM models have to be replaced by 

more complex ones. The examples support remarks by Carroll (2003) with respect to the 

importance of  the variance model. An inadequate variance model could lead to incorrect 

conclusions. The purpose of  reserving analysis is not just to model historical claims 

data, but, more importantly, to predict 1BNR and ultimate claim amounts. Both are 

strongly reliant on adequate variance definitions. Since claims records have to fulfil 

accounting requirements, corrections and adjustments to original entries are recorded as 

new transactions, and at unpredictable time lags. This could justify regarding measures 

of cumulative claims as repeated observations of an ongoing process. In this context, 

normal errors assumptions could be made tenable through suitable transformations or 

expectation functions, hence availing analytical approaches such as outlined in 

Lindstrom and Bates (1990). In the examples presented, and with the selected data, 

autoregressive error structures cannot be successfully used. 

The generic model makes random effects models accessible to the problem of 

reserving. With the different variance model structures, it exponentially increases the 

analytical resources that can result from constructing families of  reserving models 

around families of distributions. Graph 5.1 is an example of a template that can be used 

to identify the most suitable model structure for the data of interest and formulate the 

percentage cash flow function. With respect to the underlying assumptions for random 

effect parameters other alternatives are possible. Escobar and West (1992) propose a 

non-parametric approach, where the random parameter is taken from a rich class of  

distributions provided by the Dirichlet process. Lai and Shih (2003) leave the 

distribution of the random effects totally unspecified. The non-linear mixed effects 

models library (NLME) assumes that the random effects and the errors have Gaussian 

distributions. Using a matrix decomposition, Bates and Pinheiro (1998) shows that the 

random effects distribution expressed in terms of the relative precision factors can easily 

deliver the likelihood for the fixed and random effects. The flexibility of Gibbs sampling 

methods (Geman and Geman, 1984) has influenced the decision to implement the 
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examples with BUGS (Spiegelhalter et al., 1995), as applications of Bayesian models 

and MCMC estimation methods. Nevertheless, other approaches in relation to analytical 

platforms, model structures and assumptions, beyond those explored, should be 

considered. 
Transformed Gamma Family (ill + 1,2,~') 

q u  O'+l exp(-v) 
P'= tr(~, +l) 

v = I v = < x , , - ,  

Inv. Transl'. 
Gamma 

(p, +I, xm) 

lnv.Oamma 
(~=l) 

Transf.ormed 
Gamma 

(p, +l,X,~) 

Gamma ] Weibull 
(~=l) (ill =0) 

Exponential 
(p, =0,~ =l) 

Inv. 
Exponential 

(fl, =0,~ =l) 

Transformed Beta Family (,fit, fl:, 2, ~-) 

,', ~(e,)~(e=)t,( l+,,) , . .~_j 

Inv. Weibull 
(p, =0) 

v =  ,4,! 

Transf.ormed 

B= I. IPA:%) 
(e~=,) I . ,  I 

Loglogistic l 

i ,I /<=p:=,/ / 
Paralogistic i I / 

(~= P"P2 =l) [ 

Inv. Pareto 
(~=p, =I) 

Graph 5.1 Examples of families of models for the percentage cash flow function. 
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A P P E N D I X  A 

A.I  I N C R E M E N T A L  PAID C L A I M S  D A T A  

UOd. 
Year 

1 
2 
3 
4 
5 
6 
7 

Development Period 

1 2 3 4 5 6 7 8 9 10 

0 94,984 1,049,297 625,878 541,108 427.352 476,477 354,258 188,400 144,987 
0 147,751 999224 937,426 811,294 436,866 264,148 143,616 102,416 132,920 
0 45,751 442,168 588,627 390,301 231,257 119,690 64.365 73 ,641 93,371 
0 20,252 340,320 596,633 336,142 183,473 90,574 114,241 99,467 51,950 
0 21.655 787,440 992,505 893,315 772.514 795,088 718,526 504213 321,630 
0 221,177 1212,010 1,867,718 1,372,904 1,254,084 1,003,612 696,973 534.547 409,845 
0 192 ,144  749,425 1.174.401 1,500.585 2,079,434 1,675,154 1,972,712 1,372.848 491,984 

(cont.) 

Development Period 

11 12 13 14 15 16 17 18 19 

Und. 
Year 

1 
2 
3 
4 
5 
6 
7 

124,614 111,642 56,210 64,259 33,893 15,440 8,255 22,300 25,173 
109,996 58,163 53,679 54,255 25,631 51,443 56,702 59,857 
53,678 29,044 12259 1 0 , 2 6 7  11,264 9,515 8,859 
45,692 21,824 36,117 54,185 52,194 47,355 

183,470 85.610 73,300 97,350 42,620 
111,090 529,552 403,242 291,414 
212.273 191.729 28,340 

T a b l e  A.1 Simulated data based on the claims experience o f  a mixed portfolio. 

A.2 C U M U L A T I V E  PAID C L A I M S  D A T A  

Und. 
Year 

1 

2 

3 

4 

5 

6 

7 

Development Period 

1 2 3 4 5 6 7 8 9 10 
0 94,984 1,144281 1,770,159 2,311,267 2,738,619 3,215,096 3,569,354 3,757,754 3,902,741 
0 147,751 1,146,975 2,084,401 2.895,695 3,332,561 3,596,709 3,740,325 3,842,741 3,975,661 
0 45 ,751  487.919 1,076.546 1,466,847 1,698,104 1,817,794 1,882,159 1,955,800 2,049,171 
0 20,252 360,572 957205 1293,347 1,476,820 1,567,394 1,681,635 1.781,102 1,833,052 
0 21.655 809,095 1,801,600 2,694,915 3,467,429 4,262,517 4,981,043 5,485,256 5,806,886 
0 221,177 1,433,187 3,300,905 4,673,809 5,927,893 6,931,505 7,628,478 8,163,025 8,572,870 
0 192,144 941.569 2.115,970 3,616,555 5,695,989 7,371,143 9,343.855 10,716,703 11208,687 

(cont.) 

Development Period 

11 12 13 14 15 16 17 18 19 
Und. 
Year 

I 

2 
3 
4 

5 

6 
7 

4,027,355 4,138,997 4,195,207 4,259.466 4,293,359 4,308,799 4,317,054 4,339,354 4,364.527 
4,085.657 4,143,820 4,197,499 4,251,754 4,277,385 4,328,828 4,385,530 4,445,387 
2,102,849 2,131.893 2,144,152 2.154,419 2,165.683 2,175,198 2,184,057 
1,878,744 1,900,568 1,936,685 1,990,870 2,043,064 2,090,419 
5,990,356 6,075,966 6,149,266 6,246,616 6,289,236 

8,683,960 9213,512 9,616,754 9,908,168 
11,420.960 I 1,612,689 11.641.029 

Tab le  A.2 Cumulative data based on table A. 1. 
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A.3 P R E L I M I N A R Y  M O D E L  1.0 

A.3.1 M O D E L  1.0 F I T T E D  VALUES OF C U M U L A T I V E  PAID C L A I M S  D A T A  

Und. Development Periods 

Year 1 2 3 4 5 6 7 8 9 10 

55,360 348,100 920,800 1,640,000 2,322,000 2,871,000 3,278,000 3,570,000 3,778,000 3,928,000 
52,840 402,300 1,143,000 2,030,000 2,772,000 3,289,000 3,624,000 3,840,000 3,980,000 4,075,000 
21,410 178,700 547,000 1,017,000 1,413,000 1,681,000 1,848,000 1,953,000 2,019,000 2,063,000 
41,190 183,000 474,200 854,300 1,198,000 1,448,000 1,617,000 1,730,000 1,808,000 1,863,000 
27,850 236,600 774,400 1,641,000 2,657,000 3,610,000 4,386,000 4,970,000 5,393,000 5,698,000 
82,280 563,200 1,597,000 3,037,000 4,550,000 5,878,000 6,928,000 7,713,000 8,290,000 8,711,000 
10,640 152,100 695,400 1,911,000 3,769,000 5.864,000 7,742,000 9,191.000 10,220.000 10.930,000 

Und. 
Year 

1 

2 

3 
4 

5 
6 
7 

(conL) 

Development Periods 

11 12 13 14 15 16 17 18 19 

4,037,000 4,118,000 4,179,000 4,226,000 4,262,000 4,290,000 4,313,000 4,332,000 4,347,000 
4,140,000 4.186,000 4,219,000 4,243,000 4,262,000 4,276,000 4,287,000 4,296,000 
2,093,000 2,113,000 2,128,000 2,139,000 2,147,000 2,153,000 2.157,000 
1,903,000 1,934,000 1,958,000 1,977,000 1,993,000 2,006,000 
5,917,000 6,077,000 6,195,000 6,284,000 6,351,000 
9,022.000 9,254,000 9,428,000 9,562,000 

I 1,410.000 11.740,000 11,970,000 

Table A.3 Fined claims computed by MonteCarlo simulations estimated over 5000 independent 

samples. 

A.3.2 M O D E L  1.0 FIXED EF F ECTS  P A R A M E T E R  ESTIMATES,  V A R I A N C E  AND 

D E V I A N C E  

Fixedeffectpa~mete~ 

L D Kc Kd  ~ K~ K,: 

15.7400 4.8810 1.5470 -15.3600 M.2470 -5.0680 -2.8080 
Und. Year Underwriting year~ndom effect paramete~ 

~. d. ~ ,  ka. 

-0.4364 --0.4050 -0.5091 -0.1369 
-0.4592 -0 .3512 -0 .3995 -0.0313 
-1.1480 -0 .0200 -0 .3330  0.0317 
-1.1690 -0.1730 -0.4673 -0.4279 
-0.0342 0 . 6 8 4 6  -0.3858 -0.0858 
0.3919 0 . 0 0 7 8  -0 .4838 -0.0484 
0.6101 2.3000 -0 .1819 0.1548 

a~ 1.85E÷I0 

Deviance 2,980 

Table  A,4 Model 1.0 parameters and diagnostics. 
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A.4 PRELIMINARY MODEL 2.0 

A.4.1 M O D E L  2.0 F I T T E D  VALUES OF C U M U L A T I V E  PAID C L A I M S  D A T A  

Und. Development Periods 
Year 1 2 3 4 5 6 7 8 9 10 

65,520 381,400 962.800 1,665,000 2.323,000 2.855,000 3,255,000 3.547,000 3,759,000 3,914,000 
47,310 385,000 1.127,000 2.026,000 2,778,000 3,299,000 3,634.000 3.84%000 3,985,000 4,077,000 
15.680 155,300 519,400 1,006.000 1,420,000 1,696,000 1,864,000 1,965,000 2,028,000 2.068,000 
17,190 143,400 444,600 847.300 1,211,000 1,473,000 1,645,000 1,756,000 1,828.000 1.876.000 
28,240 238,800 780,300 1.649,000 2,662,000 3,612,000 4,385,000 4.967,000 5,390,000 5,695,000 

81,750 558,800 1,592,000 3,036,000 4.555,000 5,885,000 6,932,000 7,715,000 8,288,000 8,706,000 
14,370 176,900 753,200 1.981.000 3,810,000 5.856,000 7,699.000 9A40,000 10.180.000 10,910.000 

(cont.) 

Und. Development Periods 

Year 11 12 13 14 15 16 17 18 19 

4,029,000 4,115,000 4,181,000 4.232,000 4.272,000 4,303.000 4.329.000 4,350,000 4,367,000 
4,139,000 4,183,000 4,214,000 4,237,000 4.255,000 4.268,000 4.278.000 4,286,000 
2,094,000 2,112,000 2,125,000 2,134,000 2,140,000 2,145,000 2,149,000 
1,908,000 1,931,000 1.948.000 1,960,000 1,969,000 1,976,000 
5,915,000 6,075,000 6,194,000 6,282,000 6,350,000 
9,014,000 9,244,000 9,417,000 9,550,000 

11,420,000 11,770,000 12,020,000 

Table A.5 Fi~ed claims computed by Monte Carlo simulations estimated over 7000 independent 

samples. 

A.4.2 MODEL 2.0 DIAGNOSTICS AND PARAMETER ESTIMATES 

Fixed effectpammete~ 

L D Kc Kd ~ K~ K,, 

14.8900 5 . 0 1 4 0  0 .2660  -13.4400 -3.4710 -5.5230 -2.5030 
Und. Ye~ Underwriting year random effect pa~mete~ 

0.4214 -0.7378 0.7250 -0.0208 -0.5061 

0.3865 -0.4262 0.8981 0.0177 -0.1910 

-0.3060 0.0697 0.9973 0.0297 -1.4670 

-0.3818 -0.0873 0.9274 -0.0648 -0,8611 

0.8153 0.5157 0.8900 -0.0115 -0.0693 

1.2400 -0.1151 0.8002 -0.1619 1.4680 

1.4700 1.9440 1.0560 0 .3943  1.6780 

0 .2 5.87E+09 
Deviance 2,930 

Table  A.6 Model 2.0 parameters and diagnostics. 
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A.5 V A L I D A T I O N  M O D E L  3.0 

A.5.1 M O D E L  3.0 F I T T E D  V A L U E S  OF C U M U L A T I V E  PAID C L A I M S  D A T A  

Und. Development Periods 
Year 1 2 3 4 5 6 7 8 9 10 

65,890 381,500 961,700 1,663,000 2,321,000 2,854,000 3,255,000 3,547,000 3,760,000 3,915,000 
45,370 377,000 1,117,000 2,023,000 2,782,000 3,305,000 3,640,000 3,852,000 3,989,000 4,079,000 
14,930 152,700 516,400 1,005,000 1,421,000 1,698,000 1,866,000 1,967,000 2,029,000 2,068,000 
16,700 142,400 443,800 846,500 1,210,000 1,473,000 1,646,000 1,757,000 1,828,000 1,876,000 
29,470 241,700 782,300 1,649,000 2,664,000 3,614,000 4,386,000 4,967,000 5,389,000 5,692,000 
97,230 611,800 1,662,000 3,081,000 4,555,000 5,852,000 6,887,000 7,673,000 8,259,000 8,695,000 
10,310 147,300 679300 1,884,000 3.745,000 5.856.000 7,748.000 9,202,000 10.230.000 10,940,000 

(cont.) 

Und. Development Periods 

Year 11 12 13 14 15 16 17 18 19 

4,030,000 4,116,000 4,182,000 4,233,000 4.273,000 4,304,000 4,330,000 4,351,000 4,368,000 
4,140,000 4,183,000 4,214,000 4,236,000 4,253,000 4,266,000 4,276,000 4.283,000 
2,094,000 2,112,000 2,124,000 2,132,000 2,139,000 2,144,000 2,147,000 
1,909,000 1,931,000 1,948,000 1,960,000 1,968,000 1,975,000 
5,911,000 6,071,000 6,190,000 6,279,000 6,347,000 
9,020,000 9,266,000 9,454,000 9,600,000 

11.410.000 11,740.000 I 1,970,000 

Table  A.7 Fitted claims computed by Monte Carlo simulations estimated over 25,500 independent 

samples. 

A.5.2 M O D E L  3.0 D I A G N O S T I C S  AND P A R A M E T E R  E S T I M A T E S  

Fixed effect parameters 

L D Kc Kd ,9 K,~ K,, 

14.2900 5.6670 0 .3595 -13.6300 -6.8610 -5.3350 -2.4080 
Und. Year Underwriting year random effect parameters 

t, d, kc kd, 

1.0300 -1 .3860 0 . 6 3 0 5  0.1420 
0.9940 -1 .0300 0 . 8 1 5 2  0.0310 
0.3015 -0 .5548  0 . 9 1 0 9  0.0018 

0.2259 -0 .7370 0 . 8 3 5 9  -0.0281 
1.4240 -0.1191 0.7978 -0.0700 
1.8620 -0.9282 0.6661 -0.0521 
2.0660 1.5820 1.0150 0.2053 

Subset I - o.~ 9.53E+09 

Subset2- a.~ 4.21E+09 

Subset 3 - o .2 J 4.05E+10 
Deviance 2,936 

Table  A.8 Model 3.0 parameters and diagnostics. 
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A.6 V A L I D A T I O N  M O D E L  4.0 

A.6.1 M O D E L  4.0 F I T T E D  VALUES OF C U M U L A T I V E  PAID C L A I M S  DATA 

Und, 
Year 

1 

2 
3 
4 

5 
6 
7 

Development periods 

1 2 3 4 5 6 7 8 9 10 

68.260 386.900 967,500 1,667,000 2,323,000 2,854,000 3,253.000 3,545.000 3,757,000 3,912,000 
47,650 385,200 1,126,000 2,026,000 2,779,000 3,300,000 3.635,000 3,848,000 3.986,000 4,077,000 
14,160 149,000 512.300 1,005,000 1,424,000 1,702,000 1,869,000 1,969,000 2,030.000 2.069,000 
15,730 138.100 438,100 844~00 1,212,000 1,477.000 1,649.000 1,759,000 1.830,000 1,877.000 

28,640 236.300 771,100 1,637,000 2.656,000 3,613,000 4,389,000 4,971,000 5,392,000 5,695,000 
80,580 552,900 1,581,000 3,023,000 4.545,000 5,881,000 6,933,000 7,719,000 8,293,000 8,713,000 
10.650 149,800 685.900 1.892,000 3,749,000 5,853,000 7.740,000 9,195.000 10,230.000 10,930,000 

(cont.) 

Und. Development Periods 

Year 11 12 13 14 15 16 17 18 19 

4.028,000 4,114,000 4,181,000 4,232.000 4,272.000 4.305,000 4.331.000 4,352.000 4,369,000 
4,139,000 4,183,000 4,214,000 4,237,000 4.254,000 4.268.000 4,278,000 4,286,000 
2,094,000 2,111,000 2,122,000 2.131,000 2,137.000 2,141,000 2,145,000 
1,909,000 1,931,000 1,946,000 1,958,000 1,966,000 1,973,000 
5,912,000 6,071,000 6,188,000 6,276,000 6,343,000 
9,021,000 9,251,000 9,424,000 9,556,000 

11,420,000 I 1,750,000 11,980.000 

Table  A.9 Fitted claims computed by Monte Carlo simulations estimated over 25,500 independent 

samples. 

A.6.2 M O D E L  4.0 D I A G N O S T I C S  AND P A R A M E T E R  E S T I M A T E S  

Fixed effect parameters 

L D Kc Kd K,, K.+ 

15.2900 5 . 6 8 5 0  0 .6367 -14.4900 -4.4210 -2.4880 
Und. Year Underwriting year random effect parameters 

t,. a.. ~, ~, 

0.0272 -1 .3800 0.3547 0.0661 
-0.0102 -0 .9854 0 . 5 4 4 9  -0.0122 
-0.7086 -0.2573 0.6872 -0.0329 
-0.7808 -0.5506 0.5905 0.0138 
0.4234 -0 .1890 0.5087 0.0121 
0.8493 -0.8225 ' 0.4171 0.0846 
1.0600 1.6470 0 . 7 4 7 9  0.0277 

~2 1.06E+10 

P 0.0025 
Deviance 2.902 

Table  A.10 Model 4.0 parameters and diagnostics. 
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A.7 F I N A L  M O D E L  5.0 

A.7.1 M O D E L  5.0 F I T T E D  V A L U E S  O F  C U M U L A T I V E  PAID C L A I M S  D A T A  

Und. Development Periods 
Year I 2 3 4 5 6 7 8 9 10 

65,470 380,000 959,800 1,662,000 2.322,000 2,855,000 3,256,000 3,549,000 3361,000 3,915,000 
45,730 377.900 1.118,000 2,023,000 2,782,000 3,305,000 3.640,000 3,853,000 3,989,000 4,079,000 
14,630 150,600 513.300 1,004,000 1,423,000 1,700.000 ],868,000 1,969,000 2,030,000 2,069.000 
16,030 138,600 438,300 844,500 1,212,000 1,477,000 1,649,000 1,759,000 1,830,000 1,877,000 
28,820 240,200 780,900 1,648,000 2,661,000 3,611,000 4,385,000 4,968,000 5,391,000 5,696,000 
84,690 567,600 1,601,000 3,038,000 4,549,000 5,875,000 6.924,000 7,710,000 8.288,000 8,711,000 
13,570 171,000 738,800 1.964.000 3.803.000 5.864.000 7.714.000 9.153.000 10.190,000 10.910.000 

(cont.) 

Development Periods 
11 12 13 14 15 16 17 18 19 

Und. 
year 

l 

2 

3 

4 

5 

6 

7 

4,030,000 4,115,000 4,181,000 4,231,000 4.271,000 4,303,000 4,328.000 4,349.000 4,365,000 
4,141,000 4,183,000 4,214,000 4,236,000 4,253,000 4,266,000 4,276,000 4.283,000 
2,094,000 2,112,000 2.124,000 2.132.000 2,138,000 2,143,000 2.146,000 
1,908,000 1,930,000 1,946,000 1,958,000 1,966,000 1,973,000 
5,916,000 6,076,000 6,195,000 6,284,000 6,351,000 
9,023,000 9,256,000 9,433,000 9,568,000 

11.410.000 11,750,000 12,000,000 

T a b l e  A.11 Fitted claims computed by Monte Carlo simulations estimated over 25,500 independent 

samples. 

A.7.2 M O D E L  5.0 D I A G N O S T I C S  AND P A R A M E T E R  E S T I M A T E S  

Fixed effect parameters 

L D Kc Kd .9 t oo~_ K,, Ko. 

14.8300 5.2000 1.8770 -13.5100 -4.1220 1.6200 -4.4750-2.2010 
Und. Year Underwriting year random effect parameters 

1, d. kn,. kd  

0.4881 -0.8916 -0.8796 0.0577 

0.4528 -0.5451 -0.6994 -0.0371 

-0.2402 -0.0258 -0.5958 0.0205 

-0.3172 -0.1816 -0.6650 0.0317 

0.8829 0.3530 -0.7180 0.0166 

1.3100 -0 .3071  -0.8147 -0.0499 
1.5340 1.8580 -0.5337 0.1329 

0.2 5.05E÷09 

Deviance 2,928 

Tab le  A.12 Model 5.0 parameters and diagnostics. 
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A.8 F IN A L  M O D E L  6.0 

A.8.1 M O D E L  6 .0  F I T T E D  VALUES OF C U M U L A T I V E  PAID C L A I M S  DATA 

Und. Development Periods 
Year 1 2 3 4 5 6 7 8 9 I 0 

66,200 383,900 964,400 1,663,000 2,317,000 2,848,000 3.249,000 3.542,000 3,755,000 3,912,000 

135,300 641,200 1,389,000 2,138,000 2,748.000 3,197,000 3,517,000 3.745.000 3,908.000 4,027,000 
35,860 237,300 618,100 1,046,000 1,401,000 1,652,000 1,820,000 1.931,000 2,006,000 2.057,000 
59,230 265,600 575,400 903,400 1,188,000 1,410,000 1,575.000 1,697,000 1,787,000 1,854,000 
24,320 220,100 747,500 1,618.000 2,651,000 3,620,000 4,404,000 4.988,000 5.407,000 5,704,000 

165,500 810,000 1,909,000 3,252,000 4,598.000 5,790,000 6,773,000 7.554,000 8,166,000 8.642,000 
8,110 125.600 616.800 1,796,000 3.698.000 5.889.000 7,832.000 9,285,000 10.280.000 10.940,000 

(cont.) 

Development Periods 

11 12 13 14 15 16 17 18 19 

Und. 
Year 

1 

2 
3 
4 

5 
6 
7 

4,028,000 4,116,000 4,182,000 4,234,000 4.275,000 4,307.000 4,334,000 4,355,000 4,372.000 
4,116,000 4.183,000 4,235,000 4,275,000 4,308,000 4,334,000 4,355,000 4,372,000 
2,093,000 2,119,000 2,139.000 2,153,000 2.164,000 2,173,000 2,180,000 
1,905,000 1,945,000 1,975,000 2,000.000 2,019,000 2.035,000 
5,917,000 6,070.000 6,182,000 6,266,000 6,329,000 
9,015,000 9,309,000 9,543.000 9,731,000 

11.380.000 11.670.000 11.870,000 

Table  A.13 Fitted claims computed by Monte Carlo simulations estimated over 25,500 independent 

samples. 

A.8.2 M O D E L  6.0 D I A G N O S T I C S  AND P A R A M E T E R  E S T I M A T E S  

Fixed effect parameters 

L n Kc rd ¢ a; ~; a; K, K., 

15.8000 4.5610 1.2320 -12.9600 -1.9120 1.1780 15.6300 -0.1581 -6.3830 -1.3110 
Und. Year Underwriting year random effect parameters 

I, a, I,e, kd  

1 

2 
3 
4 
5 
6 
7 

-0.4813 -0.3208 -0.2500 -0.0844 
-0.4805 -1.0340 -0.3300 0.0070 
-1.1870 -0.3798 -0.1589 0.0487 
-1.2220 -0.9034 -0.3593 -0.0150 
-0.0970 1.0910 -0.0505 -0.0292 

0.3991 -0.3295 -0.3438 0.0398 
0.5364 2.9920 0.1889 0.0295 

o-' 109,600 

Deviance 2,887 

Table  A.14 Model 6.0 parameters and diagnostics. 
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B.I A R R A Y S  1 T O  3: C U M U L A T I V E  PAID C L A I M S  D A T A  

Und. 
Year 

1 

2 
3 
4 

5 
6 
7 
8 

9 
10 

Development Period 

I 2 3 4 5 6 7 8 9 10 

1,965,120 4,455,720 5,125,260 6,208,080 6,365,400 7,566,780 8,134,380 8,300,640 8,491,200 9,072,840 
508.829 7,957,659 10,395,008 11,627,118 12,659,049 13,512,509 13,813,936 14,609,422 14,836,855 15,095,843 

1,070,272 2,117,478 2,876,979 3,141,005 4,127,612 4,337,374 4,503,876 4,522,524 4,543,644 4,560,720 
983,295 2,957,869 5,140,518 6,369,315 6,326,691 7.867,792 7,356,575 7,656,758 7,817.554 7,844,431 

9,979,594 26,286,414 25,263,483 40,239,973 51,246,513 54,472,139 55,800,837 56,658.302 59,561,780 
55,668 1,586,037 1,764,809 2,888,328 3,158.562 3,445,626 3,459,794 3,604,995 

2,128,880 4,827,030 5,552,365 6,725,420 6,895,850 8,197.345 8.812,245 
2.528.789 8,400,695 12,219,988 21,139,396 23,109,446 22,292,555 
1,613.864 10,075.000 12,091,140 28,449,598 34,707,350 

110,580 576,687 1,887,649 2,244,074 

(cont.) 

Development Period 

Und. II 12 13 14 15 16 17 18 19 
Year 

9,298,740 9,640,380 9,681,600 

15,216,319 15,361,081 

4.572,331 

Tab le  B.1 Array  1 : Simulated data based on the claims experience o f  a marine hull portfolio. 

Und. 
Year 

1 

2 
3 
4 
5 
6 
7 
8 

9 
10 

Development Period 

1 2 3 4 5 6 7 8 9 10 

445,841 1,654.609 1.605.300 2.004,723 2,299.800 2,275,241 2.470,159 2.579.168 2,641.868 2.744.127 
2,426,373 7.352.166 8,950.532 10.167,845 11,756,358 12.137.425 12.030~761 12.970,026 13.607,600 14,532.427 

184,480 318.830 1.296.062 2.733,415 2,650,811 3.010.199 3,168,834 3,349,023 3.431.900 3.493.316 
601.693 1,084,468 1,510,596 1,606.829 1.910.257 1.973.043 2,274,886 2,320.886 2,304,771 2.407,211 
968.366 2,530.871 4,608.428 4,912,525 6.271.612 6.799,211 5,466,992 6,770,634 7.779,669 
239.105 326.614 670,735 905.967 913.090 1.131,129 1,090,519 1,100,114 
361.246 1.078.435 1,205,746 1.478.083 1,461,000 1.547.928 1,587,804 
742.335 1,392.375 1,937,655 1,865.055 2.282,175 2.388.270 
228,34l 704,498 798.463 815.165 1,013.800 

1.589,527 15.936.500 22.331.091 28.741.729 

(cont.) 
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Und. Development Period 
Year I1 12 13 14 15 16 17 18 19 

I 

2 

3 
4 
5 
6 
7 
8 
9 
10 

2,786,141 2.870.495 2.871,777 
12.130,088 12.131,811 
3,542.361 

Table  B.2 Array 2: Simulated data based on the claims experience of  a marine cargo portfolio. 

Und. Development Period 
Year 1 2 3 4 5 6 7 8 9 10 

I 

2 

3 
4 

5 
6 
7 
8 
9 
10 

3.232,205 9,881.808 12.905,347 14,832,451 15.314.642 16.405.052 17,591,239 17,993,791 18,352.169 18.500.158 
1,262,978 2,979,101 3,119,301 4,617,621 5,884,276 6,241,315 6,659,795 6,818,432 7,164,468 7,544,540 
1,099,101 3,367.582 4,078,680 4.335.973 5,855,806 5.875.321 5,977,392 6,129,768 6,185,657 6,205,646 

731,599 2,554,623 3,586.046 4,168.936 3,762,376 5,081,203 4,686,750 5,777.092 6.108.501 5,983.210 
175,251 1.581.689 2,116.488 3.455.030 4,284,402 4,794.982 4.848,263 5,275.530 5.010.701 

1.339,210 3,824.400 4.704.740 5.565,181 5,412,190 6.389.658 6,517.524 7.284.369 
590.921 1,263.060 1,812,106 3.441.064 4,204,651 5,155.490 5.213.434 

20.698,911 43.203.529 63.631,429 70.713.997 89,249.817 85.287.218 
790,164 2,944,098 4,609.088 4.747,316 5,511,068 

9.900.060 17,916,636 50.167.809 62.132,660 

(cont.) 

Und. Development Period 
Year I1 12 13 14 15 16 17 18 19 20 

1 

2 
3 
4 
5 
6 
7 
8 
9 
IO 

18,733.437 19,496.439 19.567.234 
7.689,022 7.771,566 
6,240,897 

Table  B.3 Array 3: Simulated data based on the claims experience of  an aviation hull portfolio. 
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A Least Squares Method of Producing 
Bomhuetter-Ferguson Initial Loss Ratios 

Paul Brehm, FCAS, MAAA 

Actuaries have relied on the Bornhuetter-Ferguson methodology in loss reserving 
since the "The Actuary and IBNR" [2] was published in 1972. The methodology 
is an intuitively appealing, credibility-weighted compromise between link ratio and 
expected loss ratio methods, where 'credibility' is inversely proportional to the 
remainder of the loss development tail. However, for almost as long as this 
method has been in existence, practitioners have been asking, "What do I use for 
my expected loss ratios?" Answers to this question (often unsatisfying ones) 
include industry data, company data for comparable classes of business, loss 
ratio pricing targets, planned loss ratios, and more. 

This paper addresses the above question by offering a methodology for 
producing underlying loss ratios for use in the Bornhuetter-Ferguson method that 
are derived from the data itself. In particular, this paper addresses how to 
determine the underlying loss ratio for the initial time period in the analysis using 
a least squares methodology. The initial loss ratio is then used as the seed value 
for all subsequent loss ratios. 

Let: 

1. Derivation 

L U = loss ratio for accident period i (i=1 ..... n) evaluated cumulatively at j 
(j=l . . . . .  m) 

Fj = development factor from age j to ultimate 

Ui BF = Bornhuetter-Ferguson estimate of ultimate for accident period i 

U= = underlying ultimate loss ratio for accident period i (used in the 
Bornhuetter-Ferguson formula) 

T~ = trend from time (i-1) to i - accident year dimension 

P~ = earned effect of pricing from time (i-1) to i 

Then the Bornhuetter-Ferguson estimate of the ultimate loss ratio for accident 
period i, with cumulative losses evaluated at j is: 
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+u;¢,- '-] 
t r,j 

(1.1) 

An .alternative estimate for accident period i can be derived by using losses 
evaluated one period earlier with the appropriate development factor, FH: 

= L,.,_, t. 6 - , J  (1.2) 

If (1.2) is subtracted from (1.1), the difference in estimated ultimates should be 
zero, but for some estimation error: 

_ l  -L l 

Alternatively, after some manipulation: 

(1.3) 

Note that the term on the left of equation (1.3) is simply the incremental loss 
ratio. The term on the right is its expectation, conditioned on the underlying or 
expected loss ratio and the selected development pattern. Ifj = 1, that is, the first 

evaluation, then the term ~ is undefined. For this initial condition, let ~ ]  = 0, 
r,_, ~_,  

I - - 1  

and the bracketed term on the right becomes/~]  ] .  
L - ~,J 

Now assume that the accident period loss ratios can be linked together over time 
by periodic trend (Ti) and pricing (Pi) factors according to: 

0+r , )  
u ;  = u,_, (1 + P~) (1.4) 

By successive substitutions, all underlying ultimate loss ratios can be linked back 
to the initial underlying loss ratio: 
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i + 
u7 = , . n 0 + T , )  0.s) 

*=2 (1 + Pk) 

Substituting (1.5) into (1.3) for U(yields the general formula 

(L~ - L,,_, ,=2 (1 + e,) 
' , '_/]+,, (1.6) 

Note that (1.6) is of the form Y~j=I~X~j, where the Yu are incremental loss ratios, the 
X U are the 'independent variables,' and.18 is the initial underlying loss ratio seed 
for the Bornhuetter-Ferguson model, U 1. The independent variables are simply 
derived values constructed from trend and pricing factors in the accident period 
dimension and loss development factors in the development dimension. Formula 
(1.6), then, can be estimated as a simple linear regression through the origin. 

A 

The parameter estimate, ,8, is the initial loss ratio we are solving for. Think of the 
result as the initial loss ratio that is the least squares best estimate based on the 
data and conditioned on all the assumptions concerning pricing, trend, and loss 
development. 

If it is assumed that trend is constant over the experience period, i.e., T~ = T for all 
i, the formula (1.6) simplifies to: 

E ' lE / ' / / ' / l  (L,, - L, , , )= U; (I ,.,(l+Pk) l - F , ,  ~-F, - +T) ]-I . . . .  +',, (I .7) 

The functional form of (1.7) is particularly useful. Given a set of loss 
development factors and an earned price index, the above regression can be 
iterated over a range of annual trend assumptions. The final model can be 
chosen based on the underlying trend that maximizes R 2. (I know, it's data 
mining.) 

Once Ul" has been estimated, subsequent underlying loss ratios can be 
estimated as 

u; _ , . r ~ 0 + r , )  (~.m 
- v i i i  k.= (1+•) 

o r  
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J 1 
u; = U; (l + r ) " H  (l_;p, ) (1.9) 

for the constant trend case. 

Since this is a regression model, the estimate /~ of Ul* has an associated 

standard error, and a confidence interval can be established. The variance of ,B 
is 

o-~- o" (1.1o) 
p Zx;  

where x~j are the independent variables. 

An unbiased estimate of ~2 is 

$2 = _~-'~6~ 
(n-I) 

(1.11) 

where the e=j are the residuals from the regression, and n is the number of terms 
in the regression. There are n-1 degrees of freedom, as we are only estimating 
one parameter. The standard error of the coefficient -- the square root of the 
variance -- can be calculated as 

s:[ 1 p ( . -  
(1.12) 

The 100-c~% confidence interval around ,8 is 

A 

p+ t %s ;, (1.13) 

The confidence interval (1.13) can be used to establish a range of estimates and 
thereby gauge the sensitivity of the reserve indication. For example, in the case 
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where a trend factor is also estimated by ordinary least squares, a confidence 
interval can be estimated for the trend factor, as well. If a low estimate of trend is 
paired with the lower bound of 13 in formula (1.9) and a high estimate of trend is 
likewise paired with the upper bound of the confidence interval for 13, both a low 
and a high loss ratio pattern can be traced over accident periods and used in the 
Bornhuetter-Ferguson estimation to derive low and high reserve estimates. 

2. Example 

Following is an example based on general liability data. The graphs below show 
the incremental loss ratios by accident period over time (development period) - 
case incurred on the left, paid data on the right. 

Graph 2.1 
Incurred Data 

Accident Years over (Development) time 

Graph 2.2 
Paid Data 

Accident Years over (Development) time 

Incmrnontal Development by Accident Year 

35 0% 

300% 

250% ", 

20.0% 

5 0 % J 1  2 3 4 5 6 7 8 9 10 

Oevolop~flt Period 

Incremental Development by AccMent Year 

leO% 
16o% 
14r0% 
120% 
lO 0% 
a,0% 
6o%~ 
40% ~ 
20% 

1 2 3 4 5 6 7 8 9 10 
Devllopmnt Pe rlocl 

When viewed by development period over accident period below, the incremental 
loss ratios by evaluation would ideally behave like random pattern of points about 
a smooth trend line, if a constant trend and on-level factors truly picked up all the 
sources of systematic change over time. However, the data shows a departure 
in the pattern over accident periods starting in accident period 5 (see Graphs 2.3 
and 2.4, below). This suggests a non-constant trend parameter or, alternatively, 
something affecting the loss ratios other than trend, e.g., underwriting or mix 
changes. In reality the departure associated with accident period 5 may well be 
better characterized as a calendar period distortion. Barnett and Zehnwirth's 
model [1] may be a good alternative in this case. 
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Graph 2.3 
Incurred Data 

Development Pedods over (Accident) time 

Incremental Development by Development Year 

25 0% 3 

2O 0% ~ 5 

50% ++-9 
0 0% . . . .  ~0 
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J c d d e n t  Period 

Graph 2.4 
Paid Data 

Development Periods over (Accident) time 

Inceomentnl Paid D e v e l o p m e n t  b y  Development year 

25.0% ~ 1  

21 2 " 
lo  

1 2 3 4 5 6 7 8 9 1o 

In this example, the constant trend case was modeled first for illustration 
purposes. In the example data, the least squares trend estimate using an 
exponential trend fit to pure premium was 3.5% (with an associated standard 
error of 0.016). However, R 'was maximized using a trend of 4%: 

97.9% 1 

 976% t 
97.7% 1 

~r 97.7% 4 

97.6% t 

0.0% 

Graph 2.5 

R-Squared  v . / ~ s u m e d  T rend  

1.0% 2.0% 3.0% 4.0% 5.0% 6.0% 7.0% 

lOSS Trend 

The resulting regressions can be seen below. 
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Graph 2.6 
Incurred Data Regression 
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Graph 2.7 
Paid Data Regression 

"°" 1 
2OO% y l  O.60k 

R'. o.m7 o 8 

1 0 , 0 %  

O O %  , , , 

0 0 6 0  0.100 0.150 02~0 O ~ a O  

It can be seen from the above regressions that the paid and incurred data yield 
consistent results (initial loss ratios of 59.8% and 60.8%) from models with a 
strong goodness of fit (R 2 values of 96% and 92%, respectively). It would be 
appropriate, and more thorough, at this point to examine the residuals for serial 
correlation and non-constant error variance (heteroscedasticity). If either was a 
problem, the regressions could be adjusted accordingly. 

To continue this example, trend was next assumed to vary over time. Underlying 
annual trend was set to 2% (rather than 4.0% overall), with additional period-on- 
period changes added to accident periods 5 through 9 to account for the 
calendar period distortion or "surprise" trend 1 (much like the industry observed in 
liability coverages in the late 90's). The resulting regressions are shown below. 

Graph 2.8 
Incurred Data Regression 2 
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Graph 2.9 
Paid Data Regression 2 
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i rve never tried it, but it occurs to me that the regression could simply be augmented with 
'distortion dummies' to automatically estimate the degree of departure from an underlying trend. 
This will be a subject of future research. 
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In the revised regressions, the case incurred estimate of the initial loss ratio is 
55.3% (R 2 of 98.3%) and the paid loss estimate of the initial loss ratio is 55.7% 

(R 2 of 96.8%). S, was 0.7% for both the paid and case incurred data, yielding a 
B 

95% confidence interval of roughly +/-1.5 loss ratio points at time 1. 

Given two estimates of the seed loss ratio, along with their respective error 
variances, we can credibility weight the two together to get one estimate. The 
formula for the paid data credibility parameter is: 

(2.1) 

where S 2 is shown above in (1.11 ). 

In practice, the credibility weighted solution can be derived directly by combining 
the paid and incurred regression matdces and doing a single, mixed regression 
[3]. The mixed estimate for this example is shown graphically in Graph 2.10. 
The mixed estimate of the initial loss ratio is 55.5% with an R 2 of 99.2%. S^ is 

P 

0.46% for both the paid and case incurred data, yielding a 95% confidence 
interval of roughly +/-1.1 loss ratio points at time 1. 

Graph 2.10 

Mixed Estimation 
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The mixed estimate initial loss ratio, U*I, and the trend assumptions applied in 
the regression model substituted into formula (1.8) yields a pattern of underlying 
loss ratios as shown below. For the sake of this graph, the low and high loss 
ratios were calculated according to formula (1.13) for accident period 1 using a 
95% confidence level. Subsequent accident period ultimate loss ratios were 
calculated with the selected trend plus and minus 1.6% respectively - one 
standard deviation around the least squares annual loss cost trend. 

Graph 2.11 

Underlying Loss Ratios 

120.0% - 
110.0% -. 
10o.0% %, 
90.0% * . \  

,o.o% \ .  4- ,um 
60.0% ~ "i --m--Low 

50.0% . . . .  
40.0% , 

1 2 3 4 5 6 7 8 9 10 
Accident Period 

3. Conclusion 

The above method has a strong appeal. Its strengths include utilizing all readily 
available data (dollars, counts, trends, premiums, exposures, pricing) and 
utilizing paid and incurred losses simultaneously to produce a 'best' (least 
squares) answer, in a computationally tractable manner, while still allowing the 
flexibility for ample actuarial judgment. 

This method has always served me well, even with 'misbehaved' or sparse data. 
I hope it fills a need in your actuarial tool box. 
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Trending Entry Ratio Tables 
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1 Background 

Entry ratio tables are often a convenient mechanism for capturing informa- 
tion that is subject only to scale transforms. For example, the National 
Council on Compensation Insurance, Inc. (NCCI) stores excess loss factors 
(ELFs) in entry ratio tables. To determine an ELF at an attachment point, 
you simply divide the attachment point by the mean loss, and use that "entry 
ratio" value to look up the ELF in the table. A key assumption is that the 
underlying size of loss distribution changes only by a uniform scale transform 
over time (or by a transform that is close enough to a scale transform; c.f. 
Venter [3] for a discussion of scale adjustments and excess losses). 

In fact, there can be forces at work that change the shape of size of loss 
distributions in ways that are not captured by scale transforms. For example, 
large claims might have greater trend factors than small claims (differential 
severity trend). Also, the frequency of small claims might decrease more than 
the frequency of large claims over some period of time (differential frequency 
trend). Not surprisingly, both of these possible effects act to "stiffen" the size 
of loss distribution, that is, increase the probability that a claim is "large," 
given that a claim occurs. A surprising result of our analysis is that the 
adjustments to entry ratio tables to take these phenomena into account, 
when they occur, often work in opposite directions. When large claims have 

*Much thanks goes to Greg Engl and John Robertson, also of NCCI. Greg reviewed 
numerous drafts and his input improved the work throughout. John was key in promoting 
the topic within NCCI's actuarial research agenda. Both made direct and significant 
contributions to the paper. 
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greater trend factors than small claims, it might be necessary to increase 
the entry ratio table ELFs for large entry ratios. But when small claim 
frequency declines more rapidly than large claim frequency over a period of 
time, it might be necessary to reduce the tabular ELFs for large entry ratios. 

In this note we specify a generic, spreadsheet-friendly, format for an en- 
try ratio table and consider the effects of differential trend and differential 
frequency changes. Each is illustrated by a real world Workers Compensa- 
tion (WC) case study. We then describe general techniques for modifying 
an entry ratio table to account for not only a change in scale but also a 
change in the relativity between the mean and the median loss (or any fixed 
percentile loss) or a proportional shift in the hazard rate function of the loss 
distribution. The findings suggest that entry ratio tables work surprisingly 
well even for non-uniform trend and that in some important instances just a 
small adjustment can extend the shelf life of an entry ratio table. 

2 Background 

Before we get into the details of the paper, we present a thought experiment 
to illustrate some of the issues. Suppose we have 100 claims, 99 of which are 
for $1 and the other is a $10M claim. Consider what happens if over the next 
year inflation is expected to double the cost of the $10M claim, but leave the 
other 99 unchanged. Observe that the mean cost per claim is expected to 
roughly double, going from about $100K to about $200K. Recall that the 
excess ra t io  is simply the ratio of the sum of losses in excess of a per claim 
loss limitation to the total of all first dollar and up losses. The following is a 
sketch of the graph of the old and new excess ratios, expressed as functions 
of the loss limitation amount: 
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Differential Severity Example 
Excess Ratio Functions 
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LOSS A m o u n t  

In practice, excess ratios are often captured in "entry ratio" tables, i.e. 
tables in which losses have been normalized to a mean value of 1. In this case, 
when we normailize the old and new losses by dividing by their respective 
means, the graph of the tabular excess ratios looks something like: 

Differential Severi ty Example  
Normalized Excess Ratio Functions 

o 

4~ 
(D 
U 

---.1..-- ~ o l m ° ~  
I~lew I ~  ~ Old Mem k~w V,~n 

Old Morn 
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Observe that the new tabular values all lie at or above the old, which 
makes intuitive sense. Indeed, the inflation targeted the big claim, thereby 
"thickening" the tail of the loss distribution and necessitating the use of 
higher excess ratios next year. Because inflation changed the cost of claims 
selectively by size, this is a case of what the paper calls "Differential Severity". 

