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On Optimal Reinsurance Arrangement 
Yisheng Bu, Ph.D. 

 
             
Abstract: 

The purpose of this paper is to develop a theoretical framework within which the optimal reinsurance 
arrangement for catastrophic risks is explored and derived. In the model, it is assumed that the insurer 
values the stability of its underwriting results in purchasing reinsurance protection.  The optimal 
solutions to the model are obtained through numerical simulation and intend to provide justifications 
and explanations for the profile of reinsurance purchase that has been observed in practice.   
 
Keywords: Catastrophic Risk, Excess-of-Loss Reinsurance, Optimality, Contingent Capital Calls 

             

1. INTRODUCTION 

Optimal reinsurance arrangement has been extensively studied in a series of papers 
from various perspectives.  Borch (1961) examined risk sharing between insurers through 
quota-share reinsurance arrangements.  Some of the recent studies have focused on the 
pricing and optimal design of excess-of-loss reinsurance contracts.  Cummins et al. (1999) 
developed a pricing methodology for index-based catastrophe loss contracts.  Gajek and 
Zagrodny (2004) derived optimal forms for stop-loss contracts when the insurer attempts to 
minimize the probability of ruin. 

The purpose of this paper is to develop a theoretical framework within which the optimal 
reinsurance arrangement for catastrophic risks is explored and derived. In the model, it is 
assumed that the insurer values the stability of its underwriting results in purchasing 
reinsurance protection.  The optimal solutions to the model are obtained through numerical 
simulation and intend to provide justifications and explanations for the profile of 
reinsurance purchase that has been observed in practice.  From over 4,000 catastrophe 
reinsurance layers transacted during the period 1970-1998, Froot (2001) observed that: (i) 
reinsurance contracts had been more often used to cover lower catastrophic risk layers 
(which have higher probability to be penetrated) rather than more severe but lower-
probability layers; and (ii) reinsurance contracts had been priced in such a way that higher 
reinsurance layers had higher ratios of premium to expected losses.   

The rest of the paper is organized as follows:  The next section sets up a model of 
reinsurance purchase from an insurer’s standpoint and derives the optimality conditions.  
Section 3 numerically solves the model, specifies the simulation methodology and discusses 
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the results.  Section 4 assumes a discrete loss distribution and derives the analytical solutions 
for the optimal design of reinsurance contract.  Section 5 suggests possible ways to modeling 
the reinsurer’s behavior and endogenizing the rule of reinsurance pricing.  Section 6 
concludes. 

2. THE MODEL 

This section introduces a simple model in which the reinsurance-pricing rule is 
exogenously given in deriving the system of optimal solutions for the insurer, while Section 5 
discusses modeling of the reinsurer’s behavior and choices.  Specifically, the model makes 
the following simplifying assumptions:  

(i) The reinsurance market consists of one insurer and one reinsurer;  

(ii) The reinsurer sets its own pricing  rule which may be a function of its own 
cost of capital;  

(iii) The insurer has perfect information about the reinsurance pricing rule, and 
chooses the reinsurance layer for full coverage; and  

(iv) The insurer and reinsurer have access to the same information on the 
underlying loss distribution. 

The Reinsurer.  The reinsurer underwrites an excess-of-loss contract i  for catastrophic 
risks (shortened as “cat” hereafter) and assumes a certain portion of cat losses arising from 
the underlying insurance contracts.  The reinsurance layer is defined by [ a , b ], where a  
denotes the insurer’s retention and b  the retention plus limit.  Cat losses occur with a 
continuous distribution function )(xF , where ),0[ ∞∈x .  For the reinsurer, the expected 
value and variance of loss payment from underwriting contract  i  is given, respectively, as  

 

 ∫∫
∞
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It is further assumed that loss payments under a marginal reinsurance contract is 
stochastically independent of those under all other reinsurance contracts in the existing 
portfolio held by the reinsurer.  Naturally, the assumption of stochastic independence among 
risks in the reinsurer’s portfolio may not be realistic1, as a cat event may impact on many of 
the risk exposures under different contracts covered by the reinsurer.  This assumption, 
however, will simplify the following exposition and simulation but not change the nature of 
the results to be derived.  Based on the Capital Asset Pricing Model, the reinsurance pricing 
formula can be formulated as: 

 

 )],,;([)],;([),;( iii
i
RRiii

i
Riii

i baxLVarbaxLEbaxZ ⋅+= γ                                    (3) 

 

where Rγ  ( 0>Rγ ) is the price of risk determined by the reinsurer’s existing portfolio, and 
mathematically, it can be expressed as ][/])[( )()()( i

R
i

R
i

RR LVarLEZ −=γ , where )(i  refers to all 
risks excluding contract i .  As stated in Borch (1982), one advantage of this formulation is 
that it ensures the additive property of reinsurance contacts so that the price of risk will not 
be altered by the addition of stochastically independent risks.  There are several issues that 
are worthy of comments.  First, the risk load as specified in (3) does not explicitly take into 
account parameter uncertainty associated with the underlying loss distribution,  nor is it 
directly modeled as a function of the “down-side” variance that may seem to be the more 
reasonable and appropriate one than the total variance.  Nevertheless, the formulation in (3) 
has been supported by many empirical findings on reinsurance pricing (for instance, Kreps 
and Major 2001, Lane 2004).  Second, , Kreps (2004) suggested a probability-weighted 
average of the deviations of loss from its expected value multiplied by a “riskiness leverage 
ratio” as a more general form for risk load.  The riskiness leverage ratio can be a function of 

                                                 
1 The correlation among the risk exposures in a reinsurer’s portfolio was analyzed via copula approach in 
Venter (2003). 
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higher moments of loss function.  As pricing reinsurance contracts is not the main focus of 
this paper,  further studies should explore optimal reinsurance arrangements using other 
forms of risk load specifications.  For the simplicity of exposition, the subscript i  will be 
dropped from all following mathematical expressions.   

The Insurer.  The insurer knows about the reinsurer’s pricing rule, and purchases the 
optimal reinsurance layer, or makes the optimal choices about a  and b .  By choosing a  and 
b , the insurer attempts to minimize the sum of the reinsurance premium the insurer pays for 
reinsurance coverage and the expected loss payment net of reinsurance recovery.  Besides, 
the objective function of the insurer also includes a penalty term for the variation of net loss 
payment.  The penalty for loss variations is assumed to be a function of the variance of net 
loss payment.  Note that this paper abstracts from the consideration of probability ruin in 
deriving optimal reinsurance arrangements.  To summarize, the insurer attempts to minimize 
the following objective function subject to the budget constraint (denoted by B ) on 
reinsurance purchase, 

 

)],;([)],;([ :
,

baxLVarbaxLEZMIN SSS
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⋅++ γ                                           (4) 
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and Sγ  ( 0>Sγ ) measures the extent to which the insurer values the stability of its 
underwriting results, or the degree of its risk aversion.  Since ∫

∞
=+

0
)(][][ xxdFLELE SR , for a 

given loss distribution,  the amount of gross insurance premium received under the 
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underlying insurance contacts can be fixed if the insurance contracts are priced so that the 
expected loss ratio remains roughly constant over time.  As such, the problem stated in (4) 
would be equivalent to a problem of maximizing the expected net income minus some 
function of its variance to account for the associated uncertainty. 

Optimal Conditions.  Maximizing (4) with respect to a  and b  yields the following first-
order conditions  
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In equations (5) and (6), ∫
b

a
xdF )(  and ∫

∞

b
xdF )(  are the exceedence and exhaustion 

probabilities, respectively.  Complicated at first glance, equations (5) and (6) virtually state 
that by choosing the reinsurance coverage, the insurer attempts to achieve the optimal 
balance between the reduction in the cost of loss variation because of reinsurance coverage 
and the price for shifting such variation to the reinsurer.  Many of the terms in (5) and (6) 
describe the deviations of loss payment from the expected values in each interval for the 
insurer or the reinsurer.  For instance, ][ RLEab −−  is the amount of loss payment by the 
reinsurer and ][ SLEabx −+−  is the amount of loss payment by the insurer when the layer 
limit is exceeded, in excess of their respective expected loss payment.  To the extent that the 
parameters Rγ  and Sγ  measure the cost of reinsurance and insurance capital, respectively, 
the terms multiplied by these two parameters should be interpreted as the cost of such 
deviations.   

Note that 0/ <∂∂ aZ  and 0/ >∂∂ bZ , which are quite intuitive in that higher reinsurance 
coverage demands higher price.  However, it is not obvious how the reinsurance premium 
responds to the retention while holding the layer limit constant.  Substituting la +  for b  in 
equations (3), and differentiating the resulting equation with respect to a  gives 

 

 ∫∫
++

−++−=∂∂
la

a

la

a
RR xdFxdFLEaxaZ )()())((2/ γ ,  

 

where l  denotes the layer limit.  The sign of aZ ∂∂ /  is uncertain, which depends on the layer 
boundaries and Rγ . 

3. NUMERICAL SIMULATION 

Methodology 

 While it is difficult to obtain the closed form solutions to the equations (5) and (6), 
the optimal values of a  and b  can be numerically solved for through simulation.  In the 
simulation, it is assume that the insurer has no budget constraint on purchasing reinsurance.  
For illustrative purposes, the cat loss is assumed to be described by a Gamma distribution 
with the following probability density function: 
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Figure 1. Gamma Distribution 

 

In Figure 1, the probability density curves are plotted for several combinations of α  and β .  
As the benchmark case in the simulation, 1=α  and 1=β , and (8) then is simplified to 

xexxf −⋅=)(  with mean and variance both equal to 2.  For the benchmark case, the 
reinsurance premium and the value of the insurer’s objective function, as functions of a  and 
b , are plotted respectively in two three-dimensional figures (see Figures 2 and 3).  In plotting 
the two figures, 2=Rγ  and 2=Sγ  are assumed.   

To obtain the numerical solutions to equations (5) and (6), the following simulation 
procedures are used: 

(i) Specify the values of Rγ  and Sγ  and choose the initial values of a  and b  
(which are denoted by 0a  and 0b , respectively); 
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Figure 2. Reinsurance Premium as a Function of a and b (assuming 2=Rγ , 2=Sγ  

)10,0(),,0( ∈∈ bba ) 

 

 

Figure 3.  The Value of the Insurer’s Objective Function (assuming ,2=Rγ  2=Sγ , 
)10,0(),,0( ∈∈ bba ) 
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(ii) Hold 0b  constant, and with 0a  as the starting value, apply the Newton’s 
iteration method to find the “optimal” value of a  (denoted by 1a ) that 
satisfies Equation (5); 

(iii) Holding 1a  constant, and with 0b  as the starting value, apply the Newton’s 
iteration method to find the “optimal” value of b  (denoted by 1b ) that 
satisfies  Equation (6); and 

(iv) Repeat (ii) and (iii) a number of times (usually 50 times would be sufficient) 
until the differences between ta  and 1+ta , and between tb  and 1+tb  are 
sufficiently small.  Then 1+ta  and 1+tb  are the optimal solutions to (5) and (6) 
(denoted by *a  and *b ). 

 

Results 

 

Table 1. Numerical Simulation Results with 2=Rγ , 2=Sγ  

Parameter Values, Expected Value and Variance of Underlying Loss Distribution
(1) (2) (3) (4)

alpha   beta   E(x) Var(x)
0 1 1 1
0 2 2 4
1 1 2 2
2 1 3 3

Simulation Results
(5) (6) (7) (8) (9) (10) (11) (12)
a b limit Z E(Lr) Obj ROL Z/E(Lr)

1.018 2.611 1.594 0.806 0.288 2.180 0.506 2.798
2.035 5.222 3.187 2.648 0.576 6.719 0.831 4.597
1.805 3.813 2.008 1.531 0.497 4.367 0.762 3.078
2.631 4.982 2.351 2.218 0.670 6.556 0.943 3.311  

 

The numerical simulation results are summarized in Table 1.  The optimal reinsurance 
layers are obtained through simulation for four sets of α  and β  values.  In the table, the 
first two columns are the parameter values of α  and β .  Columns (3) and (4) are the 
expected value and variance of the cat loss distribution.  For the cases where 1=β , the loss 
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distribution is equi-dispersed, and over-dispersed when 1>β .  The simulated values of the 
layer boundaries and policy limit are given in columns (5)-(7), the rate-on-line (ROL) and 
ratio of premium to expected loss in columns (11) and (12).  Note that in the simulation, the 
budget constraint and the probability of ruin have been ignored, and the values of α  and β  
are chosen arbitrarily so that the implied probability distribution of cat losses does not 
mirror the ones forecasted by engineering cat models in reality. 

As the simulation results show,  for all the four cases as presented in Table 1, the insurer 
who aims to stabilize its book of business should optimally use reinsurance protection 
against risks of moderate sizes, but leave the most severe loss scenarios uncovered or self-
insured.  This result justifies the aggregate profile of reinsurance purchases observed in 
Froot (2001)2 .  Also, as observed from the simulation results, the insurer’s retention is set to 
be comparable with the expected value of ground-up cat losses under the underlying 
insurance contracts that are covered by the reinsurance treaty.  As compared with the 
benchmark case ( 1,1 == βα ), the insurer, at the optimum, should purchase higher retention 
and higher limit for the case 0=α , 2=β ,the distribution which has the same expected loss 
but is more dispersed.  The optimal layer in the latter case also has higher ROL and higher 
ratio of premium to expected loss.   

It may be helpful to look at how the optimal choices of the insurer change while varying 
the parameters of the loss distribution.  Table 1 reports the simulation results for the cases 
with different values of α  ( 2 1, 0,=α ), while holding β  constant at 1.  For the density 
function specified in (8), the value of α  determines the shape of the distribution; the 
coefficient of variation decreases with the value of α , even though the loss distribution 
remains equi-dispersed ( 1)(/)( =xExVar ).  The optimal choices of the reinsurance layer can 
be very sensitive to the chosen values of the model parameters.  With higher values of α , 
events of higher severity occur with larger probabilities(see Figure 1), and  the insurer should 
have more protection (as shown by higher limit of reinsurance layer) against more severe 
events.  On the other hand, the reinsurer would demand higher ROL and ratio of premium 
to expected loss for worse cat loss scenarios.  Similar conclusions can be drawn by 
comparing the simulation results for different values of β ; for instance, comparing the 
results between the cases with 1=β  and 2=β  (while 0=α ).  To the extent that higher 
                                                 
2 As observed in Froot (2001, p. 536), “reinsurance coverage as a fraction of exposure is high at first (after 
some small initial retention) and then declines markedly with the size of the event, falling to a level of less than 
30% for events of only about $8 billion (the author’s note: $8 billion refers to the industry-wide loss). 
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reinsurance layers are more vulnerable to prediction errors from engineering models, 
parameter uncertainty may well explain high prices for low-probability layers as noted in 
Froot (2001).   

 

Discussion 

Varying the value of Rγ .  Varying the value of Rγ  between 2 and 10, Figure 4 plots the 
optimal values of a  and b .  The figure shows that when the price per unit of risk charged 
by the reinsurer increases relative to that by the insurer, or equivalently, as SR γγ /  increases, 
less reinsurance coverage will be purchased in terms of lower b  and higher a  and thus 
lower policy limit.  

 

Figure 4. Retention and Limit As Reinsurance Load Changes (assuming 2=Sγ ) 
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4. DISCRETE LOSS DISTRIBUTION: AN EXAMPLE 

 

 
 

Table 2. Discrete Loss Distribution 

 

 

 

This section examines the optimal reinsurance arrangement when the loss distribution is 
discrete.  Assume that there are a finite number of states for cat losses.  Table 2 gives a 
simple discrete distribution of cat losses, where one of the following states of the world 
could occur: little or no occurrence (Scenario 1), moderate (Scenario 2), and most severe 
(Scenario 3).  For the loss distribution given in Table 2, it is assumed that 3210 sss <<≤ , 

0321 ≥≥≥ fff  and 1321 =++ fff .  For the simplicity of illustration, further set 01 =s  (no 
cat loss) and write 321 1 fff −−= .  There could be three choices regarding the sizes of 
retention and limit relative to loss severities: (i) 320 sbsa ≤≤≤≤ , (ii) 20 sba ≤≤≤ , and (iii) 

32 sbas ≤≤≤ .  For this discrete distribution, it can be mathematically shown that  

 

1. the optimal solutions always come from (i), or at the optimum, 

3
*

2
*0 sbsa <<<< .  Specifically, the optimal reinsurance layer boundaries are 

given by 
SR

Rs
a

γγ
γ
+

= 2*  and 
SR

SR

SR

S sss
ab

γγ
γγ

γγ
γ

+
+

=
+

+= 323** . 

2. the layer limit is independent of the probability with which each event occurs, 

and satisfies that 
SR

SR ss
abl

γγ
γγ

+
+

=−= 32*** , 

Scenario 1 Scenario 2 Scenario 3
Total Cat Loss s1 s2 s3

Probability f1 f2 f3
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3. The minimum (optimal) value of the insurer’s value function is equal to the rate 
on line of the reinsurance contract. 

 

The proof is provided in the Appendix.   

The optimal solutions satisfy 3
*

2
*0 sbsa <<<< , provided that the ratio of Rγ  to Sγ  

does not take extreme values.  This implies that it is advisable for the insurer to purchase 
some reinsurance protection against both moderate and most severe cat loss scenarios rather 
than against any one particular scenario only, even though the coverage for any one of the 
scenarios in the latter case may be larger than that in the former case.  Further, the insurer 
has more reinsurance protection against cat losses when 320 sbsa ≤≤≤≤ .  As shown in the 
Appendix, the optimal reinsurance arrangement for (i) has the highest layer limit as 
compared with the other two choices.  It is also observed that the comparative static results, 

0/* <∂∂ Rb γ  and 0/* >∂∂ Ra γ , are consistent with the simulation results obtained for the 
continuous loss distribution (see Figure 4).   

At the optimum, )/( ***
min abZObj −= , or in words, the objective function has its 

minimum value equal to the ratio of reinsurance premium to the layer limit, or the “rate on 
line”.  As compared, the simulation results for the continuous loss distribution (see Table 1) 
do not imply such a relationship between the two elements. 

However, it is not intuitively clear why the optimal layer limit is independent of the 
occurrence probability of each cat loss scenario. 

5. THE VALUE OF Rγ  AND CONTINGENT CAPITAL CALLS 

Mango (2004) introduced a capital consumption methodology for pricing reinsurance 
contracts, which in essence uses the value of potential capital usage as the risk load.  Such 
potential access to surplus account is called contingent capital calls in that paper and other 
relevant studies.  The discussion in the previous sections has been focused on the situation 
where the insurer makes its optimal decisions on reinsurance purchase subject to the pricing 
rule of the reinsurer who has been assumed not to consequently respond to the optimal 
choices of the insurer.  In other words, the reinsurance pricing rule has been assumed 
exogenously given and fixed.  Since reinsurers are also profit maximizing firms just like 
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insurers, it is reasonable to assume that the reinsurer attempts to maximize the firm’s 
expected net income after adjusting for the capital costs in the unprofitable states.  For 
instance, using the methodology proposed in Mango (2004), the objective function of the 
reinsurer is formulated as: 

 

 ∫ ∫+

∞
⋅+−−+−−⋅

b

za b
RR xdFZabgxdFZaxgLVarMAX

R

)())(()())((][:γ
γ

,          (9) 

 

where Z  ( abZ −< ) is a function of a  and b  as formulated in (3), and the function )(⋅g  is 
the capital call charge function and convex so that 0)(' >⋅g , 0)(" ≥⋅g .  The condition that 

0)(" ≥⋅g  requires nondecreasing marginal cost of capital calls.  The reinsurer chooses the 
value of Rγ  to maximize the problem in (9), or maximize the risk load minus the cost of 
contingent capital calls. 

 

Figure 5. The Choice of Rγ  and the Value of the Reinsurer’s Objective Function 
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For a given reinsurance layer, a higher value of Rγ  necessarily implies a higher ratio of 
reinsurance premium to expected loss.  Figure 4 graphically shows that simply raising the 
value of Rγ  would influence reinsurance purchase by increasing the insurer’s retention and 
lowering the policy limit.  As a results, it may well be the case that the reinsurer’s objective 
function as specified in (9) is non-monotonic in Rγ .  The optimal value of Rγ  may be a 
function of the parameters of the underlying cat loss distribution and of the cost function of 
capital calls.  For instance, the cost of access to surplus account is assumed to take the 
following functional form 

 

2)( εεε ⋅+= cg ,                                 (10) 

 

where ε  ( 0≥ε ) is the amount of capital calls and c  ( 0>c ) is the rate at which the marginal 
cost of capital calls increases.  With higher values of c , the reinsurer would find it more 
costly to underwrite more severe cat events.  By assuming (10), Figure 5 graphs the 
trajectories of the value of (9) for ]10 ,2[∈γ  for 4=c , 5  and 8 , respectively.  For the case 
of 5=c , the value of (9) is maximized when Rγ  is around 6.25, while for 4=c  (or 8=c ), 
smaller (or larger) values of Rγ  always yield higher values of (9) when Rγ  is within the stated 
range.  Comparing the three curves in the figure would show:  when the marginal cost of 
capital calls increases relatively faster for the reinsurer, the reinsurer sets higher Rγ  and the 
insurer tends to purchase reinsurance protection for moderate losses only and leave higher 
layers uncovered. 

6. CONCLUDING REMARKS 

This paper has examined the optimal reinsurance arrangement for cat risks when the 
insurer values the stability of its underwriting results, subject to the reinsurance-pricing rule 
set by the reinsurer.  In the model, the optimal solutions for reinsurance coverage purchase 
are obtained through numerical simulation, and the analytical solutions derived for the case 
when the loss distribution is discrete.  Using the model results, the aggregate profile of 
reinsurance purchase observed for industry practice in previous studies is explained and 
justified.   
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As Froot and Posner (2000) stated, the risk pricing for cat reinsurance contracts is largely 
determined by the reinsurer.  The first author in his 2001 paper further found some evidence 
implying that reinsurers possess certain market power in the reinsurance market.  The 
general equilibrium model of reinsurance market was studied in Borch (1962), in which 
reinsurance capital market was assumed to be perfectly competitive and the pricing of quota 
share contracts were examined.  Future research should develop a conceptual framework in 
which the reinsurer’s behavior is systematically modeled and analytical solutions can be 
derived, and focus on the empirical measurement and determination of the cost of 
reinsurance capital in industry practice.   
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Appendix  

This appendix provides proof for the three statements made in Section 4 for the discrete 
distribution.  First, solve the maximization problem for each of the three cases (i) 

320 sbsa ≤≤≤≤ , (ii) 20 sba ≤≤≤ , and (iii) 32 sbas ≤≤≤ .  For instance, for case (i), the 
maximization problem can be written as 

 

)],;([)],;([:
,

baxLVarbaxLEZMIN SSS
ba

⋅++ γ  

s.t. 320 sbsa ≤≤≤≤ , 

where   
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The optimal solutions for each case are given below: 
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Obviously, minObj  obtained in case (i) has the lowest value among all three cases.  
Therefore, the insurer’s objective function has its global minimum value when 

3
*

2
*0 sbsa <<<< .  Note that for the cases 20 sba ≤≤≤  and 32 sbas ≤≤≤ , there exist 

multiple solutions for a  and b , as only the layer limit ( ab − ), but not the limit boundaries 
( b , a ) individually, matters for the insurer’s value function.  It is also easy to observe that 
the optimal layer limit for case (i) is larger than those for the other two cases.   
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Reinsuring for Catastrophes through Industry Loss 
Warranties – A Practical Approach 

 

Ali Ishaq, FCAS, MAAA 

 
             
Abstract: 

Within the last couple of decades natural and man-made catastrophes have become a source of 
increasing concern for the insurance industry. Industry Loss Warranties (ILWs) are reinsurance 
products whose payout is triggered by catastrophic insured loss. There is a growing market for ILWs 
because they provide a viable alternative to traditional reinsurance and catastrophe bonds for mitigating 
losses from such events. 
 
This growing market requires a consistent and sound way of pricing ILWs. The process is made simpler 
because pricing ILWs does not require knowledge of individual client's exposures but only the expected 
industry losses. Available catastrophe models provide a ready source of industry loss distributions. 
Conceptually it is simple to go from a given industry loss distribution to pricing an ILW, but ILWs can 
vary in their terms and conditions depending on the needs of a particular client. This paper shows how 
to account for some of these terms and conditions to price ILWs and provides an example of such 
calculations. 

 
Keywords: Industry Loss Warranty (ILW); OLW; Catastrophe Reinsurance; Pricing Rare Events; 
Empirical Loss Distributions 

             
 

"Everything should be made as simple as possible, but not simpler."  

                                                                                           --Albert Einstein 

1. REINSURANCE AND RARE EVENTS 

Extremely rare events, by their very nature, are hard to insure. Insurance companies like 
to cover events that are rare for the insured, but in aggregate have a distribution that is stable 
and predictable. In one class of rare events, i.e., natural catastrophes, the loss is either very 
severe or the damage so wide-spread that there is a real need for primary insurers to spread 
the risk of loss from these events through some reinsurance mechanism. Until the large 
losses from natural catastrophes in the last few decades from events like Hurricane Andrew, 
primary insurers were content to mitigate the risks from natural catastrophes through 
traditional reinsurance instruments including treaty and facultative reinsurance. Before this 
time there were a few who had raised the alarm of losses from natural catastrophes large 
enough to shake the financial foundations of the P&C insurance industry, but not much 
attention was paid to their fears. Since then, the concern over catastrophic property 
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exposure has been continually growing and newer market mechanisms, such as catastrophe 
bonds and industry loss warranties, are becoming more established. 

2. WHAT IS AN INDUSTRY LOSS WARRANTY? 

There are many kinds of instruments gathered under the rubric of industry loss warranties 
(ILW) also known as original loss warranties (OLW). Essentially they all cover losses from 
events where the industry-wide insured loss exceeds some pre-agreed threshold1.  This 
structure, i.e., where the operative trigger is an industry loss rather than the company’s own 
loss, implies some risk that there could be a loss to the reinsured portfolio without triggering 
the ILW if the corresponding industry loss is smaller than the industry trigger amount. This 
is the ‘basis risk’ for the reinsured. This risk is higher for companies whose exposure 
concentrations are farther away from the industry averages. Therefore ILW covers are 
typically bought by companies whose portfolios closely follow the market. This disconnect 
can be mitigated to some extent by choosing the right kind of trigger. The trigger amount 
can vary by geography, level, and the kinds of events that contribute to it. 

There are many kinds of industry loss warranties available in the market. The variety 
comes from the kind and level of the industry loss chosen. The industry loss considered as a 
trigger can vary by amount or geographic scope. For example, an ILW may promise to pay 
when one of the following happens: 

1. A hurricane with industry-wide insured loss in Florida in excess of $15 billion but 
less than $25 billion. 

2. A winter freeze with industry-wide insured loss in North America in excess of $20 
billion.  

3. An earthquake with industry-wide insured property loss in excess of $35 billion 
anywhere in the world. 

4. Second wind loss with industry-wide insured loss in excess of $10 billion anywhere in 
the US and territories. 

                                                 
1 In order for these contracts to qualify as insurance there may be a second condition for loss payment that 
the insured company’s loss exceed a pre-determined amount in addition to the industry being in excess of 
the given threshold. Usually the insured company’s loss trigger is set to such a low level that for our 
analysis we can ignore it. 
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In the first case if the hurricane does a lot of damage to property that is not insured but 
the insured amount is small or if the damage is outside the State of Florida, the ILW may not 
be triggered. In the second example the total of $20 billion may arise from damage in both 
US and Canada. And in the third instance, the location of the earthquake does not matter 
but the loss would have to exceed $35 billion after casualty losses have been excluded before 
the ILW is triggered. There can be industry loss warranties that respond to a second-event of 
its type. The fourth example above is an instance of such a second event ILW.  

All the above types together can be thought of as Occurrence ILWs, because they 
respond to (first or second) occurrence of single large events. ILWs can also be structured so 
that the coverage applies, not in the case of one large event, but when a series of 
catastrophes in a year add to exceed a pre-determined amount. For these ILWs, the industry 
losses contributing to the total are limited so that a single event would not trigger the 
coverage. Only losses above a certain amount are considered towards the total because there 
are few industry mechanisms to keep track of smaller losses. For example one could 
construct an aggregate ILW that pays when all losses in California that cause insured damage 
of least $100 million but not in excess of $5 billion sum to more than $3 billion in a twelve 
month period. In either case there may be a provision for reinstatement of the ILW limit 
upon payment of an agreed premium. 

