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Abstract: This paper reports on our research into the issues associated with establishing
standards for materiality associated with claim liability estimates. In our research we explored
several alternative methods for developing benchmarks for materiality. Rather than restrict
ourselves to theoretical considerations, we tested the vatious methods empirically using public
data for individual companies and various lines of business. The empirical test results raise
many practical issues that must be considered in such an exercise. This paper is meant to
promote discussion on this topic and related issues.
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1. EXECUTIVE SUMMARY

As a result of the recent accounting scandals and the stock market boom/bust, there has
been an increased desire by shareholders, regulators and rating agencies for transparency in
financial statements. Within the non-life / property and casualty insurance sector, the largest
liability on an insurer’s balance sheet is the loss reserve. There is an increased desire to
better understand the uncertainty associated with estimates of unpaid claims underlying the
loss reserve. A single point estimate gives no sense of the degree of certainty (or
uncertainty) as to the likelihood that actual claim liabilities will ulimately be close to the
estimate. Therefore actuaries are increasingly asked to supply a range of reasonably possible
outcomes. In the U.S., Appointed Actuaries are required to identify significant risks and
uncertainties that could result in material adverse deviation in the loss reserve, and to specify
the materiality standard for the specific company. There is little guidance on how to
estimate the range of reasonable estimates, or on what this materality standard should be.
This paper seeks to explore ways to measure reserve volatility and to assist the actuary in
these ateas. In the context of the paper we develop a framework that is designed to answer

two distinct questions:

W By what amount must two estimates of unpard claim liabilities differ to be considered materially different

Jrom each other?

W What is the magnitude of the reasonably probable total deviation in actual claim liabilities from the

estimate of expected claim liabilities?

Both of these questions are related to the volatility of the claim generation process
charactetizing non-life / property and casualty exposutes, but they focus on different issues
that arise from the uncertainty the volatility creates. Note that materiality in the context of
actuarial opinions has a different meaning. For actuarial opinions, materiality is related to an
adverse claim liability deviation that would significantly affect the viability of a company.

Our use of the term materiality is explained in our Conceptual Framewotk in Section 2.3.

The first question gives rise to a Ranmge of Reasonable Estimates, ideally reflecting

uncertainties as to the parameters and model selected to produce estimates of the expected
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claim liabilities. The second question gives rise to a Range of Reasonably Probable Outcomes,
incorporating process as well as parameter and model risk. Both ranges depend on

standards that must give due consideration to statistical, financial, and solvency perspectives.

In addition to providing a framework for analyzing the two questions posed above, the
paper reports on our empirical research, in which we explored several alternative methods
for measuring process, parameter, and model nsk, and for translating the amount of
measured risk into benchmark ranges. The empirical test results raise many practical
measurement issues that will require further research to resolve. While the paper presents
empirical results for illustraton and comparison, the ranges derived are subject to

substantive limitations and should therefore not be considered a recommendation.

1.1 Research Approach

We designed our study using the framework of statistical hypothesis testing. We used
data from the 2003 Annual Statement of a sample of U.S. insurers for the personal auto
liability, homeowners, workers compensation and other liability lines of business. To
measure uncertainty in the unpaid claims we used two stochastic methods on individual lines
of business: the Bootstrapping methodology of England and Verrall, and the Mack
stochastic methodology'. The coefficients of variation resulting from our analysis provide a
measure of the reserve volatility. As explained in more detail in subsequent sections of this
paper, we endeavored to bifurcate total volatility into process and parameter risk. Next, we
used two approaches to estimate mateniality standards. The two approaches are a
percentile/threshold approach and a tail value at risk (TVar) approach. Finally, these
monoline results were combined to recognize the risk diversification benefits of multi-line
writers. We used a Copula® type approach to aggregate the claim liability distributions. We
note specifically that we have not used statistical hypothesis testing as our approach. Instead,
we use the terminology or the framework associated with hypothesis testing to explain the

results of our study for the reader’s benefit.

1.2 Results

We derived indicated reserve ranges on two bases: the “range of estimation” basis, which

is used to estimate the range of reasonable estimates, and the “range of outcomes” basis,

! The Bootstrapping and Mack methods are described in subsequent sections of the text as well as in
Appendix A.
2 Copula theory is described in subsequent sections of the text as well as in Appendix C.
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which is used to estimate the range of reasonably probable outcomes. As shown in the table
below, the outcome standards are higher than the estimation standards by an average of
75%.

Standards of Materiality - Mack

Range of Estimation Range of Outcome
Lower Upper Lower Upper
Line of Business Tail Test Tail Test Tail Test Tail Test
Personal Auto Liability -5.8% 6.7% -10.2% 12.2%
Homeowners -9.7% 11.4% -17.5% 21.5%
Workers Compensation -13.6% 16.4% -20.8% 26.2%
Other Liability -16.4% 20.2% -28.0% 37.7%

One reason for the difference between the two types of ranges is that outcome standards

include process and parameter risk whereas estimation standards only include parameter risk.

Finally, we created a fictiious company that writes all four lines of business to see the

benefit of risk diversification.

Standards of Materiality — Mack

Type Lower Tail Upper Tail
Range of Estimation -12.4% 15.4%
Range of Outcomes -14.4% 18.1%

1.3 Conclusions and Implications

The major conclusions of our studies were as follows:

W Materiality can have different implications when viewed from a statistical, financial or

solvency perspective.

® Materiality standards should clearly be different in a Range of Estimation context than in

a Range of Outcomes context.
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Standards of materiality should vary by line of business. Lines of business that
historically exhibit higher volatility should have higher standards of materiality (i.e., wider

ranges).

Materiality standards can be arrived at using a framework of statistical hypothesis testing

and applying techniques such as percentile/threshold and or TVar.

Any approach to studying or deriving standards of materiality requires the measure of an
appetite for adverse outcomes such as benchmark percentle/threshold of adverse
deviation or benchmark exceedence ratio. In terms of the hypothesis testing framework,
this relates to one’s tolerance level for making a “Type I” or a “Type II” error.
Specifically, all else being equal, a wide materality standard range allows a higher
probability of accepting the hypothesis that two reserve estimates are not matetally
different when in fact they are (ie., it involves a higher probability of a Type II error).
Conversely, a lower materiality standard increases the risk of a Type 1 error (ie.,

concluding that two estimates are statistically different when in fact they are not).

It is our recommendation that these benchmarks be derived based on combined industry
data. Then materiality standards can be derived for individual companies using these

benchmarks and their own implied volatility.

The percentile/threshold and the TVar approaches used in this study yield different
standards of materiality applied on the same data as they essentially measure volatility

differently. The latter is a more conservative approach.

Diversification for multi-line writers reduces overall volatlity of liabilides compared to
mono-line writers, requiring lower levels of surplus, and thus mult-line writers should
have lowers standards of statistical and financial materality compared to mono-line

writers.

The results of our analysis showed that financially impaired companies in general should
have narrower standards of materiality compared to financially healthy companies.

Some of the other conclusions that we reached as a by-product of our extensive use of

standard stochastic methodologies are as follows:

Standard volatility-measuting techniques overstate the volathity of the underlying loss
exposure (loss generating process) when used on data without any adjustment for

exogenous and endogenous factors impacting the company. For example, these methods
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are influenced by trends, changes in case reserving levels, changes in claim settlement
rates, and other factors. Adjustments should be carried out to scrub the triangles of

these factors before these methodologies can be applied.

® The standard Mack and Bootstrapping stochastic methods usually give different
measures (answers) for volatility of the undetlying loss data. Our research on industry
data showed that the Bootstrapping method has a tendency to overreact to sudden

changes in data.

® Both the Mack and Bootstrapping stochastic methodologies give different results for
volatility when applied to paid and incutred loss data of the same underlying loss
exposure. Both methods apply with more confidence to paid loss development data.
The results of these stochastic methods when applied to incurred loss development data,

where negative development is prevalent, are not very credible

8 The standard stochastic methodologies such as Mack and Bootstrapping do not perform
well in differentiating between process and parameter risk. Loss data should be adjusted
to a stationary basis in order to achieve a credible differentiation between process and

parameter risk.
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2. INTRODUCTION

21 Background'

Actuaries today are being asked by the investment and regulatory communities not only
to specify their best estimate of a property and casualty insurer’s claim liabilities®, but also to
specify a range of reasonably possible outcomes around their best estimate. These requests
in part are being driven by a spate of reserve increases taken by major insurers (particularly
those writing U.S. business) in the last few years, which has heightened the issue of “reserve
risk.” In general there is a movement towards understanding the uncertainty or variability
associated with estimates of clairh liabilities, as the range around the estimate provides
insight as to the solidity of the reserves recorded on the balance sheet (i.e., what percentile
within the range of estimates does the carried reserve represent‘?). Understanding the
vatability is important to the external stakeholders bearing the risk (shareholders and
policyholders), and to the directors of the company who are responsible for managing its
risk and capital. A single point estimate gives no sense of the degree of certainty (or lack of
certainty) as to the likelihood that the actual claim habilities will ultimately be close to the

estimate.

Additionally, an issue that actuaries and directors of insurance companies often face is
how to reconcile differences between alternative estimates of claim liabilities: management’s
estimate, internal actuarial estimates, and external actuarial estimates. In such instances,
directors are faced with the difficult task of choosing a reserve to record based on one of the
alternative estimates. How should they make this decision? Are these estimates different
enough that one can assume that they are truly differences in opinion, or do they merely

reflect differences in methods and assumptions that are within a range of reasonableness?

¥ Throughout this paper we refer generically to claim liabilities as being the uncertain amount that will
ultimately be paid by the insurer to settle claims arising from insurance coverage that it has provided. The
term is meant to be inclusive of defense, adjustment, and other settlement costs in addition to direct
payments to the claimant.

% In this paper we do not address the issue of how an estimate of liabilities is translated into a reserve on the
balance sheet. Generally the literature is vague on this subject, specifying for example that the company
should record its “best estimate”. While some may interpret this as implying that the reserve should be set
equal to the mean estimate, others might interpret it as requiring that the reserve be set at the median, or
some other percentile that includes a margin. For purposes of exposition we have therefore assumed that
there is a pre-ordained mapping from the selected distribution of claim liability outcomes to an appropriate
reserve; the focus of our inquiry is on the selection of the distribution itself.
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Given two estimates that are different, are the differences between the two estimates
material, and will the booking of reserves based on either of the estimates cause the users of

the financial statement to draw different conclusions?

These issues have gained importance lately with changes to the year-end 2005 U.S.
opinion process for non-life companies. The Model Law developed by the National
Association of Insurance Commissioners, which has been adopted by a few states at this
juncture but is expected to be adopted by most states, specifies that opinions should include
an Actuarial Opinion Summary that details the opining actuary’s own point estimate and

range, if one was generated.

2.2 Purpose/Obijective of the Paper

This paper is intended to address the following two questions, both of which arise as
practical issues in actuarial practice today:

1. By what amount must two estimates of claim liabilities differ to be considered materially different
Jrom each other? This question often arises in the context of reserve opinions, for
example when a reviewing actuary is comparing his or her estimate to management’s
estimate undetlying the held reserve. For sufficiently small differences the
conclusion should be that the two-estimates are not significantly different. However,
at some point the difference between the two estimates becomes sufficiently large
that it is significant.

2. What is the magnitude of the reasonably probable total deviation (adverse or favorable) in actual

claim labiltties from the current estimate of expected claim liabilities? This question atises in
the context of solvency, for example when one is stress-testing the balance sheet
against the possibility of adverse deviation from the expected level of claim liabilities
that would have a significant impact on the company.

Both of these questions are related to the volatility embedded in the claim generation
process characterizing non-life / propetty and casualty exposures, but they focus on
different issues that arise from the uncertainty that the volatlity creates. In responding to
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either question, actuaries need benchmark standards for materiality, typically expressed as a

percentage of the claim liabilities®, to guide their responses.

This paper reports on our research into the issues associated with establishing standards
for materiality associated with claim liability estimates. In our research we explored several
alternative methods for developing benchmarks for materiality. Rather than restrict
ourselves to theoretical considerations, we tested the various methods empirically using
public data for individual companies and various lines of business. The empirical test results

raise many practical issues that must be considered in such an exercise.

This paper is meant to promote discussion on this topic and related issues. Our approach
is not meant to be definitive, and our empirical results are subject to substantive limitations.
The latter are provided for illustration and comparison, and should not be taken as a
recommendation. We expect that our approach will continue to evolve with further

exploration on the topic.

2.3 Conceptual Framework

The historical loss development data the actuary can use to estimate claim liabilities are a
relatively small sample of realizations of the claim generation process. The actual claims
generated in each accident or underwriting year are the result of (a) randomness, and (b)
differences in environmental influences. These influences are both exogenous (the socio-
economic conditions at the time) and endogenous (underwrting and claim handling
procedures in place at the time). From the available data, the actuary is asked to discern the
expected value of the claim liabilities, and the distribution of possible outcomes around that
expectation. With imperfect knowledge, the actuary can only provide an estimate of the
expected value and the undetlying distribution, creating a second level of uncertainty above
that inhetent in the claim generation process itself.

Within a reserving context, actuaties attempt to estimate the true, but unknown, expected
claim liabiliies by applying an actuarial model to the available historical data. It helps to
think about the uncertainty involved in estimating claim liabilities in terms of the following

continuum:

5 In certain contexts, materiality standards might also be expressed as a percentage of net income or
capital.
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Actual Claim True Expected Model Estimate of Expected
Liabilities Claim Liabilities Claim Liabilities

The true expected claim liabililes could be considered as the indication from the

“perfect” actuarial model where:

— there is no uncertainty associated with the models inputs; and
— all the assumptions employed by the actuarial model are correct.

The potential differences between the actual claim liabilities and the true expected claim
liabilities are due to process nisk while the potential differences between the true expected
claim liabilities and the actuary’s model estimate ate due to parameter risk and model risk. A
detailed description of all the risks associated with the measurement of claim liabilities

follows.

®  Process risk represents the fundamental uncertainty due to the presence of randomness
when losses are generated. Even when an actuary can achieve a "perfect” model, the
random nature within which losses are generated would prohibit that actuary from
calculating the actual claim liability amount.

B Parameter risk is the uncertainty associated with the unknown parameters of statistical
models, even if the selection of the model is correct (i.e., we might know with certainty
that the link ratios at a certain maturity follow a log-normal distribution, but we are not

sure about the correct parameters associated with that distribution); and

B Model nisk is the risk associated with the uncertainty that the loss generating process is

not represented correctly by the particular model selected.

Some actuarial literature separates that risk between model risk and specification risk; the
former relates to the question if the selected model is correct while the latter relates to the
question if the distributions employed by the model are correct). Model risk is the most
difficult type of risk to measure since every stochastic model is based on the premise that its
fundamental assumptions are correct. Traditional stochastic reserving models, including
Mack and Bootstrapping, ignore model risk. One way of approximating model risk is

hindcast testing. With hindcast testing a model employs a subset of the historical data to
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project losses for the remainder of the historical period and compare the actual and

projected results. The resulting residuals provide a proxy for model risk.

In the context of uncertain claim liabilities, materiality must be examined from several

different perspectives.

B The statistical perspective on materality reflects the fact that one is estimating the shape
and parameters of an unknown claim liability distribution.

B The financial perspective on materiality relates to the queston: Would users of the
financial statements draw different conclusions if the figures presented were different?
This perspective draws on the other elements of the balance sheet, and the income

statement.

8 The solvency perspective on materiality links the uncertainties associated with the claim
liabilities to the capital and claims-paying capacity of the enterprise.

Materiality questions arise most commonly in the context of alternative actuarial
estimates, relating to the first queston posed at the outset of our paper: Given the
uncertainty in the estimation process, is the difference between one actuarial estimate of the
claim liabilities and another actuarial estimate significant? In the context of this question we
are concemed with the uncertainty of the expected liabilities (and not random variations
between actual and expected, i.e., process risk); only parameter and model risk are relevant.

In other wotds, the relevant distribution is the distribution of the estimated mean.

The Range of Reasonable Estimates is the range within which alternative estimates of the
expected claim labilities would be deemed to be immaterial, in the sense that (a) the
difference between the estimates is not statistically significant, and (b) the difference
in the resulting reserves is not financially material. Within this range one could not
say that one estimate was actuarially “better” than the other. An actuary reviewing
the reserves of a company would accept the reserves if his or her own estimate were
within this range.

Materiality can also arise in the context of solvency and risk management, in which one
should consider the total risk embedded in the claim liability estimation process, including
parameter, model and process risks. In this case we are interested in the actual lability
outcomes, so we need to measure all types of rsk that could have an adverse effect on a

company’s surplus.
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The Range of Reasonably Probable Outcomes is the range within which the alternative
actual claim outcomes are expected to fall with reasonable confidence, in the sense
that (a) the outcomes outside of the range which, while possible, have low statistical
probability, and (b) for a reasonably well capitalized company, outcomes within the

range would not threaten the solvency of the company.

In this paper we focus on materiality standards for the range of reasonable estimates and
the range of reasonably probable outcomes. In the first context we refer to the relevant
materiality as estimation materiality, which ideally will reflect only model and parameter risk. In
developing estimation materiality standards we considered only the statistical perspective.
We did not consider the financial or solvency perspective; however, as a refinement it might

be appropriate to consider the financial perspective.

The latter range relates principally to the financial and capital management (or solvency)
perspective on materiality and links the uncertainty associated with the actual claim liability
distribution to the finances of the company. All types of risk (model, parameter, process)
that could have an adverse effect on the income and capital needs of the company should be
measured here. In this context we refer to the relevant materiality standard as owtcome
materiality. When measuting outcome materiality we considered the statistical and solvency

petspective, but not the financial perspective.

We note that there is not a clear distinction between the concepts of Range of Reasonable
Estimates and Range of Reasonably Probable Outcomes. The underlying precept of our
analysis is reserve volatility, which is captured in the definidon of Range of Reasonable
Estimates. The Range of Reasonably Probable Outcomes is a slightly broader concept in
that it tries to incorporate reserve volatility in conjunction with management input and the

financial condition of the company (i.e. surplus).

Additionally, in setting materiality standards we did not consider other sources of risk,

such as market, credit, operational or insurance underwriting risk.
In summaty, for a given set of claim liabilities, the objective is to develop:

a) an approprdiate standard for a range of reasonable estimates, reflecting appropriate

criteria for estimation materialify, and
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b) an appropriate standard for a range of reasonably probable outcomes, reflecting

appropriate criteria for outcome materiality.

To develop these ranges, it is necessaty to estimate the claim liability distribution and to
separate process from parameter and model risk. As we discuss later in the Methodology
section, the claim liability distributions in this paper are estmated with stochastic reserving
methods, which provide distributions for both the actual claim liabilities and the estimate of
the expected claim liabilities.

Once appropriate claim liability distributions have been produced, the two ranges
embodying our materality standards can be obtained from them. In the case of each
distnbution, this requires the selection or derivation of a threshold [5]. The threshold can be
based either on a specified percentile of the distribution (generally, 2 VaR approach), or on a
specified expected exceedence value (generally, a TVaR approach)

The percentile threshold approach is a point measure in the sense that it measures the
probability of an outcome being worse than a given monetary threshold (e.g., probability of
ruin). While the percentile threshold approach measures the probability that a particular
value will be exceeded say once every 100 years, the expected “exceedence” threshold
approach measures the expected value of the exceeded amount (every 100 years) when the
threshold is exceeded. The expected exceedence threshold approach provides values higher
than the percentile threshold approach, as it is influenced by the outcomes of remote loss
outcomes. In the chart shown below the percentile threshold approach focuses on finding
the shaded region, whereas the expected exceedence threshold approach focuses on
estimating the expected value of losses exceeding the threshold, as a percentage of expected
liabilities. Essentially, these two paradigms measure “tail” risk differently.

We formulate the problem of analyzing estimation materiality in the framework of
statistical hypothesis testing. Although we do not actually perform hypothesis testing, this
framework has the advantage of helping to explain the variables required to calculate
materiality and analyze the results obtained from our analysis. The only divergence between a
true statistical hypothesis testing and the methodology employed in this paper is that, while
statistical hypothesis testing compares the distributions of two estimates of the mean, in this
paper we compare the distribution of expected claim liabilities to an alternative point
estimate of the mean that is considered to be certain. In that respect our employed

approach resembles the measurement of a statistical confidence level.
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Consider a distribution of expected claim liabilities where:

Ca = the mean of the distribution
m, = the upper bound of the range of reasonable estimates
m, = the lower bound of the range of reasonable estimates
We can set up the problem in this framework as follows:
H, (Null Hypothesis): The two estimates of the expected claim liabilities are the same
“H, (Alternate Hypothesis): The two estimates are not the same

A formulation of the problem pictorially is as follows:

Co-m; Co+my
Ca

Reserves in the range Cy~ m2 to Ca+ m, are not considered significantly different

The Type I error in statistical hypothesis testing measures the probability of rejecting the
null hypothesis when the null hypothesis is true. Typically, m1 and m2, defining the range of
reasonable estimates, are determined by selecting a significance level, reflecting an acceptably

]

low probability of a Type I error. The significance level is measured by “r” (in our paper),
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shown by the shaded region in the chart above. Note that as the stringency of the
significance level is tightened, the range of reasonable estimates expands.

If the alternative estimate of the expected claim liabilities falls outside of the range of
reasonable estimates (in other words if the alternative estimate amount falls in the shaded
region in the chart above) then we can reject the null hypothesis that the original estimate

underlying the reserve and the alternative estimate are essentially the same.

The formulation for analyzing outcome materiality follows a more traditional confidence
level construct. However, the picture is essentially the same as that shown above. We seek
to define a range of reasonably proBable outcomes, such that the likelihood of actual claim
liabilities being outside of that range is reasonably small. However, rather than defining the
range purely from a statistical perspective, we define it with reference to a solvency
petspective as well. The benchmark level of outcome matenality is based on an empirical
analysis of the typical relationship of reserves to risk-based capital, and the level of adverse
deviation that would cause the insurer to “ruin” by failing the risk-based capital adequacy

test.

In the context of outcome materiality, a higher probability of ruin corresponds to a

smaller range of reasonably probable outcomes.

For both types of ranges, we develop empirical measures of m, and m, in this paper.

They may be interpreted as an explicit function of three primary variables amongst others:
m = {(0, 1, 0) where:

G is the implied volatility of the claim liabilities for line of business under

consideration, or the uncertainty of the estimated mean;

t is the selected threshold. The corresponding factor in statistical hypothesis
testing is the probability of Type I error; and

ot is the implied percentile of the carried reserves in relationship to the

expected claim liabilities.

m (defining the upper or lower bound of the range) is directly proportional to 6. A more
volatile book of business will require a larger allocation of surplus and thus will have a higher
m. In other words, the more volatile a book of business, the greater the uncertainty

associated with the claim liability estimates. As a result, the corresponding m should be
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greater for this line to consider the greater uncertainty of the loss process. In Step 1 of the
Methodology section we outline how we calculated the implied volatility of each line of

business.

a, the implied percentile of the carried reserves, is another important factor. If the carried
reserves are booked at a higher percentile of the claim lability distnbution then a lower

standard of outcome materiality is acceptable.

As 1 increases m should decrease, a higher r (i.e,, a larger shaded area) reflects a higher
level of conservatism. A higher r also implies a higher probability of ruin (i.e., it is easier for
actual claim liabilities to fall in the shaded region). A higher r also implies that it is easier to
conclude that the alternative estimate of claim liabilites is different from the original

estimate undetlying the reserve.

Other factors that should be considered in selecting the thresholds that define the
materiality standards may be the following:

B ype of exposures involved

B primary / reinsurance limits

8 size of reserves / expected loss / no. of exposures or claims

W average age of reserves

B expectation of parameter risk associated with the particular LOB
B probable maximum loss

B asset variability

B net income variability

In our study, we have not specifically analyzed the impact of these issues in the
calculation of the standards of materiality. Generally, the impact of the above factors on the
standards will depend on whether they add to or decrease the voladlity of the claim liabilities,
or increase or decrease the uncertainty associated with the financial and solvency status of

the company.
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Both of the stochastic reserving models employed in our analysis measure process and
patameter risk but neither of them measures explicitly model risk. Further research is

needed in the area of the measurement of model risk.
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3. METHODOLOGY

3.1 Overview

The overall approach is as follows:

Step 1 - Obtain sample balance sheet and historical claim development data for selected

companies and lines of business.

Step 2 - Apply stochastic methods to the historical claim development data to measure
the distribution of the actual claim liabilities, and the distribution of the

estimated expected claim liabilities for each company and each line of business.

Step 3 - Select estimation and outcome thresholds. For outcome materiality thresholds,
base selections on typical balance sheet solvency impacts for selected

companies.

Step 4 - Develop ranges embodying the materiality standards, based on both percentile

thresholds and expected exceedence ratio thresholds.

Step 5 - Recognize risk diversification benefits among multiple lines by incorporating
correlation and aggregating the individual line of business distributions to build
an aggregate distribution to arrive at ranges embodying the overall matetiality
standards at a legal entity level.

The following sections will elaborate on each step.

3.2 Step 1 - Data and Data Limitations

U.S. insurers are required to file Annual Statements with state regulatory authorities. The
required format includes income statements, balance sheets, cash flows and schedules
focusing on aspects such as historical claim development (Schedule P), reinsurance
recoverables (Schedule F) and investment (Schedule D). As noted previously, a Statement of
Actuarial Opinion must accompany each Annual Statement. Annual Statements and

Statements of Actuarial Opinion are in the public domain and can be viewed at each state’s
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Department of Insurance. We used an internal Annual Statement database, based on data

obtained annually from A.M. Best.

We used data from various sections of the Annual Statement. The claim liability
development triangles and premiums were obtained from the Schedule P for each company.

Measurement of capital came from the “Five-Year Historical Data” exhibit.

We analyzed four lines of business: Personal Auto Liability, Homeowners, Workers
Compensation and Other Liability-Occurrence policy forms. These lines were selected to
reflect the spectrum from short-tail to long-tail, and the spread in volatility.

Within the U.S. non-life insurance sector, it is common for an insurer to operate through
multiple legal entities under common management, often referred to as a group. Multiple
entities within a group offer flexibility in terms of capitalization, pricing and regulatory
domain. An insurer must file an Annual Statement and a Statement of Actuarial Opinion for

each legal entity. Therefore our analysis is done at the legal entity, not group level.

There are often inter-company pooling atrangements whereby an insurer allocates results
to entities which may or may not have written the business. The pooling percentages may
vary by line and year. The pooling applies to each aspect of the Annual Statement, including
the Schedule P data triangles we use, that is, the analyzed triangles may represent a
percentage of a larger triangle. Therefore, when we consider the relative size of the sample
entities, we need to adjust for pooling. All figures presented are adjusted to reflect the effect
of pooling.

We included insurers that cover the spectrum from small single-state or regional to large
national companies. For our purposes, we define size in relation to the premium earned
from 1994-2003 for each line. Companies with premium below $3 billion are considered
small for that line, companies above $10 billion are defined as big, and the rest are medium.
For example, a large national writer such as Hartford Financial includes a legal entity,
Harford Fire Insurance Company, which we consider small, medium and large depending on

the line of business under consideration. (See the table below; figures in $000’s)
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Line of Business Net Eamed Premium for Line Size Categorization for Line
Workers Compensation $11,818,872 Big
Personal Auto Liability $ 10,463,646 Big
Homeowners § 4,913,186 Medium
Other Liability $ 2,914,352 Small

The segmentation by size is intended to group companies with expected similar reserve
volatility. All things being equal, we expect claim liabilities on larger volumes of business to

be less volatile than smaller books of business.

We took the data “as is,” meaning that extensive cleansing of the data was not
undertaken. In several instances we adjusted anomalous data, with cate not to sanitize the
data. Even with these adjustments, some of the data appears to be implausible; companies

with implausible data were excluded from our analysis.

While we restricted our analysis to publicly available Annual Statement data, it should be
noted that insurers have additional information available internally. Companies often
segment their business into more homogenous groups than Annual Statement line of
business. The concepts applied here on a line of business basis are illustrative and can also

be utilized for different segmentation.

3.3 Step 2 — Use stochastic methods to measure volatility of unpaid claim
liabilities

We used the Bootstrapping methodology as described by England and Verall [6] and the
Mack Stochastic methodology [12] to estimate the volatility of claim liabilities. For a brief
description of these methods please refer to Appendix A. The CV (Coefficient of Variation)
is our chosen measure of volatility. The Mack method generates the first two moments of
the claim liability distribution, the mean and the standard deviation, while the Bootstrapping
method produces an empirical distribution of claim liabilities, so CVs are easily calculated in
both cases. The input historical claim development triangles used for both methods are paid
loss development triangles (including only allocated loss adjustment expense). In addition,
we augmented the Bootstrapping method described in the paper to recognize development
beyond the maturity of the triangle (i.e., in the tail). We have assumed a tail that extends to
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10-12 years for Homeowners and Personal Auto Liability, 15-20 years for Occurrence
Liability and 40-50 years for Workers Compensation. The tail was estimated by fitting an
inverse power curve to the development factors for ages of 48 months and beyond, based
on Richard E. Sherman’s [14] approach as outlined in “Extrapolating, Smoothing, and
Interpolating Development Factors.” A uniform tail was selected to apply to all accident
years within a company. Additionally, for the Mack method we selected standard errors
associated with the tail volatlity. The selection was essentially based on the empirical results
of the Bootstrapping method. We compared the CVs produced by the Bootstrapping
method for each line of business in our sample database with the inclusion of a tail factor
and exclusion of the tail factor. The difference in the CVs including and excluding the tail

factor was then selected as a measure of the standard error associated with the tail factor.

As stated above, the Bootstrapping method provides more than just the mean and
variance of the claim liability distribution; it generates the entire distribution. In almost all
cases the mean of the distribution generated from the Mack and Bootstrapping methods was
different from the carried reserve amount, therefore we performed a linear transformation to
force the mean of the distribution to be equal to the carried reserves, while preserving the
CV of the distribution. When we describe the “petcentile/carried reserve,” we are assuming
the carried reserve is the best estimate. This is an assumption, not an assertion. Readers are
directed to “Management’s Best Estimates of Loss Reserves” [10] by Rodney Kreps that
notes the mean of the distribution is “probably not a good estimate, as it is almost surely

»

low.

We note that the use of paid claim development data in our analysis is essentially dictated
by the inherent limitation of the Bootstrapping and Mack stochastic reserving methodologies
used in our analysis. These methodologies do not respond well to reported loss (case
reserves + paid losses) data. Indeed both methods produce unteasonable results when used
on reported loss triangles which occasionally have age-to-age loss development factors
below 1.0 followed by positive development (age-to-age development factors above 1.0).
Both of these methods requite a somewhat smooth progression of age-to-age loss
development factors from immature to mature valuations, declining from high loss

development factors for immature data to low development factors for mature data.

Another limitation is that both methodologies assume an essentially stationary process,
ie., that there are no endogenous and exogenous influences on the loss generating process

such as company-specific changes in operations, claim settlement rates, prcmium/ exposure
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growth or changes, large settlements, evolving intetpretations of liabilities in the court
system, hurricanes, and so forth. Realistically, the loss development data reflected in the
triangles of a company are hardly ever stationaty, as they include both exogenous and
endogenous influences, which cause additional volatility in the loss development triangle. As
a result, stochastic reserving methodologies that rely on the volatility inherent in the loss
triangle almost always overstate the volatility of the undetlying loss generating process. In
order to adjust for this distortion, we adjusted the volatility estimates arrived from the use of
these stochastic reserving methodologies downward. The adjustment factors were calculated
using industry-wide paid loss triangles from A.M. Best (27 to 30 company composite,
depending on the line of business), adjusting the triangles for industry exposure changes and
frequency trend and other exogenous influences. The frequency trend is applied to adjust
for observed declines in claim frequency due to safer workplaces, safer cars, and so forth
over the years. We then postulate that this process should cre,até stationary triangles, absent
of any exogenous and endogenous factors described above. Thus the volatility present in
these stationary triangles will be the true volatility produced by the loss generating process.
We measured this volatility in the industry-wide triangles, by line of business, and used it to
adjust downwards our overall volatility results produced by the stochastic methods employed
in this paper. While we believe these adjustments are reasonable, refinements in the

techniques used to better achieve the desired stationarity can certainly improve upon them.

We also independently tested the assumption that the process risk implied by the
stochastic methods employed in our analysis is overstated, by compating the claim volatility
calculated by the stochastic methods to the claim volatility obtained via hindcast testing. We
employed an independent historical data set for 20 companies and measured the
performance of deterministic resetving techniques as they tried to estimate the claim
liabilities for these companies. We first estimated the claim liabilities using information that
was available at a given point in time and then looked at the available run-off information to
see what the actual claim liabilities amounts were with hindsight. The obsetved estimation
error over time and across all companies provides a proxy for the total risk associated with
the evaluation of claim liabilities. For the workers compensation line, the hindcast tests
results indicate a CV of total risk equal to 8.1%. By comparison, we obtained a parameter-
only risk CV of 11.0% from the Mack method. Most of the companies in the hind-cast

testing were rather large, with reserves in excess of $100 million, so the associated process
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tisk for these companies should be quite low. The fact that the total risk CV from the hind-
cast testing is lower when compared to the parameter nsk CV from the Mack method
suggests that the process risk and parameter risk implied by our stochastic methods could be
overstated. The inability of traditional stochastic reserving methods to separate the
variability due to changes in endogenous and exogenous influences, from the true claim
volatllity due to the claim generating process, is the main reason for this presumed

overstatement of process and parameter risk.

3.4 Step 3 — Select Significance Threshold Levels
For outcome materiality, we calculated threshold significance levels for both financially

healthy companies and financially impaired ones. Financially impaired companies should get
an eatlier warning flag when something is wrong with their reserves compared to financially
healthy companies, since the underlying assumption is that an adverse claim lability

deviation causes a greater financial “hurt” to financially impaired companies.

We employed the “bright line test,” which we understand is utilized by the NAIC, in the
measurement of outcome benchmark significance levels. The bright line test measures the
difference between the surplus as regards to the policyholders and the RBC (Risk Based
Capital) capital amount, proposed by the NAIC, that would downgrade the company to the
next lower RBC level. If the claim liabilities of a company sustain an adverse deviation
greater or equal to the capital level difference mentioned above, that company would be
downgraded to the next lower RBC level. That capital level difference to the next lower RBC
level, given a distribution around carried reserves, provides a maximum standard of
materiality for the company (i.e., the officers of that company would, at least, want to know
under what adverse claim liability deviation the company would be downgraded to the next
lower RBC level). They might want though to set up an earlier warning flag, based on their
experience with the company’s financial results, so the adverse deviation from the bright line

test can serve, at least, as a maximum standard of materiality.

An assumption in the above analysis is that these companies did not experience
significant changes in their distribution of exposutres, by line, during the historical period of
the analysis. The implied volatility from the claim liabilities for each company was calculated
on an all lines combined basis considering both process and parameter risk. An outcome
materiality significance level threshold was calculated for an upper tail test within the
percentile threshold context and an exceedence ratio threshold was calculated within the
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TVar context, given a level of volatility associated with the cartied reserve. The outcome
materiality significance level threshold for a lower tail test for the petcentle threshold
approach was calculated judgmentally based on the assumption that the magnitude of the
standards of materiality should be higher for an upper tail test when compared to a lower tail

test.

For the corresponding estimation materiality significance level threshold we employed a
7.5% rule of thumb benchmark for the upper tail test. That 7.5% represents the average of
the 5% to 10% significance levels usually employed in statistical hypothesis testing.
Interestingly, we tested the validity of this assumption (7.5%) by estimating the benchmark
significance level threshold using parameter risk only from the outputs of the Mack method
and found that the resulting estimation materiality benchmatk significance level threshold

was, on average, similar to the 7.5% that we assumed.

The resulting thresholds for financially healthy companies were as follows:

Percentile Threshold Tail Value at Risk
Benchmark Significance Levels Benchmark Exceedence Ratio
Lower Tail Upper Tail
Lower Tail Upper Tail Expected Expected
Probability Probability Excess Excess
Estimation materiality 10.0% 7.5% n/a 2.0%
Outcome materiality 8.0% 6.0% n/a 1.5%

All other things being equal, the resulting outcome materiality standards are higher from
the corresponding estimation matertiality standards, a logical relationship when considering
the higher amount of risk associated with outcome materiality standards. For the majority of
the healthy companies the resulting outcome materiality benchmark significance level, for
the upper tail test, was 0.0%. This result highlights the fact that most of the healthy
companies are so well capitalized that they need to suffer an adverse claim liability deviation
in excess of the 99.9% percentle of their claim liability distribution in order to get
downgraded into the next lower RBC level.

We also performed the above analysis on a group of 16 companies that were financially
impaired. These companies were either in rehabilitation or liquidaton. For arriving at the

outcome materiality benchmark significance levels for the financially impaired companies we
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used the bright line test as well as one year adverse development from Schedule P data. As
expected, we estimated much higher benchmark significance levels and benchmark
exceedence ratios compared to the healthy company figures mentioned above. The outcome
materiality benchmark significance levels for adverse deviation for the financially impaired.

companies were 18% compared to 6% for financially healthy companies.

Specifically, we performed the following steps to come up with the outcome materiality

benchmark significance levels and benchmark exceedence ratios.

We employed 39 financially healthy companies from our AM. Best data base. The
calculation of an upper tail test outcome materiality benchmark significance level threshold,
for the Percentile Threshold approach, followed the steps outlined below:

1) For each of these companies we measured the total risk, for all lines combined,
associated with their claim liability distribution. That claim liability distribution was
calculated from loss and ALAE Schedule P Part 3 triangle data using the Mack stochastic
reserving method. We further assumed that the mean Cy of the stochastic distributions

is equal to the carried reserves for the companies.

2) From the Bright Line Test we calculated the adverse claim liability deviation that
would downgrade each company into the next lower RBC level. That adverse claim

liability deviation m represents a maximum standard of materiality.

3) We then added the mean of the distribution to the adverse claim liability deviation.
The area under the claim liability distribution in excess of Cy + m represents the upper
tail outcome materiality benchmark significance level. It measures the probability of
extreme claim liability outcomes that a company must experience before it gets

downgraded into the next lower RBC level.

For the calculation of an outcome materiality exceedence ratio for the TVar approach the
first two steps outlined above were identically repeated. As a last step we measured the
average of claim liability outcomes that exceed the carried reserves by the standard of
materiality. These excess losses were calculated as a ratio to the expected claim liabilides,

producing the exceedence ratio threshold.

26 Casualty Actuarial Society Forum, Fall 2006



Considerations Regarding Standards of Materiality

3.5 Step 4 ~ Estimate Materiality Standards for each Individual Line

Based on the selected outcome materiality benchmark significance levels and exceedence
ratios we then calculated the outcome materality standards for each company in our sample

database. The calculation proceeds as follows:

1) For each company triangle we generate a claim liability distribution using both the
Bootstrapping and the Mack method.

2) We normalize each loss reserve distribution so that the mean of the distribution is

equal to the carried reserve of the company.

3) The outcome materiality standard is equal to the difference between the percentile
implied by the outcome materiality benchmark significance level, as described above,

and the percentile implied by the carried reserve.

4) The outcome materiality standard implied by the TVar approach is calculated as the
difference between the percentile implied by the benchmatk exceedence ratio and

the percentile implied by the carried reserve.

5) The estimation materiality standards are calculated in a similar fashion using the

estimation materiality benchmark significance levels and exceedence ratios.

3.6 Step 5 - Recognize Risk Diversification Benefits Among Multiple
Lines
Few companies are monoline writers. For multi-line writers, the standards of materiality
should incorporate the risk diversification associated with underwriting more than one lines
of business. Aggregate claim Liability distributions can be calculated from the individual line
distributions. In our analysis we incorporate a Copula type of approach that petforms the
aggregation procedure. More information regarding the Copula approach is included in
Appendix C.

The Mack and Bootstrapping stochastic reserving methods mentioned above measure the
claim volatlity for an individual line of business. In case where more than one lines of
business are considered we need a model that aggregates the individual lines distributions.
The mean of the aggregate distribution is the sum of the individual lines means. However
we cannot arrive at the percentiles of the aggregate distribution by simply adding the
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individual lines percentiles. Straight summation makes sense only in the case of 100%
correlation across all lines, a highly unlikely situation. The volatility of the aggregate

distribution is influenced by two factors:

®  The claim voladlity for each individual line of business: The larger the claim volatility for
each individual line, the larger the volatility of the aggregate distribution, all other things
being equal; and :

B The correladons across lines: The larger the cotrelaion among individual lines, the

larger the volatility of the aggregate distribution, all other things been equal.

Statisticians have shown that the aggregate distribution of any combination of n random
variables can be written as a function of the n individual variables distributions (S&lar theorem
7996). This function is called Copula. We are employing one Copula model in our analysis
that provides a convenient way of calculating the aggregate distribution of several lines of

business. Two components are needed for the Copula model:
m  The distributions of the individual lines of business; and
B The correlation coefficients among these lines.

The Copula model employed in our analysis is the Normal Copula. For the Normal
Copula a correlation mattix based on the assumed cotrelations among the various lines must
be selected. The correlation matrix for the Normal Copula should be positive-definite (i.e.,
invertible) for the Copula to work.

The selected correlation among the various lines is based on modeling of economic variables
such as general/price inflation, wage inflation, auto inflation, and medical inflation. This is
done by first building forecasting models for auto inflation and medical inflation as a
function of general/price inflation. The models have an autoregressive component in that
the inflationary component being modeled reverts back to it long term mean. Next we
modeled the impact of each of these inflationary components on each line of business. The
model used was a geomettic model employed by Robert P. Butsic [3] to model the impact of
different inflationary components on losses of different lines of business including social
inflation. Once the impact of these inflationary components on each line of business is
ascertained then we can construct a distribution of losses for each line of business by
forecasting these economic variables. The correlation matrix is then estimated by empirically

measuring the correlation between the simulated losses for each line of business. Our
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assumed correlation matrix is included in Appendix C. The advantage of such models is that

correlation between the claims experience is an emergent property.
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4. RESULTS and CONCLUSIONS

4.1 Reserve Volatility

As can be seen in Exhibit 4.1.1, the volatility is relatively small for Personal Auto Liability
(PAL), somewhat larger for Homeowners (HO), larger still for Workers Compensation
(WC), and even larger for Other Liability Occurrence (OLO.) The relative magnitude is as
expected. The HO line is impacted by catastrophes and the HO claim liabilities are more
volatile when compared to the OLO liabiliies. OLO is impacted by some high severity
claims so intuitively is more volatile. WC also has high severity claims but there is enough

frequency/consistency that overall it is less volatile than OLO.

Exhibit 4.1.1
Comparison of Parameter Risk CVs from Mack and Bootstrapping Methods
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The Bootstrapping method is more sensitive to outlier development factors and so it

generates significantly larger CV's for some companies, as displayed in Exhibit 4.1.2.

Exhibit 4.1.2
Comparison of Par Risk CVs from Mack and Bootstrapping Methods
Workers Compensation
80%
/O Mack
709% | E— pping
Mack median
= = = Bootstrapping median ’ CV tor WC Composite is
11.0% for Mack
60% 18.9% for Bootstrapping —1
50%
E 40%
°
>
o
30%
20%
10%
smaller books of business larger books of business composlte

C ies sorted by p!

As discussed in Section 3.3, the Mack method is dependent on the assumed volatility in
the tail. We tested our tail volatility assumption to determine how sensitive the analysis is to
our supposition. We increased the volatility in the tail by 50% and 100%. For Workers
Compensation and Other Liability Occurrence, the increased tail volatility drove the Mack
CVs closer to the Bootstrapping CVs. On the other hand, the adjustment created a
difference for Personal Auto and Homeownets, whereas the CVs wete quite similar before
increasing the tail volatility. These results are displayed in Exhibit 4.1.3 (see next page)
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Comparison of P Risk CVs from Mack under various tail assumptions Exhibit 4.1.3
and Bootstrapping
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As shown in the Exhibit 4.1.4, total, parameter and process risk all generally follow the same

Comparison of Total, Process and Parameter Risk CVs under Mack Method .
HO Exhibit 4.1.4
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relationship: process is usually larger than parameter risk, and naturally, total risk is the

largest.

We expected that parameter risk is invariant of size, while process risk should decrease by
the size of the company. Our analysis calculates process risk that is independent of size.
That result suggests that the stochastic methods employed in our analysis could possibly

overstate process risk.

We summarize the results by size, expecting larger books of business to be less volatile,
however this was not the case. For Personal Auto Liability, the most volatile companies
were generally the larger ones. There was not much variation in the size of selected Workers
Compensation companies with two-thirds of them categorized as small. The results were
mixed with high CVs coming from both small and large companies. Each bar in Exhibit
4.1.5 represents a company and is sorted from by premium volume, with smaller companies
on the left.

Parameter Varlability - Mack Method Exhibit 4.1.5
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An analysis by size of company that employs a larger sample of companies is
probably needed to draw more credible conclusions in the comparison of claim volatility by

size of company.

4.2 Materiality Standards

The following graphic summarizes the estimation materality standards, based on the
Mack method, for the four lines of business under consideration. All the standards shown in
the remainder of the paper were calculated, unless otherwise noted, as a percentage of

carried reserves and using the Percentile Threshold approach.

The resulting estimation materiality standards are higher than what actuaries are
accustomed to, partly because these techniques overstate volatility unless adjustments are

made for exogenous and endogenous factors.

Estimation Materiality Standards based on the Mack Method Exhibit 4.2.1
25%
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For Petsonal Auto the standards are close to the +/-5% range of expected that is often
employed, as a rule of thumb. For the remainder of the lines the resulting standards are
much higher. The calculated standards of materality could be overstated due to the
suspected overstatement of the process and parameter risk produced by the Mack method.

Exhibit 4.2.1 (see previous page) graphs the upper and lower tail estimation materiality
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standards by company and by line. For the more volatle lines the wider range of the

materiality standards is evident.

The following table compares the estimation materiality standards produced by the Mack
and Bootstrapping models. The actual upper and lower tail estimation materiality standards

are calculated as follows:

Estimation Standards of Materiality — Bootstrapping vs. Mack

Mack Bootstrapping
Lower Upper Lower Upper
ine of Busi Tail Test Tail Test Tail Test Tail Test
Personal Auto Liability -5.8% 6.7% -5.4% 6.3%
Homeowners -9.7% 11.4% -8.8% 10.5%
Workers Compensation -13.6% 16.4% -19.0% 25.3%
Other Liability -16.4% 20.2% -25.7% 32.7%

The resulting estimation materiality standards between the two methods are relatively
close for the Personal Auto and Homeowners lines of business. For the two long-tail lines,
workers compensation and other liability, the Bootstrapping statistical standards are 40% to

60% higher when compared to the Mack standatds.
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The additional tail volatlity implied by the Bootstrapping method produces the higher
estimation materiality standards. Exhibit 4.2.2 compares the estimation matetiality standards

for the two stochastic methods employed in the analysis.
Exhibit 4.2.2

Comparison of Estimation Materiality Standard - Mack vs. Bootstrapping
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The comparison of estimation and outcome standards of materiality is summarized in the

following table, for the Mack method, for both lower and upper tail tests:

Estimation vs. Outcome Materiality Standards— Mack

Estimation standards Outcome standards
Lower Upper Lower Upper
ine of Busi Tail Test ~ TailTest  TailTest  Tail Test
Personal Auto Liability -5.8% 6.7% -10.2% 12.2%
Homeowners -9.7% 11.4% -17.5% 21.5%
Workers Compensation -13.6% 16.4% -20.8% 26.2%
Other Liability -16.4% 20.2% -28.0% 37.7%

The outcome materiality standards are, on average, 75% higher when compared to the
estimation materiality standards. There are two reasons that explain this relationship: (1)
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outcome materiality standards employ the calculation of both process and parameter risk
while estimation materiality standards employ patameter tisk only. The inclusion of process
risk increases the outcome materiality standards; and (2) the benchmark significance level is
higher for the estimation materiality standards when compared to the benchmark
significance level for the outcome materiality standards. All other things been equal, the
resulting outcome materiality standards should be higher since the cotresponding probability
of Type I error is lower. Exhibit 4.2.3 provides a compatison of the outcome and estimation

materiality standards.

Exhibit 4.2.3
Estimation vs. Outcome Materiality Standards - Mack
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The following table compares the upper tail outcome materiality standards for financially
healthy and financially impaired companies.

Outcome Materiality Standards~ Upper Tail
Healthy vs. Liquidated Companies — Mack

Line of Business Financially Healthy Financially Impaired
Personal Auto Liability 12.2% 6.8%
Homeowners 21.5% 11.7%
Workers Compensation 26.2% - 14.0%
Other Liability 37.7% 19.2%

The outcome materiality standards are much higher for the financially healthy companies
when compared to the corresponding standards for the financially impaired companies. For
a financially impaired company, a lower outcome materiality standard is reasonable since it
provides an eatlier warning flag if an adverse claim liability deviation is experienced by that
company. The lower standards compensate for the greater reserve uncertainty associated

with the reserves of a financially impaired company coupled by lower reserve to surplus

Outcome Materiality Standards - Healthy vs. Impaired companies - Mack Exhibit 4.2.4

25%
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ratios. Moreover, out selected significance level benchmarks of 18% for financially impaired

companies vs. 6% for financially healthy ones, allows for a greater probability of Type I error
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for the fnancially impaired companies, decreasing in effect their respective outcome
materiality standards. Exhibit 4.2.4 (see previous page) compares the upper tail outcome
materiality standards for financially healthy and financially impaired companies.

The following table compares the upper tail estimation materiality standards for the two risk
measures employed in our analysis, the Percentile Threshold approach and the TVar

approach.

Estimation Materiality Standards — Mack

Line of Business Percentile Threshold Tail Value at Risk
Personal Auto Liability 6.7% 0.0%
Homeowners 11.4% 2.6%
Workers Compensation 16.4% 6.6%
Other Liability 20.2% 10.3%

The standards implied by the TVar approach are considerably lower when compared to the
standards produced by the Percentile Threshold approach. The reason of that observed
difference lies on the varying fundamental assumptions of the two risk measures. The
Percentile Threshold approach measures the probability that the actual claim liability amount
would exceed a selected dollar threshold. It does not consider the magnitude of the resulting
deficiency. A $1 reserve deficiency gets the same weight as 2 $1 million reserve deficiency
under the Percentile Threshold approach. On the other hand, the TVar approach measures -
the expected risk of material adverse deviation. The higher the risk of material adverse
deviation, the higher measure of risk is calculated by the TVar approach. In other words,
the TVar approach penalizes a company for the probability of extreme claim liability
outcomes. Since for most of the property and casualty (general non-life) insurance
companies there is a small chance of very large claim liability outcomes, the TVar approach,
on average, assigns more reserve risk to the companies when compared to the Percentle
Threshold approach. The higher risk associated with the TVar approach results in lower

standards of materiality since an earlier warning flag is more appropriate in the presence of

Casualty Actuarial Society Forum, Fall 2006 39



Considerations Regarding Standards of Materiality

more reserving risk. Exhibit 4.2.5 compares the upper tail estimation matenality standards

for the two measures of risk employed in our analysis.

Upper Estimation Materiality Standards Exhibit 4.2.5
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We also created a fictiious company that writes the four lines of business under
consideration with a reserve distribution approximating the distribution of the whole
industry. Employing a Normal Copula approach we calculated the CVs of the claim
liabilities for the company. The resulting total risk CV is 11.0% while the parameter risk CV
is 10.2%. The risk diversification associated with the underwriting of four, instead of one,
lines of business results into combined CVs that are lower when compared to the CVs from
the two long tail lines of business (workers compensation and other liability). Exhibit 4.2.6
(see next page) compares the resulting aggregate CVs from the four monoline writers to the

CVs of the fictitous muld-line company.
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Coefficient of Variation Exhibit 4.2.6
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Exhibit 4.2.7 compatres the estimation standards of materiality of the fictitious four lines
writer to the four monoline writers. The resulting upper tail statistical standard is 15.4%
while the lower tail statistical standard is 12.4%. These standards are affected by the higher
weight given to the long tail lines (30% for Personal Auto Liability, 6% fér Homeowners,
35% for Workers Compensation and 29% for Other Liability Occurrence.)

Exhibit 4.2.7
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The following table compares the outcome and estimation materiality standards for a writer

of the four lines of business.

Standards of Materiality - Mack

Type Lower Tail Upper Tail
Estimation materiality standards -12.4% 15.4%
Outcome materiality standards -14.4% 18.1%

The outcome materiality standards are, on average, 15% higher when compared to the
estimation materiality standards. This relationship is reasonable in light of process risk
which is considered in the outcome materality standards but not in the estimation

materiality standards.

The following table summarizes the estimation materiality standards, for the four lines of

business under consideration, as a percentage of individual company surplus.

Estimation Materiality Standards — Mack
(as a % of surplus)

Line of Business Lower Tail Uppert Tail
Personal Auto Liability -1.3% 8.5%
Homeowners -8.6% 10.1%
Workers Compensation -18.2% 21.9%
Other Liability -18.9% 23.4%

The resulting percentages for the upper tail test are in the area of 10% for short tail lines
and in the area of 20% for long tail lines. Exhibit 4.2.8 (see next page) compares the
estimation materiality standards, as a percentage of both surplus and carried reserves, for

each line of business analyzed.
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Exhibit 4.2.8
Estimation Materiality Standards
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The following table compares the implied volatility for each line of business analyzed,
measured by the coefficient of variation, to the resulting estimation materiality standards for

the upper tail test in the Percentile Threshold approach.

Comparison of Parameter Risk CVs and Estimation Materiality Standards — Mack

Upper tail estimation

Line of business cv materiality standards
Personal Auto Liability 4.6% 6.7%
Homeowners 7.7% 11.4%
Workers Compensation 11.0% 16.4%
Other Liability 13.4% 20.2%

The standards of materality increase for the more voladle lines. The uncertainty
associated with the calculation of the claim liabilities for a volatile line is quite high, and the
large associated standards of materiality reflect that uncertainty. All other things being equal,
two independent actuarial estimates that measure volatile claim liabilities should be given the
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benefit of the underlying uncertainty before considered materially different from one
another. Another way to intuitively think about this result is that lines of business, or books
of business, which show a high level of volatility usually have a higher percentage of total
surplus allocated to them and thus have a higher cushion to absorb adverse deviation. That

results in a higher standard of materiality as a percentage of teserves.

As we pointed eatlier, the results quoted above might be overstated as the stochastic
methods employed in this paper presumably overstate process and parameter risk. Thus
both the CVs and the matenality standards denived above are overstated. We performed the
adjustments to reduce the overstatement, described eatlier in this paper, on three companies
for three different lines of business to get an approximate impact of the overstatement of
volatility by the stochastic methods. The impact of the overstatement of the CV was
calculated by subtracting the CV obtained from the true volatility of the adjusted industry
tiangle from the CV of the unadjusted individual company triangle. Using the benchmark
significance levels we calculated the adjusted standards of materiality. This procedure was

performed separately for each line of business. The results are presented in the following

tables:
Outcome Materiality Standards— Mack, Upper Tail or Adverse Deviation
Line of Business Before Adjustment After Adjustment
Personal Auto Liability 12.2% 5.7%
Workers Compensation 26.2% 18.0%
Other Liability 37.7% 16.7%
Estimation Materiality Standards— Mack, Upper Tail or Adverse Deviation
Line of Business Before Adjustment After Adjustment
Personal Auto Liability 6.7% 3.6%
Workers Compensation 16.4% 12.5%
Other Liability ‘ 20.2% 11.5%

As these tables show, the impact of this overstatement can be significant. To make a
thorough assessment of the impact of the adjustment is beyond the scope of this paper.
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APPENDICES

A. Technical Appendix ~ Stochastic Methods Employed

The deterministic methods provide a best estimate of the claim liabilities. In comparison,
stochastic methods provide a claim liability distribution around the best estimate, in addition
to the best estimate. We employed two stochastic methods in our analysis. Each of these

methods represents the two families of stochastic methods described below:

“Chain Ladder” family of methods. These methods employ cumulative loss and
expense triangle data and generally are based on the premise that the underlying assumptions
of the chain ladder method (CLM) ate correct. The Thomas Mack method is probably the
best-known representative of this family. It provides the first two moments of the claim
hability distribution (i.e., the mean and the variance of the distribution)

"Simulation" family of methods. These techniques provide an empirical distribution
of the claim liabilities. Our tepresentative of this family is Bootstrapping, a powerful, yet
simple, technique that employs simulations and avoids the fitting of complicated analytical

models.
A more detailed description of these two methods follows:
Mack method

The Mack method [12] specifies the first two moments of the claim liability distribution
only. It essentially calculates the standard error of the claim liability distribution based on the

inherent uncertainty of the undetlying data. Our research employed the following notation:

Let C; denote the cumulative loss payments for accident year i, 1<i<I and development
year k, 1<k<I, where I is the total number of accident years. The values of C; are known
for itk < I+1. We want to estimate the values of C; for i+k > I+1. The value of the

reserves for accident year i is:

R; =Ciu-Cir+1-i, (A1)
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where Cir reptesents the true ultimate loss for accident year i. The expected ultimate loss

amount for accident year iis calculated by the formula:
Cit =Cid+1-i xfr+1-i x..xf,, (A2)

where 2<i<] and f; are the observed volume weighted ATA factors from maturity k to k+1
for 1<k<I-1. Notice the bolded figure Cis that represents an estimate of the ultimate loss
for accident year i employing historical ATA factors f; for 1sksI-1. The true value of the
ultimate loss for accident year I is denoted by Cir and depends on the actual ATA factors £

whose values are currently unknown.

There are three major assumptions that form the base of this paper:

) E(% / Ci,....Cik) = f, for 1sisI and 1sksI-1, i.e. the expected value of the loss
ik

Cik+1
Cik

development factor equals f;, where f; is the unknown “true” development

factor which is the same for all accident years. Moreover the loss development factor

%‘—' equals f, irrespective of the prior development Cit,...,Cik.

ik

(2) The variables {Ci,...,Ci1} and {Cj,...,.Cjt }for different accident years i = j are
independent (i.e. the loss payments in an accident year are independent from the loss
payments in another accident year). Under this assumption, the ATA estimators f, are

unbiased i.e. E(f,) = f; .

(3) The 3" major assumption of the paper satisfies the principle of the theory of point
estimation that among all the unbiased estimators of the ATA factors preference should

be given to the one with the smallest variance. This principle can be restated as:
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Var(Cjk+1 /Cy,....Cik)=Cjt x 0.2, (A.3)

where 1sj<I, 1sk<I-1 with unknown proportionality constants o.? for 1<k<I-1.

With the help of the previous stated assumptions, we calculated the mean squared error

(mse) of the ultimate losses for accident year i. This mse of the ultimate loss is defined as:

mse(Cit) = E[(Cit -Cit)? / C, foritksI+1]. (Ad4)

That mean square error is a conditional expectation of the actual triangle data, since Mack
measutes future claim volatility given a run-off triangle. It can easily be shown that the mse
of the ultimate losses and the reserves for a particular accident year i ate equal, i.e. mse(Cir )
= mse(Ri). The square root of the mean squared error of the reserves is called the standard
error (s.e.) of the reserves. Based on the previously stated assumptions the standard error of
the reserves is calculated for every accident year i, s.e.(Ri), and for all accident years

combined, s.e.(R). The resulting formulas are as follows:

-1 a?
G 1
)2 =C? 2 (— T~ .
ceCi)? =Ch | % 12 (ck tTE ), and (A.5)
Jj=1
é é 12—1 2a2 1 f2
Ge®)? = ;) {Ge®N+Ci (150 Ci) p o7 'ikc , (A-6)
Pt nk
] Iik Cjk+
where: @ § = 77,7 J=1 Cual Cik -f,)%, 1sksI-2
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Using the identity that: E(X - )2 = Var(X) + [E(X) - cJ? where ¢ is a constant, we can

re-write the mean square error as:

mse(R;) = Var(R; | D) + [ E(Rj | D) - Rj 12, (A7)

where D is the observed triangle data, (i.e., we can decompose the total claim liabilities
risk into the sum of pure future random error Var(R; | D) and the deviation between the
model estimated claim liabilities and the true Expected Claim liabilities (i.e., the
parameter risk)). All the components of the mean square error can be calculated based on
the implicit assumption of the Mack model that the chain ladder estimated link ratios are
unbiased, minimum variance estimators of the true unknown loss development factors.

Bootstrapping method

Bootstrapping [6] is based on theory developed by England and Verrall. In some of
their earlier work, they proved that the reserve estimates from the CLM are identical to
reserves produced by an over-dispersed Poisson generalized linear model (GLM). As a
result, the residuals produced from a chain ladder model fitted to a historical triangle can
be treated as residuals of a regression model. The residuals of regressions should be
approximately independent and identically distributed around zero. The Bootstrapping
technique samples, with replacement, the residuals of the CLM. The resulting simulated
residuals can be considered as residuals from a triangle that have approximately the same
statistical characteristics as the triangle that produced the original residuals. Using
appropriate residuals (the so-called Pearson residuals) we can produce new sets of
incremental payments and subsequently new reserve indications from each simulation.

The Bootstrapping algorithm steps are as follows:

Using all years volume weighted loss development factors (LDFs) from the original
triangle, a “fitted” triangle is calculated by applying these LDFs to the latest diagonal of
the original triangle.

Fitted incremental values are compared to actual incremental values to calculate
unscaled residuals. The formula for the Pearson residual is = (actual — fitted) /
sqrt(fitted).
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Residuals are normalized by an appropriate scale factor: |—— , where n is the number
of data point in the triangle and p is the number of the para?n?at’érs in the over-dispersed
Poisson GLM model. The scaling factor adjusts for the difference in the degrees of
freedom between the parameter free Bootstrapping model and the over-dispersed Poisson
GLM model.

The model re-samples these scaled residuals with replacement. The re-sampling is
performed once per simulation. Using these re-sampled residuals, an incremental
“bootstrap” loss triangle is created based on the Pearson residuals formula. These
incremental losses are converted to cumulative, from which all years volume weighted
LDFs are calculated. These are then used to “‘complete the square,” by application of the
LDFs to the latest diagonal. Reserves are then calculated for each simulation, and a
distribution is assembled using the results of all the simulations. This step captures
parameter risk only.

Process risk is introduced by treating each incremental from the bootstrap triangle as
the mean of a gamma random variable with variance proportional to the mean. The
subsequent steps are identical to those shown above.

Tail variability is modeled by using an inverse power curve fit (the so-called Sherman
inverse power curve). The parameters of a linear regression are fitted to available age to
age factors (ATA) from all accident years as follows:

ATA=1+axt b, . (A.8)

where a and b are the fitted parameters while t represents the development year. The
fitting procedure employs the natural logarithms of the ATA factors and the resulting

formula is:
In(ATA-1) = In(a) — b In(®). (A.9)

With the use of a linear regression the a and b parameters are calculated based on a
least square error approach. The development factors in the tail of the triangle vary at
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each simulation since the ATA factors from the historical years vary at each simulation

too.
Separate fits are used for parameter and total risk. The length of the tail is different by

line, as described in the body of the paper.

B. Technical Appendix — Financially Impaired Companies

The following companies were analyzed to establish upper bounds on the significance
level. These companies were impaired in 2002 according to Best’s Insolvency Study,
Property/ Casualty U.S. Insurers 1969-2002.

AM. Best # Company name as listed in A.M. Best database State
03627 Aberdeen Insurance Co ™
02681 Acceptance Insurance Co NE
03754 American Growers NE
00685 MU TR American Professionals Insurance Co IN
12181 Ardes Insurance Co, Inc FL
02141 Casualty Reciprocal Exchange MO
02412 ) Equity Mutual Insurance Co MO
10561 Grange Mutual Insurance OR
02592 Highlands Casualty Co 4
02239 Highland Insurance Co »:e
02812 Highlands Lloyds B
11860 , Legion Indemnity Co IL
02352 Legion Insurance Co PA
02348 National Automobile & Casualty Insurance Co CA
00213 NN Insurance Co W1
10626 Oak Casualty IL
02880 Pacific Automobile Insurance Co CA
02376 Pacific National Insurance Co CA
03658 PAULA Insurance Co CA
10420 Secunity Indemnity Insurance Co NjJ
00858 State Capital Insurance Co NC
02489 Statesman Insurance Co IN
12110 Villanova Insurance Co PA
00942 Wasatch Crest Mutual Insurance Co uT
10630 Western Specialty Insurance Co IL
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C. Technical Appendix — Copula

Copula theory provides a convenient way to calculate the aggregate distribution of several
random variables, given a predetermined cotrelation matrix among these variables. We
started with n=4 lines of business where the mean of the claim liabilides W, (an (nx1)
vector), and the nxn correlation matrix C of the claim liabilities between lines are alteady
given. An assumption that needs to be satisfied is that the cotrelation matrix C is positive
definite (an nxn matrix C is positive definite if it is symmetric and if x' Cx >0 for every n-
dimensional column vector x # 0). In the following steps we will describe the normal copula
methodology.

1. The claim liability distribution for each line of business is calculated based on the
Mack or Bootstrapping methods.

2. Employing the so-called Cholesky decomposition method, we can calculate a
randomly generated n-variate normal vector X with each of its vectors satisfying
the predetermined correlation matrix C. The required steps for this Cholesky
decomposition are as follows:

1. Since Cis a positive definite matrix we can prove, with the help of
intermediate algebra, that C can be factored as follows:
C=LxL’, (where L is a lower triangular matrix from the Cholesky
decomposition and L' is the transpose of L);
2. We introduce a linear transformation X, ie. X =+ L x z,, where z is
an nx1 vector from a standard normal distribution, i.e. z ~ N(0,1);
3. Then: E(X) =y + E(L) x E(z) =, since E(z2)=0 &
Var(X) = E(X-Wx(X-p)") =E(L x 2)x(L x 2)") =
E((Lx(zxz))xL')=ELxL")=C;
since Var(z)= E(zx z') = I (i.e. the identity matrix) and LxL' = C;
and
o The end result is an n-variate normal vector X, where X ~
N(u,0), i.e. the n-variate normal vector X has the required
mean | and the required correlation matrix C.

Copula theory has been gaining acceptance among actuaries. For example [13],
“Correlation and Aggregate Loss Distributions With An Emphasis On the Iman-Conover
Method”, written by Stephen ]. Mindenhall and published in the Winter 2006 CAS Forum,

explains in more detail the multivariate Normal Copula approach described above.
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We assumed the following correlations between lines:

Personal Auto Workers Other
Liability Homeowners Compensation Liability
Personal Auto Liability 1.00 0.40 0.38 0.60
Homeowners 0.40 1.00 0.40 0.40
Workers Compensation 0.38 0.40 1.00 0.19
Other Liability 0.60 0.40 0.19 1.00

D. Technical Appendix — Detailed Calculation of Materiality Standard

Step 1: Historical paid loss triangle, company A and application of stochastic methods

We start with a historical paid loss triangle for the légal entity A. We assume that A is a
mono-line writer. We denote the random variable of the unpaid claim liabilities by X.
Employing the Mack method we can calculate the first two moments of the claim liability
distribution, i.e. the mean, E(X), and the cotresponding coefficient of variadon, CV(X).
Using the Bootstrapping method we calculate an empirical distribution of the claim
liabilities. As a byproduct of this empirical distribution we can calculate the mean and the

coefficient of variation of the claim liabilities.

For the calculation of estimation materiality standards only parameter risk was considered
while for the calculation of outcome materiality standards two types of tisk (i.e., process and

parameter risk) were considered.
Step 2: Calculation of benchmark significance levels/exceedence ratios

In all the steps of our analysis, except the second step, we employ data from individual
companies in order to calculate standards of matenality. For the calculaton of the
benchmark significance levels and benchmark exceedence ratios, we employ a subset of the
industry-wide data, not company specific data. The benchmarks were calculated separately
for a group of 39 financially healthy companies and a group of 16 financially impaired
companies. These benchmarks were employed in the calculation of outcome matenality

standards.
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For each company in our database we employed the Mack method to calculate the mean,
EX), and coefficient of variation, CV(X), of their respective total risk claim liability
distribution. For the calculation of these distributions we employed loss and ALAE triangles
from Schedule P, Part 3 Summary. For simplicity, we added the losses for all lines of
business written by a company before calculating its claim liability distribution. We implicitly
assumed that each company had not experienced any change in its exposutes, among their
various lines of business, over the past 10 years. A more detailed, but also more time-
consuming approach for each company would be to calculate the claim liability distribution
for each of their individual lines and then calculate the aggregate distribution based on the

combination of these individual lines distributions.

Another underlying assumption is that each company’s claim liability distribution has a

log-normal form.

We then recorded the risk based capital amount (RBC) for each company, as provided in
their respective annual statements, on the “Five-Year Histotical Data” page. Based on the
RBC amount we calculated the different NAIC-mandated regulatory, or company action
levels. So for example if a company had an RBC amount of $10,000 then we have the

following levels:
RBC Action Levels “Requitcd Policyholder Surplus”
No action required (>100%) $10,000 or more
Company action required (75%-100%) $7,500 to $10,000
Regulatory action required (50%-75%) $5,000 to $7,500
Regulatory control authorized (35%-50%) $3,500 to $5,000
Regulatory control mandated (<35%) $3,500 ot less

As a next step, we measured the difference between the surplus as regards to

policyholders and the RBC capital amount that would downgrade each company to the next
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lower RBC action level. So for example, if the surplus of the company is $12,500 then the
calculated difference is $2,500(=12,500-10,000), while if the surplus of the company is
$6,000 then the calculated difference is $1,000(=6,000-5,000.) If the company sustained an
adverse claim liability deviation greater or equal to the calculated difference it would be
downgraded to the next lower RBC level. The difference indicated above can serve as a

maximum standard of materiality, within the solvency perspective of materiality.

For each company under consideration we calculated a maximum standard of materiality
m. We also assumed that the claim liability distribution of each company is log-normal, while
the mean and variance of these distributions have already been calculated by the Mack
method. Given the first two moments of a log-normal claim liability distribution we can

easily calculate percentiles.

The benchmark significance level is the area in the tail of the company’s claim liability
distribution, in excess of the mean plus the maximum materiality standard (ie. E(X)+m.)
This area represents the probability of extreme claim liability outcomes that, if materialize,
would downgrade the company to the next lower RBC level.

The benchmark exceedence ratio is equal to the expected losses in excess of E(X)+m, as a
ratio to the expected claim liabilities E(X). This ratio represents the expected risk of material
adverse deviation as a percentage of cartied reserves that, if materialize, would downgrade

the company to the next lower RBC level.

Steps 3a and 3b describe in more detail how to calculate the percentiles and expected

losses, in excess of a given threshold, for a log-normal distribution.

Finally, we calculated the weighted average, across all companies, benchmark significance
levels and benchmark exceedence ratios using the carried reserves of each company as a
weight. For healthy companies the weighted average benchmark significance level is 6.0%
while the weighted average benchmark exceedence ratio is 1.5%. These benchmarks were
employed for the calculation of upper tail test outcome materiality standards. For the lower
tail test outcome materiality standards we selected judgmentally a benchmark significance
level equal to 8.0%. The selection of higher benchmark significance level for the lower tail
test makes sure that the resulting outcome standards of materiality are higher for the upper

tail test when compared to those of the lower tail test.

The benchmark significance levels and benchmark exceedence ratio for the estimation

materiality standards were calculated based on judgment, as explained in the text.
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Step 3a: Estimation materiality standards, Company A

Mack — Percentile Threshold approach

We have already calculated:

(a) The mean of the claim liability distribution, E(X);

(b) The coefficient of variation of the claim liability distribution CV(X); and

(c) The benchmark significance level r for estimation materiality. This is 7.5% for the
upper tail test and 10.0% for the lower tail test.

We make the addidonal assumption that the claim labilides follow a log-normal
distribution with patametets [ and G, i.e. X ~ LN(W,0). The logarithm of X then is normally
distributed with parameters | and O, ie. In(X) ~ N(W,0). From introductory statistical
theory we can calculate |l and O by:

p=hEX)- ‘772 ;where 6 = \/ln(HCV(X)Z) D.1)

The purpose of the percentile threshold approach is to calculate a range of reasonable
estimates around the carried reserves that is outside the upper and lower tails of the

distribution, as defined by the benchmark significance levels.

For the calculation of the upper tail estimation materiality standard, we subtracted the
mean resetves from the 92.5th (=1-0.075) petcentile implied by the benchmark significance
level:

2
0
exp?0929*a 4

Materiality standard - Upper tail = E(X) * -EX), (D.2)

where $(0.925) represents the 92.5" percentile of the standard normal distribution
function. The first component of the preceding formula represents the 92.5™ percentile of
the log-normal distribution X of the claim liabilities.

For the calculation of the lower tail estimation materiality standard we subtract the 10™

percentile implied by the benchmark significance level from the mean reserves:

X ¢(0.10)*a—°'%
Materiality standard - Lower tail = E(X) - E(X) * **P , (D.3)
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- where 0(0.10) represents the 10.0" percentile of the standard normal distribution
function. The second component of the preceding formula represents the 10.0™ percentile
of the log-normal distribution X of the claim liabilities.

For'the purpose of this analysis we employed a mean of the claim liabilities equal to the

carried reserve for legal entity A.
Bootstrapping — Percentile Threshold approach

The Bootstrapping stochastic method calculates an empirical distribution of the claim
liabilities. The Bootstrapping method produces a few thousand random realizations of the
empirical claim liability distribution though a simulation approach. The first step is to
lineatly transform the stochastic claim liability distribution to make sure that the mean of
that distribution is equal to the carried reserves for legal entity A. The transformed
distribution has the same coefficient of variation as the original stochastic empirical
distribution. The percentile function in excel can calculate the various percentiles of the
resulting transformed distribution.

The uppef tail estimation matetiality standard is calculated as follows:

Materiality standard - Upper tail =

92.5% percentile of simulated claim lability distribution - E(X).

The lower tail estimation materiality standard is calculated as follows:

g
Materiality standard - Lower tail =
EX) - 10* percentile of simulated claim liability distribution.
Mack — Expected exceedence/TVar approach

For the Mack approach we were provided with the mean, E(X), and the coefficient of
variation, CV(X), of the claim liability distribution. Again we assume that the claim liabilities
X follow a lognormal distribution with parameters | and 6. The selected benchmark

exceedence ratio is equal to 2.0%.

The purpose of the expected exceedence approach is to calculate a standard of materiality
that when added to the carted resetves, the expected losses in excess of these cartied
reserves plus the materiality standard, is equal to 2.0% of the carried reserves, (for estimation
materiality standards.) In other words, if the company experiences actual losses in excess of

the expected losses plus the standard of materiality, then the expected material adverse
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deviation is equal to 2.0% of the carried reserves. A risk of material adverse deviation exists
when the actual losses exceed expected losses (ie., E(X)), by the selected materiality
standard. By construction the TVar measure of risk focuses only on the upper tail of the
distribution.

Available optimization routines in Excel™, such as SOLVER, can help us calculate the
standard of materiality m. When we add this standard of materiality to the carried reserves

E(X) then the expected losses in excess of E(X)+m are equal to 2% of the carried reserves.

The formula for the expected losses, in excess of the catried reserves plus the materiality
standard (i.e. E(X)+m), is as follows:

E[X;E(X
{1- A B (), (D4)

where E[X;E(X)+m] represents the expected losses from the claim liability distribution
limited to E(X)+m (the so called limited expected value function.)

With an assumption of a log-normal distribution for X ~ LN(,0), we calculated the
expected losses limited to an upper limit ¢ as follows:

o’ Y _
E[X:c] = exp” " 7 x(b("‘(—“)fL)wx[l—d)(%’i)], (D.5)

where @(x) is the standard notrmal cumulative distribution function.

Again, for the purpose of our analysis we employed a mean of the claim liabilities equal to

the carried reserve for legal entity A.
Bootstrapping — Expected exceedence/TVar approach

The empirical distribution produced by the Bootstrapping stochastic reserving method is
lineatly transformed, as explained in the “Bootstrapping — Percentile Threshold approack” section.
With the help of SOLVER, we can calculate a standard of materiality m that when added to
the mean E(X) of the claim liability distribution, the expected losses in excess of E(X)+m
are equal to 2.0% of the carried reserves. Again, when a company experiences actual losses
that exceed expected losses (i.e., E(X)) by the selected materiality standard amount m, then

the expected risk of material adverse deviation is equal to 2.0% of the carried reserves.
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The analysis proceeds as follows: We start with a few thousands simulations of the
transformed empirical distribution. From each simulated value we subtract the mean of the

distribution plus the materiality standard (i.e. EX)+m.) If the difference:
Simulated value — E(X) — m,

is positive, then the difference represents a material adverse deviation, since the simulated
losses exceed the expected loss amount plus the materality standard amount. If, on the
other hand, the difference is negative, then we set it equal to zero since we are interested
only in material adverse deviations. We average the material adverse deviations over all the
simulated values and we divide this average material adverse deviation by the expected claim
Liability amount. SOLVER ensured that we selected a standard of materality m that would
produce exactly a 2.0% expected tisk of material adverse deviation, as a percentage of carried

reserves.
Step 3b: Outcome materiality standards, Company A

For the calculation of the outcome materiality standards, we employ exactly the same
methodologies described in step 3a for the two stochastic methods, the Mack and
Bootstrapping, and the two measures of risk, the percentile threshold approach and the
expected exceedence/TVar approach. The only difference is in the benchmark significance
level r for outcome materiality. This is 6.0% for the upper tail test and 8.0% for the lower tail

test. The outcome benchmark exceedence ratio is 1.5%.
Step 4: Outcome materiality standards, Company B

We assumed that company B was a multi-line writer. The additional analysis,
compared to the mono-line company A case, relates to the calculation of the aggregate claim
liability distribution from the combination of all lines written by company B.

As a first step, we calculate the claim liability distributions for each of the n lines of
business written by company B. Moreover, we assume an nxn correlation matrix C that
describes the correlations among these various lines. Based on the Cholesky decomposition
methodology described in section “Nommal Copula theory basics™, we can calculate an n-variate
normal array X that satisfies the correlation matrix C provided. As a last step, we re-sort the
n lines claim liability distributions produced by the Mack and Bootstrapping methods based
on the ranking of the nx1 vectors in X. This way, we can achieve the predetermined
correlation among the various lines claim liability distributions. We then add all these re-
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sorted line distributions together to create an aggregate distribution that represents the
combined all-lines liabilities for company B.

Having produced the aggregate distribution for all lines combined we then calculate
estimation and outcome materiality standards for company B employing the same techniques

described in steps 3a and 3b.

The following Exhibits 1 through 5 illustrate the calculation of outcome materiality
standards for company A for both the Mack and Bootstrapping stochastic methods and both
the Percentile Threshold and TVar measures of risk approaches.
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Variance and Covariance Due to Inflation

David R. Clark, FCAS

Abstract
Motivation. This paper looks at the problem of measuring correlation between reserve segments. The
research was motivated by the 2005 CAS Working Party on Reserve Variability.
Method. Using a random-walk time series model for inflation, we can estimate the variance of a stream
of inflation-sensitive payments. The same calculations can be performed to estimate the covanance
between two streams of payments.
Results. Formulas are presented for estimating and calculating the variance in reserves attributable to
inflaton. All of these calculations are performed analytically, without requiring simulation.
Conclusions. Covariance between reserve segments due to common sensitivity to inflation can be
easily modeled. This provides a convenient and intuittive way of calculating dependence between
reserve segments in order to estimate variance at a company level.
Availability. Excel spreadsheet examples of the calculations described in this paper are available from
the author.

Keywords. Inflation, Reserving, Time-Series, Correlation, Covaniance

1. INTRODUCTION

This paper addresses the question of how to estimate the correlation between the future

payments in two ot more different reserve segments.

The motivation for this paper was the Working Party on Reserve Variability [6], which
outlined the many current approaches for estimating variability for a single reserve segment
— typically based on a single development tdangle. An area of research identified by the

Working Party was the question of correlation between two or more reserve segments.

The approach that we will follow for evaluating correlation will be based on first principles
about one of the underlying causes of correlation. That is, we begin by asking why we think
that there is a correlation structure that needs to be considered. From first principles, we
know that inflation has an impact on the amount of loss dollars to be paid, and that different
reserve segments may be affected by the same inflation index. For example, a medical claim
for an injured worker and a bodily injury claim under Auto Liability may both be dependent

upon a common medical inflation driver.
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This basic concept is illustrated in the graph below. The bars represent a forecast of loss
payments over a ten year time hotizon; the line represents the “expected” inflation index
built into the forecasted payment stream. If we know the varability in the inflation index
(tepresented by the bell curves), then we can calculate the variance of the future loss

payments due to inflation’.

Inflation Variability for Sample Loss Payout

25.0%

20.0%

15.0%

Inflation Index

10.0%

Percent of Reserve Paid by Year

5.0%

0.0%

Payment Year

As the bell curves around the inflation index illustrate, the variance due to inflation increases
for longer time horizons. The uncertainty in the estimate of a loss payment ten years in the

future is greater than the uncertainty in the estimate of a loss payment one year in the future.

The extension to correlation then follows. If we know that two or more reserve segments
are affected by the same inflation index, then we know that they will be correlated with each

other.

! This concept is not new: see the papers by Taylor [5], Hodes et al [4], or Brehm [2] listed in the
references.
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The question then turns to the source of the inflation index used in this variance calculation.
The inflation index should ideally be extracted from the insurance loss data itself, but in
practice insurance data is rarely stable enough to provide a reliable estimate. A reasonable

alternative is to use an external source for the inflation index.

We will follow the inflation model as outlined in the research work commissioned by the
Casualty Actuanial Society (see [1]). This research assumes that inflation follows a mean-
reverting random walk. Briefly, this means that the inflation rate in one year is dependent on
the inflation rate in the prior year, but that it will eventually “revert” to a long-run average
inflation rate. More informally, a mean-reverting model allows us to talk about perieds of

bigh or low inflation rather than just individual years being higher or lower than average.

Because we are limiting the discussion to the variance and covariance due to inflation, we are
able to produce closed-form solutions for all of the vatiance and covariance terms. All of

this can alternatively be incorporated into a larger simulation model if that is preferred.

After describing the basic model of inflation variability (section 2) and the formulas for
variance and covariance of the reserve segments (section 3), we will look at a method for
refining the calculation to include different sensitivites to inflation by reserve segment
(section 4), and then finally how to integrate variance due to inflation with variance from

other sources (section 5).
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2. BASIC MODEL

We assume that loss inflation rates follow a mean-reverting tine seties model. This is

described using an autoregressive AR(1) model.
X, = p-(d-nN+X_-r+te,
X,  logatithm of 1+;, (7= the inflation rate at time /)
/] logarithm of the 1+long-term average inflation rate ;
r factor representing the strength of the reversion
(or “persistence”) . :
r =0 would be a pure “random draw” model

r =1 would be a pure “random walk” model

¢, normally distributed error term, with variance o’

Because the model can be transformed into a linear relationship, the parameters can be

calculated easily with linear regression.

If we select, for example, a component of the consumer price index (CPI), then the variables

are: .
. . (cPr2y {cPr3) {cPi(n-n
Independent Variable (X, ,): ln\cpm))v ln\CPI(Z))’ " ln\CPI(n—Z))
. . . {cPrn (cp14) (_cprm
Dependent Variable (X): ln\cpl(z)). Inkgrash s ln\c,,,("_”)
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The slope of the regression line is the parameter . We can estimate the long-run average
inflation rate by the intercept/(1-7), though we will see that the magnitude of this average

does not affect our variability calculations.

The standard error of the regression (the average deviation of the actual dependent variables

from the values predicted by the fitted line) is our estimate of sigma,o .

We will illustrate this calculation using the medical component of the CPI, though the
reserving actuary is free to use any loss-infladon index deemed appropriate. Table 1 below
shows this calculation based on data available through the Bureau of Labor Statistics. We
calculate the logarithms of changes in the CPI, and then perform a simple linear regtession
on the X, and X, , columns.

This data is, of course, meant purely for illustration and the analyst should decide carefully as

to what external inflation index is most representative for the losses to be paid.
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Year (t)

1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
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CPi

34.0
36.1
37.3
38.8
42.4
47.5
§2.0
57.0
61.8
67.5
74.9
82.9
92.5
100.6
106.8
113.5
122.0
130.1
138.6
149.3
162.8
177.0
190.1
201.4
211.0
220.5
228.2
234.6
2421
250.6
260.8
272.8
285.6
297.1
310.1

Inflation %

6.18%
3.32%
4.02%
9.28%
12.03%
9.47%
9.62%
8.42%
9.22%
10.96%
10.68%
11.58%
8.76%
6.16%
6.27%
7.49%
6.64%
6.53%
7.72%
9.04%
8.72%
7.40%
5.94%
4.77%
4.50%
3.49%
2.80%
3.20%
3.51%
4.07%
4.60%
4.69%
4.03%
4.38%

Table 1

Xy

0.0327
0.039427
0.088728
0.113581
0.090514
0.091808
0.080852
0.088224
0.104026
0.101481
0.109574
0.083944
0.059806
0.060845
0.072218
0.064282
0.063289
0.074366
0.086565
0.083627
0.071401
0.057743
0.046565

0.04404
0.034325
0.027659
0.031469
0.034507
0.039896
0.044985
0.045853
0.039477
0.042826

X

0.059932
0.0327
0.039427
0.088728
0.113581
0.090514
0.091808
0.080852
0.088224
0.104026
0.101481
0.109574
0.083944
0.059806
0.060845
0.072218
0.064282
0.063289
0.074366
0.086565
0.083627
0.071401
0.057743
0.046565
0.04404
0.034325
0.027659
0.031469
0.034507
0.039896
0.044985
0.045853
0.039477

X = In(1+ Inflation %}

Slope
Intercept

Long-Term

Std Error

0.831857 r
0.010527 p*(1-r)

0.062605 p

0.014738 o
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Inflation Rate for Adjacent Years
y = 0.8319x + 0.0105

(1]

008

0.0

Rate in Period t

o0z

Rate in Period t-1

3. CALCULATING THE VARIANCE OF PAYMENTS

We proceed by showing the calculation of variance for a single payment and then building

the model step-by-step up to the covariance between two streams of payments.

3.1 Calculating the Variance of a Single Payment
A one year inflation factor (147 is lognormally distributed, which means that a loss payment
one year in the future — if unaffected by random factors other than inflation — would also be

lognormally distributed.

With no “mean reversion” (r =0), the coefficient of variation, CV, of the loss payment

would be yexplo?}—1. An inflaton factor two years out CPI(2) =(1+4,)-(1+1,) would
¥ 2

also be lognormally distributed, but the CV would increase to ,/expiZ -o? i—] .

The simplicity of this expression is due to the assumption that 7, and 7, are independent and
identically distributed, and also the fact that the product of two lognormal random variables

is also a lognormal random variable.
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If we introduce the concept of mean reversion such that r > 0, then the formula for the CV

of the single year factor does not change, but the two-year inflation index CPI(2) becomes:

Efi+i]

CPI(2) = (l+i,)-( (Hi‘)J'-(le).

The CV__, increases to become \/ exp{(l +(1+7r)? ) o’ }—1 .

The index for subsequent years is created in a similar manner. For n=3, we have

CPI3) = (l+il)-( (H"'.) )’.(Hiz).[( (“"I)Jr. (”"2)],.(1“3).

E[1+i)] Ell+i)) El+i,)

The CV,_, becomes yJexp{[l + 1+ 7)? + (1 + 7 +7%)?)- 0% }-1.

In the special case in which =1, we have a CV__, of Jexp{(1+ 2% +3? ) 0‘2}—1 .

More generally, the CV for 7 years of inflation is given by:

cv, = w/exp{n-azf—l for r= 0.

= n_ 2rQ=ry  ra-ry ) |
cv, = \/CXP{[(I_,.)Z a=r) +(1—r)2-(1—r2)) 0'} 1 for r <1

or, alternatively
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v, = \/exp{ﬂﬂlzﬂiﬂ.dz}_, for r=1

A more detailed derivation of these formulas is given in Appendix A.

We note that when the reversion term r is close to 1, changes in the inflation rate are
, 8

“persistent,” meaning that the inflation level will not return to its long-run average very

quickly. In these cases, the variance of a loss payment in the distant future will have a much

greater variance than under the “random draw” model with 7 = 0.

The table below shows the CV implied for a single payment at various points in the future

using different assumptions about the reversion parameter 7.

Sigma = 0.024996
CV. for Selected Reversion Parameters
n r=0 r=.50 r=.80 r=1
1 0.0250 0.0250 0.0250 0.0250
2 0.0354 0.0451 0.0515 0.0559
3 0.0433 © 0.0629 0.0799 0.0937
4 0.0500 0.0785 0.1090 0.1376
5 0.0559 0.0923 0.1380 0.1870

3.2 Calculating the Covariance Between Two Payments

Suppose that we have an inflation factor for a given number of years #, and a second factor
for ntk We quickly recognize that there must be a strong correlation since # of the n+4
yeats are common to both factors. Using the same mean reversion model, the correlation

coefficient can be written*

*The term Cov, , is a “scaled” value which is the dollars of covariance divided by the means of the losses

at times n and n+k. This is sometimes called the “coefficient of covariation” and is convenient notation
because of the parallel to the coefficient of variation (CV) used earlier.
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Cov,,

Ponsk = W .

The term in the numerator is proportional to the covariance, and is given as follows:

_ n_ rQ+r-a=ry  Ma-ry ) |
Cov,, = CXP{((I_r)z a-r) +(1—r)2-(1—r2) o 1 forr<1

or, alternatively

Cov,, = exp{%ﬁg($+k}dl}—l forr=1

Note also that Cov, , = CV.? when & =0.

Sigma = 0.025000
Reversion = 0.500000

Matrix of Correlation Coefficients
1 2 3 4 5
1 0.83188775 0.69611104 0.59742763 0.52484632
0.83188775 1 0.91052622 0.80678419 0.71882568
0.69611104 0.91052622 1 0.94009581 0.85838825
0.59742763 0.80678419 0.94009581 1 0.95526523
0.52484632 0.71882568 0.85838825 0.95526523 1

NnbdbwnN =

3.3 Calculating the Variance of a Stream of Payments
Given these terms, we are able to set up a matrix of correlation coefficients, or covariances,
in order to calculate the varance for a sum of payments. The full correlation structure

between the individual payments due to inflation is captured in this matrix.
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If we have a vector of N loss payments, P, and an N-by-N matrix of covariance terms such

that M (i, j) = Cov,

i~ for i< J, then we can calculate the variance for the stream of

payments as:

Var(P) = P-M-PT P = sum of all payments in the vector
Or equivalently,
N N
Var(P) = .3 P(i)-M(,j) P(j)

i=) j=t

3.4 Calculating the Covariance Between Two Streams of Payments

If we have two vectors of loss payments +P and , P, both with N elements, then the

covariance of the two sums can be calculated in a similar manner.

Cov(,P, ,P) = ,P-M. P

The cotrelation between the two payouts will be a single number, and generally a number
approaching 1.000, indicating a very strong correlation. This is because our model assumes
that both payment streams are directly affected by the inflation rate, and that inflation is the
only source of variability. In Section 4, we soften the first assumption by allowing different
degrees of sensitivity to inflation by line of business. In Section 5, we show how to bring in

other sources of variability.
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4. MEASURING THE SIGNIFICANCE OF INFLATION BY
SEGMENT

L
As mentioned above, the variance/covariance model assumes that the CPI directly affects
the amount of loss payment. This may not be exactly true, and we would want the ability to

control the degree to which loss development is dependent on inflation.
The degree of inflation for a given sk class (RC) will be controlled by a parameter p ¥,
which is applied as an exponent to the CPI. This parameter could be set equal to zero for

the cases in which a risk class is unaffected by inflation.

Adjusiéd Inflation Index for Risk Class A: ~ CPI+7

In calculating the time-series parameters for this adjusted index, the reversion parameter ris
unchanged regardless of the }; the sigma will change to become o —y-0. This

adjustment is easily incorporated into the CV calculation.

n 2-r-(1=r") rrd-r 2 2
= - . . -1
cv. JCXP{((l—r)Z (1-r) +(1—r)2-(]—r2)J vee }

Similatly, the covariance term, when there are two tisk classes, A and B, with different

degrees of dependence on inflation, is modified as below:

n re(+rt)-a-r" 2 1-rty 5
= - . vy -1
Cov,, CXP{[(I — a-ry + Q- Ye¥ O
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We note that this expression is the same as the eatlier calculation when ,¥=,¥ =1, and the

covariance is zero when either , ¥ or ¥ is zero.
The next question to address is the method for estimating the parameter ¥ for a given

business segment. We begin by defining a simple model for loss payments from a triangle.

The formulas below give a model ignoring inflation:

Cu = Q, B,
Where c¢,, = incremental loss paid in accident year y and development
period d. For example, ¢ 459 ; would be the amount paid

for accident year 1999 between 24 and 36 months.

@, = ameasure of exposure for accident year y, such as onlevel
premium. This can be supplied from external soutces or be
estimated from the triangle itself.

B, = a parameter representing the amount of development in

development petiod d .

This model is introduced for simplicity only. When we combine this simple two factor (AY

and development period) model with an assumption that incremental payments follow an
over-dispersed Poisson distribution, then the results match an all-year weighted average
chain-ladder calculation.

In order to include an inflation index in this model, we expand the expression with a term

including a CPI curve.
c:‘d = a, B, CPl(y+d-1)”

From this expanded model, we immediately notice that the no-inflation model is a special

case when ¥ =0, so that ¢, , = c;‘d . If payments are directly proportional to inflation, then
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we would expect ¥ =1; and if we expect a “leveraged” effect of inflation (say, in excess

layers) then ¥ >1.
Given an explicit model, as above, we are then able to estimate the parameter ) that
maximizes a likelihood function or minimizes some other error functdon. We also have

available the goodness-of-fit statistics to test the value of including inflation.

To illustrate, we will work with a small triangle of [cumulative] paid data:

AY 1 2 8 4 s & z
1998 13,822 26,045 34,915 41,064 45,228 47,942 49,730
1999 13,710 27,104 36,777 43,309 47,266 49,501
2000 14,409 28,805 38,328 44,772 48,022
2001 15,120 28,945 38,692 45,169
2002 13,344 25,970 34,922
2003 13,506 25,926
2004 14,765

The incremental paid losses from this triangle are then given by:

AY 1 2 3 4 El L] z
1998 13,822 12,223 8870 6149 4,164 2,714 1,788
1999 13,710 13,394 9,673 6532 3957 2,235
2000 14,409 14,396 9523 6444 4,250
2001 15120 13,825 9,747 6,477
2002 13,344 12626 8,952
2003 13,506 12,420
2004 14,765

Based on maximum likelihood estimation’, we have the following fitted parameters:

y gy (_’ é d
1998 49,730 1 0.2737
1999 51,347 2 0.2573
2000 53,571 3 0.1814
2001 54,089 4 0.1227
2002 49,018 5 0.0800
2003 48,824 6 0.0490
2004 53,946 7  0.0360
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These fitted values are equivalent to calculating the & ’s as the chain-ladder ultimates. The

fitted values from this model, corresponding to the actual incremental payments, are shown

in the triangle below.

AY
1998
1999
2000
2001
2002
2003
2004

1
13,611
14,054
14,662
14,804
13,416
13,363
14,765

2
12,796
13,212
13,784
13,917
12,612
12,563

3
9,023
9,316
9,720
9,813
8,893

4
6,099
6,298
6,571
6,634

5
3,978
4,107
4,285

The model is then expanded for the inflation adjustment.

y
1998
1999
2000
2001
2002
2003
2004

2y
49,730
48,043
46,709
43,867
37,028
34,448
35,499

NOOAWN=IQ

Ba
0.2761
0.2424
0.1593
0.1003
0.0609
0.0348
0.0239

jol]
2421
250.6
260.8
272.8
285.6
2971
310.1

With the fitted values including this inflation parameter are as follows:

AY
1998
1999
2000
2001
2002
2003
2004

1
13,732
14,046
14,587
14,759
13,440
13,348
14,765

2
12,764
13,172
13,796
13,978
12,595
12,578

3
8,962
9,327
9,783
9,808
8,887

4
6,075
6,331
6,571
6,625

5
3,981
4,106
4,285

6

2,435

2,514
index
1.000
1.035
1.077
1.127
1.180
1.227
1.281

6

2,430

2,519

7
1,788
Y Index”
1.655 1.000
1.059
1.131
1.218
1.315
1.403
1.506
7
1,788

For example, the first development period for AY 2003 has a fitted value equal to:

13,348 = 34,448 X .2761 X 1.403.

3 For this calculation, we will assume that each cell follows an Over-Dispersed Poisson (ODP) distribution
with a common variance/mean ratio ¢. Appendix A gives the full details of this model.
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The parameter value 1.655 acts as a “leveraging” effect on inflation, meaning that payments
increase at a faster rate than the CPI would indicate. However, in this example, as with most

real data sets, there is significant uncertainty in the estimate of the } parameter. The loss
development triangle simply is not a sufficient base for estimating it credibly. Informally, the
reason for this is that we can pick almost any value for ¥ and then fit @, and B, vectors
that reasonably approximate the historical loss development (see Appendix B for further
insight as to why this is the case). It is for this reason that we recommend that the ¥
parameter be selected by the model user rather than via a fitted model.

The example given above shows that the parameter ¥, for measuring the sensitivity to
inflation, often lacks great predictive value, that is é;.d is not much better than & _,. This

suggests that the use of an external inflation index in calculating varability needs to be
justified on @ priori theoretical grounds and not solely on statistical tests. As a starting

assumption, ¥ =1 for each nsk class is most reasonable.

The difficulty in estimating the parameter ¥ does not mean that losses are unaffected by
inflation, but merely that a triangle format is not a sufficient basis to discern what the

relationship to inflation is.

5. COMBINING OTHER SOURCES OF VARIABILITY

The discussion to this point has been limited to the variability strictly due to inflation.
Naturally the variability of loss payments is driven by many other sources, and we need to be
able to combine these different sources into a single calculation. Some of these other

sources would include:
¢ Changes in an injured person’s condition (recovery, deterioration, death)
¢ Newly reported claims not originally in the triangle (“true” IBNR)
¢ Legal or regulatory changes impacting the coverage provided in the insurance policy

These types of vanability are, arguably, independent of changes in the rate of inflation

and can therefore be treated as statistically independent.
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The most common method for including all types of variability is through the use of a
8 P 8
large simulation model; however, that is not necessary if we are interested just in the means

and variances of the payments.

Section 5 will follow the same logic as Section 3, by starting with a single payment and
then showing step-by-step how the calculations are generalized to produce a full covariance

matrix on payment streams.

5.1 Calculating the Variance of a Single Payment

Suppose that we have a random variable for the payment amount at a specific time /, and
denote this expected amount C,. The timing of the payment is known with certainty, and
we have an estimate of its mean E(C,)and variance Var(C,) from sources other than
inflation. These values may have come from a stochastic reserving model, or may have been

simply selected by a reserving actuary.

The next step is to assume that we have an estimate of the inflation index at time #, based

on the equations from Sections 3 and 4 above.

t 2-r-Q=r"y,  r*-q-r» 2 2
vV = — . . -1
v \/CXP{[a—r)Z (1-r) +(1—r)2-(1—r2)J M }

The inflation index will be represented by a second random variable b,, with 2 mean of
one E(b,)=1 and a varance of Var(h,)= CV?. We make the further assumption that the

inflation index is statistically independent of the other sources of vatiance in C,.

The variance of the product of the two random variables is then calculated as follows.
Var(b, - C,) = Var(b,)-Var(C,)+Var(b,)- E(C,)’ + E(b,)" -Var(C,)
The derivation of this expression is given in Appendix C.

For the reader familiar with the literature of the Casualty Actuarial Society, the
description to this point should not be surprising. In fact, the formulas are identical with
what is usually referred to as “mixing” parameters, and the use of the notaton “5” is a

deliberate choice to be consistent with this idea.
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The inflation index can be viewed as a “parameter variance” component with the total
variance above regrouped as follows.
Var(b,-C,) = Var(C,)-E(p?) + Var(b,)-E(C,)
%ﬁ J \ ~ J

Process Variance Parameter Variance

5.2 Calculating the Covariance of a Two Payments

If we have two payments, taking place at different times, tand t+£, then the covariance

between these two payments is calculated in a formula that generalizes the variance formula

above.
Cov(bl ) Cl ’bl+k ' Cl+k ) = Cov(bl ’bl+k ) COV(C, ’ Cl+k )
+ COV(b, ’b/+k ) E(Ct ) E(Cr+k )+ E(bl ) E(b1+k ) COV(CC,CH,‘ )

For the special case of £=0, this expression reduces to the variance formula above.

5.3 Calculating the Variance of a Stream of Payments

The variance of a stream of payments is a linear combination of the vatance and

covariance terms calculated above.

We again start with a vector of N expected loss payments,IB ={E(c, N, We now

="

assume that we also know the covariance matrix from sources other than inflation,

MG, j)=CoVC,.C,).

As in Section 3.3, we also create an N-by-N matrix of covartance terms for the inflation

indices corresponding to each loss payment: M, (i, j) = Cov(b,. .b; )

The covatiance matrix, representing each pair of loss payments in the payment stream

P, , is calculated by applying the formula from Section 5.2 on an element-by-element basis.
MycGd) = M, G, ) Mc G, )+ M, G, ) E(C) EC, )+ MG )

The variance of the sum of all payments in the stream is then calculated as the sum of all

entries in this combined matrix M, .

Once again, this may be viewed as a combination of a matrix of expected “process

variance” and a matrix of “parameter variance” elements.
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MG ) = MG, j)-{1+M,G D)+ M, G, j)-E(C,) E(C;)

- AN v
" "

Process Variance Parameter Variance

We may also note that the sum of the “parameter variance” elements is identical to what
we denoted Var(P) = P-M - P in Section 3.3.

At this point the reader may have a concern about whete all of these numbers come
from. The matrix of covariances related to inflaion M, is created using the formulas from
Section 3, but do we really have all of the covariances from other sources needed for M, ?

It may be that these are not available and a further simplification is needed.

The easiest way to simplify this process is to include an assumption that the ultimate loss
C and the variance of the ultimate loss Var(C) are known. We further assume that the
payment pattern on a percent basis is fixed and certain. That is, the dollar amount of
ultimate loss may vary, the same percent will always be paid in the first year. By this
assumption, all of the C, payments are perfectly correlated and have the same coefficient of
variation (standard deviation divided by mean) CV,. The elements of the M . matrix are
then easily defined as follows.

MG, ) = E(C)-EC,)-cvi

The overall covariance matrix then simplifies greatly.

MG, j) = MG, j) McG, j)+M,G, j)-EC,) E(C,)+ MG, j)
becomes
M,cG,j) = Ve +(t+cve)-m, 6 H}-E(C,) E(c,)

5.4 Calculating the Covariance between Two Streams of Payments

The example of how to combine the variance due to inflaton with variance from other
sources can now be generalized to the discussion of the covarance between two reserve risk

classes such as different lines of business.

If we have two risk classes A and B, each with selected payment streams such that we

create an NxN matrix of covariance terms between each of the payments. As with the single
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payment stream example, this can be set up as a matrix.
MG = COV(ACi’ECj) ,
To combine this with the variance due to inflation, we then use the following formula.
My ) = MyG )M 4o )+ My G, ) E(,C,)- E(4C, )+ M 4G, )

If the two reserve segments are not correlated based on any factors other than inflation,

then all the elements of this matrix are zero, and no calculations are necessary.

We may also simplify the matrix if, as in the previous section, we introduce the
assumption that the percent payment pattern for each risk class is fixed and known. The
matrix M ,, then becomes a constant amount times the cross-product of the payments.
The cotrelation coefficient p,, for sources other than inflation is introduced.

MpG.j) = E(Aci)'E(BCj)'{pAB -CV, 'CVB}

This again leads to a simpler version of the covariance matrix.

M, G0 = {p,w -CV,-CV, +(l+p.48 -CV, 'CVB)'Mb(i’j)}'E(Aci)'E(BCj)

The covariance term between the two risk classes is the sum of all of the terms in this
matrix.

The correlation coefficient p, ,, (including both inflation and other sources) between

these two risk classes is then calculated as follows.
sumiM, 4 } = _Pas’ CV,-CVy+(1+p,5 - CV, -CV,)- 3%,
Jsum{M, FsumiM, b flevi+lvovi) =2 evEi+(+ov2) 52}

Prap =

sumiM, i, j)- E(,C,)- E(,C, )}/ E(,C)
sum{Mh(i’j)'E(Bci)'E(Bcj)}/E(‘BC)Z
sz = sum{Mh(i’j)'E(AC:‘)'E(Bcj)}/{E(AC)'E(BC)}

These expressions can also be written in matrix notation.

2
where I

I

A Var(, P)

Var(,P) = ,P-M, P’

AIS'Mb'Ai’T
z

22, = Cov(,P,,P) = ,P-M, P’

80 Casualty Actuarial Society Forum, Fall 2006



Variance and Covariance in Reserves Due to Inflation

In these formulas, we have included the same inflation covariance matrix M,. However,

if we include adjustment factors other than ,y=,¥ =1, then we would need to adjust the

matrices as shown in Section 4.

With this formula, we are able to combine the correlation due to inflation with correlation

from other sources without having to define all of the inter-dependencies between individual

payments. If the user is uncomfortable with assuming that the payout patterns do not vary,

then the more general formulas can be run.

6. RESULTS AND DISCUSSION

Having completed a fairly rigorous description of the formulas for calculating covariance

due to inflation, it is worthwhile showing a simplified numerical example to illustrate how

this can be implemented in practice.

We begin with the inflation model defined in Section 2, in which we calculated:

Reversion parameter

Variability Sigma

o

r

.831857

.014738

If both reserve risk classes A and B are directly proportional to this infladon index, such

that ,y=,¥ =1, then we have an inflation covatiance matrix M, as show below (each

element of the matrix being one calculation of the formula in Section 3.2).

Matrix of Covariance Factors M,

0.00108

0.00040
0.00095
0.00140
0.00178
0.00210
0.00236
0.00258
0.00276
0.00291
0.00304

0.00055
0.00140
0.00233
0.00311
0.00375
0.00429
0.00473
0.00510
0.00541
0.00567

0.00067
0.00178
0.00311
0.00443
0.00553
0.00644
0.00720
0.00784
0.00837
0.00881

0.00078
0.00210
0.00375
0.00553
0.00722
0.00864
0.00982
0.01080
0.01161
0.01229

0.00086
0.00236
0.00429
0.00644
0.00864
0.01069
0.01240
0.01382
0.01501
0.01600

0.00094
0.00258
0.00473
0.00720
0.00982
0.01240
0.01477
0.01675
0.01840
0.01977

0.00100
0.00276
0.00510
0.00784
0.01080
0.01382
0.01675
0.01941
0.02163
0.02348

0.00105
0.00291
0.00541
0.00837
0.01161
0.01501
0.01840
0.02163
0.02456
0.02699

0.00109
0.00304
0.00567
0.00881
0.01229
0.01600
0.01977
0.02348
0.02699
0.03014

We then introduce two resetve segments, having ten year payment patterns as below.
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Risk Class A Risk Class B

Year AP sP

1 46.40% 15.20%
2 12.10% 11.60%
3 8.40% 10.50%
4 6.80% 10.00%
5 5.70% 9.40%
6 4.90% 9.10%
7 4.50% 8.90%
8 4.00% 8.60%
9 3.70% 8.40%
10 3.50% 8.30%

From this information, we can calculate the CVs from inflation as follows:

.0470?

22 = Var(,P) P-M, P
z; Var(, P)

08032

o
.l
]

PM,
32 = Cov(,P,,P) =,P-M,,P = 06102

The cotrelation coefficient from inflation only is then estimated as follows.

2, 06107

[£2.32 ~ .0470-.0803

This very significant correlation is, again, due to the fact that inflation is the only factor

989

contributing to the vatiance of either reserve sk class.

We can generalize this by including variability from other sources. We will assume that
the risk classes A and B have CVs from sources other than inflation of .100 and .160
respectively, and that these are independent. Further, we will include the simplifying
assumption that the ultimate losses are variable but that the percentage payout patterns are
fixed. The resulting correlation coefficient, reflecting all sources of variance is given below.

i
Jevz+a+cevhy22)(cv +a+cvy)-12)
_ 0610’ _
~ J100* +(1+.100%)- 04707 )- (1607 + (1+.160%) - 0803?)

p b-AB

188

All of these numbers are 'meant purely for illustration purposes, but they do show that the

formulas produce results in reasonable ranges.
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The general process for estimating variance and covariance due to inflation can be

summarized in the steps below:
® Select an external index, such as a component of the CPI
e Estimate the variance (0°*) and reversion (r) patameters for the inflation index
¢  Select a default inflation-sensitivity parameter ¥ for each risk class
¢ Estimate the future loss payment stream for each risk class
¢ Calculate the variance of each risk class due to infladon

® Calculate the covariance between each pair of risk classes

7. CONCLUSIONS

The formulas outlined in this paper provide a very simple method for estimating the
sensitivity of losses and reserves to movement in inflation rates. The advantages of this
approach may be summarized as below:

1) The basic idea is very easy to explain: loss payments move with inflation

2) Variability due to inflation can be linked to economic forecast models

3) The calculation of variances and correlation can be performed in an Excel

spreadsheet in closed form

The chief disadvantage that is identified is that external inflation indices, such as
components of the consumer price index (CPI) have not been shown to be significant

explanatory variables for movement in insurance loss amounts.

In spite of the difficulty in estimating the sensitivity parameter ¥, however, we have a
reasonable baseline value of ¥ =1. The model therefore can provide a correlation structure

between reserve risk classes based on external knowledge of inflation with a minimal need

for arbitrary assumptions.
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Appendix A: Derivation of Key Formulas

This appendix provides a more detailed derivation of the key variance and covariance
formulas given in the body of the paper.

The formulas in this paper are able to be written in a compact form by capitalizing on a
useful property of the lognormal distribution; namely that the product of lognormal random
variables is again a lognormal random variable. Analogously, the sum of normal (Gaussian)
random variables is again a normal random variable.

The autoregressive model, AR(1), is written in a recursive linear form, after taking the
logarithms of the inflation trend factots.

X, = X_ -r+b+o-e,
X, logarithm of 1+i, (i=the inflation rate at time ¢)

e,  standard normal random variable, e, o« Normal(0,1)

The distribution of X, conditional upon a known value for X, |, is then given as

>
X,|X,, < Normal(X, -r+b,o).

The variance of the conditional random variable is then
var(X,|1X,) = o’

The random variable for the logarithm of the inflation rate two or more years out is

found by expanding the recursive expression:

X1|X1—2

(X, r+b+0e,)r+b+oe
XX, = (X, r+b+o0e,)r+b+0-e,)r+b+o0-e

This expanding of the recursive formula can be generalized as
X, 1X, = Xoor' + Y (b+oee)r.
i=i
The variance for this more general form is therefore given as below.

X X, o< Normal[X0 or +b-Zr"",0'~ ’Zr“"“]
i=l i=!

The variance for the random variable conditional upon a point “#” years prior is then:
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2
21_"’

5 if r<1

Var(X' IXo) = o'z.zrz-(l—i) .

i=l I-r

or  Var(X,|X,) = ot ‘ if r=1

These and subsequent simplifications are possible based on three fundamental identities.

Sk o= 14243+ +(n-N+n = ”‘(';H)
k=1

Tkt = 124204304k (nol)?an? = 2D (204D

k=1 6
O kel 1 2 3 2 1 1-r"
Zr o=l Art AT

k=1 I1-r

The random variable X, represents the inflation rate “#’ years in the future, and the
expression Var(X,| X,) is the variance around that rate. For our purposes, we need the
variance of the inflation index at this future point; the index includes the variances of all of
the annual inflation rates from the base time to the future period.

For this next step, we must remember that the inflation rate at a given point in the future

is correlated with the inflation rates at subsequent points. This implies that the normal error
terms ¢; are included multiple times in the summation below.
(X, +X,+-+X,X,) = Yx,1%,) = Z{XO ord +2(b+a~e,.)-rf-'}
=] = i=l
If we make the substimtion S, =(X, + X, +--+ X, | X,), then the random variable
can be written more compactly as below.
n J o n i
S, = E5)+0-31Ye rl = ES)+a- S, Y
=1 Lisl =1

In order to calculate the variance for this summation, we make use of the following

relationships.
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Var(s,) = E(s?)-E(s, ) and  Ele,)=0 Vi

The variance for the sum of these annual rates therefore requires the collapsing of the

double summation.
" ; 2 . V2
Var(s,) = o _Z(irm) =g Z[]_’J
= \i=l A\ 1-r

This summation can be further simplified as shown below:

Var(S = (1_ ) Z( 2rj+r2j)

2 n 2n
_ _0_2.{,_2,.(1—r ]+,2.(1—r2 }}
(1-r) 1-r 1-r

Alternatively, for the special case in which r =1, we can write

2 n-(n+)-2n+l)
— 6

Var(S,) = o

The final step for the varance calculation is to translate the variance of the normal

random variable X, into the expression for the CV of the lognormal random variable.

We can accomplish this by ﬁxakhg note of the following relationship®.

vy - ) e

This provides the translation to all of the formulas given in section 3.1 of the paper.

By analogy, there is an expression for the [standardized] covanance of two random

variables,

* As the reader might expect, this relationship holds when X is a normal random variable, but it is not
generally true for other distributions.
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COV‘ (ex,ey) = Cov(ex,ey) - eCov(X.Y) -1

Eiex iE‘e') -

For this covariance expression, we recall that we are looking for the relationship between

two sums of random variables (X, + X, ++--X,) and (XI+X2+---+X"+---+X"+‘)
which we may again denote S, and §,,, for convenience.

s. = Es,)+o Z{ Z}

j= i=]

n+k i
Sn+k = E(Sn+k ) +o- z {en+l‘+l—j : i r }

=i i=l

oo o, $)+ 815

=l j=n+l i=|

The logic for calculating the covariance term Cov(S,,S,,, ) is similar to that used for the

variance above.