Now suppose we begin with those same old 100 claims, but this time we 
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consider what happens when, due to a safety initiative, half the $1 claims do 
not emerge the next year. Because the change impacts claim frequency selec- 
tively by size, this is a case of what the paper calls "Differential Frequency". 
Notice that this experience change again roughly doubles the mean cost per 
case. Here the chart of the old and new excess ratio as a function of the loss 
limitation amount looks like: 

Differential Frequency Example 
Excess Ratio Functions 
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and when normalized to entry ratio tabular values becomes: 

Differential Frequency Example 
Normalized Excess Ratio Functions 
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Because the safety initiative is expected to be successful only for small 
claims, intuition again suggests a thickening of the tail. Observe, however, 
that the new tabular excess ratio values start out equal, then lie above, and 
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eventually fall below the old. This suggests that,  despite the similar impact 
on the mean cost per claim, something genuinely different is happening in 
the two scenarios. Actuaries should take heed that  intuition can be a fallible 
guide to updating entry ratio tables. 

3 N o t a t i o n  a n d  T e r m i n o l o g y  

We start  with a definition and, to keep the discussion self-contained, we 
derive some straightforward and familiar formulas: ! 

De f in i t i on  1 A random variable X is a loss variable if  it has finite mean 
# = E[X] > 0 and has a density [PDF] f that is continuous when restricted 
to [0, +oo) and whose support is contained in [0, +oo). We denote the distri- 
bution function of x by F(x) = fo  f ( y ) d y ,  whence ~ = f (~)  on [0, +oo). 
The survival function of X is S = 1 - F. The excess ratio function of X is 
given by R(x) = E[Max(X-x,O)] = f ~ ( y - x ) f ( y ) d y  for X > O. We denote by F the 

IZ # - -  

function given by F(x) = ~ for x > O. We use subscripts on #x,  Ix ,  i~ 

Fx,  Sx ,  Rx ,  and Fx when necessary to indicate dependence on X .  

Thefollowing proposition expresses the excess ratio function in terms of 
F and F. 

P r o p o s i t i o n  2 R(x) = 1 - F(x)  - ~ [1 - F(x) l ,  for all x >_ O. 

Proo f .  From the definition of R(x) we have 

R(x) = (y - x)f(y)dy 

1 ~ f ( y ) d y ]  = - ~ [ ~ ° ° y f ( y ) d y - x  

= l [ p - ~ o X y f ( y ) d y - x S ( x ) ]  

1/o  = 1 - ~ yf(y)dy- -~S(x) 

= 1 - F(x)  - ~[1 - F(x)]. 
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# 

xS(z) 

Thus 

as required. This completes the proof. • 
It is well known that  the mean of a nonnegative random variable, X,  can 

be expressed in terms of its survival function as E[X] = f o  S(x)dx. It is 
easy to see that  a similar result also holds for excess ratio functions. 

P r o p o s i t i o n  3 Let X be a loss variable with survival function S and excess 
ratio function R, then 

R(x) = f ~  S(y)dy for all x > O. 
f o  s(y)~y' 

Proof .  Let X have density f ,  then noting that  ~s = _ f ( y )  and using 
integration by parts, we have 

/7 i S ~ s (y )ey  = y (y)l~ + yf(y)ey 

= - x S ( x )  + y f ( y )ey  

- -  - ~  f (y )dy  + y f (y )dy  

= (y - x)f(y)dy,  

where the second equality follows from: 

= E[X] < c~ =~ [read "implies"] 

f ~  f ~  = • f(y)dy _< yf(y)ey ~ 0 as z --, ~. 

R(x) = f ~ ( y  - x) f (y)dy = f ~  S(y)dy 
E[X] f o  S(y)gy  

as required. • 

C o r o l l a r y  4 ~- (x)  = -s_~, for all x >_ O. 

P r o o f .  By the Fundamental Theorem of Calculus: 

d-7 (x) = ~ 
as required. • 
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Propos i t ion  5 Let X be a loss variable with density f x and distribution 
function Fx and let a, ~ > 0 be any two positive constants. Set: 

Y = a X  ~ 

then for every x, y > O: 

= 

a~5 

a. ~.(u)= 

(~)~ 
f w~fx(w)dw 
0 

I~xO 

4. Rx(x) = R ~ ( ~ x )  

Proof .  We note that 

F y ( y ) = P r ( Y < y ) = P r ( a X  t ~ < y ) = P r ( X <  y 7 ) = F x  

proving 2. 
d_£_ For 1, just differentiate 2, using the change of variable z = (~) ½ =~ dy 

~ =  Y : 

fv(Y) 

And for 3 just integrate using the change of variable 

i /  w = x a /  ¢~ aw~ z =v dz a~13 
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we have: 

~Y(y) 
Y 

f zfy(z)dz 
o 

#Y 
z=y 

i ° 

a H x ~  
z = y  

dw d z  f welx (~) Z;z 
0 

].ZX~ 

(~)~ 
f wefx(w)dw 
o 

Finally: 

Y 

o,~xRx(x) 

1 1 

= a X  ~ ==> Y }  = aaX  =~ #y} = a-a#x 

= a}E[Max(X-x ,O)]  

= a } E [ M a x ( ( Y ) { - x , O ) ]  

E[Max(Y{ ' = - a ~ x ,  0 ) ]  
1 

= ~r~Rr~(a~z) 
1 1 

1 
Rx(z) = Rr}  (a~z) 

completing the proof. • 
The special case 13 = 1 applies when normalizing losses, in particular 

when dividing by the mean loss to get entry ratios: 

Coro l l a ry  6 Let X be a loss variable with density f z and distribution func- 
tion Fx, and let a > 0, then 

1. Ax(Y) = ot 

458 Casualty Actuarial Society Forum, Fall 2006 



Trending Entry Ratio Tables 

2. F.x(y)  = Fx(~) 

a. ~o~(y )=  ~ ( ~ )  

4. R.~(y) = n~(~) 

P r o o f .  All but number 3 are clear from Proposition 5, and 3 is very nearly 
s o :  

f wfx(w)dw 
~.~(y) = o = ~(~) 

#x 
as required. • 

We associate to a loss variable X with (finite) mean # = # x  = E[X] an 
entry ratio table, which we term the rAB = rABx  table. The table consists 
of the two functions: 

• Ax(r)  = Fx/.(r) = 

Bx(r)  = F x / , ( r ) =  

Clearly, for any positive scalar a 

Y a X  X 
. . . .  ~ Ax  = Ay 

#y aPx # 

r 

# / f (#x)dx  = Fx(#r) 

o 
r 

# / x f (#x)dx  = Fx(#r) 

o 

> 0 if Y = a X ,  then 

and Bx = By :=> rABy = rABx  

and indeed the entry ratio table is invariant under such a transformation of 
scale. 

The dependent variable r is termed an "entry ratio" and corresponds to 
losses (but has applications to any positive real valued distribution, e.g. a 
wage distribution) normalized to a mean of 1. We often speak of these two 
functions as determining the A and B "columns" of the entry ratio table. 
Note that:  

Ax(oO) = lim Ax(r)  = 1 
t - ' +  O 0  

Bx(oO) = lim Bx(r)  = 1 
r---+ O 0  
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Column A is sometimes described as the percent of claims at or below the 
corresponding entry ratio (r), while column B is described as the percent of 
losses corresponding to the claims in column A. This rAB setup is employed 
in WC benefit on-level calculations, and is especially practical for spread- 
sheets that deal with calculations that involve normalized loss variables. 

We are particularly interested in determining how Ez(r) ,  which we also 
refer to as the normalized excess ratio, behaves subject to a non-scale "trend" 
adjustment. For convenience we often expand the entry ratio table to include 
a third column E, readily derived from the others by applying Proposition 2 
and Corollaries 4 and 6 to X/#:  

Ex(r)  = Rx/ , (r )  = 1 - Bx(r)  - r(1 - Ax(r))  

dEx dlt-7~l'~ (r) = -Sx /u(r )  Sx(#r)  = Fx(#r) - i 

( r )  = a T  i - 

The following picture, reminicent of the area interpretation of integration 
by parts (c.f. Lee [2]), illustrates the usual way of visualing the rAB  table 
and illustrates the formula for the normalized excess ratio: 

E(r) = 1 - B(r) - r(1 - A(r)) 

in terms of r, A, and B: 

460 Casualty Actuarial Society Forum, Fall 2006 



Trending Entry Ralio Tables 

¢0,~) 
(A(O,O 

(o,o) (A(0,0) 
A(r) 

a~ea=E(~) 

i -A(~) 

(1,0) 

(1,0 

We will let Y denote a loss variable that captures the effect of applying 
"trend" to X. We also set: 

G = Fv 

g = f y  
. = ELY] .  

Our goal is to determine rABv  from rABx.  We are particularly interested 
in the absolute and relative impacts on the normalized excess ratio: 

6(~) = 6 x r ( ~ )  = E y ( ~ )  - E x ( ~ )  

6(r) p(~) - 
Ex(~)"  

We clearly have: 

6 ( o )  = p(O) = o 

lim ~(r) = 0 
7*---+00 
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Taking derivatives and applying L'H~pital (twice), we have: 

d5 

dr 
d?5 
dr 2 
dp 

dr 

1 +  l i m p ( r )  = 
r---~O0 

G(vr) - F(#r)  

vg(vr) - # f (# r )  

Ex ( r )G(vr )  - E y ( r ) F ( # r )  + 5(r) 

Ex(r)~ 

1 + lira 5(r___.__~) = 1 + lim G(~,r) - F(#r)  
r - ~  Ex ( r )  ~ - ~  F(#r)  - 1 

= 1 + lira G(vr) - 1 - (F(#r)  - 1) 
r-,oo F(#r)  - 1 

: G ( v r ) -  1 1) 
= l + l i ~ r n ~ \ F - - - ' ~  1 

/ 

G(vr) - 1 lim vg(ur) 
= l ira F(#r)  - 1 - ~-~oo # f ( # r )  

~ , .  g(~s) 
= - n m - -  ( s i n c e r - - * o o v ~ s = # r - ~ o o ) .  

Iz s--oo f(s) 

For large entry ratios, the impact of t rend on the normalized excess ratio 
column, E x  (r) vs. Ey  (r), is dictated by the impact of t rend on the mean and 
on the largest losses. For any loss variable X let M x  denote the maximum 
loss (in the case of no finite maximum loss amount,  we set M x  = oo ). 

P r o p o s i t i o n  7 Suppose X and Y are two loss variables with M x ,  M y  < oo 
and Mx > Mr then there exists b > 0 such that Ey(b) < Ex(b) and O = ItX #y  

Er(r )  < Ex ( r )  for r > b. 

P r o o f .  Setting b = Mr < Mx we have 
,Uy /~X 

b#x < M x  

By(b) = Ry/ .y (b)  = R r ( ~ b )  

= n y ( M ~ )  = 0 < Rx(b~x)  = Rx/ .x (b)  = Ex(b) 

and r > b 

r # y  > b#y = M y  :=v Ey(r )  = R y / , r ( r  ) 

= R r ( # v r  ) = 0 < Ex ( r )  
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as required. • 
We will find a use for the following later in Section 4: 

Proposition 8 Suppose X and Y are two loss variables with the same max- 
imum loss M x  = My  < 0o and with #y  > #x~ then there exists a > 0 
such that Ry(r )  > Rx ( r )  for 0 < r <_ a and there exists b > 0 such that 
Ey(b) < Ex(b) and 0 = E r ( r )  _< E x ( r )  for r > b. 

P r o o f .  Since #y  > #x,  the existence of b follows from Proposit ion 7. For 
the existence of a, we have from Corollary 4: 

dRx  - 1 - 1 d r y  
dx ( 0 ) = - - < - - =  (0) #x  #Y dy 

Now clearly Ry(O) = Rx(O) = 1 and since Ry and R x  are continuously 
differentiable there exists a > 0 with 

Rx(x )  - i 

X 

< 

In particular: 

Rx(X)  - Rx(O) 

x - - O  
n y ( v )  - Ry(O) 

y - O  

Ry(y )  - 1 
for every x, y E (0, a]. 

R x ( r )  - 1 Ry(r )  - 1 
< r<_a=> < 

r r 

=> R x ( r ) -  l < R r ( r ) -  i => Rx ( r )  < Ry(r) .  

This completes the proof. • 

4 Differential Severity Trend 

Let the function h(x) defined on [0, 00) be such that  h(x) > 1 and ~ > 0 
on [0, oo). In this section we assume f ( x )  > 0 for x > 0. Think of h(x) as 
a severity trend factor that  increases with the size of loss x. The random 
variable of the trended loss is Y = ¢ ( X ) ,  where the transformation ¢(x)  = 
h(x)x  has d~ = h ( x ) + x ~  > 1 for x > 0 and is order preserving and 
invertible (and expands distances). Thus: 

G(¢(x) )  = Pr (Y < ¢(x))  = P r ( ¢ ( X )  < ¢(x) )  = P r ( X  < x) = F(x) .  
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We clearly have ¢(x) > x ~ v = E l Y ]  = E[¢(X)] 
F ( x )  = G(~b(x) k G ( x )  Observe that:  

x > 

x > 

=:> 

=~ 

> E [ X ]  = # a n d  

a ¢ ,  ¢ (x)  > ¢(a)  

a =:> ¢(x) - ¢(a) = h ( x ) x  - h ( a ) a  > h ( a ) x  - h ( a ) a  

h ( a ) ( x - a ) > x - a  

v R y ( ¢ ( x ) )  = E [ M a x ( Y  - ¢(x),  0)] 

E [ M a x ( ¢ ( X )  - ¢(x),  0)] > E [ M a x ( X  - x ,  0)] = # R x ( x )  

But the relationship between the normalized excess ratios Ey(r )  and 
E x  (r) is more subtle. 

Let hM = l im~_~ h ( x )  and hm = h(0), then 1 < h,n < hM ~ O0 and we 
have: 

= h ,~E[X]  < E [ h ( X ) X ]  = E[~b(X)] = E l Y ]  = v < h M E [ X ]  = h M #  
II 

=:> hm < - < hM 
# 

~ there exists exactly one a > 0 such that  h(a)  = - 
# 

h,n# 

However, we see that  since F and ~b are both monotonic increasing, 
whence invertible, and so too is G = F o ¢-1. Whence for r > 0 we have the 
equivalence: 

O 
d~ 
d-7 = G ( v r )  - F ( # r )  ¢# C ( v r )  = F ( # r )  ¢~ v r  = ¢(#r )  

h ( # r ) # r  = v r  

h ( # r ) #  = v ¢:> h ( # r )  = v = h(a)  ¢=> a = # r  v=> r = a 
# Iz 

Now 0 = a(0) = limr-.o~ a(r) and so it follows that,  unless a(r) = 0 for every 
r > 0, the function a(r) has either a unique minimum or a unique maximum 
on (0, oo), and consequently a(r) is either always > 0 or always < 0, for all 
r > 0. We claim that  a(r) > 0 for all r > 0. To verify this, select fi such that  
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hm < fl < ~ and let b = #s  = h- l ( f l )  > 0; then: 

a 

¢(s~) 

v 

= r # , b = s p ,  l < f l = h ( b ) < - = h ( a ) ~ b < a  
# 
ly 

= ¢(b) = h(b)b = fib < ~b = - s #  = us 
# # 

=~ F(~) = c ( ¢ ( ~ u ) )  < c(~,~) 
d5 

=~ ~ (~1 = c(~,~) - F ( ~ . )  > 0 

b and therefore on the entire interval It follows that  5(r) is increasing at s = 

(0, ~). Since 5(0) = 0, this clearly forces 5(~) > 0 and consequently 5(r) > 0 
for all r > 0, as claimed. 

We see that  the graph of 5(r) is n-shaped, i.e. is concave with 0 = 6(0) = 
l i m r - ~  5(r), with a unique maximum at r -- ~. We have established: 

P r o p o s i t i o n  9 In the case of the differential severity trend model G(¢(x) )  = 
F(x)  and f ( x )  > 0 for x > O, as defined above, Eu(r)  - E x ( r )  > 0 for all 
r > 0 .  

Let r0 = 0 < ra < r2 < • • • < rM be a sequence of entry ratios and set 

Ai = Ax ( r i ) ,B i  = Bx(rl) ,O < i < M. 

Suppose that  Ai = Ax(r i )  > A x ( r i - 1 ) , l  <_ i <_ M and AM = 1. Set 
AA~ = Ai - Ai-1, ABi = Bi - Bi-1. Note that  /~aAi ~ '  1 < i < M, is the mean 
value of the untrended loss over the interval [#ri-1, #ri]. For 1 < i < M, set 

= h A ,  

i 

k = l  

(#  a_~B. ~ is Since ¢ is order preserving, it is reasonable to assume that  C k hA, y 

a good estimate of the mean value of the trended losses on the interval 
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[¢(#ri-1), ¢(#ri)], (the smaller the interval, the more accurate the estimate). 

v v ( / AB, hh 

k = l  k = l  

= ~ (G(¢(#ri)-G(¢(#ri_,))) ¢ t#-~-~i) 
k = l  

= r ___ + ( . r , / /  ' ,¢ 
k = l  

M 

~ er (¢(.r~_1) < r < ¢( .rd)  E [ Y  I¢(.r~-~) < g _< ¢(.rd] 
k = l  

= E [ Y l  = ~, 

And we have the estimate/TM ~ u. The sequence {Ai} can be viewed as the 
cumulative percentage of cases over the intervals of the trended losses and 
thus approximates the A column of the entry ratio table of the trended losses. 
The sequence {/~i } approximates the cumulative losses for the trended loss 

from the corresponding intervals. So the sequence { Bi } is proportional cases 

to the B column of the entry ratio table of the trended losses. Also, we have 
observed that the sequence {~a(#ri)} provides the endpoints of the corre- 

sponding intervals of the trended losses which have overall mean = v ~ BM. 
So setting: 

~ / _ ¢ ( # r i )  ~i=A,, ~ , =  /7i 0 < / < M  

A 

we have approximated the rAB table for the trended losses rABy ~ rAB in 
the case of differential severity trend. This differential severity trend adjust- 
ment to the rAB table is a simple three-step process (1-fix A, 2-estimate B, 
a-normalize r and B). In practice, this approximation can yield small negative 
values for a(r) which by Proposition 9 should be set equal to 0. 

4 . 1  W C  C a s e  S t u d y  o f  D i f f e r e n t i a l  S e v e r i t y  T r e n d  

The tables for excess ratios in WC are specific to the five types of WC in- 
jury: Fatal, Permanent Total Disability [PTD], Permanent Partial Disability 
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[PPD], Temporary Total Disallity [TTD], and medical only. It is standard to 
itemize WC losses into medical and indemnity (or wage replacement) compo- 
nents. While indemnity benefits are limited, either implicitly or by statutory 
maximum aggregates, the medical portion is unlimited and subject to broadly 
inclusive statutes as regards the medical procedures covered. In any event, 
it has been noted that as the claim size rises, the percentage of the benefit 
that goes for medical also rises. This is generally observed within all the 
injury types (except medical only). A series of charts below provide a more 
detailed picture of this phenomenon. Combine that observation with the fact 
that medical losses are subject to greater upward inflationary pressure than 
wages, and you have a scenario in which to apply the differential severity 
trend model of the previous section. 

In this case study we assume constant annual trend factors of to = 1.075 
for indemnity and tl = 1.095 for medical, applicable to all injuries and all loss 
sizes. Normalized WC loss data by injury type was itemized into medical and 
indemnity components and used to produce the following charts, by injury 
type, that show the percentage of the total [=medical + indemnity] loss 
by entry ratio (the role of the fitted curve will be described later). It is 
worth noting that the percentages shown in the charts are determined over a 
common interval width of entry ratio. Since there are typically more claims 
at lower entry ratios, one consequence is more claims per plotted point at 
the lower entry ratios, whence the greater spread of the plotted points at the 
higher entry ratios. 
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PPD 
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For each injury type = i, a simple curve (akin to a mixed exponential 
survival curve, and shown on the charts) was fit to the patterns of decreasing 
indemnity proportion rci(r) by entry ratio r as the loss size increases: 

~, (~)  = a~ (b~  ° ~  + ~ e , ~  + (1 - ~, - c~)e , ,~)  
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Injury i ai bi ci c~i ~i 7i 
Fatal 1 0.9280 0.6240 0.3761 -0.0051 -0.1416 -0.4599 
PTD 2 0.6928 0.7905 0.2095 -0.2542 -0.0007 -0.4599 
PPD 3 0.5811 0.3827 0.6173 0 -0.0281 0 
TTD 4 0.6237 0.0397 0.9603 0 -0.0475 -0.4599 

We set hi(r) = 1ri(r)to + (1 - 7ri(r) ) tl ,  then: 

dhi drri (to - tl) > O. l < to < tl,~-~ < O ~ l < hi(r) and dr - dr 

and so each injury type other than medical only provides a differential sever- 
ity trend model. 

Letting Xi  denote the random variable of losses by injury type and Nx~ 
the corresponding claim counts, the usual formula (readily obtained from 
Definition 1; see Gillam [1]) for the combined excess ratio over the injury 
types at attachment A is: 

XSra t io (A )  = XSra t io (X1 ,  X2,Xa, X4,X5; A) = i 
E Nx~#x, 

i 

Of course, to accomodate differential severity trend one could produce new 
r A B  tables as detailed above. A simpler alternative is to determine the 
difference: 

A X S r a t i o ( A )  

= XSrat io(Y1,  Y2,Y3, Ya,Y5; A) - XSrat io*(X1,  X2,X3, Xa,Xs; A) 

i i 

i i 

i 

i 

i 

i 
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expressed in terms of the 6x~ and where the * attached to XSratio* is 
meant to emphasize that one would consistently use the newer claim counts 
N~ and means #y~ in doing the calculation. While in principle you would 
need updated rAB tables to precisely determine the 5z, y, terms, if there were 
a simplified form to approximate that term based on inflation data or other 
cost trend considerations, this would provide the ability to refine the excess 
ratio calculation: 

X Sratio(Y1, Y2,Ya, Ya, Ys; A) 
= XSratio*(X1, X2,X3, Xa,Xs; A) + AXSratio(A) 

without recourse to new rAB tables. 
The use of entry ratio tables is a very good way to account for inflation 

when calculating excess ratios. Indeed, even compounded over a five year 
time interval, the AXSratio adjustment in this case study is very small. The 
following chart is indicative of what the calculation described here produces. 
Of course, a bigger difference between medical and indemnity trend or a 
longer time interval will produce bigger adjustments. Because excess ratios 
decline with increasing attachment points, as the attachment point increases 
the adjustment will typically increase as a percentage of the excess ratio. 
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0.002 

0.001 t 
0 
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§ § ~ § § § § § § § 
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5 Differential Frequency Trend 

Let the function h(x) defined on [0, oo) be such that  0 < h(x) < 1, with h 
piecewise continuous and non-decreasing on [0, oo). So as to relate h with 
the 'untrended' loss variable X,  we also assume that  there exist a, b > 0 such 
that  h(a) < h(b) with h continuous at a and at b and with f (x)  > 0 for 
every x E (a, b). Observe that  this clearly forces a < b, and so there exist 
bk E (a, b) such that  lira bk = b. But then, since h continuous at b: 

k---+oo 

h(a) < h(b) => h(a) < h(b) = h (l imbk) = k--+~limh(bk) 

there exists M E N such that  h(bk) > h(a) for every k _> M. 

In particular, letting c = bM we have: 

C = bM E (a,b) 
=:> f(c) > O, h(c) > h(a) => h(c)f(c) > 0 :=> 0 < E[h(X)] < E[1] = 1. 

We consider the ' trended' loss model defined by the PDF: 

g(x) = h(x)f(x)  = "h(x)f(x). 
E[h(X)] 

Think of h(x) as a proportional decline in the incidence rate that  decreases 
with the size of loss x. For the trended loss Variable Y, we have: 

a a 

Pr(Y < a) = g(x)dx = h(x)f(x)dx = Pr X) _< a). 

0 0 

And accordingly, for the differential frequency trend model we take Y = 
h ( X ) .  Also, if h is differentiable (except at perhaps finitely many points), 
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::~ 1 

integration by parts gives: 

o ( y )  = 

y y 

g x  x =  x x x 

o o 

= d x  

o 
y A 

o 

> 

For the differential frequency trend model we cannot have F(x)  >_ G(x) 
for all x > 0, since by the above that would force the contradiction 

> _> 

> h(x) for all x > 0 such that f ( x )  > 0 with 1 > h(a) for some a > 0 such that f(( 

< E h(X) = E [E[--~(X)]J = 1 :=>~= 

In particular, differential trend models and differential frequency models are 
disjoint from one another 

R e m a r k  1 0  T h e  r e a d e r  s h o u l d  n o t e  t h a t  u n l e s s  w e  m a k e  t h e  s t r o n g e r  as-  

s u m p t i o n  that h is continuous on [0, oo), we cannot be assured that this Y is 
a loss variable, as that term is defined here. The weaker assumption on h is 
to include the case in which h is a step function. The reader may prefer to 
demand that h be continuous, in which case some of the arguments can be 
simplified. 

Propos i t i on  11 In the case of the differential frequency trend model g(x) = 

"h(x)f(x), as above, u > #. 

Proof .  Note that the function h(x) is piecewise continuous and non-decreasing 
on [0, oo). We claim that h(0) < 1, since otherwise: 

h(x) > 1 for every x > 0 ~ g(x) = "h(x)f(x) > f ( x )  for every x > 0. 
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But then g(x) and f ( x )  are two piecewise continuous funtions on [0, oo) with 
the same finite integral = 1. So the relation g(x) > f (x )  entails that  g(x) = 
f (x )  except possibly at points of discontinuity of g. So h(x) = 1 except for 
a discrete set of values or where f (x )  = O. By our model assumptions, there 
exist ~,/~ > 0 such that  h(~) < h(/~) with h continuous at ~ and at /~ and 
with f ( x )  > 0 for every x E (c~,/~). It follows that  h(x) = 1 on (c~,/5), except 
for perhaps a discrete set of points: 

there exist ai, bi e (~,/3) such that  

a = .lima/,/3 = . l imb/and "h(ai) = "h(bi) = 1 

"h(a) = "h ( l imai)  = ,--,o¢'limh(ai)= ,-~o¢'liml = 1  

= l i m h ( b i ) =  h (liimbi) = "h(Z) 

=, h (~ )  = "h(c~)E[h(X)] = "h(Z)E[h(X)]  = h (5 )  

=* h(~) = h(/3) > h(a)  =#¢= [read "contradiction"]. 

This contradiction shows that h(O) < 1. Similarly, we claim that  h(a) > 1 
for some a > O, since otherwise: 

h(x) _< 1 for all x >_ 0 :=> g(x) = "h(x)f(x) < f (x )  for all x >_ 0 

and again g(x) and f ( x )  are two piecewise continuous funtions on [0, oo) with 
the same finite integral. This again entails that  they are equal except possibly 
at points of discontinuity. Then again h(x) = 1 except for a discrete set of 
values or where f ( x )  = 0 and just  as before we arrive at a contradiction. So 
we have 

< 

there exists b > 0 such that  h(x) < 1 on [0, b) 

a n d h ( x )  > l o n ( b ,  oo). 

Next we claim that  there exists c > 0 such that  h(c) ~ 1 and f (c)  > 0 since 
otherwise 

x > O, f (x )  > 0 ~ "h(x) = 1 ~ h(x) = E[h(X)] 

But by our model assumptions, there exist ~,/~ > 0 such that  h(~) < h(/~) 
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with h continuous at ~ and a t /7  and with f(x) > 0 for every x E (c~,/~): 

=:> there e x i s t s c E  c ~ , ~  , d E  

such that  h(c) ¢ h(d), f(c) > 0 , f ( e )  > o 
=~ E[h(X)] = h(c) ¢ h(d) = E[h(X)]. 

It follows that  there exists c > 0 such that  h(c) ¢ 1 and f(c) > 0 and we 
have: 

.-.: i x.I.,'.- S - ,I.,," 
0 0 0 

oo 

: 

0 

b oo 

= /x (h(x)- 1)f(x)dx + i x (h(x)- i)f(x)dx 
0 b 

b oo 

> bi (h(x)-1)f(x)dx +by (h(x)-1)f(x)dx 
0 b 

o o 

(/ / . )  = b g ( x ) e x  - x ) &  = b(1  - 1)  = o 

as required. • 
As in the case of differential severity trend in the preceding section, we 

again are considering a change that  increases the mean severity. Suppose we 
use a fixed entry ratio table to calculate excess ratios. Then for a fixed at- 
tachment point A, we have declining entry ratios _A > A and the lookup into 

tt 

the same entry ratio table leads to excess ratios that  increase from E x  (A)  
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to Ex (A). In the case of differential severity trend, we observed in Propo- 
sition 9 of the previous section that the increase is consistently understated. 
In the case of differential frequency trend, however, we will show that the 
increase may be either overstated or understated. This may at first seem 
somewhat counterintuitive for the two "trends" to move the mean upward 
but the normalized excess ratio tabular amounts in perhaps opposite direc- 
tions. However, the entry ratio lookup is dominated by the change in the 
mean. For differential severity trend the overall trend factor consistently un- 
derstates the impact of trend on the largest loss amounts, which helps explain 
why the calculation consistently understates the excess ratio. But the case 
of differential frequency trend is quite different: selectively removing smaller 
sized losses will have a leveraged upward impact on the overall mean severity 
while leaving the size of the largest claims unchanged. 

With differential frequency trend we have, from the proof of Proposition 
11: 

/7 x > b =~ vnv(x)  - t tnx(x)  = ( y -  x) (g(y) - f (y ) )dy  

/7 ---- ( y - x )  (y) - i f (y)dy >_ O 

Rr(x) > ~Rx(X). 
lJ  

But again the relationship between Ev(r) and Ex(r)  is more subtle. 
In the case that X has a maximum loss M = Mx < oc, since h(x) is non- 

decreasing on [0, c~) and there exists c > 0 such that h(c) > 0 and f(c) > O, 
and we have c < M and h(d) > 0 for every d > c, whence: 

Mr = sup{x[g(x) > 0} = sup{xlh(x)f(x) > 0} = sup{xl f (x  ) > 0} = M. 

So too must Y have maximum loss M and Proposition 8 assures us that 
Ev (r) < Ex  (r) for large enough r. More precisely, we have: 

P ropos i t ion  12 In the case of the differential frequency trend model g(x) = 
h(x) f(x) ,  as defin~ above, in which X has a maximum loss Mx  < oo, there 
exists b > 0 such that Ey(b) < Ex(b) and Ey(r) < Ex(r) for all r > b. 

Before stating a result that deals with the relationship between Ew(r) 
and Ex(r) in the case Mx = oc, it is instructive to make a few observations. 
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Note that  since the non-decreasing function h is bounded above by 1, it is 
reasonable (but not necessary) to have the decline in frequency flatten out 
for large losses, say in the sense that  the derivative dh ~ -0 0 as X -+ c~. We 
also observe that: 

P r o p o s i t i o n  13 In the case of the differential frequency trend model g(x) = 
"h(x)f(x), as above, the limit lim=_+~ h(x) = A exists and ~ < A. 

Proo f .  Since h is non decreasing and bounded above by 1, existence of the 
limit is apparent. We evidently have: 

v 
h(x) _< A for all x >_ 0 ~ v = E[X'h(X)] <_ E[XA] = AE[X] = Ap ==> - _< A 

# 

as required. • 

P r o p o s i t i o n  14 Assume Mx = oo, then for any p > 1 for which the limit 
lim=~m ~ exists: s(=) 

lim S(px.__~) < 1 
• s ( x )  - p 

Proo f .  Note that  Mx = oo is equivalent to S(x) > 0 for every x > 0 and so 
is always well defined. Thus the expression lim=__~ s _ ~  makes sense s(=) 

:n(~ further our assumption is that  the limit exists for some p > 1. Note 
that  the integral f o  S(x)dx = # < oo. Suppose, by way of contradiction, 

that  lim=_+~ ~s(=) > a'l Then, using the change of variable z = px, we would 
have: 

there exists c > 0 such that  pS(px) > S(x) for every x > c 

~ S(px)dx 

P 

=> pS(px)dx > S(x)dx 

l I7 
=> - S(x)dx < S(px)dx 

P 
1 ~oo S(px)pdx 
P 

I? _ 1 S(z)dz 
P 

> 1 => - S(z)dz < S(z)dz 
p 

~ - S ( z ) d x  < S ( z ) d z  =~,= p ; 
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This contradiction completes the proof. • 

R e m a r k  15 Appendix A considers the implications of the existence of the 
• S px  limit llmx__.~ ~ .  The discussion shows that if you assume that the limit 

lim,__,~ ~ exists for all p > 1 and is not identically 0 for all p > 1, then 
the tail behavior is essentially determined up to just a single parameter. More 
precisely, consider the one-parameter survival function: 

{1 
T(C~;x)= x -~ x > l  " 

For T(/3; x) such limits exist and are particularly manageable as we clearly 
have t 

p,/3, x > 1 :=> T(/3; px) _ (px) -B _ p_~ = lim T(/3; py) 
TO3; x) x-e  u-~o~ T(/3; y) " 

It turns out that for a loss variable X with S = Sx  and for which there exist 
• • S p x • > 1, k 6 N such that hmk-~oo Pk = 1 and hm~.~oo ~ exzsts for Pk e v e r y  

k E N ,  then for all p > 1: 

either lim S(px) - 0 
S(x) 

S(px) _ p-Z w h e r e ~ = - l n \ ~ _ ~  S(x) ] or l im S(x) ( lim S(ex) ~ > 1. 

We see that under these assumptions, the conditional probability of survival 
s(z) for y > x and x large is asymptotically the same as that of T(/3; x) for 
some unique ~, with 1 < ~ <_ oo. 

E x a m p l e  16 For the "thin-tailed" exponential density S(x) = e-~ we have, 
for any constant p > 1, that 

_ o-~e=~ lim S ( p x ) _  l i m e  o _ l ime  o = 0 .  
S( ) x - - * o 0  X x.. .-*oo e - ~  x -..., o o  

E x a m p l e  17 For the "thicker tailed" Pareto density S(x) = (o-~) ~ we have, 
for any constant p > 1, that 

S ( p x )  lim ~ - lim 
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Example 18 This example shows that the inequality in Proposition 13 can- 
not, in general, be improved. Consider the survival function: 

S ( x )  

# 

1 

P 

1 

P 
1 

P 

with finite mean. 

lim S(px) 
~-~ S ( x )  

e 

(x + e) (ln(x + e)) 2 
o o  o o  

= x X = 2du where u = x + e 
u 0n(u)) 

0 e 

o o  

1 

= e - -  = e < o o  

1 

We have, with several applications of L 'I-I~pitah 

= lim ( e ( x + e ) ( l n ( x + e ) )  2)  
• - . ~  (px + e) On(pz + e)) ~ e 

= lim ( ( x  +e "~ (ln(x + e))2 '~ 
=-~ t,\px + - - - 7 / ( ~ 7 ~  ~) 

( x + e ' ~  ( ln(x+e) )= 
= l im \ p x + e ]  lirn \ln---~-x-77) 

1 (lim ln(x+e)~= 
= ; , ,=-~,l~:t-7)) 

2 (1/ 
l im~ 

px+e ] 

lira ~-+--~ ~ 
~--+oo px + pe ] 
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Example  19 Define the function: 

x 0 _ < x < l  
2 x - 1  1 < x < 2  

3 2 _ < x < 4  
h(x) = 1 + ~ 4 <_ x < 8 

: 

k + 1 2 k-1 < x < 2 k and  k > 1 even  

k - 2 + ~ 2 k- l  <_ x < 2 k and k > l odd 

then the reader can readily verify that h is continuous and non-decreasing 
with h(O) = 0 and limx--,~ h(x) = c~. It  follows that S (x )  = e -h(~) is a 
survival function. Let X be a nonnegative random variable with S = S x .  
The reader can verify the following: 

h(4x) = h ( x ) + 2 f o r x > 2  

h(2k) = k + l  k > l e v e n  

And we find that for  x > 2: 

s(4.) 
s(.) 

e-h(4x) 
_ _ eh(x)-h(4x) = e -2  

e-h(x)  

S(4x) 1 
=> A(4)= lim 

• - . ~  S ( z )  d "  

Since A(4) = ~ < ¼ it is at least possible for  this distribution to have a finite 
mean; and indeed, the reader can readily verify that: 

X 
In x 

> 2 ~ h(x) >_ ln---2 - 1 
1 

S ( z )  < e z  ,°5 

/ (  7( ' =* S ( x ) d x  <_ e x - r ~ d x  = e 

f o  ~ 
=* # x  = S ( x ) d x  < c~ 

(11) 2 - ra-~ 
1 

rg-~- I 
< o o  
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and we see that X is a loss variable. Observe that: 

h(2k) = { h(2k-1)+2 k > l o d d  } 
h(2 k-l) k > 1 even 

5'(2.2 k-~ ) s(2 k) e-h(2k) 
=:> 

8(2k-1) 8(2k-1) e-.(= k-') 
= eh (2k -1 ) -h (2  k) : ~ e - 2  

( 1 
k > 1 odd ] 

i k > 1 even 

S(2x) 
limoo ~ fails to exist. 

Finally, observe that should lim=_~ ~ exist, that is not sufficient to guar- s(~) 
2 k antee that lim=__,oo s(~=) exists for/3 > 4. Indeed, setting Xk we have: s(=) = T 

h ( 5 x k ) - - h ( x k )  = { !~2 kk > 3 °dd 3 even 

S(5Xk) { e--~ k > 3  odd } 
==> S - - ~ k )  - -  e - h ( 5 x k ) + h ( x k )  = e - 2  k > 3 even 

S(5x) ~im ~ fails to exist. 

This example is meant to provide some additional insight into the nature of 
the assumption made in the very special case considered in the above remark, 
namely that lim=__,~ s(p=)S(x) exists for all p > 1. 

The two limits lim~--,o~h(x) > ~ > 1 (Propositions 11 and 13) and 

lim=_~ s(~=) = lim=-+~o ~ < ~ < 1 play a key role in determining the 
S ( = )  S ( ~ = )  - -  - -  

sign of 5(r) for large enough entry ratio r, as demonstrated in the following: 

Propos i t ion  20 In the case of the differential frequency trend model g(x) = 
"h(x)f(x) ,  as defined above, assume that M x  = oo, that h is differentiable on 
(0, oo) (except at perhaps finitely many points) and that there exists c > 0 with 
dh _ 0 for all x > c. Let p = ~ and assume that the limit A = lim=_~ 
d =  - -  - -  ~ S ( x )  

exists. Then 

A'h(c) > 1 =* there exists b > 0 such that Ey ( r )  > E x ( r )  for all r > b 

)~h(c) < 1 ~ there exists b > 0 such that Ev ( r )  < E x ( r )  for  all r >_ b. 
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P r o o f .  To compare Ey(r) and Ex(r) for large entry ratios, we again inves- 
tigate the derivative of 5(r): 

d5 
dr a ( ~ r )  - F(W')  

ur  I~r 

0 0 

ur  I~r 

f 'h(x)f(x)dx+ / ( 'h(x)-1)f(x)dx 
lar 0 

Observe that  the first integral is always _> 0 and converges to 0 as r --0 oc 
and that  the second integral is an increasing function of r for r large enough 
to force h (# r )  > 1 and the second integral also converges to 0 as r -+ oo. 
Let r > {, Our assumptions together with ~_dh > O, give us: 

t i t  A 

= h(c)F(vr)-/F(x)dd--~hxdx 
0 

= h(c)F(~r) - "7 for some constant ~ /k  O. 

Taking the limit as r --* oo: 

= 

1 - h ( c )  

G(~r) 

~(c)  - 
= - , y  

= ~ ( c ) F ( ~ )  - - r  

= g ( ~ ) Y ( ~ )  + 1 - ~ ( ~ )  

= - h ( c ) ( 1  - F(ur)) + 1 

d5 h(c) (1 - F(ur)) + 1 - F(#r) 
=:> d r -  
= -~(c)S(ur) + S(#r). 
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Now suppose Ah(c) > 1 : 

)~h(c) > 1 ~ lim "f(c)S(px) > 1 
 -oo 

there exists b > 0 such that  "h(c)S(px) > S(x)  for every x _> #b 
/ ]  

p = - =# "h(c)S(vr) > S(#r)  for every #r  > #b 
# 

=a "h(c)S(vr) > S(#r)  for every r k b 

-'h(c)S(z/r) < - S ( # r )  for every r > b 

d5 -'h(c)S(t*r) + S(#r)  < 0 for every r > b. 
d-7 = 

And it follows that  5(r) is decreasing for r > b. Since 5(r) --+ 0 as r --+ oo it 
follows that  Ev(r)  - Ex ( r )  = 5(r) > 0 for r > b. We have established: 

Ah(c) > 1 ==> there exists b > 0 such that  

Ev(r)  - Ex ( r )  = 5(r) > O::~ Ev(r )  > E x ( r )  for all r > b. 

Reversing inequalities in the above argument shows: 

Ah(c) < 1 ~ there exists b > 0 such that  

Ey(r )  - E x ( r )  = 5(r) < O=~ Er(r )  < Ex ( r )  for all r > b 

completing the proof. • 
An immediate consequence is that  distributions with an infinite but  com- 

paratively thin tail act like distributions with finite support: 

C o r o l l a r y  21 In the case of the differential frequency trend model g(x) = 

"h(x)f(x), as defined above, assume that M x  = oo, that h is differentiable on 
(0, oo) (except at perhaps finitely many points), that there exists c > 0 with 

d h = 0 for x > c, and further that lim=--,oo ~ = 0. Then there exists 
d =  - -  S ( = )  

b > 0 such that Ey(r )  < Ex ( r )  for all r >_ b. 

E x a m p l e  22 As a general example of a differential freqency trend model we 
may take h = F, then g(x) = a F ( x ) f ( x )  for a uniquely determined constant 
a. But clearly F 2 is itself a distribution function and setting: 

G = F 2 

dG dF 2F f is a PDF =~ a = 2 
dx - 2F dx 
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and the increase in the mean is: 

u - #  = / ( 1  - G(y))dy-  S(y)dy 

0 0 

/(1 F(y) )dy /S(y)dy 
0 0 " 

/ ( 1 -  F(y))(1 + F(y) )dy -  / S(y)dy 
0 0 

/ S(y)(1 + F(y) )dy -  / S(y)dy 

0 0 
OO 

= / S(y)(1 
0 

O0 

+ F(y) - 1)dy 

= fS(y)F(y)dy. 

Example  23 Let X be an exponential denisty with f(x) = e -~ and set 
h(x) = ~+-~. Then from numerical integration applied directly to the defi- 
nitions: 

E[h(X)] = 0.404 
p = 1 
u = 1.477 

The following graphs the excess ratio functions Rx(x) = Ex(x), Ry(x), and 
Ey(x); from the graph we see that: Ey(x) < Ex(x) = Rx(x) < Rr(x).  
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l~x) 

0 0 

I I I I 

i,... 

1 2 3 4 5 

x 5 

Example 24 Consider the case of 10 losses per year: 9 of amount 1 and 1 
of amount 2 and let X denote the corresponding random variable. Suppose 
there is a decline in frequency to a rate of just 2 losses per year: 1 of amount 
1 and 1 of amount 2 with random variable Y.  The following graphs the excess 
ratio functions Ex(r) ,  and Ey(r) .  In this case we see that Ey(1) > Ex(1) 
and Ey(1.5) < Ex(1.5) > 0. 
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E x a m p l e  25 Consider a Pareto density with survival function S(x)  = ( - ~  )~ 

and a linear frequency decline of the form h(x) = M i n  (~+d 1) We provide \ c+d  ' ' 
the results of a direct evaluation via numerical methods for two cases: 

8 = 2, c~=5, c = 2 ,  d = 1  
v 

/z = 0.5, v ~ 0.695, p = - ~ 1.39 
# 

1 S(x) 
~ = li~moo S - ~  ~ 5.16 > 2.04 ~ h(c) 

Ey(x )  < Ex(x)  

and: 

0 = 2, c~=5 ,  c = 1 0 ,  d = 5  
v 

# = 0.5, v ~ 0.575, p = - ~ 1.149 
# 

1 lim S(x) 
=  .oo s -77)  1.97s < 2.72s ,, cj 

Ey(x)  > Ex(x) .  

In both cases, Proposition 17 holds for any b > O. This gives an instance 
for which the same untrended loss variable and two functions for h,. both of 
linear frequency decline proportions with the same range of [½, 1], can produce 
opposite sign impacts on the normalized excess ratio function. 

let 
As to the r A B  table for this differential frequency trend model, as before 

r 0 = 0 < r l  < r 2  < " "  < r M  

be a sequence of entry ratios and set 

A, = Ax(r , ) ,B i  = Bx(r,) ,O < i < M. 