3. INDUSTRY LOSS WARRANTIES COMPARED TO OTHER 
CATASTROPHE REINSURANCE INSTRUMENTS 

Catastrophe bonds, traditional reinsurance, and industry loss warranties each have 
strengths and weaknesses with respect to their ability to address the risk from catastrophic 
events. The following table summarizes some of these comparisons: 

 
Traditional 

Reinsurance 

Catastrophe 

Bonds 

Industry Loss 

Warranties 

Availability Wide Limited Increasing 

Transaction Cost Medium High Low 

Risk Charge High High Low 

Basis Risk Small Small Variable 

Pricing Risk Medium Large Small 
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Traditional reinsurance is widely available but the risk charge for layers that cover 
catastrophic risks may be large. Part of this is due to the difficulty in estimating the reinsured 
company’s future losses in these very high layers. For the reinsured the basis risk is small, but 
the reinsurer has to estimate future losses from a historical portfolio that may be different 
from the future distribution of insured exposures: there is usually a lag between the 
information the reinsurer uses to price and the actual exposure that emerges over the insured 
period. This creates a kind of reverse basis risk and the reinsurer has to charge a larger risk 
load to cover this risk.  

Successful catastrophe bond offers have allowed some large P&C insurers to access the 
large capital capacity of the world bond market, but these products are still considered non-
traditional and complex by many bond traders. These bond offerings are more complex than 
traditional bond offerings and so this skepticism, on the part of the bond traders, may 
translate into limited marketability and a higher risk charge.  Catastrophe bond offerings are 
generally not standardized and each offering has to be individually structured and 
underwritten. This translates into high transaction and fixed costs, which may put these 
instruments outside the reach off all but the largest insurers. 

Industry loss warranties are unfamiliar to many primary companies but, properly 
structured, may provide an inexpensive solution to many of the catastrophic reinsurance 
needs that these companies may have. These products have low transaction costs because 
the pricing risk for the sellers is comparatively low; they do not have to evaluate the expected 
losses to the reinsured portfolio from a given trigger, but only the loss distribution of the 
industry portfolio. This lowers the uncertainty and thus the needed risk margin.  

The pricing risk for ILWs is lower but not zero. There is still the inherent parameter risk 
from trying to estimate the loss distribution of events whose frequency is not known and 
may be changing. Some scientists have postulated that there is a long-term climate cycle 
which governs the changes in frequencies of large weather events. One study estimates that 
this climate cycle be as long as 100,000 years2. Since the data available to formulate the 
frequency distributions is rarely longer than a few decades, there can be large error in our 
estimates of future probabilities of these catastrophic events. 

                                                 
2 See study by Mukul Sharma in the June 10th issue of Earth and Planetary Science Letters (Elsevier, 
volume 199, issues 3-4) 



Reinsuring for Catastrophes through Industry Loss Warranties 
 

Casualty Actuarial Society Forum, Spring 2005  79 

4. THE MARKET FOR INDUSTRY LOSS WARRANTIES 

ILWs can be used to reduce a company's exposure to sharp losses from large events or a 
collection of events thus controlling the tail of the aggregate loss distribution at a reasonable 
price. For many companies the tradeoff between cost and stability gained can be very 
favorable, even when comparing to other reinsurance products. As hinted above, there 
needs to be care in selecting the appropriate trigger to reduce the basis risk for the ceding 
company.  

ILWs have generally been bought by the larger national insurers but they may be even 
more useful to the regional insurers. The large insurers have generally been the first ones to 
utilize this market because they tend to have a more sophisticated view of risk and price 
within the reinsurance market. This product provides these large buyers another reinsurance 
option for spreading the risk from large events over a larger market capacity.  For the 
regional companies, the ability to cede the risk from extreme events in a concentrated area 
may enable them to allow larger geographical accumulations, thus allowing them to 
concentrate on their areas of expertise while staying within their capital constraints. 

The relatively low cost of ILWs is due to the lower information asymmetry as compared 
to most other reinsurance products.  Normally as we move from primary insurance to 
facultative reinsurance to treaty reinsurance to retrocession the information asymmetry 
increases sharply; the reinsurer has to base its pricing decisions on less and less current 
information as compared to the information that the reinsured is using to make its buying 
decisions. This implies that the reinsurer has to build an increasingly larger margin for error 
(or risk) into their estimates of expected loss under the contract. 

Since ILWs are priced based on the industry loss distribution this information asymmetry 
is suddenly reduced (or even reversed, since the reinsured has to estimate the basis risk it 
may be taking on3), and thus the margin for risk can be correspondingly smaller. 

5. PRICING AN INDUSTRY LOSS WARRANTY 

It is important that the pricing be consistent as well as accurate. The more consistently a 
product can be priced, the better the prospects of a successful market. If there is no 

                                                 
3 See the paper 'On the Basis Risk of Industry Loss Warranteis' by Lixin Zeng in the Summer 2000 issue of 
The Journal of Risk Finance for a discussion of estimating ILW basis risk. 
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consistent way of pricing a product the market prices may vary widely, which can lead to a 
fractured market or a race towards the lowest price provided. This can lead to a lack of 
confidence and consequently a lack of viability of a market for the product. In order to price 
ILWs consistently we need an acceptable way to calculate the loss distribution for a given 
industry loss warranty. For the illustration here an industry loss warranty is completely 
defined by its trigger. We will assume that every time a trigger is met, we need to pay the 
limit to the insured or that every loss is a full limit loss. This is not too much of a stretch 
because partial payments are comparatively rare. This assumption helps simplify the analysis 
and is not essential for the pricing methodologies described. Since we are using the actual 
industry loss distribution instead of the frequency alone, these methods can be easily 
adjusted to account for scenarios in which partial payments are allowed. 

We start with the industry loss distribution and the definition of the industry loss 
warranty we want to price. The first step is to extract the conditional distribution of industry 
losses that meet the requirements of the trigger. Then we can combine the probabilities of 
triggering the ILW with the payout conditions in the contract to estimate the expected loss 
distribution for the contract. 

6. CONCEPTUAL SIMPLICITY, PRACTICAL DIFFICULTIES 

Conceptually the pricing is simple: calculate the distribution of losses under the contract. 
The expected value from this distribution is the expected loss under the contract and the 
shape of the distribution can be used to set a risk load. The sum of the expected loss, 
expenses, and the risk load is the theoretical premium needed. 

Even with the conceptual simplicity it is clear that it would require some work to 
implement these steps in an actual pricing model.  The first difficulty is in obtaining the 
industry loss distribution.  This distribution or set of distributions would indicate the 
probability of industry-wide insured losses from various types of catastrophes that we want 
to insure.  The most obvious possibility may be to use historical industry losses but 
unadjusted historical losses are not a good predictor of future industry losses. To be used in 
our calculations, these losses would have to be adjusted for exposure changes, inflation, and 
any other factors that would make the expected outcome of a historical event different in the 
prospective year from the historical year. We would also have to adjust for the fact that 
historical data is limited and incomplete. This adjustment is compounded if we consider that 
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the historical data is a small slice from a possibly changing distribution of extreme events. If 
we want to price international ILWs we would also have to compensate for the fact that 
reliable historical loss data for most jurisdictions outside the US and Japan are not generally 
available. 

A more practical source for industry loss distributions is catastrophe modeling data from 
commercial catastrophe models. This data is already adjusted for changes in exposure and 
has a good fit to historical record. In addition, the various probabilities coming out of these 
models are quickly converging to the industry consensus return time estimates for various 
kinds of events.  There is still considerable variation between the various commercial 
models, but there is great pressure to estimate probabilities that are in line with the 
consensus estimates. As these models come closer, pricing derived from the inherent 
distributions would serve to make the pricing of the ILWs more consistent across the 
market, and this consistency will in turn make the product more marketable. 

Generally the industry loss data from the commercial catastrophe models is available in 
the form of empirical distributions. Our first thought might be to fit a theoretical size of loss 
distribution to the output from a simulation model. But this may not be the best course 
because it raises new difficulties. The shape of the distributions for various perils (wind, 
earthquake, etc) may be very different and may not allow the use of a simple class of loss 
distributions. Secondly, since we have to censor or otherwise manipulate these distributions 
to extract the distributions under the various triggers, this may prove to be difficult or lack 
closed form solutions.  So, we have a tradeoff between realism (fit to actual or prospective 
losses) and ease of computation. Theoretical distributions that are robust may be hard to use 
and the analysis may be hard to extend as we develop layers of analyses to sum from 
individual regions to multiple regions and triggers to the distributions of portfolios. Even 
after the availability of derivative distributions for the various types of triggers we are still left 
with the task of farther manipulating these distributions to achieve a consistent pricing. The 
advantage of symbolic distributions would be that a unique expected loss value and 
corresponding distribution around this mean would presumable exist for each trigger type 
and size. But the complexity of the process may make this scenario impractical. 
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7. EMPIRICAL DISTRIBUTIONS 

"God does not care about our mathematical difficulties. He integrates empirically."  
 --Albert Einstein 

As an alternative to fitting theoretical size of loss distributions to the empirical 
distributions derived from historical losses or from the output of a catastrophe model, we 
could use these empirical distributions directly in our pricing. If empirical distributions are 
used wisely, they can provide sound answers and allow us to get to the answers much more 
quickly the calculation of the final premium starting with one such empirical distribution is 
illustrated below. 

After we obtain the expected future industry-wide insured loss distribution we can modify 
it to extract a loss distribution that corresponds to a particular trigger. For example, if we 
know the prospective industry loss distribution from hurricanes in Florida and we are pricing 
an ILW with a trigger of $20 billion industry loss, we can censor the distribution at $ 20 
billion to determine the industry loss distribution above this point.  The expected loss under 
an ILW can be calculated from the probability alone, but we can use the additional 
information in the distribution of losses that trigger the contract to estimate the appropriate 
risk load. To these we add the company's expenses to arrive at an estimate of the premium 
to be charged. 

8. AN EXAMPLE 

The first step is the output from either the historical loss analysis or a simulated 
distribution from a catastrophe model. Exhibit 1 shows what such a distribution might look 
like. Here the distribution is shown as a list of industry loss amounts along with a description 
of the geographic scope and peril. This distribution represents the expected losses from a 
1000-year simulation period. So, if there are 100 losses above $20 billion in this list, we are 
assuming that the probability of a $20 billion or larger loss is 10% over the next year. The 
exact format of the loss distribution is not important and as long as enough information is 
available, the various formats are convertible from one into another.  

The covered event for an ILW may be limited as to geographic area as well as peril. For 
next step, therefore, we construct a new loss distribution selecting only those events from 
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exhibit 1 that meet the definition of our trigger. In this example we would exclude all events 
that have a Florida loss of less than $20 Billion.  Table 2 illustrates this censored distribution. 

The third step is to summarize this distribution by simulation year.  In this example this 
step is used to calculate an annual cost for the ILW.  For each year of simulation we calculate 
the payout as well as the reinstatement premium if any. This calculation can be simplified by 
our assumption that each time the ILW is triggered there would be a full limit payment and a 
full reinstatement if there is a reinstatement still available for that year. 

Thus for each of the simulated years the model calculates whether a pay-out would 
happen: 
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From the above the total number of losses payments for each year of the simulation is 
calculated as: 

 ∑=
event

yeareventyear gerPayoutTriggerPayoutTrig ,  

The loss payments for each year are limited by the number of reinstatements allowed for 
the contract and then multiplied by the limit sold by the reinsurer to derive the loss pay-out 
for each year of the simulation. This 1000-point loss distribution for the expected pay-out 
can then be directly used to calculate the expected loss and the variance around the expected 
value for the treaty being priced. These calculations are shown in Exhibit 3. 

Other types of ILWs including second-event covers, corridor covers, collar covers, and a 
consideration for a ‘no-claim bonus’ can be priced in a similar manner. 
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9. CALCULATING THE LOAD FOR RISK 

Once the expected loss has been estimated the next step is to determine how much risk 
or profit margin to charge for a given exposure. In general, we should charge higher 
premium for higher risk. This can be done using various measures of risk. One way would 
be to use the coefficient of variation (CV) of loss derived from the pervious analysis to target 
a profit margin. Once we have decided the relationship between profit load and the CV 
based on the market and company appetite for risk and the required return on capital the 
result could be summarized as a relationship between ROE and the CV. If the result is a 
linear relationship between risk and ROE and if we want to limit the minimum and 
maximum return to realistically achievable levels this relationship may look like the 
following: 

contract under the loss of  V

Return of RateTarget 
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Given the expense and brokerage information, the ROE target can be converted into a 
loss ratio or a combined ratio target. 

Another possible risk load could be based on the risk of loss on the contract once the 
reinstatement premium is taken into account. One way of calculating this amount is to 
calculate the profit or loss by year by summarizing the profit or loss from each event in each 
of years of simulation. If we calculate the expected value and CV of this distribution, this 
gives us another measure of return that we could target. We could also eliminate all years in 
which there is a profit which would leave years in which the contract is in a deficit. If our 
risk appetite is more in line with limiting the loss from a contract in any one year we could 
use the expected value of this distribution as a measure of expected downside and use this as 
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another constraint on our final price or the desirability of a given contract and the market 
price. 

10. OTHER ISSUES 

10.1 International ILWs 
Reinsurance markets outside the US are smaller and less developed.  Therefore, even 

though exposure is much higher in US the risk margins in ILWs are generally lower. This is 
partly due to the higher parameter uncertainty in Asia and Europe. The catastrophe data and 
modeling are have more inherent uncertainty outside the US and therefore the reinsurer 
should charge a premium for taking up the risk arising from this uncertainty. As a result, the 
product may get too expensive compared to the traditional reinsurance and government 
guarantees. To the extent that ILWs compete on the basis of price with traditional 
reinsurance, they may be at a disadvantage in the international market, until either the 
traditional reinsurance prices rise or the catastrophe potential and the corresponding models 
improve. Some markets are providing worldwide coverage without charging much of a 
premium for the high parameter risk inherent in the worldwide models. For large buyers this 
may be an excellent opportunity in the short term, but one wonders if this aggressive stance 
is sustainable in the long run. 

10.2 Aggregate ILWs 
An example of pricing Aggregate ILWs has not been provided in this paper, but a 

methodology very similar to the one used here can be employed to calculate the loss 
distribution of an Aggregate ILW. Typically these products pay when the sum of industry 
losses between a minimum and maximum in a year exceed the trigger amount. For example, 
if an aggregate ILW gets triggered when the sum of industry losses that exceed $100 million 
but limited to $500 million exceeds $4 billion in a year, one would add losses exceeding $100 
million limited to $500 million for each year of simulation and test if this sum exceeds the $4 
billion trigger amount. This process would result in a loss and corresponding premium and 
profit distributions very similar to what result from an occurrence ILW calculation shown 
herein. 
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10.3 Lack of Protection from Unforeseen Events 
Generally ILW sellers look backwards when deciding what kinds of triggers to offer. 

Before Hurricane Andrew there was probably not a big market for Florida Hurricane ILWs 
with triggers in excess of $15 billion. And more recently some buyers look for second and 
third event coverages, but these generally have triggers above $2 billion. Aggregate ILWs 
generally exclude losses with industry loss amounts above $500 million. Therefore none of 
these ILWs would have protected companies in 2004 when a series of hurricanes hit the 
Southern US Coast, with industry losses in the range of $1 billion each so that none of the 
ILWs mentioned above would have triggered. This again illustrates how ILWs have less 
parameter risk than some other reinsurance products where unforeseen losses may account 
for a large amount of loss in bad years. 

10.4 Model Creep 
On a related note, a one may notice that the commercial catastrophe models generally get 

recalibrated after almost every extreme event.  This will probably mean that if before 2004 
the models indicated four large hurricanes hitting Southern US as extremely improbable, 
these distributions would be revised.  

10.5 Managing a Book of Industry Loss Warranty Business 
Once we have appropriately priced a book of ILWs the next question is how to manage 

this book and the aggregate risk it contributes to the reinsurer's portfolio. If we have used a 
consistent set of loss distributions to price the ILWs, the aggregate loss distribution for the 
portfolio can be calculated as the sum of distributions of individual ILWs. This loss 
distribution can then be combined with loss distributions from other product portfolios to 
generate a companywide loss distribution. This combined loss distribution could act as a 
robust input into a DFA or ERM model to gauge the overall risk–return profile of the 
company. 

11. CONCLUSION 

Industry Loss Warranties provide an alternative to traditional reinsurance and catastrophe 
bonds when insurers are trying to smooth their results from the impact of catastrophic 
events. We have looked at one way to price for these instruments that takes advantage of the 
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empirical industry loss distributions available as an output from many commercial 
catastrophe reinsurance models to simplify this task.  
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Exhibit 1: Simulated 1000-year Industry Loss Distribution 

 

 

Year 
Number

Industry 
Loss 

(Millions) Catastrophe Description
4 4,679               FL Hurricane

4 2,586               FL Hurricane

5 2,948               Winter Storm

7 19,000             FL Hurricane

8 3,438               FL Hurricane

10 9,242               CA EQ

10 3,304               FL Hurricane

12 3,293               FL Hurricane

14 5,234               Winter Freeze

15 4,636               FL Hurricane

16 2,949               FL Hurricane

17 26,424             CA EQ

17 7,532                FL Hurricane

17 5,419                NY Hurricane

17 4,426               FL Hurricane

19 24,939             CA EQ

20 2,739               FL Hurricane

20 2,603               FL Hurricane

20 2,165                Winter Freeze

23 3,912                FL Hurricane

24 2,441                FL Hurricane

26 20,638             FL Hurricane

26 5,507               FL Hurricane

27 2,573                CA Landslide

28 4,946               FL Hurricane

29 9,626               CA EQ

. . .

. . .

. . .  
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Exhibit 2: Losses Meeting ILW Trigger 

 

Year 
Number

Industry Loss 
(Millions) Catastrophe Description

26 20638 FL Hurricane

42 24801 FL Hurricane

63 24323 FL Hurricane

153 20977 FL Hurricane

179 30669 FL Hurricane

205 22307 FL Hurricane

232 23976 FL Hurricane

288 27315 FL Hurricane

343 34381 FL Hurricane

431 33108 FL Hurricane

438 20223 FL Hurricane

467 28063 FL Hurricane

467 26904 FL Hurricane

518 70029 FL Hurricane

614 28195 FL Hurricane

640 22597 FL Hurricane

725 29006 FL Hurricane

730 22173 FL Hurricane

779 22259 FL Hurricane

793 20996 FL Hurricane

811 47370 FL Hurricane

866 22261 FL Hurricane

893 56128 FL Hurricane

897 37107 FL Hurricane

908 21207 FL Hurricane

966 20701 FL Hurricane

Terms:

ILW Limit = 100 million

1 reinstatement at 150% initial premium

Epense = 20% of Premium

Initial ROL 5%  



Reinsuring for Catastrophes through Industry Loss Warranties 
 

90 Casualty Actuarial Society Forum, Spring 2005 

Exhibit 3: Simulated Results for the ILW 

 

 

Year 
Number ILW loss Premium

Profit/
Loss

1 0 5 4

2 0 5 4

3 0 5 4

4 0 5 4

5 0 5 4

6 0 5 4

7 0 5 4

8 0 5 4

9 0 5 4

10 0 5 4

. . . .

. . . .

. . . .

26 100 12.5 -90

. . . .

. . . .

. . . .

467 200 12.5 -190

. . . .

. . . .

. . . .

1000 0 5 4

µ 2.6 5.19                          1.55       

δ 16.83       1.17                           13.10     

µ/δ 6.47         0.23                          8.45       
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On the Optimality of Proportional Reinsurance  
 

I. Lampaert, FKVBA  and J.F. Walhin, PhD, FARAB  
 
 

             
Abstract: 

Proportional reinsurance is often thought to be a very simple method of covering the portfolio of an 
insurer. Theoreticians have not been particularly interested in analysing the optimality properties of 
these types of reinsurance covers. In this paper, we will use a real-life insurance portfolio in order to 
compare four proportional structures: quota share reinsurance, variable quota share reinsurance, surplus 
reinsurance and surplus reinsurance with a table of lines. We adopt the point of view of the ceding 
company and propose ways to optimize the proportional covers of the primary insurer.  

 
Keywords: Proportional Reinsurance, Quota Share Reinsurance, Variable Quota Share, Surplus 
Reinsurance, Table of Lines, Optimality, RORAC, de Finetti, Individual Risk Model.  

             
 

1. INTRODUCTION 

It is well-known in literature that non-proportional reinsurance is more efficient 
compared to proportional reinsurance. See e.g. Vermandele and Denuit (1998) where it is 
proved that the retention of an insurer covered by an excess of loss treaty is smaller in the 
stop-loss order than the retention covered by any other reinsurance of the individual type 
(i.e. compensation on a claim by claim basis) under the hypothesis that the expected retained 
loss is the same in both situations as well as the loading of the reinsurer. Vermandele and 
Denuit (1998) also show that the retention of an insurer covered by a stop-loss treaty is 
smaller in the stop-loss order than the retention covered by any other reinsurance treaty, 
under the hypothesis that the expected retained loss is the same in both situations as well as 
the loading of the reinsurer.  

At first sight, it therefore seems that proportional reinsurance is less efficient than excess 
of loss and stop-loss covers, which are of the non proportional type.  

In practice this is not the case for multiple reasons such as:  

1. stop-loss covers are difficult to obtain due to the possible moral hazard 
behaviour that the ceding company may adopt after buying such a cover  

2. stop-loss covers are extremely difficult to price by reinsurers  

3. the loading for a stop-loss cover will clearly differ from a proportional cover 
(e.g. due to the first two points)  
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4. excess of loss covers are sometimes difficult to price  

5. the loading for an excess of loss cover will also differ from a proportional 
cover.  

Proportional covers can be quite desirable and it is worth analysing their optimality 
properties.  

The main objective of this paper is to illustrate by means of a numerical example that the 
traditional belief that surplus treaties with a table of lines are better (more efficient) than 
standard surplus treaties is wrong. We will take this opportunity to compare all the 
proportional types of reinsurance.  

The rest of the paper is organized as follows. Section 2 describes the data we will use for 
the numerical application. Section 3 explains how the individual risk model will be used as 
well as approximations of the aggregate claims distribution within the individual risk model. 
Section 4 describes the four types of proportional reinsurance to be compared in section 5 
where we will look for optimal reinsurance structures. Section 6 concludes.  

2. DATA 

For the calculations a real-life data set will be used. It is obtained from one of the leading 
Belgian insurance companies and contains 27551fire policies, covering industrial risks.  

The 27551 policies are divided into four classes ( 1 2 3 4j = , , , ), depending on their 
frequency ( ijq ) as well as their relative claims severity ( ijX ), 1 ji … n= , ,  where jn  is the 
number of policies in class j . Knowing the sum insured ijSI , we can obtain the loss 
amount: ij ij ijL SI X= × . We will assume the ijX  to be identically distributed within a given 
risk class ( 1 2 3 4j = , , , ) : 1 1 2 3 4ij j jX X i … n j≈ , = , , , = , , , . We also assume that the 
probability of having a loss is identical within a class : 1 1 2 3 4ij j jq q i … n j= , = , , , = , , , .  
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For the density of jX  we will use the MBBEFD distribution class introduced by 
Bernegger (1997). Using the following notations  
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We then have a family of distributions indexed by the parameter c . According to Bernegger 
(1997), 2 3 4 5c = , , ,  corresponds to the Swiss Re exposure curves 2, 3, 4 and the Lloyd’s 
industrial exposure curve respectively. We will assume that we have the following 
characteristics for our portfolio:   

 
1 0 75 2

2 1 00 3

3 1 25 4

4 1 50 5

Class q c

%

%

%
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.
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Table 2.1 Claims characteristics of the portfolio 

Regarding the sum insured, we have the following information:   

 

( ) ( ) ( ) ( )

1 3933 13457022 10752926 8 51

2 17 472 12034729 7960092 2 23

3 3121 11826858 9119825 4 62

4 3025 10879648 7826747 11 98

j j jClass j n SI SI SIµ σ γ
.
.
.
.

 

 

Table 2.2 Characteristics of the sums insured 
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where  
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3. INDIVIDUAL RISK MODEL AND APPROXIMATIONS 

Clearly our portfolio fits into the definition of the individual risk model (see e.g. Klugman 

et al. (1998)). We have 4

1 jj
n n

=
=∑  policies with a different sum insured, which are divided 

into four classes according to their claims behaviour (frequency and severity).  

Therefore the aggregate claims amount is given by  

 
4

1 1

jn
ind

ij ij
j i

S D L
= =

=∑∑  

where  

1. ijD  is the indicator function taking value 1 when there is a claim and 0  
when there is no claim. We have [ 1] [ 1]ij j jP D P D q= = = = .  

2. ij ij ijL SI X=  is the conditional loss value.  

3. ij ij ijS D L=  is the loss associated to policy ij .  

Obtaining the exact distribution of indS  is possible by using recursive formulae (see e.g. 
Dhaene and Vandebroek (1995)) but the computing time will be very long due to the size of 
the portfolio. Moreover a discretization of distribution of ijL  is required.  
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An approximation of the individual risk model is provided by the collective risk model 
(see e.g. Klugman et al. (1998)) leading to the use of the Panjer recursive formula (see Panjer 
(1981)). Once again the computing time will be long and discretization will be required.  

In this paper, as the porfolio is large, and its skewness less than 2 (see further for the 
calculations) we will concentrate on a parametric approximation, namely the shifted gamma 
distribution, that will reproduce the first three moments of the original distribution. We 
therefore need to obtain the first three moments of indS .  

The shifted gamma distribution ( S ) (see e.g. Dufresne and Niederhauser (1997)) has the 
form  

 0S Z x≈ +  

where ( )Z Gam α β≈ , , i.e.  
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where ( )xΓ  is the gamma function. By abuse of notation, we will also write ( )F xα β, ,  the 
cumulative density function of Z .  

Central moments are given by  
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Using numerical integration, it is possible to obtain the first three moments of jX , 
as a function of the parameter c :   

 

2 3

1 0 2260909 0 1623865 0 1474579

2 0 0871796 0 0479373 0 0407141

3 0 031852 0 0123161 0 0094975

4 0 0121457 0 0030479 0 0020178

j j jClass EX EX EX

. . .

. . .
. . .

. . .

 

 

Table 3.1 Moments of jX  

An analytical formula exists for EX  : ln( )(1 )
ln( )(1 )

gb b
b gbEX −

−=  but not for higher moments.  

The 
1

1 2 3jn x
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=

, = , ,∑  terms are easily obtained from table 2.2.  

From this we can obtain the mean ( µ ), the standard deviation (σ ), the coefficient 
of variation (CV σ

µ= ) and the skewness (
3
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γ −= ) of indS  :  
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The corresponding shifted gamma approximation has the following parameters:  
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4. PROPORTIONAL REINSURANCE 

Proportional reinsurance is the easiest way of covering an insurance portfolio. In 
proportional reinsurance, the ceding company and the reinsurer agree on a cession 
percentage, say iτ , for each policy in portfolio. The premium corresponding to the policy i , 
say iP , is then shared proportionally between the insurer and the reinsurer. The reinsurer 
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receives i iPτ  whereas the insurer keeps the premium (1 )i iPτ− . If iS  is a claim hitting policy 
i , the reinsurer is liable for i iSτ  whereas the insurer retains (1 )i iSτ− .  

Clearly the way a proportional reinsurance works is extremely simple. Moving to the way 
of fixing the cession percentage iτ , we can distinguish between four subtypes of 
proportional reinsurance: quota share reinsurance, variable quota share reinsurance, surplus 
reinsurance and surplus reinsurance with a table of lines.  

Note that proportional reinsurance is sometimes called pro-rata reinsurance.  

We will use the following notations:  

− ijS  is the loss associated with policy ij .  

− 
4

1 1

jn

ijj i
S S

= =
=∑ ∑  is the aggregate loss of the insurer.  

− 
4

1 1

jnRe
ij ijj i

S Sτ
= =

=∑ ∑  is the aggregate liability of the reinsurer.  

− 
4

1 1
(1 )jnR

ij ijj i
S Sτ

= =
= −∑ ∑  is the aggregate loss in retention when a reinsurance 

 cover is bought.  

− ijP  is the premium associated with policy ij .  

− 
4

1 1

jn

ijj i
P P

= =
=∑ ∑  is the total premium of the insurer.  

− 
4

1 1

jnRe
ij ijj i
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= =

=∑ ∑  is the total ceded premium.  

− 
4

1 1
(1 )jnR

ij ijj i
P Pτ

= =
= −∑ ∑  is the total retained premium.  

It is clear that only the risk premium has to be considered. In practice the insurer cedes 
on the basis of the commercial premium and the reinsurer pays a reinsurance commission 
representing the management expenses and acquisition costs of the ceding company. To 
keep things simple, we will always refer to the risk premium in the following and not to the 
reinsurance commission.  