Cov(sn’sm-k) E(S, S,u)- (Sn)'E(Sn+k)

cots. ) = o S £ (£ - 12 - -0

i=l i=l
- o’ —dn-r. 1-r" _ 1-r" ey 1-—r22'l
a-nr I-r 1-r 1-r
2 N — pln
=2 nrasy [ 12 e 1_'2
(-r) 1-r 1-r
For the special case in which r =1, we can write

Cov(S,,S,) = azg{j-w)} = o {2+ jk}

7=
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_ 0_2.{n-(n+1)~(2n+1)+n~(n+l).k}.
6 2

This completes the derivation of the covariance terms given in section 3.2 of the paper.

As a final observation, we may note that the CV and Covarance exptessions are
dependent upon O and r (the reversion parameter), but do not involve the intercept b or
the starting point X,. In other words, we can estimate the variance relative to the mean

level of the reserves without having to know the current or long-term inflation rates.
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Appendix B: Chain-Ladder ODP Model

The over-dispersed Poisson (ODP) model is useful to illustrate the ideas in this paper

since it conveniently balances to the well known chain-ladder reserving method.

We define an incremental loss payment in year y and development period d to be

distributed as ODP. The distribution is defined as follows:

( ) U, Galt ~Hya!®
Probability Function: Proble ) = | = -
robability Function rob\c, , ( p) ) m
Mean: E (C,-‘d ) = Hyg

Variance: Var(c“.‘d ) = ¢-u vd

The parameter ¢ is the “dispersion parameter” and represents a constant variance-to-
mean ratio. This parameter will be assumed to be fixed and known, and constant for all
accident years and development periods. Mathematically it is just a scaling factor that
changes a standard Poisson distribution, defined on the integers {0, 1, 2, 3, ...} to an ODP
distribution, defined on evenly spaced values {0, ¢,2¢,3¢,...}.

The mean of each cell in the development triangle will then be defined as:
:u.\-,d = E(C,\xtl) = a)' 'ﬂd

In order to calculate the maximum likelihood estimation (MLE) values for these
parameters, we need to evaluate the following expression.

n_ n=y+l

LogLikelihood = Y {%’"—'ln(a_‘. -ﬁd)—%-ln(;a)—a-"f d -ln((c).'d/¢)!)}

y=l d=l

However, since we are assuming that the dispersion parameter is fixed, we do not need to
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include it in our likelihood calculation. Instead, we use a quasi-likelihood (QLL) expression
including only the portion of the LogLikelihood that is dependent on @, and S, .
n_ n=y+
QLL = z Z{C)',d . ln(a_\' . ﬁd )— a_v : ﬂd}
v=l d=l
The derivatives with respect to the two parameters are set to zero.

aQLL _ "-‘.H{C".J ﬁ} : 0
—_= —- 5, =

da, o

and

1
o

BQLL _ n—d+l{c}'.d }
aﬂd y=1 !

The derivatives imply that the MLE values satisfy two conditions:

n=y+1 n—y+l n=d+1 n=d+l

ZCM = Za).-ﬂd and ZC_‘..,, = Za).-ﬂd Vyd.
d=l ¥y=l r=1

d=1

That is, the row and column totals of the fitted values must equal the row and column

totals of the original incremental triangle. Because these conditions do not result in 2 unique
n n

set of parameters, we can add one more constraint Z B, =1, which results in ¢, = Zcu .
d=l d=l

These constraints then mean that the MLE parameters are equivalent to the values in a

standard chain-ladder reserve estimate.

This model can then be expanded to include estimates of trend based on the CPL:
K = Elc,,) = a B, CPI(y+d-1)"

n n=y+l

oLL = ZZ{C.\-,d'ln(a,.'ﬂd-CPI(y+d-1)’)—a,.-,Hd-CPI(y+d—1)7}.

y=l d=i
We find from this expression that the following conditions must again be met:

n=y+1’ ’ n-y+l n—d+ n=d+l

C_\‘.d = Zﬂ)‘.d and Zc,\‘.d = zﬂ)'.d Vy!d .

d=) d=1 ¥=l y=l
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We must also add the derivative with respect to the CPI curve, y:

%LL - 3%, mcPiy+d-D)-a, B, biCPIy+d-D)-CPIy+d-1y} = 0
y=l d=]

Which is equivalent to
n n-y+l n_n=y+l
) ﬁ ,0 -WMCPIG+d-D)} = 3 Yy, In(CPIy+d -D)}-
y=1 d=l y=1 d=l

Unfortunately, there is no longer a convenient closed-form solution fot calculating the

model parameters, though it can be somewhat simplified using the relation below:
n=d+l
€y
= et
ﬂ d T p-d+l *

Sla,-cPI(y+d-1y}

el

The parameters in the model including the external CPI values must be estimated via an

iterative calculation. This does not create any great difficulty in our model.

What is more interesting, however, is the relatively little improvement in model fit that is
seen when the CPI values are introduced. It makes intuitive sense that loss payments should
follow inflation, so why does introducing inflation as an explanatory variable add so little to

the goodness of fit?

The answer is that a standard chain-ladder or MLE calculation is already estimating many
parameters: one for each accident year @, and one for each of the first #-1 development
periods B, (by constraining these to add to 1.00 we reduce the model by one parametet).
This means that in a triangle with n years, we will have n(n+1)/2 data points to estimate

2n-1 patameters; for a 10-year triangle we have 55 incremental payments to estimate 19
pata.meters. The effects of inflation are “buried” in out otherwise over-parameterized

model.
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To see this more clearly, we will introduce one more model in which the inflation rate i

is assumed to be constant, and is estimated as a parameter of the model.
o y+d
ﬂy.d = E(c_\'.d) = a_v 'ﬁd '(1+l))

The quasi-likelihood function is given as follows.

nn=y+l

oL = ¥ >k, il B, -a+iy)-a, B, ariy )
y=l d=l

Taking the derivative with respect to the inflation rate i, we have

n n=y+i . d
aQJ = {M—ay-ﬂd-(y+d)-(l+i)"'+'l"} = 0

ai v=l d=1 1+
Or equivalently,
JdQLL LRSS
0L iy o) = o

v=t d=

We may note that this condition for the derivative of the loglikelihood with respect to i will
automatically be met if we first calculate @, and f3, via the chain-ladder method (assuming

no inflation), and then adjust the numbers as:
o, = a1+ B = B,-a+i™
Suchthat @, -8, -(1+i)™ = a,-A+)™-f,-A+D)™ A+ = a,-f,

The MLE for a model with a constant inflation rate is therefore equal to the chain-ladder
model with no inflation.

92 Casualty Actuarial Society Forum, Fall 2006



Variance and Covariance in Reserves Due to Inflation

Appendix C: Variance and Covariance of Products of Random Variables

The general form of the variance of a single random variable X , and its covariance with

a second random variable Y , are expressed in the following familiar equations.
Var(x) = E(X?)-E(x)
Cov(X,Y) = E(X-Y)-E(X) E{)
The variance of the product of these two random variables has a somewhat more

complex expression:
Var(XY) = E(x?-v?)-E(X)-E(y)
If X and Y are independent, then this can be re-written as follows.

Var(X -Y) = Var(X)-Var(Y)+Var(X)-E(Y)* +Var(Y) - E(X )

{E(x?)- E(x 7 }He(r?)- EC)}

Proof Var(X)-Var(Y)

]

E(x?) E(r?)+ E(X) - E(¥)
- E(x?)E¥)-E(x) E(r?)

E(Xz)-‘E(Yz)—E(X)z -E(y)?

]

- E(x?)-E()+E(X) E{Y)
- E(x)-E(r?)+E(X) E(x)

{E(x? . v?)- E(x ) - E(r)}
- {e(x?)- E(x )} @YY
~ {E(?)- E@)}E(x )

Var(X)-Var(Y) = Var(X-Y)-Var(X) E(Y)* —Var(Y) E(X)’
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In a similar fashion, the covariance between two products of random variables can be

calculated using the expression below.
Cov(X,-Y,,X,-Y,) = E(X,-Y,-X,-Y,)-E(X,)) E{¥,)- E(X,)- EZ,)\

Again, if the X ’s and Y ’s are independent, the covarance formula can be re-written as
follows.
Cov(X,-Y,,X,-Y,) = Cov(X,-Y,)-Cov(X,-Y,)
+ Cov(X,-X,) E(,) E(Y,)+Cov(Y, -Y,) E(X,) E(X,)

The proof follows a similar logic as above for the variance calculation.

~

Proof  Cov(X,-X,)-Cov(Y,-Y,)

{E(Xl 'Xz)_E(Xl)'E(Xz)}'{E(Yl 'Yz)'E(Yl)'E(Yz)}

E(X,-X,) E(Y,-Y,)+ E(X,)- E(X,)- E(Y,)- E(Y,)

- E(X,-X,)-E(Y,) E(Y,)

- E(Yl 'Yz)’E(Xl)'E(Xz)

{E(X, - X,)-E(Y, -Y,)- B(X,) E(X,)- E(v,)- E(Y, )}
- {e(x, X,)-E(v)- E(r,)- E(X,)- E(X,)- E(v,)- E(Y, )}

- {E(Yl'Yz)'E(Xl)'E(Xz)"E(Xl)'E(X ) (1) E(Y )}

Cov(X,-Y,,X,-Y,)
- Cov(X,-X,) E(Y,)-E(Y,)
- CovlY, Y,) E(X,) E(X,) QED.
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“Adjusting & Other” Reserves According to the “Loss-
Activity Method”

Paul B. Deemer, FCAS, MAAA

Abstract
This paper presents an additional method for calculation “adjusting & other” claim handling
expenses. The method is contrasted with other methods present in actuarial literature.

Keywords. Reserving, ULAE, Adjusting and Other Expenses, Claim Handling.

1. INTRODUCTION

Within the scope of the resetving exercise, establishing reserves for Adjusting & Other
(“A&QO”) loss related expenses generally comes last, and in many respects are an after thought.
The primary reason for this is the necessity of having established proper reserve levels for losses
before attempting to establish reserves for expenses related to managing these losses. An
additional factor in the low attention given to this resetve component is the relatively few

methods available. This paper presents an additional method for reserving these losses.

The actuarial literature addressing the task of resetving Adjusting & Other loss related
expenses includes “aggregate” methods which use loss data at a high level and are, generally
speaking, less rigorous. These methods include the classical “paid-to-paid” method and the
vatiation proposed by John Kittel. Other methods, such as those offered by Wendy Johnson,
Donald Mango and Craig Allen are more intensive in the usage of data and assumptions. The
“loss-activity” approach is properly considered with the former, and thus a detailed compatison
is offered. Nonetheless, I will present a discussion contrasting the “loss-activity” method to the

Johnson method.

2. APPROACHES TO “ADJUSTING & OTHER” RESERVING

2.1 The Reserving Mindset

As a preface to this paper, it is necessary to frame the discussion with the most general
parameters and motivation for loss reserving, The resetrving exercise is an effort to reflect

ultimate financial reality under all insurance obligations for which the enterprise is liable (losses)
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or due (premiums). At times the actuarial usage of professional jargon is loose, which can result

in a redundant or misleading understanding, What is assumed in the following presentation is:
1. Ata certain date, the organization ceases earning new exposures.
2. The organization is not responsible for events occurring beyond that point in time.

3. The organization is responsible for events occurring prior to that point in time, even

if made aware of them after that date.

4. “Runoff”, as used below, reflects this situation: the organization is settling liabilities
previously incurred and not incurring new obligations. This term is not used to imply
a “fire-sale” of liabilities, “discounting” or any other term related to an insurance

insolvency.

With this backdrop, it can be seen that the reserving mindset is focused on the ultimate
answer when all uncertainties and contingencies have emerged (for losses, all claims are closed).
As time passes the financial uncertainties of which reserving is concerned will move, to an ever
larger degree, from estimate to actual. The reserving exercise is an attempt to determine the

ultimate values at point where uncertainty remains.

Itis important to establish that a valid methodology for reserving “Adjusting & Other” loss
related expenses should explicitly recognize that these reserves are for expenses which are
second-order in relation to underlying losses. Stated another way, unless we have a reported
claim, a notice of loss or efforts expended in relation to a reported posential claim, there can be
no claim handling expenses. Fitst we have to have claims. Further, it is fundamentally intuitive
that “adjusting & other” costs have a linear relationship to claim activity. The more claims being
reported, the larger the claim function will need to be to handle the volume and vice-versa. This
is embedded in the most widely used “adjusting & other” reserving method, the classical “paid-
to-paid” method.

2.2 Destination: “A&0O” Cost Per Unit of “Loss-Activity”
Total “A&O” expenditures in a given year are a known item available from accounting

exhibits. What is needed, to make these expenses useful within the context of reserving, is an
accurate proxy of what to contrast these costs with. As claim department salary is the vast

majority of the “A&O” expense, the crucial task is finding a numerical proxy for the claim
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department’s use of their time. For this method, I have called this proxy “loss-activity”. “Loss-

Activity” is defined to be the sum of five components:

1) Curtent Accident Yeat Paid + Case Reserve Reported Losses: These are claims
incurred and reported in the most recent accident year. For property claims, they will
generally be reported and closed within the year and the repotted value is a good
representation of their value. For casualty claims, many of these will not be closed at the end
of the year and will be subject to future revisions. In the context of financial reporting, an
example would be the direct and assumed loss payments plus the direct and assumed case
basis unpaid losses (Schedule P, Part 1) for Accident Year 2004 in the 2004 Annual
Statement.

2) Current Accident Year Paid Defense and Cost Containment (DCC): This is the
DCC (formerly ALAE) component of newly reported claims; as no reserves are established
at the case level for this component, paid data suffices. If the claim practice was to establish
case reserves for DCC, they should be included here. In the context of financial reporting,
an example would be the direct and assumed defense and cost containment payments
(Schedule P, Part 1) for Accident Year 2004 in the 2004 Annual Statement.

3) Prior Accident Years’ Reported Losses: This reptesents the reporting of lagged IBNR
claims or adjustment in value of claims reported in previous years. Note: as with component
2, we would also want to include DCC changes if case tesetves were present for that
component. In the context of financial reporting, the approach would be similar to that for
component (1); only we are looking for the change in paid losses + case resetves for 2003

and prior accident years from the 2003 Annual Statement to the 2004 Annual Statement.

4) Prior Accident Years’ Paid Losses: This represents the payment in the current
calendar year on claims which are from prior accident years which have not yet closed or in
some cases bad not yet been reported. In the context of financial reporting, the approach
would be similar to that for component (3); only we are looking for the change in paid losses
for the 2003 and prior accident yeats from the 2003 Annual Statement to the 2004 Annual
Statement.

5) Prior Accident Years’ Paid Defense and Cost Containment: This represents the
payment of DCC on claims which are from prior accident years and have not yet closed. In

the context of financial reporting, the approach would be similar to that for component (3);
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only we are looking for the change in paid DCC for the 2003 and prior accident yeats from
the 2003 Annual Statement to the 2004 Annual Statement.

While an initial look at these components leaves one wondering as to the reason for
what appears to be an artificial summation of data, further consideration using first
principles will reveal that these are an excellent proxy for all of the activity of a claim
depattment within a given year. It should be noted that all loss and expense components are

included gross of salvage, subrogation and reinsurance recoveries.

2.3 Application
The next step is to relate the total claim handling expense in a year to the total “loss-activity”
and thus get a ratio which tells us the “A&QO” cost per unit of activity.

Total" A & O" Expenses
Total " Loss - Activity"

" A& O" Cost Ratio =

To detive the indicated “A&O” reserve, we multiply the Cost Ratio times the anticipated
future “loss-activity”. Revisiting the definition of “loss-activity”, we see that in a prospective

look the first two components fall away.

1) Current Accident Year Reported Losses = 0

2) Current Accident Year Paid Defense and Cost Containment = 0
3) Total Unreported Losses

4) Total Unpaid Losses

5) Total Unpaid Defense and Cost Containment

For purposes of reserving, we no longer have losses occutring; all losses have occurred and
what remains is the reporting of IBNR claims and the settling of claims which have and have
note been reported. Thus, components (1) and (2) are zero. Component (3) is equal to the
calculated ultimate losses less the paid + case reserve losses already reported; component (3)
includes pure IBNR claims and development on reported claims. The fourth component is
equal to the calculated ultimate losses less paid to date losses, which includes all pure IBNR
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claims and the settling of claims which have been reported. Component (5) is the calculated
ultimate DCC less the paid to date DCC. Collectively, components (3) + (4) + (5) are the
anticipated future “Loss-Activity”. The A&O treserve is the product of the future “Loss-
Activity” and the calculated Cost Ratio:

“A&O” Reserve = Cost Ratio * Anticipated “Loss-Activity”

3. APPLICATION OF THE METHOD

I now present this method applied to the loss experience of a medium sized insurance
company writing a mix of property and casualty coverages across both commercial and personal
lines. As indicated, all numbers can be easily located within an actuary’s reserving work papers

or a company’s Schedule P data.

Historical Loss Activity ($ Millions)
All Data Gross of Salvage and Subrogation
Prior
Cutrent AY Prior AYs | Prior AYs | AYs
Reported | Current AY | Losses Losses DCC | Total “Loss
Calendar Losses DCC Paid | Reported Paid Paid Activity”

Year o @ 0 0 G) | 1+2+3+4+5
2000 207.3 0.8 16.1 74.9 7.4 306.5
2001 241.6 1.9 32.4 106.2 8.1 390.2
2002 225.1 1.6 36.1 105.3 10.9 379.0
2003 244.4 2.0 53.7 118.8 14.3 433.2
2004 281.6 2.1 33.2 120.1 19.1 456.1

All of the “Loss-Activity” components suggest an organization which is growing, which is
indeed the case. To pull these numbers from actuarial reserving work papers, the simplest
method is to take the difference of the two most recent diagonals in the loss triangles. For
reported losses, the most recent accident year is allocated to column (1), and the remainder of
the incremental diagonal to column (3). For paid losses, the most recent accident year is
disregarded and the remainder of the incremental diagonal is in column (4). For paid DCC, the
most recent accident year is in column (2) and the remainder of the incremental diagonal is in

column (5).
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Historical “Adjusting & Other” Cost Ratios

“Adjusting
& Other” | Total “Loss
Year Paid ($M) | Activity” ($M) | Cost Ratio

2000 17.68 306.5 5.8%
2001 18.69 390.2 4.8
2002 21.32 379.0 5.6
2003 24.93 433.2 5.8
2004 26.16 456.1 5.7

The 2001 cost ratio is cleatly an exceptional value. Upon closer inspection, this is largely due
to the presence of significant property-catastrophe losses (see the “Cutrent AY Losses
Reported” column). These losses are present in the denominator of the Cost Ratio calculation
and serve to lower the indicated ratio. This relationship (between “adjusting & other” costs and
shock losses in a calendar year) is a distortion to this reserving exercise. Thus, it is preferable to
remove the effect of these events from both the losses and the “adjusting & other” expenses. If
data is not available to remove the impact of the shock loss event, data points containing
significant property catastrophe or other aberrational losses should be given diminished (ot even
zero) credibility when selecting a final Cost Ratio. For purposes of this demonstration, property-

catastrophe losses have been excluded from the calculation of total “loss-activity”.

Historical Cost Ratios
(Adjusted for CY ‘Shock’ Loss Activity)
Adjusted
“A&O” “LOSS “A&0O” Cost

Year Paid ACTIVITY” Ratio
2000 17.22 298.5 5.8%
2001 18.49 344.6 5.3
2002 21.32 379.0 5.6
2003 24.93 433.2 5.8
2004 26.16 456.1 5.7

If the method and proxies are valid, we would expect to find a “per-unit” cost that is not

trending upward or downward in any material way, as is the case with this approach. Using a
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straight average of the five data points, we have a cost of $0.0564 per $1.00 of “loss-activity”.
With our Cost Ratio in hand, we next need to calculate the amount of anticipated future “loss-
activity” in order to produce an indicated “A&O” reserve. The future loss activity is easily
attained from the teserving work papers. As noted, the first two components of “loss-activity”

are zero since the reserving exercise is not concerned with obligations incurred in the future.
1) Current Accident Year Reported Losses = 0
2) Cutrent Accident Year Paid Defense and Cost Containment = 0

3) Total Unreported Losses = Ultimate Losses - Paid-to-Date Losses - Case Reserve
Losses = $100.0 M

4) Total Unpaid Losses = Ultimate Losses ~ Paid-to-Date Losses = $438.0 M

5) Total Unpaid Defense and Cost Containment = Ultimate DCC - Paid to Date
DCC=%69.5M

As noted above, if the company’s practice is to establish case reserves for DCC expenses,
then the DCC component would be handled identical to losses. For the company in the
example, case reserves for DCC are not established. Adding up the components, there is 100 +
438 + 69.5 = 607.5 M in future “loss-activity”. This is larger than the company’s catried
reserves, due to the inclusion of both unreported and unpaid losses. The product of this

anticipated future “loss-activity” and the Cost Ratio is the indicated reserve under this method:

Future “Loss-Activity” X Cost Ratio = 607,500,000 X 5.64% = 34,263,000

3.1 Apparent Difficulties Using the “Loss-Activity” Approach
3.1.1 Inclusion of both reported and paidlosses for the older accident years.

Certainly there may be some losses in both buckets, but for claims which are still open
after a year this is arguably very appropriate. These claims may litigate and settle in a future
year after the reserve is established. This requires claim staff resources. Thus if we only use
reported losses we would be blind to this activity unless the established reserve was to
change. Additionally, if we did not use rgported losses we would not reflect the establishment of
IBNR claims, which is very material to the casualty lines of business. For these reasons, the
method uses both paid and reported losses, consistent with the reasoning presented by John

Kittel in his 1986 paper. Shifting from a “going-concern” mindset to a “runoff” mindset
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makes it apparent that establishment of the case reserve and the payout on that reserve are

both activities which'require claim department staff to effect.

3.1.2 Validity of the marginal cost applied prospectively.

It could be argued that the newly reported claims represent a disproportionate cost in the
denominator of the Cost Ratio calculation. The argument is an implicit question as to
whether the Cost Ratio on “small” claims which open and close in a short time frame is the
same as the Cost Ratio on large claims that are open longer. I do not think there is a material
distortion - if for no other reason than a significant portion of claim department time in a
given year is spent disposing of a high volume of newly reported claims. Thus, it is not
unreasonable to suggest that even if the nominal “adjusting & other” dollars per claim is
drastically different, the cost relative to claim value (Cost Ratio) is still reasonable for both. It
is sensible to argue that bigger claims are going to naturally involve more adjuster time, along
with other A & O costs. But the sheer magnitude of the claim value will cause this method
to post A & O reserves accordingly. Additionally, it must be pointed out that the logic
behind this question breaks apart as you move farther away from an average claim value (in

either direction) and actually could be thus interpreted to suggest the opposite.

3.1.3 Properly handling inflationary influences.

We point out that both the numerator and the denominator of the Cost Ratio are subject
to inflationary pressures, so there is a degree of “canceling out” which makes gives the ratio
a degree of immunity from this type of distortion. Over time, it may be atgued, the
inflationary pressures on losses are stronger than the inflationary pressures on adjuster
salaries and other A&O costs. This may be true, but it disregards efficiency gains due to
technology and trairiing, If this was an issue, over time it would serve to be pulling the Cost
Ratio downward and with the historical data analyzed in developing this method, this has

not been the case.
3.2 Other Methodologies

3.2.2 Paid-to-Paid Method Comparison
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The most widely used method in Property-Casualty actuarial practice for establishing A&O

reserves is the so-called “paid-to-paid” method. It involves comparing paid A&O expenses to

paid losses for the same calendar year. This ratio is then applied to the unpaid losses to

determine the needed A&O reserve. Generally there is a significant adjustment necessary to

reflect the fact that some of the “A&O” expenses on open claims has already been borne in the

establishment of the case reserves. Thus, an assumption of what percentage of the “A&O” cost

is incurred at opening of the claim is needed. The full paid-to-paid ratio is applied to true IBNR,

and the paid-to-paid ratio times the adjustment factor is applied to the case reserves. This is

problematic, and widely known to be so. For reasons of contradistinction and not novelty, I

point out:

1.

The denominator of the paid-to-paid ratio (paid losses) is a rough proxy for claim
department activity. As we isolate scenarios involving operational changes this method
of quantifying claim department activity breaks down. For example, in strong growth
scenarios, the paid losses increase slowly whereas the paid A&O grows generally in line
with the earned exposures, thus increasing the ratio. The artificially high ratio is then
applied to the unpaid losses, which are a correct representation of financial reality -
including the exposure growth. Without correction, this will lead to an overstated A&O
reserve. There are other distortions to which the paid loss denominator is susceptible
such as making no recognition for the effort expended on older claims unless a payment
is made. This is material for casualty lines of business. The denominator of the Cost
Ratio is five components which touch on claim department activity. Paid losses is one of
these, but handling IBNR claims, paying ALAE and the case reserves for the current
accident year reported losses are also a part. Looking at scenarios involving operational
change this method of quantifying claim department activity holds up better. Using the
same example, in strong growth scenarios, the current accident year reported losses (a
dominant piece of the denominator) increase in line with the exposure growth,

consistent with the change in A&O paid.

The “petrcentage paid at open” adjustment factor is not at this time, to my knowledge,
prospectively quantifiable with any scientific method. A look at the compliment of this
ratio (“percentage #of paid at open”) more quickly leads one to the conclusion that this
cannot be quantified with any precision. To do so would involve more than just a

collection of motion studies. With these drawbacks in mind, it is seen to be a highly
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suspect component of the method, which effectively (and arbitrarily) reduces the paid-
to-paid ratio in order to apply it to case reserves where some A&O expense has already
been expended. This drawback can result in significantly distorted A&O reserve
indications. Traditional usage has gone with the 50/50 rule: 50% “A&QO” incurred at
open, 50% at closed. This is clearly violated by partial payment lines such as workers
compensation and lines involﬁng tremendous litigation such as General Liability. The
“loss-activity-method” does not involve speculation about the amount of A&QO cost
incurred when the claim was opened. This is because the future “loss-activity”, to which
the Cost Ratio is applied, includes (1) unrepotted losses, (2) unpaid losses and (3) unpaid
Defense and Cost Containment. This acknowledges, and implicitly assumes, that the
dominant A&O cost (claim department salary) has a fairly constant marginal cost. Indeed
this can be seen from first principles; claim department time has a (relatively) fixed cost
since as a functional unit it is a collection of salaried professionals. These thtee buckets
do well quantifying future needs of claim department time to establish resetves on
unreported claims as they come in, adjust the claim values as situations warrant and
payout all unpaid loss and DCC reserves. Taking a close algebraic look at the “loss-
activity” method, the 50/50 proportion can be found present in the handling of the
IBNR segment. We note that this is because the Cost Ratio is applied to both the
“unreported” and the “unpaid” losses, which for the “pure” IBNR component are
identical. But the two methods are working in opposite directions. For the traditional
method, the paid-to-paid ratio is multiplied by 50% and applied to the case resetves. This
implies many things, but the most obvious is that the current calendar year claim activity
was involved with new claims half the time. In a steady state, this may be generally valid,
but outside of stable parameters, it is problematic. The “loss-activity” method allows the

data to specify the weighting as the data emerges.

3. Beyond the difficulty with quantifying the “percentage paid at open”, a change in case
reserve adequacy poses further challenges to the classic approach. It is crucial because
the method assumes the case reserves are a good representation of the effort already
expended to investigate and establish reserves on reported claims. When faced with
shifting case reserve adequacy, it is necessary to “lift the hood” on the method. But
where? Infusion of an adjustment becomes very arbitrary, both in terms of technique
and of calibration. Further, it will compound the difficulties highlighted above for

assuming a percentage paid at open. Changes in case reserve adequacy are a
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comparatively minor issue for the “loss-activity” method. The method assumes the
overall loss reserving exercise has correctly detected the change in adequacy and thus the
ultimate losses (and the corresponding unpaid losses) are correct. It is acknowledged that
in terms of the denominator of the “A&0” Cost Ratio, the current year reported losses,
and reported losses from prior years would be affected by a change in case reserve
adequacy. But this change is partially self-correcting as claim department time is involved
in re-evaluating case reserves previously established and the future “loss-activity” against
which the Cost Ratio is applied is diminished (assuming the ultimate losses are correct).
The paid component of “loss-activity” is entirely unaffected. This means the Cost Ratio
enjoys a degree of immunity to changes in case reserve adequacy. In other words, if the
ultimate losses are correct at the outset, the method will generally roll with the punches
successfully.

3.2.3 Johnson Method Comparison

Another technique used in actuarial practice is the method expounded by Wendy Johnson.
Her method uses a numerical proxy for claim department activity which is philosophically
similar to the approach of the “loss-activity” method. The “weighted number of open claims” is
the number of older claims open at the beginning of the year along with the number of claims
reported during the year

1. The Johnson method’s marginal cost must be trended forward, since it is a cost per gpen
claim, which places reliance on a trend factor. We note that the forces appearing as “trend” in
the curve fit to the marginal cost fot each year are beyond traditional inflationary effects and
not necessarily the same in the event of runoff, as discussed above in looking at the proper
mindset for reserving. The “loss-activity” method assumes the reserving exercise has

propetly estimated ultimate losses and thus trending of the Cost Ratio is not warranted.

2. Talso note that in application, the number of claims reported during the current year will
be the vast majority. Thus, unless working with a severely protracted line of insurance (such
as her example with medical malpractice), the year end pending claim counts will receive
very little weight. This is further bolstered when looking at the disttibution of paid losses.
For companies with significant casualty portfolios, the current calendar year paid losses will

have a latrge percentage of payouts from ptior years’ claims.
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3.2.4 Kittel Method Comparison

The last technique I will look at is the method developed by John Kittel. His method is a
variant on the paid-to-paid method. In his paper, he acknowledges many theoretical difficulties
with the paid-to-paid approach, and concentrates on the flaws with paid losses as the proxy. He
proposes replacing this with an average of reported losses and paid losses, particularly in
instances where the organization is growing,

As it is a subtle variant of the paid-to-paid approach, my criticisms of the main method
apply as well with one limited exception. The Kittel method will be more “accurate” than the
paid-to-paid method in certain scenarios such as strong growth or intensive inflation, where

the accruing unpaid liabilities exceed the movement in paid losses.

4. CONCLUSIONS

I have a presented a new method for calculating “adjusting & other” loss expense reserves.
The method is technically sound and simple to calculate, and it is hoped that it will find a place

in the reserving actuary’s methods for this reserving task.

Acknowledgment

The author gratefully acknowledges the assistance of Patrick N. Tures, FCAS, Cathy Staats, FCAS, and Brian K.
Ciferri, FCAS who have contributed to the paper by providing helpful critique at the various stages of its writing,

5. REFERENCES

[1]  Kittel, John, “Unallocated Loss Adjustment Expense Reserves in an Inflationary Environment,” Casualty
Actuarial Society Discussion Paper Program, 1981, 311-331.
[2)  W.Johnson, “Determination of Outstanding Liabilities for Unallocated Loss Adjustment Expense,” PCAS
1989, Vol. LXXVI, 111-125.
[3] Mango, Donald and Craig Allen, “Two Altemative Methods for Calculating the UnallocatedLoss
Adjustment Expense Reserve,” Casualty Actuarial Society Forum, 1999, 233-258.

Abbreviations and notations

A&O, Adjusting & Other Expense (ULAE)
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Abstract

While the actuarial literature devoted to stochastic loss reserving has been developing at an impressive
rate, much of this literature has been devoted to the statistical analysis of summanzed loss triangles.
This restriction limits the benefits that modern statistical techniques can bring to the subject of loss
reserving. This paper will sketch one possible framework for estimating future claims payments using
claim-level data. The first part of the paper will discuss the use of covariates (or “predictive variables™)
to improve one’s estimates of future payments, especially in cases where the mix of business being
analyzed has changed over time. The second part of the paper will describe how the bootstrapping
technique can be applied to claim-level data to estimate reserve variability.

Keywords. Reserve Variability; Future Payment Varability; Generalized Linear Model; Over-Dispersed
Poisson Model; Bootstrap; Claim-Level Data; Covarates; Predictive Variables; Changing Mix of
Business; Chain-Ladder

INTRODUCTION

The recent actuarial literature has enjoyed a growing discussion of statistical methods for
performing loss reserve analyses. This discussion has increased the statistical rigor of the

subject, and has expanded the set of tools available for estimating reserve variability.

However, much of this recent discussion has been devoted to the statistical analysis of
summarized loss triangles. We feel that this limits the potential improvements that predictive
modeling can bring to the subject. We will focus on two reasons here. First, summarized loss
triangles do not allow the analyst to incorporate predictive variables in his or her reserve
analysis. Second, using summarized data limits the accuracy with which an analyst can
estimate the variability of his ot her loss resetve estimates. It is reasonable to expect that by
not “summarizing away” the size-of-loss and loss development information implicit in (un-

summarized) claim-level data, potentially better point and variability estimates can result.

Many of the comments in the Discussion of England and Verrall’s recent survey paper on

stochastic loss reserving [4] expressed this sentiment. Shah’s comment is representative:

The triangulation data that these [Generalized Linear Modeling] techniques
have been applied 1o are just a consequence of history. They come from an
era when computing power was expensive. Therefore, I question the value of
actually applying such techniques to such limited data. Such sophisticated
techniques may be more useful if applied to the underlying claims data, as has
been alluded to by several speakers. In view of this, there is a danger that the
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results may be viewed as more scientific than they really are, and may be
given more credibility than is truly justified for them.

Tripp’s comment also seems to us to be on the mark:

Why do we throw away information? ... Looking at the life side of out
profession, you realise that work like this takes place at policy level detail. If
you look within the general insurance part of the actuarial profession, there is
a body of thinking that has grown up around premium rating and a body of
thinking that has grown up around reserving. Are we getting ‘over-siloed’?
Could aspects of the methodology and the thinking that has gone into using
GLMs for premium rating be brought more into play when it comes to
reserving, where, at present, we tend to use aggregated claims data? I wonder
whether we are missing out on using information that is available from
exposure descriptions and from the circumstances of individual claims.

Motivated by the concerns expressed in these quotes, this paper is an attempt to develop
the idea that using un-summarized data will allow one to unleash the full power of modern
predictive modeling techniques on the problem of estimating future claim payments. The
goals of improving one’s reserve point estimates as well as varability estimates will be

discussed sequentially in the two parts of this paper.

In Part I we review the well known shortcoming of traditional reserving methods when
applied to books of business that have changed over time. A danger of using summarized loss
triangles is that they can mask heterogeneous loss development patterns. They also prohibit
the use of predictive variables that might be correlated with loss development. We sketch a
reserving technique — inspired by the chain-ladder method — that operates on claim-level data.
Using simulated data we illustrate how this technique can reflect heterogeneous loss

development patterns that the chain ladder misses, resulting in an improved estimate.

We believe that the potental for improved estimates of future loss payments is sufficient
motivation to considet the use of claim-level data for reserving. Doing so obviously requires
additional effort (not to mention specialist software that goes beyond spreadsheets). But, as
Part II of this paper will discuss, it brings a significant side benefit as well.

Namely: once we have claim-level data available for analysis, we can employ . the
bootstrapping technique (a type of simulation that involves repeatedly sampling with
replacement from one’s data) to easily compute confidence intervals around our estimates of
outstanding losses. Indeed bootstrapping will give us estimates of the entire distribution of

our outstanding loss estimator, no matter how complex.

Bootstrapping has been discussed in the recent literature as a promising avenue for

estimating reserve variability. But because of the summarized loss triangles that serve as a
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starting point for most current discussions of reserving, the resampling step of bootstrapping
is typically applied to the residuals of various models fit to loss triangles. The idea pursued
here is to resample the undetlying data points, and then apply one’s chosen reserving
technique to each of the resulting pseudo-datasets. This is a flexible and perhaps conceptually
simpler method of bootstrapping. Also, because its resampling step occurs prior to the
building of any model, the pseudo-datasets that it employs are not in themselves dependent on
the correctness of the model being fit to the data.

PART I: SUMMARIZED DATA AND THE PROBLEM OF A
CHANGING MIX OF BUSINESS

A common criticism of traditional loss reserving techniques is that they can be slow to
incorporate changes in the company’s mix of business into their estimates of outstanding
losses. This is the point of the actuarial road trip joke involving the salesperson with his foot
on the gas, the underwriter with his foot on the brake, and the actuary navigating by looking

out the rear window.

Borhuetter and Ferguson state the problem well in “The Actuary and IBNR” [1]:

The product mix can be an important factor, not so much because two
somewhat dissimilar items ate combined, but because they may have
different rates of growth. For example, a company may have personal and
commercial automobile loss development expetience combined over the
years although, if it were looked at separately, commercial business would
require higher loss development factors. As long as the relative exposure
between the two categories remains constant there is no problem; however,
picture the situation if personal automobile increased at a 5% annual rate
while commercial automobile, although relatively small, is growing at a 25%
annual rate.

The obvious thing to do in such a situation would be to analyze commercial and personal
auto reserves sepatately. That is, divide the data into two separate loss triangles and proceed
as usual. This is helpful as far as it goes, but the approach has its limits. Bornhuetter and

Ferguson continue:

Of coutse, the volume of data is an important factor in determining what
kinds of breakdowns of the data are feasible. If the data are subdivided so
finely that most groups have only a small volume of data, the subdivisions
may accomplish nothing useful. Or to quote Mr. Longley- Cook’s delightful
analogy, “We may liken our statistics to a large crumbly loaf cake, which we

Casualty Actuarial Society Forum, Fall 2006 113



Loss Reserving Using Claim-Level Data

may cut in slices to obtain easily edible helpings. The method of slicing may
be chosen in different ways-across the cake, lengthwise, down the cake, or
even in honzontal slices, but only one method of slicing may be used at a
time. If we try to slice the cake more than one way at a time, we shall be left
with a useless collection of crumbs.”

For e‘xample, it might be nice to set up separate reserve analyses by both coverage and
region. But even adding the single additional dimension of “region” might significantly
diminish the credibility of the data and thereby threaten the integrity of one’s outstanding loss
estimate. The goal of the first part of this paper is to suggest a way beyond this impasse.

Our discussion of changing mixes of business is intended only to motvate the method
discussed below. Hopefully the method’s usefulness is not restricted to this scenario. For
example, it might also be useful when, for example, a company moves into a new region or

two companies merge.

ENTER PREDICTIVE MODELING

In moderm terms, Longley-Cook’s image of the crumbly cake is an illustration of the bias-
variance tradeoff in predictive modeling. Stated briefly, a complex model (or multiple models
fit on sub-segments of the data) will make predictions that are less biased, but at the same time
less certain — i.e., more variable — than a simpler model. The tradeoff is that our model should
have sufficient complexity to reflect true statistical regularities in the data (thereby reducing
bias), yet not have so much complexity that random patterns in the data overwhelm the model
and lead to unreliable results (high variance). This is perhaps a special case of Einstein’s
dictum, “Everything should be made as simple as possible, but not simpler.”

An analogy with ratemaking might be helpful. Consider a simple rating plan with the

following rating factors:

o Age (<26, 26-50, >50 years}
e Credit {bad, average, good}
¢ Claim in past 3 years {yes, no}

This rating plan has 3-3-2=18 cells. The most naive — and over-parameterized — way to
proceed would be to simply estimate the loss ratio relativity of each of these cells and base
one’s rating factors on these parameters. Note that this is equivalent to fitting a regression

model with 17 indicator variables. But as Longley-Cook warns, the data in each of these cells
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is ﬁx‘llikely to have sufficient credibility to produce stable results. Therefore the variance
around the resulting rating factor estimates will be large.

For this reason, the modern approach to ratemaking is to employ Generalized Linear
Models [GLMs]. Rather than estimate 3-3-2-1=17 parameters, a GLM model in this scenario
would estimate 2+2+1=5 parameters. Extending Longley-Cook’s analogy, we now get to have
our cake and make multivariate estimates with it too. Rather than estimate each of the 17
rating factors each with its own “crumb” of data, we use the loaf to estimate a more modest 5

parameters.

There are three major advantages of deriving one’s rating factors from the parameters of a

multivariate model, rather than estimating them directly from small “crumbs” of data:

¢ The resulting rating factors will have less variability (less parameter risk).
A larger number of rating factors can be used without running into Longley-Cook’s
“crumbly cake” problem.

¢ Factors such as Age and Credit can be treated as continuous predictive variables, rather
than being arbitrarily divided into discrete bins.

Returning to loss reserving, it is good and accepted practice to perform separate reserve
analyses by line of business and by such important subdivisions as Workers Comp Medical vs.
Indemnity claims. As we have discussed, this can only be taken so far. But what if (a) claim
development patterns vary by a multitude of factors such as Report Lag, Credit Score, Prior
Claim, Policy Age... and (b) the mix of business measured by these factors has changed over
time? As Bornhuetter and Ferguson point out, it is essential to reflect this shifting mix of
business in one’s analysis. But as Longley-Cook points out, dividing the data by many of these
dimensions will quickly lead to serious credibility problems.

In the light of the ratemaking analogy above, it is perhaps natural to suggest that the way
forward is to somehow incorporate a multivariate predictive model into one’s reserve analysis.
We will sketch one such model below. This model is offered very much in the spirit of taking
a first step. We expect that it could be improved or replaced with a better one. Nevertheless,
we hope that sketching a sample multivariate loss reserving model that admits covariates will
spatk further thoughts on the subject.
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THE LEVEL OF DATA NEEDED

Multivariate loss reserving requires that one analyze disaggregated data, at the policy or
claim level, rather than summarized loss development triangles. The reason for this is clear:
predictive variables such as Age, Credit, and Prior Claim pertain to the policy that made the
claim. To incorporate policy-level variables such as these, policy-level data must be used in the
analysis. There is no way to “attach” such covarates to summarized data. Similarly, if we wish
to incorporate variables such as Report Lag or Injury Type into the analysis, claim-level data
must be used. Traditional loss triangles do not allow one to use this potentially useful

predictive information.
To summarize what has been said so far:

e The traditional approach of separating one’s data and performing separate analyses on
the resulting loss triangles is an incomplete answer to the problem of a shifting mix of
business.

e A plausible approach to this problem is to incorporate covariates into one’s reserving
technique — that is, build a multivariate reserving model.

¢ Doing so requires that we use data at the policy or claim (or indeed claimant) level.

For the remainder of this paper phrases such as “reserving using claim-level data” will serve
as shorthand for “reserving using policy- or claim- or claimant-level data”.

MODEL DESIGN

In this)s::ction we propose a claim-level generalization of the simple chain ladder reserving
method. As stated above, this is merely one of many possible starting points. For all of its
faults, the chain ladder has the virtues of being simple and familiar. Generalizing the chain
ladder therefore gives us an intuitive way of illustrating the benefits of using claim-level data to
estimate future claim payments.

As discussed above, we assume we have data at the policy, claim, or claimant level. Of
course, the finer the level of summarization of one’s data, the broader the array of predictive
variables one can include in one’s model. Deciding on the level of data is a practical decision
that does not substantially affect the discussion below. Let us therefore assume that our data
is at the claim level.
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We therefore assume that we have a database with one record per claim, and multiple

variables on each record. These variables can be categorized into three types:

e Predictive variables (Credit Score, Injury Type, Policy Age...)
e Target variables (Loss at 24 months, Loss at 36 months...)
¢ Informational vatiables (Accident Year, Zip Code, Agent Number...)

The “informational” vatiables can sometimes be used to derive further predictive variables
(e.g-, by using zip code to match such demographic variables as Population Density onto the
records). Other times, they are used simply for analytic purposes (e.g., displaying total losses

by accident year).

Let us establish some notation. We attempt to be consistent with the notation of England
and Verrall Let C denote cumulative losses evaluated as of j months. For example C,,
denotes the losses (associated with a particular claim) evaluated as of 24 months. {C; } will

serve as the target variables in our model design.

Let {Xj, X5, ..., XN} represent the predictive variables. Each value of each predictive
variable X; will appear on each claim-level record. We also assume that the values of each of
the predictive variables are measured either at policy inception, or at the claim report date
(whichever is appropmate).

Let U, denote the total ultimate losses for accident year £, summed across all policies:
U,=YC.. Let R, denote the outstanding losses (ultimate losses minus losses paid to date) for
accident year £ Let U and R denote the sums of Uy and R, respectively across all accident
years. The goal of loss reserving is to calculate an estimate  of R as well as an estimate of
variability of, or confidence interval around, R. R is often refetred to as a “reserve estimate”,
but to distinguish it from the quantity that is actually booked in the financial statements, it is
probably better to call it the “total outstanding losses™ or “total future payments” (see [2]). In
the remainder of this papet, the three terms will be used synonymously.

In predictive modeling it is typically the case that we are presented with a single target
variable Y (such as pure premium or claim frequency or size of loss) and multiple predictive
variables {X), X5, ..., Xnj}. We might fit a GLM model of the form:

g = BX +BX+ .+ BXy = X
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Where u denotes E[Y], the expected value of the target variable Y; and g()) is the link

function.

Here, the situation is not so simple. For one thing, we are presented with multiple target
vatiables {C}, G, ..., ; } rather than a single target Y. In addition, this (single) target variable
is typically the quantity we are ultimately interested in predicting. Here, we are interested in
predicting either losses at ultimate or losses as of a certain development petiod, such as 10 or
20 years. Let us assume that for practical purposes, Cj represents losses at ultimate. That is,
C=Cy (That is, let us assume that no tail factors are needed for our analysis) Then () is
what we are ultimately interested in predicting; and {Cj, G, ..., (4} are intermediate
quantities used as stepping stones to estimate Cj.

The reason for this complexity is that Cy is missing on most of the claim-level records in
our dataset. Using it as “the” target value analogous to Y in the GLM example above would
require us to throw away data points for which Y is unknown. Let us frame our discussion in
terms of an 'example. Suppose we have claim-level records for accident years 1990, 1991,.. .,
1999. On the 1990 records, we have losses evaluated as of 12, 24, ..., 120 months. On the
1991 re;:ords, we have losses evaluated as of 12, 24, ..., 108 months; while losses as of 120
months are unknown (“missing”). On the 1999 records, we have only losses evaluated as of

12 months; {Cy4, Csg, ..., Cyoo} are all missing.

Of course we have the option of using only the AY 1990 claim records to build a single
GLM model; and use this model to predict the ultimate values of the 1991-1999 claims. But in
doing so we would throw away the loss development pattern information that traditional

reserving methods rely on. This is not a satisfactory option.

Many approaches are possible at this point, but we choose to build — continuing with the
same example — 9 successive GLM models, “layered” one on top of the other. Speaking
figuratively, we “regress” Cy4 on Cyq; C36 on Cyy; and so on. Each of these 9 GLM models is
analogous to the 9 link ratios in the corresponding chain ladder model that could be run on
the summarized 10-by-10 loss triangle. Let us denote these 9 models My, M3, ..., My5o. The
M;4 model will take as an input either losses evaluated at 24 months (for AY 1990-98); or the
predicted value of the M,, model (for AY 1999). This is analogous to the way a link ratio is
applied in 2 chain-ladder analysis. Of course in addition to (4, the M; model takes as inputs
all of the predictive variables {X;, X,, ..., Xn}-
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Let us make this abstract discussion more concrete. The motivation for introducing
predictive variables is to capture differences in different claims’ expected loss development
patterns. Given that our basic idea is to “incrementally” model these (potentially
heterogeneous) development patterns 4 la the chain ladder, it makes sense to model each

claim’s development from period /-1 to period ; as a function of several covariates:

Ci
c =X, X X )

For mathematical convenience, we will further assume that this claim-level “link ratio” is in

fact a (pre-specified) monotonic function fof a linear combination of the covariates:

C,
Cl =fla@+BX,+ By X, +..+ ByX})

-1

This is of course the familiar linear modeling trick: we reduce the job of estimating the
function @ to estimating the parameters {o, By, Ba,..., Bn}- The monotonic function f{)
might, for example, be the natural exponent function exp(’) or the identity function id(-). The
use of linear models (as opposed to, say, generalized additive models or neural networks) is not
essential to the basic idea sketched here. But it is fairly flexible and powerful approach that

avoids unnecessary complexity.

The above equation implies that the expected development from period /-1 to / of any given
claim is a generalized linear function of the covariates {X;, X5, ..., Xp}. We do not need to
assumne that each claim at period j-1 will have the same expected development to period 7. Nor
do we need to assume that the mix of these (inhomogeneous) claims will stay the same from

one accident year to the next.

Suppose, on the contrary, that we did assume petfect claim homogeneity in the sense that
all claims have the same expected development. This is tantamount to assuming no variance
in claim-level link ratios; and this in turn implies that no covariate X, could possibly play a
statistically significant role in predicting link ratio. Therefore the above equation reduces to a

constant:

C; .
c L= f(a) = Link _ Ratio

Jj=1
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Thus the chain ladder’s link ratio is equivalent to our generalized linear model form with no

covariates.

A few more assumptions will let us use the machinery of Generalized Linear Models to
estimate the parameters {«, By, 2,..., Byy}- Let us assume that the function fis the exponential
function. This is equivalent to assuming the log link function from GLM theory. Let us
further assume that the variance of C,; is proportional to its mean. (This assumption is not
essential to the general technique we’re tying to develop. This familiar assumption is being
made for convenience, and could be altered without substantially affecting the discussion to

follow.) In other words, we are assuming the over-dispersed Poisson GLM model form:

log[El:gj D =a+ B X, + By X, +.t By Xy

Jj=1

Equivalently,

=

C.
Cl =expla+ B X, + By X, +..+ B X }+6

-1

whete 8 is an overdispersed Poisson-distributed error term. Given the quantities {C,,, C,
X, X5, ..., X}, we can estimate the parameters {a, By, Bs,..., BN} of model Mj using any
standard GLM package. To be explicit, we would make the following specifications:

e Target: G/ G

e Covarates: {X, X,, ..., Xy}
e  Weight: Cy

o Distribution: Poisson

e Link: Log

‘Recasting the above equation as follows will allow us an alternate way of conceptualizing
the above model form. Let us multiply both sides of the equation by C,;:

C,=C,, cexpla+ B X, + By X, 4.+ By Xy e
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which is equivalent to:

op =exp{]og(Cj_l )+a+,6‘,X, +0.X, +...+,8NXN}+£

This is perhaps a mote useful conceptualization of our model. The target variable is C,

there is no weight variable, and log(C-1) serves as the “offset term”. Explicitly:

Target: C

[ J .

o  Offset: lojg(Cf,)

¢ Covanates: {X, X, - X3}
¢ Weight: none

e Distribution: Poisson

e Link: Log

(Note thac all standard GLM packages allow one to specify an offset term.) The offset
term essentially functions as a regressor whose corresponding “beta” parameter is constrained
to be 1. This conceptualization illustrates the chain ladder-esque idea that we are building a
model that estimates the expected value of C; as a “generalized linear link function” exp(x +
B1X1 + BaX5 +... + By X applied to C,,, the (known or estimated) losses as of /1.

F1

HOW TO HANDLE IBNR

Note: this short section, and the appendix it refers to, outlines a method for extending the
model design to handle IBNR claims. The authors suggest skipping it on the first reading.
Indeed, this section can be skipped altogether if the reader takes the attitude that the model
outlined can be used for losses on reported claims only; with IBNR claims being estimated in a

separate analysis.

This model design also allows us a way of incorporating incurred but not reported (IBNR)
losses into our model. For simplicity, let us assume that all claims that are unreported at 12
months are reported by 24 months. Therefore there will be records in our data with C;,=0
and C,,>0. In the My, model, we add to the database one record for each in-force 1999
policy that had no claim as of 12 months from its effective date. On this record, we would
force the offset term log(C,,) to be zero. We would also include on all records an indicator
variable X as a covatiate in M,, that takes on the value 1 if C;,=0, and 0 otherwise. Finally,

we would neutralize all predictive vatriables that measure claim-level information.
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(“Neutralize” typically means that we recode missing variables to the median value)) As with
all of the other AY 1999 records in the database the values of {C,4, Gy, -.., Cipp} are all

missing.

Doing this will “allocate” a portion of the 12->24 IBNR (estimated from the AY 1990-
1998 data) to each 1999 in-force policy that has no claim reported as of 12 months. The y,
‘parameter of the X; indicator functions in place of the offset term, which was forced to be
zero on each of the 1999 zero-claim records. In other words, exp(y,) is the average expected
12->24 IBNR for each AY 1999 policy. The expected IBNR for an individual policy is
eexp(a + 13X + BoXsy +... + By X)) = expla + yg + By Xy + ByXs +... + By Xn)- The
successive models M, M,... will “develop” this allocated IBNR loss along with the other

losses.

An example might clarify this discussion. Suppose that the total IBNR (as of 24 months)
from AY 1990-98 was $400,000 and that during this time period, thete were 4000 policies
without claims as of 12 months. This is an average of $100 per claim-free policy. The value of
Yo would therefore be log(100)=4.6.

Note that this method of treating IBNR assumes that the covanates {X, X, -.., Xn}
affect the allocation and development of IBNR in the same way that they affect the
development of other losses. We could refine the model by including the interactions
{Xo* X1, Xo*X,, ...} as further model covariates. These covariates would be non-zero only
for the records corresponding to policies with no losses as of 12 months. This idea is more
fully exp}i,ﬁ'.g\ted in the Appendix.

SIMULATION APPROACH

We will now apply the above model to a (very rudimentary) simulated dataset. The
advantage of using simulated data is twofold. First, by construction we know which covariates
are truly telated to the various claims’ differential development over time. Because of this, we
can illustrate the operation of the model without the distracdon of having to convince
ourselves that a set of covarates is reasonably complete or sxgmﬁcantly correlated with the

claims’ dlffetentml loss developmcnt
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Second, we can simulate our data “to ultimate”, and set aside the (otherwise unknown)
losses at ultimate as a standard against which we can compate our model’s predictions with the

predictions of the traditional chain-ladder model.

Of course a major disadvantage of using simulated data is that our sample results will give
little indication of the degtee to which out proposed model will produce improved predictions

on real-world data.

However, it is our hope that the potential of this approach will be intuitive to many readers.
The authors’ experience in building predictive models for ratemaking and underwriting
applications suggests that it is nearly always possible to find traditional and non-traditional
predictive variables that are significantly correlated with size-of-loss. Given that larger claims
are known to develop more slowly, one expects that that many of these same predictive

variables will be correlated with loss development patterns.

SIMULATION ASSUMPTIONS

We illustrate our model with a simulated dataset that is very simple, yet with sufficient
structure to illustrate the potential advantage of this model over the traditional chain ladder.

By construction, our claim-Jevel dataset has the following characteristics:

¢ Near-homogeneity of data: the claims in our book of business all have identical
expected loss development patterns except for one characteristicc whether the
policyholder that made the claim had “good” credit or “bad” credit.

¢ Differential development: The claims of bad credit policies are expected to develop
more slowly than the claims of good credit policies.

¢ Changing mix of business: A greater proportion of bad credit policies have been
written in recent years.

As Bornhuetter and Ferguson point out, the differential loss development of bad/good
credit policies’ claims would present no special problem to the traditional methods were it not
for the changing mix of business. However, the greater proportion of bad credit policies
written in mote recent years implies that the overall development patterns will shift from year
to year. In particular, the expected development pattern for the most recent accident year will
not be adequately represented by an average development pattern derived from the prior

accident years’ claims in a loss triangle.
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The simulation incorporates the idea that a measurable quantity — here, credit — is
correlated with loss development. Therefore by including credit in our reserving model, we
are reflecting the shifting mix of business in our analysis. Put another way, the shifting
proportion of bad credit policies is a “leading indicator” of a slow-down in the book’s loss
development. Using credit as a covariate in our reserving model allows us to quantify this

slow-down, rather than judgmentally adjust for it after a traditional reserving exercise.

We simulate 5000 data points, each representing one claim. By design there are 500 claims
for each of the accident years 1990, 1991, ..., 1999. Each of the 5000 records has 10 loss
fields Cyy, Coy, ..., Cizo. We will describe how the values of {Cy,, Cyg, ..., Cjao} are assigned
to each claim.

Finally, two simplifying assumptions are made. First, we assume that there is no IBNR: all
claims are reported by 12 months from the beginning of the accident year. (See the discussion
above and the Appendix for a discussion estimating IBNR in the current model framework.)

Second, we assume that losses are fully developed as of 120 months: for each accident year £,
Ue=2Ci20

Next we desctibe our simulation of the loss fields {Cy5, Cyy, -.., Ciog}. We draw the losses
at 12 months (C,) from a lognormal distribution; and then successively apply 9 randomly
generated “link” factors to these losses. The means and standard deviations of the

distributions used to generate the losses and link factors were selected by judgment.

In more detail, the 5000 values of Cy, were drawn from a lognormal distribution with

parameters =8 and 0=1.3:
log(C\2) ~ n(8, 1.3)

For good credit claims, the values of {GC,, ..., C,} were determined by the following
algorithm:

Cin = G * (link# * ¢))
The similar algorithm for bad claims is:
Cin = C; * (link™ * ¢))

where
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link®™* = {1.8, 1.17, 1.13, 1.08, 1.05, 1.03, 1.02, 1.015, 1.008}
and link"™ = (link***-1)¥1.25 + 1:

" link®™ = {2, 1.2125, 1.1625, 1.1, 1.0625, 1.0375, 1.025, 1.01875, 1.01}.

Finally, ¢; is a normally distributed “shock” term with mean 1 and a standard deviation that
is a functdon of the value of the link ratio.

The development patterns (1/LDF) implied by the above expected link ratios are graphed
below. This graph illustrates that by construction, bad credit claims develop more slowly than
good credit claims.
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In summary, each claim at each time period is assigned its own randomly generated link
ratio; but the expected link ratios for bad/good credit claims are the ones stated above. (A word
about motivation: the number of claims, size-of-loss distribution, and the general magnitude
of the link ratios were judgmentally chosen to result in a summarized loss triangle similar to an
actual Workers Comp loss triangle studied by one of the authors. The differing link™ and
link®* development patterns were selected purely judgmentally.)
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So far, we have discussed the “homogeneity” and “differential development” assumptions.
Regarding the “changing mix of business”, we randomly apply the “bad” and “good” link

ratios in the following proportions across the accident years:

shifting exposure base
%bad credit %good credit

1992 40% 60%
1993 45% 55%
1994 50% 50%
1995 55% 45%
1996 60% 40%
1997 65% 35%
1998 70% 30%
1999 75% 25%

Note that the simulation approach we have laid out allows us to assign values of UGz Gig
<oy Cp} to each claim, regardless of accident year. We will apply both our model and the
traditional chain ladder to the data elements that would be available in an actual reserving
exercise — namely those that form the upper half of the loss triangle. At the same time, we can
use the data elements that would be unknown in an actual reserving exercise — the lower half
of the triangle — as the “truth” against we can judge the success of both our method and the

chain ladder.

The simulated data, summarized to the accident year level, is displayed below:

Losses in $1000's
@12 @24 @48 @60 @72 @96 @108 @120 ultimate
10,700 10,875 10,970 0
10,942 11,123 23 99
11,444 k11,739 295

12,210 567
9,571 763
12,397 1,634
10,757 2,217
11,187 3,460
12,204 5,229
11,432 _8,105
22,369

1964 1209 1149 1.094 1060 1.036 1.022 1017 1.009 1.000
3436 1750 1.448 1260 1152 1.087 1.049 1.026 1.009  1.000

Link ratios
LDFs

The “unknown” data elements (those that would be known as of 12/31/2000 or after) are
shaded, and will not be used to fit models. Note that the “ultimate” column is the same as the
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“at 120 months” column, and represents the “true”, though unknown ultimate losses (#).
Similarly, the “o/s” column represents the “true” outstanding losses as of 12/31/1999 (r).
Thus the “true” value that we wish to estimate is =) 0, =$22.369M.

Note that the link ratios computed from this summarized data are essentially weighted
averages of the link™ and lnk®™* ratios stated above. This is representative of the way
important patterns can be “summarized away” when the data is summarized to the triangle

level.

MODEL RESULTS

We applied our sequence of 9 Poisson GLM models to the 5000 simulated data points.

The exact steps of this process are sketched below:

Step 1: Regress the 4500 data points with non-missing values of C,, (i.e. the claims from
AY 1990-98) on credit score, using log(C},) as the offset term. This model is then applied to
the 500 claims with unknown values of L,, (i.e. the AY 1999 claims) to produce predicted values
of G,

Step 2: Regress the 4000 data points with non-missing values of Cy; (ie. the claims from
AY 1990-97) on credit score, using log(C,,) as the offset term. This model is then applied to
the 1000 claims with unknown values of L;; (i.e. the AY 1998-99 claims) to produce predicted
values of C,, Note that the AY 1998 values of Cj; are based on actwa/ values of C.,; whereas
the AY 1999 values of C, are based on predicted values of C,,.

Step 9: Regress the 500 data points with non-missing values of C,,, (i.e. the claims from
AY 1990) on credit score, using log(C,,s) as the offset term. This model is then applied to the
4500 claims with unknown values of C, (i.e. the AY 1991-99 claims) to produce predicted
values of C,,,, Note that the AY 1990 values of C,,,are based on actual/ values of C,,,; whereas
the AY 1991-99 values of C),,are based on predicted values of C, .

Step 10: The ultimate loss estimate is the sum of C,, across all claims and across all
accident years: #=3 3 C,,,. The estimate of total outstanding losses r equals # minus the total
claims paid as of 12/31/1999.
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The way in which the model M; is applied to the predicted values of model M, is analogous
to the way the chain ladder’s link ratios are multiplied together to produce loss development

factors.

The results of these 10 steps, summarized to the accident year level, are displayed below.

They can be compated to the display of the “truth” above:

GLM predictions (shaded)

Losses in $1000's

@36 @48 @60 @72 @84 @108

ultimate

3,522 8,850 10,473 -
3,527 9,011 10,705 11,222 99
3,681 9,428 10,274 10,833 11,738 294
3,780 9,791 12,214 572
2,912 7,629 9,573 765
3,724 9,850 12,392 1,629
3213 8,540 [9; 10,745 2,205
3,335 8,896 11,202 3,475
3,596 19,665 12,212 5,237
3,327 [ 8,999 11,384 _8.057
22,333
implied
link 1.954 1208 1.152 1.093 1.059 1.036 1.023 1.017 1.009  1.000
LDF 3422 1751 1450 1.258 1.151  1.087 1.049 . 1.026 1009  1.000

Note that the implied LDFs at the bottom of this display were calculated by dividing the
predicted ultimate values by the losses for that accident year as of 12/31/99. The implied link
ratios were then derived from the implied LDFs.

Finally, the results of a chain ladder exercise are displayed in the following table:

Chain Ladder predictions (shaded)

Losses in $1000's
@60 @72

@12 @84 @96 @108 @120 ultimate

3,522 6,562 10,700 10,875 10,970 10,970 -
3527 6623 7,876 9011 9817 10,361 10,942 11,123 | 11,220 97
3681 6,939 8235 9428 10274 11,444 11,733 289
3780 7,52 8539 9,791 : 12,200 558
2912 5563 6,644 9,536 728
3,724 7,167 12,298 1,535
3213 6,202 10,637 2,007
3,335 11,031 3,304
3,596 11,873 4,898
3,327 [ 10,793 _ 7,466
20,972
implied
link 1906 1.192 1146 1.090 1.055 1.0383 1.022 1.016 1.009  1.000
LDF 3244 1702 1428 1246 1143 1.083 1048 1.025 1.009  1.000

(Note that this calculation can be verified by the reader in a spreadsheet. The spreadsheet-
based results will differ from the above o/s loss estimate by $2000 (0.01%). This is due to
rounding errors: the above table was generated by a computer program using un-rounded

losses in the upper triangle.)
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For convenience, the results of both methods — together with the simulated “truth” — are

displayed below:
Losses in $1000's
@12 @4 @3 @I58 @60 @72 @84 @% @108 @120 C-L _ truth proposed
7766 8,850 9,627 10,144 10,473 10,700 10,875 10,970 10,970 0 0 0
7876 9,011 9817 10,361 10,705 10,942 11,123 11,220 97 99 99
8235 9,428 10274 10,833 11,194 11,444 11,734 289 295 294
8539 9,791 10,866 11,262 11,642 12200 558 567 572
6644 7629 5329 8,808 9537 728 763 765
8573 9,850 10,763 12298 1,535 1,634 1629
7423 8,540 10637 2097 2217 2205
7,727 11,031 3304 3460 3475
11,873 [ 5220 5237
10,792 8105 _ 8057
20972 22,369 22333
1146 1090 1055 1.083 1022 1.016 1.009 1.000

1428 1.246 1143 1.083 1.048 1.025 1.009 1.000

1149 1.094 1060 1.086 1.022 1.017 1.009 1.000
1448 1260 1.152 1.087 1.049 1.026 1.009 1.000

1152 1.093 1059 1036 1.023 1.017 1.009 1.000
1450 1.258 1.151 1087 1.049 1.026 1.009 1.000

Because the chain ladder is slow to pick up the changing mix of business (i.e., increasing
proportion of bad credit policies that produce slower-developing claims), its estimates are too
low for each accident year. This effect is most pronounced for the later accident years
(shaded). In this example, the chain ladder’s total outstanding loss estimate is approximately

6% too low.

By comparison, the proposed method’s total outstanding loss estimate is almost exactly
cotrect. It goes without saying that this is because our Josses were simulated to develop in the
multiplicative fashion assumed by the chain ladder; and because by construction only one
covariate — credit — has a statistically significant relationship with loss development. Of course
real-world data present no such conveniences. The above results are thetefore suggestive at
best. Still, the point remains that the proposed method is able to reflect changes in the mix of
business (assuming that these changes can be measured by covariates capable of being

collected and put into a2 model) that the chain ladder misses.

THE PROPOSED METHOD IS A PROPER GENERALIZATION OF
THE CHAIN LADDER

By now it should be clear that the proposed loss reserving framework is intended to
function as a GLM/micro-data-based analog of the chain ladder. One can go further and state
that it is a true generalization of the chain ladder, in the sense that it produces the same results

as the chain ladder when no covariates ate present.
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We verified this with the simulated data analyzed above. That is, we simply fit the above
sequence of 9 GLM models, replacing the credit variable with a constant. The proposed
method results in exactly the same results as the chain ladder. These results are summarized

below.

losses true true our chain
@ 12/99 ultimate o/s method ladder

22,369 20,972 20,972
-6.26% -6.25%

It is generally a bad idea to exclude a statistically significant covariate from the GLM
models. Here we see that doing so reproduces the chain ladder’s (understated) reserve
estimate. This lends a statistical perspective to where the chain ladder goes wrong when

applied to a book of business whose development patterns have changed over time.
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PART II: THE PROBLEM OF ESTIMATING RESERVE
VARIABILITY

From a statistical perspective, R is an estimator of outstanding losses. It is a function of the
values of the random variables {C,,, X}, X,, ..., X} for each data point. In other words, it is
a complicated function of several random variables. Like any such estimator, it has a
probability distribution that is a complicated function of the distributions of the underlying

random variables.

As we have demonstrated above, it is faitly straightforward to calculate the expected value
of R. This is our outstanding loss estimate. It summarizes what the data (and our model) tells
us to expect about the amount of future claim payments. But we would also like a measure of
how strongly we should believe this estimate. To do this, we need further information — other
than the expected value — about the distribution of our estimator of outstanding losses. For

example, what are the cutoffs of a 95% confidence interval around the estimate?

This problem — sometimes referred to as the problem of reserve variability — has received a lot
of attention in the recent loss reserving literature. The recent report of the CAS Working
Party on Quantifying Variability in Reserve Estimates [2] puts the matter this way:

A sk bearing entity wishes to know its financial position on a particular
date. In order to do this, among other items it must understand the future
payments it will be liable to make for obligations existing at the date of the
valuation. For an insurance situation, these future payments are not known
with certainty at the time of the valuation.

The fundamental question that the tisk bearing entity asks itself is:
Given any value (estimate of future payments) and our current state of knowledge, what is
the probability that the final payments will be no larger than the given value?

A full answer to this question would involve the assessment of model risk, and is beyond
the scope of this paper. But even a limited answer would go beyond supplying a mere
confidence interval or variability estimate. Ideally, we would like an estimate of the entire
probability distribution of the outstanding loss estimator.

This seems like a lot to ask. After all, both the loss distribution underlying our claims data
as well as our estimators of outstanding losses are fairly complex. Surprisingly, modern
statistics supplies us with a simulation-based technique — called boosstrapping — that allows us to
estimate this disttibution with faitly little effort.
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ENTER THE BOOTSTRAP

The Bootstrap was introduced by Bradley Efron in the late 1970s. Since then, it has
become a commonly used technique in any number of problems in applied statistics. The
classic text is Efron and Tibshirani [3]. Put brefly, bootstrapping is a simulation-based
technique for estimating potentally “difficult” distributional properties — such as the standard
deviation or the 90" percentile — of potentially complex estimators. We typically do not know
the “true” distnbution of such estimators. The basic idea of the Bootstrap is therefore to use
the actual, empirical distribution (i.e., the data) as a proxy for the true, unknown distribution.
Once this conceptual leap is made, many otherwise intractable problems become fairly
straightforward exercises in statistical computing.

An analogy lies at the heart of bootstrapping. Just as our acfwa/ distribution is one of an
infinite number of possible draws from the “true” theoretical distribution; we can take a large
number of resamples of our actual distribution to form an atbitrarily large number of “pseudo-
datasets”.

[Actual distribution : “true” distribution :: resampled datasets : actual distribution]

Just as we would know everything we need to know about the “true” distribution if we
could draw a large number of samples from it, we can estimraze much of what we would like to
know about the “true” distribution by treating the actual distribution as a proxy, and drawing

multiple resamples from it.

We can illustrate this idea by applying it to a very simple problem for which we know the
answer in advance. Suppose we draw 500 observations X={X,,..., X,,} from a normal
distribution with p=5000 and 6=100: #(5000,100). Let = denote the sample average of this
data:

m is an estimate of the true value 1, just as we derived an estimate of the “true” outstanding
losses in the previous sections. # therefore tells us “what we think” about the true value of

based on the data. We would also like a measure of “how sure we are”. In this simple
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example, the obvious thing to do is construct a confidence interval by appealing to the
elementary fact that:

Let us apply bootstrapping to this problem to see how close we can come to the answer
(4.47) that we know in advance.

The following table records some facts about our data:

e #obs: 500

¢ Mean: 4995.79
e Stdev: 98.78
o 25705k 4812.30
o 97.5% 04k 5195.58

We can resample from this dataset a large number of times to create multiple “pseudo-
datasets”. “Resampling” means sampling with replacement as many times as there are points
in your initial dataset (here, 500). Explicitly: pull a point at random from {X,,..., Xj,};
record it; throw it back in; repeat this until we have our first pseudo-dataset containing 500
observations. Let us denote this pseudo-dataset X*,.

We now repeat this process as many times as we would like, say 999 additional imes. We
therefore have 1000 pseudo-datasets X*,.... X*,,,,. We can compute the sample average 7 on
each one of these datasets. Denote these {#*,.... #*,,}. These 1000 estimates constitute an
estimate of the distribution of our estimator ». With this distribution {m*,.... »*,,,} in hand,
we can very easily estimate nearly any distributional property of 7 that we would like. In
particular: the sample standard deviation of 7 based on our 1000 resamples is 4.43:

1 0 [ o 2
sdm)=oos (m*,.—m m*k) ~4.43
i=l k=1

This differs from the true value (4.47) by less than a percentage point.

Bootstrapping in this toy example is therefore a complete success. The key point to note is
that the unlike out analytic formula for s.d.(z), the bootstrapping technique does not assume
any knowledge of the underlying distribution of X. All that was required was computing
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power. Because of this, it is possible to execute essentially the same process on the loss data

analyzed in the previous sections.

BOOTSTRAPPING RESERVE ESTIMATES

Having introduced the concept and run through a simple example, there is little to say in
this section, other than to report the results. Let S denote our database of 5000 claims. We
resampled § 500 times to get the 500 pseudo-datasets §*,.... §*;,. We then ran the above 9
GLM models on each of these 500 pseudo-datasets and computed outstanding losses on each
pseudo-dataset: {R*,,..., R*;,}. Although it might seem excessive to fit 4500 GLM models
to estimate the distribution of outstanding losses, doing so took less than 15 minutes on a

standard laptop equipped with the shareware statistical software package R.

The estimated distribution of the outstanding loss estimator R is plotted below:

total reserves - all 10 years
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The bars are simply a histogram of the 500 estimates of outstanding losses. The solid curve
is a superimposed normal distribution. The dotted curve is a kernel density estimate of the

distribution underlying the histogram. Some basic statistics of this distribution are reported

below:
e Mean: $21.751M
e Median: $21.746M
e Stdev: $0.982M
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e CV.: 4.5%

This kernel density estimate in the graph suggests that the distribution of our outstanding
loss estimator is normal, to a reasonable degree of approximation. The fact that the mean is
nearly equal to the median reinforces this judgment. Therefore a 95% confidence interval

around our reserve estimate can be calculated in one of two ways:

e Record the 2.5 and 97.5 percentiles of the bootstrap distribution.
e Calculate 21.751M + (1.96)*(0.982M).

Both of these methods produce the same answer, to within the nearest $100K:

($19.8M, $23.7M)

In short (ignotring model risk), we have 95% confidence that the true outstanding loss is
within £ 9% of our estimated value. We remind the reader that this result is based on a
rudimentary simulation, and is only intended to be suggestive.

DISCUSSION

Before concluding this paper, we would like to make four points about the bootstrapping
technique illustrated above. First, bootstrapping is uncommonly generous to the practitioner
in that it gives one an estimate of the entire distribution of an arbitrarily complex estimator
without asking for azy knowledge of the distributions underlying the data. Neatly any question
we would typically ask about the outstanding loss distribution (standard deviation, skewness,

percentiles, probability of ruin...) can be addressed with mere computation.

Second, the bootstrap method illustrated above is not specific to our GLM-based reserving
technique. Indeed, if the claim-level data is available, one can also use this technique to
bootstrap chain-ladder, Bornhuetter-Ferguson, or any other reserve estimates. To do this, we
would summarize each of our pseudo-datasets to the triangle level; and apply our favorite
technique to each of the resulting triangles. The 1000 outstanding loss estimates (assuming
1000 pseudo-datasets, as in the above illustration) resulting from each of the 1000 pseudo-
triangles will constitute the distribution of our outstanding loss estimate.

Third, bootstrapping has been the subject of some discussion in the recent loss reserving

literature. But there is an important difference between these discussions and the technique
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llustrated here. To the best of our knowledge, these discussions have been offered in the

context of analyses of summarized loss triangles, not claim-level data.

The excellent sutvey paper by England and Verrall [4] is an example. England and Verrall
apply 2 GLM model to a summarized loss triangle, and resample the standardized residuals of
this model. They tesample the distribution of residuals (there will be 55 data points for a 10-
by-10 loss triangle) a large number of times. Each time they add the pseudo-dataset of
residuals to the original loss triangle to form a pseudo-history to which they can again apply
theit GLM. Doing so allows them to estimate the prediction etror of their estimate.

The difference between England and Verrall’s approach and the approach illustrated here is
generic, and found in most textbook discussions of bootstrapping. When bootstrapping
model predictions, it is possible either to bootstrap cases (our approach) or residuals (England-
Verrall). When dealing with small loss triangles it is not meaningful to bootstrap cases.
However bootstrapping cases is meaningful when claim-level data is available.

As noted in the final paragraph of the introduction, our approach of resampling cases
occurs prior to any reserving model being fit to the data. In other words, the very validity of
our pseudo-datasets does not depend on the adequacy of the model being fit. In this sense,
the cases-based resampling strategy is less sensitive to the correctness of ones model than the

residual-based resampling strategy.

One final comment: bootstrapping is not the last word on the topic of reserve variability.
In particular, nothing we have said addresses the problem of mode/ risk. Suppose, for example,
that we bootstrapped the traditional chain ladder applied to our simulated data. The
bootstrapped confidence interval would not reflect the bias due to excluding the credit
covariate in our resetving model. What is perhaps the biggest challenge in reserve vatiability is
thetefore left untouched by this discussion. Sdll, by giving us a practical way of estimating the
predictive distribution of outstanding losses, bootstrapping potentially allows one to devote

more attention to model risk.

CONCLUSION

The traditional summarized loss triangle is in general not a “sufficient statistic” for
estimating outstanding losses. There will be times when we can do better by basing reserve

and reserve varability estimates on un-summarized claim-level data.
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As the first half of our paper illustrates, loss triangles can suppress heterogeneous loss
development patterns that could be used to improve our predictions of outstanding losses. At
the same time, summariZed data does not allow us to use predictive variables that might be

correlated with different loss development patterns.

Furthermore, as noted in the second half of our paper, loss triangles potentially summarize
away variability information that could be used to make improved estimates of reserve
variability. Using claim-level data allows us to bootstrap cases, not merely residuals from

models applied to loss triangles with small numbers of observations.

In short, the use of claim-level data, together with relevant predictive variables, has the
potential to improve actuaries’ estimates of outstanding losses. In addition, it makes available

a powerful and conceptually simple method for estimating reserve variability.

Acknowledgment
The authors would like to thanks Gerry Kirschner, Keith Cutley, Peter Wu, and Frank Zizzamia for

helpful conversations.

Casualty Actuarial Society Forum, Fall 2006 137



Loss Reserving Using Claim-Level Data

APPENDIX: ADDING IBNR TO THE MODEL

This appendix outlines a method by which one can enhance the model to predict INBR
losses. Alternately, one can simply use the model outlined in the body of this paper to model
the development of reported claims (as is done in the simulation example to follow); and build

a separate model to estimate IBNR.

The 12224 model (M,,) not modified to reflect IBNR takes the form:

C,, =expflog(Cp, )+ a+ B X, + B X, +..+ By Xy }+e

The idea is to introduce a record for each policy with no losses as of 12 months (C,,=0)
from its effective date. (Note that the other records in our database are at the claim level.) We
set the offset term log(C,,) on these records to be zero. We also include on all records an
indicator variable X, that takes on the value 1 if C;,=0, and 0 otherwise. Finally, on the (claim-
free) policy-level records we would neutralize all predictive variables that measure claim-level
information. (“Neutralize” might mean that we recode missing values of a variable to the

median value of that variable.)

For the 1990-98 policy-level records, we let {C,,, Cy ..., Ciz} equal the total IBNR
evaluated at these vatious evaluation points. As with all of the other AY 1999 records in the
database the values of {C,,, Cy, ..., Ci»,} are all missing. We add the indicator variable X, in
the model. At this point our model takes the form:

Cy =expllog(Cp )+ a+y Xo+ B X, + Bu X, +t ByX y }+e

Note that in this model form, the offset tetm only “applies” to the claim-level records with
a non-zero value of C,,; similarly, the term v,X, “applies” only to the policy-level records with
C,;=0. The remaining terms apply to both types of records. In other words, each of the B
parameters simultaneously models development of losses reported as of 12 months, as well as
allocates IBNR losses at 24 months.

If this dual functioning of the B parameters is unsatisfactory, it is possible to let the §
parameters only model the development of rgporfed claims (as in the orginal model with no
IBNR component) by introducing interaction terms. Suppose that X;... X, are the policy-

level covariates (such as policy age and credit scote) in the model. (Claim-level variables such
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as report lag or injury type do not apply to policy-level records.) We add the interaction terms
X*X,... X*X, nto the model:

Cy =exP{l°g(Clz)+a+70Xo +AX + .+ By Xy +y X * X, LS Y. € *XN-,;}""E

If this seems somewhat complex, it is because we have really designed “two models in

one”. The 12->24 development of a claim C',, is given by the following equation:
C'u= exp{log(C'nz)+a+,B,Xl +...+ﬂNXN}

All of the terms with X, drop out because X, is assumed to be 0 on (claim-level) records
with non-zero C,;. In other words, we ate back to the model form given at the beginning of
this appendix.

On the other hand, the allocated IBNR at 24 months fot a policy with no loss at 12 months
is given by the following equation:

C24 = CXP{Q’ +70+(ﬂ| +7|)X1 +...+ (ﬂN—l’+y’V'l’)X""’ + K}

Here x denotes the terms {By,., Xy, + .- + BaXy}- These terms reduce to a constant x
because the claim-level variables {X,,, ...X\} were neutralized on the policy-level records.

In addition, note that the offset term was forced to be zero on these policy-level records.

It might be helpful to note that exp{a+y,+x} is the average IBNR allocated to each of the
policies that were claim-free as of 12 months. The multiplier exp{(8,+y,)X,+...+(Bx R
»Xx,} adjusts each policy’s allocated IBNR based on the values of the policy-level covariates
X,...Xxy As with expected claim development, the fact that the allocation of IBNR is
“tailored” to the individual policy according to that policy’s characteristics allows the model to

reflect changes in the mix of business being analyzed.

Models M, ..., M;,, can similarly be modified to handle the further emergence and
development of IBNR.
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Thomas Mack, Munich Re

Abstract: The Bornhuetter/Ferguson loss reserving method consists of selecting a development pattern and, for
each accident year, an initia] ultimate loss ratio. From these, the reserve estimate is derived. In this paper, the
usual way to obtain the development pattern from the chain ladder link ratios is criticized because it assumes a
multiplicative connection between past and future loss amounts whereas the Bornhuetter/Ferguson method
establishes an additive connection (i.e. an independence). Therefore, an alternative approach to derive and select
a development pattern is proposed.

Furthermore, the raw data usually contain some implicit information about the underwriting cycle. This paper
shows how this information can be extracted from the dara and used in the selection of the initial ulimate loss
ratios.

Altogether the proposed approach is believed to align with the concepts of Bornhuetter and Ferguson better
than the conventional approach does. The result is a standalone reserving method which does not rely upon the
use of chain ladder elements.

Keywords. Loss reserving, Bornhuetter/Ferguson, Development pattern, Initia} ultimate loss ratio

1. Introduction

Let C,, denote the cumulative loss amount (either paid or incurred) of accident year 7 after &
years of development, 1 <4, £ < #, and », be the premium volume of accident year 7. Then C,,,,;
denotes the current loss amount of accident year 7 Let further 5, = C, — C,, denote the
incremental loss amount (with C, = 0) and U, the (unknown) ultimate loss amount of accident
year . Then R; = U, - C,,,,, is the (unknown true) loss reserve for accident year # For an easier
exposition of the ideas, we assume in the beginning that # is large enough such that there is no
significant loss development beyond development year . We will eliminate this assumption at the

end of section 3.

Bornhuetter/Ferguson (BF) introduced their method to estimate R; in 1972 in order to cope

with a major weakness of the chain ladder (CL) method. Therefore, we will first examine this

weakness: The CL uses link ratos f, in order to project the current loss amount C,,,, to

a

ultimate, i.e. it estimates U,a' =C, e Soraey oot fooif, - Therefore, the CL reserve is

R,a = U,CL' Com1i™ Ciprey (ﬂu-, ﬁ "1)'
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This means that the reserve is heavily dependent upon the current loss amount C,,,,, . This
can lead to a nonsensical reserve R,a. = 0 for accident years where currently no claims are paid
or reported which is not unusual in excess-of-loss reinsurance for the most recent accident
year(s).

The BF method avoids this dependency upon the cutrent loss amount C,,.,, The indicated

BF reserve is defined as

-

Ii/BF = (1 _1;n+l—/) Ui
where
U, = v,4, with an 4 priori estimate §, of the ultimate loss ratio (ULR) g,:= U/, fot
lq p ql ql L 1
accident year 7,
by € [0, 1] is the percentage of ultimate losses expected to be known after development
year k.
Note that g, is called the @ priori (or initial) estimate of the ULR, in contrast to the posterior
estimate (C,,,,; + R,B ")/#, of the ULR. This a prioti estimate is different from the posterior

estimate if and only if C,,,, # I;M_,.v,qA,. The percentages (b, b, ..., b,) constitute the expected
cumulative development pattern (with 4, = 1 due to our preliminary assumption regarding #) and

A

1-4,,,, is therefore the expected outstanding loss percentage of accident year /.

Thus, in order to apply the BF method, the actuary has to estimate the parameters ¢, and 4, for

all /and 4. In practice, the b, are derived from the CL link ratios in the following way:

P

b, =1, 5,_,=L", I;,_] =(],,_, ‘”)—’,..., 5,=(ﬂ~...-f,,)—,.

The method itself does not provide an objectve approach for the determination of the a

priori estimate ¢,. In practice, the ¢, are estimated in a variety of ways, often based upon last

year’s estimate and/or pricing and market information. At worst, this practice can make the

estimate ¢, appear manipulated in order to achieve a reserve of a desired size. At best, the use of

the CL pattern makes it difficult to view the BF method as a standalone reserving method.

Moreover, the use of the CL link ratios assumes that the unknown losses are a direct multiple

of the already known losses at each point of the development. This contradicts the basic idea of
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the independence between C,,,,, and RiBF which was fundamental to the origin of the BF
method.

Therefore, this paper develops an alternative approach to estimating the BF parameters 4, and
b, without the use of CL concepts along with rather clear guidance on how to atrive at an a priori

estimate for the ultimate loss ratio ¢, Through this approach, the BF method becomes a true

alternative to the CL method.

2. Estimation of the Development Pattern

If we already have an a priori estimate for U, (e.g. from the tradidonal approach as outlined

above), we atre able to estimate the appropriate development pattern. From the BF reserve

formula Ii,BF = (1—1;” +,_,) U, we deduce

i

R
n 1= = 1_0_’ =
As previously stated, the ~-sign is a strict equality only if the a priori estimate U, equals the

postetior C,,,,,; + ﬁ,- ,Le. if C, =b,, U, This will not be the case for every / but should be

i adl=r Wbl it
true on average, at least approximately, otherwise the pattern I;l,.éz_... would not fit to the data.
Therefore, the previous approximate equation suggests the estimator

. ] ik

b=y C,/ XU,

1=t i=f

as weighted average of the ratios C,,/U,. This direct way of estimating the cumulative pattern 4,
b,, ... may lead to inversions, i.e. 5, > b;,,, , because each b; is based on a different number of
accident years. In order to avoid such inversions, we use the corresponding increments
nti~k -k

B£:=ZS¢ zﬁl

=1 =]
and obtain I;}E by adding up the ﬁt ,ie. take
b, =B, +..+B,

and supplement it with 5, =1
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This is the development pattern as suggested by the BF reserve formula itself. This pattern is

different from the CL pattern as can be seen e.g. from the numerical example below. Of course,
the B,, should be smoothed and decreasing towards 0. This can be achieved by smoothing

selections much as one would do when selecting CL link ratios. We will apply such a procedure
together with the estimation of the ultimate loss rato in the next section. But the actuary who
wants to stay with the traditional BF way to artive at an estimate for U, can stop reading here and

just use the specific BF pattern derived above.

3. Estimation of the Initial Ultimate Loss Ratios

As said in the introduction, the BF method aims at developing an estimate for ¢, which does
not directly depend on the losses C,,,,; known to-date and can be similatly obtained by another
actuary. The procedure proposed here employs a three-steps approach. The first step considers

the average incremental loss ratio (ILR)

w1k nt1=k
my = Z S Z ?
=i r=f

of development year 4 observed to-date. The sum s, +...+ 4, of all average ILRs is an a prioti

estimate of the ultimate loss ratio of an average accident year (if the development is assumed to
be finished after » years). Note that in determining this a priori estimate, the known loss
expenience C, ., of any fixed accident year / is taken into account only marginally (as opposed to

the CL estimate for U).

In the second step, we leverage the fact that the ultimate loss ratio ¢; of accident year 7 is
highly influenced by the level of the rate adequacy of that particular year. The rate adequacy is
determined by two factors: the rate level and the loss level, which together yield the level of the
loss ratio. But whereas in rate making we have to determine a sufficient absolute rate level -
sufficient to pay all costs of the business -, for reserving purposes it is sufficient to judge the
relative level of rate adequacy of an accident year as compared to the other accident years. With
this information we can translate the (almost) known loss ratio of the oldest accident year(s) into

predictions for the more recent accident years. Thus, we have to estimate the rate level change
' and the loss cost trend only. This is much easier because, at the time of reserving, we know the
degree to which any rate changes have been realized and we know already some part of the losses
of each accident year. This information should therefore be used for the assessment of the rate

adequacy in additon to the information from the time of rate making.
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Thus, we analyze what the run-off data tell us about the rate adequacy. If an accident year /
has a below average rate adequacy (as compared to the other accident years considered), then the
premium volume #, is smaller than it should be for an average accident year. Therefore, most of
its observed individual incremental loss ratios

iurti=i

’ yaeey

v v

Sin S S,
”i 1 ’
will be higher than the corresponding averages

a 4
ml 4 ”IZ 1 mN'H—/ ?

at least after we have eliminated any unusually large individual losses as is normally done with any
loss reserving method. In order to arrive at a single figure indicating the emerged relative rate
adequacy level of accident year / (as compared to the average level of all accident years

considered) we use the weighted average

+1--, Iy +1= +1—7
=5 'S,,/u,_” I_;‘ N (05 —M
= > - = i* (”/”’k) = e
k=l 2, 7y £=1 k=1 ZM A

of the ratios of S5,/ and s, . Thus, r, is the ratio of the current individual loss ratio C,,.,./#; of

accident year / divided by the corresponding a priori average loss ratio. Therefore, r, can be called

a loss ratio index.

As seen from the premium perspective, 7, indicates the factor by which the premium 2, has to
be multiplied in order to adjust it to the average rate adequacy level of the accident years 7 = 1,
..., n considered. From this perspective, r, can be called an on-leve! premium factor. Again, the factor
r, does not necessarily bring the premium », to the sufficient absolute size; it only achieves that —
in relation to #, instead of , - all accident years have approximately the same ultimate loss ratio

U/(r) =, +..+m

“?

may the latter be profitable or not. At this stage we can already state that, if
the 7,’s and the 7, ’s are plausible, then

(7, + .+, )r,
is a reasonable a priori estimate of the ultimate loss rato ¢, = U/ (if the development is
assumed to be finished after # years).

As a third step, we have to check the plausibility of 7, Initially we realize that the paid data and
the incurred data will yield different values for . But of course, these should be identical because

they relate to the same premium # and losses U, for either set of data. Without additional
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knowledge, we would therefore use the straight average (r,"‘""’ + " ) / 2 or — as we deal with

factors - rather the geometric mean

- pad e
AR AN AR

The calculation of the s should be based on the data of a rather large portfolio in order to
have the factors 7, be as reliable as possible. This large portfolio could be comprised of several
run-off triangles for which the reserving is done separately, but which are assumed to have

undergone similar changes in rate adequacy level.

Normally, we also have some information from pricing available, i.e. the rate changes effected
and an estimate of the loss trend. The ratio r,/,, of any two consecutive years should be checked
against the ratio of the loss trend and the effective rate change imbedded in #, (in combination
these represent the indicated change of the rate adequacy level). For instance, if from year -1 to
year 7 a loss increase of +10% is expected but a rate change of only +5% has been achieved, the
ratio 1, /r,_, should be close to 1.10/1.05 indicating a deterioration of the loss rado by 4.8% (=
1.10/1.05 - 1). If not, we have to make a decision between these two ratios, e.g. form a

credibility-weighted average of both values.

For the most recent accident years /=# and /=»-1 we probably will trust the pricing
information more than the r-estimate from the data, as the latter only relies on one or two entries
in the triangle. At an extreme, 7; could be 0, which would be nonsensical and must obviously be
adjusted. The size of , for the first accident year can in principle be chosen arbitrarily, because its
rate adequacy level (loss ratio level) will be taken into account in a subsequent adjustment of 7, ,

see below. Therefore it can be left as it comes out of the formula in order to keep the 7, at the

intuitive incremental loss ratio level.

What really matters are the relativities 7,/r,,. Therefore, we first select the values for these
relativities based on all information available and then, starting with a selection for ", derive

from these the resulting selections r;” for each accident year 7. With these selected ;" all adjusted
premium volume figures v7,, 1 < i < n, should ultimately lead to (approximately) the same rate

adequacy level, i.e. yield similar values of U,/ (7).

At next year’s reserve calculation, the data triangle will contain an additional diagonal which
will result in changes to all 7. But the ratios r/r., have the same interpretation as before.

Therefore, due to the arbitrariness of r,", we can keep the “old” 7," and — as long as no changes in
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the ratios 7, /r,,” are indicated — also keep the other r," and just add a new r,, based on a plausible
ratio r;” / r;.

Before using r; for the estimation of 4, we have to adjust the average incremental loss ratios
1, because these were based on the unadjusted premium volume figures . Therefore we replace
1, with

. ntl=k wtl-k .
= Zsit/z(”r’i)'

=1 =1

Often this will result in minor changes only. Major changes may happen for the last two or three

development years or generally with data where the sizes of #, or 7, vary significantly.

The adjusted ILRs t:ﬂk of the last few development years could stll produce unintuitive

results, again due to the limited number of data points. Of course, these incremental values

should be smooth and decreasing towards 0. Therefore, a smoothing approach is reasonable, and

we denote the ILRs finally selected with s, .

At this point we will abandon the unrealistic assumption of not having any development

beyond development year ». This is simply achieved by selecting an average tail ratio #7,,, (which

may be 0 or even negative, like any other 77, ), to supplement the ILRs #,, 1 < & < z, already

selected.

Using these selected ILRs, we now have

*

RN A
as an adjusted estimate for the ULR at average rate adequacy level. Of course, the paid data

should have the same estimated ULR #"as the incurred data. If that is not the case, we must

.
¥+l

adjust some 7, , especially 7)., , to achieve the equality #7,, = #,,. This finally yields the a priori

estimate §,:= 7, 7 for the ULR of accident year 7and the corresponding amount U, :=v,r’s" .

In contrast to the traditional BF procedure, this procedure gives the actuary the possibility to
consolidate the general pricing and market information available with the trends and relativities

contained in the paid and incurred data triangle. Moreover, this procedure uses a detailed

decomposition of the initial ultimate loss ratio §, =r (#, +...+,,, ) into its components rate

n+l
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adequacy and development pattern. This makes the procedure easier to be followed or peer-

reviewed by any other actuary.

4. Estimation of the Development Pattern (continued)

Now, we insert the result U, = v,r” " of the previous section into the formula derived for 3,

in section 2 and obtain

wtl=k 1=k
% %
B, = -= — =l _ 7
& wtik 1=k T A
y m

«an
UI Z ﬂl'; ”m
=1 =1

Here we see that the numerator rfl,, may differ from the finally selected 7,, as the

denominator reflects the selected ILRs. Therefore it is logical to select

B, = —
This finally leads to

= B +..+f0, = L”-'—-"-—m’-

e I
mt..t+m,,

This is the genuine BF development pattern which is different from the CL pattern (see the

numerical example below).

5. Putting it all Together

Altogether, we have the following steps of calculation:

", = :HS / Z:'- raw incremen‘tal loss ratio (ILR) at development year &
1, = :t’,_ AW / ZM_' #,)}  raw on-level premium factor for accident year /
r = selected on-level premium factor for accident year i (same for paid and incurred)
, = selected average ILR at development year £

(smoothed version of f):lb ”:H AW / Z:’_k '
g; = (m, ot o, H) a priori ULR for accident year 4, including tail ratio #.,,
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U =g =ur (m,' +..+ 73;+,) a priori estimate of ultimate losses for accident year
L .
7 m Y.t m . 1
b, . £ avg. cumulative percentage paid (incurred) at development year £

)+t

X3

. oo . .
=7, (m” i Tt ) loss reserve for accident year /

oSN
1l

i (1 - 5;+|—i ) Ui
With this way of estimating its parameters ¢, and §,, the BF method is truly a standalone
reserving method which is completely independent of the CL method. As shown in section 2,

this way of calculating the pattern &, &, ... can also be used if the a priori estimates ¢, and
U ;=v,4; are arrived at in a different (e.g. traditional) way. Thus, even if one does not like to

work with #, and r, one should at least adopt the estimation of the pattern as outlined above and

avoid using the CL pattern.

6. Numerical Example

Data from General Liability Excess business are used to demonstrate the method. Exhibit A
contains the premiums ¢, and the incremental amounts §,, of the incurred and the paid losses for
the accident years 1992 — 2004 and development years 1 to 13. Some negative amounts have been
kept in order to demonstrate that this does not lead to distortions. Exhibits B and C show the
detailed results of the calculations for the incurred and the paid data respectively. These two
exhibits are subdivided into three column blocks and two row blocks indicating the order of
calculation: Columns (A) through (C) and rows (1) through (2) are the given data in aggregated
form. From these the various components are calculated in the following order:

Rows (3) through (4),

Columns (D) through (G),

Rows (5) through (9),

Columns (H) through (M).

In the headings of column (H) and row (9), (8#) stands for the last number in row (8), i.e. 7"
The suffix ,, in rows (2), (3) and (5) stands for summation over 7 i.e. Z:;H, The term “post.”

in columns (L) and (M) stands for “postetior”. The bold headings r*, m,* and Tail-ILR indicate
those positions where selections were required. These selections have been made in the following

way:
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Before selecting r,* we looked at Exhibit D where the raw r; from column (E) are plotted for
both paid and incurred data. The graph shows that the two sets of data are reasonably consistent,
except for accident year 2004. Therefore, for i = 1992, ..., 2002, we selected t.* as the geometric
mean between the paid r; and the incurred r,. For 1 = 2003 and 2004, we have set £* = 0.50 for
both, incurred and paid. The latter choice is not based on any further information. It is just an
example. As mentioned earlier, information from pricing should also be used when making the
selection. But even without this, the resulting r* seem to give a realistic picture of the rather
extreme rate adequacy level changes over the years considered. These r* correspond to the

following adequacy changes:

i-1-i 92393 | 93394 | 9495 | 95396 | 9697 | 97398 | 98399 [ 9900 | 0001 | 01302 | 0203 | 03-204

t~*/t- l* [k, 0.95 0.94 1.52 1.49 1.26 1.54 072 0.66 .79 0.67 1.0
i i

If we interpret 7, a loss ratio index, the above figures imply that we assume a decrease of the loss

ratio index 7; from 1992 to 1993 of 11% (= 0.89 - 1) and an increase of 52% from 1995 to 1996.

m* has been taken from row (6) (m",) for development years k = 1, ..., 7. All the other m,*
have been selected in order to make the development smoothly decreasing. Of course, other
selections would have been possible. The Tail-ILR for incurred has been selected to be 0 and
the Tail-ILR for paid has been selected such that the sum " of all paid ILRs equals that of the
incurred-ILRs which is 137.9%. Note that the traditional way to apply BF will yield exactly the
same reserve R; as obtained in column (K) if we use 1.379-1* as initial loss ratio and the pattem

from row (9).

Finally, Exhibit E shows a comparison between the raw development pattern as proposed

here and the pattern derived from the raw CL factors. More precisely, the BF pattern is a plot of

. ) 4 ot 1 .
by =TT using the raw ILR’s m, of row (4), whereas the CL pattern is a plot of

iyttt

. . . ack ik
b = (S f,) with £, =ZC1.Ic+I/ZCi./c . We see that the raw BF pattern is clearly

=1 =1

different from the raw CL pattem for either data set.

7. Final Remarks
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As with any reserving method, this approach to estimating the parameters (i.e. the reserve)
relies on implicit assumptions. One main assumption has already been addressed in the
beginning: the data observed to-date and the amounts still outstanding are independent. This
assumption is a comerstone of the BF method. As the assumption should hold at any point in

time, it essentially means that all incremental amounts §,,, ..., S,

in

of each accident year are
assumed to be independent. This would be violated if claim payments or bookings of case
reserves were not done in the same way each year, especially if high payments in one calendar
year would be followed by rather delayed payments in the following year(s). Similarly, the
independence of the accident years is implicitly assumed in the estimation of m,. This
independence assumption is normally less problematic but could also be violated by calendar year
effects. A more critical assumption is that the development pattern is consistent across all
accident years. Of course, this assumption is not unique to this approach, as it is also implicit in
the traditional BF method, as well as in the CL. This assumption should be especially borne in

mind when selecting the accident years upon which the parameter estimates are to be based.

The way in which the parameters r; and 7, are estimated consists of starting with an estimate
for m, which then is used to estimate r, The latter is adjusted and then used to arrive at an
improved estimate for a7, Thus, it may be tempting to again use this improved estimate of #, to
improve the estimate for r, But one must be cautious here. External judgment has already been
applied in developing these parameters, and therefore any further changes based on the run-off
data would only serve to dilute the (presumably desired) impacts of those judgments. Similarly, a

purist might be tempted to iterate the estimations without any adjustments in between, i.e. to

start with 77, and r, as given in section 4, and with 7, as in section 3, but then to use the latter

for calculating ﬁ:ZHM.Y,‘ / Zw—i(uﬁ‘). This would then be iterated by calculating new

k=] k=1
estimates, first for , then for r, by using the corresponding estimates obtained immediately
before. Indeed, this procedure will quickly converge upon and yield exactly the same reserves as
the CL does (for a full triangle only). This is not surprising, since proceeding in this way implies
that we fully believe all the information contained in the data, without any input of external

information. Thus we see that the input of external information is vital for the BF method.

For the CL, a methodology of assessing the variability of the reserves has been established in
recent years. See e.g. the papers by Murphy or Mack in the 1994 CAS Spring Forum. Therefore,
one would like to have this for BF, as well. For this purpose, we refer to the fact that our way of
modeling the BF method can be seen as a cross-classified model, as in automobile rating, based

upon the assumpton E(S,,/#) = rm, . Thus it can be treated using Generalized Linear Models.
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However, this would use the “wrong” volume , instead of »7, Moreover, an appropriate
assumption for the variance is necessary, too. Therefore, it may seem easier to use the alternative
approach of embedding this BF model into the classical credibility IBNR model (see the author’s
paper “Improved Estimation of IBNR Claims by Credibility Theory” in the journal Insurance:
Mathematics & Economics of 1990). In this way, the rate level r, would be treated as a random

variable. In any case, the issue of reserve variability deserves a separate paper.
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AceYear

1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004

AccYear

1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004

Premium

41020
57547
60940
63034
61256
57231
91137
96925
167021
148494
165410
228239
226454

Premium

41020
57547
60940
63034
61256
57231
91137
96925
167021
148494
165410
228239
226454

I 11 d Loss A
DevYr 1 2 3
7362 3981 4881
5400 7208 7252
2215 12914 6494
1109 6581 5833
6220 10065 10343
1324 6579 16428
5772 12714 22918
8563 47206, 59695
1nm 48696 84750
11259 27000 38648
11855 27183 25927
6236 18214
7818
I 1 Paid Loss A
Devyr. 1} 2 3
234 4643 6249
1994 4936 4825
-75 3208 7853
236 2202 4125
976 4719 9397
-730 3353 12904
539 5238 14901
725 14900 34676
312 6442 43596
2988 9921 20357
260 7181 22202
994 3049
2411

5080
4946
5585
4827
11259
17453
33920
60043
77361
51890

3530
6180
127
5003
13253
10642
24865
43595
88702
34585

3806
4394
2211
5672
2032
2457
20709
50458
39404

5

6539
7659
5360
4189
6106
16491
20274
52621
38812

6

2523
3198
3363
8638
1207
3209
33941
5129

6

2737
1951
3876
W64
4975
8886
17769
27480

792
3039
2126

7103
28483

5110
3426
2202
3049

3293

73t
-
445

4221
101

1815

611
1440
2064
4719
8512

988
421
4054
378

335
776
1283
3244
2715

Exhibit A
10 11 12
241 -347 3
-495 -182 1251
18 849
-625
10 1 12
1o 18 26
409 48 1327
67 1616
1179
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Exhibit B

Reserve Calculation for Incurred Data
W o) ©) (] ®©) (0] @) an M (U] ® @ ®)
Acc. Year i vi Cinsri Loy T, (A et 4 uU; 1-byy; R, post. U, post. ULR
from (§) CYE/D) __ seleced @) OPEH @) m@) O (©OHRO  0Y®)
1992 41,020 28,937 1326 0.53 0.57 23,4211 78.7% 32,2999 0.0 0.0 28,9370 70.5%%
1993 57,547 36,228 1329 047 0.51 29,206.9 T70.0% 40,279.1 0.1% 29.2 36,257.2 630"
1994 60,940 36,741 131.6°% 0.46 048 29.464.7 66.7% 40,634.6 0.2% 88.4 36,8294 60.4°0
1995 63,034 36,247 13140 0.44 0.46 28,7176 62.8"% 39,604.3 0.6 229.7 36,476.7 57.9%
1996 61,256 52,751 131.8°% 0.65 0.69 42376.1 95.4% 58,440.6 1.3% 762.8 53,513.8 874"
1997 57,231 72,654 129.7%0 0.98 103 58985.8 142.1%% 81,346.9 28% 22415 74,8955 130.9%%
1998 91,137 158,457 128.3%% 1.36 130 118,381.1 179.1% 163,258.7 6.4 10,4175 168,874.5 185.3%%
1999 96,925 231,094 118.7°% 201 20 194,439.7 276.7% 268,150.6 15.5% 41,569.7 272,663.7 281.3%
2000 167,021 261,982 107.1%% 1.46 144 240,660.2 198.7% 331,893.1 24.0% 79,50.4 341,491.4 204.5"
200 148,494 128,797 B4.7°0 1.02 0.94 140,323.8 130.3% 193,519.8 387" 749771 203,774.1 137.2%
2002 165,410 64,965 52.4% 0.75 0.74 122950.0 102.5% 169,559.7 60.5" 102,656.5 167,621.5 101.3%
2003 228,239 24,450 244" 0.44 0.50 114,119.5 69.0"% 157,381.6 80.5"% 126,690.1 151,140.1 66.2%
2004 226,454 7,818 5.9°% 0.58 .50 1132270 69.0"% 156,150.7 950 148,318.1 156,136.1 68.9%
(1) Dev.Yre k 1 2 3 4 5 6 7 8 9 10 11 12 13
(2) Sw 86,904 228,341 283,169 272,364 156,143 61,208 41,581 4,873 5,840 -761 320 1,254 -115
) va from (13) 1,464,708 1,238,254 1,010,015 844,605 696,111 529,0% 432,165 341,028 283,797 222541 159,507 98,567 41,020
(4) my /) 59°% 18.4% 2800 32.2% 24% 11.6"6 9.6"% 1.4 21% 03 0.2 1.3% 0.3%
(5) (") from (G)  1,256,273.4 1,143,046.4  1,028,926.9 905,976.9 765,653.0 524,9929 330,553.2 212,172.2 153,186.4 110,810.3 82,092.7 52,628.0 23,4211
©) m’y /(5 6.9% 20.07% 215 30.4%% 20.4"% 11.7% 12.6% 2.3% 3.8% 07 0.4°% 24" -0.5%%
@ m?* sclected 6.9% 20.0% 27.5% 30.1% 20.4" 1.7 12.6"o 5.0% 20 100 0.5% 0.2% 0.1%
® ZM 69" 269 54.4"% 84.5% 104.9°% 116.5°0 129.1% 134.1%% 136.1% 137.8% 137.6% 137.8°% 137.9%
9 by 8)/(8#) 50 19.5"% 39.5% 613" 76.00% 84.5% 93.6™ 91.2% 98.7% 99.4%% 99.8%% 99.9"% 100.0%0

Tail-ILR
0.0
137.9%
100.0%%
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Exhibit C

Reserve Calculation for Paid Data
Q) ®) ©) L) ) ® ©) tn M 0} ®) O] M)
Acc. Year & v Copsta Tmy 1 * vt q u; 1-basys R, post. U, post. ULR
from (4 (C)/B)/(D) sclected (OMG] (1)+(8#) o an _ from (9) [UMO B 2I(S] L/®)
1992 41,020 28,781 114.5% 0.61 0.57 23421.1 78.7% 32,299.9 3.5% 1,1186 29,899.6 729%%
1993 57,547 35,826 114.5% 0.54 0.51 29,200.9 T 40,279.1 4.9 1,979.1 37,805.1 65.7%%
1994 60,940 35,181 13 0.51 048 29,464.7 66.7% 40,634.6 6.4% 2,585.8 37,7668 620
1995 63,034 33,508 112.1% 0.47 0.46 28,717.6 62.8% 39,604.3 85" 3381.8 36,889.8 5857
1996 61,256 49,909 1113% 0.73 0.69 42,376.1 954" 58,440.6 12.2% 7,190 57,0180 93.1°%
1997 57,231 67,286 108.3% 1.09 1.03 58,985.8 142.1%% 81,3409 17.2% 14,024.5 813105 142.1%
1998 91,137 116,520 1027 1.24 1.30 H8381.1 179.1°% 163,258.7 252" 41,168.2 157,688.2 173.0°4
1999 96,925 173,997 89.6" 200 201 194,439.7 276.7"% 268,150.6 376" 100,850.1 2748471 283.6"
2000 167,021 177,864 75.1% 142 144 240,660.2 198.7% 331,893.1 48.2% 160,000.6 337,864.6 202.3"
2001 148,494 67,851 52.4% 0.87 0.94 140323.8 130.3% 193,519.8 63.2° 122,259.5 190,110.5 128000
2002 165,410 29,643 24.3% 0.74 074 122,950.0 1025 169,559.7 822" 139,350.9 168,993.9 102.2%
2003 228,239 4,043 6.4 0.28 0.50 1141195 69.0% 157,381.6 9490 149,426.8 153,469.8 67.2°%
2004 226,454 241 0.7% 1.44 0.50 13,2270 69.0°% 156,150.7 994" 155,17i.6 157,582.6 69.6"s
(1) Deviyr k 1 2 3 4 5 6 7 8 9 10 1" 12 13
@ S« 10,864 69,792 181,085 237482 158,051 76,738 56,495 19,161 8,353 1,765 1,682 1,353 -1
3) vu from (B) 1,464,708 1,238,254 1,010,015 844,605 696,111 529,090 432,165 341,028 283,797 222541 159,507 98,567 41,020
4) my /0 0.7% 5.6 17.9% 28.1" 227 14.5% 13.1% 56% 29" 0.8 1.1% 1.4% 0.0°%
[OR from (G)  1,256,273.4 1,143,046.4  1,028926.9 205,976.9 765,653.0 524,992.9 330,553.2 2121722 153,186.4 110,810.3 82,0027 52,6280 23,4211
©) my /(5 0.9° 6.1 17.6% 26.2° 20.6 14.6% 17.1% 9.0" 5.5% 1.6 2.0 2.6 0.0%
T m* sclected 0.9% 6.1% 17.6% 26.2% 206" 14.6" 17.1% 11.0°% 7.0 507 3P 2.0 2.0
® IO 0.9 7.0% 24.6% 50.8% 71.4% 86070 103.1°% 114.1% 121.1% 126.1% 129.1% 131.1% 133.1%
9 b 8)/(8%) 0.6% 5.1% 17.8% 36.8" 51.8% 6240 74.8% 82.8% 87.8% 91.5% 93.6% 95.1%% 96.5%%

Tail-ILR
4.8%
137.9%
100.0%
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Exhibit D
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Estimating Predictive Distributions for Loss Reserve Models
By
Glenn Meyers, FCAS, MAA, Ph.D.

Abstract

This paper demonstrates a Bayesian method for estimating the distribution of future loss payments
of individual insurers. The main features of this method are: (1) the stochastic loss reserving model
is based on the collective risk model; (2) predicted loss payments ate derived from a Bayesian
methodology that uses the results of large, and presumably stable, insurers as its prior information;
and (3) this paper tests its model on large number of insurers and finds that its predictions are well
within the statistical bounds expected for a sample of this size. The paper concludes with an analysis
of reported reserves and their subsequent development in terms of the predictive distribution
calculated by this Bayesian methodology.

Key Words
Reserving Methods, Reserve Variability, Uncertainty and Ranges, Schedule P, Suitability Testing,
Collective Risk Model, Fourier Methods, Bayesian Estimation, Hypothesis Testing

1. Introduction

Over the years, there have been a number of stochastic loss reserving models that provide
the means to statistically estimate confidence intervals for loss reserves. In discussing these
models with other actuaries, I find that many feel that the confidence intervals estimated by
these methods are too wide. The reason most give for this opinion is that experienced
actuaries have access to information that is not captured by the particular formulas they use.
These sources of information can include intimate knowledge of claims at hand. A second
source of information that many actuarial consultants have is the expetience gained by

setting loss reserves for other insurers.

\

As one digs into the technical details of the stochastic loss reserving models, one finds many
assumptions that are debatable. For example Mack, [1993], Barnett and Zehnwirth [2000],
and Clark [2003] all make a number of simplifying assumptions on the distribution of an
observed loss about its expected value. Now it is the essence of predictive modeling to
make simplifying assumptions. Which set of simplifying assumptions should we use?
Arguments based on the “reasonability” of the assumptions can (at least in my experience)
only go so far. One should also test the validity of these assumptions by comparing the

predictions of such a model with observations that were not used in fitting the model.
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Given the inherent volatility of loss reserve estimates, testing a single estimate is unlikely to

be conclusive. How conclusive is the following statement?
“Yes, the prediction falls somewhere within a wide range.”

A more comprehensive test of a loss reserve model should involve testing its predictions on

many insurers.

The purpose of this paper is to address at least some of the issues raised above.

¢ The methodologies developed in this paper will be applied to the Schedule P data
submitted on the 1995 NAIC Annual Statement for each of 250 insurers.

o The stochastic loss model underlying the methods of this paper will be the
collective risk model. This model combines the underlying frequency and severity
distributions to get the distribution of aggregate losses. This approach to stochastic

loss resefving is not entirely new. Hayne [2003] uses the collective risk model to
develop confidence regions for the loss reserve, but they assume that the expected
value of the loss reserve is known. This paper makes explicit use of the collective

risk model to first derive the expected value of the loss reserve.

e Next, this paper will illustrate how to use Bayes’ Theorem to estimate the predictive
distribution of future paid losses for an individual insurer. The prior distributions
used in this method will be “derived” by an analysis of loss triangles for other
insurers. This method will provide some of the “experience gained by setting loss
reserves for other insurers” that is missing from existing statistical models for
calculating loss reserves. An advantage of such an approach is that all assumptions

(i.e., prior distributions) and data will be clearly specified.

e Next, this paper will test the predictions of the Bayesian methodology on data from
the corresponding Schedule P data in the corresponding 2001 NAIC Annual
Statements. The essence of the test is to use the predictive distribution derived
from the 1995 data to egtjmate the predicted percentile of losses posted in the 2001

Annual Statement for each insurer. While the circumstances of each individual
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insurer may be different, the predicted percentiles of the observed losses should be

uniformly distributed. This will be tested by standard statistical methods.

e Finally, this paper analyzes the reported reserves and their subsequent development

in terms of the predictive distributions calculated by this Bayesian methodology.