Suppose that  Ai = Ax(ri)  > Ax(ri-1),  1 < i < M and AM = 1. Set 
AAi = Ai - Ai-1, ABi = Bi - Bi-> Again note that  #A&,I~ " < i < M, is 
the mean value of the untrended loss over the interval [lzri-1, #ri], which we 
assume can be taken as an estimate for the mean of the t rended loss. This 
would hold provided that ,  within sufficiently narrow entry ratio layers, the 
removed claims (and whence the retained) are representative of all claims in 
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that layer. This would hold exactly, for example, in case the function h is a 
step function that is constant on the intervals [ri-1, ri). For 1 < i < M, set 

[" ABi ~ 

i 

k=l 

Assuming then that #~__~B is a good estimate of the mean value of the trended AAI 
losses on the interval [#ri-1, Mr/], we have: 

BM 

M 

k=l 
M 

k=l 

kA£ ( 

/' ABk'~ 
Pr  ( # r , - i  < Y ~ #rk) t # - ~ k )  

Pr (#r~-i < Y <_ #rk) E[Y I#rk_l < Y <_ #rk] 

= E [ Y ]  = , ,  

and we infer, as before, that v ~ ~AM and that the two sequences { Ai } and 

{Bi ) are nearly equal cases not necessarily to the cumulative and losses of 

normalized trended losses. So they only need to be rescaled to give the A and 
B columns of the trended losses. Whence they are very nearly proportional 
to the A and B columns of the entry ratio for the trended losses (and albeit 
with different proportionality constants). So setting: 

~i = #ri priAM Ai = ~--Ai Bi = ~Bi 0 < i < M 
~ =  B y '  AM' B y '  
AM 

we have approximated the rAB table for the trended losses: rABy  ~ rAB. 
Finally, note that this simple three-step differential frequency trend adjust- 
ment to the t A B  table (adjust A, estimate B, renormalize r, A, and B) can be 
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done quite generally to account for a change in frequency by size of loss and 
dh (0, C~), although order preserving does not formally demand that ~ > 0 on 

is needed to justify the calculation. 

5 . 1  W C  C a s e  S t u d y  o f  D i f f e r e n t i a l  Frequency 
The tables for excess ratios in WC are produced by five types of WC in- 
jury: Fatal, Permanent Total Disability [PTD], Permanent Partial Disability 
[PPD], Temporary Total Disaility [TTD], and medical only [MO]. The WC 
system in the US has seen a persistent decline in claim frequency over the 
past 10-15 years. The decline is observed within each of the injury types 
and over the spectrum of US industries. There is no consensus on how long 
this pattern can persist, or even on its underlying causes. One pattern that 
has emerged, both in NCCI investigations as well as from studies by the De- 
partment of Labor, is that this decline has not been uniform by size of loss. 
Small WC claims have declined proportionally more than have large WC 
claims. That is the motivation for this look at how differential frequency 
trend impacts entry ratio tables. 

A recent NCCI study produced the following table of percentage changes 
in claim frequency (per unit of wage-adjusted payroll exposure): 

Fatal PTD PPD TTD MO 
Smallest third of claims -6.2% -52.4% -23.7% -32.8% -26.7% 
Middle third of clgims -7.9% -18.5% -12.8% -20.4% -29.9% 
Largest third of claims -10.3% 4.3% -8.7% -8.5% -13.8% 

With the exceptions of the fatal and medical only injury types, the table 
conforms to the by now familiar pattern of a smaller decline in frequency with 
increasing claim size. These percent changes were used to define a propor- 
tional change in frequency function hi(r) as a step function of entry ratio r 
for each injury type i. Even a smoothed version of hi(r) would not likely con- 
form to the differential frequency trend model assumptions for injury types 
Fatal [i = 1] and Medical Only[/= 5] : 

Range of r h,(r) h2(r) h3(r) h4(r) hs(r) 
0_< A(r) < 0.9a82 0.476 0.7628 0.6718 0.7a29 
1~ <_ A(r) < =s 0.9211 0.8151 0.87% 0.7957 0.7014 

<_ A(r) _< 1 0.8967 1.043 0.9134 0.9151 0.8624 
Even though the assumptions of the differential frequency trend model 

are technically not met in this case study, the discussion still makes it clear 
how to determine, for each injury type, a trended entry ratio table from the 
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untrended table. The graphs below show the excess ratio functions Ez~(r), 
and E~(r) by injury type i before (Xi) and after (Y~) trend. With the 
exceptions of the fatal and medical only injury types, we again see that 
Ey(r) - Ex(r) < O. For each injury type except perhaps medical only, the 
two curves are very close, which indicates that little or no frequency trend 
adjustment to the rAB table is indicated. 
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T T D . - F r e q u e n c y  D e c l i n e  on X S r a t i o  
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As in the earlier case study, it is straightforward to combine differen- 
tial frequency trend impacts by injury type into a combined impact on the 
normalized excess ratio. 
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6 Matching  the  M e a n  and Median  Loss 

Suppose we are presented with an entry ratio table r A B x  together with some 
constant ~ ~ 0, we next discuss how to build the entry ratio table rABx~.  
Here we consider the trended random variable to be Y = ~b(X) = X e where 
the transformation ¢(x) = x ~ has ~ = ~x ~-1 and is order preserving for 
c > 0 and order reversing for ~ < 0. Thus, as we did for differential severity 
trend, we have: 

G(¢(x)) = Pr(Y_< ¢(x)) 

{ P r ( X < x ) = F ( x ) ~ > O  } 
= Pr(¢(X)  < ¢(x)) = Pr(X k x) S(x)  ¢# e < 0 " 

Let r0 = 0 < rl < r2 < • • • <: rM be a sequence of entry ratios and set 

Ai = Ax ( r i ) ,B i  = Bx(ri) ,O < i < M. 

As before, suppose that  Ai = Ax(r i )  > Ax(ri-1) ,  1 < i < M and AM = 1. 
Set "`Ai = Ai - Ai-1, "`Bi = Bi - Bi-1. Note that  # ~ ,  1 < i < M, is the 
mean value of the untrended loss over the interval [#ri-1, ~ri]. F o r l  < i < M, 
s e t  

/' " `B, • )  /" "`B,~ ~ 
= -,,4, ¢ = ' ` A '  

i 

k=l 

Assuming, as usual, that  # is a good estimate of the mean value of the 

trended losses within the interval [#~r~_l, >~r~] leads to the familiar estimate 

u ~ BM and, as before, the two sequences {Ai} and {/~i} approximate 

the cumulative claim and loss percentages of the trended losses. A change 
of scale to normalize the trended losses corresponds to adjusting the two 

sequences {Ai} and {Bi} by constant factors. So the sequences are very 

nearly proportional to the A and B columns of the entry ratio for the trended 
losses. Setting: 

~ii = --~--,#er~ A, = Ai, and Bi __Bi , 0 < i < M  
BM = BM 
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we have approximated the r A B  table for the trended losses: r A B y  = r A B x ~  

r A B .  
Now abstract from this and suppose only that you are provided an entry 

ratio table 0 in the form of three finite increasing sequences of M numbers: 

r o  = O < r l  < r 2  < . . .  < r M  

Ao = O < A I < A 2 < . . . < A M = I  

Bo = O < B I < B 2 < . . . < B M = I  

We will assume that these table values were constructed using some loss 
variable X and so e at least conforms to the properties of an entry ratio table. 
Given s > 0 we can formally construct a new entry ratio by mimicking the 
above and assuming, with no loss of generality, that Px  = 1. For 1 < i < M, 
set A A i  = Ai - Ai-1 and ABi  = Bi - Bi-1 and define 

( A B i  ~ ~ 
A B ,  = A A i  \ - ~ i ]  

i 

k = l  

And construct a new table ~) from the increasing sequences: 

8 

~ i i = ~ M  M, A , = A i ,  andB,---- B-~' ~ '  0 < i < M .  

The significance of this construction for adapting entry ratio tables to chang- 
ing conditions will become clear from the following: 

P ropos i t ion  26 Let 1 < xl  < x2 < . . .  < XM be an increasing sequence of 
M > 1 numbers. Then for  any fixed number w with 0 < w < 1 and integer 
k, 1 < k < M,  there exist c~, ~5 > 0 such that setting Yi = ~xi  ~ we have: 

M 
1 

i = l  

= 1 and Yk = w 

M 
1 Proof .  Let zi = ~ 1 < i < M and define ~(v) = ~TY]z~' then~o is a 

X k  ~ - -  - -  

i = l  
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continuous function of v and invoking the Intermediate Value Theorem[IVT]: 

~o(0) = 1 

ZM > 1 ~  lim ~o(v) = oo 

1 1 
1 < -- < oo, IVT ~ there exists fl > 0 such that  ~o(fl) = --  

W W 

Now set a = ~ ,  then we have: 

Yi 
W 

= axi ~ = - x i  ~ = w z y , l < i < M  

1 M w~_~zBi 
y i  = - H 

i=1 i=1 

= w~0(/5)=--w = 1 and yk=WZ~k = w l  e = w  
W 

completing the proof. • 
This means that ,  quite generally, for discrete loss da ta  the power trans- 

form Y = aX/~ enables us not only to normalize to mean 1 but  also to simulta- 
neously specify the entry ratio w(= r) of any selected percentile k ~ ( =  A(r) ). 
As a very general example, suppose you are provided an rAB table and some 
loss data  with random variable X.  Suppose further that  you observe a me- 
dian = m and mean = #, so the observed entry ratio of the median = _m /z" 

Now suppose further that  in the given tAB table you observe that  A(m) is 

1 This suggests to you that  the given rAB table may not well removed from 5" 
be suited to the task, say, of looking up excess ratios Rx (x) for the given loss 

1 for data. Now assume that  the given entry ratio table rAB has A(w) = 
some w < 1-- this  is not unreasonable since loss distributions typically have 
median less than the mean. From Proposition 23, there is a power transform 
Y = aX B whose median has entry ratio equal to w. But this, in turn, sug- 
gests tha t  the given entry ratio table rAB may be suitable as an entry ratio 
table for the transformed losses Y = aX  e, i.e. rAB ~ rABy, inasmuch as 
the transformed losses have the ratio of mean to median implicit in the table. 
While a power transform may not be the exact relationship for how losses 
trend, it is reasonable to assume some structural  relationship between the 

given tAB table and the given losses. By Proposit ion 5, Rx(x )  = Ry} (a}x)  

and we find that  all we require to customize the table lookup of excess ratios 
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1 

is an entry ratio table for Ya. But the above discussion provides an algorithm 
for determining the entry ratio table of a power transform. So let rAB  be 
determined, as above, from the original rAB  table under the power trans- 
formation s = {, then rAB  ~ rABy~ = rABy~.  This enables us to look up 

1 

the excess ratio Ry~ (aax). Finally, note that all this simplifies to the usual 

process of looking up the entry ratio of the loss limit, but in the adjusted 
entry ratio table: 

1 

Y = a X  ~ =:> Y{ = a½X => ]..~y~ = a~J~  X 

= ) Ev~ \ # r {  / Rx(x) Rr} = 

= = Ev ~ x 
Ey ~ \ Oz'~ # X / 

: q ,  

So to summarize, this example illustrates a general technique to deal with 
the case in which "trend" has impacted the shape of the severity distribution 
as evidenced by a change in the relationship between the mean and the 
median loss. In fact, the discussion details how to "trend" the old entry 
ratio table, rAB, to a new table rAB. 

The challenge with this approach comes in finding c~ and/3. At first, it 
would seem to require a calculation involving the complete loss variable X, 
or at least a very robust and representative claim subsample. And such cal- 
culation (the proof of Propostion 23 coupled with a binary search algorithm 
might prove useful), if doable at all, would suggest that direct calculation of 
the excess ratio, or even an entirely new rAB table, may be more practical. 
However, notice that only/3 is required to construct rAB  from rAB  and it 
is a straightforward spreadsheet application to try different values for/3 until 
the resulting rA-'~ satisfies A(w) = ½. This approach may well provide a/3 
that works even when w >_ 1 and the technique can be applied equally well 
to other percentiles than the median. Consequently, the technique is both 
general and constructive. 

Example  27 This example considers an entry ratio table r A B  (columns 
4th r,A,B) that reflects a loss distribution for which the median is about g of 
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the mean. Assume that later data revealed that the entry ratio of the median 
loss had grown from 0.8 to 0.85. A power transform with 13 = 2 is illustrated. 
Appendix B includes the table and displays a trended entry ratio table t A B  

A 

(columns ~, A, B)  which may better fit the newer data. The following chart 
shows the corresponding change in the normalized cumulative distribution 
function, from A -+ A: 

Power Transform Example 

1.00 

O.Tfi 

0 50 

0.25 

0.00 

0.00 

. . . . .  A 

i i ! i ! i i 

O.fiO 1.00 1 50 2.00 2.50 3.00 3 50 4.00 

Entry Ratio r 

We just, saw how a calculation similar to that of the differential severity 
trend approach can adapt the rAB  table to a power transform Y = a X  ~. We 
conclude this section by describing how the set up of the differential frequency 
trend calculation can adapt the rAB table to a proportional hazard transform 
Sy = (Sx)% In the notation used for differential frequency trend, we have: 

dSy = aSx(x)~_l f (x ) :=> "h(x) = aSx(x)  ~-1. 
g ( z )  - dx 

Now abstract from this as above and suppose again that you are provided 
an entry ratio table 0 in the form of three finite increasing sequences of M 
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numbers: 

ro = O < r l  < r2 < " "  < r M  

Ao = O < A a < A 2 < . . . < A M = I  

Bo = O < B I < B 2 < . . . < B M = I .  

Given a > 0 we can formally construct a new entry ratio table by employing 
the three-step process for the frequency differential trend, again assuming for 
convenience and with no loss of generality that the mean of the loss variable 
of the given table is 1. Set AAi = Ai - Ai-x, ABi = Bi - Bi-1 and define 

Ai = 1 -  ( 1 -  A i )~ ,AAi  = A i - -4 i -1 ,  O < i < M  

\ AAi ] 
i 

Bi = E A B k ,  I < i < M  
k=l  

From which we construct a new table g) from the increasing sequences: 

- _ , =--=--, -=--, O < i < M  

BM AM BM 

Example  28 This example begins with the same entry ratio table t A B  as 
the previous example. A proportional hazard transform a = ~, selected to 
again adjust the median to an entry ratio of about 0.85-the table is included 
in Appendix.B. The following chart shows the corresponding change in the 
normalized cumulative distribution function, from A --+ A: 
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Proportional Hazard Transform Example 
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The t.w 0 examples illustrate the rather different ways in which the power 
transform (which bears a formal similarity with the differential severity trend 
set up) and the proportional hazard transform (which bears a formal similar- 
ity with the differential frequency trend set up) achieve raising the relativity 
of the median to the mean loss. The power transform disproportionately in- 
creases the larger losses, including increasing the maximum loss amount from 
3 to around 3.3, so that proportionally fewer losses above 0.8 are needed for 
an overall mean = 1. By contrast, the proportional hazard adjustment re- 
moves the largest losses, including dropping the maximum loss amount from 
3 to about 2.3, forcing the smaller losses to increase in order to maintain an 
overall mean = 1. Accordingly, it is advisable to consider the impact of trend 
on the largest losses when selecting a trend adjustment to update an entry 
ratio table. 

It is also worth comparing what the WC case studies suggest in regard 
to the justification for trending an entry ratio table. Medical inflation has 
outstripped overall wage growth very consistently and the reasons why are 
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well understood. Also, WC medical coverage is not subject to the statutory 
limitations imposed on wage-replacement benefits. Finally, in the case of 
excess ratios, the direction of the change in the tablular values is consistent 
and readily explained. So in the case of differential severity trend, there is a 
strong argument to be made that the underlying dynamics are persistent. 

The case of differential frequency trend provides a contrast. The decline in 
WC claim frequency, while persistent over the past decade, is neither readily 
explained nor well understood. Experts disagree on whether the decline 
will, or even can, continue. While no one is surprised that medical inflation 
outstrips wage growth, the observation that the WC frequency decline is 
greater for smaller claims is a fairly new and a largely unforseen observation. 
In the case of excess ratios and differential frequency trend, the direction of 
the change in the tablular values is neither consistent nor straightforward. 
While the dymanics of differential severity trend are extemely unlikely to 
reverse, that cannot be said for differential frequency trend. 

As with any trend adjustment, there is the concern that missing turning 
points will result in trend adjustments leading to worse estimates rather than 
better estimates. This is especially so when the direction of the numerical 
change is itself problematic. In the case of entry ratio tables, there is a built in 
correction for short term changes in severity that works very well. And so any 
"trend" adjustment must be justified over a long time window as improving 
the estimate. This study suggests that while a fairly strong argument can 
be made for incorporating the differential severity trend adjustment to WC 
entry ratio tables, the case is much weaker for differential frequency trend. 

7 C o n c l u s i o n  

In the case of a differential severity trend in which large losses trend upward 
faster (slower) than do smaller losses, the use of an entry ratio table assumes 
an average trend which corresponds with a severity distribution whose tail is 
not thickening (thinning) in response to the non-uniform trend. Ideally, the 
normalized excess ratios from the rAB table should be increased (decreased) 
to offset this. 

In the case of a differential frequency trend in which the frequency of small 
losses declines faster (slower) than for large losses, the impact of the frequency 
decline on the mean severity is leveraged. Over the range of attachment 
points, the use of an untrended entry ratio table may sometimes overstate or 
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sometimes understate the change in the excess ratio. 
The two models described here, the differential severity trend and differ- 

ential frequency trend scenarios, are meant to act independently of one an- 
other. Differential severity trend assumes that all trend is due to inflationary 
movement and none is due to a change in claim emergence. Differential fre- 
quency trend holds loss amounts fixed while applying a proportional change 
in the density. Therefore, it is perhaps not to o surprising that while both act 
to increase the mean severity, they can impact the normalized excess ratio 
in opposite directions and may offset one another when updating an entry 
ratio table. 

Another very general technique that can be used to accomodate a non- 
uniform trend is to use a power transformation or a proportional hazard 
transformation, in lieu of just dividing by the mean loss when performing 
the lookup into the entry ratio table. The technique provides another way 
to trend an entry ratio table. More precisely, the ratio between the mean 
loss and a fixed percentile loss may be observed to change over time. And 
this calculation gives a way to periodically modify the entry ratio table to 
accomodate that movement. 
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APPENDIX A 

In this appendix we invoke the notation and assumptions of the Differ- 
ential Frequency Trend (section 4) of the main paper and let X be a loss 
variable with survival function S(x) for which Mx = oo. We consider the 

implications of the assumption that the limit A(p) = limx_,o~ ~ exists for s(~) 
all p > 1. Proposition 14 of the paper gives: 

P r o p o s i t i o n  29 Let X be a loss variable with M x  = oc and S = Sx ,  then 
for any p > 1 for which the limit A(p) = limx__.~ ~ exists: s(=) 

Note that  when the limit A(p) 

More generally, we have: 

lim S(p2x) - 

A(p) <_ 1 
- < 1 .  
P 

• S px = hmz--.~ ~ exists: 

lim S(P2X) S(px) 

= lim S(p(px))  lim S(px) 
~ - ~  S ( p x )  ~ - ~  S ( x )  

= ( l i m  S(px)~2 

A(p ~) = ~(p)=. 

P r o p o s i t i o n  30 Let X be a loss variable with Mx  = oo and S = Sx ,  then 
for any m E N, if the limit A(p) = l~m ~ exists then -----z-,co s(x) 

S(pmx) 
~(pm) = ~im s(x)  = ~(p)m. 

P roo f .  The verification is a straightforward induction, the result has been 
observed to hold for m = 1, 2, we have: 

liE S(Pm+lx) = lira S(pm+ix) S(pmx) 
= - ~  S ( x )  ~ - ~  S ( p ~ x )  S ( x )  

= lim S(p(p=x))  lim S(PmX) 
= - ~  s ( p ~ = )  x - ~  s ( . )  

= ~(p)~(p~)  
= A(p)A(p) ~ = ~(pF +' 
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completing the induction and the proof. • 
When such limits all exist, this generalizes to: 

P r o p o s i t i o n  31 Let X be a loss variable with M x  = oo and S = Sx ,  and 
assume that the limit A(p) = lim,-~oo ~s(,) exists for all p > 1. Then 

A(p) °" = A(p °') for any positive real number w. 

Proof .  Observe that  since the limit A(p~) "' s(p~) = u m . - ~  ~ is assumed to 
exist, we must have: 

• -+~ = lim S(px) 
=_ ~ lim ~k S(x)  ~-oo S(x)  = A(p) 

">" S (p~x )  
=:> lim = A(p)~. 

But then  for any positive integers m, n we have: 

s(p x) 
A(p~ )  = l im  = l im _ ( A ( p ) ~ ) m  = A(p )~ .  

• - ~  S(x) ,-+~ s(.) 

Whence k(p a) = k(p) ~ for any positive rational a. Now let w be a positive 
real, then there are sequences of positive rationals: 

ak, bk E Q, k c N  

such t h a t 0  < al,ak <_ ak+l,bk >__ bk+l 

and with l imak  = l i m b k = w .  
k---*oe k--coo 

This clearly forces ak < w < bk and since S is a continuous, non-increasing 
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function, we have: 

ak _< 
=:> 

:=~ 

w < bk =V pa~ < p~ < pbk 

pakx < p~'x < pbkx for all x > 0 

S (p°~x) > S (p~x) > S ( p % )  for all x > 0 

s ( p o ~ )  s ( p ~ )  s (p%) 
~ _ _ k - - >  for all x > 0 

S(x) S(x)  S(x) 

=> lim S (p~kx) > lim S (p~'x_____~) > lim S (pbkx) 

 X(p) =  x(p 

and we see that  A(p) °' = A(p ~°) for any positive real number w, completing 
the proof. • 

An immediate consequence is: 

C o r o l l a r y  32 Let X be a loss variable with Mx  = oo and S = Sx ,  and 
assume that the limit A(p) = lim=__.~ ~ exists for all p > 1 Then s(=) 

1. there  exists p > 1 such that  A(p) = 0 ¢# A(p) = 0 for every p > 1 

2. there exists p > 1 such that  A(p) # 0 ¢# A(p) # 0 for every p > 1. 

Consider the one-parameter survival function: 

r (x )  = x-e z > l  

O,/5, x > 1 =~ T(px____J = (px)-____~ ~ = p _ ~ =  lim T(py) 
- T ( x )  x - e  y--,oo T ( y )  

Note that  T(/5; x) has a finite mean if and only if/5 > 1. By convention, 
we include the (discontinuous) possibility that /5  = oo by setting T(c~; x) = 
x -¢¢ = 0 for x > 1. 

P r o p o s i t i o n  33 Let X be a loss variable with M x  = oo and S = Sx  and 
assume that the limit A(p) = lim=_~m ~s(=) exists for all p > 1. Then 

A(p) = lim S(px) = p - ~  

for all p > 1, where/5 = - ln(A(e)) > 1. 
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Proof .  Consider first the case when there is some P0 > 1 such that  )~(P0) ~ 0. 
Then from Proposition 29 and Corollary 32 we find that  )~(e) E (0, 1). Then 
for any real p > 1 we have: 

~ ( p )  ~- )~(elnp) --~ ~ ( e ) l np  ~_ (e- f~) lnp  ~- (e lnp)- f~  ~-~ p-~3 

where ~(e) = e -~ ~ ~ = -ln()~(e)) 

and since by Proposition 29: 

<1 1 
k(e) - ~ e < ~ 1 = l n ( e )  < In = - l n ( A ( e ) )  = / ~  

the result follows in this case. For the remaining case A(p) = 0 for all 
p > 1 we have from Corollary 32, with minimally abusive notation and our 
conventions: 

- l n ( A ( e ) )  = - l n ( 0 )  = oo 
II.l : .  

lim S(px)  p_~ x-*~ ' S-~-) = 0 =  for all p > 1 

and the result holds in this case as well. The proof is complete. • 

Coro l l aS- -34  Let X be a loss variable with M x  = oo and S = S x  and 
assume that the limit A(p) = l imx-~  ~s(x) exists for all p > 1 and further 

that there is some Po > 1 such that )~(Po) ~ O. Then 

for all p 

= lim S(px)  = lim T(/3;px) _ p-e  
• --~ S(x)  x--,oo T(/3;x) 

> 1, where 1 </5  = - l n (k (e ) )  < oo. 

P r o p o s i t i o n  35 Let X be a loss variable with M x  = oo and S = S x ,  then 
the following are equivalent: 

1. limx--,o~ ~s(x) exists for all p > 1 

2. there exist Pk > 1, k E N such that l imk-~  Pk = 1 and lim~__,~ ~s(x) 
exists for every k E N. 
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P roo f .  It is apparent that  1 =# 2. To establish the meaningful direction 
2 => 1, we begin with the claim that: 

ak > 0 for all k E N and lira ak = 0 :::> {maklk,  m E N} is dense in [0, c~). 
k----*cx~ 

Indeed, given e > 0, b E (0, oo): 
E 

l i m a k = 0 = > 3 k E N g 0 < ~ k < -  
k--.c¢ 2 

and setting 

bm 
£ 

= mak  => bm+l - b m  = C~k < "~ 

=> there exists m E l~l such that  bm E (b - e, b + e) 

=> moek E ( b - e , b + e ) , k ,  m E N  

Since this holds for any e > 0, it follows that  {mo~kik, m E l~l} is dense 
in [0, oo) as claimed. And since the log function In : [1, oo) ---* [0, oo) is 
bicontinuous and bijective, we see that  

= m k l~I} is dense in [1, oo). Pk > l f o r a l l k E N a n d  l impk l=>{pk]  , m E  

Now we have our assumption: 

there exist Pk > 1, k E N such that  

l impk = l a n d  lim S(PkX) exists for e v e r y k E N  

and we select any p > 1 and seek to prove that  this assumption is sufficient to 
imply that  the limit limx_.~ ~ exits. So assume, by way of contradiction, s(~) 
that  limx-..~ s(p~) does not exist. We have, by density: scx) 

there exist ak, bk e {p?[l, m E N}, k 6 N 

such that  1 < a l , ak_<ak+l , ak__<pandwi th  l i m a k = p  
k--+oo 

and such tha tbk  >_ bk+l ,bk_>pandwi th  lim b k = p .  
k--+oo 

Now S is a continuous, non-increasing function on [0, co) and so we have: 

ak <_ p <_ bj f o r a l l j ,  k 6 N  

=> akx <_ px < byx for all x > 0, and for all j ,  k E N 

S (akx) >_ S (px) >_ S (b~x) for all x > 0, and for all j ,  k • N 

s (a x) s(p ) s (bs ) 
=> ~ > ~ > ~ f o r a l l x > 0 ,  and for a l l j ,  kEBt .  

S(x) S(x) S(x) 
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Consider the two sets: 

A = ~ l i m  S(akx) } 

B = ~ l i m  S(bkx) . } I'z--*°° ~ , / ¢  E N 

The  above inequalities clearly force: 

/ 9 < a <  1 for a l l a E A a n d f o r a l l / 3 E B .  

Observe that  by Proposition 29: 

lim S(akx) < 1 - - < 1  
• - - ~  S ( z )  - a ~  

a < 1 for a l l a  E A. 

We also have, for any k E N, that:  

ak ~ p 
akx <_ px for all x > 0 

:=~ S(akx) >_ S(px) for all x > 0 

S (akx) S (px) for all x > 0 
s(x--T >- s(x---T 

s ( ~ )  s(px) 
=¢, lim J (  ------'w- >- ~--~-w >- O f°r all x > O" 

• X - ' - ~ O 0  

We claim that  limx-~oo ~ > 0 for every k E N, since otherwise: s(x) 

lim S(akx) = 0 =:~ existence of the limit lim S(px) _ 0 =~¢=. 
~-~ s(~) ~-~ s(~) 

And we established: 

0 < a < l f o r a l l a E A  

A C  (0,1). 

Now set: 
a = inf A,/3 = sup B 
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then clearly 0 < # < a < 1. We claim that: 

O l = ~ .  

Indeed, suppose, again by way of contradiction, that  a ¢ j3. Then we would 
have: 

~<C~. 

Now 

A C (0, 1) ~ there exists 

and we have, for any given e 

1 > 

lim Pk -= 
k---*oo 

=~ 

=~ 

:=> 

=:> 

Proposition 29 

s (c . )  
c E {aklk E N} w i t h l > ' y = J i m ~ > 0  

> 0 :  

1 
~ , > 0 = > 3 n E N s u c h t h a t ' y a  > l - e  

1 

1 => ~m E N such that  P,n < ca 

p~ < c  

p~x < cx for all x > 0 

S (p~x) > S (cx) for all x > 0 

s (p x) > s (c.) 
S (x----)- - ~ for all x > 0 

lim S(p~nx) > lim S (cx) ,7 

lim S(pmx) ~ n S(p~x) 
,~---.~ S(x) ) = limoo S(x---~ >- "7 

1 •(pm x) , 
1 > - - >  lim ~ > ' y a  > 1 - e  

And we have established: 

For any given e > 0 there exists ~o 1 > 1 

such that  the limit lira S(~°lx) exists and is in (1 - e, 1). 

We next claim that: 

There exists ~o 2 > 1 such that  lirno S(x) s (8, 
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Let  /71 = ~2e~, t hen  clearly 0 < /51 < a and ( / s l , a )  C_ (/7, a ) .  Now let 
= In a - In/7~ > 0. T h e n  le t t ing e = 1 - e -a we have e > 0 and so by an 

earlier claim there  exists ~o 1 > 1 such t ha t  

lira S(~qx)  C ( l - e ,  1) 
• -~ s(~) 

In -( lira S(~°lx)'~ e (-5, 0). 
t:'~ S(x) ) 

Set r / =  - In (lim~_+o~ s ~_.(_~s(,) ) ,  then: 

= In / { l ira S(~°lx),~ 6 (-5,0)  = (ln/71 - l n o z ,  O) ,0 < ?7 < 6 
v - ~  s(~) ) 

lna in/7 6 { ' lna - ln/7'~ l n a -  In/7 
~ t ) " -~- ~ 77 7 > ~ 1 (ln  

=> there  exists 1 E N such tha t  l E - - ,  

- . l  c ( l n & , l n ~ )  ~ e -'~ c (91,a)  c_ (/7,~) 

and it follows tha t ,  se t t ing ~o 2 = ~Jl we have: 

e-rll ( ~ ) ) '  = e ' ' (  'im=-~ ~ )  = el" 'ira=__ 

= lim = lira = lira 

lim S(~°2x) = e -Èl 6 (/7, a) 
• -~ s(.) 

and the  claim is established. Recall ing how a and /7  were defined, we have: 

lim S(q°2x) C (fl, a )  = (supB,  infA)  
• -- s(x) 

:=> lim S (bjx) S (~o2x) S (akx) - - <  lim ~ <  l i m - - , V j ,  k ~ N  
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and we also have that:  

S ( a k x )  s (~0,x) 

~ > ~ s(~--7- -< s(~---T- 
=> lim S (akx) < lim S (£o2x_____~) 

~-~ s(~) - ~ - ~  s(~) 
s (%~) s ( ~ )  

=> lim S (bjx) > lim S (~o2x__.___~) 
• -~ s(~) - ~ - ~  S(x) 

and we are lead to: 

< a = inf A ~ 

> fl = sup B =>¢= 

ak<_~o2<_bj for allk, jEN. 

But  this, in turn, leads to 

l i m a k  = p =  l i m b k ~ 2 = p  
k---~oa k--*oo 

=:> existence of the limit lira S (~o2x) = lira 
s (pz)  ~ 

~-.oo s( .)  .-~ s(~) 

and with this contradiction we have established our claim tha t  tha t  a = ft. 
Now by the definition of the set A and a -- inf A we find tha t  for any given 
e>O: 

e S(aatx) 
there exists kl E N such tha t  a + [ > lime S(x) 

there exists Xl > 0 such tha t  

S (ak~x) S (px) for every x > xi 
+ ~ > s(x----T >-- S(x----T' 

there exists xt > 0 such tha t  

S (px) for every x > Xl. + c > S(x) ' 

And similarly, by the definition of the set B with a = / 9  = sup B, we find 
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tha t  for any given e > 0 

there exists k2 

O L - - C  

e S(bk2x) 
e N s u c h t h a t f l - ~ < l i m o o  S(x) 

there exists x2 > 0 such that  

S (bk2x_..___.~) < S (px) for every x > x2 
< s ( x )  - s(~---T' 

there exists x2 > 0 such that  

S (px) for every x > x2. 
= / ~ - ~ <  s(~----g' 

Therefore: 

given any e 

S (px),x > x3} 
s (~)  - 

> 0, there exists x3 > 0 such that  

c_ ( ~ -  e,c~+ e) 

=> the limit lim S(px) _ ~ exists =>~  

and this final contradiction establishes tha t  the limit lim=-~oo ~ exists for s(=) 
all p > 1 and completes the proof. • 
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r 

0 

0.1 

0.2 

0.3 

0,4 

0.6 

0.6 

0.7 

0.8 

0.9 

1 

1.1 

1.2 

1.3 

1.4 

1.5 

1,6 

1.7 

1.8 

1.9 

2 

2,1 

2.2 

2.3 

2.4 

2.5 

2,6 

2.7 

2.8 

2.9 

3 

A P P E N D I X  B 

Power Transform Example (~ = 2 )  

A B ~ ~ 7 
0 0 0 0 O 0 

0.082907 0.004145 0.082907 0.004145 0.316228 0.01853862 

0,163781 0.016276 0.080874 0.012131 0.447214 0.03132221 

0.236026 0.034338 0.072245 0.018061 0.547723 0.03612254 

0.303221 0,057656 0.067196 0.023518 0,632456 0.03975295 

0.363143 0.084821 0.059922 0,926965 0.707107 0.04019696 

0.417715 0.114835 0.054572 0,030015 0.774597 0.04047166 

0.467217 0,147012 0.049502 0.032177 0.83666 0.03991004 

0.512363 OA 80871 0.045146 0.033859 6.894427 0.03909732 

0,554109 0.216355 0.041746 0.035484 0.948683 0.03848772 

0.591876 0,252236 0.63777 0.635881 1 0.03681339 

0,626693 0.288792 0.034615 0.036555 1.048809 0.03567449 

0.658777 0.325688 0,032084 0.036897 1,095446 0.03440628 

0,688675 0.383061 0.029899 0.037373 1.140175 0,03342733 

0.716234 0.400266 0.027559 0.037204 1.193216 

0.741513 0.43692 0.025279 0,036655 1,224745 

0,765774 6,474524 6.024261 0.037604 1.264911 

0.788177 0.51149 0.022404 0.036966 1.30384 

0.809417 0,548~6 0.02124 0.037169 1,341641 

0.828932 0.584763 6,019515 0.036163 1.378405 

0.847916 0,620025 0,018084 0,035263 1,414214 

0.864609 0.656092 0,017594 0.036067 1.449136 

0,88129 0,691955 0,01668 0.035863 1,48324 

0.897579 0.728605 0.016289 

0.912953 0.764736 0.015375 

0.927842 0,801212 0.014888 

0,942066 0,837484 0,014224 

0.955979 0,874354 0.013913 

0,970255 0,913613 0,014276 

0.98386 0.952387 0.013605 

1 1 0.01614 

0,03665 1,816575 

0.036131 1.549193 

0.036476 1.581139 

0.036272 1.012452 

0.03687 1,643168 

0,039259 1.67332 

0,038774 1.702939 

0,(}47613 1,732051 

0.03202034 

0.03044021 

0.63O20417 

0.02877787 

0,02809741 

0.02654347 

0,02525227 

0.02519015 

6.02445823 

0.02443335 

0.62356912 

0,02330379 

0.02271451 

0.02264905 

0.0236738 

0.02296765 

0.02772158 

0 O O O 

0.016539 0.110346 0.082907 0.020457 

0.049861 0.220692 0.163781 0.05502 

0.086983 0.331039 0.236026 0.094879 

0.125736 0,441385 0.303221 0.138745 

0.165833 0,551731 0,363143 6,183101 

0,206405 0.662077 0.417715 0.22776 

0.246315 0,772424 0,467217 0.271799 

0.285412 0.88277 0.512363 0,314942 

0.3239 0.993116 0.554109 0.357411 

0.360713 

0,396388 

0.430794 

0.464222 

0.496242 

0,526682 

0.556886 

0.585664 

0.613762 

0.640305 

0.665557 

0,690747 

0.715206 

0,739639 

0.763208 

0.786512 

0.809226 

0.831875 

0.855549 

0.878517 

0,906288 

1.103462 0.591878 0.398034 

1.213809 0.626693 0.437399 

1.324155 0.658777 0.475385 

1.434501 0.688675 0.512251 

1.544847 0.716234 0.547584 

1.655193 0.741513 0.581174 

1.76554 0,765774 0.614503 

1.875886 6.788177 0.646258 

1.986232 0.809417 0.677263 

2.096578 0.828932 0.706552 

2.206925 0.847016 0.734417 

2.317271 0.864609 0.762214 

2.427617 0.88129 0.789202 

2.537963 0.897579 0.816164 

2,64831 0,912953 0.842171 

2.758656 0.927842 0.867886 

2.869002 0.942066 0.892951 

2.979348 0,955979 0.917943 

3.089694 0.970255 0.944066 

3.200041 0.98386 0.96941 

3.310387 1 1 
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Trending Entry Ralio Tables 

Proportional Hazard Transform Example ((1 = 5/7) 

0 0 0 0 0 0 0 0 0 0 0 0 

0.1 0.08290724 0.004145 0.082907 0004145 0.059947 0.05994702 0,00299735 0.002997 0.078635 0.059947 0,002357 

0.2 0.16378083 0.016276 0,080874 0,012131 0.119936 005998875 0,00899831 0,011996 0,15727 0.119936 0.009433 

03 0.23602591 0.034338 0,072245 0.018061 0.174942 0.055005747 0,01375144 0,0~5747 0,235905 0.174942 0.02G246 

04 0.30322066 0 067856 0,067195 0023518 0,227453 0.052510987 0,01837885 0.044126 0,31454 0,997453 0.034698 

0,5 0,36314275 0084821 0,(~9922 0.026985 0275514  0,0489861374 0,02162762 0.055754 0.393175 0.275514 0,051705 

0,6 0,41771473 0.114835 0,654572 0.030015 0.320421 0,044907259 0,02469899 0,090453 0,47181 0.320421 0071127 

07 0,46721704 0.147012 0,049502 0032177 0.362208 0.041787246 0,02716171 0,117614 0,560445 0.362208 0,092486 

08 0.51236273 0.180871 0.045146 0033859 0.401296 0.03908775 002931581 0.14693 0,629081 0,401296 0.115539 

0.9 055410853 0.216355 0.041746 0.035484 0.438371 0037075025 0,03151377 0.178444 0.707716 0,438371 0.140319 

1 0.59187827 0.252236 0 0 3 7 7 7  0.035881 0.472779 0,034407898 0.0326875 0.211131 0.786351 0472779 0.166023 

1.1 0.62989301 0.288792 0.034815 0036555  0.50531 0.032531155 0.03415771 0.245289 0,864986 0.98531 0.192883 

1,2 0.65877703 0 325688 0.032084 0 036897 0.536066 0.0~0756108 0.03536952 0.280659 0.943621 0.536066 0 220698 

1 3 0,68867534 0,363061 0.1~9898 0.037373 0 .56548  0,02941379 0 03676724 0.317426 1.022256 0.56548 0.249608 

1,4 0.71623406 0,400266 0.(~7559 0.037204 0,593316 0027835655 003757813 0.355004 1.100891 0.593316 0.279158 

1.5 0.74151327 0.43692 0.(~5279 0.036655 0.619536 0.026220703 0.03802002 0,393024 1.179526 0.619536 0.309055 

1.6 0.76577385 0.474524 0,024261 0 007604 0.645399 0 025862853 0.04008742 0.433111 1.258161 0.645399 0.340577 

1.7 0.78817739 0.51149 0,(~2404 0,036986 0989971 0,024572019 004054383 0 473655 1,336796 0,669971 0.372459 

1.8 0.80941703 0,54866 0.02124 0037169 0,693983 0023991374 0,0419849 0.51564 1,415431 0693963 0.405474 

1,9 0.82893218 0584763 0.019515 0.036103 0.716689 0.022726515 0.04204405 0.567684 1.494066 0,716689 0438535 

2 0,84701571 0,620025 0018084 0,0~15263 0 .73842  0,02173056 0,04237459 0.600059 1.572701 0.73842 0,471857 

2.1 0,88460927 0656092 0,017594 0036987 0.760279 0,02185905 0 04481105 0,64487 1,651336 0.760279 0.507094 

2.2 0.88128965 0.691955 0,01668 0.035863 0.781767 0.021488162 0.{)4619955 0.6~11069 1.729971 0.781767 0.543423 

2.3 0,89757855 0728605 0.016289 0.03665 0.803602 0.021835308 0.04912944 0.740199 1 808607 0803602 0.582056 

2.4 0.91295335 0764736 0.015375 0036131 0,92~144 0,021541886 005062343 0,790822 1.987242 0.825144 0.621864 

2,5 0.92784159 0801212 0.014888 " 0036476 0.847071 0.0~1926519 005371997 0.844542 1.985877 0.847071 0.664106 

2,6 0.94206597 0.837484 0.014224 0.036272 0,869268 0,022197493 0.05660361 O.flO1146 2.044512 0.869268 0 708617 

2,7 0.95597917 0,874354 0.013913 0,03687 0.892555 0.023287235 006171117 0,962857 2.123147 0.892555 0.757143 

2,8 0.97025501 0,913613 0.014276 0.0~9259 0,918795 0.026239833 0.07215954 1,(135017 2.201782 0.918795 0.813886 

2.9 0.98385987 0,952387 0,013605 0.038774 0.947527 0.028732009 0.08198822 1 116903 2,280417 0.947527 0.878277 

3 1 1 0 01614 0 047613 1 0.052472719 0 15479452 1.271697 2.359052 1 1 
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The 2004 NCCI Excess Loss Factors 

D a n  C o r r o  a n d  G r e g  Engl* 

O c t o b e r  17, 2005 

1 I n t r o d u c t i o n  

An in-depth review of the NCCI excess loss factors (ELFs) was recently 
completed and changes were implemented in the 2004 filing season. The most 
significant change was to incorporate the latest data, but the methodology 
was thoroughly reviewed and a number of methodological changes were made 
as well. Among the methodological items considered were: 

1. Individual Claim Development 
Our intent here was to follow the method in Gillam and Couret [5] and 
merely update the parameters. However our treatment of reopened 
claims is new as is the way we implement individual claim development. 
This is covered in detail in section 2. 

2. Organization of Data 
The prior procedure fit countrywide loss distributions by injury type 
and then adjusted the means of those distributions to be appropriate for 
each individual state. We extend this idea to match the first two mo- 
ments. The prior procedure implicitly gives each state's data a weight 
proportional to the number of claims in the given state, and thus even 
the largest states do not get very much weight in the countrywide dis- 
tributions. We give much more weight to individual states' own data 
and thus fit state specific loss distributions. For credibility reasons the 

*We gratefully acknowledgc the creative contributions of the many people involved in 
this project, including, bu~ not limited to, NCCI staff and NCCI's Retrospective Rating 
Working Group. 

Casualty Actuarial Society Forum, Fall 2006 513 



The 2004 NCCI  Excess Loss Factors 

prior loss distributions combined permanent total injuries with major 
permanent partial injuries, and minor permanent partial injuries with 
temporary total injuries. We fit fatal, permanent total (PT), perma- 
nent partial (PP), temporary total (TT), and medical only distributions 
separately. In order to do this we use data at third, fourth, and fifth re- 
port for fatal and permanent total injuries. Mahler [10] also uses data 
at third, fourth, and fifth report. For permanent partial, temporary 
total, and medical only injuries, where there is adequate data, we only 
use data at fifth report. This is covered in section 3. 

3. Fitting Method 
We follow Mahler [10] and rely on the empirical data for the small 
claims and only fit a distribution to the tail. We fit a mixed exponential 
distribution to the tail. Keatinge [8] discusses the mixed exponential 
distribution. Rather than fitting with the traditional maximum likeli- 
hood method we choose to fit the excess ratio function of the mixed 
exponential to the empirical excess ratio function using a least squares 
approach. This yields an extremely good fit to the data. It should be 
noted that we do not fit the raw data, but rather the data adjusted to 
reflect individual claim development as described in section 2. This re- 
sults in a data set that has already been smoothed significantly and so 
we were not concerned that the mixed exponential tail might drop off 
too rapidly. Mahler [10] noted that the excess ratios are not very sen- 
sitive to the splice point, i.e. the point where the empirical data ends 
and the tail fit begins. Thus we preferred to not attach too far out into 
the tail so that we could have some confidence in the tail probability, 
i.e. the probability of a claim being greater than the splice point. We 
generally chose splice points that resulted in a tall probability between 
5% and 15%. This is covered in section 4. 

. Treatment of Occurrences 
We put a firmer foundation under the modeling of occurrences by bas- 
ing it on a collective risk model. In the end we find that the difference 
between per claim excess ratios and per occurrence excess ratios is al- 
most negligible. This is quite a sharp contrast with the past. Once, per 
occurrence excess ratios were assumed to be 10% higher than per claim 
excess ratios. This was later refined by Gillam [4] to the assumption 
that the cost of the average occurrence was 10% higher than the aver- 
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age claim. Gillam and Couret [5] then refined this even further to apply 
by injury type: 3.9% for fatal injuries, 6.6% for permanent total and 
major permanent partial injuries, and 0% for minor permanent partial 
and temporary total injuries. Our analysis shows that per occurrence 
excess ratios are less than .2% more than per claim excess ratios. This 
is covered in section 5. 