4.1  Quota Share Reinsurance 

In quota share reinsurance iτ  is the same for the whole insurance portfolio. Quota share 
reinsurance is therefore extremely simple as the cession percentage does not vary among 
policies: we note it as τ . As a consequence the administration of a quota share treaty is 
straightforward: it suffices to obtain the total premium and the total claims in order to share 
the premium and the claims with the reinsurer. Quota share reinsurance is of the individual 
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type (i.e. the reinsurance compensation applies claim by claim) and of the global type (i.e. the 
reinsurance compensation applies on the yearly aggregate loss) at the same type:  

 
4 4

1 1 1 1

j jn n
Re

ij ij
j i j i

S S S Sτ τ τ
= = = =

= = = .∑∑ ∑∑  

Quota share reinsurance has a nice property if we compare its use to the use of the allocated 
capital (u ).  

Let ε  be the ruin probability without quota share reinsurance:  

 [ ]P S u Pε = > + .  
 

Let Rε  be the ruin probability after quota share reinsurance:  

 

[(1 ) (1 ) ]

[ ]
1

R P S u P

u
P S P

ε τ τ

τ
ε

= − > + −

= > +
−

< .

 

 
We observe that buying a quota share treaty has the same effect as increasing the 

economic capital in the same proportion as the cession percentage.  

Now let us analyse the retained risk of a portfolio covered by a quota share treaty   
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Here we can observe that the variability and the skewness of the retained risk is the same 

as if there were no quota share reinsurance. Obviously quota share reinsurance does not 
provide a reduction in the relative homogeneity of the portfolio.  

It is nevertheless very much used for multiple reasons such as  

− Financing management and acquisition costs by means of the reinsurance 
commission ( in case of a new product or a start-up insurance company ).  
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− Reinsurance against underpricing (new classes of business). It limits the danger of 
new (unknown) risks.  

− Reduction of the required solvency margin.  

− Compensation for less balanced treaties of the cedant.  

Note that quota share reinsurance is sometimes referred to as participating reinsurance.  

4.2 Variable Quota-Share Reinsurance 

Sometimes, the cession percentage may vary within the portfolio. This is called variable 
quota share reinsurance. In our example, we will assume that the percentage may vary in 
function of the class of risk. This is equivalent to analysing four different quota share 
treaties.  

We then have the following relations:  
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It becomes impossible to compare the coefficient of variation and the skewness 

analytically. This will be done numerically.  

4.3 Surplus Reinsurance 

In surplus reinsurance the cession percentage is a function of both the sum insured and 
the line, or retention, chosen by the ceding company.  
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The line ( R ) is the maximal amount that the insurer wants to pay in case of a loss. If one 
wants to make use of proportional reinsurance and of the property that the maximal loss will 
never be larger than the line, the cession percentage must be defined as  

 max 0 1ij
ij

R

SI
τ

 
= , − .  

 
 

The retention percentage is  

 (1 ) min 1ij
ij

R

SI
τ

 
− = , .  

 
 

In case of a total loss, the retained loss is  

  

min 1 ij ij ij
ij

R
SI SI ifSI R

SI

 
, × = <  

 
 

min 1 ij ij
ij

R
SI RifSI R

SI

 
, × = >  

 
 

 
It is clear that surplus reinsurance is appealing from an optimality point of view. In 

surplus reinsurance, the loss amount may not exceed the line. Furthermore, the smallest risks 
are not reinsured. Therefore, one feels that the retained risk will be more homogeneous than 
it is in case of a quota share reinsurance.  

The retained risk has the following central moments:  
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It is not possible to make analytical comparisons with these formulae. We will therefore 

concentrate on the numerical application in order to make further comments.  
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One should note that surplus reinsurance is far more expensive from an administrative 
point of view since each policy must be closely examined in order to compute the ceded 
premium and the possible recovery from the reinsurer, based on its own cession percentage, 
which is a function of the insured sum.  

Note that surplus reinsurance is sometimes referred to as surplus share reinsurance.  

4.4 Surplus Reinsurance with a Table of Lines 

We now move on to surplus reinsurance with a table of lines. In the above definition of 
surplus reinsurance, the same retention R  is used for the whole portfolio. In practice 
however, it may happen that a surplus programme is presented with a table of lines. This 
means that a retention is fixed per group of similar risks. In this way the portfolio that the 
ceding company retains is qualitatively more homogeneous. It is especially the fire risks in an 
insurer’s portfolio that may differ in quality. Determining factors are the location of the risk, 
the building’s construction, its use, the loss prevention and protection measures, ... The 
quality of the risk is translated into a frequency and severity distribution: the better the risk, 
the smaller the frequency and the less dangerous the claims severity. So we have four classes 
of risks with different characteristics. If we choose the same retention for the entire portfolio 
as we described above, the expected loss per risk would not be homogeneous. With the same 
retention the yearly expected loss of the ceding company would depend upon the kind of 
risk that has been affected. We therefore choose a different retention per class, in order to 
make the expected loss per risk independent of the kind of risk. As a consequence the 
insurer is able to retain more of the good risks and less of the bad risks. For the reinsurer 
however there is always the risk that only the dangerous risks are transferred. When the 
cedant’s rate is wrong, this implies a danger to the reinsurer. This phenomenon is called 
antiselection.  

Thus, in surplus reinsurance with a table of lines, the cession percentage is  

 max 0 1 j
ij

ij

R

SI
τ

 
= , −  

 
 

where the line iR  may vary among the policies.  

In order to fix the lines, certain practitioners use one of the following methods with no 
real justification.  
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A first method to construct a table of lines is to determine a retention for each class of 
business by aiming at an equal maximum loss throughout the entire portfolio. This means 
that the lines will be such that  

 1 1 2 2 3 3 4 4R q R q R q R q× = × = × = × .  

This is the method of the inverse claim frequency.  

A second method takes into account not only the frequency but also the claims severity. 
This table of lines is constructed in order to reach the same average loss for all policies, 
contrary to the same maximum loss of the first method. This means that the lines will be 
such that  

 1 1 2 2 3 3 4 4R rate R rate R rate R rate× = × = × = × .  

where j j jrate q EX= . This is the method of the inverse rate.  

5. OPTIMAL REINSURANCE 

In this section we will compare the original portfolio with the retained portfolio after a 
proportional cession of the four types described in the previous sections. We will use two 
criteria:  

1. a de Finetti criterion, i.e. we will minimize the variance of the retained loss 
under the constraint that the expected gain is fixed.  

2. a RORAC criterion, i.e. we will maximize the return on risk adjusted capital 
of the retained risk.  

We will assume that the insurer is using a loading ξ . That loading contains only the 
capital charge. All administrative expenses must be charged on top of that loading. We will 
also assume that the reinsurer is using a loading Reξ . That loading includes the capital charge 
of the reinsurer as well as the administrative expenses. It is clear that the insurer pays for the 
administrative expenses of the reinsurer in the reinsurance premium. For the numerical 
application, we will use 5%ξ =  and 7Re %ξ = .  

5.1 de Finetti’s Type Results 

Following de Finetti (1940), we will minimize the variance of the gain of the retained 
portfolio by assuming that the four subportfolios are covered by a quota-share with a 
possible different cession rate. The gain of the retained portfolio is  
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4

1 1

( ) ((1 ) (1 ) (1 ) )
jn

Re
ij ij ij ij ij ij i

j i

Z ES ES Sτ ξ ξ τ τ
= =

= + − + − − .∑∑  

where τ  is the vector of cession percentages 
1 2 3 411 1 12 2 13 3 14 4{ }n n n n… … … …τ τ τ τ τ τ τ τ, , , , , , , , , , . 

The de Finetti problem is the following:  

 min ( )VarZ
τ

τ  

under the constraint that  

 ( )EZ kτ = .  
de Finetti (1940) showed that the solution is given by  

 max 0 1 1 4 1
Re

ij ij
ij j

ij

b ES
j i … n

VarS

ξ
τ

 
= , − , = , , , = , , ,  

 
 

where b  is a constant given by the condition ( )EZ kτ = .  

Assuming that we want to keep an expected gain equal to 5000000 , the solution 
provided by de Finetti is the following:   

 

 1 2 3 4

1 64 98 41 75 24 05 0 00 5000000 29173126

Case E

% % % %

τ τ τ τ σ
. . . .

 

Table 5.1. Optimal variable quota share treaty with expected gain = 5000000  

If we cover the whole portfolio by a uniform quota share, i.e. with the same cession 
percentage for all risks in all four classes, we obtain   

 

 1 2 3 4

2 47 11 47 11 47 11 47 11 5000000 30338327

Case E

% % % %

τ τ τ τ σ
. . . .

 

Table 5.2 Quota share treaty with expected gain = 5000000  

The volatility is larger than it is in case of the variable quota share treaty, which shows the 
optimality of de Finetti’s result. 
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 Now let us move on to surplus reinsurance. We will analyse the following cases:  

3. surplus with one line  

4. surplus with table of lines corresponding to the quota share treaty  

5. surplus with table of lines corresponding to the variable quota share (the lines are 
chosen such that the global cession for the subportfolio is the same for both covers)  

6. surplus with table of lines obtained by the inverse rate method  

7. surplus with table of lines obtained by the inverse frequency method  

 

 

1 2 3 4Case

3 7304175 7304175 7304175 7304175 5000000 24858743

4 7989249 7065148 6963402 6167660 5000000 25111701

5 4886924 8036122 12533770 333398280 5000000 24700617

6 4246111 8258874 18083771 39520454 5000000 24913398

7 9084

R R R R E σ

700 6813525 5450820 4542350 5000000 25693734

 

Table 5.3 Comparison of surplus treaties with expected gain = 5000000  

We can make the following comments:  

1. the surplus treaty (case 3) is optimal compared to the surplus treaty with table of 
lines obtained by the practitioners method (cases 6 and 7). This is clearly against the 
traditional belief.  

2. the surplus treaty corresponding to the cessions of the variable quota share treaty 
(case 5) is the best treaty. This is a sign that building the table of lines according to 
the shares of de Finetti’s solution is probably more sensible than using the 
practitioners formula which has no theoretical justification.  

By minimizing the objective function numerically, we were able to obtain two situations 
that are more efficient than the previous ones:   

 
1 2 3 4Case

8 6001860 7940027 7514596 7 483510 5000000 24689131

9 5819865 7592990 10774593 333398280 5000000 24597 666

R R R R E σ
 

Table 5.4. Trying to obtain the optimal table of lines with expected gain = 5000000  
numerically 
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Note that the objective function seems to be very flat. It is therefore difficult to make 
sure that the global minimum has been achieved. We observe that the two proposed 
solutions are very different.  

In fact, it is not difficult to write the de Finetti’s formulae for a surplus treaty or a surplus 
treaty with a table of lines.  

Indeed, we have the following results:  

a. Surplus treaty 
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 max 0 1 ij
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SI
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Glineur and Walhin (2004) have used convex optimization to prove that the optimal lines 
are  

 ij ijRe
ij ij

ij ij

ED X
R b

VarD X
ξ=  

where b  is a constant that is determined by the constraint on the expected gain.  

Clearly this result is not useful as it will not be possible from an administrative point of view 
to apply a different line to each policy in the portfolio. We then move on to the more 
interesting case of the table of lines.  

b. Surplus treaty with a table of lines  
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Glineur and Walhin (2004) have used convex optimization to prove that the optimal lines 
are  

 1

1

[ ]
1 2 3 4

[ ]

j

j

n Re
ij ij ij iji

j n

ij iji

E D L SI
R b j

Var D L

ξ
=

=

= , = , , ,∑
∑

 

where b  is a constant that is determined by the constraint.  

On the reasonable assumption that the ijX  and ijD  are identically distributed within the 
class j  and that the reinsurance loading is the same for each risk within the class j , the 
formula is reduced to  

 j jRe
j j

j j

ED X
R b

VarD X
ξ=  

where b  is a constant that is determined by the constraint on the expected gain.  

We obtain 

  

 1 2 3 4Case

10 5844858 7628597 10842395 16701348 5000000 24511489

R R R R E σ
 

Table 5.5 Optimal surplus treaty with a table of line with expected gain = 5000000  

5.2 RORAC’s Type Results 

Now let us compute the RORAC (Return On Risk Adjusted Capital) for different 
reinsurance structures.  

Let us assume that the required solvency level, RSL , is given by the Tail Value at Risk at 
the level 99%ε = .  

Using our shifted gamma approximation, we have  

 

( )
0

0

[ ( )]

[ ( )]

1 1 ( 1 ( ))
1

S

Z

Z

RSL E S S VaR

E Z Z VaR x

F VaR x

ε
ε

α α β ε
β ε

= >

= > +

= − + , , +
−

 

where 1( ) ( )ZVaR Fε α β ε−= , , .  
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The retained premium is equal to  

 (1 ) (1 )R Re ReP ES ESξ ξ= + − + .  
 

The risk adjusted capital is obtained by deducting the retained premium from RSL . In 
other words, the risk adjusted capital is the required solvency level minus the premium that 
is charged to the policyholders plus the premium that is charged by the reinsurers:  

 RRAC RSL P= −  
 

and RORAC is defined as  

 
R RP ES

RORAC
RAC

−=  

 
For the direct (i.e. before any reinsurance) portfolio, we obtain the following:  

 

293751934

0 20

0 62

452547891

483141978

308439531

174702 447

8 41

R

R

ES ES

CV

VaR
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P P
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= =
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=
=

= =
=
= . .
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Now let us compare the RORAC for the reinsurance structures that have been analysed in 
the previous section:   

 

 

1 0 20 0 62 255521124 5 25

2 0 19 0 51 248418187 5 68

3 0 16 0 24 227868224 7 41

4 0 16 0 25 228686935 7 32

5 0 16 0 30 228769300 7 31

6 0 16 0 28 228915033 7 29

7 0 17 0 26 230640846 7 11

8 0 16 0 25 227 430799 7 45

Case CV TVaR RORAC

%

%

%

%

%

%

%

%

γ
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .

9 0 16 0 29 228247 460 7 36

10 0 16 0 25 226965212 7 51

%

%

. . .

. . .

  

Table 5.6. RORAC for our 10 alternatives 

We can make the following observations:  

1. as for the de Finetti’s criterion, the differences are not that large  

2. the ranking is not exactly the same as the de Finetti’s one. In particular the 
second best alternative under de Finetti’s criterion (case 9) is now 
outperformed by the classical surplus (case 3). This is due to the fact that the 
de Finetti’s criterion does not account for the skewness. Case 9 is penalized 
in the RORAC criterion due to its larger skewness.  

3. we also observe that the RORAC in this reinsurance structure is less than in 
the case of no reinsurance. Obviously buying reinsurance at that level 
destroys value. This is due to the fact that the reduction in risk is not 
counter-balanced by the cost of reinsurance ( 7 5Re % %ξ ξ= > = ).  
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Now let us analyse other situations:   

 

 

1 5000000 0 16 0 24 4 16 61 31

2 7500000 0 16 0 24 7 58 46 03

3 10000000 0 16 0 25 9 05 33 91

4 12500000 0 17 0 26 9 71 24 82

5 15000000 0 17 0 28 9 98 18 12

6 17500000 0 17 0 29 10 06 13 20

7 20000000 0

ReES
Case Line CV RORAC

ES
% %

% %

% %

% %

% %

% %

γ

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

.18 0 30 10 06 9 59

8 22500000 0 18 0 31 10 00 6 91

% %

% %

. . .
. . . .

 

Table 5.7 RORAC as a function of the line of a surplus treaty 

We observe that the optimal line is about 20000000  providing a 10 06RORAC %= . , 
instead of 8 41%.  without reinsurance.  

Now we consider the RORAC for surplus treaties with a table of lines. We choose the 
method of the inverse rate and we choose the lines so as to get the same global cession as in 
the previous table.  

 

1 2 3 4

1 2792144 5430844 11891468 25987 731 0 16 0 29 4 06 61 31

2 4373473 8506598 18626192 40705865 0 16 0 28 7 47 46 03

3 6066679 11799959 25837392 56 465292 0 16 0 28 8 93 33 91

4 7857 669 15283513 3346504

ReES
Case R R R R CV RORAC

ES
% %

% %

% %

γ

. . . .

. . . .

. . . .
0 73134831 0 17 0 29 9 58 24 82

5 9739358 18943481 41478968 90648548 0 17 0 30 9 86 18 12

6 11697 749 22752639 49819564 108876170 0 17 0 31 9 96 13 20

7 13736088 26717 298 58500649 127847900 0 18 0 32 9 96 9 59

8 15858279 3084505

% %

% %

% %

% %

. . . .

. . . .

. . . .

. . . .
4 67538854 147 600082 0 18 0 33 9 92 6 91% %. . . .

 

Table 5.8. RORAC in function of the table of lines (inverse rate method) 
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We observe that the RORAC is smaller in case of a table of lines than it is in case of a 
classical surplus with one fixed line.  

Now we consider the RORAC for surplus treaties with a table of lines that is built using 
the de Finetti optimal table of lines:  

 

1 2 3 4

1 3949974 5155430 7327325 11286824 0 15 0 24 4 22 61 31

2 6007 752 7841203 11144567 17166807 0 16 0 25 7 68 46 03

3 8113889 10590093 15051518 23184974 0 16 0 26 9 15 33 91

4 10 247187 13374 433 1900885

ReES
Case R R R R CV RORAC

ES
% %

% %

% %

γ

. . . .

. . . .

. . . .
2 29 280752 0 17 0 27 9 79 24 82

5 12397936 16181549 22998558 35426392 0 17 0 28 10 05 18 12

6 14573268 19020751 27 033868 41642 281 0 17 0 29 10 13 13 20

7 16743363 21853117 31059 460 47843201 0 18 0 30 10 11 9 59

8 18964 227 24751

% %

% %

% %

% %

. . . .

. . . .

. . . .

. . . .
746 35179 233 54189193 0 18 0 31 10 05 6 91% %. . . .

 
 

Table 5.9. RORAC in function of the table of lines ( de Finetti’s optimal table) 

Previous results are confirmed: this method of building up a table of lines is more 
efficient than the two methods of practitioners. Note that in our numerical example, it 
becomes more efficient than the surplus with a single line.  

6. CONCLUSION 

We have analysed the optimality properties of an insurance portfolio covered by a 
proportional reinsurance. The numerical application has confirmed that quota share 
reinsurance is suboptimal when compared to all other types of proportional reinsurance. In 
fact, quota share reinsurance will only be of interest to the ceding company when the loading 
of the reinsurer is smaller than the loading of the insurer. This is possible if one refers to the 
diversification possibilities that are offered to the reinsurer. So one may argue that less 
capital needs to be remunerated from the reinsurer’s point of view. On the other hand, one 
may argue that the reinsurer’s shareholders may require a higher cost of capital due to the 
agency costs (see Hancock et al. (2001) for details) that apply when underwriting a business 
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that is less well understood by the reinsurer than the primary insurer. This means that ceding 
companies should provide as much information as possible to reinsurers in order to reduce 
these agency costs.  

We have also observed that surplus reinsurance with a table of lines based on the inverse 
frequency method, or inverse rate method, is not, in our numerical example, optimal when 
compared to surplus reinsurance with one single line. This goes against the traditional belief 
of practitioners. Obviously we have not proved that it is always true but we have simply 
shown that a table of lines is not always optimal.  

On the other hand we have derived the optimal table of lines using the de Finetti’s 
criterion. This table of lines is more efficient, in our numerical example, than the other 
proportional reinsurance programmes.  

Eventually, one should note that the reinsurer’s loading would most probably not remain 
constant in case of surplus treaties with increasing retentions. Indeed, when increasing the 
retentions, the reinsured business becomes less well balanced, implying a larger volatility for 
the reinsurer. Clearly the reinsurer will apply higher capital charges in these cases. Moreover 
the fixed management expenses of the reinsurer will be more important in those treaties 
where the cession is small. One therefore has to be cautious with the previous conclusions 
and always ask quotes from the reinsurer when analysing the optimality of a reinsurance 
programme. 
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Transition Matrix Theory 
 And 

 Individual Claim Loss Development 

John B. Mahon 
________________________________________________________________________ 
Abstract 

Motivation. Individual claim development is important for creating the average severity distributions that 
underlie most increased limits, and reinsurance pricing analyses, but most current methods do not adequately 
represent the true process.   

Method.  Transition Matrix Theory is applied to a large database of reinsurance data.  The data is 
processed to isolate GL data, and the Transition Matrix process is described in detail.   

Results.  Individual claim size development is characterized as a distributional process.  The effect of this 
distributional process on pricing parameters is contrasted with traditional methods.  

Conclusions. Individual Claim Size development is a distributional process, and can be measured and 
introduced into procedures for calculating average severity distributions.  A simple five parameter formula can 
model this process.  The Transition Matrix process may overstate the distribution of the ultimate distribution, 
but this can be measured and corrected.  Pricing parameters are affected by this process and its effect should be 
factored in when possible. 

Keywords. Transition Matrix, Average Severity, Individual Claim Loss Development, Distributional Loss 
Development 

 

1. INTRODUCTION 

Loss development has long been considered to be an aggregate phenomenon, and not 
applicable to individual claims.  Rating procedures require accurate estimates of individual 
claim size development in order to estimate the average severity distribution curves that 
underlie increased limits ratemaking, and reinsurance excess layer pricing.  Current methods 
have limitations based on sparse data at high layers, or are based on assumptions that may 
introduce errors.  This study applies the Transition Matrix Theory approach to a large 
collection of reinsurance individual large losses, and, characterizes individual claim size 
development as a distributional procedure.  It was found that a simple five parameter 
distribution will model the process.   

1.1 Research Context 
Several approaches have been used to apply loss development to individual claims to 

adjust them for increased limits calculations and for pricing reinsurance excess layers.  
Transition matrix theory as applied to losses was introduced at the International Congress of 
Actuaries in 1980 by Charles Hachemeister [1].  A more recent presentation of this method 
can be found in Ole Hesselager’s [2] 1994 paper where he presents a time continuous 
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method for computing transition matrices.  The present research uses a time discrete 
method of computing Markov transition matrices to represent the age to age loss 
development of a large body of reinsurance general liability claims.   

A weakness of the transition matrix approach is that it generates a large number of 
parameters which make it unwieldy, and prone to parameter error.   

1.2 Objective 
This study uses a straightforward interpretation of the transition matrix theory and 

applies it to a large body of reinsurance individual large losses.  This yields vectors which can 
be used to develop individual claims from an arbitrary size and evaluation to ultimate.  The 
behavior of the loss development forecasts suggests a five parameter model that can be used 
to characterize the development of an open claim as a future distribution.  This model is 
modified to reflect the fact that observed variation appears to be smaller than that provided 
by the Transition Matrix process. 

1.3 Outline 
The remainder of the paper proceeds as follows.  Section 2.1 will provide a background 

for individual claim development.  Section 2.2 describes the details of the Transition Matrix 
method as applied here.  Section 2.3 describes the application of the Transition Matrix 
method to aollection of reinsurance data.  Section 2.4 describes a comparison between 
transition matrix results and initial to final transitions.  It discusses an adjustment to the 
Transition Matrix results to reduce excess variation introduced by the Transition Matrix 
method, and, proposes a model for distributional loss development.  Section 2.5 describes an 
effect of the distributional loss development method on pricing parameters.  Section 3 
discusses the applicabililty and limitations of the method used here, and Section 4 collects 
the conclusions. 

2. BACKGROUND AND METHODS 

In this section, the background, method, data and application are described.  

2.1 Background 
Loss development has long been important to both reserving and pricing activities.  Loss 

development for reserving has concentrated on the aggregate behavior of the losses.  
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Triangles of sums of losses or claim counts are subjected to procedures which measure the 
behavior of aggregate losses.  The behavior of individual claims, for the most part, is not 
important.  It only becomes important where large individual claims are near or at limits, and 
further development may distort the result.  Treatment in this situation usually involves 
isolating these claims from the aggregate data, and handling them on an individual and ad 
hoc basis.   

 The rating discipline needs to address individual claim loss development at a more 
detailed level.  Increased limits pricing for primary business, and excess layer pricing for 
reinsurance business require the correct estimate of large size losses.  The issue of individual 
claim loss development becomes a critical factor in determining the correct probability of 
large losses used to determine pricing in these two business applications. 

A variety of solutions been developed to deal with this problem, some, better than others.  
Elimination of the problem by using closed claim data has been successful to the extent that 
the data is available, and, not too stale.  Fitting immature loss size data to severity 
distributions and measuring loss development by counts within empirical intervals of size, or 
changes in the parameters has been successful for creating increased limits factors for 
subline pricing for many years.  It is limited by the fact that it requires large amounts of data 
and many man-hours to complete.  This eliminates it from use in reinsurance pricing 
exercises. 

This most common experience rating method used in reinsurance involves combining 
features of aggregate loss development that can be applied to individual losses.  The losses 
are trended, then layered into the excess layer of rating interest, and then, the appropriate 
excess layer loss development factor is applied.  This method suffers from two problems.  
One is that the excess loss development may be very different from the factors that are used, 
and the other is that there may be no losses in the higher layers after trending.  Both of these 
can lead to significant errors.  

Another method commonly used is to apply trend and average severity development 
factors to individual claims, then use the adjusted claims to fit a theoretical severity 
distribution.  This severity distribution is then used to evaluate excess layers using exposure 
rating techniques.  The first thing to say here is that it is incorrect to apply average severity 
loss development factors to individual losses, and call the result the ultimate value of that 
claim.  This has to do with the nature of loss development of an individual claim.  A claim 



Transition Matrix Theory and Individual Claim Loss Development 
 

118 Casualty Actuarial Society Forum, Spring 2005 

can have a wide range of outcomes as it matures to ultimate.  To simply say that when it 
matures to ultimate, it will have a value some “X” percent larger than current, misses the 
variability of the loss development process.  

Exhibit 1 shows a typical adjustment for an individual loss to prepare it for fitting  

 

x  Trend
Claim 123 1.17 Ultimate
$125,000 Claim

x  Average $182,813
Severity

Loss
Development

1.25

Exhibit 1 showing a typical trend and development
adjustment to an indivdual claim   

a severity curve.  The reality of the situation is that an open claim has four possible 
outcomes at ultimate, it may stay the same size, it will grow in  

Ultimate
Claim 123

$0

Ultimate
Claim 123
less than

$2,000,000
Claim 123

$2,000,000
Ultimate

Claim 123
equal to

$2,000,000

Ultimate
Claim 123

greater than
$2,000,000

Exhibit 2. The four possible states for the ultimate
settlement of a claim.  

size, it will settle for a lesser amount, or it will close with no payment as shown in exhibit 2.  
Transition matrix theory accommodates the variation of possible outcomes. 
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2.2 The Transition Matrix Approach 

A Markov Transition Matrix is a square matrix that contains the probabilities of moving 
from one state to another state [3].  For our purposes, the states will be the combination of 
open or closed, and size of loss.  Exhibit 3 shows the complete list of states for our example.  
Note that the endpoints of the size intervals are determined exponentially.  They increase by 
a constant factor, two, in this case.  The interval end points can be arbitrary, but selecting 
exponential ones will provide additional insight into the results of this study. 

Open/ Interval Interval
Class Closed bottom top Count

0 Open 0 0 0
1 Open 0 200,000       0
2 Open 200,000       400,000       0
3 Open 400,000       800,000       0
4 Open 800,000       1,600,000    0
5 Open 1,600,000    3,200,000    0
6 Open 3,200,000    6,400,000    1
7 Open 6,400,000    12,800,000  0
8 Open 12,800,000  25,600,000  0
9 Open 25,600,000  51,200,000  0

10 Closed 0 0 0
11 Closed 0 200,000       0
12 Closed 200,000       400,000       0
13 Closed 400,000       800,000       0
14 Closed 800,000       1,600,000    0
15 Closed 1,600,000    3,200,000    0
16 Closed 3,200,000    6,400,000    0
17 Closed 6,400,000    12,800,000  0
18 Closed 12,800,000  25,600,000  0
19 Closed 25,600,000  51,200,000  0

As of 36 months

Exhibit 4. This shows the state of the same claim
shown in exhibit 3, but it is now $3,500,000 
with a maturity of 36 months.  It is now in class 6.  

 

Also shown is an open claim of $2,000,000 as a count of one in class 5. 

We now consider this claim as it matures to the 36 month evaluation, and it changes in 
value to $3,500,000.  Exhibit 4 shows its state as a class 6.   