The main body of the paper is written to address a general actuarial audience. My intention
is to make it clear “what” I am doing in the main body. I will discuss additional details

needed to implement the methods described in some of the sections in the Appendix.

2. Exploratory Data Analysis.
The basic data used in this analysis was the earned premium and the incremental paid
losses for accident years 1986 to 1995. The incremental paid losses were those reported as

paid in each calendar year through 1995.

The data used in this analysis was taken from Schedule P of the 1995 NAIC Annual
Statement, as compiled by the A.M. Best Company. I chose the Commercial Auto line of
business because the payout period was long enough to be interesting but short enough so
that ignoring the tail did not present a significant problem. The estimation of the tail is

beyond the scope of this paper.

I selected 250 individual insurance groups from the hundreds that were reported by A M.
Best, based on the following criteria. Fi;st, there had to be at least some exposure in each
of the years 1986 to 1995. Second, the payment pattern had to, in my judgment, “look

reasonable.”

Occasionally, the reported incremental paid losses were negative. In this case, I treated the

losses as if they were zero. I believe this had minimal effect on the total loss reserve.

Let’s look at some graphic summaries of the data. Figure 1, below, shows the distribution
of insurer sizes, ranked by 10-year average earned premium. Itis worth noting that 16 of

the insurers accounted for more than half of the total premium of the 250 insurers.

Figure 2, below, shows the variability of payment paths (i.e., proportion of total reported

paid loss segregated by settlement lag) for the accident year 1986. This figure makes it clear
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that payment paths do vary by insurer. How much these differences can be attributed to
systematic differences between insurers, versus how much can be attributed to random

processes, is unclear at this point.

Figure 3, below, shows the aggregate payment patterns for four groups, each accounting

for approximately one quarter of the total premium volume.

Figure 1

Distribution of Insurer Size
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L 1 1
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!
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Average Annual Net Premium {000,000)

o
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T T T T T T
0 50 100 150 200 250
Insurer Rank
1 Ranked by 10-Year Average Annual Net Premium

® Insurers ranked 1-6, 7-16, 17-40 and 41-250 each accounted for about one quarter

of the total premium
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Figure 2
Empirical Payment Paths for Accident Year 1986

Incremental Paid Losses as a Proportion of 10-Year Total
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e Each plot represents approximately one quarter of the total premium volume.

o The variability of the incremental paid loss factors increases as the size of the

insurer decreases.
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Figure 3

Empirical Payment Paths for the Four Industry Segments
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e Segment 1 — Insurers ranked 1-6, Segment 2 — Insurers ranked 6-16,
Segment 3 — Insurers ranked 17-40, Segment 4 — Insurers ranked 41-250.
e There is no indicatdon of any systematic differences in payout patterns by size of

insurer.
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3. A Stochastic Loss Reserve Model
The goal of this paper is to develop a loss reserving model that makes testable predictions.
And then actually perform the tests. Let’s start with 2 more detailed outline of how I

intend to reach this goal.

1. The model for the expected payouts will be faitly conventional. It will be similar to
the “Cape Cod” approach first published by Stanard [1985]. This approach

assumes a constant expected loss ratio across the 10-year span of the data.

2. Given the expected loss, the distribution of actual losses around the expected will
be modeled by the collective risk model — a compound frequency and severity
model. As mentioned above, this approach has precedents with Hayne [2003}.
This will conclude Section 3.

3. In Section 4, I will turn to estimating the parameters for the above models. The

initial estimation method will be that of maximum likelihood.

4. I will then discuss testing the predictions of the model in Section 5. Initially, the
tests will be on the same data that was used for fitting the models. (The tests on
data in the 2001 Annual Statements will come later.) As mentioned above, the test
will consist of calculating the percentiles of each of the observed loss payments and

testing to see that those predictions are uniformly distributed.

As we proceed, I will focus on the 40 ‘largest insurers. I do this because, in my judgment,
the models are responding mainly to random losses for the smaller insurers. As we shall
see, the results of the fitted models for the 40 largest insurers will form the basis for the
Bayesian analysis that will be applied to each insurer, large and small. Implicit in this
approach is the assumption that main systematic differences in the loss payment paths are

somehow captured by the largest 40 insurers.

Let’s proceed.
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Assume that the expected losses are given by the following model.
E[ Paid Loss ., , | = Premium 4, x ELRx Dew,, o

where:
o AY (1986 =1,1987 = 2,...) is an index for accident year.
o ILa=1,2,..,10is the settlement lag reported after the beginning of the accident
year.
®  Paid Loss is the incremental paid loss for the given accident year and settlement lag.
¢ Premium is the earned premium for the accident year.
¢ ELRis an unknown parameter that represents the expected loss ratio.

® Dey, , is an unknown parameter that depends on the settlement lag,

As with Stanard’s “Cape Cod” method, the ELR parameter will be estimated from the

data.

The “Cape Cod” formula that I used to estimate the expected loss is by no means a

necessary feature of this method. Other formulas, like the chain ladder model, can be used.

A common adjustment that one might make to Equation 1 is to multiply the ELR by a
premium index to adjust for the “underwriting cycle.” I tried this, but it did not
appreciably increase the accuracy of the predictions for #his datz and time period. Thus I chose
to use the simpler model in this paper. But one should consider using a premium index in

other circumstances.
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Let Xy, be a random variable for an insurer’s incremental paid loss in the specified
accident year and settlement lag. Assume that X,y , has a compound negative binomial

(CINB) distribution, which I will now describe.

¢ Let Z,  be arandom variable representing the claim severity. Allow each claim
severity distribution to differ by setdement lag.

¢  Given E[Paid L o5 4y, ,, define the expected claim count, Ay, by
Ay 1o = E[ Paid Loss 4y, |/ E[ Z,,, ]. @

e Let N, be a random variable representing the claim count. Assume that the
distribution of Ny, , is given by the negative binomial distribution with mean

Auvi,2nd variance Ay, 40 Ady .-

® Then the random variable Xy, . is defined by

XAYM = Z,%, + Z,Jg’Z + "'+Z14¢-N,n',|4

While the above defines how to express the random variable, Xy, ,,, in terms of other
random variables Ny, and Z, , later on we will need to calculate the likelihood of
observing x,y,, , for various accident years and setdement lags. The details of how to do
this are in the technical appendix. Here I will give a high-level overview of what will be

done below.

1. The distributions of Z, , were derived from data reported to ISO as part of its regular
increased limits ratemaking activities. Like the substantial majority of insurers that
report their data to ISO, the policy limit will be set to $1,000,000. The distributions
varied by settlement lag with lags 5-10 being the most severe. See Figure 4 below. For
this application I discretized the distributions at intervals 4, which depended on the size
of the insurer. 4 was chosen so the 2'* (16,384) values spanned the probable range of

losses for the insurer.
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2. T selected the value of 0.01 for the negative binomial distribution parameter, . My
paper, Meyers [2006], analyzes Schedule P data for Commercial Auto and provides

justification for this selection.

3. Using the Fast Fourier Transform (FFT), I then calculated the entire distribution of a
discretized X, ., rounded to the nearest multiple of 5. The use of Fourier
Transforms for such calculations is not new. References for this in CAS literature

include my joint paper, Heckman and Meyers[1983], along with Wang [1998].

4. Whenever the probability density of a given observation x,y, ,, given
E[Paid Loss Ay‘l@] » was needed I rounded the x,y,, , to the nearest multiple of 4 and

did the above calculation. The resulting distribution function is denoted by:
CNB(% 1y 1 | E[ Paid Loss uy 1 |). 3)

This specifies the stochastic loss reserving model used it this paper. The parameters that
depend on the particular insurer are the ELR and the 10 Dey,, parametets. I will now turn
to showing how to estimate these parameters, given the earned premiums and the Schedule

P loss triangle.

Clark [2003] has taken a similar approach to loss reserve estimation. Indeed, I credit Clark
for the inspiration that led to the approach taken in this section and the next. Clark used the
Weibull and loglogistic parametric models where I used Equation 1 above. In place of the
CINB distribution described above, Clark used what he calls the “overdispersed Poisson”
(ODP,) distribution’. He then estimated the parameters of his model by maximum

likelihood. This is where I am going next.

! A random variable has an overdispersed Poisson distribution if it is an ordinary Poisson random variable
times a constant scaling factor.
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Figure 4

Limited Average Severity by Settiement Lag
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4. Maximum Likelihood Estimation of Model Parameters

The data for a given insurer consists of earned premium by accident year, indexed by
AY =1, 2,...,, 10, and a Schedule P loss triangle with losses {xA“q} and

Lag=1,...,(11 - AY). With this data, one can calculate the probability, conditional on the

parameters ELR and Dev,y,) ,, of obtaining the data by the following equation.

10 11-4Y
L({xaria})= U LH CNB(x 4y, 1 | E[ Paid Loss gy 1, - @)
AY=1 Lag=i

Generally one calls L(-) the likelihood function of the data.

For this model, maximum likelihood estimation refers to finding the parameters ELR and
Dev, ,, that maximize Equation 4 (indirectly through Equation 1). There are a number of
mathematical tools that one can use to do this maximizadon. The particular method I used

is described in the Appendix.

After examining the empirical paths plotted in Figures 2 and 3, I decided to put the
following constraints in the Dey, ,, parameters.
1. Dev, £ Dey,.
2. Dev;Z Dey,, forj=2,3,...9.
3. Dew,/Dev; = Devy/Devy, = Dev,/Dev,,
10
4. Z Dev, =1.

i=1

The third set of constraints was included to add stability to the tail estimates. They also
reduce the number of free parameters that need to be estimated from eleven to nine. The
last constraint eliminated an overlap with the ELR parameter and maintained a conventional

interpretation of that parameter.

Figure 5 plots the fitted payment paths for each of the 250 insurers. You might want to

compare these payment paths with the empirical payment paths in Figure 2.

Figure 6 gives histograms of the 250 ELR estimates.
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Figure 5
Maximum Likelihood Estimates of

Incremental Paid Development Factors
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Note the wide vatiability of the fitted payment paths for the smallest insurers.
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Figure 6

Maximum Likelihood Estimates of the ELR Parameters
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Note the high variability of the ELR estimates for the smallest insurers.

172 Casualty Actuarial Society Forum, Fall 2006



Estimating Predictive Distributions for Loss Reserve Models

5. Testing the Model

Given parameter estimates, ELR and De 4y, ,, one can use the model specified by Equations
1-3 above to calculate the percentile of any observation x4y, by fitst calculating the
expected loss, then the expected claim count, and finally the distribution of losses about the
expected loss by the CINB distribution. Whatever the expected losses, accident year ot
settlement lag, the percentiles should be uniformly distributed. One can also include the

calculated percentiles of several insurers to give a more conclusive test of the model.

The hypothesis that any given set of numbers has a uniform distribution can be tested by the
Kolmogorov-Smirnov test. See (for example) Klugman, Panjer and Willmot (KPW) [2004,
p.428] for a reference on this test. The test is applied in our case as follows. Suppose you
have a sample of numbers, F,, F,, ..., F,, between 0 and 1, sorted in increasing order. One

then calculates the test statistic:

D= maxlF. - ©)

n+1

If D is greater than the critical value for a selected level, &, we reject the hypothesis that the
F’s are uniformly distributed. The ctitical values depend upon the sample size. Commonly
used critical values are 1.22/ 7 for @ = 0.10, 1.36/\/; for @ = 0.05, and 1.63/n for
a=0.01

A graphical way to test for uniformity is a p-p plot, which is sometimes called a probability
plot. A good reference for this is KPW [2004, p.424]. The plot is created by arranging the
observations Fy, F,, ..., F,, in increasing order and plotting the points (i/(#+1),F) ona

graph. If the model is “plausible” for the data, the points will be near the 45° line running
from (0,0) to (1,1). Let d, be a critical value for a Kolmogorov-Smirnov test. Then the p-p
plot for a plausible model should lie within * dj, of the 45° line.

A nice feature of p-p plots is that they provide, to the trained eye, a diagnosis of problems
that may arise from an ill-fitting model. Let’s look at some examples. Let x be a random
sample of 1,000 numbers from a lognormal distribution with parameters 4= 0 and = 2.

Let’s look at some p-p plots when we mistakenly choose a lognormal distribution with

Casualty Actuarial Society Forum, Fall 2006 173



Estimating Predictive Distributions for Loss Reserve Models

different £s and 0’s. On Figure 7a, sort(plnorm(x, 4, 0)) on the vertical axis will denote the

sorted F’s predicted by a lognormal distribution with parameters y and o

Figure 7a
Sample p-p plots
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¢  On the first graph, 4 and o are the correct parameters, and the p-p plot lies on a
45° line as expected.

¢ On the second graph with o= 1, the low predicted percentiles are lower than
expected, while the high predicted percentiles are higher than expected. This
indicates that the tails are too light.
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¢ On the third graph with o = 4, the low predicted percentiles are higher than
expected, while the high predicted petcentiles are lower than expected. This
indicates that the tails are too heavy.

® On the fourth graph, with ¢ = 1, almost all the predicted percentiles are lower

than expected. This indicates that the predicted mean is too high.

If a random variable X has a contnuous cumulative distribution function F(x), the F’s
associated with a sample {x;} will have a uniform distribution. There are times when we
want to use a p-p plot with a random variable X, which we expect to have a positive
probability at x = 0. The left side of Figure 7b shows a p-p plot for a distribution with
"Pr{X=0} = 0.25. The Kolmogorov-Smitnov test is not applicable in this case. However
we can “transform” the F’s into a uniform distribution by multiplying the F; = F(x) by a
random number that is uniformly distributed whenever x; = 0. We can then use the
Kolmogorov-Smirmov test of uniformity. The right side of Figure 7b illustrates the effect

of such an adjustment. All of the p-p plots below will have this adjustment.

Figure 7b
Sample p-p plots
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Now let’s try this for real.

Figure 8 gives a p-p plot for the percentiles predicted for the data that was used to fit each
model for the top 40 insurers. Overall there were 2,200 (= 40 X 55) calculated
percentiles. The Kolmogorov-Smirnov D statistic for this sample was 0.042. This is
higher than the critical values of 0.035 at the & = 1% level and 0.029 at 5% level. So we
must reject the hypothesis that our model gives a good fit to the data. By examining

Figure 8, we see that the fitted model has tails that are a bit too heavy.

Let me make a personal remark here. In my many years of fitting models to data, itis 2
rare occasion when a model passes such a test with datavconsisting of thousands of
observations. I was delighted with the goodness of fit. Nevertheless, I investigated
further to see what “went wrong.” Figure 9 shows p-p plots for the same data segregated
by settlement lag. These plots appear to indicate that the main source of the problem is in

the distributions predicted for the lower settlement lags.

Figure 10 shows p-p plots for the percentiles predicted for the data used in fitting the
smallest 210 insurers. Suffice it to say that these plots reveal serious problems with using
this estimation procedure with the smaller insurers. I think the problem lies in fitdng a
model with nine parameters to noisy data consisting of 55 observations. On the other
hand, the procedure appears to work fairly well for large insurers with relatively stable loss
payment patterns. See Figures 2, 3, 5 and 6. I suspect the same problem with small

insurers occurs with other many-parameter models such as the chain ladder method.
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Figure 8
P-P Plot for the Top 40 Insurers
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¢ The Kolmogorov-Smirnov D statistic for this sample of 2,200 observations was
0.042. Compare this with the critical value of 0.035 at the 1% level and 0.029 at

the 5% level. The sample consisted of 2,200 individual observations.
e The lines that are 0.035 above and below the 45° lines enclose the confidence

band for the p-p plot at the 1% level.
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Figure 9
P-P Plots for the Top 40 Insurers by Settlement Lag
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Figure 10
P-P Plots by Settlement Lag for Insurers Ranked 41-250
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e These p-p plots reveal serious problems with fitting the model to smaller insurers.
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6. Predicting Future Loss Payments Using Bayes’ Theorem

The failure of the model to predict the distribution of losses for the smaller insurers and the
comparatively successful predictions of the model on larger insurers leads one to ask the
following. Is there any information that can be gained from the larger insurers that would be
helpful in predicting the loss payments of the smaller insurers? That is the topic of this

section.

Let Q = {ELR, Dey, ,, Lag = 1, 2,..., 10} be a set of models, indexed by @, that determine
the expected losses in accordance with Equation 1. These models are distinguished only by
the values of their parameters, and not by the assumptions ot methods that were used to

generate the parameters. Using Equation 4, one can combine each expected loss model

o € Q with the parameters as assumptions underlying Equations 2 and 3 to calculate the

likelihood of the a given loss triangle {x,y,,}. Each likelihood can be interpreted as:
L = Probability {data| model} = Pr {{x 4y, w} , ©

Then using Bayes’ Theorem one can then calculate:
Probability {model | data} o« Probability {data| model} xPrior {model} .

Stated more mathematically:
Pr{a)l{x,,y_ug}} o Pr{{xAY'ug}la)}xPr{m}. )

Each @ € Q will consist of forty {Dey;,} combinations taken from maximum likelihood

estimates of the top 40 insurers above. Ijudgmentally selected equal probabilities for each
@.€ Q. Each of the forty {Dey,} combinations will be independently crossed with nine
potential ELRs starting with 0.600 and increasing by steps of 0.025 to 0.800. Thus € has
360 parameter sets. I judgmentally selected the prior probability of the ELRs after an

inspection of the distribution of maximum likelihood estimates. See Figure 11 and Table 1

below.
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Figure 11

Comparing the Selected Prior Distribution of ELR with the
Maximum Likelihood Estimates of ELR for the Top 40 Insurers
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Table 1
Prior Probabilities for ELR
Prior ELR Prior ELR
3/24 0.675 4/24 0.750
4/24 0.700 3/24 0.775
5/24 0.725 2/24 0.800
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So we are given a loss triangle {x,y, .}, and we want to find a stochastic loss model for our

data. Here are the steps we would take to do this.

1. Using Equation 4, calculate Pr{{x Ay‘ug}la)} for each w € Q.

2. The posterior probability of each @ € €2 is given by

Pr{{x/,y‘ug}lw} xPr{w}

B %Pr {{xAY'hs }|a)} X Pr{a)} .

®)

Pe{offrr.]

In words, the final stochastic model for a loss triangle is a mixture of all the models w € Q,

where the mixing weights are proportional to the posterior probabilities.

Here are some technical notes.
o In doing these calculations for the 250 insurers, it happens that almost all the weight
is concentrated on at most a few dozen models. So, instead of including all models
@ in the original Q, I sorted the models in decreasing order of posterior probability
and dropped those after the cumulative posterior probability summed to 99.9%.
e  When calculating the final model for any of the top 40 insurers, I excluded that
insurer’s parameters {Dey,_} from € and added the parameters for 41" largest

insurer in its place. I did this to reduce the chance of overfitting.

The stochastic model of Equation 8 is not the end product. Quite often, insurers are
interested in statistics such as the mean, variance, or a given percentile of the total reserve. 1

will now show how to use the stochastic model to calculate these “statistics of interest.”

At 2 high level, the steps for calculating the “statistics of interest” are as follows.
1. Calculate the statistic conditional on @ for each accident year and settlement lag of
interest.
2. Aggregate the statistic over the desired accident years and settlement lags for each @.
3. Calculate the unconditional statistic by mixing (or weighting) the conditional

statistics of Step 2, above, with the posterior probabilities of each @.
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These steps should become clearer as we look at specific statistics. Let’s start with the
expected value.
1. For each accident year and settlement lag, calculate the expected value for each @

using Equation 1.
E [Paia’ Laoss Ay_hgla)] = Premium 4, X ELR(®)% Dev, (@) .

2. To get the total expected loss for each @, sum the expected values over the desired

accident years and settlement lags.

E|Paid Loss | @] = E| Paid Loss 4, |@ |
AY La -

3. The unconditional total expected loss is the posterior probability weighted average of
the conditional total expected losses, with the posterior probabilities given by

Equation 8.
E [Paid Lo:.r] = Z E[Paid Lo:.rl a)] x Pr{wl{xlﬂ,_l« }} .
wed

Note that for each @, the conditional expected loss will differ. Our next “statistic of
interest” will be the standard deviation of these expected loss estimates. This should be of

interest to those who want a “range of reasonable estimates.”

The first two steps are the same as those for finding the expected loss above. In the third

step we calculate E[Paid Loss] as above but, in addition, we calculate the second moment:

3. SM[ E[Paid Lass)|= ¥ E[ Paid Loss| o]’ xPe{f{x v 1, }} - Then:

Standard Deviation| E[Paid Lass] | = ‘/SM [ E[Paid Loss] |- B[ Paid Loss] .

As the second example begins to illustrate, the three steps to calculating the “statistic of

interest” can get complex.
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Our third statistic of interest is the standard deviation of the actual loss. Before we begin, it
will help to go over the formulas involved in finding the standard deviation of sums of

losses.

First, recall from Equation 2 that our model imputes an expected claim count, 4,4, by

dividing the expected loss by the expected claim severity for the settlement lag,

Next recall the following bullet from the description of the CNB distribution above.
e Let N, . bearandom variable representing the claim count. Assume that the
distribution of N, Lot IS given by the negative binomial distribution with mean
Z.AY,U& and variance /'LAY‘,JX +c- /1/2:)',14 .
The negative binomial distribution can be thought of as the following process.
1. Select the random number, ¥, from a gamma distribution with mean 1 and
variance ¢.-
2. Select Ny, , from a Poisson distribution with mean z 4y, .
Consider two alternatives for applying this to the claim count for each settlement lag in a
given accident year. |
1. Select y independently for each settlement lag,

2. Select a single ¥ and apply it to each settlement lag,

If one selects the second alternative, the multivariate distribution of {N 4y} is called the
negatve multinomial distribution. This does not change the distribution of losses of an
individual settlement lag. It does generate the correlation between the claim counts by

settlement lag.

I will assume that the multivariate claim count for settlement lags within a given accident
year has a negative multinomial distribution. The thinking behind this is that the y is the

result of an economic process that affects how many claims occur in 4 given year.

Clark [2006] provides an alternative method for dealing with correlation between settlement

lags.
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Let F; _ be the cumulative distribution for Z, . Mildenhall [2006] shows that (stated in the

notation of this paper) the distribution of ZX av.L bas 2 CNB distribution with expected
Lag

claim count Ay 1, = Zzl av.Lq 2nd claim severity distribution
Lag

FZAIXT:I = Z;I'AY.lag 'FZL' /Z’?’Ay,l_« .
Lag Lag

Now let’s describe the three steps to calculate the standard deviation of the actual loss.

1. For each accident year and settlement lag, calculate the expected claim count,

Ay, (@) using Equation 2.
2. The aggregation for each @ takes place in two steps.

a. Calculate the first and second moments of each accident year’s actual loss.

E[Paz'a’ u;;AY]a)] = A4y (@) E[Z5, ]

M [P“id LO”AY""] = A4y 1 (@) SM [ZAY.Tot ] +(1+¢)- Aty 1u (o)’ ‘E[ZAY,m ]2-
b. Sum the first and second moments over the accident years.
E[ Paid Lass|@] =" E[ Paid Loss y|®].
Ar

SM[ Paid Loss| @] =Y. SM[ Paid Loss 4| @].
AY
3. E[Paid Lo.r.t] = ZE[Paid Loula)]th{wl{xAy,L@}}.
weld

SM[Paid Loss)= Y. SM[ Paid Loss|@]xPe{o|{x ay.Lo } -
el

Standard Deviation [Paia’ Lo:.f] = \[ SM [Paid Lo.r.r] -E [Paid Lo.s:r]2 .
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The final “statistic of interest” is the distribution of actual losses. We are fortunate that the
CNNB distribution of each individual Xy, ,is already defined in terms of its Fast Fourier
Transform (FFT). To get the FFT of the sum of losses, we can'simply multiply the FFTs of
the summands. Other than that, the three steps are similar to those of calculating the

standard deviation of the actual losses. To shorten the notation, let X denote Paid Loss.

1. For each accident year and settlement lag, calculate the expected claim count,

Ay {(@) vsing Equation 2.

2. The aggregation for each @ takes place in two steps.
a. Calculate the FFT,
11-4Y 11-AY
(D,\',M,,|m (q) = Z ;l'AY.Lag '(Dx,,,-wm (ng )/ Z Z'AY.LQ ,
Lag=t Lag=t
for each accident year.

b. The FFT for the sum of all accident years is given by:
‘Dxp (El) = H(Dxm'.rul’” (a)
AY

3. The distribution of actual losses is obtained by inverting the FFT:
o, (Fl) = H(bxp» (‘-l)x Pr{wi{xAY,hg}} .
weQd

See the Appendix for additional mathematical details of working with FFTs.

Figures 12 and 13 below show each of the three statistics for two insurers for.the
outstanding losses for accident years 2,...,10 up to settlement lag 10. The insurer in Figure
12 has ten times the predictive mean reserve as the insurer in Figure 13. Figure 14 plots the
predictive coefficient of variation against the predictive mean reserve. The decreased
variability that comes with size should not come as a surprise. The absolute levels of
variability will be interesting only if I can demonstrate that this methodology can predict the

distribution of future results. That is where I am going next.
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Figure 12
Predictive Distribution of Actual Losses for Total Reserve
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e Predictive Mean = 401,951,000 (roughly ten times that in Figure 13).

e Coefficient of Variation for the Actual Loss = 6.9%.
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Figure 13
Predictive Distribution of Actual Losses of Total Resetrve
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e Predictive Mean = 40,277,000 (roughly one tenth of that in Figure 12).

o Coefficient of Variation for the Actual Loss = 12.6%.
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Figure 14
Predictive Coefficient of Variation Plotted

With the Predictive Mean for 250 Insurers

o
[+
(o]
© _|
© °
o]
2 % °°
© 5 1 o 8
= S %0
e Bo o
o Q’<§?o
;: g ] oo o®
O 3
B,
S - %
qu
QW@ ®%f o
o |
P .
T T T T T T T T
5 e+02 5 e+03 5 e+04 5 e+05
Predictive Mean (000)

Casualty Actuarial Society Forum, Fall 2006 189



Estimating Predictive Distributions for Loss Reserve Models

7. Testing the Predictions

The ultimate test of a stochastic loss reserving model is its ability to correctly predict the
distribution of future payments. While the distribution of future payments will differ by
insurer, when one calculates the predicted percentile of the actual payment, the distribution

of these predicted percentiles should be uniform.

To test the model, we examined Schedule P from the 2001 NAIC Annual Statement. The
losses reported in these statements contain six subsequent diagonals on the four
overlapping years from 1992 through 1995. Eamed premiums and losses in the
overlapping diagonals for the 1995 and 2001 Annual Statements agreed in 109 of the 250

insurers, so I used these 109 insurers for the test.

Using the predictive distribution described in the last section, I calculated the predicted
percentile of the total amount paid for the four accident years in the subsequent six
settlement lags. These 109 percentiles should be uniformly distributed. Figure 15 shows
the corresponding p-p plot and the confidence bands at the 5% level as determined by the
Kolmogorov-Smirnov test. The plot lies well within that band. While one can nevet
“prove” a model is correct with statistics, one gains confidence in 2 model as we fail to
reject the model with such statistical tests. I believe this test shows that the Bayesian CINB

model deserves serious consideration as a tool for setting loss reserves.
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Figure 15
P-P Plot of Predicted Percentiles for
Paid Losses from 1996 to 2001
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e The critical values for 2 Kolmogorov-Smirnov test at the 5% level are £13.03%.
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8. Comparing the Predictive Reserves with Reported Reserves

This section provides an illustration of the kind of analysis that can be done externally with
the Bayesian methodology described in this paper. Readers should exercise caudon in
generalizing the conclusions of this section beyond this particular line of business in this

particular time period.

This paper makes no attempt to pin down the methods used in setting the reported reserves.
However there are many actuaries that expect reported reserves to be more accurate than a
formula derived purely from the paid data reported on Schedule P. As stated in the
introduction to this paper, those who set those reserves have access to more information

that is relevant to estimating future loss payments.

The comparisons below will be performed to two sets of insurers — the entire set of 250
insurers and the subset of 109 insurers for which the overlapping accident years 1992-95
agree. Testing the latter will enable us to compare the predictions based on information

available in 1995 with the incurred losses reported in 2001,

The first test looks at aggregates summed over all insurers in each set. Table 2 compares the
predictions of this model with the actual reserves reported on the 1995 annual statement.
The “actual reserve” is the difference between the total reported incurred loss, as of 1995 for
the “initial” reserve, and 2001 for the “retrospective” reserve, minus the total reported paid
loss, as of 1995.
Table 2
Predicted and Reported Loss Reserves
Reported 1995 Reserve (000)

Predictive Initial Retrospective
Mean (000) @ 1995 @ 2001
250 Insurers AY 1986-1995 14,873,303 16,221,998 - 9.1% ---

109 Insurers AY 1992-1995 1,798,794 1,976,299 -9.9% 1,842,104 — 2.4%

For the 250 insurers, the reported initial reserve was 9.1% higher than the predictive mean.

For the 109 insurers the corresponding percentage was 9.9%. The lowering of the
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percentage reserves from 1995 to 2001 to 2.4% suggests that for the industry, reserves were

redundant for Commercial Auto in 19952

For the remainder of this section let’s suppose that the expected value of the Bayesian CNB
model described above is the “best estimate” of future loss payments. From the above,

there are two arguments supporting that proposition.

1. Figure 15 in Section 7 above shows that the Bayesian CINB model successfully
predicted the distribution of payments for the six years after 1995 well within the
normal statistical bounds of error.

2. The final row of Table 2 shows that the expected value predicted by the Bayesian
CNB model, in aggregate, comes closer to the 2001 reserve than did the reported

reserves for 1995.
Now let’s examine some of the implications of this proposition for reported reserves.

There are many actuaries who argue that reported reserves should be somewhat higher than
the mean. See, for example, Paragraph 2.17 on page 5 of Report of the Insurer Solvency
Working Party of the International Actuarial Association [2004]. Related to this, I recently
saw a working paper by Grace and Leverty [2006] that tests various hypotheses on insurer

incentives.

If insurers were deliberately setting their reserves at some conservative level, we would
expect to see that the reported reserves are at some moderately high percentile of the
predictive distribution. Figure 16 shows that some insurers appear to be reserving
conservatively. But there are also many insurers for which the predictive percentile of the
reported reserve is below 50%. But by 2001, the percentiles of the retrospective reserve for

1995 wete close to being uniformly distributed.

? There are some potential biases in these figures. First, the predictive means may be somewhat understated
since they ignore development after ten years. Second, the downward development from 1995 to 2001may
continue in future years.
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Figure 16

Predictive Percentiles of Reported Reserves
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The greater number of insurers reserved above the 50” percentile indicates that some

insurers have conservative estimates of their loss reserves posted in 1995,

insurer sizes.

194

The right side of this figure shows that the spread of the reserve percentiles spans all
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If there is a bias in the posted reserves, we would see corrections in subsequent years. The
109 insurers for which we have subsequent development provide data to test potential bias.
To perform such a test, I divided the 109 insurers into two groups. The first group
consisted of all insurers that posted reserves in 1995 that was lower than their predictive
mean. The second group consisted of all insurers that posted reserves higher than their

predictive mean.

As Figure 17 and Table 3 show, the first group shows an upward adjustment and the second
group shows a more pronounced downward adjustment. The plots show that we cannot
attribute these adjustments to only a few insurers. However, there are some insurers in the
first group that show a downward adjustment, and other insurers in the second group that

show an upward adjustment.

The fact that the total adjustments only go part way to the predictive mean suggests that
some insurers may be able to make more accurate estimates with access to information that

is not provided on Schedule P.
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Figure 17

Analysis of Subsequent Reserve Changes for 109 Insurers
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Table 3
Summary Statistics for the Plots Above
Reported Reserve @ 1995
< Predictive Mean (000) > Predictive Mean (000)
Number of Insurers 66 43
Total Predictive Mean 926,134 872,660
1995 Reserve @ 1995 803,175 1,173,124
1995 Reserve @ 2001 856,393 985,711
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9. Summary and Conclusions

This paper demonstrates 2 method, which I call the Bayesian CINB model, for estimating

the distribution of future loss payments of individual insurers. The main features of this

method are as follows.

The stochastic loss reserving model is based on the collective risk model. While other
stochastic loss reserving approaches make use of the collective risk model, this
approach uses it as an integral part of estimating the parameters of the model.
Predicted loss payments are derived from a Bayesian methodology that uses the results
of large, and presumably stable, insurers as its “prior information.” While insurers do
indeed differ in their claim payment practices, the underlying assumption of this
methodology is that these differences are reflected in this collection of large insurers.
Loss teserving models should be subject to testing their predictions on future
payments. Tests on a single insurer are often inconclusive because of the volatile
nature of the loss reserving process. But it is possible to test a stochastic loss reserving
method on several insurers simultaneously by comparing its predicted percentiles of
subsequent Josses to a uniform distribution. This paper tests its model on 109 insurers
and finds that its predictions are well within the statistical bounds expected for a
sample of this size.

By making the assumption that the Bayesian CINB model provides the “best estimate”
of future loss payments, the analysis in this paper suggested that there are some
insurers that post reserves conservatively, while others post reserves with a downward
bias. Readers should exercise caution in generalizing these conclusions beyond this

particular line of business in this time period.

1 view this paper as an initial attempt at a new method for stochastic loss reserving. To

gain general acceptance, this approach should be tested on other lines of insurance and by

other researchers. This method requires considerable statistical and actuarial expertise to

implement. It also takes a lot of work. In this paper, I have tried to make the case that we

should expect that such efforts could yield fruitful results.
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Appendix
This appendix gives the mathematical details that implement the methodologies described in

Sections 3 and 4.

A.3.1 Discretizing the Claim Severity Distributions

The first step is to determine the discretization interval length 4. 5, which depended on the
size of the insurer, was chosen so the 2'* (16,384) values spanned the probable range of
annual losses for the insurer. Specifically, let &, be the sum of the insurer’s ten-year premium
divided by 2. The 4 was set equal to 1,000 times the smallest number from the set

{5, 10, 20, 25, 40, 50, 100, 125, 200, 250, 500, 1000} that was greater than 4,/1000. This last
step guarantees that a multiple, », of 4 would be equal to the policy limit of 1,000,000.

The next step is to use the mean-preserving method (described in KPW, p. 656) to discretize
the claim severity distribution for each settlement lag. Let p; ,, represent the probability of a
claim with severity 47 for each settlement lag. Using the limited average severity (LA4S,)
function determined from claim severity distributions provided by ISO, the method
proceeds in the following steps.

1L por,=1-LAS (B/h

2. Pue=@LAS  (b)—LAS, (bG-1)-LAS (G + D)) /hfori=1,2,..,m1.

w=1

3. Doty =1—ZPi.ng .

i=0

4. p,=0fori=m+1,.,2"-1

A.3.2 Calculating the Conditional Density of the CNB Distribution
The purpose of this section is to show how to calculate CNB(x v L | E[Paid Loss 4y 1 0 ])
The calculation proceeds in the following steps.

1. Set 1314; = {PUJJg""PZ"—l,Lag}'

2. Calculate the Fast Fourier Transform (FFT) of P, ®,,_ (1314 )

3. Calculate the expected claim count, Ay, ,, for each accident year and settlement lag

using Equation 2, 4, = E[Paid MIIAY’LQ]/E[Z%].
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4. Calculate the FFT of each aggregate loss random variable, Xy, ,, using the formula

-1/¢
Dy, (‘il«) = (1 Ay g '(q’z,. (1314 )'1)) .
This formula is derived in KPW {2004, Equation 6.28]. Note the different but

equivalent parameterization. The probability generating function for the negative

binomial distribution is given in Appendix B of KPW. It is written as

P, (g):(l—ﬂ(g—l))_’. In this paper’s notaton A=f-r and c=1/r.

5. Calculate § 4y, = o (q’,n'.ug (Ei,ﬂ,'ux )) , the inverse FFT of the expression in

Step 4 above.

6. Set{equal to the multiple of 4 that is nearest to x,y, . Then
CNB(xAy_ug | E[Paid Loss 4y 1, :I) = the #* component of Qaviigg

Note that calculating this probability requires one to first calculate a vector of length 16,384

by inverting an FFT and reading off a single component. (To increase efficiency, one should
calculate ® 7. (f) ,4) for each settlement lag in advance.) Using the R computing language
(www.r-project.org) on my 3GHz personal computer with 1GB Ram, I estimate it takes
about 1/20™ of a second to evaluate a single CINB probability. Evaluating a likelihood for a
loss triangle with 55 x4y, s 1,000 times (typical for what follows below) takes about 45
minutes. Implementing this methodology requires the patience that I was fortunate to

develop in the eatly days of actuarial computing.
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A.4 Maximizing the Likelihood for the CNB Model
The purpose of this section is to show how to find the ELR and{Des, } parameters that

maximize the likelihood

0 11-A4Y

L({xavq})= T T T1 ONB(x av.vo | E[ Paid Lasi gy . ]), @

AY=1 Lgg=1
subject to the following constraints in the Dey, , parameters.

1. Dey, £ Dey,.

2. Dey2 Dey,, forj=2,3,...7.

3. Dev,/Devy = Deyy/Dev, = Devy/Dey,,,

4. iDev, =1.

i

The maximization was done using the R programming language gp#im function using the
Nelder-Mead parameter search method. This method is described in KPW [2004, p.664]
and is considered to be robust but slow. At this stage of the research, I value “robust” over

“fast.”

Primarily because of habits I developed using Excel Solver, I elected not to use standard

constraints provided by the function. Instead I coded a “fdev o0 Dey”” function that mapped

all of R’into a subset of R'" that satisfied those constraints. Here is a description of
tdev to Dev.

1. De=¢" /2.

2. Devy = Dev, -(1 +¢7t )

/=1

i=1
3. Dev;=Min [[1 - Z Dev} ) ,Dev_, ] e for =2,..7.

i=1
4. Dev,= Minl:(l —ZDeﬂ;J,Deu;_]}.e'mﬁ for /=8, 9, 10.

/=1

10
5. Dev, =Dev,/ ZDev; .

J=1

10
6. ELR = 1des? ~ZDev} .
=1

J
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As noted in the previous section, the CINB model requires a lot of time to calculate. This
time can be significantly reduced if one has a good set of starting values for the gptim
function. To get these starting values, I replaced the CINB distribution with the
“overdispersed Poisson” (ODP) distribution given in Clark [2003] to find the

ELRand {Deui} parameters that maximize the logarithm of following expréssion.

L ({X AY»Ug}) = llg[ lﬁy E [Paid L0554y 1 ] v ELPod Lot L EPid Loy ]
AY=1 Lg=1

The maximization proceeds in the following steps.

1. Pick a starting vectorin § € R’ eg (1,1,1,1,1,1,1,1,1).
2. Set € =tdev o Den(§) and use it to calculate E [Paid Loss 4y 1 oy ]

3. Use E[Paid Loss 4y, , |to calculate the ODP likelihood above.

4. Use the Nelder-Mead algorithm to calculate an updated vectors.
5. Return to Step 2 and repeat until convergence.
6. After convergence is obtained with the ODP likelihood, use the current§as a

starting value for the CINB likelihood in Equation 4.
7. Set T =tdev to Dex(%) and use it to calculare E[ Paid Loss 4y 1, |-

8. Use E[Paid Loss AY.Lm]to calculate the CINB likelihood above.

9. Use the Nelder-Mead algorithm to calculate an updated vectors.
10. Return to Step 7 and repeat until convergence.
11. Set € =#dev to Dex(8) to obtain the maximum likelihood estimate of

ELRand{Dev,}.

Run time was short for the ODP. For the CNB, I found that it generally took, on average,
1,000 iterations of Steps 7-10 to achieve R’s gp#im function default convergence criteria.
With the warning that individual results may vary, I felt comfortable in limiting the number

of iterations to 300.

I am providing code to calculate the above maximum likelihood estimates on sample data to

be placed on the CAS website with the publication of this paper.
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A Method For Projecting Individual Large Claims

Karl Murphy FIA and Andrew McLennan FIAA, FIA

Abstract
Motivation. The paper will address the issue of estimating the uncertainty in the run off of individual
large claims in insurance portfolios, which is often the primary source of uncertainty in the reserving
risk component of insurance risk.
Method. The paper begins by reviewing cutrent methodologies for estimating the uncertainty in loss
reserves. Methods until now have focused on aggregate modeling of gross or net of reinsurance loss
reserves, and no direct connection between the distribution of gross and net reserves.
The paper develops a non-parametric framework to simulate the distribution of ultimate position of
large claims, both reported and large IBNR claims. The method samples the development of individual
claims based on the historic development of large claims, incorporating information at an aggregate
level surrounding reserving strength. The model also predicts when claims will settle, and the timing of
claim payments.
Results. The method developed is not intended to replace existing aggregate modeling, but is an
improvement to traditional methods which estimate the variability of gross of reinsurance loss reserves,
and is a useful tool to allow for reinsurance recoveries more accurately.
By individually projecting the ultimate position of large claims, we can explicitly allow for policy or
contract limits. Further, we can apply any reinsurance program structure to the gross results, including
allowance for aggregate deductibles, incomplete placements, retrocessions to captive reinsurers,
indexation clauses, and different treaty attachment rules (ie Losses Occurring During vs Risks
Attaching).
The paper then shows how the vanability of attritional claims can be estimated using traditional
stochastic methods, and the attritional and large results can be combined to estimate the varability of
the aggregate portfolio of loss reserves.
Keywords. Reserving, Large Claims, Reinsurance, Stochastic Modeling, Simulation, Capital Modeling,
IBNR.

1. INTRODUCTION

With an increased focus on understanding varability in claims resetves, a series of papers
have been published which develop and add to existing literature on stochastic reserving, in
partdcular England and Verrall[1]. However, almost universally, these papers consider
aggregate claims triangles, and do not consider the range of possible outcomes of individual
claims. We believe that for many classes of business, the primary source of uncertainty in
reserve run-off stems from the uncertainty in large claims, and so a natural extension to the
developments in stochastc claims reserving methods would be to produce stochastic

outcomes of individual claims.

The paper develops a practical framework to simulate the distribution of ultimate
position of large claims, both reported and large IBNR claims. The method samples the

development of individual claims based on the historic development of large claims, and
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applies this development to the current position of claims. The model also predicts when

claims will settle, and the timing of claim payments.

A practical by-product of having individually projected the ultimate position of large
claims is that we can apply any policy contract limits to any claims, and any reinsurance
program structure to the gross results in order to derve stochastic net results that are
consistent with the gross without having to make simplifying approximations. For example,
by having individual large claims information, excess of Joss reinsurance can be properly
allowed for. Other more complicated arrangements can also be considered, including
allowance for aggregate deductibles, incomplete placements, retrocessions to captive
reinsurers, indexation clauses, and diffetent treaty attachment rules (i.e. “losses occurring
during” treaties compared to “risks attaching” treaties). Reinsurance recoveries can then be
allocated to specific contracts, enabling easier commutation and reinsurance bad debt
calculations.

The paper then shows how the vanability of attriional claims can be estimated using
aggregate stochastic methods, and the attritional and large results can be combined to
estimate the variability of the aggregate portfolio of loss reserves. By separating large and
attritional claims in the estimation of the uncertainty in loss reserves, changes to the mix (by
size and numbers) of large claims can be directly allowed for and modeled.

The structure of the paper will be as follows: first we ate going to brdefly discuss the main
existing stochastic methods for estimating reserving risk. We will then look at a new method
which we believe better identifies the main source of uncettainty in reserving risk. We will
then show how the method can make exact explicit allowance for any historic reinsurance
programs that protect the portfolio. By doing this, we show how to provide a very explicit

hink between gross and net reserving risk.

2. ABRIEF OUTLINE OF STOCHASTIC MODELLING
TECHNIQUES

This section of the paper is intended to be a general review of existing techniques; hence
we have kept existing theory to a minimum, quoting other papers or literature where a more
theoretical explanation is required. In particular, readers are directed to the recent paper by
England and Verrall [1] which sets out most techniques in theoretical detail.
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Many stochastic techniques to date are based on some form of chain ladder technique.

Mack’s model [2] was one of the first models used in practice to understand the variability
in future claim amounts. Mack provided the first two moments of the future cumulative
claim amounts, and assumed the model to be “distribution free”. Ultimately, however, we
are interested in the full predictive distribution of claims, rather than the first two moments.
England and Verrall [1] provide a solution to this assuming the cumulative claims are
normally distributed.

Renshaw and Verrall [3] introduced a statistical model assuming the incremental claim
amount in each accident period and development period are independent random variables

with an over-dispersed Poisson distribution.

Verrall [4] developed on the over-dispersed Poisson chain ladder model with the over-
dispersed negative binomial model. A key difference between this and the over-dispersed
Poisson model is the assumption that incremental claim payments are dependent on the

cumulative claim amount at the previous period, similar to Mack’s model.

In general, techniques to date have been designed for use on aggregate, portfolio level
triangles of claim payment or incurred triangles. Making adequate, explicit allowance for
reinsurance in practice has been, at best, an after-thought, often made using a deterministic
gross to net ratio for each accident period, selected using information from aggregate
modeling of the central estimate using traditional actuarial techniques. Techniques described
above assume that all claims develop, on average, in a similar way, ot that the mix of claims
with different development patterns is constant throughout history. Due to the highly

volatile occurrence and size of large claims, this may not be appropriate.

3. AMETHOD FOR PROJECTING INDIVIDUAL LARGE CLAIMS

3.1 Introduction

One of the key assumptions in the aggregate stochastic methods described above is that
the mix of claims with different development patterns over origin periods is stable. No
allowance is made, for example, for increased variability for an accident year with “known”
poor large claims experience. Also, no allowance is made for the status (i.e. open/settled) of

large claims.
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Perhaps more importantly, aggregate stochastic methods do not provide a process for
linking the variability of gross and net of reinsurance reserves, where non-trivial treaties

(such as quota shares) are in place.

We propose a model designed to cope with the problems described above, by separating
the major source of uncertainty, large claims, from the remaining attritional losses, with a

separate projection of individual large claims.

The remainder of this section will detail the specifics of our proposed method:
uncertainty in known (reported) large claims, uncertainty in the numbers and amounts of
unknown (un-reported, and reported, but not yet large) large claims, attritional claims and
the aggrepation of results.

3.2 Known Large Claims

We must first define by what we mean as “large”. There are a number of practical
considerations in choosing the threshold of large claims. The main concemn is if we are going
to use the results for calculating reinsurance recoveries under an Excess of Loss (XoL)
program, we must choose a threshold below any historic excess of loss programs. Secondly,
as we shall see, we need a significant pool of claims to sample from. To balance the above
points, in the limit, we could apply this method to all claims in the portfolio, however
computational and time limitations necessitate a cap on the size of the pool. It is important
to frame question of choosing a threshold within context of the portfolio, for example, by
considering the size of claims which are managed by the complex or large claims unit. In
general, we have found this method produces reasonable results with as few as 200

individual large claims with the oldest years having had up to ten years of development.

We include all claims which were “ever” large in our method, that is to say, we include

claims which could ultimately be small (ot nil) but which were once estimated to be large.

We propose to adopt a stochastic chain ladder projection on individual large claims,
where the simulated chain ladder factors are sampled from the observed chain ladder factors
in historic large claims. Further, when simulating the development factor of the claim, we .
also sample the subsequent status of the claim. We therefore simulate chain ladder factors
for open claims from historic claims which were open at the same point in development.
Closed claims can be simulated at subsequent development periods from similar closed
claims to allow for the possibility of re-opening; to the extent that they are present in the
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historic data.

Consider the following claims. For simplicity, assume all claims are settled by
development year 3. To finalize the projection of large claims, we need to project claim D
and E for one year and claim F for two years.

Table 1
Incurred Amounts
Development Year

Claim 1 2 3
A 400,000 800,000 800,000
B 500,000 1,600,000 850,000
C 1,000,000 1,000,000 1,500,000
D 200,000 500,000
E 300,000 200,000
F 150,000
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Table 2
Development Factors
- Year 1 to Year2 to
- Claim _ Jyear2 Year 3
A 2.00 1.0
B 3.20 0.53
C 1.00 1.50)
D . 2.50
E . 0.67
F .
Table 3
Claim Status
. . Development Year
Claim . 1 p)
A Open Closed Closed|
B. Open Open Closed]
C Open Open Closed]
D - Open Open
E Open Closed
F Open

To develop claim D to ultimate, we pick a claim that was open at development year 2. In
this case, B and C were open at development yeat 2, and so we can either develop claim D
by a chain ladder factor of 0.53 or 1.5.

To develop claim E to uldmate, we pick a claim that was closed at development year 2. In
this simple example, only claim A was closed at the same point. Therefore, to simulate the
ultimate position of claim E, we pick the chain ladder factor from claim A, that is 1.0.

To develop claim F, we must first project the position to development year 2 from open
claims. Therefore, it can simulate chain ladder factors from any of claims A to E, with equal
probability. If the claim follows the experience of claim B, C or D to development year 2,
the claim remains open, and develops by a chain ladder factor of 3.2, 1.0 or 2.5 respectively.
If the claim follows the experience of either claim A or claim E, then the claim closes and
develops by a chain ladder factor of 2.0 or 0.67. Developing the position from year 2 to year
3 depends on whether the simulated claim closed in year 2 or remained open. If it remained

open (i.e. was simulated from either B, C or D), then the development from years 2 to 3 is
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simulated from claims B or C (with equal probability) in a similar manner to claim D; if it
closed (i.e. was simulated from A or E), then the development is simulated from claim A

only (in a similar mannet to claim E).

Based on this set of data, the possible range of outcomes for claim D is $265,625 to
$750,000, for claim E is $200,000, and for claim F is §100,000 to $720,000 (the lower end of
the range is attained if the simulation chooses claim E and then A, the upper end of it
chooses claim B and then C). Note that the implied total ultimate chain ladder factor for the
maximum simulated value of claim F is 4.8. This is more extreme than any ultimate chain

ladder factors seen to date.

By explicitly identifying open and closed claims, we are adding extra information to the
basic chain ladder model. The model will then capture the increased volatility of origin years
which have a larger number or amount of large claims than average, and the reduced

volatlity of origin years with fewer large claims.

3.3 IBNR Large Claims
The above section deals with the uncertainty around claims which are already large. This

is cleatly only part of the picture. We must also deal with claims which become large at some
point in the future. These claims can arise from genuinely new claims which have been
incurred but not reported, and' claims which have been reported, but which are not yet (or

have never been) large.

Both the number and size of these claims need quantifying. The following sections detail
how the method deals with these.

3.3.1IBNR Large Claim Numbers

In dealing with the known large claims, we allow for the possibility that a currently large
claim will ultimately settle below the large threshold. In our large number projection, we
need a definition of large claim numbers that can cope with these outcomes. We deal with
this by projecting a triangle of claim numbers, where a claim is counted once in the
development year it became large. Claims which subsequently fall below the threshold are
included in this triangle. We therefore are not making any assumption about how many of

these claims will ultimately settle for less than the threshold in this step of the projection.

Standard stochastic chain ladder techniques can be applied to this data if desired, however
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we believe this may not be appropmate in this.particulax case. In particular, due to the
generally small number of claims which are reported as large in development years one and
two, the projected number of large claims for the most recent origin petiods may be
artificially unstable.

Further, we must ask ourselves if it is intuitive to suggest that if the most recent origin
period has twice as many large claims per unit of exposure repotted in development year one
as the historical average, then it will have twice the number of latge claims per unit of
exposure ultimately. This does not seem to make sense in practice. Given that most
aggregate stochastic methods are based on chain-ladder projections, in this instance the

mean number of large claims may tend to be over-stated. -

We suggest a more appropriate model for large claims numbers would be to assume the
claim frequency per unit of exposure in each development period is independent of previous
or subsequent development periods. The definition of exposure could include earned policy

count, vehicle years, rate-adjusted earned premium or ultimate number of attritional claims.

Assuming the number of claims in a unique origin and development petiod follows a
Poisson (or negative binomial) distribution, a number of claims that become large in each

future time period can be simula\t\sd.

3.3.2 IBNR Large Claim Severity

A numbert of options are available to simulate the ultimate size of individual IBNR large

claims.

The method we suggest is to sample from the (simulated) known large claims, where the
claims are selected from the claims which became large in that development period. It may
be necessary to group older development periods together to gain a significant pool of
claims to sample from. By adopting this approach, we are allowing for any potential
differences in average claim size by reporting development period, including the propensity
for a claim to be ultimately small, and avoid the need to specify the claim size distribution.
Appropriate adjustments for inflation are also required; a further refinement would allow the

inflation factor selected to be stochastic.

A simplification to this method could be to sample from all simulated known claims,

however if we are intetested in the finalization date of claims, for example to calculate
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reinsurance recoveties under an excess of loss program with an indexation clause, we can

run the risk of claims being finalized before they were reported as being large.

Instead of sampling from the simulated known claims, it is possible to parameterize the
probability of a reported large claim finalizing as large, the finalization period of a large claim
and the severity of ulimately large claims. These can be calculated from historic data, usually
using a Bernoulli distribution for the probability of a reported large claim finalizing as large,
a discrete distribution for the finalization petiod, and an approprate distribution (pethaps
Pareto or generalized Pareto) for the severity. These various distributions can then be

reviewed against other market or portfolio benchmarks if available.

3.4 Combining Known and IBNR Large Claims

Now that we have separately generated the simulated ultimate position of known large
claims and IBNR large claims, combining these results gives us the full picture of large

claims in the run-off of reserves.

It is possible to apply a dependency structure to allow for correlations between the run-
off of the known claims and the number and severity of large IBNR claims. Applying a
positive correlation has an intuitive appeal; however it is very difficult to estimate the
strength or shape of this relationship. We recommend at the very least scenario testing the

results using various correlation strength and dependency shapes.

3.5 Non-Large Claims

To understand the varability of the aggregate reserve distribution, we need to allow for
the variability of the non-large claims.

To do this we recommend using an aggregate triangle where each claim is “capped” at a
certain value. For example, if a capping level of $100,000 is chosen, then the capped triangle
contains all development up to the point where it reaches $100,000, and any amount in
excess of this is omitted from the triangle. A claim which is reserved at $50,000 in year 1,
$99,000 in year 2 and $150,000 in year 3 is included as $50,000, §99,000 and $100,000 for
each respective development year. We prefer the use of a capped triangle as opposed to a
triangle where large claims have been completely removed for'a number of reasons, as we
find it produces mote stable results, and the historic triangle does not change when new
diagonals of data are added (as large claims drop below the threshold and new large claims
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develop). In the example above, if large claims are removed from the triangle, then the
development from the example claim is $50,000, $99,000, $0.

Once a capped trangle has been calculated, one of the traditional aggregate stochastc
reserving methods described in Section 2 can be used to determine a range of outcomes for
the “capped” reserve. This aggregate distribution can then be calculated as the sum of the
capped claims and the excess of cap large claim amounts.

When selecting the capping level for the attritional claims, we recommend using a level
above the “large” claim threshold. By selecting a cap above the large claim threshold, we are
using information about the claims which are currently just below the cap and have a good

chance of increasing above the cap at some stage in their development.

Again, it may be approprate to introduce a dependency between the run-off of the

capped and excess of cap claims.

4. REFINEMENTS TO THE METHOD AND KEY ASSUMPTIONS

4.1 Model Refinements

There are a number of refinements to the basic method that are worth outlining for

completeness.

When simulating the known large claims, consideration should be given to measuring the
development period as the time since the claim became large rather than as the time since
accident (such that it is on a reporting period basis). This may be more appropnate for large
claims due to the claim management and legal processes these claims are subject to, and
generally these progress in a similar manner from the time a claim becomes large rather than
from the time the accident occurs. Alternatively, a further split can be made by considering
those reported “eatly” and “late”, although this tends to reduce the sample from which to
simulate from further.

We suggest splitting the large claims into at least two layers, to allow for different
development patterns in the extremely large claims. For example, whereas a claim movement
from $500,000 to $5 million is possible, it is perhaps less likely for a claim of $5million to
increase to $50 nniHiori. Including the development factors from smaller large claims in the

pool to project the extremely large claims may overstate the vanability of possible outcomes
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for these claims. In determining which claims are in the upper layers (and indeed in the
original large definition), it is important to standardize the historical claims for inflationary
effects so as to not bias the claims towards more recent origin periods. It is also important to

recognize claims can be in different layers at different development periods.

Selecting the very large threshold(s) is a difficult choice, and there is no one single correct
method. We have found a threshold that varies by development period, such that between
10% and 20% of claims are in the top layer produces enough claims to sample from, and

produces reasonably reliable results.

4.2 Key Assumptions

There are a series of assumptions underlying the model, which are worth pointing out so

that their appropriateness or otherwise can be assessed.

We are assuming the historic observed chain ladder, and settlement patterns, contain the
entire population of possible values. Clearly, over 1 period, this is not appropriate. However,
as we are interested in the ultimate position of claims, often over a significant time period,
the possible number of ultimate development factors (i.e. the product of the 1 period
factors) even for a small number of possible factors (e.g. 50 at each period) becomes very

large, and this assumption is not unreasonable.

We assume that chain ladder factors from one period to the next are independent, other
than for changes in layer and claim status. This assumption is consistent with most other
stochastic reserving methods. Further, we have assumed that individual claims develop
independently within each period. This is potentially optimistic as there may be changes to
internal case estimation procedures which affect all open claims, and there are external
factors which also affect all open claims such as legal changes and economic factors. These
global external effects can be allowed for within the model by overlaying these effects on the
underlying process. By projecting claim status into the future, the effects can be applied only
to open claims, as would happen in practice. If these effects are overlaid on the claims, it is
important to remove any historic effects from the data to avoid double counting these
shocks. Applying future inflation effects on top of the underlying projection is useful if this
modeling is carried out as part of a wider capital modeling project, as it links in the reserving

risk with the global economic scenarios.

As seen with the above simple example, for very new claims, the method can produce
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very wide ranging results. If the resulting range is thought to be too unstable, for example
when considering the implied reinsurance recoveries at high layers, it may be appropriate to
either adjust the range of possible results, or use a method similar to that developed for the
IBNR large claims described above.

5. ALLOWANCE FOR HISTORIC REINSURANCE STRUCTURES

As we have now projected the ultimate position of all large claims, we can calculate any
reinsurance recoveres exactly. For known large claims, we know all the reinsurance details
which attach to the claim, and any quota share arrangements can be applied to the aggregate

results.

It may be necessary to introduce a further refinement to the model if, say, the excess of
loss treaty is placed on a risks attaching basis. For known large claims, we will know the
underwriting year of the policy. For IBNR large claims, the underwriting year to which the
claim attaches can be simulated. Typically the probability would be in proportion to the

exposure that each underwriting year contributes to the accident year.

6. RECONCILIATION OF RESULTS WITH AGGREGATE
MODELLING

Invariably, this work will form part of a larger piece of work; usually an outstanding
claims review or part of a capital modeling project. The actuary may form a view of the
reserves based on aggregate deterministic methods. This will not correspond with the results
of the above method, or indeed any of the methods described in Section 2. This is less than
ideal, as the practiioner would like to understand the varability around their central

estimate, rather than some other result.

One way of ensuring consistency is to scale results by origin year so that the mean
simulated result equals the actuary’s best estimate of reserves, or try a different method. This
can be done by either applying a multplicative scaling factor for each accident year, or
alternatively by adding on a fixed loading for each accident year. This can lead to undesirable
results, either with negative reserves in some instances of additive scaling, or extreme results

if the multiplicative scaling factor is large.
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If the outstanding claims review uses consistent data (in terms of separately modeling
capped and excess claims, and considers ultimate counts as well as amounts), then there are

additional diagnostics available to the actuary, such as the following:

. Large Claim Frequency;

. Large Ultimate Claim Frequency;

. Large Excess Ultimate Claim Size;

. Large Excess Ultimate Burning Cost / Loss Ratio;

. Capped Claim Burning Cost / Loss Ratio;

. Large Excess Cost as a Percentage of the Total Claims Cost.

With these, the actuary has the ability to understand which piece of the projection is
producing results inconsistent with the aggregate modeling,

7. CASE STUDY

7.1 Introduction

The concepts described above are more readily visualized as a case study. The data
modeled is from a UK auto account, and contain 16 years of historic data. For individual
large claims above £100,000, the data included the accident date, report date, and the year-
end paid and incurred positions, as well as a history of the claim status.

The layers were chosen such that 80% of the claims in each development period were in
the lower layer, and 20% in the upper layet. The actual layer limits can be seen in Appendix
1.

7.2 Analysis of the Gross Results

Figure 1 shows the simulated development of a claim which has just been reported as
being latge, with a current incurred position of £125,000. The lighter shades of gray
represents the more extreme percentiles, with the dotted lines representing the 90™ 75t 50,
25" and 10" percentiles. The mean development is represented by the solid line. As can be
seen, we expect the case teserve to be ultimately inadequate, with the expected ultimate
amount being just above £300,000. However, using the method described in this paper, can
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see that 90% of the time, the claim will settle for £700,000 or less. Occasionally, however,
the claim develops much more significantly. Figure 2 shows an individual simulation where
the claim grows to more than £1,000,000.

Simulated Incurred Development of Individual Claim
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Figure 1
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Simulated Incurred Development of Individual Claim
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Even for claims that have been reported as large for several years, there is uncertainty
over the development. Figure 3 shows the simulated development for a claim that has been
reported large for four years, using the same percentile descriptions as for Figure 1. On
average, the claim is expected to run off at an increase to the curtent incurred. Note that the

variability around this is still quite significant.
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Simulated Incurred Development of Individual Claim
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Figure 3

We mentioned in Section 4 that we would typically expect to see different loss
development factors for individual “small” large claims than for “large” large claims. This is
illustrated in Figure 4.
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Cumuiative Chain Ladder Factors
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Figure 4

The darker line represents the distribution of cumulative loss development factors for
“small” large claims in the first development period, the lighter line the distribution for
“large” large claims. As expected, it is much more unlikely to have a large development
factor for the “large” large claims, although it is quite possible.

To analyze full accident year results, we have estimated the uncertainty surrounding the
attritional claims using Mack’s method on a triangle based on a combination of incurred and
paid data. Figure 5 shows the percentile plot of the total unpaid liabilities of the capped
claims.
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Percentile
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The table below shows the results of our projections and compates the results with those

obtained by modeling the aggregate triangle using a Mack bootstrap. The 75th and 95th

percentiles are given as percentages of the mean reserve. The coefficient of varation (C.0.V.)

indicates the varability in the results.
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Table 4
Individual Claim Projection Method Mack Bootstrap
Mean ﬁr 95" E’F 953

Accident Year | Reserve C.o.V. percentile  percentile C.o.V. percentile  percentile
1998 (and Prior; 499,653 60.28% 120.51% 212.55 15.60% 110.21% 126.61

1 2,836,912 16.52% 107.26% 13545 8.65% 105.73% 114.29%

2 4,525,560 21.08% 109.64% 137.95 25.06% 116.66% 141.34%

200 6,582,895 24.46% 112.33% 144.18 23.08% 115.10% 138.96%4

200: 7,073,142 28.99% 114.39% 153.25 2741% 117.91% 146.37%

200y 12,608,970 3281% 113.21% 161.58 18.46% 112.19% 130.81%

2| 12,265,893} 25.46% 113.75% 147.09 29.15% 118.97% 149.76%

2 15,134.99q 30.66% 114.44% 154.19 30.97% 120.17% 153.40%

m 61,528,02 12.53% 107.29% 121 .709({ 13.56% 109.04% ]23.04%'

It can be seen that similar estimates are produced by the two methods for the C.0.V. of

the total gross reserve. However the results for individual accident years can be significantly
different. Figures 6, 7 and 8 show the gross reserve distnbutions for 2003, 2004 and 2005
respectively. In all three graphs, the individual claim projection method produces a

distribution which is heavier in the upper tail than the aggregate modeling.

On investigation, the cohort of claims in 2003 contain a higher proportion of open large

claims than average, including one claim of £6m, which results in the greater uncertainty

than implied by the aggregate projection. The extra information provided by the individual

claim projections arguably enables a more realistic projection of the true underlying

uncertainty in the liabilities.
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Gross Reserve Distribution (Origin Year 2004)
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—
Gross Reserve Distribution (Origin Year 2005)
800
700 T
| - - - Individual

Claim

600 Projection
Method

500 1 - Reserve
(2005)

400 A —»— Scaled
Aggregate

300 - Reserve
(2005)

200 1

100 4 - - -

04 . . -
0 10 20 30 40 50
Reserve Millions
Figure 8

Figure 9 shows the cumulative distribution of the aggregate unpaid liabilities across all
accident years based on the two methods. It can be seen that the two methods produce very
similar results for the total gross reserve although the individual claim projection method
produces a slightly heavier upper tail. This is highlighted in Figure 10, which compares the
two distnibutions in the upper tail.

226 Casualty Actuarial Society Forum, Fall 2006




A Method For Projecting Individual Large Claims

Overall Gross Reserve Comparison
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Overall Comparison of Gross Reserves in the Tail
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Ratio of Ultimate Large to Ultimate Capped Losses
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One reason for the heavier upper tail produced by projecting the individual large claims
can be seen in Figure 11 (using the same percentile description as in Figure 1). The graph
implies that the ultimate large claim proportion is increasing in recent years, the
appropriateness of which can be tested in the aggregate modeling. This trend, if true, will not
be allowed for adequately in the aggregate stochastic methods.

7.3 Analysis of the Net Results

Once we are comfortable with the gross results, we can calculate reinsurance recoveries
on individual claims using the appropriate reinsurance terms. Table 5 shows the net results

for the individual claim projection method.
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Table 5
- . “Individual Claim Projection Method
Accident Mean - B
Year | Reserve | C.o.V. 75" percentile  95™ percentile

465519 . 46.96% . 119.36% . "200.79%
97797 26.68% 10893% ;. ' 147.16%
2,983,380 1390% 109.34% - T 124.26%
3,496,184  18.09% 112.00% 131.59%
3457,1500  2391% 116.35% 141.11%
15755800 17.85% 111.07% 131.46%
8518804  16.93% . 11045% . 129.51%
2008. 999995  1662% . . 11057% ° " 128.909
Totall - 35,654.80 8.19% . 105.26% 114.12%9

Figure 12 shows the net and gross reserves for the 2005 accident yeat. The gross resetves
have been scaled to have the same mean as the net reserves. As would be expected, the

netting down has resulted in a large reduction in vanability.
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Comparison of Net and Gross Reserves (All Years)
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Figure 13 shows the overall net and gross reserves. The net reserve again shows a

substantial reduction in variability.

It has already been noted that one of the additional benefits of the method described in
this paper is the ability to accurately examine the performance of reinsurance cover. Figure
14 shows the distribution of recoveries associated with an aggregate deductible of £2.25m
attaching to a layer of £400k in excess of £600k for the 2002 accident year. As can be seen,
approximately 10% of the time the deductible is fully blown and losses pass through to the

reinsurer.
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This allows us to consider the value of this contract and whether it represents value for

money.

The method described in this paper also provides the complete predictive distnbutions of
the gross ultimate position and ultimate reinsurance recoveries of individual large claims.
Therefore the mean net ultimate positon for each simulated claim can be correctly
calculated. Some netting down methodologies we have seen used in-practice implicitly
assume that the mean of the reinsurance recoveries equals the mean of the gross claim less
the retention. The one-sided nature of reinsurance means that this is flawed. The error
associated with this assumption can be seen in Table 5, which shows the gross, teinsurance
(RI) and net ultimate incurred position for two claims, with an excess of £1,000,000. The
ultimate figures have been calculated on the our stochastic basis and also on a deterministic
basis. The final two columns correspond to the stochastic calculations, where the mean net

position takes into account the varability of the ultimate gross position.
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Table 6
Netting Down - Comparison of Methodologies
Deterministic
Mean Ultimate Mean Ultimate

Current  Gross Reinsurance  Deterministic Reinsurance Mean Net

Incurred Ultimate Recoveries Net Ultimate Recoveries Ultimate
Claim 1 500,000 829,180 0 829,180 226,604 506,962,
Claim 2 1,000,000 1,337,416 337,416 1,000,000 464,964 872,452

In this case, the deterministic basis is likely to lead to an ovetestimation of the net
position, and is therefore a conservative basis. While in itself this is not a cause for concern,
a desirable property of any reserving exercise would be to ensure a consistent basis for gross

and net reserves.

8. INTEGRATION AND APPLICATION WITHIN CAPITAL
MODELS

In recent years, there has been considerable time invested in the development of capital
models to understand and quantify the risks faced by an insurance business. A significant
piece of this work has been an analysis of reserving risk, which forms part of the wider
insurance risk. In our experience of the UK market, there are two main methods used by
practitioners to estimate net of reinsurance reserving risk. Both methods project gross

aggregate triangles, with a different approach to netting down for reinsurance recoveries.

The first method arrives at net results using a deterministic net to gross ratio applied to
the stochastic gross results. This method has the advantage of simplicity and transparency,
however it in effect gives no credit for the expected reduction in volatility that non-

proportional reinsurance should provide.

The second method projects both gross and net triangles, with some link between the
projections in an attempt to ensure consistency and nonsensical simulations are avoided (for
example, simulations where net reserves are higher than gross). While this should allow for
the reduction in variability not captured by the first method, it is likely that the reinsurance

has changed over the years (for example, reinsurance excess points have changed), and the
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observed historical figures may not be appropriate to apply to the newer accident years.

In forecasting the ultimate large claim severity, it is important to allow for parameter
uncertainty. We would further recommend including development uncertainty. Currently,
most ultimate loss generators are parameterized from some projected ultimate claim figures,
allowing for IBNER, which is assumed to be known and fixed. Parameter error, using
various techniques is included in the forecasting of the large claims. However the ultimate
position of the claims used to parameterize the distribution are not known or fixed. To not

make allowance for this will understate the true uncertainty of the underlying distribution.

9. CONCLUSIONS

Existing methods available to help gain understanding of the varability of insurance
liabilities have focused on aggregate gross data, with no explicit allowance for changing mix
of claims, and with no obvious adjustient to allow for non-trivial reinsurance. We have
developed a method based on a small number of key assumptions to explicitly project the
development of individual large claims. We show how various refinements can be made to
the standard method and implement this method via a case study using actual data from a
UK motor injury portfolio.

By explicitly projecting individual claims we show how to make appropriate allowance for
policy limits and the teduction in variability arising from non-proportional reinsurance. By
separately considering attritional and large clims, we can directly allow for changes in the

mix of claims in our portfolios.

A range of diagnostics is available to the practitioner to aid understanding of the results,

and to ensure it is not applied in a mechanical fashion.

Appendix 1 - Example Data

The following table shows the layer limits used in the Case Study. The lower layer lower
bound is the threshold above which claims are individually simulated. The upper layer lower
bound defines the boundary between ‘small’ large claims and ‘large’ large claims, in order to
partition the development factors. Development Periods 11 and above have been grouped

due to scarcity of data.
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Table 7
Development Lower Layer  Upper Layer
Period Lower Bound Lower Bound
1 100,000 360,000
2 100,000 500,000§
3 100,000 520,000
4 100,000 400,000
5 100,000 680,000§
6 100,000 500,000
7 100,000 630,000
8 100,000 320,000
9 100,000 310,000
10 100,000 260,000
11+ 100,000 120,000
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Motivation. For property casualty insurers, loss reserves ate by far their largest liability. These ate actuarial
estimates of future loss payments resulting from accidents that have already occutred. In fact, the actual future
loss payments may deviate — sometimes substantially — from the amount that was estimated. Senior managers,
shareholders, rating agencies, and regulators all have an interest in knowing the magnitude of these potential
deviations — deviations whose distributions we here call /oss reserve uncertainty -- since firms with large potential
deviations need more capital or reinsurance than other firms with smaller potential deviations. Actuarial journals
provide several proposed procedures for measuting loss reserve uncertainty. But in practice they are rarely used,
since they typically require specialized software and use statistically complex procedures that are unfamiliar to
most actuaries. Moreover, in at least some cases, these procedures provide estimates of loss reserve uncertainty
that depend on very strong assumptions that virtually assume the conclusions obtained.

Method. In this report I provide a simple method for measuring loss reserve uncertainty that is easily
implemented with a spreadsheet model, that relies on data available for all US insurers and all lines of business,
and that makes relatively few easily accepted assumptions.

Results. The method for estimating loss reserve uncertainty explained and demonstrated here has five important
advantages. First, it is simple, and easy to implement. This report even provides the relevant Excel formulas for
implementing crucial steps in the method. Second, it avoids severe statistical problems that affect numerous rival
methods, as explained in detail. Third, the method is validated (rather than merely illustrated) by applying it to
simulated data in which answers are known, and demonstrating that its estimates agree closely with these known
answers. Fourth, the measure of loss reserve uncertainty used here — the standard deviation of loss reserves as a
percentage of the estimated reserve -- is scalable, so that it can be applied to reserves estimated by other
methods. Fifth, the resulting measure of loss reserve uncertainty can be directly compared across different lines
of business in a single firm, or for the same line of business across different firms.

Conclusion. The method presented here appears to be the first instance of a method for estimating loss reserves
and loss reserve uncertainty that is thoroughly validated by comparing its estimates to those of a simulation with
known parameters. Its results can assist CEQ’s, CFO’s, Chief Risk Officers, actuaries, rating agencies, regulators,
and stock analysts in estimating the varability of loss reserves, in estimating a firm’s capital adequacy, in
forecasting the distribution of possible loss reserve payments during the next calendar year, and in determining
whether current or past calendar year deviations from expected loss payments are sufficiently large to deserve
special attention.

Availability. To obtain the model presented here, email Bill Panning@Willis.com.

Keywords. Loss reserve uncertainty, regression, reserving, Enterprise Risk Management
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1. WHAT LOSS RESERVE UNCERTAINTY IS AND WHY IT MATTERS

1.1 Defining Loss Reserve Uncertainty

Property-casualty loss reserves are estimates of the total future payments that will be required to
settle claims on accidents that have already occurred. Because such estmates are inherendy
imprecise, for reasons discussed later on, insurers may ultimately pay out more or less to claimants
than is forecast in the firm’s cutrent reserve. Loss reserve uncertainty (LRU) is a measure of

the magnitude of this potential difference between forecast and actual loss payments.

In this paper I propose, explain, and justify a particular method of estimating loss reserve
uncertainty. This method has several important virtues. First, it is simple, and so can be
implemented on a spreadsheet and applied to universally available data. Second, the method is
accurate, since it addresses and avoids a number of pitfalls in statistical estimation that would
otherwise produce biased and misleading results. Third, the resulting estimates are comparable
across different lines of business and different firms. Fourth, the measure of LRU is scalable, so
that it is applicable to reserves that have been estimated in different ways. Finally — and this is
particulazly significant — the method has been thoroughly validated by demonstrating that its
estimates of reserves and loss reserve uncertainty closely match the known parameters undetlying

10,000 simulated loss reserve triangles.

1.2. Why Loss Reserve Uncertainty Matters

A method for estimating LRU that has these characteristics is likely to be extremely useful to
insurers, investors, regulators, and rating agencies, for estimating surplus adequacy, for pricing and

capital allocation, and for determining the potential significance of reserve developments.

1.2.1. Estimating Surplus Adequacy.

The uncertainty of an insurer’s loss reserve has direct implications for its required surplus or
reinsurance. The greater an insurer’s LRU, the greater the surplus or reinsurance it needs to cope
with potential scenarios in which ultimate losses exceed forecast losses. In the absence of an
accepted measure of LRU, these various audiences have relied on indirect measures of surplus
adequacy such as premium-to-surplus or reserve-to-surplus ratios relative to peer companies or to
industry averages. Such relative evaluations can be quite misleading in an industry that exhibits

profound swings in pricing and reserve adequacy.

The problem of estimating surplus adequacy is a fundamental issue in Enterprise Risk

Management, which attempts to estimate the total capital needed by an insurer to withstand
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potential losses from all sources of risk. Before total enterprise risk can be managed, it must first be
measured. For most property casualty firms, the principal sources of risk are loss reserve
uncertainty, asset risk (principally due to equities), pricing risk (potential differences between
forecast losses and the incurred losses initially booked), and credit risk on receivables and

recoverables. Of these, LRU is often one of the largest and one of the most difficult to estimate.

1.2.2. Pricing and Capital Allocation.

Many insurers allocate capital to different lines of business and evaluate pricing adequacy by the
return on capital achieved in each line. Although firms may employ different methods for allocating
capital among different lines of business, there is consensus that the capital allocated to a particular
line should reflect the degree to which estimated losses are uncertain. Consequently, the capital
allocated to a line of business should reflect the rapidity with which its reserve runs off and the
magnitude of uncertainty involved. Measuring loss reserve uncertainty can therefore inform and

improve capital allocation and pricing.

1.2.3. Managerial Feedback.

An insurer’s loss reserve is a forecast of all future loss payments, including those anticipated
during the next calendar year, from accidents that have already occurred. The measure I propose
can be adapted to estimate the uncertainty of this calendar year estimate. What makes this
important is that this estimated uncertainty provides a useful benchmark against which any
difference between actual and forecast loss payments can be evaluated. For example, if calendar
year paid losses are 20% higher than forecast, this is of little concern when the standard deviation of
those forecast losses is 15%. But if, instead, the standard deviation is 6%, then the 20% deviation
should trigger significant managerial concern. Since managerial attention is a scarce and valuable
resource, the ability of this method to distinguish significant deviations from those that are not
should prove to be quite useful.

2. PRIOR STUDIES OF LOSS RESERVE UNCERTAINTY

Given the potential importance of measuring LRU, it is not surptising that the number of papers
on the subject has grown significantly during the past decade. Relevant papers include Ashe (1986),
Barnett and Zehnwirth (2000), Braun (2004), Brehm (2002), England and Verrall (1999, 2001, 2002),
Halliwell (1996), Hayne (2003), Hodes, Feldblum, and Blumsohn (1996), Holmberg (1994), Kloek
(1998), Mack (1993, 1994, 1995, 1999), Murphy (1994), Taylor (1987, 2004), Taylor and Ashe (1983),
and Verrall (1994). Rather than describing each paper individually, I shall comment on this body of

work taken as a whole.
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2.1 Chain Ladder Focus

First, a central assumption of much of this literature is that the chain ladder method for
estimating reserves is the obligatory starting point for estimating reserve uncertainty. For example,
in their excellent review of a vatiety of models and techniques for estimating reserves and reserve
uncertainty, England and Verrall (2002) note that a principal objective of the models they review is
“to give the same reserve estimates as the chain-ladder technique” (p. 448). By contrast, there are
relatively few studies like Stanard (1985), Narayan and Warthen (1997), Bamett and Zehnwirth
(2000), and Taylor (2003) that focus on the key assumptions and comparative adequacy of the chain
ladder method. Here I make no attempt to ensure that my proposed method agrees with the chain
ladder method in estimating the unknown parameters of some paid loss triangle. The point is to
obrain estimates that are correct, whether or not they agree with a widely-used method.

To validate the method I shall use known parameters to simulate thousands of paid loss triangles
and determine whether my proposed method is able to accurately estimate these patameters and the
corresponding simulated reserves and simulated reserve uncertainty. Agreement with the chain
ladder method is simply irtelevant to this validation procedure, especially since the chain ladder

method has itself not been definitively validated in a comparable manner.

2.2 Absence of Estimation Criteria

Second, apart from the special place accorded to the chain ladder method, much of the literature
seems to assume a kind of algorithmic democracy, in which one technique for estimating reserves or
LRU is considered as good as any other. (This assumption reaches its inevitable conclusion when
the results obtained from different methods are averaged.) With few exceptions, there is no
discussion of criteria that must be met in order for estimates of reserves or LRU to be accurate. The
notable exceptions here are Ashe (1986), Barnett and Zehnwirth (2000), Halliwell (1996), Taylor
(1987), and Taylor and Ashe (1983), but even here the relevant issues are typically either assumed or
discussed very briefly. Here I explain at some length conditions that are crucial to accurate

estitnation, and show specifically what must be done to meet those conditions.

It is important here to recognize the significant differences between estimating reserves on the
one hand and estimating LRU on the other. Some methods for estimating reserves are totally
incapable of being extended to estimating LRU. Moreover, there is an enormous difference, at least
in my view, between methods that principally focus on estimating reserves but only incidentally
focus on LRU, and methods that principally aim to estimate LRU. The former are especially
prevalent, and invite strong assumptions with little guidance on ways to test their validity or to
estimate the sensitivity of LRU estimates to slight changes in these assumptions. The latter are rare,

and include the method presented here.
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2.3 Complexity

Third, the procedures proposed to estimate LRU are typically quite complex. Moreover, some
recommended procedures, such as generalized least squares (GLS) and generalized linear models
(GLM) in fact typically require very strong a prioti assumptions about variances and covarances.
Checking and, when necessary, approptiately modifying these assumptions is indeed feasible, but at
the expense of making a complex procedure even more vulnerable to the temptation to over-fit the
model, thereby “finding” what one has really assumed. Here I utilize a much simpler procedure that

is less elegant but, in this respect, more robust.

3. AMEASURE OF LOSS RESERVE UNCERTAINTY AND ITS MERITS

No single method of estimating loss teserve uncertainty is appropriate under all circumstances.
Much depends upon the type and extent of data available for such an analysis. For example,
actuaries within an insurance firm may have access to data that is far more extensive and detailed
than the data available to external analysts. Given these differences in available data, internal and
external analysts may appropriately utilize different methods to estimate loss reserve uncertainty.
Nonetheless, I believe that the results obtained from the method presented here can be applied

directly to reserve estimates obtained using other methods and more extensive data.

The procedure I propose has two steps. The first is estimating the loss reserve itself, in dollars.
The second is estimating the standard deviation of that loss reserve, again in dollars. Because both
of these estimates are in dollars, comparisons across lines of business or across different firms are
essentially meaningless, since differences in these numbers will principally be affected by differences
in the volume of business in each line or each firm. But if we instead express reserve uncertainty as
a coefficient of variation (the standard deviation of the estimated reserve as a percentage of the

estimated reserve), we artive at a measure that has three important propetties.

First, it can be compared across different lines of business within a particulat firm. A line
of business in which the coefficient of variation is 6% is cleatly less risky (in this respect, at least)

than one in which the coefficient of variation is, say, 15%.

Second, this measure of LRU can be compared across different firms for the same line of
business. If the coefficient of variation for workers’ compensation is smaller for one firm than for
anothet, it is pretty cleat that this line of business is less risky for the first firm than for the second.

This fact has enormous implications for the measurement of capital adequacy.

The results of both of these comparisons must be interpreted carefully, since they depend on the

volume of business wtitten as well as on supposedly intrinsic differences between different lines of
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business. As the central limit theory implies, the coefficient of variation for a line of business will
tend to decrease with the volume of business written. This principle is confitmed by the fact that,
for a particular line of business, the coefficient of variation for the industry as a whole is typically
smaller than that same measure for any particular firm.

Thitd, I believe that this measure of LRU can be applied to resetves that have been
estimated by methods other than the one recommended here. My argument here is very
simple. Suppose that I utilize the method and data proposed here to forecast future loss payments
(i-e., the reserve) for some insurer and obtain a value R. Suppose also that the firm’s own actuaries,
utilizing a different method and far more extensive data, obtain an estimated reserve value of R*,
where R* = aR (i.e,, some positive constant times the value R obtained using the method and data
recommended here). Under rather broad conditions it is the case that if R* = aR, then the standard
deviation $* = aS, where S* is the standard deviation of the R* and S is the standard deviation of R.
If this is so, then it is necessarily true that $*/R* = S/R. In other words, the coefficient of variation
S/R will be (approximately) the same regardless of the method used to estimate reserves.

4. DATA NEEDED TO MEASURE LOSS RESERVE UNCERTAINTY

Comparing LRU across different lines of business and, in particular, across different firms,
requires that data that is commonly available and consistently defined. The data utilized here
consists of the paid loss triangles reported in Schedule P, Part 3, of the Annual Statement required
by the National Association of Insurance Commissioners. This data is publicly available for all

insurance companies licensed in the United States.

Table 1 is an example of such data. The rows of this table ate accident years: the calendar years
in which accidents occurred. The columns are development years: calendar years in which claims
payments for those accidents were actually made. A single accident can trigger multiple claim
payments occurring in different development years. For example, an auto accident in November
1995 could trigger a payment for physical damage to the insured’s vehicle in December of that same
year, and an additional claim payment, for bodily injury medical costs, in 1996. Litigation, if it
occurs, may delay claim payments into later years. Table 1 shows that, for all accidents occurring in
1994, $ 624 million in claims were paid that same year, a cumulative total of $ 2.1 billion had been
paid by the year-end 1996, and § 2.9 billion by year-end 2003.
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Table 1: Cumulative Paid Losses (millions)

Development Year
Year 1994 1995 1996 1997 1998 1999 2000 2001 2002
Losses
Were
Incurred

1994 624 1,595 2,066 2,366 2,559 2,685 2,765 2,818 2,860
1995 695 1,503 1,975 2295 2496 2,631 2727 2,784
1996 668 1,477 1968 2263 2447 2562 2,645
1997 696 1,540 2,055 2,357 2,551 2,699
1998 770 1,670 2,225 2,583 2,822
1999 690 1,515 2,051 2,436
2000 544 1,321 1,859
2001 563 1,355
2002 593
2003

2003

2,895
2,831
2,707
2,806
2,985
2,666
2,191
1,852
1,416

621

Table 2: Accident Year x Development Year Cumulative Paid Losses (millions)

Development Year

t 0 1 2 3 4 5 6 8
0 624 1595 2066 2366 2559 2,685 2765 2818 2,860
1 695 1,503 1975 2295 2496 2,631 2727 2784 2,831
2 668 1477 1968 2263 2447 2,562 2,645 2,707

3 696 1,540 2,055 2357 2551 2,699 2,806

4 770 1,670 2225 2583 2822 2,985

5 690 1515 2051 2436 2,666

6 544 1321 1,85 2,191

7 563 1355 1,852

8 593 1416

9 621

9

2,895

In Table 2, which is a reformatted version of Table 1, each row after the first has been shifted to

the left, and development years have been renumbered, from zero to nine, to represent the number

of years that have elapsed since the year in which the accident occurred. (I shall refer to these

development years as DY0, DY1, and so on, and to accident years, also renumbered, as AY0, AY1,

and so on.) The rearranged data in Table 2 more clearly shows how the claim payments for an

accident year develop over time, represented by the number of development years subsequent to the
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yeat of the accident. As before, these are cumulative claim payments. Table 2 is typical of the data
commonly used to estimate loss reserves for a single line of business. To estimate reserves, one
must estimate, for all accident years, the difference between the amounts already paid and the
ultimate amounts that will have been paid when all claims are finally settled. (This may occur well
after DY9; if so, then yeats prior to AY0 will also have to be analyzed, using separate data. Here I

ignore all prior years.)

5. THE SOURCES OF LOSS RESERVE UNCERTAINTY

Property-casualty loss reserves are estimates — forecasts -- of the total future payments that will
be required to settle claims on accidents that have already occurred. The actual future payments may

deviate from the forecast amount for several reasons, each of which reflects a different nisk.

5.1 Types of Risk

To distinguish between the different types of risk that are practically important in estimating
LRU, it may be helpful to consider a simple phenomenon with which we are all familiar: flipping a
coin. Let us postulate that we receive payoffs that cotrespond to the proportion of heads that are
flipped. In the first place, even if we know for certain that the probability of flipping heads is p, the
fact remains that the proportion of heads actually flipped can deviate substantially from p. This is
process risk. By contrast, parameter risk reflects the fact at the true probability of flipping heads
is unknown to us, and must either be assumed or inferred from the outcomes we observe. We may,
for example, infer that a coin with five heads in ten flips is fair and another with eight or nine flips in
ten is biased. Parameter risk reflects the possibility that in both instances we may be wrong. In
most practical sitiations we are exposed to both process nisk and parameter nsk, and find it difficult

to distinguish between the two.

Note, by the way, that it is process tisk that gives rise to parameter risk. If a coin with a true
probability of V2 of flipping heads always produced five heads in ten flips, then parameter risk would

not exist.

Finally, the inferential process -- inferring whether a coin is biased by observing the outcome of
multiple flips - itself relies on a crucial assumption that is seldom made explicit: that the probability
of the coin flipping heads is constant and independent of prior and subsequent flips. If, by contrast
(as many gamblers assume), the probability of flipping heads is mean-reverting, so that flipping tails
is more likely after a long series of heads, or if (by contrast) outcomes are positively serally
correlated, so that flipping tails becomes even more likely after a preceding seties of tails, then the

previously described inferences from observed outcomes are too simple to reflect reality. The point
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here is that making inferences from the outcomes we observe depends upon an explicit or implicit
mental model of how those outcomes are generated. If our mental model is wrong, and assumes
serial correlation where it is absent or assumes the absence of serial correlaton where it is present,
we may draw the wrong conclusions from what we observe. This possibility that our mental model
is wrong is called model risk. All three types of risk — process risk, parameter risk, and model risk —

are important in estimating loss reserve uncertainty.

5.2 Process Risk

Some degree of uncertainty is inherent in the process of settling claims payments. The amount
actually paid in a given development year is a complex result of numerous factors — among them the
uncertain outcomes and costs of medical diagnoses and treatments, and of court proceedings or
settlement negotiations. None of these factors can be easily forecast. Consequently, even at an
aggregate level, attempts to predict future claim payments are inescapably imprecise. Process risk
explains why our models fit past paid losses only imperfectly, and why they require an error term in

the prediction equation discussed below.

5.3 Parameter Risk

Actuarial methods necessarily use past experience to forecast future patterns. But past
experience can be misleading. The culprit here is the relatively short period of time — ten years —
covered by a typical paid loss triangle, so that parameter estimates are derived from a relatively small
number of observations. The paid losses in the triangle are all affected by process risk, but the small
number of observations creates substantial sampling error. The result is that past data may, simply
by chance, reflect unusually favorable or unfavorable claims experience, and thereby affect the

model parameters we are trying to estimate.

As an example, consider the step in the chain ladder method in which one of several weighting
methods is used to produce a ratio of cumulative losses in DY5 to cumulative losses in DY4. This
and other similar ratios are key parameters in the chain ladder model. But note that in DY5 there
ate only five cumulative AY losses from which ratios can be formed. If one or more of these five
cumulative loss numbers is affected by an unusually large, or unusually small, claim payment in DY5
or in any preceding DY, then the resulting ratio will be atypically large or small. As this example
suggests, this problem of sampling error is more acute for firms and lines of business that have few
claims involving latge payments than for firms with many small claims. Sampling error is likely to be

less relevant to ptivate passenger auto than to, say, product liability or D&O.

Especially in low-frequency high-severity lines of business, then, sampling error can lead to

distorted estimates of key loss reserve parameters. This important consequence of sampling error
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can be called parameter risk, since it pertains to the accuracy with which we can use past data to
estimate key parameters in our model of resetves or reserve uncertainty. Unlike process risk, which
is inherent in the claims settlement process, parameter rsk reflects our ignorance of the true
parameters that characterize that process and the consequent need for. us to use impetfect data to

estimate them.

5.4 Model Risk

All reserve estimates require extrapolation from the past to the future. We use data from the past
to create 2 model of the evolution of claims payments, and we then use this model to forecast future
payments. Implicit in this process are two crucial assumptions. One is that we have correctly
modeled the past: that we have included all the relevant variables and specified the correct functional
form of the model. A second implicit assumption is that the pattetn of future claims payments will
continue to conform to this model. That is, the way claims are settled in the future will closely
resemble the way they have been settled in the past. This implicit assumption may become
misleading if there are fundamental changes — known as regime changes — in the claims settlement
process at a particular firm (perhaps as a consequence of regulatory or judicial decisions), or in the
types of claims being settled (which may change over time due to changes in business mix). These
two components of teserve uncertainty can be called model risk, since they pertain to the capability
of a model to correctly extrapolate from the parameters of past experience to estimates of future

payments.

Regime changes that have occutred in the past can often, although not invariably, be identified
and corrected by means of a thorough analysis of the differences (residuals) between the fitted
values of past paid losses obtained from a model and the actual paid losses that have been observed.
(The paper by Barnett and Zehnwirth (2000) provides an excellent example of the analysis of
residuals.) If these residuals exhibit a trend or a sudden temporal shift, then there is good reason to
suspect that a regime change has occurred. This possibility can be confirmed by testing a more
advanced model that incorporates temporal changes in the value of key parameters. Unfortunately,
there are tradeoffs in introducing additional variables, since doing so is likely to increase our estimate
of LRU. Introducing additional variables may better fit past loss payments, but at the expense of
greater uncertainty in forecasting future loss payments. The brutal fact is that a simplified but
impetfect model of past losses may be superior to a more complex model in its ability to precisely

forecast future loss payments.
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It is important to note, however, that regime changes occurring in the future can invalidate the
results of our analysis, which consist of forecasts and estimates concerning that future. The risk
measures proposed here implicitly assume a stable future environment, and do not incorporate the
risk of future regime changes. If such changes do occur, then the results obtained by the method

presented here may become totally irrelevant to the changed circumstances.

5.5 Summary

Process risk essentally reflects the fact that some aspects of the claims settlement process are
inherently unpredictable. Parameter risk reflects the fact that, even if we have a correct model of
the evolution of paid losses, our estimates of the parameters of this correct model will necessarily be
somewhat imprecise. Model risk reflects the possibility that the model we are using may itself be
incorrect, so that our ability to predict future loss payments from past paid losses may be impaired.
A satisfactory approach to estimating LRU should address all three of its sources. In particular, it
should provide systematic ways to avoid, minimize, or detect model risk in the past, and it should

quantify both process and parameter risk.

6. CRITERIA FOR ACCURATELY ESTIMATING RESERVES AND
RESERVE UNCERTAINTY

The method presented here uses linear regression to fit past loss payments, forecast future loss
payments, and estimate LRU. But the use of linear regression — or any other method, for that
matter -- will not produce accurate estimates of reserves and LRU unless certain crucial problems
are avoided or corrected. Despite their huge potential impact on estimates of loss reserves and
LRU, and the enormous attention devoted to them by even elementary econometrics texts, these
problems are typically assumed away if they are discussed at all. Here I describe these problems,

their relevance, and what can be done about them.!

6.1 Linear Regression

In linear regression we initally assume a simple relationship between some dependent variable Y
(here specified as paid losses) and one or more independent variables X. The relationship between
the two is represented by the equation Y = X + ¢, where B is one or more parameters to be

estimated, and ¢ is an error term that represents random disturbances or deviations from the

! In this section I rely heavily on Kennedy (2003), a superb elementary presentation of the essentals of econometrics,
and on Greene (2000), one of the most widely used advanced texts.
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predicted relationship between Y and X. In the simplest possible model, X consists of a single

independent vatiable. I shall refer to this as model 1.

In this simple model, process risk is represented by e, which consists of disturbances that are
assumed to have an expected value of zeto and a standard deviation that is constant across all
observations. . Parameter risk is reflected in the fact that the resulting estimated value of B,
represented by b, is assumed to be correct, so that b = 8, which may not be true. Finally, model tisk
is represented in several ways. For example, model 1 directly assumes that the relationship between
Y and X is indeed linear, that all variables pertinent to Y are included in X, and that 8 is constant.
All of these may in fact be false, but can typically be checked by thoroughly examining the residuals

from the model — the deviadons between actual and fitted paid losses.

6.2 Bias

If important variables affecting Y are omitted from model 1, the error term is likely to have a
nonzero mean, the fitted and forecast values from the model will be biased — their estimated values
will systematically deviate from their true values. In the absence of specific data concetning the
omitted variables, we can take their influence into account by addin\g an intercept term to the
original model, which now becomes Y = o + BX + &. 1 shall refer to this model as model 2. Since
the unnecessary use of an intercept term affects our estimate of LRU, we should use model 2 only
when there is convincing evidence that the error terms from model 1 have a mean that significantly

differs from zero.

6.3 Varying Parameters

Another source of model risk is change over time in the value of §. This may occur due to
changes in (a) the firm’s claims settlement process, (b) judicial decisions or regulatory requirements,
(c) the composition of the firm’s policyholders in that line of business, or (d) the structute of a
firm’s reinsurance program (since paid losses are reported net of reinsurance recoverable). These
and other possible changes may produce sudden or gradual changes over time in the true value B,
but these changes that will not be reflected in its estimated value b. Fortunately, situations of this
sort exhibit a characteristic pattern of tesiduals, and can be cotrected by using a slightdly more
complex model in which § is assumed to change linearly over time, so that § = §, + ,¢, where t =
0,1,...nisatime index. When this is substituted into the original model we have a new model,
which I shall refer to as model 3: Y = 8, X + R,;tX + e. If B, =0, then this model collapses into the
original, simpler model 1.

248 Casualty Actuarial Society Forum, Fall 2006



Measuring Loss Reserve Uncertainty

6.4 Correlated Disturbances

Linear regression models assume that the disturbance terms for each observation are
uncorrelated with one another. For the data in Table 2, it sensible to assume ~ as many others have
-- that the disturbances in different accident years are uncorrelated. The important question is
whether the disturbance terms within the same accident year are correlated across development

years. I will show that they are in cumulative data.

Suppose that, for a given line of business and a given accident year, the expected paid losses are
$40, $30, $20, and $10 in development years zero through three. However, in any given
development year the actual paid losses will deviate from these expected paid losses due to a variety
of random factors whose net effect in those development years is ¢, ¢, ¢, and &,, respectively.
There are good reasons for assuming that these four random terms are independent of one another
and of all other similar random terms affecting other accident years and development years.
However, if we create a table of cumulative paid losses, as in Table 2, we will create correlations
among these random terms, since the new distutbance term for AY1, for example, is now ¢, + ¢,
which is clearly positively correlated with ¢, the disturbance term for AY0. In cumulative data, then,
an unusually large disturbance in any development year will be reflected in all subsequent cumulative

paid losses for that accident year.

The typical consequence of correlated disturbances, explained in both Kennedy and Greene, is
that a given model will appear to fit the historical data better than it actually does, so that process
error will be underestimated. This, in turn will result in LRU being underestimated as well.

Fortunately, the remedy for the correlated disturbances in cumulative paid loss triangles is simple:
we should use incremental paid losses rather than cumulative ones. Consequently, the data we will
utilize to estimate reserves and reserve uncertainty will be incremental, like that shown in Table 3,
which is derived from Table 2. (The boxes in Table 3 are explained later.) Hallowell’s (1996)

alternative solution is discussed below.
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Table 3: Accident Year x Development Year Incremental Paid Losses (millions)

Development Yeat
t 0 1 2 3 4 5 6 7 8 9
0624|971 )471 | 300 193 126 80 53 42 35
1]695| 808 | 473 | 319 201 135 96 57 47
2668 ! 8094911295 184 115 83 63
3] 696 | 844 | 515 | 302 194 148 107
41770 § 900 | 555 | 358 239 162
5690 | 825 | 536 | 384 231
6| 544 | 777 | 537 | 332
7| 563 | 792 1 497
8| 593 | 823
9 | 621
6.5 Heteroskedasticity

Linear regression assumes that the disturbance terms for past observations are homoskedastdc —
ie., have a constant vatiance or standard deviaton as measured here in dollars (and not in
percentage terms). This assumption is clearly violated in paid loss triangles like Table 3, for the
vatability of disturbances typically decreases from one development year to the next
Heteroskedastic (non-constant) disturbances reduce the precision of reserve estimates and especially

of estimates of LRU.

Thete are two remedies for heteroskedasticity that are relevant to the problem at hand. One is to
use a procedure known as Generalized Least Squares (GLS), which is a variation of linear regression
that incorporates the use of an assumed or estimated variance-covariance matrix of disturbances
(Halliwell, 1996; Taylor and Ashe, 1983). One typical assumption, for example, is that the standard
deviation of distutbances is proportional to the observed losses themselves. Besides its complexity,
there is a fundamental problem with the use of GLS for estimating reserves and LRU. Whether the
variance-covariance matrix is assumed or estimated, the use of GLS introduces additional parameter
risk that is not taken into account in the estimate of LRU. Moreover, however useful GLS may be
in increasing the accuracy of reserves estimates, when it is applied to the problem of estimating LRU

it comes dangerously close to assuming precisely what we are trying to estimate.

A second and far simpler remedy is to assume — quite plausibly — that the standard deviation of
disturbance terms is constant within the same development year. What this implies, in practice, is

the need to perform separate regressions on each development year. While this procedure may be
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less elegant than performing a single comprehensive regression for the whole paid loss triangle, it

avoids the need to make problematic assumptions about variances and covariances.

6.6 Zero Correlation Between Disturbances and Independent Variables

Halliwell (1996) correctly points out that the classical linear regression model required that the
independent variables be non-stochastic. However, both Greene (2000) and Kmenta (1977, pp.
297ff)) demonstrate that this stringent and seldom-met condition can be replaced by one that is far
less demanding, namely, that the disturbance terms be independent of the values of the independent
variables. However, even if the correlation is slightly positive rather than zero, the effect on the

resulting estimates of reserves and LRU is imperceptible, as I shall demonstrate later on.

6.7 Implications and Summary

In using linear regression to estimate reserves and LRU, it is essential to avoid the various pitfalls
just described. If one or more of these problems do occur, then estimates of reserves and LRU may
be seriously affected. It should be noted that this conclusion applies not only to the use of linear

regression, but to the use of other estimation procedures as well.

The immediate implications for modeling reserves and LRU can be summarized as follows: (a) if
bias appeats to be a problem, use model 2 rather than model 1; (b) if the model parameters appear
to change over time, use model 3; (c) to avoid correlated etrors, use incremental paid loss triangles;
(d) to avoid heteroskedasticity, analyze different development years separately; (e) the use of non-
stochastic independent variables, as advocated by Halliwell (1996) is unnecessary provided that there

is no correlation between disturbances and the independent variables.

7. ESTIMATING LOSS RESERVES

I will present the full procedure for estimating reserves in this section, and for estimating LRU in
the next one. In both, the presentation will focus initially on DY0 through DY7 and subsequently
on DY8 and DY9, whete data is minimal and extrapolation from the results for preceding DY’s

becomes necessary.

7.1 Fitting and Forecasting Losses for DY1 to DY7

The procedure 1 use here is linear regression. As explained in the previous section, we will

analyze each DY separately. The independent variable X used to fit each DY is the column of paid
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losses in DYO, shown in the left box in Table 3. We will illustrate the procedure by fitting DY?2, the
right box in Table 3, as the dependent variable. In model 1, these ate the only two variables.®

In the absence of specialized statisical software, one would typically perform the linear
regression in Excel to obtain the regression coefficients and fitted values. Then one would obtain
forecast values and, finally, calculate their forecast standard deviations. This final step can be
especially complex. Here I introduce a method first suggested by Salkever (1976), later
recommended by Kennedy, and described briefly but clearly by Greene (pp. 308-310), that makes it

possible to do all three steps simultaneously.

Table 4: Fitting and Forecasting DY2

L v [ x ]

DY2 DYOC D9 D8
47 624 0 0
473 695 0 0
491 668 0 0
515 696 0 0
555 770 0 0
536 690 0 0
537 544 0 0
497 563 0 0

0 593 0 -1
0 621 -1 0

b 0.77 477 456
se, 0.03 62 62

R, se,, 0.99 59.0
t-statistic 243 77 74

Table 4 shows the key steps in the Salkever algorithm. First, augment the dependent variable Y
with zeros so that it is the same length as DY0. Second, for each of the zeros added to Y, create

2 Some readers have asked why I don’t propose using DY1 and DY?2 in estimating DY3, and so on. The answer is
simple: very soon one has more variables than observations. This point is actually a specific case of an important
and more general principle: increasing the number of independent variables can actually increase loss reserve
uncertainty by reducing degrees of freedom.
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additional columns in the independent variable X, in each of which there is a single entry, -1,
corresponding to one of the zeros in Y. These additional variables are known as “dummy”
variables, and so I have labeled them as D9 and D8, since their nonzero entries correspond to AY9
and AY8. In this example X now consists of three variables. Third, perform the linear regression
(LINEST in Excel, with no intercept). The results are shown at the bottom of Table 4, with one
slight difference from those obtained in Excel: I have reversed the left-to-right order of the first two
rows of regtession results, so that they now appear in the same order as the three variables in X,

thereby doing what Microsoft should have done.

7.2 Results

The first column of results is identical to what one would have obtained by simply regressing Y
against X. The estimated regression coefficient b is 0.77, which indicates that the losses in DY2 are
about 77% of those in DY0. The standard error of b, in the second row, tells us that b has an
estimated standard deviaton of 0.03. The t-statistic, in the fourth row, is the ratio of b to its
standard error. As a general rule of thumb, t-statistics with absolute values greater than 2.0 are
considered significantly different from zero. The two numbers in the third are R* and the standard
error of the estimate, which is the estimated standard deviation of the error terms, the differences
between fitted and actual values of Y. In the absence of an intercept R® is typically high, so the
standard error of the estimate is a better measure of goodness of fit.

Table 5: Fitted Values & Regression Coefficients
For Each Development Year

Development Year
t 0 1 2 3 4 5 6 7
0 800 480 303 187 124 85 54
1 890 534 337 208 138 95 61
2 855 513 324 200 133 N 58
3 891 535 338 209 139 95
4 986 592 374 231 153
5 884 530 335 207
6 697 418 264
7 722 433
8 760
9
b 128 0.77 049 030 020 0.14 0.09

se, 0.05 003 002 001 001 001 0.00
91 59 40 15 12 9 4
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The real value of the Salkever procedure lies in the remaining two columns of regression results.
The regression coefficients in the first row are the forecast paid losses for AY9 and AYS,

respectively, and the values in the second row are the corresponding forecast standard errors.”

The results from applying this procedure to DY1 through DY7 are summarized in Table 5. The
top part shows the fitted values of past loss payments; the lower part shows the regression
coefficients and other summary measures of goodness of fit. (In all cases R* was 0.99)) For DY1
through DY?7, all estimated coefficients b were relatively precise, as indicated by their small standard
errors. In each DY goodness of fit, as measured by the standard error of the estimate, is likewise
small relative to the average paid loss. Particularly noteworthy, though, is the fact that the standard

error of the estimate varies dramatically across development years. This validates our concern about
heteroskedasticity, described in section 6.5.

Figure 1: Model 1 Payout Pattetn
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A \
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6 1 2 3 4 5 6 7 8 9 10
Development Year

The overall pattern of the regression coefficients is shown in Figure 1. These regression
coefficients can be used in a fashion similar to chain ladder link ratios. The regression coefficient
for any given DY is the estimated incremental dollars paid in that DY relative to the dollars paid in
DYO0. In DY]1, for example, one can anticipate paying, on average, about 28% more than was paid
out in DY0. For a given AY, then, the remaining payments can be estimated by adding up
the coefficients for the rtemaining DY’s and then multiplying by the amount paid in DY0. In
this example, the sum of the coefficients is 3.43 when one includes the tail. For AY9 the estimated

% Readers who attempt to replicate these results may obtain slightly different parameter estimates, since the data in
Tables 3 and 4 are rounded values. The actual data is available from the author on request.
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temaining paid losses are 3.43 times the $621 million loss in DYO0, or $2.130 billion, so that the
estimated ultimate AY total is $2,751 billion.

7.3 Analysis of Residuals

Table 6: Residuals from Fitted Values

Development Year
t 0 1 2 3 4 5 6 7
0 171 9 3 5 2 5 41
1 -82 62 -18 -7 -4 1 -3
2 47 22 29 16 -18 -8 4
3 -47 19 36 -15 10 12
4 -86 -37 -16 8 9
5 -59 5 49 24
6 80 119 68
7 70 64
8 63

Table 6 shows the residuals -- the difference between actual and fitted values — for the data

analyzed here. Two questons are central to the analysis of these residuals. First, do they exhibit

patterns that may alert us to vatiables or unusual conditions not reflected in Model 1? Second, are

the magnitudes of any particular residuals significant or noteworthy?

Table 7: Standardized Residuals

Development Year
t 0 1 2 3 4 5 6 7
0 19 -02 -01 03 01 -06 -03
1 -09 -10 -05 -05 -03 01 -08
2 -05 -04 -07 -1.1 -1.6 -09 11
3 05 -03 09 -1.0 09 13
4 09 -06 -04 05 08
5 06 01 12 15
6 09 20 17
7 08 1.1
8 0.7
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Table 6 provides a basis for answering the first question, and Table 7, which shows standardized
residuals (residuals divided by the DY standard error), facilitates answering the second. Table 7
shows, for example, that only one standardized residual has an absolute value greater than 2, which
can be expected to occur about five percent of the time, or in about two instances of the 42 values
shown in the table. Although the signs of the residuals show a suspicious pattern across accident
years, the xﬁagnitude of the deviations is not sufficiently great to add additonal variables to the
analysis. (It is also the case, as numerous studies have shown, that we psychological antcipate that
truly random variables will be even more “random” than is in fact the case. The signs and

magnitudes of the residuals in Table 7 are quite consistent with an assumption of random residuals.)

The fact that an extensive discussion of the art of residual analysis is beyond the scope of this
paper should by no means obscure its fundamental importance. The estimation of loss reserves and
LRU should not be a mechanical application of a standard algorithm to standard data. As
experienced actuaries and analysts know, the scientific model-building that lies at the core of
actuarial science must necessarily be accompanied by skillful judgment in determining how those
models are applied and interpreted for particular firms and lines of business.

7.4 Forecasting the Tails

Table 8 shows the forecast future paid losses obtained from applying model 1 to the data in
Table 3 as well as the estimated payments for the tails, DY8 and beyond. The procedures used to
obtain these tall estimates makes two important assumptions. The first is that the regression
coefficients from DY4 and beyond decrease exponentially. Figure 1 alteady demonstrated that this
assumption does not hold for earlier DYs. Focusing on DY4 and beyond makes it possible to apply
this procedure to lines of business with long tails. The second assumption is that the rate of
exponential decay can be estimated from the coefficients alteady obtained for DY4 through DY7. I

now descrbe the two steps needed to derive forecasts from these assumptions.

In step one we extrapolate the regression coefficients already obtained to DYs beyond DY7.
Because we have assumed that the coefficients decrease exponentially, it is apptropriate to use
logarithmic regression. We create a variable W that consists of the regression coefficients for DY4
through DY7, shown previously in Table 5. We also create a variable V consisting simply of the
numbers 4, 5, 6, and 7. Then we obtain estimates a and b of the coefficients a and f in the
logarithmic regression InW = a + BV + e. From this we obtain b, the estimated value of B, which is
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the logarithm of the rate of exponential decay. In this analysis I use d = exp(b) = 0.66 as the

estimated rate at which the coefficients decrease from one year to the next in the tail.?

Table 8: Forecast Future Paid Losses

Development Yeat
t 0o 1 2 3 4 5 6 7 8 9 Tail
0 48
1 27 53
2 35 24 47
3 61 43 29 57
4 105 67 47 31 62
5 137 94 60 42 28 56
6 163 108 74 47 32 21 42
7 274 169 112 77 49 33 22 44
8 456 288 178 118 81 52 35 23 46
9 796 477 302 186 124 85 54 37 24 48
Development

Year Total 796 933 863 696 600 517 390 305 230 504

In step two we create robust forecasts of the paid losses in subsequent development years by
using an average of three separate forecasts. For each accident year, the paid loss for DY8 is
forecast as Py = (P,d* + P,d* + P,d")/3. The three terms in parentheses are three different forecasts
of P8 created from the actual or forecast paid losses in DY4, DY5, and DY6. The forecasts for P,
are made in the same way, except that the exponents of d are each increased by one. Finally, the
forecast value for the tail, consisting of paid losses for all development years after nine, is calculated
as the forecast for Py, multiplied by 1/(1-d), the formula for the sum of the infinite exponentially
decreasing series (1 + d + d” + ...). The results of this procedure have already been shown in Table
8. The estimated resetve for these data, based on Model 1, is $5,835 million.

* Technically, unless the logarithmic regression perfectly fits the data, one should include a slight adjustment for the
error term in order to obtain the mean estimated value of b. By deliberately failing to include this adjustment I
instead obtain the median value of b, which is presumably more robust. In most cases the difference is miniscule
and difficult to explain to a non-technical audience.
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8. ESTIMATING LOSS RESERVE UNCERTAINTY

As in estimating loss reserves, here we deal first with DY1 through DY7, and then tackle DY8
and beyond. We will first estimate the uncertainty of the total forecast payments for each DY.
Then we will estimate total LRU by appropnately aggregating the uncertainties obtained for each
DY.

8.1 Estimating the Uncertainty of DY Forecast Totals

For DY1 there is only one future payment to be forecast, and we can obtain that forecast and its

forecast standard deviation directly from the Salkever method.

Table 9: Calculating the Standard Deviation of Forecast Paid Losses for DY2

Step 1: Assemble the Input Data: X, X, s, 1 Step 2: Calculate the Variance-Covariance
Matrix VCV

DY0

X= |624 The standard etror of the VCV = s[1 + X,X'X)"X,’]
695 estimate, se_,,, shown in
668 Tables 4 and 5: =1| 3,838 369
696 s= 59 369 3,872
770
690 The Identity Matrix I Step 3: Calculate the square root of the
544 (for DYn it is n x n) sum of the entries in the VCV matrix
563

X0= | 593 1= 1 0 (ZVCV)? = 8,447* = 92
621 0 1 This is the standard deviation of the sum

of forecast paid losses for DY2

For subsequent DY the problem is more complex, since forecast future payments within a DY
share the same parameters and are therefore correlated since they share common parameter risk.
What this means, in concrete terms, is that if the regression coefficient b is too high relative to its
true value f3, then all forecasts will be too high, and so will be correlated with one another, although
not perfectly. When we estimate LRU we must take into account not only the forecast standard

errors for each entry in the lower right portion of the loss reserve trangle, but also the estimated
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covariances among these forecasts. Fortunately, the Salkever procedure provides a relatively simply

way to do this.