In section 6 we discuss updating the loss distributions. The current pro- 
cedure is to update the loss distributions annually by a scale transformation 
and to refit the loss distributions based on new data fairly infrequently. The 
scale transformation assumption is extremely convenient and is discussed by 
Venter [12]. What is needed is a method to decide when a scale transforma- 
tion is adequate and when the loss distributions need to be refit. We conclude 
by reviewing the methodology changes. While the focus of this paper is on 
methodology, we also take the opportunity to briefly discuss the impact of 
the changes. 

2 Individual  Claim Deve lopment  

When evaluating aggregate loss development it is not necessary to account 
for the different patterns that individual claims may follow as they mature 
to closure. In aggregate it does not matter whether ten claims of $100 each 
all increase by $10 or whether just one claim increases by $100 to produce 
an ultimate loss of $1,100 and an aggregate loss development factor (LDF) 
of 1.1. But if you are interested in the excess of $110 per claim, it makes 
all the difference. Gillam and Couret [5] address the need to replace a single 
aggregate LDF with a distribution of LDFs in order to account for different 
possibilities for the ultimate loss of any immature claim. They refer to this 
as dispersion, and the name has stuck. Here, the term dispersion refers to 
a way of modelling ultimate losses that replaces each open claim with a loss 
distribution whose loss amounts correspond to the possibilities expected for 
that individual claim at closure. 

The loss distribution used to determine the ELF should reflect the loss 
at claim closure. The calculation is done by injury type and uses incurred 
losses. It must reflect maturity in the incurred loss beyond its reporting 
maturity fully to closure, including any change in claim status (open/closed) 
and change in the incurred loss amount. Moreover, it must accommodate 
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the reality that not all claims mature in the same way. Age to age aggregate 
incurred LDFs are determined from 18t to 5 th report by state, injury type, 
and separately for indemnity and medical losses. The source is Workers 
Compensation Statistical Plan Data (WCSP), as adjusted for use in class 
ratemaking. As WCSP reporting ceases at 5 th report, 5 th to ultimate incurred 
LDFs, again separately for indemnity and medical losses, are determined from 
financial call data, typically in concert with the overall rate-level indication. 

Individual claim WCSP data by injury type and report is the data source 
for the claim severity distributions. PP, TT, and medical only claims are 
included at a 5 th report basis. The far less frequent but often much larger 
Fatal and PT claims are included at 3 rd, 4 th and 5 th report basis. The WCSP 
data elements captured include state, injury type, report, incurred indemnity 
loss, incurred medical loss, and claim status. This detailed WCSP loss data is 
captured into a model for the empirical undeveloped loss distribution. That 
model consists of a discrete probability space to capture the probability of 
occurrence of individual claims together with two random variables for the 
claims' undeveloped medical and indemnity losses as well as four characteris- 
tic variables for state, injury type, report, and claim status. Eventually, this 
is refined into a model for the ultimate loss severity distribution that con- 
sists of a probability space together with one random variable for the claims' 
ultimate loss as well as two characteristic variables for state and injury type. 

Because dispersion is exclusively focussed on open claims, without some 
accommodation, claims reported closed but that later reopen would not be 
correctly incorporated in the dispersion model. Accordingly, it is advisable 
to account for reopened claims prior to dispersing losses. The loss amounts 
considered are the total of the medical and indemnity losses for each claim. 
The methodology adjusts those loss amounts and probabilities by claim sta- 
tus and injury type, so as to model the impact of reopening claims. The 
details for the specific calculations used can be found in Appendix A and 
Appendix C. It is based on the observation that the few closed claims that 
reopen after a 5 th report (0.2%) are not typical, but are on average larger (by 
a factor of 8) and have a smaller CV (by a factor of 0.4). Appendix A shows 
quite generally how to calculate the resulting means and variances when a 
subset of claims have their status changed from closed to open. 

The probability, mean, and variance of the three subsets of the loss model: 

1. claims reported closed at 5 th report 

2. claims reported open at 5 th report 
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3. claims that reopen subsequent to a 5 th report 

completely determine the probability, mean, and variance of the complemen- 
tary subsets: 

1. claims 'truly closed' at 5 th report (those reported closed that do not 
reopen) 

2. the complement set of 'truly open' claims. 

That is, there is only one possibility for the probability, mean, and vari- 
ance of the truly open and closed subsets, even though there are multiple 
possibilities for what particular claims reported closed at 5 ~h later reopen. In 
fact, those values can be explicitly determined from the formulas derived in 
Appendix A. 

Knowing the probabilities of the truly open and closed subsets, we adjust 
the loss model by proportionally shifting the probabilities. The probability 
of each open claim is increased by a constant factor while the probability of 
each closed claim is correspondingly decreased by another factor. Knowing 
the mean and variance of the truly open subset lets us adjust the undevel- 
oped combined medical and indemnity loss amounts of the open claims to 
match the two revised moments for open claims; this is done via a power 
transformation as described in Appendix C. The closed claim loss amounts 
are similarly adjusted. The result is a model of empirical undeveloped losses 
that reflects a trued up claim status as of a 5 th report, in the sense that no 
closed claims will reopen. That model, in turn, provides the input to the 
dispersion calculation. This approach is a refinement from that of Gillam 
and Couret [5] who account for the reopening of just a very few closed claims 
by dispersing all closed claims by just a very little. The idea here is to per- 
form the adjustment prior to dispersion so that it is exactly the set of 'truly 
closed' claims whose losses are deemed to be at their ultimate cost and it is 
the complement set of 'truly open' claims that are dispersed. 

In the resulting model for the empirical undeveloped loss distribution, 
the claim status variable is assumed to be correct in the sense that the 
loss amount for each closed claim is taken to be the known ultimate loss 
on the claim. Dispersion is applied only to open claims. Accordingly, the 
LDF applicable to all claims is adjusted to one appropriate for open claims 
only, and all development occurs on exactly the open claims. For each state, 
injury type, and report, one average LDF is determined from the medical and 
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indemnity LDFs to apply to the sum of the medical and indemnity incurred 
losses of each claim. That combined incurred LDF is then modified to apply 
to just the open claims. More precisely, the relationship used to focus an 
aggregate LDF onto just the open claims is simply: 

Lc = Aggregate undeveloped loss for closed claims 

Lo = Aggregate undeveloped loss for open claims 

A = Aggregate LDF applicable to all claims 

= Open only LDF 

A(Lc+Lo)  = L c + A L o = ~ A = A + ( A - 1 )  L--A~ 
Lo 

The adjusted to open only LDFs are determined and applied by state, injury 
type, and report. 

Even though the adjusted LDFs are applied to all open claims indepen- 
dent of loss size, because the proportion of claims that remain open correlates 
with size of loss, the application of dispersion varies by the size of loss layer. 
Typically, larger losses are more likely to be open, and this application of 
development factors will have a greater impact in the higher loss layers. It 
follows that the application of loss development changes the shape of the 
severity distribution, making it better reflect the ultimate loss severity dis- 
tribution. 

The next step is to apply dispersion to open claims. The technique used 
to disperse losses is formally equivalent to that used by Gillam and Couret [5]. 
The technique bears some similarity to kernel density estimation in which an 
assumed known density function (the kernel) is averaged across the observed 
data points so as to create a smoothed approximation. More precisely, the 
idea is to replace each open claim with a distribution of claims that reflect 
the various possibilities for the loss that is ultimately incurred on that claim. 
The expected loss at closure is just the applicable to ultimate LDF times the 
undeveloped loss. The LDF is varied according to an inverse transformed 
gamma distribution and multiplied by the undeveloped loss to model the 
possibilities for the ultimate loss. 

The NCCI Detailed Claim Information (DCI) database was used to build 
a data set of observed LDFs beyond a 5 th report. We studied DCI claims open 
at 5 th report for which a subsequent DCI report was available. The observed 
LDF was determined as the ratio of the incurred loss at the latest available 
report divided by the incurred loss at 5 th report. If the claim remained open 
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at that latest report, the observed LDF was considered "right censored." 
Censored regression of the kind used to study survival was used to fit this 
data. Open claims were identified as the censored observations, i.e. closed 
claims were deemed "dead" and open claims "alive" in the survival model. 
The survival model was used to determine an appropriate form to represent 
the distribution. 

More precisely, the SAS PROC LIFEREG procedure was used to estimate 
accelerated failure time models from the LDF observations. Letting Y denote 
the observed LDF, the model was specified by the simplest possible equation 
Y = • + ~, where ~ represents a constant and ~ a variable error term. 
That is, the model specifies just an intercept term with no covariates at 
all. That model specification was selected because it corresponds to the 
application of a constant LDF ( ~ ) to open claims. Moreover, the error term 
of the model corresponds precisely with dispersion, as that term is used here. 
Consequently, this application of survival analysis is somehat unconventional 
inasmuch as the issue is not the survival curve or the goodness of fit of 
the parameter estmate ~ that is key. Rather, the interest here is on the 
distribution of the error term c. The SAS LIFEREG procedure is well suited 
to this because not only does it account for censored observations, it also 
allows for different structural forms to be assumed for the error term s when 
estimating accelerated failure time models. 

In this application, the estmated parameter for the intercept was not 
used since the LDF factors by state, injury type and report were taken from 
ratemaking data. What was of interest is the form and parameters that spec- 
ify the error distribution. The Weibull, the Lognormal, the Gamma, and the 
generalized Gamma distribution were considered. In fact, the two-parameter 
Weibull, two-parameter Gamma, and the two-parameter Lognormal are all 
special cases of the three-parameter generalized Gamma (the Weibull and 
Gamma directly via parameter constraint, the Lognormal only asymptoti- 
cally). The solutions for the generalized gamma implied that its three pa- 
rameters enabled it to outperform the two parameter distributions. The 
three-parameter model guided the specification of the functional form and 
parameter values for the LDF distributions used in the dispersion calculation. 

With the eventual goal to calculate excess ratios, it was important to 
assess whether the error term varies by size of loss. Gillam and Couret [5] 
assume that the CV of the dispersion distribution does not vary by size of 
loss. In addition to specifying different structural forms for the error term, 
models were fit to quintiles of the data, where by a quintile we mean that 
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H i s t o g r a m  o f  C e n s o r e d  L D F  a n d  

P D F s  o f  U n c e n s o r e d  S u r v i v a l  D i s t r i b u t i o n s  
Based on DCl PPD Claims with both a 5 ~ and Subsequent Report 

1.75 

1.25 

t I 

0.25 

0 0.5 1 1.5 2 2.5 3 3.5 

the observations were divided into five equal volume groups according to 
claim size. It was observed that the CV of the error term did not show 
any significant variation by size of loss. This affirmed the prior assumption 
of a constant CV, and that assumption was again used in this dispersion 
calculation. 

The LIFEREG procedure outputs the parameters that specify the dis- 
persion pattern, by injury type, that relates a fifth report loss amount with 
the probable distribution of the incurred cost at "death" of the claim, i.e. 
at claim closure. Combining that with average LDFs from ratemaking, the 
uncensored distribution of the ultimate loss severity canbe  calculated. For 
any fixed open claim, the uncensored LDF distribution values times the (un- 
developed) loss amount corresponds with the probable values for that claim 
at closure. It follows that the uncensored LDF distribution corresponds to 
age to ultimate LDFs applicable on a per open claim basis. The above chart 
illustrates how the survival model anticipates rightward movement of the 
reported empirical losses and fills out the right hand tail. 
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Because the mean LDF was already known, our primary focus was on the 
CV. This follows the approach of Gillam and Couret [5], whose decision to use 
a two-parameter gamma distribution for the reciprocal of the LDF was also 
followed. The use of the gamma to model the reciprocal amounts to the use of 
an inverse gamma for the LDF. That choice was reaffirmed by the DCI data 
and is illustrated somewhat in the above chart. We actually used a three- 
parameter inverse transformed gamma distribution, as the survival model 
suggested that would yield a better representation of the LDF distribution. 
The first two parameters, denoted a, r in Klugman, et. al. [9] determine the 
CV of the distribution, which varies by report and injury type as indicated 
in the following table: 

Injury 
Fatal & PT 
Fatal & PT 
Fatal & PT 

PP 
TT 

Med Only 

Report ~ T CV 
3 5.7134 0.8 0.7 
4 6.8664 0.8 0.6 
5 8.7775 0.8 0.5 
5 8.7775 0.8 0.5 
5 12 3 0.1 
5 12 3 0.1 

The third parameter, denoted/5 in Klugman, et. al. [9], determines the 
mean LDF and was directly solved for to make that mean equal the age 
to ultimate aggregate open claim LDF by state, report, and injury type. 
Even though open TT and Med only claims are not assumed to develop in 
aggregate (mean LDF = 1), the open TT and Med only claims are dispersed, 
but with a small CV. 

Gillam and Couret [5] used a CV of 0.9 for the LDF on open claims; 
that selection was dictated to some degree by the need to account for po- 
tential unobserved large losses. The current ratemaking methodology makes 
separate provision for very large losses. This, in turn, enables this ELF re- 
vision to rely less on judgment and more on empirical data. The empirical 
data suggested the lower CVs used for the LDF distributions. All else equal, 
lowering the CV lowers the ELF at the largest attachment points. Much sen- 
sitivity analysis was done to assess the impact of this change in the assumed 
CV. It was determined that the selection did not represent an unreasonable 
reduction in the ELFs. 

As is typical with kernel density models, Gillam and Couret [5] used a 
closed form integration formula to implement dispersion. However, in order 
to be able to perform the downstream data adjustments (in particular, ad- 
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justing to State conditions as discussed in the next section), we instead used 
the device of representing each open claim by 173 variants. The variants 
are determined by multiplying the undeveloped loss amount by 173 different 
LDFs. The variant LDFs have mean equal to the applicable overall LDF (as 
applicable to open claims only) and a CV of 0.5 for 5 th report Fatal, PT, and 
PP claims. The mean LDF applicable for medical only and TT cases is 1, 
as those cases are assumed not to develop in aggregate beyond a 5 th report. 
So even open medical only and TT claims ar e dispersed, albeit so as not to 
change the aggregate loss (and with a smaller CV of 0.1 for the LDF distrib- 
ution). The choice of 173 points was done to enable the calculation to better 
capture the tail. Very small and very large LDFs are included in the model 
(corresponding to the 0.0000018t and 99.999999 th percentile of the inverse 
transformed gamma) albeit with a correspondingly very small weight (about 
0.000001) being assigned to such variants. Dispersion does not change the 
contribution of any claim to the aggregate developed loss. It was determined 
that the use of 173 points provided a very close approximation to the contin- 
uous form. Additional details on that calculation can be found in Appendix 
B. 

To summarize, the dispersion calculation starts with a finite probabil- 
ity space of claims together with a random variable giving the undeveloped 
claim values. Then both the probability measure and the random variable 
are adjusted to account for reopened claims. That gives a modified proba- 
bility space of claims. Replacing each open claim with a distribution of 173 
expected loss amounts at closure yields a developed dispersed probability 
space of claims with a random variable giving the ultimate claim value. This 
is done for each injury type and for all NCCI states. The next section de- 
scribes how those random variables are adjusted to state specific conditions 
so as to yield the empirical distributions used in fitting the data to severity 
distributions. 

3 Organization of Data  

The idea of estimating excess ratios by injury type goes back at least to 
Uhthoff [11] and has been used as well by Harwayne [6], Gillam [4], and 
Gillam and Couret [5]. While we follow this approach as well, it should 
be noted that ,alternatives have recently been identified by Brooks [2] and 
Mahler [10]. 
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Owing to the relatively few fatal and permanent total claims it is de- 
sirable to combine data across states. Differences between states preclude 
doing this without adjustment however. Gillam [4] addressed this by group- 
ing states according to benefit structure. For an interesting recent approach 
incorporating benefit structure see Gleeson [7]. With the current dominance 
of medical costs this approach is less satisfactory. In the prior approach, 
Gillam and Couret [5] addressed the problem "by dividing each claim by the 
average cost per case for the appropriate state-injury-type combination." We 
refer to this data adjustment technique as mean normalization. This results 
in a countrywide database with mean of 1. Loss distributions were then fit 
to this normalized database. The countrywide loss distributions are then 
adjusted via a scale transformation (see Venter [12]) to be appropriate for 
each particular state. Thus the data for different states is adjusted to have 
the same mean. A natural variant of this would be median normalization, 
the thought being that the median might be more stable than the mean. A 
natural extension is to try and match more than one moment. We considered 
five data adjustment techniques altogether: 

1. Mean Normalization 
As mentioned above, for a given injury type, each claim in state i, de- 
noted by xi (here xi denotes the incurred loss on a claim from state i 
developed to ultimate), is transformed by xi ---* x i /# i ,  where #i denotes 
the mean of the x~. The normalized claims for all states are now com- 
bined into a countrywide database. To get a database appropriate for 
state j, each normalized claim is then scaled up by the mean in state 
j,  i.e. x i /# i  -+ #~" Xi/p i 

2. Median Normalization 
This is analogous to mean normalization, but claims are now normal- 
ized by the median rather than the mean. 

3. Logarithmic Standardization 
A natural generalization of mean normalization would be to standard- 
ize claims, xi --+ *~__~v_L. To avoid negative claim values when transform- 

Orl 

ing the standardized database to a particular state we standardize the 
logged losses, log xi --+ ~ where now #i, ai denote the mean and 

a i , 

standard deviation of the logged losses. This results in a standardized 
countrywide database, which can then be adjusted to a given state j by 
logx,-~L --+ a i .  ~ + #J" Appendix C discusses this in more detail. 

O" i O" i 
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. Generalized Standardization 
This is analogous to logarithmic standardization except that instead of 
the mean and variance, percentiles can be used. For example, instead of 
the mean we could use the median and instead of the standard deviation 
we could use the 85 th percentile minus the median. 

. Power Transform 
Lastly, we considered a power transform, xi ---+ ax~i, where the values 
of a and b are chosen so that the transformed values have the mean 
and variance of state j .  That this is possible is shown in Appendix C. 
Thus for each state i there is a different power transform that takes 
the unadjusted state i claims and adjusts them to what they would 
be in state j ,  in the sense that the transformed claims from state i 
match the mean and variance in state j. Combining all of the adjusted 
claims results in an expanded state j specific database. Notice that the 
unadjusted state j claims appear in the expanded state j database and 
so the expanded state j database is indeed an expansion of the state j 
data. It should also be noted that the power transform generalizes both 
mean normalization and logarithmic standardization and the moments 
are matched in dollar space rather than in log space. This is discussed 
in more detail in Appendix C. 

Extensive performance testing was conducted to decide which data ad- 
justment techniques to use. The idea was to postulate realistic loss dis- 
tributions for the states, based on realistic parameters, simulate data from 
the postulated loss distributions and see which techniques best recovered 
the postulated distributions. Initial tests showed that median normalization 
and generalized standardization performed poorly and so further tests con- 
centrated on the remaining techniques. Based on our performance tests we 
chose to use logarithmic standardization for Fatal and Permanent Total (PT) 
claims and the power transform for Permanent Partial (PP), Temporary To- 
tal (TT), and Medical Only claims. It seemed that when there were only 
a limited number of claims and the difference in CVs between states was 
large the exponent in the power transform could occasionally be quite large, 
leading the power transform to underperform logarithmic standardization. 

Gillam and Couret [5] call modeling PT and PP claims separately the 
"common sense approach." Owing to the scarcity of PT claims they have in 
the past been combined with Major PP claims. Due to our improved data 
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adjustment techniques we are able to separate PT from PP. We also used 
data at 3 rd, 4 th, and 5 th report for Fatal and PT claims because of their 
relative scarcity, whereas we only used data at 5 ~h report for the other injury 
types. 

In the prior approach, each state's weight in the countrywide database 
was proportional to the number of claims it contributed to the countrywide 
total. This seems implicitly like assigning a state's data a credibility of n/N, 
where n is the number of claims in the state and N is the countrywide 
total. Further, this implicit credibility did not vary by injury type. This 
makes sense when there is only one countrywide database. We however, use 
a different database for each state and give each state's data a weight of 
v'rn-/N in the state specific database, where n is the number of claims in the 
state and N is a standard based on actuarial judgment. Our view was that 
most states would have enough data to fit loss distributions for Medical Only, 
but that no state would have enough claims to fit a Fatal loss distribution 
and only the largest states would have enough PT claims. We thought it 
reasonable that three quarters of the states would have enough Medical Only 
claims, half of them would have enough TT claims and about a quarter of 
them would have enough PP claims. With this in mind, we chose N, the 
standard for full pooling weight, to be 2,000 for Fatal claims, 1,500 for PT 
claims, 7,000 for PP claims, 8,500 for TT claims and 20,000 for Medical Only 
claims. It is intuitively sensible that the standard for Medical Only should 
be higher than for PT because excess ratios are driven by large claims and 
most PT claims are large whereas most Medical Only claims are typically 
small. 

4 Fitting 

Traditionally a parametric loss distribution would be fit to the entire data 
set by maximum likelihood. The first problem with this approach is that 
distributions which fit the tail well may not fit the small claims so well and 
thus there is a trade-off between fitting the tail well and fitting the small 
claims well. The need for a fitted loss distribution is really only in the tail as 
the number of small claims is quite large. Mahler [10] has recently used the 
empirical distribution for small claims and spliced a fitted loss distribution 
onto the tail. This is the approach we follow as well and we describe it in 
detail in Appendix E. Fitting the tail alone is of course much easier and the 
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fits are much better than they have been in the past. The second problem 
with the traditional approach is that maximizing the likelihood function is 
somewhat indirect. While maximum likelihood fits typically result in loss 
distributions with excess ratio functions that do fit the data well, there is no 
intrinsic interest in the likelihood function itself. The primary objective is a 
loss distribution whose excess ratio function fits the data well and so instead 
of maximum likelihood we use least squares to fit the excess ratio function 
directly. Appendix D gives some general facts about excess ratio functions. 
In particular, Proposition 12 shows that a distribution is determined by its 
excess ratio function and so there is no loss of information in working with 
excess ratio functions rather than densities or distribution functions. 

Mahler [10] uses a Pareto-exponential mixture to fit the tail. We use two 
to four term mixed exponentials. The mixed exponential distribution is de- 
scribed by Keatinge [8]. All things being equal, the mixed exponential is a 
thinner tailed distribution than has been used in the past. It has moments of 
all orders, whereas some loss distributions in use do not even have finite vari- 
ances. However, the loss data used to fit the mixed exponential is driven by 
the inverse transformed gamma distribution of LDFs, as described in section 
2, and the inverse transformed gamma is not a thin tailed distribution. This 
prevents the tail of the fitted loss distribution from being too thin. The mixed 
exponential also has an increasing mean residual life, and this is quite typi- 
cal of Workers Compensation claim data. Fat tailed distributions may make 
sense in the presence of catastrophic loss potential, but recently NCCI has 
made a separate CAT filing so the new ELFs are for the first time explicitly 
non-CAT. From a geometrical perspective, the density function over the tail 
region should be decreasing and have no inflection points, as occurs where the 
first derivative of the density function is negative and its second derivative 
is positive. The mixed exponential class of distributions has alternating sign 
derivatives of all orders. And conversely any distribution with alternating 
sign derivatives of all orders can be approximated by a mixed exponential to 
within any desired degree of accuracy. Functions with this alternating deriv- 
ative property are called completely monotone and this characterization of 
them follows from a theorem by Bernstein. (See Feller [3].) We initially 
considered using other distributions besides the mixed exponential, but the 
mixed exponential fits were so good that it was not necessary to consider 
other distributions further. 

Mahler [10] noted that the excess ratios are not very sensitive to the splice 
point, i.e. the point where the empirical data ends and the tail fit begins. We 
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found that  to be the case as well. We were concerned with large losses being 
under represented in the data. Thus we preferred to not a t tach too far out 
into the tail so that  we could have some confidence in the tail probability, 
i.e. the probability of a claim being greater than the splice point. So we gen- 
erally chose splice points that  resulted in a tail probability between 5% and 
15%. While this gave us some confidence in the tail probability, we were still 
concerned about  claims in the $10 million to $50 million range being under 
represented in the data. (Claims larger than $50 million would be accounted 
for in the separate CAT filing.) The new excess ratios are based on one to 
three years of data, depending on the injury type, but  the largest WC claims 
and events occur with return periods exceeding three years. WC catastro- 
phe modeling indicates that  claims and occurrences in the $10 million to $50 
million range are underrepresented in the data  used to fit the new curves. 
Because of this, we included an additional provision for individual claims 
and occurrences between $10 million and $50 million. This new provision 
is broadly grounded in the results of several WC catastrophe models, and 
known large WC occurrences. Previous excess ratio curves included a provi- 
sion for anti-selection of 0.005, which has been eliminated in the new curves. 
The new provision, per-claim or per-occurrence, is .003 up to $10 million, 0 
for $50 million or greater, and declines linearly from .003 to 0 between $10 
million and $50 million. Thus the final adjusted excess ratio is 0.997 times 
the excess ratio before this adjustment,  plus this adjustment. Tha t  is, if L is 
the loss limit and R(L) is the unadjusted per claim or per occurrence excess 
ratio, then the adjusted excess ratio is given by 

.997R(L) + .003  if L _< $10M 
R'(L) = . 9 9 7 R ( L ) -  .00a r~ $40M-- + .00375 if $10M < L < $50M 

.997R(L) if L > $50M 

5 Model l ing  Occurrences 

Data  is typically collected on a per claim basis. This makes it a challenge 
to produce per occurrence excess ratios. The first a t tempt  to address this 
was to merely increase the per claim excess ratios by 10% to account for oc- 
currences. For low at tachment  points this could lead to excess ratios greater 
than 1. Cillam [4] improved this approach by assuming only that  the aver- 
age occurrence cost 10% more than the average claim. This affects the entry 
ratio used to compute the excess ratio. Gillam and Couret [5] then refined 
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this approach still further by breaking down the 10% by injury type: 3.9% 
for fatal injuries, 6.6% for permanent  total  and major permanent  injuries, 
and 0% for minor permanent  partial and temporary  total  injuries. These 
approaches, while reasonable, rely heavily on actuarial judgment.  

The first a t tempt  to base per occurrence excess ratios more solidly on 
per occurrence da ta  was by Mahler [10], who a t tempted  to group claims 
into occurrences based on hazard group, accident date, and policy number. 
NCCI has a CAT 1 code which identifies claims in multiple claim occurrences. 
Singleton claims (occurrences with only one claim) have a CAT code of 00, 
all claims in the first multi-claim occurrence would have a CAT code of 01, 
claims in the second multi-claim occurrence would have a CAT code of 02, 
etc. Unfortunately there were several problems with the CAT code: 

. missing CAT codes 
For singleton claims it is permissible to report  a blank field for the CAT 
code. This would then be converted to a 00. However there was no 
way of knowing whether a blank field was deliberately reported as a 
blank or inadvertently omitted. 

. orphans 
There were claims observed with nonzero CAT codes, but  with no other 
claims with the same CAT code. One carrier, for example, appeared to 
have numbered the claims in a multiple claim occurrence sequentially. 

. 

. 

variance in injury dates 
Claims were observed with the same CAT code, but  with different 
injury dates. In one case the injury dates were 14 months apart.  

grouping of CAT claims 
It is permissible to group small med only claims in reporting. This is 
not permissible however in the case of CAT claims. Nevertheless there 
was some evidence of grouped reporting for CAT claims. 

Further complicating things was the fact tha t  even with optimal report- 
ing, multiple claim occurrences appear  to be extremely rare. Based on an 
examination of data  from carriers known to report  their da ta  well, it would 
appear  tha t  .2% is a reasonable estimate of the portion of all claims that  

1Here a catastrophe is merely an occurrence with more than one claim. The term 
'catastrophe' in this context has no implications as to the size of the occurrence. 
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occur as part  of multi-claim occurrences. Based on the above problems, we 
decided not to t ry  and build a per occurrence data  base, but  rather  to use a 
collective risk model. From the per claim loss distributions we could easily 
get an overall per claim severity distribution. We estimated the frequency 
distribution for multiple claim occurrences from carriers thought to have 
recorded the CAT code correctly. The mean number of claims in a multiple 
claim occurrence is about 3, but most multiple claim occurrences consist of 
two claims. 

Unfortunately the severity distribution of claims in multiple claim oc- 
currences seemed to be different from the severity distribution of singleton 
claims. First, the mix of injury types in multiple claim occurrences was more 
severe than in singleton claims. Second, even when fixing an injury type, 
claims occurring as part  of a multiple claim occurrence were more severe. 
We chose to address this issue by assuming that  the severity distribution of 
claims in multiple claim occurrences differed from the distribution of single- 
tons only by a scale transformation. This assumption goes at least as far 
back as Venter [12]. 

More formally, let Xi be the random variable giving the cost of a singleton 
claim of in jury  type i and let Fx~ be the distribution function of Xi.  If S 
is the random variable giving the overall cost of a singleton occurrence then 
Fs = ~ wiFx~, where wi is the probability that  a singleton claim is of injury 
type i. Tha t  is, the per claim severity distribution is a mixture of the injury 
type distributions. If Y~ is the random variable giving the cost of a claim of 
injury type i in a multiple claim occurrence then we assume that  Y~ differs 
from Xi by a scale transform, i.e. Yi = aiXi for some constant ai. If Z is 
the random variable giving the overall cost of a claim in a multiple claim 
occurrence then Fz  = ~ w~Fv~, where w~ is the probability that  a claim in a 
multiple claim occurrence is of injury type i. Then M = Z1 + .  • • + ZN is the 
cost of a multiple claim occurrence, where N is the random variable giving 
the number of claims in a multiple claim occurrence and the Zi are iid random 
variables with the same distribution as Z. Finally, the per occurrence severity 
distribution is given by F = rFs  + (1 - r)FM, where r is the probability that  
an occurrence consists of a single claim. 

Because r is so close to 1 there is very little difference between per claim 
and per Occurrence loss distributions. Per occurrence excess ratios are no 
more than .2% more than per claim excess ratios. This is a sharp contrast 
with the prior approaches. 
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6 Updating 

Overall excess ratios are computed as a weighted average of the injury type 
excess ratios. Let R(L) be the overall excess ratio at a loss limit of L, and 
let R/(r) be the excess ratio for injury type i at an entry ratio of r, then 

R(L) = Z w~P~(L/~), 
i 

where wi is the percentage of losses of type i and Pi is the mean loss of type 
i. The injury type weights, wi, and average costs per case, #i, are updated 
annually, but the injury type excess ratio functions, R/, are updated only 
infrequently. The idea is that the shape of the loss distributions changes 
much more slowly than the scale. The annual update thus involves adjusting 
the mix of injury types and adjusting the loss distributions by a scale trans- 
formation. Updating via a scale transformation is extremely convenient and 
is discussed by Venter [12]. 

The key question is how to determine when a simple scale transformation 
update is adequate and when the loss distributions need to be refit. If X 
is the random variable corresponding to last year's loss distribution and Y 
is the random variable corresponding to this year's loss distribution, then 
the scale transformation updating assumption is that there is some constant, 
c, such that Y and cX have the same distribution. Then the normalized 
distribution, Y/#y  has the same distribution as cX/c#x = X /#  x and thus 
Va (Y/uy) = v a r ( x / u . )  = a x / # x  = CV~. So if successive year's loss 
distributions really did differ only by a scale transform then the CV would 
remain constant over time. Thus monitoring the CV over time might give a 
criterion for when it is necessary to update the underlying loss distributions 
and not just the injury type weights and average costs per case. 

Since the injury type loss distributions are normalized to have mean 1, 
applying a uniform trend factor would have no impact. Thus the losses used 
for fitting are typically not trended to a future effective date. This is ex- 
tremely eonvenient in that it does not require us to decide in advance when 
the loss distributions need to be updated. However, if the trend is not uni- 
form, then it could result in a change in the shape of the loss distributions. 
This could for instance happen if there was a persistent difference in medical 
and indemnity trends and the percentage of loss due to medical costs varied 
by claim size, as it typically does, even after controlling for injury type. How 
significant this phenomenon is remains an open question. It is in some sense 
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limited as medical trends cannot exceed inflation forever without the med- 
ical sector consuming an unacceptably large fraction of GDP. Nevertheless, 
this does suggest that monitoring the difference in cumulative medical and 
indemnity trends might provide a guide as to when the shape of the loss 
distributions needs to be updated. 

7 Conc lus ion  

With the present revision we have implemented several changes to the method- 
ology as summarized in the table below. We retained the general approach 
to dispersion of individual claim development due to Gillam and Couret [5], 
using an inverse transformed gamma for the distribution of LDFs, but low- 
ering the CV from .9 to .5. Instead of fitting a loss distribution to all of 
the claims, we followed Mahler [10] and fit only the tail, using the empirical 
distribution for the small claims. For the tail we used a mixed exponential 
as compared to the prior transformed betas fit to the entire distribution. 
Instead of combining PT with Major PP claims, we fit PT and PP claims 
separately, using data at 3 rd, 4 eh, and 5 th report for Fatal and PT claims. 
The prior approach used only data at 5 th report. To adjust the data from 
one state to be comparable with another state we used logarithimic stan- 
dardization for Fatal and PT claims and power transforms for PP, TT, and 
Med Only. The prior approach was to use mean normalization for all injury 
types. We then fit state specific loss distributions rather than the countywide 
ones used before. Finally, to go from per claim data to per occurrence ELFs 
we used a collective risk model of occurrences. This contrasts sharply with 
prior approaches based on estimates of how much the mean occurrence cost 
exceeded the mean claim cost. The prior approach implicitly assumed a 3.9% 
load for Fatal claims, a 6.6% load for PT/Major PP claims, and a 0% load 
for TT and Med Only claims. 
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new approach prior approach 
dispersion CV = .5 CV = .9 
fitting fit tail only fit whole distribution 
form of distribution empirical/mixed expo- transformed beta 

nential 
injury types PT, PP separate com- 

data 3 ra, 4 *h, 5 *h report for F, 
PT 

PT, Major PP 
bined 
5 th report 

data adjustment logarithmic mean normalization 
standardization, power 
transform 

applicability of dis- state specific countrywide 
tributions 
per occurrence collective risk 3.9% F, 6.6% PT/Maj 

PP 

While the changes made to the ELF methodology were significant, they 
were more evolutionary than revolutionary. Nevertheless, the new ELFs are 
quite a bit lower than the old ones at the larger limits in many states. We 
examined carefully the impact of the change in the dispersion CV and the 
use of mixed exponential rather than transformed beta distributions. Had we 
used a dispersion CV of 0.9 rather than 0.5, the ELFs would have been higher 
than the new ones. But at the higher limits, where the decrease was most 
pronounced, ELFs based on a CV of 0.9 would still be much closer to the new 
ELFs than the old. We also refit the old transformed beta distributions to 
the new data and found that even with the old distributional forms, fit to the 
entire distribution, the result is a much thinner tail than in the distributions 
underlying the old ELFs. We thus concluded that changes in the empirical 
loss distributions underlying the prior and the revised ELFs are what drive 
the reduction in ELFs. The prior review of ELFs relied on data that preceded 
the decline of WC claim frequency that so dominated WC experience in the 
1990s, and beyond. There are solid theoretical reasons to suggest that this 
is just the sort of dynamic that can significantly change the shape of the loss 
distributions in a fashion that may not be captured by scale adjustments and 
as such require the development of new ELFs. 
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A P P E N D I X  

A Adjusting for Reopened Claims 

This appendix details some calculations referenced in section 2 on devel- 
oping individual claims, in particular on the t reatment  of reopened claims. 
We consider a set of observed individual claims grouped by their open/closed 
claim status and determine how the first two moments of the open and closed 
subsets change when some claims are 'reopened,'  i.e. when some claims are 
reclassified from the closed to the open subset. The discussion applies quite 
generally to show how the first two moments are impacted by a change in 
a characteristic, like claim status, to a selected subset of observations. The 
mean and variance of a finite set of observed values have natural  generaliza- 
tions to vector valued observations. It is convenient to express the findings 
as they apply in a multi-dimensional context, even though the specific appli- 
cation in this paper requires only the one-dimensional case. 

Suppose we have a finite set of claims C and that  a vector xc E ~n is 
associated with each c E C. Suppose each c E C is also assigned a probability 
of occurrence wc > 0 For any nonempty subset A C C, we make the following 
definitions 

Probabil i ty of the set A = IAI~ = ~ w a  
aEA 

Mean of A = ~A - -  v-iIzllw WaXa E 
aEA 

1 
Variance of A = a~ = ]AI----- ~ ~ w~ Ilxa - / / , A l l  2 ~_~ 0 

aEA 

and we make the usual convention that  for the empty set I¢1~ = a~ = 0 and 

#¢ = 0 is the 0-vector. 
Observe that  the mean is a vector and the variance a scalar and that  

for n = 1 this defines the mean and variance associated with the probability 
density function f (a)  = ~ on A when we view the subset A as a probability IAI~ 
space in its own right. A natural  WC application of multi-dimensionality is 
the case n = 2 in which the first coordinate measures the indemnity loss 
amount  and the second component the medical loss of a claim c E C. Note 
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_ 1 

IAI,,, 

_ 1 

IAL 
_ 1 

IAL 
_ 1 

IAL, 

And thus 

that we have the usual relationship between the mean, the variance and the 
second moment: 

1 1 
0-~ - IA  L ~ ovo IIx~ - ~AII ~ = ~ ~ ovo (xo - ~A)" (~o - . n )  

aEA aEA 

- -  ~ E OVa (Xa " Xa - -  21-t A " Xa "4- # A  " ~ A )  

aEA 

( i ~ovozo + ~ I1.,,112 - ~ o~a~ ovo Ilxoll 2 - 2 #A " [ - - ~  ~ A  / 

- - - ~ - ' ~ '  ov,, Ilzoll ~' - 2 (#A"  #A)  + IlaAIl" 
aEA 

1 ~ovo i1~oll ~_ II.AII 2 - - -  o~a ~--} ov° IIz°l12 - 2 I1~,,11 ~ + II~AII 2 - IAI,,, o~,,, 

1 
II~'dl~ + 0-~ = IAI--~ ~ ov° IIx~l12 

aEA 

There axe the evident relationships with the union and intersection of 
subsets A, B C_ C; for the mean we have: 

[~AUB 
1 l ( z  ) 

- IA U BI,., ~ ovcz~ - IA U BI,,, ov,:,.xa + ~ ovbxb -- ~ OV~x~ 
cEAuB \ a E A  bEB cEANB 

1 
- IA u BI---I-: (IAI,., P'A + IBI,., #B -- IA n BI,., ~anB) 

And thus 

[AMBI~ [A[~ 
~AuB + I-X.O~T-~AnB = IA u BL /~A + i 

and similarly for the variance: 

IBI~ 
IA u BI., ~B" 

iA U BI., (ll~Ausll ~ + 0-~u~) = Y~ ovc llzoll 2 
cEAuB 

aEA bEB cEARB 

[A L (H#A[[ 2 -'[- 0 "2) "~-[B]~ ([[#Bll 2 + a~) 

- Id n Bl~ (lI,A~Bll 2 + 0 - ~ )  
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And thus 
[ANB],~ 2 

O'2uB + -------~w U 
_ [A[,,, o .~+  [ B l ~ o .  ~ 

]A t..j B],~ ]A U BI,~ 

1 
-I [A U B[----~ ([AL' Iluall~ + [g[,,, II~BII ~ - [A A B[,,, IIUA~Bll ~) 

-I lUAu, H 2 

We are especially interested in the case when C is a disjoint union, so we 
make the assumption: 

C = A U B  A N B = ¢  A # ¢  

Think of the decomposition as reflecting a two-valued claim status, like open 
and closed. The goal is to determine how the mean and variance change 
after "moving" a subset D from A to B. The example of this paper is when 
the claim decomposition reflects claim closure status as of a 5 th report,  (A = 
closed and B=open)  and D is a set of closed claims that  reopen after a 5 th 
report.  

In this case of a disjoint union, it is especially easy to express # c  and a~  
in terms of the corresponding statistics for A and B. From the above formula 
for the mean of a union: 

uc  = UA~B + o = #AuB + ~ - - ~ L U a ~ B  

_ IAL IBL 
[A U Blw #A -5 [A U B]'--"~ #s" 

[AL 
= W#A+(1- -W)  UB w h e r e w = ~ • ( 0 , 1 ] .  

The second moments are similarly weighted averages, with the same sub- 
set weights w and 1 - w. From what we just  saw for the mean of a disjoint 
union combined with the above formula for the variance of a union: 

IANB[,~ 2 
= 4 ° , ,  + o = +  -ygl o 

= w o ~ ,  + (1 - ~ )  , , ~  + w IlUAII ~ + (1 --  ~ ) I l u ~ t l  ~ -- IlwuA + (1 - w)  #s [ [  2 

= w , , ~  + (1 - w ) 4  + w  II~all ~ + (1 - w) I I~BII  ~ 

- w  2 II~AII = - Zw (1 - w )  # A "  UB --  (1 --  ~ ) ~  IluBII ~ 

= Wa2A + (1 -- w ) a  2 + w (1 -- w) (II~All = - 2#a " # s  + IluBII =) 
= Wa2A + (1 - w) a 2 + w (1 - w)II~A - l ' . l l  = 
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This expresses the variance of a disjoint union in terms of the means and 
variances of the subsets. 

Notice tha t  these formulas for lAG and cr~ show how the mean and variance 
of the subset A are constrained by those of the superset  C. For the remainder 
of this appendix we assume ac  > 0 and so we have: 

gr A 
a=c = wa=a + ( 1 -  + w ( 1 -  w) lllAa - lAall= > wa=a w - -  <_1 

\ c r c /  

Observe tha t  assigning the difference vector 5 and scalar ratio r as: 

then we also have: 

lAC = 

But then: 

aS  = 

(7 A 
5 = #A -- lAC r = - -  

f f C  

w5 
W ( # c + a ) + ( 1 - w ) p s  ~ lAB = # c -  l~- w 

( % )  # A -- # S = lAC + 5 -- lAC 1 -- T-----W- -- 1 - w  

5 I 11511 Wa2A + (1--W) a~ + W(1--W) ~--W >-- Wa2A + W l T w  
I 

==> ( 1 - w r 2 )  c r ~ -  1 - w  > w115112---- =>r_< ~ and HSIl_<crc< (1-w)(1-wr2)w 

and we see how, for any nonempty  subset A, the mean difference vector 5 is 
constrained by the probabil i ty allocation together  with the deviation rat io r 
and the s tandard  deviation of C. 

Now suppose we have "local information" on how the proper subset D C 
A fits within A, captured in the two numbers  p, r and the difference vector 
5: 

IDC p - 
IAL 

TO'A ~-  ~ D  

(5 = lAD - -  lA m 

w 115115 
1 - w  
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in which we specify that  r = 1 should a A  : 0. From what we've just seen, 
applying the above to any nonempty subset D C A, the following two in- 
equalities must hold: 

CA, /(1 -- p) (1 -- pr 2) 
II~ll _< 

V P 

Define the sets: 

=~ 

A \ D  = {a e Ala ~ D} 

B U D  

c=.~u~ ~n~=¢ .~#¢#.~ 
In terms of the above open/closed claim example, this second decomposition 
represents the "truly closed" verses the "truly open" claims, as of a 5 ~h report. 

With  transparent notation, we seek to determine the subset probability 
and the moments ~,  #~, #~, a~, aS in terms of the original subset probability 
and moments w, #A, #B, aA, aB together with the local information p, r and 
5. The calculations only require some persistence: 

I D l ~  =~ [DI,  ~ = p [A[,~ ~ .4 ,~ = [ A [ ~  - tD] , .  = IA[,~ - p IAJ,~ = (1  - p ) 1 . 4  
' = rAI---:- 

=> ~ = - - - - - - ~ =  ~ = ( 1 - p )  w 
JcL 4AL JcL 

Continuing in turn, we have: 

I ' tA : RPD + (1 -- p) #a  = p (#A + 5) + (1 -- p) #a  

(1 -- p) #~ = #A -- P#A -- p5 = (1 -- p) #A -- p5 

And since we now know ~ and #a, we determine #~ from: 

And we get a~ from: 

2 (1 - p)I1#.  # 11 o-~. = v 4  + (1 - p) ~ + p 
2 2 

2 a A  - -  P a D  

= i - 7  , 

Casualty Actuarial Society Forum, Fall 2006 537 



The 2004 N C C I  Excess Loss Factors 

And finally, we can obtain aB from: 

cr~ = ~a} + (1 - ~ ) a }  + ~ (1  - ~ ) I I # , ~ -  #roll = 

~ - -  k = ~  ~ l l ~ a - ~ m l l  = 

The requisite formulas for the adjusted moments and subset probabilities 
are summarized in the following proposition: 

P ropos i t i on  1 Let C = A tO B be a decomposition of C into mutually ez- 
elusive subsets, as above, and suppose D is a proper subset of A and set 

IAto, 
W 

ICl~ 
p = _IDL 

IAI~ 
5 = # o - - # a .  