Open/ Interval Interval
Class Closed bottom top Count

0 Open 0 0 0
1 Open 0 200,000       0
2 Open 200,000       400,000       0
3 Open 400,000       800,000       0
4 Open 800,000       1,600,000    0
5 Open 1,600,000    3,200,000    1
6 Open 3,200,000    6,400,000    0
7 Open 6,400,000    12,800,000  0
8 Open 12,800,000  25,600,000  0
9 Open 25,600,000  51,200,000  0
10 Closed 0 0 0
11 Closed 0 200,000       0
12 Closed 200,000       400,000       0
13 Closed 400,000       800,000       0
14 Closed 800,000       1,600,000    0
15 Closed 1,600,000    3,200,000    0
16 Closed 3,200,000    6,400,000    0
17 Closed 6,400,000    12,800,000  0
18 Closed 12,800,000  25,600,000  0
19 Closed 25,600,000  51,200,000  0

As of 24 months

Exhibit 3.  This shows our claim of $2,000,000
with a maturity of 24 months.  All of the possible
states of size and open or closed are shown. 
These states are labeled with a Class number
which will be used to track them.
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Transition from 24 to 36 months
Final Initial Class
Class 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0
1
2
3
4
5
6 1
7
8
9
10
11
12
13
14
15
16
17
18
19

Exhibit 5.  The transition matrix for the sample claim that is a class 5 at 24 months and a class 6 at 36 months  

We can now construct a transition matrix for the transition from 24 to 36 months for this 
loss as shown in exhibit 5.  Consider if we have 755 class 5 losses at 24 months and they are 
entered into the transition matrix.  This would result in the matrix shown in exhibit 6.  

Transition from 24 to 36 months
Final Initial Class
Class 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 13
1 22
2 35
3 57
4 91
5 146
6 91
7 57
8 35
9 22

10 4
11 7
12 11
13 19
14 30
15 48
16 30
17 19
18 11
19 7

Total 755

Exhibit 6.  The matrix showing all 24 month class 5 claims populated into their final class at 36 months.  

Now we consider a complete collection of fictitious claims, in our example there are 
4,259, of all sizes and open or closed status.  These claims are mapped into this transition 
matrix and this results in the matrix shown in exhibit 7. 
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Transition from 24 to 36 months
Final Initial Class
Class 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Total

0 0 2 3 5 8 13 22 5 1 0 0 0 0 0 0 0 0 0 0 0 59
1 1 3 5 8 13 22 35 8 2 0 0 0 0 0 0 0 0 0 0 0 97
2 2 2 8 13 22 35 57 13 3 0 0 0 0 0 0 0 0 0 0 0 155
3 3 1 5 22 35 57 91 22 5 1 0 0 0 0 0 0 0 0 0 0 242
4 5 0 3 13 57 91 146 35 8 2 0 0 0 0 0 0 0 0 0 0 360
5 9 0 2 8 35 146 234 57 13 3 0 0 0 0 0 0 1 0 0 0 508
6 15 0 1 5 22 91 375 91 22 5 0 0 0 0 0 0 2 0 0 0 629
7 9 0 0 3 13 57 234 146 35 8 0 0 0 0 0 0 1 0 0 0 506
8 5 0 0 2 8 35 146 91 57 13 0 0 0 0 0 0 0 0 0 0 357
9 3 0 0 1 5 22 91 57 35 22 0 0 0 0 0 0 0 0 0 0 236

10 0 0 1 1 2 4 7 1 0 0 0 0 0 0 0 0 0 0 0 0 16
11 0 1 1 2 4 7 11 2 0 0 0 0 0 0 0 0 0 0 0 0 28
12 0 0 2 4 7 11 19 4 1 0 0 0 1 0 0 0 0 0 0 0 49
13 1 0 1 7 11 19 30 7 1 0 0 0 0 2 0 0 0 0 0 0 79
14 1 0 1 4 19 30 48 11 2 0 0 0 0 0 6 0 0 0 0 0 122
15 3 0 0 2 11 48 78 19 4 1 0 0 0 0 0 17 0 0 0 0 183
16 5 0 0 1 7 30 125 30 7 1 0 0 0 0 0 0 45 0 0 0 251
17 3 0 0 1 4 19 78 48 11 2 0 0 0 0 0 0 0 17 0 0 183
18 1 0 0 0 2 11 48 30 19 4 0 0 0 0 0 0 0 0 6 0 121
19 1 0 0 0 1 7 30 19 11 7 0 0 0 0 0 0 0 0 0 2 78

Total 67 9 33 102 286 755 1905 696 237 69 0 0 1 2 6 17 49 17 6 2 4259

Exhibit 7. This is a transition matrix populated with a complete inventory of losses starting at a 24 month maturity,
and ending in a 36 month maturity. The value shown is claim count.  

This matrix can be converted to a Markov transition matrix by dividing each column by 
the total at the bottom of the column.   This normalizes each column so that it sums to one, 
and each value represents the probability that a selected initial class will make the transition 
to the selected final class.  The complete Markov transition matrix is shown in exhibit 8.  

Transition from 24 to 36 months
Final Initial Class
Class 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 0 0.22 0.09 0.05 0.03 0.02 0.01 0.01 0 0 0 0 0 0 0 0 0 0 0 0
1 0.01 0.33 0.15 0.08 0.05 0.03 0.02 0.01 0.01 0 0 0 0 0 0 0 0 0 0 0
2 0.03 0.22 0.24 0.13 0.08 0.05 0.03 0.02 0.01 0 0 0 0 0 0 0 0 0 0 0
3 0.04 0.11 0.15 0.22 0.12 0.08 0.05 0.03 0.02 0.01 0 0 0 0 0 0 0 0 0 0
4 0.07 0 0.09 0.13 0.2 0.12 0.08 0.05 0.03 0.03 0 0 0 0 0 0 0 0 0 0
5 0.13 0 0.06 0.08 0.12 0.19 0.12 0.08 0.05 0.04 0 0 0 0 0 0 0.02 0 0 0
6 0.22 0 0.03 0.05 0.08 0.12 0.2 0.13 0.09 0.07 0 0 0 0 0 0 0.04 0 0 0
7 0.13 0 0 0.03 0.05 0.08 0.12 0.21 0.15 0.12 0 0 0 0 0 0 0.02 0 0 0
8 0.07 0 0 0.02 0.03 0.05 0.08 0.13 0.24 0.19 0 0 0 0 0 0 0 0 0 0
9 0.04 0 0 0.01 0.02 0.03 0.05 0.08 0.15 0.32 0 0 0 0 0 0 0 0 0 0

10 0 0 0.03 0.01 0.01 0.01 0 0 0 0 1 0 0 0 0 0 0 0 0 0
11 0 0.11 0.03 0.02 0.01 0.01 0.01 0 0 0 0 1 0 0 0 0 0 0 0 0
12 0 0 0.06 0.04 0.02 0.01 0.01 0.01 0 0 0 0 1 0 0 0 0 0 0 0
13 0.01 0 0.03 0.07 0.04 0.03 0.02 0.01 0 0 0 0 0 1 0 0 0 0 0 0
14 0.01 0 0.03 0.04 0.07 0.04 0.03 0.02 0.01 0 0 0 0 0 1 0 0 0 0 0
15 0.04 0 0 0.02 0.04 0.06 0.04 0.03 0.02 0.01 0 0 0 0 0 1 0 0 0 0
16 0.07 0 0 0.01 0.02 0.04 0.07 0.04 0.03 0.01 0 0 0 0 0 0 0.92 0 0 0
17 0.04 0 0 0.01 0.01 0.03 0.04 0.07 0.05 0.03 0 0 0 0 0 0 0 1 0 0
18 0.01 0 0 0 0.01 0.01 0.03 0.04 0.08 0.06 0 0 0 0 0 0 0 0 1 0
19 0.01 0 0 0 0 0.01 0.02 0.03 0.05 0.1 0 0 0 0 0 0 0 0 0 1

Total 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Exhibit 8. A Markov transition matrix for the transition from 24 to 36 months.  Note that each column sums to one.  
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With this matrix populated, 
it is possible to observe 
structural details of loss 
development.  To do this, 
we consider four different 
types of transitions, open to 
open, open to closed, closed 
to closed, and closed to 
open. This corresponds to 
the 4 quadrants of the 
transition matrix.  The 
section of the matrix that 
shows open to open is 
shown in exhibit 9.   Here 
we see that transitions with 
no size change (same initial 
and final class) has the 
highest probability.  This 
forms a diagonal ridge 
across the matrix.   Note that the columns do not sum to one because some of the 
probability is carried in the part of the matrix representing the open to closed transitions 
which is shown in Exhibit 10.  This shows a similar diagonal ridge which represents claims 
that close in the same size range that they were open at the beginning of the transition.   

A third type of transition 
to be considered is the 
closed to closed transition as 
shown in exhibit 11.  This 
looks as expected, where, 
the transitions with the same 
initial and final size form a 
100 percent ridge forming a 
diagonal across the page.  
There is one exception in 

Transition from 24 to 36 months
Final Initial Class
Class 0 1 2 3 4 5 6 7 8 9

0 0 0.22 0.09 0.05 0.03 0.02 0.01 0.01 0 0
1 0.01 0.33 0.15 0.08 0.05 0.03 0.02 0.01 0.01 0
2 0.03 0.22 0.24 0.13 0.08 0.05 0.03 0.02 0.01 0
3 0.04 0.11 0.15 0.22 0.12 0.08 0.05 0.03 0.02 0.01
4 0.07 0 0.09 0.13 0.2 0.12 0.08 0.05 0.03 0.03
5 0.13 0 0.06 0.08 0.12 0.19 0.12 0.08 0.05 0.04
6 0.22 0 0.03 0.05 0.08 0.12 0.2 0.13 0.09 0.07
7 0.13 0 0 0.03 0.05 0.08 0.12 0.21 0.15 0.12
8 0.07 0 0 0.02 0.03 0.05 0.08 0.13 0.24 0.19
9 0.04 0 0 0.01 0.02 0.03 0.05 0.08 0.15 0.32

Exhibit 9 Transition Matrix for open to open losses.

Transition from 24 to 36 months
Final Initial Class
Class 10 11 12 13 14 15 16 17 18 19

10 1 0 0 0 0 0 0 0 0 0
11 0 1 0 0 0 0 0 0 0 0
12 0 0 1 0 0 0 0 0 0 0
13 0 0 0 1 0 0 0 0 0 0
14 0 0 0 0 1 0 0 0 0 0
15 0 0 0 0 0 1 0 0 0 0
16 0 0 0 0 0 0 0.92 0 0 0
17 0 0 0 0 0 0 0 1 0 0
18 0 0 0 0 0 0 0 0 1 0
19 0 0 0 0 0 0 0 0 0 1

Exhibit 11 Transition Matrix for close to closed losses

Transition from 24 to 36 months
Initial Final Class
Class 10 11 12 13 14 15 16 17 18 19

0 0 0 0 0.01 0.01 0.04 0.07 0.04 0.01 0.01
1 0 0.11 0 0 0 0 0 0 0 0
2 0.03 0.03 0.06 0.03 0.03 0 0 0 0 0
3 0.01 0.02 0.04 0.07 0.04 0.02 0.01 0.01 0 0
4 0.01 0.01 0.02 0.04 0.07 0.04 0.02 0.01 0.01 0
5 0.01 0.01 0.01 0.03 0.04 0.06 0.04 0.03 0.01 0.01
6 0 0.01 0.01 0.02 0.03 0.04 0.07 0.04 0.03 0.02
7 0 0 0.01 0.01 0.02 0.03 0.04 0.07 0.04 0.03
8 0 0 0 0 0.01 0.02 0.03 0.05 0.08 0.05
9 0 0 0 0 0 0.01 0.01 0.03 0.06 0.1

Exhibit 10 Transition Matrix for open to closed losses.
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our example, in the initial 
class of 16 where the 
probability is less then 100 
percent.  The rest of the 
probability is carried in the 
fourth type of transition the 
closed to open transitions 
shown in exhibit 12.  
Although this type of 
transition is rather rare, they 
are shown to illustrate that 
this portion of the matrix can contain real data and should not be ignored.  This quadrant of 
the matrix must exist in order to accommodate the few claims that may fall into it.  
Otherwise, when coding to process data, errors can appear.               

A second quantity that needs to be 
developed is a vector representing the 
probability of a claim being in a class state at an 
evaluation.  This is performed as follows: One 
selects the evaluation of interest and assigns 
class values to all claims based on size and open 
status at the evaluation.  Then, the count for 
each class is divided by the total number of 
claims in the evaluation.  This will produce a 
vector of probabilities, an example of which, is 
shown in exhibit 13.  

If we take the square Markov transition 
matrix for the transition from 24 to 36 months 
shown in exhibit 8 and multiply it by the 24 
month initial vector shown in exhibit 13, the 
result will be a one dimensional vector that 
contains the final probabilities at 36 months.  
The Markov transition matrix chain is then 

Initial Values Initial
24 month evaluation Vector

Claim for Matrix
Class Count Prob. multiplication

0 67 0.016 0.016
1 9 0.002 0.002
2 33 0.008 0.008
3 102 0.024 0.024
4 286 0.067 0.067
5 755 0.177 0.177
6 1905 0.447 0.447
7 696 0.163 0.163
8 237 0.056 0.056
9 69 0.016 0.016
10 0 0.000 0.000
11 0 0.000 0.000
12 1 0.000 0.000
13 2 0.000 0.000
14 6 0.001 0.001
15 17 0.004 0.004
16 49 0.012 0.012
17 17 0.004 0.004
18 6 0.001 0.001
19 2 0.000 0.000

Total 4259 1.000

Exhibit 13. A vector of initial
probabilities for 24 month 
evaluation. 

Transition from 24 to 36 months
Final Initial Class
Class 10 11 12 13 14 15 16 17 18 19

0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0.02 0 0 0
6 0 0 0 0 0 0 0.04 0 0 0
7 0 0 0 0 0 0 0.02 0 0 0
8 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0

Exhibit 12 Transition Matrix for close to open losses
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Initial Values
24 month evaluation

Claim
Class Count Prob.

0 0 0
1 0 0
2 0 0
3 0 0
4 0 0
5 1 1
6 0 0
7 0 0
8 0 0
9 0 0
10 0 0
11 0 0
12 0 0
13 0 0
14 0 0
15 0 0
16 0 0
17 0 0
18 0 0
19 0 0

Total 1 1

Exhibit 14.  Initial vector for a claim
of $2,000,000 size and a maturity
of 24 months. 

established by using this final at 36 months vector, and using it as the initial vector at 36 
months and multiplying the 36 to 48 month transition matrix by it resulting in the final at 48 
month probability vector.  This process is continued in maturity order until the oldest 
transition matrix is used.  The last transition matrix may have to be judgmentally adjusted so 
that all claims are closed after it is used.  This is accomplished by using a matrix where the 
first and last quadrants, exhibits 9 and 12 contain all zeros, and 100% of the probability is in 
the other two quadrants, exhibits 10 and 11. 

 We now have all the tools necessary to evaluate loss development by transition matrix 
theory.  Let us consider the ultimate loss development of an individual claim.  For an 
example, let us select a $2,000,000 claim that is open at 24 months.  Then, we raise the 
question, what does the ultimate development for this claim look like?  To arrive at the 
answer we simply place this claim in an initial vector, and we multiply this vector by all the 
transition matrices in maturity sequence forming a Markov transition chain.   

 The initial vector for this is a special case where all the 
probability is concentrated in one class, and our example is 
shown in exhibit 14.  When this vector is multiplied by the 
transition matrix for the 24 to 36 month transition, the result 
is a final value vector which 
contains the contents of the 
initial class 5 column of the 
transition matrix, as shown 
in exhibit 15.  

This final at 36 month 
vector serves as the initial 
vector for 36 months to 
multiply with the transition 
matrix for 36 to 48 months 
forming the next step in the 
Markov chain.  This process 
is repeated until all of the 
transition matrices are used.  

The final value vector that results is the ultimate loss 

Final Value
36 Month Maturity

Class Prob.
0 0.017
1 0.029
2 0.046
3 0.075
4 0.121
5 0.193
6 0.121
7 0.075
8 0.046
9 0.029

10 0.005
11 0.009
12 0.015
13 0.025
14 0.040
15 0.064
16 0.040
17 0.025
18 0.015
19 0.009

Total 0.000

Exhibit 15.  Final vector for a claim
of $2,000,000 size and a maturity
of 24 months at 36 months.
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development for the claim in our example.  In order to illustrate this example, artificial data 
in transition matrices is used.  The results of these various transitions are shown in a graph in 
Exhibit 16. One obvious feature of this graph is the two distinct peaks.  The first one is in 
the open claims range, (Classes 0 to 9) and the second one in the closed range, (Classes 10 to 
19)  This shows that as claims mature, the peak decreases on the left, and increases on the 
right, corresponding with a decrease in open claims and an increase in closed claims.  The 
“Final” line, indicated by triangles, shows a peak, centered around class 15 (the same size as 
our starting size class 5) and classes 0 through 9 have zero probability signifying there are no 
open claims.  It is interesting to note that there is about 3% probability in class 10 which is 
the closed, zero size class.  This allows us to make a statement about the potential loss 
development of an open claim.  We can say that its ultimate value will be distributed with the 
probabilities contained in the “Final” line shown on this graph.  It has some probability of 
closing with no payment, and the rest of the probability is distributed with the indicated 
distribution of size. 

 

 

 

 

 

 

  

 

 

 

It is possible to select the points corresponding to the closed with non-zero size on the 
“Final” line and renormalize the probabilities and fit a distribution.  This will be discussed 
further when the process is applied to real data.  

Exhibit 16.  Graph showing intermediate and final results for a initial class 5 claim
at 24 months maturity.

0

0.05

0.1

0.15

0.2

0.25

0 2 4 6 8 10 12 14 16 18

Class

P
ro

b
ab

il
it

y

1st trans. (36 mo)

2nd trans. (48 mo)

Final (60 mo)



Transition Matrix Theory and Individual Claim Loss Development 
 

126 Casualty Actuarial Society Forum, Spring 2005 

2.3 Transition Matrix Applied to Real Data 
A very large 

database was 
available for 
testing out this 
procedure.  This 
data consists of all 
the claims that are 
submitted to a very 
large reinsurance 
intermediary for 
claims processing.  
The details of 
processing this 
data is contained in appendix A. 

2.3.1 Data Attributes 

 It is interesting to explore the size of loss distribution of the claims used in this study.  
Exhibit 17 contains the loss size distribution of the 28,000 claims in the study as of 2003.   
The size boundaries in this LSD, at first, appear to be unusual.  They were selected to 
provide 14 intervals between $100,000 and $350,000,000.  They were also selected to 
increase exponentially, and each is 1.79121 times the last one.  Here we see about 3/4 of the 
claims are over $100,000, 
about 43% are over 
$574,702, 1/10 are over 
$3,302,830, and about 1% 
are over $18,981,451.  It 
would appear that there is 
enough population in all the 
size bands to allow a valid 
study.  

Exhibit 18. Graph of the distribution of the claim sizes used in the study.

0

500

1000

1500

2000

2500

3000

3500

4000

- 100,000,000 200,000,000 300,000,000 400,000,000 500,000,000

avg loss

c
o

u
n

t

 Interval Loss Average Interval Cumulative % Exceeding
Class Lower Limit Upper Limit Average in Interval Count Count Percent Upper Limit
001 -                5,423             2,712             1,461             2039 2,039      7.3% 92.7%
002 5,423             9,714             7,569             7,422             528 2,567      9.1% 90.9%
003 9,714             17,400           13,557           13,171           735 3,302      11.8% 88.2%
004 17,400           31,168           24,284           23,963           1009 4,311      15.4% 84.6%
005 31,168           55,828           43,498           42,707           1212 5,523      19.7% 80.3%
006 55,828           100,000         77,914           76,343           1850 7,373      26.3% 73.7%
007 100,000         179,121         139,561         137,018         2366 9,739      34.7% 65.3%
008 179,121         320,845         249,983         246,534         2916 12,655    45.1% 54.9%
009 320,845         574,702         447,774         438,115         3266 15,921    56.7% 43.3%
010 574,702         1,029,416      802,059         772,980         3667 19,588    69.8% 30.2%
011 1,029,416      1,843,905      1,436,661      1,364,345      3273 22,861    81.4% 18.6%
012 1,843,905      3,302,830      2,573,368      2,434,316      2071 24,932    88.8% 11.2%
013 3,302,830      5,916,079      4,609,455      4,382,069      1367 26,299    93.7% 6.3%
014 5,916,079      10,596,969    8,256,524      7,850,304      875 27,174    96.8% 3.2%
015 10,596,969    18,981,451    14,789,210    13,711,652    467 27,641    98.5% 1.5%
016 18,981,451    33,999,861    26,490,656    24,389,644    258 27,899    99.4% 0.6%
017 33,999,861    60,901,062    47,450,462    43,658,304    106 28,005    99.8% 0.2%
018 60,901,062    109,086,897  84,993,980    83,690,124    38 28,043    99.9% 0.1%
019 109,086,897  195,398,091  152,242,494  138,646,237  17 28,060    100.0% 0.0%
020 195,398,091  350,000,000  272,699,046  262,891,307  9 28,069    100.0% 0.0%
021 350,000,000  626,923,500  488,461,750  457,301,309  2 28,071    100.0% 0.0%

Exhibit 17.  This is the size of loss profile of the claims used in this study after trend and at latest evaluation.
Also shown are the interval end-points for defining the size classes.
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2.3.2 Lognormal 
Behavior 

Exhibit 18 shows a 
graph of the size of loss 
profile.  This shows the 
claim count in asize 
interval verses the 
average size of the 
interval (the average of 
the upper and lower 
bound)  This view shows 
a typical heavy tailed 
distribution with a significant skew to the right, but, one can get little other insight from it.  
Exhibit 19 shows the claim count by interval, plotted as a histogram of the intervals.  This 
reveals much more about the distribution of the data.  We see a bell shaped curve with little 
skewing left or right except for the elevated first interval.  This occurs because the 
boundaries of the intervals increase exponentially.  This behavior suggests that the losses are 
log normally distributed.  Exhibit 20 shows the claim count plotted verses the interval 
average on a log scale.  Again, we see the bell shaped curve with little skewing.  The elevated 
first interval is probably due to the fact that it does not follow the exponential pattern of the 
other intervals.  It contains all losses between 0 and $5,000 which would have been 
distributed over several intervals had they been defined with narrower (and exponential) 
boundaries.  We find further support for the hypothesis that these losses are distributed log 
normally when we check the moments of this distribution.  If we use the grouped data and 
take the log of the interval average as the distribution, we get a mean of 12.15, a standard 
deviation of 2.04, a skewness of -.4 and a kurtosis of 2.9.  The last two are of particular 
interest as a distribution with a skewness between -0.5 and 0.5 is considered to be 
symmetrical and a normal distribution has a kurtosis of 3.  This suggests that the lognormal 
distribution is consistent with this data. 

Exhibit 19.  Histogram plot of claim counts by size class for losses in study. 
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Exhibit 20. Log plot of claim counts of losses used in study.
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Final Initial size category ("O" for open, "C" for closed)
Class O000 O001 O002 O003 O004 O005 O006 O007 O008 O009 O010 O011 O012 O013 O014 O015 O016 O017 O018 O019 O020 O021 C000 C001 C002 C003 C004 C005 C006 C007 C008 C009 C010 C011 C012 C013 C014 C015 C016 C017 C018 C019 C020 C021
O000 0.00
O001 0.35 0.01 0.01 0.00
O002 0.01 0.34 0.01 0.00
O003 0.00 0.32 0.01
O004 0.00 0.03 0.04 0.40 0.01 0.01 0.01
O005 0.01 0.01 0.02 0.39 0.00
O006 0.00 0.01 0.02 0.03 0.42 0.01 0.00
O007 0.00 0.02 0.03 0.02 0.05 0.03 0.43 0.01 0.01 0.00
O008 0.02 0.01 0.02 0.02 0.03 0.07 0.46 0.02 0.00 0.01
O009 0.01 0.02 0.02 0.01 0.03 0.06 0.48 0.04 0.01 0.03

O010 0.01 0.03 0.01 0.02 0.03 0.03 0.07 0.51 0.05
O011 0.03 0.00 0.02 0.03 0.03 0.05 0.48 0.08 0.03
O012 0.01 0.00 0.01 0.01 0.00 0.04 0.08 0.54 0.04 0.02
O013 0.00 0.01 0.00 0.00 0.01 0.02 0.05 0.61 0.10
O015 0.00 0.00 0.00 0.00 0.01 0.45 0.15
O016 0.01 0.00 0.00 0.01 0.02 0.41 0.18
O017 0.00 0.01 0.07 0.47
O018 0.06 0.75
O019 0.33
O020 0.67 1.00
O021 1.00
C000 0.41 0.39 0.29 0.31 0.16 0.14 0.12 0.12 0.11 0.09 0.11 0.03 0.07 0.17 0.04 1.00
C001 0.05 0.08 0.09 0.04 0.03 0.02 0.01 0.03 0.01 0.00 0.01 0.01 1.00
C002 0.01 0.02 0.01 0.01 0.01 0.02 0.00 0.00 0.00 1.00
C003 0.00 0.05 0.03 0.02 0.01 0.02 0.01 0.00 1.00
C004 0.00 0.02 0.01 0.02 0.02 0.00 0.01 0.00 1.00
C005 0.00 0.01 0.03 0.09 0.03 0.01 0.01 0.00 0.00 1.00
C006 0.00 0.02 0.02 0.02 0.07 0.10 0.03 0.02 0.01 0.00 1.00
C007 0.01 0.02 0.03 0.02 0.01 0.03 0.13 0.02 0.02 0.00 0.00 1.00
C008 0.01 0.03 0.02 0.01 0.04 0.03 0.12 0.05 0.02 0.00 0.01 1.00
C009 0.01 0.01 0.01 0.01 0.01 0.03 0.04 0.11 0.04 0.02 0.01 1.00
C010 0.01 0.02 0.01 0.01 0.02 0.01 0.02 0.04 0.14 0.02 0.02 1.00
C011 0.00 0.01 0.01 0.00 0.01 0.02 0.03 0.15 0.05 0.01 0.02 1.00
C012 0.02 0.00 0.00 0.01 0.02 0.15 0.03 0.02 1.00
C013 0.00 0.00 0.00 0.01 0.04 0.11 0.02 0.04 0.06 1.00
C014 0.00 0.00 0.01 0.03 0.17 0.15 1.00
C015 0.01 0.07 1.00
C016 0.00 0.00 0.07 0.18 0.17 1.00
C017 0.06 0.25 1.00
C018 0.50 1.00
C019 1.00
C020 0.33 1.00
C021 1.00

Exhibit 21 An example of a transition matrix for GL data for the transition of 24 to 36 months
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Final Initial Size Class
Size 
Class 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021
000 0.00 0.80 0.54 0.45 0.42 0.42 0.41 0.36 0.36 0.35 0.33 0.29 0.29 0.27 0.30 0.19 0.10 0.14 0.17 0.06 0.23
001 0.04 0.10 0.14 0.13 0.09 0.06 0.03 0.02 0.02 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
002 0.00 0.09 0.02 0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
003 0.01 0.03 0.05 0.05 0.03 0.03 0.02 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
004 0.01 0.05 0.07 0.10 0.05 0.04 0.02 0.02 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
005 0.01 0.05 0.08 0.08 0.14 0.05 0.04 0.02 0.02 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
006 0.01 0.03 0.07 0.06 0.08 0.14 0.06 0.04 0.02 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
007 0.01 0.04 0.02 0.04 0.06 0.08 0.19 0.08 0.03 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
008 0.01 0.01 0.03 0.04 0.04 0.06 0.10 0.23 0.08 0.03 0.02 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00
009 0.02 0.01 0.01 0.01 0.03 0.04 0.06 0.10 0.24 0.08 0.04 0.02 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.00
010 0.02 0.01 0.02 0.02 0.01 0.03 0.05 0.07 0.12 0.28 0.11 0.04 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00
011 0.03 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.05 0.13 0.32 0.12 0.05 0.02 0.03 0.00 0.00 0.00 0.00 0.01
012 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.02 0.03 0.09 0.29 0.08 0.04 0.01 0.01 0.01 0.00 0.00 0.01
013 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.04 0.11 0.34 0.11 0.05 0.01 0.02 0.00 0.01 0.05
014 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.05 0.13 0.38 0.10 0.04 0.04 0.00 0.02 0.01
015 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.05 0.09 0.45 0.15 0.06 0.01 0.08 0.01
016 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.11 0.51 0.16 0.02 0.07 0.01
017 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.05 0.15 0.55 0.21 0.72 0.04
018 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.39 0.03 0.01
019 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.00 0.04
020 0.57 0.67
021 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33

Exhibit 22. This is an ultimate matrix for the transition from 24 months maturity to ultimate.  A claim open at 24 months will have
an ultimate size that has a probability distribution described by the probabilities under its initial class size. 
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2.3.3 Transition Matrix Results 

This data was processed through a Markov transition matrix analysis, that produced 
transition matrices which were multiplied together to yield ultimate matrices.  Exhibit 21 
shows an example of a transition matrix from this study.   This one is for the transition from 
24 to 36 months.  Note that the classes indicating size and open status have been modified 
from the earlier example.  Open claims are indicated with a class starting with an “O” and 
closed with a “C”.  Size ranges from 0 to 20 where 0 is a loss size of $0.00. 