The estimation procedure for DY2 and subsequent DY is shown in Table 9. The input data are
shown at the top of the table. One is the column of paid losses in DY0. Recall that in Table 4 the
first eight entries of DY0 were used to fit the eight paid losses already observed in DY2, and the
remaining two entries were used to forecast future paid losses. Here we need to split DYO0 into two
separate parts, which we label X and X, to correspond to the notation used by Greene (2000, p.
309). Another input, s, is the standard error of the estimate for DY2, alteady reported in Tables 4
and 5. Finally, we need an identity matrix I, a square matrix of size n, where n is the number of the
DY, with one’s on its main diagonal and zero’s elsewhere. From these inputs we obtain VCV= s7[I
+ X,(X'X)"'X,'], the variance-covariance matrix for forecast errors. We then sum these entries and
take the square root of that result to obtain the standard deviation of the DY2 sum of forecast paid

losses, which here is 92.

The standard deviations of the sum of forecast paid losses for DY3 to DY7 are calculated in the
same way.” Note that as we move from one DY to the next we must increase the number of entries
in X, by one, correspondingly decrease the number in X by one, and increase the dimension of I by
one. The results are reported in Table 11, to which we shall return after we first obtain standard

deviations for paid losses in DY8 and beyond.

8.2 Estimating the Standard Deviations of Forecast Tail Paid Losses

Salkever’s method, applied to DY1 through DY?7, provided forecasts of future paid losses (shown
in Table 8) as well as standard errors (standard deviations) for these forecast values, are shown in
Table 10. The table also shows the estimated standard errors of forecast losses for DY8 and

beyond, which we calculated as follows.

As with regression coefficients, the assumption is that the standard errors decrease exponentially
in the tail. As before, we use logarithmic regression to estimate the rate of decrease. Here, however,
the dependent variable U consists of the average standard error for each DY from DY1 to DY7, and
the independent variable T consists of the numbets from 1 to 7. For the regression InU = o + BT +
€, we obtain an estimate b such that the rate of decrease g = exp(b) = 0.61. In a manner identical to
the one used for paid losses, we forecast the standard deviations for DY8 in each AY as E8 = (E g
+ Eg’ + Eg)/3, an average of three forecasts. Here each E within parentheses is the standard

® The Excel array formula for VCV, where range names are shown in boldface type, is this: VCV'= S*(1.2+
MMULTQMMMULTXZERO,MINVERSEQMMULT(TRANSPOSE(X),X))), TRANSPOSE(XZERO))).
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error of the forecast (for cells with forecast values) or the standard error of the estimate (for cells

with observed values).

Table 10: Standard Errors of Forecast Paid Losses

Development Year
t 0 1t 2 3 4 5 6 7 8 9 Tail
0 5
1 2 5
2 32 5
3 53 2 5
4 10 5 4 2 5
5 13 10 5 4 3 5
6 16 12 10 4 4 2 5
7 42 16 12 10 4 4 2 5
8 62 42 16 12 10 5 4 2 5
9 96 62 43 16 12 10 5 4 3 5

The last step requires that we obtain the standard errors of the sum of forecast paid losses for
development years eight, nine, and the tail. To do this requires that we estimate what the variance-
covariance matrices for those years might look like. We can in fact do this by examining the

matrices already calculated for earlier development years.

The function of the variance-covariance matrix is to reflect interrelationships among the forecast
errors. These interrelationships exist because the various forecast values all depend upon a common
underlying parameter, , whose estimate, b, may incorporate error. Any error in b will
simultaneously affect all the forecast values. Moreover, as the number of observations on which

estimates of { is based decreases, the interrelationships among forecast errors increase.

Were it not for these interrelationships among forecast etrors, we could very easily calculate the
standard deviation of total forecast paid losses by assuming that these forecasts and their errors were
independent. In this case, the standard deviation of total forecast paid losses for development year
n, which has n forecast values, would be o* = (no)” = gn”, where o* is the standard deviation of
total forecast paid losses assuming independence, and o; is the standard etror of individual forecasts,
here assumed to be equal (which is approximately true). In fact, however, we need to take into
account the fact that the off-diagonal elements in the variance-covariance matrix are non-zero. Here
we assume that these elements are identical in value (again, approximately true) and equal to ko7,
where k is some constant to be estimated. In this case, the correct standard deviation of total

forecast paid losses, o, is o(n+kn(n-1))*. If we now calculate the ratio of ¢ to o* we obtain the
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quantity (1+k(n-1))”, which is a multiplier: it is the amount by which ¢*, which assumes
independence, must be multiplied to obtain o, which does not. This approximation, when applied
development years one through seven, produces results that are neatly an exact match to those

obtained by having the actual variance-covariance matrix.

The key to applying this method is having a value for k, without which the multiplier cannot be
calculated. The procedure used here was, fitst, to obtain the value of k from the variance-covatiance
matrices calculated for development years one through seven, second, to use linear regression to fit
these values to an independent variable consisting of the number one through seven, and third, to
forecast values of k for development years eight and nine and for the tail, for which the independent

variable was nine plus the tail’s weighted average length in years.’
Table 11: Standard Errors of Forecast Paid Losses
By Development Year, Total Resetve, and Calendar Year
Development Year 1 2 3 4 5 6 7 8 9 tail Total
A. Sum of Forecast Paid Losses 796 933 863 696 600 517 3% 305 230 504 5,835
B. Standard Deviation of Forecast 96 92 81 37 34 33 17 18 15 45 175

C. Coefficient of Variation (FB/A) 12% 10% 9% 5% 6% 6% 4% 6% 6% 9% 3.0%

D. Calendar Year 2004 Forecast Paid Losses 2,070
E. Standard Deviation of CY Forecast 124
F. CY Coefficient of Variation (FE/D) 6.0%
8.3 Results

Table 11 shows the combined results of applying these-procedures. Line A shows the sum of the

forecast paid losses for each development year, as previously reported in Table 8. Line B shows the

6 Recall that d is the estimated ratio, in the tail, of the paid loss in one development year to the paid loss in the prior
development year, so thatd < 1. The average length of the tail, L, is calculated as a ratio in which the numerator is the
infinite series 14+2d+3d?+4d*+ . . ., and the denominator is the infinite series 1+d+d?+d*+ .... The numbers 1, 2, and
so on are the number of years subsequent to development year 9 in which payments occur, and each year is weighted by
the percentage of total tail payments occurring in that year. The denominator is total tail payments. The value of the
numerator is 1/(1-d)?, and the value of the denominator is 1/(1-d), so that the value of their ratio, L, is 1/(1-d).
Consequently, for purposes of estimating k to calculate the multiplier for the tail, the number of the tail development
year is 9 + 1/(1-d), which in this case is 12
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standard deviations of the values in line A. These differ from the values shown in Table 10, which
are the standard deviations of the individual components of the sums in line A. Both, however,
reflect parameter risk as well as process risk. The Total in line B is obtained by taking the square
root of the summed squares of the values in that row. This assumes independence, which is
approprate since by using incremental paid losses we have eliminated correlations across

development years.

Line C shows the coefficients of varation, the standard deviations divided by the forecast paid
losses. For the total estimated reserve of $5.8 billion, the standard deviation of $175 million is
approximately 3.0% of the reserve. The fact that a consistent methodology was here used to
estimate both the reserve and its standard deviation underscores a point made eatlier: even if other
methods ot information are used to obtain a different estimated reserve, this estimate of

loss reserve uncertainty, the coefficient of variation, should nonetheless remain valid.

Line C also validates the concern about heteroskedasticity discussed in section 6.5. In Table 5 we
shows that the standard deviations of the disturbance terms in our regression results varied
considerably, in dollar terms, across different development years. Line C shows that
heteroskedastcity remains even when the standard deviation of the disturbance terms are expressed
as a percentage of forecast paid losses (i.e., as coefficients of variation). What this means is that the
convenient assumptions often utlized in generalized linear models (GLM) or generalized least
squates (GLS) may not be valid. In practice, these estimation procedures focus principally on
estimating loss reserves, so that estimates of LRU are purely secondary. By contrast, the model
presented here focuses principally on estimating LRU, and estimates of loss reserves are of

secondary importance.’

Table 11 also shows, in line D, the sum of the forecast paid losses for calendar year 2004, which
consists of the sum of the forecast losses in Table 8. The standard deviation of this value, shown in
line E, is $124 million, or about 6% of the estimated calendar year total forecast payments of $2.07
billion. This calendar year measure of LRU can be especially important for helping managers to
determine whether actual calendar year paid losses (for AY1 to AY9) deviate significantly from their

forecast total.

1 hasten to observe that the Coefficient of Variatdon (Table 11, Line C) and the Calendar Year
Coefficient of Vanation (Table 11, Line F) are both atypically low. Although I have deliberately not
identified the firm nor the line of business analyzed here, I will point out that this firm has a high

volume of business in this line and deliberately targets its exposures to the less risky end of the risk

7 This distinction is not trivial. Estimates of loss reserves may in fact be improved by using estimates of LRU that
are relatively correct but nonetheless absolutely wrong by orders of magnitude.
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spectrum. In a subsequent report I will describe the typical parameters and risk measures for the

principal firms in each line of business.

Finally, I simply note that the Calendar Year Coefficient of Varation (CYCV), 6%, shown in
Table 11 Line F, is greater than the Total Reserve Coefficient of Variation (CV) shown at the far
right of line C. This result is consistent with what one would anticipate, since the Total Reserve CV
includes all forecast future loss payments, which are imperfectly correlated, whereas the entry on line
F includes only the forecast future loss payments occutting in the next calendar year. The Total

Reserve CV is therefore considerably more diversified than the CYCV, and consequently is smaller.

9. VALIDATING THE RESULTS

Here 1 validate the results just obtained by demonstrating that the same methods accurately
estimate the future paid losses and LRU’s of 10,000 simulated paid loss triangles with known

parameters and outcomes.

To create simulated paid loss triangles I begin with an underlying deterministic payout pattern in
which paid losses decrease exponentially from an initial value in DYO that is identical for all accident
years. (In this particular simulation, paid losses in each DY are half those in the preceding one.) I
then add to each of these expected payments a tandom deviation drawn from a normal distribution,
with a mean of zero and a standard deviation that increases lineatly from 10% of the expected paid
loss in DYO0 to 100% in DY9 and 110% in DY10 and beyond. The simulations in fact generate the
entire path of paid losses to the point where they become miniscule. Consequently, the ultimate
paid losses can, in principle and in fact, depart considerably from the expected values established by

the underlying pattern, and the standard deviations of these simulated variations can be calculated.

The results of the simulation are shown in Table 12. The first half of the table reports the
accuracy of the method used here in forecasting DY sums of future loss payments. Line A shows
the DY sums of expected future loss payments before random disturbances are added. Line B
shows the average, over the 10,000 scenarios, of the simulated DY sums of future loss payments.
Section C reports the results of using the procedure used in this paper to estimate DY sums of

forecast future loss payments.

When the independent variable is stochastic, and consists of the simulated loss payments in
development year zero, the results ate only trivially different from those obtained by using as the
independent variable the expected (i.e., deterministic) loss payments in DYO as if they were in fact
known. This confirms the assertion in section 6 that the use of a stochastic independent

variable is not a problem if its disturbances are independent of those that affect the
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dependent variable. The admittedly ad hoc procedure used here to calculate the tail values
overestimates them somewhat. This is undoubtedly due to the fact that using the exponential
decay function to project tail payments rules out negative payments, while the simulation
does not. Nonetheless, forecasts of paid losses in the next calendar year, shown in the last column

in Table 12, are remarkably accurate.

Table 12: Monte Catlo Results for Estimating Reserves and Reserve Uncertainty

DY: 1 2 3 4 5 6 7 8 9 10+ Total CY
DY Sum of Future Loss Payments
A. Underlying mean values 400 400 300 200 125 75 44 25 14 16 1,598 800

B. Average simulated values 399 401 301 200 124 75 44 25 14 16 1,599 799
C. Average forecast values
-- using stochastic X 397 397 298 198 124 75 43 34 22 33 1,622 796
-- using fixed X 400 400 300 200 125 75 44 34 22 33 1,633 802

Standard Deviation (SD) of DY Sum of Future 1.0ss Payments
D. True SD from parameters 80 8 6 50 34 21 13 8 5 5 151 112
E. SD of simulated payments 80 8 71 5 34 21 13 8 5 5 152 112

F. Parameter risk multipliers 11 11 12 13 14 16

G. True SD plus parameter risk 89 77 60 43 30 21

H. Estimated SD
-- using stochastic X 91 97 8 62 45 32 19 18 13 31 189 127
-- using fixed X 82 92 79 61 4 31 19 17 13 31 180 118

The second part of Table 12 verifies the accuracy of the procedure for estimating the standard
deviations of forecast future loss payments. Line D shows the actual standard deviations used in the
simulation, and line E shows the standard deviation of the simulated losses. As one would hope
from a properly conducted simulation, the two are virtually identical. Line F shows the multipliers
fot parameter risk obtained from the modeled variance-covariance matrices, and line G shows the
true standard deviations in line D multiplies by the corresponding values in line F. These values in
line G ate the values one would hope to obtain in estimating LRU. The actual estimates obtain,
both with a stochastic X and a fixed X, are shown in section H. The two sets of estimates in this
section agree closely with each other and with the target values in line G. However, it appears that
using a fixed X, as recommended by Halliwell (1996) slightly improves the estimates for DY1 and
DY2. For the total reserve, both stochastic and fixed X’s produce a similar result, and substituting
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one for the other would have an imperceptible effect on the coefficient of variaton (CV). For
stochastic X the CV is 11.65%, and for fixed X it is 11.02%.

10. SUMMARY AND CONCLUSIONS

The method I have presented here for estimating loss reserve uncertainty — the coefficient of
variation of estimated future loss payments -- has a number of merits. First, it can be used to
address significant issues in surplus management, in pricing and. capital allocation, and in the
management of uncertainty. Second, it uses a measure of loss reserve uncertainty that facilitates
comparison across different lines of business and can be applied to reserve estimates obtained
through alternative methods. Third, it uses a publicly-available source of data that facilitates
comparison across different firms. Fourth, the method avoids a number of serious pitfalls that can
distort estimates of reserves or LRU. Fifth, the method is simple, at least as compared to some of
the alternative methods advocated in the relevant literature. In particular, its use of Salkever’s
method provides an extremely useful shortcut for obtaining results. And sixth, the method
accurately captures the key parameters of simulated paid loss trajectories. The reserve estimates are
extremely accurate, and the estimates of reserve uncettainty, which include parameter risk, agree

closely with benchmatk calculations.

At the same time, the method proposed here has important limitations. First, I have used linear
regression as a model for forecasting future loss payments. Linear regression is often advocated as a
maximum likehhood procedure for estimating model coefficients. This is indeed the case when
residuals are assumed to have a normal distribution. Here I make no such assumption, and so rely
on linear regression as a procedure that estimates parameters so as to minimize squated error
between fitted and actual values of the dependent variable. This is quite legitimate, but potentially
disturbing to statistical perfectionists. Second, I make no assumption concerning the nature of the
distribution of disturbances. The inferences from the model I present concemn only the mean and
standard deviation of loss reserves. The information needed to derive, say, an 80" percentile of the

distribution of ultimate loss payments cannot be obtained from the method presented here.

I hope that I have convinced readers that the method presented here for estimating loss reserve
uncertainty that is both accurate and reasonably simple to implement. I also hope that my
presentation of it is accessible to a large number of professional colleagues, who ate invited to apply

it in their own work and to extend it to novel uses.
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Based on Run-Off Triangles:
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Abstract.
The present paper provides a unifying survey of some of the most important methods and models of
loss reserving which are based on run-off triangles. The starting point is the thesis that the use of run-
off triangles in Joss reserving can be justified only under the assumption that the development of the
losses of every accident year follows a development pattern which is common to all accident years. This
assumption can be viewed as a primitive stochastic model of loss reserving.
The notion of a development pattern turns out to be a unifying force in the comparison of methods
which to a large extent can be summarized under a general version of the Bornhuetter-Ferguson
method. It is shown that the loss-development method and the chain-ladder method as well as the
Cape-Cod method and the additive method can be viewed as special cases of the general Bornhuetter-
Ferguson method.
Some of these methods can be justified by general principles of statistical inference applied to suitable
and more sophisticated stochastic models. It is shown that credibility prediction and Gauss-Markov
prediction as well as maximum-likelihood estimation can contribute in 2 substantal way to the
understanding of various methods of loss reserving,

Keywords. Bornhuetter-Ferguson principle; credibility prediction; development pattern; Gauss-Markov
prediction; loss reserving; maximum-likelihood estimation.

1. INTRODUCTION

We start with the general modelling of loss-development data by a family of random
variables representing incremental or cumulative Josses and with the run-off triangles

representing the observable incremental or cumulative losses (Section 2).

We then introduce the central notion of a development pattern which can be expressed in
three different but equivalent ways and turns out to be a powerful and unifying concept for
the interpretation and comparison of several methods and models of loss reserving
(Section 3).

The subsequent three sections are devoted to methods, least-squares prediction, and

maximum-likelihood estimation.

In the section on methods (Section 4), we start with a general version of the Bornhuetter-

Ferguson method which provides a general framework into which several other methods,
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like the loss-development method, the chain-ladder method, the Cape-Cod method and the
additive method, can be embedded as special cases. We also consider two variants of the
chain-ladder method which have no practical interest but are needed as a link between the

chain-ladder method and certain stochastic models.

In the section on least-squares prediction (Section 5), we study credibility prediction and
Gauss-Markov predicdon. It is shown that, under certain model assumptions, these methods

of prediction yield predictors of the Bornhuettet-Ferguson type.

In the section on maximum-likelihood estimation (Secdon 6), we study maximum-
likelihood estimation for a large class of stochastic models for claim counts: It is shown that
in many cases, but not always, the maximum-likelihood estimators of the expected ultimate
cumnulative losses are identical with the chain-ladder predictors of the ultimate cumulative

losses.
In the final secton (Section 7) we collect some conclusions.

Throughout this paper, let (Q, F, P) be a probability space on which all random
variables are defined. We also assume that all random variables are square integrable.
Moreover, all equalities and inequalities involving random variables are understood to hold

almost surely with respect to the probability measure P.

2. LOSS DEVELOPMENT DATA

We consider a portfolio of risks and we assume that each claim of the portfolio is settled
either in the accident year or in the following # development years. The portfolio may be

modelled either by incremental losses or by cumulative losses.

2.1 Incremental Losses

To model a portfolio by incremental losses, we consider a family of random variables
{Z:4)}ixeton,..ny and we interpret the random variable Z;; as the loss of acwident year i
which is settded with a delay of & years and hence in development year k and in calendar year

1+ k. We refer to Z; as the incremental loss of accident year i and development year £.

We assume that the incremental losses Z;; are observable for calendar years 1 +k < n and
that they are non-observable for calendar years i + k 2 n+1. The observable incremental losses

are represented by the following run-off triangle :
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Accident Development Year ‘
Year 0 1 k e n—1i . n-1 n
0 Zo,o Zo,1 Zo,k ZO,n—i ZO,n—l Z[),n
1 Zx,o Zy, e Zl,k e Zl,n—i v Ly
7 Zio Ziy o Ziy o Zigei

: : : N
n—k Zoko Zooiy A
n-1 Zyag Ly
n Z,o

The problem is to predict the non-observable incremental losses.

2.2 Cumulative Losses

To model a portfolio by cumulative losses, we consider a family of random variables
{S; 4Yiketoy, .,y and we interpret the random variable S;; as the loss of acident year i which
is settled with a delay of a# most k years and hence not Jater than in development year k. We refer
to S;p as the cumulative loss of accident year i and development vear %, to §;,; as a

cumulative loss of the present calendar year n, and to S;, as an ultimate cumulative loss.

We assume that the cumulative losses S;; are observable for calendar years i + k < n and that
they are non-observable for calendar years /+ % 2> n+1. The observable cumulative losses are

represented by the following run-off triangle:

Accident Development Year

Year 0 1 k e m—1 e o on=1 =n
0 So,o SO,I Su,h SO,n—i SO,n—l SO,n
1 Sio Si1 v Sia PR R Y

7 Sio Sia e S T Y

n—k Su-k0 Sk o Sucka

n-1 So0 Sa-nn

n Sn,O

The problem is to predict the non-observable cumulative losses.

Casualty Actuarial Society Forum, Fall 2006 271



Methods and Models of Loss Reserving

2.3 Remarks

of cou}!se, modelling a portfolio by incremental losses is equivalent to modelling a

portfolio by cumulative losses:

~ The cumulative losses are obtained from the incremental losses by letting
5 ‘
S,',k = z Z,- g
I=0

- The incremental losses are obtained from the cumulative losses by letting

S,' fk=0
Zix 5={ + 1

S,"k et S,',/,_l else.

In the sequel we shall switch between incremental and cumulative losses as necessary.

Correspondingly, prediction of non-observable incremental losses is essentially equivalent
to prediction of non-observable cumulative losses:

- If {ZA,-,,,},-,,,e(o,l,“_,,), i+k2zns1 is 2 family of predictors of the non-observable incremental
losses, then a family of predictors of the non-observable cumulative Josses is obtained by
letting

A k A
Sik=Sipit 2 Zig
l=n—i+1

- If {.§',—_k Yike(0,. n), ivkznst is a family of predictors of the non-observable cumulative
losses, then a family of predictors of the non-observable incremental losses is obtained by
letting

2, = gi,n—i+l =Sipi f k=n—i+l
! §i,k et gi,k—l CISC.

For the ease of notation and to avoid the distinction of cases as in the previous definition,

we shall also refer to Z;,—; and S, ,-; as predictors of Z;,; and §;,;, although these

random variables are, of course, observable.

Warning: Whenever prediction is subject to an optimality criterion, it cannot be
guaranteed in general that the previous formulas lead from optimal predictors of incremental

losses to optimal predictors of cumulative losses or vice versa.

The enumeration of accident years and development years starting with 0 instead of 1 is

widely but not yet generally accepted; see Taylor [2000] as well as Radtke and Schmidt
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[2004]. It is useful for several reasons:

- For losses which are settled within the accident year, the delay of settlement is 0.
It is therefore natural to start the enumeration of development years with 0.

- Using the enumeration of development years also for accident years implies that the
incremental or cumulative loss of accident year 7 and development year k is observable if
and only if 7 +k < n. In particular, the cumulative losses S;,_; are those of the present

calendar year 7 and are crucial in most methods of loss reserving.

After all, the notation used here simplifies mathematical formulas.

3. DEVELOPMENT PATTERNS

The use of run-off triangles in loss reserving can be justfied only if it is assumed that the
development of the losses of every accident year follows a development pattern which is
common to all accident years. This vague idea of a development pattern can be formalized in

various ways.

In the present section we consider three types of development patterns which are
formally distinct but can easily be converted into each other. These development patterns

and their equivalence provide a key to the comparison of several methods of loss reserving.

The assumption of an underlying development pattern can be viewed as a primitive

stochastic model of loss reserving.

3.1 Incremental Quotas

The development pattern for incremental quotas compares the expected incremental

losses with the expected ultimate cumulative losses:

Development Pattern for Incremental Quotas: There exist parameters Sy, 9y,..., 9, with
D70S =1 such that the identity
_ElZi4]

T

holds for all k€ {0,1,..., n} and forall i €{0,1,..., n}.

The assumption means that, for every development year 2€{0,1,..., 7}, the incremental

quotas
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E[Zis]

i = FS ]

are identical for all accident years.

In the case of a run-off triangle for paid losses or claim counts, it is usually reasonable to
assume in addition that 9; >0 holds for all £€{0,1,..., n}. In the case of incurred losses,
however, this additional assumption may be inappropriate since, due to conservative
reserving,"the expected incremental losses of dcvelopmeﬁt years ke{l,...,n} may be

negative,

3.2 Cumulative Quotas
The development pattern for cumulative quotas compares the expected cumulative losses
with the expected uldmate cumulative losses:
Development Pattern for Cumulative Quotas: There exist parameters Yo, Y1, ..., Y, with
Ya =1 such that the identity
,, = F15ia]
E[Sx’,n]

holds for all k€ {0,1, ..., n} andforall i €{0,1,..., n}.

The assumption means that, for every development year k€{0,1,..., 7}, the cumulative
quotas
. = B8]
*ES

are identical for all accident years.

In the case of a run-off triangle for paid losses or claim counts, it is usually reasonable to
assume in addition that 0 < yy <7¥; <... <Y,. In the case of incurred losses, however, this
additional assumption may be inappropriate since, due to conservative reserving, the

sequence of the expected cumulative losses may be decreasing.

The development patterns for incremental and cumulative quotas can be converted into

each other:

- If 8¢,9,,..., 9, is a development pattern for incremental losses, then a development

pattern for cumulative losses is obtained by letting
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£
Ye=2 9.
1=0

- If Y0,%i5...,¥Yn is a development pattern for cumulative losses, then 2 development

pattern for incremental losses is obtained by letting
if k=0
9, = { Yo 1
Ve~ Yaa else.

Furthermore, the condition 9; >0 is fulfilled for all k€{0,1,...,#2} if and only if
0<yy <Y1 <ere < Ype

3.3 Factors
The development pattern for factors compares subsequent expected cumulative losses:

Development Pattern for Factors: There exist parameters Or, ..., O, Such that the identity

_ E[Si4]
"=F [Si 5]

holds for all ke {1, ..., n} and forall i €{0,1, ..., n}.

The assumption means that, for every development year k € {1,..., n}, the Sfactors
_E [Si4]
Pt =F [Siaa]

are identical for all accident years.

In the case of a run-off triangle for paid losses or claim counts, it is usually reasonable to
assume in addition that ¢ >1 holds for all k€ {l,..., n}. In the case of incurred losses,
however, this additional assumption may be inappropriate since, due to conservative

reserving, the sequence of the expected cumulative losses may be decreasing.

The development patterns for cumulative quotas and for factors can be converted into

each other:
- If Yo,Y1,...,¥» is a development pattern for cumulative losses, then a development
pattern for factors is obtained by letting

57

P = Vi1
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- If @p,...,¢, is a development pattern for factors, then a development pattern for

cumulative losses is obtained by letting

(such that y, =1).
Furthermor'é: the condition yg < v <...<Y, is fulfilled if and only if @; >1 holds for all
kefl,..., n}.

Combining this result and that of the previous subsection, it is evident that also the
development patterns for incremental quotas and for factors can be converted into each

other. We omit the corresponding formulas since they will not be needed in the sequel.

3.4 Estimation

At the first glance, there is little hope to estimate the parameters of the development
patterns for incremental or cumulative quotas since the only obvious estimators of 93 and

¥ are the observable quotients Zy 4 / So,, and Sp / So .., respectively.

Fortunately, the situation is quite different for the development pattern for factors: For

every development year k€ {1, ..., n}, each of the individual development factors
. Sk
i = Si
with i €{0,1,...,7—k} is a reasonable estimator of @, and this is also true for every

weighted mean

n—k

Gr= 2 W04
=0

. . e —k .
with random variables (or constants) satisfying 2 70W,; =1. The most prominent

estimator of this large family is the chain-ladder factor

(bCL — Z"—k S
(I
Z ks Sj k-1

which can also be written as
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n—k S.
ACL _ J k-1 N
o =2 ey N
720 2o Shpn

and is used in the chain-ladder method.

Due to the correspondence between the three development patterns, it is then clear that
in the same way estimators of factors can be converted into estimators of cumulative quotas

and hence into estimators of incremental quotas.

3.5 Remarks

In the case of a run-off triangle for paid claims or claim counts, the intuitive cumulative
interpretation of the development patterns of incremental or aggregate quotas would be their
interpretation as incremental or cumulative probabilities. This interpretation is helpful, but it
is not quite correct since the parameters of the development pattern are defined as gwosients of

expectations instead of expectations of quotients and since these quantities are in general distinct.

One may thus argue that the definitions of development patterns are inconvenient since
they do not exactly correspond to intuition. In the following two sections, however, it will be
shown that the definitions given here are nevertheless reasonable since they provide a
powerful and unifying concept for the interpretation and the comparison of many methods

and models of loss reserving.

4. METHODS

The present section provides a unifying presentation of the most important methods of
loss reserving. The starting point is a general version of the Bornhuetter-Ferguson method
which is closely related to the notion of a development pattern for cumulative quotas and
tutns out to be a unifying principle under which various other methods of loss reserving can

be subsumed.

4.1 Bornhuetter-Ferguson Method

The Bornhuetter-Ferguson method is based on the assumption that there exist

parameters O, @, ..., &, and Yo, ¥1,..., Y, With ¥, =1 such that the identity

E[Si 4] = 1a04;
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holds for all 7,k € {0,1,..., n}. Then we have

E[Sia)= 0
and hence‘ .
E[Si ) =1:E[S; ]
such that t};{é parameters Y05 Y15 .. ¥n form a development pattern for cumulative quotas.

The Bornhuetter-Ferguson method is also based on the additional assumption that prior

estimators

3

do,dl,...,a"

L

of the expég;ed ultimate cumulative losses E[S; ,] and prior estimators
Jos¥1s s 9
of the development pattern are given and that ¥, =1.
Comment: Prior estimators may be obtained from information provided by various
sources:

— Internal information: This is any information which is contained in the run-off triangle of the
portfolio under consideration. Internal information could be used, e. g, by estimating the
development pattern from the given run-off triangle.

— External information: This is any information which is no# contained in the run-off triangle of
the portfolio under consideration. External information could be obtained, e. g., from
market statistics, from other portfolios which are judged to be similar to the given one, or
from premiums or other volume measures of the portfolio under consideration; see
Section 4.6.

Of course, prior estimators may also be obtained by combining internal and external

information. In any case, the choice of prior estimators is an important decision to be made

by the actuary.

The Bombuetter-Ferguson predictors of the cumulative losses S;; with i+ k&2 » are defined

as
&BF L s N
Sik = Sigmi + (Vi =¥y ) G

The definition of the Bornhuetter-Ferguson predictors reminds of the identity
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E[S:41= E[S;pi ]+ (1 = F0-i) i

which is a consequence of the model assumption.

The definition of the Bornhuetter-Ferguson predictors shows that the prior estimators

are dominant for young accident years whereas they are less important for old development

years. Also, in the extreme case where the prior estimators are completely determined by

external information, the major part of the run-off triangle is ignored and only the

cumulative losses of the present calendar year are used. This is reasonable when the quality

of the data from older calendar years is poor.

Example A. We consider the following reduced run-off triangle for cumulative losses

which contains the cumulative losses of the present calendar year and is complemented by

the prior estimators of the expected ultimate cumulative losses and of the development

pattern:
Accident Development Year £
Year / a; 0 1 2 3 4 5
0 3517 3483
1 3981 3844
2 4598 3977
3 5658 3880
4 6214 3261
5 6325 1889
Vi 0.280 0.510 0.700 0.860 0.950 1.000

Computing now the Bornhuetter-Ferguson predictors, the run-off triangle is completed as

follows:

Accident Development Year £

Year / &; 0 1 2 3 4 5

0 3517 3483
1 3981 3844 4043
2 4598 3977 4391 4621
3 5658 3880 4785 4389 5577
4 6214 3261 4442 3436 5995 6306
5 6325 1889 3344 4546 5558 6127 6443
¥4 0.280 0.510 0.700 0.860 0.950 1.000
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When the cumulative losses of the present calendar year are judged to be reliable, it may
be desirable to modify the Bornhuetter-Ferguson predictors in order to strengthen the
weight of the cumulative losses of the present calendar year and to reduce that of the prior

estimators of the expected ultimate cumulative losses. This goal can be achieved by iteration.

For example, if on the right hand side of the previous formula the prior estimators &; are
replaced by the Bornhuetter-Ferguson predictors SPE, then the resulting predictors are the
Benfktander Hovinen predictors

&BH | A - ¢BF
Sik = Sini + (k= V0-i) Sim
which in the case ¥, <¥; increase the weight of the cumulative losses of the present

calendar year and reduce that of the prior estimators of the expected ultimate cumulative

losses.
More generally, the Bormbuetter-Ferguson predictors of order m € Ny are defined by letting
sm Siei + (Yo =i ) i if m=0
’ Simi ¥ (ke =Fni)Sim ) if m21.

Then we have SA',(BZ = S,Bf and 5,(}2 = S,B H, and induction yields

m o Sl"'
8 =(1-(1=9,-)” )yk? +(1=,)" SEF

n—i

o Simi . o Sinmi
=Yk'r'+(l‘7n—:) (S:k ———)

n—t n=f

A St n—i ~ A S,‘,,,_,‘
=Yk ,Y +(1 Yn—t) (Yk Yn—i)(ai "_A—J

n—i n—i

for all m e Ny. In the particular case whete &; = S;,—; /¥,-i of ¥,-; =1, the iteration is

without interest since in that case the idendrty

holds for all m € Ngy. By contrast, the iteration is of considerable interest in the case where

0 < ¥,-; <1 since in that case we obtain

lim S( m = %‘"'i

m—x Yn-i

and convergence of the sequence of the iterated Bornhuetter-Ferguson predictors is
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monotone but may be increasing or decreasing.

Example B. The following table contains the prior estimators of the expected ultimate

cumulative losses, the iterated Bornhuetter-Ferguson predictors

é f =1 A m Py Sin-—i
St =_5,;’"‘ A=9ui)™ (ai"—-j ‘ J

and their limits:

Accident  Prior Iterated Bornhuetter-Ferguson Predictors Limit
Yeari 6, 89 SU 280 S9 89 . 5w

0 3517 3483 3483 3483 3483 3483 3483 . 3483 . 3483
1 3981 4043 4046 4046 4046 4046 4046 ... 4046 ... 4046
2 4598 4621 4623 4624 4624 40624 4624 ... 4624 . 4624
3 5658 5577 5553 5546 5544 5543 5543 . 5543 . 5543
4 6214 6306 6351 6373 6384 6389 6392 ... 6394 .. 6394
5 6325 6443 6528 6589 6633 6664 6687 ... 6730 .. 6746

The iteration steps 0 and 1 correspond to the Bornhuetter-Ferguson method and to the
Benktander-Hovinen method, respectively. The table illustrates that convergence is
monotone but may be increasing or decreasing, and that convergence is usually fast for old

accident years and slow for young accident years.

4.2 Loss-development Method

The loss-development method is based on the assumption that there exist parameters

Yos Y1 +--» ¥Yn With 7, =1 such that the identity
E[Six] = V4E[Si 0]

holds for all 7,k€{0,1,...,7n}. Then the parameters Yo, 7(,...,Y, form a development

pattern for cumulative quotas.

The loss-development method is also based on the additional assumption that prior

estimators
?0) ?1» cers ”Yﬂ
of the development pattern are given and that ¥, =1.

The loss-development predictors of the cumulative losses S;; with 7+ k& 2 7 are defined as
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LD 2 Si,n-t
Sk =~
Yn-i

The definition of the loss-development predictors reminds of the identity

E[Si,n]

n—t

E[Sik] ="k
which is a consequence of the model assumption.

sih . . .
When compared with the Bornhuetter-Ferguson predictors, the importance of the
cumulative losses of the present calendar year and of the ptrior estimators of the
development pattern is increased in the loss-development predictors since the latter do not

involve any prior estimators of the expected ultimate cumulative losses.

Example C. We consider the following reduced run-off triangle for cumulative losses
which contains the cumulative losses of the present calendar year and is complemented by

the prior estimators of the development pattern:

Accident Development Year £

Year / 0 1 2 3 4 5

0 3483
1 3844

2 3977

3 3880

4 3261

5 1889

?,, 0280 0.510 0.700 0.860 0.950 1.000

Computing now the loss-development predictors, the run-off triangle is completed as

follows:

Accident Development Year £

Year; 0 1 2 3 4 5

0 3483
1 3844 4046
2 3977 4393 4624
3 3880 4767 5266 5543
4 3261 4476 5499 6074 6394
5 18890 3440 4722 5802 6409 6746

Ve 0.280 0.510 0.700 0.860 0.950 1.000

The loss-development predictors can be written as
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$H = Sinmi + (4 = 90-0) 810

This shows that the loss-development predictors are nothing else than the Bornhuetter-
Ferguson predictors with respect to the prior estimators

6P = §1°

of the expected ultimate cumulative losses. In other words, the loss-development method is
a particular case of the Bornhuetter-Ferguson method with prior estimators of the expected

ultimate cumulative losses which are based on internal and external information.

Moreover, in the case where 0 <7,_; <1, the loss-development predictors are precisely
the limits of the sequences of the iterated Bornhuetter-Ferguson predictors with respect to
arbitrary prior estimators of the expected ultimate cumulative losses, as has been shown in

Section 4.1.

4.3 Chain-ladder Method

The chain-ladder method is based on the assumption that there exist parameters

¢1, ..., ¢, such that the identity
E[Sit] = QeE[Si 41]
holds for all 7 €{0,1,...,7} and £€{0,1,..., #}. Then the parameters @y, ..., 9, form a
development pattern for factors.
The chain-ladder predictors of the cumulative losses §; 3 with 7 +k 2 n are defined as
. k
ch.:kL = Si,n—i H (bICL
I=n—i+1
where
Zn-—lc S .
ACL j=0 1.k
288 ha
is the chain-ladder factor introduced in Section 3. The definition of the chain-ladder predictors
reminds of the identty

EISis)= E(Sina] TT o

I=n—i+1
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which is a consequence of the model assumption.

When compared with the loss-development predictors, it is remarkable that the chain-
ladder predictors are not determined by the cumulative losses of the present calendar year

but involve, via the chain-ladder factors, a// camulative losses of the run-off triangle.

Example D. We consider the following run-off triangle for cumuladve losses:

Accident Development Year £

Year 0 1 2 3 4 5

0 1001 1855 2423 2988 3335 3483
1 1113 2103 2774 3422 3844

2 1265 2433 3233 3977

3 1490 2873 3880

4 1725 3261

5 1889

Computing first the chain-ladder factors and then the chain-ladder predictors, the run-off

triangle is completed.as-féllows:

Accident Development Year &

Year / 0 1 2 3 4 5

0 1001 1855 2423 2988 3335 3483
1 1113 2103 2774 3422 3844 40713
2 1265 2433 3233 3977 4454 4650
3 1490 2873 3880 4780 5354 5590
4 1725 3261 4334 5339 5980 6243
5 1889 33587 4767 5873 6578 6867

(pr 1.899 1329 1.232 1.120 1.044

It has been pointed out in Section 3 that the different development patterns and their

estimators can be converted into each other. In particular, letting

o1
Yi = P
1111 O

converts a development pattern for factors into a development pattern for cumulative

quotas and letting

N 1
Te = -
1=Hk+1 P1

converts the estimators of a development pattern for factors into estimators of a
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development pattern for cumulative quotas. Thus, letting

the chain-ladder predictors can be written as

CL _ ACL Si,n-i
ik =Yk “CL °
Yn-i

This shows that the chain-ladder predictors are nothing else than the loss-development
predictors with respect to the chain-ladder cumulative quotas it as prior estimators of the

cumulative quotas. Furthermore, we have
CL +CL _ 2CL\&CL
St = Simei + (GE =155
This shows that the chain-ladder predictors are precisely the Bornhuetter-Ferguson

predictors with respect to the prior estimators 955 of the cumulative quotas and the ptior

estimators
~CL CL
a; = -9,‘,"

of the expected ultimate cumulative losses. In other words, the chain-ladder method is a
particular case of the loss-development method and hence of the Bornhuetter-Ferguson
method with ptior estimators of the development pattern and the expected ultimate

cumulative losses which are completely based on internal information.

The chain-ladder method can be modified by replacing the chain-ladder factors o5t by

any other estimators of the form
n—k .
Gr =2 Wi
J=0
with random variables (or constants) satisfying Z;’-;z Wir=1

4.4 Grossing-up Method

The grossing-up method is based on the assumption that there exist parameters
Yos Y15 -+ Yn With ¥, =1 such that the identity

E[S; ] = Y:E[SiA]

holds for all 7,k€{0,1,...,7#}. Then the parameters Yo, ¥i,...,¥» form a development
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pattern for cumulative quotas.

The grossing-up predictors of the cumulative losses S; ; with 7 + k& 2 # are defined as

o R S
5 =g S
Yn—i
where
1 if k=n

AGU n—k-1
Yoo =9 X Sia

3ok §GU
=0 OJjn
is the grossing-up cummlative guota of development year £. The definition of the grossing-up

predictors reminds of the identity

E[Si,n—i]

n—i

E[S;i¢)=1s

which is a consequence of the model assumption.

The computation of the grossing-up cumulative quotas and of the grossing-up predictors

for the ultimate cumulative losses proceeds by recursion along the accident years, which

yields
98V =1 and S5V =5,,
9 = 20mt and SV =St
oS B
06U _ Som2*Sia2 0 ecU _ Samz
TS+ 8% U

As can be seen from the definition, the grossing-up predictors are nothing else than the loss-
development predictors with respect to the grossing-up cumulative quotas 757 as prior

estimators of the cumulative quotas. Furthermore, we have
46U ~GU _ ~GU\ 6GU
Sik =Sipmi v —¥a)Sin

which shows that the grossing-up predictors are precisely the Bornhuetter-Ferguson
predictors with respect to the prior estimators 757 of the cumulative quotas and the prior

estimators
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6V .= oU

P = Oin

of the expected ultimate cumulative losses. In other words, the grossing-up method is a
particular case of the loss-development method and hence of the Bornhuetter-Ferguson
method with prior estimators of the development pattern and the expected ultimate

cumulative losses which are completely based on internal information.

Since the previous remark applies as well to the chain-ladder predictors, the questdon
arises whether there is any difference between the grossing-up predictors and the chain-
ladder predictors. The answer to this question is that there is no difference at all since it can
be shown that the grossing-up cumulative quotas and the chain-ladder cumulative quotas are

identical for all development years; see e. g. Lorenz and Schmidt [1999].

The grossing-up method thus provides a computational alternative to the chain-ladder
method, but this alternative seems to be of little practical interest if any. The reformulation
of the chain-ladder method provided by the grossing-up method is, however, of considerable

interest with regard to the comparison of methods:

First, among all methods for cumulative losses considered here, the chain-ladder method
appears to be somewhat singular since it uses estimators of a development pattern for
factors instead of cumulative quotas, but its equivalence with the grossing-up method shows
that this singularity is only due to the most intelligent formulation of an algorithm which

avoids recursion and is hence more easily understood.

Second, the grossing-up method provides an substantial link between the chain-ladder

method and the marginal-sum method; see Subsection 4.5.

4.5 Marginal-Sum Method

The marginal-sum method is based on the assumption that there exist parameters

Qg, 0y,..., &, and B9, 9y, ..., 9, with 3.7 1 9; =1 such that the identity
E[Z;4]= B0,
holds for all 7,k € {0,1,..., n}. Summation yields
E[S; ]=a;

and hence

E[Z; 4] = B4 ELS; 4]
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such that the parameters 8, 9y, ..., 9, form a development pattern for incremental quotas.

. A A A A A A .
Observable random variables G}, a{ﬁs,..., &M and a5, M, 8™ are said to be

marginal-sum estimators if they are solutions to the marginal-sum equations
n—=i n-i

Z diél = 2 Zi,l
1=0 1=0

forie{0,1,..., n} and

n—k . A n—k
ajslt = 2 Z/ k
j=0 j=

for ke {0,1,..., n} as well as

The marginal-sum equations remind of the identities

z (X,,-S] = Z E[Z,J]
1=0

I=0

and
n—k n—k
208 =3 E[Z;,]
j=0 =0

as well as

9, =1

M=

k=0
which are immediate from the model assumptions.

The question arises whether marginal-sum estimators exist and are unique. The answer to

this question is affirmative: Marginal-sum estimators exist and are unique, and they satisfy

&MS - gou
and
s 76Y if k=0
YV —9SY if k21
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In view of the discussion of the grossing-up method, the previous idendties imply that the

marginal-sum estimators satisfy

& =85
and
gMs _ et if k=0
L e .
i =9 if k21
Thus, letting
LI
e =
1=0
we obtain
e =i

forall ke {0,1,..., n}.

The marginal-sum predictors of the cumulative losses S, 4 with i + 4% 2 # are defined as

S‘wMS _ aMS Si,n—-i
£ =Yk ~MS

n~i

Then we have

&MS __ aCL
Sik =Sk

This shows that the marginal-sum method is equivalent to the chain-ladder method.

4.6 Cape-Cod Method

The Cape-Cod method is based on the assumption that there exist parameters

Yo Yis-.-s ¥» With ¥, =1 such that the idendty
E[S; k)= Y:E[S:.4]

holds for all i,k€{0,1,...,7n}. Then the parameters Yo, 7),..., ¥, form a development

pattern for cumulative quotas.

The Cape-Cod method is also based on the additional assumption that premiums ot other

volume measures Ty, My, ..., T, € (0,0) of the accident years are known, that the expected
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ultimate cumulative loss ratios

K; = E[E‘i]
T

are identical for all accident years, and that prior estimators Yo, %1, ..., ¥, of the development

pattern are given and satisfy ¥, =1.
The Cape-Cod predictors of the cumulative losses S, with i + k> 7z are defined as
$% = Simei + (Gt = Fami) MR
where

n
&CC = Z)‘=Osf’"‘f

z;=o§’n-jﬂj

is the Cape-Cod loss ratio, which is an estimator of the expected ultimate cumulative loss ratio

(common to all accident years).

The Cape-Cod predictors are nothing else than the Bornhuetter-Ferguson predictors with
respect to the prior estimators

A CC

afC = q; k¢

of the expected ultimate cumulative losses. In other words, the Cape-Cod method is a
particular case of the Bornhuetter-Ferguson method with prior estimators of the expected

ultimate cumulative losses which are based on both internal and external information.

Example E. We consider the following reduced run-off triangle for cumulative losses
which contains the cumulative losses of the present calendar year and is complemented by

the premiums and the prior estimators of the development pattern:

Accident Development Year £

Year ; T 0 1 2 3 4 5

0 4025 3483
1 4456 3844

2 5315 3977

3 5986 3880

4 6939 4261

5 8158 1889

¥ 0280 0.510 0.700 0.860 0.950 1.000
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The previous triangle differs from those considered before since the value of S, is 4261

instead of 3261, which indicates that there might be an outlier in accident year 4. Using the

table
i Sis-i '95-:‘ i Y5 M
0 3483 1.000 4025 4025
1 3844 0950 4456 4233
2 3977 0.860 5315 4571
3 3880 0.700 5986 4190
4 4261 0510 6939 3539
5 1889 0.280 8158 2284
> 21334 22842

C

we obtain k¢ = 0934, Computing now the prior estimators of the expected ultimate

cumulatve losses and the Cape-Cod predictors, the run-off triangle is completed as follows:

Accident Development Year £

Year / Q; 0 1 2 3 4 5

0 3758 3483
1 4162 3844 4052
2 4964 3977 4424 4672
3 5591 3880 4775 5278 5557
4 6481 4261 5492 6529 7113 7437
5 7619 1889 3641 5089 6308 6994 7375

0.280 0.510 0.700 0.860 0.950 1.000

~2>
~

The previous table should be compared with the following one which is the same run-off

triangle completed with the loss-development predictors:

Accident Development Year £

Year i 0 1 2 3 4 5

0 3483
1 3844 4046
2 3977 4393 4624
3 3880 4767 5266 5543
4 4261 5848 7185 7937 8355
5 1889 3440 4722 5802 6409 6746
Y 0.280 0510 0.700 0.860 0.950 1.000

The example indicates that the development of the Cape-Cod predictors over the
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accident years is much smoother than the development of the loss-development predictors
which means that the Cape-Cod method reduces outlier effects. The smoothing effect is of
course due to and depends on the premiums or other volume measures which are used

instead.

The following considerations may help to understand the smoothing effect of the Cape-
Cod method: Assume that, for every accident year 7 the expected ultimate cumulative loss
ratio is estimated by

$LD
a Si,n _ Si,ﬂ—i

A Ya—i T

a

Then the Cape-Cod loss ratio can be written as a weighted mean

n A 4 n A
2]:0 Yn-;M;  j=0 Z},:o Yn-bm,

n A
~CC Z;:o Sjn-j o YT s
K = = Kj

and the identty
Sin-i =Vn-i T K;

suggests to decompose the cumulative loss §; ,; of the present calendar year into its regular
part

A A Cc
77',"-.‘ =YK

and its outlier effect

X in—i = Si,n—i - 7:',,,—,'

and then to apply the loss-development method to the regular part while keeping the oudier

effect fixed over all subsequent development years. Since

73'5&[) +Xipi =Yk TE’H +(8ipi = Tini)

n~-i

A A T; n—{
= Si,n—i + (Yk “Yn—i) = -
= Sinmi + (e~ i) &<

dCC
= Si,k

we see that the resulting predictors are precisely the Cape-Cod predictors.
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The Cape-Cod method can be modified by replacing the Cape-Cod loss ratio kC by any

other estimator of the form

with random variables (or constants) satisfying 3.7, W; =1.

4.7 Additive Method

The addidve method is based on the assumption that there exist known parameters

g, My, ...» T, € (0,00) and unknown parameters Co, £y, ..., §, such that the identty
E[Zi4)=Cam;
holds for all ,k€{0,1,..., n}.

If the parameters T, 7y, ..., T, are interpreted as premiums or other volume measures of

the accident years, then the assumption means that, for every development year %, the

Cin=E [%]

excpected incremental loss ratios

are identical for all accident years. Letting

a; =Tn; z C_,),
k=0
and
i = ZLO C/
20C
we obtain
E[Si 4] = Y401

for all #,k€{0,1,...,7} such that a; = E[S;,] and the parameters Yo, Yi,..., Y, form a

development pattern for cumulative quotas.
The additive predictors of the incremental losses Z; , with i+k2n are defined as

5AD ._ $AD
Ziy =G m
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and the additive predictors of the cumulative losses §;; with i+ %> n are defined as
SAD . sAD
Sik =Simi+ 2 Zi
I=n—i+}

where

~k
éQD — ZZ':o Zig

. n—k
2iam;
is the additive incremental loss ratio of development year k.

Example F. We consider the following run-off triangle for cumulative losses

which is complemented by the premiums:

Accident Development Year £

Year / m; 0 1 2 3 4 5
0 4025 1001 1855 2423 2988 3335 3483
1 4456 1113 2103 2774 3422 3844

2 5315 1265 2433 3233 3977

3 5986 1490 2873 3880

4 6939 1725 3261

5 8158 1889

We thus obtain the following run-off triangle for incremental losses which is complemented

by the additive incremental loss ratios:

Accident Development Year £

Year / n; 0 1 2 3 4 5

0 4025 1001 854 568 565 347 148
1 4456 1113 990 671 648 422

2 5315 1265 1168 800 744

3 5986 1490° 1383 1007

4 6939 1725 1536

5 8158 1889

ék 0.243 0222 0154 0.142 0.091 0.037

Computing now the additive predictors of the non-observable incremental losses, the run-

off triangle of incremental losses is completed as follows:
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Accident Development Year £

Year / n; 0 1 2 3 4 5

0 4025 1001 854 568 565 347 148
1 4456 1113 990 671 648 422 165
2 5315 1265 1168 800 744 484 197
3 5986 1490 1383 1007 850 545 221
4 6939 1725 1536 1069 985 631 257
5 8158 1889 18711 1256 1158 742 302
é f 0.243 0222 0.154 0.142 0.091 0.037

Accordingly, the run-off triangle of cumulative losses is completed as follows:

Accident Development Year £
Year / T 0 1 2 3 4 5
0 4025 1001 1855 2423 2988 3335 3483
1 4456 1113 2103 2774 3422 3844 4009
2 5315 1265 2433 3233 3977 4461 4658
3 5986 1490 2873 3880 4730 5275 5496
4 6939 1725 3261 4330 5315 5946 6203
5 8158 1889 3700 4956 6114 6856 7158
Letting
k FAD
/}«,kAD o PIINS
=S D
6!
and

~ AD & £ AD
a,A = T[,'ZC[
1=0

the additive predictors of the non-observable cumulative losses may be written as

SAD +£AD _ ~AD\ » AD

Sik = Si-i + (Ve — ¥ ) G
This shows that the additive predictors of the cumulative losses are nothing else than the
Bornhuetter-Ferguson predictors with respect to the addifive cumulative quotas 75> and the
ptior estimators de of the expected ultimate cumulative losses. In other words, the

additive method is a particular case of the Bornhuetter-Ferguson method with prior

estimators of the cumulative quotas and of the expected ultimate cumulative losses which
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are based on both internal and external information.

The expected cumulative loss ratios

satisfy
K; = i Ci-

Since the expected incremental loss ratios are identical for all accident years, it follows that
also the expected cumuladve loss ratios are identical for all accident years. Therefore, the

additive loss ratio

. . - ~ AD .
common to all accident years. Moreover, the prior esimators ;" can be written as

&P = m, kAP

and it can be shown that

~ AD Z:eo Si M=J
K= n  AAD ’
2z =0V n—j T
This shows that the additive predictors of the non-observable cumulative losses are nothing
else than the Cape-Cod predictors with respect to the additive cumulative quotas 742, In
other words, the additive method is a particular case of the Cape-Cod method with prior

estimators of the cumulative quotas which are based on both internal and external

information.

The observation that the additive method is a special case of the Cape-Cod method is due
to Zocher [2005).
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4.8 Remarks

The following table compares the different methods of loss reserving considered in this
section with regard to the choices of the prior estimators of the expected ultimate

cumulative losses @; and of the cumulative quotas v;:

Expected Ultimate Cumulative Quotas

Cumulative Losses Arbitrary YEL ';’tD

Arbitrary Bornhuetter-Ferguson
Method

§o Loss-Development Chain-Ladder

h Method Method

n, &> Cape-Cod Additve

Method Method

Note that the prior estimators S,%,,D and m; &< depend on the choice of the prior estimators
A N
Yos Y1s+ees Y-

Of course, the four other combinations which apparently have not been given a name in
the literature could be used as well, and even other choices of the prior estimators of the

expected ultimate cumulative losses and of the cumulative quotas could be considered.

The discussion of the present section and, in particular, the above table shows that the
Bornhuetter-Ferguson method provides a general principle under which several methods of

loss reserving can be subsumed. The focus

- on prior estimators of the expected ultimate cumulative losses and
~ on prior estimators of the cumulative quotas

provides a large variability of loss reserving methods. The above table contains important

special cases but could certainly be enlarged. Moreover,

- any convex combination of prior estimators of the expected ultimate cumulative losses

yields new prior estimators of the expected ultimate cumulative losses, and

- any convex combination of prior estimators of the development pattern for cumulative

quotas yields new prior estimators of ‘he development pattern.
This point is made precise in the following example:

Example G. Let &, @,,...,4, be prior estimators of g, Qy,...,0, and let

Casualty Actuarial Society Foruzy, Fall 2006 297



Methods and Models of Loss Reserving

40> ¥1s-++5 ¥ be prior esimators of Yo, Y1, ..., ¥ such that each of these prior estimators is

completely based on external information. Then the prior estimators
&; = a0 + azf‘,%,,D + a3 (m;k<C)
with @ +a; +a3 =1 and
Vi = bie+ b +b7E°

with & + b, + &5 =1 are prior estimators of @, &, ..., a, and Yo, ¥1,..., Y, respectively,
which through the weights @, 4;, 43 and &, b, b; express the reliability attributed to the

C

prior estimators @, S,'L, D 2.k and ¥y, 755, 742, respectively.

5. LEAST-SQUARES PREDICTION

Least-squares predicton is one of the general principles of statistical inference. It is
similar to least-squares estimation but differs from the latter since the target quantity is a

non-observable random variable instead of a model parameter.

The main aspects of least-squares prediction are credibility prediction and Gauss-Markov
prediction; in either case, the problem is to determine opdmal predictors with respect to the

expected squared prediction error.

An extension of Gauss-Markov prediction is conditional Gauss-Markov prediction in

which unconditional first and second order moments are replaced by conditional moments.

5.1 Credibility Prediction

In the context of loss reserving, credibility prediction aims at predicting any linear
combination T of (observable or non-observable) incremental losses by a predictor of the
form

N n n-j
T=a+3 3 a;1Z;.
j=01=0

These predictors are said to be admissible. Note that

— the class of all admissible predictors does not depend on the sum to be predicted,

- the admissible predictors are not necessarily linear in the observable incremental losses

since the coefficient 4 may be distinct from 0, and
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- the admissible predictors are not assumed to be unbiased.

The general form of the prediction problem is reasonable since it includes, e. g., prediction
of the ultimate cumulative losses S;, v/hich are sums of the observable incremental losses

Zios Ziys-..r Zi i and the non-observable incremental losses Z; ,_is1,...s Zi n-
o A =t i n—i+1 in

For a sum T of incremental losses, an admissible predictor is said to be a credibility

predictor of T if it minimizes the expected squared prediction error
E[(T-T)’]
over all admissible predictors T.

The following results are well-known:

(1) For every sum T of incremental losses, there exists a credibility predictor T and the

credibility predictor is unique.

(2) If T} and T, are sums of incremen-al losses and if ¢; and ¢, are real numbers, then the

credibility predictor of
T =qi +c;T,
satisfies
TR clﬁCR n szch‘
which means that credibility prediction is linear.

(3) If Tis a sum of incremental losses, then an admissible predictor T* is the credibility
predictor of T if and only if it satisfies the normal equations

E[T"]=E[T]
and
E[T"Z,;,]1= E[T Z;,)
forall 7,/ €{0,1,...,n} such that j+/ < n.

(4) The credibility predictor of any sum of incremental losses is unbiased.

Because of (2) it is sufficient to determine the credibility predictors of the incremental losses

Z; 4. In the case where i + k< n, we have

5CR _
Zi,lc - Zi,k'
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In the case where i + k2 n+1, we write

n n-h
5 CR
Zik =aip+ 2 Y GiphmLim
b=0 m=0

and determine the coefficients from the normal equations
n n=h
E[ai,k +2 3 ai,k,b,mZb,m] =E[Z;4]
=0 m=0
and

n n—b
E[(ai,k +X Y a; kbm Zb,m)zj,l:l =E[Z, Z;1]

h=0 m=0

which may equivalently be written as

n n-h

ip+ 2 2 appmElZy )= E[Zi4]
b=0 m=0
and
n n—h
2 Y aigpmCOV[Zy m, Zjy)=cov[Zix Z; ]
=0 m=0

forall j,/ €{0,1,..., 7} such that j+I<n

We thus see that the credibility predictor of a non-observable incremental loss is
completely determined by the first and second order moments of the incremental losses.

Solving the normal equations proceeds in two steps:
— The normal equations involving covariances form a system of linear equations for the
coefficients 4; ;5. The fact that a credibility predictor of Z;, exists implies that this

system of linear equations has at least one solution.

— Inserting any such solution into the normal equation involving expectations yields the

coefficient 4, .

It should be noted that the system of linear equations may have several solutions (which is
the case if and only if the covariance matrix of the observable cumulatve losses is singulat).
This means that the credibility predictor of Z;;, which is known to be unique, can be

represented in several ways.

In most credibility models for loss reserving which have been considered in the literature,
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it is assumed that any two incremental losses from different accident years are uncorrelated.
In this case, the credibility predictor of a non-observable incremental loss Z;; can be
written as
n=f
5CR
Ziy =dip+ 2 4ipimZim
m=0
and its coefficients can be determined from the reduced normal equations

n=i

g+ 2 4 ppmElZim] = E[Z;4]

m=0
and
n—f
)3 % ki m OV i, Z j,I] =cov[Z;i4 Z j,l]
m=0

forall /€{0,1,..., n—1i}.

As an example, let us now consider credibility prediction in the credibility model of

Witting, which is a model for claim counts:
Credibility Model of Witting:
@) Any two incremental losses of different accrdent years are uncorrelated.
(i) There exist parameters Sq, 8y, ..., 8, & (0,1} with 3 ;_ O =1 such thas, for every accident year

i€{0,1,..., 1}, the conditional joint distribution of the family {Z; 4 ie(o1...m) With respect to the

ultimate cumulative loss  S;, is the multinomial distribution with parameters S;, and

90, 81,..., 9,

For the remainder of this subsection we assume that the assumptions of the credibility
model of Witting are fulfilled. Then we have

E (Z{,Ie | S{,n) = Si,nslc

2 . . _
COV(Z,"/,, Zi,l ISi,n) ={ Sx,nSk + S,,nSk if k=1

=S 3 else.
Letting
a; = E[S; ]
o; = var[§; ;]
we obtain
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E[Zi4] = 09
p— . 2 . 3 —
COV[Z,"/,, Z,'J] - (O',' 0.,)9/, + a,S,, if k=1
(0',‘ —-Q; )91(91 else.

The first of the previous identities shows that the parameters 8¢, 9y,..., 9, form a
it
development pattern for incremental quotas. Inserting the previous identities into the

normal equations, we obtain, for all 7,k€{0,1,..., n} such that i+ k2 n+1,

ZAE} — Sk( 1 o + Yn—iTi St,n—iJ

1+ Y n-iTi ! 1+ Yn-iTs Yn-i
and hence

k
ACR 5CR
Sk =Simit+ X Zin
I=n—i41

1 Yu-iTi Si,n—i
=S i (Ve — Vi it
i n—i (Yk ¥ )(l'f"yn—iti a 149, Yn-i )

where v, = Zf:o 9, and 1, :=(0; — ;) / ;. This shows that the credibility predictor of the
non-observable cumulative loss §;; is the Bornhuetter-Ferguson predictor with respect to

the prior estimators

A

T = Vi

of the development pattern for cumulative quotas and the prior estimators

. T Sini
a,CR = 1 o + Yn-iTi in—i
1+ Yu-iTs 1+ YoiTi Vou-i

of the expected ultimate cumulative losses, which are weighted means of external
information provided by the unknown parameter d, and internal information provided by
the loss-development predictor S,!j,l,) =8 gmi [ Vnmi

Example H. If, in addition to the assumptions of the model of Witting, it is assumed
that every ultimate cumulative loss §;, has the Poisson distribution with expectation a,
then we have 1; =0 and the credibility predictors of every non-observable cumulative loss
Sl"k sadsfy

S‘lc,:kk = Sx,n-—i + (le —Yn— )(l,‘

and are thus identical with the Bornhuetter-Ferguson estimators with respect to the prior
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estimators ¥, :=Y; and @&; :=0,. In this case, the assumptions of the Poisson model are
fulfilled and maximum-likelihood estimation could be used as an alternative to credibility

prediction; see subsection 6.1 below.

Similar results obtain in the credibility model of Mack [1990] and in a special case of the
credibility model of Hesselager and Witting [1998]; see Radtke and Schmidt [2004].

5.2 Gauss-Markov Prediction

A predictor T of a linear combination T of (observable or non-observable) incremental

losses is said to be

— a linear predictor if there exists a family {4} ; je(0,1....n), 1+j<n Of coefficients such that

A n n-j
T=3% 3 4Z;
=0 /=0
— an unbiased predictor of T if
E[T]= E[T]

— a Gauss-Markov predictor of T if it is an unbiased linear predictor of T which minimizes

the exgpected squared prediction error
E((F-T)']

over all unbiased linear predictors T of T.

The existence of a Gauss-Markov predictor of T cannot be guaranteed in general. (For
example, if E[Z; ;] =0 holds for every observable every incremental loss and if T is such
that E[T}# 0, then there exists no unbiased linear estimator of T.) Therefore, we consider

Gauss-Markov prediction only under the assumptions of the linear model.

Let Z; denote a random vector consisting of the observable incremental losses and let
Z, denote a random vector consisting of the non-observable incremental losses (arranged
in any order).

Linear Model:

@) There exist matrices Ay and Ay and a vector B such that
E[Z,]= 4B
E[Z,]= A,
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@) The matrix Ay has full column rank.
(iii) The matrix

Z“ = var[Zl]
is invertible.

For the remainder of this subsection, we assume that the assumptions of the linear model
are fulfilled.
Under the assumptions of the linear model, the following results are well-known:

(1) For every sum T of incremental losses, there exists a Gauss-Markov predictor TM
and the Gauss-Markov predictor is unique.
(2) If T; and T, are sums of incremental losses and if ¢ and ¢, are real numbers, then the
Gauss-Markov predictor of
T =ql; +c,T;

satisfies

TGM = C]EGM +‘_27~2GM

which means that Gauss-Markov prediction is linear.

Because of (2) it is sufficient to determine the Gauss-Markov predictors of the incremental

o

losses Z; 4. In the case where ¢ + k< n, we have
5GM _
Ziy' =Zig-

In the case where { + k2> n+1, we obtain

A

23" = 2, B™M + cov[Z,4, Z )T (Z, - 4B
where 4] is the row vector of the matrix A, satisfying E[Z; ;] = 4/ B,
B = (AZi) 4) AZiZ,
is the Ganss-Markov estimator of P (based on the observable incremental losses) and
cov[Z; 4, 2] is the row vector with entries cov[Z;;,Z;;] with j,l€{0,1,...,#} and

j +1 < n; see Goldberger [1962] and Rao and Toutenburg [1995] as well as Halliwell [1996,
1999), Hamer [1999] and Schmidt [1998, 1999a, 2004].
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As an example, let us now consider Gauss-Matkov prediction in the linear model of
Mack:

Linear Model of Mack: There exist parameters Ty, My, ..., T, € (0,00} and Gy, Gy, ..., C, as
well as Gy, Gy, ..., O, € (0,0) such that

E[Zi 4] =nCs
and
N0k {fll:j.llﬂdk:l
Z,' ,Z‘ =
covlZin Zjul {0 else
holds forall i, j k1 €1{0,1,..., n}.

For the remainder of this subsection we assume that the assumptions of the linear model
of Mack are fulfilled. Define

o
&
Be=|
Ca
and, forall 7,k e€{0,1,..., n},
a,=0 .. 0 m 0 ... 0

where T; occurs in position 1+ £. This shows that the linear model of Mack satisfies indeed

the assumptions of the linear model. For the Gauss-Markov estimator of B we obtain

Z:‘:o Zj 0
20T
~GM Zj':o Zj )
= S
Zon
Ty

Since cov[Z;4,Z;,]=0 holds for all {,;,k/€{0,1,...,7} such that i+k>7+1 and
J+I<mn, it follows that the Gauss-Markov predictor of the non-observable inctemental

loss Z;; satisfies
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and hence

and linearity of Gauss-Markov prediction yields

SGM GAD
Si,lc = Si,lc -

This shows that the additive method is justfied by Gauss-Markov prediction in the linear
model of Mack.

5.3 Conditional Gauss-Markov Prediction

In the present subsection we consider a sequential model for the chain-ladder method.
This model is a sequential model since it involves successive conditioning with respect to the
o -algebras Go, Gi; ..., G»-1 Where, foreach k€ {l,..., n}, the o -algebra

G-t

represents the information provided by the cumulative losses §,; of accident years
j€{0,1,...,n—k+1} and development years / € {0, 1, ..., £ —1}, which is at the same time
the information provided by the incremental losses Z;; of accident years
je{0,1,...,n—k+1} and development years [ € {0,1,..., k-1}.

Sequential Chain-Ladder Model: For each k € {1,..., n}, there exists a random variable ¢y
and a strictly positive random variable Gy such that

ESH (Si k) = Sik1 @&
and

Sip10x Hfi=]

Gi-1(S. .S )=
oV (S xSk {0 e

holds forall i, j €10,1,...,n—k+1}.

In the case where the random variables @i,...,¢, are all constant, integraton yields

E[S;4)= @4 E[S; 4-1] such that the parameters ¢;,...,9, form a development pattern for
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factors. In the general case, the random parameters ¢,...,9, may be interpreted as a

random development pattern for falctors.

The sequential chain-ladder model may be considered as a sequence of # conditional
linear models corresponding to the development years ke€{l,...,n}. Each of these

conditional linear models consists of an observable part

E (So ) So.k-1
ES#= (Sue) - St p-1

ES1(S,))  \Sn-kt
and a non-observable part
E9 (Spbe1 ) = Spkir 1 P

Then G- -conditional Gauss-Markov estimator (kaM of the random parameter @, satisfies

-k
AGM _ ZZ’:OS/J'
XS a

and hence coincides with the chain-ladder factor ¢§-.

Furthermore, for every accident year / 2 n—k+1, the Gj-,-conditonal Gauss-Markov

predictor f,cf" of the non-observable cumulative loss §;; satisfies
S = S oM
= 95 k-1 (PEL
The previous formula, however, is only useful when S, 4 is observable, which is the case if

andonlyif f+k—1<» and hence i=n—k+1.

Turning the point of view from development years to accident years, we see that the
Gin-i) -conditional Gauss-Markov predictors of the first non-observable cumulative losses

Sin-is1 satisfy
SGM 5CL
Sig=itt = Sini Pu=in
and hence coincide with the chain-ladder predictors.

In the case i1+%=n+1, the chain-ladder predictors are thus justified by conditional
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Gauss-Markov estimation, but another justificaton is needed in the case i + k2> n+ 2. This

can be achieved by minimizing the G;_; -conditional expected prediction error
ES+ ((gi,k - 5;,1:)2)
over the collection of all predictors 3},;, of S; 4 satisfying

N ACL
Si.k = Si,lc—l(Pk

for some G;_; -conditionally unbiased linear estimator ¢y of @ and it turns out that the
minimum over this restricted class of predictors is attained for the chain-ladder predictor
.SA',C;' . The sequental optimality criterion adopted here reflects very well the sequential
character of the chain-ladder method and of the chain-ladder model. The criterion is also
reasonable since prediction for the first non-observable calendar year is much more
important than prediction for subsequent calendar years: Predictors for the first non-
observable calendar year cannot be corrected later whereas predictors for subsequent
calendar years will be corrected anyway since already one year later additional loss experience

and hence a new run-off triangle will be available.

The sequential chain-ladder model is due to Schnaus and was proposed by Schmidt and
Schnaus [1996] where it is studied in detail; see also Schmidt [1997, 1999b, 2006]. The
sequential chain-ladder model is a slight but convenient extension of the chain-ladder model
of Mack [1993]. A systematic comparison of several models for the chain-ladder method is
given in Hess and Schmidt [2002].

5.4 Remarks

Although least-squares prediction is a central topic in econometrics, it appears that this
method has been ignored in loss reserving until recently. It is the merit of Halliwell [1996]
that least-squares prediction is by now considered as a most useful tool in loss reserving; see
also Schmidt [1999a), Hamer [1999], Halliwell [1999], Radtke and Schmidt [2004], and
Schmidt [2006).

6. MAXIMUM-LIKELIHOOD ESTIMATION

Another general principle of statistical inference is maximum-likelihood estimation. The

maximum-likelihood principle is applicable only if the joint distribution of all observable
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random variables is known with the exception of certain parameters.

The models considered here are models for claim counts. The basic model is the Poisson

model which is a special case of the general multinomial model.

6.1 Poisson Model

The Poisson model is a model for claim counts and consists of the following
assumptions:

Poisson model:
() The family {Z; 4}i kelon,..n) of all incremental losses is independent.

(i) There exists parameters 0o, Oy, ..., O, € (0,00) and 89, 8y,..., 9, €(0,1) with X7 19, =1
such that for all i,k€{0,1,...,n} the incremental loss Z;; bhas the Poisson distribution with
expectation o;Sy.

We assume in this subsection that the assumptions of the Poisson model are fulfilled.

Because of (ii) we have
E[Zi4]= 0;9.
Summation yields
E[Sin]=0,
and hence
E[Z;4] = B4E[S;.]
such that the parameters 8¢, 8, ..., 8, form a development pattern for incremental quotas.

In the Poisson model the joint distribution of all incremental losses is known except for

the parameters. In fact, we have

p[ ANz = z,»,k}J HH( T &S—‘)r—}

i=0 k=0 =0 =0 Zig -

To estimate the parameters we can thus use the maximum-likelihood method. The
maximum-likelihood method is based in the joint distribution of a// observable incremental losses

which is given by
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=0 k=0 i=0 k=0 Zik-

n n—i n nei A -
P[n n {Zi,k = Zi,k}:l = Hn(e‘aisk (alsk)‘ )
It follows fl"xat the likelihood function L is given by

n =i Q. \Zik
Lo, @1rvos s 90, 91, 9, 12) nn( w_)

#=0 k=0 Ziy!

A
where Z:={Z;;}ix &l0,1,...1), i+ksn- Interpreting the maximum-likelihood principle in a wide

sense (which ignores the second order conditions for a maximum), observable random

variables
G, G, 6
and
Sy, gy, o
are said 10 be maxi; likelihood estimators if they annihilate all first order partial derivatives of

the likelihood function (or, equivalendy, of the log-likelihood function) and sausfy the

constraint

Straightforward computation shows that the maximum-likelihood estimators satisfy the

marginal sum equations

noi o n—i
a191 = z Zl !
=0 1=
with 7 € {0,1,..., 7} and
n—k . A n—k
;9 =2 Ziy
1=0 1=0

1=0

Therefore, the maximum-likelihood estimators coincide with the masginal sum estimators. It
now follows from the properties of the marginal sum estimators that in the Poisson model

the maximum-likelihood estimators of the expected ultimate cumulative losses are identical

42 Casualty Actuarial Society Forum, Season Year

310 Casualty Actuarial Society Forum, Fall 2006



Methods and Models of Loss Reserving

with the chain-ladder predictors of the ultimate cumulative losses. This was first observed by
Hachemeister and Stanard [1975].

However, if, in addition to the assumptions of the Poisson model, it is assumed that the

expected ultimate cumulative losses are all identical such that
o; =a

holds for all i €{0,1,..., #}, then maximum-likelihood estimation is still possible but the
maximum-likelihood estimators turn out to satisfy

” n—k
én I+1 ] Z
and
ﬂ—kz
A n-— k+l 2_:0 sk
Sk n n—k

ZZJI

,-071 l+1

In particular, the maximum-likelihood estimators of the expected ultimate cumulative losses
are not identical with the chain-ladder estimators of the ultimate cumulative losses; see
Schmidt and Zocher [2005].

6.2 Multinomial Model
The multinomial model is a model for claim counts and consists of the following
assumptions:
Multinomial model:
() The accident years are independent.
() There exist parameters 89, 8, ..., 8, € (0,1) with Y7 (O =1 such that, for every accident year
1€{0,1,..., n}, the conditional joint distribution of the family {Z; }re(0y,..n) with respect to the

ultimate  cumulative Jloss S, is the ltinomial distribution  with parameters S, and

SO’ 91;“-) Sn-

We assume in this subsection that the assumptions of the multinomial model are fulfilled.

Because of (i) we have

E[Z; 4 1S 0]= 84Sin
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and hence
e E[Z; 4] = 4E[S; 0]
such that tHe parameters 8¢, 9, ..., 9, form a development pattern for incremental quotas.

The mulﬁqonﬁal model is appealing since it suggests that every claim of any accident year
is reported‘;iv)rﬂsettled with probability 8, in development year k. It thus reminds of the urn
model in which S;, balls are drawn with replacement from an urn consisting of balls with

1
1+ # different colours corresponding to the development years.

Fie

Letting
o, =E [Si,n]

it is easy to see that the multinomial model contains the Poisson model as the special case in
which every. ultimate cumulative loss §;, has the Poisson distribution with expectation ;.
Moreover, under the assumptons of the muldnomial model, it can be shown that the
incremental losses of any accident year are independent if and only if the family of all
incremental losses is independent and every incremental loss has the Poisson distribution
with expectation @;3;. Therefore, the main advantage of the multinomial model over the
Poisson model is the fact that it allows for dependence between the incremental losses of a

given accident year.

If, in addition to the assumptions of the multinomial model, the distributions of the
ultimate cumulative losses are assumed to belong to a parametric family of distributions,
then the joint distribution of all incremental losses is known except for the parameters and
maximum-likelihood estimation can be used to estimate the expected ultimate cumulative

losses.

In the case where each of the ultimate cumulative losses has a Poisson distribution, we
are back to the Poisson model and the maximum-likelihood estimators of the expected
ultimate cumulative losses are identical with the chain-ladder predictors of the ultimate

cumulative losses.

The same result obtains in the case where each of the ultimate cumulative losses has a
negativebinomial distribution; see Schmidt and Wiinsche [1998]. Negativebinomial
distributions are of interest since they are mixed Poisson distributions (with respect to a
mixing gamma distribution), and mixed Poisson distributions in turn are of interest since

their variances exceed their expectations, which is the case for most empirical claim count
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distributions.

In fact, a much more general result is true: If, in addidon to the assumptions of the
multinomial model, each of the ultimate cumulative losses has a Hofmann distribution, then
the maximum-likelihood estimators of the expected ultimate cumulative losses are identical
with the chain-ladder predictors of the ultimate cumulative losses; see Schmidt and Zocher
[2005]. The definition and the discussion of Hofmann distributions are beyond the scope of
this paper, but we remark that Hofmann distributions were introduced by Hofmann [1955]
and that every Hofmann distribution is at the same time a mixed Poisson distribution and a
compound Poisson distribution and can be computed by recursion; see e. g. Hess, Liewald
and Schmidt [2002].

Since the class of all Hofmann distributions is a wide class of mixed Poisson
distributions, the multinomial model with ultimate cumulative loss numbers having a
Hofmann distribution is a very general model for claim counts in which the maximum-
likelihood estimators of the expected ultimate cumulative losses are identical with the chain-

ladder predictors of the ultimate cumulative losses.

6.3 Remarks

Alternatively, the Poisson model can be extended to a general stochastic model in which
the family {Z;}i4ef04,..) is independent and the distribution of every incremental loss
belongs to an exponential family. In such models, the theory of generalized linear models
can be applied.

7. CONCLUSIONS

The notion of a development pattern, which can be expressed in three different but
equivalent ways, provides a powetful tool for the comparison of different methods and of

different model of loss reserving,
The general Bornhuetter-Ferguson method provides a general framework into which
several methods of loss reserving can be embedded via

~ a particular choice of the prior estimators of the development pattern for cumulative
quotas and/or

- a particular choice of the prior estimators of the expected ultimate cumulative losses.
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Moreover, there are many stochastic models in which

W

- the credibility predictors or
— the Gauss Markov predictors or
- the maximum-likelihood estimators of the expected ultimate cumulative losses

can be interpréted as Borhuetter-Ferguson predictors.

‘The chéice of 2 stochastic model or of 2 method of prediction is a choice which has to
be made by ‘the actuary and which may have a considerable impact on the result. In the
Poisson model, e. g., credibility prediction and maximum-likelihood estimation are possible
but lead to different results; here the choice of the statistical method could be based on the
judgement that either external information or internal information is more reliable. Stll in
the Poisson model, the form of the maximum-likelihood estimators of the expected ultimate
cumulative losses depends on the assumption that the expected ultimate cumulative losses

may be different or are identical.

We also remark that the chain-ladder method and the additve method can be extended
to the multivariate case which corresponds to a portfolio consisting of several subportfolios
representing dependent lines of business. Moreover, the multivatiate chain-ladder method
and the multivariate additdve method can be justified by multivariate models extending the
univariate models considered in the present paper. A detailed discussion of these

multivariate methods and models may be found in Schmidt [2006).
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Optimal and Additive Loss Reserving
for Dependent Lines of Business

Klaus D. Schmidt
Lehrstuhl fiir Versicherungsmathematik
Technische Universitit Dresden

Abstract.
In the present paper we review and extend two stochastic models for loss reserving and study their
impact on extensions of the additive method and of the chain-ladder method. The first of these models
is a particular linear model while the second one is a sequential model which is composed of a finite
number of conditional linear models. These models lead to multivariate extensions of the additve
method and of the chain-ladder method, respectively, which turn out to resolve the problem of
addidvity.

Keywords. Loss reserving; dependent lines of business; additivity; multivariate additve method;
multivariate chain-ladder method.

1. INTRODUCTION

For a portfolio consisting of several lines of business, it is well-known that the chain-
ladder predictors for the aggregate portfolio usually differ from the sums of the chain-ladder
predictors for the different lines of business; see Ajne [1994] and Klemmt [2004]. It is one of
the purposes of the present paper to point out that the non-coincidence between a chain-
ladder predictor for the aggregate portfolio and the sum of the corresponding chain-ladder
predictors for the different lines of business has its origin in the univariate character of the

chain-ladder method which neglects dependence between the different lines of business.

The problem of dependence between different lines of business has already been
addressed by Holmberg [1994]. His paper is remarkable since it adopts a general point of

view and considers

— correlation within accident years,

— correlation between accident years, and

— correlation between different lines of business.

Nevertheless, the major part of Holmberg's paper is devoted to correlation within and
between accident years and the author expresses the opinion that, in practical applications,
the great majority of the effects causing correlation between different lines of business are

already captured in the correlation within and between accident years. It is another purpose
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of the present paper to show that correlation between different lines of business can be
modelled and that the resulting models, combined with a general optimality criterion, lead to
multivariate predictors which are superior to the univariate ones. Here and in the sequel, the
term univariate tefers to prediction for a single line of business and the term maultivariate refets
to simultaneous prediction for several lines of business or for different types of losses (like

paid and incurred losses) of the same line of business.

The papers by Ajne [1994] and Holmberg [1994] were slightly preceded in time by a
paper by Mack [1993] which, similar to the paper by Hachemeister and Stanard [1975],
turned out to be path-breaking in the discussion of stochastic models for the chain-ladder
method. In the model of Mack, dependence within accident years is expressed by
conditioning, but it is also assumed that the accident years are independent. The assumption
of independent accident years was subsequently relaxed in the model of Schnaus presented
by Schmidt and Schnaus [1996]. Both of these models are univariate and hence do not

reflect dependence between lines of business.

After the publication of the paper of Mack [1993], about a decade had to pass befote the
emergence of the first bivariate models related to the chain-ladder method. One of these
models, due to Quarg and Mack [2004], expresses dependence between the paid and
incurred losses of a single line of business (a topic which had already been studied before by
Halliwell [1997] within the theory of linear models) and has been used as a foundation for
the construction of certain bivariate predictors which are now known as Munich chain-
ladder predictors. The other of these models, due to Braun [2004], expresses dependence
between two lines of business and has been used to construct new estimators for the
prediction etrors of the univariate chain-ladder predictors, but it has not been used to

construct bivariate predictors. Each of these models extends the model of Mack.

Quite recently, Prohl and Schmidt [2005] as well as Hess, Schmidt and Zocher [2006]
proposed multivariate models which reflect dependence between an arbitrary number of
lines of business. The model of Prohl and Schmidt extends the model of Braun in essendally
the same way as the model of Schnaus extends the model of Mack, while the model of Hess,
Schmidt and Zocher extends in a rather straightforward way the particular linear model
which may be used to justify the additive method; see Radtke and Schmidt [2004]. These
models, combined with a general optimality criterion, lead to multivariate versions of the

chain-ladder method and of the additive method, respectively, which turn out to resolve the
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problem of additivity.

In the present paper we review these recent multivariate models and methods of loss
reserving. In order to avoid the accumulation of technicalities, we start with a systematic
review of the univariate case (Section 2) and of prediction in conditional linear models
(Section 3). We then pass to the multivariate case (Section 4) and show that, the optimal
multivariate predictors for the single lines of business sum up to the corresponding
predictors for the aggregate portfolio (Section 5). We also show how the unbiased estimators
of variances and covariances proposed by Braun [2004] can be adapted to the multivariate
models considered here (Section 6). We conclude with some complementary remarks
(Section 7) and a numerical example illustrating the multivariate chain-ladder method
(Section 8).

Throughout this paper, let (Q, F,P) be a probability space on which all random
variables, random vectors and random matrices are defined. We assume that all random
variables are square integrable and that all random vectors and random matrices have square
integrable coordinates. Moreover, all equalities and inequalities involving random variables

are understood to hold almost surely with respect to the probability measure P.

2. UNIVARIATE LOSS PREDICTION

In the present section we review two univariate stochastic models which are closely

related to two current methods of loss reserving.

We consider 2 single line of business which is described by a family {Z; 4}; seto,,..n) Of
random variables. We interpret Z;, as the loss of accident year i which is reported or settled
in development year k, and hence in calendar year i + k, and we refer to Z,; as the incremental loss

of accident year i and development year k.

We assume that the incremental losses Z; ; are observable for calendar years i +k < n and
that they are non-observable for calendar years 7 + & 2 # +1. The observable incremental losses

are represented by the following run-off triangle:
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Accident Development Year

Year 0 1 k e om~i . n=1 nm
0 Zoy  Zo, e Loy ZO,n-i v Zyyy Zog
1 Z|,o Zl,l oo Zl,lt Zl,n—i Zl,n—l

i Zn Z, ee Zi oo i

n—k Zoks Zpky o Zoia

n—1 Zn—l,(l Zn-l,l

n Z,,

Besides the incremental losses, we also consider the cumulative losses S; ; which are defined by
Ld
Si,lc = ZZ,’[.
=0

Then the cumulative losses §;; are observable for calendar years i +k<#n and they are
non-observable for calendar years i + % 2 7+ 1. Just like the observable incremental losses,

the observable cumulative losses are represented by a run-off triangle:

Accident Development Year

Year 0 1 k n—1 n—1 n
0 So,o SO,I e Sn,k Sﬂ,n-i Tt SO,n—l SO,n
1 S10 Sis Sia S i Sy

: Sx 0 Si,l Sx k Si,n-i

n—k Sn-—k,o S;.-k,] e Sn-u

n—1 Sa10 Sa-1a

n Suo

Of course, the incremental losses can be recovered from the cumulative losses.

2.1 Univariate Additive Model

Let us first consider the univariate additive model:

Univariate Additive Model:  There exist  real  numbers vy, Vvy,...,V, >0 and
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Gy, O1, ..., Oy > 0 as well as real parameters Ly, €y, ..., €, such that

E[Z;4]=vis

and
viop, ifi=jand k=1

COV[Zi,k,Zj,I] = { 0 else

bolds for all i, j, k1 €{0,1,..., n}.

For i,k€{0,1,..., 7} such that ; + k2 n+1, the estimators and predictors

n—k
SAD _ Zj:OZth
LI n—k
2oVi
5AD £AD
Zix =ViCk
SAD & paD
Sk =Sipitvi 2 G
I=n—i+]
are said to be the estimators and the predictors of the (univariate) additive method. Under the
assumptions of the additive model, these estimators and predictors are indeed reasonable, as

will be shown in Section 4 below.

2.2 Univariate Chain-Ladder Model

Let us now consider the univariate chain-ladder model due to Schnaus which was
proposed by Schmidt and Schnaus [1996] and is a slight but convenient extension of the
model of Mack [1993].

The chain-ladder model is a sequential model since it involves successive conditioning
with respect to the o -algebras Gy, Gy, ..., G,-1 Where, for each ke€{0,1,...,n}, the o-
algebra

Gr-1

represents the information provided by the cumulative losses S;; of accident years
J€1{0,1,..., 7= k+1} and development years / € {0, 1,..., k—1}, which is at the same time
the information provided by the incremental losses Z;; of accident vears

j€{0,1,...,n—k+1} and development years / € {0,1,..., k—1}.
We assume that §;; >0 holds forall /,k€{0,1,..., 7}.
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Univariate Chain-Ladder Model: For each k€ {1, ..., n}, there exists a random variable @y

and a strictly positive random variable Gy such that
ESS; 4] = Sipm1 P
and

Sigacy fi=j
Gi-1 - B
cov?* (854,85 4) =
(Si:S0) {0 else
holds forall 1,7 €{0,1, ..., n—k+1}.
For i,ke{0,1,..., n} such that i + > n+1, the estimators and predictors

n—k
ACL Z,‘:oSM

P = n—k
2 7=0 Sj.lr—l
SCL ko
Sik =Sin-i [1 &
l=n—-i+1
(such that Sf,],“_i =S, i) are said to be the estimators and the predictors of the (univariate)

chain-ladder method. Under the assumptions of the chain-ladder model, these estimators and

predictors are indeed reasonable, as will be shown in Section 4.

3. ESTIMATION AND PREDICTION IN THE CONDITIONAL
LINEAR MODEL

In the present section we consider a random vector X and a sub-G-algebra G of #. The

G -algebra G represents information which is provided by some other random quantities.

Conditional Linear Model: There exists a G -measurable random matrix A and a G-

measurable random vector B such that
E9[X] = AB.

The random matrix A is assumed to be observable and is said to be the design matrix and
the random vector P is assumed to be non-observable and is said to be the parameter vector or

the parameter for short.

In the subsequent discussion, we assume that the assumption of the conditional linear
model is fulfilled.
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We assume further that some of the coordinates of X are observable whereas some other
coordinates are non-observable. Then the random vector X, consisting of the observable
coordinates of X and the random vector X, consisting of the non-observable coordinates

of X satsfy
Eg[xll =A,p
Eg[le =A,p
for some submatrices A; and A, of A.
We also assume that the matrix A; has full column rank, that the random matrices
2, =varf[X]
I, =covi[X,,Xi]
are known, and that Z;; is (almost surely) invertible.

Since the random vector X, is non-observable, only the random vector X can be used

for the estimation of the parameter B.

3.2 Gauss-Markov Estimation
Let us first consider the estimation problem for a random vector of the form CB, where

C is a G -measurable random matrix of suitable dimension.

A random variable Y is said to be an estimator of CP if it is a measurable transformation

of the observable random vector X;. For an estimator Y of CB, the random variable
ES[(V-CBy(¥ -CB)]

is said to be the G -conditional expected squared estimation error of Y. Since
ES[(Y - CBY(¥ - CB)] = trace(var[¥]) + £5 [ ¥ - CB] ES[ ¥ - CB]

the G -conditional expected squared estimation error is determined by the G -conditional
variance of the estimator and the G -conditional expectation of the estimation error. An

observable random vector Y is said to be

— 2 linear estimator of CP if there exists a G -measurable random matrix Q such that
? = QX, .
— a G -conditionally nnbiased estimator of CP if ES[Y]= ES[CB].
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— a Gauss-Markov predictor of CP if it is a G -conditionally unbiased linear esimator of Cp
and minimizes the G -conditional expected squared estimation error over all G-

conditionally unbiased linear estimators of CB.

We have the following result:

3.1 Proposition (Gauss-Markov Theorem for Estimators). There exists a unigue Gauss-
Markov estimator Y™ (CB) of CB and it satisfies

YM(CB) = CAIZI A AiZ X,
In particalar, Y™ (CB) = CYM(B).
Proposition 3.1 implies that the coordinates of the Gauss-Markov estimator
M = (AiZTA) T ATEX,

of the parameter B coincide with the Gauss-Markov estimators of its coordinates.

3.2 Gauss-Markov Prediction
Let us now consider the predicdon problem for a non-observable random vector of the

form DX,, where D is a matrix of suitable dimension.

A random variable Y is said to be a predictor of DX, if it is a2 measutable transformation

of the observable random vector X. For a predictor Y of DX,, the random variable
ES[ (¥ ~DX,)(Y - DX,)]
is said to be the G -conditional expected squared prediction ervor of Y. Since
ES [(¥ - DX,)'(Y ~DX,)] = trace(var[¥ - DX,]) + E[ ¥ - DX, | E¢[¥ - DX, ]

the G -conditional expected squared prediction error is determined by the G -conditional
variance and the G -conditional expectation of the prediction error. An observable random

vector Y is said to be

— a linear predictor of DX, if there exists a G -measurable random matrix Q_such that
Y = QX,.

— G -conditionally unbiased predictor of DX, if E¢ [Y] = E5[CB].

— a Gauss-Markoy predictor of DX, if it is a G -conditionally unbiased linear predictor of

DX, and minimizes the G -conditional expected squared prediction error over all G-
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conditionally unbiased linear predictors of DXj,.

We have the following result:

3.2 Proposition (Gauss-Markov Theorem for Predictors). There exists a unique
Gauss-Markov predictor ‘?GM(DXZ) of DX, and it satisfies

YM(DX,) = D(A M + .25 (X, - AS™M)).
In particular, YM(DX,) = DYSM(X,).
Proposition 3.2 shows that the Gauss-Markov predictor
XM = ABM + 2,31 (X, - ApM)

of the non-observable random vector X, depends not only on the Gauss-Markov estimator
BGM of the parameter B but also on the G -conditional covariance X;, between the non-
observable random vector X; and the observable random vector X;. Moreover, the final
assertion of Proposition 3.2 implies that the coordinates of the Gauss-Markov predictor of
the non-observable random vector coincide with the Gauss-Markov predictors of its

coordinates.

For a single non-observable random variable, the Gauss-Matrkov predictor has been
determined by Goldberger [1962); see also Rao and Toutenburg [1995]. We also refer to the
paper by Halliwell [1996] and to the discussion of his paper by Schmidt [1999a] and Hamer
[1999] and the author's response by Halliwell [1999]. Related results can aiso be found in
Radtke and Schmidt [2004] and in Schmidt [1998, 2004].

The proof of Propositions 3.1 and 3.2 can be achieved in exactly the same way as in the
unconditional case (which cotresponds to the case G = {D,Q}, where the G -conditional
expectations, variances and covariances are nothing else than the ordinary expectations,

variances and covariances).

It is sometimes also of interest to predict a random vector of the form

An obvious candidate is the predictor
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R X,
Y™(DX) = (D, DZ)[XEM)'

Extending the definitions and repeating the discussion with X in the place of X, itis easily
seen that the predictor YM(DX) is indeed the Gauss-Markov predictor of DX see also
Hamer [1999] for the even more general case of Gauss-Markov estimation/prediction of the
target quantity Dof + DX + D;X,.

4. MULTIVARIATE LOSS PREDICTION

We are now prepared to consider multivariate loss prediction.

We consider m lines of business all having the same number of development years. The

m lines of business may be interpreted as subportfolios of an aggregate portfolio.

For the line of business p €{}, ..., m}, we denote by

20
and
5%
the incremental loss and the cumulative loss, respectively, of accident year 7 € {0,1,..., 7}

and development year k€ {0,1,..., n}.

For i,ke€{0,1,..., n}, we thus obtain the m-dimensional random vectors
Zix =(Z%) )retm
and
Sip = (S,(,’;,) )pe(l,...,M)

of incremental losses and cumulative losses of the combined subportfolios. The observable
incremental losses and the observable cumulative losses are represented by the run-eff

triangles
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Accident Development Year
Year 0 1 k n—1 n-1 n
0 Z,, Z,, e gy o 2y v Zogy Ly,
1 Zl,o Zl.] Zl,k Zl.n—i Zl.n-l
i Z, Z, v Ziy o Ly
n—k Zn—lz,o Zn-lr,l Zn—l«,k
n—1 Z,.0 Z,,,
n Zn,O
and
Accident Development Year
Year 0 1 k e m—1 e on=1 n
0 Soo  Sou o Sox oo So-i o Sou1 So
1 sl,o Sl,l e Sl,k sl,n—i Sl,n-l
i Sio S T O T
n—k Sik0 Suors Sair
n—1 S.10 sn-l,;
n S.0

We can now present multivariate extensions of the models considered in Section 2:

4.1 Multivariate Additive Model

Let us first consider a multivariate extension of the additive model which applies to the

combined subportfolios and was proposed by Hess, Schmidt and Zocher [2006].

Multivariate Additive Model: There exist positive definite diagonal matrices Vo, Vy, ..., V,, and
posilive definite symmetric matrices o, Xy, ..., Z, as well as parameter vectors g, 1, ...,C, such that

E[Zi,lc] = ViCk

and
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VI2E VY2 i i=jand k=1
coMZipZ,i) =1 V0 fi=jan

() else
holds forall i, j, k1 €{0,1, ..., n}.

In the subsequent discussion, we assume that the assumption of the multivariate additive
model is fulfilled and that the matrices Vg, Vi,...,V, are known.

Because of the assumption on the expectations of the incremental losses, the multivariate
addidve model is a linear model. This can be seen as follows: Define

Co
&1

|
ﬁ l C_pk
;hl

Ca

and, forall 7,k €{0,1,..., n}, define
A;=(0 O ... OV, O ... O)

where the matrix V; occurs in position 1+ k. Then we have

E[Z;4]= AisB
for all 7,ke{0,1,...,n}. Let Z, and A; denote a block vector and a block matrix
consisting of the vectors Z;; and the matrices A;; with 1+ k< » (arranged in the same

order) and let Z, and A, denote a block vector and a block matrix consisting of the vectors

Z; ; and the matrices A, ; with 1+ k 2z +1. Then we have
E[Z,]=AB
E[Z,]=AB.

Therefore, the multivariate additive model is indeed a linear model.

The following result provides formulas for the Gauss-Markov estimators of the

parameters of the multivariate additive model:

4.1 Theotem. Foreach k€ {0,1, ..., n}, the Gauss-Markoy estimator é,,GM of Gy satisfies
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. n—k ~1 n—k
G- ( 2‘6 Vfl‘/zz;lv}/zj Zo (V) 2ERV )V 'Z .
7= J=

Proof. Because of the diagonal block structure of Z;; = var[Z;] and the block structure

of A; we obtain

n—k
AZHA, = diag[ Y v/EvY 2J
ke{0,...,n}

J=0

and

n—k
AZZ, = ( S (VYiEvyY Z)V;‘Zm)
=0 €

kel0,...,n}

Now the Gauss-Markov Theorem for estimators yields

. n—k 1k
BM = (AIZiiA) ' AIEHZ, =[(z V}-“z;’V}“) ) <V}/’z;‘V}“>V;‘Z,~,]
j=0 j=0 kelo,...n)
and hence
. n—k -1 n—k
g =(Z V}/Zz;‘V}”j 2 (V/PEV V2
=0 Jj=0
forall ke{0,1,..., n}. ad

The following result provides formulas for the Gauss-Markov predictors of the non-
observable incremental losses and for the Gauss-Markov predictors of the non-observable

cumulative losses:

4.2 Theorem. For all i,k€{0,1,...,n) such that i+ k2 n+1, the Gauss-Markov predictor
Z,GIA of Z;y satisfies

251 =v, £
and the Gauss-Markov predictor é,GIA of S; 4 satisfies

N k.
Sic,;l?d=si,n—i+\,i > CIGM

I=n—i+1

Proof. Since X, =cov[Z,,Z,] =0, the first assertion is immediate from the Gauss-

Markov Theorem for predictors and the second assertion follows from the final remark of
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Section 3. 0

The Gauss-Markov Theorem for predictors implies that

— the Gauss-Markov predictors of the sum of the non-observable incremental losses of a

given accident year,

— the Gauss-Markov predictors of the sum of the non-observable incremental losses of a

given calendar year, and
— the Gauss-Markov predictors of the sum of all non-observable incremental losses
are obtained by summation over the Gauss-Markov predictors of the corresponding single

non-observable incremental losses.

For 7,k€{0,1,..., n} such that 1 + k2 n+1, the estimators and predictors
N n—k -1 n—k
©-(Svrmvy | Swrmvvi,

Jj=0 j=0
ZR =V
N koo,
SﬁbD =8+ V; Y C;\D

l=n—i+1

are said to be the estimators and predictors of the mwltivariate additive method. Except for

m=1 or k=n they usually differ from the estimators and predictors

n n—k -1,k
Cs ¢=[ZV1‘] 22
j=0 =0

Zi,k = Viélz

. koo
Sia=S8i.-i+V; 2 &

I=n—i+1

whose coordinates coincide with those of the univariate additive method.

4.2 Multivariate Chain-Ladder Model

Let us now consider a multivariate extension of the chain-ladder model which applies to
the combined subportfolios and was proposed by Prohl and Schmidt [2005]). This model is a
slight but convenient extension of the model of Braun [2004]; see also Kremer [2005].

The multivariate chain-ladder model involves successive conditioning with respect to the
o -algebras Gy, Gy, ..., G,1 Where, for each k€{0,1,..., 7}, the o -algebra
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G
represents the information provided by the cumulative losses S;; of accident years
J€1{0,1,...,n—k+1} and development years [ € {0, 1, ..., k—1}, which is at the same time
the information provided by the incremental losses Z;; of accident years
J€{0,1,...,n—k+1} and development years / € {0, 1,..., k-1}.
Forall i,ke{0,1,..., n}, we denote by
A;, = diag(S;4)
the diagonal random matrix whose diagonal elements are the coordinates of the random

vector S, 4.

We assume that all coordinates of S;; ate strictly positive. Then each A; is invertible
and the identity

Si,k = Ai,lz—l (Ai-,}e—lsi,k)
holds forall 1 €{0,1,...,n} and k€ {0,1,..., n}.

Multivariate Chain-Ladder Model: For each ke{0,1,...,n}, there exists a random

parameter vector By, and a positive definite symmetric random matrixc Ly, such that
ES08; 4] = Ai gy ~ By
and

AV2ZE AV =
COVg"‘[Si,k,S,-,k]= i TR =g
(0] else

holds forall i, 7 €{0,1,...,n—k+1}.

In the subsequent discussion, we assume that the assumption of the multivariate chain-
ladder model is fulfilled.

The multvariate chain-ladder model consists of #» conditional linear models
corresponding to the development years k€ {l,...,#n}. This can be seen as follows: Fix
kefl,...,n}, let §; and A denote a block vector and a block matrix consisting of the
random vectors S;; and the random matrices A;; with i <n—k (arranged in the same
order) and let 8, =S, 4,14 and A, :=A, 4,14 Then the random vectors §; and S, and

the random matrices A; and A, depend on % and we have
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ESS|= A\,
ES# [Sz] = A,®,.

Therefore, the multivariate chain-ladder model consists indeed of » conditional linear

models.

The following result provides formulas for the Gauss-Markov estimators of the

parameters in the multivariate chain-ladder model:
4.3 Theotem. Foreach ke {1, ..., n), the Gauss-Markov estimator @E M of @y satisfies
-1
n—k
M = ( > AL m:&ﬂ) 2 (AT L) A8
=
Theorem 4.3 is immediate from the Gauss-Markov Theorem for estimators.

The following result provides formulas for the Gauss-Markov predictors of the

cumulatve losses of the first non-observable calendar year:

4.4 Theorem: Foreach i € {1, ..., n}, the Gauss-Markov predictor Sf,},‘f,»ﬂ of Sin-iv1 Satisfies

| Stins = Aip O,
Theorem 4.4 is immediate from the Gauss-Markov Theorem for predictors.
For i,ke{l,..., n} such that i + k2 n+1, the estimators and predictors
&= (Z" A LECAL j-l 2 (AL TP A )AThS s
= jar
S A bt
with
Ac e {diag( inmi) i k=n—i+1
dxag(S,,, 1) else

are said to be the estimators and predictors of the multivariate chain-ladder method. Except for

m=1 or k=n they usually differ from the estimators and predictors

- =k gL’
D, '=(ZA,‘,H] 2 Sk
Jj=0 j=0

S,',[, = I‘Sj,kd"k
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with
. {diag(si,"_,- ) if k=n—i+l
k=1 =

diag(S;sy) else
whose coordinates coincide with those of the umivaniate chain-ladder method.

In the case i + k= z+1, the multivariate chain-ladder predictors are justified by Theorem
4.4, but another justification is needed in the case i+% 2 n+2; this can be achieved by
minimizing the Gj;-conditional expected prediction error over the collection of all

predictors §;; of S, satisfying
. foL
Sip = AT D,

for some G- -conditionally unbiased linear estimator d);, of ®;; see Schmidt [1999b] for

the univariate case. We have the following result:

4.5 Theotem. For all i,k €{l,..., n} such that i+ k2 n+1, the chain-ladder predictor SCx
minimizes the Gy_, -conditional expected prediction error over all predictors $ ik Of Sip satisping

éi,k = AE}:—léﬁ
Sor some G-, -conditionally unbiased linear estimator &, of @
A proof of Theorem 4.5 will be given in the Appendix.
The optimality of the multivariate chain-ladder method guaranteed by Theorem 4.5 is

sequential and one-step ahead. Of course, one would like to have a condition ensuring some
kind of global optimality of the chain-ladder predictors; however, even in the univariate case,

no such condition seems to be known.

To illustrate the situation without introducing additional notation, let us recall two results

for the univariate case:

— The assumption of the univariate chain-ladder model is fulfilled in the model of Mack
[1993] in which it is assumed that the accident years are independent and that the
parameters ¢, and ©; are non-random; see Schmidt and Schnaus [1996]. Under the
assumptions of the model of Mack, it can be shown that all chain-ladder predictors are
unbiased, but it can also be shown that many other predictors are unbiased as well.
Therefore, unbiasedness does not distinguish the chain-ladder predictors among all other

predictors.
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— One might hope that the chain-ladder predictors minimize the G,;-conditional expected
squared predictor error over all predictors of the form
§i,k =S8 i ﬁ (o
I=n-i+1
where, for each [ e{n-i+1,...,k}, ¢; is a G;-conditionally unbiased linear estimator
of ;. Again, under the assumptions of the model of Mack, it has been shown in
Schmidt [1997] that this kind of optimality may fail for the chain-ladder predictors.

Thus, even in the univariate case and under the stronger assumptions of the model of Mack,
it remains an open question whether there exists a condition which is less restrictive than the
sequental optimality criterion of Theorem 4.5 and still ensures some kind of global

optimality of the chain-ladder predictors.

5. ADDITIVITY

Let 1 denote the m-dimensional vector with all coordinates being equal to 1. For
i,ke{0,1,..., n} define

Zi’/, = I’ZM,
S,’,k = 1'S,<,,,.
We shall now study prediction of the non-observable incremental losses Z;; and of the

non-observable cumulative losses S;; of the aggregate portfolio.

5.1 Multivariate Additive Model
In the multivariate additive model it is immediate from the Gauss-Markov Theorem for
predictors that, for all 1,k€{0,1,..., 7} such that i + k2 zn+1, the Gauss-Markov predictor
ZF ,;M of Z;; and the Gauss-Markov predictor S,Gfd of §; 4 satisfy
29 vt
SEM = 1§22
This means that the Gauss-Markov predictors for the aggregate portfolio are obtained by

summation over the Gauss-Markov predictors for the single lines of business. Therefore, the

multivariate additive method is consistent in the sense that there is no problem of additivity.

Warning: One might believe that the Gauss-Markov predictors for the aggregate
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portfolio could also be obtained by applying the univariate additive method to the aggregate
portfolio. This, however, is not the case since the multivariate additive model for the
combined subportfolios does not lead to a univariate additive model for the aggregate

portfolio.

5.2 Multivariate Chain-Ladder Model

In the multivariate chain-ladder model it is immediate from the Gauss-Markov Theorem
for predictors that, for all 7 €{l,..., n}, the Gauss-Markov predictor .SA',?x,-H of S;n-int

satisfies
SGM &CL
Siimmint = V87 .
This means that the Gauss-Markov predictors for the aggregate portfolio are obtained by
summation over the multivariate Gauss-Markov predictors for the different lines of
business. Moreover, it is easy to see that, for all ,k€{0,1,..., 7} such that i+k2n+2,
the predictor
. &CL
S,'_k = l'S,-,,,
ACL ACL
= l'Ai,k-ld)lt
&CL v A&CL
= (Sim) @
minimizes the G;-conditional expected predicdon error over all predictors §;; of §;;
satisfying
. foL 4
Sip =1A7, Dy
ACL 2
= (si,le—l)'(bk
for some G- -conditionally unbiased linear predictor @ of ®,. Therefore, the multivariate

chain-ladder method is consistent in the sense that there is no problem of additivity.

Warning: As in the case of the multivariate additive model, it would be a serious mistake
to predict the non-observable cumulative losses of the aggregate portfolio on the basis of the
observable cumulative losses of the aggregate portfolio since such an approach would ignore
the correlation structure between the different lines of business; see Préhl and Schmidt
[2003].
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6. ESTIMATION OF THE VARIANCE PARAMETERS

In the case m =1, which is the univariate case, the variance parameters Zg, Xy,...,Z,
drop out in the formulas for the Gauss-Markov predictors in the multivariate additive model

and in the multivariate chain-ladder model.

In the case m 22, only the variance parameter X, drops out in the formulas for the
Gauss-Markov predictors in the multivariate additive model and in the multivariate chain-

ladder model; in this case, the variance parameters Zg, X, ...,Z,; must be estimated.

6.1 Multivariate Additive Model

Under the assumptions of the multivariate additive model and for k< n—1, the random

matrix
5 nk - -
B3 =L ) ViVHZ s =V ENZ, 4 - V)V
=

is a positive semidefinite estimator of the positive definite matrix X;; moreover, its diagonal
elements are unbiased estimators of the diagonal elements of Z; whereas its non-diagonal

elements slightly underesdmate the corresponding elements of Z;.

Although unbiasedness of an estimator is usually considered to be desirable, this property
would not be helpful in the present situation since any estimator of Z; has to be inverted
and since the inverse of an unbiased estimator of Z; is very likely to be biased anyway.

Moreover, the relative bias of the estimators proposed before can be shown to be very small.

By contrast, for any estimator of Z;, the property of being positive semidefinite is a
necessary, although not sufficient, condition for being positive definite and hence invertible.
In fact, the estimator of X, proposed before is always singular when k2 7—m+ 2 since in
this case the dimension of the linear space generated by any realizations of the random
vectors V}/Z(Z,-,k —V]-Ck) with j€{0,1,...,n—k} is at most m—1 such that there exists
at least one nonzero vector which is orthogonal to each of the realizations of these random
vectors; moreover, the realizations of the random vectors V}/ HZig— Vjék) may be linearly
dependent also for some k< #—m+1, which implies that the cotresponding realization of

the estimator of Z; proposed before may be singular also for some k<n—-m+1.

In practical applications, it is thus necessary to check whether the esumators proposed
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before are invertible or not, and to modify those estimators which are not invertible. Such
modifications could be obtained by extrapolation or by the use of external information; see

below.

6.2 Multivariate Chain-Ladder Model

Under the assumptions of the multivariate chain-ladder model and for A< n—1, the
random matrix
n~k

= 7 L > AYE (S = 81 ®e) (S - A s aDe) AV,
j=0

is a positive semidefinite estimator of the positive definite matrix Z;; moreover, its diagonal
elements are unbiased estimators of the diagonal elements of Z; whereas its non-diagonal
elements slightly underestimate the corresponding elements of Z; and hence differ from the

unbiased estimators proposed by Braun [2004].

The comments on the variance estimators proposed for the multivariate additive model

apply as well to the variance estimators proposed for the multivariate chain-ladder model.

6.3 Extrapolation
In the case where the proposed estimators of the variances for late development years
are singular or almost singular, it could be reasonable to replace these estimators with

estimators obtained by extrapolation from the estimators for the first development years

which are usually invertible.

6.4 Iteration

In both models, one may try to improve the estimators of the variances and hence the
Gauss-Markov estimators of the parameters by iteration, as proposed by Kremer [2005].
However, the iterates of some of the estimators of the variances may again be singular, and it
seems to be difficult to prove that the resulting empirical Gauss-Markov estimators of the

parameters are indeed improved by iteration.

6.5 External Information

In both models, another possibility for the estimation of the variance parameters

ZosZ1s...,5,1 consists in the use of external information, which is not contained in the

Casualty Actuarial Society Forum, Fall 2006 339



Optimal and Additive Loss Reserving

run-off triangle and could be obtained, e. g., from the run-off triangle of a similar portfolio

or from market statistics.

7. REMARKS

Another bivariate model of loss reserving is the model of Quarg and Mack [2004]. Under
the assumptons of their model, Quarg and Mack propose bivariate chain-ladder predictors
for the paid and incurred cumulative losses of a single line of business with the aim of
reducing the gap between the univariate chain-ladder predictors for the. paid and incurred
cumulative losses; see also Verdier and Klinger [2005] for a related model. None of these -

two models is contained in the multivariate models proposed in the present paper.

Since no conditions at all are imposed on the character of the different lines of business
in the multivariate models presented here, the multivariate method and the muldvariate
chain-ladder method could, in principle, also be applied to the paid and incurred cumulative

losses of a single line of business.

Let us finally note that the problem of additivity can also be solved in quite different
models like credibility models; see Radtke and Schmidt [2004] and Schmidt [2004].

8. ANUMERICAL EXAMPLE

In this section we present a numerical example for the multivariate chain-ladder method

in the case of m = 2 subportfolios and #» =3 development years.

8.1 The Data
(2)

The following run-off triangles contain the observable cumulative losses S,(},,), 4> and

Si & of the two subportfolios and of the aggregate portfolio, respectively:

Subportfolio 1

AY DY
0 1 2 3

0 2423 3123 3567 3812
1 2841 3422 3952

2 3700 3977

3 5231
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Subportfolio 2

AY DY

0 1 2 3
0 3546 6578 7650 8123
1 4001 7566 8822
2 4040 7813
3 4300

Aggregate Portfolio
AY DY

0 1 2 3
0 5969 9701 11217 11935
1 6842 10988 12774
2 7740 11790
3 9531

8.2 Univariate Chain-Ladder Method

Applying the univariate chain-ladder method to each of these run-off triangles yields the
univariate chain-ladder factors (CLF) and the univariate chain-ladder predictors of the non-

observable cumulative losses:

Subportfolio 1
AY DY
0 1 2 3

0 2423 3123 3567 3812
1 2841 3422 3952 4223
2 3700 3977 4569 4883
3 5231 6140 7054 7538
CLF 1.1738 1.1488 1.0687
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Subportfolio 2

AY DY

0 1 2 3
0 3546 6578 7650 8123
1 4001 7566 8822 9367
2 4040 7813 9099 9662
3 4300 8148 9490 10076
CLF 1.8950 1.1646 1.0618

Aggregate Portfolio
AY DY

0 1 2 3
0 5969 9701 11217 11935
1 6842 10988 12774 13592
2 7740 11790 13672 14547
3 9531 15063 17467 18585
CLF 1.8950 1.1646 1.0618

8.3 Multivariate Chain-Ladder Method

We now combine the run-off triangles of the two subportfolios into a single run-off triangle

which contains the vectors §;; of cumulative losses:

Combined Subportfolios

AY DY
1 2 3

o 2423 3123 3567 3812

3546 6578 7650 8123
) 2841 3422 3952

4001 7566 8822
5 3700 3977

4040 7813

5231
3 (4300)

Transforming the vectors §;; of cumulative losses into diagonal matrices, we obtain the

following run-off triangle for the matrices A;,; =diag(S;s) which is completed by the

vectors ®, of univariate chain-ladder factors:
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Combined Subportfolios
AY DY
0 1 2 3
0 2423 0 3123 0 3567 0 3812 0
0 3546 0 6578 0 7650 0 8123
1 2841 0 3422 0 3952 0
0 4001 0 7566 0 8822
5 3700 0 3977 0
0 4040 0 7813
3 5231 0
0 4300
& 1.1738 1.1488 1.0687
* 1.8950 1.1646 1.0618

For the estimators of the variances we thus obtain

o _( 35.4968

T\-14.3861
$oL _ 0.2637
2 71 0.0926
and hence
acLYt _ 1.8616
(zl ) _( 4.5239

(iCL)_l _ [ 25876.4330
2 “\-73727.6467

-14.3861
5.9200

0.0926
0.0325

4,5239
11.1624

-73727.6467
210097.0596

Note that estimators of the variances Xy and X3 are not needed. Applying the multivariate
chain-ladder method to the combined subportfolios yields the multivariate chain-ladder

predictors of the non-observable cumulative losses:
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Combined Subportfolios

AY DY
0 2423 3123 3567 3812
3546 6578 7650 8123
. 2841 3422 3952 4223
4001 7566 8822 9367
) 3700 3977 4569 4883
4040 7813 9099 9661
3 5231 6105 7013 7495
4300 8167 9512 10100
2 1.1670 1.1489 1.0687
@, 1.8994 1.1646 1.0618

8.4 Comparison

Predictors for non-observable aggregate cumulative losses may be computed by the

following three methods:
— Method A: Apply the univariate chain-ladder method to the aggregate portfolio.
— Method B: Apply the univariate chain-ladder method to each of the subportfolios and

take sums of the univariate predictors,

— Method C: Apply the multivariate chain-ladder method to the combined subportfolios

and take sums of the multivariate predictors.
For example, for the ultimate aggregate cumulative loss of accident year 3,
— Method A yields the value 18585.
— Method B yields the value 7538 + 10076 =17614.
— Method C yields the value 7495+ 10100 =17595.