A A 

Then for the alternative decomposition C = A tO B where 

.4 = A \ D =  {a ~ Ala ~ D} 

= B t O D  

~ = 
I c L  

we have: 
A A 

¢ = A N B  

= (1 - p ) w  

#B = 
1 - z ~  

~ - po~, 2 
c r ~  = 

1 - p  

2 __ 
a B 1 - ~  

pl l~-~ol l  = 

~11~-~11 ~ 
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Proof .  Clear from the above. • 
It is straightforward to generalize the formulas that express the mean and 

variance of a disjoint union of two sets to apply to partitions of more than 
two sets. The formula for the mean is immediate: 

r~ IAiL 
C = O A i  A i N A j = ¢ f o r i ¢ j  Wi-- 

d=l ICL 
1 1 ~ 1 ~e-~ [Ail., 

1 ~--~]Ai]oa#Ai=~-~WilZAi 
]dL'° i=1 i=1 

_ m > O  

and for the variance we first consider the expression for the second moment: 

II**cII ~ + ~ - IcL X~-oli*~, ~ -  ici~ ~ "° >°tl, 
cEC i=1 aCAi 

1 OI ) 
- I C [ . } - ~ I A ~ I ~  , ~,11 ~+~ Ai 

i=1 
r~ ~ 

i=1 i=1 i=1 
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and we find that: 

i=1 

m 

i=1 

m 

,=1 

frL 

i=1 

m 

i=1 

i=1 

m 

i=1 

m 

i=1 

m 

i=1 

i=1 i=1 

= Wi ( # A , "  #Ai) "q- ~ Wiff2,- Wi#Ai " Wi"Ai 
i=1 

i = l  i=1 i<j j 

~ (Wi--W2) (/-ZAI "l~Ai) -- 2 ~ W i W j  (l.~Ai "I~A,) 
i=1 i<j 

m 

~ W i  (1-- Wi) (#Ai " I-~Ai) -- 2 ~-~WiWj (#ai " #a$) 
i=1 i<j 

~ W i  Wj (#A "#Ai) - - 2 ~ W i W j  (IZAI'.Aj) 
i=1 \ j~i 2' i<j 

Z W i W j  (#A, " #A, q- #aj " IZaj) -- 2 ~-~Wi213j (#a, " #aj) 
~<j i<j 

~ WiWj (l~ai " #ai "}- #aj " #aj -- 2#ai " lZaj) 
i<j 

~ W i W j  ("A, --#Aj) " (#A, --#Aj) 
i<j 

~ W i W j I # A , - - . A ,  2 
i<j 

and the generalization of the formula for the variance of a partition is: 

0 -2 = ~WiO'21"]'-~WiWj IZA,--#Aj 2. 
i=l i<j 

Consider the special case of the set of m mean vectors M = {#A, } expressed 
as a disjoint union of singleton subsets in which the vector/z& is assigned 
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the probability wi. Then the formula gives: 
m 

i=1  i<j 
m 2 

(0) Wi OF ~ WiWj #a,  -- ~aj  
i=l i<j 

2 
= ~ W i W j  #Ai - - # A j  

i<j 

But this is just the second term in the earlier expression for a~ and we find 
that 

m 

i=1  

which generalizes the usual decomposition of the variance into the sum of the 
within and the between variance. This has application to cluster analysis, 
where it affords a useful geometrical interpretation. In cluster analysis it 
is common to work with vectors so as to capture the influence of multiple 
data fields. So as above assume each claim c E C is assigned a vector of 
values that captures information about the claim that we seek to organize 
into a classification scheme. Viewing the m subsets Ai _C C as defining 
clusters of vectors, the set of m mean vectors M = {#A,} is the set of 
'centroids' of those clusters. The goal of cluster analysis is to separate the 
data into like clusters, but there is both a local and a global perspective to 
that classification problem: selecting like data in each cluster (minimize the 
within clusters variance) and separating the clusters (maximize the between 
clusters variance). The above shows that the two are one and the same when 
the Euclidean metric is used to measure the distance between observations. 
Indeed, decreasing the within clusters variance is the same as increasing the 
between centroids variance, as the two sum to the constant 0-~. 

B Discrete  Individual Claim Development  

We want to populate the tails of the LDF distribution so that the dispersion 
model contemplates a claim developing quite dramatically. Accordingly, we 
seek a finite set of probabilities 

0 < P l  <P2 < "'" < P n  < 1 
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that  cover (0, 1) with an emphasis on populating the right and left hand 
tails near 0 and 1. We are confronted with a practical working limit of no 
more than 200 points. We have also observed that  100 equally spaced points 
will result in the dispersion reflecting too confined a range, about 1/3 to 
3-fold for the full range of dispersion. To cover a wider range, we use 171 
non-uniform probabilities, and focus on the tails. Then treating the proba- 
bilities Pi as defining percentiles, we determine the corresponding percentile 
values ui from a gamma distribution. That  finite sequence {ui} of values 
is the starting point to capture a gamma density. But this representation 
is then refined, replacing the percentiles with the means over the 172 inter- 
vals [0, ul), [ul, u2 ) , . . . ,  [Ulro, ulrl) and [ulrl, oo). The new sequence of values, 
again denoted as {ui}, is an optimized discrete approximation to a gamma. 
It is "weighted" in the sense that  mean value u~ has associated with it the 
frequency weight vi, where .. 

vl = p1, v2 = P2 - P~, ..., v171 " ~ -  P171 -- P170, V172 = 1 - P~u. 

The interval widt h provides the weight assigned to the corresponding per- 
centile value and is selected to be at most ~ so that  the usual "percentiles" 
are "covered." By definition, inverting and transforming those observations 
produces a discrete approximation to values from an inverse transformed 
gamma distribution. These are the candidates for the set of loss develop- 
ment factors used for dispersion. Parameters were selected so as to achieve 
a target mean LDF as well as a target CV for the LDFs. In order to assure 
the correct mean, one more observation is added, forcing the weighted mean 
of the sequence {uill < i < 173} to be exactly the appropriate open claim 
only LDF. There is the concern that  if that  final observation is allotted too 
,little weight, it will have the  potential for becoming an outlier. So the added 
observation has weigh~,.~0 ,and4he other weights are adjusted by a factor of 
9_~9 making the,173 weights {vii1 < i < 173} again total  to 1. From this 
I00 
construction, it is expected that  the {uill < i < 173} will exhibit a slightly 
smaller variance than the theoretical inverse transformed gamma, and that  
is indeed observed to be t h e  case in the calculations. For example, when 
targeting a CV of 0.500, the model yielded a CV of 0.495. 

This discussion does not describe the (comparatively minor) adjustment 
for reopened claims. The reopened claim adjustment is achieved by first 
using the results of Appendix A to determine means and variances after 
reclassifying. SQme closed claims .as open, and then matching two moments 

542 Casualty Actuarial  Society Forum, Fall 2006 



The 2004 N C C I  Excess Loss Factors 

using the power transform as detailed in Appendix C.2. In this way, the 
"truly open" claims are dispersed. 

We now fill in the details of the algorithm used to build the dispersion 
model. The first step is to specify the a and r parameters,  by injury type 
and report,  for the inverse transformed gamma. The parameters were se- 
lected from an analysis of LDF distributions as presented in section 2. The 
parameterizatious follow that  of the Appendix of Klugman et al. [9]. 

Recall tha t  the a and r parameters determine the CV and once they are 
set, the ~ parameter  dictates the mean. 

The next step is to build a discrete approximation to a Gamma distrib- 
ution with parameters a and 8=1. This is captured in two finite sequences, 
u and v. The u sequence captures the values while the v sequence stores 
the corresponding probability of occurrence 'Weights." We identify the "per- 
centile" u-value of the distribution function associated with the following list 
of probabilities Pi, 1 < i < 171 : 

P0 = 0 

Pi = P i - I +  10-6 1 < i < 1 0  

pi = p ~ _ l + 1 0  -~ 1 1 < i < 1 9  

p~ = p~_l + 10 -4 20 < i < 28 

Pi = Pi-l + lO -a 2 9 < i < 3 7  

Pi = Pi-~ +10 -2 3 8 < i < 8 6  

Ps6+i = 1 -Ps6- i  1 < i < 85. 

These probabilities were selected to give greater granularity to the right 
and left tails. This corresponds to 171 finite intervals: [u0 = 0, Ul) , . .  •, [ui, ui+l) for 
0 < i < 170 and the right hand tail interval [uln, oo). We let F(a;  u) de- 
note the incomplete gamma function as fornially defined in the Appendix of 
Klugman et al. [9], where that  function is also noted to be the distribution 
function of a gamma distribution with parameters a and 8 = 1 (and for the 
transformed gamma with parameters a ,  ~ = 1, and r = 1). A binary search 
routine is used to associate the value u~ with the probability Pi, finding ui 
that  satisfies: 

IF(a; ui) - P i l  < 0.00000000001 1 < i < 171. 

The first difference of the p~ gives the frequency probability vi of an obser- 
vation falling within the interval [ui-1, ui)," i:e. between l~ercentile Pi-1 and 
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Pi. The mean value over each of the 172 intervals is readily determined from 
the observation that given f ( a ,  1; x) = x~e------k~ ~r(~), we get 

x'~+le -~  P(a+ 1) x'~+le -x  x ~ + l e - X  
xf(oe, 1;x) = xP(c~) - P(c~-----y- x r ( a  + 1) = a x P ( a  + 1) = a f ( a + l ,  1;x) 

and thus 

f xf(ee, 1; x)dx = f a f ( a  + 1, 1; x)dx = aF (a  + 1; z). 

0 0 

This lets us specify the sequence u of length 172 whose components are 
the mean value of the inverse transformed gamma over the 172 intervals. The 
sequence v, also of length 172, with components equaling the corresponding 
frequency provides a sequence of weights to apply to the corresponding LDF 
values captured in the sequence u. 

Denote the applicable development factor for open claims as ~. The next 
step in building the dispersion model is to specify a sequence A of length 173 
whose component values (properly weighted) are distributed as an inverse 
transformed gamma distribution of mean A (and CV determined from the 
corresponding a and r parameters). The formula for the expectation of an 
inverse transformed gamma random variable, X, allows us to calculate the 0 
parameter: 

E[x]-O'F(a-~)  ( P ( a )  "~ 
r(~) ~ ° =~ \ r ( g - ) ) /  

The dispersion model uses the inverse transformed gamma as the LDF dis- 
tribution. By definition, a distribution is inverse transformed gamma exactly 
if, when transformed and inverted, it conforms to a gamma distribution like 
that approximated by the sequences u and v of discrete values and weights, 
respectively. Following the parametrization of the Appendixof Klugman et 
al. [9], to make the finite sequence A contain values distributed as the inverse 
transform gamma, we just use the equivalence: 

1 
=ui ~"'-a-=ui~ =-'r ~=> A i : - T .  \ < /  U u( u( 

Since we are using a discrete approximation, and to assure we do get the 
correct expected developed loss, we augment the A sequence by an additional 
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value in order to force, the weighted mean to be ~. More precisely we set 
vlra = 1-56,1 rescale the other weights by setting vj = l~60vj for 1 _< j _< 172, 

( ~ vqr2 ) and set Alra = 100 - z.,j=l vjAj , which assures that: 

173 173 

j = l  j=l 

Having the A and v sequences in hand, completing the dispersion loss 
severity model is then very straightforward. Individual claim data  are cap- 
tured from WCSP data  into observations that  include state, injury type, 
claim status, a weight w, and a loss amount l, as described in section 2. 
Closed and open claims are separated into two subsets of observations, Lc 
and Lo respectively. Then for each open claim of weight w and undeveloped 
loss amount e_~uai to I in Lo, 173 "dispersed" observations are captured into 
the da ta  set Lo using the sequences A and v to assign the observations with 
weights equal to the product w x vi and d.d.eveloped loss amounts equal to 
the product Ai x l, 1 < i < 173. Losses in Lo are adjusted to be at least $1. 
Finally, forming the union Lc tJ Lo of two sets, each consisting of observa- 
tions of individual claim data  at closure, results in the dispersion model for 
ultimate claim severity. 

C Data Adjustment Techniques 
Let xil, x i2, . . . ,  xin~ be the incurred loss amounts on the claims (of a given 

± injury type) in state i and let #i = n~ }-]j xij be the sample mean. Under 
mean normalization we divide each claim amount by the state sample mean 
to get xij/#i. Pooling all the mean normalized claims for all states gives us a 
countrywide mean normalized database, {xij/#i}. This database has mean 
1 of course. If we fix a state k and multiply each mean normalized claim 
amount in the countrywide database by #k we get a database, {#kxij/#i}, 
that  has mean #k. This database augments the claims in state k with out of 
state claims that  have been adjusted to the state k level. We now generalize 
this simple idea to the case of standardization as well as the power transform. 
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C.1 Logarithmic Standardization 

A natural way to generalize mean normalization would be to standardize 
claims, i.e. to subtract the state sample mean from every claim and divide 
by the standard deviation, xi --+ ~ - ~ .  Pooling all of the standardized claims 
would result in a countrywide standardized database with mean 0 and stan- 
dard deviation 1. Then for a given state k, we might multiply each stan- 

dardized claim by crk and and add #k to get a database, t~ak~-t'~' + #k}, 

appropriate for state k. Unfortunately, this can result in negative claim 
amounts so we prefer to work with logged losses and standardize them by 
mapping logx~ ~ ~ where now #i, ai denote the sample mean and 
standard deviation of the logged losses. This results in a standardized data- 

base of logged losses, ~ ~ ~ To get a database appropriate for a given 
t ~i J" 

state k it is natural to multiply each standardized logged loss by ak, add #k, 

and then exponentiate to get a database, t ~f exp(ak. ~ + #k)}. The linear 

transformation, ~ --+ ak ~ +# , results in a database that matches 
~'i cr i k 

the mean and variance of the logged losses in state k, but upon exponenti- 

ation we lose this property. That is, the database, { p( 

may not have the same mean and variance as the claims in state k. How- 
ever, under reasonable conditions we can find #, a such that the database, 

{exp(a ~ #)~ will have the and variance in state k. We + mean pro- 

ceed now to establish this. We begin with a lemma. 

L e m m a  2 Let x l ,x~ , . . .  ,xn be a finite sequence of real numbers, not all 
equal, and let ~ : (0, oo) ---* ~ by 

txi 

~ ( t ) -  ,,~=1 / 7'1 ' 

n E t2x~ 
i=l 

then 

1. ~o(1)= 1 

2. ~o is strictly increasing on (0, 1) and strictly decreasing on (1, oo) 
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3. l imt_~  ~o(t) = k /n ,  where k is the number of i such that xi = max{xyll  _< 
j<n}.  

P r o o f .  We have ~o(1) - ~ - 1, thus proving item 1. 
To prove item 2, first note that 

- -  ~ E n  _ n 2 d~ (Enl ~2xl) (2 En, txi) (i=,xitXi-1) ( E i = l  ~xl) ( E n l 2 x i  ~2xi-1) 

dt 
(E - )= n t 2xi 

i=l 

n ( E :  t2~,) 2 [(E:I ( i=l xitxi-1) --(E~__ltXi) ( i=lXit2xi--1)] 

As the term 2 =1 t~' /n -1 t 2~' is positive, we note that, after rela- 

belling indices for convenience, ~ has the same sign as 

"y(t) = (Eni=l t2xl) (Ejn=lXjt  xi-`) - - (Ejn=l  txj) (Eni=lXi t2xi-l) 

= xjt x,t 
l <_i,j<_n l <_i,j<n 

E (Xj -- xi)t 2xi+*~-I 
l<_i,j<n 

E (xj -- xilt2xi+xJTi + 
l<i<j<n 

E (xj -- xi)tz't x'+xa-1 Jr 
l<_i<j<_n 

E ( x j -  xi)tx't xi+x'-I + 
l<_i<j<n 

E (Xj -- xi)txit xi+xj-I -- 
l<_i<j<n 

E (Xj -- xi)t 2*'+x~-I 
l<j<i<_n 

(x) - xi)t~'t ~+~'-1 
l<_j<i<_n 

E (xi -- xj)txJt xi+x'-I 
l<_i<j<_n 

= E (xj -- xiltX't x'+x~-I 
l<i<j<_n 

= E (xa - x i ) ( t  ~' - t~')t ~+~' - ' .  
l<_i<j<_n 

Observe that for t < 1, the differences xj - xi and t ~' - t xj, not all of which 
are O, have the same sign, which implies that 7(t) > O. Similarly, for t > 1, 
those differences have opposite signs, hence ")'(t) < O, thus proving item 2. 
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To prove i tem 3, we sort and relabel the xi as necessary so tha t  :x~ = 
. . . .  xk = max{x/} and xi < Xl for i > k. We then find tha t  

 o(t) = 
/ = 

i = k + l  / 

(i=~l tXi) 2 t2Xl (i=~l 1-~-i n=~k+l txl-xl) 

) n E  t2xi nt2Xl 1 + t 2(xi-~l) n k + t2(x~-~x) 
i=1 i = k + l  / i = k + l  

Since xi - xl < 0 for i > k it follows tha t  

lim qo(t) = lim = 
t---+O0 t---+O0 / n k +  t2(xi-~l) n k +  0 

i = k + l  ] i = k + l  

as claimed. This completes the proof of i tem 3 and the lemma. • 
Now interpreting Xl, x 2 , . . . ,  x~ to be the standardized logged losses this 

l emma allows us to prove the following proposit ion which shows tha t  stan- 
dardization of logged losses, followed by a linear t ransformat ion and re- 
exponentiat ion does what  we want under reasonable conditions. 

P r o p o s i t i o n  3 Let x l , x 2 , . . . , x ~  be a finite sequence of real numbers, not 
all equal, and let k be the number Of i such that xi = max{x j l l  < j < n}. 
Then for any pair of positive real numbers, #, a, such that #2/ (#2+a2)  > k /n ,  
there exists a unique pair of real numbers, m,  s, with s > 0 such that the finite 
sequence, e m+sxl , e m+sx2 , . . . ,  e mh-sxn , has mean p and standard deviation a. 

More precisely, if  Yi= e m+Sx', then 

. . . .  yi - tt)_ 2. n 
i=1 i=1 

P r o o f .  From the lemma, there exists a unique t > 1 with qo(t) = _._e.L_ #2+a2  • 
n Observe tha t  since ~ i=1  tx~ > 0 we can define 

(En. ) 
s = l n t > 0  and r e = I n  ~ . i=l txi 
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T h e n  se t t ing  yi = e m+sx* for 1 < i < n, we have  

( - Y ~ = n  (~J = n  t ~ ' =  n ~ -  = # "  n i=l i=l i=l E i = l  txi txl  i = 1  

We also have  

n #  2 

E L ,  y? 

n #  2 (n#)  2 

E~=~(e"t~') 2 ne"m E~LI t~' 
(~m ELIte') ~ ~ v ' ~  t~,~ ~ __ \ l - . ~ i = l  ! 

n 
?~e2m E i = l  t2xl 

#2 
~o(t) = #2 + 0-2 

which implies  I Y~i~l y/2 = #2 + 0-2 and  thus  

n 

i = 1  

n E'{=~ t 2~' 

n 

= - n y2 2#yi+#2) 
i----1 

= - y ' ~  
n y~ -- 2 #  Yi + #2 

i=l i=l 
= # 2 + a 2 _ 2 # # + # 2  

0 -2" 

To prove  uniqueness ,  let ~ ,  ~ be  ano the r  such pair ,  and  set  ~)i = e r~+ax~ for 
1 < i  < n. I t  follows t h a t  

#______~2 (1 n ^ = ~i----1Yi) ( e r h  L . ~ i = I k  ~ ' ~ n  (pa~xi~2] ) ( ~ i _ _ l ( e ~ ) X i ) 2  

= 1 n ^2 - -  2dz n ne E ,= i (~ )  =*, n P "  ~)=~, = ~(~)" #2 + 0-2 "~ Y~i=l  Yi z..~i=l~ 

Since a > 0 implies  e ~ > 1, it follows t h a t  e a = t = e* and  thus  a = s. 
Finally,  we have  

Yi ~--- erh+sxi = erh+sxl ~-- erh-m+m+sxl  = grh-mgm+sxi  = e t a - m y  i 

1 n e ~ - m  n 
for 1 < i < n, which implies # = ~ }--~-i=1 ~)i = " 7 -  Y~i=I Yi = e ~ - m # .  Since 
# ~ 0, it follows t h a t  ~ = m and  the  p roof  is complete .  • 

I t  is possible  to  general ize the  previous  resul t  f rom a finite sample ,  x l ,  x 2 , . . . ,  x,  
to  a d i s t r ibu t ion  wi th  finite suppor t .  T h e  a r g u m e n t  mi r rors  t h a t  for the  dis- 
cre te  case. As before,  we begin  wi th  a l emma.  
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L e m m a  4 Let f be a conti~zuous probability density on the finite interval, 
[a,b],and let ~o : (O, oo) ~ ~ by 

= b 

6 

then 

1. ~o(1) = 1 

2. ~o is strictly increasing on (0, 1) and strictly decreasing on (1, oo) 

3. limt-~oo ~o(t) = 0. 

12 P r o o f .  We have ~0(1) = T = 1, thus proving item 1. 
To prove item 2, first note that  

-- (~btxf(X)dX)2 (~b2xt2X-lf(x)dx)] / (~bt2xf(x)dx) 2 

--(~btxf(x,d~) (,~bxt2X-if(x)dx)] 

is positive, we note that  ~ has 

the same sign as 

~/(t) = ( ~ b t 2 ~ f ( x ) d x ) ( ~ a b x t ~ - l f ( x ) d x ) - - ( ~ a b t ~ ] ( x ) d x ) ( ~ b x t 2 ~ - l f ( x ) d x ) .  
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7(0 

Relabelling dummy variables for convenience, we get 

: (~abt2xf(x)dx)(~aabytY-lf(y)dy) - (~abtyf(y)dy)(ibxt2X-lf(x) dx) 

= y t 2 ~ + u - l f ( x ) f ( y ) d x d y  - x t 2 ~ + u - l f ( x ) f ( y ) d x d y  

= i b f a b ( y - - x ) t 2 x + Y - i f ( x ) f ( y ) d x d y  

= i 
= (y - z ) ( t~+~-~ _ t 2 y + ~ - i ) f ( z ) f ( y ) d z d y  

= (y - z ) ( t  x - t ~ ) t ~ + y - i I ( z ) I ( y ) d z a y .  

Observe that  for t < 1, the differences y - x and t ~ - t y have the same sign, 
which implies that  7(t) > 0. Similarly, for t > 1, those differences have 
opposite signs, hence 7(t) < 0, thus proving item 2. 

To prove item 3, first consider the case when f ( x )  > 0 for all x • [a, b]. 
Since f is continuous on [a, b], it is uniformly continuous on [a, b]. Thus, for 
any e > O, there is a partition 

such that  

n 
[a,b] = [..J[ai, bi] with a = al ,a i  < bi = ai+l,b,~ = b 

i=1  

Xl,X2 • [ai, bi] ~ I f ( x 1 ) -  f (x2)l ~ e. 

Let a : m i n ( f ( x ) l x  • [a,b]} > 0 and let ai  = m i n { f ( x ) l x  • [ai, bi]}, then 
{ f ( x ) l x  • [a~, bi]} C_ [~i, (~i + e]. We claim that  

fb, tX dx  fbj  tX dx  
lim J ~ i  J'~J = 0 .  

t--.oo f~  t2~dx 
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To see this assume tha t  bi <_ aj, then 

f:b: tXdx f:; t~dx t ~ b, t ~ b, 
ln t a i  1 " ~  a j  

f :  t2~dx ~ t  l~ 
2 ((tb'--t~")(tb'--t~'))  

= ln---t ( t-~ 7--'-~ ) 

2 ((tb'-b'--t~'-b')(1--t~'-b')) 
= ln--t (-t 2(-b- b,--~ -----t 2 (--~ -%-~ )-) " 

Thus  

lim 
t---+O0 

as claimed. 

f :  t2zdx 
= lira 2 " / ( 0 - 0 ) ( 1 - 0 ) ~  

From what  we've jus t  claimed, for every i and j ,  there  exists a ti,j such 
tha t  for all t > ti,j we have 

f :  t2~dx 
Then  for all t > ti,j we have 

f~t=.f(x)dx 
< 

OlC < 
- n~(~,  + ~)(~j + ~)" 

(. ,  + ,)(.~ + ,) f:: t~dx f:j t~dx 

a f :  t:~dx 

= - -  

a n2(ai + e)(aj + e) n 2" 
Thus  for t > max{t /d} , it follows tha t  

~(t )  

( f t x f ( x )dx )  ~i~=lftxf(x) dx 

b b 

f tzZf(x)dx f t2~f(z)dx 
Q a 

bl b j  

f t~f(x)dx f t~f(x)dx 

E E 
l<ij<n f t2xf(x)dx l<i,j<n 

a 
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Thus, limt__.co ~o(t) = 0 in the case when f(x) > 0 for all x E [a, b]. Finally, 

if we set g(x) /(~)+1 then g is a positive, continuous probability density = b - a + l  

function on [a, b] and we have 

b 2 

0 = ( b - a + l ) ~ i m  b 

f t2Xg(x)dx 
a 

= (b- ~ + i)~/m 

f t2x(/(~)+l~dx 
~. b - a +  l ,' 

a 

(! )" (! ! tx(f(x) + 1)dx t=f(z)dx + t=dx 
= lim = lim 

t--*oo b t-*co b b 

f t2~(f(x) + 1)dx f t2~f(x)dx + f t2~dx 
a a a 

= lim t~f(z)dx + \  ~nt ]] 
t -*co b 

I t2b- - t2a  ~ f t2xf(x)dz + \ lnt ) 
a 

: lim t~-bf(x)dz+\ lnt 7] 
t -*co b 

f t2(~-b)f(x)dx + [ 1-t 2(a-b) "~ 
a k ,nt ] 

= lim ( f tx-bf(x)dx)2=lim (ftZf(x)dx)2 
t -+co  b t - * c o  b 

f t2(x-b)f(x)dx f t2~f(x)dx 
a a 

= lim ~v(t). 
t--*co 

This completes the proof of the lemma. • 
Now interpreting f to be the density of the standardized logged losses the 

lemma allows us to prove the analog of Proposition 3 in the continuous case, 
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namely that  there is a linear transformation of the standardized logged losses 
such that  after re-exponentiation we get the desired mean and variance. 

P r o p o s i t i o n  5 Let f be a continuous probability density on the finite in- 
terval, [a, b]. Then for any pair of positive real numbers, #, a, there exists a 
unique pair of real numbers, m, s, with s > 0 such that 

g(y)=lf(lny-m)sy 

is a continuous probability density on [e re+a*, e ~+b*] with mean # and standard 
deviation a. 

2 
P r o o f .  From the lemma, there exists a unique t > 1 with ~(t) = ~ - - ~ .  

Observe that  qo(t) > 0 implies f : t ~ f ( x ) d x  > 0, thus we can define 

Let c = e r~+a~ and d = e m+b~. We also introduce the change of variable 
x = ~ ~. y = e m+Sx, hence ~ = ys, which implies dy = ysdx. Then 

s d x  

g(y)dy = ysdx = f (x )dx  = 1. 

Further,  we have 

d b 1 b 
f yg(y)dy = fa y ~ y f ( X ) y s d x = ~  y f (x)dx  

bem+S~f(x)d z e m (eS)~ f (x)dx  

/: )/: = e m tXf(x)dx = f : t~7(x)dx  t~f(x)dx = #. 

Since f is continuous, g is continuous as well and we have shown that  g is a 
continuous probability density function on [c, aq = [e m+~*, e m+b~] with mean 
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#. As in the discrete case, we note that  

#2 

fJ:g(y)~y 

d 2 

f~(em+'*)2f(x)dx fb(emt')2f(x)dx 
b 2 2 (em f: t'f(x)dx) ( f t t ' f ( x )dx )  

e2"~ f: t2:f(x) dx S~ t2"f(x) dx 
#2 

= ~o(t) - #2 + a2, 

which implies f :  y2g(y)dy = #2 + cr2. Thus 

(Z :+.-:(x)..)' 

Ld(y -- #)2 g(y)dy = Ldy2 g(y)dy -- 2# Ldyg(y)dy + # 2 Ldg(y)dy 

: .  p 2 q _ a s _ 2 p 2 + # 2  

0 -2" 

To prove uniqueness, let rh, a be another such pair, and let 

l f ( l n y z r h  ) foryE [e,d]=[e'~+~a,e'n+bq. 

From a similar change of variable as above, it follows that  

#2 \ J c  ] 

#= +a 2 f:y2[l(y)dy f:e2('~+'=)f(x)dx 

:: :.:(x>.x)' (:: (e). 
= = = ~ ( e b .  

e2 ~ fb e2a~f(x) dx .afb .e( q2.. f(x)dx 

Since ~ > O, it follows that  e a > 1, implying that  e ~ = t = e 8 and thus ~ = s. 
Finally, we have 

S; L : # = e'n+a:f(x)dx = e'~+8:f(x)dx = e ,~-m em+,:f(x)dx = e'~-mp. 
J a  

Since # > O, it follows that  r~ = m, and the proof is complete. • 
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R e m a r k  6 What holds for the continuous case with infinite support is not 
x 

so straightforward. For example, letting f (x)  = ~ be the exponential 
density on [0, oc), the interested reader can readily verify that the condi- 

tion 0 < ~ < V~I + v ~  is both necessary and sufficient for the exis- 
tence of positive numbers m and s as in the proposition. More generally, 
if f (x)  is a probability density on [a, ~ )  with moment generating function 

O 0  

Mx(t)  = / et~f(x)dx and we are given a target mean it and standard de- 
(2 

viation a, then one suggestion is to first try to determine s by solving the 
following implicit equation for the target coej~cient of variation: 

~T 

# Mx(S) 

x /Mx  (2s) - Mx (s) 2 

and, if successful, determine m from: 

C.2 T h e  Power  Transform 

A more subtle way to transform claims is with a power transform, x ~ ax b. 
With a = 1 /#  and b = 1 we can see that  the power transform general- 
izes mean normalization. Wi th  logarithmic standardization we first log the 
data, then standardize, and then re~exponentiate: x --+ log x --+ ~ --+ 

e x p ( l ° - ~ - ) .  But e x p ( l ° - ~ )  = e-U/~x 1/~ and so the power transform gener- 
alizes logarithmic standardization as well. Thus the power transform could 
potentially outperform both  mean normalization and logarithmic standard- 
ization. In addition, with the power transform there is no need to log the 
losses and then re-exponentiate. The moments are matched in dollar space 
rather  than in log space. The idea is to choose a and b so that  the trans- 
formed losses from one state match the mean and variance of the losses from 
another  state. In this way we can use the out of state losses to build an 
expanded database for each state. We now prove, under reasonable condi- 
tions, tha t  it is possible to choose a and b in the power transform so that  the 
transformed losses from one state do indeed match the mean and variance of 
another  state. 
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Proposition 7.Let xl ,  x 2 , . . . ,  xn be a finite sequence of positive real num- 
bers, not all equal and and let k be the number of i such that xi = max{x j l l  _< 

j < n}.  Then given # > 0 and 7 E [0, V/~-~k), there exist unique constants 

a > 0 and b > 0 such that the database {ax b} has mean # and C V  7. 

P r o o f .  If  7 = 0 then we must  take b = 0 and a = #, and the result holds. 
So assume 7 > 0. Let a = 7# > 0 and set 

zi = lnx i  for l g j S n. 

Then  clearly k is the number  of i such tha t  zi = max{z j l l  _< j _< n}. We 
have: 

(0j#) 
(7 2 n 

¢~ ~--{< ~ - 1  

#2 + a2 n 
4:> - - < - -  

i, 2 k 
# 2 / ( p 2  jr. a2)  > k / n  

and so by Proposit ion 3 there is a unique pair of real numbers  m, s with 
s > 0 such tha t  the finite sequence, e m+s~, e m+sz2, . . . ,  e 'n+Sz", has mean # 
and s tandard  deviation a. Let t ing a = e m and b ---- 8 we have: 

e m+sz' = e m (eZ') * = e m (e'nX') * -- ax~ for 1 _< j _< n 

and the existence of the constants a and b is proved. Uniqueness of a = e m 
and b = s follows from the uniqueness of m and s, and the proof  is complete. 

D Excess  Rat io  Funct ions  

We collect here some facts about  excess rat io functions. We show how to 
recover the distribution function from the excess ratio function, give a char- 
acterization of excess ratio functions, and discuss the mixed exponential  case. 
We s tar t  with some basic definitions and results. 
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Definition 8 A random variable X is a loss variable if it is nonnegative 
valued, has finite nonzero mean, and has a density f that is continuous when 
restricted to [0, +oo). We denote by F the distribution function of X.  The 
survival function of X is S = 1 - F. The excess ratio function of X is given 

O O  ~ . 

by R(r) = f~ (x - r ) f ( x )dz /E[Z]  for r >_ O. We denote by F the functwn 

given by F(r)  = fo x f (x )dx /E[X] .  We use subscripts on F, F, S, and R 
when necessary to indicate dependence on X .  

The following proposition expresses the excess ratio function in terms of 
F and F. 

P r o p o s i t i o n  9 Let X be a loss variable with mean #, then 

r [1 - F ( r ) ]  R(r) = 1 - .  ~rj - -~ 

Proof .  From the definition of R(r) we have 

R(r) = _1 (x - r ) f ( x )dx  
# 

= 1 x f ( x ) d x -  r f ( x )dx  
tt 

1[ // ,1 = - . -  ~ f ( ~ ) d z - r S ( r  

= 1 - ! [ r x f ( x ) d x _  ~-S(r) 
#ao # 

1 F(r) - ~[i - F(r)]. 

It is well known (see, for example, Billingsley [1], page 282) that the mean 
of a nonnegative random variable, X, can be expressed in terms of its survival 
function as E[X] = f o  S(x)dx.  It is easy to see that a similar result also 
holds for excess ratio functions. 

P r o p o s i t i o n  10 Let X be a loss variable with survival function S and excess 
ratio function R, then 

R(r) = f ~  S(x)dx 
£ S(x)dx 
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Proof .  Let X have density f ,  then noting that S'(x) = - f ( x )  and using 
integration by parts, we have 

~ ¢¢ S(x)dx  ~r °° : xS(x)]~  + x f ( x ) d x  

F = - r S ( r )  + xf(x)ex  

/7 I = - r  f ( x ) d x  + x f ( x ) d x  

f ° ° ( x  - r ) f ( x )dx ,  
Jr 

where the second equality follows as xS(x)  = x f ~  f ( y )dy  ~ f ~  y f ( y )dy  --* 
0 as x --* cc since X has finite mean. Thus R(r) = f ~ ( x - r ) f ( x ) d x / E [ X ]  = 

£ s(x)dx. • 
Survival functions and excess ratio functions share several elementary 

properties given in the next proposition. 

Proposition 11 I f  g is a survival function of a loss variable or an excess 
ratio function then 

1. g(O) = 1 (and g(x) = 1 for x < 0 if g is a survival function) 

2. g is non increasing 

3. limx_~ g(x) = 0 

The following proposition shows how to recover the distribution function 
from the excess ratio function. Thus the excess ratio function characterizes 
a loss distribution and so there is no loss of information in considering excess 
ratio functions rather than densities or distribution functions. 

Proposition 12 Let X be a loss variable with survival function S, and excess 
ratio function R, then d R ( r )  = - S ( r ) / E [ X ] .  Further, i f  we set g(x) = 
S (x ) /E[X]  then n(r )  = f ~  g(x)dx. 
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Proof .  For the first assertion, we have 

F 1 d (x - r ) f ( x )dx  
R(r) - E ( X )  dr 

F F ] - E ( X )  -~r - - ~ r  r f ( x ) d x  . 

d o o  By the Fundamental Theorem of Calculus, we have ~ f~ x f ( x ) d x  = - r f ( r )  
and d J ~  f ( x )  = -- f (r) ,  thus 

1 - r f ( r )  ~- r f ( r )  - f ( x ) d x  - S ( r )  R(r) = E ( X )  -- -E(X)  

For the second assertion, by Proposition 10 we have 

F //7 F R(r) = S(z)~z S(x)dx = j. E - ~ x =  g(x)dx 

This proposition also shows that the excess ratio function of a loss vari- 
able X is also the survival function of another random variable with density 
S(x) /E[X] .  We next give characterizations of survival functions and excess 
ratio functions. 

P r o p o s i t i o n  13 Let g : [0, +oo) --+ ]R be differentiable with g' continuous, 
g(O) = 1, and limx-+o¢ g(x) = O, and let 

1 /f x < 0  
~(x)= g(x) // x > 0 '  

then ~ is the survival function of some nonnegative random variable X with 
density, f ,  that is continuous when restricted to [0, +oo) i f  and only if  g' <_ O. 

Proof .  Suppose ~ = Sx for some nonnegative random variable X with 
density, f, that is continuous when restricted to [0, +co). Then for x > 0 

o ~  

g(x) = "~(x) = Sx (x )  = / f ( y ) d y ,  

x 

and so by the Fundamental Theorem of Calculus g'(x) = - f ( x )  < O. 
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Conversely, suppose g' _< 0 and define 

0 if x < O  
f ( x )  = - g ' ( x )  if x > O  

then f restricted to [0, +oo) is continuous and 

f 7 f ( x ) d x  = - g ' ( x ) d x  = - g ( x ) l  o = - lim g(x) + g(O) = - 0  + 1 = 1, 
X - ~  O0 

- - 0 0  0 

so f is a probability density function of some nonnegative random variable 
X. For x < 0 we have S x ( x )  = 1 = ~(x) and for x _> 0 

o o  o o  

Sx(X)  = f f ( y ) d y  = / - g ' ( y ) d y  = -g(y)l°~ = - y-~oolim g ( y ) + g ( x ) =  g ( x ) =  ~(x). 

Thus ~ = Sx .  • 

P r o p o s i t i o n  14 Let g : [0, +oo) --+ IR be twice differentiable with g" contin- 
uous, g(O) = 1, and lim~--.oo g(x) = O, then g is the excess ratio function of 
some loss variable if and only if g' <_ 0 and g" > O. 

P r o o f .  Suppose g = R x  for some loss variable X with density f ,  survival 
function S, and mean #. Then by Proposition 12, 

g' = - S / #  <_ 0 and g" = - S ' / #  = f l #  > O. 

Conversely, suppose g' _< 0 and g" > O. Since g" >_ 0 we know that  g' is 
non decreasing. So if g'(0) = 0 then g'(x) = 0 for all x as g' < 0. This would 
imply that  g is constant and so g(x) -- g(0) = 1 for all x, but  this contradicts 
our hypothesis tha t  l im~_~ g(x) = O. Thus we must have g'(0) < 0. Observe 
also that  

f0 f0 Ig'(x)l dx = - g ' (x)dx = - g ( x ) l  o = - 0  + g(O) = 1, 

and so lim~--.oo g'(x) = 0. If we let 

0 if x < 0  
f ( x ) =  1 _,,ix~ if x > 0  -g , -~y  ~ ) 
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then f >_ 0 and f is continuous when restricted to [0, +oc). Further 

f ( x ) d x  = 1 g,(X)[o = 1 limcg'(x)+ ~ = - 0 + 1  = 1. 

Thus f is a density function for some nonnegative random variable X. Since 
for t_> 0 

Sx(t) = f (x )dx  = 1 g (x)l, lira g'(x)q ~ g,(0) g'(0) 

it follows that 

/7 /7 E ( X )  = Sx( t )d t  = g'(t) dt = 1 g,(0) g(x)lo 

(g,__~) g(O) _ 0 _  1 1 
1 lirnoo g(x) g'(O) g'(O----) = -g'(O---)" 

Thus, 0 < E ( X )  = 1 -g,--~ < oc and so X is a loss variable. Finally, by 
Proposition 10 we have 

Rx( t )  = ft°° Sx (x )dx  
f o  Sx(x)dx 

ft °° g'(x)dx g(x)l~ ° o -  g(t) 
= £ g'(x)dx = ~ - ~ - - ~ ( ~  = g(t). 

We can now characterize excess ratio functions in terms of survival func- 
tions. 

Proposition 15 Excess ratio functions are exactly the restrictions to [0, +oo) 
of survival functions of nonnegative random variables with densities that when 
restricted to [0, +co) have nonpositive, continuous derivatives. 

Proof .  Let g = R x  be an excess ratio function of a loss variable X. Then 
by Proposition 14, g' < 0 and g" > 0. Proposition 13 then implies there is a 
nonnegative random variable Y such that 

1 if x < 0  
Sv(x)  = g(x) if x > _ 0 '  

and Y has a density function, f ,  that is continuous when restricted to 
[0,+oc). For x >_ 0 we have g(x) = J ~ f ( y ) d y  and so g'(x) = - f ( x ) ,  
which implies that f '  = - g "  < 0 and f '  is continuous as g" is continuous. 
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Conversely, let X be a nonnegative random variable with a density func- 
tion, f ,  that when restricted to [0, +oo) has a continuous derivative and 
f '  < 0. Let g : [0, +oo) --+ ]R by 

g(x) =/f(y)dy 
X 

Then g' = - f  < 0, which implies that g" = - f '  > 0. Then by Proposition 
14, g is the excess ratio function of some loss variable. • 

In the exponential case things are particularly simple as the next propo- 
sition shows. 

P r o p o s i t i o n  16 Let f ( x )  = l e-~/m be an exponential density, then R(x)  = 
S(x)  = e -~/m. That is, for an exponential distribution the excess ratio func- 
tion is the same as the survival function. 

Proof .  This follows directly from applying Definition 8 and using integration 
by parts. • 

For finite mixtures we have the following proposition. 

P r o p o s i t i o n  17 Let f l ,  f2 , . . . ,  fn be densities with corresponding excess ra- 
tio functions R1, R2, . . . ,  P~ and means #1, # > . . . , P n .  Then given weights 
wi • (0, 1) with ~ wi = 1, the mixed density f = Will  + w2f2 + ""  + wnfn 
has excess ratio function 

R = WlR1 + w2R2 A- .. .  q- wnRn, 

where wi = wi# i /#  and # is the mean of the mixed distribution. 

Proof .  From the definition of the excess ratio function, we have 

if] R(r) = -~ ( x - r ) f ( x ) d x  

=1S  
(X r) [Eni=lWifi(X)] dx 

[ ° ° ( x  - r ) f i (x )dx  = 

= E7=1 ( ~ ) l ~ ° ° ( x _ r ) f i ( x ) d x  
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C o r o l l a r y  18 I f  f ( x )  ='Y~~=I w c ~  e-~/'~' is a finite mixed exponential den- 
sity, then its excess ratio function is given by 

R(x) = E wimie-=/m' 
E wimi  

E S p l i c i n g  L o s s  D i s t r i b u t i o n s  

We start  with a loss variable, X (see Definition 8). The interpretation is tha t  
this represents the empirical losses. We then choose a point l > 0, such that  
P r ( X  > l) > 0 and P r (X  = l) = 0. The point l, is called the splice point 
because we want to rely on X for claims less than l, but  we want to splice on a 
distribution for claims larger than l. We let Y = X - l conditional on X > l. 
Tha t  is, we truncate and shift X.  More formally, if X : ~ ---* [0, +oc)  then let 
fl0 = {w • fl lX(w) > l} and define Y :  f~0 --~ [0, +c~) by Y(w)  = X ( w )  - l. 
The following proposition expresses the survival function, the density, and 
expected value of Y in terms of X.  

P r o p o s i t i o n  19 Let X be a loss variable and let l be the splice point as 
above, then 

1. Sy ( r  - l) = 1-Fx(~) for r > l, 1-Fx(l) 

2. f y  (r - l) = ~ for r > l, and 1-fx(O 

3. E[Y] = l_Fx( l  ) 

P r o o f .  To prove item 1 we note first tha t  P r (X  > l) = P r (X  > l), then for 
r > l we have 

S r ( r  - l) = P r ( Y > r - l ) = P r ( X - l > r - l l X > l )  

= P r (X  > r l X  > l) - S x ( r )  _ 1 - Fx ( r )  
- S x ( l )  1 - Fx(1)" 

For i tem 2 we note that  

F y ( r  - Z) = 1 - S y ( ~  - l )  = 1 
1 - Fx (r )  _ Fx(~)  - F x ( 0  
1 - Fx(Z) 1 - Fx(1) 
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Then 

f y ( r -  l) = ~r Fx(1) J 1 - Fx(l)" 

For item 3 we have, 

E[Y] ~0 °° = y fy (y )dy  

/7 = (r - l ) f r ( r  - 1)dr 

= (," - 0 ~ _ F x ( O ]  

E[X] f t ° ° ( r -  l ) :x (r )dr  
1 - Fx(O E[X] 
E[X]Rx(1) 
1 - Fx(1) ' 

completing the proof. • 
We want to fit an excess ratio function (see Definition 8), R0, from a mixed 
exponentiM distribution to Ry.  More precisely, we want to  re~lace the empir- 
ical loss variable, X, with a loss variable X such that if Y = X - l  conditional 
on )f  > l then 

1. f 2 ( x )  = f x ( x )  for x _< l 

2. R p = R o .  

We now derive the distribution function, the probabili~ density function, 
and the excess ratio function of the spliced distribution X. 