2.3.4 Distributional Development 

 An Ultimate Matrix is shown in exhibit 22.   Note that 
the open and closed status has been collapsed into the 
closed status.  This was accomplished by assuming that 
the final status of the last set of transitions was always 
closed.  Since, at 23 years more than 95% of the 
transitions were closed to closed, this is not thought to be 
an unreasonable assumption.  This Ultimate Matrix can be 
thought of a series of one dimensional vectors stacked 
next to each other.  Each vector provides the prediction 
of ultimate size based on the initial size.  This provides a 
critical insight.  This suggests that it is possible to describe 
the loss development of an individual open claim.  This 
vector of final possible outcomes provides some 
probability of closing with no payment, or an array of 
probabilities of closing at various sizes.  We can study the 
conditional probability given that a claim closes with some 
payment by removing the probability of closing with no 
payment into a separate category.  After the zero claims 
are removed, what is left is a probability distribution of final size given an initial size and 
initial maturity.   Exhibit 23 shows the final distribution of a loss that had an initial size 
category 7 at a maturity of 24 months.   

 

Size Probability
Category

000 0.362
001 0.029
002 0.019
003 0.020
004 0.024
005 0.036
006 0.059
007 0.189
008 0.101
009 0.064
010 0.047
011 0.030
012 0.009
013 0.007
014 0.002
015 0.001
016 0.000
017 0.000
018 0.000
019 0.000
020 0.000
021 0.000

Exhibit 23 - Ultimate size vector for
size category 7 at 24 months.
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Size Average Log of avg Probability Normalized
Category Lower Limit Upper Limit Loss size Loss Size (class) Probability

007 x*prob x^2*prob x^3*prob x^4*prob
000 0 0 0.00 0.3617
001 0 5,423 2,712 7.91 0.0294 0.0460 0.36 2.88 22.74 179.73
002 5,423 9,714 7,569 8.93 0.0192 0.0301 0.27 2.40 21.48 191.86
003 9,714 17,400 13,557 9.51 0.0204 0.0320 0.30 2.90 27.59 262.51
004 17,400 31,168 24,284 10.10 0.0244 0.0383 0.39 3.90 39.39 397.78
005 31,168 55,828 43,498 10.68 0.0363 0.0568 0.61 6.48 69.21 739.18
006 55,828 100,000 77,914 11.26 0.0591 0.0927 1.04 11.75 132.39 1,491.19
007 100,000 179,121 139,561 11.85 0.1888 0.2958 3.50 41.51 491.77 5,825.66
008 179,121 320,845 249,983 12.43 0.1005 0.1575 1.96 24.33 302.40 3,758.64
009 320,845 574,702 447,774 13.01 0.0642 0.1005 1.31 17.02 221.52 2,882.39
010 574,702 1,029,416 802,059 13.59 0.0469 0.0735 1.00 13.59 184.77 2,512.00
011 1,029,416 1,843,905 1,436,661 14.18 0.0304 0.0476 0.67 9.57 135.68 1,923.60
012 1,843,905 3,302,830 2,573,368 14.76 0.0085 0.0134 0.20 2.91 42.94 633.78
013 3,302,830 5,916,079 4,609,455 15.34 0.0066 0.0103 0.16 2.42 37.08 568.94
014 5,916,079 10,596,969 8,256,524 15.93 0.0021 0.0033 0.05 0.83 13.28 211.51
015 10,596,969 18,981,451 14,789,210 16.51 0.0010 0.0015 0.02 0.41 6.70 110.69
016 18,981,451 33,999,861 26,490,656 17.09 0.0003 0.0005 0.01 0.14 2.42 41.30
017 33,999,861 60,901,062 47,450,462 17.68 0.0001 0.0001 0.00 0.04 0.72 12.74
018 60,901,062 109,086,897 84,993,980 18.26 0.0000 0.0000 0.00 0.01 0.22 4.02
019 109,086,897 195,398,091 152,242,494 18.84 0.0000 0.0000 0.00 0.00 0.03 0.58
020 195,398,091 350,000,000 272,699,046 19.42 0.0000 0.0000 0.00 0.00 0.00 0.00
021 350,000,000  626,923,500      488,461,750  20.01 0.0000 0.0000 0.00 0.01 0.23 4.59

Total 1.000 mean (mu) E(x^2) E(x^3) E(x^4)
11.86 143.12 1,752.57 21,752.68

initial class 007 variance 3rd moment 4th moment
average size 139,561 2.39 -1.95 21.95

log of avg size 11.85 std dev(sigma) skewness kurtosis
mu 11.86 1.55 -0.53 3.84

sigma 1.55
ratio mu/log(avg) 1.00
ratio sigma/mu 0.13

skewness -0.53
kurtosis 3.84

Exhibit 24 - Moments of ultimate size vector for Category 7 size at 24 months.

We can apply the same log normal analysis, used previously, to this distribution, and we get 
the results shown on Exhibit 24.  Here we see a mu of 11.86, a sigma of 1.55, a  skewness of 
-0.53, and a kurtosis of 3.84.  The skewness close to zero suggests that the ultimate values 
are lognormally distributed.   

It is instructive to divide the final mu and sigma by the log of the initial value.  Here we 
find that the final mean is very nearly equal to the initial value of the loss.  Also, the standard 
deviation is a small fraction of the initial mean.   This result suggests the remarkable 
conclusion. It seems that the loss development potential of a claim is that its ultimate value 
will be log normally distributed with a mu equal to the natural log of the initial value, and a 
sigma that can be predicted.  Although this seems to be counter intuitive, we must remember 
that the formula for the mean of a lognormal has the following formula: 

 

mean = e^(mu+((sigma^2)/2)) 
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 which leads to an increase in the mean as sigma grows.  So, the resulting average loss at 
ultimate will be greater then the current evaluation.   

2.3.5 Variation Over Initial Size 

 The next question to investigate is how mu and sigma of the ultimate distribution vary 
with initial size and maturity.   Shown in exhibit 25 are the ultimate distributions for three 
initial claims sizes, Classes 6, 7, and 8, initially at 24 months maturity.  This shows a peak of 
25 to 30 percent in the Class 0 (closed with no payment) category.  To the right, each curve 
has a distinctive bell shaped curve that peaks in the final size category that is the same as the 
initial size category.  Each curve looks symmetrical, and, remarkably like each other. 

  

Exhibit 25 Graph of final distribution of 24 month initial open claims with intital sizes of Class 6, Class 7, and Class 8
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The graphical appearance of this data alone suggests a possible behavior where the final size 
is related to the initial size, and the spread of the distribution does not vary with initial size.   

Exhibit 26 is similar to the previous graph with a wider range of initial sizes.  This covers 
size classes 7 to 14. The next exhibit is a graph of all the ultimate distributions for the 
24month to ultimate transition.  Each curve is for a different initial size class.  They all 
demonstrate the bell shaped appearance seen previously, suggesting a lognormal distribution.   
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Exhibit 26 Graph of final distribution of 24 month initial open claims with intital sizes of Class 4 to Class 11.
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The striking aspect of this graph is how much the bell shaped curves resemble each other in 
the range of size class 5 to 10.   At first glance, these appear as identical curves which are 
offset from each other by a constant amount.  Since the boundaries of the classes were 
defined with a multiplicative factor, the constant spacing occurs because of the logarithmic 
nature of the scale, and the fact that the mu of each distribution has a relation to the initial 
loss size.  This relationship 
is that, the mu is nearly the 
same as the logarithm of 
the original loss size.  The 
fact that the shape of the 
curves do not change as 
they progress from left to 
right suggest that the 
spread parameters are very 
similar for all the curves.   

Exhibit 27 shows the mu, sigma, skewness, and kurtosis of all the 24 month to ultimate 
distributions by initial size classification.  Here we see that the mu’s are all very close to the 
log of the initial, and the sigma values are all very similar.  In exhibit 28 we graph the mu’s 

Parms of
average log of ult dists. ratio  ratio  

initial class class size avg size mu sigma Skewness mu/log(avg) sigma/mu
001 2,712 7.91 11.93 2.57 -0.34 1.51 0.22
002 7,569 8.93 10.16 1.95 0.78 1.14 0.19
003 13,557 9.51 10.37 1.97 0.45 1.09 0.19
004 24,284 10.10 10.49 2.00 0.62 1.04 0.19
005 43,498 10.68 10.84 1.84 0.21 1.01 0.17
006 77,914 11.26 11.24 1.77 -0.04 1.00 0.16
007 139,561 11.85 11.86 1.55 -0.53 1.00 0.13
008 249,983 12.43 12.27 1.43 -0.90 0.99 0.12
009 447,774 13.01 12.75 1.45 -1.31 0.98 0.11
010 802,059 13.59 13.28 1.43 -1.76 0.98 0.11
011 1,436,661 14.18 13.81 1.46 -1.94 0.97 0.11
012 2,573,368 14.76 14.54 1.44 -2.16 0.98 0.10
013 4,609,455 15.34 15.25 1.14 -2.07 0.99 0.08
014 8,256,524 15.93 15.75 0.95 -3.14 0.99 0.06

Exhibit 27 - Parameters for ultimate distributions by size class for 24 month initial losses
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and the ratio of mu to the natural log of the average loss in the interval.  This shows a strong 
relationship between these two values.  

 The sigma values shown in 
exhibit 27, and graphed in 
exhibit 29, show a gradual 
decrease as the loss size 
increases.  It may be possible to 
find a relationship between the 
loss size and sigma.  It appears 
that a linear relationship 
between sigma and the natural 
log of the initial loss may 

describe the behavior of sigma.  

The sknewness values shown 
in exhibit 27, and, graphed in 
exhibit 30, are positive for the 
small losses and negative for the 
large losses, and close to zero 
for the mid size losses.  This is a 
relatively complex behavior but 
it can be understood based on 
the nature of the reinsurance 
claims that constitute the data.     

Remember that these are 
only claims that are submitted 
for reinsurance recoveries.  The 
full inventory of claims are not 
represented here.  The positive 
skewing of the smaller claims 
can be understood as being 
caused by the submission of 
small claims that are expected to 

Exhibit 29 - Graph showing the sigma values for the lognormal distributions for the ultimate values 
for claims at 24 months. 
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Exhibit 30 - Graph showing the skewness values for the lognormal distributions for the ultimate values for 
claims at 24 months. 
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Exhibit 28 - This graph shows the natural log of the average loss size, and the mu
of the lognormal distribution of the ultimate loss size distribution for claims with a 
current maturity of 24 months.  
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settle are larger amounts and enjoy a reinsurance recovery.   

The larger claims may skew negatively because they are large enough to feel the effect of 
policy limits.  As large claims settle, they are always free to settle at smaller then currently 
reserved amounts, but, any tendency to settle at higher values may be limited when the 
policy limit is reached. 

Thus, we can understand the appearance of the positive skewing of the small claims and 
the negative skewing of the large claims as being due to data reporting and policy limit 
effects and is not an essential element of the loss development.  The use of a lognormal 
distribution to describe the ultimate development of an individual claim continues to be 
consistent with the observations.   

At this point, there is enough evidence to postulate a model for ultimate loss 
development for open claims at 24 months maturity.  A lognormal distribution with a mu 
equal to the natural log of the open claim size, and a sigma which is described by a linear 
relationship between sigma and the natural log of the open claim size is consistent with the 
current observations.   

One must remember that this is a conditional distribution, based on the condition that 
the claim does not close with no payment.  We must remember that the transition matrix 
process contains an ultimate size category 000 which contains a significant number of claims 
that close with no payment.  One needs only to refer back to exhibit 23, and pick the value 
from the first line under the correct initial loss size, to get the probability that the claim 
closes with no payment.     

Another consideration 
in the use of this model is 
that the primary policy 
limit distribution must be 
applied after the loss 
development is applied. 

2.3.6 Exploration over 
Maturities 

Thus far, we have 
explored loss development 

Size Average Size Ratio of Mu/natural log of average size
Category in Interval Maturity in Months

24 36 48 60 72 84 96 108
001 2,712            1.51 1.52 1.48 1.46 1.44 1.46 1.43 1.44
002 7,569            1.14 1.15 1.14 1.18 1.11 1.10 1.17 0.99
003 13,557          1.09 1.11 1.08 1.06 1.07 1.01 1.05 0.99
004 24,284          1.04 1.02 1.04 1.05 1.06 0.99 0.98 0.96
005 43,498          1.01 1.00 1.00 0.98 0.98 0.95 0.96 0.99
006 77,914          1.00 0.99 0.98 0.99 0.99 0.99 1.00 0.99
007 139,561        1.00 0.98 0.96 0.98 0.98 0.97 0.97 0.97
008 249,983        0.99 0.98 0.98 0.98 0.97 0.97 0.98 0.98
009 447,774        0.98 0.98 0.98 0.97 0.98 0.98 0.98 0.99
010 802,059        0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
011 1,436,661     0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98
012 2,573,368     0.98 0.99 0.99 0.98 0.99 0.99 0.99 0.99

Exhibit 31 - This shows the ratio of the mu of the ultimate distribution divided by
the natural log of average size in the initial size category.
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behavior at one selected initial maturity.  In order to create a system that can accommodate a 
complete selection of real data, we need to be able to describe this process for losses over 
the entire range of maturities.  In order to do this, we first look at the comparison of the 
modeled mu to the natural log of the average loss size in each initial size category.  We are 
looking at the ability of the initial loss size to forecast the mu of the ultimate distribution.   
Shown in exhibit 31 is the ratio of the mu of the ultimate distribution divided by the natural 
log of the average loss within the size category.  If the forecast of mu is perfect, then this 
ratio should be 1.00, according to the postulated model.  What we find is a relative flat 
surface except for the turned edge, as shown in exhibit 32.  

The turned edge may be caused by the origin of the data.  Since it is a collection of claims 

that anticipate a reinsurance collection, it may be biased to develop larger.  A more complete 
collection of claims may not have this bias.  This suggests that the natural log of the current 
value of an open claim is a good predictor of the mu for the lognormal distribution 
describing the ultimate loss size.  

If we conclude that this surface is a plane, and we ignore the first size category (001), all 
the remaining points have an average of 1.005 and a standard deviation of 0.05  Our model 

Exhibit 32 - Surface of ultimate mu / ln(avg loss size) over the range of size categories
and months maturity of initial size observation.
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for estimating mu then becomes mu= 1.005 * ln(x), where x is the current open claim size.  
If one is not satisfied with the accuracy of applying one number over all size, maturity 
combinations, one could interpolate over the surface given in exhibit 31 and apply 
interpolated numbers to individual claims.   

2.3.6 The Sigma Surface 

We can also review the fitted sigma values as they vary by initial loss size and by initial 
maturity to see if a pattern emerges.  These values are shown in exhibit 33, and graphed as a  

surface in exhibit 34.  This data appears to have some structure associated with it.  There is a 
pronounced decrease in sigma as the size of the loss increases, and there is a modest 
decrease as the maturity of the claim increases.  To further understand how sigma varies, it is 
instructive to graph it as one of the other variables change.  First we look as the size changes.  

Initial Sigma at Ultimate
Size Initial Maturity in Months

Class 012 024 036 048 060 072 084 096 108 120
001 2.668 2.572 2.653 2.809 2.803 2.682 2.604 2.512 2.530 2.708
002 2.075 1.950 1.847 1.917 2.414 2.313 2.392 2.714 1.727 1.892
003 2.071 1.973 2.159 2.257 2.423 2.344 2.115 2.367 1.936 1.712
004 2.011 1.997 1.995 2.000 2.223 2.382 2.008 2.048 1.948 2.217
005 1.734 1.844 1.800 1.765 1.867 1.919 1.793 1.849 1.733 1.785
006 1.795 1.766 1.766 1.811 1.866 1.746 1.655 1.632 1.838 1.519
007 1.532 1.547 1.578 1.575 1.510 1.599 1.580 1.338 1.441 1.211
008 1.544 1.430 1.397 1.369 1.353 1.413 1.389 1.353 1.306 1.172
009 1.426 1.452 1.370 1.374 1.317 1.261 1.247 1.161 1.134 1.117
010 1.363 1.435 1.352 1.260 1.230 1.198 1.138 1.195 1.111 1.050
011 1.516 1.460 1.309 1.271 1.207 1.143 1.035 1.019 0.961 0.943
012 1.444 1.444 1.183 1.184 1.105 1.011 1.029 0.984 0.867 0.861
013 1.144 1.144 1.072 1.029 1.027 0.999 1.033 0.896 0.849 0.894
014 0.951 0.951 1.013 1.136 1.222 1.179 1.181 1.125 0.925 0.859
015 0.982 0.982 0.956 1.051 0.968 0.954 0.998 1.056 0.993 1.127

Exhibit 33 - These are the sigma's of the ultimate distributions
by initial size class and by initial maturity
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In exhibit 35, sigma is plotted as the size changes, and, each line represents a different 
maturity.  This shows the decrease over time, which becomes more gradual as time 
progresses.  If we assume that there is no structure in the maturity direction and all the 
variation is noise, we can average each size evaluation and plot the result.  This is shown in 
exhibit 36.  This shows more clearly the slowing of the decrease over time. 

Exhibit 35 - Graph showing the variation of sigma with the size of the claim.
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Exhibit 36 - Sigma's averaged over maturities and plotted verses size class.
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It was found that the inverse of sigma behaves in a more orderly fashion.  This variable 
appears to be linear when plotted against size class.  The plot of the inverse of the average 
sigma is shown in exhibit 37.   Here we see it is increasing at a constant rate.  This variable 
has an additional benefit in 
that it behaves well at its 
extremes.  At very large 
class sizes sigma becomes 
small, which is a believable 
result, and at very small 
class sizes it becomes very 
large, and then undefined.  
This is acceptable because 
there is no interest in 
modeling very, very small 
claims.   

Exhibit 37 - Plot of 1/(avg. sigma) verses loss size.
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The favorable behavior 
of this variable encourages 
us to explore the behavior of 
this transformed variable 
verses maturity.  Exhibit 38 
shows the plot of the inverse 
of sigma verses maturity, 
where, each line represents a 
size class.  The overall 
impression is there is a bit of 
increase as maturity 
progresses.  We average over 
the sizes and produce one 
value for each maturity and 
check to see if this varies as 
maturity.  These values are 
plotted in exhibit 40.  This 
shows a slight increase with 
maturity.  There is nothing to 
suggest that this increase is 
more complicated than a first order linear effect.  

2.3.7 Fitting the Sigma Surface 

These two 
observations of 
linear behavior 
of 1/sigma 
verses maturity 
and verses loss 
size suggests 
that a linear fit 
to the surface 
will allow use 

 

Exhibit 40 - Plot of 1/sigma verses maturity and size class.  
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Exhibit 38 - Plot of 1/sigma verses maturity.  Each line represents a different size class.
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Exhibit 39 Plot of average of 1/sigma verses maturity.
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to model sigma as a function of size and maturity.  The sigma values in exhibit 33 are 
inverted and are graphed in exhibit 40.  These values are analyzed by general linear 
regression against the dependent variables of, maturity in months, and, natural log of the 
average interval claims size.  This resulted in a fitted regression of: 

Sigma = 1/(maturity *0.001205+ln(loss size)*0.078874-0.34447) 

 A table of fitted sigma values are shown in exhibit 41, and these values are plotted in 
exhibit 42.  

 The error values for this regression are shown in exhibit 43.  These values are the fitted 
sigma values minus the actual sigma values observed at each maturity and size class.  The 
average of all these values is 0.00.  These values are graphed in exhibit 44. 

The only structure revealed in this graph is a sharp rise at early maturities and small size 
classes.  This model tends to overestimate sigma in this region, but, since there is little 
interest in this region, this is an acceptable error.  For those who need high accuracy in this 
area, it would be best to interpolate values directly from exhibit 33.  

 A review of the skewness as size and maturity is varied shows the same tendencies as 
noted earlier, positive skew for small losses and negative skew for large losses.  The 
skewness values are shown in exhibit 45 and the surface is shown in exhibit 46.  It may well 
be that the negative skewness and the  decrease in sigma for large claims is caused by policy 
limit censoring.   It is a long held view that small claims tend to develop larger, and large 
claims tend to develop smaller.  This evidence certainly supports that view.  One might be 
concerned that the proposed model will overdevelop large claims.  One should reexamine 
exhibit 26 and observe that the graphed distributions for the large initial size classes 

initial
size initial maturity
class 012 024 036 048 060 072 084 096 108 120
001 3.41 3.25 3.10 2.97 2.85 2.73 2.63 2.53 2.44 2.36
002 2.67 2.57 2.48 2.39 2.31 2.24 2.17 2.10 2.04 1.98
003 2.38 2.30 2.23 2.16 2.09 2.03 1.97 1.92 1.87 1.82
004 2.14 2.08 2.02 1.96 1.91 1.86 1.81 1.76 1.72 1.68
005 1.95 1.90 1.85 1.80 1.75 1.71 1.67 1.63 1.59 1.56
006 1.79 1.75 1.70 1.66 1.62 1.59 1.55 1.52 1.48 1.45
007 1.65 1.62 1.58 1.54 1.51 1.48 1.45 1.42 1.39 1.36
008 1.54 1.50 1.47 1.44 1.41 1.38 1.36 1.33 1.31 1.28
009 1.44 1.41 1.38 1.35 1.33 1.30 1.28 1.25 1.23 1.21
010 1.35 1.32 1.30 1.27 1.25 1.23 1.21 1.19 1.17 1.15
011 1.27 1.25 1.22 1.20 1.18 1.16 1.14 1.12 1.11 1.09
012 1.18 1.18 1.16 1.14 1.12 1.10 1.09 1.07 1.05 1.04
013 1.12 1.12 1.10 1.08 1.07 1.05 1.03 1.02 1.00 0.99
014 1.06 1.06 1.05 1.03 1.02 1.00 0.99 0.97 0.96 0.95
015 1.01 1.01 1.00 0.98 0.97 0.96 0.94 0.93 0.92 0.91

Exhibit 41 - Table of fitted sigma's. Exhibit 42 - Plot of fitted sigma's. Compare this with exhibit 34.
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demonstrate a high level of symmetry.  It seems that the skewness is resulting from an 
extended negative tail of small values.  The use of a model that does not pick up the negative 
skewness of large initial claims may only be missing a small probability of these small 
ultimates.   

The concern about underdeveloping smaller claims may be unnecessary.  It may be 
observed here because it is a characteristic of the reinsurance nature of the data.  More often, 
this process is applied to “ primary” data which will contain the complete inventory of small 
losses, not just the ones anticipating a reinsurance recovery.  These claims should develop in 
a less skewed manner.  

The Transition Matrix analysis of this data provides us with a  method to model the 
future ultimate distribution of an individual open claim of a given size x, and maturity m.  An 
open claim can be represented at ultimate as a lognormal distribution with:  

Exhibit 46 Graph of skewness values of ultimate distributions verses maturity and size.
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Exhibit 44 Plot of error values of regression for sigma.  Vertical scale is :
(modeled sigma - actual sigma)
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Initial average Skewness
Size size in Initial Maturity in Months
class interval 024 036 048 060 072 084 096 108 120
001 2,712 -0.34 -0.34 -0.15 -0.09 -0.17 -0.30 -0.21 -0.15 -0.07
002 7,569 0.78 0.86 1.05 0.54 1.12 1.29 0.95 2.67 2.46
003 13,557 0.45 0.56 0.61 0.85 0.81 1.27 0.94 1.32 1.70
004 24,284 0.62 0.57 0.65 0.84 0.90 1.23 1.32 1.21 1.13
005 43,498 0.21 0.14 0.23 0.41 0.53 0.65 0.81 0.82 0.85
006 77,914 -0.04 0.03 0.15 0.19 0.27 0.44 0.59 0.76 0.21
007 139,561 -0.53 -0.59 -0.40 -0.32 -0.14 0.08 0.49 0.63 0.09
008 249,983 -0.90 -0.81 -0.74 -0.52 -0.36 -0.54 -0.67 -0.64 0.30
009 447,774 -1.31 -1.34 -1.21 -0.96 -0.99 -0.86 -0.87 -0.67 -0.93
010 802,059 -1.76 -1.68 -1.78 -1.88 -1.88 -1.93 -2.10 -2.17 -2.10
011 1,436,661 -1.94 -2.02 -1.97 -2.05 -2.14 -2.11 -2.26 -2.23 -2.36
012 2,573,368 -2.16 -2.34 -2.27 -2.24 -2.41 -2.60 -2.54 -2.66 -3.18
013 4,609,455 -2.07 -1.51 -2.49 -2.71 -2.92 -3.15 -2.62 -3.42 -3.73
014 8,256,524 -3.14 -3.20 -3.25 -3.57 -3.68 -3.15 -3.61 -2.79 -2.78
015 14,789,210 -2.81 -3.30 -3.02 -3.34 -3.63 -3.76 -4.21 -5.15 -5.11
Exhibit 45 Table of skewness values of ultimate distributions verses maturity and size.

 Error values of sigma regression
size initial maturity
class 012 024 036 048 060 072 084 096 108 120
001 0.74 0.67 0.45 0.16 0.04 0.05 0.03 0.02 -0.09 -0.35
002 0.60 0.62 0.63 0.48 -0.10 -0.07 -0.22 -0.61 0.31 0.09
003 0.31 0.33 0.07 -0.10 -0.33 -0.31 -0.14 -0.45 -0.07 0.10
004 0.13 0.08 0.02 -0.04 -0.32 -0.53 -0.20 -0.29 -0.23 -0.54
005 0.22 0.05 0.05 0.03 -0.11 -0.21 -0.12 -0.22 -0.14 -0.23
006 0.00 -0.02 -0.06 -0.15 -0.24 -0.16 -0.11 -0.12 -0.35 -0.07
007 0.12 0.07 0.00 -0.03 0.00 -0.12 -0.13 0.08 -0.05 0.15
008 -0.01 0.07 0.08 0.07 0.06 -0.03 -0.03 -0.02 0.00 0.11
009 0.01 -0.05 0.01 -0.02 0.01 0.04 0.03 0.09 0.10 0.09
010 -0.02 -0.11 -0.06 0.01 0.02 0.03 0.07 -0.01 0.05 0.10
011 -0.25 -0.21 -0.08 -0.07 -0.02 0.02 0.11 0.11 0.15 0.15
012 -0.27 -0.27 -0.02 -0.04 0.02 0.09 0.06 0.09 0.19 0.18
013 -0.03 -0.03 0.03 0.05 0.04 0.05 0.00 0.12 0.15 0.10
014 0.11 0.11 0.03 -0.10 -0.21 -0.18 -0.19 -0.15 0.03 0.09
015 0.03 0.03 0.04 -0.07 0.00 0.00 -0.05 -0.12 -0.07 -0.22

Exhibit 43 - This table contains the error values of the regression
for sigma.  The values shown are (fitted sigma - actual sigma).
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mu= 1.005 * ln(loss size) 

and, 

Sigma = 1/(maturity *0.001205+ln(loss size)*0.078874-0.34447) 

Where maturity is in months and loss size is in US dollars 

2.3.8 Effect of Policy Limits 

This study assumed that policy limits affected large losses and sought to avoid its effect.  
Due to this, the resulting distribution of ultimate losses, have no policy limit censoring.  It is 
necessary to introduce it to arrive at the correct final ultimate value.  The final distribution 
will be the lognormal distribution, given earlier, which has been censored by the policy limit 
for the claim.  If this is not available, then a reasonable assumed policy limit must be used. 

2.3.9 Effect of Zero Dollar Claims 

The transition matrix process produces an estimate for claims that close with no payment 
at every maturity.  The reader will remember in exhibit 24 all the statistical values are 
calculated using a conditional probability, after the probability of closing with no payment is 
removed.  Any estimate of future development must reflect this.  When taking an open non-
zero claim to ultimate, the exhaustive range of outcomes must include zero value of 
probability P(x=0) and the proposed lognormal with a mu and sigma as previously discussed 
that has a probability of (1-(P(x=0)).  A table of probabilities of closed with no payments is 
not included in this study because of the biased nature of the data.  Since the claims used 
here are only those submitted for a possible reinsurance recovery, it is expected that the 
numbers of CWNP claims will differ from a general population of claims.  