The following table presents several reserves obtained by these three methods:
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Reserve Method A Method B Method C
Accident Year 1 818 817 817
Accident Year 2 2757 2754 2754
Accident Year 3 9054 8084 8064
Total 12628 11655 11635
Calendar Year 4 8231 7452 7436
Calendar Year 5 3279 3131 3129
Calendar Year 6 1118 1071 1070
Total 12628 11655 11635

Due to round-off errors, some of the total reserves differ slightly from the sums of the
reserves over accident years of calendar years. In the present example, the results obtained
by Methods B and C are quite similar, but they differ considerably from those obtained by
Method A.

8.5 Preliminary Conclusions

Of course, one should not draw general conclusions from a single numerical example.
Nevertheless, the present example and experience with other sets of data justify the

following rule of thumb:

— Method C is optimal when the model assumptions and the optimality criteria for the
multivariate chain-ladder method can be accepted.

— Method B may in many cases provide a reasonable approximation to Method C.

— Method A may be disastrous since it ignores correlation between the different lines of

business.

Experience with other sets of data also indicates that the similarities and differences between

the three methods may vary with

— the lines of business under consideration,
— the number of lines of business, and

— the number of development years.

It is therefore indispensable for the actuary to acquire practical experience for every

combined portfolio of interest.
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APPENDIX

Here we give a proof of Theorem 4.5.

Proof. Consider any G- -conditionally unbiased linear estimator ®; of ®;. Then there
exist Gy, -measurable matrices Q o4-1, Q 1,015 -++» Q -t 41 satisfying

n—k

&, = Z Q4184
and Z::}Q ja-18 a1 =L Also, letting

n—k 1
Qi = (Z Ai,/ﬁlzilAi,/fx) (A EZE AT ) AT
s=0

we obtain
n—k
#CL _ CL
=2 QiS4
Jj=0
and Z"—k 7 lz-—lA} +-1 = L. We thus obtain

n—k

Z%)(Q b1~ QFi)A 4 = O.
=

Since
Qo[ EA2ERA | o (ar15.0)
5=0
this yields
N N n—k n—k !
covsH [d’k -O & L] Z z( Qi -Qf5 k_l)covg“[S,k,Su]( Q- 1)
j=01=0
n—k

= z_‘z)(Q,j,k_l - Q?,Iie-l )varg"-l [Sj,k](QS-:'];_l )I

n—k ~1
= (k- Q 5 )A (z Aiéi,Z;‘Aigilj
J=0 5=0 . .

=0.

Since i + & 2 n+1, we also have cov% [Sj,,,,Si,k] = O and thus
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cov9H [S, =S85, 8 k] = cov#* [A b - AT, Sy ]
=A%, cov9+ [‘Pk - d’lf:Lr si.k]
=A%k 1 "_:(Q Jke1— Q?.Iit—l ) covo [sj.*’ Si-"]
=0.
Using the two identities established before, we thus obtain
covi* [S + =85, 8% _s,,,]_covg‘ h [S,,, -85, 85

= A;,,,_, coviH! [@k -&*, 6 L]A: k-1
=0

and hence

ar [S,-,k - S,-,;,:I = var+! [S,-,k - S,C},' :l + var9+! [S,C,% - S,-_,,].

We thus obtain

Eo [(Sr,k —S,»,,,)' (8:x-8:4) ] trace(var* [ 8, ~$,..])
= trace(v Ga-1 [S,k -85 ])+trace(varg“‘ [SCL - :k])
2 trace(v g“ —S,ﬁ])
(558 -5,.) (55 - s..)]

which proves the theotem. |
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A Nonlinear Regression Model of Incurred But Not
Reported Losses

Scott Stelljes, ACAS, MAAA

Abstract

The process of loss development has been studied by casualty actuaries for many years. When an
accident period is closed, the ultimate claim liabilities are unknown because many of the claims are
still unreported and some that are reported remain unsettled. The difference between ultimate losses
and reported losses is known as "Incurred But Not Reported' loss or IBNR. The reserve for IBNR
losses is the largest liability on an insurer's balance sheet. Quantifying the uncertainty in estimates of
IBNR is of great importance to the financial health of casualty insurance companies.

Most of the current methods for estimating ultimate losses focus on estimation of loss
development factors which relate the emergence of losses to the amount of losses already reported.
This paper presents a model for predicting incremental losses as a function of exposures, calendar
period and development age.

A nonlinear regression model is used for estimating the 95% confidence interval of IBNR for an
accident period. The model predicts the incremental pure premium for a development interval as a
function of development age, calendar quarter and exposure. The estimated IBNR is the sum of
forecasted incremental pure premiums. The regression model produces confidence interval estimates
for the model parameters and for IBNR.

The regression model is applied to trended losses. We assume that the trend has been estimated
by some reasonable time series method that produces confidence interval estimates of trend factors,
Many good methods are available. We use the confidence interval estimate of the trend factors to
adjust the IBNR estimates for uncertainty in loss trend.

The model presented here assumes normally distributed residuals. Although the underlying loss
severities are probably not normal, the central limit theorem implies that this assumption would be
appropriate if the number of claims is large. Thus, the model will most likely work well for high
frequency lines of business such as personal auto.

We will present methods for estimating parameters, confidence intervals for the parameters, and
the distribution of IBNR. These methods will be illustrated using simulated automobile bodily injury
liability data. Model predictions will be compared to actual emerged losses.

Based on a comparison of predicted IBNR to the “actual” IBNR from the simulated data, the
model appears to produce unbiased predictions and reasonable confidence interval estimates of
IBNR. We conclude that the distribution of incremental pure premiums is close to normal and there
is not a significant correlation between development age intervals. Thus, traditional regression
methods can be used to estimate the distribution of forecasted incremental pure premiums and
consequently, IBNR,

Keywords: Non-linear regression, IBNR, reserving.
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1. INTRODUCTION

Many actuaries and their clients are unsatisfied with point estimates of IBNR reserves.
Better decisions can be made if one has a range of possible outcomes and associated
probabilities. Confidence interval estimates would satisfy this need. We will introduce a
nonlinear regression model that produces confidence interval estimates of IBNR. The
models are fitted to incremental pure premiums - the incremental change in case incutred (ot
paid) losses for an accident period during a development interval divided by the
corresponding calendar period earned exposures. This approach was inspired by Buhlman's
complementary loss ratio method as presented by Stanard [3].

1.1 Research Context
The context of this paper is reserving methods and reserving uncertainty and ranges.
1.2 Objective

The objective of this research is to produce a model of loss development that models
losses as a function of exposures, can be applied to either paid or incurred losses, and
produces a confidence interval estimate of IBNR.

The current literature includes some papers, e.g., Murphy [1] that present regression
models to predict age-to-age loss development factors and measure the uncertainty in the
predicted factors but there are very few that present models of loss dollars. Barnett and
Zehnwirth [2] is an excellent example of a dollar based model, but it is applied to the
logarithms of incremental losses and this becomes a problem when there is negative loss
development. Recoveries lead to negative paid development and case reserve estimation
errors can result in negative case development. In order to use a log link, it is necessary to
discard information. Less information is discarded if the analysis is performed on paid losses
but much of the data in the tail of a case incurred development triangle is negative. Many
reserving actuaries believe that there is useful information in case incurred losses and they
often compare estimates derived from paid and incurred data.

Furthermore, Narayan [4] remarks that dollar based regression models do not take into
account changing levels of exposure. This is a serious flaw because the amount of loss in an
accident period is highly correlated to the number of earned exposures.

Thus, there is a need for a dollar based regression model that can be applied without
using a log link and that makes appropriate adjustments for changing levels of exposure.

In this paper, we present a nonlinear regression model that predicts incremental pure
premiums as a function of development age. The model is applied to losses that have been
adjusted for loss trend using a separate trend model. The trend model can be any time series
model that produces confidence intervals for future trend factors. In the examples, we
assume that future trend is represented by a geometric Brownian motion process but this is
not necessarily the only model for future loss trend. Adjusting losses for trend is not
necessaty in a link ratio method because future development is predicted as a function of
case or paid losses. The link ratios are multiplied by losses which are already stated at the
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appropriate cost level. The factors produced by our model are applied to exposures so it is
necessary to adjust losses for trend.

The model presented in this paper does not requite the use of any link functon, so it can
be applied either to paid or case incutred loss data. Furthetmore, since we use pure
premiums with exposure weights, the model relates losses to exposures.

1.3 Outline
The remainder of the paper proceeds as follows.

Section 2: Presentation of data. A simulated data set including a loss triangle and earned
exposures is presented along with some observations. The nonlinear model is presented and
the estimation of parameters is explained.

Section 3: The model is fitted to the simulated data and used to produce confidence
interval estimates of ultimate incurred losses for each accident quarter. An analysis of
residuals is presented.

Section 4: Conclusions.
Section 5: References.

2. BACKGROUND AND METHODS

A nonlinear regression model will be presented and used to analyze simulated loss
development data. The model will be fitted to incremental pure premiums. The incremental
pure premium for an accident quarter/development quarter is defined as the change in case
incurred loss during the development quarter divided by the calendar quarter earned
exposures.

In section 2.1, we will present the simulated loss development data. The data was
simulated based on method 4 in Narayan [4] with some modifications. See Appendix B for a
description of the method used to simulate the data. Narayan and other authors simulated
thousands of sets of data for the purpose of comparing methods. We simulated a single
triangle for the purpose of showing sample calculations. The simulation is not intended to
validate the model. The simulated data is intended to resemble personal auto bodily injury
data in accident quarter/development quarter format.

Section 2.2 is a presentation of the nonlinear regression model.

In section 2.3, we present the mathematics of estimating confidence intervals for the
model parameters and IBNR.

2.1 Loss Development Data

Exhibit 2.1.1 shows a small portion of the simulated loss data in the traditional triangular
array. The losses shown in Table 1 are cumulative case incurred losses. Le., the amount
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shown for each development quarter is the sum of all paid losses from the beginning of the
accident quatter through the end of the development quarter and the outstanding case
reserves as of the end of the development quarter. The column to the left of the losses
shows earned exposures. The second table shows the incremental pure premiums. These are
the incremental losses divided by earned exposutes. For example, the entry for accident
quarter 1, development interval 1-2 is (1,713,179-1,244,722)/50,333.

Accident Earned

Quarter Exposures

50,333
50,801
51,187
51,146
51,5627

A HWN -

Table 2. Incremental Pure Premiums

Accident Earned
Quarter Exposures

1 50,333
2 50,801
3 51,187
4 51,146
5 51,527

EXHIBIT 2.1.1
Tabl 1. Cumulative Losses by Accident Quarter and Development Age

1
1,244,722
1,417,101
1,143,473
1,055,290
1,508,450

0-1
24.73
27.90
22.34
20.63
29.27

Development Age

2 3 4 5
1,713,179 1,996,372 2,065,006 2,166,446
2,004,222 2,341,886 2,437,727
1,646,289 2,130,201
2,268,788

Development Interval

12 23 34 45
9.31 5.63 1.36 2.02
11.56 6.65 1.89
9.82 9.45
23.73

Exhibit 2.1.2 shows the averages and variances and Pearson correlations of
incremental pure premiums by development age for some simulated data. The data
exhibits a typical loss development pattern. We see that the average incremental pure
premiums start high and decrease rapidly as the development age increases, converging to
zero. There are some negative incremental losses resulting from recoveries, settling of
claims for less than the case reserve, and reductions to case reserves. The table also shows
that the variance decreases as development age increases. Thus, most of the uncertainty in
loss development is in the eatly stages. The correlation matrix shows that the correlation
of incremental pure premiums between different ages is usually insignificant.

356
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Sample of Simulated Incremental Pure Premiums - Ages 1-7

Age
Average
Variance

0-1 12

28.70 12.13
87.26 23.1¢9

Pearson Correlations

0-1
12
2-3
3-4
4-5
5-6
6-7

0-1 1-2
1.00 0.38
1.00

EXHIBIT 2.1.2

2-3 3-4
7.67 4.67
8.40 3.99
2-3 3-4
0.13 0.45
0.31 0.44
1.00 0.15
1.00

4-5
3.49
2.81

4-5
0.14
-0.01
0.11
0.47
1.00

5-6 6-7
2.84 2.48
4.33 3.24

5-6 6-7
0.63 0.21
0.29 025
-0.01 0.15
0.45 0.20
0.16 0.00
1.00 0.1

1.00

Exhibit 2.1.3 shows a scatter plot of the incremental pure premiums and the average
incremental pure premiums by age.

EXHIBIT 2.1.3

Incurred Incremental Pure Premiums

+ Incr. PP
-=- Average

In the scatter plot, the incremental pure premiums appear to be distributed around the
average symmetrically, This and the fact that the correlations are not significant imply that
the data fits the assumptions of regression models as stated in [5) reasonably well. The non-
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constancy of the variances is a violation of the assumptions underlying ordinary regression
but that problem can be solved by using a weighted regression model.

A weighted regression model is one in which a weight is assigned to each obsetvation in
the data. The more weight given to an observation, the more influence it has on the
parameter estimates. We need to use a weight function that is inversely proportional to the
variance of the data. It would also be advantageous to obtain exposure weighted parameter
estimates. So, we will use weights that are a function of development age and exposures.

We will now define some of the variables that will be used in the analysis. First, the
accident quarter will be represented by ¢ which will take values of 1, 2, ..., 40. The
development quarters will be represented by x which will be assigned the value of the
development age (in quarters) at the end of the interval. For example, x =1 will correspond
to the 0-3 months development interval. Calendar quarters will be represented by u# and will
be calculated as u =+ x~1. The incremental losses for accident quarter ¢ and development
interval x will be represented by L, , . Car months will be represented by c, .

Appendix A shows the full set of simulated loss development data.
2.2 The Model

Our model of incremental pure premiums is a nonlinear regression model. Nonlinear
regression models ate statistical models of the form:

y=f(%8)+¢ @2.1)

In (2.2.1), X1s a vector of predictor variables, & is a vector of parameters, f is a nonlinear
function, and € is a normal random variable with mean 0. Usually, £ is assumed to have a

constant variance ¢ . If the variance of the error term is not constant, a weight function
that is inversely proportional to the variance may be specified.

The parameters of a nonlinear regression model are estimated by solving the normal
equations. This usually requires using a numerical method such as the Gauss-Newton
algorithm.

There are many commercial statistical software packages available that will perform the
calculations and also provide approximate confidence intervals for the patameters and for
predicted observations. The SAS system was used to perform the calculations to estimate

confidence intervals for the model parameters and predicted IBNR.

We fit the following model to the incremental incurred pure premium data:

y=|:a exp(ﬂx)+yexp(5x)]+%£ (2.2.2)
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1,x

where y = -exp(ru) is the incremental pure premium for accident quarter f in

t
development age intervalx adjusted for loss trend. u represents the calendar quarter. r is

the loss trend. &, 3,7, and J are the model parameters. w= x"* -¢, is the weight function.

This weight function was selected based on an analysis of the residuals from an unweighted
regression model.

We assume here that the trend 7 has been estimated by some reasonable method and that
we have confidence interval estimates for the trend factors that we will apply to the IBNR
estimates. The confidence intervals for the IBNR estimates will be adjusted to reflect the
uncertainty in the trend factors.

It is tempting to include loss trend as a fifth parameter in the model in order to obtain
prediction intervals for trend-adjusted IBNR directly. The resulting model equation would
be

y=[a exp(,Bx)-t—yexp(é‘x)]—exp(ru)+—1y;£

Unfortunately, there are two problems with this model. One is that the model sometimes
produces unrealistic estimates of trend due to a lack of credibility. The other problem is that
we would be extrapolating the model instead of interpolating it. Extrapolation can be
misleading even in the case of linear models and it is strongly discouraged in the case of
nonlinear models. Of course, we need to extrapolate the trend factors but thete are
mathematically sound time series models available for this purpose.

2.3 Estimation of Parameters

The SAS system used the Gauss-Newton method to estimate the least squares estimates
of the model parameters. The following presentation of the mathematics of the Gauss-
Newton method is based on Seber and Wild [5].

To estimate the least squares parameters, we need to minimize the sum of squared errors
of the n observations:

n

S(é):Z[yi—f(xi;B—)]z (2.3.1)

i=1

In the case of our model, § =(a, 8,7,6) and f(x;H_) =aexp(fx)+yexp(Sx). We

find the minimum of § (é ) by setting all of its partial derivatives to 0.

Minimizing the sum of squared errors is a straightforward procedure for linear models
but when f is nonlinear we must use numerical methods to estimate the parameters. One
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commonly used method is the Gauss-Newton method which works well in the case of
normally distributed residuals.

We define the following matrices: F (9 ) = [af(a—xe,,@)] and
i

£(0)=(1(%:0)./ (2:8)...../ (x,:6)) .
F is an nx p mattix wheren is the number of observations and p is the number of

parameters. f (é ) has dimension nx1.

Suppose 6") is an approximation to @ . We approximate f (9— ) by the first order terms of

its Taylor seties in a small neighborhood near 6.

f(é)zf(e("))+F(§ -6) 2.32)

The residual vector is (é) =y- f(g(a)) ~ r(H(a))— F(é - 0(")) . Substituting
S(é) = r'(é)r(é) leads to
§(8)=r(6)r(6“)-2r'(6) F(6-6“)+(8- e(">)' F(6-69)F(6-69)@33)
The right hand side of (2.3.3) is minimized with respect to § when
§-6 =F(6-69)F(5-6)r(6)=5"
This produces iterative approximations of 6.
6 = ) 4. 5 @2.3.4)

To use the Gauss-Newton method, one must provide 6 , the initial approximation to
8 . The algorithm will converge provided the first approximation is sufficiently close to the

fitted value, é.

After fitting data to the model presented in Section 2.2, we estimated confidence intervals
for the parameters and for the predicted observations. Sebet and Wild [5] present formulas
for approximate confidence intervals for the model parameters and for a predicted

observation.

The 95% confidence interval for parameter 6, is given by
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6, £(s-c,)" -t(N - P,.025) 23.5)
where 5 is the mean square error and c; is the " diagonal element of (F '‘WF )_l .

The 95% confidence interval for a predicted observation corresponding to age x; is given
by

1/2
Pits -(—1—+ F(FwF)! ﬁ] -t(N - P,.025) (2.3.6)
wi

where f;is the i row of F , i.. the vector of estimated first derivatives evaluated atx, and
Wisa NxN matrix with w, as the i” diagonal entry and all other entries equal to 0.

t(N - P,.025)is the value of Student’s ¢ distribution for N — P degrees of freedom and
probability .025.

The confidence intervals for predicted observations can be used to produce a confidence
interval for IBNR. Based on the assumption that the incremental pure premiums for
different development intervals are independent, the variance of IBNR pure premium is the
sum of the variances of the incremental pure premiums for the remaining development
intervals. From equation (2.3.6) we see that the variance of the incremental pure premium

1 -

for one development interval is s> (— + f/(F'WF) ' f,] . The expected value of IBNR
¥

pure premium is the sum of the expected incremental pute premiums.

3. RESULTS AND DISCUSSION

The model presented in section 2 was fitted to the data presented in section 1. Only data
for the latest 20 calendar quarters was used to estimate parameters. This is consistent with
common actuarial practice of using recent calendar quarters rather than all of the available
data so that predictions are responsive to recent changes in development patterns. We also
used only data for age>1 since we do not need to estimate IBNR for that age interval. Thus,
590 observations were used to fit the model.

We used the estimated parameters to produce confidence interval estimates of IBNR for
each accident quarter.

In section 3.1 we will show confidence intervals for the estimated parameters. The
confidence intervals for predicted IBNR will be presented in section 3.2. In section 3.3 we
present an analysis of the residuals.

3.1 Confidence Interval Estimates of Parameters

The estimated parameters and standard errors for our simulated data are:
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& =3.1994, 5(&)=0.5807
B =-0.0754, s( /3’) =0.0096
7 =29.4446, 5(7)=5.5549
8 =-0.5480, s(6)=0.0767

G.1.1)

A 95% confidence intetval for each parameter is of the form
(é - s(é)t(.OZS,n - p) , é+ s(é)t (.025, n-— p)) . There were 590 observations and we

estimated 4 parameters. The resulting confidence intervals are:

@: (2.0596,4.3392) -
3. (-0.0942,-0.0566
{3 ( ) (3.1.2)
7: (18.5334,40.3557)
§: (-0.6986,-0.3974)

The Mean Square Error from the estimation is 2,987,236.

An advantage of having confidence interval estimates of the parameters is that when
more data becomes available, we can test whether the current parameters should be rejected.
We would reject the current estimates only if the new estimates lie outside the intervals in
(3.1.2). This procedure will lead to more stable estimates of ultimate losses and IBNR.

3.2 Confidence Interval Estimates of IBNR

The estimation of IBNR was performed in two steps. First, we use equaticn (2.3.6) to
calculate an expected value and standard error for the incremental pure premium for each
development quarter until age 40 (for simplification, we assume that this is ultimate). This
results in deflated IBNR estimates. The second step is to find a confidence intetval for the
inflation adjusted IBNR. This was done using a simulation.

Step 1: Predicted incremental pure premiums

The expected value of each predicted incremental pure premium is calculated by substituting
the estimated parameters from (3.1.1) into the model equation,
y=d-exp ( ,éx) +7- exp(&Ax) where x is the age of the development quarter.

In order to estimate the standard etrors, we need the matrix defined in section 2.3:
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0.000000112875  —0.000000001771  0.000000486556 —0.000000010876
-0.000000001771  0.000000000031 -0.000000006728 0.000000000158
0.000000486556  ~0.000000006728  0.000010329411 -0.000000127258
—0.000000010876  0.000000000158 ~0.000000127258  0.000000001968

(FWF)" =

As an example, we will calculate the IBNR prediction interval for accident quarter 2.
x =40 for the remaining development quarter. The expected IBNR pure premium is

3.1994x exp(—0.0754 x 40) + 29.446 x exp (—0.5480x 40)
=.15676.

We will need the above matrix and the derivatives of the model function evaluated at
x = 40 to calculate the standard error of the predicted IBNR. The derivatives are:

56{; = exp(px)
E—
% = exp(6x)

% = yx-exp(6x)

Evaluating the derivatives at age 40 and the estimated parameters, we obtain:

o

—(40)=0.

aa( )=10.0490
2f-(4o) =6.2704

op
1(40):3.02“0‘“’
oy

Y (40)=3.56x10"
26

Let the element in the j* row and k™ column of (F '"WF )-] be denoted m ;. We calculate

j;'(F'WF)_l f; from (2.3.6) as:
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£ (FWF)' f,
o, XY, A, Y
e da " 0 ap P 6}' "™ 3a 86
+my, gf g mzzaf @’ 23@1.1 mz4i'£f‘
8 da ap a/z ap oy p 86
Ly, Ty TS YA
" oy 2 oy a,B B oy 6}/ ®oy 86
+m4|g"3f'+m42 af af 43 @f 6f 44 6f af
36 oa a6 6ﬂ 26 oy 36 96

=3.88134x107"°

The weight isw, = (:ix:'S =50,801-40"* =12,851,749 . The mean squate etror is
2,987,236. 1(586,.05/2) =1.96402 . Substituting this information into equation (2.3.6) we
obtain 0.94925 as the width of the 95% confidence interval for the IBNR for accident
quarter 2. Thus, the confidence interval for the IBNR pure premium is (—0.79249,1.10601) .

The confidence interval for the dollars of IBNR is (—40259,56186). For an accident
quarter with more than one development quarter remaining, we would need to repeat these
calculations for each remaining development quarter and sum the estimated expected values.
Next, the estimated IBNR will be adjusted for loss trend.

Step 2: Including trend

Because we fitted the model to losses trended to the current calendar quarter, the dollars
need to be adjusted to future cost levels. We also need to adjust the width of the confidence
intervals for the uncettainty in the trend.

The trend was estimated from a time series method. The estimated trend had a mean of

.005 per calendar quarter with a standard deviation of .004\/; where tis the number of
quarters projected. We assume that the trend process is a Geometric Brownian Motion.

There are a number of ways to find the simultaneous confidence interval for loss
development and trend. For example, we could use a Bonferronni confidence interval but
this would result in an excessively wide confidence interval. Instead, we performed a
simulation to estimate the variance of inflation adjusted IBNR.

We simulated incremental pure premiums before adjusting for inflation from a normal
distribution with mean & -exp( ﬁx) +7-exp (3 x) and variance given by equation (2.3.6).
We simulated trend factors for each calendar quarter as a Geometric Brownian Motion with
drift .005 and volatility .004. The inflation adjusted incremental pure premiums were

calculated as the product of the simulated unadjusted pure premiums and the simulated
trend factors. Next, the incremental pure premiums were summed over all remaining
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development quarters to obtain IBNR pute premium. The simulation was repeated 10000
times and the mean and standard deviation of the IBNR was calculated for each accident
quarter. IBNR pure premium multiplied by exposures produces IBNR dollars.

Table 3.2.1 shows the results of the simulation. The actual IBNR is the difference
between the age 40 evaluation (which we treat as ultimate here) and the evaluation at the end
of the 40™ calendar quarter from the simulated loss development data. The expected total
IBNR is 30105084. The standard deviation of the total IBNR is 1350093. The 95%
confidence interval for total IBNR is (27458951 , 32751218). The actual total IBNR is
30120821.
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Table 3.2.1
Accident Expected Standard; 95% Confidence Interval Actual
Quarter Exposures Value Deviation Lower Upper IBNR
2 50,801 8,190 24,518 -39,864 56,244 -3,686
3 51,187 16,643 35,835 -53,593 86,879 20,450
4 51,146 26,310 44,192 -60,304 112,925 11,254
5 51,527 36,541 51,941 -65,262 138,344 73,738
6 52,348 49,099 58,839 -66,225 164,422 98,397
7 52,480 61,528 65,232 -66,325 189,381 37,099
8 53,148 75,340 71,800 -65,385 216,065 156,305
9 53,924 91,671 78,552 -62,287 245,629 237,876
10 54,403 109,065 85,433 -58,380 276,511  -95,408
11 54,557 124,874 91,436 ~54,338 304,086 384,465
12 55,083 144,622 96,258 -44,040 333,284 260,118
13 55,292 168,450 103,341 -34,095 370,995 299,600
14 55,899 192,189 108,233 -19,944 404,322 175,632
15 56,067 215,948 115,108 -9,659 441,555 3,570
16 57,025 247,643 123,187 6,201 489,086 237,988
17 57,071 279,736 129,481 25,957 533,515 224,736
18 57,317 311,248 134,933 46,784 575,712 268,971
19 57,907 346,819 143,714 65,144 628,493 712,233
20 58,285 388,878 149,405 96,050 681,706 428,225
21 59,096 433,974 157,772 124,746 743,202 819,832
22 59,193 479,592 165,473 155,270 803,915 930,364
23 59,524 530,342 173,337 190,607 870,076 564,488
24 59,745 583,879 177,894 235,213 932,546 412,411
25 60,427 645,944 188,083 277,309 1,014,580 421,418
26 60,155 705,701 195,557 322,416 1,088,985 699,647
27 60,568 776,239 207,953 368,659 1,183,819 794,518
28 60,708 852,632 215,059 431,123 1,274,140 995,212
29 60,262 925,896 222,578 489,652 1,362,140 944,400
30 60,606 1,012,197 233,755 554,046 1,470,349 945,867
31 60,580 1,109,304 251,368 616,632 1,601,976 1,084,176
32 60,648 1,213,637 258,802 706,395 1,720,879 1,703,397
33 61,159 1,344,114 277,079 801,049 1,887,178 1,107,447
34 61,462 1,492,000 292,032 919,627 2,064,372 1,133,824
35 61,934 1,660,873 312,021 1,049,324 2,272,423 1,882,576
36 61,716 1,858,275 333,112 1,205,388 2,511,161 1,567,491
37 61,837 2,123,409 361,113 - 1,415,642 2,831,177 1,962,887
38 62,285 2,514,004 394,000 1,741,778 3,286,231 1,938,616
39 62,728 3,055,695 450,062 2,173,588 3,937,801 2,836,989
40 63,180 3,892,584 522,958 2,867,605 4,917,563 3,843,696
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3.3 Analysis of Residuals

It is important to examine the residuals from a regression model to check the
consistency of the data with the assumptions of the model. In this section we will look at
plots of the residuals to look for patterns. We will also see the results of a Shapiro-Wilk test
of normality, a histogram and a probability plot.

These tests are shown for demonstration purposes only. The data used to demonstrate
the methodology in this paper is simulated and will pass the normality test. Real data might
not pass tests of normality but if the deviation from normality is not too extreme, then the
estimated confidence intervals are still reasonable.

The unmodified residuals, 7, = y, — 3;, do not have constant variance because the data do
not have constant variance. The tests will be performed on studentized residuals, defined as
r, / std (r,) . Seber and Wild [5] show the following formula for the standard errors of the

residuals.

S’“’(ri)=S'(WL-JT'(F'W}'")'l fi] (33.1)

i

Exhibits 3.3.1 through 3.3.3 show the scatter plots of the studentized residuals against
predicted value, development age, and calendar quarter. The plots do not show any obvious
patterns and the studentized residuals seem to have constant variance. Thus, the weight
function appears to be appropriate and there does not appear to be any reason to modify the
model.

Exhibit 3.3.4 is a histogram of the studentized tesiduals. Exhibit 3.3.5 is a normal
probability plot (calculated using methodology from [6]). The shape of the histogram
appears to be consistent with a normal distribution. The probability plot is neatly linear
which supports the assumption that the residuals have a normal distribution. A Shapiro-Wilk
test was performed on the residuals and produced a statistic of 0.9983 with a p-value of
0.8445. Thus, we cannot reject the hypothesis that the residuals have a normal distribution.
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Exhibit 3.3.1
Studentized Residuals vs. Predicted Values
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Exhibit 3.3.3
Studentized Residual vs. Calendar Quarter
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Exhibit 3.3.4
Histogram of Studentized Residuals
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Exhibit 3.3.5
Normal Probability Plot of Studentized Residuals
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~ 4. CONCLUSIONS

Our model has satisfied the objective stated in section 1.2. The model could be fitted
either to paid or case incurred losses. Since the observations ate incremental pure premiums
and the weights are a function of exposures, the model makes appropriate adjustments for
changing levels of exposures. By using nonlinear regression, we have avoided the need for a
log link and we have been able to keep negative observations in the data. The model appears
to produce unbiased estimates of IBNR and reasonable 95% confidence intervals.

The plots displayed in section 3.3 indicate that incremental pure premiums have an
approximately normal distribution.

The assumptions we made work well with auto bodily injury data. We have assumed that
the data satisfy the usual assumptions of nonlinear regression models including independent
normal etrors. We have also used a functional form that fits our data well but might not fit
other lines. We would like to close with a few suggestions for fitting models to other lines.

The assumption of normal etrors should be reasonable for high frequency lines of
business. The assumption that the errors are uncorrelated should also be reasonable most of
the time. If these assumptions are rejected, there are nonlinear models that may be used.
Seber and Wild [5] discuss models with non-normal and autocorrelated errors.

Seber and Wild [5] has a chapter on growth models which lists many functional forms
other than the form presented in this paper. Some of these models might fit the pure

370 Casualty Actuarial Society Forum, Fall 2006



A Nonlinear Regression Model of Incurred But Not Reported Losses

premiums of other lines of business. Some of the models could be applied to cumulative
instead of incremental data.

Another class of models that will fit pute premium development is generalized linear
models. In this type of model, the development age interval could be represented as a
categorical variable. These models would allow the analyst to consider a great variety of error
distributions and etror correlation structures. One drawback to this approach is that there
are more parameters to estimate which means that the confidence interval for IBNR will be
wider. Dobson [7] is an excellent reference on generalized linear models.
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Appendix A - Simulated Loss Development Data ~ Earned Exposures and
Incremental Case Incurred Losses

Accident Development Quarter

Quarter  Exposures 1 2 3 4 5 6 7 8 9 10
1 50,333 1,244,722 468,457 283,193 68,634 101,440 125,515 159,525 68,010 64,419 40,378
2 50,801 1,417,101 587,121 337,664 95,841 243,190 65,263 94,623 47,772 188,347 31,533
3 61,187 1,143,473 502,816 483,911 174,352 70,477 140,000 86,071 93,975 58,041  -13,132
4 51,146 1,055,200 1,213,499 496,421 393,358 173,547 116,010 101,531 115414 31,102 64,744
5 51,527 1,508,450 834,730 302,691 409,622 423,103 143,476 67,506 146,727 146,017 38,057
6 52,348 1,192,515 1,074,133 478,010 172,336 69,719 -8,197 206,481 221,841 -2,220 170,525
7 52,480 1,067,318 438,952 368,962 214,718 274,665 86,113 39,208 121,683 62,838 8,398
8 53,148 758,275 513,455 255,088 159,199 60,798 102,129 97,269 107,077 134,067 86,292
9 53,924 1,664,156 31,358 491,390 196,506 202,088 27,387 48,404 -41,016 77,453 57,713
10 54,403 1,537,825 422697 301,334 210,821 254,271 149,386 225,652 104,121 81,082 76,196
1 54,557 2,026,667 738,848 252,783 251,618 193,254 96,790 170,517 106,026 -121,070 152,682
12 55,083 1,296,855 495,027 439,098 125722 96,000 111,872 213,356 188,106 123,309 67,820
13 55,202 1,095,401 821,508 552,503 226,522 145695 389,146 333,936 118922 136,678 104,544
14 565,809 2,078,843 786,272 529,533 329,974 179,953 135,260 180,141 106,218 165,608 63,277
15 56,067 1,952,667 859,868 632,198 264,522 231,370 216,887 22,205 117,571 81,594 149,627
16 57,025 1,258,033 650,068 387,309 183,986 152,797 244,063 68,088 103,095 56,465 80,728
17 57,071 1,627,621 320,911 303,800 327,057 236,332 161,152 205,081 147,898 288,069 127,213
18 57,317 1,681,507 446,643 359,407 248,809 270,162 229,530 58,483 <7112 246,925 85944
19 57,807 2,508,300 1,018,661 99,969 436,712 156,983 241,768 303,837 -9,729 194,850 181,037
20 58,285 1,238,641 812,792 542,250 329,100 246,551 61,085 173,928 17,813 183,213 64,235
21 59,096 1,793,043 482,793 546,164 313,044 353,857 327,614 90,275 235,255 32,150 -8,168
22 59,193 1,433,225 532,545 589,099 306,945 330,835 50,915 285,934 84,085 48,543 144,367
23 59,524 1,616,012 753,758 581,957 365421 217,070 239,708 -63,906 191,485 107,079 181,666
24 59,745 1,803,164 519,924 295,180 225283 222,089 122,650 -57,787 170,330 46,008 56,351
25 60,427 1,347,360 328,992 357,630 157,580 135800 80,274 117,487 208,666 121,005 179,925
26 60,155 810,643 604,364 214,555 155,748 114,459 93,877 397 95,471 40,225 82,597
27 60,568 1,850,892 980,308 613,338 360,051 208,488 272,379 196,454 107,684 175612 251,126
28 60,708 3,006,298 1,044,056 843,024 581,194 261,303 209,512 255,504 255482 95,327 -22,389
29 60,262 986,119 672,498 590,640 43,019 -8,877  -32,562 119,151 17,117 205,731 144,380
30 60,606 2,630,383 1,101,593 805,938 238,565 228,041 253614 194,571 157,225 190,266 -153,391
31 60,580 1,515,313 601,512 511,685 304,718 142,590 143,733 206,446 79,617 47,845 62,197
32 60,648 3,517,516 1,043,147 260,427 466,379 114,732 589,058 125,985 381,048 361,346 9,249
33 61,159 1,673,500 513,290 333,639 305302 308,506 232,796 81,397 104,474] 119,655 -44,314
34 61,462 1,207,813 739,162 524,302 392,092 363,797 230,703 398,177] 149,413 19,749 166,569
35 61,834 2,202,629 528,671 378,846 162,033 150,420 225454| 174,285 201,873 193,199 7.944
36 61,716 1,051,422 470,986 415687 263,161 151,337  -23,299 23,005 183,878
37 61,837 2,355,630 1,302,388 824,821 K 117,519 208,110 162,036 207,896 141,836
38 62,285 2,016,667 990,682 _ 153,863] 290,379 -10,658 120,430 7,588 208,320 71,027 123,875
39 62,728 1,468,675 925,175 157,502 266,297 252,103 380,364 226,500 76,920 43,621 26,222
40 63,180 1,952,713] 712,475 446,253 551,239 361,511 276,575 355,898 -8,263 66,140 96,505
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Accident Development Quarter

Quarter Exposures " 12 13 20
1 55,132 56,286 39,158 -1,923
2 97,8959 120,746 66,487 72,151
3 91,825 66,621 -46,239 7,916
4 166,882 134,068 17,951 -3,207
5 119,089 -11,801 42,615 -16,392
6 16,662 112,356 -26,328 99,144
7 95,445 53,315 65,328 51,725
8 166,630 -14,316 19,748 61,378
9 39,927 78,793 150,847 39,645
10 54,403 52,923 759 8435 45026 37,050 126682 -15224 47,275 54,888 10,951
1" 54,557 118,521 48,258 97,730 -6,982 168,831 30,198 100,201 -11,399 27,865 57,843
12 55,083 52,455 117,838 19,476 61,249 42,336 6,884 -42,245 5514 40494 37,779
13 55,292 108,005 101,991 50,016 -10,580 23,714 -14,118 101,221 66,648 131,158 33,186
14 55899 31,057 -37,318 104,948 67,958 -7,386 95,217 -34,104 130,890 6,796 28,246
15 56,067 94,894 -5199 55050 -107,620 33,005 35708 113029 -23,751 33,324 82,253
16 §7,025 34,439 -82,833 -7,708 78,608 49,459 91,763 -36,547 48,994 3417 39,000
17 67,071 119,743 127,702 120,055 98,655 33,349 36,053 79,800 72,189 80,971 2,954
18 57,317 -42,024 90,633 88,686 89,706 102,187 89,757 114,280 125545 21,101 58,920
19 57,907 26,467 57,494 37,776 -1,643 120,996 -11,362 45,765 162,032 7,833 9,218
20 58,285 54,460 168,172 60,942 33469 43,582 95786 136,815 7,129 148,101 8,598
21 69,096 108,307 118,119 130,671 12,719 66,407 49,728 103,805 -23,377 13,446 24,913
22 69,193 170,747 121,252 122,821 -25894 96,750 89,657 52,945 120,953
23 59,624 205422 -10,765 87,080 7915 20,942 82,590 86,539 3,828
24 59,745 57,883 -9,148 57,563 76,990 72,755 -8,698 -11,311
25 60,427 98,081 67,455 30,353 184,721 26,902 80,394 2,462 19,806
26 60,155 -5,192 53,749 114,555 37,095 _ 35334 7,140 62,927 39,025 48,072 -549
27 60,568 166,693 82,674 79,356 64,843 22,823 76,726 79,929 35373
28 60,708 188,567 168,677 47,794 96,191 128,506 49,566 -28,13¢ 58,887
29 60,262 104,592 80,640f 95315 34,245 48,974 81604 39,399 32,106 55,537 46,734
30 60,606 99,495| 58402 48,408 56,793 4,45t 19,091 -5,27¢ 19,722 63,159 39,365
31 60,580 139,467 180,552 45404 72,414 3441 38563 126913 50,865 37,834 56,248
32 60,648 79,096 136515 178,105 91,579 20,384 100,918 56,855 43,922 -7.463 34,194
33 61,159 54,143  -81,040 20,949 1,608 60,381 111,910 13,739 102,704 27,132 104,321
34 61,462 97,706 108,206 14,850 59,003 54,180 69,831 65,128 23,821 43,958 -11,047
35 61,934 59,384 69,087 148,809 136,211 71,394 4,055 126,075 52,993 84,082 56,630
36 61,716 139,013 56,147 92,609 125058 7,067 90,951 101,031 27,566 17,285 58929
37 61,837 4,048 253659 157,930 68,979 100435 19,044 -20,740 51,891 112978 -55242
38 62,285 145307 110,498 149,791 87,189 164,908 27,941 11,832 73,887 77,084 14,150
39 62,728 133,332 164,332 -10,897 108,455 136,006 141,784 83,994 79,801 71,479  -24,821
40 63,180 120,876 1,868 149,325  -48,560 52,798 85,751 68,371 100,236 -48,006 133,049
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Accident Development Quarter
Quarter Exposures 21 22 23 24 25 26 27 28 29 30
1 50,333 1,844 47,936 8,281 51,891 37,771 -4,045 27,774 14035 871 56,156
50,801 21,390 63,117 23327 -12069 14,680 41,491 15434 11,107 19,559 10,661
3 51,187 54,081 7,552 40,410 30,494 5797 730 29,749 25467 30,419 7,913
4 51,146 76,821 112076 30,277 20,160 57,926 74,676 -23,786 20,074 6,919 18,023
5 51,527 43,306 960 47,240 -7,478 -5,993  -31,465 45344 28,740 26,218 10,956
6 52,348 8,403 24816 14,994 66,326 7418 22,099 3,600 46,942 78616 16,230
7 52,480 35360 38,631 16,046 53,286 18,835 12,820 23495 5427 33,480 2,394
8 53,148 27,648 103,471 2,524 -3.970 74,300 28,587 -3,460 9,452 -8,909 -6,737
9 63,924 54,178 71,192 59,018 52,434 -25918 50456 76,803 43,181 -2,009 17,733
10 54,403 33,351 24,839 42,521 26,870 17470 10,409 -7,882 -29,828 2,882 200
1 54,557 65973 -5,380 53969 15,744 -3,427 4,913 8,390 -24,473 -32,538 62,557
12 65,083 63,685 -10,583 64,637 78,643 30,741 11,856 15,134 1,767 31,248

13 55202 82,088 7,445 121,478 -32,097 41,168 47,156 23,737
14 65899 50,701 -22139 55822 44,064 65,745 -11,011 8,634
15 56,067 18,731 14,131 44,114 86,453 31,838 17,799 -2,580 34,604

16 57,025 -22,239 89,127 13,948 20,393 -2.351 8,374 31,029 39,339 -8,451 1,222
17 57,071 57,279 36,946 39,534 90,362 14,387 -29,765 30,222 16,053 17,682 35,591
18 57,317 79,561 77,137 29,128 -40,416 46,964 9,795 23,656 43,627 -433

19 57,907 -51,199 629 38,859 -20,756 54,574 72,098 36,775 39,504 31,052
20 68,285 -8,134 54269 25913 16,757 8,755 7972 43674 -3,448 64,314
21 59,096 -34,942 88,190 124,206 62,976 77,091 39,748 40,729 43,609 89,136
22 59,193 11,060 76,017 61,132 105644 56,274 15014 -2,897 80,213 53917 118,331
23 §9,524 20,866 45800 38,868 68,925 7,687 61,021 30,638 39,572 45399 -11,739
24 69,745 456,041 33,062 16,682 40,849 -18,453 7.048 58,613 48,743 -17,040 8,158
25 60,427 25489 -35072 29,365 1,481 46,825 43 39,986 80497 51,650 -27,268
26 60,156 136,480 50,523 73,985 -15999 21,991 43,033 32,821 8902 29,994 41,090
27 60,568 -2,199 34,675 135,124 6,514 15272 62,756 66,009 -10,230 -37,723 3,901
28 60,708 115,933 100,646 55828 25,764 -3,515 9,366  -23,401 89,137 46,630 75,698
29 60,262 70,050 48,884 59,346 53,211 3,141 6,048 29,235 13,746 38,350 43614
30 60,606 100,823 -80,196 -23,695 19,793 20,686 -29.950 -5,204 99,580 36,328 56,872
3 60,580 42,546 19,448 19,949 -20,940 17,116 55736 756 21,693 8,254 48,025
32 60,648 74650 86,062 71,446 138,206 -8,941 75,564 27,495 84,913 -26,461 74,757
33 61,159 16,0456 110,447 129,009 -45715 68,666 7,394 20,046 33,158 7,386 18,884
34 61,462 4,308 -26,370 107,835 127,369 15493 -50,769 -7,521  -25823 -1,506 18,283
35 61,934 83,466 73,782 56,185 -32,328 -38556 27,389 -11,618 54,166 26,555 -750
36 61,716 -27,140 93,574 66,551 13,086 30,072 -12,666 -11,496 -7,722 13,375 17,919
7 61,837 30,283 14,616 -30,671 -60,204 31,067 15,254 78,382 95,606 7,715 9,987
38 62,285 95225 114,060 54,618 -67,884 7,563 -31,075 -36,590 9,379 78,245 14,113
39 62,728 4,900 -81 43622 78,577 92,489 28,945 -16,724 67,108 17,473 -6,230
40 63,180 -21,730 80,710 55218 15476 39,584 3.858 18,112 22462 13,209 33,635
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Accident Development Quarter
Quarter Exposures 3t 32 33 34 35 36 37 38 38
1 50,333 34,276 3,835 43,71 -1,640 29,076 13,319 -2,630 8,678 3,188

50,801 27,835 -5203 29,996 -2,056 -5,783 18,323 -5,364 5,188 19,082

51,187 17,346 51,332 18,327 1471 34,161 24299 -18,628 20,407 5,774
51,146 23,792 20,703 18,035 26,068 48,501 30,317  -20,445
51,527 52,198 -30,522 43,073 32,051 34,899 24,632

20,537 25957 12,417
19,471 -3,988  -10,108 9,185
40,319 12113 -13,820 42,130 35,297
52,833 26,726 32,933 5232 29,185 37,027 45244

52,480 15,761 7,390
53,148 3,334 24,196

3

4

5

6 52,348 35,800 10,345 46,979
7

8

9 53,924 12,418 56,958

10 54,403 -31,285 -54,667 -16,646 15,867 15,554 -9,313  -13,437 29,191
11 54,557 95,758 6,159 7,910 61,208 28,223 28,531 49,899 16,681
12 55,083 39,707 25526 25,741 13,760 17,106 48,171 1,081 16,032 24,045
13 55,292 20470 17,379 26,954 5,100 45000 38,726 -19,480 78,077 44,212
14 55,809 22,377 1,924 -9,766 47,354 18,223 454 6.891 20,907 2,586
15 56,067 -35330 -18,262 -26,548 38,756 13,302 9,275 -3,005 47,269 -34,312
16 57,025 12,632 12,743 38,517 4,169 1291 -1,785 -20,735 78,244 30,557
17 57,071 38,585 45,501 11,315 -26,333 15402 24,202 -25715 11,080 9,528
18 57,317 20486 28,330 4,385 -14,482 35357 22,167 -4,089 2,423 1,184
19 57,907 68,328 82874 121,116 -32,249 19,414 73,240 23233 39,217 78,051
20 58,285 42,726 28,751 58,837 7,617 7172 72,846 1,544 -5,147 29,124
21 59,096 33,318 44,156 -39,904 26,104 50,092 10,920 13,243 23,352 35,124
22 59,193 -24,229 54,258 48,576 51,990 44,191 48508 57,887 -6,941  -18,202
23 59,624 48,463 18,459 7.085 13,631 6314 16,901 46,450 -18,939 43,202
24 59,745 35,148 16,789 -7,315 -9.671 21,791 14,107 28,696 9,512 8,829
25 60,427 -16,598 26,696 11,564 14,065 -20,491 2,041 18,738 47,090 -8,041
26 60,155 -8,016 52,310 915 813 56,718 -15282 -26,165 20,384 20,458
27 60,568 22,553 42,332 9,009 -7.442 2,940 93,083 88,561 46,159 5,060
28 60,708 -14,237 65453 25,751 12,368 -49,710 41,335 -49,919 -30,620 69,756
29 60,262 49,917 32,539 -6,986 48,452 15625 28,630 15743 23,348 -5,595
30 60,606 60,504 65845 93,343 -27,623 -3,656 51,672 33,114 50,926 101,765
31 60,580 -47,046 46,028 24,302 56,096 8,692 27,322 28,081 6,079 -23,284
32 60,648 63,634 122,152 -1,646 -37,185 -19352 96,570 10,367 35026 41,909
33 61,159 30,616 8,972 11,306 39,325 10,365 32,535 50,209 76522 34,812
34 61,462 19,812 3141 33676 12,108 -21,363 18,639 44,897 46,331 -32,125
35 61,934 -30,866 32,254 88,375 36,930 62,025 72,476 54,286 -50,512 12
36 61,716  -35,620 -2,115 31,594 37,150 -2,481 26,166 14,732 19,708 19,340
37 61,837 35752 60,881 -13,187 -21,12% 39,280 -1,210  -23,822 11,761 42,508
38 62,285 -10410 21,570 35964 -13,033 -26,726 -20,093 -11,908 65799 -11,499
39 62,728 70,218 -25,147 46,379 5606 39,349 -13,438 70,889 53,260 -18,834
40 63,180 65,404 13,053 28,027  -40,448 -2,637 3,059 -7,238 41,295 -7,643
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-5,821
-3,686

14,676
1,381
-39,868
62,164
-1,869
15,405
8,695
736
17.830
16,702
9,911
7,758
-3,364
-779
36,913
60,888
-12,467
8,197
14,389
-21,329
56,548
15,567
-23,085
18,977
-262
11,831
42,937
38,729
20,008
50,868
25,278
-14,164
-6,728
5,106
39,751
-2,260
-12,364
14,249
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Appendix B - Simulation Model Used to Generate the Data

The simulation model used to generate the loss and exposure data is based on method 3
in Narayan [4] with some modifications. In this appendix, we will present an outline of the
model and the SAS code used to produce the data. Note that the SAS program will not
produce the same data every time it is run because the random number seeds were
randomized.

Outline of the simulation methodology:
1. Initialize the values for exposures at 50,000 per quarter and the inflation index at

unity.
2. For each of the 40 accident quarters:
a. Generate a random number of exposures from a Brownian motion process.
b. Generate a random frequency from a Normal distribution.
c. Generate a random number of claims from a Poisson distribution with a
parameter equal to the product of the exposures and the frequency.
. Generate an inflation index from a geometric Brownian motion.
e. Inidalize uldmate loss to zero. Then, for each claim
i. Generate a random loss severity from a Lognormal distribution,
multiply it by the inflation index and add it to the ultimate loss.
3. For each accident quarter,
a. calculate 40 random increment factors from the formula:

incr =.33-age™® + (.07 -age™’ ) - Normal (0,1) . This is not guaranteed to

add up to unity but the simulated values add up very close to unity. This
procedure is similar to step (i) in Narayan’s method 4 except that we are
using a random decay pattern instead of a constant pattern.

b. Multiply the ultimate loss by the increment factots to produce random
incremental losses for 40 development quarters.

SAS code:

*random number seed;
$let seed=0;

*exposure parameters (Geometric Brownian Motion) ;
$let expostart = 50000;

%¥let grthmean 0.005;

%let grthstdv .005;

*frequency parameters (Normal);
$let frgmean = .01;
%¥let frgstdev = .001;

*untrended severity parameters (LogNormal) ;
%¥let mu = 8;
$let 58 = 1.4;

*inflation parameters (Geometric Brownian Motion);

$let cpi0 = 100;
$let cpimu = .006;
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$let cpisig = .0035;

/* First data step - generate exposures and ultimate losses for 40
accident quarters.*/

data trii;

*initialize exposures and cpi;

expos = &expostart;

cpi = &cpio;

do agtr=1l to 40;
*generate exposures by brownian motion;
expos = round{expos * (1 + &grthmean +
&grthstdv*rannor (&seed))) ;

*generate a normally distributed claim frequency;
freq = &frgmean + &frgstdev*rannor (&seed);

*generate a Poisson number of claims;
clms = ranpoi (&seed, freg*expos) ;

*generate an inflation index by geometric brownian motion;
cpi = cpi*exp(&cpimu + &cpisig*rannor (&seed));

*calculate aggregate loss (ultloss);
ultloss = 0;
do clmnum = 1 to clms;
*calculate loss severity and add it to ultloss;
ultloss = ultloss +
round (exp (&mu+&s*rannor (&seed) ) *cpi/&cpio) ;
end;
output;
end;

proc sort data=tril; by aqtr;
/* Second data step - calculate incremental incurred losses for 40
development quarters for each accident quarter to produce a decumulated

loss development data set. */

data decumtri;

set triil;
do age=1 to 40;
decay = .33*age**(-1.25) + (.07*age**(-.7))*rannor (&seed};

incr_inc = ultloss*decay;
time = aqtr + age - 1;
output;

end;

run;
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Multilevel Non-Linear Random Effects
Claims Reserving Models
And
Data Variability Structures

Graciela Vera

Abstract
Characteristic of many reserving methods designed to analyse claims data aggregated by contract
or sets of contracts, is the assumption that features typifying historical data are representative of
the underwritten risk and of future losses likely to affect the contracts. Kremer (1982), Bornheutter
and Ferguson (1972), de Alba (2002), and many others, consider models with development
patterns common to all underwriting years and known mean-variance relationships. Data amenable
to such assumptions are indeed rare. More usual are large variations in settlement speeds, exposure
and claim volumes. Also typifying many published models are Incurred But Not Reported (/BNR)
predictions limited to periods with known claims, frequently adjusted with “tail factors” generated
from market statistics. Of concern could be analytical approach inconsistencies behind reserves for
delay periods before and after the last known claims, under reserving and unfair reserve allocation

at underwriting year, array or contract levels.

As applications of Markov Chain Monte Carlo (MCMC) methods, the models proposed in this
paper depart from the neat assumptions of quasi-likelihood and extended quasi-likelihood, and
introduce random effects models. The primary focus is the close dependency of the JBNR on data
variability structures and variance models, built with reference to the generic model derived in

Vera (2003). The models have been implemented in BUGS (http://www.mrc-bsu.cam.ac.uk/bugs)

Keywords: Markov Chain Monte Carlo, Non-linear Random Effects and GLM, Reserving.

L. INTRODUCTION

Insurance data reflect and react to financial uncertainty associated with external
events, quantifiable time varying factors such as inflation and interest rate fluctuations,
and non-quantifiable factors such as variations in litigation practices and underwriting
policy terms. In an interesting historical account of legislative changes introduced in
Israel to deal with inflation, Kahane (1987) illustrates how external events can be given

functional interpretation in a reserving model. Further examples can be found in Taylor
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(2000). Data distortions due to external events could undermine all stochastic
assumptions. Concerned with the analysis of claims data, from the simplest aggregation
levels, such as class of business, to multiple-nested groups, this paper deals with the
construction of claims reserving models capable of capturing variability structures in a

claims portfolio.

Hierarchical or multi-level claims reserving models are potential source of wide-
ranging contribution to claims portfolio analysis beyond reserving. Identification of the
causes of data variability with reference to hierarchical model structures could provide a
statistical framework for parametric analyses of claims across a number of underwriting
years. This would enhance our ability to construct more discriminating models, set
initial parameter values, review and update our assumptions on risk premium
calculations, related management strategies for commutations, portfolio composition,

analysis, etc.

1.1 Research Context

As one of the simplest claims reserving methods, the chain ladder has motivated an
extensive body of work intended to establish statistical basis for the problem of
reserving. Models that fall within the category of generalized linear models (GLM)
(McCullagh and Nelder (1989)), such as Renshaw (1989), Renshaw and Verrall (1998),
Verrall (1991), Wright (1990), Mack (1991) and many others, have extended the
research beyond assumptions of lognormality and explored applications from
exponential family distributions. Carroll (2003) remarks “there are many instances
where understanding the structure of variability is just as central as understanding the
mean structure”. The /BNR definition given in this paper is integral to the definition of
the model itself, and its value is highly sensitive to model specification. Hence, the
empbhasis of this research is in the identification of suitable representations for the mean
and data variability structures beyond assumptions of known and specific mean-variance

relationships.

Reserving model structures depend on the intended use of the predicted reserves and
on the sector of interest in the claims portfolio, such as insurance class, contract, specific

loss, etc. The data assessment should determine the selection of the analytical approach.
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For instance, an insurance contract provides cover against the hazards listed in the
contract. Premium calculations reflect policy management expenses, expected returns
and risk premiums for all the perils covered by the contract. Risk premium analyses, in
general, are carried out by peril, ignoring the fact that a particular event could
simultaneously hit more than one kind of cover. When reserve analysis of all perils with
a single model is viable, it could deliver, for example, relative cost measures capable of
generating more competitive commercial premiums, hence allowing cover assessment

on statistical basis, identification of cross-subsidies and unexplored niches, etc.

Within the context of hierarchical models, claims data can be differently interpreted
depending on their levels of aggregation. For instance:

o Each underwriting year data set could be described as a set or cohort of
longitudinal data.

e A claims array could be considered single-level longitudinal data for more than
one subject.

e A book of business segmented by class, type of loss and underwriting year,
could be treated as multilevel longitudinal data or as multiple nested groups of

single level longitudinal data.

Davinian and Giltinan (1993 and 1996) provide an introduction to the theory of non-
linear random effects models and an overview of various techniques for the analysis of
non-linear models with repeated observations. More recently, Pinheiro and Bates (2000)
reviews the theory and applications of linear and non-linear mixed effect models to the

analysis of grouped data.

In this paper it is shown that the generic model in Vera (2003), briefly outlined
below, is key to the extension of random effect models to the analysis of reserves. If the

claims process for underwriting year w is reported at times ¢,1,.., such that
0<1 <1, <..<t,,and 1, is the final settlement period, the generic model is given in terms

of a percentage cash flow and a ultimate claim amount functions, denoted respectively

by P, and C,. B, = ].n(w, z)dz, where z(w,7)is a probability density function taking
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L
values from positive real numbers. S,, =1-£,, = Ilt(w,z)dz, P, <1 for j<e and

P, =1 otherwise. Finally, A

w.t;

and H,, are the instant and cumulative hazard rate

functions, defined for underwriting year w and payment year r (r = w+ delay time - 1) by

h - a(ln (] ~ P‘"-’ )) = Cw (apnz (1 l)
et & IBNR, .\ Bz ). .. '
Ter-w+l

H

wr—wil = In (1 - P--,r-m| )

Hence, the following are alternative representations of the claims process for cumulative

datay, . ..
Yrwes = CuPrroas (1.2)
Yeroon = Cu(1-exp(-H, ) (1.3)
Y =Ca (1= 5, ) (14)

Equivalently, for incremental data y,_,_,,,

Vurown =C* (Pw.r-ml =P aa ) (1 5)
Yur-wn = C, (exp(-Hw,“ )_ exP(‘Hu-.r—un )) (l 6)
Vugown =C, *(Su‘.r—w ‘Su‘r—wﬂ) (17)

The underwriting year and array /BNR and reported /BNR projections are respectively

lBNR(wr —w+1) = Cusu =W+l
1.8
IBNR(z ZIBNRH rmel) (1.8)
RIBNR(wf w+l) =IBNR(wr —w+1) (C Suf wel T wr—uwl) (1 9)

RIBNR(z)= ZRIBNR(

w=l

W= u+l
where u is the number of underwriting years in the array. RIBNR links the reserving

analysis to the accounting processes, by adjusting the IBNR by the difference between

the total claim amount incurred to date and its estimate. Due to the additional noise
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induced by the adjustment, (1.9) is only applied in the final stages of the reserving
analysis. In contrast to many published reserving methods, an important aspect of the
models is the unrestricted /BNR projection periods, since the period before the last claim
is generally unknown. The above equations could make explicit, and potentially
highlight, the sources of data variability. Settlement speeds differences between
H or S

underwriting years should be captured by £, Although exposure

LT=n+] 3 w.r-u+l w.r=n+]®
levels are largely determined by underwriting volumes and contract terms, neither
necessarily random, to accelerate convergence and formulate the final model variance

function, random effects are introduced in C,. When more than one claims array are

analyzed, the additional aggregation level and source of variability is array, indexed by

subscript r.

1.2 Objective

The examples’ aim is to show that more than one model could fit historical data, but
not all may reliably predict the reserves. The reliability of the JBNR and ultimate claim
amount predictions depends on the models’ capacity to extract from the data claims
volume and settlement speeds measures. This is possible when the variability of both
can be represented parametrically and formulated into the variance model. The scope of
the models is made evident by their formulation and by the data. As the variability in
settlement speeds and claims volumes increase the underlying assumptions of GLM are
no longer sustainable, and more complex variance models and random effect parameters
for the mean response become essential. To illustrate the process of constructing
variance models two data sets are selected. One is a claims array simulated from a
mixed portfolio, and the second consists of three arrays simulated from a marine hull,
marine cargo and aviation hull portfolios. The second, selected to exacerbate the
variability encountered in the first, in addition to large claims volume differences

between underwriting years, contains also 20 negative incremental claims entries.

Since the concepts of population models (Zeger, Liang and Albert (1988)) are
intended to average random variability between subjects, they are implemented around
the percentage cash flow function. They can be used to obtain average (or array) /IBNR
predictions for a given ultimate loss. Other array or average results are the weighted

average array or portfolio hazard rates. They provide thresholds, useful to guantify the
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impact on the claims portfolio of excluding from it underwriting contracts associated

with particular underwriting years or arrays.

1.3 Outline

The paper structure is as follows. Section 2 introduces random effect models for one
array with a general formulation of non-linear random effects models, and translated
into a Bayesian framework in section 2.1.1. Noted in section 2.2 are amendments

necessary to formulate multi-array models.

The models selected to analyze the two data sets are presented in sections 3 and 4
respectively. Denoted 1.0 and 2.0, in section 3.1 two preliminary models for one array
are given, followed by numerical examples in section 3.3. The examples identify 2.0 as
the basis for further analysis to construct the final models. In section 3.4.5 the results
from two validation and two final models are discussed. Also in two stages, in section 4
multi-array models are constructed for two mean response functions denoted
respectively '7.0 and 8.0. The preliminary models, used to establish data variability
structures, are introduced in section 4.1, followed by numerical examples in section 4.2.
For mean response functions 7.0 and 8.0, results for precision parameters o*, o? and
o? are obtained, identifying the three model versions by (a), (b) and (c). The final
models, defined in section 4.3, are analyzed in section 4.5. They emphasise the
contribution the generic model makes to the analysis of reserves, and to random effects

models and variance models in general.

Section 4.4 extends the claims array average percentage cash flow definition given
in section 3.2 to introduce portfolio model average for the percentage cash flow. As
immediate by-products of the reserving analysis, hazard rates are discussed in section
4.6. The claims’ hazard rate profile, essential for further portfolio analyses, can be used
also as a portfolio management template. Discussion on the contribution made by the

models proposed is given in section 5.

For the models in section 3, the results are fully reported in appendix A. Given the
size of the data used in section 4, the reported results in this section are restricted to
IBNR and ultimate claim amount projections for the selected preliminary and final

models.
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2. GENERAL FORMULATION OF NON-LINEAR RANDOM
EFFECTS MODELS

In non-linear hierarchical models, inter and intra-underwriting year variations are
analysed as a two-stage process. In the first, the intra-underwriting year variation is
defined by a non-linear regression model for the underwriting year covariance structure.
In the second stage, the inter-underwriting year variation is represented by both,
systematic and random variability. The models can be constructed within a Bayesian
hierarchical structure by noting that the intra-underwriting variation is associated with
the sampling distribution, while the prior distribution is relevant to the inter-
underwriting variation. Because the models’ notation will depend on the number of
aggregation levels, in sections 2.1 and 2.2 the array and multi-array analytical

frameworks are respectively given.

2.1 Analytical Framework For a Claims Array
For the purpose of defining the general model, ignoring whether claims are
cumulative or incremental, the observation at development time ¢ of response vector for

underwriting year w is simply denoted by y,,, and the model is defined as follows:

Vs = Moy ()4 60, 2.0

where y,, is a non-linear function common to the entire array, while parameter vector ¢,
is specific to underwriting year w. r=4,...,1, ; with ¢, representing the last period with

known claims to date, w=1,...,u, and  is the number of cohorts or underwriting years in

the claims array. Hence

={:yu 0o Yo, ]T

Mo =[ Bt T
T
£, [sw.,‘ - ]

and

cov(e,)=0o’R, (2.2)

R, is the intra-underwriting year covariance matrix for underwriting year w.
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Inter-underwriting year variation accounted by ¢, is assumed to be random and, rather

than simply regarding ¢, # ¢, for i = w, the model represents
$.=A.5+Bb,

where S is a p-dimensional fixed parameter effects vector, and b,, is a g-dimensional
underwriting year or random effects vector. Parameters b, are independent and
identically distributed with zero mean and variance covariance matrix ¥ . Finally, 4,
and B, are (m,xp) and (n,xq) design matrices for the fixed and random effects
respectively. While missing data from the earliest payment years and irregular reporting
time intervals are allowed by the model formulation, the code and model specification

for data given at regular intervals are simpler. The length of the response vector for the

array is M =3 n, and

o
y=[yoor] ¢=[4..8.1 L=diag[L,,..%,]
p=ltnn)  b=[t.8]]  R=diag[R,..R,]
e=[e6] B=diag[B,..,B,]
A=[4,. AT
Hence, the overall model becomes
E(y)=u(9)
var(y)=o’R
¢=AB+Bb 2.3)
b~(0,X)

Corresponding to the two stages in the hierarchical models are two possible types of
inferences or derived results: array and underwriting year cohort. Parameters common to
all underwriting years relate to the array inferences, while underwriting year parameters
measure underwriting year deviations from the claims array mean. Array inferences are
generic when they represent insurance classes, and can help reassess or draft
underwriting contracts, for instance. Alternatively, underwriting year parametric
structures can set foundations for more discriminating premium rates reflecting

systematic trends evident in the losses experienced. The latter can be viewed as a

continuous calibration process.
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Unless a book of business is closed, the number of observations in the most recent
underwriting years could restrict the choice of viable variance and covariance models,
particularly with non-linear model structures. Inferences on parameters of non-linear
mixed effects models implemented in S-Plus (Pinheiro, Bates and Lindstrom (1994)) are
based on the linear mixed effect model approximation of the log-likelihood function.
This relies on the restricted maximum likelihood estimates derived from asymptotic
results and on the approximate distribution for the maximum likelihood estimates. Since
the maximum likelihood estimates in the linear mixed effect models are assumed to be
asymptotically normal (Pinheiro and Bates (2000), Lindstrom and Bates (1990) and
others), implementations with NLME library have to be approached with care to meet
the criteria of the generic reserving model. Alternative assumptions are also considered.
In non-parametric models the distribution of the random effects is left unspecified,
hence completely unrestricted. Escobar and West (1992) propose a non-parametric
approach, where ¢ are taken from distribution classes provided by the Dirichiet
processes. Wakefield and Walker (1994) consider a non-parametric approach when
random effect parameters are suspected to be neither normal nor Student t distributed,
and allow for multimodality and skewness. Beal and Sleiner (1992) use a mixture of
normal distributions and Wakefield (1996) a multivariate t-distribution for the random
effect parameters and lognormal distribution for the response. The heavier tails in the t-
distribution accommodate outlying cohorts. To define the parameters it is necessary to
establish the curve’s behaviour with parameter value changes, categorising the
conditions, if any, for convergence, divergence, discontinuities etc (Ratkowski (1990)).
The models’ capacity to predict reserves depends on the stability of the projected curves,
which in turn depends on the variance model structure. The most complex are more

easily implemented within a Bayesian framework, as outlined below.

2.1.1  Three-Stage Models With Heterogeneous Intra-Underwriting Year
Variation: A Bayesian Approach
Gibbs sampler application to Bayesian hierarchical models removes obstacles
associated with non-linear multi-parameter structures integration. First to consider the
problem of fully Bayesian non-linear regression is Wakefield et al. (1994). Bayesian

random effects models can be represented by the following three-stage structure:
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First Stage: Intra-underwriting year variation:
It accounts for variability within underwriting years, through scale parameter o*and, in

some cases, through functions V,(¢,,3(r),9) or I, (p), or both, such that ¢,,3 and p are

parameters, 3(¢} is some function of rand T, (p) is a correlation matrix. Hence, given

Yo=u,8,)+5,
for the most general case
R(9,.9.0)=V," (¢,,3().9)T. (0. (¢.,3(r),9) (2.4
So &, are independently and identically distributed with zero mean and

Cov(e, |4,,0.97,p) =0"R,(4,. 9", p) (2.5)

The functional form of R,(4,,9",p) and covariance parameters ¢ ={c,5", p]r are the
same for all underwriting years. Implicit in ¥, (¢,,3(1),.9) are functions of x,(g,) or ¢,

and of some or all parameters in ¢,. If probability distribution function is denoted by

/ then
(yn |¢m§)~ f;_u_,; (yw I ¢u’¢)

Second Stage:Inter- underwriting year variation:

The inter-underwriting year variation in the values of ¢, is represented by
¢.=Af+Bb, (2:6)
The degree of complexity of design matrices 4, and B, will depend on the data and the

percentage cash flow function. Random effect parameters are assumed to be

independent and identically distributed:

by~ foz (8. 1Z) @7
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Zero mean assumption for 5, is not essential and, with software packages such as

BUGS, may not be attainable. Non parametric and semiparametric model specifications

for ¢,can be considered.

Third Stage: Hyperprior distribution:

Definition of parameters 8, and £ completes the model formulation.

(ﬂs§12)~fp,;.x (ﬂ:;:z) (2.8)

The joint posterior distribution of all parameters upon which the Bayesian inferences

are based is

fl'lﬂ.{-h (y I ﬂ’g’b)fblz (b l z)fﬂ.e'.z (ﬂ‘c’z)

Frcsme(BEBZ]y)= JAD)

2.9)

The marginal posterior distributions of interest are f,, (1), £, (61y) and f;,((y).
Implicit in the above are two simpler models:
* For uncorrelated intra-underwriting year observations T, (0)=1, ,, and ¢ = [o, 9’]7 .

¢ If the model is homoscedastic, then T, (p)=R, (4,,9", p) = 1. and {=o.

As a simple example, consider

5T~ N(0,5) (2.10)
and
BIB 2y~ N(5',%,)
=y~ wi((ve) ) @.11)

! vV~ Ga(-g,ﬂ)
2°2

2

where parameters g°,z,,5",v",v,v are known. When a linearization method is used z,

could be replaced by o (X’)'{)_', such that % =g—;

CIf B:li A. , the parameters’
: u
b

wxl

.

conditional distributions for correlated observations are:
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(uZ"+(Z;'+Z" )-1)" (uZ_lE+(2;'+2")_l ﬂ.),

(B1y,0,%,8,,w=1,...u)~N L

(wz+(z3r+2))

(=" 15.0.8.4w=1..u)~ Wf([i'_:(st., -5)(¢.-BY +V'Z']_ - V'J @.12)
(U—z |}’aﬂ,2,¢,‘.,w=l,...,u)~

6l (S5 2 ov+ B~ (0 R0 -0 0.)

w=l

Then, the conditional distributions of g, and $ are

f'_ |».B.E2.08 wei (¢w | ,V, ﬂ’ 2>0'5 (4 w# ’) x

exp( 55 (0= (8] K691 (3, - 1. (8))- 30 P)" (=) JR6r" P

o [ exp(=0.507 (3, = £, (8.)) B @..9.p)(9. ~ £ (8.))
fy]y.ﬂ.:.a.g_.u-l,,.‘u (‘9 | y,ﬂ,2,0,¢,‘.,w= 1»-'1") o« H ( ‘lR @ 7 )I}é )
wal o (8.9 ,p

can be found in Wakefield

My

Variations on the above general model, with T, (p)=1,,

(1996). In relation to the purpose of this paper, in the first stage, where variability
structures are established, the predicted values that contribute to the IBNR(W) (equation

(1.8)) are simply defined as C, Iﬂ(w,z)dz. While for the final models, ., or predicted

losses for underwriting year w, are sampled from the distribution

frppsos (v21.8,%,0.4,) and applied to equation (1.9).

22 General Formulation Of Multi-Array Bayesian Models
Extending the general mode! for a single array, the three-stage multi-array
hierarchical model requires the following notation. For underwriting year w in claims

array », where r=1,..,r, and w=1,..,u,, let the response vector be

Yrw= I:yr,w.ll 3eey yr‘w.l,,’_ ]T
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Hence, for the entire data set

7
y=[yl.l""yl.ul""yrl.l"’yrl.u,| ]

t=1,..,1, are the reporting times, such that 1, denotes the last period with known claims

IEAIAP

for underwriting year w. y  will be replaced by ¥, when the data analysed is

cumulative. The length of the response vector is M, such that », = an, and M= Zn, .

wa) r=l

We write

Vow = b (B )+ 6,
where

$u=A4.B+B, b +B.b, (2.13)

fis a p-dimensional fixed effects parameter vector, b, is a ¢, -dimensional first level
random effects vector and b, a ¢,-dimensional second level random effects vector. b,
and b,, could be defined to have zero mean and variance/covariance matrices ¥, and X,

respectively. Through design matrices 4., 8,, and B, information specific to each

i

underwriting year data set can be brought into the analysis. By replacing (2.6) by (2.13)

the three-stage models accounts also for array variation.

The models in section 3, and those in section 4, show that more flexible covariance

structures could provide insight into the data variability structures by exploring
alternative definitions for ¢ =[a’,9’, p]’. However, to avoid degrading inferences on
first moment components, the final model should assume common parameters ¢ for all
underwriting years and arrays. Hence, the problem consists of identifying any
relationship evident between 3(r), ¢,, 4., or any other function of 4., and the
patterns of variability revealed by parameters ¢ =[o?,9",p] . Outliers could lead to

incorrect inferences, possibly indicate that the claims distribution is in fact multimodal
and the data should be segmented for analytical purposes. Although the models
proposed do not include specific functions to capture payment year effects of the kind

of systematic inflation, they can be easily amended to do so.
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3. MODELS FOR ONE ARRAY
31 Examples Of Preliminary Models For One Array

Two preliminary models, denoted 1.0 and 2.0 respectively, are given below. Both
have a power variance function. However, to assess variability assumptions and
construct the final models, the power in model 2.0 is allowed to change with
underwriting year. With the variance formulation of model 2.0 the standard variance
parameter definition is disregarded, by using instead ¢, =[a, g, p]r, thereby weakening
the inferential capability of the model. Hence, even if the /BNR and ultimate claim
amount predictions for model 2.0 were satisfactory, model 2.0 should be treated as

preliminary and used exclusively for exploratory‘ purposes.

3.1.1  Model 1.0

The first heteroscedastic model is defined as follows:

Yo=n.(8,)+e,
with

(Yw,l

8u08)~ N1, (4),07 1, (8.)°)

such that, ¢ =[o, 9]

exp(L+1,)

3.1
l+exp(D+d_‘ —exp(Kc+kc,,)ln(t')-exp(Kd+kd_,)"t')} 3.1

Hs (¢u) = {

and

ultd = N(00° (. (0*) 1.

ttxv(lb:)

where 1 =(t+ﬂKf'—)} and

0
0
1
0

(=
-0 O O

bo=[hod ke kd, ], b|bLE, ~ MYN(5.E,)
B=[Ks,Ks,,9,L,D,Ke.,Kd) , p|B’ T, ~MYN(F',Z,)
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The hyperprior distributions are Lz ~Ga(0.001,0.001), and
a

1o s - (pn ) () |5 -m{(rm) )

Bl I~ ( ) (5|5~ wi((ax) )

for given parameters g7,5",%;,%;,%.,2". Functions C,, P, and k, describing the

underlying claims process for model 2.0 are:

C,=exp(L+1,)

P, = {l+exp(D+du. —exp(l(c+kcw)ln(t')—exp(l(d+kd“.)‘t')}—l 3.2)

S, =1-P, (3.3)

h,, = (ﬂL’iﬁL’”ﬁ+ exp(Kd + kdw)][l -5’52(“121—%,;@]11‘, (3.4)
t 2

3.1.2 Model 2.0
Inmodel 2.0 4,,(¢,) is given by (3.1), but

()M ) 47

where ¢, =[0,9,9,]. Having included random effect parameters in the variance

function, the following further amendments to model 1.0 are needed:

A,=B =1y
618l ~ N(o,az (s (8™ 1,0, )
b, =[9,.1,.d,.ke,.kd, ], b|b,,%, ~ MVN(b,,Z,)
such that

b,

I~ MN(BTED)  (Z)E - Wi((s =) ,5)

The power parameters in models 1.0 and 2.0 are formulated as multivariate normal,
together with the mean response parameters. The reason becomes evident in section 3.4,

where the relationship between the parameters is analysed to construct the final models.
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3.2  Claims Array Average Percentage Cash Flow Model

Non-linear mixed effect or population models (Zeger, Liang and Albert (1988)) are
intended to deliver population parameter distributions to derive population inferences.
The inter-subject variability allowed by the models assumes that the subject-specific
parameters are identically and independently distributed. The generic claims reserving
model describes the data as the product of functions for the percentage cash flow and the
ultimate claim amount. In the best scenario the ultimate claim amount function would
account for differences in claim and exposure volumes. Since both could be largely
determined by underwriting contract terms, for array inferences to be representative of
the type of peril the contract covers, they are better based on the percentage cash flow

functions alone.

In the example that follows the general formulation of the random effects model, the

(0,%), while observing that alternative

definitions are feasible. In some applications or models it may not be possible to assume
a zero mean for the random effects parameters, particularly when they are defined to
belong to multivariate distributions. BUGS, for instance, cannot handle multivariate

range restrictions, but can accommodate some simpler univariate centering forms.

Replacing design matrices 4, and B, in models 1.0 and 2.0 by 4 and

B respectively, the parameters for the claims array average percentage cash flow model

have to be extracted from the parameter vector given by

w=l

Aﬂ+B( Zb )

Hence, for model 2.0, the claims array average percentage cash flow curve is:

PA_,={1+exp(D+(-};§dw]—exp(Kc+(%gkcw]]ln(f')—exp(Kd+( gkd ]] J}| (3.5)

with 1" defined as before. To ascertain if (3.5) is representative of the array, the curve is
compared to the plots for the percentage cash flow for all underwriting years in the

array.
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3.3  Numerical Examples Of Preliminary Models 1.0 Aand 2.0

Extracted from a book of business containing more than one type of claim, the data
selected for the examples display significant differences in the development patterns and
exposure volumes across underwriting years, particularly evident in the last three
underwriting years. (See graph 3.3.1 and tables A.1 and A.2). Another characteristic is
the zero claims in the first reporting period. To ensure they are not interpreted as
missing data, they have been set to one. This artifice is often necessary with non-linear

models for the mean response or when the mean response is formulated into the

variance.
Mixed Bookof Bisiness
Cumulative Claims Data - Table 3A.2
14.00
1200 '/‘ E
1000 A
1 »
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s 2 s % U Yom 5
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2.m
o
1 3 5 7 ° 1 13 5 17 19
Period

Graph 3.3.1 Cumulative paid claims data aggregated on annual basis.

Of interest in the examples are the repercussions of hierarchical variance models. To
facilitate the analysis of the preliminary models, the /BNR predictions do not include the
accounting adjustment in (1.9) Graphs for observed claims and fitted values for the
preliminary and final models would show that the fitted curves are almost
indistinguishable and very close to the data. However, from table 3.3.1 and graph 3.3.3
observe that the /BNR predictions at underwriting year level for model 1.0 cannot be
reliably used. The plot for the percentage cash flow for underwriting year 4 is unlikely
to converge to 1. The model compensates by producing a higher /BNR. As graphical
representations of spread, location and skewness for error distributions, the box plots

show that, in contrast with model 1.0, with the introduction of parameter 8, in the

variance function, model 2.0 deals effectively with scale variability and with some of

the outliers evident in the quantile plots.
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Ultimate Claim Amount 1BNR (1.8)
Standard Standard
Mean [Mean Sq.| Predictive Interval Mean [Mean Sq.| Predictive Interval
Pred. Pred.
Ervor 2.50% ] 97.50% Error 2.50% 97.50%
Model 1.0
1 4,442,000] 80,410f 4,302,000 4,611,000 95,490] 28990 53,920 161,100
2 4,342,000] 73,480 4.219,000f 4,487,000 46,260 18,980 19,770 87,900
Und 3 2,180,000] 65,470 2,059,000 2.311.000 22,850 14,550 3489 57970
Year ¢ 2,179,000 539,200f 1,889,000] 4,383,000 173,100f 467,000 4.487) 2,116,000
5 6,642,000 115,00] 6,413,000 6,863,000 290,800] 51,360 197.400 397,800
6 10,170,000 153,100 9,892,000| 10,500,000 607,200 85,100 457,700 791,100
7 12.650,000] 131.400} 12.380.000] 12.880.000 676,100 54.630 556.600 774.600
Total | 42.600.000] 607.100] 41.940,000| 44.830.000] 1:912.000] 499.400] 1.546.000] 3.915.000
Model 2.0
1 4,481,000 58.480] 4,373,000] 4,604,000 113.500] 23,960 74,340 168,000
2 4,327,000 48,600 4,233.000| 4,424,000 40,9201 11.260 21,990 66.410
Und. 3 2,165,000 39,650] 2,093,000 2,249,000 16,400 8,756 5,335 38.440
Year ¢ 2,007,000] 54,090] 1.909,000] 2,128,000 31,570 17,560 8,824 79,130
5 6,644,000 88,190] 6,474,000 6,822,000 293,500] 42,590 217,800 382,600
6 10,160,000] 257.300] 9,668,000] 10,700,000 606,400] 144,000 348,000 933,100
7 12.790.000] 348.100} 12.170.000] 13.580.000 771.200] 200.400 458.100} 1.259.000
Total | 42.570,000] 471.100] 41.720.000] 43.590,000] 1.873.000{ 268.600] 1.421.000] 2.502.000
Table 3.3.1 Ultimate losses and JBNR predictive distributions for models 1.0 and 2.0
Model 1.0: Ultimate Claim Amount Model 1.0: Total JBNR
toee ] 7\ I\
I" \\ 1 oea /
ooer /
4 a7 / /
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Model 2.0: Ultimate Claim Amount Model 2.0: Total IBNR
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4
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Graph3.3.2 Kemel densities for ultimate losses and JBNR totals for preliminary models 1.0 and 2.0.
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Model 1.0: Percentage Cash Flow

Model 2.0: Percentage Cash Flow
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Hence, model 2.0 in general, and 9, in particular, should be analysed to formulate the

final variance model. The Kemel densities for ultimate claim amount and IBNR

projections in graph 3.3.2 suggest possible bi-modality, particularly for model 1.0.

Note that a variance derived directly from model 2.0 may not deal completely with the
pattern evident in the plots for the normalized residuals (graph 3.3.3). Portfolio transfers
or account consolidations often produce data sets where the settlement speeds of the
new and old data differ significantly. The quantile and scatter plots point to the second
observation in underwriting years 1, 2, 5 and 6 as possible outliers. These give an
indication that the correction needed in the variance model may involve a function
dependent on delay period ¢. In the next section the variance function for model 5.0 is
derived form the output of model 2.0. With the variance function for model 6.0 it is

aimed to deal with remaining outliers.

34. Final One-Array Models

The generic model conveniently separates the percentage cash flow and the ultimate
claim amount functions and, through the percentage cash flow function, can extract from
the data settlement speed characteristics. Deviations induced by large differences in
underwriting volumes between underwriting years may not be captured by random
effect models, and the introduction of cluster structures may be necessary. The criteria

needed to establish them remains to be determined.

Model 1.0 Model 2.0
Fixed parameters Fixed parameters
L 9 L 9
15.7400 -6.2470 14.8900 34710
Book Random parameters Random parameters
Year
l 9, I, 3,
1 -0.4364 0.4214 0.5061
2 -0.4592 0.3865 0.1910
3 -1.1480 -0.3060 -1.4670
4 -1.1680 -0.3818 0.8611
s -0.0342 0.8153 0.0693
6 0.3919 1.2400 1.4680
7 0.6101 1.4700 1.6780
Table 3.4.1 Parameter estimates for variance model and C, function.
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From tables 3.3.1 and 3.4.1 note the approximate correspondence between the order of

magnitudes of C, and 9, for model 2.0. Hence consider the following regression line:

8, =5+5,, 36)

<umy

0000

-2 000 T T ™ T
5 0e-1 0000 § 00-1 1000 1500

Graph3.4.1 Line 8, =46, +4,/, and scatter plotof /, vs 9.

(3.6) gives [6,,5,]=[-0.79914,1.54866] . From table A.6, there is no evident relationship,

similar to (3.6), between 8, and any of 4, , kc, or kd,, directly or through a suitable
transformation. Graph 3.4.1 displays the scatter plot of 4, versus /,and regression line
8,=8,+8,,. exp(9+9,) lies between 0.007 and 0.166, such that the minimum and

maximum values correspond to w=3 and w=7respectively. Had model 1.0 provided a

better fit, the magnitudes of exp(#+9,) could have influenced a decision to select a
homoscedastic model. However, from table 3.3.1 note that C,=2.17million and
¢, =12.79million. Hence, it is justifiable to integrate exp($+9,)=exp(($+4,)+1,*4,) in

the variance function definition as follows:
var(,,) = o’ u,, ()15 ) 37

T
(3.7) satisfies covariance definition (2.5) because parameter vector ¢ =[a,[&',9; ]’] is

invariant with underwriting year. It is intuitively obvious that if the variance parameters
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for preliminary model 2.0 would have been defined as gw=[o_,,‘9’]’ instead of

¢, =[a, g ]T , a similar relationship to (3.6) would be evident between o, and /,. This is

further explored in section 4. Although the variance for final model 5.0 will be (3.7), to
validate the model and explore alternative analytical approaches, the final model is
preceded by other two. The first gives an appreciation of the IBNR reserve values that an
analysis of the data segmented into K subsets would deliver, where subset membership
criteria is determined by the values of ¢, or ¢,. Hence, the variance function considered
is

var(¥, )= akz Hus (¢~ )“P('y)

The second preliminary model assumes an autoregressive error structure. Variance

function (3.7) may not successfully explain the variability evident in the normalized
residual plot pattern of model 2.0 (graph 3.3.3) and function 4, (¢.)™*-%) may need to

be adjusted. Hence, the function proposed for model 6.0 is
var(¥, ) = Uzﬂw‘, (¢" )"‘P(-ﬂ'd.ﬂ;] exp(.g' (’. )8:)
3.4.1 Model 3.0 — Validation Model

Model 3.0 is equal to model 1.0 in all respects, except that subset membership for
each underwriting year is taken into account only at the point of calculating the

variance, and for subset k o} is estimated independently from the rest of the data. For

underwriting year w, member of subset &

Yo=m.(8) e,
with

(Yu'_l ¢w’{k ) ~ N(#w,l (¢w)’ak2luw,l (¢w)w(9))

such that ¢, <[o,,9] , —1-2- ~Ga(0.001,0.001) and
h Oy

e\t~ N0 (. 0" 1.0 )
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34.2 Model 4.0 — Validation Model
In model 4.0 the option of using an autoregressive error structure is explored, to

ascertain if this can effectively deal with scale variability between underwriting years:

Vo=t (8)+W,,

such that
Wei=pWoten,
VAR(Y,,)=VAR(W,,)=o"
£, 16..6, ~ N(0.67(1- %))
and ¢ =[o, ] .

3.4.3 Model 5.0 — Validation Model

Final model 5.0 integrates regression (3.6) into the variance model:
Yu-.t = Hyy (¢w)+ £,
with
(yw.: |¢.’:) ~ N(#W (¢w),a.2”w (¢‘1 )np(-ﬂ'ﬁ_s;))
where 9 = [.9.',.9; ] s Elbd~ N(o,a2 (llw(¢w)ﬂp(.q'.l.-ﬂ,'))r I.. J , % ~Ga(0.001,0.001) and

= [a, 9’]’ . Since 4, is given by (3.1), in addition to the obvious changes in the design

matrices, the other necessary amendments to model 2.0 are:

B=[Ks.Ks,,9.9,L,D,Ke,Kd] , B|f"Z,~MIN(£',5,)

pl s - (e 5) () ~w(sz) )

3.4.4 Model 6.0 — Final Model

Final model 6.0 extends the variance model (3.7) as follows:

exp( 9 +1, 8 . Kg] “
(Yw-! I¢W’¢) ~N Hr (¢n ),0’2/1“,‘, (¢W) (q “9’) exp[‘% (1 +e’t(zT((K‘1)l] JJ
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where ¢ =[a, g ]’ and 9" =[4,9,,9,.9, |. Hence the fixed effect parameter vector and
related distributions are:

ﬂ=[KS‘,K92,lg;,‘g;ﬂg;!‘q;’LstKC:Kd]T’ ﬂlp.aZo ~ MVN(»B',ZO)

a5~ (L) (Z)|5~wil(1053) 10

3.4.5 Numerical Examples And Discussion For Validation Models 3.0 And 4.0
And Final Models 5.0 And 6.0
Data segmentation criteria described by the last column in table 3.4.5.1 and applied
to model 3.0 is given by the values of /, from model 2.0.

Model 2.0 Model 3.0
Fixed parameters Fixed parameters
L 9 L 9 Subset
14.890 -3.471 14.290) -6.861 For
Book Random parameters Random parameters Mzogd
Year I, 3, 1. 9. ’
1 0.4214 -0.5061 1.0300 1
2 0.3865 -0.1910 0.9940 1
3 -0.3060 -1.4670 0.3015 2
4 -0.3818 -0.8611 0.2259 2
5 0.8153 -0.0693 1.4240 3
6 1.2400 1.4680 1.8620 3
7 1.4700 1.6780 2.0660 3
Book Combined Effect Combined Effect
Year L+, exp(8+9,) L+, exp(9+9,)
1 15.3114 -3.9771 15.3200 1
2 15.2765 -3.6620 15.2840 1
3 14.5840 -4.9380 14.5915 2
4 14.5082 -4.3321 14.5159 2
5 15.7053 -3.5403 15.7140 3
6 16.1300 -2.0030 16.1520 3
7 16.3600 -1.7930 16.3560, 3
o’ 5.87E+09
Subset 1 - o} 7.496E+09
Subset2 - o} 3.328E+09
Subset 3 - o} 3.182E+10
Deviance 2.936 2,937

Table 3.4.5.1 Scale and deviance values and parameter estimates for models 2.0 and 3.0.

The table compares parameters ., i, and L+, for both models. Variance function power

for model 3.0 is very small. For a model with variance o}, instead of o} 4,, (¢, )“"(‘” , the
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values of L+, are not significantly different. Although that model version is excluded

from this paper, it is observed that its results indicate that in model 3.0 information on

the data variability structures is mainly contained in o}, and that neither model

successfully deals with claim volume differences between underwriting years.

Ultimate Claim Amount Reported /BNR (1.9)
Subset
Membership
Standard Standard Mo
Mean  |Mean Sq.| Confidence Interval Mean  [Mean Sq.| Confidence Interval 3.0
Pred. [~ 2350% | 97.50% Pred. | 250% | 97.50%
Error Error
Model 3.0 Validation Model
1 4,480,000] 122,100{ 4,239,000 4.721,000 115,200f 122,100| -125,400 356,600 1
2 4,324,000] 115,800 4,097,000 4,556,000 -121,600{ 115800 -347,900 110,200 1
Und. 3 2,163,000{ 76,730| 2,012,000 2,315,000 -21,340] 76,730  -172,300 130,700 2
Year 4 2,004,000 80.470| 1,847,000 2,164,000  -86,010{ 80,470] -243,900 73,750 2
5 6,648,000 280,700 6,103,000] 7.214,000 358,600 280,700 -186,000 924,700 3
6 10,300,000] 340,500 9,656,000{ 11,000,000 395,000{ 340,500 -251,900{ 1,088,000 3
7 12,630,000} 318.900] 12.020.000| 13.280,000 988,900 318.900 376.800} 1.637,000 3
Total | 42.550,000] 607.500] 41.400.000] 43.810.000{ 1.629.000] 607.500 473.400] 2.891.000
Model 4.0 Validation Model - (AR) emvor structure
1 4,451,000] 164,000] 4,131,000 4,776,000 86.840| 164,000] -233,200, 411,400,
2 4,315,000| 159,700 4,002,000| 4,630,000f -130,300] 159,700] -443,400 185,000
Und. 3 2,149,000f 157,300 1,842,000 2,462,000, -34,560| 157,300 -342,200 277,800
Year 4 1,995,000 165,100 1,677,000] 2,322,000 -94,990| 165,100 413,700 231,400
5 6,635,000 180,900| 6,277,000] 6,989,000 345,800] 180,900 -11,950 699,800
6 10,130,000] 211,700 9,732,000{ 10,570,000 226,500{ 211,700 -176,300] 660,900,
7 12,590,000 229.§00 12,130.000] 13,030,000 945.900] 229.900 486.100] 1.391,000
Total | 42.270.000] 469.500| 41,340,000 43.190,000] 1.345.000] 469.500 420.800] 2.264.000
Model 5.0 Final Model
1 4,477,000 114,300 4,254,000 4,703,000 112,700{ 114,300 -110,900 338,300
2 4,321,000 105,800 4,112,000] 4,527,000{ -124,800 105,800 -333,000 81,830
Und. 3 2,162,000 87,570 1,990,000] 2,336,000 -22,300| 87,570f -194,300 151,900
Year ¢ 2,001,000] 92,290 1,823,000 2,088,000 -89,490| 92,290 -267.900 97,450
5 6,645,000 164,000 6,327,000{ 6,971,000 356,000 164,000 38,250 681,600
6 10,190,000] 328,100| 9.576,000{ 10,870,000 280,200 328,100] -332,600 965,000
7 12,750,000] 513.700{ 11,770,000] 13,800.000] 1.110,000| 513.700 127.000f 2,162.000,
Total | 42.550.000] 675.900] 41.240.000] 43.920.000{ 1.623.000] 675.900, 313,300] 2.994.000
Model 6.0 Final Model
1 4,418,000] 37,320} 4,345,000{ 4,492,000 53,860] 37,320 -19,210 127,700
2 4,426,000 42,000[ 4.,338,000] 4,504,000 -19,530]  42,000] -107,100, 58,360
Und. 3 2,201,000] 26,940 2,146,000 2,253,000 16,980] 26,940 -38,450 69,290
Year ¢ 2,094,000| 36,930 2,016,000] 2,161,000 3,306] 36,930 -74,000 70,160
5 6,525,000f 70,370| 6,395,000f 6,673,000 235,700| 70,370 106,000 384,200
6 10,470,000/ 231,800| 10,040,000 10,960,000 560,000 231,800 136,600{ 1,054,000
7 12,370,000] 283,300} 11.880.000] 13.010.000 724.400] 283.300) 235,500{ 1.,365.000
Total | 42,500.000] 393.100] 41.800,000] 43.380.000] 1.575.000{ 393.100 876.400] 2.453.000
Table 3.4.5.2  Models 3.0 to 6.0: Ultimate losses and /BNR predictions and predictive distributions.
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Model 3.0: Ultimate Claim Amount

Model 3.0: Total /BNR
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Models 3.0 to 6.0: Scatter plots and average array curve for percentage cash flow versus delay time and Box plots of normalized residuals.
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Preliminary models
Predictive distributions Log Likelihood AlC BIC i
Model Devi.
Ultimate Claim Amount IBNR (1.8)
Standard Predictive Standard Predictive Confidence Confidence Confidence
Mean Deviation Interval Mean Deviation Interval Mean| _Interval Mean Interval Mean Interval
2.5% 97.5% 2.5% 97.5% 2.5% 97.5% 2.5% 97.5% 2.5% 97.5%
1.0 | 42.600000]  607,100] 41,940,000 44,830,000]  1,912,000] 499400] 1546000 3915000 | T T | {2,980
2.0 | 42,570,000] 471,100] 41,720000 43590000 18730000  268600] 1421000 2,502,000 | 11T [ [ 2,930
Validation models 3.0 and 4.0 and final models 5.0 and 6.0
Model Predictive distributions Log Likelihood AlC BIC Devi.
Ultimate Claim Amount R d /BNR (1.9)
Standard Predictive Standard Predictive Confidence Confidence Confidence
Mean Deviation Interval Mean Deviation Interval Mean| Interval Mean Interval Mean Interval
2.5% 97.5% 2.5% 97.5% 2.5% 97.5% 2.5% 97.5% 2.5% 97.5%
3.0 42,550,000 607,500] 41,400,000 43,810,000] 1,629,000 607,500 473,400 2,891,000{ 56.0§ 42.3 71.6] 181.9] 154.7 213.1{ 277.1]249.8 308.3| 2,936
4.0 42,270,000 469,500] 41,340,000 43,190,000 1,345,000/ 469,500/ 420,800 2,264,000 56.0] 42.6 71.7) 182.0] 155.1 213.5] 277.2J250.3 308.6] 2902
5.0 42,550,000 675,900} 41,240,000 43,920,000 1,623,000| 675,900 313,300 2,994,000] 56.0] 42.3 71.6] 183.9f 156.6 215.1] 281.8}2544 313.0f 2,928
6.0 42,500,000 393,100] 41,800,000 43,380,000 1,575,000 393,100 876,400 2,453,000] 56.0§ 423  71.5] 187.9] 160.5 219.0f 291.2]1263.8 322.3] 2,887
Table3.4.53  Comparison of results for models 1.0 to 6.0.
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Multilevel Non-Linear Random Effects

The ultimate claim amount and /BNR predictions for final models 5.0 and 6.0 and
preliminary models 3.0 and 4.0 are compared in table 3.4.5.2. The boxplots for model
5.0 are the most consistent with those of model 2.0. (see graphs 3.4.5.2 and 3.3.3), but
the predictive intervals are slightly wider than for models 3.0 and 4.0. The
autoregressive error structure in model 4.0 is insufficient to deal with scale variability.
In contrast to model 6.0, models 2.0 to 5.0 do not resolve the downwards pattern in the
quantile plots (see graph 3.4.5.3). From the percentage cash flow plots and the array
average percentage cash flow curve it is evident that the curve is representative of the
array. The additional variance parameters increase the AIC and BIC values with respect
to model 3.0, but decrease the deviance (table 3.4.5.3). The slight skewness of the IBNR
and the ultimate claim amount kernel densities for model 2.0 is no longer so evident in
models 3.0 to 6.0 (see graphs 3.3.2 and 3.4.5.1).

4. MULTI-ARRAY MODELS

To explore data variability structures and illustrate the process of designing multiple-
array models, two mean response functions are used. For the preliminary models the
variance functions considered are ¢°, o7 and o7, , denoting the three model versions by
a, b, and c respectively. In section 4.2, observations on the models and numerical
examples highlight the motivation for their inclusion. In section 4.3 the values of o2, are
analysed and the final multi-array models are introduced. Numerical examples and

assessment of the final models are given in sections 4.5 and 4.6.

4.1 Examples Of Preliminary Multi-Array Models
4.1.1 Models 7.0 (a), (b) and (c)

Model 7.0 is proposed as example of hierarchical reserving models with a limited
number of parameters in the percentage cash flow function. It is followed by two

amended versions selected to further explore variability patterns in the data.
Model 7.0(a)

For claims array » and underwriting year w, the first homoscedastic model at delay

time ¢ is defined as follows:

AT ) LT
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such that,
D+d +d.,
1+2 p(D+d, + m.) ln(r+ exp((xlfs),)]
X exp(Kc+kc, +kcm,) (PR
Hrsea (B =exp(L+1,)31~ p 4.1
exp[(exp (Kc +ke, + kc;)+ l)ln[r + im‘; ]]
P
(&s))Y
exp[-—exp(D+ d + d;,)(ln[ﬁ exzpms)x )D ]
t 1
and
#=4,8+B b +B.b,
& ulpmro ~ N (0,07, ., ) 42)
where

by =[lndiike ] b.|b,, X2 ~ MYN(5,,,Z2)
b =[d, k], b|B..Z, ~ MVN(b},Z,)
B=[Kks.Ks,LD,Kc],  B|B'.Z,~MVN(B',Z,)

The configuration of the design matrices is determined by the order of the parameters

in the fixed and random effect parameter vectors. For known parameters

BB T SR T T, 3o 5 the hyperprior distributions are:

Flp s~ (a5 (%) |m~wil(szi) )
e ~wi((357)".3)

B oI ~ N (B Er) ()
Bar s ~mn(EnE) ()| w2z 2)

and -1—2~ Ga(0.001,0.001). The claims process functions C,,, and P, for model 4.1 and
g

the related survival and hazard functions S,,, and &, , are:
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C.= exp(L + Im)

SR )
| exp((exp(Kc+kc,+kc:w)+l)ln(1+exp(l<sl)])

’“v("-':)

exp{—exp(Dﬂi, "'d:w)(ln(u ejzp((g, ))TJ

[2exp(D+d, +d;,)1n(x+ etzp((g'))+(exp(](c+kc, +kc;)+1))

. (exp(xc+kc,+kc;)+ln(’+exp(ml)]]-,

2exp(D+d, +d,,) {HE) “3)
hr.u'.l = . - b
exp(Ks,) CXP(KCHCC, +kc,...) exp(Ks,) exp(Ks, + Ks, ) '
7 exp(Ksy o + ]n 1+ exp( Ko. l - K3 )+1
178 2exp(D+d, +d.,) {o0s) gelka)

Amended Versions Of Model 7.0(a)
In the alternative versions of model 7.0(a), denoted by 7.0(b) and 7.0(c),
&l $uo0, ~N(0,071, ., ) and &l burOn ~N(0,6L1, ., ) replace

v n, xnp,

& .|t~ N(0,071, ., ).

4.1.2 Models 8.0 (a), (b) and (c)
In model 8.0 the percentage cash flow function has more parameters than model 7.0
to assess if a more flexible percentage cash flow function could produce more reliable

IBNR predictions. As with model 7.0, three versions are considered.

Model 8.0(a)
For claims array r, underwriting year w and development time ¢ the model is given

by:

Y i =ty () ¥ 6
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such that,

b (8) (L4 )| 14 exp(D+d, +d.,) @.4)
exp Int | + t
exp(—Kc—ke, — ke, ) exp(-Kd—kd, —kd,'“)
and
4.,=4.,8+B,b+B.b =da,.pb.b,)
£ . |¢..0~ N(O,a’],,’_“,’.)
4.5
by =[lodo ke kd, ] b,|B,. T, ~ MVN(5,.T,)
b =[d ke, kd ], (¢.%,)
B =[L,D,Ke,Xd], BB Z,~MVN(B,Z,)

The hyperprior distributions are:

Ao x ~mN(m5) (S [ ~wi((4z) )
B|bLEL~MYN(ELEL) ()T~ Wi((4z;.)" ,4)

Blon T~ (s T) () () )
and —-17~Ga(0,001,0.001), such that g”,57,6",2;,2°,%,,2,, 27,2 are known. Functions
o

,and P

rond

for model 8.0(a) and the related survival and hazard functions are:

C,.=exp (L +1, )

exp(D+d, +d;,) K
Pr wa = 1+ » d
o exp(exp(Kc+kc, +kcm,)lnt+ exp(Kd+kd, +kd,w)t)

exp(D+d, +d,'w) }-l
)

S ., =1-<1+
" { exp(exp(Kc+kc,+kc;,)1m+exp(1<d+kd,+kd;,x

(4.6)

rowg

f _[exp(Kc+kc, +kc:“)

p +exp(Kd+kd,+kd,'w)]P

Amended Versions Of Model 8.0(a)
Model versions 8.0(b) and 8.0(c) are derived from 8.0(a) as 7.0(b) and 7.0(c).
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4.2 Numerical Examples And Discussion For Preliminary Models 7.0 And 8.0
The claims data selected to illustrate the models in section 4 are reported in tables
B.1 to B.3. The data have been obtained through simulations based on a marine portfolio
consisting of hull, cargo and aviation hull claims, labelled in graphs and tables as arrays
1, 2 and 3 respectively. Evident from graph 4.2.1 are the data variability and a large
number of negative entries in the incremental claims data. Claims reserving models for
multiple-array claims portfolios have to explain the variability emerging from the
different array characteristics, settlement speeds and exposure levels. The broad range of
the cumulative claim totals, from 1,013,800 to 85,287,218, suggest that such claim
volume variability may not be effectively captured by the random effects parameters for

the mean response model alone.

Array |
Array 2
-
]
o ven Sl I | PR, r‘m\’“ b L~ s e j“
Array 3

2o d W W 3 e L T YL T Y B e~ VT T e KL e

;

‘,,,,jfhhn._.\.mm._._dkn_m v flbnna 10 M\

10 RO VO IABO A6 wO IABG A6 SO IABLO SO VD ILDO AU GO IADG SO DU ISLO 4G BUILLL AU Lo IABU SO DO s
Deiny

Graph 4.2.1 Incremental data bar plots by array and underwriting year for tables B.1, B.2 and B.3.
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Model 7.0 (c)
Ultimate Claim Amount IBNR (1.8)
Under. Mean Standard Predictive Mean Standard Predictive o,
Year Mean Sq. Interval Mean Sq. Interval
Predict 2.50% 97.50% Predict 2.50% 97.50%
Error Error
1 11,460,000 560,300 10,250,000 12,530,000] 2,130,000 367,600 1,338,000 2,827,000} 2.63E+11
2 18,660,000, 880,100 16,790,000  20,390,000| 3,103,000 552,200 1,836,000 4,246,000{5.31E+11
3 5,703,000 363,700 4,959,000 6,413,000 1.006,000 249,000 489,400 1,498,000] 8.09E+10
4 10,520,000 699,000 8,984,000 11,830,000 2.400,000 493,100 1,318,000 3,321,000/ 2.42E+11
Amay 5 79,440,000} 9,587,000 59,530,000 96,770,000 21,190,000{ 6,833,000 7,172,000  33,700,000|3.25E+13
1 6 5,361,000 646,100 3,836,000 6.453,000| 1.707,000 479,000 531,200 2,518,000/ 1.02E+11
7 10,340,000} 1,073,000 8,789.000  12.900,000] 2.199,000 788,100 1.256,000 4,081,000{4.53E+11
8 37.200,000] 8,030,000 22320,000 51,550,000 14,460,000} 6,217,000 3.977,000  25,830,000!1.13E+13
9 57,000,000] 22,430,000| 20,850,000 100,700,000| 28,180,000 17,890,000 4,647,000 63,910,000} 7.32E+13
10 4,479,000{ 1,919,000 1.427.000 8.180.000| 2.451.000} 1,601,000 413,800 5.634,000[4.28E+11
1 3,259,000 160,000 2,928,000 3,555,000 460,700 105,900 236,100 657,100/ 2.01E+10
2 14,920,000 718,600 13,810,000 16,590,000 1,661,000 455,000 1,153,000 2.778,000{ 7.57E+11
3 5,504,000 456,900 4,520,000 6,358,000 1,787,000 311,800 1,108,000 2,369,000{ 1.24E+11
4 2,888,000 213,500 2,450,000 3,298.000 558,300 148,800 259,500 846,300{ 2.23E+10
Armay 5 9,255,000 1,209,000 7.091,000 11,620,000{ 2,261,000 864,500 819,200 3.993,000] 5.82E+11
2 6 1,530,000 232,800 1,112,000 1,964,000 422,500 171,100 143,200 747,500] 1.59E+10
7 1,896,000 66,610 1,800,000 2,063,000 293,300 44510 251,100 413,400} 4.42E+09
8 2,892,000 237,600 2,557,000 3,517,000 575,600 168,300 419.200 1,064,000} 3.98E+10
9 1,264,000 133,600 1,083,000 1,612,000 299,500 99,010 213,300 579,900| 8.60E+09
i0 50,860,000{ 12,980,000] 28,600,000 72,890.000f 23,640,000 10,970,000 7,198,000  42.520,000{1.51E+13
1 22,570,000, 379,300 21,730,000 23,270,000 3,176,000 271,900 2,555,000 3,660,000] 8.60E+10
2 10,270,000 529,900 9,141,000 11,250,000 2,549,000 351,300 1,813,000 3.210,000{ 2.12E+11
3 7,549,000 421,000 6,755,000 8,380,000 1,181,000 288,200 646,200 1,759,000] 1.15E+11
4 7.465,000] 748.000 5,903,000 8,828,000 1.741,000 523,900 647,200 2,698,000]| 2.56E+11
Array 5 8,308,000 570,900 7.056,000 9,387,000 2,850,000 408.700 2,060,000 3,712,000| 1.22E+11
3 6 8,368,000 648,500 7.269.000 9,715,000] 1.642.000 477,200 917,700 2,646,000] 1.67E+11
7 8,719,000 1,810,000 4,564,000 11,610,000f 3,735,000f 1,376,000 683,200 5,940,000 5.23E+11
8 115,700,000 15,020,000] 92,600,000 148,100,000 30,480,000} 11,610,000 15,520,000 56,200,000} 5.84E+13
9 7,997,000 1,149,000 6,085,000 10,260,000 2,621,000 925,900 1,228,000 4,485,000{2.07E+11
10 94,890,000] 42,140,000} 22,790,000 188,100,000 43.200.000{ 33,030,000 7.345,000 121.300.000{3.62E+14
Array 1] 240,200,000 26.480.000{ 191.200,000 291,100,000] 78.830,000( 20.810.000] 42.460.000 119.300.000
By Array 2 94,270,000} 13,240.000 71.450.000 117,200,000] 31,960,000} 11.160,000 14,750,000 51.400,000
Armay Array 3| 291.800.,000] 45.850,000] 215.600.000 389,100,000{ 93.280.000 35,830,000 48,710,000 175,000,000
Total 626,200.000] 54,430,000 530,900,000 740,400,000 204.100.000{ 43,170,000] 134.800.000 298,700,000
Deviance 7.372
Iterat.: Start 31,000
+Sample
Table 4.2.1 Model statistics, ultimate losses and /BNR predictions, and respective predictive

distributions for Model 7.0 (c).

Portfolios displaying large differences in exposure levels or claims magnitudes are

not at all unusual, even in treaties where underwriting contracts remain unaltered. Cost

limitations or timing restrictions may impede exploring methods, possibly able to deal

with high variability in exposure volumes, such as analyses at transaction level. In the

models proposed, a good fit to historical data as assessment criterion of the preliminary

models, is as important as suitable variance models, as the latter determines the stability

of IBNR and ultimate claim predictions. This is more likely to be achieved by models

7.0(c) and 8.0(c), as inspection of graph 4.2.2 and of actual and fitted claims confirm.
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Maoadel 7.0(a): Normalized Residuals Model 7.0 (a): Quantile Plot
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Graph 4.2.2 Normalized residuals and quantile plots for models 7.0 and 8.0 (a) and (c).

Plots for 7.0(b) and 8.0(b) were found to be uninformative, and for this reason were
excluded from graph 4.2.2. While the rankings of o2 in models 7.0(b) and 8.0(b) are

r
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consistent, with o] <of <o}, the claims volume variability within each array present
similar problems to those encountered with model 1.0. According to the quantile plots
only the residuals from models with variance function o, may satisfy the Shapiro-Wilk
test W for near-normality (Shapiro and Wilk (1965)). Model 7.0(c) gives narrower
intervals for the mean JBNR at underwriting year, array levels and overall. (see table
4.5.3). The close equivalence of ranking orders for o2 and C,, (table 4.2.1) confirms

the expectation that either ¢, =(o,,.9,p) or ¢, =(0.9,.p) could reveal scale variability

structures in the data. They do so more effectively than ¢, =(crm,,.9m., p). In a variance

))5*9(3""9')

model (4, (¢, , parameters o, and 4 are less informative.

Mode] 7.0(a): Ultimate Claim Amount Model 7.0(a): IBNR
2.00
B 2000 /
1000
1 6es |
100 1008 o
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Graph 4.2.3 Preliminary model 7.0: Kemnel densities for ultimate losses and /BNR totals.
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Graph 4.24 Preliminary model 8.0: Kemel densities for ultimate losses and /BNR totals.

Graphs 4.2.3 and 4.2.4 and table 4.5.3 show that the kernels for mean /BNR and

ultimate claim predictions are skewed. In the next section it is shown how o2 and C,,

can be used to construct the variance function for the final models.

43 Final Multi-Array Models

The preliminary models demonstrate that the data variability can be explored more

freely when var(Y, }=o2,. The values of o, and C,, suggest a variability structure

associated to scale differences between underwriting year data sets, around which a
cluster structure could be constructed for analytical purposes. However, some

management decisions, such as commutations, would require more precise /BNR and
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C,. predictions at underwriting year or contract levels. Reconciliation of reserves

would be more difficult if the data of interest were not part of the same cluster. A better
approach to deal with scale variability, and one that is totally coherent with the generic

model, may involve formulating C, into the variance model. To assess this, the

following regression is applied to the output of models 7.0(c) and 8.0(c):

In(02,)=6+8,n(C,,) 4.7

oW

Model 7.0(c) Model 8.0(c)

24 2

n{c,,) n(c,,.)