P r o p o s i t i o n  20 The distribution function of the spliced random variable .~ 
is given by 

F2(r  ) = { Fx(r)  i f  r < 1 
1 - [ 1 - F x ( 1 ) ] S p ( r - l )  i f  r > l " 

Proof .  For r < l, we have f 2 ( x )  = f x (x ) .  Thus 

/0 /0 Ffc(r ) = f 2 ( x ) d x  = f x ( x ) d x  = Fx(r) .  
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From this and Proposition 19, we see that  for r > l 

and therefore 

S ? ( r -  l )  - -  I- F 2 ( r  ) = 1 - F 2 ( r )  
1 - F 2 ( l  ) 1 - F x ( l )  

FR(x ) -= 1 - -  [1 - Fx(l)]S?(r - l). 

This allows us to determine the distribution function of )(  since we know the 
empirical distribution Fx and our assumption that  R~ = R0 determines the 
distribution of Y as well by Proposition 12. We have thus shown that  the 
following two conditions 

1. •(x)  = fx(x)  for x <_ l 

2. R v =  Ro, 

uniquely determine a random variable ){. What  we have not shown is that  
the above two conditions are consistent, i.e. that  there exists a random 
variable, )(,  that  satisfies them. We do this by working with the density of 
X and show that  ){ is a loss variable as well. 

Proposition 21 The density of X is given by 

fx(r)  if r<_l 
& ( r )  = [1 - F x ( l ) l & ( r  - l )  i l  r > l " 

and this defines a valid density function of a loss variable with mean given 
by 

E[X] = E[XlFx(l ) + Sx(l) (ELY] + l ) .  

P r o o f .  Item 1 of the definition of ){ ensures that  f2 (r) = fx  (r) for r < I. 
For r > l, we have from Proposition 20 that  F2(r) = 1 - [1 - Fx(1)]Sp(r - l) 
and thus 

f2(r) ---- [i - Fx(1)]fg(r - l). 
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It remains to show that  fR is a valid density function. To show this, we 
compute 

~o ~ • (r)dr = f x ( r )dr  + [1 - Fx(1)] & ( r  - l)dr 

7o Io = fx ( r )dr  + [1 - Fx(1)] f?(r)dr  

= Fx(l)  + [1 - Fx(l)] = 1. 

From f 2  we can compute the mean of )~. 

E[~] = = x f x ( x ) d x  + Sx(1) x f p ( x  - l)dx 

Io Io = x I ~ ( x ) &  + &(O (x + OI,~(x)& 

= ~ o ' X f x ( x ) d x + S x ( l ) ( ~ o ~ X f p ( x ) d x + l )  

= E[X]Fx(1) + Sx(1) (ELY] + l ) .  

This shows that  X is a loss variable because by assumption Y is. 
Now we turn to the excess ratio function of X.  

P r o p o s i t i o n  22 The excess ratio function of the spliced random variable 
is given by 

~ [1 - nx(~)l  ¢ r < 1 R2(r  ) =  1 -  , X 
R2(1)Rp(r  - l) i f  r > l 

P r o o f .  Using Definition 8 we first note that  for r _< 1 we have 

~R(r  ) x f R ( x ) d x / E [ 2  ] E[X] = = ~ x f x ( x ) d x / E [ X ]  -= (r). 
E[X] 
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Then using this relation and Propositions 9 and 20 we have for r < l 

RR(r) = 1 -  F~(r) r [ 1 -  F~(r)] 
E[2] 

r [1 - Fx(r)] 
= 1 & ( r )  E[2] 

E[X][E[:~] . . r  ] = 1 Fx(r)  + E---~(1 - Fx(r))  

= 1 - E!X![1 - Rx(r)]. 
WlXJ 

Now for r > l, using Propositions 19, 20, and 21 we get 

/ R2(r  ) = ~ 1  ( x -  r ) f2 (x )dx  
E[X] 

[// ] _ 1=__ (x - r)[1 - Fx(1)l f?(x  - l)dx 
E[X] 1[£o 

= ----= (x - (r - l ) )Sx ( l ) fg (x )dx  
E[X] , 

Sx(1)E[~'] "f~°~_z(x - (r - l) ) f f . (x)dx- 

E[X] E[17"] 

s~ (0 E[2] R~ (0 
= E[:~] 1 - F~(0 R~(r - l) 

= R 2 ( 1 ) R g ( r -  l). 

We would typically start with a distribution X that has mean 1 and so 
we would naturally normalize )( and work with ) ( /~  where ~ = E[X]. We 
use the following slightly more general proposition. 

P ropos i t ion  23 Let X be a random variable with density f x  and distribu- 
tion function Fx,  and let (~ > O, then 

i. fx/.(x) = .fx(~x) 

2. Fx/o(x) = Fx(~z) 

568 Casualty Actuarial Society Forum, Fall 2006 



The 2004 N C C I  Excess Loss Factors 

Proof .  We note that 

Fx/~(x) = Pr (X/a  < x) = Pr(X < ax) = Fz(ax)  

f f(y)dy = c~f(ay)dy. 
- -OO - - ~  

Thus fx/~(x) = afx(aX) and Fx/,(x)  = Fx(ax).  
From this and Proposition 20 we get the following. 

P r o p o s i t i o n  24 The distribution function of the normalized spliced random 
variable X /~, where ~ = E[)C], is given by 

{ Fx (ar )  if  r <_ l la  
F2/T'(r) = 1 - [ 1  - Fx(1)]Sf.(~r - l) if  r > l l a  " 

We can similarly recast Proposition 22. 

P r o p o s i t i o n  25 Let E[X] = 1, then the excess ratio function of the nor- 
malized spliced random variable X /~,where ~ = E[)(], is given by 

1-1[1-Rx(~r)] if  r < _ l / ~  
R~/a ( r )  = R , (Z )np ( -p r  - l) if  r > Z/'¢ 

Proof .  By Proposition 23 and the change of variables y = fix, we have 

R2/~(r) 
f ~ ( x  - r)f2/a(x)dx f ~ ( p x  - pr)f2(fzx)dx 

E[2/~] E[f(]/~ 
1 f;O~(y _ _  f~r)ffc(y)dy 

= -~ = RR(pr) .  
E[2]I~ 

Then by application of Proposition 22 we have 

; 1--E-~Xl[1--Rx(f~r)] if r_<l / f i  
R2/a(r) = R2(f~r) = [ R2(l)Rp(f~r - l) if r > I/fz 

In our case we fit a mixed exponential to the tail of the empirical random 
variable X. More precisely, we assume that Y is a mixed exponential. That 
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is, using the  paramete r iza t ion  in Klugman,  et.  al. [9] (see page 43 on mix tu re  
models  as well), we assume 

f ~ ( x )  = ~ w , - - e  " 
m i  i 

and thus  
Fp(x) = E w , ( 1  - e -~lm') = 1 - E wie-xlm'" 

i i 

T h e n  by Corol lary 18, 

Rv(r)  = ~ wimie-r/m' 
E w i m i  

We now s ta te  Proposi t ions  24 and 25 in the  mixed exponent ia l  case. 

P r o p o s i t i o n  26 I f  Y has a mixed exponential distribution as above then the 
distribution function of the normalized spliced random variable X /~  is given 
by 

{ Fx(~tr) if  r < l /~  

F£/~(r) = F£/a(l/Tt) + [1 - F2/a(I/~t)] [1 - ~ w,e-(~r-O/"q if  r > l/~t " 

P r o o f .  F rom Propos i t ion  24 for r > I/~t we get 

F2/a(r ) = 1 - [1 - Fx( l )]Sp(~zr-  l) 

= 1 - [1 - Fx(1)][1 - Fp(~tr - l)] 

= 1 - [1 - Fx(1) - Ff,('fir - l) + Fx(1)Fp(~tr - / ) ]  

= Ux(l) + Fp(~tr - l) - Fx(1)Fp(~r - l) 

= Fx(l)  + [1 - Fx(1)] Fp(~tr - l) 

= F£(1) + [1 - F£( / ) ]  Ff.(~tr - l) 

I f  Y has a mixed exponential distribution as above and Proposition 27 
E[X] = 1, then the excess ratio function of the normalized spliced random 
variable X /'~ is given by 

1 -  ~ [ 1 - R x ( ~ r ) ]  if r <_I/# 
R2/a(r)  

' i f  T > " 
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Insurance  Capital  as a Shared A s s e t  

Donald Mango 

Abstract 
Merton and Perold (1993) offered a framework for determining risk capital in a financial fL, m based on the cost 
of the implicit guarantee the firm provides to its subsidiaries to make up any operating shortfall. Merton and 
Perold assume the price of such guarantees is observable from the market at large. For an insurer, this may not 
be a realistic assumption. This paper proposes an insurance-specific framework for determining the cost of 
those parental guarantees, and utilizing that cost in pricing and portfolio mix evaluation. An insurer's capital is 
treated as a shared asset, with the insurance contracts in the portfolio having simultaneous fights to access 
potentially all that shared capital. By granting underwriting capacity, an insurer's management team is implicitly 
issuing a set of options to draw upon the common capital pool--similar in structure to letters of credit (LOC), 
except they are not loans but grants. The paper will (i) discuss the valuation of parental guarantees, beginning 
with Merton and Perold; ('fi) treat insurer capital as a shared asset and explore the dual nature of insurer capital 
usage; (iii) offer a method for determining insurer capital usage cost;, and (iv) demonstrate how this method 
could be used for product pricing and portfolio mix evaluation using economic value added concepts. 

Keywords: Merton-Perold, capital allocation, capital consumption, economic value added. 

1. V A L U A T I O N  OF P A R E N T A L  GUARANTEES 

M e r t o n  and  Pero ld  (1993) (M-P) define risk capital as the  a m o u n t  required to guarantee  
paymen t  o f  an  asset  or  liability. In their  first section, they present  three  related examples o f  a 
financial firm, Mortgage  Bank  or  "MB,"  making  a risky one-year  bridge loan o f  $100M, 
f inanced by the  issuing o f  a no te  to a no te  holder  ( "NH") .  T h e  only risk in any o f  these cases 
is the  possible  default  o f  r epayment  by the  bridge loan recipient  ("BL").  They  posi t  three  
o u t co me  scenarios: 

• Ant ic ipa ted  (A): bridge loan is repaid wi th  interest  o f  20% at matur i ty  in one  y e a r - -  
e.g., for a loan o f  $100M, the repayment  would  be  $120M; 

• Disas ter  (13): a m o u n t  repaid at maturi ty  is only ha l f  tha t  o f  Ant ic ipated;  

• Ca tas t rophe  (C): a m o u n t  repaid at  matur i ty  is zero. 

They  discuss three  cases, which  differ mainly by which  party bears the  ul t imate cost  o f  any 
default.  U n d e r  their  Case 1, the note  holder  wishes to purchase  a default-free note.  T h e  no te  
holder  is insulated f rom the  default  risk o f  B L  by MB's  purchase  o f " n o t e  insurance"  f rom a 
third-party guarantor .  T h e  free marke t  cost  o f  this is asstlmedto be $5M. I t  is the  cost  o f  this 
guarantee  that  M-P  considers  to be risk capital. Mer ton  and  Pero ld  never  discuss the 
de te rmina t ion  o f  that  $5M price tag. They  assume it to be  a given figure, observable  f rom 
the market.  

Valuat ion of  the Insurer Parental Guarantee 
Similar to MB, every insurance contract  in an insurer ' s  por t fol io  receives a parental  
guarantee:  should  it be  unable  to pay for  its own  claims, a cont rac t  can draw u p o n  the 
available funds  o f  the  company.  Philbrick and  Pain ter  (2001) (P-P) elucidate: 

First published in AST/N Bulletin, Volume 35, No. 2. Used by permission. 
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"When an insurance company writes a policy, a premium is received. A portion of this policy 
can be viewed as the loss component. When a particular policy incurs a loss, the company 
can look to three places to pay the loss. The first place is the loss component (together with 
the investment income earned) of the policy itself. In many cases, this will not be sufficient 
to pay the loss. The second source is unused loss components of other policies. In most 
cases, these two sources will be sufficient to pay the losses. In some years, it will not, and the 
company will have to look to a third source, the surplus, to pay the losses." (p. 124) 

The only market from which an insurer might be able m observe the value of  a guarantee is 
the reinsurance market. However, this market is limited, with relatively low numbers of  
participants, and a great diversity among products. A reinsurance valuation exercise is similar 
to that for over-the-counter (OTC) derivatives, in that it requires proprietary (as opposed to 
public) information, as well as a specific valuation methodology. Also, reinsurers, the liability 
holders o f  last resort, do not have the luxury of  market prices for the guarantees they offer 
their portfolio segments. This suggests that, at a minimum, reinsurers must have an internal 
valuation framework of  their own. It is argued here that an insurer must value the guarantee 
it provides to its portfolio, either explicitly or implicitly. 

This paper proposes one such insurance-specific valuation methodology for the insurer 
parental guarantee. It is based upon the following premises: 

• An insurer's capital is a shared asset, with all insurance contracts in the portfolio 
having simultaneous rights to access potentially all that shared capital. 

• The impacts on an insurer from underwriting a contract are (i) the occupation of  
some of  its finite underwriting capacity over a period of  time (as determined by 
required capital calculations), and (ii) the extension of  a guarantee by the firm to the 
contract holder to fulfill legitimate claims. These impacts represent distinct types of  
usage of  the insurer's capital. 

• Each distinct capital usage type will result in a unique charge: a capacity occupation 
cost and a capital consumption cost. The capacity occupation cost is an upfront cost 
which is a function of  premium and expected reserve balances. Thus it can be treated 
as a fixed cost. The capital consumption cost is a variable cost depending on the 
amount of  shortfall, which is scenario-specific. Therefore, its expected value over all 
possible contract outcome scenarios is used. 

• The sum of  these two costs will be called the capital usage cost, and ~ be treated as 
an expense in the contract pricing evaluation. The contribution to the insurer of  a 
contract is therefore not a return on capital, like the ratio of  expected profit to 
allocated capital, but rather the profit less the capital usage cost. 

• The recommended decision metric then becomes economic value added or EVA 1, a 
means of  risk-adjusting return by subtracting the opportunity cost of  capital. 

The paper will proceed by framing insurer capital as a shared asset, exploring the dual nature 
o f  insurer capital usage, proposing a method for determining insurer capital usage cost, and 
demonstrating how this method could be used for product pricing and portfolio mix 
evaluation using economic value added concepts. 

t EVA is a registered trademark of  Stern Stewart & Co. See www.stemstewart.com. 
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2. I N S U R E R  C A P I T A L  I S  A S H A R E D  A S S E T  

Shared assets or resources are entities conjointly owned by a community or group, for the 
use of their members. Shared assets can bc scarce and essential public entities (e.g., 
reservoirs, fisheries, national forests), or desirable private entities (e.g., hotels, golf courses, 
bcach houses). The access to and use of the assets is controlled and regulated by their 
owners; this control and regulation is essential to prcscrve the asset for future use. Examples 
of controls include usage rules (standards of care), limitations on the number of uscrs (e.g., 
occupancy limits in a restaurant, sx~nmer limits at a pool), limitations on duration of usage 
(e.g., campsites at national parks), and limitations on amount of consumption (e.g., tons of 
fish taken from a fishery). It is particularly critical with essential assets that over-use by some 
members not compromise the future viability of the asset for the entire group. This 
a~regation risk is a common characteristic of shared asset usage, since shared assets typically 
have more members who could potentially use the asset than the asset can safely bear. 
Owners cannot count on individual users taking stcps to preserve the asset. These users havc 
their own incentivcs, and due to limited perspective and information, cannot see the 
implications of their individual actions upon the larger whole. 

Consumptive and Non-Consumpt ive  Uses  
Shared assets are typically used in one of  two manners, what is termed consumptive or non- 
consumptive 2. Consumptive use involves the transfer o f  a portion or share of  the asset from 
the communal asset to the member. Examples of  consumptive use include water from a 
reservoir, livestock grazing on common pasture, or logging from national forests. 

Non-consumptive use differs from consumptive use in several fundamental ways: 

• Non-consumptive use involves temporary, limited transfer o f  control. 

• Non-consumptive use is intended to be non-deplet ive--proper use of  the asset 
leaves it intact for subsequent users. 

• Non-consumptive use has a time element. Users occupy or borrow the asset for a 
period of  time, then return it to the owner's control. 

Examples of  non-consumptive use include boating on a reservoir, hiking in a national forest, 
playing on a golf course, or renting a car or hotel room. The main aggregation concern from 
non-consumptive use relates to either capacity limitations or insufficient maintenance. 
Capacity limitation examples include caps on the number of  water ski boats allowed on a 
lake, the number of  campsites at national parks, or the number of  available tee times at a golf 
course. 

Shared assets are typically used in only one o f  the two manners. However, some shared 
assets can be used in either a consumptive or non-consumptive manner, depending on the 
situation. A good example is the renting of  a hotel room. The intended use of  the hotel 

These terms are used extensively in areas such as "gate* and wildlife management. See Appendix C of the United States' 
Environmental Protection Agency's "Interim Economic Guidance for Water Quality Standards," 
www.e'o~t~ov/watersdcnce/econ/anr~cndc.html. Another good reference is the "Addis Ababa Principles and Guidelines 
for the'Sustainable Use of Biodive*sity," Convention on Migratory Species, 
www.cms.int/bodies/COP/ctm8/documcnts/meefin~ docs/en/Inf 15 AAPG Sustainable Use.ndf. 
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room is benign occupancy--the guest stays in the room, leaves it intact, and after cleaning 
the room is ready for subsequent rental. However, i ra  guest leaves the water running and 
floods their floor, or falls asleep with a lit cigarette and bums down a wing of  the hotel, their 
use has become consumptive, because the capacity itself has been destroyed. The hotelier must 
rebuild the damaged rooms (invest additional capital) before the rooms can again be rented. 

Insurer Capacity 
Insurers sell promises to pay claims, so legitimate counterparty standing (i.e., claims paying 
rating) is vital. Other factors enter into a rating decision, but a key variable is the capital 
adequaq ratio (CAR). Different rating agencies use different approaches, but essentially CAR 
is the ratio of  actual capital to required capital. Typically the rating agency formulas generate 
required capital from three broad sources: premiums, reserves, and assets. Current year 
underwriting activity will generate required premium capital. As that business ages, reserves 
will be established, which will generate required reserve capital. As those reserves run off, the 
amount of generated required reserve capital diminishes, eventually disappearing once the 
reserve balance reaches zero. 

There are usually minimum CAR levels associated with each rating level. Thus, if an insurer 
has a desired rating, a given amount of  actual capital corresponds to a maximum amount of 
rating agency required capital. This means required premium capital is an excellent proxy for 
underuviting capad{y. It represents an externally imposed constraint on the amount of  new 
business that can be written. Since total required capital consists of  portions attributable to 
premium, reserves and assets, the maximum required premium capital is also a function of 
the amount of required reserve capital. 

In summary, an insurer's actual capital creates underwriting capacity, and underwriting activity 
(either past or present) ties up or occupies potentially available underwriting capacity. 

Consumptive and Non-Consumptive Use of Insurer Capital 
Per the rating agency required capital formula, the presence of either premium balances 
(representing current year underwriting) or reserve balances (representing previous years' 
underwriting) results in required capital being calculated. This temporarily reduces the 
amount of underwriting capacity available for other underwriting uses. Being temporary, it is 
similar to capacity occupancy, a non-consumptive use of the shared asset. 

Capital consumption occurs when reserves are increased. This involves a transfer of funds 
from the capital account to the reserve account, and eventually out of the fm'n as claims 
payments. P-P also introduced this concept: 

"The entire surplus is available to every policy to pay losses in excess of the aggregate loss 
component. Some policies are more likely to create this need than others are, even if the 
expected loss portions are equal. Roughly speaking, for policies with similar expected losses, 
we would expect the policies with a Large variability of possible results to require more 
contributions from surplus to pay the losses. We can envision an insurance company 
instituting a charge for the access to the surplus. This charge should depend, not just on the 
likelihood that surplus might be needed, but on the amount of such a surplus calL" (p. 124) 
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The two distinct impacts of  underwriting an insurance portfolio on the insurer in total are 
therefore: 

(i) 
® 

Certain occupation of  underwriting capacity for a period of  time, and 
Possible consumption of  capital. 

This "bi-polar" capital usage is structurally similar to a line of  credit (LOC) as issued by 
banks. The dual impacts on a bank of  issuing a LOC are: 

(i) 
@ 

Certain occupation of  capacity to issue LOC's, for the term of  the LOC, and 
Possible loan to the LOC holder. 

Banks receive income for the issuance of  LOC's in two ways: 

(i) 
® 

An access fee (i.e., option fee) for the right to draw upon the credit line, and 
Loan payback with interest. 

This dual form of  payments for the dual nature of  usage will be adapted for the unique 
characteristics of  insurance. 

3. T H E  COST OF USING I N S U R E R  CAPITAL 

The cost of  the insurer's parental guarantee therefore has two pieces: (i) a Capacity 
Occupation Cost, similar to the LOC access fee, and (ii) a Capital Call Cost, similar to the 
paybac k costs of  accessing an LOC, but adjusted for the facts that the call is not  for a loan 
but for a permanent transfer, and that the call destroys future underwriting capacity. 

(i) Capacity Occupation Cost 
The capacity occupation cost is an opportunity cost, compensating the firm for preclusion of  
other opportunities. It can be thought of  as a minimum risk-adjusted hurdle rate. It will be 
the product of  an opportunity cost rate and the amount of  required capital generated over 
the active life of  the contract. In continuous time, the formula would be: 

T 

IRC, .rop p .dr, (3.1) 
t,,O 

where 

• %p is the "instantaneous" opportunity cost of  capacity (similar to the force of  
interest); and 

• RC, is the required capital amount for the segment or contract at each point in time 
t, with t going from 0 (contract inception) to T (final resolution of  all payments). 

Rating agency required capital formulas are a discrete approximation of  the continuous time 
situation: 
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{ 7~ RC~}*rovv (3.2) 

RCiis the required capital for time period i. For/=-1, it would be a function of  premium; for 
all subsequent periods, it will be a function of reserves. 

(ii) Capital Call Cost 
Let v be the random variable representing the present value at inception of  all insurance 
cash flows associated with an insurance contract--premium, expenses and loss payments 
(but not required capital). For simplicity assumep(v) is the discrete distribution with possible 
outcomes vj, i = 1 to n. 

Let f(x) be the capital call cost function that charges for a particular capital call. We will 

assume that a capital call is necessary when the present value of insurance flows v I falls 

below zero. The magnitude of  capital call for outcome vj would be - min(O, vj) ,  which will 

be denoted s i for shortfall of  outcome i, a non-negative number. The cost of  a capital call for 
outcome i will be denoted f(s~). The expected cost of  capital calls over all outcomes would 

be: 

n 

~ p ,  * f(s,) (3.4) 
I=I  

The form of f(s I) can be determined in part based on an understanding that a capital call 

destroys future underwriting capadty. Therefore, any call cost function should at least equal the 
amount of the call (payback of the capital grant). It should also compensate for lost 
opportunity cost. In this case, the des~oyed capacity would need to be replenished by some 
means (e.g., recoupment from the product line's future returns, or capital infusion from 
parent). Whatever the source, the lost capacity could cost the firm the equivalent ofmyears 
of "capacity downtime," what one might call an inconvenience premium. Such an 
understanding leads to one possible means for determining the capital call cost funcdon 

f ( s , ) :  

f(s,) = 0 + m *  ropp) (3.5) 

The determination of m could be based on the volatility of a product's pricing cycles--that 
is, the likelihood that temporary capital impairment would lead to missed opportunity to 
write business at higher price levels. 

Economic Value Added (EVA) 
EVA, a registered trademark of Stem Stewart & Co., is a powerful metric used in financial 
analysis. The formula for EVA is: 

EVA = NPV Return - Opportunity Cost of Capital 
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EVA is typically expressed as an amount. An activity with a positive EVA is said to "add 
value," while one with a negative EVA "destroys value." 

EVA is simple to calculate using the shared asset framework: 

EVA = NPV Return - Opportunity Cost of  Capital Usage 

EVA balances both risk and reward, and will be used as the key decision variable in the 
application examples to follow. 

4. Appl ica t ion  in Re insurance  Cont rac t  Eva lua t ion  

This section will demonstrate the application of this approach to two reinsurance contracts. 
Both examples use the following key parameters: 

• ropp = 10% 

• m = 5  

• f(s) = 5"10°/o = 500/0 

H i g h  Layer Property Excess  of  Loss Contract  
Consider a high-layer contract, with a 2% chance of  incurring a loss (i.e., 1 in 50 years). 
When a loss occurs, it is assumed to be a full limit loss. Example 1 shows the details: 

Example 1 
Property Catastrophe Contract 

Comments 
(1) Premium $ 500,000 = 5% Net Rate on l ine 
(2) Limit $ 10,000,000 

I Capaclty Occupation Cost 
(3) Required Capital Factor 50.0°/o Rating Agency 
(4) Required Capital $ 250,000 = (3) * (1) 
(5) Opportunity Cost for Capacity 10.0% ropp 
(6) Capacity Occupation Cost $ 25,000 = (4) * (5) 

ICap~/ ca// cost I 
(7) Probability 2.0% 
(8) Loss $ 10,000,000 Full limit loss 
(9) Capital Call Amount $ 9,500,000 = (8) - (1) 

(10) Capital Call Cost Function 50.0% = 5 * ro~o 
(11) Capital Call Charge $ 4,750,000 = (10) * (9) 
(12) Expected Capital Call Cost $ 95,000 = (11) * (7) 

IEVA I 
(13) Expected NPV $ 300,000 = (1) - (7) * (8) 
(14) Expected Capital Usage Cost $ 120,000 = (6) + (12) 
(18} EVA $ 180,000 = (13)-  {14) 

Example la shows the premium for a zero EVA: 
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Example la 
Property Catastrophe Contract @ Zero EVA 

Comments 
(1) Premium $ 312,500 = 5% Net Rate on l ine 
(2) Brui t  $ 10,000,000 

I Capacity Occupation Cost I 
(3) Required Capital Factor 50.0% Rating Agency 
(4) Required Capital $ 156,250 = (3) * (1) 
(5) Opportuni ty Cost for Capacity 10.0% ro~o 
(6) Capacity Occupation Cost $ 15,625 = (4) * (5) 

I ~ p ~ l  c~ll cost I 
(7) Probabil i ty 2.0% 
(8) Loss $ 10,000,000 Full limit loss 
(9) Capital Call Amount $ 9,687,500 = (8) - (1) 

(10) Capital Call Cost Function 50.0% = 5 * ro~ 
(11) Capital Call Charge $ 4,843,750 = (10) * (9) 
(12) Expected Capital Call Cost $ 96,875 = (11) * (7) 

IEVA I 
(13) Expected NPV $ 112,500 = (1) - (7) * (8) 
(14) Expected Capital Usage Cost $ 112,500 = (6) + (12) 
(15) EVA S = (13) - (14) 

Since this is a short payment tail line, there are no required capital charges for reserves, and 
discounting is ignored for simplicity. The two pieces of the capital usage cost are calculated 
separately. The EVA formula is straightforward, being NPV minus capital usage cost. 

Longer  Ta i l  Excess  of  Loss Contract  
Now consider a high-layer excess of  loss contract on a liability product, with the same 
probability of  loss, severity profile, limit, and premium, but a five-year payout. Example 2 
shows the calculation details. 
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Example 2 
Longer Tail Excess of Loss Contract 

Comments 
(1) Premium $ S00,000 = 5% Net Rate on Line 
(2) Limit $ t0,000,000 

I Capaclty Occupation Cost I 
(3) Required Capital Factor - Premium 50.0% Rating Agency 

(3a) Required Capital Factor - Reserves 35.0% Rating Agency 
(3b) Reserve Amount $ 156,705 
(3c) Reserve Duretion S.00 Years 

(4) Required Capital $ 524,234 = (3) * (1) + (3a) * (3b) * (3c) 
(5) Oppoltunlty Cost for Capacity 10.0% ro~ 
(6) Capacity Occupation Cost $ 52,423 = (4) * (5) 

ICapIta/Call Cost I 
(7) Probability 2.0% 
(8) Loss (NPV ~ 5%) $ 7,835,262 Full limit loss, discounted 
(9) Capital Call Amount $ 7,335,262 = (8) - (1) 

(10) Capital Call Cost Function 50.O°A = 5 *ropp 
(11) Capital Call Charge $ 3,667,631 = (10) * (9) 
(12) Expected Capital Call Cost $ 73,353 = (11) * (7) 

I ~A  I 
(13) Expected NPV $ 343,295 = (1) - (7) * (8) 
(14) Expected Capital Usage Cost $ 125,776 : (6) + (12) 
(15) EVA $ 217r519 = {13) - {141 

The major differences between Examples 1 and 2: 
• The Capacity Occupation Cost now includes charges for required capital needs over 

time on reserves. This increases the capacity occupation fee from $25,000 to $52,423. 
• The loss payment has been discounted at 5% (the assumed default-free rate) for five 

years (assumed payment delay). This reduces the expected capital call cost from 
$95,000 to $73,353. 

• The total capital usage cost stayed about the same, changing from $120,000 to 
$125,776. 

• The EVA increased from $180,000 to $217,519. However, this is partly due to the 
premium being held constant at $500,000. The market price for the longer payment 
tail would likely have factored in the loss discounting. 

Example 2a shows the liability contract premium that would give zero EVA: 
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E x a m p l e  2a  

L o n g e r  Ta i l  E x c e s s  o f  L o s s  C o n t r a c t  @ Z e r o  E V A  
Comments 

(1) Premium $ 273,418 = 5% Net Rate on Line 
(2) Limit $ 10,000,000 

ICapaclq Occupation C~t I 
(3) Required Capital Factor - Premium 50.0% Rating Agency 

(3a) Required Capital Factor - Reserves 35.0% Rating Agency 
(3b) Reserve Amount $ 156,705 
(3c) Reserve Duration 5.00 Years 

(4) Required Capital $ 410,943 = (3) * (1) + (3a) * (3b) * (3c) 
(5) Opportunity Cost for Capacity 10.0% ropo 
(6) Capacity Occupation Cost $ 41,094 = (4) * (5) 

[ C~p~t c~. cost I 
(7) Probability 2.0% 
(8) Lo6s (NPV ~ 5%) $ 7,835,262 Full limit loss, discounted 
(9) Capital Call Amount $ 7,561,844 = (8) - (1) 

(10) Capital Call Cost Function 50.0% = 5 * ro~"  
(1t) Capital Call Charge $ 3,700,922 = (10) * (9) 
(12) Expected Capital Call Cost $ 76,618 : (11) * (7) 

I EvA I 
(13) Expected NPV $ t16,713 = (1) - (7) *(8) 
(14) Expected Capital Usage Cost $ 116,713 = (6) + (12) 
~15} EVA $ 0 = {13) - (14) 

5. Application in Portfolio Mix Evaluation 

This section will describe a Portfolio Mix Evaluation model based on the proposed 
approach. A simple example ~ be used to demonstrate the concepts. It ~11 follow four 
steps: 

1. Loss Distributions 
2. Deviations from Mean 
3. Capital Usage Cost Calculation 
4. Evaluation Metrics 

1. Loss Distributions 
The model has three lines of business (abbreviated "LOB"), each with losses distributed 
Log-Normal, with expected value of $1,000,000, but different variances reflected by different 
yigma parameters. The parameters are shown here: 

1) Loss Distributions 
LOB 1 LOB 2 LOB 3 

Log Normal Mu 13.771 13.691 13.571 
Log Normal Sigma 30.0% 50.0% 70.0% 

Expected Loss 1,000,O00 1,0O0,000 1,000,000 
Profit Margin 10.0% 10.0% 10.0% 

Premium 1,111,111 1,111,111 1,111,111 
Returns 111,111 111,111 111,111 

TOTAL 

3,000,000 

3,333,333 
333,333 

• . 7  
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The model uses 100 independent scenarios drawn from these distributions, each of  which is 
stored on its own row in the spreadsheet. Premium is assumed equal to expected losses plus 
a profit margin (expressed as a percentage of  premium). Expenses are ignored. 

2. Deviations from Mean 
For simplicity, this model ignores discounting. The capital calls are therefore assumed to 
happen under those scenarios where a segment's losses are higher than expected. Section 2 
o f  the model subtracts scenario loss from expected loss by segment. This amount is called 
"dtviatio#from mean, "denoted d~ for scenario i and segment/'. 

3. Capital Usage Cost Calculation 
This table summarizes the major inputs for Capital Usage Cost. 

LOB 1 LOB 2 

444,444 I 

3) Capital Usage Cost Inputs 

RaOng Agency Required Premium Capital Chergs 
Opporlunity Cost 10.0% 

m Yem's of Lost Opportunity 3.00 
Capital Cell Cost Factor 30.0% 

40.0% 40.0% 

Rating Agency Required Premium Capital 4 4 4 , 4 4 4  4644 r 4 4 4  

Here are detailed descriptions of  each element: 

The rating agency required premium capital formula is a factor (40%) multiplied by 
premium. 

rop~ = 10%. 
m = 3 years. 

Capital Call Cost Factor f =  3*10% = 30%. 

The Capital Usage Cost is calculated in the following steps: 

• For scenario i, portfolio shortfall s i = -min(0,d~). 
• For scenario i, portfoSo capital call cost c i = f . s  I . 

• Allocate c i back to segment using the R M K  algodthm. T h e  R M K  algorithm is a 
conditional risk allocation method developed by Ruhm, Mango and Kreps 
(2004)'. 

• For scenario i, segmentj  shortfall s o. = - min(0, d~). 
3 

• For scenario/, the sum of  segment shortfalls si = E [ - m i n ( O , d # ) ] .  
j=l 

3 It is conceptually similar to concepts in Buhlmann, "An Economic Premium Principle," A~TN B#lletin 11 
(1980), p. 52-60. Ruhm and Mango (2003), and Kreps (2004), independently derived the approach, known as 
"RMK" for short. Kreps derived it under the name "riskiness leverage models"; Ruhm and Mango derived it 
under the name "Risk Charge Based on Conditional Probability." The method begins at the aggregate or 
portfolio level for evaluating risk, and allocates the total portfolio risk charge by each component's contribution 
to total portfolio risk. The result is an internally consistent allocation of diversification benefits. 
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• For  scenario i, segment j  share of  the portfolio capital call cost = c o = 

n 

• For  segment./', expected capital call cost c j = E P l  *co" 
Iml 

4. Evalua t ion  Metr ics  
This table summarizes the major evaluation metrics: 

C t • S U 

St. 

4) Portfolio Evaluation Metrics 
LOB 1 LOB 2 LOB $ TOTAL 

Premium $ 1,111,111 $ 1,111,111 $ 1,111,111 $ 3,333,333 
Required Capital $ 444,444 $ 444,444 $ 444,444 $ 1,333,333 
Return $ 111,111 $ 111,111 $ 111,111 $ 333,333 
(a) Expected Cap/tal Usage Cost $ $ 60,099 $ 76,802 $ 109,481 $ 246,382 
(b) Capital Usage Cost as % of Capital 13.5% 17.3% 24.5% 18.5% 
(e) Occupation Cost 10.0% 10.0% 10.0% 10.0% 
(cO Capital Call Cost 3.5% 7.3% 14.8% 8.5% 
(e)EVA$ $ 51,012 $ 34,309 $ 1,830 $ 86,951 
(~ Prob of Exceeding Required Capital 8.0% 15.0% 23.0% 9.7% 

Premium, Required Capital, and Return are all inputs. Elements (a) - (f) will be discussed in 
detail: 

# (a) Expected Capital Usage Cost $ = expected capital call cost c# + capacity 
occupation cost. 

o Caoacitv Occuoafion Cost = Rating Agency Required Premium Capital * 
Opportunity Cost. The values are the same for each segment (line of  
business or "LOB"): 

• RatingAgency Required Premium Capital = $444,444 
• Opportuni~ Cost = 10% 
• Capaci~ Occupation Cost = $444,444"10% = $44,444 

• (b) Capital Usage Cost as % of  Canital = (a) divided by Rating Agency Required 
Premium Capital. Items (c) and (d) split this value into its two components: 

o (¢) Occupation Cost = Opportunity Cost 
o (d) Capital Call Cost = (b) - (c) 
o The average value for the entire portfolio is 18.5%. This is the figure that 

would be calibrated to company cost of  capital. 
• ~ = Expected Return minus (a) 
• (f). Prob of  Exceeding Reauired Canital = percentage of  scenarios where shortfall 

was larger in magnitude than the required premium capital. This is one indicator as 
to how much "risk-sensitivity" underlies the capital factors. For example, if the 
capital factors were derived from a method based on a constant probability of  
default by segment--e.g.,  5%-- then  this value would be 5% for every LOB. 

Each LOB used the same required capital factor (40%), yet the variances (i.e., the riskiness) 
were markedly different. The method has corrected for this by indicating different capital 
usage cost¢. 

• LOB 1 (low variance) : 13.5% 
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• LOB 2 (medium variance): 1Z3% 
* LOB 3 (high variance): 24.6% 

This represents a true implementation of  RAROC---risk-adjusted return on capital. As an 
alternative, we could use the model to calculate RORAC---retum on risk-adjusted capital. 
We do this by varying the required capital factors until all three lines have the same return of  
18.5%. The output is: 

4) Portfolio Evaluation Metrics - RORAC 
LOB 1 LOB 2 LOB 3 TOTAL 

Premium $ 1,111,111 $ 1,111,111 $ 1,111,111 $ 3,333,333 
Required Capital $ 184,633 $ 381,639 $ 767,061 $ 1,333,333 
Return $ 111,111 $ 111,111 $ 111,111 $ 333,333 
(a) Expected Capital Usege Cost $ $ 34,118 $ 70,522 $ 141,743 $ 246,382 
(b) Capital Usage Cost as % of Capital 18.5% 18.5% 18.5% 18.5% 
(c) Occupation Cost 10.0% 10.0% 10.0% 10.0% 
fco Capital Call Cost 8.5% 8.5% 8.5% 8.5% 
(e) EVA $ $ 76,993 $ 40,589 $ (30,632) $ 86,951 
~ Prob of Exceedln[i Required Capital 25.0% 16.0% 16.0% 9.7% 

As compared with a constant 40% capital charge under RAROC, 
capital charges are: 

the resulting RORAC 

3) Capital Usage Cost Inputs ] 
LOB 1 LOB 2 LOB 3 

Rating Agency Required Premium Capital Charge 16.6% 34.3% 69.0% 

With this much higher capital charge, the EVA for LOB 3 becomes negative. This is because 
the product of  its required capital and return is higher than in the base case. 

All three LOB show positive EVA at these price levels. This table shows the premiums 
required to bring all three LOB to zero EVA using RAROC: 

4) Portfolio Evaluation Metrics 
LOB 1 LOB 2 LOB 3 TOTAL 

Premium $ 1,057,974 $ 1,075,373 $ 1,109,414 $ 3,242,760 
RequiredCepital $ 423,189 $ 430,149 $ 443,765 $ 1,297,104 
Return $ 57,974 $ 75,373 $ 109,414 $ 242,760 
(a) Expected Capital Usage Cost $ $ 57,973 $ 75,373 $ 109,413 $ 242,759 
(b) Capital Usage Cost as % of Capital 13.7% 17.5% 24.7% 18.7°/= 
(c) Occupation Cost 10.0% 10.0% 10.0% 10.0% 
(cO Capital Call Cost 3.7% 7.5% 14.7% 8.7% 
(e) EVA $ $ $ $ $ - 
(7 Prob of Exceeding Required Capital 9.0% 15.0% 23.0% 9.7% 

The profit margins required to achieve this are: 
LOB f LOB 2 LOB 3 

Prof i t  Margin 5.5% 7.0% 9.9% 

These might be thought of  as risk-basedpricing benchmarks, all calibrated to a zero-EVA level. 
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I f  we assume the starting point 10% profit margins aregiven from the market, we might seek 
the p0rtJbh'0 tmb¢ that maximizes total EVA, subject to a maximum rating agency required 
premium capital amount. The results of  such a search (using Excel Solver) are shown here: 

4) Portfolio Evaluation Metrics 
LOB 1 LOB 2 LOB 3 TOTAL 

Premium $ 1,953,704 $ 870,370 $ 509,259 $ 3,333,333 
Required Capital $ 781,481 $ 348,148 $ 203,704 $ 1,333,333 
Return $ 195,370 $ 87,037 $ 50,926 $ 333,333 
(a) Expected Capital Usage Cost $ $ 117,709 $ 58,927 $ 43,396 $ 220,033 
(b) Capital Usage Cost as % of Capital 15.1% 16.9% 21.3% 16.6% 
(c) Occupation Cost 10.0% 10.0% 10.0% t0.0% 
(d) Capital Call Cost 5.1% 6.9% 11.3% 6.5% 
(e)EVA$ $ 77,661 $ 28,110 $ 7,530 $ 113,300 
(f~ Prob of F_x ceedin~ Required Capital 8.0% 15.0% 23.0% 5.8% 

The resulting EVA--S113,300--is  far higher than the base ease EVA of  $86,951. 

6. CONCLUSIONS 

This paper introduces a method for assessing the cost of  capital usage based on a shared 
asset view of insurer's capital. The shared asset view eliminates the need for allocation of  
capital, and is far more grounded in insurer realities. The method also shows promise for use 
with a portfolio risk model to evaluate portfolio mixes. 
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D i s c u s s i o n  of Insurance Capital as a Shared Asset  

Robert A. Bear, FCAS, MAAA, FCA, CPCU 

Abstract 

In his 2005 ASTIN paper (reprinted in the CAS 2006 Fall Forum), Donald Mango's ground-breaking work 

[1] in developing the concepts of insurance capital as a shared asset and Economic Value Added (EVA) are 

discussed with special emphasis on the purpose and calculation of the important Capital Call Costs. The 

EVA approach permits one to charge for risk (capital usage) and measure profitability at any desired level 

of definition while satisfying the key additivity property for risk charges without needing to allocate capital. 

Test examples are discussed that illustrate the impact on profitability of rate changes, changes in the 

distributions of premium written by line of business, inaccurate pricing due to parameter and model risk, 

correlation between lines of business, alternative reinsurance programs, and alternative selections for the 

Capital Call Cost function which is central to the EVA approach. 

For those who prefer to measure returns as a percentage of invested capital, a Risk Return on Capital model 

(RROC) is suggested as an alternative way to integrate desirable properties of the EVA approach and the 

return on risk adjusted capital (RORAC) approach based upon riskiness leverage models. This method 

measures returns that are a reward for exposing capital to risk of loss after reflecting the cost of required 

rating agency capital. 

Keywords. Capital allocation, cost of capital, enterprise risk management, return on equity, RMK 

algorithm, risk load. 

1. I N T R O D U C T I O N  

Actuaries frequently allocate capital to line of business or individual risk in an effort 

to calculate risk loads or evaluate profitability by calculating a risk adjusted return in the 

form of a return on equity (ROE) metric. Concerns have been expressed about ROE 

methods [7], especially the fact that the value inherent in the unallocated surplus is 

ignored (the entire surplus supports each and every risk). In his 2005 ASTIN paper on 

"Insurance Capital as a Shared Asset" [1], Donald Mango has introduced a method that 

eliminates the need for allocation of  capital which he believes is more grounded in 

insurer realities. 

2. S U M M A R Y  W I T H  C O M M E N T S  
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Donald Mango treats insurance capital as a shared asset, with the insurance contracts 

having simultaneous rights to access potentially all of  that shared capital. Shared assets can 

be scarce and essential public entities (e.g., reservoirs, fisheries, national forests), or desirable 

private entities (e.g., hotels, golf courses, beach houses). The access to and use of  the assets 

is controlled and regulated by their owners; this control and regulation is essential to 

preserve the asset for future use. The aggregation risk is a common characteristic of  shared 

asset usage, since shared assets typically have more members who could potentially use the 

asset than the asset can safely bear [1]. 

Mr. Mango differentiates between consumptive and non-consumptive use of  an asset. A 

consumptive use involves the transfer of a portion or share of  the asset from the communal 

asset to an individual, such as in the reservoir water usage and fishery examples. Non- 

consumptive use involves temporary, limited transfer of  control which is intended to be 

non-depletive in that it is left intact for subsequent users. Examples of  non-consumptive 

use indude boating on a reservoir, playing on a golf course or renting a hotel room [1]. 

While shared assets are typically used in only one of  the two manners, some shared assets 

can be used in either a consumptive or non-consumptive manner, depending on the 

situation. Mr. Mango gives the example of  renting a hotel room. While the intended use is 

benign occupancy (non-consumptive), there is the risk that a guest may fall asleep with a lit 

cigarette and burn down a wing of  the hotel (clearly consumptive) [1]. 

Mr. Mango notes that rating agencies use different approaches in establishing ratings, but 

the key variable is the capital adequacy ratio (CAR) which is the ratio of  actual capital to 

required capital. Typically the rating agency formulas generate required capital from three 

sources: premiums, reserves, and assets. Current year underwriting activity will generate 

required premium capital. As that premium ages, reserves will be established that will 

generate required reserve capital. As the reserves are run off, the amount of  required reserve 

capital will diminish and eventually reach zero when all claims are settled. As there are 

usually minimum CAR levels associated with each rating level, Mr. Mango points out that a 

given amount of  actual capital corresponds to a maximum amount of  rating agency required 

capital. Given reserve levels, this implies a limit to premium capital and thus to how much 

business can be written. Mr. Mango summarizes by stating than an insurer's actual capital 

creates underwriting capacity, while underwriting activity (either past or present) uses up 

underwriting capacity [1]. 