2.4 Comparison with Direct Transitions 

2.4.1 Lack of Memory 

The transition matrix process suffers the possibility of a troublesome error.  This is due 
to the implied independence from transition to transition.  It is as if each transition has no 
memory of earlier transitions.  A claim, at some value x, does not care how it came to have 
this value.  Its future transitions only depend on its current value.  This is clearly not the real 



Transition Matrix Theory and Individual Claim Loss Development 
 

Casualty Actuarial Society Forum, Spring 2005 145 

world situation.  Each claim has a complete history from occurrence to settlement, and each 
succeeding value has some dependence on earlier values.   

It is easy to imagine a scenario in the transition matrix approach that might be counter 
intuitive.  Say, a $1,000,000 claim that goes through ten transitions where each transition 
happens to reduce the value by half.  This results in the value of the claim reducing to $976.  
Remember that this transition is simply the movement from one class to the adjacent lower 
one.  The transition matrix approach allows this possibility (abet with low probability), but, 
intuition tells us that this doesn’t occur.  One might guess that the dispersion caused by 
future development is exaggerated by the transition matrix approach. 

2.4.2 An Alternative Method 

In order to assess how much distortion might be caused by this, a study involving direct 
observation was conducted.  The previous transition matrix approach involved observing 
each transition from year to year, and multiplying each transition until ultimate matrices were 
created.  This study utilized direct observation of the transition from first report to current 
value which is taken as a proxy for ultimate.  These observations were categorized as to 
initial size class, initial maturity, and final (current) size class at the latest evaluation, which 
allows these observations to be directly compared with the ultimate loss development 
matrices. 

Final Initial Class Grand  
Class 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 Total
000 2162 146 315 396 432 547 702 821 1038 919 722 443 263 134 44 18 8 3 2 9115
001 1478 33 68 84 95 83 59 43 35 31 16 8 3 2 1 2039
002 18 287 9 25 27 46 49 22 21 11 11 1 1 528
003 18 14 448 27 34 44 51 30 38 14 9 3 2 2 1 735
004 22 10 27 590 66 79 70 57 46 19 17 3 2 1 1009
005 18 10 23 41 784 87 84 59 49 33 17 4 2 1 1212
006 18 8 24 45 84 1302 117 99 73 50 19 8 1 2 1850
007 29 13 15 24 49 117 1701 194 117 65 24 13 2 1 1 1 2366
008 35 1 13 20 47 89 199 2058 275 112 41 12 9 3 2 2916
009 43 4 9 7 35 55 130 233 2352 265 91 26 12 2 2 3266
010 57 5 10 11 9 35 71 135 379 2588 293 55 14 3 1 1 3667
011 53 6 10 15 19 20 46 71 160 324 2302 192 37 13 4 1 3273
012 35 2 5 4 4 11 13 23 62 100 227 1434 123 24 1 2 1 2071
013 20 5 2 7 7 10 15 19 44 75 173 878 88 18 5 1 1367
014 10 1 3 4 6 3 7 14 5 27 47 98 588 52 8 1 1 875
015 5 1 4 4 5 3 3 5 9 22 19 28 58 282 16 2 1 467
016 2 1 1 2 2 5 2 6 9 8 19 35 157 5 3 1 258
017 1 1 4 4 7 16 12 55 4 2 106
018 2 1 1 1 2 30 1 38
019 1 3 13 17
020 1 6 2 9
021 1 1 2
Grand Total 4024 541 982 1301 1700 2535 3308 3872 4688 4591 3921 2456 1487 949 461 222 74 44 20 7 3 37186

Exhibit 47 - Counts of claims for initial report to final report (current) classified by
by initial and final size.  All initial maturities are shown here.
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This study used the same data as previously and was adjusted by the same trend.  To 
provide an overview of the outcome of this study, exhibit 47 shows the number of claims 
for all initial maturities when classified by initial and final (current) size.  

When we view any of the initial size class columns, the bell shaped distribution becomes 
obvious.  We can take the counts of initial claims in any column and divide it by the total 
counts in that column, and it represents the probability of a final size outcome given the 
initial size.  This is graphed in exhibit 48.  For clarity only the odd numbered size classes 

Exhibit 48 - Plot of probability for final size class for a selection of initial size classes for
the initial to final transition.
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 are shown.  The graph continues to show the strong “normal distribution like” behavior 
that we have seen previously.  We will look at the distribution statistics for each “ultimate” 
distribution to see if this empirical ultimate transition is similar to the multiplied results from 
the transaction matrix method.  The counts are further classified by initial maturity, and the 
statistics, mean, standard deviation, skewness, and kurtosis are calculated allowing us to 
compare the results directly with those of the transition matrix study. 

2.4.3 Similar Results 
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The mu for these distributions are computed and then divided by the natural log of the 
average size within the interval similarly to what was done earlier for the transition matrix 
results. Exhibit 49 is a table of the mu to ln(x) ratio for the initial to “ultimate” transition 
data. 

This appears very similar to its transition matrix counterpart shown in exhibit 31.  The 
edge towards the small size classes is turned up as it is in the transition matrix study, though 
it doesn’t seem to be any pattern to the differences.  If one accepts this elevated mu’s for 
small initial claims to 
be caused by the 
data collection 
process, then this 
data supports the 
assertion that the mu 
of the distribution 
can be estimated by 
the natural log of the 
loss size.  This 
surface is graphed in 

Size Average Size Ratio of Mu/natural log of average size
Category in Interval Maturity in Months

012 024 036 048 060 072 084 096 108 120 132 144
001 2,712 1.60 1.55 1.57 1.53 1.60 1.45 1.59 1.49 1.42 1.40 1.69 1.43
002 7,569 1.08 1.06 1.10 1.04 1.06 1.10 1.02 1.00 1.07 1.10 1.08 1.16
003 13,557 1.07 1.05 1.04 1.06 1.06 1.09 1.00 1.08 1.04 1.06 1.08 1.03
004 24,284 1.04 1.05 1.05 1.02 1.03 1.03 1.03 1.04 1.00 1.01 1.03 1.06
005 43,498 1.03 1.03 1.03 1.02 1.01 1.00 1.01 1.00 0.99 1.02 1.01 1.02
006 77,914 1.01 1.02 1.01 1.01 1.00 1.00 1.01 1.00 0.99 0.98 0.98 1.00
007 139,561 1.00 1.01 1.00 1.00 1.01 0.99 0.99 0.99 1.00 1.00 1.00 1.00
008 249,983 1.00 1.00 0.99 1.00 0.99 1.00 0.99 1.00 0.98 0.99 0.99 1.00
009 447,774 0.99 1.00 0.99 0.99 0.99 1.00 1.00 1.00 0.99 0.99 1.00 1.00
010 802,059 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.99 1.00 0.99 1.00
011 1,436,661 0.99 0.99 0.99 0.99 0.99 0.99 1.00 0.99 0.99 1.00 0.99 1.00
012 2,573,368 0.98 1.00 0.99 1.00 1.00 0.99 0.98 0.99 0.99 0.99 0.98 0.99
013 4,609,455 0.99 1.00 1.00 1.00 0.99 0.98 0.99 1.00 0.97 1.00 0.99 1.00
014 8,256,524 0.99 1.00 0.99 0.99 0.99 1.00 1.00 0.99 1.00 1.00 1.00 0.96
015 14,789,210 0.99 1.00 0.99 0.97 0.98 1.01 0.99 1.00 1.00 1.00 1.00 1.00

Exhibit 49 - Table of ratio of mu / ln(x) for distributions of initial
 to final transitions.

Exhibit 50 - Graph of ratio of mu / ln(x) for distributions of initial to final transitions.
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Exhibit 50.   

The other important statistical parameter to check is the standard deviation of the log of 
the “ultimate” loss size.  Exhibit 51 shows the sigma’s of the ultimate distributions of the  

 

Initial Sigma at Ultimate
Size Initial Maturity in Months

Class 012 024 036 048 060 072 084 096 108 120 132 144
001 2.40 2.20 2.29 2.15 1.88 2.09 1.99 1.74 1.54 1.09 1.83 2.56
002 1.15 1.25 1.51 0.93 1.18 2.01 0.48 2.16 2.86 1.71
003 1.43 1.23 1.32 1.34 1.98 1.01 0.36 1.55 0.86 1.48 2.12 1.40
004 1.42 1.22 1.18 1.38 1.45 2.24 0.45 1.80 1.57 1.50 1.88 1.59
005 1.18 1.45 1.28 1.14 1.14 1.30 1.08 1.43 1.00 1.25 0.90 1.47
006 1.22 1.24 1.17 1.27 1.02 0.89 1.07 0.89 0.81 1.29 1.46 1.45
007 1.01 1.18 1.17 0.99 1.16 1.01 0.93 1.00 0.86 0.70 0.82 0.85
008 1.10 1.08 1.08 0.92 0.94 0.86 0.89 0.99 0.58 0.72 0.69 1.20
009 1.13 1.07 1.07 1.03 0.96 0.88 1.04 0.96 0.89 0.68 0.59 0.85
010 1.03 1.06 1.01 0.97 0.94 0.92 0.80 0.66 0.79 0.90 0.42 0.48
011 1.16 1.22 1.00 1.01 0.75 0.76 0.95 0.68 0.34 0.52 0.69 0.17
012 1.23 1.21 0.86 0.89 0.77 0.77 0.55 0.48 0.77 0.72 0.40 0.32
013 1.11 1.63 0.94 0.99 0.55 0.47 0.82 0.50 0.37 0.21 0.53 0.34
014 1.08 0.57 1.26 0.63 0.96 0.79 0.47 0.53 1.12 0.62 1.18 0.48
015 1.25 0.54 0.75 0.71 1.30 0.96 1.19 0.30 1.06 0.17 0.42 0.17
Exhibit 51 - These are the sigma's of the ultimate distributions for the
emperical initial to "ultimate" observations by initial size class and by
initial maturity.  

empirically observed initial to “ultimate” transitions, and, these are graphed in exhibit 52.  
Note that two values, initial size class 002, maturity 96 and 108 months, are missing due to 
sparse data. 

Exhibit 52 - Graph of  the sigma's of the ultimate distributions for the
emperical initial to "ultimate" observations by initial size class and by
initial maturity.
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When one compares them 
to the transition matrix 
values in exhibit 33 we see 
that the general shape of the 
surface is similar, but the 
values are somewhat higher.  
On average the transition 
matrix values are 1.4 times 
higher then the empirical 
values.  When we look at the 
surface of the empirical 
sigma’s we see a similar 
structure to that observed 
earlier for the sigma’s of the 
transition matrix study.  
Exhibit 52 shows the plot of 
the values as a surface, and is 
comparable to the plot in 
exhibit 34.  This shows 
higher values and a higher 
volatility in the small size 
classes.   

The “sideways” view of this plot shown in exhibit 53 shows these higher values at small 
size classes, and then a leveling off as initial size class increases 

If we take the average across the maturities and plot these averages verses the initial size 
class, we get a better sense of how sigma changes with initial size.  A plot of this is shown in 
exhibit 54 and we see a gradual decrease with increasing size.  If we take the inverse of this 
average sigma we see an increasing linear relation as shown in exhibit 55.  Again, this is 
consistent with our earlier model for sigma.   

Looking at the other dimension, change in maturity, we find that the sigma values show a 
gradual decrease with increasing maturity.  These values are plotted in exhibit 56, which is 

Exhibit 53 - Plot of emperical sigma's by initial size class. Each line represents
a different initial maturity.
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Exhibit 54 - Plot of emperical sigma's averaged over maturity and plotted by initial size class
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comparable to what was seen in the transition matrix values.  This is confirmed with a 
review of exhibit 39, which shows a gradual increase in 1/sigma.   

 

 

Exhibit 56 - Plot of emperical sigma's by months maturity.  Each line represents
a different initial size class.
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The empirical sigma data is averaged over all sizes and plotted by maturity to show the 
decreasing trend with maturity as shown in exhibit 57.  The inverse of the average 

Exhibit 57 - Plot of emperical sigma's averaged over initial size class and ploted by maturity
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sigma when plotted verses maturity shows the same increasing trend observed in the 
transition matrix data.  This is plotted in exhibit 58 and can be compared with exhibit 39. 

Exhibit 58 - Plot of inverse of average sigma's verses maturity.
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A review of the skewness statistics from the empirical study shows similar behavior to the 
transition matrix study.  The skewness is positive for small initial sizes and negative for larger 
sizes.  It has no trend as maturity varies.  The average for all observations is    -0.33.  

2.4.4 Sigma Differs 

The overall impression provided by the empirical study is that the lognormal model of 
developed from the transition matrix study does a good job of describing the loss 
development, but it needs adjustment.  The estimates of mu’s from both are very similar, 
and the skewness follows the same pattern.  The estimates of sigma follow a similar pattern 
but the values of the estimates differ.  The transition matrix values are about 1.4 higher than 
the empirical estimates.  If we accept the earlier argument that the transition matrix process 
may generate more variability then is present in reality, then it is necessary to find a way to 
reduce the variability.  We can accept the observed sigma values in the empirical study, but 
this has limited application.  Since the data has only one observation per claim it is limited 
and contains more noise.  Since sigma behaved similarly in both studies, and differed only by 
scale, it is better to accept the aggregate level of the empirical sigmas and to try to adjust the 
fitted sigma surface from the transition matrix study.  To do this we need to take a detailed 
look at the difference between the transition matrix and the empirical sigmas. 

We can measure the difference between these two by dividing the empirical sigmas from 
exhibit 51, by the transition matrix sigmas from exhibit 41, which results in the table and 

Sigma Ratio Surface
Initial Emperical Sigma's divided by TransitionMatrix Sigma's
Size Initial Maturity in Months

Class 012 024 036 048 060 072 084 096 108 120 avg.
001 0.90 0.85 0.86 0.77 0.67 0.78 0.76 0.69 0.61 0.40 0.73
002 0.56 0.64 0.82 0.48 0.49 0.87 0.20 1.14 0.65
003 0.69 0.62 0.61 0.59 0.82 0.43 0.17 0.65 0.44 0.86 0.59
004 0.70 0.61 0.59 0.69 0.65 0.94 0.22 0.88 0.81 0.68 0.68
005 0.68 0.78 0.71 0.65 0.61 0.68 0.60 0.77 0.58 0.70 0.68
006 0.68 0.70 0.66 0.70 0.55 0.51 0.65 0.55 0.44 0.85 0.63
007 0.66 0.76 0.74 0.63 0.77 0.63 0.59 0.74 0.60 0.58 0.67
008 0.71 0.75 0.77 0.67 0.69 0.61 0.64 0.73 0.44 0.61 0.66
009 0.79 0.74 0.78 0.75 0.73 0.70 0.83 0.83 0.79 0.61 0.76
010 0.75 0.74 0.74 0.77 0.77 0.77 0.70 0.56 0.71 0.86 0.74
011 0.76 0.84 0.76 0.80 0.62 0.67 0.92 0.67 0.36 0.55 0.69
012 0.85 0.84 0.72 0.75 0.70 0.77 0.53 0.49 0.88 0.84 0.74
013 0.97 1.42 0.88 0.96 0.54 0.47 0.79 0.56 0.44 0.23 0.73
014 1.14 0.60 1.25 0.55 0.79 0.67 0.39 0.47 1.21 0.72 0.78
015 1.27 0.55 0.79 0.67 1.34 1.00 1.19 0.28 1.06 0.16 0.83
avg. 0.81 0.76 0.78 0.70 0.71 0.70 0.61 0.63 0.67 0.65

Exhibit 59 - This is the ratio of the emperical sigmas in exhibit 52 divided by the transition matrix sigmas in
exhibit 34. A plot of this surface is shown at right.  The average of this surface is 0.704
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graph shown in exhibit 59.  This is the surface of the ratio that is the correction factor to 
take the fitted transition matrix sigma value to the actual empirical sigma value.  In a perfect 
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world, every single value would be equal to each other.  But, since there is noise in the data, 
variation is observed across the surface.   

2.4.5 Correction Factor 

We want to look for structure by taking the average across maturity and the average 
across size, which are displayed in the last column and the bottom row respectively.   First, 
we consider changes with size, and we plot the individual maturity data, and then the 
averages as shown in exhibit 60.  This reveals a slight upward trend with increasing initial 
loss size, however, the fluctuations in this line is well within the noise of the individual data 
points.   Looking at the behavior as maturity varies in exhibit 61, we see a similar result,  a 
slight decreasing trend as maturity increases which is much smaller than the noise of the 
original data.  In interest of parsimony we select this surface to be a level plane with a value 
of its average, 0.704. 

Exhibit 60 - Plot of sigma ratio surface showing how it changes with size. Individual maturities are shown at left, and 

values averaged over maturity is shown at right
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Exhibit 61 - Plot of sigma ratios as maturity varies.  The left shows each size class as an individual line.  The right shows
the values averaged over maturity.
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With this surface 
approximated as a single value, 
we adjust the fitted sigma 
values in exhibit 41, and 
compare them to the empirical 
values.  Exhibit 62 contains the 
revised fitted sigmas and this 
surface is plotted in exhibit 63.  

In order to test how well we 
have approximated the 
empirical sigmas we can 

subtract the two 
surfaces, the adjusted 
fitted sigmas in 
exhibit 62 and the 
empirical sigmas in 
exhibit 51.   

The resultant 
table of differences 
is shown in exhibit 
64 and plotted in 
exhibit 65.  Here we 

see the overall average of 0.01 of this surface is very close to zero indicating that the adjusted 
fitted sigmas are a good approximation to the average level of the empirical sigmas. 

initial fitted sigma values after factor adjustment
size initial maturity
class 012 024 036 048 060 072 084 096 108 120
001 2.40 2.29 2.18 2.09 2.00 1.92 1.85 1.78 1.72 1.66
002 1.88 1.81 1.74 1.68 1.63 1.58 1.53 1.48 1.44 1.39
003 1.67 1.62 1.57 1.52 1.47 1.43 1.39 1.35 1.31 1.28
004 1.51 1.46 1.42 1.38 1.34 1.31 1.27 1.24 1.21 1.18
005 1.37 1.34 1.30 1.27 1.23 1.20 1.17 1.15 1.12 1.10
006 1.26 1.23 1.20 1.17 1.14 1.12 1.09 1.07 1.04 1.02
007 1.16 1.14 1.11 1.09 1.06 1.04 1.02 1.00 0.98 0.96
008 1.08 1.06 1.04 1.01 0.99 0.97 0.95 0.94 0.92 0.90
009 1.01 0.99 0.97 0.95 0.93 0.92 0.90 0.88 0.87 0.85
010 0.95 0.93 0.91 0.90 0.88 0.86 0.85 0.83 0.82 0.81
011 0.89 0.88 0.86 0.85 0.83 0.82 0.80 0.79 0.78 0.77
012 0.83 0.83 0.82 0.80 0.79 0.78 0.76 0.75 0.74 0.73
013 0.79 0.79 0.77 0.76 0.75 0.74 0.73 0.72 0.71 0.70
014 0.75 0.75 0.74 0.73 0.72 0.70 0.69 0.69 0.68 0.67
015 0.71 0.71 0.70 0.69 0.68 0.67 0.66 0.66 0.65 0.64

Exhibit 62 - Adjusted fitted sigma surface (exhibit 42) after the
application of the adjustment factor.

Exhibit 63 - Plot of fitted sigma values after adjusting to the level of the emperical sigmas.
This is the data in exhibit 63 and can be compared to plot in exhibit 43. 
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Exhibit 65 - Plot of Error surface of difference between adjusted, fitted Transition Matrix sigma's
and emperical sigma's.
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Observing the average column and row in exhibit 64 there may be some residual 
behavior, the average difference seems to go from positive to negative with increasing size, 
and from negative to positive with increasing maturity.  These trends are small, and may be 
noise.  We also must consider that the empirical study used the transition from initial to 
current report for a proxy for ultimate development.  By adjusting the variation in transition 
matrix model to the level of the empirical data we have the shape of the transition matrix 
model, but the value levels of the empirically observed data. 

initial Error Surface - Difference between adjusted, fitted TM sigmas and Emperical sigmas (TM - E)
size initial maturity
class 012 024 036 048 060 072 084 096 108 120 avg.
001 0.00 0.09 -0.10 -0.06 0.12 -0.17 -0.14 0.04 0.18 0.57 0.05
002 0.73 0.56 0.24 0.76 0.45 -0.43 1.04 -0.76 0.32
003 0.24 0.39 0.25 0.18 -0.50 0.42 1.03 -0.20 0.46 -0.20 0.21
004 0.09 0.25 0.24 0.00 -0.11 -0.93 0.82 -0.56 -0.36 -0.32 -0.09
005 0.19 -0.11 0.02 0.12 0.10 -0.09 0.09 -0.28 0.12 -0.16 0.00
006 0.04 -0.01 0.03 -0.10 0.12 0.23 0.02 0.17 0.24 -0.27 0.05
007 0.16 -0.04 -0.06 0.10 -0.09 0.03 0.09 0.00 0.12 0.26 0.06
008 -0.02 -0.02 -0.04 0.10 0.06 0.11 0.06 -0.05 0.34 0.18 0.07
009 -0.12 -0.08 -0.10 -0.08 -0.02 0.03 -0.14 -0.08 -0.03 0.17 -0.05
010 -0.08 -0.13 -0.09 -0.07 -0.06 -0.05 0.05 0.17 0.03 -0.09 -0.03
011 -0.27 -0.35 -0.14 -0.17 0.09 0.05 -0.15 0.11 0.44 0.24 -0.01
012 -0.40 -0.38 -0.04 -0.09 0.02 0.00 0.21 0.27 -0.03 0.01 -0.04
013 -0.32 -0.84 -0.17 -0.23 0.20 0.27 -0.09 0.21 0.34 0.49 -0.01
014 -0.34 0.18 -0.53 0.10 -0.24 -0.08 0.23 0.16 -0.44 0.04 -0.09
015 -0.54 0.18 -0.05 -0.02 -0.61 -0.28 -0.53 0.36 -0.41 0.46 -0.14
avg. -0.04 -0.02 -0.04 0.04 -0.03 -0.06 0.17 0.02 0.07 0.04

overall average 0.01

Exhibit 64 - Error Surface of difference between adjusted fitted Transition Matrix sigma's and emperical sigmas.
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2.4.6 The Distributional Loss Development Model 

With the sigmas estimated, it is now possible to propose a model that describes the loss 
development of an open claim of a given size at a given maturity. 

An open claim of a given loss size x and a maturity m its ultimate size can be expressed as 
a log normal distribution with: 

Mu = ln( loss size x) * 1.005 

and 

Sigma = 0.701*(1/(maturity *0.001205+ln(loss size)*0.078874-0.34447)) 

Where maturity is in months and loss size is in US dollars 

2.5 Ratemaking Considerations 

2.5.1 Synthetic Data 

It is instructive to explore the 
effect of distributional loss 
development on estimation of 
limited expected values and 
increased limits.  In order to do 
this, a collection of claim values 
were simulated using a lognormal 
distribution with a mu of 13 and a 
sigma of 1.0.  Ten thousand values 
were simulated and 50 were 
selected using stratified sampling.  
This was done by sorting them in 
order and selecting the first 
percentile, and then every second 
percentile thereafter, ending with 
the 99th percentile value.  These 
values are shown in exhibit 66.  
When these values are graphed in 
order on a log scale the lognormal 

42,151   201,660 357,243 595,631 1,059,857  
68,964   215,841 374,978 628,044 1,143,719  
86,054   231,946 393,343 657,576 1,236,435  

104,213 245,987 414,947 689,340 1,353,120  
119,440 260,120 435,752 730,062 1,503,952  
134,623 273,892 457,429 772,238 1,670,692  
148,901 289,921 480,840 818,901 1,916,141  
161,543 305,308 505,404 869,830 2,341,089  
175,838 321,387 535,753 925,229 2,897,278  
189,464 339,692 567,292 993,142 4,564,144  

Exhibit 66 - Simulated loss values, lognormal distribution
mu = 13, sigma = 1.0

Exhibit 67 - Simulated values graphed in order on a log scale.
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distribution becomes obvious as shown in exhibit 67. 

2.5.2 Application of Loss Development 

We select to apply distributional loss development to these claims using the lognormal 
model.  This process is illustrated in exhibit 68 where eight of the fifty claims are shown for 

illustration. The claim value is shown in column 1 and its log is shown in column 2.   

 

posted value dev mu dev sigma ln(dev mean) dev mean dev factor
                 (1)         (2)             (3)                  (4)               (5)             (6)

ln(1) see below (2)+((3)^2)/2 exp(4) (5)/(1)
42,151         10.65  1.37         11.59 108,440     2.57

161,543       11.99  1.14         12.64 308,745     1.91
260,120       12.47  1.07         13.04 462,449     1.78
374,978       12.83  1.03         13.36 635,643     1.70
535,753       13.19  0.99         13.68 871,713     1.63
772,238       13.56  0.95         14.01 1,210,565  1.57

1,236,435    14.03  0.90         14.44 1,858,590  1.50
4,564,144    15.33  0.80         15.65 6,270,935  1.37

formula for (3) =0.701*(1/(12*0.001205+LN(1)*0.078874-0.34447))

Exhibit 68 - Application of distributional loss development to eight of the
50 claim values.  Note that in the formula for column (3), the log value
is of the posted value in column (1).  

 

assume that mu for the loss development model is 1.00 time the log of the loss size.  
Columns four and five are used to calculate the average loss size of the developed loss.  The 
ratio of column 5 divided by column 1 is the implied loss development factor for the 
traditional loss development method.  These will be used to create developed losses to 
compare with the distributional developed losses.  In this way, we will compare losses whose 
averages are the same, and differ only in the change in the shape of the distribution.  This 
process was applied to all fifty selected claims.  When done, we have three lists of losses, the 
original shown in column 1, the traditionally developed losses in column 5 and the 
distributional developed losses represented by mu in column 2 and sigma in column 3. 
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2.5.3 Comparing Cumulative Density Functions  

A good technique to compare the different distributions is to look at the cumulative density 
functions.  Since we have a collection of losses, we can calculate an empirical cumulative 
density function as shown in exhibit 69.  This method involves counting the number of 

Original Claims
Probabliity that the Limit exceeds the Loss

Limit
Loss 25,000 100,000 500,000 1,000,000  5,000,000  
42,151       0 1 1 1 1

161,543     0 0 1 1 1
260,120     0 0 1 1 1
374,978     0 0 1 1 1
535,753     0 0 0 1 1
772,238     0 0 0 1 1

1,236,435  0 0 0 0 1
4,564,144  0 0 0 0 1

Count 0 1 4 6 8
Probability 0.000 0.125 0.500 0.750 1.000
Exhibit 69 - Computation of cumulative probability for original claims.  

claims that exceed a collection of arbitrary selected limits.  The limits run across the top of 
the table, and the claims are in the first column.  A count of one is placed in the field of the 
table for each intersection representing a claim exceeding a limit.  The counts are totaled at 
the bottom and divided by the number of claim to yield the probability.  Again, for display 
purposes we show eight claims, where fifty claims were used in the study.  The final 
cumulative probability is the ordered pair of the limits running across the top of the table, 
and the probability running across the bottom of the table. 

  

Claims with Traditional Loss Developemnt
Probabliity that the Limit exceeds the Loss

Limit
Loss 25,000 100,000 500,000 1,000,000  5,000,000  
108,440     0 0 1 1 1
308,745     0 0 1 1 1
462,449     0 0 1 1 1
635,643     0 0 0 1 1
871,713     0 0 0 1 1

1,210,565  0 0 0 0 1
1,858,590  0 0 0 0 1
6,270,935  0 0 0 0 0

Count 0 0 3 5 7
Probability 0.000 0.000 0.375 0.625 0.875
Exhibit 70 - Computation of cumulative probability for claims with
traditional loss development.  
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 Exhibit 70 shows a similar treatment for the losses with traditional loss development.  
Even with the small sample of eight we see a shift in the distribution.  