Graph 4.3.1 Lines &, +6,In (Cm,) and scatter plots of In (Cm,) vs In (cr,’,) on the y-axis.

w

(4.7) gives [4,,5,]=[-8.7068,2.1934] for model 7.0(c) and [5,,5,]=[-6.355,2.0347] for model
8.0(c). Graph 4.3.1 displays the regression lines and the scatter plots of ln(C,_w) versus

in(o2,) for both models. Equation (4.7) suggests that the final models should be

(% Cor€ )~ N (84,0, (80 ):0°C2) (4.8)

such that {=¢? and 4,,,(¢,) is given by equations (4.1) and (4.4) for models 7.0(d)
and 8.0(d) respectively. From regression model (4.7) for model 7.0(c), exp(4,) =0.000165
could set the initial value for o*. The outcome of the analysis is not unexpected. In fact,

the inclusion of C?, in the variance function has the effect of normalising the data,

hence, reducing the reserving analysis with random effects models to a type of problem
that is more consistent with the typical published examples, concerned with the analysis

of repeated observations on subjects or trials that share some common characteristics.
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See for instance Elashoff et al. (1982) and Aziz et al. (1978). For the final models the
mean /BNR and ultimate claim amount predictions are replaced by estimates generated
by their predictive distributions. The reported /BNR values are calculated along the lines
of (1.9). Extending the definition of section 3.2, the portfolio average model for the

percentage cash flow is given below.

44 Portfolio And Array Average Models For The Percentage Cash Flow
Section 3.2 identifies the percentage cash flow as the most suitable function in the
reserving model where concepts on inferences on marginal distribution or population
average models could be applied. Comparisons across a claims portfolio are more
meaningful at percentage cash flow level. As observed in section 3, a model may be able
to fit the data well even when the percentage cash flow function converges to a value
different to 1. However, in such cases the ultimate claim amount and /BNR predictions

would be incorrect.

To formulate the average models for the percentage cash flow the parameter vectors

for the portfolio and array average models, 4, and ¢,, are respectively defined:

i el rel el wal

¢,,=A,,+B,(;ib,]+az[(iu,)"i"zbm]
and

¢, =AB+Bb +B, ((u,)" ibmj

w=l

such that, design matrices 4., B, and B, are replaced respectively by 4, B, and B,.

Consider for example the mean response function for model 7.0(d). If

D, =D+%id, +[tu,)-l iid;.

t o=l ral =i wel (49)

Ke, = Kc+%ikc, +(iu,]—' 221«:,,

1 rsl = ral wel

such that D,Ke,d ke, d., and ke, are the percentage cash flow function parameters, then

the portfolio average for the percentage cash flow function at time ¢ is given by
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o (Dp)} +ex(1_<s.)]
. =,_(1 2[“:("%) ln{t o cxp[—exp(Dp)(ln[HexP(Ks')Dz] 4.10)

P (Ks;)
exp[(exp(](cp)ﬂ)ln[ue’:sp((fjl))) PR

Additional insight may be gained by including in the plots a curve for the percentage
cash flow average model for each array. Continuing with the example, for the array

average model for array r in model 7.0(d)

D, =D+d, +L"de

r wal

1, .
KL‘A’ =Kc+kc, +-H—-ch'w

r w=l
should replace D, Kc, in equation (4.10).

4.5 Numerical Examples And Discussion For Models 7.0(d) And 8.0(d)

Models 7.0(d) and 8.0(d) provide close fit to the data. The portfolio reported IBNR
and ultimate claim predictions for 7.0(d) and 8.0(d) are given on tables 4.5.1 and 4.5.2
and summarised on table 4.5.3. They show that the final models’ predictive intervals are
narrower than for their earlier model versions. At underwriting year level, the mean

response function of model 7.0 is still the most useful of the two (see table 4.5.1).

Graph 4.5.2 compares scatter plots for the percentage cash flow values for both models
and shows that model 8.0(d) is the least successful in separating the volume and
development pattern elements in the data. Note that the graphs’ scales are not the same

and that the projection period for model 7.0(d) is longer than for model 8.0(d). The

predictive interval for iiﬂc,_w for model 8.0(d) is also wider. (See tables 4.5.2 and

re] wsl

4.5.3 and graph 4.5.1). Evident from graph 4.5.2 is the settlement speeds variability. A
reduction in the reported IBNR predictive intervals is consistent with a reduction of the

normalized residuals and the Bayesian Information Criterion. Particularly relevant to the
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claims process is the systematic correction of historical errors as claims evolve, since
negative incremental entries frequently adjust earlier overstated claim entries. The box,
scatter and quantile plots make apparent data anomalies generated by negative
adjustments to paid claims and by large claim volume differences. As in section 3,
neither can be addressed with autoregressive error structures. The negative incremental
claim entries are responsible for the some of the outliers and, in particular, for the slight

depression in the quantile plots, between ~2 and -1 of the horizontal axis.

Model 7.0(d)
Ultimate Claim Amount Reported /BNR (1.9)
Under. Mean Standard Predictive Mean Standard Predictive
Year Mean Sq. Interval Mean Sq. Interval
Predict. Error 2.50% 97.50% Predict. Error 2.50% 97.50%

1 11,210,000 769,200 9,777,000 12,780,000 1,529,000 769.200 95,310 3.099.000

2 17,710,000 1,249,000 15,420,000 20,320,000 2,353,000 1,249,000 56,370 4,962,000

3 5,444,000 413,800 4,704,000 6,318,000 872,000 413,800 131,300 1,746,000

4 10,080,000 837,600 8,526,000 11,800,000 2,233,000 837,600 681,600 3,954,000

AT’Y 5 82,510,000 7,098,000f 69,530,000  97,320,000| 22,950,000 7,098,000 9,971,000 37,750,000

6 5,419,000 523,300 4,480,000 6,556,000 1,814,000 523,300 874,500 2,951,000

7 9,677,000 708,000/ 8,497,000 11,350,000 864,700/ 708.000 -315.500 2,534,000

8 41,090,000 5,069,000 32,640,000 52,560,000 18,800,000 5,069,000 10,350,000 30,270,000

9 77,960,000 12,940,000 57,800,000 108,600,000 43,250,000 12,940,000] 23,090,000 73,890,000

10 5.935.000 1,329,000 3.974.000 9.123.000 3,690,000 1.329.000 1,730.000 6.879,000

1 2,954,000 159,900 2,655,000 3,284,000 82,640 159,900 -217,200 412,100

2 14,730,000 867,600 13,140,000 16,560,000 2,603,000 867,600 1,004,000 4,431,000

3 5,511,000 416,500 4,745,000 6,370,000 1,968,000 416,500 1,202,000 2,828,000

4 2,795.000 234,300 2,377,000 3,289,000 388,300 234,300 -30,250 881,400

ATY 5 9,708,000 836,200 8,198,000 11,490,000 1,928,000/ 836,200 418.600 3,708,000

6 1,610,000 165,700 1,319,000 1,967,000 510,000 165,700 218,700 867.300

7 1,903,000 110,600 1,695,000 2,130,000 315.000 110,600 106,900 541,700

8 2,878,000 206,000 2,527,000 3,345,000 489,700 206,000 139,200 956,900

9 1,256,000 130,000 1,089,000 1,527,000 242,700 130,000 74,990 513,500

10 55.000.000 12,350,000]  37.090.000  86.390.000]  26,260.000 12,350.000) 8.350.000  57.640.000

1 21,060,000 1,339,000 18,570,000 23,870,000 1,494,000/ 1,339,000]  -1,002,000 4,302,000

2 9,372,000 709,500 8,070,000 10,840,000 1,601,000 709,500 298,900 3,064,000

3 7,253,000 509,800 6,333,000 8,330,000 1,012,000 509.800 92,520 2,089,000

4 7,430,000 611,500 6,300,000 8,685,000 1,447,000 611,500 316,900 2,702,000

Ar;ay 5 7,978,000 683,900, 6,742,000 9,428,000 2,968,000 683,900 1,731,000 4,417,000

6 7,794,000 585,200 6,785,000 9,090,000 509,400 585,200 -499,700 1,806,000

7 9,066,000 992,900 7,317,000 11,150,000 3,852,000 992,900 2,103,000 5.936,000

8 115,400,000 14,440,000] 94,040,000 148,400,000 30,070,000 14,440,000 8,752,000 63,110,000

9 7,423,000 1,083,000 6,060,000  10,240,000{ , 1,912,000 1,083,000, 549,400 4,731,000

10 144,200,000  30,660.000] 100.,000.000 217,200,000 82.050,000] 30.660,000{ 37.860.000 155.100.000

Aray 1| 267.000.000] 15.930.000] 239.600.000 302,600.000] 98.350.000| 15.930.000f 70.950,000  133.900.000

By [Amy2| 98350.000] 12,500.000] 80.030,000 130,000.000( 34.790.000] 12,500.000] 16,460,000 66,480,000

Amray Array 3| 336.900,000f 34,040,000/ 284.200.000 416,100,000} 126,900.000] 34,040,000 74.190.000 _ 206.100.000

Total 702,300,000] 39,690,000 636,000,000 790.200,000] 260.100.000] 39.690.000] 193.700,000 347.900.000
o 0.002308
Deviance 7.365
Iterat.; Start 29,500

+Sample

Table 4.5.1 Model 7.0(d): statistics, ultimate loss and reported /BNR predictions, and predictive

intervals.
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Modet 8.0(d)
Ultimate Claim Amount Reported JBNR (1.9)
Under. Mean Standard Predictive Mean Standard Predictive
Year Mean Sq. Interval Mean Sq. Interval
Predict. Emror 2.50% 97.50% Predict. Error 2.50% 97.50%

1 11,650,000, 1,272,000 9,664,000 14,610,000 1,964,000 1,272,000 -17,750 4,926,000

2 15,330,000(" 925,100 13,650,000 17,290,000 -33.230 925,100 -1,713.000 1,931,000

3 5.257,000 529,300 4,491,000 6,648,000/ 684,300 529,300 -81.330 2,075,000

4 8,169,000 518,100 7,230,000 9,284,000 324,400 518,100 -614,400 1,439,000

Ar;ay 5 88,310,000] 24,820,000 62,930,000 159,600,000 28,750,000 24,820,000 3,371.000 100,100,000

6 5,174,000 2,195,000 3,529,000 11,800,000 1,569,000 2,195,000 -76,040 8,196,000

7 12,640,000 4,024,000 8,691,000 24,190,000 3,827,000 4,024,000 -121,500 15,380.000

8 43,080,000f 20,980,000 24,940,000  94.960,000] 20,790.000| 20,980,000 2,646,000 72,670,000

9 100,800,000]  56,840,000] 49.440,000 261,700,000} 66,120,000 56,840,000 14,730,000 226,900,000

i0 3.732.000 2.999.000 2,169.000 11,610,000 1,488,000 2.999.000 -75.410 9.362.000

1 3,378,000 642,300 2,746,000 5,221,000 506,300 642,300 -125.300 2,349,000

2 13,820,000 1,035,000 12,190,000 16,230,000 1,690,000 1,035,000 58,680 4,094,000

3 3,567,000 214,600 3,174,000 4,022,000 24,380 214,600 -368,000 479,200

4 3,102,000 537,100 2,413,000 4,534,000 694,700 537,100 5,700 2,126,000

Ar;ay 5 13,150,000 5,018,000 7,527,000 26,000,000, 5,372,000 5.018,000 -252,300 18,220,000

6 1,679,000 615,700 1,125,000 3,443,000 579,000 615,700 24,490 2,343,000

7 1,726,000 386,700 1,429,000 2,971,000 137,900 386,700 -159,100 1,383,000

8 3,693,000 1,482,000 2,337,000 7,675,000 1,305,000 1,482,000 -51,290 5,287,000

9 1,718,000 1,104,000 880,500 4,346,000 703,800 1,104,000 -133.300 3,332,000

10 45.620.000]  29.960,000f 26,490,000 132.500.000 16.880.000]  29.960.000 -2.253,000 103,800.000

i 19,970,000 1,316,000 17,640,000 22,840,000 407,000, 1,316,000 -1,924,000 3,271,000

2 9,249,000 996,600 7,773,000 11,710,000 1,477,000 996,600 1,074 3,937,000

3 7,050,000 1,353,000 5,927,000 11,690,000, 809,000 1,353,000 -314,100 5,446,000

4 9,812,000 2,500,000 6,652,000 16,390,000 3,829,000 2,500,000 668,500 10,410,000

Array 5 5,939,000 756,800 5,010,000 7,855,000 928,500 756,800 -607 2,844,000

3 6 9,454,000 2,978,000 6,651,000 17,840,000 2,169,000 2,978,000 -633,000 10,560,000

7 8,073,000 2,031,000 5,703,000 13,670,000 2,859,000 2,031,000 489,100 8,458,000

8 125,800,000f 37,370,000 89,280,000 229,700,000] 40,550,000 37,370,000 3,992,000 144,400,000

9 6,229,000 1,520,000 4,957,000 10,410,000 717,800 1,520,000 -554,400 4,897,000

10 141.100,000]  60.410.000] 75,900,000 293.600.000] 78.980.000] 60,410,000 13.760.000  231,500.000

Array | 294.200.000f  66.190.000f 217.800.000 475.200.000{ 125.500,000{ 66,190,000{ 49.160.000 306.500.000

By Array 2 91.450,000]  30.130.000] 68.590.000 177.000.000] 27.890.000]  30.130.000 5.030.000 113.400.000

Amay Armay 3 342,700,000 72.200.000{ 252,700,000 525.000.000{ 132,700,000 72,200,000 42,750,000 315,000,000

Total 728.300.000] 102,600,000 584.700.000 984.300.000] 286,100.000] 102.600.000] 142.500.000 542,000,000
P 0.002137
Deviance 7.323
Iterat.: Start 29,500

+Sample

Table 4.5.2 Model 8.0(d): statistics, ultimate loss and reported /BNR predictions, and predictive

intervals.

Historical claims add to 442,249,345, The difference between the ultimate claim
amounts and the reported /BNR predictions for the final models are approximately 442
million. The order of accuracy in the WinBugs system prevents an exact reconciliation
with the total claim amount to date. When model 7.0(d) is appraised for consistency
with an analysis by array, the ultimate claim amount and reported IBNR predictions
show respectively 1.1% and 3.1% overall difference from the predictions on table 4.5.1.

In section 4.6 the hazard rate profile extracted from the model is discussed.
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Model 7.0(d): Ultimate Claim Amount

Model 7.0(d): Reported JBNR
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Graph 4.5.1 Kemel densities and predictive distributions for ultimate losses and reported /BNR.

Model 7.0(d): Percentage Cash Flow

Model 8.0(d): Percentage Cash Flow

o7

03

.
Detey Time

Model 7.0(d): Percentage Cash Flow by array

Graph 4.5.2

422

flow versus delay time.

Model 8.0(d): Percentage Cash Flow by array
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Models 7.0(d) and 8.0(d): Scatter plots and average portfolio curve for percentage cash
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Model 7.0(d): Quantile Plot

Model 8.0(d): Quantile Piot
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Model 7.0(d): Box Plot

Model 8.0(d): Box Plot
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10 to aviation cargo.

Model 7.0(d): Normalized Residuals

Model 8.0(d): Normalized Residuals
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Model 8.0(d): Normalized Residuals by array
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Preliminary Models
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Model Distributions og Likelihood AlC Devi.

Ultimate Claim Amount IBNR (1.8)

Standard Predictive Standard Predictive Confidence Confidence Confidence

Mean Mean Sq. Interval Mean Mean Sq. Interval Mean| Interval Mean Interval Mean Interval
Predict. Error 2.5% 97.5% Predict. Error 2.5% 97.5% 2.5% 91.5% 2.5% 97.5% 2.5% 91.5%
7.0 (a)] 697.800,000] 20,900,000} 651,600,000 735,100,000] 261,000,000, 18,360,000} 219,500,000 293,800,000 7942
7.0(b)| 688,900,000 17,810,000f 650,100,000 721,400,000] 253,800,000 14,350,000 222,600,000 280,000,000 7,866
7.0(c)| 626,200,000 54,430,000 530,900,000 740,400,000] 204,100,000] 43,170,000f 134,800,000 298,700,000 7,372
8.0 (a){ 635,000,000f 56,760,000{ 558,600,000 793,200,000| 192,800,000] 55,590,000} 120,200,000 350,300,000 7,912
8.0 (b)] 742,600,000f 126,600,000] 587,000,000 1,107,000,000] 298,100,000 125,500,000} 144,500,600 661,200,000 7,816
8.0(c)| 711,200,000] 186,900,000 505,300,000 1,190,000,000] 274,700,000] 182,000,000f 88,270,000 746,500,000 7,335
Final Models

Model Predictive distributions Log Likelihood AIC BIC Devi.

Ultimate Claim Amount Reported /BNR (1.9)

Standard Predictive Standard Predictive Confidence Confidence Confidence

Mean Mean Sq. Interval Mean Mean Sq. Interval Mean| _Interval Mean Interval Mean Interval
Predict. Error 2.5% 97.5% Predict. Error 2.5% 97.5% 2.5% 97.5% 2.5% 91.5% 2.5% 97.5%

7.0 (] 702,300,000] 39,690,000] 636,000,000 790.200,000] 260,100,000] 39,690,000] 193,700,000 347,900,000]127.0[106.0 150.0] 452.1] 409.5 498.8] 802.7[760.1 849.4] 7.365

8.0 ()] 728,300,000] 102,600,000] 584,760,000 984,300,000| 286,100,000] 102,600,000]

Table 4.5.3

Comparison of results for models 7.0 and 8.0.

142,500,000 542,000,000]127.0[106.0

150.0] 520.1] 4776 565.7] 991.1[948.6 1,037.0] 7323
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4.6 Average Hazard Rate For Model 4.1(d)

As a pure loss measure, hazard rate can help comparing underwriting year contracts,
to formulate portfolio management strategies, determine future premiums, portfolio
composition, commutation or closure policies, etc. Hazard rates by underwriting year,
or weighted average hazard rates for each array or for the whole claims portfolio can be

derived from a reserving analysis. For payment year 7 these are respectively:

oz I—I)r.w.r—wi»l - IBNR("W"_WH) k &

6P’-“'¢2
. [6(In(1—1°,_w_,))] % )os G [ ap,.u.v,]
rowr-wdl T -\ = =
rmt—wtl mr-w+)

- & IBN, IBN,
Ahr.r = Z hr.w,r—u'-fl i, R‘ R(

7w r=w+l} = VZ’ h . ( rowr-w+l) )
< < W T-w lBNRr (T
: ZIBNR(r.h.r-M) ' )
k=l

— u IBNR,. . ... L& IBNR,, .-
Gh'=i:§h,,w.f-m —,,HR‘—" =z.,:z.;h"“""“*‘[TR1(\'IT(T”J
- DY IBNR,, ey | T

P

Given in terms of the IBNR, the above equations make explicit the changing nature of
the average hazard as claims evolve. Table 4.6.1 lists the hazard rate values for payment
years 13, 15 and 17 for model 7.0(d). Since underwriting year losses are at different
stages in their development, a similar table to 4.6.1 can be used to assess the impact on
the claims portfolio of, for example, excluding from it underwriting year contracts
related to underwriting year j, of array i and underwriting year j, of array i,. The
average hazard rate for the reduced portfolio becomes:

2 -
- - zl(Gh, _hi..f..r—.i.+l)IBNRu..l..r-j.m
gh, =Gh, +2=

2
IBNR(r)= > IBNR, , .,

el

The exclusion of the contracts from the claims portfolio reduces the portfolio hazard rate

only when

2 -
Z(Ghr _hi,.],,.r—j.+| )IBNR(I.J‘.J-I'.H) <0

Table 4.6.1 shows that the exclusion of underwriting year 10 from any of the three

arrays would reduce the portfolio average hazard rate. The removal of underwriting year
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data sets belonging to any of the first seven underwriting years would have the opposite
effect. While not included in table 4.6.1, from the reserving analysis the full distribution

for the hazard rates can be obtained.

Model 7.0(d)
Hazard rates
Underwriting | Ultimate Payment Year 13 | Payment Year 15 Payment Year 17
Year Loss
1 11,230,000 0.0515 0.0456| 0.0410
2 17,660,000 0.0548 0.0482 0.0430
3 5.458,000 0.0589 0.0513 0.0455
4 9,996,000 0.0638 0.0550 0.0484
Ammay 1 5 82,800,000 0.0695 0.0593 0.0516
6 5,340,000 0.0760 0.0640 0.0552
7 9,662,000 0.0816 0.0681 0.0583
8 40,970,000 0.0932 0.0761 0.0640
9 77,950,000 0.1046 0.0842 0.0697
10 5,835,000 0.1161 0.0933 0.0762
1 2,963.000 0.0502 0.0446| 0.0401
2 14,650,000 0.0543 0.0478) 0.0427
3 5,535,000 0.0593 0.0517 0.0458
4 2,787,000 0.0635 0.0548| 0.0482
Ammay 2 5 9,692,000 0.0694 0.0592 0.0515
6 1,623,000 0.0759 0.0639 0.0551
7 1,900,000 0.0810 0.0677 0.0580
8 2,866,000 0.0895 0.0739 0.0626
9 1,238,000 0.0990 0.0812 0.0679
10 55.250.000| 0.1152 0.0929 0.0759
1 21,130,000 0.0551 0.0489 0.0440
2 9,844,000 0.0604 0.0532 0.0476
3 7,251,000 0.0626, 0.0548 0.0487
4 7,515,000 0.0653 0.0564) 0.0497
Array 3 5 7,943,000 0.0699 0.0597 0.0520
6 7,859,000 0.0755 0.0641 0.0555
7 9,352,000 0.0856 0.071 0.0607
8 115,200,000 0.0914 0.0756| 0.0640
9 7,536,000 0.1000 0.0818 0.0682
10 148,000,000 0.1147 0.0928 0.0760
Array | 266.900,000) 0.0906 0.0738 0.0620
By Amay | Armay 2 98,510,000/ 0.1034 0.0833 0.0685
Array 3 341,600,000 0.1041 0.0846 0.0700
Overall 707.000.000 0.0992 0.0804 0.0668

Table 4.6.1 Model 7.0(d): hazard rates for payment years 13,15 and 17.

5. Concluding Remarks

Reflective of the practical issues involved in the analysis of reserves, the related
literature is extensive and explores a variety of theoretical frameworks. In general,
having identified the salient data characteristics and gathered information on specific
events that could have contributed to claims numbers and magnitudes, at the outset of
every analysis a suitable analytical approach for the problem at hand has to be selected.
Apart from any academic interest, it is likely that this search could have motivated some

of the developments in reserving analysis, and will continue to do so. Hence,
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establishing the scope and limitations of each is important.

Through the generic model it is possible to give a functional interpretation to the
claims data vanability structure. As settlement speeds and scale variability increase, the
assumptions and model structures encompassed by GLM models have to be replaced by
more complex ones. The examples support remarks by Carroll (2003) with respect to the
importance of the variance model. An inadequate variance model could lead to incorrect
conclusions. The purpose of reserving analysis is not just to model historical claims
data, but, more importantly, to predict /BNR and ultimate claim amounts. Both are
strongly reliant on adequate variance definitions. Since claims records have to fulfil
accounting requirements, corrections and adjustments to original entries are recorded as
new transactions, and at unpredictable time lags. This could justify regarding measures
of cumulative claims as repeated observations of an ongoing process. In this context,
normal errors assumptions could be made tenable through suitable transformations or
expectation functions, hence availing analytical approaches such as outlined in
Lindstrom and Bates (1990). In the examples presented, and with the selected data,

autoregressive error structures cannot be successfully used.

The generic model makes random effects models accessible to the problem of
reserving. With the different variance model structures, it exponentially increases the
analytical resources that can result from constructing families of reserving models
around families of distributions. Graph 5.1 is an example of a template that can be used
to identify the most suitable model structure for the data of interest and formulate the
percentage cash flow function. With respect to the underlying assumptions for random
effect parameters other alternatives are possible. Escobar and West (1992) propose a
non-parametric approach, where the random parameter is taken from a rich class of
distributions provided by the Dirichlet process. Lai and Shih (2003) leave the
distribution of the random effects totally unspecified. The non-linear mixed effects
models library (NLME) assumes that the random effects and the errors have Gaussian
distributions. Using a matrix decomposition, Bates and Pinheiro (1998) shows that the
random effects distribution expressed in terms of the relative precision factors can easily
deliver the likelihood for the fixed and random effects. The flexibility of Gibbs sampling

methods (Geman and Geman, 1984) has influenced the decision to implement the
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examples with BUGS (Spiegelhalter et al., 1995), as applications of Bayesian models
and MCMC estimation methods. Nevertheless, other approaches in relation to analytical

platforms, model structures and assumptions, beyond those explored, should be

considered.
Transformed Gamma Family (ﬂn + 1,1,5-)
_gu™ exp(-v)
P= T(B,+1)
v=(Ary v=(A)*
Transf.ormed Inv. Transf.
Gamma Gamma
/ (£ +124) \ / (£i+1.2¢) \
Gamma Weibull Inv.Gamma Inv. Weibull
(s=1) (8=9) (s=1) (B.=0)
\ Exponential / \ Inv. /
. ( B =0c= 1) Exponential
(ﬂl =0,g= 1)
Transformed Beta Family (5, 8,,4,¢)
= T (5 +5) ( g
T TBITB)| (14w
v=At
Transf.ormed
Burr | (5 ;ﬂ: ) Inverse Burr
) e (#=n
—P]  Loglogistic
(ﬂl =ph =]) Y
Generalized
Pareto
(¢=1)
Pareto Inv. Pareto
(s=£8.=1) (s=5=1)
Paralogisti Inv. Paralogisti
(s=h.5,=1) (6=5.p=1)

Graph 5.1  Examples of families of models for the percentage cash flow function.
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APPENDIX A
Al INCREMENTAL PAID CLAIMS DATA
Und. Development Period
Year 1 2 3 3 5 6 7 3 9 10
1 0 94,984 1,049,297 625878 541,108 427352 476,477 354,258 188,400 144,987
2 0 147,751 999224 937,426 811,294 436866 264,148 143,616 102,416 132,920
3 0 45751 442,168 588,627 390,301 231,257 119,690 64,365 73,641 93,371
4 0 20252 340,320 596,633 336,142 183,473 90,574 114241 99,467 51,950
5 0 21655 787440 992,505 893,315 772514 795,088 718,526 504213 321,630
6 0 221,177 1,212,010 1,867,718 1,372,904 1,254,084 1,003,612 696,973 534547 409,845
? 0 192,144 749425 1174401 1500585 2,079.434 1675154 1972,712 1,372,848 491,984
{(cont.)
Und. Development Period
Year 11 12 13 14 15 16 17 18 19
1 124,614 111,642 56210 64,259 33,893 15,440 8,255 22300 25173
2 109,996 58,163 53,679 54255 25,631 51443 56,702 59,857
3 53,678 29,044 12.259 10,267 11,264 9,515 8,859
4 45,692 21,824 36,117 54,185 52,194 47355
5 183,470 85,610 73,300 97,350 42,620
6 111,090 529,552 403,242 291414
7 212273 191,729 28,340
Table A.1  Simulated data based on the claims experience of a mixed portfolio.
A2 CUMULATIVE PAID CLAIMS DATA
Und. Development Period
Year 2 3 7 3 3 7 3 9 10
1 0 94984 1,144281 1,770,159 2,311,267 2,738.619 3,215,096 3,569,354 3,757,754 3,902,741
2 0 147,751 1,146,975 2,084,401 2895695 3,332,561 3,596,709 3,740,325 3,842,741 3,975,661
3 0 45751 487919 1,076,546 1466847 1,698,104 1,817,794 1,882,159 1955800 2,049,17
4 0 20252 360,572 957,205 1293347 1,476,820 1,567,394 1.681,635 1,781,102 1,833,052
s 0 21,655 809,095 1,801,600 2,694915 3,467,429 4262517 4,981,043 5485256 5,806,886
6 0 221,177 1,433,187 3,300,905 4,673,809 5,927,893 6,931,505 7,628,478 8,163,025 8,572,870
7 0 192,144 941,569 2115970 3,616,555 5.695989 7,371,143 9,343,855 10,716,703 11,208,687
(cont.)

Und. Development Period
Year 11 12 13 14 15 16 17 18 19
1 4,027,355  4,138997 4,195,207 4,259,466 4,293,359 4,308,799 4,317,054 4,339,354 4,364,527
2 | 4085657 4,143,820 4,197,499 4,251,754 4,277,385 4,328,828 4,385,530 4,445,387
3 | 2,002,849 2,131,893 2,144,152 2,154,419 2,165,683 2,175,198 2,184,057
4 1,878,744 1,900,568 1,936,685 1,990,870 2,043,064 2,090,419
s | 5990356 6,075,966 6,149,266 6.246,616 6,289,236
6 8,683,960 9213512 9,616,754 9,908,168
7 | 11420960 11,612,689 11,641,029
Table A.2  Cumulative data based on table A.1.
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A3 PRELIMINARY MODEL 1.0

A3l MODEL 1.0 FITTED VALUES OF CUMULATIVE PAID CLAIMS DATA

Und. Development Periods

Year [ 2 3 4 5 6 7 3 9 10

1 55,360 348,100 920,800 1,640,000 2,322,000 2,871,000 3,278,000 3,570,000 3,778,000 3,928,000

2 52,840 402,300 1,143,000 2,030,000 2,772,000 3,289,000 3,624,000 3,840.000 3,980,000 4,075,000

3 21,410 178,700 547,000 1,017,000 1,413,000 1,681,000 1,848,000 1953,000 2,019,000 2,063,000

4 41,190 183,000 474,200 854,300 1,198,000 1,448,000 1,617,000 1,730,000 1,808,000 1,863,000

5 27,850 236,600 774,400 1,641,000 2,657,000 3,610,000 4,386,000 4,970,000 5,393,000 5,698,000

6 82,280 563,200 1,597,000 3,037,000 4,550,000 5,878,000 6,928,000 7,713,000 8,290,000 8,711,000

7 10,640 152,100 695400 1,911,000 3.769.000  5.864.000 7.742,000 9.191,000 10.220.000 10.930.000
(cont.)

Und. Development Peri(;ds

Year 1 12 13 14 15 16 17 18 19

1 4,037,000 4,118,000 4,179,000 4.226,000 4,262,000 4.290,000 4,313,000 4,332,000 4,347,000

2 4,140,000 4,186,000 4,219,000 4,243,000 4,262,000 4,276,000 4,287,000 4,296,000

3 2,093,000 2,113,000 2,128,000 2,139,000 2,147,000 2,153,000 2,157,000

4 1,903,000 1,934,000 1,958,000 1,977,000 1,993,000 2,006,000

3 5,917,000 6,077,000 6,195,000 6,284,000 6,351,000

6 9,022,000 9,254,000 9,428,000 9,562,000

7

11,410,000 11,740.000 11.970.000

Table A3  Fitted claims computed by Monte Carlo simulations estimated over 5000 independent

A32

432

samples.

MODEL 1.0 FIXED EFFECTS PARAMETER ESTIMATES, VARIANCE AND
DEVIANCE

Fixed effect parameters
L D Ke Kd 9 K, K,

15.7400 4.8810 1.5470  -15.3600 -6.2470  -5.0680  -2.8080
Underwriting year random effect parameters

A d, ke kd,

1 04364 04050  -0.5091  -0.1369
2 04592 03512 03995  -0.0313
3 11480 -0.0200 03330 00317
4 210690 01730 04673  -0.4279
s -0.0342 0.6846  -0.3858  -0.0858
6 03919 00078  -0.4838  -0.0484
7 0.6101 23000 -0.1819 0.1548
> |1.85E+10

Deviance 2,980

Table A4  Model 1.0 parameters and diagnostics.
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Ad PRELIMINARY MODEL 2.0

Adl MODEL 2.0 FITTED VALUES OF CUMULATIVE PAID CLAIMS DATA

Und. Development Periods

Year [ 2 3 ] 5 6 7 8 9 0

1 165520 381,400 962,800 1,665,000 2,323,000 2855000 3255000 3,547,000 3,759,000 3,914,000

2 147310 385,000 1,127,000 2,026,000 2,778,000 3,299,000 3,634,000 3847000 3985000  4.077,000

3 15680 155300 519,400 1006000 1420000 1,696,000 1864000 1965000 2,028,000 2,068,000

4 17190 143,400 444,600 847.300 1,211,000 1,473,000 1,645,000 1,756,000 1,828,000  1.876.000

5 |28,240 238,800 780,300 1,649,000 2,662,000 3,612,000 4385000 4.967,000 5,390,000  5,695.000

6 | 81,750 558,800 1,592,000 3,036,000 4555000 53885000 6,932,000 7715000 8288,000 8,706,000

7 | 14370 176,900 753200 1.981.000  3.810,000  5.856.000 _7.699.000 _ 9.140.000 10.180.000  10.910.000

(cont.)

Und. Development Periods

Year 11 12 13 14 15 16 17 18 19

! 4,029,000 4,115,000 4,181,000 4,232,000 4,272,000 4,303.000 4,329,000 4,350,000 4,367,000

2 4,139,000 4,183,000 4,214,000 4,237,000 4,255,000 4,268,000 4,278,000 4,286,000

3 2,094,000 2,112,000 2,125,000 2,134,000 2,140,000 2,145,000 2,149,000

4 1,908,000 1,931,000 1,948,000 1,960,000 1,969,000 1,976,000

5 5,915,000 6,075,000 6,194,000 6,282,000 6,350,000

6 9,014,000 9,244,000 9,417,000 9,550,000

7 | 11,420,000 11.770.000 _12.020.000

Table A.5  Fitted claims computed by Monte Carlo simulations estimated over 7000 independent
samples.

Ad.2 MODEL 2.0 DIAGNOSTICS AND PARAMETER ESTIMATES

Fixed effect parameters
L D Ke Kd 9 K, K,
Und 14.8900 5.0140 0.2660  -13.4400 -3.4710 -5.5230 -2.5030
Y:ar Underwriting year random effect parameters
I, d, ke, kd, 39,
1 04214 -0.7378 0.7250 -0.0208  -0.5061
2 0.3865 -0.4262 0.8981 0.0177 -0.1910
3 -0.3060 0.0697 0.9973 0.0297 -1.4670
4 -0.3818 -0.0873 0.9274 -0.0648  -0.8611
5 0.8153 0.5157 0.8900 -0.0115  -0.0693
6 1.2400 -0.1151 0.8002 -0.1619 1.4680
7 1.4700 1.9440 1.0560 0.3943 1.6780
o’ |5.87E+09
Deviance 2,930

Table A.6  Model 2.0 parameters and diagnostics.
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AS VALIDATION MODEL 3.0
AS1 MODEL 3.0 FITTED VALUES OF CUMULATIVE PAID CLAIMS DATA

Und. Development Periods

Year 2 3 3 5 6 7 3 9 10
1 65,890 381,500 961,700 1,663,000 2,321,000 2,854,000 3,255,000 3,547,000 3,760,000 3,915,000
2 45,370 377,000 1,117,000 2,023,000 2,782,000 3,305,000 3,640,000 3,852,000 3,989,000 4,079,000
3 14,930 152,700 516,400 1,005,000 1,421,000 1,698,000 1,866,000 1,967,000 2,029,000 2,068,000
4 16,700 142,400 443,800 846,500 1,210,000 1,473,000 1,646,000 1,757,000 1,828,000 1,876,000
5 29,470 241,700 782,300 1,649,000 2,664,000 3,614,000 4,386,000 4,967,000 5,389,000 5,692,000
6 97,230 611,800 1,662,000 3,081,000 4,555,000 5,852,000 6,887,000 7,673,000 8,259,000 8,695,000
7 10,310 147300 679.700 1,884.000 3.745.000  5.856.000 7.748.000 9,202,000 10.230.000  10.940.000

{cont.)

Und. Development Periods

Year T 12 13 14 15 16 7 18 9
1 4,030,000 4,116,000 4,182,000 4,233,000 4,273,000 4,304,000 4.330,000 4.351,000 4,368.000
2 4,140,000 4,183,000 4,214,000 4,236,000 4,253,000 4,266,000 4,276,000 4,283,000
3 2,094,000 2,112,000 2,124,000 2,132,000 2,139,000 2,144,000 2,147,000
4 1,909,000 1,931,000 1,948,000 1,960,000 1,968,000 1,975,000
5 5,911,000 6,071,000 6,190,000 6,279,000 6,347,000
6 9,020,000 9,266,000 9,454,000 9,600,000
7

11.410.000 11.740.000 11.970.000

Table A.7  Fitted claims computed by Monte Carlo simulations estimated over 25,500 independent

samples.

AS5.2 MODEL 3.0 DIAGNOSTICS AND PARAMETER ESTIMATES

Fixed effect parameters
L D Ke Kd 8 K, K.,
14.2900 5.6670 0.3595  -13.6300 -6.8610 -5.3350  -2.4080

32 Underwriting year random effect parameters
i d, ke, kd,,
1 10300 -1.3860 0.6305 0.1420
2 0.9940  -1.0300 0.8152 0.0310
3 03015  -0.5548 0.9109 0.0018
4 02259  -0.7370 0.8359  -0.0281
5 14240 -0.1191 0.7978  -0.0700
6 1.8620  -0.9282 06661  -0.0521

7 2.0660 1.5820 1.0150 0.2053

Subset 1 - o7 |9.53E+09

Subset2 - a3 l4.21E+09

Subset 3 - @7 14 05E+10
Deviance 2936

Table A.8 Model 3.0 parameters and diagnostics.
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A.6 VALIDATION MODEL 4.0

A6l MODEL 4.0 FITTED VALUES OF CUMULATIVE PAID CLAIMS DATA

Und. Development Periods

Year [ 2 3 3 5 3 7 ] 9 10

1 68,260 386,900 967,500 1,667,000 2.323,000 2,854,000 3.253,000 3,545,000 3,757,000 3,912,000

2 47,650 385,200 1,126,000 2,026,000 2,779,000 3,300,000 3,635,000 3,848,000 3,986,000 4,077,000

3 114,160 149,000 512,300 1,005,000 1,424,000 1,702,000 1,869,000 1,969,000 2,030,000 2,069,000

4 15,730 138,100 438,100 844200 1,212,000 1,477,000 1,649,000 1,759,000 1,830,000 1,877,000

5 28,640 236,300 771,100 1,637,000 2,656,000 3.613,000 4,389,000 4,971,000 5,392.000 5,695,000

6 80,580 552,900 1,581,000 3,023,000 4,545,000 5,881,000 6,933,000 7,719,000 8,293,000 8,713,000

7 10.650 149800 685,900 1.892,000 3,749,000 5.853.000 7.740.000 9.195.000 10.230.000  10.930.000

(cont.)

Und. Development Periods

Year 1 12 13 14 15 16 17 18 i

1 4,028,000 4,114,000 4,181,000 4,232,000 4,272,000 4,305,000 4,331,000 4,352,000 4,369,000

2 4,139,000 4,183,000 4,214,000 4,237,000 4,254,000 4,268,000 4,278,000 4,286,000

3 2,094,000 2,111,000 2,122,000 2,131,000 2,137,000 2,141,000 2,145,000

4 1,909,000 1,931,000 1,946,000 1,958,000 1,966,000 1,973,000

5 5,912,000 6,071,000 6,188,000 6.276,000 6,343,000

6 9,021,000 9,251,000 9,424,000 9,556,000

7 ] 11,420,000 11,750.000 _11.980.000

Table A9  Fitted claims computed by Monte Carlo simulations estimated over 25,500 independent
samples.

A.6.2 MODEL 4.0 DIAGNOSTICS AND PARAMETER ESTIMATES

Fixed effect parameters
L D Ke Kd K, K,
Und 15.2900 5.6850 0.6367  -14.4900 -4.4210 -2.4880
Y; Underwriting year random effect parameters
L d, ke, kd,,
1 0.0272 -1.3800 0.3547 0.0661
2 -0.0102 -0.9854 0.5449 -0.0122
3 -0.7086 -0.2573 0.6872 -0.0329
4 -0.7808 -0.5506 0.5905 0.0138
5 04234 -0.1890 0.5087 0.0121
6 0.8493 -0.8225 04171 0.0846
7 1.0600 1.6470 0.7479 0.0277
o’ 1.06E+10
14 0.0025
Deviance 2,902

Table A.10 Model 4.0 parameters and diagnostics.
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A7 FINAL MODEL 5.0
A71 MODEL 5.0 FITTED VALUES OF CUMULATIVE PAID CLAIMS DATA

Und. Development Periods

Year [ 2 3 ) 5 6 7 3 9 10
1 | 65470 380,000 959,800 1,662,000 2322,000 2,855,000 3,256,000 3,549,000 3.761,000  3,915.000
2 145730 377900 1,118,000 2,023,000 2,782,000 3,305,000 3,640,000 3,853,000 3989000 4,079,000
3 114630 150,600 513300 1,004,000 1,423,000 1700000 1,868,000 1.969,000 2,030,000  2.069.000
4 116,030 138,600 438,300 844,500 1212000 1477000 1,649,000 1,759,000 1,830,000 1,877,000
5 |28,820 240200 780,900 1,648,000 2,661,000 3,611,000 4,385,000 4.968,000 5391,000 5,696,000
6 | 84,690 567,600 1,601,000 3,038,000 4,549,000 5,875,000 6,924.000 7710000 8.288,000  8.711.000
7 113570 171.000__738.800 1.964.000 3.803.000 _5864.000 7.714.000 _ 9.153.000 10.190.000 _ 10.910,000

(cont.)

Und. Development Periods

Year 11 12 13 14 15 16 17 i8 19
1 4,030,000 4,115000 4,181,000 4,231,000 4271000 4,303,000 4328000 4,349.000 4.365,000
2 4,141,000 4,183,000 4,214,000 4,236,000 4,253,000 4,266,000 4,276,000 4,283,000
3 2,094,000 2,112,000 2,124,000 2,132,000 2,138,000 2,143,000 2,146,000
4 1,908,000 1,930,000 1,946,000 1,958,000 1,966,000 1,973,000
5 5,916,000 6,076,000 6,195000 6,284,000 6,351,000
6 | 9,023,000 9,256,000 9,433,000 9,568,000
.

11.410.000 11.750,000 12,000,000

Table A.11 Fitted claims computed by Monte Carlo simulations estimated over 25,500 independent

samples.

A7.2 MODEL 5.0 DIAGNOSTICS AND PARAMETER ESTIMATES

Fixed effect parameters
L D Ke Kd Ky 9, K, K,
14.8300 5.2000 1.8770 -13.5100 -4.1220 1.6200 -4.4750 -2.2010
Underwriting year random effect parameters
2 d, ke, kd,

1 04881  -0.8916  -0.8796 0.0577
2 04528  -0.5451  -0.6994  -0.0371
3 02402 00258  -0.5958 0.0205
4 03172 01816  -0.6650 00317
5
6
7

0.8829 0.3530 -0.7180 0.0166
1.3100 -0.3071 -0.8147 -0.0499
1.5340 1.8580 -0.5337 0.1329
a° 5.05E+09

Deviance 2928

Table A.12 Model 5.0 parameters and diagnostics.
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A8 FINAL MODEL 6.0

A8.1 MODEL 6.0 FITTED VALUES OF CUMULATIVE PAID CLAIMS DATA

Und. Development Periods

Year T 2 3 ) 5 6 7 8 9 10
1 66,200 383,900 964,400 1,663,000 2317,000 2848,000 3,249,000 3,542,000 3,755,000 3,912,000
2 135,300 641,200 1,389,000 2,138,000 2,748,000 3,197,000 3,517,000 3,745,000 3,908,000 4,027,000
3 35,860 237,300 618,100 1,046,000 1,401,000 1,652,000 1,820,000 1,931,000 2,006,000 2,057,000
4 59,230 265,600 575,400 903400 1,188,000 1,410,000 1,575,000 1,697,000 1,787,000 1,854,000
5 24,320 220,100 747,500 1,618,000 2,651,000 3,620,000 4,404,000 4,988,000 5,407,000 5,704,000
6 165,500 810,000 1,909,000 3,252,000 4,598,000 5,790,000 6,773,000 7,554,000 8,166,000 8,642,000
7 8.110 125.600 616.800 1.796.000 3.698.000 5.889.000 7.832.000  9.285.000 10.280.000  10.940.000

(cont.)

Und. Development Periods

Year 11 12 13 14 15 16 17 18 19
! 4,028,000 4,116,000 4,182,000 4,234,000 4,275,000 4,307,000 4,334,000 4,355,000 4,372,000
2 4,116,000 4,183,000 4235000 4.275,000 4,308,000 4,334,000 4,355,000 4,372,000
3 2,093,000 2,119,000 2,139,000 2,153,000 2.164,000 2,173,000 2,180,000
4 1,905,000 1,945,000 1,975,000 2,000,000 2,019,000 2,035,000
5 5,917,000 6,070,000 6,182,000 6,266,000 6,329,000
6 9,015,000 9,309,000 9,543,000 9,731,000
7 11,380.000 11.670.000 11,870.000

Table A.13  Fitted claims computed by Monte Carlo simulations estimated over 25,500 independent

samples.

A.8.2 MODEL 6.0 DIAGNOSTICS AND PARAMETER ESTIMATES
Fixed effect parameters
L D Kc Kd g 9 9 s K, K,
Und. 15.8000  4.5610  1.2320 -12.'9.600 -1.9120 1.1780 15.6300 -0.1581 -6.3830 -1.3110
Year Underwriting year random effect parameters
I d, ke, kd,
1 04813 -0.3208 -0.2500 -0.0844
2 -0.4805 -1.0340 -0.3300 0.0070
3 -1.1870  -0.3798 -0.1589  0.0487
4 -1.2220 -0.9034 -0.3593  -0.0150
5 -0.0970 1.0910 -0.0505 -0.0292
6 03991 -0.3295 -0.3438  0.0398
7 0.5364 29920 0.1889  0.0295
o’ 109.600
Deviance 2,887

Table A.14 Model 6.0 parameters and diagnostics.
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B.1 ARRAYS 1 TO 3: CUMULATIVE PAID CLAIMS DATA
Und. Development Period
Year 1 2 3 4 5 6 7 3 9 0
1 1,965,120 4,455,720 5,125,260 6,208,080 6,365,400 7,566,780 8,134,380 8,300,640 8,491,200 9,072,840
2 508,829 7,957,659 10,395,008 11,627,118 12,659,049 13,512,509 13,813,936 14,609,422 14,836,855 15,095,843
3 1,070272 2,117,478 2,876,979 3,141,005 4,127,612 4,337,374 4,503,876 4,522,524 4,543,644 4,560,720
4 983,295 2,957,869 5,140,518 6,369,315 6,326,691 7.867,792 7,356,575 7,656,758 7,817,554 7,844,431
5 9,979,594 26,286,414 25,263,483 40,239,973 51,246,513 54,472,139 55,800,837 56,658,302 59,561,780
6 55,668 1,586,037 1,764,809 2,888,328 3,158,562 3,445,626 3,459,794 3,604,995
7 2,128,880 4,827,030 5,552,365 6,725,420 6,895,850 8,197,345 8,812,245
8 2,528,789 8,400,695 12.219,988 21,139,396 23,109,446 22,292,555
9 1,613,864 10,075,000 12,091,140 28,449,598 34,707,350
10 110,580  576.687 1,887,649 2244074
(cont.)
Development Period
‘{(":;r 11 12 13 14 15 16 17 18 19
1 9,298,740 9,640,380 9,681,600
2 15,216,319 15,361,081
3 4,572,331
4
s
6
7
8
9
10
Table B.1  Array 1: Simulated data based on the claims experience of a marine hull portfolio.
Und. Development Period
Year 1 2 3 3 5 6 7 8 9 10
1 445,841 1,654,609 1,605300 2,004,723 2,299,800 2,275,241 2,470,159 2,579,168 2,641,868 2,744,127
2 2,426,373 7,352,166 8,950,532 10,167,845 11,756,358 12,137,425 12,030,761 12,970,026 13,607,600 14,532,427
3 184,480 318,830 1,296,062 2,733,415 2,650,811 3,010,199 3,168,834 3,349,023 3431900 3,493,316
4 601,693 1,084,468 1,510,596 1,606,829 1,910,257 1,973,043 2,274,886 2,320,886 2,304,771 2,407,211
5 968,366 2,530,871 4,608,428 4,912,525 6,271,612 6,799,211 5,466,992 6,770,634 7,779,669
6 239,105 326,614 670,735 905,967 913,090 1,131,129 1,090,519 1,100,114
7 361,246 1,078.435 1,205,746 1,478,083 1,461,000 1,547,928 1,587,804
8 742,335 1,392,375 1,937,655 1,865,055 2,282,175 2,388270
9 228341 704,498 798,463 815,165 1,013,800
10 1,589,527 15,936,500 22,331,091 28.741,729

(cont.)
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Und. Development Period
Year 1 12 13 14 15 16 17 18 19
1 | 2.786,141 2,870,495 2,871,717

2 | 12,030,088 12,131,811

3 | 3,542,361

4

5

6

7

8

9

10

Table B.2  Array 2: Simulated data based on the claims experience of a marine cargo portfolio.

Und. Development Period
Year ] 2 3 2 B 3 7 8 9 10
1 3,232,205 9,881,808 12,905,347 14,832.451 15,314,642 16,405,052 17,591,239 17,993,791 18,352,169 18,500,158
2 1,262978 2,979,101 3,119,301 4,617,621 53884276 6,241,315 6,659,795 6,818,432 7,164,468 7,544,540
3 1,099,101 3,367,582 4,078,680 4,335,973 5855806 5875321 5977,392 6,129,768 6,185,657 6,205,646
4 731,599 2,554,623 3,586,046 4,168,936 3,762,376 5,081,203 4,686,750 5,777,092 6,108,501 5,983,210
5 175251 1,581,689 2,116,488 3,455,030 4,284,402 4,794,982 4,848,263 5275530 5,010,701
6 1,339,210 3,824.400 4,704,740 5,565,181 5,412,190 6,389,658 6,517,524 7,284,369
7 590,921 1,263,060 1,812,106 3,441,064 4,204,651 5155490 5213434
8 | 20,698,911 43,203,529 63,631,429 70,713,997 89,249,817 85,287,218
9 790,164 2,944,098 4,609,088 4,747,316 5,511,068
10 | 9,900,060 17,916,636 50,167,809 62,132,660
(cont.)
Und. Development Period
Year =1 12 13 14 15 16 17 18 19 20
1 | 18,733,437 19,496,439 19,567,234
2 | 7,689,022 7,771,566
3 | 6,240,897
4
5
6
7
8
9
10
Table B.3  Array 3: Simulated data based on the claims experience of an aviation hull portfolio.
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A Least Squares Method of Producing
Bornhuetter-Ferguson Initial Loss Ratios

Paul Brehm, FCAS, MAAA

Actuaries have relied on the Bornhuetter-Ferguson methodology in loss reserving
since the “The Actuary and IBNR” [2] was published in 1972. The methodology
is an intuitively appealing, credibility-weighted compromise between link ratio and
expected loss ratio methods, where ‘credibility’ is inversely proportional to the
remainder of the loss development tail. However, for almost as long as this
method has been in existence, practitioners have been asking, “What do | use for
my expected loss ratios?” Answers to this question (often unsatisfying ones)
include industry data, company data for comparable classes of business, loss
ratio pricing targets, planned loss ratios, and more.

This paper addresses the above question by offering a methodology for
producing underlying loss ratios for use in the Bornhuetter-Ferguson method that
are derived from the data itself. In particular, this paper addresses how to
determine the underlying loss ratio for the initial time period in the analysis using
a least squares methodology. The initial loss ratio is then used as the seed value
for all subsequent loss ratios.

1. Derivation
Let:

L; = loss ratio for accident period i (i=1,...,n) evaluated cumulatively at j
(=1,....m)

F; = development factor from age j to ultimate
U = Bornhuetter-Ferguson estimate of ultimate for accident period i

Ui = underlying ultimate loss ratio for accident period i (used in the
Bornhuetter-Ferguson formula)

T; = trend from time (i-1) to i — accident year dimension

P; = earned effect of pricing from time (i-1) to i

Then the Bornhuetter-Ferguson estimate of the ultimate loss ratio for accident
period i, with cumulative losses evaluated at j is:
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S, 1
UfF=Lij+Ui[1——] (1.1)

An alternative estimate for accident period i can be derived by using losses
evaluated one period earlier with the appropriate development factor, Fj.¢:

U =L, +U;|1-— (1.2)
, F-

If (1.2) is subtracted from (1.1), the difference in estimated ultimates should be
zero, but for some estimation error:

I [ R Sy L
F =

i j-!
J

Alternatively, after some manipulation:

(L, -L,,.)= U,.'[{l -é]—[n -FLIH ‘e, (1.3)

Note that the term on the left of equation (1.3) is simply the incremental loss
ratio. The term on the right is its expectation, conditioned on the underlying or
expected loss ratio and the selected development pattern. If j = 1, that is, the first

=0’

evaluation, then the term 1 is undefined. For this initial condition, let
Jj-1 j-1

J

and the bracketed term on the right becomes[FL} .

Now assume that the accident period loss ratios can be linked together over time
by periodic trend (T;) and pricing (P;) factors according to:

.

U (t+1)

U ;
' i-1 (1+P,)

(1.4)

By successive substitutions, all underlying ultimate loss ratios can be linked back
to the initial underlying loss ratio:
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l+T
U =U, H(1+P (1.5)

Substituting (1.5) into (1.3) for U; yields the general formula

(L, -L,,.)= UH(:Ii)[[ Fl‘_l]-[l—}l—'ﬂuﬁ (1.6)

J J

Note that (1.6) is of the form Y;=pX;, where the Y are incremental loss ratios, the
X are the ‘independent variables,” and  is the initial underlying loss ratio seed
for the Bornhuetter-Ferguson model, Uy. The independent variables are simply
derived values constructed from trend and pricing factors in the accident period
dimension and loss development factors in the development dimension. Formula
(1.6), then, can be estimated as a simple linear regression through the origin.

The parameter estimate, g, is the initial loss ratio we are solving for. Think of the
result as the initial loss ratio that is the least squares best estimate based on the
data and conditioned on all the assumptions concerning pricing, trend, and loss
development.

If it is assumed that trend is constant over the experience period, i.e., Ti= T for all
i, the formula (1.6) simplifies to:

(L,-L,.)= U,‘(1+T)“’[H(Hlﬂ)}[[l_;_‘]—[I_IF J}Leij (1.7)

The functional form of (1.7) is particularly useful. Given a set of loss
development factors and an earned price index, the above regression can be
iterated over a range of annual trend assumptions. The final model can be
chosen based on the underlying trend that maximizes R?. (I know, it's data
mining.)

Once U4 has been estimated, subsequent underlying loss ratios can be
estimated as

(1.8)

or
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1+T)"H 1+P) (1.9)

k=2

for the constant trend case.

Since this is a regression model, the estimate 23 of Uy has an associated

standard error, and a confidence interval can be established. The variance of ,23
is

2= 1.10
oy X (1.10)
where x; are the independent variables.
An unbiased estimate of ° is
2
512l (1.11)

(n-1)

where the g; are the residuals from the regression, and n is the number of terms
in the regression. There are n-1 degrees of freedom, as we are only estimating
one parameter. The standard error of the coefficient -- the square root of the
variance -- can be calculated as

A
2€
5, = [(n TS (1.12)

The 100-a% confidence interval around ,B’ is

Bt ty,S, (1.13)

The confidence interval (1.13) can be used to establish a range of estimates and
thereby gauge the sensitivity of the reserve indication. For example, in the case
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where a trend factor is also estimated by ordinary least squares, a confidence
interval can be estimated for the trend factor, as well. If a low estimate of trend is
paired with the lower bound of B in formula (1.9) and a high estimate of trend is
likewise paired with the upper bound of the confidence interval for B, both a low
and a high loss ratio pattern can be traced over accident periods and used in the
Bornhuetter-Ferguson estimation to derive low and high reserve estimates.

2. Example

Following is an example based on general liability data. The graphs below show
the incremental loss ratios by accident period over time (development period) —
case incurred on the left, paid data on the right.

Graph 2.1 Graph 2.2
Incurred Data Paid Data
Accident Years over (Development) time Accident Years over (Development) time
Incremantal Development by Accident Year Incremental Developmaent by Accident Year

350%

300%

250% X
20.0% \
150% x

100% “\

s 0% o%q
- - - 2

2on ] SO M

sowi ' 2 3 4 5 & 7 8 9 7

2 3 4 5 € 1 8 8 10
Devolopment Perlod Developmaent Pariod

When viewed by development period over accident period below, the incremental
loss ratios by evaluation would ideally behave like random pattern of points about
a smooth trend line, if a constant trend and on-level factors truly picked up all the
sources of systematic change over time. However, the data shows a departure
in the pattern over accident periods starting in accident period 5 (see Graphs 2.3
and 2.4, below). This suggests a non-constant trend parameter or, alternatively,
something affecting the loss ratios other than trend, e.g., underwriting or mix
changes. In reaiity the departure associated with accident period 5 may well be
better characterized as a calendar period distortion. Barnett and Zehnwirth's
model [1] may be a good alternative in this case.
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Graph 2.3 Graph 2.4
Incurred Data Paid Data
Development Periods over (Accident) time Development Periods over (Accident) time
by Yoar Paid by Year
350% ——1 25.0% ——1
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—— -9
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s0%11 2 3 4 5 6 7 8 9 10 1.2 3 4 5 6 7 8 9 10
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In this example, the constant trend case was modeled first for illustration
purposes. In the example data, the least squares trend estimate using an
exponential trend fit to pure ?remium was 3.5% (with an associated standard
error of 0.016). However, R° was maximized using a trend of 4%:

Graph 2.5

R-Squared v. Assumed Trend

97.9% -
97.9% -
97.8% -
97.8% -

97.7%

R-Squared Valu

97.7%
97.6%

97.6% -

97.5% T T T T T T |
00% 10% 20% 30% 40% 50% 60% 7.0%

Loss Trend

The resulting regressions can be seen below.

446 Casualty Actuatrial Society Forum, Fall 2006



Bornbuetter-Ferguson Loss Ratios

Graph 2.6 Graph 2.7
Incurred Data Regression Paid Data Regression
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It can be seen from the above regressions that the paid and incurred data yield
consistent results (initial loss ratios of 59.8% and 60.8%) from models with a
strong goodness of fit (R? values of 96% and 92%, respectively). It would be
appropriate, and more thorough, at this point to examine the residuals for serial
correlation and non-constant error variance (heteroscedasticity). If either was a
problem, the regressions could be adjusted accordingly.

To continue this example, trend was next assumed to vary over time. Underlying
annual trend was set to 2% (rather than 4.0% overall), with additional period-on-
period changes added to accident periods 5 through 9 to account for the
calendar period distortion or “surprise” trend' (much like the industry observed in
liability coverages in the late 90’s). The resulting regressions are shown below.

Graph 2.8 Graph 2.9
Incurred Data Regression 2 Paid Data Regression 2
| 40.0% 250%
I 35 0% oasTax
‘ ye
1 00% [20% R'= Q9675
' Bo% {150%
20.0% H ° Q
ason 100% o
H °
I 10.0% r
. 60% | 50%
| 00% - - oo |
1 .50% 0100 0200 0.300 0400 0500 0600 0700 0.800 ’ . 0050 0100 0.150 0200 0250
SR, e e

! Pve never tried it, but it occurs to me that the regression could simply be augmented with
‘distortion dummies’ to automatically estimate the degree of departure from an underlying trend.
This will be a subject of future research.
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In the revised regressions, the case incurred estimate of the initial loss ratio is
55.3% (R? of 98.3%) and the paid loss estimate of the initial loss ratio is 55.7%
(R? of 96.8%). SE was 0.7% for both the paid and case incurred data, yielding a
95% confidence interval of roughly +/-1.5 loss ratio points at time 1.

Given two estimates of the seed loss ratio, along with their respective error

variances, we can credibility weight the two together to get one estimate. The
formula for the paid data credibility parameter is:

2
Zpoa = Seaa
slz’ald Slzncumd

where S? is shown above in (1.11).

(2.1)

In practice, the credibility weighted solution can be derived directly by combining
the paid and incurred regression matrices and doing a single, mixed regression
[3]. The mixed estimate for this example is shown graphically in Graph 2.10.
The mixed estimate of the initial loss ratio is 55.5% with an R? of 99.2%. S;q is

0.46% for both the paid and case incurred data, yielding a 95% confidence
interval of roughly +/-1.1 loss ratio points at time 1.

Graph 2.10

Mixed Estimation
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The mixed estimate initial loss ratio, U'y, and the trend assumptions applied in
the regression model substituted into formula (1.8) yields a pattern of underlying
loss ratios as shown below. For the sake of this graph, the low and high loss
ratios were calculated according to formula (1.13) for accident period 1 using a
95% confidence level. Subsequent accident period ultimate loss ratios were
calculated with the selected trend plus and minus 1.6% respectively — one
standard deviation around the least squares annual loss cost trend.

Graph 2.11

Underlying Loss Ratios
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3. Conclusion

The above method has a strong appeal. its strengths include utilizing all readily
available data (dollars, counts, trends, premiums, exposures, pricing) and
utilizing paid and incurred losses simultaneously to produce a ‘best’ (least
squares) answer, in a computationally tractable manner, while still allowing the
flexibility for ample actuarial judgment.

This method has always served me well, even with ‘misbehaved’ or sparse data.
I hope it fills a need in your actuarial tool box.
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Trending Entry Ratio Tables

Dan Corro* NCCI
September, 2005

1 Background

Entry ratio tables are often a convenient mechanism for capturing informa-
tion that is subject only to scale transforms. For example, the National
Council on Compensation Insurance, Inc. (NCCI) stores excess loss factors
(ELFs) in entry ratio tables. To determine an ELF at an attachment point,
you simply divide the attachment point by the mean loss, and use that “entry
ratio” value to look up the ELF in the table. A key assumption is that the
underlying size of loss distribution changes only by a uniform scale transform
over time (or by a transform that is close enough to a scale transform; c.f.
Venter [3] for a discussion of scale adjustments and excess losses).

In fact, there can be forces at work that change the shape of size of loss
distributions in ways that are not captured by scale transforms. For example,
large claims might have greater trend factors than small claims (differential
severity trend). Also, the frequency of small claims might decrease more than
the frequency of large claims over some period of time (differential frequency
trend). Not surprisingly, both of these possible effects act to “stiffen” the size
of loss distribution, that is, increase the probability that a claim is “large,”
given that a claim occurs. A surprising result of our analysis is that the
adjustments to entry ratio tables to take these phenomena into account,
when they occur, often work in opposite directions. When large claims have

*Much thanks goes to Greg Engl and John Robertson, also of NCCI. Greg reviewed
numerous drafts and his input improved the work throughout. John was key in promoting
the topic within NCCI's actuarial research agenda. Both made direct and significant
contributions to the paper.
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greater trend factors than small claims, it might be necessary to increase
the entry ratio table ELFs for large entry ratios. But when small claim
frequency declines more rapidly than large claim frequency over a period of
time, it might be necessary to reduce the tabular ELFs for large entry ratios.

In this note we specify a generic, spreadsheet-friendly, format for an en-
try ratio table and consider the effects of differential trend and differential
frequency changes. Each is illustrated by a real world Workers Compensa-
tion (WC) case study. We then describe general techniques for modifying
an entry ratio table to account for not only a change in scale but also a
change in the relativity between the mean and the median loss (or any fixed
percentile loss) or a proportional shift in the hazard rate function of the loss
distribution. The findings suggest that entry ratio tables work surprisingly
well even for non-uniform trend and that in some important instances just a
small adjustment can extend the shelf life of an entry ratio table.

2 Background

Before we get into the details of the paper, we present a thought experiment
to illustrate some of the issues. Suppose we have 100 claims, 99 of which are
for $1 and the other is a $10M claim. Consider what happens if over the next
year inflation is expected to double the cost of the $10M claim, but leave the
other 99 unchanged. Observe that the mean cost per claim is expected to
roughly double, going from about $100K to about $200K. Recall that the
excess ratio is simply the ratio of the sum of losses in excess of a per claim
loss limitation to the total of all first dollar and up losses. The following is a
sketch of the graph of the old and new excess ratios, expressed as functions
of the loss limitation amount:
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Differential Severity Example
Excess Ratio Functions

s
N

\0'\
1 10M 20M

Loss Amount

Excess Ratio

In practice, excess ratios are often captured in “entry ratio” tables, i.e.
tables in which losses have been normalized to a mean value of 1. In this case,
when we normailize the old and new losses by dividing by their respective
means, the graph of the tabular excess ratios looks something like:

Differential Severity Example
Normalized Excess Ratio Functions

Excess Ratio o
z
]

— AOM  .jo0. 2
New Maan OtdMean New Mean

Entry Ratio

Observe that the new tabular values all lie at or above the old, which
makes intuitive sense. Indeed, the inflation targeted the big claim, thereby
“thickening” the tail of the loss distribution and necessitating the use of
higher excess ratios next year. Because inflation changed the cost of claims
selectively by size, this is a case of what the paper calls “Differential Severity”.

Now suppose we begin with those same old 100 claims, but this time we
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consider what happens when, due to a safety initiative, half the $1 claims do
not emerge the next year. Because the change impacts claim frequency selec-
tively by size, this is a case of what the paper calls “Differential Frequency”.
Notice that this experience change again roughly doubles the mean cost per
case. Here the chart of the old and new excess ratio as a function of the loss
limitation amount looks like:

Differential Frequency Example
Excess Ratio Functions

pury
+

Excess Ratlo

1 10M
Loss Amount

and when normalized to entry ratio tabular values becomes:

Differential Frequency Example
Normalized Excess Ratio Functions

N

-

9
&
2 Now
@
2
w
Ol
. 1 oM 1o
OldMean New Mean OldMen
Entry Ratio

Because the safety initiative is expected to be successful only for small
claims, intuition again suggests a thickening of the tail. Observe, however,
that the new tabular excess ratio values start out equal, then lie above, and
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eventually fall below the old. This suggests that, despite the similar impact
on the mean cost per claim, something genuinely different is happening in
the two scenarios. Actuaries should take heed that intuition can be a fallible
guide to updating entry ratio tables.

3 Notation and Terminology

We start with a definition and, to keep the discussion self-contalned we
derive some straightforward and familiar formulas: !

Definition 1 A random variable X is a loss variable if it has finite mean
p = E[X] > 0 and has a density [PDF] f that is continuous when restricted
to [0, +00) and whose support is contained in [0, +oo) We denote the distri-
bution function of X by F(z) = [ f(y)dy , whence &£ = f(z) on [0, +00).
The survival function of X is S =1— F. The excess mtw function of X is
given by R(z) = ﬂM“(X =20 — L m(y_:)f w)dy forz > 0. We denote by F the

function given by F(a:) M for x > 0. We use subscripts on ux, fx,

Fx, Sx, Rx, and FX when necessary to indicate dependence on X.

The following proposition expresses the excess ratio function in terms of
F and F.

Proposition 2 R(z) = 1 — F(z) — £[1 - F(z)], for allz > 0.

Proof. From the definition of R(z) we have

R(z) = i / "y - 2)fw)dy

= 2| [wrwar-s [ s

= 2]u- [Curtty - o500
= 1- -llz/oxyf(y)dy - %S(l‘)

= 1-F(z)- E[l — F(z)].
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as required. This completes the proof. =

It is well known that the mean of a nonnegative random variable, X, can
be expressed in terms of its survival function as E[X] = [;° S(z)dz. It is
easy to see that a similar result also holds for excess ratio functions.

Proposition 3 Let X be a loss variable with survival function S and excess
ratio function R, then

Jo S(y)dy
R(z) = %—"——, forallz > 0.
Jo S(y)dy
Proof. Let X have density f, then noting that % = —f(y) and using

integration by parts, we have

/ wS(y)dy = ySWIC + / ooyf(y)ﬂly
= —z8(z)+ / ony(y)dy
= —x/wf(y)dy+/wyf(y)dy

/ " - )W)y,

where the second equality follows from:

E|X] < 00 = [read “implies”]
o0 o0

o [T 1wy < [Tui@y—0as s - oo
z T

w
zS(x)

Thus
Jety—o)fwdy _ [ S)dy
E[X] 17 Sy)dy

R(z) =
as required. m
Corollary 4 4 (z) = iu(zl, forallz > 0.

Proof. By the Fundamental Theorem of Calculus:

dR d ([ZSydy\ -S(z)
-&;(x)=g§( 7 )_ po

as required. =
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Proposition 5 Let X be a loss variable with density fx and distribution
function Fx and let o, 3 > 0 be any two positive constants. Set:

Y =aX?

then for every x,y > 0:
1~ 1
L fr(y) = ;%;y_ﬁﬁfx ((5)9)

2. Fy(y) = Fx ((2)?)

3

wP fx (w)dw

(
3. Fy(y) =

o B

KxB
4. Rx(z) = Ryé(a'}ix)

Proof. We note that

R = <) =piox? s =recs (5 -2 (2)°)

proving 2.
1
For 1, just differentiate 2, using the change of variable z = (£)? = g—; =
L(pyETli o 1,5,
] (a) a G?Ey .

foly) = ddFyY _ dFx g@(jg)y) _ dF;z(z)Z_Z i ((g)%) 1 yl_g_é

And for 3 just integrate using the change of variable

(z)% P dw 1
w=(=~) ®aoav =2 —=——
o dz o388
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we have:

Fly) = *——

Finally:
Y = aXP=>YF=0afX =>4y =a%ux

a%uxRx(x) = a%E[Max(X—x,O)]

= a%E[Max((Z) 7 z,0)]
a

= E[Max(Y% - a%x,O)]

= MYgRyg,(a%x)

= abuxR (aba)

= Rx(z)= Ry%(a%x)

completing the proof. m
The special case § = 1 applies when normalizing losses, in particular
when dividing by the mean loss to get entry ratios:

Corollary 6 Let X be a loss variable with density fx and distribution func-
tion Fx, and let a > 0, then

fx(%)
L faX(y) = 'X_C,L
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2. Fox(y) = Fx(¥)
3. Fux(y) = Fx(¥)
4. Rox(y) = Rx(%)

Proof. All but number 3 are clear from Proposition 5, and 3 is very nearly
so:

Fux(y) = *——— = Fx(2)

as required. ®
We associate to a loss variable X with (finite) mean g = py = E[X] an
entry ratio table, which we term the rAB = rABx table. The table consists

of the two functions:

r

Ax() = Fxulr) = u [ Flue)ds = Fi(ur)

Bx(r) = Fiu(r) = [ of(ua)ds = Fx(ur)
0

Clearly, for any positive scalar &« > 0 if Y = aX, then

Y o oX X L A, = Ay and By = By = rABy = rABy

Ky CQphx W
and indeed the entry ratio table is invariant under such a transformation of

scale.
The dependent variable r is termed an “entry ratio” and corresponds to

losses (but has applications to any positive real valued distribution, e.g. a
wage distribution) normalized to a mean of 1. We often speak of these two
functions as determining the A and B “columns” of the entry ratio table.
Note that:

Bx(oo) = lim Bx(r) =1
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Column A is sometimes described as the percent of claims at or below the
corresponding entry ratio (r), while column B is described as the percent of
losses corresponding to the claims in column A. This r 4B setup is employed
in WC benefit on-level calculations, and is especially practical for spread-
sheets that deal with calculations that involve normalized loss variables.

We are particularly interested in determining how Ex(r), which we also
refer to as the normalized excess ratio, behaves subject to a non-scale “trend”
adjustment. For convenience we often expand the entry ratio table to include
a third column E, readily derived from the others by applying Proposition 2
and Corollaries 4 and 6 to X/pu:

Ex(r) = Rxu(r)=1-Bx(r) —r(1- Ax(r))

Py = Pty - 2500 g, () = ur) -1

The following picture, reminicent of the area interpretation of integration
by parts (c.f. Lee [2]), illustrates the usual way of visualing the rAB table
and illustrates the formula for the normalized excess ratio:

E(r)=1- B(r) —r(1 — A(r))

in terms of r, A, and B:
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area=E(r)
(A(D.0

0.0 [ (CRY)
I

1-A()

area=B(1)

;\fﬁ‘—/ .0

0.0 A® (A(,0)

We will let Y denote a loss variable that captures the effect of applying
“trend” to X. We also set:

G = Fy
g = [
v = E[Y].

Our goal is to determine rABy from rABx. We are particularly interested
in the absolute and relative impacts on the normalized excess ratio:

6(r) = bxy(r) = Ey(r) — Ex(r)
_ ()
p(r) = ()’

We clearly have:
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Taking derivatives and applying L’Hopital (twice), we have:

dé
- = G(vr) — F(ur)
&~ vgtor) - ufu)
dp _ Ex(r)G(vr) — Ey(r)F(ur) + 6(r)
dr Ex(r)?
1+ lim p(r) = 1+ lim ;&3) =1+ lim %
= 1+lm ) —Fl(l:,,)(i(f Db
B , G(vr)—1
= 1+ rll.r{.lo (F(,ur) -1 1)
B Gwr)=1 . wvg(vr)

im = lim ———=
r—oo Fur) =1 r=oo uf(ur)

14

y ¥
= — lim —£
ps—oo f(s)

(since r — 00 & s = pr — 00 ).

For large entry ratios, the impact of trend on the normalized excess ratio
column, Ex(r) vs. Ey(r), is dictated by the impact of trend on the mean and
on the largest losses. For any loss variable X let My denote the maximum
loss (in the case of no finite maximum loss amount, we set Mx = oo ).

Proposition 7 Suppose X and Y are two loss variables with Mx, My < 0o
and %X > %{Y—, then there exists b > 0 such that Ey(b) < Ex(b) and 0 =

EY(T)XS Ex(;:) forr >b.
Proof. Setting b = Mt < Mx we have
By Bx

buy < Mx=
Ey(b) = Ryu,(b) = Ry(uyb)
Ry(My) =0 < Rx(bux) = Rx/u, (b) = Ex(b)
b=
by = My = Ey(r) = Ry, (1)
Ry(pyr) =0 < Ex(r)

and r

Thy

itV v
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as required. =
We will find a use for the following later in Section 4:

Proposition 8 Suppose X andY are two loss variables with the same maz-
imum loss Mx = My < oo and with py > py, then there erists a > 0
such that Ry(r) > Rx(r) for 0 < r < a and there exists b > 0 such that
Ey(b) < Ex(b) and 0 = Ey(r) < Ex(r) forr > b.

Proof. Since py > uy, the existence of b follows from Proposition 7. For
the existence of a, we have from Corollary 4:

de( )__—_1 —1 dRy
dr

Cbx By dy

(0)

Now clearly Ry(0) = Rx(0) = 1 and since Ry and Rx are continuously
differentiable there exists ¢ > 0 with

Rx(:l:) -1 - Rx(l‘) - Rx(O)

T z-0 :
< Ry(y; : éiy(O) = Ry(yy) =L for every z,y € (0,a).

In particular:

Rx(T') -1 < Ry(’l‘) -1

0 < r<a= " -
= Rx(T) —-1< Ry(’r‘) -1 = Rx('f') < Ry(’l‘).

This completes the proof. m

4 Differential Severity Trend

Let the function h(z) defined on [0, 00) be such that A(z) > 1 and £ > 0
on [0,00). In this section we assume f(z) > 0 for £ > 0. Think of h(z) as
a severity trend factor that increases with the size of loss . The random
variable of the trended loss is Y = 9(X), where the transformation ¥ (z) =
h(z)r has 2 = h(z) + g% > 1 for £ > 0 and is order preserving and
invertible (and expands distances). Thus:

G(¥(z)) = Pr(Y < ¢(z)) = Pr(y(X) < ¥(2)) = Pr(X < z) = F(z).
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We clearly have ¥(z) > ¢ = v = E[Y] = Ey(X)] > E[X] = p and
F(z) = G(¢(z) > G(z) Observe that:

a e Y(z) > Y(a)
a = Y(z) — ¢Y(a) = h(z)x — h(a)a > h(a)z ~ h(a)a
h(a)(z~a)2z—a

v v

= vRy(¥(z)) = E[Maz(Y — ¢(z),0)]
= B[Mas((X) - $(z),0)] > E[Maa(X - 3,0)] = uRx(z)
> Ry(¥(@) 2 (£) Rx(@)

But the relationship between the normalized excess ratios Ey(r) and
Ex(r) is more subtle.

Let hy = lim,_,o h(z) and h,, = h(0), then 1 < h,, < hpr < 00 and we
have:

hmpt = hmE[X] < E[R(X)X] = E[¢(X)] = E[Y] = v < hyE[X] = hap

= hm<z<hM
i

= there exists exactly one a > 0 such that h(a) = z
©

However, we see that since F' and ¥ are both monotonic increasing,
whence invertible, and so too is G = F o9~*. Whence for r > 0 we have the
equivalence:

0 = j—f = G(vr) — F(ur) & G(vr) = F(ur) © vr = ¢(pr)

& h(uryur =vr

& h(p,r),u=1/©h(,ur)=Z-zh(a)@a=ur¢>r=

®ie

Now 0 = §(0) = lim,_,, 6(r) and so it follows that, unless §(r) = 0 for every
r > 0, the function §(r) has either a unique minimum or a unique maximum
on (0,00), and consequently &(r) is either always > 0 or always < 0, for all
r > 0. We claim that §(r) > 0 for all » > 0. To verify this, select 3 such that
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hm <B <% andlet b=ps = h=1(B) > 0; then:

a = r,u,b:s,u,1<ﬂ=h(b)<Z=h(a)=>b<a

Y(ow) = $(b)=h(B)p=pb< —b=-su=vs
= F(sp) = G(y(sp)) < G(vs)
dé
> - (s) =G(vs) — F(sp) >0
It follows that d(r) is increasing at s = ;% and therefore on the entire interval
(0, ﬁ) Since §(0) = 0, this clearly forces 6(;;‘—) > 0 and consequently §(r} > 0
for all 7 > 0, as claimed.

We see that the graph of §(r) is N-shaped, i.e. is concave with 0 = 6(0) =
lim, o 6(r), with a unique maximum at r = %. We have established:

Proposition 9 In the case of the differential severity trend model G(y(z)) =
F(z) and f(z) > 0 for > 0, as defined above, Ey(r) — Ex(r) > 0 for all
r > 0.

Let o =0 <71 <719 <.+ <7)p be asequence of entry ratios and set
A; = Ax(ri), Bi = Bx(r;),0 <i < M.

Suppose that A, = Ax(r;) > Ax(riz1),1 < ¢ < M and Ay = 1. Set

AA; = A;— A;_1,AB; = Bi— B; ;. Note that p35i,1 < i < M, is the mean

value of the untrended loss over the interval [ur;_;, ur;]. For 1 <i < M, set

s a3 (42)

B; Z AB.
k=1

ko
f

. . . s AB; \
Since 1) is order preserving, it is reasonable to assume that ¢ (“A—A‘f) is
a good estimate of the mean value of the trended losses on the interval
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[¥(uri—1), ¥(prs)], (the smaller the interval, the more accurate the estimate).
M M
~ ~ AB;
By = ZABk = ZAAi (1/; ("AA,-))
k=1 k=1
< AB;
= > (6~ 60t (v (v37))

= épr (Y(primi) <Y < o(pr:)) (1/) (ui—i—:))

Q

D Pr((pri1) <Y < 9(pr)) BY [(uriea) <Y < 9(urs)]
k=1
= E[Y]=v

And we have the estimate By ~ v. The sequence {A;} can be viewed as the
cumulative percentage of cases over the intervals of the trended losses and
thus approximates the A column of the entry ratio table of the trended losses.

The sequence {Bi} approximates the cumulative losses for the trended loss

cases from the corresponding intervals. So the sequence {E} is proportional
to the B column of the entry ratio table of the trended losses. Also, we have
observed that the sequence {y(ur;)} provides the endpoints of the corre-
sponding intervals of the trended losses which have overall mean = v = By
So setting:

= A, Bi= 2,
By Bu
we have approximated the r AB table for the trended losses rABy =~ rAB in
the case of differential severity trend. This differential severity trend adjust-
ment to the rAB table is a simple three-step process (1-fix A, 2-estimate B,
3-normalize r and B). In practice, this approximation can yield small negative
values for §(r) which by Proposition 9 should be set equal to 0.

PICLNy

i

0<i<M

4.1 'WC Case Study of Differential Severity Trend

The tables for excess ratios in WC are specific to the five types of WC in-
jury: Fatal, Permanent Total Disability [PTD], Permanent Partial Disability
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[PPD], Temporary Total Disaility [TTD], and medical only. It is standard to
itemize WC losses into medical and indemnity (or wage replacement) compo-
nents. While indemnity benefits are limited, either implicitly or by statutory
maximum aggregates, the medical portion is unlimited and subject to broadly
inclusive statutes as regards the medical procedures covered. In any event,
it has been noted that as the claim size rises, the percentage of the benefit
that goes for medical also rises. This is generally observed within all the
injury types (except medical only). A series of charts below provide a more
detailed picture of this phenomenon. Combine that observation with the fact
that medical losses are subject to greater upward inflationary pressure than
wages, and you have a scenario in which to apply the differential severity
trend model of the previous section.

In this case study we assume constant annual trend factors of ¢, = 1.075
for indemnity and ¢; = 1.095 for medical, applicable to all injuries and all loss
sizes. Normalized WC loss data by injury type was itemized into medical and
indemnity components and used to produce the following charts, by injury
type, that show the percentage of the total [=medical + indemnity] loss
by entry ratio (the role of the fitted curve will be described later). It is
worth noting that the percentages shown in the charts are determined over a
common interval width of entry ratio. Since there are typically more claims
at lower entry ratios, one consequence is more claims per plotted point at
the lower entry ratios, whence the greater spread of the plotted points at the
higher entry ratios.
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For each injury type = %, a simple curve (akin to a mixed exponential
survival curve, and shown on the charts) was fit to the patterns of decreasing
indemnity proportion 7;(r) by entry ratio r as the loss size increases:

m(r) = Qa; (bieair + Cieﬂir + (1 — b,' — c,-)e"”r)
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Injury 7 a; b; Ci Q; Bi Vi
Fatal 1 09280 0.6240 0.3761 -0.0051 -0.1416 -—0.4599
PTD 2 0.6928 0.7905 0.2095 -0.2542 -0.0007 -—0.4599
PPD 3 0.5811 0.3827 0.6173 0 —0.0281 0
TTD 4 0.6237 0.0397 0.9603 0 —-0.0475 -0.4599
We set hi(r) = m;(r)to + (1 — m;(r)) 1, then:
1<t0<t1,% <0=>1<hi(7‘) and %= ‘:Z:(to—tl) > 0.

and so each injury type other than medical only provides a differential sever-
ity trend model.

Letting X; denote the random variable of losses by injury type and Ny,
the corresponding claim counts, the usual formula (readily obtained from
Definition 1; see Gillam [1]) for the combined excess ratio over the injury

types at attachment A is:
Z in#XiEXi (ﬁ:)

Z NXJ"X;

Of course, to accomodate differential severity trend one could produce new
rAB tables as detailed above. A simpler alternative is to determine the
difference:

X Sratio(A) = X Sratio(X,, X2, X3, X4, X5; A) =

AXSratio(A)
= XSratio(Y:, Y, Ys, Yy Ys; A) — X Sratio*(X1, Xo, X3, X4 Xs; A)

S (&) S (2]
lZwm T > Nriby,
3 v (5 () =2 (1)

l > Mvi,

)3 Nyl.uy,.éx.-»:- ()

l ;Mw

]
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expressed in terms of the dx,y, and where the * attached to XSratio* is
meant to emphasize that one would consistently use the newer claim counts
Ny, and means py, in doing the calculation. While in principle you would
need updated r AB tables to precisely determine the d x,y; terms, if there were
a simplified form to approximate that term based on inflation data or other
cost trend considerations, this would provide the ability to refine the excess
ratio calculation:

X Sratio(Y,YsYs, Y, Y55 A)
= XSratio*(Xy, X2, X3, X4, X5; A) + AX Sratio( A)

without recourse to new rAB tables.

The use of entry ratio tables is a very good way to account for inflation
when calculating excess ratios. Indeed, even compounded over a five year
time interval, the AX Sratio adjustment in this case study is very small. The
following chart is indicative of what the calculation described here produces.
Of course, a bigger difference between medical and indemnity trend or a
longer time interval will produce bigger adjustments. Because excess ratios
decline with increasing attachment points, as the attachment point increases
the adjustment will typically increase as a percentage of the excess ratio.

5 Year Adjusment

0.005
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»

0.001

0
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5 Differential Frequency Trend

Let the function h(z) defined on [0, 00) be such that 0 < h(z) < 1, with A
piecewise continuous and non-decreasing on [0,00). So as to relate h with
the ‘untrended’ loss variable X, we also assume that there exist a,b > 0 such
that h(a) < h(b) with h continuous at a and at b and with f(z) > 0 for
every z € (a,b). Observe that this clearly forces a < b, and so there exist
br € (a,b) such that lerlolo br = b. But then, since h continuous at b:

h(@) < h(b) = hla) < h(b) = h (Jimby) = lim h(b)
= there exists M € N such that h(bx) > h(a) for every k > M.

In particular, letting ¢ = by we have:

¢ = by €(ad)
= f(c) > 0,h(c) > h(a) = h(c)f(c) > 0= 0< E[h(X)] < E[1] = 1.

We consider the ‘trended’ loss model defined by the PDF:
_ M=) f(z)

9(=) = Tatxy = M@ @)

Think of h(z) as a proportional decline in the incidence rate that decreases
with the size of loss z. For the trended loss variable Y, we have:

a a

Pr(Y <a) = /g(a:)d:v = /ﬁ(z)f(a:)dx = Pr(ﬁ(X) < a).

0 0

And accordingly, for the differential frequency trend model we take Y =
h(X). Also, if h is differentiable (except at perhaps finitely many points),
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integration by parts gives:

G) = [ o)z = [He)f@)as
0 0

> h(y)F(y).

For the differential frequency trend model we cannot have F'(z) > G(z)
for all x > 0, since by the above that would force the contradiction

G(z) 2 h(@)F(z) 2 Mz)G(2)
= 12> Tz(x) for all z > 0 such that f(z) > 0 with 1 > TL(a) for some a > 0 such that f(c
~ h(X)
1< EhX)|=E|zF7=| =1
» 1< 0] =2 |y ] =1+
In particular, differential trend models and differential frequency models are
disjoint from one another

Remark 10 The reader should note that unless we make the stronger as-
sumption that h is continuous on [0, 00), we cannot be assured that this Y is
a loss variable, as that term is defined here. The weaker assumption on h is
to include the case in which h is a step function. The reader may prefer to
demand that h be continuous, in which case some of the arguments can be
simplified.

Proposition 11 In the case of the differential frequency trend model g(z) =
h(z)f(z), as above, v > p.

Proof. Note that the function E(x) is plecewise continuous and non-decreasing
on [0,00). We claim that h{0) < 1, since otherwise:

h(z) > 1 for every z > 0 = g(z) = E(x)f(z) > f(z) for every x > 0.
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But then g(z) and f(z) are two piecewise continuous funtions on {0, co) with
the same finite integral = 1. So the relation g(z) > f(z) entails that g(z) =
f(z) except possibly at points of discontinuity of g. So ﬁ(z) = 1 except for
a discrete set of values or where f(z) = 0. By our model assumptions, there
exist a, 8 > 0 such that h(a) < h(B) with h continuous at a and at 3 and
with f(z) > 0 for every z € (a, 8). It follows that ﬁ(m) =1 on (&, 3), except
for perhaps a discrete set of points:

= there exist a;, b; € (@, §) such that
a¢ = lima;, B = limb; and Tz(ai) = Tz(bi) =1
= ﬁ(a) =h (1imai) = limﬁ(ai) = liml=1
i—00 1—00 1—00
= limh(b) =h ( lim b,-) = h(B)
= h(a) = h(@)E[h(X)] = h(B)E[h(X)] = h(8)
= h(a) =h(B) > h(a) =< [read “contradiction”].

This contradiction shows that 7(0) < 1. Similarly, we claim that (a) > 1
for some a > 0, since otherwise:

h(z) < 1forall z > 0= g(x) =h(z)f(z) < f(z) forall z > 0

and again g(z) and f(z) are two piecewise continuous funtions on [0, co) with
the same finite integral. This again entails that they are equal except possibly
at points of discontinuity. Then again h(z) = 1 except for a discrete set of
values or where f{z) = 0 and just as before we arrive at a contradiction. So
we have

R(0) < 1<h(a)
= there exists b > 0 such that h(z) < 1 on [0, b)
and h(z) > 1 on (b,o0).

Next we claim that there exists ¢ > 0 such that h(c) # 1 and f(c) > 0 since
otherwise

z >0, f(z) > 0=> h(z) = 1 = h(z) = E[A(X)]
But by our model assumptions, there exist «, 8 > 0 such that h(a) < h(5)
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with h continuous at o and at 8 and with f(z) > 0 for every z € (e, B):
= there exists ¢ € (a, a—;—ﬂ) ,d € <a+ﬁ,,8)
such that h(c) # h(d), f(c) >0, f(d) >0
= E[h(X)] = h(c) # h(d) = E[h(X)].

It follows that there exists ¢ > 0 such that E(c) # 1 and f(c) > 0 and we
have:

3
!
=
il
\8

zg(z)dz ~ / 2f(z)ds = / 2 (g() - f(z)) dz

/x h(z) —1 f(a:)dx
0

- /g;((a:)—l) f(z)dz +

z (ﬁ(m) - 1) f(z)dz

&\8

It
o
0\8
2
&
.
8
|
\8
.
~
&
I
N———
—_
!
—

~—
I

= v>u

as required. m

As in the case of differential severity trend in the preceding section, we
again are considering a change that increases the mean severity. Suppose we
use a fixed entry ratio table to calculate excess ratios. Then for a fixed at-
tachment point A, we have declining entry ratios f > é and the lookup into

the same entry ratio table leads to excess ratios that increase from Ex (-’3)
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to Ex (%) In the case of differential severity trend, we observed in Propo-
sition 9 of the previous section that the increase is consistently understated.
In the case of differential frequency trend, however, we will show that the
increase may be either overstated or understated. This may at first seem
somewhat counterintuitive for the two “trends” to move the mean upward
but the normalized excess ratio tabular amounts in perhaps opposite direc-
tions. However, the entry ratio lookup is dominated by the change in the
mean. For differential severity trend the overall trend factor consistently un-
derstates the impact of trend on the largest loss amounts, which helps explain
why the calculation consistently understates the excess ratio. But the case
of differential frequency trend is quite different: selectively removing smaller
sized losses will have a leveraged upward impact on the overall mean severity
while leaving the size of the largest claims unchanged.

With differential frequency trend we have, from the proof of Proposition
11:

s 2 b vRy(@) - uRx(@) = [ (v - 2) (otv) - F(v)) dy

= [[w-o (i) 1) 1@y 20
= Ry(x)zng(a:).

But again the relationship between Ey(r) and Ex(r) is more subtle.

In the case that X has a maximum loss M = Mx < 00, since Tz(x) is non-
decreasing on [0, 00) and there exists ¢ > 0 such that ﬁ(c) >0 and f(c) > 0,
and we have ¢ < M and Tz(d) > 0 for every d > ¢, whence:

My = sup{z|g(z) > 0} = sup{z|h(z)f(z) > 0} = sup{z|f(z) > 0} = M.

So too must Y have maximum loss M and Proposition 8 assures us that
Ey(r) < Ex(r) for large enough r. More precisely, we have:

Proposition 12 In the case of the differential frequency trend model g(z) =
h(z)f(z), as defined above, in which X has a mazimum loss Mx < oo, there
exists b > 0 such that Ey(b) < Ex(b) and Ey(r) < Ex(r) for allr > b.

Before stating a result that deals with the relationship between Ey(r)
and Ex(r) in the case Mx = oo, it is instructive to make a few observations.
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Note that since the non-decreasing function h is bounded above by 1, it is
reasonable (but not necessary) to have the decline in frequency flatten out
for large losses, say in the sense that the denvatlve -~ 0 asz — co. We
also observe that:

Proposition 13 In the case of the differential frequency trend model g(z) =
h{(z)f(z), as above, the limit lim, ., h(z) = X\ exists and <A

Proof. Since h is non decreasing and bounded above by 1, existence of the
limit is apparent. We evidently have:

A(z) < Afor all z > 0 = v = E[Xh(X)] < E[X)] = AE[X] = \u = E <A

as required. =
Proposition 14 Assume Mx = oo, then for any p > 1 for which the limit
limg_,o %(pf)l exists:

S(pz) 1

lim <

5 5(z)
Proof Note that Mx = oo is equivalent to S (z) > 0 for every z > 0 and so

”; is always well defined. Thus the expression lim,_,, ‘—gé(”—z)l makes sense

and further our assumptlon is that the limit exists for some p > 1. Note
that the integral fo z)dz = p < oo. Suppose, by way of contradiction,

that lim, é(%l >1 Then, using the change of variable z = pz, we would
have:

there exists ¢ > 0 such that pS(pz) > S(z) for every z > ¢

= / " pS(pr)dz > / " S(@)da

= i/coo S(z)dzx < /Coo S(pz)dzx

/:o S(pz)dz = %/oo S(pz)pdz

- 1 S(z)dz

p > 1=- / S(z)dz < = / S(z)dz
= = S:zda:<—/ S(2)dz =<«
> [ s@as <2 [ st
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This contradiction completes the proof. =

Remark 15 Appendiz A considers the implications of the eristence of the

limit lim, o %((—’;—“5)2. The discussion shows that if you assume that the limit

lim, o % 3) erists for all p > 1 and is not identically O for all p > 1, then
the tail be;zamor is essentially determined up to just a single parameter. More
precisely, consider the one-parameter survival function:

{5 151}

For T(8; ) such limits exist and are particularly manageable as we clearly

have 5
TBpz) _(pz)" 4 T(B; py)
>1 = = =
p:ﬁyx = T(IB,J,‘) x_ﬁ P yl_wo T(,B, )
It turns out that for a loss variable X with S = Sx and for which there exist

e > 1,k € N such that limg_ p, = 1 and lim,—o SS‘Z;)” eTists for every

k € N, then for all p > 1:

S(pz)
either xll.nolo 5) = 0
S(pz) 5 ( (efb‘))
or lim ——=- = where = —In{ lim >1.
o S@) P P=—\Mswm ) 2

We see that under these assumptions, the conditional probability of survival
S(x) 2W for y > z and z large is asymptotically the same as that of T(B;z) for
some unique 3, with 1 < 8 < co.

Example 16 For the “thin-tailed” exponential density S(z) = e~ % we have,
for any constant p > 1, that
S(pzx) e

Jim, S@) Jim —=

ok

. _{p=1)z
=lme ¢ =0

Z—00

/8

Example 17 For the “thicker tailed” Pareto density S(z) = (G;LI)Q we have,
for any constant p > 1, that

o \* o
lim 209 _ i (i;’i= lim (0“’) =pe.
T—00 S(:]}) Z-+00 (m) T—00 0+px
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Example 18 This example shows that the inequality in Proposition 14 can-
not, in general, be improved. Consider the survival function:

(z +¢) (In(z +e))*

/S x)dx—/mdu where u =z + e

0
ze/
1

loo
= 6['——] =e <00
w

1

S(z) =

=
]

dw where w = In(u)

3=

with finite mean. We have, with several applications of L’Hopital:

lim S(px) lim e (z +e) (In(z+e))®
s 5(@) | =mee \ (ot e) (In(pz + 0))° e

- i ((2e) lerar)
n:o(;ii)sza (i)

lnx+@)

m—»oo In(pz + €)

pT +e
z—»oo px + pe

DIFDIE DI DI “:_-
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Example 19 Define the function:

( T 0<z<l1 )
2z —1 1<z<?2
3 2<zr<A4
h(x):J 1+% 4<z<8 \

k+1 21 < 7 <2 and k > 1 even
| k-2+55 2'<z<2 andk>1 odd )

then the reader can readily verify that h is continuous and non-decreasing
with h(0) = 0 and lim;_,oc h(z) = co. It follows that S(z) = ™™= is a
survival function. Let X be a nonnegative random variable with S = Sx.
The reader can verify the following:

h(4z) = h(z)+2 forz>2

{k+2 k>10dd}

ky
h(2) = k+1 k>1 even

And we find that for x > 2:

S(z) _ e ) — oh(@-h(z) _ -2
S(z) e~h=)
S(4z) 1
= A4) = z_m 3G) " &

Since M(4) = & < 1 it is at least possible for this distribution to have a finite
mean; and indeed, the reader can readily verify that:

Inz

>—-1
z > 2= h(z) 3
= S(z)<ez” 3

-5
= / Sa:)dx</ ex lnzdx-e(2 1><c>o
In2

= ﬂx=/0 S(z)dr < o0
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and we see that X s a loss variable. Observe that:

o [ REY+2 k>10dd
M) = { h(2%71) k> 1 even

S(2-251)  S(2k) e h(H

= S(zk—l) - S(2k—1) T e—h(2k-1)
_ eh(zk—l)_h(zk) _ 6_2 k > 1 odd

1 k>1 even
= zl&xg ‘53(2;) fails to exist.

Finally, observe that should lim,_, ., %((4—’)2 exist, that is not sufficient to guar-

T

antee that lim,_, %(% exists for 8 > 4. Indeed, setting z), = %‘5 we have:

B £ >3o0dd
h(5zk) — h(zx) = { 5 k>3 even }
o S02) | heeorhe _ [ €75 k>3 odd
EN) e 2 k>3 even
= ;cll»nolo 'SL;((E::E)) fails to exist.

This example is meant to provide some additional insight into the nature of
the assumption made in the very special case considered in the above remark,
namely that lim,_,, %(%1 exists for all p > 1.

-~

The two limits limyo A(x) > 2 > 1 (Propositions 11 and 13) and

= H
. S(% . . ..
limg oo _;(sz)) = limz—e %Z—g < £ <1 play a key role in determining the

sign of §(r) for large enough entry ratio r, as demonstrated in the following:

Proposition 20 In the case of the differential frequency trend model g(z) =
Tz(a:) f(z), as defined above, assume that Mx = oo, that h is differentiable on
(0,00) (except at perhaps finitely many points) and that there exists ¢ > 0 with
% =0 forallx>c. Letp= /% and assume that the limit A = lim,_ o, %&%l

exists. Then

Ar(c) > 1=> there ezists b> 0 such that Ey(r) > Ex(r) forallr > b
/\ﬁ(c) < 1= there exists b > 0 such that Ey(r) < Ex(r) for all v > b.
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Proof. To compare Ey(r) and Ex(r) for large entry ratios, we again inves-

tigate the derivative of 6(r):

d_6
dr

Il

=/h

G(vr

)_

s [

F(ur)

z)dz + / (h(x)—l) f(a)dz

Observe that the first integral is always > 0 and converges to 0 as r — oo
and that the second integral is an increasing function of r for r large enough
to force h(ur) > 1 and the second integral also converges to 0 as r — oo.
Letr > < %, our assumptions together with 4 % = 0, give us:

Gr) =

h(vr)F(ur) — / F(z)=—dz

vr

dh

0
c

= hO)F(ur) - / Fl) 2 dh

= h(c)F(vr) —

Taking the limit as r — oco:

0
~ for some constant v > 0.

1 = h(c)-
1- () -
G(vr) h(c)F(vr) —

482

h(c)F(vr) +1 - h(c)

—h(c)(1 = F(vr)) + 1
s =
. —-h(c) A= Fr))+1-—

—h(c)S(vr) + S(ur).

F(ur)
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Now suppose Mh(c) > 1 :

)\TL(C) > 1= lim M >1
A5 SG@)
there exists b > 0 such that h(c)S(pz) > S(z) for every z > pb
p = E = h(c)S(vr) > S(ur) for every ur > pb

= TL(C)S(VT) > S(ur) for every r > b

= —E(c)S(yr) < —8(ur) for every r > b
ds
dr

And it follows that 6(r) is decreasing for r > b. Since §(r) — 0 as r — oo it
follows that Ey(r) — Ex(r) = é(r) > 0 for 7 > b. We have established:

= = —Rh(c)S(vr) + S(ur) < 0 for every r > b.

/\ﬁ(c) > 1 = there exists b > 0 such that
Ey(r) — Ex(r) = 6(r)>0= Ey(r) > Ex(r) for all r > b.

Reversing inequalities in the above argument shows:

Ah(c) < 1= there exists b > 0 such that
Ey(r)— Ex(r) = 6(r)<0= Ey(r) < Ex(r) forallT >b

completing the proof. =
An immediate consequence is that distributions with an infinite but com-
paratively thin tail act like distributions with finite support:

Corollary 21 In the case of the differential frequency trend model g(z) =

Tz(a:) f(z), as defined above, assume that Mx = oo, that h is differentiable on

(0,00) (except at perhaps finitely many points), that there exists ¢ > 0 with
5(

‘f—"; = 0 for x > ¢, and further that lim,_, —géi)—z) = 0. Then there exists

b > 0 such that Ey(r) < Ex(r) for allT > b.

Example 22 As o general example of a differential freqgency trend model we
may take h = F, then g(z) = oF'(z) f(z) for a uniquely determined constant
a. But clearly F? is itself a distribution function and setting:

G = F?
aG dr
. 2Fd:v Ffisa PDF=a=2
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and the increase in the mean is:

v—p = 7(1 - G(y))dy - 7S(y)dy
0 0

{(1 - F(y)*)dy - ZS(y)dym

(1 - F))(1+ F(y))dy - / S(y)dy

I

S@)(1 + Fy))dy — / S()dy
0

S(y)(A + F(y) — 1)dy

o5 8 o8 o~ 8 o~—_38

S(y)F(y)dy.

Example 23 Let X be an exponential denisty with f(z) = e and set

h(z) = ;&. Then from numerical integration applied directly to the defi-

nitions:

E[R(X)] = 0.404
p =1
v = 1477

The following graphs the excess ratio functions Rx(z) = Ex(z), Ry(z), and
Ey(z); from the graph we see that: Ey(z) < Ex(z) = Rx(z) < Ry(z).
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Ra(x)
Ry(%) 0.5
Ex(x)

Example 24 Consider the case of 10 losses per year: 9 of amount 1 and 1
of amount 2 and let X denote the corresponding random variable. Suppose
there is a decline in frequency to a rate of just 2 losses per year: 1 of amount
1 and 1 of amount 2 with random variable Y. The following graphs the excess
ratio functions Ex(r), and Ey(r). In this case we see that Ey(1) > Ex(1)
and Ey(1.5) < Ex(1.5) > 0.

1 ",
=,
0.8 AN
0.8 N :
) \\ — EY(r)
0.7 S
0.8 ™ . —=— Ex(1)
0.5 AN
0.4 N
N
0.3 .
0.2 \>
0.1 AN
. ' . \ |
0 0.5 1 1.5 2
r
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Example 25 Consider a Pareto density with survival function S(z) = (z%o)a
and a linear frequency decline of the form h(z) = Min (%g, 1) . We provide
the results of a direct evaluation via numerical methods for two cases:

9 = 2,a=5c=2d=1

4 = 0.5,v0695p= E ~ 1.39

1 . S(z) -~

— = lim —= =5.1 04 =

3 zg{-loS(px) 5.16 > 2.04 = h(c)
Ey(z) < Ex(z)

and:

0 = 2,a=5,c=10,d=5

g = 0.5,0%0575p= % ~1.149
1

)

. S(z) ' ~
= 1 ~1. . ~
Lim S(pz) 1.978 < 2.728 = h{c)

Ey(it) > Ex(I)

In both cases, Proposition 17 holds for any b > 0. This gives an instance
for which the same untrended loss variable and two functions for h, both of
linear frequency decline proportions with the same range of [%, 1], can produce
opposite sign impacts on the normalized excess ratio function.

As to the r AB table for this differential frequency trend model, as before

let
ro=0<rm<r< - <ry

be a sequence of entry ratios and set
A; = Ax(ri), Bi = Bx(r:),0 <i < M.

Suppose that A; = Ax(r;) > Ax(ri-1),1 < i < M and Ay = 1. Set
AA;, = A; — A;_,AB; = B; — B;_;. Again note that uﬁ%,l <i<M,is
the mean value of the untrended loss over the interval [/l/l‘,;_;, wr;] , which we
assume can be taken as an estimate for the mean of the trended loss. This
would hold provided that, within sufficiently narrow entry ratio layers, the
removed claims (and whence the retained) are representative of all claims in
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that layer. This would hold exactly, for example, in case the function h is a
step function that is constant on the intervals [r;_;,7;). For 1 <i < M, set

E(#’h‘)Az‘, Agi = Zi - ;{i—l

.

~ ~ ( AB,
Ei = Z AE}C
k=1

Assuming then that ,u%f is a good estimate of the mean value of the trended

losses on the interval [ur;_q, uri] , we have:

By _ i ABy _ i A4, (HAB,C)
AM k=1 AM k=1 AM AAk
M
AB,
= Z Pr(pri—1 <Y < pry) (u———)
k=1 AAk

M
ZPr (ure—1 <Y S ure) EfY |pure—1 <Y < pry
k=1

= E[Y]=v

Q

and we infer, as before, that v =~ %‘: and that the two sequences {/L} and

B;} are nearly equal to the cumulative cases and losses of not necessarily
normalized trended losses. So they only need to be rescaled to give the A and
B columns of the trended losses. Whence they are very nearly proportional
to the A and B columns of the entry ratio for the trended losses (and albeit
with different proportionality constants). So setting:

pokn_pdu 2 A g B ooy
Am

'l'=

-~ b

Bum

2
S

we have approximated the rAB table for the trended losses: rABy =~ rAB.
Finally, note that this simple three-step differential frequency trend adjust-
ment to the 7 AB table (adjust A, estimate B, renormalize r, A, and B) can be
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done quite generally to account for a change in frequency by size of loss and
does not formally demand that % > 0 on (0,00), although order preserving
is needed to justify the calculation.

5.1 WC Case Study of Differential Frequency

The tables for excess ratios in WC are produced by five types of WC in-
jury: Fatal, Permanent Total Disability [PTD], Permanent Partial Disability
[PPD], Temporary Total Disaility [TTD], and medical only [MO]. The WC
system in the US has seen a persistent decline in claim frequency over the
past 10-15 years. The decline is observed within each of the injury types
and over the spectrum of US industries. There is no consensus on how long
this pattern can persist, or even on its underlying causes. One pattern that
has emerged, both in NCCI investigations as well as from studies by the De-
partment of Labor, is that this decline has not been uniform by size of loss.
Small WC claims have declined proportionally more than have large WC
claims. That is the motivation for this look at how differential frequency
trend impacts entry ratio tables.
A recent NCCI study produced the following table of percentage changes
in claim frequency (per unit of wage-adjusted payroll exposure):
Fatal PTD PPD TTD MO
Smallest third of claims —6.2% —524% -23.7% -—-32.8% -26.7%
Middle third of claims —7.9% —18.5% —12.8% -204% -29.9%
Largest third of claims —10.3% 4.3% -87% —85% —13.8%
With the exceptions of the fatal and medical only injury types, the table
conforms to the by now familiar pattern of a smaller decline in frequency with
increasing claim size. These percent changes were used to define a propor-
tional change in frequency function h;(r) as a step function of entry ratio r
for each injury type i. Even a smoothed version of hi(r) would not likely con-
form to the differential frequency trend model assumptions for injury types
Fatal [¢ = 1] and Medical Only[i = 5 :
Range of r hi(r)  ho(r)  ha(r)  ha(r)  hs(r)
0<A(r)< i 09382 0.476 0.7628 0.6718 0.7329
1<A@r) < % 0.9211 0.8151 0.8723 0.7957 0.7014
% < A(r)<1 08967 1.043 0.9134 0.9151 0.8624
Even though the assumptions of the differential frequency trend model
are technically not met in this case study, the discussion still makes it clear
how to determine, for each injury type, a trended entry ratio table from the
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untrended table. The graphs below show the excess ratio functions Ex,(r),
and Ey,(r) by injury type ¢ before (X;) and after (V;) trend. With the
exceptions of the fatal and medical only injury types, we again see that
Ey(r) — Ex(r) < 0. For each injury type except perhaps medical only, the
two curves are very close, which indicates that little or no frequency trend
adjustment to the rAB table is indicated.

Fatal--Frequency Decline on XSratio

1

09
L] \
01 \ before ||

\ — after

Dgé
s Y
S AN

0.3 \
a.2 \
a1 \\“
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XSratio

PTD--Frequency Decline on XSratio
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TTD--Frequency Decline on XSratio
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As in the earlier case study, it is straightforward to combine differen-
tial frequency trend impacts by injury type into a combined impact on the
normalized excess ratio.

Casualty Actuarial Society Forum, Fall 2006 491



Trending Entry Ratio Tables

6 Matching the Mean and Median Loss

Suppose we are presented with an entry ratio table rABy together with some
constant € # 0, we next discuss how to build the entry ratio table rABx-.
Here we consider the trended random variable to be Y = (X ) = X* where
the transformation (z) = z° has %’f = ex°"! and is order preserving for
€ > 0 and order reversing for ¢ < 0. Thus, as we did for differential severity
trend, we have:

G(Y(z)) = Pr(Y <9(2))
= PO S ={ Bix 39 S e e s0 )
Let o =0<r; <79 <---< 1)y be asequence of entry ratios and set
A; = Ax(r;),B; = Bx(r;),0<i < M.
As before, suppose that A; = Ax(r;) > Ax(ri-1),1 <i< Mand Ay = 1.

Set AA; = A, — A;_1,AB; = B; — B;_;. Note that u%—%,l <i< M, is the
mean value of the untrended loss over the interval [ur;_1, ur;]. For1 <i < M,

set
~ AB\\ _ AB;\¢
BB = A4 <”’ (“KE)) = ad (“AA,)
B = Y aB.
k=1

£
Assuming, as usual, that (uﬁ%) is a good estimate of the mean value of the

fl

trended losses within the interval [;frf_l, /frf] leads to the familiar estimate
S EM and, as before, the two sequences {A;} and {§,} approximate
the cumulative claim and loss percentages of the trended losses. A change
of scale to normalize the trended losses corresponds to adjusting the two
sequences {A;} and B,-} by constant factors. So the sequences are very
nearly proportional to the A and B columns of the entry ratio for the trended
losses. Setting:

epe N B,

R=bl A=A, andBi=2, 0<i<M
Bu M

=-m

X
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we have approximated the r AB table for the trended losses: rABy = rABxe =
rAB.

Now abstract from this and suppose only that you are provided an entry
ratio table © in the form of three finite increasing sequences of M numbers:

o = 0<m<r<---<ry
Ay = 0< A <A< <Ay=1
By = 0<Bi<By<---<By=1

We will assume that these table values were constructed using some loss
variable X and so © at least conforms to the properties of an entry ratio table.
Given € > 0 we can formally construct a new entry ratio by mimicking the
above and assuming, with no loss of generality, that uy, = 1. For1 <i < M,
set AA;, = A; — A,_1 and AB; = B; — B;_; and define

~ AB;\*©
k=1

And construct a new table © from the increasing sequences:

€ ~.
ﬁ:r’,AzzA,,a.ndBl=§l,0§'L§M
BM BM

The significance of this construction for adapting entry ratio tables to chang-
ing conditions will become clear from the following:

Proposition 26 Let 1 < z; < z2 < -+ < Xpr be an increasing sequence of
M > 1 numbers. Then for any fized number w with 0 < w < 1 and integer
k, 1< k< M, there exist o, B > 0 such that setting y; = ax;® we have:

1 M
szi=l and Y =W

i=1

M
Proof. Let z; = 2,1 < i < M and define p(v) = %;z;’ then ¢ is a
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continuous function of v and invoking the Intermediate Value Theorem[IVT:

p(0) = 1
2y > 1= lim p(v) =00

v—00

1 1
1 < =< 00, IVT = there exists 8 > 0 such that ¢(8) = ™

Now set a = ;wg, then we have:
k

w .
Y = axiﬂz—ﬂxiﬂ=wziﬁ,1§z§M
Tk

1 M w M 8
= ML=y LA
i=1 =1
B

= wgo(B)=%= 1 and g =wzp =wlf =w
completing the proof. =

This means that, quite generally, for discrete loss data the power trans-
form Y = aX? enables us not only to normalize to mean 1 but also to simulta-
neously specify the entry ratio w(= r) of any selected percentile £(= A(r)).
As a very general example, suppose you are provided an rAB table and some
loss data with random variable X. Suppose further that you observe a me-
dian = m and mean = pu, so the observed entry ratio of the median = %
Now suppose further that in the given rAB table you observe that A(%) is

well removed from % This suggests to you that the given r AB table may not
be suited to the task, say, of looking up excess ratios Rx(z) for the given loss
data. Now assume that the given entry ratio table rAB has A(w) = § for
some w < 1—this is not unreasonable since loss distributions typically have
median less than the mean. From Proposition 23, there is a power transform
Y = aX? whose median has entry ratio equal to w. But this, in turn, sug-
gests that the given entry ratio table 7AB may be suitable as an entry ratio
table for the transformed losses Y = aX?, i.e. rAB = rABy, inasmuch as
the transformed losses have the ratio of mean to median implicit in the table.
While a power transform may not be the exact relationship for how losses
trend, it is reasonable to assume some structural relationship between the

given r AB table and the given losses. By Proposition 5, Rx(z) = Ry%’ (a%x)

and we find that all we require to customize the table lookup of excess ratios
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is an entry ratio table for Y. But the above discussion provides an algorithm
for determining the entry ratio table of a power transform. So let rAB be
determined, as above, from the original rAB table under the power trans-
formation & = %, then rAB ~ rABye = rABY%. This enables us to look up

the excess ratio Ryé (a?l”x). Finally, note that all this simplifies to the usual

process of looking up the entry ratio of the loss limit, but in the adjusted
entry ratio table:

Y = aXf=Y?5 :a%XﬁuY% =a'fl’;tx

= Rx(z)= Ryé(a%x) =E 4 <5;i95>

1%
afz T
vt (a%,ux v# (ﬂx)

= Rx(z) zﬁ(f—)
Bx o

So to summarize, this example illustrates a general technique to deal with
the case in which “trend” has impacted the shape of the severity distribution
as evidenced by a change in the relationship between the mean and the
median loss. In fact, the discusgoi details how to “trend” the old entry
ratio table, rAB, to a new table rAB.

