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Abtract:Fu and Wu have presented three generalizations of the minimum bias model iterations and

demonstrated the impact these generalizations have on fitted parameters. This discussion explains

how their generalized minimum bias models correspond to generaliezd linear models.

Fu and Wu’s paper introduces 2- and 3-parameter Generalized Minimum Bias
Models (GMBMs) which the authors claim extend Generalized Linear Models
(GLMs). The GMBM depends on three parametersp, q andk, and is specified by
the iterative scheme
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where thew are prior weights,r the observations andx, y the parameters. The
model is multiplicative: the fitted expected value ofrij is given byxiyj. We will
call this model a GMBM(p, q, k). The authors provide numerous examples of fits
with differentp, q, k. Unfortunately, by examining the effect of the three param-
etersp, q andk we can show that every GMBM corresponds to a GLM, so the
new models do not extend the existing statistical models. Statistical models and
approaches should always be preferred to non-statistical minimum bias models.

The parameterp is used to adjust the weights used fromwij to wp
ij. This

adjustment can also be made in a GLM; the weights can be chosen however the
modeler likes so long as they are specified ahead of time.

The parameterk replaces the responsesrij with rk
ij. A model is then fitted

to the new responses to get parametersxi andyj. Finally, these parameters are
converted back to the scale of the original responses by takingkth roots. Again,
this procedure carries over to GLMs. Prior to modeling, replace eachrij with rk

ij,

fit the model, and then replace the resulting fit parametersxi, yj with x
1/k
i andy

1/k
j

respectively.
The parameterq is the most interesting. Comparing Equation 12 in the paper

with Mildenhall [1999, Equation 7.13] shows that a value ofq corresponds to
using a variance functionV (µ) = µ2−q in the GLM. As discussed in Mildenhall
[1999, Section 8] there is a whole family of exponential distributions with variance
V (µ) = µζ whereµ is the mean. The correspondence betweenζ and distributions
is shown in the table below. The common special cases are the normalζ = 0,
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Table 1: Variance Functions

ζ Distribution
ζ < 0 Extreme Stable

0 Normal
0 < ζ < 1 Not Exponential Family

1 Poisson
1 < ζ < 2 Tweedie

2 Gamma
2 < ζ <∞, ζ 6= 3 Positive Stable

3 Inverse Gaussian

Poissonζ = 1, gammaζ = 2 and inverse Gaussianζ = 3. These families are
discussed more in McCullagh and Nelder [1989], Jörgensen [1997] and Jörgensen
[1987]

The table shows that whenζ 6= 0, 1, 2, 3 andζ 6∈ (0, 1) there is still an ex-
ponential family corresponding to the variance functionV (µ) = µζ . However,
these distributions do not have a closed form expression for their densities. It
is still possible to fit a GLM using these densities because the basic form of the
likelihood function is known from the fact the distributions are in the exponential
family. As explained in Mildenhall [1999, Section 8] and McCullagh and Nelder
[1989] the deviance of an individual observationri is

2wi

∫ ri

µ

ri − t

V (t)
dt + log(V (ri)). (2)

This quantity is called the extended quasi-likelihood. It can be computed given the
the functionV only. It does not need the whole density. Whenζ ∈ (0, 1) Equation
2 still makes sense (ri andµ are positive in the examples) and it can be used in
the GLM algorithm. However, such a variance function does not correspond to
an exponential family distribution. Thus it is possible to work with GLMs with
arbitraryζ = 2− q.

Putting all three of these adjustments together gives the following dictionary
between GMBMs and GLMs. The parameters produced by a GMBM(p, q, k)
correspond to thekth roots of the parameters produced by a GLM with log link and
weightswp applied to datark and variance functionV (µ) = µζ whereζ = 2−q/k.
The relativities in the appendix of Fu and Wu can be produced by GLMs in this
way. Whenζ ∈ (0, 1), for examplek = 1, q = 1.5, there is no exponential family
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distribution member, but the GLM iteratively re-weighted least squares method
still converges to the same values as given in the paper.

The paper also claims that using the most recent evaluation of each param-
eter in the iterative process greatly speeds up convergence. Subsequent to com-
pleting Mildenhall [1999] I read in Golub and Loan [1996, Section 10.1.1] that
for the basic linear additive model, the minimum bias iterations were discov-
ered by Jacobi, and are sometimes called the Jacobi iterations. Golub and Loan
[1996] also contains the same idea for improving convergence that the authors
suggest. For the linear additive model it is called the Gauss-Seidel iteration. In
terms of overall speed of computation, the re-weighted least squares approach is
like a higher-dimensional version of the Newton-Raphson method. The Newton-
Raphson method converges extremely quickly. As explained in Mildenhall [1999],
the basic minimum bias method converges as powers of the largest eigenvalue of
a certain matrix. It can converge much more slowly than the GLM method. The
improved scheme is clearly faster than the original but it may not be as quick as
the re-weighted least squares algorithm.
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