2.5.4 CDF for Distributional Development 

 The computation of the cumulative probability distribution for the losses with the 
distributional loss development applied is a bit more complicated.  In this case, each 
developed loss is a distribution.  But, this allows us to estimate a probability that a claim is 
less than a limit.  Exhibit 71 shows the detail of this calculation.  Across the top is the limit,  

Probabliity that the loss is less than the Limit.
Limit, ln of limit

25,000 100,000 500,000 1,000,000  5,000,000  
Loss mu sigma 10.13 11.51 13.12 13.82 15.42
42,151       10.65 1.37 0.35     0.74       0.96       0.99           1.00           

161,543     11.99 1.14 0.05     0.34       0.84       0.95           1.00           
260,120     12.47 1.07 0.01     0.19       0.73       0.90           1.00           
374,978     12.83 1.03 0.00     0.10       0.61       0.83           0.99           
535,753     13.19 0.99 0.00     0.04       0.47       0.74           0.99           
772,238     13.56 0.95 0.00     0.02       0.32       0.61           0.98           

1,236,435  14.03 0.90 0.00     0.00       0.16       0.41           0.94           
4,564,144  15.33 0.80 0.00     0.00       0.00       0.03           0.55           

Sum 0.42     1.42       4.10       5.44           7.44           
Probability 0.05     0.18       0.51       0.68           0.93           
Exhibit 71 - Illustration of method to calculate cumulative probability of claims with 
log normal distributional development applied.  

and also shown is the log of the limit.  We capitalize on the characteristic of the lognormal 
distribution that the 
log of the value is 
normally distributed.  
We can take the mu 
and sigma of the 
lognormal as the 
mean and standard 
deviation of a 
normal, respectively, 
and calculate the 
probability interval 
represented by the 

Exhibit 72 - Plot of cumulative probability curves for original losses, traditionally developed
losses, and distributionally developed losses. 
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log of the limit using a normal distribution table.  By choosing the correct tail of the normal, 
we will get the probability that the developed loss is less than the indicated limit.  These 
probabilities are summed down the column and the total is divided by the total number of 
claims yielding the cumulative probability verses the limit.  

Note that our example 
assumes that all the claims 
are open, and are subject to 
development.  In a real life 
situation the collection of 
claims would be a mixture of 
open and closed claims.  The 
open claims would be 
treated in the manner shown 
in exhibit 71 while the 
closed claims would be 
treated as in exhibit 70 
where a zero or one is 
assigned to the probability in 
the table.  The interesting fact is that, by simply adding the count and the  “sum” values  of 
exhibits 70 and 71 and then dividing by the total number of claims,  one has the probability 
for the open and closed claims.  This provides a method of creating the cumulative 
probability distribution of the mixed claims.  With a cumulative probability available for the 
three types of losses they 
can be compared by plotting 
as shown in exhibit 72.  We 
get a clearer picture of the 
different behaviors of the 
various loss development 
methods when we 
rearranging the horizontal 
scale to a log scale, as shown 
in exhibit 73.  

Exhibit 73 - Plot of cumulative probability curves for original losses, traditionally developed
losses, and distributionally developed losses with a log scale for the limit.
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Exhibit 74 - Limited expected value in the range 0 to 1,000,000.
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There are two comparisons in this graph.  The first comparison is between the original 
claim data (diamonds) and the loss development factor data (boxes).  Here, it would appear 
that the original line is shifted to the right, but maintains the same shape.  The distributional 
development line (triangles) crosses the original line at the 50% range, but it shows more 
dispersion at small and large loss sizes.   

2.5.5 Comparing Limited Expected Values 

Limited expected values 
were calculated from the 
empirical cumulative density 
functions to see how they 
would behave relative to 
each other.  Exhibit 74 
shows the LEV for the 
range zero to one million in 
limit.  Here we see similarity 
between the original and the 
distributional developed 
losses, while the LDF 
developed rises quickly. As 
we look at the range to 
$5,000,000 in limit we see 
the distributional rising up 
to meet the LDF adjusted 
data as shown in exhibit 75.  
Looking over the entire 
range up to $30,000,000 in 
limit, as shown in exhibit 76, 
we see that the distributional 
curve rises up and meets the 
LDF adjusted limited 
expected value.  One can conclude that this is an expected conclusion since the values were 
formulated to have an equal mean.  Remember, we selected the loss development factors so 

Exhibit 75 - Limited expected value in the range 0 to 5,000,000.
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Exhibit 76 - Limited expected value in the range 0 to 30,000,000.
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that the average for each individual loss would be the same for the LDF data and the 
distributional data.  We only find this average converging at very high limits where they have 
little impact on the distribution.    

2.5.6 Comparing Increased Limits Factors 

With limited expected 
value curves available we 
can calculate pure loss 
increased limits factors.  
First we select a basic limit 
of $100,000 and compute 
the increased limits.  In 
exhibit 77 we show the 
increased limits for the 
range of $100,000 to 
$1,000,000.  This shows 
that the factor method produces ILFs higher by 20 to 30%   as compared to the 
distributional method.  The undeveloped and distributional adjusted ILF’s are very similar.  
If we look over a wider range, up to $5,000,000, as shown in exhibit 78, we 

Exhibit 78 - Increased Limits Factors up to $5,000,000 where basic limit is $100,000.
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see a change in behavior.  The distributional curve rises from the original curve and begins 
to approach the factor curve.  This is exactly what is seen in the limited expected value 
curves, and, it is no surprise since increased limits are simply ratios of LEV’s with the same 
denominator.  The last range to explore is increased limits factors up to $30,000,000  

Exhibit 77 - Increased Limits Factors up to $1,000,000 where basic limit is $100,000.
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Exhibit 79 - Increased Limits Factors up to $30,000,000 where basic limit is $100,000.
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as shown in exhibit 79.  Here we see that the distributional line has risen up and exceeded 
the factor line.  This is because the denominator for the distributional line is less at the 
$100,000 basic limit. 

 Varying the basic limit will change the behavior of the increased limits factors. Selecting 
$1,000,000 as basic limit and recalculating the increased limits factors produces the results  

Exhibit 80 - Increased Limits Factors up to $5,000,000 where basic limit is $1,000,000.
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shown in exhibit 80.  Here we see that the distributional result is higher than the factor 
result, and this is consistent over this range and over the larger range, up to $30,000,000 as 

Exhibit 81 - Increased Limits Factors up to $30,000,000 where basic limit is $1,000,000.
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shown in exhibit 81.  Here we see a difference that is again in 30 percent range.   

3. RESULTS AND DISCUSSION 

It is well known that individual open claims will develop to an ultimate value that may be 
more, less, or the same as the current value.  The exact nature of this distribution has never 
been clear.  This study shows, with two different approaches, that it is a skewed distribution 
that can be modeled with well known severity distributions.   

The lognormal distribution is particularly suited to modeling the severity distribution of 
the ultimate of an open claim.  One difficulty of exploring loss development of individual 
claims is the excessive parameterization that occurs.  The empirical transition matrix 
approach results in a very large number of parameters that vary by initial maturity, and claim 
size.  Using them in a practical system to apply loss development to individual claims with 
the intention of arriving at an ultimate severity distribution would be cumbersome at the 
least.  Applying the lognormal distribution to the transition matrix approach greatly reduces 
the parameters needed by characterizing the ultimate distribution of an individual loss as a 
lognormal with a mu which is a function of the initial size, and a sigma which a function of 
initial size and maturity.  The math for combining a collection of individual lognormal 
distributions into an aggregate severity distribution is well known.  This results in a practical 
method to apply loss development to individual claims that results in the ultimate severity 
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distribution where the loss development recognizes the potential for claims to increase or 
decrease from the current size.  

The lognormal individual claim loss development model appears to describe behavior in 
the absence of policy limits. It provides ample upward development of even very large 
claims. Policy limits must be applied after the loss development in order to correctly 
represent the potential loss of the developed severity distribution.   

The observed dispersion in development appears to decrease and skewness becomes less 
positive as claim size increases. This is caused by an extended negative tail of small claims 
while the main peak remains symmetrical.  The lognormal model does not capture this 
negative tail.  Some practitioners may be uncomfortable in relying on policy limits to explain 
this and may want to adopt a more complex model that reflects this detail.  A bi-modal 
lognormal treatment of the ultimate distributions may more accurately reflect this.   

A comparison between Transition Matrix ultimate development and empirically observed 
first to last report transitions indicate that the Transition Matrix approach may result in more 
variation than actually present.  This could be due to the independent nature of the 
Transition Matrix approach.  It is reasonable to expect a certain amount of dependency as 
real claims progress to ultimate.  It is interesting to note that the two models have the same 
shape and differ from each other only in the scale of one parameter, sigma.  It is possible to 
adjust the lognormal development model resulting from the Transition Matrix approach so 
that it “balances” to the average values of the empirical loss development model.  Another 
factor to consider is that the empirical loss development may very well underestimate sigma 
since it is missing data, but, does provides a minimum boundary.   Further study is indicated 
to measure how much sigma is underestimated by the initial to final transitions, and, one 
may find that the truth may lay somewhere in between the empirical and the transition 
matrix approaches. 

Both the Transition Matrix model and the empirically derived model exhibit a positive 
skewness for small claims and a negative skewness for larger claims.  This conveniently fits 
with long held opinions in the casualty actuary community that small claims have a tendency 
to develop larger, and large claims have a tendency to develop smaller.  The tendency for 
small claims to develop larger, in this case, may be a characteristic of the data because it is a 
subset that has been submitted for reinsurance recovery.  It is not hard to imagine that the 
process of selecting claims for submission will exclude small simple claims that are not 
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expected to develop.  This results in a collection of claims that is biased towards larger 
development for the smaller claims. 

The larger initial claims exhibit a symmetrical distribution (in the log transform space) 
about the most populated final size interval, with a small percentage of claims filling in the 
lower size intervals.  Typically you see 2 to 4 percent of the claims in lower intervals 

which are more that three size classes lower than the mode.  Though not planned, the width 
of the size classes are about one standard deviation.  So, the mode size class and the four 
adjacent classes account for about 95% of the claims.  So, this 2% to 4% spread evenly in 
the lower size classes causes the negative skew values.  If one ignores the extreme outliers, 
then the lognormal loss development model is a very good fit.  In the future, it may do well 
to revisit the fit of these distributions with a bi-modal lognormal distribution.  One mode 
will pick up the sharp peak around the initial loss size, and the other will be low probability 
with wide dispersion to pick up the claims that develop to much smaller values.  

 It is important to note that the study to measure ratemaking impacts was designed to 
stress the difference in the result between the two methods.  It uses a claim set of all open 
claims.  In most realistic situations, 60 to 75 percent of the claims would be closed and not 
experiencing any additional development.  This would cut down this observed difference 
from the 30 percent range to less than 10 percent.   

 When considering the effect on pricing measures, it is important to point out that this 
study only compares the distributional loss development with single factor development, 
which is a method used in an ad-hoc manner to adjust small datasets for reinsurance rating.  
It does not imply a comparison with published industry standard increased limits factors, 
which are prepared with sophisticated methods that correctly reflect the distributional nature 
of individual loss development.  

 And last, the reader is guarded against a direct comparison of these increased limits 
factors with published increased limits factors since industry factors are prepared with a 
ballasting of a large collection of small losses, and that is clearly not the case in the losses 
used here.   
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4. CONCLUSIONS 

Applying Transition Matrix theory to individual claims allows one to build up a picture of 
individual loss development, which has been seldom seen before.  Using this method, it is 
possible characterize individual claim development as, distributional process where, the 
claim, at a known current and open amount, will, at ultimate, be a value which is forecast by 
a claim distribution.  For general liability claims in the United States, the ultimate loss 
development of an individual claim can be represented as a heavy tailed skewed distribution, 
which closely resembles a log-normal distribution.  It is possible to develop a simple 
functional relationship between the size and maturity of the open claim, and its ultimate 
lognormal distribution using four parameters.   

 The Transition Matrix approach may introduce excessive dispersion into the forecast of 
ultimate loss due to its independence assumption, but, it is possible to measure and adjust 
for it.  This results in a model that allows one to take individual open claims, and adjust for 
development to ultimate, before fitting these claims to a severity curve.  It can be shown that 
the distributional loss development process will change the shape of the ultimate size of loss 
distribution in a way that will affect loss cost estimates in a range of  a few percent to 10 to 
20 percent.   It is important to reflect the distributional nature of loss development when 
evaluating individual loss data in order to avoid these errors. 
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Appendix A 
The following describes the data used in this study,and, its treatment.  This data was 

submitted as first dollar, 100% ground up insured loss.  These claims were entered into the 
initial computer system as incremental transactions.  The critical timing elements captured 
were date of loss, date the claim notice was submitted to the intermediary, and the date the 
claim was entered into the system.  The various money types were maintained separately, 
such as indemnity, expense, subrogation, etc.  A line of business code was entered for each 
claim, which was used for segregation into broad categories.  A description of cause of loss 
field contained a detailed text description of the loss.  This was used to isolate claims into 
sublines.  It was found that simple terse descriptions were used repeatedly, and these were 
useful for identifying sublines.  All the unique descriptions were isolated, and each was 
assigned to sublines.  The goal was to create an Other Liability collection of data by 
identifying and removing Workers Comp, Medical Professional, Lawyers Professional, 
Pollution, and Auto.  Also removed were claims arising from special events or circumstances 
such as the World Trade Center Disaster, toxic waste, environmental clean up, tobacco, 
cancer, etc. The remainder was deemed to be the Other Liability.  

It was possible to isolate claims labeled as “other liability” using the Line of Business 
field.  Inspection of this subset of the data revealed that it contained more than ordinary 
liability losses.  A list of string fragments was assembled to eliminate claims based on the 
likelihood that the claim was another subline.  For these claims, the description of cause of 
loss gave a good indication that the loss might be workers comp, legal liability, medical 
professional liability, auto liability, products etc.  It also allows removal of special incidents, 
such as the World Trade Center disaster, tobacco losses, hazardous waste, environmental 
cleanup etc.  The entire list of string fragments is shown in exhibit 17. 

 



Transition Matrix Theory and Individual Claim Loss Development 
 

Casualty Actuarial Society Forum, Spring 2005 169 

Strings for eliminating Claims
FIRE BREAST IMPLANT LEGAL SURGERY
MOLD CLASH INS RAN LIQUOR SURGICAL
LAWYER CLASS INS REAR M.V. TABACCO
SURETY D & O INS VEH M/ TOBBACL
ASBES D & 0 INS. STRUCK MED MAL TRACTOR
AGG D&O INS.BACKED MED. MAL TRAILER
WASTE D &O INSD BACKED MED PROF TRUCK
ENV D*O COLLIDED MED MAP TYPHOON
CLEAN D+O CROSSED MED NEG VEH
SEX D. & O. INSD DRV MED.MAL VESSEL
CONTAM D. AND O. DRIVER MED/MAL W C
POL D/O INSD DV MOLEST W.C.
SITE DIR & INSD FAIL MOTOR VEH W/C
REMED DIRECTOR INSD HIT MOTOR ACC WC
WTC E & O INSD LOST MOTORCYCLE WORK
TOBAC E&0 INSD R/E MOTORIST WORLD TRADE CENTER
CANCER E&O INSD RAN MOTORVEHICLE CAR CO
MEDICAL CAR AC INSD RE MOTORYCLE CAR CR
ACCOUNT TRUCK INSD REAR MV CAR FL
ACCT VEH. INSD ROLLED NURSE CAR HIT
AIDS VAN INSD RENTED PEDEST CAR IN
ATTNY FEN PHEN INSD SKID PROD CAR R
ATTORNEY FIDELITY INSD STRUCK PROF CAR S
ATTY H.I.V. INSD STUCK REAR END CAR T
AUDIT HIV INSD TRUCK REAR-END CAR/
AUTO HOSPITAL INSD TURN REAREND CAR\
Agg HURRICANE INTERSECTION DRIVING

Exhibit 17  This is a list of string fragments that were used to eliminate claims from the study.  

Claims were eliminated if the string fragment was contained in the “Description of 
Cause of Loss” field. 

The sum of the indemnity and ALAE was used as the loss in this study.    The 
incremental transactions at irregular times were accumulated into year end evaluations for 
each claim.  A claim was deemed to be closed if it’s paid and incurred amounts were the 
same.  The closure event was deemed to have occurred when the claim first arrived at this 
amount, and a flag was entered into the data, for each claim, to mark this.   

The losses were trended using the Masterson trend factors published in Best’s.  The 
General Liability Bodily Injury trend indications were used.  These were available from 1984 
to present.  1980 to 1983 were adjusted by an additional annual trend of 8%.   

Claims from accident years 1979 and earlier were excluded from this study in order to reduce 
the amount of computation.   This left about 37,000 claims, of which, about 28,000 were 
non zero in 2003. 
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Reinsurance Treaties using Exposure Rating
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Abstract

This paper deals with two of the most common disadvantages of standard excess of loss ex-
perience rating methods: lack of complete individual claim history and significant changes
in the underlying book of business due to shifts in limit profile during the experience period.
We develop a methodology to estimate an trend factor by layer of loss based on the unlim-
ited trend factor, the severity distribution and the limit profile. This excess trend factor
can then be applied to the nominal losses in the layer, overcoming the problem of having
incomplete individual claim detail to exposure rate lower more credible layers. The excess
trend is split into its frequency and severity components. We also present a methodology to
estimate exposure adjustment factors necessaries to bring the experience of excess layer to
the projected limit profile distribution. The impact of shifts in limit profile is also analyzed
in terms of its frequency and severity components.
Keywords: Treaty Reinsurance, Experience Rating, Exposure Rating, Excess Trend, Ex-
posure Adjustment.

1 INTRODUCTION

Exposure rating and experience rating are the two most prevalent and widely docu-

mented approaches to pricing excess of loss reinsurance contracts. Each method has

its own strengths and weaknesses in any given situation, and frequently these meth-

ods are used in tandem to price a contract, with the final loss estimate usually being

a credibility-weighted average of the two methods. Excess of loss exposure rating

relies on a current snapshot of the policies subject to the reinsurance contract. This

snapshot will often include some measure of the percentage of policies or premium

exposing the reinsurance contract (the ”limit profile”), an estimate of the gross losses

(i.e. before reinsurance) for the policies exposing the reinsurance contract, and a

severity distribution used to allocate the portion of the gross losses to the various lay-
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ers ceding to the reinsurance contract. Excess of loss experience rating relies on the

historical losses of the cedant, adjusted for trend to the current claim cost level and

adjusted to the current exposure level. Trending of losses is typically accomplished on

a per claim basis, with adjustments made for policy deductibles and limits when this

information is available. Exposure adjustments are typically accomplished through

on-leveling of premium or through the use of historical exposure information (policy

counts, revenue, etc.). There are several drawbacks of relying entirely on the experi-

ence method. Two of the most common problems found in practice are incomplete

data to experience rate lower layers and significant shifts in the mix of business in the

underlying portfolio during the experience period. In this paper we present an im-

proved method based on the mathematics of exposure rating that helps us overcome

these two common practical problems. The problem of incomplete claim information

is dealt with by calculating trend factors by layer of loss based on the selected un-

limited trend factor, the severity distribution and the ceding company’s limit profile.

The methodology to estimate excess trends had been previously introduced in Mic-

colis [9] and Lange [5]; however those two articles did not take into account the issue

of different policy limits, which is the case with excess of loss treaties. Although most

relevant reinsurance pricing articles mentioned that the impact of changes in limit

profile should be taken into account when experience rating excess of loss treaties

very few has been written about how to quantify these changes. The impact of shifts

in limit profile by layer of loss is estimated with the method presented in Section 3.3.

The paper is outlined as follows: Section 2 presents a brief summary of the mathe-

matics of exposure and experience rating. Section 3.1 outlines the assumptions and

notation used throughout the paper. Section 3.2 presents the method developed to

estimate the trend factor by layer of loss given the unlimited trend factor. Section

3.3 presents the methodology to estimate the exposure adjustment by layer of loss

due to changes in Limits Profile. Detailed worked examples are presented in Sections

3.2.3 and 3.3.2.
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2 BACKGROUND

In this section we present a brief overview of the basics principles of first dollar

ratemaking as well as excess of loss experience and exposure rating. Sections 2.1 and

2.2 below present the standard methods for loss trending and premium adjustment

used in practice and some of the disadvantages of these methods. Section 3 then

presents the proposed approach to overcome the drawbacks of standard loss and

premium trending methods.

2.1 Loss Trending

Adjusting losses for underlying trends is in essence making adjustments to the loss

experience to reflect changes in the expected cost per claim (severity) and the expected

frequency between the experience period and the prospective or future period. In the

remainder of this paper we assume trend is related to ground-up severity trend only.

Adjustments for ground-up frequency trend can be incorporated in a straight-forward

fashion, but are not addressed here. In first dollar ratemaking the prospective period

usually refers to the period when rates are going to be in effect whereas in reinsurance

pricing it refers to the policy or treaty period. In this paper the prospective period is

assumed to be the treaty period. McClenahan [8] presents in details the fundamental

principles of adjusting losses for severity and frequency trend for ratemaking purposes.

In brief the methodology involves estimating from the data (or from other sources)

an unlimited trend or a basic limit trend, calculating the time difference between the

average loss date of the prospective period and the average loss date of the experience

period and then applying the trend factor to the aggregate losses (unlimited or basic

limit losses depending on the situation). In his paper McClenahan [8] also discusses

the effect of limits on severity trend and makes the following remark:

“Where severity trend has been analyzed based upon unlimited loss data or loss

data including limits higher than the basic level, the resulting indicated severity trend
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must be adjusted before it is applied to basic limit losses. Because such adjustment will

require knowledge of the underlying size-of-loss distribution, it is generally preferable

to use basic limit data in the severity trend”.1

However there are situations in practice where one needs to analyze total limit

losses when each loss is subject to a different limit of liability (quota share treaty,

for example). In this case neither a basic limit trend nor an unlimited trend is

appropriate. Hence one needs to estimate a total limits trend which is consistent

with the unlimited trend and the basic limit trend. As stated by McClenahan [8]

the development of such trend requires knowledge of the size-of-loss distribution.

In Section 3.2.1 we present a methodology to estimate trend factors for different

layers of losses based on an unlimited trend factor and the severity distribution.

When experience rating excess of loss reinsurance one also needs to adjust losses for

frequency and severity trends in order to project the expected loss cost in the layer.

To do so one requires individual losses with policy limit and deductible details. The

trend factor is applied to each ground up loss (gross of the deductible), each trended

loss is capped at the policy limit and the deductible is netted out. The resulting

loss is then applied to the reinsurance layer. However, underlying policy information

is frequently not available for each individual claim and therefore the standard per

claim trending methodology can lead to misestimation of the loss cost in the layer.

In Section 3.2.1 we develop a methodology to estimate an excess of loss trend based

on the limit profile of the ceding company. This methodology helps us to overcome

the problem of lack of policy detail by claim.

2.2 Premium Trending

The second fundamental aspect of ratemaking is adjusting historical premium for rate

changes as well as other factors that affect the average premium per exposure over

1McClenahan [8] p.110.
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time. The first step to adjust for changes in average premium is to adjust for rate

changes. The methodology for bringing premium to current rate levels is presented

in detail in McClenahan [8] and therefore will not be repeated here. If rates can

be accurately measured the difference between historical on-level premium would be

due to other factors such as growth, changes in rating plans or simply increases in

exposure. Jones [3] presents in detail the methodology to adjust historical premium

for trends other than rate changes that affect the average premium per exposure. In

his paper he identifies four changes that affect premium levels:

1. Past rate changes.

2. Past rating plan changes.

3. The existence of rating plans which change the premium level over time.

4. Past and expected future shifts in the mix of business.

The primary focus of the methodology presented in Jones [3] is first dollar ratemaking

and it is based on estimating a trend factor net of rate changes and then applying it

in a similar fashion as loss trend is applied to aggregate losses. In this paper we focus

our attention on the fourth item identified in Jones [3] : Past and expected future

shifts in the mix of business. However we do so from the reinsurer’s view point.

When insurance companies change their mix of business they can do so in many

ways. Two of the most important changes in mix of business affecting reinsurers are:

changes in policy limit and deductible distribution and changes in line of business.

In a soft market insurance companies tend to offer higher limits of liability to remain

competitive and to maintain certain target premium levels. In a hard market capacity

is reduced and rates increase, hence insureds tend to buy lower limits because either

higher limits are no longer available or they are prohibitively expensive relative to

the additional cover they provide. This change in limit distribution has a significant

impact on both premium and losses, and the impact is usually magnified in excess
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layers often ceded to reinsurers. Similarly when companies change their core business

from low severity high frequency lines to high severity low frequency lines premium

levels tend to change and this is also reflected in the loss experience. This change in

line of business also has a significant impact when pricing excess of loss reinsurance.

If one does not appropriately adjust the experience to reflect the difference between

expected mix of business and the historical mix of business the loss cost in the excess

layers can be materially misestimated. In Section 3.3 we present a methodology to

adjust excess of loss experience for changes in limit profile based on the mathematics

of excess of loss exposure rating. The methodology can be extended to quantify

changes in mix of business.

2.3 Excess of Loss Pricing: an Overview

Exposure and experience rating are the two most prevalent and widely documented

approaches to pricing excess of loss reinsurance contracts. Each method has its own

strengths and weaknesses in any given situation, and frequently these methods are

used in tandem to price a contract, with the final loss estimate being a credibility-

weighted average of the two methods. In this section we present a brief overview of

the two methods and we introduce the notation that will be used in the remainder of

the paper.

2.3.1 Experience Rating

Experience rating relies on the historical losses of the cedant, adjusted to the prospec-

tive claim cost and exposure level. Trending of losses is typically accomplished on a

per claim basis, with adjustments made for policy deductibles and limits when this

information is available. Exposure adjustments are typically accomplished through

on-leveling premium or through the use of historical exposure information (policy

count, revenue, etc.). Clark [1] presents a detailed overview of the basics of rein-

surance pricing. Below are the basic steps and data requirements to experience rate
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excess of loss treaties.

1. Individual loss information with policy deductible and limit: each ground up loss

(gross of deductible) is trended to the future average date of loss, the deductible

is netted out and the loss is capped at the policy limit. The resulting loss is the

applied to the reinsurance layer.

2. Losses in the layer are then aggregated by year (treaty year or accident year,

depending on the basis of the analysis).

3. Aggregate losses in the layer are then developed to ultimate using excess devel-

opment factors. In this paper we do not discuss excess layers loss development

factors. Pinto and Gogol [11] and Siewert [12] discuss methods for estimating

loss development factors for excess layers.

4. Historical subject premium (earned or written) is adjusted for rate changes and

for exposure changes to the prospective premium level.

5. The loss cost to the layer by year is calculated by dividing the ultimate trended

losses in the layer by the corresponding adjusted premium.

6. An average of the loss cost is taken between appropriate years of experience.

7. The reinsurance rate is developed by loading the loss cost for reinsurer’s ex-

penses and profit.

There are several disadvantages to relying entirely on the results of experience rat-

ing as outlined above. Some of the problems are related to the availability of the

data required to perform the experience rating and some problems are related to the

methodology.

Disadvantages of experience rating methods

1. Often reinsurers receive individual loss detail for large losses only, i.e. incurred

losses that are greater than a certain value below the attachment point. This
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generates the problem of incomplete information for lower layers in particular for

older years. For example if we use 8% annual trend and we receive losses greater

than $200,000 since 1995, the smallest trended loss in 2005 terms is $200, 000 ∗
(1.05)10 = $325, 779. Hence, we could not use this data to experience rate layers

with attachments lower than $325,779. In practice this problem is dealt with by

selecting a data limit or threshold and layers that attach below that threshold

are not experience rated. This methodology has two disadvantages: all data

below the threshold are eliminated from the analysis and one cannot perform

experience rating of lower layers (which is more credible as there is more data

and results are usually more stable than higher layers). In our example, we

would be unable to experience rate a $200k xs $200k layer using standard loss

trending due to the incomplete data. We would also be unaware if losses in

that $200k xs $200k layer were deteriorating in recent years. Figure 1 shows

the impact of severity trend on the data limit and the amount of data lost due

to having incomplete claim history.

2. Another problem encountered in practice is the lack of policy information for

each claim. If this information is not available, applying a trend and not capping

at policy limit can significantly overstate the expected loss cost. Similarly if

deductible information is not available, applying a trend factor to a loss net of

the deductible can significantly understate the expected loss cost.

3. If there have been significant changes in the book of business during the ex-

perience period such as expanding or contracting limits, then each experience

period is on a different mix basis and therefore it is not appropriate to simply

average between years. Furthermore, the projected loss cost would not be a

true projection of the expected loss cost in the future period. When experience

rating excess of loss layers for a book of business that has experienced significant

changes
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in the mix of business actuaries often load or give credit for these changes in

exposure in their final experience rating results. However very little has been

written in the literature about quantifying these changes in a more systematic

and rigorous way.

In Section 3.2 we present a method that will help us overcome the practical prob-

lems in items 1 and 2 above and in Section 3.3 we present a method to help us quantify

the impact of changes in limits therefore overcome the problem in item 3 above.

2.3.2 Exposure Rating

The exposure rating method relies on a current snapshot of the policies subject to

the reinsurance contract. This snapshot will include some measure of the percentage

of policies or premium exposing the reinsurance contract, usually called the “limit

profile”, and an estimate of the gross losses (i.e. before reinsurance) for such policies.