Mr. Mango notes that the generation of  required capital, whether by premiums or 

reserves, temporarily reduces the amount of  capacity available for other underwriting. Being 

588 Casualty Actuarial Society Forum, Fall 2006 



Discussion of '7nsurance Capital as a Shared Asset" 

temporary, it is similar to capacity occupancy, a non-consumptive use of  the shared asset. 

Capacity consumption occurs when reserves must be increased beyond planned levels. Mr. 

Mango points out that this involves a transfer of  funds from the capital account to the 

reserve account, and eventually out of the firm. Mr. Mango summarizes by stating that the 

two distinct impacts of  underwriting an insurance portfolio are as follows [1]: 

(1) Certain occupation of  underwriting capacity for a period of  time. 

(2) Possible consumption of  capital. 

He notes that this "bi-polar" capital usage is structurally similar to a bank issuing a letter 

of  credit (LOC). The dual impacts of  a bank issuing a LOC are as follows [1]: 

(1) Certain occupation of  capacity to issue LOC's, for the term of the LOC. 

(2) Possible loan to the LOC holder. 

Mr. Mango notes that banks receive income for the issuance of  LOC's in two ways [1]: 

(1) An access fee (i.e., option fee) for the right to draw upon the credit line. 

(2) Loan payback with interest. 

Mr. Mango notes that every insurance contract in an insurer's portfolio receives a parental 

guarantee: Should it be unable to pay for its own claims, the contract can draw upon the 

available funds of  the company. He states that the cost of this guarantee has two pieces [1]: 

(1) A Capacity Occupation Cost, similar to the LOC access fee. 

(2) A Capital Call Cost, similar to the payback costs of  accessing an LOC, but adjusted 

for the facts that the call is not for a loan but for a permanent transfer, and that the 

call destroys future underwriting capacity. 

Mr. Mango states that a capacity occupation cost is an opportunity cost, and thinks of  it 

as a minimum risk adjusted hurdle rate. He computes it as the product of  an opportunity 

cost rate and the amount of  required rating agency capital generated over the active life of  

the contract. However, he does not explicitly credit interest on supporting surplus in his 

formula or in his examples, but usually interprets the opportunity cost of  capital as a spread 

above investment returns on capital. In the examples discussed below, I show that this can 

be a significant factor. I think it reasonable to credit the mean interest earned over all 

simulations on required rating agency capital using a risk free rate, as we are already 

recognizing the opportunity cost of  earmarking this capital to support the business written. 

Mr. Mango also develops a formula for computing capital call costs which are his true 
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risk loads, and defines the expected capital usage cost to be the sum of the capacity 

occupation cost and the expected capital call cost. He defines his key decision metric 

Economic Value Added (EVA) to be the NPV Return less the expected cost of capital [1]: 

EVA = NPV Return - Capacity Occupation Cost - Capital Call Cost 

Mr. Mango calculates capital call costs using the following algorithm: 

(1) For each iteration (loss scenario) in the simulation, calculate the deviation of the 

loss for each segment (line of business or individual risk) from the expected loss. 

If the deviation from the mean is positive, there is no capital call and therefore no 

capital call cost. If the deviation from the mean is negative, the capital call cost 

equals the product of the magnitude of the deviation and the Capital Call Cost 

Factor. Calculate each segment's share of the portfolio capital call cost as the 

ratio of the segment cost to the total of these costs across all segments. 

(2) Use the same procedure to calculate the portfolio capital call cost that was used to 

calculate segment capital call costs. 

(3) Multiply the portfolio capital call cost by the segment shares calculated in (1) to 

calculate each segment's share of the capital call cost for that scenario. 

(4) Each segment's expected capital call cost is the average of (3) over all scenarios. 

The allocation procedure in the above algorithm was developed jointly by Mr. 

Mango, Mr. Rodney Kreps and Mr. David Ruhm [6]. It is a conditional risk allocation 

method which has become known as the RMK algorithm. Mr. Mango points out that the 

method extends risk valuation from the aggregate portfolio level down to the segments 

that comprise the portfolio, reflecting each segment's contribution to the total portfolio 

risk. The result is an internally consistent allocation of diversification benefits for which 

risk charges (costs of capital) are additive in any combination. 

Mr. Mango notes that any capital cost function should at least equal the amount of 

the call (payback of the capital grant). It should also compensate for lost opportunity 

cost (inability to write as much business for several years until capital is replenished). 

Thus, Mr. Mango suggests the following form for the Capital Call Cost Factor: 1 +n*r%p. 

He suggests that the determination of n could be based on the volatility of a product's 

pricing cycles (i.e., the likelihood that temporary capital impairment would lead to missed 

opportunities to write business at higher price levels), The opportunity cost of capacity 

rop p selected by Mr. Mango in his examples for the computation of the Capital Call Cost 

Factor is, the same opportunity cost rate used to calculate the Capacity Occupation Cost. 
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Hence, if  n=4 and roy v = 25%, then the Capital Call Cost Factor is 200%. 

I f  pricing is accurate, this reviewer would theoretically expect capital grants in some 

years to be offset by redundancies in other years, averaging to the plan loss ratio which 

would equal the true Expected Loss Ratio (ELR). Hence, this reviewer believes the 

purpose of  the capital call cost is to compensate for lost profits while capital is being 

replenished. Pricing errors or excessively competitive behavior may lead to market 

dislocations that permit risk loads of  a magnitude that would be viewed by many as 

"payback," but this would appear in this methodology as a very healthy EVA. 

Thus we have an asymmetric dynamic, where the additional capacity from upside 

scenarios rarely compensates for the lost capacity of  downside scenarios. This is 

particularly true after the occurrence of  extreme events, when pricing can become 

excessive for a limited period of  time. Thus, capital call costs are intended to compensate 

for these missed opportunities. 

Seminar notes from the 2005 Seminar on Reinsurance session on "Risk Load, 

Profitability Measures, and Enterprise Risk Management" may be downloaded from the 

CAS web site and illustrate the flexibility which this approach permits management in 

quantifying risk preferences. In Mr. Mango's seminar notes entitled "Insurance Capital as 

a Shared Asset - Theory and Practice," he points out that rating agency required capital 

can provide a convenient means to introduce a tail penalty. Rating agency required 

capital can be calculated at any level of  detail, and so an additional charge can be assessed 

for exceeding allocated rating agency capital (this would be analogous to burning down a 

wing of  the hotel in our illustrative example). In computing the Capital Call Cost, he 

assesses a moderate charge for damage within a segment's allocation (drawdown on 

allocated capital), and a much more severe charge for damage beyond a segment's 

allocation (drawdown of other segments' capital). 

Assuming that correlations between segments are estimated with reasonable 

accuracy, it appears to this reviewer that this two step approach has the advantage of  

discouraging company threatening accumulations of  risk, which is the central goal for an 

enterprise risk management system. For those willing to allocate capital as an 

intermediate step in allocating the cost of  capital ([2], [4]), the Tail Value at Risk and 

Semi-Variance metrics [2] would also serve this function. 
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3. COMPARISON TO O T H E R  APPROACHES 

This reviewer compared the EVA approach to the return on risk adjusted capital 

(RORAC) approach based upon riskiness leverage models [2] and to a modified RORAC 

approach which shall be referred to as a risk return on capital (RROC) model. RORAC 

based upon riskiness leverage models does not reflect rating agency capital requirements, 

particularly the requirement to hold capital to support reserves until all claims are settled. 

This is especially important for long tailed Casualty lines. A mean rating agency capital is 

computed by averaging rating agency required capital from the simulation (capital needed to 

support premium writings is added to the net present value, NPV, of the capital needed to 

support reserves on each iteration of the simulation). The mean rental cost of  rating agency 

capital is calculated by multiplying the mean rating agency capital by the selected rental fee, 

which is an opportunity cost of capacity. Expected underwriting return is computed by 

adding the mean NPV of interest on reserves and interest on rating agency capital to 

expected underwriting return (profit and overhead). The expected underwriting return after 

rental cost of capital is computed by subtracting the mean rental cost of  rating agency 

capital. 

In my comparisons of EVA with RORAC and RROC, risk capital is a selected multiple 

of Excess Tail Value at Risk (XTVAR). XTVAR is defined to be the average value of X-p. 

when X ~ Xq, where the quanfile xq is the value of x where the cumulative distribution of X is 

q. Capital is allocated to line of business based upon Co-Excess Tail Values at Risk (Co- 

XTVAR) [4]. The same desirable properties hold for TVAR and co-TVAR as well as 

XTVAR and co-XTVAR [2], [3]: 

(1) They can allocate risk down to any desired level of definition. 

(2) They satisfy the additivity property (risk load or capital allocated to components of 

the portfolio sum to the total risk load or capital need for the portfolio). 

(3) They are coherent measures of risk. Unlike Value at Risk, they satisfy the 

subadditivity axiom (the risk of a combination of exposures should not exceed the 

sum of the risks of the components) [5]. 

Mr. Venter notes that if capital is set by XTVAR, it would cover average losses in excess 

of expected losses for those years where the portfolio losses X exceed the qth quantile xq. It 

is assumed that expected losses have been fully reflected in pricing and in loss reserves. The 

capital allocated by co-XTVAR to a line would be the line's average losses above its mean 

losses in those same adverse years. Mr. Venter notes that there should be some probability 
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level q for which XTVAR or a multiple of  it makes sense as a capital standard [4]. 

RROC is computed as the ratio of  expected underwriting return after rental cost of  

capital to allocated risk capital. RROC represents the expected return for exposing capital to 

risk of  loss, as the cost of  benign rental of  capital has already been reflected [3]. (it is 

assumed that expense items like overhead and taxes, as well as returns from any capital 

excess the rating agency required capital or from riskier investments that would require 

additional rating agency capital, would be handled at the corporate planning level.) 

RROC is analogous to the Capital Call Cost in the EVA approach, here expressed as a 

return on capital rather than applied as a cost. In his discussion of  Tail Value at Risk, Mr. 

Venter has noted that co-XTVAR may not allocate capital to a line of  business that didn't 

contribute significantly to adverse outcomes [4]. In such a situation, the traditional RORAC 

calculation may show the line to be highly profitable, whereas RROC may show that the line 

is unprofitable because it did not cover the mean rental cost of  rating agency capital [3]. 

In the EVA approach, risk preferences are reflected in the function selected and 

parameterized in computing the Capital Call Cost. In the RORAC and RROC approaches, 

risk preferences are specified in the selection of  the statistic used to measure risk [2], [3]. In 

practice, the RORAC and RROC approaches would be parameterized to allocate the total 

capital of  the company, which would be maintained to at least cover rating agency capital 

required for its desired rating. All three approaches utilize the RMK algorithm for allocating 

risk (measured as a Capital Call Cost in EVA and as risk capital in RORAC and RROC) to 

line of  business [1], [2], [3]. 

These models were tested and results summarized in the tables below. Table 1 

summarizes the test examples, while Table 2 compares simulation results. In the base case, 

Example 2, all lines are uncorrelated and no reinsurance is purchased. Equal amounts of  

premium are written in the three lines, and pricing is accurate with the plan loss ratio 

equaling the true Expected Loss Ratio 0ELR) of  80% for each line. Aggregate losses are 

assumed to be modeled accurately by lognormal distributions with coefficients of  variation 

of  80%, 20% and 40% for lines of business (LOB) 1-3, respectively. 

Payout Patterns were generated based upon an exponential settlement lag distribution 

with mean lags to settlement of  one year, five years and ten years for lines of  business (LOB) 

1-3, respectively. Thus, the payout patterns for LOB 1-3 can be characterized as Fast, 

Average, and Slow, respectively. Interest is credited on supporting surplus using risk free 

rates for bonds of  duration equal to the average settlement lag in each line of  business. In 

this example, interest rates of  3%, 4% and 5% for LOB 1-3, respectively, were assumed. 
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These are the same rates that are used to calculate Net Present Value (NPV) reserves and the 

NPV Reserves Capital component of Required Rating Agency Capital. For simplicity, 

interest rates and payment patterns are assumed to be deterministic. 

Required Rating Agenqy Capital is computed based upon rating agency premium and 

reserves capital charge factors assumed appropriate for the Company's desired rating. 

Somewhat smaller factors were selected for the reinsurance line (LOB 4) under the 

assumption that the Company would not receive full credit for ceded premium and reserves 

because a charge for potential uncollectibility would be applied. Capital needed to support 

reserves for a calendar year is the product of the reserves factors and the previous year-end 

reserves. Capital needed to support reserves must be calculated for all future calendar years 

until reserves run off. Required capital to support reserves is the NPV of these capital 

amounts. Required Rating Agency Capital is computed by adding the products of the plan 

premiums and the premium capital charge factors to the required capital to support reserves. 

For both RORAC and RROC models, capital needed to support the portfolio risk is 

calculated as 200% of XTVAR. That is, the Company wants twice the capital needed to 

support average 1 in 50 year or worse deviations from plan. Capital needed to support the 

portfolio risk is allocated to line of business based upon Co-XTVAR. 

Interest is credited on supporting surplus for Example 2, but not for Example 1. In the 

base example, Example 2, profitability is satisfactory overall, but inadequate for LOB 1 and 

redundant for LOB 2 and LOB 3. Comparison of Example 1 and 2 test results 

demonstrates that not crediting interest on supporting surplus can have a significant impact 

on all three profitability measures. 

In Example 3, the margins are adjusted to reflect results in the base case. The ELR's for 

LOB 1-3 are 60%, 88%, and 85%, respectively. The test results show that overall 

profitability has increased significantly and is now marginally adequate even for LOB 1 

assuming the implied rate change can be achieved. Note that EVA was negative for LOB 1 

in the base Example 2, but is now positive with the improved rate adequacy. A negative 

EVA implies that the line should not be written unless the company is required to do so for 

regulatory reasons or it is necessary to support other lines with positive EVA (e.g., package 

policies). The required rating agency capital increases slighdy from the base case, but the 

capital needed to support the portfolio under the ROE measures (RROC and RORAC) 

decreases by over 22% compared to the base case. 

In Example 4, premiums written by line are adjusted to reflect the base example results. 

Premium written in LOB 1 is reduced by $250,000, while premium written in. LOB 2 and in 
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LOB 3 are both increased by $125,000. The portfolio profitability increases significantly as a 

result, but remains inadequate for LOB 1. The required rating agency capital increases 

modestly from the base case, but the capital needed to support the portfolio under the ROE 

measures decreases by nearly 18% compared to the base case. 

In Example 5, a new version of the company's catastrophe model is released fight after 

the renewal season is over. The revised model implies a reduction in the ELR for LOB 1 

from 80% to 70%. The test results show that EVA improves dramatically for LOB 1 (EVA 

is now positive) and for the entire portfolio. The ROE measures (RROC and RORAC) 

improve significandy for LOB 1 and the entire portfolio. Required rating agency capital is 

not significantly different compared to the base case, while the capital needed to support the 

portfolio under the ROE measures decreases by 15%. 

In Example 6, a Supreme Court decision declared recent tort reforms to be 

unconstitutional. The ELR for LOB 3 is revised from 80% to 100%. The EVA deteriorates 

dramatically for LOB 3 and for the entire portfolio. Similarly, the ROE measures deteriorate 

dramatically for LOB 3, while deteriorating significantly for the entire portfolio. Because 

LOB 3 is a long tai/ed line, RROC declines much more dramatically than RORAC because 

the mean rental cost of rating agency capital has gone up significantly due to the increased 

reserves that must be held for a long period of time. In the base case, LOB 3 was viewed as 

highly profitable by all three measures. In Example 6, LOB 3 is viewed as unprofitable by 

the EVA approach, marginally profitable by the RROC approach, and highly profitable by 

the RORAC approach. The required rating agency capital increases by over 9% from the 

base case, while the capital needed to support the portfolio under the ROE measures 

increases by over 8% compared to the base case. 

Both Examples 5 and 6 demonstrate that inaccurate pricing due to parameter and model 

risk can significantly impact profitability estimates when those errors are discovered. 

In Example 7, LOB 1 and LOB 2 losses are 50% correlated, while losses for both lines 

are uncorrelated with LOB 3 losses. The EVA deteriorates significantly for LOB 1, LOB 2, 

and for the entire portfolio. For the ROE measures (RROC and RORAC), profitability has 

decreased dramatically for LOB 2 because LOB 2 losses now contribute more significantly 

to adverse scenarios created by LOB 1. Required rating agency capital is not significantly 

different compared to the base case, while the capital required to support the portfolio under 

the ROE approaches has increased by 6.5%. 

In Example 8, a stop loss reinsurance treaty is purchased for LOB I covering a 30% 

excess 90% loss ratio layer for a 10% rate. The test results show that this program modestly 
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improves all three profitability measures. The required rating agency capital decreases 

slightly from the base case, while the capital needed to support the net portfolio under the 

ROE measures decreases by 8.5%. 

In Example 9, a 40% quota share is purchased for LOB 1 with commissions just covering 

variable costs. The test results show that this program had a major positive impact on all 

three profitability measures. The required rating agency capital decreases by nearly 6% from 

the base case, while the capital needed to support the net portfolio under the ROE measures 

decreases by over 35%. 

On a technical note, when a reinsurance program is in place for a particular line of 

business and is invoked by a loss scenario, the average capital call cost factor for the line of 

business (ratio of the computed capital call charge to the deviation of the simulated loss 

from the mean) is applied to the deviation of the simulated reinsurance loss from the mean 

reinsured loss. This generates a credit capital call cost in the reinsurance line which reduces 

the average capital call cost for the line of business when combined with the reinsurance line. 

In Examples 1-9, EVA is computed using the default assumption that the consumption 

fee for capital less than the required rating agency capital is 50% of the consumption fee for 

common capital. In Examples 10 and 11, alternative Capital Call Cost functions are 

parameterized and tested. In Exhibit 10, it is assumed that the consumption fee for capital 

less than the required rating agency capital is equal to the fee for capital consumed in excess 

of rating agency capital. In Exhibit 11, it is assumed that the consumption fee for capital 

less than the required rating agency capital is 25% of the consumption fee for common 

capital. Otherwise, Exhibits 10 and 11 are identical to Exhibit 9. EVA is dramatically lower 

in Example 10 compared to Example 9, while it is significantly improved in Example 11. 

These examples illustrate the importance of the selected Capital Call Cost function to the 

EVA approach. (The ROE measures differed slightly between Examples 9-11 due to 

random variation between simulations of 100,000 iterations.) Details of Examples 1-11 may 

be reviewed in Exhibits 1-11, respectively. 

4. CONCLUSIONS 

Donald Mango's very innovative work in developing the concepts of insurance capital as 

a shared asset and Economic Value Added contribute significantly to understanding the 

ways capital supports an insurance enterprise and must be financed. The EVA approach 

permits one to charge for risk (capital usage) and measure profitability at any desired level of 

definition while satisfying the key additivity property for risk charges without needing to 
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allocate capital. The test examples demonstrate that it can be used to measure the impact on 

profitability of  rate changes, changes in the distributions of  premium written by line of  

business, inaccurate pricing due to parameter and model risk, correlation between lines of  

business, and alternative reinsurance programs. Results for alternative Capital Call Cost 

functions can be compared using these kinds of  test examples. 

For those who prefer to measure returns as a percentage of  invested capital, a Risk 

Return on Capital model is suggested as an alternative way to integrate desirable properties 

of  the EVA approach and the return on risk adjusted capital approach based upon riskiness 

leverage models. This method measures returns on capital after reflecting the mean rental 

cost of  rating agency capital. Thus, returns that are a reward for exposing capital to risk of  

loss are measured after reflecting the cost of  carrying capital to support premium written and 

loss reserves. 

Table 1: Summary of Assumptions Underlying Examples 
Examd2~ Exhibit Key Assumplions 

1 1 Sat*Je as base example, Example 2, exc~Ot interest is not credited on su{plus. 

2 2 Base example: Write equal amounts ofpremium in three lines of business. 

Pridng is accurate, as the Plan Loss Ratios equal the true ELR's. 

The ELR's are equal to 80% for all thee lines. Aggregate losses are assumed 

to be modeled accurate[y by lognormal distribulions with coefl~dents of 

varialion of 80%, 20% and 40%for LOB 1-3, re~Oeclive[v. LOB 1-3 losses are 

uncorrelated. Interest is credited on supporting su{plus. 
3 3 Same as base example, excqot adjust Margins by line to rejTect results. 

ELR's  for LOB 1-3 are 60%, 88% and 850/0, re{Oectively. 

4 4 Same as base example, exc~ot adjustpremiums by line to reflect results. 

Write $0.250m less in LOB 1, and write $0.125m more in LOB 2 and in LOB 3. 

5 5 Base example, wherepricing modelis updated after renewal. 

~'ght after renewal season, a new version of tbe company's cat model is 

released which implies a reduclion in the E L R  for LOB 1 to 70%. 

The ELR's  for LOB 2 and LOB 3 remain at 80%. 

The Plan Loss Ratios based upon Price Monitoring are all equal to 80%. 

6 6 Base example, where new information is available after renewal. 

Right after renewal season, a Supreme Court decision declared recent tort 

reforms to be unconstitutional. The E L R  for LOB 3 is revised to 100%, while 

the ELR's  for LOB 1 and LOB 2 remain at 80%. 

The P/an Loss Ratios based upon Price Monitoring are all equal to 80%. 

7 7 Same as base example, excqOt that LOB 1 and LOB 2 losses are 50% correlated. 

8 8 Same as the base example, excqOt a 30% xs 90% loss ralio Stop Loss 

Reinsurance program is purchased for LOB 1 at a 10% rate. 
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10 

11 

9 Same as base example, except a 40% Quota Share ispurchasedfor LOB 1 with 
commission just covenng variable costs. 

The Consumption Fee for Capital Less than Allocation is 120%, while the 
Consumplion Fee for Common Capital (excess allocation) is 240%. 

These same capital call cha~ge factors have been applied in Examples 1-8. 
10 Same assumplions as in Example 9, with the exc~tion of capital call factors. 

The Consumption Fee for Capital Less than Allocation and the Consumption 

Fee for Common Capital (excess allocation) are both set to 180%. 
11 .Same assumptions as in Example 9, with the exception of capital call factors. 

The Consumption Fee for Capital Less than Allocation is 100%, while the 

Consumption Fee f i r  Common Capital (excess allocation) is 400%. 

Table 2: Comparison of Results for Test Examples 

Exam p__~ 
1 

Returns on Risk  Rd'sk Returns 
Adjusted Capital on Capital Economic Value Added 
Gross Ne t  Gross Ne t  Gross Ne t  

RORAC RORAC RROC RROC EVA" EVA 
11.43% 11.43% 5.30% 5.30% (19,077) (19,077) 

2 14.60% 14.60% 7.95% 7.95% 170,541 170,541 

3 20.18% 20.18% 12.20% 12.20% 337,106 337,106 

4 17.91% 17.91% 10.17% 10.17% 239,886 239,886 

5 18.68% 18.68% 11.39% 11.39% 386,023 386,023 

6 11.78% 11.78% 4.92% 4.92% (187,275) (187,275) 

7 13.94% 13.94% 7.47% 7.47% 133,870 133,870 

8 14.72% 15.06% 8.03% 8.14% 170,631 185,141 

9 14.71% 20.03% 8.04% 11.48% 170,871 235,927 

10 14.63% 19.91% 7.97% 11.40% (27,654) 87,025 

H 14.69% 19.91% 8.02% 11.41% 233,126 283,519 
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Risk Management," which may be downloaded from the CAS web site. 
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Exl-dbi t  1 

Page 1 

Example 1 Comparing E V A  with Returns on Capital (RROC and RORAC) where Interest is N o t  Credited on Surplus 
K~ Assumptions: Wdte equal amounts of ptrraium in thrre ~net of bu~nea. Interest Cn4Red on S#p~rffng Sutpk~s: No 
Pelting is accurate, as the Plan Loss Ratm equals the Expected Lo~s Ra6o (EL,R) for all tbree hnes. The ELR 's am eq~l to 800/of of all tbre knee. 
Allthree lines are umm~lated and no Mnsurance isputrhase~ Correlation Between LOB 1 and LOB 2 lx 0.0% 
Note: Aller#a~ue El  "A masuns and RARAC ate computed before taxes, o~ead, and t~turns on non.allocated capltal or mtnbutable to assumption of tn~stment rbA 

1) Loss Generator 
1.4) Ex~aed Lass: Copj and Patte-Spedal fiom LOB 4 of (3K~. 
I B) CoeffMent of I "anation of Assumed Lagnormal Loss Dirtdbutlon 
I C) Standard DedaKon 
I D) Profit and Overhead Margin (includes Brokerage on Reinsurance) 
rE) I "adabk Expeme Ra6o 
1F) Plan proM~m 
IC) F.x~#ed Lars Ratlo = (1:t)/(1F) 
1H) Expected UndraWing Return (Profit e~ Overhead) 
1I) Plan Lo~ llano 
1]) Plan E~,~ad l ~ s  
f K) Prong Emr  = ((lJ)-(f A)) /  (l.4) 

2) Capital Usage Calculadon 
CA) R..qsard c a , ~ / ~  an Prom~m 
2B) Reqmmd Capital Charge on Rtter~t 
2C) P, en~I F# 
2D) Cont~mp6on l~pe for Capltal Less than Allocation 
2E) Consumpt~n F# for Common CaJntal (excesx dlocatlon) 
2F) Reqedrrd PmMum Ca~tal =¢I P)'(2A) 
2G) Shaulated Required NPI " Resems Capital = (2B)*(NPI : Fu~m Reserues) 
2H) Simulated Total Requbrd Ra6ng Agen~ Capital = (2F)+(2G) 

3) Annual Simulation - Calculation of Capital Call Costs and XTVAR 
3A) Simulated Lo~ses 
3B) Deffa~am From Plan = (IJ)-(3A) 
3C) Segment Level Capital Usage Charges (Capital Call Coat) 
3D) Net PortfoEo Capital Usage Cost Mth RMK Algorithm 
3E) Gross PortJb~o Capttal Usage Cost Mtb RMK A~odthm 
3F) Deffa6on fmm Plan at 2nd Purenllle: Copy and Past~Speual fmm 0 M) 
3G) Dema~on fmm Plan when Ea-ceed ! in 50 Year ResMt 
3H) Flag to Count Number of Simulation* in Ex-eess of 1 in 50 Year Resull 
3I) ConMhallon to Gross 1 in 50 Year Rt~vll 
3]) Contdhallon to Net ! in 50 Year Result 

Loss Simulation Statlsdcs 
3K) Expected Lats 
3 L) Standard Dema ~on 
3M) Percengks of Demanons flom plan ~ega~ws a~ 1 "alues at Risk) 

0.1Percenn~ (l in 1000) 
lu  percennk (! in 100 t 

I 2 .a . , , , ,n , , te  (, , .  ,o /  
1o.o VerunllU (1 tn 1o) 
5Orb PorenMe (I in 2) 
9Orb percenttk 

Faa P~  A~erage P~ Slow P~ 
LQA~. LOB2 Id21LA N E T ~ T A L  GKQM..T.O.TAI. 
1,000,000 L O00 ,O00 l , O00 . O00 3,000,000 3 , 000 , 0~ 

80.0% 20. 0% 40.0°/, 
800,000 200,000 400,000 

9.0% 8.0*/o 7.0% 8.0°/0 8.0% 
11.00/* 12.0% 13.0% 1Z0% !Z0% 

1250,000 1250,000 1,250,000 3,750,000 3,750,000 
80.0% 80.0% 80.0% 80.00/* 80.00/* 

112,500 100,000 87,500 300,000 300,000 
80.0°/* 80.0*/* 80.0.1. 80.0*/* 80.0% 

1,000,000 1,000,000 1,000,000 3,000,0~0 3,1~00,000 
0.0% 0.001. 0.0% 0.0% 0.0% 

40.001, 40. 0% 40.0% 40. 0°/o 40. 00/0 
25.0% 25.0°/* 25.00/* 25.0% 25.0*/* 
10.0% 

120.0% 12.00 
240.00/* 24.00 

500,000 500,000 500,000 1,500,000 1,500,0~ 

/2./t.L LOB2 ~ NET ~ T A L  

Number of Simula6ons: 100,000 
1,000,011 1,000,000 999,996 3,000,007 3,000,007 
800,185 200,004 399,962 916,520 916,520 

(5,866,794) (809,359) (2,055,270) (6,034,577) (6,034,577) 

(923,344) 263,89 (521,231) 1,091,084 ( ,09 ,08,4) 
219,120 19,417 71,517 174,654 174,654 
682,951 239,216 433,302 919,994 919,994 
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Discussion of '7nsurance Capital as a Shared Asset" 

Exhibit 1 
Page 2 

Example Comparing EVA with Returns on Capital (RROC and RORAC) where Interest is Not Credited on Surplus 
K 0 Assu*n'pttons: WEts equal amounts ofptemlum in three ~nes of bminess. Interest Credited on Sappor~ng Sutphls: No 
PKang is accurate, as the Plan Loss Ratio equals the Expected Loss Ratio (ELR)for all three #net. The ELR's are equal to 80% for all three #nes. 
A l l  three lines am uncorrdated and no reinsurance is parchaae~ 

4) Economic Value Added (EVA) where Usage Charges Are Computed Using Two Step Formula 
LOAL/. LQ.2Lg ~ 

4.4) Plan premium 1,250,000 1,250,000 1,250,000 3,750,000 
4B) Expend Underwriting Remm (Profit ¢~ Ot~rheaa~ 112,500 100,000 87,500 300,000 
4C) Interest Rate Assumed 3.0% 4.0"/0 5.0% 
41)) Mean Net Present Value of Interest Earned on Resents 27,485 163,602 327,516 518,602 
4E)MeanRadngAgen~Capital 729,013 1,522,318 2,137,091 4,388,422 
41=) Mean Interest Earned on Radng Agen(y Capital 
4G) Mean Rental Cost of Ratlng Agency Capital ((Mean of (2H)) x (2C)) 72,901 152,232 213,709 438,842 
4H~GmssEx~eaedCosto~Ca~ital-RentalandUsa~((4Gl+Ofeano{(3E~)~ 340,098 187,529 310,052 837,679 

~l~GrossEtonomieValueAdded(GEVA]=(4Bt+(4D]+(4F]-(4H ~ (200,1141 76,073 104,963 /19,077~1 
4.I) Gross Capital Cos Percentage = (4H)/ (4E) 46.7% 12.3% 14.5% l 9.1% 
4K] lqet Expected Cost o[Ca~tal- Rentaland Usage ((4G~ + Olean o((3D]~ 340,098 187,529 310,052 

~L~NetEconomkValaeAdded(XrEVA]=(4Bt+(4O?+(4F~-(4K ~ /200?114/ 76,073 104,963 
4M NeI Ca?ital Cost Pewenta~e = (4K?/ (4E? 46.7% 12,3% 14.5% 

~IV~ Cban~e in E V A  Due to Reinuwance = N E V A  - G E V A  I 

5) Risk Returns on Capital (RROC) After Rental Cost o f  Capital 
Risk Capital Standard (Multiple K of  XTVAR): 200% 

LOB? L O B 2  L O B3  GROSS T O T Al .  
5A) At~rage Det~ation flonf Plan ~vhen F~xveed I in 50 Year Result O(77/AR) 0,425,698) (587,974) (1,380,969) 0,575,724) 
58) Gross Re)k Capital K% of .k'TVAP~ Allocated to Line Rated Upon Co-XTVAR's  6,523,075 98.481 538.412 7.159,968 
5C) Mean Interest Earned on Rating Agenq Cap#al = (41=) 
5l)) Mean Rental Cost ofRa~g Agenq Capttal (4G) 72,901 152,232 213,709 438,842 
5E t F~eaed Underu*i~n~ Return A{ter Rental Cost q Ca~ttal = (48/+(4D/+(5C/.(507 67,083 111,371 201,306 379,760 

n rlYFJ Gross Risk Return on Capital = GRROC = (5E~/ (58~ 1,03% 113.09% 37.39°/. 5.30%[ 
5G~ Net P4sk Ca~ital l¢/o o['.\'TVAf~ Allxated to line Rased Upon Co-.X'IT/AR's 6,523,075 98,481 538,412 

~H~ Net Risk Re . . . . . .  Ca~tal = N R R O C  = (5E~/ (5G] 1.03°/o 113.09°/o 37.39% 
51) Change in Rtlum Due to Reinsurance = (SE for LOB 4) ! 
5J) Change in Allocated Capital = (5G).(58) 

6) Returns on Risk Adjusted Capital (RORAC) LOBI LOB2 r~gB3 
6A) Grits Risk Capltal K% Of .*~rVAI~ Allxated to Line Based Upon Co-.'~'I'VAR'J 6,523.075 98.481 538,412 7,159,968 
68) lnterea Earned on Gross Allocated Capital = (4C)x(6A) 
6C~GrossEx~ectedTotalUndenvetin~Ret . . . .  (48~+(4DI+(68 ~ 139r985 2 6 3 , 6 0 2  415r016 818,602 

[6O/GmuRet  . . . .  P~3kAqustedC~Oaal=GRORAC=(6C?/(6A~ 2.15% 267.67% 77.08% t 1.43%] 
6E) Net fO3k Capital K% of .V17/AP~ Allocated to Line Rased Upon Co-. \TI/AR's 6,523,075 98,481 538,412 
6F) Interest Earned on Net Allocated Capital = (4C)x(6E) 
6G~NetEx~eaedTolalUndenvdtin~Ret . . . .  (4B~+(4D~+(6F~ 139,985 2 6 3 , 6 0 2  415,016 

I6H~ Net Return on Risk Ad~usted Ca~ital = N R O R A C  = (6G/ (6E~ 2,15% 267.67% 77.08% 
6I) Change in Re/urn Due to Reinsurance = (6G - Net Total) - (6C - Gross Total) 
6J) Change in Allotated Capital = (6E - Net Tota 0 - (6.4 - Gross Total) 
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D i s c u s s i o n  o f  ' 7 n s u r a n c e  C a p i t a / a s  a S h a r e d  A s s e t "  

E x h i b i t  2 
Base Example 2 Comparing EVA with Returns on Capital (RROC and RORAC) where Interest is Credited on Surplus 
Kff Assumptions: [~'nte equal amounts of premium in thrre h~es of hasin¢ss, Interest Credited on Sap~rting Sa~olus: Yes 

Pda~g h amurat~, at the Plan Lass Ratio equah the Expeaed Loss Ratio (ELR) for a# three ~nes. The ELR's are equal m 80%for all three h~es. 
Al l  three $nes am ancor~lated and no ~eintnranu is pu~rhased 

4) Economic Value Added (EVA) where Usage Charges Are Computed Using Two Step Formula 

4.4) Plan Pmmium 
41]) Exacted Undtnm~ug Return (Profit 00~rhead) 
4C) Interest Rate A~xanted 
4D) Mean Net Present Vahee of Interest Earned on Risenw 
4E) Mean Rating Agen~ Capital 
4F) Mean Interest Earned on Rating Agtnff Capital 
4G) Mean Remal Cost of Ra#ng .~enff C~pital ((Mean of (2H)) x (2C)) 
4.~ o~, z,.paea co. q Caeital. Rental a.~ U,,# ((40/+ f~ea. q (~/// 

/..O.IL2 
1,250,000 1,250,090 1,250,000 3,750,000 

112,500 100,000 87,500 300,000 
3.0°1o 4.0% 5.0% 

27.485 163,602 327,516 518,602 
729,013 1,522,318 2,137,091 4.388,422 
21,870 60,893 106,855 189,618 
72,901 152.232 213,709 438.842 

340,098 187r529 310r052 837r679 
pl~Gre. EronomitValvxAdded(GEVA]=(4B~+(4D~+(4F~-(4H] l178r243~ 136,966 2117818 17o,5al I 
4]) Cross Capital Cost Pemntage = (41-I)/(4E) 46.7% 
4K/ Net E ~ a  Co. f ~ i ta t .  Rental and U , ~  ((4GJ + ¢~.a. q (30/// 34%098 
pL] Net Eeonotuie Vala, Added ~NrEvA I = (4 B]+(4D/+ (4F?(4K? /178,243} 
4M m ,  C.~it,,t cos, m.,- , , t~ : f ig / / (*e/  46.7% 

p N  1 c~.,~ i .  e v a  D,, ,o ~ .  . . . . . . . .  ~ V A  - aevA l 

5) Risk Returns on Capital (RROC) After Rental Cost of Capital 
Risk Capital Standard (Multiple K of XTVAR): 200% 

5/1) Atwage Deda~on froat plan When Ex~ed ! in 50 Year ResuB (XTVAR) (3,425,698) 
5B) Gins R~k Capita/K% Of XTVA R, All#c~ed to Ldne ~sed Upon Co-XTVAR 9 6,523,075 
5C) Afean l.#rea Earned on Rating Agenff C~fftal = (4F) 21,870 
5D) Afean Rental Cog of Rating .Zlgen 9" Capital (4G) 72,901- 
5El E,~aed U.dawtitis~ Retur,, A~¢r Rental C~, q Gr3ital = (48/+(4D]+fSQ-fSD/ 88,954 
W/ G~. e ~  Re, . . . .  @ital = o ~ o c  = (sz// fsB/ 1.3~0/o 
5@ Net Risk Capital K% of XTVAR. Alkeated to Line Based Upon Co-ATVAR'~ 6,523,075 

~H~ Net FO)k Re . . . . . .  Capital = NRROC = (5E// (SG? 1.36% 
5I) Change in Return Due to Reinsurance = (5E for LOB 4) 
5]) Change in Allocated Capital : (5G)-(YB) 

6) Returns on Risk Adjusted Capital (RORAC) 
6.4) Gins Risk Capital K% Of .XTVAI~ Allxattd to L~e Based Upon Co-.\'/'VA R's 6,523,075 
6B) Into*st Earned on Gross Allacated Capital : (4C)x(6A) 195.692 
6C~ Grau Exacted Total Undenudtint~ Re . . . .  (4B~+(4D]+(6B~ 335,677 
~o? ~,~ Re . . . . .  e~k Aq,,,.d O p a l =  OROaAC = (6c// (6A/ 5.15o/o 
6E) Net Risk Cap#at K% Of .'CIT/AR. Alkwted to Line Bard Upon Co-.\WA R's 6,523,075 
6F) Interest Earned on Net Allxated Capital = (4C)x(6E) 195,692 
6G] Net Ex~t#al rolal Unden~dtm~ Return = (4B/+(4O/+(6F/ 335,677 

g . ~  Net Re, . . . .  ~ k  Aq,,,,~d cq,ital = ~ o x a c  = f6G/(6e/ 5.i 8% 
61) Change in Return Due to Reinsumn~ = (6G - Net Tara 0 - (6C - Gross Tara 0 
6J) Change in Alhaated Capital = (6E - Net Total) - (6A . Gross Total) 

12.3% 14.5% 
187r529 3101052 
136,966 211,818 

12.3% 14.5% 

19.1% 

/.O/32 / -O83 
(587,974) (1,380,969) (3,575,724) 

98,481 538,412 7,159,968 
60,893 106,855 189,618 

152,232 213,709 438,842 
1727263 3081161 569r378 
174.92% 57.24% 7.95%[ 
98,481 538,412 

174.92% 57.24% 

L o e 2  L o e ~  .C,&Q£L.E2X2~ 
98,481 538.412 7,159,968 
3,939 26,921 226,552 

267.542 441,936 1,048,155 
271.67% 82.08% 
98,481 538,412 
3,939 26,921 

267,542 441,936 
271.67% 82.08% 

14.60% I 
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Discuss ion  o f  'Tnsurance C a p i t a l  as  a S h a r e d  A s s e t "  

E x h i b i t  3 
Modified Base Example 3 Comparing EVA with Retums on Capital (RROC and RORAC) where Adjust Margins 
K~y Asatmptlons: Wtite eqaal amounts of premium in there knes oJ'business. Interest Crvdited on Supporting Sn Yes 
Pridng b accurate, as the Plan Loss Ra6o equals the tree ELR  for all three k~es. Adjust Ma~ins ~ k~e to trJkct results of Exampk 2. 
The ELR '  s for LOB 1, IAgB 2, and LOB 3 are now 600/o, 88% and 85%, re~Oec6t~#. A l l  Ibm hnes are anmrrelated and no reinsurance it purrbase~ 

4) Economic Value Added (EVA) where Usage Charges Are Computed Using Two Step Formula 

4/1) Plan premium 1,250,000 1.250,000 1.250,000 3,750.000 
4 B) Expected UndemMting Ret.rn (Profit ¢~ O*rrhead) 362,500 23,0~0 387,500 
4C) Interest Rate Assumed 3.0% 4.0°/0 5.0o/o 
4 D) Afean Net Present Value oflnter*a Earned on Rexen~x 20,613 179,963 347,987 548,562 
4E) Mean Rating Agen O Capital 671.754 1,624,552 2,239,416 4,535,722 
4F) Mean lnterea Earned on Rating Agen O Capital 20,153 64,982 111,971 197,106 
4G) Mean Rental Cote ofRatin d Agen9 Capital (~fean of (2H)) x (2C)) 67,175 162,455 223,942 453.572 
4HI Gross Ea~ecled Con q Capital- Rental and Usage ((4G? + ~tean of (BEll ? 2521757 205,404 337r901 796,062 

pI:  Gross Economic ValueAdded (GEVA: = (4B/+(4O/+(4F?(4ft: 150,509 39,541 1471057 337r106 I 
4J) Gross CaUsal Cost Percentage = (41-I)/(4E) 37.6% 12.6% 15.1% 17.6% 
*K/Nete~...dC~,o:C~ita:- ~.,aand Usa# ((4C: + ~,a. o:(30t// 252r787 205:O4 337#01 

~L:NaE¢onomkValueAddzd:VEVA?=(4B/+(4D:+(4F]-(4~ 150?509 391541 1471057 
4AfNaC~i ta lCos tPe~ . t¢~  = (4K//(4E: 37.6o/o 12.6% 15.1°/o 

14~,p c6a.,~ i. e w  o.,,o ~i .......... r , ,evA . a E w  I 

5) Risk Returns on Capital (RROC) After Rental Cost o f  Capital 
Risk Capital Standard (Multiple K of  XTVAR): 200% 

LO81 LO82 LO83 
5A) Atemge Deriation from Plan When F~'ceed ! in 50 Year RtsMt ( X T V A R )  (2,566,035) (646,459) (1,468,083) (2,784,762) 
5B) Gross Fa2k Capital K% of .~'l~/AP~ Allocated to Line Based Upon Co-XTVAR's 4,450,243 149,438 970,231 5,569,913 
5C)MeanlnterrstEarnedonRa~ngAgenoCapital=(4F ) 20,153 64,982 111,971 197,106 
5D)MeanRtntalCoaofRaBngAgen~yCapital(4G) 67,175 162,455 223,942 453,572 
5E/Ex~ectedUndenvdtinc~RaumA(lerRentalCostqCa~ital=(4B]+(4D]+f5C/-(SD~ 336?090 82,490 2617016 679,596 

]SF~ Gross Risk Re . . . . . .  C~ital = GRROC = (5E// (SB~ 7.55% 55.20°/o 26.90o/o 12.20°/o I 
5G] Net Risk Capital K% o(, \ 'TVAR, Allocated to Line Based U~on Ca-XTVAR's  4,450#43 149,438 970,231 

~I-1: Net Risk Re . . . . .  C~ital = NRROC = (5E// f5G/ 7.55%0 55.20°/o 26.900/0 
5I) Change in Pctum Dae to Rtimurance = (5E for LOB 4) 
5J) Chang8 in Allocated Capital = (5G)-(5B) 

6) Returns on Risk Adjusted Capital (RORAC) ~ LOB2 LOB3 
6A) GrossRiskCapttalK%of.\'TVAPuAllocatedtol~neBasedUponCo-.Vl'VAR's 4,450,243 149,438 970,231 
6B) lnte~t F~med on Gm~ Allocated Capital = (4C)x'(6A) 133.507 5,978 48,512 
6C/GrossEA~eaedTotalenderuM6n~Retnrn=(4B/+(gD~+(6B/ 516t620 185,940 421r498 

[6D I Gross Return on Ritk Ad/usted C~ital = GRORAC = (6CI/(6A ~ 11,61% 124.43°/o 43,440/0 
6E) Net RAk Capital K% of ,XYVAR,  Alloeated to ldne BaJed Upan Co-XTVAR' t  4,450,243 149,438 970,231 
6F) Interest Earned on Net Allocated Capital = (4C)x(6E) 133,507 5,978 48,512 
661Na~aeirotolUnae,~6.,~Ri . . . . .  (4B?+(4O/+(6F/ 516?620 185,940 4211498 

]6FI~ Net Raum on Risk Aqmted C~ital = N R O R A C  = (6G/ (6E~ 11.61°/o t24.43°/o 43.44% 
60 Change in Ret.rn Due to Rdnutrance = (6G - Net Total) - (6C- Gross Tots 0 
6J) Change in Allocated Capital = (6E - Net Tara 0 - (6.4 - Gross Total) 

5,569,913 
187,996 

171241059 
20.18°/o I 
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Discussion o f  'Tnsurance C a p i t a / a s  a Shared  A s s e t "  