The challenge with this approach comes in finding o and 5. At first, it
would seem to require a calculation involving the complete loss variable X,
or at least a very robust and representative claim subsample. And such cal-
culation (the proof of Propostion 23 coupled with a binary search algorithm
might prove useful), if doable at all, would suggest that direct calculation of
the excess ratio, or even an entirely new rAB table, may be more practical.
However, notice that only £ is required to construct +AB from rAB and it
is a straightforward spreadsheet application to try different values for 8 until
the resulting rAB satisfies ;f(w) = % This approach may well provide a 3
that works even when w > 1 and the technique can be applied equally well
to other percentiles than the median. Consequently, the technique is both
general and constructive.

Example 27 This example considers an entry ratio table rAB (columns
r,A,B) that reflects a loss distribution for which the median is about %th of
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the mean. Assume that later data revealed that the entry ratio of the median
loss had grown from 0.8 0 0.85. A power transform with 8 = 2 is illustrated.
Appendiz B includes the table and displays a trended entry ratio table rAB
(columns T, A, B) which may better fit the newer data. The following chart
shows the corresponding change in the normalized cumulative distribution
function, from A — A:

Power Transform Example
1.00
075
0.50
0.25 -
0.00 T T T T T T r

000 050 100 15 200 250 300 350 400

Entry Ratio r

We just. saw how a calculation similar to that of the differential severity
trend approach can adapt the r AB table to a power transform Y = aX?. We
conclude this section by describing how the set up of the differential frequency
trend calculation can adapt the rAB table to a proportional hazard transform
Sy = (9x)”. In the notation used for differential frequency trend, we have:

dSy _ ~ _
9(z) = ~—— = aSx(2)* f(z) = h(z) = aSx(z)*".
~ Now abstract from this as above and suppose again that you are provided
an entry ratio table © in the form of three finite increasing sequences of M
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numbers:

o = 0<rm<re< - <ry

Ay = 0< A1 <A< <Ay=1

Bo = 0<B1<B2<"'<BM=1.
Given a > 0 we can formally construct a new entry ratio table by employing
the three-step process for the frequency differential trend, again assuming for

convenience and with no loss of generality that the mean of the loss variable
of the given table is 1. Set AA; = A; — A;.1,AB; = B; — B;_; and define

Ai = 1—(1—Ai)a,Agi=gi—Zi_1, OSZSM

- ~ /AB
= Ak (2B
Ab (AA)

B, = Y AB,1<i<M
k=1

From which we construct a new table © from the increasing sequences:

1

jsol}

ke 2 A o |
T = LMaAi= 'L,B‘iz lvosZSM
BM M

My
tn

M

Example 28 This example begins with the same entry ratio table TAB as
the previous ezample. A proportional hazard transform a = g, selected to
again adjust the median to an entry ratio of about 0.85-the table is included
in Appendiz.B. The following chart shows the corresponding change in the
normalized cumulative distribution function, from A — A:
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Proportional Hazard Transform Example

1.00 y
0.75 oot
050 o
7’

4 —A

025 I
""" A

0.00 T L) T T T T T

000 050 100 150 200 250 300 350 400

The t;@o examples illustrate the rather different ways in which the power
transform (which bears a formal similarity with the differential severity trend
set up) and the proportional hazard transform (which bears a formal similar-
ity with the differential frequency trend set up) achieve raising the relativity
of the median to the mean loss. The power transform disproportionately in-
creases the larger losses, including increasing the maximum loss amount from
3 to around 3.3, so that proportionally fewer losses above 0.8 are needed for
an overall mean = 1. By contrast, the proportional hazard adjustment re-
moves the largest losses, including dropping the maximum loss amount from
3 to about 2.3, forcing the smaller losses to increase in order to maintain an
overall mean = 1. Accordingly, it is advisable to consider the impact of trend
on the largest losses when selecting a trend adjustment to update an entry
ratio table.

It is also worth comparing what the WC case studies suggest in regard
to the justification for trending an entry ratio table. Medical inflation has
outstripped overall wage growth very consistently and the reasons why are
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well understood. Also, WC medical coverage is not subject to the statutory
limitations imposed on wage-replacement benefits. Finally, in the case of
excess ratios, the direction of the change in the tablular values is consistent
and readily explained. So in the case of differential severity trend, there is a
strong argument to be made that the underlying dynamics are persistent.

The case of differential frequency trend provides a contrast. The decline in
WC claim frequency, while persistent over the past decade, is neither readily
explained nor well understood. Experts disagree on whether the decline
will, or even can, continue. While no one is surprised that medical inflation
outstrips wage growth, the observation that the WC frequency decline is
greater for smaller claims is a fairly new and a largely unforseen observation.
In the case of excess ratios and differential frequency trend, the direction of
the change in the tablular values is neither consistent nor straightforward.
While the dymanics of differential severity trend are extemely unlikely to
reverse, that cannot be said for differential frequency trend.

As with any trend adjustment, there is the concern that missing turning
points will result in trend adjustments leading to worse estimates rather than
better estimates. This is especially so when the direction of the numerical
change is itself problematic. In the case of entry ratio tables, there is a built in
correction for short term changes in severity that works very well. And so any
“trend” adjustment must be justified over a long time window as improving
the estimate. This study suggests that while a fairly strong argument can
be made for incorporating the differential severity trend adjustment to WC
entry ratio tables, the case is much weaker for differential frequency trend.

7 Conclusion

In the case of a differential severity trend in which large losses trend upward
faster (slower) than do smaller losses, the use of an entry ratio table assumes
an average trend which corresponds with a severity distribution whose tail is
not thickening (thinning) in response to the non-uniform trend. Ideally, the
normalized excess ratios from the rAB table should be increased (decreased)
to offset this.

In the case of a differential frequency trend in which the frequency of small
losses declines faster (slower) than for large losses, the impact of the frequency
decline on the mean severity is leveraged. Over the range of attachment
points, the use of an untrended entry ratio table may sometimes overstate or
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sometimes understate the change in the excess ratio.

The two models described here, the differential severity trend and differ-
ential frequency trend scenarios, are meant to act independently of one an-
other. Differential severity trend assumes that all trend is due to inflationary
movement and none is due to a change in claim emergence. Differential fre-
quency trend holds loss amounts fixed while applying a proportional change
in the density. Therefore, it is perhaps not too surprising that while both act
to increase the mean severity, they can impact the normalized excess ratio
in opposite directions and may offset one another when updating an entry
ratio table.

Another very general technique that can be used to accomodate a non-
uniform trend is to use a power transformation or a proportional hazard
transformation, in lieu of just dividing by the mean loss when performing
the lookup into the entry ratio table. The technique provides another way
to trend an entry ratio table. More precisely, the ratio between the mean
loss and a fixed percentile loss may be observed to change over time. And
this calculation gives a way to periodically modify the entry ratio table to
accomodate that movement.
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APPENDIX A

In this appendix we invoke the notation and assumptions of the Differ-
ential Frequency Trend (section 4) of the main paper and let X be a loss
variable with survival function S(z) for which Mx = oo. We consider the
implications of the assumption that the limit A(p) = lim, —é(—)l exists for
all p > 1. Proposition 14 of the paper gives:

Proposition 29 Let X be a loss variable with Mx = oo and S = Sx, then

for any p > 1 for which the limit A(p) = lim,_, é(%l exists:

1
AMp) < - < 1.
(k) p
Note that when the limit A(p) = lim,_, %L(—)z exists:
i ST _ L S(0) S(en)

o S(@) | e S(pz) S(@)

__ S(p(px)) \.  S(pz)
I =) A5

(o Sem)
- (. 555)
= A?) =),

More generally, we have:

Proposition 30 Let X be a loss variable with My = 0o and S = Sx, then

for any m € N, if the limit A\(p) = lim,_,o %(g)l exists then

Ap™) = lim gzm;) = A(p)™.

Proof. The verification is a straightforward induction, the result has been
observed to hold for m = 1,2, we have:

. S(pmta) S(p™tz) S(p™x)
I =cm T S s@
_ g S (e"2) | S(e"a)
g0 S(pmz) z—00 S(z)
AP)A(P™)

AP)Mp)™ = Mp)™*!
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completing the induction and the proof. =
When such limits all exist, this generalizes to:

Proposition 31 Let X be a loss variable with Mx = oo and S = Sx, and
assume that the limit A\(p) = limg—.o §Sg(p_;)l exists for all p > 1. Then

Ap)? = A(p®) for any positive real number w.

1
prz

5 is assumed to

Proof. Observe that since the limit A(p%) = limg_,c0 2
exist, we must have:

CT I Gl ) o Gl ) WO Gl )

S(?) - S (p"—?m) S (p"ni:c S (p?x)

= lim ——Z = A(p)~.
i - (p)
But then for any positive integers m,n we have:

%) = tim S22 — i(g(_))_) = (@) =A@,

Whence A(p*) = A(p)* for any positive rational a. Now let w be a positive
real, then there are sequences of positive rationals:

ar,by € Q,keN
such that 0 < ay,a < ager, bk > by
and with lim ax = lim b, =w.
k—oa k—o00

This clearly forces a, < w < b; and since S is a continuous, non-increasing
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function, we have:
w < by = p™ < p¥ < pt
P < p¥z < pa forallz > 0
S (p™z) > S (p¥z) 2 S (pb’“:c) forallz >0
S(p*a) _ S(px) _ S (0™a)

S) ~ S — Sz

. S(p*z . S{(p¥z S (o™
}H{.‘o‘é_/z;;)_) Zm—s(fz—)) ZJBEOTS(;)*)
Mp)™ = Ap™) 2 A(p”) 2> Mp™) = A(p)*

M)* = Ap)mem > M) 2 Mp)'™==" = A(p)*
= AMp)” = A(p*)
and we see that A(p)¥ = A(p”) for any positive real number w, completing
the proof. m
An immediate consequence is:

Corollary 32 Let X be a loss variable with Mx = oo and S = Sx, and
assume that the limit A\(p) = limy_o %g(%)- exists for all p > 1 Then

Qg

LR

forallz >0

¢y

1. there exists p > 1 such that A(p) =0 < A(p) = 0 for every p > 1
2. there exists p > 1 such that A(p) # 0 < A(p) # O for every p > 1.

Consider the one-parameter survival function:
1 <1
1w = TEa)={ 5 751}
T(ow) _(e2) _ oy Tew)
T(x) P y—oo T(y)
Note that T(8;x) has a finite mean if and only if § > 1. By convention,

we include the (discontinuous) possibility that 5 = oo by setting T'(o0; z) =
z7® =0forz>1.

Bz > 1=

Proposition 33 Let X be a loss variable with Mx = co and S = Sx and
assume that the limit A(p) = limy..o0 %((%2 exists for all p > 1. Then

o Slper)
Mp) = JL“&?(T)_"’B

forallp > 1, where 8 =—1In(A(e)) > 1.
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Proof. Consider first the case when there is some p, > 1 such that A(p,) # 0.
Then from Proposition 29 and Corollary 32 we find that A(e) € (0,1). Then
for any real p > 1 we have:

AMp) = A(elnp) = )\(e)l“” = (e—ﬁ)l“” — (elnp)—ﬂ - p_ﬁ
where \(e) = e & f=—In(\(e))

and since by Proposition 29:

(e)<1=>e</\(1) ln(e)<1n<)‘()) ~In(\(e)) =

the result follows in this case. For the remaining case A(p) = 0 for all
p > 1 we have from Corollary 32, with minimally abusive notation and our
conventions:

~In(x(e)) = —In(0)=
{3 - . S(p.’r)

= lim

—_— = = p >
m 5@ O=p = foralp>1

and the result holds in this case as well. The proof is complete. m

Corollary 34 Let X be a loss variable with Mx = oo and § = Sx and
assume that the limit A(p) = limy—o —g(pi exists for all p > 1 and further

that there.zs some py > 1 such that A\(py) # 0. Then
S(ex) _ . T(Bipw) _

% S(z) s T(B;z)
forallp > 1, wherel < = —In(A(e)) < o0.

AMp) = hm

Proposition 35 Let X be a loss variable with Mx = oo and S = Sx, then
the following are equivalent:

1. lim, o %(3})2 erists for all p > 1

2. there exist p, > 1,k € N such that limg_ o, = 1 and lim,_, ﬂsﬁ(ﬁz

exists for every k € N.
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Proof. It is apparent that 1 = 2. To establish the meaningful direction
2 = 1, we begin with the claim that:

ay > 0 for all k € N and klim ay = 0 = {maylk,m € N} is dense in [0, 00).
Indeed, given € > 0, b € (0, 00):

klimak=0:~3k€N90<ak<-;-

and setting

b = mak=>bm+1—bm=ak<§
= there exists m € N such that b,, € (b—¢€,b+¢€)
= mo€(b-¢eb+e),k,bmeN
Since this holds for any € > 0, it follows that {max|k,m € N} is dense
in [0,00) as claimed. And since the log function In : [1,00) — [0,00) is
bicontinuous and bijective, we see that

o, > 1for all k € N and klim o = 1= {pP*|k,m € N} is dense in 1, 00).
Now we have our assumption:

there exist p, > 1,k € N such that
S(pez)

klir{.lo o, = 1land 551530 —SW exists for every k € N

and we select any p > 1 and seek to prove that this assumption is sufficient to
imply that the limit lim, ., %&? exits. So assume, by way of contradiction,

that lim,_, %(%2 does not exist. We have, by density:
there exist ax,br € {o"|,me N} keN
such that 1 < aj,ar < agy1,ax < p and with klim ar =p
=00

and such that by > bgy1, b, > p and with klim by, = p.
—00

Now S is a continuous, non-increasing function on [0, c0) and so we have:

p<b; foralljjkeN

arz < pz < bz for all z > 0, and for all j,k € N

S (axz) > S (px) > S (bjz) for all z > 0, and for all j,k €N

S (axx) > S {pzx) > S (b;z)
S(x) — S(z) — S(=)

ag

¢ 4 4a

for all x > 0, and for all j,k € N.
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Consider the two sets:

A = {zlirgo Séf(’;”;),k € N}

- ]

The above inequalities clearly force:
B<a<l foralla€ Aandforal g€ B.

Observe that by Proposition 29:

S(aka:) 1
% 5@ S a

= a<lforallae A

We also have, for any k € N, that:

a < p
= grx<prforallz>0
= S(agx) > S(pz) forallz >0
S (axz) _ S (px)
> f
= 5k 2 5@) orallz >0
. S(agz) _ S(pz)
1 > > .
= Jim St) = 3@) = Oforallz >0
‘We claim that lim,_, ﬂS‘Z—;’)ﬁZ > 0 for every k € N, since otherwise:
lim M = 0 = existence of the limit lim —S—@ =0=3<«.
% S() % 5()

And we established:

0 < a<lforallac A
= AcC(0,1).

Now set:
a=infA,B=supB
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then clearly 0 < f < a < 1. We claim that:
a=p.

Indeed, suppose, again by way of contradiction, that o # 3. Then we would

have:
8 < a.

Now

A C(0,1) = there exists ¢ € {aglk € N} with 1 >y = lim S(cz) S0

s 5(z)
and we have, for any given ¢ > 0 :

1 > 7>O:3n€Nsuchthat'y%>1—e

klim o, = 1= dm € Nsuch that pm<c%
= pp<Cc
= ppz<czrforallz>0
= S(ppz) > S(cz) forallz >0
S(oa) _ Slea) .
> for all
= S(z) 2 5@ orallz >0
= lim%x—)>lim§£ﬁ=7

z—o S(z) T e—eo S(x)
N (l'm S(pmx)> ~ im 20R2)

s S(2) ) e S@) -

Proposition 29 = 1> —1— > lim 5(pmz) > 7% >1—c¢
Pm  e—x S(z)
And we have established:
For any given ¢ > 0 there exists ¢; > 1
S
such that the limit lim Slerz) exists and is in (1 —¢,1).

s—co S(z)

We next claim that:

There exists ¢, > 1 such that lim S(cp;x) € (B,a).
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Let B8; = ‘—’%é, then clearly 0 < 8, < a and (B;,a) C (B,a). Now let
6§ =Ilna —InpB, > 0. Then letting € = 1 — e~® we have ¢ > 0 and so by an
earlier claim there exists ¢; > 1 such that

. S(‘Plfz)
5@y € G-el)
= In (}L‘&%;Q) € (=6,0).

Set n=—1In (limx_,oo %%)ﬂ), then:

_ . S(py2) _
- = In (zh—»l{.lo 6) € (-6,0)=(InB; ~lne,0),0<n<$
Ing ha Ina InB 4 (lna—Infg Ina-Ing
_— = - > =
-n N ) 0

n Uj n
. Ina Ing,
= there exists [ € N such that l € { —,

-n -n
= —nle(nfylna)=e™ € (8;,0) C (6,0)

1

il

and it follows that, setting ¢, = ¢} we have:

e = elln(limz_,‘oo S_g(f’gl) _ (eln(limz_.m ssgwiz))>l

_ . S(p1) l_ - S(pix) L S(pew)
= (}L“é‘o S(@) ) = IS T A TS
= lim Slepr) _ e™e(B,a)

z=e S(z)

and the claim is established. Recalling how o and 8 were defined, we have:

lim S(paz) € (B,a) = (sup B, inf A)

% S5(a)
. S(bjz) . S(pyx) . S(agz)
T SRTSE e 5@ e 8w

Vi, keN
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and we also have that:

S(akz) _ S(py2)
Qg > (p2 = S(.’L‘) .<. S( )
= lim 5 (az) < lim 5 (0p2) <a=infA =«

S S B
S (bjz) _ S(poz)
R A OND)

m 502 o o S (0a)
= lm ey 2 hmgny

> f=sup B =<«

and we are lead to:
ar Ly < b;forallk,j eN.
But this, in turn, leads to
Jim ap = p=lim b =g, =p

S(poz) 1. S(pz)
= existence of the limit lim = lim
—00 S( ) T—=00 S(.’I;)

>«

and with this contradiction we have established our claim that that o = 8.
Now by the definition of the set A and « = inf A we find that for any given
e>0:

S
there exists k; € N such that o + > lim fs,Cl(k‘)m )
= there exists ; > 0 such that
S S
ate > gzl;)z) > S((f;)’ for every z > x;
= there exists z; > 0 such that
a+te > 5(pz) for every z > ;.

S(x)’

And similarly, by the definition of the set B with & = 8 = sup B, we find
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that for any given € > 0

S(bi,2)

there exists ks N such that 8 — % < lim

© s 5(a)
= there exists z; > 0 such that

S (byz) _ S (pa)
< S = 3@
= there exists zo > 0 such that
S (pz)
S(z)

, for every z > z,

B—~¢€

a—¢ = fB—-€< , for every z > z,.

Therefore:

given any € > 0, there exists 3 > 0 such that
S
{ (px),xes} C (a—€a+e)

= the limit lim M = o exists =><
o 5(a)

and this final contradiction establishes that the limit lim;_, %(%l exists for
all p > 1 and completes the proof. m
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APPENDIX B
Power Transform Example (B = 2)

F AB
0 0
0.316228 0.01853862
0.447214 0.03132221
0547723 0.03612254
0632456 003975295
0.707107 0.04019696
0.774597 004047166
083685 0.03991004
0.894427 0.03909732
0.948683 0.03848772
1 0.03681339
1.048809 0.03567449
1095445 0.03440628
1140175 003342733
1183218 0.03202034
1224745 0.03044021
1264911 0.03020417
130384 0.02877787
1341641 0.02809741
1378405 0.02654347
1414214 0.02525227
1449138 0.02519015
148324 0.02445823
1516575 002443335
1549193 002356912
1581139 002330379
1612452 0.02271451
1643168 0.02264905
1.67332 0.0236738
1702039 0.02206765
1.732051 0.02772158
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Proportional Hazard Transform Example (o = 5/7)
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1 Introduction

An in-depth review of the NCCI excess loss factors (ELFs) was recently
completed and changes were implemented in the 2004 filing season. The most
significant change was to incorporate the latest data, but the methodology
was thoroughly reviewed and a number of methodological changes were made
as well. Among the methodological items considered were:

1. Individual Claim Development
Our intent here was to follow the method in Gillam and Couret [5] and
merely update the parameters. However our treatment of reopened
claims is new as is the way we implement individual claim development.
This is covered in detail in section 2.

2. Organization of Data
The prior procedure fit countrywide loss distributions by injury type
and then adjusted the means of those distributions to be appropriate for
each individual state. We extend this idea to match the first two mo-
ments. The prior procedure implicitly gives each state’s data a weight
proportional to the number of claims in the given state, and thus even
the largest states do not get very much weight in the countrywide dis-
tributions. We give much more weight to individual states’ own data
and thus fit state specific loss distributions. For credibility reasons the

*We gratefully acknowledge the creative contributions of the many people involved in
this project, including, but not limited to, NCCI staff and NCCI's Retrospective Rating
Working Group.
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prior loss distributions combined permanent total injuries with major
permanent partial injuries, and minor permanent partial injuries with
temporary total injuries. We fit fatal, permanent total (PT), perma-
nent partial (PP), temporary total (TT), and medical only distributions
separately. In order to do this we use data at third, fourth, and fifth re-
port for fatal and permanent total injuries. Mahler [10] also uses data
at third, fourth, and fifth report. For permanent partial, temporary
total, and medical only injuries, where there is adequate data, we only
use data at fifth report. This is covered in section 3.

3. Fitting Method

We follow Mahler [10] and rely on the empirical data for the small
claims and only fit a distribution to the tail. We fit a mixed exponential
distribution to the tail. Keatinge [8] discusses the mixed exponential
distribution. Rather than fitting with the traditional maximum likeli-
hood method we choose to fit the excess ratio function of the mixed
exponential to the empirical excess ratio function using a least squares
approach. This yields an extremely good fit to the data. It should be
noted that we do not fit the raw data, but rather the data adjusted to
reflect individual claim development as described in section 2. This re-
sults in a data set that has already been smoothed significantly and so
we were not concerned that the mixed exponential tail might drop off
too rapidly. Mahler [10] noted that the excess ratios are not very sen-
sitive to the splice point, i.e. the point where the empirical data ends
and the tail fit begins. Thus we preferred to not attach too far out into
the tail so that we could have some confidence in the tail probability,
i.e. the probability of a claim being greater than the splice point. We
generally chose splice points that resulted in a tail probability between
5% and 15%. This is covered in section 4.

4. Treatment of Occurrences
We put a firmer foundation under the modeling of occurrences by bas-
ing it on a collective risk model. In the end we find that the difference
between per claim excess ratios and per occurrence excess ratios is al-
most negligible. This is quite a sharp contrast with the past. Once, per
occurrence excess ratios were assumed to be 10% higher than per claim
excess ratios. This was later refined by Gillam [4] to the assumption
that the cost of the average occurrence was 10% higher than the aver-
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age claim. Gillam and Couret [5] then refined this even further to apply
by injury type: 3.9% for fatal injuries, 6.6% for permanent total and
major permanent partial injuries, and 0% for minor permanent partial
and temporary total injuries. Our analysis shows that per occurrence
excess ratios are less than .2% more than per claim excess ratios. This
is covered in section 5.

In section 6 we discuss updating the loss distributions. The current pro-
cedure is to update the loss distributions annually by a scale transformation
and to refit the loss distributions based on new data fairly infrequently. The
scale transformation assumption is extremely convenient and is discussed by
Venter [12]. What is needed is a method to decide when a scale transforma-
tion is adequate and when the loss distributions need to be refit. We conclude
by reviewing the methodology changes. While the focus of this paper is on
methodology, we also take the opportunity to briefly discuss the impact of
the changes.

2 Individual Claim Development

When evaluating aggregate loss development it is not necessary to account
for the different patterns that individual claims may follow as they mature
to closure. In aggregate it does not matter whether ten claims of $100 each
all increase by $10 or whether just one claim increases by $100 to produce
an ultimate loss of $1,100 and an aggregate loss development factor (LDF)
of 1.1. But if you are interested in the excess of $110 per claim, it makes
all the difference. Gillam and Couret [5] address the need to replace a single
aggregate LDF with a distribution of LDFs in order to account for different
possibilities for the ultimate loss of any immature claim. They refer to this
as dispersion, and the name has stuck. Here, the term dispersion refers to
a way of modelling ultimate losses that replaces each open claim with a loss
distribution whose loss amounts correspond to the possibilities expected for
that individual claim at closure.

The loss distribution used to determine the ELF should reflect the loss
at claim closure. The calculation is done by injury type and uses incurred
losses. It must reflect maturity in the incurred loss beyond its reporting
maturity fully to closure, including any change in claim status (open/closed)
and change in the incurred loss amount. Moreover, it must accommodate
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the reality that not all claims mature in the same way. Age to age aggregate
incurred LDF's are determined from 1% to 5™ report by state, injury type,
and separately for indemnity and medical losses. The source is Workers
Compensation Statistical Plan Data (WCSP), as adjusted for use in class
ratemaking. As WCSP reporting ceases at 5 report, 5% to ultimate incurred
LDFs, again separately for indemnity and medical losses, are determined from
financial call data, typically in concert with the overall rate-level indication.

Individual claim WCSP data by injury type and report is the data source
for the claim severity distributions. PP, TT, and medical only claims are
included at a 5 report basis. The far less frequent but often much larger
Fatal and PT claims are included at 3¢, 4t and 5t* report basis. The WCSP
data elements captured include state, injury type, report, incurred indemnity
loss, incurred medical loss, and claim status. This detailed WCSP loss data is
captured into a model for the empirical undeveloped loss distribution. That
model consists of a discrete probability space to capture the probability of
occurrence of individual claims together with two random variables for the
claims’ undeveloped medical and indemnity losses as well as four characteris-
tic variables for state, injury type, report, and claim status. Eventually, this
is refined into a model for the ultimate loss severity distribution that con-
sists of a probability space together with one random variable for the claims’
ultimate loss as well as two characteristic variables for state and injury type.

Because dispersion is exclusively focussed on open claims, without some
accommodation, claims reported closed but that later reopen would not be
correctly incorporated in the dispersion model. Accordingly, it is advisable
to account for reopened claims prior to dispersing losses. The loss amounts
considered are the total of the medical and indemnity losses for each claim.
The methodology adjusts those loss amounts and probabilities by claim sta-
tus and injury type, so as to model the impact of reopening claims. The
details for the specific calculations used can be found in Appendix A and
Appendix C. It is based on the observation that the few closed claims that
reopen after a 5 report (0.2%) are not typical, but are on average larger (by
a factor of 8) and have a smaller CV (by a factor of 0.4). Appendix A shows
quite generally how to calculate the resulting means and variances when a
subset of claims have their status changed from closed to open.

The probability, mean, and variance of the three subsets of the loss model:

1. claims reported closed at 5" report

2. claims reported open at 5% report

516 Casualty Actuarial Society Forum, Fall 2006



The 2004 NCCI Excess Loss Factors

3. claims that reopen subsequent to a 5% report

completely determine the probability, mean, and variance of the complemen-
tary subsets:

1. claims ‘truly closed’ at 5% report (those reported closed that do not
reopen)

2. the complement set of ‘truly open’ claims.

That is, there is only one possibility for the probability, mean, and vari-
ance of the truly open and closed subsets, even though there are multiple
possibilities for what particular claims reported closed at 5% later reopen. In
fact, those values can be explicitly determined from the formulas derived in
Appendix A.

Knowing the probabilities of the truly open and closed subsets, we adjust
the loss model by proportionally shifting the probabilities. The probability
of each open claim is increased by a constant factor while the probability of
each closed claim is correspondingly decreased by another factor. Knowing
the mean and variance of the truly open subset lets us adjust the undevel-
oped combined medical and indemnity loss amounts of the open claims to
match the two revised moments for open claims; this is done via a power
transformation as described in Appendix C. The closed claim loss amounts
are similarly adjusted. The result is a model of empirical undeveloped losses
that reflects a trued up claim status as of a 5t report, in the sense that no
closed claims will reopen. That model, in turn, provides the input to the
dispersion calculation. This approach is a refinement from that of Gillam
and Couret [5] who account for the reopening of just a very few closed claims
by dispersing all closed claims by just a very little. The idea here is to per-
form the adjustment prior to dispersion so that it is exactly the set of ‘truly
closed’ claims whose losses are deemed to be at their ultimate cost and it is
the complement set of ‘truly open’ claims that are dispersed.

In the resulting model for the empirical undeveloped loss distribution,
the claim status variable is assumed to be correct in the sense that the
loss amount for each closed claim is taken to be the known ultimate loss
on the claim. Dispersion is applied only to open claims. Accordingly, the
LDF applicable to all claims is adjusted to one appropriate for open claims
only, and all development occurs on exactly the open claims. For each state,
injury type, and report, one average LDF is determined from the medical and
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indemnity LDF's to apply to the sum of the medical and indemnity incurred
losses of each claim. That combined incurred LDF is then modified to apply
to just the open claims. More precisely, the relationship used to focus an
aggregate LDF onto just the open claims is simply:

L. = Aggregate undeveloped loss for closed claims
L, = Aggregate undeveloped loss for open claims
A = Aggregate LDF applicable to all claims

A = Open only LDF
MLo+L,) = LC+XLO=>X=/\+(,\—1)%
(4]

The adjusted to open only LDFs are determined and applied by state, injury
type, and report.

Even though the adjusted LDFs are applied to all open claims indepen-
dent of loss size, because the proportion of claims that remain open correlates
with size of loss, the application of dispersion varies by the size of loss layer.
Typically, larger losses are more likely to be open, and this application of
development factors will have a greater impact in the higher loss layers. It
follows that the application of loss development changes the shape of the
severity distribution, making it better reflect the ultimate loss severity dis-
tribution.

The next step is to apply dispersion to open claims. The technique used
to disperse losses is formally equivalent to that used by Gillam and Couret [5].
The technique bears some similarity to kernel density estimation in which an
assumed known density function (the kernel) is averaged across the observed
data points so as to create a smoothed approximation. More precisely, the
idea is to replace each open claim with a distribution of claims that reflect
the various possibilities for the loss that is ultimately incurred on that claim.
The expected loss at closure is just the applicable to ultimate LDF times the
undeveloped loss. The LDF is varied according to an inverse transformed
gamma distribution and multiplied by the undeveloped loss to model the
possibilities for the ultimate loss.

The NCCI Detailed Claim Information (DCI) database was used to build
a data set of observed LDFs beyond a 5%* report. We studied DCI claims open
at 5" report for which a subsequent DCI report was available. The observed
LDF was determined as the ratio of the incurred loss at the latest available
report divided by the incurred loss at 5% report. If the claim remained open
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at that latest report, the observed LDF was considered “right censored.”
Censored regression of the kind used to study survival was used to fit this
data. Open claims were identified as the censored observations, i.e. closed
claims were deemed “dead” and open claims “alive” in the survival model.
The survival model was used to determine an appropriate form to represent
the distribution.

More precisely, the SAS PROC LIFEREG procedure was used to estimate
accelerated failure time models from the LDF observations. Letting Y denote
the observed LDF, the model was specified by the simplest possible equation
Y = X + ¢, where A represents a constant and ¢ a variable error term.
That is, the model specifies just an intercept term with no covariates at
all. That model specification was selected because it corresponds to the
application of a constant LDF ( A ) to open claims. Moreover, the error term
of the model corresponds precisely with dispersion, as that term is used here.
Consequently, this application of survival analysis is somehat unconventional
inasmuch as the issue is not the survival curve or the goodness of fit of
the parameter estmate A that is key. Rather, the interest here is on the
distribution of the error term €. The SAS LIFEREG procedure is well suited
to this because not only does it account for censored observations, it also
allows for different structural forms to be assumed for the error term € when
estimating accelerated failure time models.

In this application, the estmated parameter for the intercept was not
used since the LDF factors by state, injury type and report were taken from
ratemaking data. What was of interest is the form and parameters that spec-
ify the error distribution. The Weibull, the Lognormal, the Gamma, and the
generalized Gamma distribution were considered. In fact, the two-parameter
Weibull, two-parameter Gamma, and the two-parameter Lognormal are all
special cases of the three-parameter generalized Gamma (the Weibull and
Gamma directly via parameter constraint, the Lognormal only asymptoti-
cally). The solutions for the generalized gamma implied that its three pa-
rameters enabled it to outperform the two parameter distributions. The
three-parameter model guided the specification of the functional form and
parameter values for the LDF distributions used in the dispersion calculation.

With the eventual goal to calculate excess ratios, it was important to
assess whether the error term varies by size of loss. Gillam and Couret [5]
assume that the CV of the dispersion distribution does not vary by size of
loss. In addition to specifying different structural forms for the error term,
models were fit to quintiles of the data, where by a quintile we mean that
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Histogram of Censored LDF and
PDFs of Uncensored Survival Distributions
Based on DCI PPD Claims with both a 5" and Subsequent Report
1.75 :
K
1.5
1.25
J —¢— Censored LDF
1 / /N —e— Gamma PDF
0.75 —a— Weibull PDF
0.5
0.25 /
0 —l/ :
0 0.5

the observations were divided into five equal volume groups according to
claim size. It was observed that the CV of the error term did not show
any significant variation by size of loss. This affirmed the prior assumption
of a constant CV, and that assumption was again used in this dispersion
calculation.

The LIFEREG procedure outputs the parameters that specify the dis-
persion pattern, by injury type, that relates a fifth report loss amount with
the probable distribution of the incurred cost at “death” of the claim, i.e.
at claim closure. Combining that with average LDF's from ratemaking, the
uncensored distribution of the ultimate loss severity can be calculated. For
any fixed open claim, the uncensored LDF distribution values times the (un-
developed) loss amount corresponds with the probable values for that claim
at closure. It follows that the uncensored LDF distribution corresponds to
age to ultimate LDF's applicable on a per open claim basis. The above chart
illustrates how the survival model anticipates rightward movement of the
reported empirical losses and fills out the right hand tail.
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Because the mean LDF was already known, our primary focus was on the
CV. This follows the approach of Gillam and Couret [5], whose decision to use
a two-parameter gamma distribution for the reciprocal of the LDF was also
followed. The use of the gamma to model the reciprocal amounts to the use of
an inverse gamma for the LDF. That choice was reaffirmed by the DCI data
and is illustrated somewhat in the above chart. We actually used a three-
parameter inverse transformed gamma distribution, as the survival model
suggested that would yield a better representation of the LDF distribution.
The first two parameters, denoted «, 7 in Klugman, et. al. [9] determine the
CV of the distribution, which varies by report and injury type as indicated
in the following table:

Injury Report o T | CV

Fatal & PT 3 5.7134 | 0.8 ] 0.7
Fatal & PT 4 6.8664 | 0.8 | 0.6
Fatal & PT 5 8.7775 1 0.8 | 0.5
PP 5 8.7775 | 0.8 | 0.5

TT 5 12 3 |01

Med Only 5 12 3 101

The third parameter, denoted 8 in Klugman, et. al. [9], determines the

mean LDF and was directly solved for to make that mean equal the age
to ultimate aggregate open claim LDF by state, report, and injury type.
Even though open TT and Med only claims are not assumed to develop in
aggregate (mean LDF = 1), the open TT and Med only claims are dispersed,
but with a small CV.

Gillam and Couret [5] used a CV of 0.9 for the LDF on open claims;
that selection was dictated to some degree by the need to account for po-
tential unobserved large losses. The current ratemaking methodology makes
separate provision for very large losses. This, in turn, enables this ELF re-
vision to rely less on judgment and more on empirical data. The empirical
data suggested the lower CVs used for the LDF distributions. All else equal,
lowering the CV lowers the ELF at the largest attachment points. Much sen-
sitivity analysis was done to assess the impact of this change in the assumed
CV. It was determined that the selection did not represent an unreasonable
reduction in the ELFs.

As is typical with kernel density models, Gillam and Couret [5] used a
closed form integration formula to implement dispersion. However, in order
to be able to perform the downstream data adjustments (in particular, ad-
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justing to state conditions as discussed in the next section), we instead used
the device of representing each open claim by 173 variants. The variants
are determined by multiplying the undeveloped loss amount by 173 different
LDFs. The variant LDFs have mean equal to the applicable overall LDF (as
applicable to open claims only) and a CV of 0.5 for 5* report Fatal, PT, and
PP claims. The mean LDF applicable for medical only and TT cases is 1,
as those cases are assumed not to develop in aggregate beyond a 5%* report.
So even open medical only and TT claims are dispersed, albeit so as not to
change the aggregate loss (and with a smaller CV of 0.1 for the LDF distrib-
ution). The choice of 173 points was done to enable the calculation to better
capture the tail. Very small and very large LDFs are included in the model
(corresponding to the 0.000001°* and 99.999999®* percentile of the inverse
transformed gamma) albeit with a correspondingly very small weight (about
0.000001) being assigned to such variants. Dispersion does not change the
contribution of any claim to the aggregate developed loss. It was determined
that the use of 173 points provided a very close approximation to the contin-
uous form. Additional details on that calculation can be found in Appendix
B.

To summarize, the dispersion calculation starts with a finite probabil-
ity space of claims together with a random variable giving the undeveloped
claim values. Then both the probability measure and the random variable
are adjusted to account for reopened claims. That gives a modified proba-
bility space of claims. Replacing each open claim with a distribution of 173
expected loss amounts at closure yields a developed dispersed probability
space of claims with a random variable giving the ultimate claim value. This
is done for each injury type and for all NCCI states. The next section de-
scribes how those random variables are adjusted to state specific conditions
so as to yield the empirical distributions used in fitting the data to severity
distributions.

3 Organization of Data

The idea of estimating excess ratios by injury type goes back at least to
Uhthoff [11] and has been used as well by Harwayne [6], Gillam [4], and
Gillam and Couret [5]. While we follow this approach as well, it should
be noted that -alternatives have recently been identified by Brooks [2] and
Mahler [10].
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Owing to the relatively few fatal and permanent total claims it is de-
sirable to combine data across states. Differences between states preclude
doing this without adjustment however. Gillam [4] addressed this by group-
ing states according to benefit structure. For an interesting recent approach
incorporating benefit structure see Gleeson [7]. With the current dominance
of medical costs this approach is less satisfactory. In the prior approach,
Gillam and Couret [5] addressed the problem “by dividing each claim by the
average cost per case for the appropriate state-injury-type combination.” We
refer to this data adjustment technique as mean normalization. This results
in a countrywide database with mean of 1. Loss distributions were then fit
to this normalized database. The countrywide loss distributions are then
adjusted via a scale transformation (see Venter [12]) to be appropriate for
each particular state. Thus the data for different states is adjusted to have
the same mean. A natural variant of this would be median normalization,
the thought being that the median might be more stable than the mean. A
natural extension is to try and match more than one moment. We considered
five data adjustment techniques altogether:

1. Mean Normalization

As mentioned above, for a given injury type, each claim in state i, de-
noted by z; (here z; denotes the incurred loss on a claim from state i
developed to ultimate), is transformed by z; — z;/p;, where y, denotes
the mean of the z;. The normalized claims for all states are now com-
bined into a countrywide database. To get a database appropriate for
state j, each normalized claim is then scaled up by the mean in state
J,le Tifp; = py mi/py

2. Median Normalization
This is analogous to mean normalization, but claims are now normal-
ized by the median rather than the mean.

3. Logarithmic Standardization
A natural generalization of mean normalization would be to standard-
ize claims, T; — i;:—”* To avoid negative claim values when transform-
ing the standardized database to a particular state we standardize the
logged losses, log z; — lﬂgi——“'s , where now y,, o; denote the mean and
standard deviation of the lz)gged losses. This results in a standardized
countrywide database, which can then be adjusted to a given state j by
“’g—“;"i‘-ﬂi —0j- k’g—f;’_ﬁl + ;. Appendix C discusses this in more detail.
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4. Generalized Standardization
This is analogous to logarithmic standardization except that instead of
the mean and variance, percentiles can be used. For example, instead of
the mean we could use the median and instead of the standard deviation
we could use the 85®* percentile minus the median.

5. Power Transform

Lastly, we considered a power transform, z; — az?, where the values
of ¢ and b are chosen so that the transformed values have the mean
and variance of state j. That this is possible is shown in Appendix C.
Thus for each state i there is a different power transform that takes
the unadjusted state i claims and adjusts them to what they would
be in state j, in the sense that the transformed claims from state i
match the mean and variance in state j. Combining all of the adjusted
claims results in an expanded state j specific database. Notice that the
unadjusted state j claims appear in the expanded state j database and
so the expanded state j database is indeed an expansion of the state j
data. It should also be noted that the power transform generalizes both
mean normalization and logarithmic standardization and the moments
are matched in dollar space rather than in log space. This is discussed
in more detail in Appendix C.

Extensive performance testing was conducted to decide which data ad-
justment techniques to use. The idea was to postulate realistic loss dis-
tributions for the states, based on realistic parameters, simulate data from
the postulated loss distributions and see which techniques best recovered
the postulated distributions. Initial tests showed that median normalization
and generalized standardization performed poorly and so further tests con-
centrated on the remaining techniques. Based on our performance tests we
chose to use logarithmic standardization for Fatal and Permanent Total (PT)
claims and the power transform for Permanent Partial (PP), Temporary To-
tal (TT), and Medical Only claims. It seemed that when there were only
a limited number of claims and the difference in CVs between states was
large the exponent in the power transform could occasionally be quite large,
leading the power transform to underperform logarithmic standardization.

Gillam and Couret [5] call modeling PT and PP claims separately the
“common sense approach.” Owing to the scarcity of PT claims they have in
the past been combined with Major PP claims. Due to our improved data
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adjustment techniques we are able to separate PT from PP. We also used
data at 3", 4**, and 5% report for Fatal and PT claims because of their
relative scarcity, whereas we only used data at 5t* report for the other injury
types.

In the prior approach, each state’s weight in the countrywide database
was proportional to the number of claims it contributed to the countrywide
total. This seems implicitly like assigning a state’s data a credibility of n/N,
where n is the number of claims in the state and N is the countrywide
total. Further, this implicit credibility did not vary by injury type. This
makes sense when there is only one countrywide database. We however, use
a different database for each state and give each state’s data a weight of
v/n/N in the state specific database, where n is the number of claims in the
state and N is a standard based on actuarial judgment. Our view was that
most states would have enough data to fit loss distributions for Medical Only,
but that no state would have enough claims to fit a Fatal loss distribution
and only the largest states would have enough PT claims. We thought it
reasonable that three quarters of the states would have enough Medical Only
claims, half of them would have enough TT claims and about a quarter of
them would have enough PP claims. With this in mind, we chose N, the
standard for full pooling weight, to be 2,000 for Fatal claims, 1,500 for PT
claims, 7, 000 for PP claims, 8, 500 for T'T claims and 20, 000 for Medical Only
claims. It is intuitively sensible that the standard for Medical Only should
be higher than for PT because excess ratios are driven by large claims and
most PT claims are large whereas most Medical Only claims are typically
small.

4 Fitting

Traditionally a parametric loss distribution would be fit to the entire data
set by maximum likelihood. The first problem with this approach is that
distributions which fit the tail well may not fit the small claims so well and
thus there is a trade-off between fitting the tail well and fitting the small
claims well. The need for a fitted loss distribution is really only in the tail as
the number of small claims is quite large. Mahler [10] has recently used the
empirical distribution for small claims and spliced a fitted loss distribution
onto the tail. This is the approach we follow as well and we describe it in
detail in Appendix E. Fitting the tail alone is of course much easier and the
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fits are much better than they have been in the past. The second problem
with the traditional approach is that maximizing the likelihood function is
somewhat indirect. While maximum likelihood fits typically result in loss
distributions with excess ratio functions that do fit the data well, there is no
intrinsic interest in the likelihood function itself. The primary objective is a
loss distribution whose excess ratio function fits the data well and so instead
of maximum likelihood we use least squares to fit the excess ratio function
directly. Appendix D gives some general facts about excess ratio functions.
In particular, Proposition 12 shows that a distribution is determined by its
excess ratio function and so there is no loss of information in working with
excess ratio functions rather than densities or distribution functions.

Mabhler [10] uses a Pareto-exponential mixture to fit the tail. We use two
to four term mixed exponentials. The mixed exponential distribution is de-
scribed by Keatinge [8]. All things being equal, the mixed exponential is a
thinner tailed distribution than has been used in the past. It has moments of
all orders, whereas some loss distributions in use do not even have finite vari-
ances. However, the loss data used to fit the mixed exponential is driven by
the inverse transformed gamma distribution of LDFs, as described in section
2, and the inverse transformed gamma is not a thin tailed distribution. This
prevents the tail of the fitted loss distribution from being too thin. The mixed
exponential also has an increasing mean residual life, and this is quite typi-
cal of Workers Compensation claim data. Fat tailed distributions may make
sense in the presence of catastrophic loss potential, but recently NCCI has
made a separate CAT filing so the new ELFs are for the first time explicitly
non-CAT. From a geometrical perspective, the density function over the tail
region should be decreasing and have no inflection points, as occurs where the
first derivative of the density function is negative and its second derivative
is positive. The mixed exponential class of distributions has alternating sign
derivatives of all orders. And conversely any distribution with alternating
sign derivatives of all orders can be approximated by a mixed exponential to
within any desired degree of accuracy. Functions with this alternating deriv-
ative property are called completely monotone and this characterization of
them follows from a theorem by Bernstein. (See Feller [3].) We initially
considered using other distributions besides the mixed exponential, but the
mixed exponential fits were so good that it was not necessary to consider
other distributions further.

Mahler [10] noted that the excess ratios are not very sensitive to the splice
point, i.e. the point where the empirical data ends and the tail fit begins. We
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found that to be the case as well. We were concerned with large losses being
under represented in the data. Thus we preferred to not attach too far out
into the tail so that we could have some confidence in the tail probability,
i.e. the probability of a claim being greater than the splice point. So we gen-
erally chose splice points that resulted in a tail probability between 5% and
15%. While this gave us some confidence in the tail probability, we were still
concerned about claims in the $10 million to $50 million range being under
represented in the data. (Claims larger than $50 million would be accounted
for in the separate CAT filing.) The new excess ratios are based on one to
three years of data, depending on the injury type, but the largest WC claims
and events occur with return periods exceeding three years. WC catastro-
phe modeling indicates that claims and occurrences in the $10 million to $50
million range are underrepresented in the data used to fit the new curves.
Because of this, we included an additional provision for individual claims
and occurrences between $10 million and $50 million. This new provision
is broadly grounded in the results of several WC catastrophe models, and
known large WC occurrences. Previous excess ratio curves included a provi-
sion for anti-selection of 0.005, which has been eliminated in the new curves.
The new provision, per-claim or per-occurrence, is .003 up to $10 million, 0
for $50 million or greater, and declines linearly from .003 to 0 between $10
million and $50 million. Thus the final adjusted excess ratio is 0.997 times
the excess ratio before this adjustment, plus this adjustment. That is, if L is
the loss limit and R(L) is the unadjusted per claim or per occurrence excess
ratio, then the adjusted excess ratio is given by

997R(L) + .003 if L <$10M
R(L)=1{ .997R(L) — s3I + 00375 if $10M < L < $50M .
997R(L) if L > $50M

5 Modelling Occurrences

Data is typically collected on a per claim basis. This makes it a challenge
to produce per occurrence excess ratios. The first attempt to address this
was to merely increase the per claim excess ratios by 10% to account for oc-
currences. For low attachment points this could lead to excess ratios greater
than 1. Gillam [4] improved this approach by assuming only that the aver-
age occurrence cost 10% more than the average claim. This affects the entry
ratio used to compute the excess ratio. Gillam and Couret [5] then refined
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this approach still further by breaking down the 10% by injury type: 3.9%
for fatal injuries, 6.6% for permanent total and major permanent injuries,
and 0% for minor permanent partial and temporary total injuries. These
approaches, while reasonable, rely heavily on actuarial judgment.

The first attempt to base per occurrence excess ratios more solidly on
per occurrence data was by Mahler [10], who attempted to group claims
into occurrences based on hazard group, accident date, and policy number.
NCCI has a CAT! code which identifies claims in multiple claim occurrences.
Singleton claims (occurrences with only one claim) have a CAT code of 00,
all claims in the first multi-claim occurrence would have a CAT code of 01,
claims in the second multi-claim occurrence would have a CAT code of 02,
etc. Unfortunately there were several problems with the CAT code:

1. missing CAT codes
For singleton claims it is permissible to report a blank field for the CAT
code. This would then be converted to a 00. However there was no
way of knowing whether a blank field was deliberately reported as a
blank or inadvertently omitted.

2. orphans
There were claims observed with nonzero CAT codes, but with no other
claims with the same CAT code. One carrier, for example, appeared to
have numbered the claims in a multiple claim occurrence sequentially.

3. variance in injury dates
Claims were observed with the same CAT code, but with different
injury dates. In one case the injury dates were 14 months apart.

4. grouping of CAT claims
It is permissible to group small med only claims in reporting. This is
not permissible however in the case of CAT claims. Nevertheless there
was some evidence of grouped reporting for CAT claims.

Further complicating things was the fact that even with optimal report-
ing, multiple claim occurrences appear to be extremely rare. Based on an
examination of data from carriers known to report their data well, it would
appear that .2% is a reasonable estimate of the portion of all claims that

1Here a catastrophe is merely an occurrence with more than one claim. The term
‘catastrophe’ in this context has no implications as to the size of the occurrence.
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occur as part of multi-claim occurrences. Based on the above problems, we
decided not to try and build a per occurrence data base, but rather to use a
collective risk model. From the per claim loss distributions we could easily
get an overall per claim severity distribution. We estimated the frequency
distribution for multiple claim occurrences from carriers thought to have
recorded the CAT code correctly. The mean number of claims in a multiple
claim occurrence is about 3, but most multiple claim occurrences consist of
two claims.

Unfortunately the severity distribution of claims in multiple claim oc-
currences seemed to be different from the severity distribution of singleton
claims. First, the mix of injury types in multiple claim occurrences was more
severe than in singleton claims. Second, even when fixing an injury type,
claims occurring as part of a multiple claim occurrence were more severe.
We chose to address this issue by assuming that the severity distribution of
claims in multiple claim occurrences differed from the distribution of single-
tons only by a scale transformation. This assumption goes at least as far
back as Venter [12].

More formally, let X; be the random variable giving the cost of a singleton
claim of injury type ¢ and let Fx, be the distribution function of X;. If S
is the random variable giving the overall cost of a singleton occurrence then
Fg =Y w;Fy,, where w; is the probability that a singleton claim is of injury
type i. That is, the per claim severity distribution is a mixture of the injury
type distributions. If Y; is the random variable giving the cost of a claim of
injury type ¢ in a multiple claim occurrence then we assume that Y; differs
from X; by a scale transform, i.e. Y; = a,X; for some constant a,. If Z is
the random variable giving the overall cost of a claim in a multiple claim
occurrence then Fz = Y w}Fy,, where w] is the probability that a claim in a
multiple claim occurrence is of injury type :. Then M = Z, 4 ...+ Zy is the
cost of a multiple claim occurrence, where N is the random variable giving
the number of claims in a multiple claim occurrence and the Z; are iid random
variables with the same distribution as Z. Finally, the per occurrence severity
distribution is given by F' = rFg + (1 — r) Fyy, where r is the probability that
an occurrence consists of a single claim.

Because r is so close to 1 there is very little difference between per claim
and per occurrence loss distributions. Per occurrence excess ratios are no
more than .2% more than per claim excess ratios. This is a sharp contrast
with the prior approaches.

Casualty Actuarial Society Forum, Fall 2006 529



The 2004 NCCI Excess Loss Factors

6 Updating

Overall excess ratios are computed as a weighted average of the injury type
excess ratios. Let R(L) be the overall excess ratio at a loss limit of L, and
let R;(r) be the excess ratio for injury type ¢ at an entry ratio of r, then

R(L) = ZwiRi(L/ui),

where w; is the percentage of losses of type 7 and p; is the mean loss of type
1. The injury type weights, w;, and average costs per case, j,, are updated
annually, but the injury type excess ratio functions, R;, are updated only
infrequently. The idea is that the shape of the loss distributions changes
much more slowly than the scale. The annual update thus involves adjusting
the mix of injury types and adjusting the loss distributions by a scale trans-
formation. Updating via a scale transformation is extremely convenient and
is discussed by Venter [12].

The key question is how to determine when a simple scale transformation
update is adequate and when the loss distributions need to be refit. If X
is the random variable corresponding to last year’s loss distribution and Y
is the random variable corresponding to this year’s loss distribution, then
the scale transformation updating assumption is that there is some constant,
¢, such that Y and cX have the same distribution. Then the normalized
distribution, Y/u, has the same distribution as ¢X/cuy = X/ux and thus
Var(Y/uy) = Var(X/uy) = ok /uk = CVE. So if successive year’s loss
distributions really did differ only by a scale transform then the C'V would
remain constant over time. Thus monitoring the CV over time might give a
criterion for when it is necessary to update the underlying loss distributions
and not just the injury type weights and average costs per case.

Since the injury type loss distributions are normalized to have mean 1,
applying a uniform trend factor would have no impact. Thus the losses used
for fitting are typically not trended to a future effective date. This is ex-
tremely convenient in that it does not require us to decide in advance when
the loss distributions need to be updated. However, if the trend is not uni-
form, then it could result in a change in the shape of the loss distributions.
This could for instance happen if there was a persistent difference in medical
and indemnity trends and the percentage of loss due to medical costs varied
by claim size, as it typically does, even after controlling for injury type. How
significant this phenomenon is remains an open question. It is in some sense
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limited as medical trends cannot exceed inflation forever without the med-
ical sector consuming an unacceptably large fraction of GDP. Nevertheless,
this does suggest that monitoring the difference in cumulative medical and
indemnity trends might provide a guide as to when the shape of the loss
distributions needs to be updated.

7 Conclusion

With the present revision we have implemented several changes to the method-
ology as summarized in the table below. We retained the general approach
to dispersion of individual claim development due to Gillam and Couret [5],
using an inverse transformed gamma for the distribution of LDFs, but low-
ering the CV from .9 to .5. Instead of fitting a loss distribution to all of
the claims, we followed Mahler [10] and fit only the tail, using the empirical
distribution for the small claims. For the tail we used a mixed exponential
as compared to the prior transformed betas fit to the entire distribution.
Instead of combining PT with Major PP claims, we fit PT and PP claims
separately, using data at 3¢, 4**, and 5™ report for Fatal and PT claims.
The prior approach used only data at 5t report. To adjust the data from
one state to be comparable with another state we used logarithimic stan-
dardization for Fatal and PT claims and power transforms for PP, TT, and
Med Only. The prior approach was to use mean normalization for all injury
types. We then fit state specific loss distributions rather than the countywide
ones used before. Finally, to go from per claim data to per occurrence ELF's
we used a collective risk model of occurrences. This contrasts sharply with
prior approaches based on estimates of how much the mean occurrence cost
exceeded the mean claim cost. The prior approach implicitly assumed a 3.9%
load for Fatal claims, a 6.6% load for PT/Major PP claims, and a 0% load
for TT and Med Only claims.
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new approach prior approach
dispersion Ccv=.5 Cv=.9
fitting fit tail only fit whole distribution
form of distribution | empirical/mixed expo- | transformed beta
nential
injury types PT, PP separate PT, Major PP com-
bined
data 374, 4% 5% report for F, | 5% report
PT
data adjustment logarithmic mean normalization
standardization, power
transform
applicability of dis- | state specific countrywide
tributions
per occurrence collective risk 3.9% F, 6.6% PT/Maj
PP

While the changes made to the ELF methodology were significant, they
were more evolutionary than revolutionary. Nevertheless, the new ELFs are
quite a bit lower than the old ones at the larger limits in many states. We
examined carefully the impact of the change in the dispersion CV and the
use of mixed exponential rather than transformed beta distributions. Had we
used a dispersion CV of 0.9 rather than 0.5, the ELFs would have been higher
than the new ones. But at the higher limits, where the decrease was most
pronounced, ELFs based on a CV of 0.9 would still be much closer to the new
ELFs than the old. We also refit the old transformed beta distributions to
the new data and found that even with the old distributional forms, fit to the
entire distribution, the result is a much thinner tail than in the distributions
underlying the old ELFs. We thus concluded that changes in the empirical
loss distributions underlying the prior and the revised ELFs are what drive
the reduction in ELFs. The prior review of ELFs relied on data that preceded
the decline of WC claim frequency that so dominated WC experience in the
1990s, and beyond. There are solid theoretical reasons to suggest that this
is just the sort of dynamic that can significantly change the shape of the loss
distributions in a fashion that may not be captured by scale adjustments and
as such require the development of new ELFs.
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APPENDIX

A Adjusting for Reopened Claims

This appendix details some calculations referenced in section 2 on devel-
oping individual claims, in particular on the treatment of reopened claims.
We consider a set of observed individual claims grouped by their open/closed
claim status and determine how the first two moments of the open and closed
subsets change when some claims are ‘reopened,’ i.e. when some claims are
reclassified from the closed to the open subset. The discussion applies quite
generally to show how the first two moments are impacted by a change in
a characteristic, like claim status, to a selected subset of observations. The
mean and variance of a finite set of observed values have natural generaliza-
tions to vector valued observations. It is convenient to express the findings
as they apply in a multi-dimensional context, even though the specific appli-
cation in this paper requires only the one-dimensional case.

Suppose we have a finite set of claims C and that a vector z, € R" is
associated with each ¢ € C. Suppose each ¢ € C is also assigned a probability
of occurrence w. > 0 For any nonempty subset A C C, we make the following
definitions

Probability of the set A = |4| = Zwa

aEA
Meanof A = Zwaxa eR"
"’ a€A
Variance of A = 0% = —— | Zwa llza — pall? > 0
W acA

and we make the usual convention that for the empty set [¢]|, = 03, =0 and

By = 0 is the O-vector.

Observe that the mean is a vector and the variance a scalar and that
for n = 1 this defines the mean and variance associated with the probability
density function f(a) = im Al on A when we view the subset A as a probability
space in its own right. A natural WC application of multi-dimensionality is
the case » = 2 in which the first coordinate measures the indemnity loss
amount and the second component the medical loss of a claim ¢ € C. Note
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that we have the usual relationship between the mean, the variance and the
second moment'

oh = Zwa llza — UA“ Zwa Ta = a) - (Ta — pa)

‘*’ a€A “’ a€A

= 'A—Zwa(za'xa_z:u'A'xa‘l'p’A'p‘A)
, L"’aGA

= o Sweled - ( AT 2w ) , A,w lhsal?

‘*’ a€A W acA
= Zwa I€all® =2 (1a - a) + lal®

w a€A

' 2 2

= AL Zwa lzall® = 2[liall® + lliall® = Zwa lzall® = llall

W a€A “’ a€A

And thus
2
lpall® + 0% = Zwa llzal®.
“’ acA

There are the evident relationshlps with the union and intersection of
subsets A, B C C; for the mean we have:

Havp = IAUBI Z Wele = ~— 057 IAUBI (Zwaza+2wbzb Z wcxc)

w ceAUB beB c€EANB

1
= TAUB] (|Al, 1a + 1Bl pup — |AN B, kans)

And thus
i L 1A0 B, 4 | A, o+ |Bl., u
AUB T IAUB|, 4 T JAUB "4 T JAUB P

and similarly for the variance:

2
|AU Bl,, (ltausl® + c%us) = Z we ||zl
c€AUB
2 2 2
= > wallzal® + Y wsllml® ~ D wellel
acA beB c€ANB

= LAl (luall + %) + B, (sl +0%)
— AN B, (I£ansl* + 0%n5)
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And thus
2 |ANB|, , _ A, 2 1Bl, 2
Tas ¥ 70, %4 T JauBl AT [AuBL®
1 2 2 2
+|AUBIU (!z_‘llw luall® + 1B, lusll® — 1A0 B, lransll)
- ”MAUB”2

We are especially interested in the case when C is a disjoint union, so we
make the assumption:

C=AUB ANB=¢ A#¢

Think of the decomposition as reflecting a two-valued claim status, like open
and closed. The goal is to determine how the mean and variance change
after “moving” a subset D from A to B. The example of this paper is when
the claim decomposition reflects claim closure status as of a 5t report, (4 =
closed and B=open) and D is a set of closed claims that reopen after a 5%
report.

In this case of a disjoint union, it is especially easy to express p and 0%
in terms of the corresponding statistics for A and B. From the above formula
for the mean of a union:

— |AﬂBlw
Be = papt 0 =paup+ IA_UEI';'NAnB
|Alw + | Iw
lAau Bl 4 T AU B
A
= wpy+ (1 —w)ug where w = %ﬂ € (0,1].

The second moments are similarly weighted averages, with the same sub-
set weights w and 1 — w. From what we just saw for the mean of a disjoint
union combined with the above formula for the variance of a union:

2 2 }A N Blw 2

0p = ohup+0=0%p+ mams
= woly +(1—w)op +wlual® + (1 —w) upl® — llwps + (1 - w) pgl?
= wok+(1—w)oh +wllpa’ + (1 —w) usl?
—w? ”NA”2 =2w(l—w)ps - pug—(1- w)2 ||#B||2
= wol +(1-w)oh+w(l—w) (lual® - 2p4 - s + ||ﬂB”2)
= woh+(1-w)oh+w(l—w)llu, — ppl
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This expresses the variance of a disjoint union in terms of the means and

variances of the subsets.
Notice that these formulas for y; and 0% show how the mean and variance

of the subset A are constrained by those of the superset C. For the remainder
of this appendix we assume o¢ > 0 and so we have:

2
o
o =+ (1= )0+ w1l ~w) g — gl 2 wrh = w (2 <1
C

Observe that assigning the difference vector § and scalar ratio r as:

0 =ps—pc T=9-i
oc
then we also have:
wod
e = w(“0+5)+(1*w)”3=>l‘3=llc—m
wé 0 (1 —w)+wd ]
= ﬂA_NB—ﬂc+5—<uc—1_w>— - =T
But then:
2 2
) )
% = woh+-uwoh+wi- )| o] 2w+ 2L W _ g, 2O

= (1-wr?) %ZwH(SH =>r<[ and ”6”<0'0\/(1 (l-wrz)

and we see how, for any nonempty subset A, the mean difference vector 4§ is
constrained by the probability allocation together with the deviation ratio r
and the standard deviation of C.

Now suppose we have “local information” on how the proper subset D C
A fits within A, captured in the two numbers p,r and the difference vector

o:

D],

AL,

rda = Op
0 = pp—pa
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in which we specify that r = 1 should g4 = 0. From what we’ve just seen,
applying the above to any nonempty subset D C A, the following two in-
equalities must hold:

r< \/g HE oA\/ (1-p) ;1 — )

Define the sets:

= A\D = {a € Ala ¢ D}

= BUD

= C=AUB ANB=¢ A#¢#B

In terms of the above open/closed claim example, this second decomposition

represents the “truly closed” verses the “truly open” claims, as of a 5* report.
With transparent notation, we seek to determine the subset probability

and the moments @, uz, 45, 0 7, 05 in terms of the original subset probability

and moments w, p4, ltg, 04, 0p together with the local information p, 7 and

4. The calculations only require some persistence:

A
B

D ~
— 2= DL =plAl, = A = AL, - DL, = 14, = pl4L = (1= )4
4, 14,4
o D=ide o Tlellle 1y,
e, ~tic, -4 P

Continuing in turn, we have:

pa = pup+(1-puz=pus+0)+(1-p)pz
= (1-pluz=tps—ppa—pd=(1—p)us—pé

And since we now know @ and p 3, we determine pg from:

~ ~ pe — Wpz
pe = Wpz+(1- w)ﬂ§=>#§=—1_—{u\ﬁ

And we get o 3 from:

o4 = pob+(1—p)od+p(l—p)|lez—uol|’
0.2_p0.2
= a}z——Al_pD—P”#A—#D”z
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And finally, we can obtain oz from:

0% = Bok+(1-D)od+DA-D)|uz - psl’
o — Wot
> oy =—5——=2—0luz - s’

The requisite formulas for the adjusted moments and subset probabilities
are summarized in the following proposition:

Proposition 1 Let C = AU B be a decomposition of C into mutually ez-
clusive subsets, as above, and suppose D is a proper subset of A and set

_ AL
ICl.,
1A,

6 = pp—Wa

Then for the alternative decomposition C = AU B where
= A\D = {a € Ala ¢ D}

= BUD

B

ICl,,

) )

£)

we have:

8) »)e
1 ]
©-
S
vy

=
)
l
=
kS
[
15
3
SN
(=2

=

)

i
)

i 2
= == plka— ol

Q
oy
[ %)
o
|
]

Q
[}l
—

e e
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Proof. Clear from the above. ]
It is straightforward to generalize the formulas that express the mean and

variance of a disjoint union of two sets to apply to partitions of more than
two sets. The formula for the mean is immediate:

" | Ai]

C = UAl AzﬂA]=¢forz;£] ’U),=|C:|

i=1
Ho = chxc— ZZwax,,:C—Z

£ >0

w

E WaTq
W agA;

“’ ceC W i=1 a€A;
1 m
- W Z |Ail,, pa, = Z Wilka,
W oi=1 i=1

and for the variance we first consider the expression for the second moment:

chuxcu = ZZ% lzall?

cEC "~' i=1 a€A;

= l—a—l;;lA’L" (”MA,- 2
= Xm:wi ( Uzi) = Xm:"“i 1144
i=1 i=1

2
lucll® + 0%

+ 0'?41,)

m
2 Z 2
+ w-La'A‘
=1
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and we find that:

z Zwi ”ll'Ai
1:11 m m m
= Zwi (MA,- 'HA,—) + Zwiaﬁi - (Z wi/-‘Ai) : (Z wi#A,-)
N\
= Zw,oA +sz (,uA, La,) (Zw (14, - 14, +2Zw,w, (;LA uA)

Q
Q
1l

2 m
2
"+ wio?, — lucl
=1

i=1 i=1 i<j /
= Zw’lUA + Z i w12) (p'Ai ) I‘I’A.‘) - 22’!1)1’(1)]‘ (:U'Ai ’ I‘LAJ')
i=1 i<j
= Zwiaii + Zwi (I —w;) (“A; ' 'uAi) - 22“’1’“’]‘ (#A; ' /J‘A_,»)
=1 =1 i<j
= z w‘LUA + Z w; (Z wJ) (u/A, HA, -2 Z W;wy (/'I'A iy )
i=1 J#i i<j
= sz% +) wiw, (uA, B, + Ba; uA,) -2 ww; (l‘l’A uA,)
i<j i<y

= Zw,-aii + Zwiwj (NA,» Bt Ay A, — 214, 'MAj)

i=1 i<j

m
= Zwiaii + Zwiwj (/J'Ai - ”A,—) : (”A.’ - "LAj)
= szUA +Zw,w] “}LA

1<

and the generalization of the formula for the variance of a partition is:

2

Ba; = Ha;

Consider the special case of the set of m mean vectors M = {u Ai} expressed
as a disjoint union of singleton subsets in which the vector u,, is assigned
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the probability w;. Then the formula gives:
ai,, = Zwidz{u,,i} + Zw,-wj
i=1 <j

m
= Zwi (0) + z WW; I'#Ai oy
i=1

i<j

2

Ha, — My

2

2

= Zwin HMA,‘ - /“I’Aj
i<j

But this is just the second term in the earlier expression for % and we find
that

m
a'é = Zwiaii + aﬁ,,

i=1
which generalizes the usual decomposition of the variance into the sum of the
within and the between variance. This has application to cluster analysis,
where it affords a useful geometrical interpretation. In cluster analysis it
is common to work with vectors so as to capture the influence of multiple
data fields. So as above assume each claim ¢ € C is assigned a vector of
values that captures information about the claim that we seek to organize
into a classification scheme. Viewing the m subsets A; C C as defining
clusters of vectors, the set of m mean vectors M = {u,,} is the set of
‘centroids’ of those clusters. The goal of cluster analysis is to separate the
data into like clusters, but there is both a local and a global perspective to
that classification problem: selecting like data in each cluster (minimize the
within clusters variance) and separating the clusters (maximize the between
clusters variance). The above shows that the two are one and the same when
the Euclidean metric is used to measure the distance between observations.
Indeed, decreasing the within clusters variance is the same as increasing the
between centroids variance, as the two sum to the constant o%.

B Discrete Individual Claim Development

We want to populate the tails of the LDF distribution so that the dispersion
model contemplates a claim developing quite dramatically. Accordingly, we
seek a finite set of probabilities

O<pm<pe<---<p, <1
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that cover (0,1) with an emphasis on populating the right and left hand
tails near 0 and 1. We are confronted with a practical working limit of no
more than 200 points. We have also observed that 100 equally spaced points
will result in the dispersion reflecting too confined a range, about 1/3 to
3-fold for the full range of dispersion. To cover a wider range, we use 171
non-uniform probabilities, and focus on the tails. Then treating the proba-
bilities p; as defining percentiles, we determine the corresponding percentile
values u; from a gamma distribution. That finite sequence {u;} of values
is the starting point to capture a gamma density. But this representation
is then refined, replacing the percentiles with the means over the 172 inter-
vals [0, u1), [u1, u2), . - ., [u170, 2171) and [uy71, 00). The new sequence of values,
again denoted as {;}, is an optimized discrete approximation to a gamma.
It is “weighted” in the sense that mean value u; has associated with it the
frequency weight v;, where

v = P, V2 = P2 — P1,y .., V1T = P11 — D170, V12 = 1 — pin

The interval width provides the weight assigned to the corresponding per-
centile value and is selected to be at most ﬁﬁ so that the usual “percentiles”
are “covered.” By definition, inverting and transforming those observations
produces a discrete approximation to values from an inverse transformed
gamma distribution. These are the candidates for the set of loss develop-
ment factors used for dispersion. Parameters were selected so as to achieve
a target mean LDF as well as a target CV for the LDFs. In order to assure
the correct mean, one more observation is added, forcing the weighted mean
of the sequence {u;|1 < ¢ < 173} to be exactly the appropriate open claim
only LDF. There is the concern that if that final observation is allotted too
little weight, it will have the potential for becoming an outlier. So the added
observatxon has weight -+ 55 and-the other weights are adjusted by a factor of
100, making the 173 weights {v;]1 < 4 < 173} again total to 1. From this
construction, it is expected that the {u;|1 < ¢ < 173} will exhibit a slightly
smaller variance than the theoretical inverse transformed gamma, and that
is indeed observed to be the case in the calculations. For example, when
targeting a CV of 0.500, the model yielded a CV of 0.495.

This discussion does not describe the (comparatively minor) adjustment
for reopened claims. The reopened claim adjustment is achieved by first
using the results of Appendix A to determine means and variances after
reclass1fy1ng some closed claims as open, and then matching two moments
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using the power transform as detailed in Appendix C.2. In this way, the
“¢ruly open” claims are dispersed.

We now fill in the details of the algorithm used to build the dispersion
model. The first step is to specify the a and 7 parameters, by injury type
and report, for the inverse transformed gamma. The parameters were se-
lected from an analysis of LDF distributions as presented in section 2. The
parameterizations follow that of the Appendix of Klugman et al. [9)].

Recall that the o and T parameters determine the CV and once they are
set, the @ parameter dictates the mean.

The next step is to build a discrete approximation to a Gamma distrib-
ution with parameters o and #=1. This is captured in two finite sequences,
u and v. The u sequence captures the values while the v sequence stores
the corresponding probability of occurrence “weights.” We identify the “per-
centile” u-value of the distribution function associated with the following list
of probabilities p;, 1 <i<171:

po = 0

pi = pi-1+107° 1<:<10
pi = pi1+107° 11<:<19
pi = pi+107* 20 <i<28
pi = pi-i+107° 29<i<37

pi = pi-1+1072 38 <i<86
DPgs+i = 1 — Pss—i 1<1i<85.

These probabilities were selected to give greater granularity to the right
and left tails. This corresponds to 171 finite intervals: [up = 0,u1), ..., [u;, uj41) for
0 < i < 170 and the right hand tail interval [uj71,00). We let I'(a;u) de-
note the incomplete gamma function as formally defined in the Appendix of
Klugman et al. [9], where that function is also noted to be the distribution
function of a gamma distribution with parameters @ and § = 1 (and for the
transformed gamma with parameters « , § = 1, and 7 = 1). A binary search
routine is used to associate the value u; w1th the probability p;, finding u;
that satisfies:

ID(e; us) — pi) < 0.00000000001. 1 < < 171.

The first difference of the p; gives the frequency probablhty v; of an obser-
vation falling within the interval [u;_;,u;), i.e. between percentile pi—1 and
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p;. The mean value over each of the 172 intervals is readily determined from
the observation that given f(e, 1;z) = i;i;;, we get

*tle™® T(a+1) zotle™™ gotle=e
1; = = . = = 1.1:
zf(e1;2) zl(e) [(a) zl(a+1) aa:[‘(a +1) af(atl,lz)
and thus
/mf(a, 1;z)dz = /af(a +1,1;z)dz = al'(a + 1; 2).
0 "o

This lets us specify the sequence u of length 172 whose components are
the mean value of the inverse transformed gamma over the 172 intervals. The
sequence v, also of length 172, with components equaling the corresponding
frequency provides a sequence of weights to apply to the corresponding LDF
values captured in the sequence u. _

Denote the applicable development factor for open claims as A. The next
step in building the dispersion model is to specify a sequence A of length 173
whose component values (properly Weightcid) are distributed as an inverse
transformed gamma distribution of mean A (and CV determined from the
corresponding « and 7 parameters). The formula for the expectation of an
inverse transformed gamma random variable, X, allows us to calculate the 8

parameter: (
§-T(a—1) _~( T{(a)

The dispersion model uses the inverse transformed gamma as the LDF dis-
tribution. By definition, a distribution is inverse transformed gamma exactly
if, when transformed and inverted, it conforms to a gamma distribution like
that approximated by the sequences u and v of discrete values and weights,
respectively. Following the parametrization of the Appendix-of Klugman et
al. [9], to make the finite sequence A contain values distributed as the inverse
transform gamma, we just use the equivalence:

A A -r 1
(—) :ui@—zu.’=—l¢>Ai=
ui

Since we are using a discrete approximation, and to assure we do get the
correct expected developed loss, we augment the A sequence by an additional

1
=
Uj
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value in order to force. the weighted mean to be . More precisely we set
Uiz = ﬁ, rescale the other weights by setting v; = Tg()%”j for 1 <j <172,

and set A7z = 100 (X - 2172 vjAj) , which assures that:

i=1

173 173

Z’l)j=1 ZvjAjZX.
j=1 j=1

Having the A and v sequences in hand, completing the dispersion loss
severity model is then very straightforward. Individual claim data are cap-
tured from WCSP data into observations that include state, injury type,
claim status, a weight w, and a loss amount [, as described in section 2.
Closed and open claims are separated into two subsets of observations, L.
and L, respectively. Then for each open claim of weight w and undeveloped
loss amount equal to ! in L,, 173 “dispersed” observations are captured into
the data set L, using the sequences A and v to assign the observations with
weights equal to the product w x v; and developed loss amounts equal to
the product A; x 1, 1 <7< 173. Losses in L, are adjusted to be at least $1.
Finally, forming the union L. U L, of two sets, each consisting of observa-
tions of individual claim data at closure, results in the dispersion model for
ultimate claim severity.

C Data Adjustment Techniques

Let i1, Zi2, . .., Zin, be the incurred loss amounts on the claims (of a given
injury type) in state ¢ and let y;, = 7':—, >_; Tij be the sample mean. Under
mean normalization we divide each claim amount by the state sample mean
to get z;;/p;. Pooling all the mean normalized claims for all states gives us a
countrywide mean normalized database, {z;;/p;}. This database has mean
1 of course. If we fix a state k and multiply each mean normalized claim
amount in the countrywide database by u; we get a database, {u,.zi;/1;},
that has mean u,. This database augments the claims in state k with out of
state claims that have been adjusted to the state k level. We now generalize
this simple idea to the case of standardization as well as the power transform.
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C.1 Logarithmic Standardization

A natural way to generalize mean normalization would be to standardize
claims, i.e. to subtract the state sample mean from every claim and divide
by the standard deviation, z; — M Pooling all of the standardized claims
would result in a countrywide standardlzed database with mean 0 and stan-
dard deviation 1. Then for a given state k, we might multiply each stan-
dardized claim by o4 and and add p, to get a database, {akf%‘i + uk},
appropriate for state k. Unfortunately, this can result in negative claim
amounts so we prefer to work with logged losses and standardize them by
mapping logz; — l"L’“——l, where now p,,0; denote the sample mean and
standard deviation of the logged losses. This results in a standardized data-

base of logged losses, {I—‘ﬁ_—“} To get a database appropriate for a given
state k it is natural to multiply each standardized logged loss by ok, add py,
and then exponentiate to get a database, {exp(akk’—g’;ﬁl + ,uk)} The linear

transformation, l°g”;’ By g 8 ZB 4 iy, results in a database that matches
the mean and variance of the logged losses in state k, but upon exponentl-

ation we lose this property. That is, the database, {exp(a log i~ Zh 4 ,uk)}

may not have the same mean and variance as the claims in state k. How-
ever, under reasonable conditions we can find i, o such that the database,

{exp(al‘)—g’-f“—f-’-‘-i + p) ¢, will have the mean and variance in state k. We pro-
ceed now to establish this. We begin with a lemma.

Lemma 2 Let ,,2s,...,%Z, be a finite sequence of real numbers, not all
equal, and let ¢ : (0,00) - R by

2. ¢ is strictly increasing on (0, 1) and strictly decreasing on (1, 0c0)
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3. lim;_o @(t) = k/n, where k is the number of 7 such that z; = max{z;|1 <
j<n}

Proof. We have ¢(1) = 2= = 1, thus proving item 1.

nn

To prove item 2, first note that
(Z;l t2zi) (2 Z;l tzi) (E;l zitzi—l) - (Z;l tz,») 2 (Z:;l 2$it2z.»—1)
n(Z =)

23" ¢ n n n n
n1=1 5 Zi=l 423 Zi=1 :E,'tzi—l _ Zi=1 4% Zi:l xit%i——l
B () () () (o)

2
As the term 2 Zn 1t’”"/ n (Zn . thi) is positive, we note that, after rela-
1= 1=

belling indices for convenience, %‘f has the same sign as

(Z:;l t2$¢') (Z::l .’L‘jtftj—l) _ (Z;L:l tl‘j) (Z:;l xit2x,~——1)
= Z Ijt2xi+zj—l _ Z Iit21i+zj_1

v(t)

1<i,j<n 1<i,j<n

— E (x] _ xi)t2zi+xj—l
1<i,j<n

— E (113] _ Ii)t2z‘+zj,_l + § (mJ _ wi)t2xi+:z:j—l
1<i<i<n 1<j<ign

— § (‘,L.J _ xi)tzitzi+zj—l + E (z"7 _ zi)tzitzi+z_7—l
1<i<j<n 1<j<i<n

— § : (.’I)j _xi)tmit:rg+zj—l + § : (xi _xj)tzjt$i+$]—l
1<i<igsn 1<i<jgn

— E (1:] _ xi)txitzi+xj—1 _ § (.'L'] — xi)tzjtzi-(-:tj—l
1<i<j<n 1<i<j<n

= § (zj — ;) (t% — t79)¢=+m—L,
1<i<j<n

Observe that for ¢ < 1, the differences z; — z; and ¢* — %, not all of which
are 0, have the same sign, which implies that y(¢) > 0. Similarly, for ¢ > 1,
those differences have opposite signs, hence ¥(t) < 0, thus proving item 2.
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To prove item 3, we sort and relabel the z; as necessary so that.z; =
-+ = g = max{z;} and z; < z; for ¢ > k. We then find that

n 2 k n 2 n 2
(Z tx,-) 221 (Zl+ Z tz.'—xx) (k—i— Z tzi—xl)
) = =1 _

(t i=1 i=k+1 i=k+1
SO n - k n - n '
n3En pge (El+ 5 tmi-zl)) . <k+ 3 tzm—m)

i=1 i=1 i=k+1 i=k+1

Since z; — 1, < 0 for 7 > k it follows that

(k+§”;tzmx)2 <k+io)2 L

. Y i=k+1 _ i=k+1 _KE_F
tlgg(p(t) B }H& i - i " nk n
n|k+ Z t2(zi—z1) nlk+ Z 0 '
i=k+1 i=k+1
as claimed. This completes the proof of item 3 and the lemma. [
Now interpreting zi, Zs, ..., 2z, to be the standardized logged losses this

lemma allows us to prove the following proposition which shows that stan-
dardization of logged losses, followed by a linear transformation and re-
exponentiation does what we want under reasonable conditions.

Proposition 3 Let z,,23,...,2, be a finite sequence of real numbers, not
all equal, and let k be the number of i such that x; = max{z;|1 < j < n}.
Then for any pair of positive real numbers, p, o, such that u?/(u*+o?) > k/n,
there erists a unique pair of real numbers, m, s, with s > 0 such that the finite
sequence, ™1 emtsz2 - emtsIn  hag mean u and standard deviation o.
More precisely, if y;= €™%% then

1 n 1 n
— i d 2 _ i 2
u= igly and o° = E (ys — p)

i=1

. . . 2
Proof. From the lemma, there exists a unique ¢ > 1 with ¢(t) = .

Observe that since 3, t* > 0 we can define

n
s=Int>0 and m=ln(—-n——->
Lt
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Then setting y; = e™+%% for 1 < i < n, we have

e

=1

We also have

2

nu nu?

3 _ (np)?
Sy S (emtm)E T pem g g
(e Tr ) (Er, =)

nem o P nyp,
2

= ¢(t) = = 2+02

which implies 2 3", 92 = p® + 0% and thus

1 € 2 1 - 2 2
- i = = = ; — 2uy;
~ ?:1 (% — 1) - E (i — 2py: + p°)

i=1
= = 2| = : 2
n;y u(n;yz +u

= pl40% —2uu+ 2

= 0'2.

To prove uniqueness, let 772, § be another such pair, and set § = e™+5% for
1 < < n. It follows that

£ _GELE) (P ELE) (L)

RNV ) N I VN L

Since § > 0 implies € > 1, it follows that e* = t = ¢° and thus § = s.
Finally, we have

g_ _ eﬁ’l.+§.’t,’ _ er‘n+s:z.- — erh—-m+m+sz.~ — eﬁz—mem+sz,- _ eﬁz—my.
T T - ha - - k3
for 1 <4 < n, which implies p= 23" §; = emT_m S Y =€ ™u. Since
1 #£ 0, it follows that m = m and the proof is complete. n
It is possible to generalize the previous result from a finite sample, z,, zo, .. ., Z,

to a distribution with finite support. The argument mirrors that for the dis-
crete case. As before, we begin with a lemma.
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Lemma 4 Let f be a continuous probability density on the finite interval,
(a,b],and let ¢ : (0,00) — R by

b 2
( IRt (x)d:c)

(p(t) —_—_7
f t2 f(z)dz

then
1 (1) =1

2.  is strictly increasing on (0,1) and strictly decreasing on (1, 00)

Proof. We have (1) = l:— = 1, thus proving item 1.
To prove item 2, first note that

i‘fli:i = [(/b 2"’f(a:)dw> ( /bt’f(x)dz> (% /abt’f(z)dz)
( #f a:)d:c) ( tzx f m)da:)] / ( / " e f(z)dz>2

[( t% f(z)dac) ( t“"' f x)dz) ( / b ot®! f(z)dz)
( tz f(ac)d:c) ( mh*l f(z)dx)} / ( / " oo f(a:)d:v)z

e T e

|
([rsens) ([ )

As the term 2 f: t* f(z)dz/ ( [t f (ac)da:) is positive, we note that 22 has
the same sign as

vo= ([ e s ([ g sayas)-( [ e fes) ([ g fa)is).
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Relabelling dummy variables for convenience, we get

w0 = ([ e=swae) ([ v swar) - ([ wrom) ([ ot starae)

bytzﬁy 1 f(z) f (y)dzdy — / / otV £ () f(y)dxdy

b ry

/b/b
-/ / (y - D)= £(2) f(y)dady
[ [

— )t f(z) f( y)da:dy'i'/ / — o)tV f(2) f (y)dydz

/b/ y — )t f (2) f (y)dady — / / y — o)L £( ) £ (y) dady

!l

- / y — ) (v — vty £(2) £ (y) dady

Q"

- / / (v — ) — )£ f(2) f (y)dady.

Observe that for £ < 1, the differences y — z and #* — t¥ have the same sign,
which implies that 4(¢) > 0. Similarly, for ¢ > 1, those differences have
opposite signs, hence y(t) < 0, thus proving item 2.

To prove item 3, first consider the case when f(z) > 0 for all z € [a, b].
Since f is continuous on [a, b], it is uniformly continuous on [a,b]. Thus, for
any € > 0, there is a partition

[a,b] = U[al, | with a = @a1,a; < b; = aj1,bp, = b

such that
Ty, &3 € [a;, b)) => | f(z1) — f(z2)| < e

Let o = min{f(z)|z € [a,b]} > 0 and let a; = min{f(z)|z € [a;, b;]}, then
{f(@)|z € [ai,b:]} C [, @ + €]. We claim that

f t*dx f t’”da:
lim ————————
t—oo fa t2zdy
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To see this assume that b; < a;, then

bs b;
‘trdx [ 7 ttdx by t%
fa-‘ faj _ lnt a; Int “:
b - t2T b
fa t2zd$ 21nt|a

N ()
B -lﬁ (t2b —_ t2a)
2 [ (thb —gebi) (1 — oY)
T Int (t2(b_bj) - tz(a—b,-)) :

b b;
‘t°dx | 7 t°dx — —
lméL—ﬁ;_—'.i(w(mlog=o

t—00 f: 2z dr - tlprg Int (t'-’(b—bj) — O)

Thus

as claimed.
From what we've just claimed, for every ¢ and j, there exists a ¢;; such
that for all ¢t > ¢; ; we have

Jorteda [ e _ e
Leedz — miet (e +e)
Then for all ¢ > t;; we have
f:j t* f(z)dz f:j t*f(z)dz (a; + €) (e +€) f:j odr f:; od
S22 f(z)dz o [P teds

(a; +€)(ay +¢€) ae €
a n2(e; +€)(a; +€) n?

IA

Thus for ¢ > max{t;;}, it follows that

({b tmf(ac)dac>2 (Z?=1It$f($)d$> 2

p(t) =

ft%f(z)d:c ftzzf(:c)dx
i by
} t f(x)dz [t f(z)dz
_ a; g a; < iz —¢
1<i,j<n f t2 f(x)dz 1<ij<n

552 Casualty Actuarial Society Forum, Fall 2006



The 2004 NCCI Excess Loss Factors

Thus, lim;_, ¢(t) = 0 in the case when f(z) > 0 for all z € [a,b]. Finally,

if we set g(z) = L&t then g is a positive, continuous probability density
b—a+1

function on |[a, b] and we have

(fb tmg(x)dm>2
th'“ (z)dz

(Jrttpes)

0 = (b—a+1) hm

= (b—a+1) tlirg) p
ft“(;—g%i'—l)dx
b 2 b b 2
(f t*(f(z) + l)dx) (ft”f(x)da: + ft’dz)
= lim =2 = lim =2

fbtzw(f(x)ﬂ)dx e fbtzwf(z)dm+ ftzzdx

)

fb 122 f(z)dz + (t%l;fza)

a

b b
(f t-’t-"bf (.’II)d.’E = fl(lat ) )
I

a

b
(f #f(a)do+ (4
li =

t—o0

o ftz(”"‘”f(x)dﬂ( =)
2 b 2
(ftf-bﬂx)dx) ( ’f(x)dx>
= lim g =lim2— 7

o b 00
[ 128 f(z)dx f 2z f (:c
= tlim o(t).
This completes the proof of the lemma. |

Now interpreting f to be the density of the standardized logged losses the
lemma allows us to prove the analog of Proposition 3 in the continuous case,
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namely that there is a linear transformation of the standardized logged losses
such that after re-exponentiation we get the desired mean and variance.

Proposition 5 Let f be a continuous probability density on the finite in-
terval, [a,b]. Then for any pair of positive real numbers, u, o, there exists a
unique pair of real numbers, m, s, with s > 0 such that

9(y) = ;%f <1£?/s_‘2)

is a continuous probability density on [e™%, €™+ with mean p and standard
deviation o.

Proof. From the lemma, there exists a unique ¢t > 1 with p(t) = ‘71-:_2—05

Observe that ¢(t) > 0 implies fab t* f(z)dz > 0, thus we can define

s=Int>0 and m=I b_ﬂ___ .
fatf”f(a:)dw

Let ¢ = €™ and d = e™*. We also introduce the change of variable
T = lly;’—'ﬂ <y = ™% hence % = ys, which implies dy = ysdz. Then

/cdg(y)dy - /abﬁf (z)ysde = / fapo =1,

Further, we have

/c ’ yg(y)dy

Il

b b
| v r@wsto = [ uf@)da

ab 7 a ,
= /e’"*”f(m)dx=em/ (€)? f(z)dz

m b x . — K ’ €T T =
e /atf(x)dac— (f:t’f(x)dz>/atf($)d = L.

Since f is continuous, g is continuous as well and we have shown that g is a
continuous probability density function on [c,d] = [e™*4%, ™| with mean
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i. As in the discrete case, we note that

p (s yg(y)aly)2 _ (f7 emees f(x)dx)2
gy [lemto2f(@yds [P(emt)2f(x)dx
_ (e"‘ fab t’f(ac)d:z)2 _ (fab if””f(:::)akv:)2

e2m fab t2 f(z)dz fab 12 f(z)dz

2

7
= t = —,
p(t) ol

which implies f y*g9(y)dy = u?® + o%. Thus

d d d
/ y?g(y)dy — 2u / yg(y)dy + / 9(y)dy

= pP+o’ -2+ 40
= g2

Il

/ (y — 1)?g(y)dy

To prove uniqueness, let 7, 3 be another such pair, and let

i) = —f (lny m) fory € [a,J] = [eres, i)

From a similar change of variable as above, it follows that

u? (4 vatw y) (f ™ f(z) )
Wit ot Fayay e f(z)d
(em f: eé“”f(a:)d:c) (fa (ef)* f(:z:)dz)2

e [Petif(nydn [ (e f(z)da

= p(é).

Since § > 0, it follows that e® > 1, implying that e® =t = e® and thus 5 = s.
Finally, we have

b b b
u= / et f(r)dx = / €™ f(r)dr = em_m/ €™ f(z)dx = e ™,

Since p > 0, it follows that /m = m, and the proof is complete. [ ]
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Remark 6 What holds for the continuous case with infinite support is not
so straightforward. For example, letting f(z) = e_o% be the exponential
density on [0,00), the interested reader can readily verify that the condi-
tion 0 < % < V142 is both necessary and sufficient for the ezis-
tence of positive numbers m and s as in the proposition. More generally,

if f(z) is a probability density on [a,00) with moment generating function
o0

Mx(t) = / e'® f(z)dz and we are given a target mean p and standard de-

a
viation o, then one suggestion is to first try to determine s by solving the
following implicit equation for the target coefficient of variation:

o /Mx(@5) = Mx(s)
po Mx(s)

and, if successful, determine m from:

m=lo (Mf:(s))'

C.2 The Power Transform
b

A more subtle way to transform claims is with a power transform, £ — az®.
With ¢ = 1/ and b = 1 we can see that the power transform general-
izes mean normalization. With logarithmic standardization we first log the
data, then standardize, and then re-exponentiate: z — logz — '355—_& —
exp(l—%%:‘i). But exp('ﬁggiﬁ) = e #/721/7 and so the power transform gener-
alizes logarithmic standardization as well. Thus the power transform could
potentially outperform both mean normalization and logarithmic standard-
ization. In addition, with the power transform there is no need to log the
losses and then re-exponentiate. The moments are matched in dollar space
rather than in log space. The idea is to choose a and b so that the trans-
formed losses from one state match the mean and variance of the losses from
another state. In this way we can use the out of state losses to build an
expanded database for each state. We now prove, under reasonable condi-
tions, that it is possible to choose a and b in the power transform so that the
transformed losses from one state do indeed match the mean and variance of
another state.
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Proposition 7 -Let x,,xz,,..., T, be a finite sequence of positive real num-
bers, not all equal and and let k be the number of i such that z; = max{z;]1 <

j < n}. Then given >0 and v € [O, \/”k—"g |, there ezist unique constants
a >0 and b > 0 such that the database {az?} has mean p and CV .

Proof. If v = 0 then we must take b = 0 and a = y, and the result holds.
So assume v > 0. Let ¢ = yu > 0 and set

=lnz;for1 <j<n.

Then clearly k is the number of 7 such that z; = max{z;|1 < j < n}. We
have:

e L2
w: ok
2 2
o B2
W k
& p/(pt+o?) > k/n

and so by Proposition 3 there is a unique pair of real numbers m, s with
s > 0 such that the finite sequence, e™+%%1 em¥322 M+ hag mean p
and standard deviation o. Letting a = ¢™ and b = s we have:

emteH = ™ (e) = e™ (M%) =aalfor1<j<n

and the existence of the constants a and b is proved. Uniqueness of a = e™
and b = s follows from the uniqueness of m and s, and the proof is complete.
[ ]

D Excess Ratio Functions

We collect here some facts about excess ratio functions. We show how to
recover the distribution function from the excess ratio function, give a char-
acterization of excess ratio functions, and discuss the mixed exponential case.
We start with some basic definitions and results.

Casualty Actuarial Society Forum, Fall 2006 557



The 2004 NCCI Excess Loss Factors

Definition 8 A random variable X is a loss variable if it is nonnegative
valued, has finite nonzero mean, and has a density f that is continuous when
restricted to [0, +00). We denote by F the distribution function of X. The
survival function of X is S =1— F. The excess ratio function of X is given
by R(r) = [*(z — r)f(z)dz/E[X] for v > 0. We denote by F the function
given by F(r) = [T zf(z)dz/E[X]. We use subscripts on F, F, S, and R
when necessary to indicate dependence on X.

The following proposition expresses the excess ratio function in terms of
F and F.

Proposition 9 Let X be a loss variable with mean u, then

R(r)=1- F(r) - % [1 - F(r).

Proof. From the definition of R(r) we have

R(r) = i /oo(ac-r)f(x)dz

_ i [/roozf(x)dz -r/rm f(a:)dx]

1 T

= ;[u—-/o xf(w)dx—rS(r)]
= 1——}1;/0 xf(x)dx—%S(r)
= 1-ﬁ(r)-£[1—F(r)].

(]

It is well known (see, for example, Billingsley [1], page 282) that the mean

of a nonnegative random variable, X, can be expressed in terms of its survival

function as E[X] = [;° S(z)dz. It is easy to see that a similar result also
holds for excess ratio functions.

Proposition 10 Let X be a loss variable with survival function S and excess
ratio function R, then
_ 7 S(x)da

R(r) = Jo S(z)dz
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Proof. Let X have density f, then noting that S’(z) = —f(z) and using
integration by parts, we have

[ T S@)dz = 2S@)> + / " e f(@)de
= _rS(r) + / " 2f(x)ds
S / " bz + / " s ()dz
[ e-nsea,

T

i

where the second equality follows as zS(z) = z [° f(y)dy < [Zyf(y)dy —
0 as ¢ — oo since X has finite mean. Thus R( )= [P(z—71)f(z)dz/E[X] =
[ 8(z)dz/ [° S(z)dz. ]

Survival functions and excess ratio functions share several elementary
properties given in the next proposition.

Proposition 11 If g is a survival function of a loss variable or an excess
ratio function then

1. g(0) =1 (and g(z) = 1 for x < 0 if g is a survival function)
2. g is non increasing

3. lim; 0 g(z) =0

The following proposition shows how to recover the distribution function
from the excess ratio function. Thus the excess ratio function characterizes
a loss distribution and so there is no loss of information in considering excess
ratio functions rather than densities or distribution functions.

Proposition 12 Let X be a loss variable with survival function S, and excess

ratio function R, then L R(r) = —S(r)/E[X]. Further, if we set g(z) =
S(z)/E[X] then R(r) = f g(z)dz.
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Proof. For the first assertion, we have

TR0 = g | @-niea
= E_(IX—) [Zid;‘ /Tooa:f(:r)dz— %r/roof(x)d:c] .

By the Fundamental Theorem of Calculus, we have £ [ zf(z)dz = —r f(r)
and £ f f(z) = —f(r), thus

w05 |0+ - [ senie| = 2

For the second assertion, by Proposition 10 we have
Rr:/ Smdz// S(z)dxr = dx—/ g(z)dx
M= [ S@ds [ [ s@yr = [ Zdz= [ ota)
]

This proposition also shows that the excess ratio function of a loss vari-
able X is also the survival function of another random variable with density
S(z)/E[X]. We next give characterizations of survival functions and excess
ratio functions.

S R(r) =

Proposition 13 Let g : [0,+00) — R be differentiable with g’ continuous,
g(0) =1, and lim,—,o g(z) = 0, and let

~ 1 i z<0
g(‘”)”{g(x) if 220"

then § is the survival function of some nonnegative random variable X with
density, f, that is continuous when restricted to [0, +00) if and only if ¢’ < 0.

Proof. Suppose § = Sx for some nonnegative random variable X with
density, f, that is continuous when restricted to [0, +0c). Then for z > 0

9(z) = §(z) = Sx(z) = / f()dy,

and so by the Fundamental Theorem of Calculus ¢'(z) = — f(z) < 0.
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Conversely, suppose g’ < 0 and define

0 if <0

then f restricted to [0, +00) is continuous and
[ 1@z = [~z = gl = - im o(a) +90) = -0 +1=1,
—00 0

so f is a probability density function of some nonnegative random variable
X. For z < 0 we have Sx(z) =1 =3(z) and for z > 0

Sx(e) = [ £y = [ =9 @)y = ~gQ)IF = - lim 9(6)+9(a) = 9(0) = (o).

ThllS§= Sx. ]

Proposition 14 Let g : [0,+00) — R be twice differentiable with g” contin-
uous, g(0) = 1, and lim,_,, g(z) = 0, then g is the excess ratio function of
some loss variable if and only if ¢ <0 and ¢" > 0.

Proof. Suppose g = Rx for some loss variable X with density f, survival
function S, and mean p. Then by Proposition 12,

g =-S/p<0andg"=-8/u=f/p>0.

Conversely, suppose ¢’ < 0 and g” > 0. Since ¢” > 0 we know that ¢’ is
non decreasing. So if ¢’(0) = 0 then ¢'(z) = 0 for all z as ¢’ < 0. This would
imply that g is constant and so g(z) = ¢(0) = 1 for all z, but this contradicts
our hypothesis that lim,_,., g(z) = 0. Thus we must have ¢’(0) < 0. Observe
also that

/ " 1d(@)] da = — / " f(@)dz = ~g(@)|F = ~0+g(0) = 1,
0 0

and so lim,_,. ¢'(z) = 0. If we let

0 if £<0
f(”’)—{ — A7) i 220
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then f > 0 and f is continuous when restricted to [0, +00). Further

[ rwae = (~o5) 9@ = (~575;) im0+ 2 = 041 1.

Thus f is a density function for some nonnegative random variable X. Since
fort >0

<= [ 1= (5 ) 1 = () i@+ 50 = S5y

it follows that

BX) = [ sxtjar= [T i (ﬁ) o(z)[

L 99 ot __ 1
(7)) im0~ 555 =0~ 757 = 7007
Thus, 0< E(X) = —m
Proposition 10 we have

[ZSx@de _ =@ _ g@lE 0~ g0
[T5x@)dz ~ [Zg@dz ~ g(@)ly 0 g(0)

< oo and so X is a loss variable. Finally, by

Rx(t) = = g(t).
[
We can now characterize excess ratio functions in terms of survival func-
tions.

Proposition 15 Ezcess ratio functions are exactly the restrictions to [0, +00)
of survival functions of nonnegative random variables with densities that when
restricted to [0,+00) have nonpositive, continuous derivatives.

Proof. Let g = Rx be an excess ratio function of a loss variable X. Then
by Proposition 14, ¢ < 0 and ¢” > 0. Proposition 13 then implies there is a
nonnegative random variable Y such that

1 if z<0
SY(”)‘{g(z) if >0

and Y has a density function, f , that is continuous when restricted to
[0,+00). For z > 0 we have g(z) = [ f(y)dy and s0 g(z) = —f(z),
which implies that f' = —¢” <0 and f’ is continuous as ¢” is continuous.
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Conversely, let X be a nonnegative random variable with a density func-
tion, f, that when restricted to [0,+00) has a continuous derivative and
f' <0. Let g : [0,+00) — R by

g(z) = / f(y)dy

Then ¢’ = —f < 0, which implies that ¢ = —f’ > 0. Then by Proposition
14, g is the excess ratio function of some loss variable. [ |

In the exponential case things are particularly simple as the next propo-
sition shows.

Proposition 16 Let f(z) = Le=*/™ be an ezponential density, then R(z) =
S(zx) = e~*/™. That is, for an ezponentzal distribution the excess ratio func-
tion is the same as the survival function.

Proof. This follows directly from applying Definition 8 and using integration
by parts. a
For finite mixtures we have the following proposition.

Proposition 17 Let f1, fo, ..., fn be densities with corresponding excess ra-
tio functions Ry, Ry, ..., R, and means pq, ty, ..., 4,. Then given weights
w; € (0,1) with ) w; = 1, the mized density f = wyf1 +wafz + -+ + Wnfn
has excess ratio function

R =Ry +WaRy + -+ 4 Wn Ry,
where W; = w;p, /1 and p is the mean of the mized distribution.

Proof. From the definition of the excess ratio function, we have

R(r) = / (z—r)f(z)dz
= u/ (x—r) [Z:; wzfz(x)]
Zz_ / —r)fi(z)dz

- > (“’;"') = [@-nea
= 3 @iRi(r).
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Corollary 18 If f(z) =31, wl——e ~2/mi s a finite mized exponential den-
sity, then its excess ratio functzon 18 given by

T/m;
w;m;
R(z) = Lfmr—

E Splicing Loss Distributions

We start with a loss variable, X (see Definition 8). The interpretation is that
this represents the empirical losses. We then choose a point [ > 0, such that
Pr(X > 1) > 0 and Pr(X = 1) = 0. The point [, is called the splice point
because we want to rely on X for claims less than I, but we want to splice on a
distribution for claims larger than [. We let Y = X —[ conditional on X > [.
That is, we truncate and shift X. More formally, if X : Q@ — [0, +0c0) then let
Qo = {w € Q| X(w) > [} and define Y : Qy — [0, +00) by Y(w) = X(w) — L.
The following proposition expresses the survival function, the density, and
expected value of Y in terms of X.

Proposition 19 Let X be a loss variable and let | be the splice point as
above, then

1. Sy(r—-10)= —F—xﬂforr>l
2. fy(r—l)=l—£%xr—(l—)forr2l,and
E[Y] _ E[X]Rx() .

- 1-Fx()

Proof. To prove item 1 we note first that Pr(X > [) = Pr(X > ), then for
r > | we have

Sy(r—=10) = P(Y >r—-)=Pr(X -Il>r—-1l|X>1)

- P20 = 50 = TR

For item 2 we note that

l—Fx(’I") _ Fx(T)—Fx(l).

Fy(,,._l).—_l——SY(T—l)zl_l_FX(l)— 1 - Fx(I)
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Then

A [Fel) - Fx®)] )
fy<r—z)—5[ N ]

For item 3 we have,

ElY]

/0 N yfv(y)dy
/loo(r = fy(r=1)dr

_ /loo(r-z) (T%) dr

EX] [T —fx(r)dr
1 - Fx(l) E[X]
E[X]Rx(l)
1= Fx(l)’

I

completing the proof.

S 1-Fx(l)

We want to fit an excess ratio function (see Definition 8), Ry, from a mixed
exponential distribution to Ry. More precisely, we want to replace the empir-
ical loss variable, X, with a loss variable X such that if Y’ = X —! conditional

on X > [ then

1. fg(z) = fx(z) forz <1
2. Ry = Ry.

We now derive the distribution function, the probability density function,

and the excess ratio function of the spliced distribution X.

Proposition 20 The distribution function of the spliced random variable X

is given by

F)“;(T)={ Fx(T‘) Zf T'Sl

1-[1=Fx(D]Sg(r=10) if r>1"

Proof. For r <, we have f3(z) = fx(z). Thus

Fg(r) = /OT fz(z)dz = /OT fx(z)dz = Fx(r).
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From this and Proposition 19, we see that for r > [

1 - Fz(r) _ 1= Fz(r)
1—Fg(l)  1— Fx(l)

Sy(r—1) =

and therefore
Fi(z)=1—-[1 - Fx()]Sy(r—1).
[}
This allows us to determine the distribution function of X since we know the
empirical distribution Fx and our assumption that Ry = Ry determines the
distribution of ¥ as well by Proposition 12. We have thus shown that the
following two conditions

1. fg(z) = fx(z) for £ <1
2. Ry = Ry,

uniquely determine a random variable X. What we have not shown is that
the above two conditions are consistent, i.e. that there exists a random
variable, X, that satisfies them. We do this by working with the density of
X and show that X is a loss variable as well.

Proposition 21 The density of X is given by

_J fx(r) if r<l
fx(r) = { = FxOlfpr=0) if r>1°

and this defines a valid density function of a loss variable with mean given
by
E[X] = E[X|Fx() + Sx() (EIY] + z) .

Proof. Item 1 of the definition of X ensures that f3z(r) = fx(r) for r < .
For r > [, we have from Proposition 20 that Fz(r) = 1—[1 - Fx(1))Sg(r —1)
and thus

fx(r) =1 = Fx(Olfg(r - 1).
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It remains to show that f; is a valid density function. To show this, we
compute

00 1 00
/0 fg(r)dr = /Ofx(r)dr—k[l—Fx(l)]/l fop(r —Ddr
1 oo
=[xy 1= ExL [ fotrrar
0 0
= Fx()+[1-Fx(l)] =

From f; we can compute the mean of X.

~ 00 l 00
EX] = /0 mfg(x)dmz/o:cfx(x)da:+5x(l)/l zfy(z — l)dz
l 00
= /:I:fx(z)d:c—i-Sx(l)/ (x +1) fp(zx)dx
0 0

= /Olmfx(z)dx+5x(l) (/Oooxf;,(z)dm +l>
= E[X]Fx() + Sx()) (E[Y] + l)

This shows that X is a loss variable because by assumption Y is. ]
Now we turn to the excess ratio function of X.

Proposition 22 The ezcess ratio function of the spliced random variable X
is given by
Re(r) = 1- E[X [l —Rx(r)] if r<li
Rz()Ry(r - 1) if r>1

Proof. Using Definition 8 we first note that for r <! we have

BXT [ o e (aydoy 1) = 22

BI%] J =m0

Fa(r) = / 2f3()dz/EIX] =
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Then using this relation and Propositions 9 and 20 we have for r </

Ri(r) = 1—@@)—5[%[1—&0)1
BlX]
1—5[—)(—] Fx(r )_E[X] [1 — Fx(r)]
15,95 — Fylr
- -2 [Fx()+E[X]<1 Fx( ))]
_ o BX p o
=1 E[X][l Rx(r)].

Now for r > [, using Propositions 19, 20, and 21 we get

Ry(r) = Ef;] / (o = 1) fz(0)de

1 x>

- Eﬁ[ [ @0t Fxtlip (o - s
1 o0

- 5T [ / JEREDIEN0 f;(x)dx]

_ Sx(EWY] [ [Tz~ (r = 1) fp(z)dx

- EX] E[Y]

_ Sz() EX]Rz() B

T EX]1-F X()RY( )

= R)'((Z)R)',(T — l)

]
We would typically start with a distribution X that has mean 1 and so
we would naturally normalize X and work with X /i where i = E[X]. Wi
use the following slightly more general proposition.

Proposition 23 Let X be a random variable with density fx and distribu-
tion function Fx, and let o > 0, then

L. fx/a(z) = afx(az)
2. Fxjo(z) = Fx(az)
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Proof. We note that

Fx/o(z) = Pr(X/a <z)=Pr(X < azx) = Fx(az)

T

=]Z@@=/wmwy

—00
Thus fx/.(r) = afx(az) and Fx/.(z) = Fx(az). ]
From this and Proposition 20 we get the following.

Proposition 24 The distribution function of the normalized spliced random
variable X /1, where i = E[X], is given by

(r) = { Fx (fir) if r<l/i

Fx 1= [1 = Fx()ISy(ir 1) i r>U/E"°

X/i

‘We can similarly recast Proposition 22.

Proposition 25 Let E[X]| = 1, then the excess ratio function of the nor-
malized spliced random variable X /fi,where i = E[X], is given by

1- 11~ Rx(@r)] if r<i/i
Rg(r) ={ RX([)R;,(,ITX- i r>l/p’

Proof. By Proposition 23 and the change of variables y = iz, we have

e = fzpads _ [2(a - r)fz Gia)ds

EX/fi EX)/p
_ ilay—infrwdy -
= mRE R

Then by application of Proposition 22 we have

[ 1- g l1- RG] i r<Un
R”“”zRﬂ“ﬁ’{f@ﬁﬁkm—n it 7> U

]
In our case we fit a mixed exponential to the tail of the empirical random
variable X. More precisely, we assume that Y is a mixed exponential. That
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is, using the parameterization in Klugman, et. al. [9] (see page 43 on mixture
models as well), we assume

1
fyla) =) Jwi—e™m
B 1

and thus

Fp(z) = Zwi(l - e"/m") =1-— Zwie—x/mi‘

Then by Corollary 18,

Y wimger/m

Ry(r) = ——————Z o

We now state Propositions 24 and 25 in the mixed exponential case.

Proposition 26 If Y has a mized exponential distribution as above then the
distribution function of the normalized spliced random variable X /1 is given

by
Fe (1) Fx(pr) ‘ if r<li/p
T a\T) = ~ ~ —{(pr—0)/m; ; I
X/R F)?/ﬁ(l/#) + {1 - FX/ﬁ(l/H)] [1 - Y wem Wb/ '] if r>1/n
Proof. From Proposition 24 for r > /i1 we get
Fgpr) = 1-[1-Fx()]Sy(ur —1)
= 11~ Fx())iL ~ Fy(iir — )
= 1-[1-Fx(l) — Fp(pr — 1) + Fx({)Fy(ur — )]
= Fx(l) + Fy(ar — 1) - Fx()Fy(ur — 1)
— Fx(l) +[1 - Fx()] Fy (ir - 1
= Fg(l) + [1 - F)?(l)] F}‘;(ﬁ’l‘ - l)
= Frp/i) + |1 - Frp/m] [1 = 3 wiemr-0im]
[ ]
Proposition 27 If Y has a mized exponential distribution as above and
E[X] = 1, then the excess ratio function of the normalized spliced random
variable X /1 is given by
1-3(1-Rx(@r)] o r<i/i

Rz /u(r) ={ Rg()Rumem™ if r>1/f°
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Insurance Capital as a Shared Asset

Donald Mango

Abstract

Merton and Perold (1993) offered a framework for determining risk capital in a financial firm based on the cost
of the implicit guarantee the firm provides to its subsidiaries to make up any operating shortfall. Merton and
Perold assume the price of such guarantees is observable from the market at large. For an insurer, this may not
be a realistic assumption. This paper proposes an insurance-specific framework for determining the cost of
those parental guarantees, and utilizing that cost in pricing and portfolio mix evaluation. An insurer’s capital is
treated as a shared asset, with the insurance contracts in the portfolio having simultaneous rights to access
potentially all that shared capital. By granting underwriting capacity, an insurer’s management team is implicitly
issuing a set of options to draw upon the common capital pool—similar in structure to letters of credit (LOC),
except they are not loans but grants. The paper will (i) discuss the valuation of parental guarantees, beginning
with Merton and Perold; (ii) treat insurer capital as a shared asset and explore the dual nature of insurer capital
usage; (iii) offer a method for determining insurer capital usage cost; and (iv) demonstrate how this method
could be used for product pricing and portfolio mix evaluation using economic value added concepts.

Keywords: Merton-Perold, capital allocation, capital consumption, economic value added.

1. VALUATION OF PARENTAL GUARANTEES

Merton and Perold (1993) (M-P) define risk capital as the amount required to guarantee
payment of an asset or liability. In their first section, they present three related examples of a
financial firm, Mortgage Bank or “MB,” making a risky one-year bridge loan of $100M,
financed by the issuing of a note to a note holder (“NH"). The only risk in any of these cases
is the possible default of repayment by the bridge loan recipient (“BL”). They posit three

outcome scenarios:

e Antdcipated (A): bridge loan is repaid with interest of 20% at maturity in one year—
e.g., for a loan of $100M, the repayment would be §120M;
Disaster (D): amount repaid at maturity is only half that of Anticipated;
Catastrophe (C): amount repaid at maturity is zeto.

They discuss three cases, which differ mainly by which party bears the ultimate cost of any
default. Under their Case 7, the note holder wishes to purchase a default-free note. The note
holder is insulated from the default risk of BL by MB’s purchase of “note insurance” from a
third-party guarantor. The free market cost of this is assumed to be $5M. It is the cost of this
guarantee that M-P considers to be risk capital. Merton and Perold never discuss the
determination of that $5M price tag. They assume it to be a given figure, observable from
the market.