Exhibit 4 
Modified Base Example 4 Comparing EVA with Returns on Capital where Adjust Premiums by Line 
K~ Assumptions: Fdlnte $0.250m kss in LOB 1, and wffte $0. ! 25m more in LOB 2 and in LOB 3. Interest Credited on Sapportlng S~ohts: Yes 
Priang h accurate~ as ~be Plan L~ss Rati~ equalt t& tme Expor~ed ~ a t  Raii~ (ELR) f~r a# t~m hnes. Tbt E L R  ' s atr equal to gO% for all three h~es,. 
A l l  three h~es are uncorrdated and no reinsurance is purchased 

4) Economic Value Added (EVA) where Usage Charges Are Computed Using Two Step Formula 
/,OA2 

4/1) Plan premiam 
4 B) Exp¢aed Underacting Return (Profit dr  Ot~rbead) 
4C) Interest Rate Assumed 
4 D) Mean Net Present Vable of Interne Earned an Basen~s 
4E) Mean Rating Agen~ Capitol 
4F) Mean Interest Earned on Rating Agen~ Capital 
4G) Mean Rental Cost of Rating Agen9 Capital ((Mean of (2H)) x (2C)) 
4U? Gros, Ex~etted Cost Of ~ l l a l -  Rental and Usage ((4G? + ~lean o( (3E??? 

pig Groat Economic Vabte Added (GEVA~ = (4B/+(4D/+f4F/-(4H/ 
4.I) Gmu Capital Cost Percentage = (4H)/ (4E) 

LOB3 
1,000'000 1,375,000 1,375,(X)0 3,750,000 

90,000 I 10'000 96,250 296250 
3,0°/, 4.00 5.0°/O 

21,988 179,962 360,267 562217 
583,215 1,674,349 2,350,798 4,608,562 

17,496 66,982 117,540 202,018 
88,322 167,455 238,080 460,856 

259,101 209,513 351p87 820r600 
/129,616/ 147,432 222,070 239.886 [ 

4 4 . 4 %  12 .5%  l 5.00/* 17.8°/o 
,K? Net ~ , , d  c~, qcae;,,t- ec,,.lond U,,# ((4C~ + Oleon q(3Og~/ 259,t01 209.813 381,987 

pLgNetEconomicValueAdded~qEVAl=(4B?+(4D2+(4F?-(4K ? {129,616} 147 ,432  222,070 
4MNetCa~llalCostPerrenta~e=(4K~/(4E~ 44.40/0 12.5% 15.0°/o 
]*N? Chan~e i .  u v x  o,,e to R~ . . . . . . . . .  N e V A  - C U V A  [ 

5) Risk Returns on Capital (RROC) After Rental Cost of  Capital 
Risk Capital Standard (Multiple K of  XTVAR): 200% 

LDALL I 0 8 2  L~2/L2 
5A)At~rageDematlonfromPlanVf/henExeeedlinSOYearRisalt(2(TVAR) (2,739,812) (646,227) 0,519,256) (2,944,172) 
5B) Gross Risk Capital K% of .\'TVA IL Allocated to Line Based Upon Co-.\'I~/AR's 4,802202 153,679 938,356 5,894237 
5C) Mean Interne Earned on Rating Agen~ Capital = (4F) 17,496 66,982 117,540 202,018 
519) Mean Rental Cost efgatmg Agen~ Capital (4G) 58,322 167,455 235,080 460,856 
5U?Ex~¢aedUnder~4fin~Rttumm[terRintolCostcFCa~ttal=(4B?+[4Ol+(5C?-(SD ] 711163 189,489 338r977 599,630 

~ Gnat* Risk Rt . . . . .  C~ital= GRROC = (5E~/(SB~ 1.48°/0 123.30% 36.12°/o 10.170/~ 
5G] Net Risk Ca~ttal l~/o o~)x~'VAP~ Al~ated to Line Based U[mn Co-. \TVAR's  4,802,202 153,679 938r356 

FH~ Net Risk Rtmm an C~llal = NRROC = (5E~/ (5G? 1.48°/* 123.30°/* 36.12'/0 
5I) Change in Re/urn Due to Rdnsurance = (5E for LOB 4) 
5J) Change m Allocated Capital - (SG)-(SB) 

6) Returns on Risk Adiusted Capital (RORAC) LOB1 LOB2 LO.B3 fftKQS.A-T-O.TA& 
6.4) Gross Risk Capital K% of ,X'lT/AP~ Allocated to Line Based Upon Co-X-17/AR's 4,802,202 183,679 938,386 5,894,237 
6 B) Interest Earned on Gross Allocated Capital = (4C)x(6m ) 144,066 6,147 46,918 197,131 
6C~Cros;Ex~ectedTotalUndenvdfin~Baotrn=(4B/+(4Dt+f6B? 256,054 2 9 6 , 1 1 0  503,435 1,055,599 

16D~ Gross Bat . . . .  R i & A d / m t e d C ~ i t a l = G R O R A C = ( 6 Q / ( 6 A ~  5.33°/0 192.68°/o 53.650/0 17.91% I 
6E) Net Pe3k Capital R% of X T V A I ~  Al&ated to Line Based Upon Ca-.\ 'TVA R's 4,802202 153,679 938,356 
6F) Interest Earned on Net A/located Capital = (4C)x(6E) 144,066 6,147 46,918 
6G~ Net ExUded Total Underwn~in~ Rtt . . . .  (4B~+(4DI+(6F ~ 256,054 2 9 6 , 1 1 0  503,435 

16H~NetRtt . . . .  RakAd/ut tedCa~i tal=NRORAC=(6G/(6E~ 5.33*/* 192.68"/* 53.65*/* ] 
6I) Change in Ritarn Due to Reinsurance = (6G - Net Tot* 0 - (6C. Gross Tot* 0 
6J) Change in Albcaltd Capital = (6E - Net Tot* 0 - (6.4 - Grou Tota 0 
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D i s c u s s i o n  o f  ' T n s u r a n c e  C a p i t a l  a s  a S h a r e d  A s s e t "  

E x h i b i t  5 
Modified Base Example 5 Comparing EVA with Returns on Capital where Update ELR for LOB 1 
Kff A~snmprons: Wdte equal amotmts of premtum in tbt~e kne~ of bminess, lateral Credited on Sappor~ng Sa~Olas: Yes 
Right ~qer renewal sea\on, a new ,~r~ion of ¢otapa~'s cat model i~ rekated which baplkt a 10% redmtion in the E L R  for LOB 1. 
The odginal plan los~ ratla for LOB I wa~ 800/o, b#t the estimated ELR  has been rnq~ed to 700/0. A l l  $na are uncorrelated and no reinsurance is patrhased, 

4) Economic Value Added (EVA) where Usage Charges Are Computed Using Two Step Formula 
/..03_2 LO~2 

4*4) Plan Premium 
4B) Expected Undenvnting Return (Profit 6* Omrhead) 
4C) Interest Rate Arsumed 
4D) Mean J~reI Present Value ~lntemt Earned on Restart 
4E) Mean Rating Agency Capitol 
4F) Mean Interest Earned on Rating Agen~ Cap*?al 
4G) Mean Rintol Cod of Rating Agen~ Capital (~fean of (214)) x (2C)) 
4.: c,.,, e,,~,,a co,, q Cq.al. ~tol and Usa# ((4 C/ + (atea. f (3~/:1 
14,: ~,o. ~,o.o,~i, ~alae Ade, d :V/: = (4Bg+f40/+f4Fk(4.: 
4J) Crux* Capital Cost Pereentage = (4H)/ (4E) 
4~/ Net e~,,ed co,, o[ ~ , . l .  Renta~ ond U.a~ ((4C/+ p~,,. o:(30?// 

1,250,000 1250,000 
237,500 100,000 

3,0% 4.00/0 
24,048 163,602 

700,381 1,522,318 
21,011 60,893 
70,038 152,232 

259,685 182,851 
22,875 1411644 
37.1% 12.0% 

259,685 182,851 
22,875 141r644 

4M Nel Ca~ito/ Co*t Perrenta~e = (4K// (4E? 37.1% 

pz~2 c~nff in z v A  o#e to Rel . . . . . . . . .  NEVA - GZVA - I 

5) Risk Returns on Capital (RROC) After Rental Cost of  Capital 
Risk Capital Standard (Multiple K of  XTVAR): 

5/1) At~rage DnCationj%m Plan When Exceed I in 50 Year Result (XTVAR)  
58) Gross P&k Capital 14°/o of . \ 'TWAIL Allocated to I dne Based Upon Co-.VIT/AR 's 
5C) Mean Interest Earned on Ra#ng Agen 9 Capital = (4F) 
5D) Mean Rental Car/ofRa#ng Agen~ Capita/(4G) 
5E/ Expected Undinvff#n~ Return After Rental Cost o{ Ca~itol = (4B~+(4D~+(SC]-(5D~ 

5G/ Net P~sk Capital I(°/o o [ . \ W A P ~  Allocated to Li~e Based U~n Co- .XWAR'  s 

Ira/Net Risk Re .. . . . .  ~itol = ~ O C  = (5E?/ (SC/ 
M) Change in Return Due to Reinsuran~ = (YE for LOB 4) 
5]) Change in Allocated Ca]filM = (5G)-(SB) 

6) Returns on Risk Adjusted Capital (RORAC) 
6/I) Gross ffa~k CapitalK% of X'IVAR~ All.died to line Based Upon Co-XTVAR's  
6B} Interest Famed on Gross Allocaled Capital = (4C)x(rA) 
6C~ Gro~ Expected Total Undi,'wrilbt~ Podium = (4B]+(4D/+(rB~ 

16o/ G,~, Re, . . . .  ~ *d/,,,,ed C~ita/ = G ~ O e ~ C  = (rc / /  (rA 2 
rE) Net Pask Capita/K% of . \ 'TVAt~ Allocated to Line Based Upon Co-.\-IT/AR's 
6F) Interest Earned on N a  Allocated Capital = (4C)x(rE) 
6G/ N,, ~ ro,,/ un~e~a.~ Re . . . . .  (4B/+(40?+(6~/ 
16u~ N,, Re . . . . . .  ~*.44, , , , ,d  coeltat = ~ a o ~ c  = (~G/ (ra I 
6I) Change in Re/urn Due to Reinmrance = (6G - Net Told 0 - (6C- Gross Told 0 
6]) Change in Allocated Capital = (rE - Net Tara 0 - (6.4 - Gro~t Tara 0 

12.00/o 

L083 
1,250,000 3,750,000 

87,500 425,000 
5.0% 

327,517 515,168 
2,137,097 4,359,796 

106,855 188.759 
213,710 435,980 
300t367 742,903 
221r504 386,023 ] 

14.1% 17.0% 
300t367 
221r504 

14.1% 

200% 

/.,03_t /.,O_8.2 L.Q2_2 
(2.871,920) (587,447) (1.380,805) 0,038,640) 
5.359,487 93,120 630,998 6,083,606 

21,011 60,893 106,855 188,759 
70,038 152232 213,710 435,980 

212t522 172263 308,162 692,947 
3.97% 184.99./o 48.84% 11.39°/ol 

5,359,487 93,120 630,998 
3.97% 184.99"/o 48.84%0 

/.OAkg LOBS .CA k0.££. T_O.TA ~ 
5,359,487 93,120 630,998 6,083,606 

160,785 3,725 31,550 196,059 
422,333 267r327  446,567 lr136r227 

7.88% 287.08% 70.77% 18.68%1 
m 

5,359,487 93,120 630,998 
160,785 3,725 31,550 
422,333 267r327 446,567 

7.88% 287.08% 70.770/o I ! 
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D i s c u s s i o n  o f  '{Insurance C a p i t a / a s  a S h a r e d  A s s e t "  

Exhib i t  6 
Modified Base Example 6 Comparing EVA with Returns on Capital where Update ELR for LOB 3 
Same as base case, hat ~qer ~newal sea, on a St~reme Co~rt deasion declared recent tort nforms to be unconstrtutional. 
This decision i*ap&* a 20% intnase in the E L R  for LOB 3. The ori~nalplan loss ratio for LOB 3 was 80%, but the estimated E L R  has been raised to 100°/o. 
A l l  three hoes are uncorrdated and no reinsurance is purchaseti. 

4) Economic Value Added (EVA) where Usage Charges Are Computed Using Two Step Formula 
LO~t LO82 

4/1) Plan Premium 
41]) Expected Underwnang Ritum (Profit e~" O,~rhead) 
4C) Interest Rate Assumed 
4 D) Mean Net Present Value of Interest Earned on Resents 
4E) Mean Rating Agenq Capital 
41=) Mean Interest Earned on Rating Agenq Capital 
4 0 Mean Rental Cost of Rating Agenq Capital ((Mean of (2H)) x (2C)) 
4,/c,~,  z~aea co,, ;: c~i, al. Rental ane U,a# ((4C: + (Mean q (3e:gJ 
~I: Cross Economit Vak,e Added (GEVA: = (4B:+(4D:+(4F:-(4FI: 
4J) Gm~ Capital Cost Perc¢ntage = (4H)/ (4E) 
4~/ N,, Ex~,,,ed Co,, f C~lla- Rental ,n~ U,,# ((4C: + ~, ,n f f3Oy:J , 
~.~ Net ~.o,,,i, Vab,, Adde~ ~ VA I = (4B/+f40:+f4~f4K I 

1,250,000 1,250,000 
112,500 100,000 

3.0*/o 4.0% 
27,485 163,603 

729,016 1,522,321 
21,870 60,893 
72,902 152,232 

368t134 1981455 
I206,279 / 126r041 

50.5% 13.0% 
~8,1M 198,455 

/2067279 / 126,041 
1 3 . 0 %  4M Net Ca?ital Co. Pe~,.~ae = (4~?/ (4E: 50.5°/° 

~N~ Cban~e in EVA Due to Rd . . . . . . .  NEVA - CEVA ] 

5) Risk Returns on Capital (RROC) After Rental Cost of  Capital 
Risk Capital Standard (Muldple K of  XTVAR): 200% 

/.O./k2 
5.4) At~rage Dm~ation final plan llvben Exceed I in 50 Year Result (XTk 'AR)  (3,425,5M) (588,031) 
5B) Cross Risk Cap*tal K% of X T V A R ,  Allocated to Line Based Upon Co-~'TVAR's 6,218,516 99,077 
5C) Mean lnterrst Earned on Raling Agen 9 Capital = (4F) 21,870 60,893 
519) Mean Rintal Cost of RaO~g Ag~n 0 Capital (4G) 72,902 152,232 
5E]F~x~,ctedUnderwtitin~RitumA~erRentalCostqCa~tlal=(4B:+f4O]+(SQ-(SD~ 881984 172r264 

~F~ Cros* Risk Riturn on Ca~*tal= CRROC = (SE~/ (SB] 1.43% 173.87% 
5G] Net R/ok Capital K% of X T V A R .  Allotted to Line Based U[~n Co-XTVAR'~ 6,218,516 99,077 

[SH~ Net Risk Ri . . . . .  C~ital = NRROC = (5E~/(56] 1.43°/o 173.870/* 
51) Chang, in Riturn Due to Reinsurance = (5E for LOB 4) 
5J) Change in Al~ated Capital = (5G)-(SB) 

6) Returns on Risk Adjusted Capital (RORAC) LOB/ L.OB2 
6A) Cross Risk Capital 1(°/o of X T V A I L  Allocated to ldne Based Upon Co-.X'FVAR's 6,218,516 99,077 
6B) Interest Earned on Gross Allocated Capaal = (4C)x(6A) 186,555 3,963 

/.03.2 
1,250,000 3,750,000 
(162,500) 50,000 

5.0°1o 
409,398 600,486 

2,546,383 4,797,719 
127,319 210,082 
254,638 479,772 
481~35 14%~ 

I107,0387 /187,27571 
18.9°/o 2 1 . 8 %  

481,255 
11o7,o381 

18.9*/0 

(1,977,400) 0,871,434) 
1:29,846 7,747,439 

127,319 210,082 
254,638 479,772 
119t579 3801796 
8,36°/0 4.920/0 I 

1,429,846 
8.36% 

Id2R2 
1,429,846 7,747,439 

71,492 262,011 
6 Q  Gro*s Expected Total Undem,rltint{ fit ..... (4B:+f4D~+f6B~ 326,540 267,566 318,391 912,497 
16D: 0o, Ri, ..... Ri, k Aq,,ta Cs~ital = CROe~C = (6C:/(6A/ 5.28% 270.06*/* 22.27"/. n.78V~ 
6E) Net Risk Capital K% Of X T V A R ,  A//orated to Line Based Upon Co-XTVA*R's 6,218,516 99,077 1,429,846 
61=) Interest Earned on Net Allocated Capital = (4C)x(6E) 186,555 3,963 71,492 
6Gt Net Ex~ecud Total Undnwtitind Rit . . . .  (4B~+f4D~+(6F~ 326,540 267,566 318,391 

16HI Net Ri . . . . . .  Ri, k Ad~,aed Ca~itoI= N R O R A C =  (6G/ (6E~ 5'250/0 270"060/0 22"270/0 I 
61) Change in Ritura Dt~e to Riinsumnte = (6G - Net Total) - (6C - Gloss Total) 
6J) Change in Allocated Capital = (6E . Net Total). (6.4. Grost Total) 
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Discussion of 'Tnsurance Capita/as a Shared Asset" 

E x h i b i t  7 
Modified Base Example 7 Comparing EVA with Returns on Capital where LOB 1 and LOB 2 are 50% Correlated 
Kay Assumprons: W~Te equal amounts of premium in three hnes of bJainess. Interest Credited on Supporfin g SN~olas: Y u  
ptiang is accurate, as the Plan Loss Ratio equah the Expected l~oss Ratio (ELPQJbr all three h~es. The ELR'~ are equals* 80%fir  all three brits. 
lanes ! and 2 losses are 50% cotrrlated but uncorrdated with #ne 3. No reinsurance u purchaseg 

4) Economic Value Added (EVA) where Usage Charges Are Computed Using Two Step Formula 
/22_1 LOB2 L O B 3  C, RO.~f T O T A L  

4.4) Plan Premtum 1,250,000 1,250,000 1,250,000 3,750,000 
4 B) Expected Underwriting Retnrn (Profit ¢3" Ol~rhead) 112,500 100,000 87,500 300,000 
4C) Interest Rate Assumed 3.0% 4.00/o 5.00/0 
41)) Mean Net Present Value all.loess Earned on Posen.s 27,484 163,602 327,518 518,005 
4E) Mean Rati.gAgen!y Capital 729,012 1,522,317 2,137,104 4,388,433 
4F)MeanlnterestEaraedonRanngAgenffCapital 21,870 60,893 106,855 189,618 
4G)afeanBantalCostofRa#ngAgenffCapital((Meanaf(2H))x(2C)) 72,901 152.,232 213,710 438,843 
4H] Gn~x Ex~aed Cost o[Ca~ital- Rentaland Usa~ ((4G] + (Mean a((3E]]] 3591046 204?285  3111022 874p53 

~l]GrouEmnandcValaeAdded(GEVA/=(4Bt+(4Dl+(4F~(4H ] /197r1911 120r210  210r851 1331870 I 
4J) Grass Capital Cast Penrntage = (4H)/ (4E) 49.3% 13.4% 14.6% 19.9% 
4K] Net Exacted Cos/qCa~ital- Rin/aland Us~e ((4G/ + (Mean o( (3D~]] 3591046 204~285 3111022 

~L]NetEtanomicValatAdded~XlEVA/=(4B~+(4D]+(4F~-(4K] /197,1917 120~210 210r851 
4MNetCa~italCmtPerrenta~=(4K]/(4E] 49.3% 13.4"/* 14.6% 

pN? Cban~¢ in E V A  Due to Ri . . . . . . . .  N E V A  - G E V A  I 

5) Risk Returns on Capital (RROC) After Rental Cost of  Capital 
Risk Capital Standard (Multiple K of  XTVAR): 200% 

LO81 LO82 ~ 
5A) Atcrage Detsatmn from Plan When Exceed ! in 50 Year Rtudt (XTVAR)  0.422,804) (587,438) (I,382,036) 0,812,609) 
5B) Gross Risk Capital K% afXTVAF~ Allocaled ~ l ~ e  Based Upon Co-.\'TVAR's 6,547,208 607,181 471,515 7,625,903 
5C)Meanlnter~tEamedanRah~gAgenffCapital=(4F) 21,870 60,893 106,855 189,618 
5D) l~fean Rental Cost of Rating ,4g~ff Capital (4G) 72,901 152,232 213,710 438,843 
5E]Ex~ectedUndenvdtinl~BaturnA~terRtntalCostofCa~ital=(4B~+(4D~+(5C~(5D ~ 88r954 1721263 3081163 5691380 

~F] Gross l~)k Rttt . . . .  Capital = GRROC = (5E// (5B~ 1.36°/o 28.37% 65.36°/0 7.470/0] 
5G~NttRiskCa~t talg%of . \ 'TVAR.  AlkcaUdtoLtneBatedUt~anCa-.\'TI/AR's 6,547~208 607r181 4711515 

~H]  Net Risk Rtt . . . . .  Capital = NRROC = (5E~/ (SG] 1.36"/o 28.37% 65.36% 
51) Change in Return Due to Rtinsuranre = (SE for LOB 4) 
5J) Change in .4llataled Capital = (SG)-(SB) 

6) Returns on Risk Adjusted Capital (RORAC) LOBe /-082 LOB3 
6A)  Gross Risk Calu?al K% of .\"/7/A R, Allxated to Lin~ Based Upon Ca-. \TVAR's 6,547,208 607,181 471,515 7,625,903 
6B) Intense Earned on Gross Allocated Capita/= (4C)x(rA) 196.4 l 6 24,287 23.576 244,279 
6C~ Gross ExUded Total Underwri~n~ Pet . . . .  (4B]+f4D/+(rB t 336,401 287?889 438,594 I r062r884 

[6D/Gro.  Return on Rick A~ustedCa~ital = GRORAC = (rC//(6A] 5.14% 47.41°/o 93.020/* 13.94"/* I 
6Hi Net Risk Ca~tal K%* ef . \ W A R .  Allatated to Line Based Upon Ca-. \TVARO 6,547.208 607,181 471,515 
6F) Interest Earned on Net Al&atul Capital = (4C)x(rE) 196,416 24,287 23,576 
6G~ Net Expected Total Undenvdtin~ Riturn = (4B~+(4D]+(rE] 336,401 287,889 4381594 

IrH~ Net Ri . . . . .  R~k Ad~utted C~ital = N R O R A C  = (rG/(fE~ 5.14% 47.41% 93.020/0 I 
60 Change in Re/urn Due to Rtinsuranm = (rG - Net Total) - (6C - Grass Tots 0 
6J) Change in A/located Capital = (rE - Net Total). (6A - Gross Tara 0 
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Discussion of 'Tnsurance Capita/as a Shared Asset" 

Exhibit 8 
Stop Loss Reinsurance Example 8 Comparing EVA with Returns on Capital (RROC and RORAC) 
K 0 AlsNmp~ons: U'/dte eqval amounts ofpremt~m in three h~es of haunexs, lntoest Cre~ted ~ Sappor~n~ Su~l~s: Yes 
PKdn~ ~ accurate, as the plan Loss Ra#o equals the ~xpected Loss RaKo (ELPO for all tha~ haes. The ELR's are equal to 80%for all three 8nes. 
A 30% xs 90% LR Stop Loss rdnsumnce program is purchased for LO B I fir a 10% rate. A #  theee hues am uncorrelated. 

Riflr to Ex~ibitr 1-T for detaikd desrdpKons ~qtems below. 

4) Economic Value Added (EVA) where Usage Charges Are Computed Using Two Step Formula 
LQA~ Lflll2 ~ ~ ~ fA iO£LZ05,~  

4A) Plan pronium 1,250,000 1,250,000 1,250,000 (125,000) 3.625,000 3,750,0~ 
4B)F~cptctedUndawn~ingRaurn(Pmfltc3"Og, daead) 112,500 100,0~0 87,500 07,355) 262,445 300,000 
4C) Inter*st Rate Assumed 3.00/0 4.0% 5.0°/o 3.0% 
4D)Mean~tP~sentl/alue~lntemtEamedonRes*~xs 27,484 163,602 327,518 (3,890) 514,714 518,604 
4E)MeanRa~ngAgen~Capita/ 729,006 1,522,318 2,137,102 (69,680) 4,318,746 4,388,426 
4F) Meanln~trestEamedonRatingAgengCapital 21,870 60,893 106,855 (2,090) 187,528 189,618 
4G)MeanRentalCostofRaHngAgtn~Ca[~2al 72,901 152,232 213,710 (6,968) 431,875 438,843 
4H]GnasEx~ectedCoaofCa~tal-RentalandUm~e 340294 187?406 309,891 837,590 

~l~G~sE~omieI:alueAdded(GEl/A I ~178)440~ 137)090  2111982 17or6311 
4]) Gnat Cap3tal Cost Percentage 46.7% 12.3% 14.5% 19.1% 
4KtNaF-x~eaedCastofCa~itat. Re~ta/andUs ~ 324325 191,436 320,905 I57,522 / 779,545 

~L~NetEmnorMt I/a&eAdded~VEVA/ (162,871) 133 ,059  200,968 13,987 185,141 I 
4M Net Capital Cote P~nta~  44.5% 12.6°/o 15.G°/o 82.6°/o 18.1% 

~ N /  Chan~e in EVA D,e to Pci ....... 14,510 1 

5) Risk Returns on Capital (RROC) After Rental Cost of  Capital 
Risk Capital Standard (Multiple K of XTVAR): 200% 

LD.IU_ L0 3 2  LOAtA L08 4 ~ 
5A)AveragellnSOYcarDalaZionfiomP/an(XTVAR) 0,421,737) (587,394) (1,380,739) 2 8 7 , 5 6 1  0,273,740) (3,543,084) 
5B) GrossRIr~CapitalK%~CXTVAR 6,441,898 83,283 561,977 7,087,161 
5C) Mean Interest Earned on Rating ~gemj Capita/ 21,870 60,893 106,855 (2,090) 187,528 189,618 
5D)MeanRentalCostofRadngAgcnffCapitaI 72,901 152,232 213,710 (6,968) 431,875 438,843 
5E/Ex~taedUndenvrilin~Retu=A(terRentalCosto(Ca[dta/ 88,953 172,263 308,163 136,567~ 532,812 569,379 

~F~ Gross Rh~ Return on Ca~2al = GRROC 1.38% 206.83% 54.84% 8.03%] 
567P4aRiskC~MIa/I~/oo(.X~'I/AR 6,425,757 85,226 599,625 ~562,2107 6,548,397 

~bl/NetRisl~RitxrnonCa~4tal=~NrRROC 1.38% 20Z13% 51.39°/o 6.500/0 8.14°/~ 
51) Change in Return Due to Ra~sumnce (36,567) 
5j} Change m Allocated Capstal) 

6) Returns on Risk Adjusted Capital (RORAC) 
6*4) Gross Risk Capita/K% of X ' l l :AR  
6B) lut~st Earned ou Gross Allocated Capital 
6C] G~ss F_x~aed Totol U . ~ n / ~  Ret.~ 
16o/c~. Re~ o. ~sk ACu,,ed ce~, 
6E) Net Ruk Capital K% of X'I] / AR  
6F) lnloest Earned on Na  Alk¢ated Cap*tal 
6G/ Net Expected Total Underu44~n~ Riturn 

I6H? N,, Re~ o .  Ri, k ACu,ted c~ital 
61) Change in Retain Due to Reinsurance 
6J) Change in A#ocated Capital 

(538,763)1 SK:Costo[A~Uo.a/.Vrr:AgCapitd=(Sl:/(S/: 6.8% I 

6,441,898 83,285 561,977 7,087,161 
193,257 3,331 28,099 224,687 
333,24l 266,934 443.117 1,043,291 

5.17% 320.50°/0 78.85% 14.72%1 ! 

6,425,757 85,226 599,625 (562,210) 6,548,397 
192,773 3,409 29,981 (16,866) 209,297 
332,756 267r011 4441999 /387311/ 986,456 

5.18% 313.30% 74.21% 10.37% 15.06% 
(56,835) 

(538,763) I 6K/ co# of A~o~ :,-11 :.a ~ 6~: = (60/(61/ 

I 
10.5°/o{ 
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Discussion of 'gnsurance Capita/as a Shared Asset" 

Exhibit 9 
Quota Share Reinsurance Example 9 Comparing EVA with Returns on Capital (RROC and RORAC) 
K 0 A*sHmptions: IVn?¢ equalamou#ls ofpremlum i# Ibm isnes ofbutine$s. Interest C~dised on Supporting Su~olu*: Yes 
Pnang it accurate, at the Plan l~tt Ratio equals the E.V~eaed Loss Ratio (ELR)fir all thue a~et. The ELR's are eq*al to 80*/0 for all three trees. 
A 40% Quota Share isp*trhatedfor LOB I with commtstlonjutt cozvffng tnffabk castt. A #  thrve hnet are *ncamlater~ 

Refit to Ex'hebits t-7 for d¢talkd dtsoqpisons of t t~s helot. 

4) Economic Value Added (EVA) where Usage Charges Are Computed Using Two Step Formula 

4A) P/an prom~m 1,250,000 1,250,000 1,250,000 (500,000) 3250,000 3,750,000 
4 B) ~xpecud Underwd#ng Rtl#m (Profit ¢5" Ouert~ad) 112,500 100,000 87,500 (45,000) 255,000 300,000 
4C) lntartt Race As~mtd 3.00/0 4.0*/0 5.0*/* 3.00/0 
4D)M~nNetPRt~tl/alueoflnu~aEamedonRiterm 27,484 163,602 327,517 (10,994) 507,610 518,603 
4E)MeanRanngAgem3Capital 729,007 1,522,317 2.137,100 (248282) 4,140,142 4,388.424 
4F)MeanlnmrstEamedonRaisngAgen~Capital 21,870 60,893 106,855 (7,448) 182,169 189,618 
4G) MeanRentalCastofRatingAgenoCapital 72,901 152,232 213,710 (24,828) 414,014 438,842 
4H~Gro~E~dCasto[Ca~ttaI-RtntalandUsa~ M0,069 187,586 309?695 8371351 

~l~GtotsEeonondt Va&,Added(GEI/A l f178#15/ 1361908 2121177 1701871 I 
4]) Gross Capital Cost Perunte~ 46.6% 12.3% 14.5% 19.1% 
4K?NaF~ctedCoao[Ca~tta/-RintalandUta~ 313,366 101,567 324,933 /1211014/ 708,852 
~L~NetEconorMcValatAdded~VEVA~ /151,5121 132.928 196,939 57,572 235,927 I 
4 M Net Capital Cast Pt rten, ta~ 43.0./o 12.6 % 15.2% 48.7% 17.1% 
~tvl c~.~ ,  in e V A  O.,  ~ ~ *  . . . .  65,057 I 

5) Risk Returns on Capital (RROC) After Rental Cost of Capital 
Risk Capital Standard (Multiple K of XTVAR): 200°/, 

/d2/L/. ~ LO83 LOS4 ~ F.zSg2g£ZO.T,~ 
SA)A~rage 1 m 50 Year Demaison fmm Phm (X13/AR) 0,422.444) (587.552) (1,381,531) 1,368,533 (2,310,833) (3,542,615) 
5B) Gmtt Risk Capi~lK% of XTI /AR  6,490236 93,743 502,173 7.086,151 
5C)MeanlntenaEamedonRatingA~ngCat~al 21.870 60,893 I06,855 (7.448) 182.169 189,618 
5D)MeanPcntalCoaofRaisngAgen~Ca~tal 72,901 152,232 213.710 (24,828) 414,014 438,842 
5E~Ex~cttdUnderw~is~RiZ*mAI~erRen~lCosto[Ca~tkd 881953 172T263 3081162 /3816141 5301765 569,379 

~ F  I Gross Rit~ R~tum on Capital = GRROC 1.37% 18336% 61.37% 8,04% I 
5G/;qetRitkCa~italK%of.'~TVAR 515271702 1731740 11131r906 ~2.21 llOSt / 4r622~67 

~H~NctRitkRatamonCa~al=NRROC 1.61% 99.15% 27.230/0 1.75% 11.48°/~ 
50 Change m Rttum Dke to Rahsurante (38,614) 
5J) Caa~  i.  A l ~ . u d  Capltol) (2,403,885)[ 5K? aost of AddJ~ional XT I /AR  Ca~'tal = (MH (S[? 1.6°/4 

6) Returns on Risk Adjusted Capital (RORAC) ~ LOB2 ~ ~ ~ 
6A) GmssFaskCapitalK%ofX71/AR 6,490,236 93,743 502,173 7,086,151 
6B) latcma Earned oa Gmss Allocated Capita/ 194,707 3,750 25.109 223,565 
6C~GmssE~cctedTotalUndemm~in~Retxm 334.691 267.352 440,126 1.042,169 

~D~ Gnus Raurn on P~k A~usted Ca~isal 5.16% 285 20./* 87.64% 14.71°/4 
6E)NetRItkCapttalK%OfXTVAR 5.527.702 173340 1,131,906 (2,211,081) 4,622~67 
612) ln~mt Earned on ~r¢t A l ~ t e d  C~tta/ 165,831 6,950 56,595 (66,332) 163,044 
6G~NaE~mCedTotalUnd~run~n~Ruum 3051815 270,552 471,613 /122,326/ 925,653 

~H~ Net Rttum on Risk A ~ t t d  Ca~tta] 5.530/0 155.72°/o 41.670/0 5,530/0 20.030/0 I 
6I) Change in Rttxm DNe to Relusxraace (116,515) 
6J) cb,,.,, in A/.~a,a C4olt./ (2,463,885)1 6K~ Cost o l 'AddmanalXTVAR Capital = (61ff (617 4.7°/4 
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Discussion of 'Tnsurance Capita/as a Shared Asset" 

Exhibit 10 
Quota Share Reinsurance Example 10 Comparing Alternative Parameterizadon of EVA with Returns on Capital 
Kq Assumption*: W'dte equal amounts of prrmium m tb~ ~et  of budneu. Interest Credited on Sa.pperting Xu~lus: Yes 
Pridng u auuratt, as the plan Loss Ra~o eq*alt the Expected Loss Ralio (ELR) for all three #net. Tbe ELR ' s are equal to 80%Jot all three h~es. 
A 40°1o QNota Share lopunbatedfor lOB 1 lqtb commlodanjutt cotrting varmble ~at. All tb~ k~et am *neor~loted. 
The ConsumpKon Fee f ir  C4Mted Less thnn Al&allon h assmmed to be the -~',¢e at the Conrump#on Fee f ir  Common C~ita2 

Refer to ~ ib i t s  1-7for deUukd dtsmpUbns of items below. 

4) Economic Value Added (EVA) where Usage Charges Are Computed Using Two Step Formula 
/,O./LL ~ LO..g./ L O. L4. tVE'r ~ T m .  f, Rfl£LXD.TA£ 

4,4) plan Premium 1,250,000 1,250,0G0 1,250,000 (500,000) 3250,000 3,750,000 
4 B) E.xpccttd Uuderu~fting Return (Profit ¢~ Ot~bead) 112,500 100,000 87,500 (45,000) 255,000 300,000 
4Q Interest Rate Ateumed 3.00/o 4.0o/o 5.0o/o 3.0o/o 
4D)AfeauNetPre~ntValutoflntrrvctEa~tdenReser~e* 27,490 163,602 327,516 (10,996) 507,612 518,608 
4E)MeanRattngAgenffC~ital 729,057 1.822,517 2,137,091 (248298) 4.140,167 4,388.465 
4F)Meanlnte~s¢EamedonRatingAgenqCapital 21,872 60,893 106,855 (7,449) 182,170 189,619 
4G)MeanRtntalCottofRallngAgenoC~tal 72,906 152.232 213,709 (24,830) 414,017 438,846 
4H/Gm*~WctedCoa(Capital-RentalandOta~{e 466,132 207)661 362?088 lt035t881 
pl~GmE~nomieValurAddtd(GEVA~ ~304 271~ 116r834 159r783 ~7r654~] 
4J) Gm~ Capita/Cost Percentage 63.9% 13.6% 16.90/o 23.6% 
4K~NaE.x~ecudCostofCa~ital-Ranta/andOm~ 425,503 213r480  384?642 1165?869 / 8571757 

~l~NetEgo~o~icValueAdded(NEVA~ /263.6411 111.015 137228 102.424 87,028| 
4M Net Ca~tal C~t p ~ t a ~  58.4% 14.0°1o 18.0°1o 66.8% 20.7% 

~ N  t Cban~e in EVA Due to Rei . . . . . . .  114,679 I 

5) Risk Returns on Capital (RROC) After Rental Cost of Capital 
Risk Capital Standard (Multiple K of XTVAR): 200% 

LOBS /.O.2t2 /.03A ~ ~ T ~ T A L  
5/I) At~ra~ I m 50 Y~r D~*at2onfrom Plan (2x'Tl~l R) 0.434,006) (587.944) (I ,381.452) 1,373,154 (2,326.769) 0,569,458) 
5B)GrossRitkCap~talg%ofXTVAR 6,509,573 84,590 547.325 7.141,487 
5C)MeanlutrreaEarnedonRa~ngAger~C~ital 21,872 60,893 106,855 (7,449) 182,170 189,619 
5D)MeanRentalCostofRat~ngAgtnfyCapital 72,906 152232 2 1 3 , 7 0 9  (24,830) 414,017 438,846 
5E~Ex~eatdUndem~itm~RetamA~erRentalCoa~fCa~ital 88,986 172263 308,161 138,6151 5301765 569,380 

~FIGmssRiskRet~monCa~ital=GRRO~C 1.37% 203.65o/o 56.30o/0 7.97°/~ 
5GINetReskCa~talkW, f.X'T'k'AR 5,600,881 151,545 1,141,744 ~2.240.382~ 4.653,818 

~H/Net R~)k Ret*rn on C~ital = Nq~ROC I.Sgo/o I I 3.67% 26.99% 1.72% l l.40a/~ 
5I) Change m Return Due to Reins#mint 08,615) 
5J)CbangeinAllomudCepitaO (2,487,669)[ 5KICosto(Addi#onal*VFVARCa~ital=(MI/(5~l * 1.6°/~ 

6) Returns on Risk Adjusted Capital (RORAC) ~ LOB2 /.OB3 /-084 N ~  ~ T A L  
6,4) Grit Risk Capital I(°/o Of , ~ ' A R  6,509,573 84,590 547,325 7,141.487 
6B ) Intents Famed on Gross All~ated Cap/tel 195.287 3,384 27,366 226,037 
6Q Groa ~ x ~ d  Total Undem~4un~ Return 335,277 266 ,986  442,,382 1,044,645 
I*~l~ Re ..... ~ ACu,,~ c~'~e S.lS'/. 318.6~/o ~0.83o/. ,4.6w 4 
6E)NeIR~sloCapttalK%Of,X'I~VAR 5.600,881 151,545 1,141,744 (2240,382) 4,653,818 
6F) lnt~st Famed on Ix' et ARocaud Capital 168,026 6,062 57,087 (67 211) 163,965 
6G~l~¢et~x~¢aedTetaIUndtr~i~n~Ret~m 308,016 2 6 9 , 6 6 4  472 ,103  I123206 / 926,577 

~H]tVetRet . . . .  Rt)kA~attedCatfftal 5.50o/o 177.94°/= 41.35% 5.50#/0 19.91°/o ] 
60 Change in Return Due to Reinsurance (118,068) 
6J) CbangeinAllar~tedCapllal (2,487,669)1 6K]CoaofAddiuonalXTVARCa~ital=(6lt/(6l~ 4.70/o I 
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Discussion of 'Tnsurance Capital as a Shared Asset" 

E x h i b i t  1 1 

Quota Share Reinsurance Example 11 Comparing Alternative Parameterizafion of EVA with Returns on Capital 
Key Atsumpllons: IlZd/e equal amouats oj~emium in three hues of bminas, lntemt Credited on Supporting 3~q~lus: Yes 
ptidng is acturale, as the Pkm I~ss Ratio equals the Expected Loss Ratio (E, LR) for all three h~es. 7~e EI,R's are equal to 80% fir all three lines 
A 40% Quota Sham ts putrhated~r LOB I adth tomtMsdonjutt cot¢dng t~tdahle cott~. All  three lines are uacomlated~ 
The Consump#on Fee fir Capital Lta  than ̀ 41kcation is assumed to be 25% of the ConsmapKon Fee#r CompMon Capttal 

Rofer to Ex'~}its l-7 for detaikd descKpdons of items below. 

4) Economic Value Added (EVA) where Usage Charges Are Computed Using Two Step Formula 

4A) Plan P~ium 1.250,000 1,250.000 1,250,000 (500,000) 3250,000 3,750,000 
4 B) F-xpected Undirwdting Ritum (Profit ¢5" On.rbeaa~ l 12.500 100,000 87.500 (45,0~)) 255.000 300.000 
4~) Interest Rale Attained 3 0% 4,0% 5.0% 3.0% 
4D) Mean Net Present I "alue oflnle~sl Eamedon Resents 27,484 163,602 327,518 (10,994) 507,610 518,604 
4E)MeanRaangAgen~Capi~d 729,007 1.522,317 2,137.103 (248.282) 4,140,145 4,388,427 
4F)Meanlnter~tt~amedonRatlngAgenffCapital 21,870 60,893 106,855 (7,448) 182,170 189,618 
4G)MeanRintalCoaofRatiq~Agen~Capital 72,901 152.232 213,710 (24.828) 414,014 438,843 
4HtGro.  Ex~ettedCosto(Ca~al-RtntalandUsa~ 3021783 1801569 2911744 775,006 

~ltGvos~EconomicValueAdikd(GEl/A I l140,9291 143 ,926  230,129 2337126 I 
4J) Gross Capita/Cost Pementao~e 41,5% 11.9% 13,7% 17.7% 
4 0  Net ~x?ected Cost o[ Ca~ttaI. Rintaland Usa ~ 280.343 1841040 3 0 4 , 6 8 3  /107,805} 661,261 

~l.~*\retE . . . . . . . .  l/alueAdded~VElWA t l118,4891 140,455 217,191 44,363 283,519| 
4~ f Net Capital Cost Perunta~ 38.5% 12.1% 14.3% 43.4% 16.0% 

~ N  t Chan~e in E V A  Due to Rii . . . . . . .  50,393 I 

5) Risk Returns on Capital (RROC) After Rental Cost of  Capita) 
Risk Capital Standard 0Muldple K of XTVAR): 200% 

/.Q./L2 LO82 /dPAL2 LO84 NET ~ T A t .  FdiQ.££.T-0.TAL 
5.4) Average 1 in 50 Year Dnfauon flmn P&n OCTI "AR) (3,422,935) (587,455) (I.381,379) 1,368,729 (2 ,325 .477)  (3,548.909) 
5B)G~sRiskCapital&~/*ofX77/AR 6,475,419 82,920 541,609 7,099.947 
5C)Meanl#temtFamedonRatingAgen~Capital 21,870 60,893 106,855 (7,448) 182,170 189,618 
5D)MeanRintalCostofRatingAge~tyCapita/ 72,901 152,232 213,710 (24,828) 414,014 438,843 
518~F-x~ct, dUnder~qtm~RitumA[terRintalCosto/'Ca~ttal 88,953 1721263 308,163 /38,614} 530,766 569,379 

~1:/ Gross Risk Return on Ca?ital = GRROC 1.37% 207.75% 56.90% 8.020/4 
5G~ Net Risk Capital K% o f 2 ~  "AR 

I;H/ Na  Ri~k R e ~  o, Capital= l~q~ROC 
51) Chan~e in Pcl~m Dxt to RtlnsuranCe 
5J) Change in ̀ 4llxaltd Capita/) 

6) Returns on Risk Adjusted Capital (RORAC) 
6.4) Gross R~k C~ild/ K% ~.\'TT/`4R 
68) Intora Famed On Gins `41lxated C~pital 
6Q Gross Ex~ecttd Total Undim,dtinl{ getum 
Vo? am,,  Ri . . . . .  ~,* AC~,,.d CW.I 
6E) Net Risk Capital K% q'.\'T'I/AR 
6F) Interest Earned o# P4a Allacaud Capt?al 
6G t Na  Expected Total Undtr~nlin~ Rttura 
16./ N,, Ri . . . . .  ~,~ A¢.,,,d C~,~I 
60 Change in RetMm Due to Rdm~ra#ce 
6J) Change in ̀ 4llocated Capital 

5,603,182 157,190 1,133,669 (2241.273 / 41652,768 
1.59% 109,59% 27.18% 1.72% 11.41%~ 

08,614) 
~:47,179) I sK I Con ~ Ad~lionaI,Vll/A R C~,ta/ = (5l~/ (5~1 1.6°/4 

~ LOBS LO8~ ~ 
6.475.419 82.920 541.609 7.099.947 

194.263 3.317 27.080 224.660 
334~46 266?919 442[098 IT043f164 

5.16% 321.90°/o 81.63% 14 69O/~ 
5,603,182 157,190 1,133,669 (2,241,273) 4,652,768 

168,095 6,288 56.683 (67,238) 163,828 
308,079 269,890 471,701 /123,232~ 926?439 

5.56% 171.70% 41.61% 5.50% 19.91% 
(116.825) 

(2,447,179) I 6K, co. qA~ , io ,~ / . ~ -A  R C¢,,~ = (6l~0"q~ 4.8',' 4 
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