Valuation of the Insurer Parental Guarantee
Similar to MB, every insurance contract in an insurer’s portfolio receives a parental

guarantee: should it be unable to pay for its own claims, a contract can draw upon the
available funds of the company. Philbrick and Painter (2001) (P-P) elucidate:

First published in ASTIN Bulletin, Volume 35, No. 2. Used by permission.
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“When an insurance company writes a policy, a premium is received. A portion of this policy
can be viewed as the loss component. When a particular policy incurs a loss, the company
can look to three places to pay the loss. The first place is the loss component (together with
the investment income eamed) of the policy itself. In many cases, this will not be sufficient
to pay the loss. The second source is unused loss components of other policies. In most
cases, these two sources will be sufficient to pay the losses. In some years, it will not, and the
company will have to look to a third source, the surplus, to pay the losses.” (p. 124)

The only market from which an insurer might be able to observe the value of a guarantee is
the reinsurance market. However, this market is limited, with relatively low numbers of
participants, and a great diversity among products. A reinsurance valuation exercise is similar
to that for over-the-counter (OTC) derivatives, in that it requires proptietary (as opposed to
public) information, as well as a specific valuation methodology. Also, reinsurers, the liability
holders of last resort, do not have the luxury of market prices for the guarantees they offer
their portfolio segments. This suggests that, at a minimum, reinsurers must have an internal
valuation framework of their own. It is argued here that an insurer must value the guarantee
it provides to its portfolio, either explicitly or implicitly.

This paper proposes one such insurance-specific valuation methodology for the insurer
parental guarantee. It is based upon the following premises:

e Aninsurer’s capital is a shared asset, with all insurance contracts in the portfolio
having simultaneous rights to access potentially all that shared capital.

e The impacts on an insurer from underwriting a contract are (i) the occupation of
some of its finite underwriting capacity over a period of time (as determined by
required capital calculations), and (i) the extension of a guarantee by the firm to the
contract holder to fulfill legitimate claims. These impacts represent distinct types of
usage of the insurer’s capital.

e  Each distinct capital usage type will result in a unique charge: a capacity occupation
cost and a capital consumption cost. The capacity occupation cost is an upfront cost
which is a function of premium and expected reserve balances. Thus it can be treated
as a fixed cost. The capital consumption cost is a variable cost depending on the
amount of shortfall, which is scenario-specific. Therefore, its expected value over all
possible contract outcome scenarios is used.

e The sum of these two costs will be called the capital usage cost, and will be treated as
an expense in the contract pricing evaluation. The contribution to the insurer of a
contract is therefore not a return on capital, like the ratio of expected profit to
allocated capital, but rather the profit less the capital usage cost.

e The recommended decision metric then becomes economic value added or EVA', a
means of tisk-adjusting return by subtracting the opportunity cost of capital.

The paper will proceed by framing insurer capital as a shared asset, exploring the dual nature
of insurer capital usage, proposing a method for determining insurer capital usage cost, and
demonstrating how this method could be used for product pricing and portfolio mix
evaluation using economic value added concepts.

1 EVA is a registered trademark of Stern Stewart & Co. See www.stemstewart.com.

574 Casualty Actuarial Society Forum, Fall 2006



Insurance Capital as a Shared Asset

2. INSURER CAPITAL IS A SHARED ASSET

Shared assets or resources are entities conjointly owned by a community or group, for the
use of their members. Shared assets can be scarce and essential public entities (e.g.,
reservoirs, fisheries, national forests), or desirable private entities (e.g., hotels, golf courses,
beach houses). The access to and use of the assets is controlled and regulated by their
owners; this control and regulation is essential to preserve the asset for future use. Examples
of controls include usage rules (standards of care), limitations on the number of users (e.g.,
occupancy limits in a restaurant, swimmer limits at a pool), limitations on duration of usage
(e-g., campsites at national parks), and limitations on amount of consumption (e.g., tons of
fish taken from a fishery). It is particularly critical with essential assets that over-use by some
members not compromise the future viability of the asset for the entire group. This
aggregation risk is a common characteristic of shared asset usage, since shared assets typically
have more members who could potentially use the asset than the asset can safely bear.
Owmers cannot count on individual users taking steps to preserve the asset. These users have
their own incentives, and due to limited perspective and information, cannot see the
implications of their individual actions upon the larger whole.

Consumptive and Non-Consumptive Uses

Shared assets are typically used in one of two manners, what is termed consumptive or non-
consumptive’. Consumptive use involves the transfer of a portion or share of the asset from
the communal asset to the member. Examples of consumptive use include water from a
reservoir, livestock grazing on common pasture, or logging from national forests.

Non-consumptive use differs from consumptive use in several fundamental ways:
e Non-consumptive use involves temporary, limited transfer of control.
e Non-consumptive use is intended to be non-depletive—proper use of the asset
leaves it intact for subsequent users.
¢ Non-consumptive use has a time element. Users occupy or botrow the asset for a
period of time, then return it to the owner’s control.

Examples of non-consumptive use include boating on a reservoir, hiking in a national forest,
playing on a golf course, or renting a car or hotel room. The main aggregation concern from
non-consumptive use relates to either capacity limitations or insufficient maintenance.
Capacity limitation examples include caps on the number of water ski boats allowed on a
lake, the number of campsites at national parks, or the number of available tee times at a golf
course.

Shared assets are typically used in only one of the two manners. However, some shared
assets can be used in either a consumptive or non-consumptive manner, depending on the
situation. A good example is the renting of a hotel room. The intended use of the hotel

2 These terms are used extensively in areas such as water and wildlife management. See Appendix C of the United States’
Environmental Protection Agency’s “Interim Economic Guidance for Water Quality Standards,”

5 erscience/c . Another good reference is the “Addis Ababa Principles and Guidelines
for the Sustainable Use of Biodiversity,” Convention on Migratory Species,

s > N < . . .
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room is benign occupancy—the guest stays in the room, leaves it intact, and after cleaning
the room is ready for subsequent rental. However, if a guest leaves the water running and
floods their floor, or falls asleep with a lit cigarette and burns down a wing of the hotel, their
use has become consumptive, because the capacity itself has been destroyed. The hotelier must
rebuild the damaged rooms (invest additional capital) before the rooms can again be rented.

Insurer Capacity

Insurers sell promises to pay claims, so legitimate counterparty standing (i.e., claims paying
rating) is vital. Other factors enter into a rating decision, but a key variable is the capital
adequacy ratio (CAR). Different rating agencies use different approaches, but essentially CAR
is the ratio of actual capital to required capital. Typically the rating agency formulas generate
required capital from three broad sources: premiums, reserves, and assets. Current year
underwriting activity will generate required premium capital. As that business ages, reserves
will be established, which will generate required reserve capital. As those teserves run off, the
amount of generated required reserve capital diminishes, eventually disappearing once the
reserve balance reaches zero.

There are usually minimum CAR levels associated with each rating level. Thus, if an insurer
has a desired rating, a given amount of actual capital corresponds to 2 maximum amount of
rating agency required capital. This means required premium capital is an excellent proxy for
underwriting capacity. It represents an externally imposed constraint on the amount of new
business that can be written. Since total required capital consists of portions attributable to
premium, reserves and assets, the maximum required premium capital is also a function of
the amount of required reserve capital.

In summary, an insurer’s actual capital creates underwriting capacity, and underwriting activity
(either past or present) #es up or occupies potentially available underwriting capacity.

Consumptive and Non-Consumptive Use of Insurer Capital

Per the rating agency required capital formula, the presence of either premium balances
(representing current year underwriting) or reserve balances (representing previous years’
underwriting) results in required capital being calculated. This temporarily reduces the
amount of underwriting capacity available for other underwriting uses. Being temporary, it is
similar to capacity occupancy, a non-consumptive use of the shared asset.

Capital consumption occurs when reserves are increased. This involves a transfer of funds
from the capital account to the reserve account, and eventually out of the firm as claims
payments. P-P also introduced this concept:

“The entire surplus is available to every policy to pay losses in excess of the aggregate loss
component. Some policies are more likely to create this need than others are, even if the
expected loss portions are equal. Roughly speaking, for policies with similar expected losses,
we would expect the policies with a large variability of possible results to require more
contributions from surplus to pay the losses. We can envision an insurance company
instituting a charge for the access to the surplus. This charge should depend, not just on the
likelihood that surplus might be needed, but on the amount of such a surplus call.” (p. 124)
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The two distinct impacts of underwriting an insurance portfolio on the insurer in total are
therefore:

@ Certain occupation of underwriting capacity for a period of time, and
(id) Possible consumption of capital.

This “bi-polar” capital usage is structurally similar to a line of credit (LOC) as issued by
banks. The dual impacts on a bank of issuing a LOC are:

@ Certain occupation of capacity to issue LOC’s, for the term of the LOC, and
(i) Possible loan to the LOC holder.

Banks receive income for the issuance of LOC’s in two ways:

@ An access fee (i.e., option fee) for the right to draw upon the credit line, and
(i) Loan payback with interest.

This dual form of payments for the dual nature of usage will be adapted for the unique
characteristics of insurance.

3. THE COST OF USING INSURER CAPITAL

The cost of the insurer’s parental guarantee therefore has two pieces: (i) a Capacity
Occupation Cost, similar to the LOC access fee, and (i) a Capital Call Cost, similar to the
payback costs of accessing an LOC, but adjusted for the facts that the call is not for a loan
but for a permanent transfer, and that the call destroys future underwriting capacity.

(i) Capacity Occupation Cost

The capacity occupation cost is an opportunity cost, compensating the firm for preclusion of
other opportunities. It can be thought of as a minimum risk-adjusted hurdle rate. It will be
the product of an opportunity cost rate and the amount of required capital generated over
the active life of the contract. In continuous time, the formula would be:

T
[RC, 1, -at, (3.1)
1=0
where
* Top is the “instantaneous™ opportunity cost of capacity (similar to the force of
interest); and
® RCG,is the required capital amount for the segment ot contract at each point in time

¢, with £ going from 0 (contract inception) to T (final resolution of all payments).

Rating agency required capital formulas are a discrete approximation of the continuous time
situation:
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T
{Z RC,}tropp 32

=l

RC;is the required capital for time period . For /=1, it would be 2 function of premium,; for
all subsequent periods, it will be a function of reserves.

(ii) Capital Call Cost

Let v be the random variable representing the present value at inception of all insurance
cash flows associated with an insurance contract—premium, expenses and loss payments
(but not required capital). For simplicity assume p(#) is the discrete distribution with possible
outcomes v,,7=1ton.

Let f(x)be the capital call cost function that charges for a particular capital call. We will
assume that a capital call is necessary when the present value of insurance flows v, falls
below zero. The magnitude of capital call for outcome v, would be—min(0,v,), which will
be denoted s, for shortfall of outcome 4, a non-negative number. The cost of a capital call for
outcome ¢ will be denoted f(s,). The expected cost of capital calls over all outcomes would
be:

3Pt £(s) (3.4

tal

The form of f(s,)can be determined in part based on an understanding that a capital call
destroys future underwriting capacity. Therefore, any call cost function should at least equal the
amount of the call (payback of the capital grant). It should also compensate for lost
opportunity cost. In this case, the destroyed capacity would need to be replenished by some
means (e.g., recoupment from the product line’s future returns, or capital infusion from
parent). Whatever the source, the lost capacity could cost the firm the equivalent of 7 years
of “capacity downtime,” what one might call an fnconvenience premium. Such an
understanding leads to one possible means for determining the capital call cost function

f(s/):
fs)=(+m=*ry,) (3.5)

The determination of 7 could be based on the volatility of a product’s pricing cycles—that
is, the likelihood that temporary capital impairment would lead to missed opportunity to
write business at higher price levels.

Economic Value Added (EVA)
EVA, a registered trademark of Stern Stewart & Co., is a powerful metric used in financial
analysis. The formula for EVA is:

EVA = NPV Return — Opportunity Cost of Capital
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EVA is typically expressed as an amount. An activity with a positive EVA is said to “add
value,” while one with a negative EVA “destroys value.”

EVA is simple to calculate using the shared asset framework:
EVA = NPV Return — Opportunity Cost of Capital Usage

EVA balances both risk and reward, and will be used as the key decision variable in the
application examples to follow.

4. Application in Reinsurance Contract Evaluation

This section will demonstrate the application of this approach to two reinsurance contracts.
Both examples use the following key parametets:

® o= 10%
® m=5
e f5) = 5%10% = 50%

High Layer Property Excess of Loss Contract
Consider a high-layer contract, with a 2% chance of incurring a loss (i.e., 1 in 50 years).
When a loss occurs, it is assumed to be a full limit loss. Example 1 shows the details:

Example 1
Property Catastrophe Contract
Comments
(1) Premium $ 500,000 =5% Net Rate on Line
(2) Limit $ 10,000,000
|Capacity Occupation Cost 1
(3) Required Capital Factor 50.0% Rating Agency
(4) Required Capital s 250,000 =(3)* (1)
(5) Opportunity Cost for Capacity 10.0% T opp
(6) Capacity Occupation Cost $ 25,000 =(4) *(5)
{Capital Call Cost |
(7) Probability 2.0%
(8) Loss $ 10,000,000 Full limit loss
(9) Capital Call Amount $ 9,500,000 =(8)-(1)
(10) Capital Call Cost Function 50.0% =5"rop
(11) Capital Call Charge $ 4,750,000 =(10) * (9)
(12) Expected Capital Call Cost $ 95,000 =(11)*(7)
EBa____ ]
(13) Expected NPV $ 300,000 =(1)-(7)*(8)
(14) Expected Capital Usage Cost $ 120,000 =(6) +(12)
(15) EVA $ 180,000 =(13) - (14)

Example 1a shows the premium for a zero EVA:
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Example 1a
Property Catastrophe Contract @ Zero EVA
Comments
(1) Premium $ 312,500 = 5% Net Rate on Line
(2) Limit s 10,000,000
Capacity Occupation Cost
(3) Required Capital Factor 50.0% Rating Agency
(4) Required Capital s 156,250 =(3)* (1)
(5) Opportunity Cost for Capacity 10.0% rogp
(6) Capacity Occupation Cost $ 15,625 : =(4)* (5)
|Capital Call Cost |
(7) Probability 2.0%
(8) Loss S 10,000,000 Full limit loss
(9) Capital Call Amount s 9,687,500 =(8)- (1)
(10) Capital Call Cost Function 50.0% =5"rop
(11) Capital Call Charge $ 4,843,750 =(10) *(9)
{12) Expected Capital Call Cost $ 96,875 =(11)* ()
leva ]
(13) Expected NPV $ 112,500 =(1)-(7) *(8)
(14) Expected Capital Usage Cost $ 112,500 =(6) + (12)
(15) EVA $ - =(13) - (14)

Since this is a short payment tail line, there are no required capital charges for reserves, and
discounting is ignored for simplicity. The two pieces of the capital usage cost are calculated
separately. The EVA formula is straightforward, being NPV minus capital usage cost.

Longer Tail Excess of Loss Contract

Now consider a high-layer excess of loss contract on a liability product, with the same
probability of loss, severity profile, limit, and premium, but a five-year payout. Example 2
shows the calculation details.
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Example 2
Longer Tail Excess of Loss Contract
Comments
(1) Premium $ 500,000 = 5% Net Rate on Line
(2) Limit $ 10,000,000
|Capacity Occupation Cost 1
(3) Roquired Capital Factor - Premium 50.0% Rating Agency
(3a) Required Capital Factor - Reserves 35.0% Rating Agency
{3b) Reserve Amount $ 156,705
{3c) Reserve Duration 5.00 Years
(4) Required Capital $ 524,234 =(3)*(1)+(3a) * (3b) * (3¢)
{5) Opportunity Cost for Capacity 10.0% ’ opp
{6) Capacity Occupation Cost $ 52,423 =(4)*(5)
|Capital Call Cost 1
(7) Probability 2.0%
(8) Loss (NPV @ 5%) $ 7,835,262 Full limit loss, discounted
(9) Capital Call Amount $ 7,335,262 =(8)-(1)
{10) Capital Call Cost Function 50.0% =5"rop
(11) Capital Call Charge $ 3,667,631 =(10)* (9)
(12) Expected Capital Call Cost $ 73,353 =(11)*(@7)
[Eva 1
(13) Expected NPV $ 343,295 =(1)-(7)*(8)
(14) Expected Capital Usage Cost $ 125,776 =(6)+(12)
15) EVA $ 217,519 =(13) - (14)

The major differences between Examples 1 and 2:

® The Capacity Occupation Cost now includes charges for required capital needs over
time on reserves. This increases the capacity occupation fee from $25,000 to $52,423.

¢ The loss payment has been discounted at 5% (the assumed default-free rate) for five
years (assumed payment delay). This reduces the expected capital call cost from
$95,000 to $73,353.

e The total capital usage cost stayed about the same, changing from $120,000 to
$125,776.

® The EVA increased from $180,000 to $217,519. However, this is partly due to the
premium being held constant at $500,000. The market price for the longer payment
tail would likely have factored in the loss discounting.

Example 2a shows the liability contract premium that would give zero EVA:
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Example 2a
Longer Tail Excess of Loss Contract @ Zero EVA
Comments
(1) Premium $ 273,418 = 5% Net Rate on Line
(2) Limit $ 10,000,000
{Capacity Occupation Cost 1
(3) Required Capital Factor - Premium 50.0% Rating Agency
(3a) Required Capital Factor - Reserves 35.0% Rating Agency
(3b) Reserve Amount $ 156,705
(3c) Reserve Duration 5.00 Years
(4) Required Capitat $ 410,943  =(3)" (1) + (3a) * (3b) * (3¢)
(5) Opportunity Cost for Capacity 10.0% T oge
(8) Capacity Occupation Cost $ 41,004 = (4)* (5)
|Capital Call Cost 1
(7) Probability 2.0%
(8) Loss (NPV @ 5%) $ 7,835,262 Full limit loss, discounted
(9) Capital Call Amount $ 7,561,844 =(8)-(1)
(10) Capital Call Cost Function 50.0% =5"Top”
(11) Capital Call Charge $ 3,780,922 =(10)*(9)
(12) Expected Capital Cali Cost $ 75,618 =) * @)
EVA ]
(13) Expected NPV $ 116,713 =(1)-(7) *(8)
{14) Expected Capital Usage Cost $ 116,713 =(6) +(12)
(15) EVA $ 0 =(13)-(14)

5. Application in Portfolio Mix Evaluation

This section will describe a Portfolio Mix Evaluation model based on the proposed
approach. A simple example will be used to demonstrate the concepts. It will follow four
steps:

1. Loss Distributions

2. Deviations from Mean

3. Capital Usage Cost Calculation

4. Evaluation Metrics

1. Loss Distributions

The model has three lines of business (abbreviated “LOB”), each with losses distributed
Log-Normal, with expected value of $1,000,000, but different variances reflected by different
stgma parameters. The parameters are shown here:

1) Loss Distributions
LOB1 LOB 2 LOB3 TOTAL
Log Normal Mu 13.771 13.691 13.571

Log Normal Sigma 30.0% 50.0% 70.0%
Expected Loss 1,000,000 1,000,000 1,000,000 3,000,000

Profit Margin 10.0% 10.0% 10.0%
Premium 1,111,111 1,111,111 1,111,111 3,333,333
Return $ 111,111 111,111 111,111 333,333
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The model uses 100 independent scenarios drawn from these distributions, each of which is
stored on its own row in the spreadsheet. Premium is assumed equal to expected losses plus
a profit margin (expressed as a percentage of premium). Expenses are ignored.

2. Deviations from Mean

For simplicity, this model ignores discounting. The capital calls are therefore assumed to
happen under those scenarios where a segment’s losses are higher than expected. Section 2
of the model subtracts scenario loss from expected loss by segment. This amount is called
“deviation from mean,” denoted 4, for scenario / and segment /.

3. Capital Usage Cost Calculation
This table summarizes the major inputs for Capital Usage Cost.

3) Capital Usage Cost Inputs
LoB1 LOB 2 LoB3
Rating Agency Required Premium Capital Charge 40.0% 40.0% 40.0%
Opportunity Cost 10.0%
m Years of Lost Opportunity 3.00
Capital Call Cost Factor 30.0%
Rating Agency Required Premium Capital 444,444 444 444 444,444

Here are detailed desctiptions of each element:
e The rating agency required premium capital formula is a factor (40%) multiplied by
premium.
® Iop= 10%.
m = 3 years.
Capital Call Cost Factor f= 3*10% = 30%.

The Capital Usage Cost is calculated in the following steps:
e For scenario , portfolio shortfall 5; = —min(0,d,) .
® For scenario , portfolio capital call cost ¢, = f-5,.
e Allocate ¢ back to segment using the RMK ajgorithm. The RMK algorithm is a

conditional risk allocation method developed by Ruhm, Mango and Kreps
(2004)>.

®  For scenario /, segment j shortfall 5; = —min(0,d;) .

3
¢ For scenario 7 the sum of segment shortfalls 5; = Z[—min(o, d; )]

J=t

3 It is conceptually similar to concepts in Buhlmann, “An Economic Premium Principle,” ASTIN Bulletin 11
(1980), p. 52-60. Ruhm and Mango (2003), and Kreps (2004), independently derived the approach, known as
“RMK for short. Kreps derived it under the name “riskiness leverage models”; Ruhm and Mango derived it
under the name “Risk Charge Based on Conditional Probability.” The method begins at the aggregate or
portfolio level for evaluating risk, and allocates the total portfolio risk charge by each component’s contribution
to total portfolio risk. The result is an internally consistent allocation of divessification benefits.
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" . . . c-s
® For scenario 4, segment / share of the portfolio capital call cost =¢, = .,
N i
n
e For segment /, expected capital call cost ¢, = Z p%y.

i=]

4. Evaluation Metrics
This table summarizes the major evaluation metrics:

4) Portfolio Evaluation Metrics
LOB1 LOB 2 LOB3 TOTAL
Premium $ 1111411 8 1111411 1,111,111 3,333,333
Required Capital $ 444444 3 444444 $ 444444 $ 1,333,333
Returmn $ 111,111 § 111,111 $ 111,111 ¢ 333,333
(a) Expected Capital Usage Cost $ $ 60,099 $ 76,802 $ 109481 $ 246,382
(b) Capital Usage Cost as % of Capital 13.5% 17.3% 24.6% 18.5%
(c) Occupation Cost 10.0% 10.0% 10.0% 10.0%
(d) Capital Call Cost 3.5% 7.3% 14.6% 8.5%
(e EVAS $ 51,012 § 34,309 $ 1,630 $ 86,951
f) Prob of Exceeding Required Capital 8.0% 15.0% 23.0% 9.7%

Premium, Required Capital, and Return are all inputs. Elements (a) — (f) will be discussed in
detail:

¢ (a) Expected Capital Usage Cost § = expected capital call cost ¢; + capacity
occupation cost.

o Capacity Occupation Cost = Rating Agency Required Premium Capital *
Opportunity Cost. The values are the same for each segment (line of
business or “LOB”):

®  Rating Agency Required Premium Capital = §444,444
& Opportunity Cost = 10%
®  Capacity Occupation Cost = §444,444%10% = §44,444
. i % ital = (a) divided by Rating Agency Required
Premium Capital. Items (c) and (d) split this value into its two components:
o () Occupation Cost = Opportunity Cost
o (d) Capital Call Cost = (b) - (9
o The average value for the entire portfolio is 18.5%. This is the figure that
would be calibrated to company cost of capital.
() EVA $ = Expected Return minus (a)

i i ital = percentage of scenarios where shortfall
was larger in magnitude than the required premium capital. This is one indicator as
to how much “risk-sensitivity”” underlies the capital factors. For example, if the
capital factors were derived from a method based on a constant probability of
default by segment——e.g., 5% —then this value would be 5% for every LOB.

Each LOB used the same required capital factor (40%), yet the variances (i.e., the riskiness)

were matkedly different. The method has corrected for this by indicating different capital
usage costs.

¢ 1LOB 1 (low variance): 13.5%
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e LOB 2 (medium variance): 17.3%

e LOB 3 (high variance): 24.6%
This represents a true implementation of RAROC—risk-adjusted return on capital. As an
alternative, we could use the model to calculate RORAC—return on risk-adjusted capital.

We do this by varying the required capital factors until all three lines have the same return of
18.5%. The output is:

4) Portfolio Evaluation Metrics - RORAC

Los 1 LoB2 LOB3 TOTAL
Premium $ 1111111 8 1111111 8 1,111,111 $ 3,333,333
Required Capital $ 184,633 § 381,639 $ 767,061 $ 1,333,333
Retum $ 111,111 8§ 111,111 § 111,111 8§ 333,333
(a) Expected Capital Usage Cost $ $ 34,118 § 70,522 $ 141,743 §$ 246,382
(b) Capital Usage Cost as % of Capital 18.5% 18.5% 18.5% 18.5%
{c) Occupation Cost 10.0% 10.0% 10.0% 10.0%
(d) Capital Call Cost 8.5% 8.5% 8.5% 8.5%
(e) EVA S $ 76,993 $ 40,589 $ (30,632) $ 86,951
() Prob of Exceeding Required Capital 25.0% 16.0% 16.0% 9.7%

As compared with a constant 40% capital charge under RAROC, the resulting RORAC
capital charges are:

3) Capital Usage Cost Inputs

LOB 1 LOB2 LoB3
Rating Agency Required Premium Capital Charge 16.6% 34.3% 69.0%

With this much higher capital charge, the EVA for LOB 3 becomes negative. This is because
the product of its required capital and return is higher than in the base case.

All three LOB show positive EVA at these price levels. This table shows the premiums
requited to bring all three LOB to zero EVA using RAROC:

4) Portfolio Evaluation Metrics
LoB1 LOB 2 LoB3 TOTAL
Premium $ 1057974 § 1075373 $ 1109414 $ 3,242,760
Required Capital $ 423189 $ 430,149 § 443,765 § 1,297,104
Return $ 57974 $ 75373 § 109,414 $ 242,760
(a) Expected Capital Usage Cost $ $ 57,973 § 75373 $ 109,413 $ 242,759
(b) Capital Usage Cost as % of Capital 13.7% 17.5% 24.7% 18.7%
(c) Occupation Cost 10.0% 10.0% 10.0% 10.0%
(d) Capital Call Cost 3.7% 7.5% 14.7% 8.7%
(6} EVA S $ - 3 - $ - $ -
Prob of Exceeding Required Capital 9.0% 15.0% 23.0% 9.7%

The profit margins required to achieve this are:
LOB 1 LoB2 LOB3
Profit Margin 6.6% 7.0% 9.9%

These might be thought of as risk-based pricing benchmarks, all calibrated to a zero-EVA level
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If we assume the starting point 10% profit matgins are given from the matket, we might seek
the portfolio mix that maximizes total EVA, subject to a maximum rating agency required
premium capital amount. The results of such a search (using Excel Solver) are shown here:

4) Portfolio Evaluation Metrics

LOB 1 LOB2 LOB3 TOTAL
Premium $ 1953704 $ 870,370 $ 509,259 $ 3,333,333
Required Capital $ 781,481 $ 348,148 $ 203,704 $ 1,333,333
Return $ 195370 $ 87,037 $ 50,926 $ 333,333
(a) Expected Capital Usage Cost $ $ 117,709 $ 58,927 $ 43396 $ 220,033
(b} Capital Usage Cost as % of Capital 15.1% 16.9% 21.3% 16.5%
(¢) Occupation Cost 10.0% 10.0% 10.0% 10.0%
(d) Capital Call Cost 51% 6.9% 11.3% 6.5%
(e) EVAS $ 77661 $ 28,110 $ 7530 $ 113,300
(f) Prob of Exceeding Required Capital 8.0% 15.0% 23.0% 5.8%

The resulting EVA—$113,300—is far higher than the base case EVA of $86,951.
6. CONCLUSIONS

This paper introduces a method for assessing the cost of capital usage based on a shared
asset view of insurer’s capital. The shared asset view eliminates the need for allocation of
capital, and is far more grounded in insurer realities. The method also shows promise for use
with a portfolio risk model to evaluate portfolio mixes.
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Discussion of Insurance Capital as a Shared Asset

Robert A. Bear, FCAS, MAAA, FCA, CPCU

Abstract
In his 2005 ASTIN paper (reprinted in the CAS 2006 Fall Forum), Donald Mango’s ground-breaking work
[1] in developing the concepts of insurance capital as a shared asset and Economic Value Added (EVA) are
discussed with special emphasis on the purpose and calculation of the important Capital Call Costs. The
EVA approach permits one to charge for risk (capital usage) and measure profitability at any desired level
of definition while satisfying the key additivity property for risk charges without needing to allocate capital.
Test examples are discussed that illustrate the impact on profitability of rate changes, changes in the
distributions of premium written by line of business, inaccurate pricing due to parameter and model risk,
correlation between lines of business, alternative reinsurance programs, and alternative selections for the

Capital Call Cost function which is central to the EVA approach.

For those who prefer to measure returns as a percentage of invested capital, a Risk Return on Capital model
(RROC) is suggested as an alternative way to integrate desitable properties of the EVA approach and the
return on risk adjusted capital (RORAC) approach based upon riskiness leverage models. This method
measures returns that are a reward for exposing capital to risk of loss after reflecting the cost of required

rating agency capital.

Keywords. Capital allocation, cost of capital, enterprise risk management, return on equity, RMK

algorithm, risk load.

1. INTRODUCTION

Actuaries frequently allocate capital to line of business or individual risk in an effort
to calculate risk loads or evaluate profitability by calculating a risk adjusted return in the
form of a return on equity (ROE) metric. Concerns have been expressed about ROE
methods [7], especially the fact that the value inherent in the unallocated surplus is
ignored (the entire surplus supports each and every risk). In his 2005 ASTIN paper on
“Insurance Capital as a Shared Asset” [1], Donald Mango has introduced a method that
eliminates the need for allocation of capital which he believes is more grounded in

insurer realities.

2. SUMMARY WITH COMMENTS
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Donald Mango treats insurance capital as a shared asset, with the insurance contracts
having simultaneous rights to access potentially all of that shared capital. Shared assets can
be scarce and essential public entities (e.g., resetvoirs, fisheties, national forests), or desirable
private entities (e.g., hotels, golf courses, beach houses). The access to and use of the assets
is controlled and regulated by their ownets; this control and regulation is essential to
preserve the asset for future use. The aggregation risk is a common characteristic of shared
asset usage, since shared assets typically have more members who could potentally use the

asset than the asset can safely bear [1].

Mr. Mango differentiates between consumptive and non-consumptive use of an asset. A
consumptive use involves the transfer of a portion or share of the asset from the communal
asset to an individual, such as in the reservoir water usage and fishery examples. Non-
consumptive use involves temporary, limited transfer of control which is intended to be
non-depletive in that it is left intact for subsequent users. Examples of non-consumptive

use include boating on a reservoir, playing on a golf course or renting a hotel room [1].

While shared assets ate typically used in only one of the two mannets, some shared assets
can be used in either a consumptive or non-consumptive manner, depending on the
situation. Mr. Mango gives the example of renting a hotel room. While the intended use is
benign occupancy (non-consumptive), there is the risk that a guest may fall asleep with a lit

cigarette and burn down a wing of the hotel (clearly consumptive) [1].

Mr. Mango notes that rating agencies use different approaches in establishing ratings, but
the key variable is the capital adequacy ratio (CAR) which is the ratio of actual capital to
required capital. Typically the rating agency formulas generate required capital from three
sources: premiums, reserves, and assets. Current year underwriting activity will generate
required premium capital. As that premium ages, reserves will be established that will
generate required reserve capital. As the reserves are run off, the amount of required reserve
capital will diminish and eventually reach zero when all claims are settled. As there are
usually minimum CAR levels associated with each rating level, Mr. Mango points out that a
given amount of actual capital corresponds to a maximum amount of rating agency required
capital. Given reserve levels, this implies a limit to premium capital and thus to how much
business can be written. Mr. Mango summarizes by stating than an insurer’s actual capital
creates underwriting capacity, while underwriting activity (either past or present) uses up

underwriting capacity [1].

Mr. Mango notes that the generation of required capital, whether by premiums or

reserves, temporarily reduces the amount of capacity available for other underwriting, Being
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temporary, it is similar to capacity occupancy, a non-consumptive use of the shared asset.
Capacity consumption occurs when reserves must be increased beyond planned levels. Mr.
Mango points out that this involves a transfer of funds from the capital account to the
reserve account, and eventually out of the firm. Mr. Mango summatizes by stating that the

two distinct impacts of underwtiting an insurance portfolio are as follows [1}:
(1) Certain occupation of underwriting capacity for a period of time.
(2) Possible consumption of capital.

He notes that this “bi-polar” capital usage is structurally similar to a bank issuing a letter
of credit (LOC). The dual impacts of a bank issuing a LOC are as follows [1]:

(1) Certain occupation of capacity to issue LOC’s, for the term of the LOC.

(2) Possible loan to the LOC holdert.

Mr. Mango notes that banks receive income for the issuance of LOC’s in two ways [1]:
(1) An access fee (i.c., option fee) for the right to draw upon the credit line.

(2) Loan payback with interest.

Mr. Mango notes that every insurance contract in an insurer’s portfolio receives a parental
guarantee: Should it be unable to pay for its own claims, the contract can draw upon the

available funds of the company. He states that the cost of this guarantee has two pieces [1]:
(1) A Capacity Occupation Cost, similar to the LOC access fee.
(2) A Capital Call Cost, similar to the payback costs of accessing an LOC, but adjusted

for the facts that the call is not for a loan but for a permanent transfer, and that the

call destroys future underwriting capacity.

Mr. Mango states that a capacity occupation cost is an opportunity cost, and thinks of it
as 2 minimum risk adjusted hurdle rate. He computes it as the product of an opportunity
cost rate and the amount of required rating agency capital generated over the active life of
the contract. However, he does not explicitly credit interest on supporting surplus in his
formula or in his examples, but usually interprets the opportunity cost of capital as a spread
above investment returns on capital. In the examples discussed below, I show that this can
be a significant factor. I think it reasonable to credit the mean interest earned over all
simulations on required rating agency capital using a risk free rate, as we are already

recognizing the opportunity cost of earmarking this capital to support the business written.

Mr. Mango also develops a formula for computing capital call costs which are his true
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risk loads, and defines the expected capital usage cost to be the sum of the capacity
occupation cost and the expected capital call cost. He defines his key decision metric
Economic Value Added (EVA) to be the NPV Return less the expected cost of capital [1]:

EVA = NPV Return — Capacity Occupation Cost — Capital Call Cost
Mr. Mango calculates capital call costs using the following algorithm:

M For each iteration (loss scenario) in the simulation, calculate the deviation of the
loss for each segment (line of business or individual risk) from the expected loss.
If the deviation from the mean is positive, there is no capital call and therefore no
capital call cost. If the deviation from the mean is negative, the capital call cost
equals the product of the magnitude of the deviation and the Capital Call Cost
Factor. Calculate each segment’s share of the portfolio capital call cost as the

ratio of the segment cost to the total of these costs across all segments.

) Use the same procedure to calculate the portfolio capital call cost that was used to

calculate segment capital call costs.

3 Multiply the portfolio capital call cost by the segment shares calculated in (1) to

calculate each segment’s share of the capital call cost for that scenario.
©)] Each segment’s expected capital call cost is the average of (3) over all scenatios.

The allocation procedure in the above algorithm was developed jointly by Mr.
Mango, Mr. Rodney Kreps and Mr. David Ruhm [6]. It is a conditional risk allocation
method which has become known as the RMK algorithm. Mr. Mango points out that the
method extends risk valuation from the aggregate portfolio level down to the segments
that comprise the portfolio, reflecting each segment’s contribution to the total portfolio
risk. The result is an internally consistent allocation of diversification benefits for which

risk charges (costs of capital) are additive in any combination.

Mr. Mango notes that any capital cost function should at least equal the amount of
the call (payback of the capital grant). It should also compensate for lost opportunity
cost (inability to write as much business for several years until capital is replenished).

Thus, Mr. Mango suggests the following form for the Capital Call Cost Factor: 1+n*r,,,.

He suggests that the determination of n could be based on the volatility of 2 product’s
pricing cycles (i.e., the likelihood that temporary capital impairment would lead to missed
opportunities to write business at higher price levels). The opportunity cost of capacity
top, selected by Mr. Mango in his examples for the computation of the Capital Call Cost

Factor is. the same opportunity cost rate used to calculate the Capacity Occupation Cost.
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Hence, if n=4 and 1, = 25%, then the Capital Call Cost Factor is 200%.

If pricing is accurate, this reviewer would theoretically expect capital grants in some
years to be offset by redundancies in other years, averaging to the plan loss ratio which
would equal the true Expected Loss Ratio (ELR). Hence, this reviewer believes the
purpose of the capital call cost is to compensate for lost profits while capital is being
replenished. Pricing errors or excessively competitive behavior may lead to market
dislocations that permit risk loads of a magnitude that would be viewed by many as

“payback,” but this would appear in this methodology as a very healthy EVA.

Thus we have an asymmetric dynamic, where the additional capacity from upside
scenarios rarely compensates for the lost capacity of downside scenarios. This is
particularly true after the occurrence of extreme events, when pricing can become
excessive for a limited period of time. Thus, capital call costs are intended to compensate

for these missed opportunities.

Seminar notes from the 2005 Seminar on Reinsurance session on “Risk Load,
Profitability Measures, and Enterprise Risk Management” may be downloaded from the
CAS web site and illustrate the flexibility which this approach permits management in
quantifying risk preferences. In Mr. Mango’s seminar notes entitled “Insurance Capital as
a Shared Asset — Theory and Practice,” he points out that rating agency tequired capital
can provide a convenient means to introduce a tail penalty. Rating agency required
capital can be calculated at any level of detail, and so an additional charge can be assessed
for exceeding allocated rating agency capital (this would be analogous to burning down a
wing of the hotel in our illustrative example). In computing the Capital Call Cost, he
assesses a moderate charge for damage within a segment’s allocation (drawdown on
allocated capital), and a much more severe charge for damage beyond a segment’s

allocation (drawdown of other segments’ capital).

Assuming that correlatons between segments are estimated with reasonable
accuracy, it appears to this reviewer that this two step approach has the advantage of
discouraging company threatening accumulations of risk, which is the central goal for an
enterprise risk management system. For those willing to allocate capital as an
intermediate step in allocating the cost of capital ([2], [4]), the Tail Value at Risk and

Semi-Variance metrics [2] would also serve this function.
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3. COMPARISON TO OTHER APPROACHES

This reviewer compared the EVA approach to the return on risk adjusted capital
(RORAC) approach based upon riskiness leverage models [2] and to a modified RORAC
approach which shall be referred to as a risk return on capital (RROC) model. RORAC
based upon riskiness leverage models does not reflect rating agency capital requirements,
pardcularly the requirement to hold capital to support teserves until all claims are settled.
This is especially important for long tailed Casualty lines. A mean rating agency capital is
computed by averaging rating agency required capital from the simulaton (capital needed to
support premium writings is added to the net present value, NPV, of the capital needed to
support reserves on each iteration of the simulation). The mean rental cost of rating agency
capital is calculated by multiplying the mean rating agency capital by the selected rental fee,
which is an opportunity cost of capacity. Expected underwriting return is computed by
adding the mean NPV of interest on reserves and interest on rating agency capital to
expected underwriting return (profit and overhead). The expected underwriting return after
rental cost of capital is computed by subtracting the mean rental cost of rating agency

capital.

In my compatisons of EVA with RORAC and RROC, risk capital is a selected multiple
of Excess Tail Value at Risk (XTVAR). XTVAR is defined to be the average value of X-p
when X x,, where the quantile x, is the value of x where the cumulative distribution of X is
q. Capital is allocated to line of business based upon Co-Excess Tail Values at Risk (Co-
XTVAR) [4]. The same desirable properties hold for TVAR and co-TVAR as well as
XTVAR and co-XTVAR [2], [3]:

(1) They can allocate risk down to any desired level of definition.

(2) They sadsfy the additivity property (risk load ot capital allocated to components of
the portfolio sum to the total risk load ot capital need for the portfolio).

(3) They are coherent measures of risk. Unlike Value at Risk, they satisfy the
subadditivity axiom (the risk of a combination of exposures should not exceed the

sum of the risks of the components) [5].

Mr. Venter notes that if capital is set by XTVAR, it would cover average losses in excess
of expected losses for those years where the portfolio losses X exceed the g quantile x, It
is assumed that expected losses have been fully reflected in pricing and in loss reserves. The
capital allocated by co-XTVAR to a line would be the line’s average losses above its mean

losses in those same adverse years. Mr. Venter notes that there should be some probability
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level q for which XTVAR or a multiple of it makes sense as a capital standard [4].

RROC is computed as the ratio of expected underwriting return after rental cost of
capital to allocated risk capital. RROC represents the expected return for exposing capital to
tisk of loss, as the cost of benign rental of capital has already been reflected [3]. (It is
assumed that expense items like overhead and taxes, as well as returns from any capital
excess the rating agency requited capital or from riskier investments that would require

additional rating agency capital, would be handled at the corporate planning level.)

RROC is analogous to the Capital Call Cost in the EVA approach, here expressed as a
return on capital rather than applied as a cost. In his discussion of Tail Value at Risk, Mr.
Venter has noted that co-XTVAR may not allocate capital to a line of business that didn’t
contribute significantly to adverse outcomes [4]. In such a situation, the traditional RORAC
calculation may show the line to be highly profitable, whereas RROC may show that the line

is unprofitable because it did not cover the mean rental cost of rating agency capital [3].

In the EVA approach, risk preferences are reflected in the function selected and
parametetized in computing the Capital Call Cost. In the RORAC and RROC approaches,
risk preferences are specified in the selection of the statistic used to measure risk [2], [3]. In
practice, the RORAC and RROC approaches would be parametetized to allocate the total
capital of the company, which would be maintained to at least cover rating agency capital
required for its desired rating, All three approaches utilize the RMK algorithm for allocating
risk (measured as a Capital Call Cost in EVA and as risk capital in RORAC and RROC) to
line of business [1}, 2], [3].

These models were tested and results summarized in the tables below. Table 1
summarizes the test examples, while Table 2 compares simulation results. In the base case,
Example 2, all lines are uncorrelated and no reinsurance is purchased. Equal amounts of
premium are written in the three lines, and pricing is accurate with the plan loss ratio
equaling the true Expected Loss Ratio (ELR) of 80% for each line. Aggregate losses are
assumed to be modeled accurately by lognormal distributions with coefficients of variation
of 80%, 20% and 40% for lines of business (LOB) 1-3, respectively.

Payout Patterns were generated based upon an exponential settlement lag distribution
with mean lags to settlement of one year, five years and ten years for lines of business (LOB)
1-3, respectively. Thus, the payout patterns for LOB 1-3 can be characterized as Fast,
Average, and Slow, respectively. Interest is credited on supporting surplus using risk free
rates for bonds of duration equal to the average settlement lag in each line of business. In

this example, interest rates of 3%, 4% and 5% for LOB 1-3, respectively, were assumed.
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These are the same rates that are used to calculate Net Present Value (NPV) reserves and the
NPV Reserves Capital component of Required Rating Agency Capital. For simplicity,

interest rates and payment patterns are assumed to be deterministic.

Required Rating Agengy Capital is computed based upon rating agency premium and
teserves capital charge factors assumed appropriate for the Company's desired rating.
Somewhat smaller factors were selected for the reinsurance line (LOB 4) under the
assumption that the Company would not receive full credit for ceded premium and reserves
because a charge for potential uncollectibility would be applied. Capital needed to support
reserves for a calendar year is the product of the resetves factors and the previous year-end
reserves. Capital needed to support reserves must be calculated for all future calendar years
until reserves run off. Required capital to support reserves is the NPV of these capital
amounts. Required Rating Agency Capital is computed by adding the products of the plan

premiums and the premium capital charge factors to the required capital to support reserves.

For both RORAC and RROC models, capital needed to support the portfolio risk is
calculated as 200% of XTVAR. That is, the Company wants twice the capital needed to
support average 1 in 50 year or wotse deviations from plan. Capital needed to support the

portfolio risk is allocated to line of business based upon Co-XTVAR.

Interest is credited on supporting surplus for Example 2, but not for Example 1. In the
base example, Example 2, profitability is satisfactory overall, but inadequate for LOB 1 and
redundant for LOB 2 and LOB 3. Comparison of Example 1 and 2 test results
demonstrates that not crediting interest on supporting surplus can have a significant impact

on all three profitability measures.

In Example 3, the margins are adjusted to reflect results in the base case. The ELR’s for
LOB 1-3 are 60%, 88%, and 85%, respectively.  The test results show that overall
profitability has increased significantly and is now marginally adequate even for LOB 1
assuming the implied rate change can be achieved. Note that EVA was negative for LOB 1
in the base Example 2, but is now positive with the improved rate adequacy. A negative
EVA implies that the line should not be written unless the company is required to do so for
regulatory reasons ot it is necessary to support other lines with positive EVA (e.g., package
policies). The required rating agency capital increases slightly from the base case, but the
capital needed to support the portfolio under the ROE measures (RROC and RORAC)

decreases by over 22% compared to the base case.

In Example 4, premiums written by line are adjusted to reflect the base example results.

Premium written in LOB 1 is reduced by $250,000, while premium written in LOB 2 and in
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LOB 3 are both increased by $125,000. The portfolio profitability increases significantly as a
result, but remains inadequate for LOB 1. The required rating agency capital increases
modestly from the base case, but the capital needed to support the portfolio under the ROE

measures decreases by nearly 18% compared to the base case.

In Example 5, 2 new version of the company’s catastrophe model is released right after
the renewal season is over. The revised model implies a reduction in the ELR for LOB 1
from 80% to 70%. The test results show that EVA improves dramatically for LOB 1 (EVA
is now positive) and for the entire portfolio. The ROE measures (RROC and RORAC)
improve significantly for LOB 1 and the entire portfolio. Required rating agency capital is
not significantly different compared to the base case, while the capital needed to support the
portfolio under the ROE measures decreases by 15%.

In Example 6, a Supreme Court decision declared recent tort reforms to be
unconstitutional. The ELR for LOB 3 is revised from 80% to 100%. The EVA deteriorates
dramatically for LOB 3 and for the entire portfolio. Similarly, the ROE measures deteriorate
dramatically for LOB 3, while deteriorating significantly for the entire portfolio. Because
LOB 3 is a long tailed line, RROC declines much more dramatically than RORAC because
the mean rental cost of rating agency capital has gone up significantly due to the increased
reserves that must be held for a long period of time. In the base case, LOB 3 was viewed as
highly profitable by all three measures. In Example 6, LOB 3 is viewed as unprofitable by
the EVA approach, marginally profitable by the RROC approach, and highly profitable by
the RORAC approach. The required rating agency capital increases by over 9% from the
base case, while the capital needed to support the portfolio under the ROE measures

increases by over 8% compared to the base case.

Both Examples 5 and 6 demonstrate that inaccurate pricing due to parameter and model

risk can significantly impact profitability estimates when those errors are discovered.

In Example 7, LOB 1 and LOB 2 losses are 50% correlated, while losses for both lines
are uncorrelated with LOB 3 losses. The EVA deteriorates significantly for LOB 1, LOB 2,
and for the entre portfolio. For the ROE measures (RROC and RORAC), profitability has
decreased dramatically for LOB 2 because LOB 2 losses now contribute more significantly
to adverse scenarios created by LOB 1. Required rating agency capital is not significantly
different compared to the base case, while the capital required to support the portfolio under

the ROE approaches has increased by 6.5%.

In Example 8, a stop loss reinsurance treaty is purchased for LOB 1 covering a 30%

excess 90% loss ratio layer for a 10% rate. The test results show that this program modestly
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improves all three profitability measures. The required rating agency capital decreases
slightly from the base case, while the capital needed to support the net portfolio under the
ROE measures decreases by 8.5%.

In Example 9, 2 40% quota share is purchased for LOB 1 with commissions just covering
variable costs. The test results show that this program had a major positive impact on all
three profitability measures. The required rating agency capital decreases by nearly 6% from
the base case, while the capital needed to support the net portfolio under the ROE measures

decreases by over 35%.

On a technical note, when a teinsurance program is in place for a particular line of
business and is invoked by a loss scenario, the average capital call cost factor for the line of
business (ratio of the computed capital call chatge to the deviation of the simulated loss
from the mean) is applied to the deviation of the simulated reinsurance loss from the mean
reinsured loss. This generates a credit capital call cost in the reinsurance line which reduces

the average capital call cost for the line of business when combined with the reinsurance line.

In Examples 1-9, EVA is computed using the default assumption that the consumption
fee for capital less than the required rating agency capital is 50% of the consumption fee for
common capital. In Examples 10 and 11, alternative Capital Call Cost functions are
parameterized and tested. In Exhibit 10, it is assumed that the consumption fee for capital
less than the required rating agency capital is equal to the fee for capital consumed in excess
of rating agency capital. In Exhibit 11, it is assumed that the consumption fee for capital
less than the required rating agency capital is 25% of the consumption fee for common
capital. Otherwise, Exhibits 10 and 11 are identical to Exhibit 9. EVA is dramatically lower
in Example 10 compared to Example 9, while it is significantly improved in Example 11.
These examples illustrate the importance of the selected Capital Call Cost function to the
EVA approach. (The ROE measures differed slightly between Examples 9-11 due to
random variation between simulations of 100,000 iterations.) Details of Examples 1-11 may

be reviewed in Exhibits 1-11, respectively.

4. CONCLUSIONS

Donald Mango’s very innovative work in developing the concepts of insurance capital as
a shared asset and Economic Value Added contribute significantly to understanding the
ways capital supports an insurance enterprise and must be financed. The EVA approach
permits one to charge for risk (capital usage) and measure profitability at any desired level of

definition while satisfying the key additivity property for risk charges without needing to
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allocate capital. The test examples demonstrate that it can be used to measure the impact on
profitability of rate changes, changes in the distributions of premium written by line of
business, inaccurate pricing due to parameter and model risk, correlation between lines of
business, and alternative reinsurance programs. Results for alternative Capital Call Cost

functions can be compared using these kinds of test examples.

For those who prefer to measure returns as a percentage of invested capital, a Risk
Return on Capital model is suggested as an alternative way to integrate desirable properties
of the EVA approach and the return on risk adjusted capital approach based upon riskiness
leverage models. This method measures returns on capital after reflecting the mean rental
cost of rating agency capital. Thus, returns that are a reward for exposing capital to risk of
loss are measured after reflecting the cost of carrying capital to support premium written and

loss reserves.

Table 1: Summary of Assumptions Underlying Examples

Example  Exbhibit Key Assumptions
1 1 Same as base example, Example 2, except interest is not credited on surplus.
2 2 Base example: Write equal amounts of preminm in three lines of business.

Pricing is accarate, as the Plan Loss Ratios equal the rue ELR's.

The ELR's are equal to 80% for all three lines. Aggregate losses are assumed

to be modeled accurately by lognormal distributions with coefficients of

variation of 80%, 20% and 40% for LOB 1-3, respectively. 1.OB 1-3 Josses are
uncorrelated. Interest is credited on supporting surplus.

3 3 Same as base example, except adjust Mangins by line to reflect results.

ELR's for LOB 1-3 are 60%, 88% and 85%, respectively.
4 4 Same as base example, except adjust preminms by line to reflect results.

Write $0.250m less in LOB 1, and write $0.125m more in LOB 2 and in LOB 3.
5 5 Base excample, where pricing model is npdated after renewal.

Right after renewal season, a new version of the company's cat model is
released which implies a reduction in the ELR for LOB 1 to 70%.
The ELR's for LOB 2 and LOB 3 remain at 80%.
The Plan Loss Ratios based upon Price Monitoring are all equal to 80%.
6 6 Base example, where new information is available after renewal.
Right after renewal season, a Supreme Conrt decision declared recent tort
reforms to be anconstitutional. The ELR for LOB 3 is revised to 100%, while
the ELR's for LOB 1 and LLOB 2 remain at 80%.
The Plan Loss Ratios based upon Price Monitoring are all equal to 80%.
7 7 Same as base exanmple, except that LOB 1 and LOB 2 losses are 50% corvelated.
8 8 Sante as the base example, except a 30% s 90% Joss ratio Stop Loss
Reinsurance program is purchased for LOB 1 at a 10% rate.
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9 9 Same as base example, except a 40% Qnota Share is purchased for LOB 1 with
commission fust covering variable costs.
The Consumption Fee for Capital Less than Allocation is 120%, while the
Consumption Fee for Common Capital (excess allocation) is 240%.
These same capital call charge factors have been applied in Examples 1-8.
10 10 Same assumptions as in Example 9, with the exception of capital call factors.
The Consumption Fee for Capital Less than Allocation and the Consumption
Fee for Common Capital (excess allocation) are both set to 180%.
11 11 Same assumptions as in Exanmple 9, with the exception of capital call factors.
The Consumption Fee for Capital Less than Allocation is 100%, while the
Consumption Fee for Common Capital (excess allocation) is 400%.
Table 2: Compatison of Results for Test Examples
Returns on Risk Risk Returns
Adjusted Capital on Capital Economic Value Added
Gross Net Gross Net Gross Net
Example RORAC RORAC RROC RROC EVA EVA
1 11.43% 11.43% 5.30% 5.30% (19,077) (19,077)
2 14.60% 14.60% 7.95% 7.95% 170,541 170,541
3 20.18% 20.18% 12.20% 12.20% 337,106 337,106
4 17.91% 17.91% 10.17% 10.17% 239,886 239,886
5 18.68% 18.68% 11.39% 11.39% 386,023 386,023
6 11.78% 11.78% 4.92% 4.92% (187,275) (187,275)
7 13.94% 13.94% 7.47% 7.47% 133,870 133,870
8 14.72% 15.06% 8.03% 8.14% 170,631 185,141
9 14.71% 20.03% 8.04% 11.48% 170,871 235,927
10 14.63% 19.91% 7.97% 11.40% (27,654) 87,025
11 14.69% 19.91% 8.02% 11.41% 233,126 283,519
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Risk Management,” which may be downloaded from the CAS web site.

5. REFERENCES

(1]  Mango, Donald, “Insurance Capital as a Shared Asset,” ASTIN Bulletin, Vol. 35, No. 2, 2005, p. 471-486.
Reprinted in the CAS 2006 Fall Forum.

2] Kreps, Rodney (2005), “Riskiness Leverage Models,” CAS Spring 2005 Meeting.

[3] Bear, Robert A. (2005), Discussion of “Riskiness Leverage Models,” accepted for publication in 2005
CAS Proceedings.

[4] Venter, Gary G., “Capital Allocation Survey with Commentary,” The 2003 Bowles Symposium, North
American Actuarial Journal, April 2004, p. 96.

[5] Kaye, Paul, “A Guide to Risk Measurement, Capital Allocation and Related Decision Support Issues,”
Casnalty Actuarial Society 2005 Discussion Paper Program.

[6] Ruhm, David, Mango, Donald, and Kreps, Rodney (2005), “A General Additive Method for Portfolio
Risk Analysis,” submitted to ASTIN Bulletin.

[7]  McClenahan, Charles L., “Risk Theory and Profit Loads- Remarks,” CAS 1990 Spring Forum, 145-162.

Abbreviations and notations

CAR, Capital Adequacy Ratio RMK algorithm, a conditional risk allocation method
ELR, Expected Loss Ratio ROE, Return on Equity

EVA, Economic Value Added RORAC, Return on Risk Adjusted Capital

Co-TVAR, Co-Tail Value at Risk RROC, Risk Return on Capital After Rental Cost of Ca
Co-XTVAR, Co-Excess Tail Value at Risk TVAR, Tail Value at Risk

LOB, Line of Business VAR, Value at Risk

LOC, letter of credit XTVAR, Excess Tail Value at Risk

Biography of the Author

Robert Bear is currently a Consulting Actuary, Reinsurance Consultant and Arbitrator in
the firm he has established, RAB Actuarial Solutions, LLC. He previously served as
Senior Vice President and Chief Actuary of PXRE Group. The author began his career at
Insurance Services Office and subsequently served as an actuarial manager at Prudential
Reinsurance, Signet Star Reinsurance and SCOR Reinsurance Company.

The author’s service to the actuarial profession has included terms as Chairperson of the
RAA Actuarial Committee and as President of Casualty Actuaries in Reinsurance. He
has earned MS degrees in both theoretical and applied mathematics, as well as in
economic systems. He is currently serving on the CAS Committee on the Theory of
Risk and the Committee on Dynamic Risk Modeling.

The author previously co-authored “Pricing the Impact of Adjustable Features and Loss
Sharing Provisions of Reinsurance Treaties” (1990 CAS Proceedings), which won the
1991 Woodward-Fondiller prize. He also authored a discussion of the Pinto-Gogol paper
on “An Analysis of Excess Loss Development” (1992 CAS Proceedings) and a
discussion of Rodney Kreps’ paper on “Riskiness Leverage Models” which will be
published in the 2005 CAS Proceedings.

Email: rabsolutions@gmail.com

Web Site: www.rabsolutions.net

Casualty Actuarial Society Forum, Fall 2006 599



Discussion of “Tnsurance Capital as a Shared Asset”

Exhibit 1

Page 1
Example 1 Comparing EVA with Returns on Capital (RROC and RORAC) where Interest is Not Credited on Surplus
Key Assumptions: Write equal amounts of prensisns in three knes of business. Interest Credited on Supporting Surplus: Ne
Pricing is aceurate, at tbe Plan Loss Rafio equals the Expected Loss Ratio (ELR) for all three fines. The ELR's are equal 1o 80% for oll thret hres.
AN three fines are wncorrelated and no reinsurance is purchased. Cortrelation Between LOB 1 and LOB 2 Lc 0.0%
Note: Alternative E1’A measures and RARAC are computed before taxes, overbead, and returns on non-aliocated capital or attributable to assumption of risk.

Fast Py Average Pay Slow Pay
1) Loss Generator LoBt LoB2 LoBz NETTOTAL  GROSS TOTAL
14) Expected Loss: Copy and Paste-Special from LOB 4 of (3K). 1.000.000 1,000,000  1.000.000 3,000,000 3,000,000
1B) Coeffiient of 1 'anation of Assumed Lognormal Lass Distibution 80.0% 20.0% 40.0%
1C) Standard Deviation 800.000 200.000 400,000
1D} Profit and Ouerhead Margsn (inciudes Brokerage on Reinsurance) 9.0% 8.0% 7.0% 8.0% 8.0%
1E) |“ariable Expense Ratio 11.0% 12.0% 13.0% 12.0% 12.0%
1F) Plan Prentism 1,250,000 1,250,000 1,250,000 3,750,000 3,750,000
1G) Espected Loss Ratio = (14)/ (1F) 80.0% 80.0% 80.0% 80.0% 80.0%
1H) Expected Underariting Returm (Profis & Oterbead) 112,500 100,000 87,500 300,000 300,000
11) Plan Loss Ratio 80.0% 80.0% 80.0% 80.0% 80.0%
1J) Plan Expected Loss 1,000,000 1,000,000 1,000,000 3,000,000 3,000,000
1K) Pricing Error = ((1])-(1A)/ (1.4) 0.0% 0.0% 0.0% 0.0% 0.0%
2) Capital Usage Calculadion LoB! LOB2 Lop2 NETTOTAL  GROSS TOTAL
2A4) Reguired Capital Charge on Prensism 40.0% 40.0% 40.0% 40.0% 40.0%
2B) Reguared Capital Charge on Reserves 250% 25.0% 250% 25.0% 25.0%
2C) Rental Fee 10.0%
2D) Consumption Fee for Capatal Less than Allocation 120.0% 12.00
2E) Consumption Fee for Cormmon Capatal (excess allocation) 240.0% 24.00
2F) Reguired Premim Capital =(1F)*(2A) 500,000 500,000 500,000 1,500,000 1,500,000

2G) Simulated Required NP1” Reserves Captal = (2B)*(NP1” Future Reserves)
2H) Simulated Total Required Rating Agency Capital = (2F)}+(2G)

3) Annual Simulaton - Caleulation of Capital Call Costs and XTVAR LoBt LOB2 LOBJ NETTOTAL  GROSS TOTAL
3A) Simulated Losses

3B) Desiations From Plan = (1])-(3A)

3C) Segment Level Capital Usage Charges (Capisal Call Costs)

3D) Net Portfokio Capital Usage Cost with RMK Algorithm

3E) Gross Portfokio Capstal Usage Cost with RMK ARorithm

3F) Deviation from Pian at 2nd Percontile: Capy and Paste-Specal from (3M)
3G) Dennation from Plan when Exveed 1 in 50 Year Result

3H) Flag o Count Number of Simulations in Excess of 1 in 50 Year Result
31) Contribution to Gross 1 in 50 Year Reswit

3J) Contribution to Net 1 in 50 Yeor Ressult

Loss Simulation Seatistics Number of Simulations: 100,000
3K) Expected Loss 1,000,011 1,000,000 999,996 3,000,007 3,000,007
L) Standard Deviation 800,185 200,004 399,962 916,520 916,520
M) Percentstes of Devations from Plan (Negatives are | 'alues at Risk)
0.1 Percentile (1 in 1000) (5,866,794, (809,359)  (2,055,270) (6,034,577) (6,034,577
158 Percentile (1 in 100, 3,010,869) 554,45 1,275,198 3,153,170; 3,153,170)
e 27 Perveniile (T i1 5U) , T
50¢h Percenssle (1 in 2) 219,120 19,417 71,517 4,654 174,654
90t Percenle 682,951 239,216 433302 919,994 919,994
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Exhibit 1

Page 2

Example Comparing EVA with Returns on Capital (RROC and RORAC) where Interest is Not Credited on Surplus

Key Assumphons: Write equal amounts of premitin: in three lines of business. Interest Credited on Supporting Surplus: No
Pricing is accurate, as the Plan Loss Ratio equals the Expected Loss Ratio (ELR for all three lines. The ELR's are equal to 80% for alf three lines.
All three lines are uncorrelated and no reinsurance is purchased,
4) Economic Value Added (EVA) where Usage Charges Are Computed Using Two Step Formula
LoB1 LOB2 LoBZ
4 A} Plan Prentium 1,250,000 1,250,000 1,250,000 3,750,000
4B) Expected Underuriting Return (Profit & Overbead) 112,500 100,000 87,500 300,000
4C) Interest Rate Assumed 3.0% 4.0% 5.0%
4D) Mean Net Present Value of Interest Earned on Reserves 27,485 163,602 327,516 518,602
4E) Mean Rating Agency Capital 729,013 1,522,318 2,137,091 4,388,422
4F) Mean Interest Earvied on Rating Agengy Capital - - - -
4G) Mean Rentaf Cost of Rating Agency Capital (Mean of (2H)) x (2C)) 72,901 152,232 213,709 438,842
4H) Gross cted Cost of Capital - Rental and Usage ((4G) + (Mean of (JE, 340,098 187,529 310,052 837,679
1) Gross Economic Value Added (GEVA) = (4B)+(#D)+(#F)-(4H) (200,114) 76,073 104,963 19,077)]
4]) Gross Capital Cost Percentage = (#H)/(4E) 46.7% 12.3% 14.5% 19.1%
4K) Net cted Cost of Capital - Rental and Usage (4G) + (Mean of (3D, 340,098 187,529 310,052
EL'E 'Net Economic Value Added (NEVA) = (4B)+(#D)+#F)(#K) (200,114) 76,073 104,963
4M Net Capital Cost Percentage = (4K)/(4E) 46.7% 12.3% 14.5%
[Ny Charge in EVA Due to Reinsurance = NEVA - GEVA -]
5) Risk Returns on Capital (RROC) After Rental Cost of Capital
Risk Capital Standard (Multiple K of XTVAR): 200%
LOB1t LoB2 LOBRJ GROSSTOTAL
5.A) Arerage Deration from Plan When Eixveed 1 in 50 Year Result (XTVAR) (3,425,698) (587,974) (1,380,969 (3,575,724)
5B} Gross Risk Capital K% of XTV AR, Allocated 1o Line Based Upon Co-XTVAR's 6,523,075 98,481 538,412 7,159,968
5C) Mean Interest Earned on Rating Agengy Capital = (4F) - ! - - -
5D) Mean Rental Cost of Rating Ageney Capital (#G) 72,901 152,232 213,709 438,842
SE) Epected Underoriting Return After Rental Cost of Caputal = 4B)+#D)+(5C)-{5D) 67,083 111,371 201,306 379,760
I5F) Gross Risk Returm on Capitai = GRROC = (SE)/ (5B) 1.03% 113.09% 37.39% 5.30%]
5G) Net Risk Capital K% of XTVAR, Allocated to Line Based Upon Co-XTVAR's 6,523,075 98,481 538,412
'H) Net Risk Return on Capital = NRROC = (5E)/(5G) 1.03% 113.00% 37.39%
51) Change in Return Due to Reinsurance = (SE for LOB4) -
5J) Change in Allocated Capiral = (5G)-(5B) ‘ .
6) Returns on Risk Adjusted Capital RORAC) LOBI LOoB2 LOB2  GROSSTOTAL
6A) Gross Risk Capital K% of XTV AR, Allocated 10 Line Based Upon Co-XTVAR's 6,523,075 98,481 538,412 7,159,968
6B) Interest Eamed on Gross Allocated Capital = (4C)x(6.4) - - - -
6C) Gross Expected Total Undenwniting Return = (4B)+(4D)+(8B) 139,985 263,602 415,016 818,602
IﬁD Gross Return on Risk Az‘umd Capital = GRORAC = (6C)/ (6.4) 2.15%  267.61% 77.08% 11.43%)
6E) Net Risk Capital K% of XTV AR, Allocated to Line Based Upon Co-XTVAR's 6,523,075 98,481 538,412
6F) Interest Earned on Net Allocated Capital = (4C)x(6E) - - -
6G) Net Expected Total Underwriting Return = (4B)+(4D)3(6F) 139,985 2.63,602 415,016
[6F) Net Retarn on Risk Adgasted Capital = NRORAC = (6G/ (6E) 2.15% 267.67% 77.08% 1

61) Change in Retum Due to Reinsurance = (6G - Net Total) - (6C - Gross Total)
6]} Change in Allocated Capital = (GE - Net Total) - (6A - Gross Totalf
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Exhibit 2

Base Example 2 Comparing EVA with Returns on Capital (RROC and RORAC) whete Interest is Credited on Surplus

Key Assunptions: Write equal amounts of premsium in three bines of business,

Interest Credited on Supporting Surplus:

Pricing is accurate, as the Plan Lass Ratio equals the Expected Loss Ratio (ELR) for all three lines. The ELR's are equal to 80% for all three lines.

All three lines are uncorrelated and no reinswrance is purchased.

4) Economic Value Added (EVA) where Usage Charges Are Computed Using Two Step Formula
LOB{ LQB2 LOB3  GROSS TOTAL

Yes

4A) Plan Previium 1,250,000 1,250,000 1,250,000 3,750,000
4B) Expected Undervnting Return (Profit @ Owerhead) 112,500 100,000 87,500 300,000
4C) Interest Ratr Assumed 3.0% 4.0% 5.0%
4D) Mean Net Present Value of Interest Earned on Reserves 27,485 163,602 327,516 518,602
4E) Mean Rating Agensy Capital 729013 152318 2,137,091 4,388,422
4F} Mean Interest Eamed on Rating Agengy Capital 21,870 60,893 106,855 189,618
4G) Mean Rental Cost of Rating Agency Capital ((Mean of (2H))  (2G}) 72,901 152232 213,709 438,842
4H) Gross cted Cost ital - Rental and Usage ((4G) + (Mean of O, 340,098 187,529 310,052 837,679
1) Gross Econonsic V alue Added (GEV/A) = (4B)+(#D)+#F)-(4H) (178243) 136,966 211,818 170,541 ]
4]) Gross Capital Cast Perventage = (4H)/ (4E) 46.7% 12.3% 14.5% 19.1%
4K) Net Expected Cost ital - Rental and Usage (4G) + (Mean of (3D, 340,098 187L5£) 310,052
L} Net Econoniic Value Added (NEV.A) = (4B)+{#D)+(4F)-(4K) (178,243) 136,966 211,818
4M Net Capital Cost Perensage = ($K)/ 4E) _ 46.7% 123% 145%
[N} Change in EV'A Due to Reinsurance = NEVA - GEVA I |
5) Risk Returns on Capital (RROC) After Rental Cost of Capital
Risk Capital Standard (Multiple K of XTVAR): 200%
LoB1 LOB2 LOBJS GROSS TOTAL
5,4) Average Detiation from Plan When Exceed 1 in 50 Year Result (XTV AR) (3425698)  (587,974) (1,380,969 (3,575,724)
5B) Gross Risk Capital K% of XTV AR, Allocated to Line Based Upon Co-XTVAR's 6,523,075 98,481 538,412 7,159,968
5C) Mean Interest Earned on Rating Agency Capital = (4F) 21,870 60,893 106,835 189,618
5D) Mean Rental Cost of Rating Agency Capital (4G) 72901 152232 213,709 438,842
SE, ed Underwriting Return After Rental Cost of Capital = (4B)+@#D)+(5C)-(5D) 88,954 172263 308,161 569,378
F) Gross Risk Return on Capital = GRROC = (SE)/ (5B) 1.36%  174.92% 57.24% 7.95%]
5G) Net Risk Capital K% of XTV AR, Allocated to Line Based Upon Co-XTVAR's 6,523,075 98,481 538,412
H) Return on Co NRROC i@EL/ (5G) 1.36% 174.92% 57.24%
51} Change in Return Due to Reinsurance = (5E for LOB 4) -
5J) Change in Allocated Capital = (SG)-(5B) .
6) Returns on Risk Adjusted Capital (RORAC) LOB1 LOB2 LOBZ  GROSSTOTAL
6A) Gross Risk Capital K% of XTV AR, Allacated to Line Based Upon Co-XTVAR's 6,523,075 98,481 538,412 7,159,968
6B) Interest Earned on Gross Allocated Capital = (4C)x(6A) 195,692 3,939 26,921 226,552
6C) Gross Expected Total Undiromiting Return = (4B)+(4D)+(6B, 335,677 267,542 441,93 1,045,155
D) Gross Return on Risk Adjusted Capital = GRORAC = (6C)/ (64) 5.15% 271.67% 82.08% 14.60%)|
6E) Net Risk Capital K% of XTVAR, Allscated to Line Based Upen Co-XTVAR's 6,523,075 98,481 538,412
SF) Interest Earned on Net Allocated Capital = (#C)x{6E) 195,692 3939 26,921
6G) Net Expected Total Undersriting Return = (4B)+@D)+(6F) 335,677 267,542 441,936
[67)) Net Retn on Risk Adiusted Capital = NRORAC = (6G/(6E) 5i5%  271.67% 82.08% ]

61} Change in Return Due 10 Reinsurance = (6G - Net Total) - (6C - Gross Total)
6]) Change in Allocated Capital = (6E - Net Total) - (64 - Gross Total)
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Exhibit 3

Modified Base Example 3 Comparing EVA with Retums on Capital (RROC and RORAC) where Adjust Margins
Interest Credited on Supporting Sn Yes
Pricing is accnrate, as the Plan Loss Ratio equals the true ELR for all three lines. Adpust Margins by line to reflect resudts of Example 2,

Key Assumptions: Write equal amonnts of preminm in three lines of business.

The ELR's for LOB 1, LOB 2, and L.OB 3 are now 60%, 88% and 85%, respectitely.

4) Economic Value Added (EVA) where Usage Charges Are Computed Using Two Step Formula
LOB?

AW three lines are uncorrelated and no reinsurance is purchased.

LoB2 LoB3
4.4) Plan Preminm 1,250,000 1,250,000 1,250,000 3,750,000
4B) Expected Underwnifing Return (Profit & Overbead) 362,500 - 25,000 387,500
4C) Interest Rate Assumsed 3.0% 4.0% 5.0%
4D) Mean Net Present Value of Interest Eamed on Reserves 20,613 179,963 347,987 548,562
4E) Mean Rating Agency Capital 671754 1624552 2239416 4,535,722
4F) Mean Interest Earned on Rating Agengy Capital 20,153 64,982 11,971 197,106
4G) Mean Rental Cost of Rating Ageney Capital (Mean of (2H)) x (2G) 67,175 162,455 223942 453,572
4H) Gross Expecied Cost o ital - Rental and Usage (4G) -+ (Mean of (3E, 252,757 205,404 337,901 796,062
1) Gross Economic Value Added (GEV.A) = (4B)+(#D)+[@F)-(4H) 150,509 39,541 147,057 337,106 ]
4]) Gross Capital Cast Percentage = (4H)/ (4E) 37.6% 12.6% 15.1% 17.6%
4K) Net Espected Cost of Capital - Rental and Usage (4G) + (Mean of (3D, 252,757 205,404 337,901
[iL.) Net Evonomic Valie Added (NEVoA) = (4B)+ (4D) + (TF)-(4K) 150,509 39,541 147,057
4M Net Capital Cost Perventage = (4K)/(4E) 37.6% 12.6% 15.1%
EN cm?e in EVA Duc 0 Resnsurarse = NEVA - GEVA ~ ]
5) Risk Returns on Capital (RROC) After Rental Cost of Capital
Risk Capital Standard (Multiple K of XTVAR): 200%
LOB1 LOB2 LoBs GROSITOTAL
5.A) Arerage Deviation from Plan When Exceed 1 in 50 Year Renlt (XTVAR) (2,566,035) (646,459}  (1,468,083) (2,784,762)
5B) Gross Risk Caprtal K% of XTV AR, Allocated to 1ine Based Upon Co-XTVAR's 4,450,243 149,438 970,231 5,569,913
5C) Mean Interest Eamed on Rating Agency Capital = (4F) 20,153 64,982 111,9Mm 197,106
$D) Mean Rental Cost of Rating Agency Capital (4G) 67,175 162,455 223,942 453,572
SE) Expected Underwriting Returm After Rental Cost of Capital = (4B)+ (4D)+(5C)(5D) 336,000 _82490 261,016 679,596
[5E) Gross Risk Return on Capital = GRROC = (3E)J (3B) 7.55% 55.20% 26.90% 12.20%)
5G) Net Risk Capital K% of NTV AR, Allocated to Line Based Upon Co-XTV.AR's 4,450,243 12:),438 970,231
[553) Net Risk Retirn on Capital = NRROC. = (3EJJ (5G) 7.55% 55.20% 26.90%
1) Change in Retur Dae to Reinsuranse = (SE for LOB 4) s
5]) Change in Allocated Capital = (5G)-(5B) -
6) Returns on Risk Adjusted Capital RORAC) LOB/ LOB2 LOB3  GROSSTOTAL
6A) Gross Risk Capital K% of NTVAR, Allocated 1o 1ine Based Upon Co-XTVAR's 4,450,243 149,438 970,231 5,569,913
6B) Interest Earmed on Gross Allocated Capital = (4C)x(6A) 133,507 5978 48,512 187,996
6C) Gross Expected Total Underwmiting Retun = (4B)+{4D)+ (6B) 516,620 185,940 421,498 1,124,059
[65] Gros: Retarn on Risk Adjusted Capital = GRORAC = (6C)/ (6.4) 11.61% __ 124.43% 4344% 20.18%
E) Net Risk Capital K% of NTV.AR, Allocated o 1 ine Based Upon Co-XTVAR's 4,450,243 149.438 970,231
6F) Interest Earned on Net Allocated Capital = ($C)x(6E) 133,507 5978 48,512
6G) Net Expected Total Underwriting Return = (4B)+(4 D)+ (6F) 516,620 185,940 421,498
[EE) et Return on Risk Adjnsted Capital = NRORAC = (6G/(6E) 1.61% _ 124.43% 43.44% ]

61) Change in Return Due to Reinsurance = (6G - Net Total) - (6C - Gross Totad)
6]) Change in Allocated Caputal = (6E - Net Total) - (6A - Gross Total)
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Discussion of “Insurance Capital as a Shared Asset”

Exhibit 4

Modified Base Example 4 Comparing EVA with Returns on Capital where Adjust Premiums by Line

Key Assumptions: Write $0.250m less in LLOB 1, and write $0.125m more in LOB 2 and in LOB 3, Interest Credited on Supporting Surplus: Yes
Priang is accurate, as the Plon Lass Ratio equals the true Expected 1 oss Ratio (ELR) for all three bnes. The ELR's are equal to 80% for all three lines,.

AUl three lines are uncorrelated and no reinsurance is purchased.

4) Economic Value Added (EVA) where Usage Charges Are Computed Using Two Step Formula

LOB1 LoB2 LOBI  GROSSTOTAL

4A) Plan Premium . 1,000,000 1,375,000 1,375,000 3,750,000
4B) Expected Undersriting Return (Profit & Orerbead) 90,000 110,000 96,250 296,250
4C) Interest Rate Assumed 3.0% 4.0% 5.0%
4D) Mean Net Present Valie of Interest Earned on Resenves 21,988 179,962 360,267 562217
4E) Mean Rating Agency Capital 583215 1674549 2,350,798 4,608,562
4F) Mean Interest Earned on Rating Agency Capital 17,496 66,982 117,540 202,018
4G) Mean Rental Cost of Rating Agensy Capital ((Mean of (2H) x (2C)) 58,322 167,455 235,080 460,856
4H) Gross ted Cost ital - Rental and Usage (4G) + (Mean of [JEMZ 259,101 209,513 351,987 820,600

1) Gross Economic Valie Added (GEV.A) = (4B)+@D)+(@F)-(4H) (129.616) 147,432 222,070 239,886 ]
4]) Gross Capital Cast Perventage = (#H)] (4E) 44.4% 12.5% 150% 17.8%
4K) Net ted Cost of Capital - Rental and Usage (4G) + (Mean of (3D, 259,101 209,513 351,987
L) Net Economic Valne LAddded (NEV.A) = (4B)+ 4D)+ 4E)-(4K) (129616) 147432 222,070
M Net Capital Cast Derventtage = (4K)] (4E, 44.4% 125% 15.0%

N} Change in EV.A Due to Rensurance = NEVA - GEVA -]

5) Risk Retumns on Capital (RROC) After Rental Cost of Capital

Risk Capital Standard (Multiple K of XTVAR): 200%
LoBt LOB2 LoBJ GROSS TOTAL
54) Average Detvation from Plan When Excceed 1 in 50 Year Result (XTVAR) @739812)  (64622T)  (1,519,256) (2.944,172)
5B) Gross Rusk Caputal K% of XTV AR, Allocated 1o Line Based Upon Co-XTVAR's 4,802,202 153,679 938,356 5,894,237
5C) Mean Interest Earned on Rating Agenty Capital = (4F) 17,49 66,982 117,540 202,018
5D) Mean Renval Cost of Rating Agency Capital (4G) 58,322 167,455 235,080 460,856
SE cted Undernriting Return After Rental Cost ital = (4B)+{4D)+(5C)-(5D) 71,163 189,489 338,977 599,630
Gross Risk Return an Capital = GRROC = (E)/ (3B) 148%  123.30% 36.12% 10.17%)
5G) Net Risk Capital K% of XTV AR, Ldbocated to Line Based Upon Co-XTVAR's 4802202 153,679 938,356
[51) Net Risk Returs on Capival = NRROC = (SE)J 3G) Ta8%  123.30% 36.12%

51) Change in Return Due 1o Reinsurance = (5E for LOB 4) -
5J) Change in Allocated Capital = (5G)-(5B) -

6) Returns on Risk Adjusted Capital RORAC) LOB1 LOB2 LOBJ GROSS TOTAL
64) Gross Rk Capital K% of XTV AR, Allocated to Line Based Upon Co-XTVAR's 4,802,202 153,679 938,356 5,894,237
6B) Interest Eamed on Gross Allocated Capital = (#C)x(6.4) 144,066 6,147 46,918 197,131
6C) Grass Espested Total Underoriting Return = (4B)+(4D)+(6B) 236,054 296,110 503,435 1,055,599
|6D) Gross Retur on Risk Adjusted Capital = GRORAC = (6C)/(64) 533%  192.68% 53.65% 17.91%)]
6E) Net Risk Capital K% of XTVAR, Allocated to Line Based Upon CoXTVAR's 4,802,202 153,679 938,356

6F) Interest Earned on Net Allocated Capital = (#C)x(6E) 144,066 6147 46,918

5G) Net Expected Total Underwriting Return = (4B)+{4D)+(6F) 236,054 296,110 503,435

|6H) et Return on Rusk Adjusted Capiral = NRORAC = (6G/(6E) 5.33%  192.68% 53.65% 1

61) Change in Returnt Due to Reinsurance = (6G - Net Total) - (6C - Gross Total)
8]) Change in Allocated Capital = (6E - Net Total) - (6A - Gross Total) -
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Discussion of “Tnsurance Capital as a Shared Asset”

Exhibit 5

Modified Base Example 5 Comparing EVA with Returns on Capital where Update ELR for LOB 1

Key Assumptions: Write equal aniounts of premuurs in three bines of business.

Right after renesval season, a new rersion of company's cat model is released which inplies a 10% reduction in the ELR for LOB 1.
The original plan loss ratio for LOB 1 was 80%, but the estimated ELR bas been revied to 70%. Al lines are uncorrelated and no reinsurance is purchased,

4) Economic Value Added (EVA) where Usage Charges Are Computed Using Two Step Formula
LOB1 Loj2 LOBj

Interest Credited on Sipporting Surplus:

Yes

4A) Plan Presium 1,250,000 1,250,000 1,250,000 3,750,000
4B) Expected Underwriting Return (Profit & Orerbead) 237,500 100,000 87,500 425,000
4C) Interest Rate Assumred 3.0% 4.0% 5.0%
4D) Mean Net Present Vaalue of Interest Earned on Reserves 24,048 163,602 327,517 515,168
4E) Mean Rating Agency Capital 700,381 1,522,318 2,137,097 4,359,796
4F) Mean Interest Earned on Rating Agency Capital 21,011 60,893 106,855 188,759
4G) Mean Rental Cast of Rating Ageney Capital ((Mean of (2H) x (2C)) 70,038 152,232 213,710 435,980
4H) Gross cted Cost of Capital - Rental and Usage (4G) + (Mean g ‘JEM 259,685 182,851 300,367 742,903
EIE Gross Econontic Value Added (GEVA) = (4B)+(4 D) +(4F)-(4H) 22,875 141,644 221,504 386,023
4J) Gross Capital Cost Percentage = (4H)/ (4E) 37.1% 12.0% 14.1% 17.0%
4K} Net Expected Cost of ital - Rental and Usage (4G) + {Mean of (3D) 259,685 182,851 300,367
'Net Economis Value Added (NEVA) = (4B)+(#D)+{4F)-(4K) 22,875 141,644 221,504
4M Net Capital Cost Percentape = (4K)/ (4E) 37.1% 12.0% 14.1%
EI\? Change in EVA Due to Reinsurance = NEVA - GEVA -
5) Risk Returns on Capital (RROC) After Rental Cost of Capital
Risk Capital Standard (Multiple K of XTVAR): 200%
LOB? LoB2 LoBs GROSS TOTAL
5.4) Arerage Deviation from Plan When Exeeed 1 in 50 Year Result (XTVAR) @871920)  (587447)  (1,380,805) (3,038,640)
5B) Gruss Risk Capital K% of XTV AR, Allocated 1o 1 ine Based Upon Co-XTVAR's 5,359,487 93,120 630,998 6,083,606
5C) Mean Interest Earned on Rating Agency Capital = (#F) 21,011 60,893 106,855 188,759
5D) Mean Rental Cost of Rating Ageney Capital (4G) 70,038 152,232 213,710 435,980
SE) Expected Underwriting Return Afler Rental Costof Capital = ($B)+ #D)+ (5C)-(5D) 212,522 172,263 308,162 692,947
EF! Gross Risk Return on ;ifa/= GRROC = (SE}/(5B) 3.97% 184.99% 48.84% 11.39%)|
5G) Net Rusk Capital K% of XTV AR, Allocated to Line Based Upon Co-NTVAR's 5,359,487 93,120 630,998
EH; 'Net Risk Return on Capital = NRROC = (5E)/ (5G) 397% _ 184.99% 48.84%
1) Change in Return Die 1o Reinsuranse = (SE for LOB 4) B
5J) Ghange in Allocated Capital = (5G)-(5B) N
6) Returns on Risk Adjusted Capital (RORAC) LOB1 LOB2 LOB3 GROSS TOTAL
6A) Gross Risk Capital K% of XTV.AR, Allocated to Line Based Upon Co-XTVAR's 5,359,487 93,120 630,998 6,083,606
6B} Interest Earmed on Gross Allocated Capital = (4C)x(6A) 160,785 3,725 31,550 196,059
6Q) Gross Exxpected Total Usderwriing Return = (4B)-+ D)+ (6B) 422,333 267,327 446,567 1,136,227
IED; Gross Retum gn Risk Adjusted Capital = GRORAC = (6C)/(64) 788% _ 287.08% 70.77% 18.68%)
6E} Net Rusk Capital K% of XTVAR, Allocated to Line Based Upon Co-XTVAR's 5,359,487 93,120 630,998
6F} Interest Earmed on Net Allocated Capital = (4C)x(8E) 160,785 3,725 31,550
6G) Net Expected Totad Underuriting Return = (4B)+ D) +(6F) 422333 267,327 446,567
|6H£ Net Return on Risk Arfi/t.rlfd Cﬂ'lnl = N'RO&A;C = (6G/(6E) 7.88% 287.08% 70.77% |

61) Change in Return Due to Reinsurance = (6G - Net Total) - (6C - Gross Total)
6J) Change in Allocated Capital = (SE - Net Total) - (6A - Gross Total)
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Discussion of “Insurance Capital as a Shared Asset”

Exhibit 6
Modified Base Example 6 Comparing EVA with Returns on Capital where Update ELR for LOB 3
Sarme as base case, but after renewal season a Suprerue Court decision declared recent tort reforms to be unconshtutional.
This decision implies a 20% increase in the ELR for LOB 3. The original plan loss ratio for L.OB 3 was 80%, but the estimated ELR bas been revised to 100%.
All three bines are uncorrelated and no reinsurance is purchased.

4) Economic Value Added (EVA) where Usage Charges Are Computed Using Two Step Formula
Lopt LOB2 LOBJ  GROSSTOTAL

4A) Plan Premsinm 1,250,000 1,250,000 1,250,000 3,750,000
4B) Expected Underwrting Return (Profit & Oterbead) 112,500 100000 (162,500) 50,000
4C) Interest Rate Assumed 3.0% 4.0% 5.0%
4D) Mean Net Present Value of Interest Earned on Reserves 27,485 163,603 409,398 600,486
4E) Mean Rating Agency Capital 729,016 1,522,321 2,546,383 4,791,119
4F) Mean Interest Earned on Rating Agency Capital 21,870 60,893 127,319 210,082
4G) Mean Rental Cost of Rating Agency Capital (Mean of (2H)) x (2CY) 72,902 152,232 254,638 479,772
4H) Gross cted Cost of Capital - Rental and Usage (4G) + (Mean of (3E, 368,134 198,455 481%55 1,047,844
1) Gros Egonomic Ualse Added (GEVA) = (#B)+@#D)+ (4F) (4H) "~ 206,279) 126,041 (107,038) (187215)
4J) Gross Capital Cost Perventage = (4H)/ (4E) 50.5% 13.0% 18.9% 21.8%
4K) Net Exgpected Cost ital - Rental and Usage ((4G) + (Mean of (3D 368,134 198,455 481,255
ELE Net Economic Value Added ESIE VAE = E#B +{4D)+(4F}-(4K) (206,279) 126,041 (107,038)
M Nei Capital Cost Percentage = ($K)/ (4F) 50.5% 13.0% 18.9%

EN! Change in EV/A Due to Reinsuranez = NEVA - GEVA -
——

5) Risk Returns on Capital (RROC) After Rental Cost of Capital

Risk Capital Standard (Multiple K of XTVAR): 200%
LOB1 LOB2 LOB3  GROSSTOTAL
5.A) Aterage Desation fram Plan When Eceed 1 in 50 Year Resudt (NTVAR) (3.42553)  (588031)  (1,977,400) (3.871,434)
5B) Gross Ritk Caputal K% of XTV AR, Allocated to Line Based Upon Co-XTV ARt 6,218,516 99,077 1,429,846 7,747,439
5C) Mean Interest Earned on Rating Agency Capital = (4F) 21,870 60,893 127,319 210,082
$D) Mean Rental Cost of Rating Agensy Capital (4G,) 72902 152232 254638 479,772
5E) Expected Underwriting Return After Rental Cost of Capital = (4By+(4D)+(5C)-{5D) 88,954 172264 119,579 380,796
[BF; Gros: Risk Returs on Capetal = GRROC. = (SE)J (3B) L4 . 17387% 8.36% 4.92%)
5G) Net Risk Capiral K% of XTV AR, Allocated 1o Line Based Upon Co-XTVAR'S 6,218,516 99077 1,429,396
[55) Ner Risk Retum on Capital = NRROC = GE)J 5G] T43% . 17381% 8.36%

51) Change in Return Due to Reinsurance = (SE for LOB 4) -
3J) Change in Allocated Capital = (3G)-(5B) -

6) Returns on Risk Adjusted Capital RORAC) LOB? LOB2 LOB2  GROSSTOTAL
6A) Grogs Rusk Capital K% of XTV.AR, Allocated 1o Lane Based Upon Co-XTV AR's 6,218,516 99,077 1,429,846 7,747,439
6B) Interest Eamed on Gross Allocated Capital = #C)x(6A) 186,555 3,963 71,492 262,011
8C) Gross Expected Total Underariting Return = (4B)+(4D)+(6B) 326,540 267,566 318,391 912,497
|6D= Gryss Return on Risk Ad{mfed Capital = CR?MC = 6C)/ (6A) 5.25% 270.06% 2%&2/«: “478"/0]
6E) Net Risk Capital K% of XTV'AR, Allocated to Line Based Upon Co-XTVAR's 6,218,516 99,077 1,429,846

6F) Interest Eamed on Net Allocated Capital = (4C)x(6E) 186,555 3,963 71,492

6G) Net Espected Total Underwriting Return = (4B)+(4D)+(6F) 326,540 267,566 318,391

|64 Net Return on Rivk Admsted Capiral = NRORAC = (6G/(6E) 5,25% 270.06% 22.27% ]

61) Change in Return Due to Reinsurance = (6G - Net Total} ~ (6C - Gross Totaf) -
6J) Change in Allocated Capital = (6E - Net Total} - (6A - Gross Total) -
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Discussion of “Tnsurance Capital as a Shared Asset”

Exhibit 7

Modified Base Example 7 Comparing EVA with Returns on Capital where LOB 1 and LOB 2 are 50% Correlated

Key Assumptions: Write equal amounts of premium in three bines of business.

Interest Credited on Supporting Surplus:

Pricing is accurate, as the Plan Loss Ratio equals the Expected Loss Ratio (ELR) for all three lines, The ELR's are equal to 80% for all three lines.

Lunes 1 and 2 losses are 50% correlaed but uncorrelated with line 3. No resnsurance is purchased.

4) Economic Value Added (EVA) where Usage Charges Are Computed Using Two Step Formula
LoB1 LOR2 LOBS  GROSSTOTAL

Yes

4A) Plan Premunm 1,250,000 1,250,000 1,250,000 3,750,000
4B} Expected Underwriting Return (Profit & Oterbear) 112,500 100,000 87,500 300,000
4C} Interest Rate Assumed 3.0% 4.0% 5.0%
4D} Mean Net Present Value of Interest Earned on Reserves 27,484 163,602 327,518 518,605
4E) Mean Rating Agency Capital 729,012 1,522,317 2,137,104 4,388,433
4F) Mean Interest Earned on Ranng Agency Capital 21,870 60,893 106,855 189,618
4G) Mean Rental Cost of Rating Ageney Capital ({Mean of (2H)) x (2C)) 72,901 152,232 213,710 438,843
4H) Gross Expected Cost of Capital - Rental and Usage (4G) + (Mean of (BEJ)) 359,046 204285 311,022 874,353
EIE Gross Economic Valie Added EGE VAE = E4BJ+(4D)+(4FH4H) (197,191) 120,210 210,851 133,870 |
4]) Gross Capital Cost Percentege = (¢H)/ (4E) 49.3% 13.4% 14.6% 19.9%
4K) Net Expected Cost of Capital - Rental and Usage (#G) + (Mean of (3D) 359,046 204,285 31 1&
EL% 'Net Economic Value Added (NEVA) = (4B)+(#D)+ (4F)-(4K) (197,191) 120210 210,851
M Net Capital Cast Percentage = (4K)/ (4E) 49.3% 13.4% 14.6%
FN) Change in EV.A Due to Rensurance = NEVA - GEVA -
e cam——
5) Risk Returns on Capital (RROC) After Rental Cost of Capital
Risk Capital Standard (Multiple K of XTVAR): 200%
LOoB1 LOB2 LOB2  GROSS TOTAL
54) Arerage Deviation from Plan When Exieed 1 in 50 Year Result (XTVAR) (3422804)  (587.438)  (1,382,036) (3,812,609)
5B) Gross Risk Capital K% of XTV AR, Allocated to Line Based Upon Co-NTVAR's 6,547,208 607,181 471,515 7,625,903
SC) Mean Intersst Eamed on Rating Agency Capital = (4F) 21870 60,893 106,855 189,618
5D Mean Rental Cost of Rating Agency Capitad (4G) 72,901 152,232 213,710 438,843
E/ Expected Underuriting Retarn Afier Rental Costof Capital = (4B)+ (D) +(5CH(SD} 88,954 172,263 308,163 569,380
F) Gross Risk Retwmn on Capital = GRROC = (5E)/(5B) 1.36% 28.37% 65.36% 7.47%)
S5GJ Net Risk Capital K% of NTV AR, Allocated to Line Based Upon Co-XTV.AR's 6,547,208 607,181 471,515
{5H) Net Risk Retirn on Capitai = NRROC = (5EJ/ (5G) 1.36% 28.37% 65.36%
51) Change in Return Due to Reinswrance = (SE for LOB 4) .
5) Change in Allocated Capital = (5G)-(5B) -
6) Returns on Risk Adjusted Capital RORAC) LOB? LOB2 LOB2 CGROSS TOTAL
6A) Gross Risk Capital K% of XTV AR, Aflocated to Line Based Upon Co-XTVAR's 6,547,208 607,181 471,515 7,625,903
6B) Interest Earned on Gross Allocated Capital = (#C)x(6A) 196,416 24,287 23,576 244,279
6C) Gross Egpected Total Underwriting Return = (4B)+4D)+(6B) 336,401 287,889 438,504 1,062,884
@mlm = GRORAC = (5C)/(6.4) 5.14% 1.41% 93.02% 13.94%9
6E} Net Risk Capétal K% of NTV AR, Allocated to Line Based Upon Co-XTVAR's 6,547,208 607,181 471,515
6F) Interest Earned on Net Allocated Capital = (#C)(6E) 196,416 24287 23,576
6G) Net Expected Total Undenvriting Return = (4B)+@#D)+(6F) 336,401 287,889 438,594
[5F) Net Retarn on Rick Adusted Capital = NRORAC = (5G/ (6E) 5.14% 47.41% 93.02% ]

61) Change in Return Due to Reinsurance = (6G - Net Total) - (6C - Gross Total)
6]) Change in Allocated Capital = (6E - Net Total) - (6A - Gross Total)
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Discussion of “Insurance Capital as a Shared Asset”

Exhibit 8
Stop Loss Reinsurance Example 8 Comparing EVA with Retumns on Capital (RROC and RORAC)
Koy Assurmpitions: Write equal amoxnts of premum in three hines of business. Interest Credited on Supporting Surplus: Yes
Pricing is accurate, as the Plan Loss Ratio equals the Expected 1 oss Ratio (ELR) for all three kines. The ELR's are equal to 80% for all three kines.
A 30% x5 90% LR Stop Loss reinsurance program is purchased for LOB 1 for a 10% rate. All three lines are uncorreluted.

Refir to Exbibiss 1.7 for detaited descriptions of stems below.

4) Economic Value Added (EVA) where Usage Charges Are Computed Using Two Step Formula
LOB? LOB2 Lopj Lop+4 NETTOTAL  GROSS TOTAL

4A) Plan Promivm 1,250,000 1,250,000 1250000  (125,000) 3,625,000 3,750,000
4B) Expected Underwriting Retum (Profit & Osrbead) 112,500 100,000 87,500 (37,555) 262,445 300,000
4C) Interest Rate Assumed 3.0% 4.0% 5.0% 3.0%
4D) Mean Net Present /alue of Interest Earned on Reserves 27,484 163,602 321,518 (3,890) 514,714 518,604
4E) Mean Rating Agency Capital 729,006 1,522318 2,137,102 (69,680) 4,318,746 4,388,426
4F) Mean Interess Eamed on Rating Ageny Capisal 21,870 60,893 106,855 (2,090 187,528 189,618
4G) Mean Rental Cost of Rating Agency Capital 72,901 152,232 213,710 6.968) 431,875 438,843
4Hf Gross Eximd Costof Capital  Rental and Usage 340,294 187,406 309,891 837,59
1} Gross Economic 1 alue Added (GE17A) (1 78,4ﬂ 137,090 211,982 170,631
4]) Grass Captal Cost Percentage 46.7% 12.3% 14.5% 191%
4K) Net Exipcted Cost of Capital- Rental and Usge 324,725 191,436 320,905 (57,522) 779,545
VL) Net Econorric Valse Added (NEV4) (162,871) 133,059 200,968 13,987 185,141 |

4M Net Capital Cost Perventa, 44.5% 12.6% 15.0% 82.6% 18.1%
N) Change in EV/A Dye to Reinsurance 14,510 |

5) Risk Returns on Capital (RROC) After Rental Cost of Capital

Risk Capiral Standard (Muldple K of XTVAR): 200%
LOB1 LOB2 Lops LOB¢
54) Awrage 1 in 50 Year Deviation from Plan (XT1/AR) (3421,737)  (587.394)  (1,380,739) 287,561 (3.273,740) (3,543,084
5B) Cross Riske Capital K% of XTV/AR 6,441,898 83285 561,977 7,087,161
5C) Mean Interest Earned on Rating Agensy Capital 21,870 60,893 106,855 2,090 187,528 189,618
5D) Mean Rental Coxt of Rating Agency Capital 72,901 152232 213,710 (6,968) 431,875 438,843
S5E) Expected Underwriting Retwrn After Rental Cost of Capital 88,953 172,263 308,163 (36,567). 532,812 569,379
F) Gross Risk Return on Capital = GRROC 1.38% 206.83% 54.84% 8.03%)|

5G) Net Risk Capital K% of XT1/AR 6,425,757 85226 599,625 (562.210) 6,548,397
[8H) Net Rusk Resurm on Capital = NRROC 1.38% 202.13% 51.39% 6.50% 8.14%)

51) Change in Return Due to Reinsurance (36,567

5]) Change in Allocated Capstal) (538,763 5K) Cost of Additional XTIAR Capital = (51)/ (5]) 6.8%]
6) Returns on Risk Adjusted Capital (RORAC) LOBI LoB2 LoBl LOB+ NETTOTAL  GRQSS TOLAL
6:) Gross Risk Capital K% of XTIV AR 6,441,898 83285 561,977 7,087,161
6B) Interest Eammed on Gross Allocated Capital 193,257 3331 28,099 224,687
6C) Gross Expected Total Underwriting Return 333,241 266,034 443,117 1,043,291
|6DZ Gross Return on Risk Adjusted Capttal 5.17% 320.50% 78.85% 14.72%)
6E) Net Rusk Capital K% of XT1/AR 6,425,757 5,226 599,625 (562,210) 6,548,397

6F) Interest Earmed on Net Allocased Capusal 192,773 3,409 29,981 (16,366 209,297

6G) Net Expected Tota! Underseriting Return 332,756 267,011 444,999 (58,311) 986,456
[55) Nes Return on Rick AAdjseed Capital _ 5.18% 313.30% 74.21% 10.37% 15.06% |
61) Change in Return Due to Reinsurance (56,835)

6]) Change in Allocated Capital (538,763)|__6K) Cost of Additional XT1AR Capisal = (61)/ (6]) 10.5%]
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Discussion of “Insurance Capital as a Shared Asset”

Exhibit 9

Quota Share Reinsurance Example 9 Comparing EVA with Returns on Capital (RROC and RORAG)
Interest Credited on Supporting Surplus:

Key Assumptions: Write equal amounts of premuum in three lines of business.
Pricing is accurate, ds the Plan Loss Ratio equals the Expected Loss Ratio (ELR) for all three kines. The ELR's are equal 10 80% for afl three hines.

A 40% Quota Shar is purchased for LOB 1 with commission just covering variable costs.

Refir to Exchibits 1-7 for detailed descriptions of tems belop:

Al three lines are uncorrelated.

4) Economic Value Added (EVA) where Usage Charges Are Computed Using Two Step Formula
LOB1

4A) Plan Promium
4C) Intorest Rate Assumed

4E) Mean Rating Agensy Capital

4]) Gross Capital Cost Percentage

4M Net Capital Cost P”""ﬂﬁ

EN Cbang in EV/A Due by Rensurance
peevem—

5B) Gross Risk Capital K% of XTIZAR

$1) Change in Return Due to Reinsurance

1250000 1,250,000 1,250,000 (500,000) 3,250,000 3,750,000
4B) Enpected Underwriting Return (Profit ¢ Overbead) 112,500 100,000 87,500 (45,000) 255,000 300,000
3.0% 4.0% 5.0% 30%
4Dj Mean Net Present Value of Interest Earmed on Reserves 27,484 163,602 321,517 (10,994 507,610 518,603
729,007 1,522,317 2,137,100 (248,282) 4,140,142 4,388,424
4F) Mean Interest Eamed on Rating Ageney Capital 21,870 60,893 106,855 (7,448) 182,169 189,618
4G) Mean Rental Cost of Rating Agency Capital 72,901 152,232 213,710 (24,828) 414,014 438,842
4. Hf Gross. %&d Cost of Capatal - Rental and Uyﬂ 340,069 187,586 309,695 837,351
1) Gross Economic Value Added (GE17A) (178,215) 136,908 212,177 170,871 |
46.6% 123% 14.5% 19.1%
4K) Net cted Cost of Capital - Rental and Usage 313,366 191,567 324,933 _(121,014) 708,852
Ly Net Ezonomic c Value Added (NE14) (151,512) 132,928 196,939 57,572 235,927
43.0% 12.6% 15.2% 48.7% 17.1%
65057]
5) Risk Returns on Capital RROC) After Rental Cost of Capital
Risk Capital Standard (Multiple K of XTVAR): 200%
LOBI LOB2 Lopi LoB¢ GROSSTOTAL
5A) Average 1 in 50 Year Deviation from Plan (XT1/AR) (3.422,444) (587,552)  (1,381,531) 1,368,533 (2,310,833) (3,542,615)
6,490,236 93,743 502,173 7,086,151
5C) Mean Interest Earned on Rating Ageny Capital 21,870 60,893 106,855 (7.448) 182,169 189,618
5D) Mean Rental Cost of Rating Agency Capttal 72,901 152,232 213,710 {24,828) 414,014 438,842
SE) Expected Underwriting Return After Rental Cost of Capital j8;8,‘)53 1722%63 308,162 (38,614) 530,765 569,379
EFE Gross Risk Return on CEiial = GRROC 1.37% 183.76% 61.37% 8.04%)
SGi Net Risk s'ﬁualK‘% of XT1VAR 5,527,702 173,740 1,131,906 211,081 4,622,267
'H) Net Risk Return on Capital = NRROC 1.61% 99.15% 27.23% 1.75% 11.48%
(38,614)
(2463,885)|_SK) Cost of Addisional XTV/AR Capital = (SD/ 5]) 169

5J) Change in Alloéated Capital)

6) Returns on Risk Adjusted Capital (RORAC)

6A) Gross Rusk Capital K% of XTIV AR
6B) Interest Eamed on Gross Allocated Capisal

Lop:r  LoB2  lOBJ  LOBY  NETIOIML  GROSS TOTAL

6C) Gross Espected Total Underuriting Retwm
D) Gross Return an Ritk Adjusted Capital

6E) Net Risk Capitel K% of XTVAR
6F) Interest Earned on Net Allocated Caputal
6G) Net Espected Total Underuting Resurn

EH Net Return on Ritk Aﬁuttd Capital

61) Change in Rotwrn Due o Reinsurance
6]) Change in Allocated Capital

6,490,236 93,743 502,173 7,086,151
194,707 3,750 25,109 223,565
334,691 267,352 440,126 1,042,169

5.16% 285 20% 87.64% 14.71%

5,527,702 173,740 1,131,906 (2,211,081) 4,622,267
165,831 6950 56,595 (66,332) 163,044
305,815 270,552 470613 (122326) 925,653

5.53% 155.72% 41.67% 5.53% 20.03% |
(116,515)
(2,463,885)]__6K) Cost of Addstomal XTI/ AR Capital = (61/ (5]) 4.7%)
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Discussion of “Insurance Capital as a Shared Asset”

Exhibit 10
Quota Share Reinsurance Example 10 Comparing Alternative Parameterization of EVA with Returns on Capital
Key Assumptions: Write equal amounts of premium in three lines of business. Interest Credited on Supporting Surplus: Yes
Pricing 15 accurate, as the Plan Lass Ratio equals the Expected Loss Ratio (ELR) for all three lines. The ELR's are equal 10 80% for all three lines.

A 40% Quota Share is purchased for LOB 1 with comntissian ust covering vanable costs. Al three lines are uncorvelated.

The Consumption Fee for Capital Less than Allocation is assunsed 1o be the same as the Consumption Fee for Common Capital

Refer to Exchibits 1-7 for detasled deseriptions of items below.

4) Economic Value Added (EVA) where Usage Charges Arc Computed Using Two Step Formula

LOB{ LOB2 LoB2 LOB4 NETTOTAL  GROSSTQTAL
4.A) Plan Premium 1,250,000 1,250,000 1,250,000 {500,000y 3,250,000 3,750,000
4B) Expected Underuriting Return (Profit & Overbead) 112,500 100,000 87,500 (45,000 255,000 300,000
4C) Interest Rate Assumed 3.0% 40% 5.0% 30%
4D) Mean Net Present Value of Interest Earned on Reserves 27,490 163,602 327,516 (10,996) 507,612 518,608
4E) Mean Rating Agency Capital 729057 1522317 2,137,091 (248,298) 4,140,167 4,388,465
4F} Mean Interest Eomned on Rating Agency Capital 21,872 60,893 106,855 (7.449) 182,170 189,619
4G} Mean Rental Cost of Rating Agensy Capital 72,906 152232 213,709 (24,830) 414,017 438,846
$H) Gross Expected Cost of Capital - Rental and U, 466,132 207,661 36%!088 1,035,881
EIE Gross Economic Value Added (GEVA) (304.271) 116,834 159,783 54
4]) Gross Capital Cost Percentage 63.9% 13.6% 16.9% 23.6%
4K) Net Expected Cost of Capital - Rental and Umﬁ 425,503 213,480 384,642 (165,869) 857,757
EI;E Net Economic Value Added (NEV' A} (263,641) 111,015 137,228 102,424 87.0£|
4M Nes saf Cast Pmml:x 58.4% 14.0% 18.0% 66.8% 20.7%
YN) Change in EV'A Dae to Reinsurance 114,679 |
5) Risk Returns on Capital (RROC) After Rental Cost of Capital
Risk Capital Standard (Muldple K of XTVARY): 200%
LoBt LOB2 LoBJ Lop+

S5) Average 1 in 50 Year Denation from Plan (NTV'AR) (3.434,006)  (587,944)  (1,381452) 1,373,154 (2,326,769) (3,569,458)
5B} Grose Risk Capstal K% of NTV AR 6,509,573 84,590 547,325 7,141,487
5C) Mean Interest Earned on Rating Agengy Capital 21,872 60,893 106,855 (7.449) 182,170 189,619
5D) Mean Rental Cast of Rating Agency Capital 72,906 152,232 213,709 (24,830) 414017 438,846
SE} Expeard Underuriting Return Afrer Rental Cost of Capital 88,956 172,263 308,161 (38,615) 530,765 569,380

F) Gross Risk Retwr on Capital = GRROC 1.37% 203.65% 56.30% 7.97%]
5G) Net Risk Caatal K% of XTV'AR 5,600,881 151,545 1,141,744 2240,3522 4,653,818
EFQ Net Risk Return on Capital = NRROC 1.59% 113.67% 26.99% 1.72% 11.40%4
51) Change 1n Return D to Reinsurance (38,615) i
5J) Change in Allocated Capital) (@.487,669)_5K) Cost of Aduisional XTVAR Capital = (S1)/ (5] 1.6

6) Retutns on Risk Adjusted Capital (RORAC) LOB1? LOB2 LoB3 LOB4  NETTOL4L GROSSTOTAL

6A) Gross Risk Capital K% of XTV AR 6,509,573 84,590 547,325 7,141,487

6B) Inserest Eamed on Gross Allocated Capital 195,287 3,384 27,366 226,037

6C) Grow Expested Tutal Underwiting Return 335,277 266,986 442,382 1,044,645

(D) Grass Return ox Risk Adpussed Capitel 5.15% _ 31560% 80.83% 14.63%]
& Adusted Copisal ——0L ALk

6E) Net Risk Capital K% of XTV'AR 5,600,881 151,545 1,141,744 (2,240,352) 4,653,818

6F) Interest Eamed on Net Allosated Capital 168,026 6,062 57,087 (67211) 163,965

6G) Net Expected Total Underuriting Return 308,016 269,664 472,03 (123.206) 926,577

[5 Nes Return on Reske dpused Capival 550%  177.94% 41.35% 5.50% 19.91% 1

61) Changs in Return D to Resnsurance (118,068)

6]) Change in Allocated Capital (2.487.669)[_6K) Cont of Addinanal NTVAR Capital = (611 (6] +77
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Discussion of “Insurance Capital as a Shared Asset”

Exhibit 11

Quota Share Reinsurance Example 11 Comparing Alternative Parameterization of EVA with Returns on Capital

Key Assumptions: Write equal amonnts of premium in three knes of business.

Interest Credited on Supporting Surplus: Yer

Pricing is acecurate, a5 the Plan Loss Ratio eguals the Expected Loss Ratio (ELR) for alf three lines. The ELR's are equul to 80% for all three lines

A 40% Quota Share 15 purchased for LOB 1 pith commission just covering variable costs.

All three lines are uncorrelated.

The Consumption Fet for Capital Less than Allocation is assunred to be 25% of the Consxmption Fee for Common Caputal.

Refer to Exxhibits 1-7 for detailed deseriptions of itemns below,

4) Economic Value Added (EVA) where Usage Charges Are Computed Using Two Step Formula
LOBI

LoB2 LoBj LOB¢ NETTOTAL  GROSS TOTAL
4#A) Plan Presmium 1,250,000 1,250,000 1,250,000 (500,000) 3,250,000 3,750,000
4B) Expected Underwriting Retwrm (Profit & Overbead) 112,500 100,000 87,500 (45,000) 255,000 300,000
4C) Interest Rate Assumed 30% 4.0% 5.0% 3.0%
4D) Mean Net Present 1 ulue of Interest Earned on Reserves 27,484 163,602 327,518 (10,994 507,610 518,604
4E} Mean Rating Agenty Capital 729,007 1,522,317 2,137,103 (248,282) 4,140,145 4,388,427
4F) Mean Interest Eamed on Rating Agensy Capital 21,870 60,893 106,855 (7,448) 182,170 189,618
4G) Mean Rental Cost of Rating Agensy Capital 72,501 152,232 213,710 (24,828) 414,014 438,843
4H) Gross d Cost o ital - Rental and Usage 302,783 180,569 291,744 775,096
EI Gross Economic Value Added (GE17A) (140,929) 143,926 230,129 233,126 |
4) Gross Capital Cost Percentage 41.5% 11.9% 13.7% 17.7%
4K) Net Expected Cost of Caputal - Rental and Usage ‘2-80,343 184,040 304,683 (107,805) 661,261
FIM! Economic 1/alve Added (NE1/A) (118,489) 140,455 217,191 44,363 283,519 l
4M Net Capital Cast Percentage 38.5% 12.1% 14.3% 43.4% 16.0%
F.\f Change in E1-A Due to Reinsurance 50,393 1
L Change —

5) Risk Rerurns on Capital (RROC) After Rentat Cost of Capital
Risk Capital Standard (Muldple K of XTVAR): 200%

LOB! LOB2 LOBS LOB+4 NETTOTAL  GROSS TOTAL
5A) Average 1 in 50 Year Detiation from Plan (XT1AR) (3,422,935) (587455  (1,381,379) 1,368,729 (2,325477) (3,548,909)
5B) Gross Risk Capital K% of XT17AR 6,475,419 82,920 541,609 7,099,947
5C) Mean Interest Earned on Rating Ageney Capital 21,870 60,893 106,855 (7,448 182,170 189,618
5D) Mean Rental Cost of Rating Agensy Capital 72,90t 152,232 213,710 (24,828) 414,014 438,843
S5E) Expected Underwriting Resurn Azltr Rental Cost of Capital 88,953 172,263 308,163 (38,614) 530,766 569,379
IEFZ Gross Risk Return on Caeita/ = GRROC 1.37% 207.75% 56.90% 8.03‘@
5G) Net Rask Capital K% of NTUAR_ 5,603,182 157,190 1,133,669 (2,241,273 4,652,768
liH! Net Risk Return on C2ita/ = NRROC 1.59% 109.59% 27.18% 1.72% 11.41%]
51) Change in Retsrnt Due to Reinsurance (38,614)

5J) Change in Allocated Capital)

@447,179)[_3K) Cogs of Adebtional XT1ZAR Caputal = (SDI(3))

164

6) Returns on Risk Adjusted Capital RORAC) LoB! LQB2 Lopl LOB¢ NETTOTAL  GROQSSTOTAL
6.A4) Gross Rusk Capital K% of XTI/AR 6,475,419 82,920 541,609 7,099,947
6B} Interest Eamed on Gross Allocated Cepital 194,263 3,317 27,080 224,660
6C) Gross Expected Total Underwniting Returm 334,246 266,919 442,098 1,043,264
EDE Gross Return on Risk Aaﬂed Capital 5.16% 321.90% 81.63% 14 69%
6E) Net Risk Capital K% of XT17AR 5,603,182 157,190 1,133,669 (2,241,273) 4,652,768

6F) Interest Earned on Net Allocated Capital 168,095 6,288 56,683 {67,238) 163,828

6G) Net Expected Total Underwniting Return 308,079 269,890 471,701 (123,232) 926,439

EHLNII Return on Risk Adyusted Egitd/ 5.50% 171.70% 41.61% 5.50% 19.91% il |
61) Change in Return Due to Reinsurance (116,825)

6J) Change in Allocated Capital (2,447,179 6K} Cort of Additional XT17AR Capital = (61 {6 4.8%
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