To perform an exposure rating one requires a size of loss distribution (severity dis-

tribution), an Increased Limit Factor table or an exposure curve. In the US, many

actuaries rely on ISO severity or exposure curves as benchmarks for those lines of

business ISO covers. For non-ISO lines of business reinsurers often use ceding com-

pany data to fit severity distributions. Outside the US, the use of exposure rating

is more cumbersome given the lack of industry benchmark severity distributions by

line of business. The objective of the exposure rating method is to estimate the

proportion of the loss for the underlying policy that is expected in the excess layer.

Assumptions and Notation:

1. Let X be the random variable representing the ground up cost per claim.

2. Let fX(x) and FX(x) denote the probability density function and cumulative

density function of X.

3. Assume an underlying policy with limit PL and attachment or deductible D.2

2In practice deductibles and attachments are not the same and there are many variations on
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This is the policy written by the ceding company and we assume the ceding

company takes 100% of this policy. In other words there is no coinsurance

either with the insured or with other insurers.

4. Assume the expected gross loss ratio for the underlying book is ELR (before

reinsurance).

5. The ceding company’s projected subject premium for the prospective period

is SP . The subject premium is the premium written or earned to which the

reinsurance rate applies, e.g. premium net of facultative insurance or net of

commissions. It is usually defined in the treaty wording.

6. We denote by α the proportion of the total subject premium that corresponds

to policies with limits PL and deductible D. This is often presented in the limit

profile.

7. The reinsurance layer is L xs A, i.e. losses for the underlying policy in excess

of A subject to a limit L.

The following definition and notation will be widely used in the remainder of the

paper.

Definition 2.1 Let X be a random variable with probability density function fX(x)

and cumulative distribution function FX(x). The Limited Expected Value of X up to

a limit a, i.e. min(X, a), is given by

E[X ∧ a] =

∫ a

0

xfX(x)dx + a(1− FX(a)) =

∫ a

0

(1− FX(x))dx. (2.1)

See Klugman, Panjer and Willmot [4]. Note that the notation X ∧ a stands for

min(X, a). The exposure rating method can be expressed in terms of Limited Ex-

pected Values, Increased Limit Factors or Exposure Curves, see for example Clark [1]

how deductibles and attachments apply. The notation deductible refers to primary business whereas

attachment refers to excess business. For simplicity and consistency we will assume in this paper

that a policy with limit PL and deductible D covers losses excess of D up to a limit PL.
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and Ludwig [7]. The expected loss cost in the layer for a policy with limit PL and

deductible D can be expressed as follows:

Loss Cost = (SP )(ELR)α
EX [X ∧ T ]− EX [X ∧B]

EX [X ∧ PL + D]− EX [X ∧D]
, (2.2)

where T = min(PL + D,L + A + D) (i.e. top of the layer, allowing for the fact that

some policies may only partially expose the layer) and B = min(PL+D,A+D) (i.e.

the bottom of the layer, allowing for the fact that some policies may not expose the

layer in which case T = B and the Loss Cost is 0). The ratio of expected severity

in the layer to expected severity for the underlying policy in equation (2.2) is usually

referred to as “the % of loss in the layer”. To estimate the total loss cost in the layer

for the underlying book of business one adds across all combinations of policy limits

and deductibles presented in the limit profile of the ceding company.

3 A METHOD FOR IMPROVING EXPERIENCE

RATING TECHNIQUES

3.1 Assumptions and Notation

1. Let X denote the ground up cost per claim for the experience period.

2. Let Y denote the ground up cost per claim for the projected or future period.

Hence, Y = rX, where r is the trend factor necessary to bring experience losses

to future claim cost level.

3. We assume that FY (y) the distribution function of Y is given. EY [.] will denote

the expectation calculated using the distribution function of Y .

4. PL and D are the policy limit and deductible for policies written by the ceding

company. We assume there are p = 1, . . . , P combinations of policy limits and

deductibles.
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5. Let αp denote the proportion of premium expected to be written for the pth

combination of limit and deductible in the experience period. Let βp be the

proportion of premium written for the pth combination of policy and deductible

in the prospective period.

6. Let OLP denote the on-level subject premium for the experience period and

SP the projected subject premium for the prospective period.

7. Let ELR denote the expected gross loss ratio (i.e. before reinsurance) for the

prospective period.

8. Let Np and Mp be the number of claims for the ceding company for the pth

combination of policy limit and deductible with projected subject premium and

on-level subject premium respectively.

9. Let SX,p and SY,p denote the cost per claim for the pth policy type for the

experience and prospective period respectively.

10. The reinsurance layer is L xs A.

11. Let SX,p(A,L) and SY,p(A,L) denote the loss cost per claim in the layer for

experience and future period respectively.

12. Let LC denote the projected expected gross loss cost for the ceding company

before reinsurance in the future period, and LC(A,L) the projected expected

loss cost in the reinsurance layer.

Using the notation and assumptions above it can be seen that

LC = (SP )(ELR) =
∑P

p=1 E[Np]E[SY,p]

LC(A,L) =
∑P

p=1 E[Np]E[SY,p(A, L)]
(3.1)

where the last equality is the standard result of the Collective Risk Model. It then

follows that:
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(a) The expected cost per claim for the pth policy type is given by

EY [SY,p] = EY [Y ∧ PL + D]− EY [Y ∧D]. (3.2)

(b) The expected number of claims for the pth policy type is given by

E[Np] =
(SP )(ELR)βp

EY [SY,p]
, (3.3)

i.e. the total loss cost for the pth policy type divided by the expected cost per

claim.

(c) The expected severity in the layer for the pth policy type is given by

EY [SY,p(A,L)] = EY [Y ∧ T ]− EY [Y ∧B]. (3.4)

where T and B are as defined in equation (2.2). Note that this is not the

conditional expected severity in the layer (i.e. the severity in the layer given

that the loss has exceeded the layer attachment). To calculate the conditional

expectation, this quantity needs to be divided by (1− FY (D + A)).

Thus we can re-write the exposure rating equation (2.2) as follows:

Loss Cost = E[Np]EY [SY,p(A,L)], (3.5)

and therefore

LC(A,L) =
P∑

p=1

E[Np]EY [SY,p(A,L)]. (3.6)

Expressing the exposure rating method in terms of expected frequency and severity

will help us present all the methods below in terms of frequency and severity.

3.2 Aggregate Trend

Miccolis [9] and Lange [5] present detailed discussion on the mathematics of Increased

Limits Factors and Excess of Loss pricing. Miccolis [9] presents the mathematical
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foundations of pricing increased limits based on the basic limit loss cost and then ties

the concept of increased limits factors to pricing excess of loss coverage. Lange [5]

presents the methodology to estimate increased limits factors given loss experience

by policy limit. Although in both articles Miccolis and Lange discuss the effect of

trend and inflation in excess layers and how the excess trend can be calculated from

the unlimited trend factor and the severity distribution, no numerical examples are

presented in their discussions and they do not discuss how the calculation of excess

trends can help improve excess of loss experience methods. In this paper we present

the methodology for calculating excess trends by layer of loss, both frequency and

severity excess trends, and how the resulting excess trend could be used for experience

rating excess layers. The following results are stated in Miccolis [9] and will be used

in the worked examples below.

Result 1 Let X be a random variable with cumulative distribution function FX(x).

Define Y = aX, where a ≥ 0. Then the following results hold:

FY (y) = FX(y/a) and (3.7)

EY [Y ∧ y] = aEX [X ∧ y/a] (3.8)

In other words given the distribution of X one can easily deduce the distribution of Y

by either re-scaling the distribution of X dividing by a or by trending the parameters

of the distribution of X. Most of the commonly used loss distribution functions can

be expressed in terms of trended parameters. For example if X follows a lognormal

distribution with parameters µ and σ then aX also follows a lognormal distribution

with parameters µ′ = µ + ln(a) and σ′ = σ.

3.2.1 Layer Excess Trend

Actuaries are already familiar with the fact that although a ground up or unlimited

trend factor may apply to all sizes of loss the leverage effect of inflation varies greatly
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by layer of loss and is highly dependent on the attachment or retention. In this

section we address the problem of consistency between unlimited trend, basic limits

trend and excess trend. The method presented below is not new to the CAS, Miccolis

[9] describes the leverage effect of inflation for excess of loss layers, whereas Siewert

[12] and Pinto and Gogol [11] have used similar techniques to estimate excess of

loss development factors based on ground up loss development factors and a severity

distribution. The fundamental idea of adjusting losses for trends is to reflect the

change of the average loss cost between the experience period and the future period.

Therefore, if one can calculate the expected loss cost for the future period and the

average loss cost for the experience period, the loss trend will be given by the ratio

of these two figures. The methodology presented below is based on this principle. In

the methodology presented below we assume that limit profile and mix of business

have remained constant throughout the experience period and will remain constant

during the prospective period. Thus we are only adjusting for changes in average loss

cost.

Steps to calculate excess trend for the layer L xs A Using the notation outlined

in Section 3.1 the following are the steps to estimate the trend factor applicable to

the excess layer.

1. Assume the following items for the prospective period are given or can be es-

timated: ELR, Limits Profile with p = 1, . . . , P limit and deductible combi-

nations, expected subject premium SP , the severity distribution for the claim

cost Y is given by FY (y) and the unlimited trend factor between the experience

period and the prospective period is r.

2. Using the standard exposure rating method as described in Section 2.3.2 cal-

culate the expected loss cost in the layer for each policy type. We denote this

expected loss cost by LCp, for p = 1, . . . , P .

3. For each policy type calculate the expected cost per claim in the layer at the
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future claim cost level and at the experience period claim cost level. Therefore

the change in average cost in the layer per policy type is given by:

(Excess Trend)p =
EY [Y ∧ T ]− EY [Y ∧B]

EX [X ∧ T ]− EX [X ∧B]
=

E[SY,p(A, L)]

E[SX,p(A,L)]
, (3.9)

where T and B are the top and bottom of the layer as defined above. Note that

X = Y/r and since the distribution of Y is given the expected values on X can

be calculated using the distribution of Y re-scaled as stated in Result 1.

4. Then the total layer trend can be calculated as the weighted average of the

excess trend per policy type, where the weights are given by the contribution

to the total loss cost of each policy type. In other words the total layer trend

is calculated as:

Layer Trend =

∑P
p=1(LCp)(Excess Trend)p∑P

p=1(LCp)
(3.10)

As discussed in Miccolis [9] , the leverage effect of inflation in the excess layer is

controlled by the attachment. The reason for this is that losses in excess of the

attachment will increase for two reasons: smaller losses that on an incurred basis

did not reach the attachment can potentially exceed the attachment once the trend

factor is applied and losses that exceeded the attachment have most of the inflation

effect within the layer. Hence, more losses will trend into the layer and losses in the

layer become larger. When pricing excess of loss reinsurance one is usually interested

not only in estimating the total loss cost but also in estimating how much of the

loss cost is due to frequency and how much is severity. Is frequency in the layer

increasing or are claims in the layer getting larger? What is the impact of trend in

excess frequency and severity? In the following sections we estimate how much of the

excess trend calculated in (3.10) is due to frequency and how much is due to severity.
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3.2.2 Excess Frequency and Severity Trend

In order to calculate the excess frequency trend in the layer we need to estimate the

change in expected claim count excess of the attachment between the prospective

period and the experience period. Note that when we discuss excess frequency trend

in this context, we are referring to the increased frequency in an excess layer result-

ing from ground-up severity trend. Ground-up frequency trends are not specifically

addressed in this paper, although they can be incorporated into this framework. The

following result will be used to determine the excess frequency trend in the layer.

Result 2 Let N denote the number of claims in a given portfolio of policies and let

FY (y) denote the claim size distribution. The expected number of losses that exceed a

certain threshold A, N(A), is given by:

E[N(A)] = E[N ](1− FY (A)). (3.11)

Using this result it can be easily seen that the frequency trend is given by the following

equation:

Excess Frequency Trend =

PP
p=1

E[LCp]

E[SY,p]
Pr(SY,p>A)PP

p=1
E[LCp]

E[SY,p]
Pr(SX,p>A)

=
PP

p=1 E[Np](1−FY (A+D))1{PL>A}PP
p=1 E[Np](1−FX(A+D))1{PL>A}

,

(3.12)

where 1{PL>A} is the indicator function that takes the value of 1 if a policy exposes

the layer. The formula in (3.12) can be interpreted as follows: the expected number of

claims in the layer given the loss distribution for the prospective period relative to the

expected number of claims in the layer given the loss distribution of the experience

period. Note that in equation (3.12) we are assuming the same number of claims for

the underlying policy, but more claims will penetrate the layer as severity increases.

Note that in the formulas above we have assumed constant ground up frequency trend.

However, if ground up frequency is also increasing the assumed frequency trend would

188 Casualty Actuarial Society Forum, Spring 2005



An Improved Method for Experience Rating Reinsurance Treaties

naturally flow through the calculations in a multiplicative fashion. Equations (3.10)

and (3.12) give us the total excess trend factor and the excess frequency trend factor.

To estimate the severity trend factor in the layer we simply divide the total layer

trend factor by the excess frequency trend factor. Once we have a trend factor by

layer we can apply this factor to the nominal losses in the layer. In other words, we

take the actual incurred losses in the layer, develop them to ultimate with appropriate

development factors and then apply the layer trend factor as developed in this section.

There are various advantages of this method:

1. When large losses do not include policy and deductible information one does

not need to make assumptions about the underlying policy. The limits pro-

file provides the assumptions about the distribution of underlying policies and

applies an average trend for the layer in light of this. One simply takes the

nominal aggregate losses in the layer and then applies the layer trend factor.

2. The approach provides consistency between unlimited trend and trend at var-

ious layers of loss. This is not only useful for experience rating excess layers,

but it also helps quantify the differences in ground-up trend for two books of

comparable business with differing limits.

3. Since we are not trending individual losses it is no longer necessary to select

a data limit or threshold, hence all data available can be used in the analysis.

Since no data are eliminated we could perform an experience rating for lower

layers and then use the severity distribution to extrapolate losses to higher

layers. This method has the advantage that experience is usually more stable

in lower layers than higher layers.

The principal disadvantage of the method is that it is more difficult to explain

to a non-technical audience. The typical underwriter may not understand why a

loss that has settled for policy limits continues to receive a trend adjustment, which

is one of the results of using this approach. This is necessary under this approach,
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as it counteracts the under-trending of a loss that has barely penetrated the layer

attachment.

The following section provides a worked example to illustrate step by step the

trending methodology presented above.

3.2.3 Worked Example

All Tables related to this example are presented in the appendix. Assume that a

ceding company writes limits between $250,000 and $5,000,000 with projected written

premium distribution as in Table 1. We assume in this example that all policies are

primary and there are no deductibles. We assume that a reinsurer is interested in

pricing an excess of loss treaty for this ceding company for underwriting year 2005.

The loss distribution for this line of business for underwriting year 2005 is assumed

to follow a lognormal distribution with parameters µ=9.31 and σ=2.29. The annual

unlimited trend factor for this line of business is assumed to be 8%. Therefore,

the loss distribution for losses in 2000 values is also a lognormal distribution with

parameters µ′ = µ − ln(1.085) = 8.93 and σ′ = σ = 2.29. In this example we

work out the trend factor for various layers to be applied to experience losses for

underwriting year 2000. The unlimited trend factor between 2000 and 2005 is given

by 1.085 = 1.47. Table 1 presents the limited expected value or expected severity for

each policy in 2005 and 2000 loss cost values. As per our notation in Section 3.2.1

we have E[SY,p] = EY [Y ∧ PL] represents the expected severity in 2005 values and

E[SX,p] = EX [X ∧ PL] the severity in 2000 values, since there are no deductibles.

Table 2 shows the results of applying the standard exposure rating method using

the limit profile as in Table 1 and the distribution with 2005 parameters and an

expected gross loss ratio of 60%. (We have assumed a loss ratio for completeness,

though it can be seen that the loss ratio cancels in all the equations in Section 3.2.1

and 3.2.2). The results shown in Table 3.2 were calculated using equation (2.2) and

adding across policy limits.
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Table 3 shows the excess trend per policy across layers using equation (3.9). For

example, the trend factor for the layer $250,000 xs $250,000 is zero for policies with

limit of $250,000 as they do not expose the layer, and the trend factor is the same for

all other policies as the remaining policies fully exposed the layer. The trend factor

in this case is calculated as follows:

E2005[Y ∧ 500, 000]− E2005[Y ∧ 250, 000]

E2000[X ∧ 500, 000]− E2000[X ∧ 250, 000]
=

64, 416− 48, 539

50, 191− 38, 900
= 1.248.

We also note from Table 3 the trend factor is different for policies that partially expose

the layer. We note this in the case of the $750,000 policy limit in the layer $500,000

xs $500,000 and all policies in the $5MM xs $0.

The total trend in Table 3 is calculated as the weighted average of the trend factor

per policy with the corresponding exposure rating loss cost as given in Table 2. From

Table 3 we observe the effect of capping at policy limits. For example, if we had not

taken into account the effect of policy limits the trend factor in the first $5MM would

have been 1.389 instead of 1.328. We also observe the leverage effect of loss trend in

the various layers, for example the annual trend factor for the layer $4MM xs $1MM

is 9.59% compared to an unlimited ground up trend factor of 8%. If we were analyzing

aggregate gross losses for the ceding company using a trend factor of 8% would be

inadequate since we would not be taking into account the fact that the majority of

the business is written at lower limits. In this case it would be more adequate to

use a trend factor of 5.83% which takes into account the limit profile of the ceding

company’s portfolio. Table 4 shows the frequency trend in the various layers. The

second column of Table 4 shows the expected number of claims by policy limit. These

figures were calculated by taking the projected premium times the expected loss ratio

and divided by the limited expected value at the corresponding policy limit. The

expected number of claims in the layer were calculated using equation (3.11) with the

curves in 2005 and 2000 values respectively. The frequency trend is then the ratio of

the expected number of claims in the layer using 2005 severity distribution and the

expected number of claims in the layer using 2000 severity distribution. It can be seen
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from Table 4 that although in this example we assumed no ground up frequency trend

(hence the frequency trend for primary layers is zero) the majority of the increase in

loss cost in excess layers is expected from additional claims trending into the layer.

Table 5 shows a summary of the trend factors by layer as well as the frequency and

severity trend factors. As discussed above most of the expected increase in loss cost

in excess layers is due to an increase in claims in the layer rather than an increase

in severity in the layer. Having the excess trend split into frequency and severity

has several advantages when pricing excess of loss reinsurance. In practice frequency

tends to be more stable than severity, thus often one models frequency from the ceding

company’s experience and uses severity from the loss distribution and then multiplies

the two to estimate the total loss cost. There are several variations of this “mix”

method used in practice.

3.3 Adjustment for Changes in Limit Profile

While primary pricing is concerned with total exposure growth, excess of loss reinsur-

ance pricing is concerned with exposure growth by layer. Traditional pricing assumes

exposure growth by layer is consistent with total exposure growth: an assumption

that frequently fails in a stable operating environment, let alone an environment

where limits usage expands or contracts greatly due to significant shifts in underwrit-

ing appetite and pricing adequacy. One of the fundamental components of a typical

reinsurance submission is the Limits Profile. The Limits Profile will typically show

the amount of business the ceding company has written during the latest calendar

period segmented by the limits of the primary policies. It may be based on written

or earned premium, or it may be based on policy or exposure counts. If there is

significant variability in deductibles, or if the book of business is written on an excess

basis with varying attachment points, the Limits Profile may also be segmented by

deductible or attachment. While the form of the Limits Profile may differ depending

on the characteristics of the business, its purpose is the same: to provide the reinsurer
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with an estimate of the ceding company’s limits usage. By comparing Limits Profiles

across time periods, the reinsurer can estimate not only current period limits usage,

but also the change in limits usage over time. The experience of the ceding company

will greatly vary depending on the composition of the book. For example if the max-

imum limit capacity of a ceding company in year 2000 was $3MM the maximum loss

for any one claim will be $3MM. If the ceding company has expanded its capacity

to a maximum limit of $5MM for year 2005 and the reinsurer is interested in pricing

the layer $2.5MM xs $2.5MM then using the experience for 2000 to project the loss

cost in the layer for year 2005 will result in an understatement of the the loss cost for

the reinsurers as the maximum exposure for the layer in 2000 was $500,000 whereas

for 2005 the layer is fully exposed. In this section we develop a method based on the

mathematics of exposure rating that will help us estimate the differences in exposure

across layers. A very similar version of the method presented below was presented

by Robert Giambo at the CARe seminar in 2004. In his presentation he used the

results of the exposure rating method to adjust for changes in limits profile. There are

two main differences between the approach presented by Giambo and the approach

presented in this paper:

1. Giambo’s approach is based on the experience loss cost expressed as a percent-

age of the historical on-level premium. Hence his adjustment factor did not

include an adjustment for the total limits exposure change. In this paper the

estimated exposure adjustment factor includes overall exposure change (through

the relative change in on-level premium) as well as exposure in the layer due to

shifts in limit profile.

2. We take the methodology one step further and we split the exposure adjustment

into its frequency and severity component. This split is helpful when one is

interested in applying a mixed method where frequency is estimated from the

experience and severity is estimated from the exposure method.
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We follow the notation outline in Section 3.1.

Steps to estimate exposure adjustment by layer

1. Given rate changes for the ceding company during the experience period cal-

culate on-level factors with standard on-level methodologies. See, for example,

McClenahan [8] .

2. Calculate on-level historic limit profile. In absence of additional information we

assume that the same rate changes (hence on-level factors) apply to all policy

limits.

3. Using the severity distribution with parameters for the prospective period cal-

culate the expected severity by policy limit EY [SY,p].

4. With the results from item 3 above calculate the expected severity in the layer

for each policy limit EY [SY,p(A,L)].

5. Using the projected limit profile with premium distribution by policy given by

βp, for p = 1, . . . , P , calculate the exposure rate as follows:

(Loss Cost)projected = (SP )(ELR)
P∑

p=1

βp
EY [SY,p(A,L)]

EY [SY,p]
. (3.13)

6. Using the historic on-level limit profile with premium distribution given by αp

for p = 1, . . . , P calculate the exposure rate as follows:

(Loss Cost)historic = (OLP )(ELR)
P∑

p=1

αp
EY [SY,p(A,L)]

EY [SY,p]
. (3.14)

7. The exposure adjustment in the layer L xs A is given by the ratio of equations

(3.13) and (3.14):
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Layer Exposure Adjustment =
(Loss Cost)

projected

(Loss Cost)
historic

= (SP )(ELR)
(OLP )(ELR)

PP
p=1 βp

EX [SX,p(A,L)]

EX [SX,p]PP
p=1 αp

EX [SX,p(A,L)]

EX [SX,p]

.

(3.15)

Note from equation (3.15) the term (SP )/(OLP ) represents the total limits exposure

adjustment. This term is then multiplied by the change in exposure in the layer

given by changes in limit profile distribution across policies. If the ceding company’s

premium or exposure distribution by policy type has remained constant the right

hand side term of equation (3.15) would equate (SP )/(OLP ), i.e. the total limit

exposure adjustment. The method presented in this section only takes into account

changes in limit profile, it does not reflect changes in average loss cost as we have

assumed the severity distribution is in future value terms. The exposure adjustment

as presented in equation (3.15) is applied to ultimate trended losses in the layer, where

trended losses can either be calculated using the standard per claim trending method

or the aggregate excess trend method as presented in Section 3.2.1. The exposure

adjustment and the trend factor are multiplicative.

3.3.1 Frequency and Severity Exposure Adjustment

In this section we extend the method of adjusting for changes in limit profile to

frequency and severity. In other words we estimate the increase in exposure due to

increase in frequency and severity separately. The following steps provide the method-

ology to estimate the frequency exposure adjustment for a generic layer L xs A.

1. Calculate the expected number of claims by policy type for the prospective

period as follows:

E[Np] =
(SP )(ELR)βp

EY [SY,p]
, (3.16)

i.e. dividing the projected total expected loss cost by policy type by the expected

severity for that policy type.
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2. Calculate the “as if” expected number of claims by policy type for the experience

period as follows:

E[Mp] =
(OLP )(ELR)αp

EY [SY,p]
, (3.17)

i.e. the expected loss cost for the experience period in current rate level by the

expected severity by policy type using the severity distribution for the prospec-

tive period.

3. Calculate the expected claim count in the layer by multiplying the expected

claim count by policy type times the probability of claims penetrating the layer

as follows:

E[Np(A,L)] = E[Np](1− FY (A + D))

E[Mp(A,L)] = E[Mp](1− FY (A + D))
(3.18)

4. Add the expected claim count in the layer across policies for both the prospective

and the experience period:

(Claim Count)projected =
∑P

p=1 E[Np(A,L)]

(Claim Count)historic =
∑P

p=1 E[Mp(A, L)]

(3.19)

5. Calculate the frequency exposure adjustment as:

Frequency Exposure Adjustment =
(Claim Count)projected

(Claim Count)historic

The severity exposure adjustment is then calculated as the ratio between the layer

exposure adjustment and the frequency adjustment. The following section presents a

detailed worked example showing the exposure adjustment for various layers of loss.

3.3.2 Worked Example

We continue to use the same assumptions as in the example shown in Section 3.2.3.

Table 6 shows the ceding company’s Limits Profile for business written during un-

derwriting year 2000 and the projected Limits Profile for underwriting year 2005.
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The Limits Profile and rate increase information are typically provided by the ceding

company as a part of the reinsurance submission. Assume we know that rates for

business written in underwriting year 2000 will have increased a cumulative 50% by

underwriting year 2005.

In this example, we have assumed that the 50% cumulative rate increase has

equally impacted policies written at each limit. On-level written premium for under-

writing year 2000 is 50% higher in Table 7 (Historic On-Level Limits Profile) than

its counterpart in Table 3.6 (Historic Limits Profile). If rate changes have varied by

limits due to a change in Increased Limits Factors, an appropriate differential increase

should be applied separately to each limit.

We then calculate the expected losses in the layer using the standard exposure

rating method. Table 8 shows the % of loss by layer by policy limit using the severity

distribution with 2005 parameter. As in the example in Section 3.2.3 we are using a

lognormal with µ = 9.31 and σ = 2.29. The % of loss in the layer is calculated as the

ratio of the expected severity in the layer EY [SY,p(A,L)] and the expected severity for

the underlying policy EY [SY,p]. Using this percent of loss in layer as a proxy for the

exposure in each layer, we then multiply Table 8 by our 2000 limit profile (on-level)

and the assumed 60% expected loss ratio to estimate historic exposure by layer. This

yields Table 9.

Then we calculate the projected exposure by multiplying the results from Table

8 by the ELR of 60% and by the 2005 Limit Profile from Table 7. The results are

shown in Table 10.
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Taking the relativity between Table 9 and Table 10 yields the exposure adjust-

ment to be applied to the trended ultimate losses in the layer for experience year

2000. These results are shown in Table 11. Note that the exposure in 2005 for the

$5MM xs $0 layer is 1.09 times the exposure in 2000 for the $5MM xs $0 layer.

As this layer represents total limits (there are no policies in this example greater

than $5 million), this is our total limits change in exposure. It is simply the ratio

of on-level total limits premium in 2005 relative to that in 2000, or $25,875,000 di-

vided by $23,737,500. This is the total limits change in exposure yielded by standard

on-leveling procedures.

It is interesting to note how this 9% increase in total limits exposure differs by

layer. Exposure in the $250,000 xs $0 layer is actually down slightly, while exposure

in the $4MM xs $1MM layer has doubled. Table 12 shows the expected frequency

by policy for underwriting years 2000 and 2005 respectively. These results were

calculated by taking the total expected loss cost by policy type and dividing it by the

expected severity for such policy. Table 13 then shows the expected frequency in the

layer. These results are calculated by multiplying the total expected frequency by the

probability of a loss penetrating the layer given that the underlying policy exposes

the layer.

The severity adjustment is calculated as the ratio of the layer adjustment and

the frequency adjustment. Table 14 shows a summary of the exposure adjustment

by layer of loss. As we can see from Table 14 there is a significant difference in

exposure changes across layers. Standard experience rating method would assume

that the total limit exposure change apply consistently across layers. In our example

above the total limit exposure changes is 1.09, however we can see that although

the total exposure has increased by 9% the exposure in the layer $4MM xs $1MM

has doubled. Hence, if we had adjusted the experience in the $4MM xs $1MM layer

by a factor of 1.09 we would have significantly understated the experience rate. It

is also interesting to note from Table 14 the contribution to the exposure change of
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frequency and severity separately. As we can see most of the exposure change for

total limits is due to an increase in severity since frequency has reduced slightly.

4 CONCLUSIONS

We have presented in this paper an improved method for experience rating excess of

loss treaties based on the mathematics of exposure rating. The methodology presented

in Section 3.2 to estimate a trend factor by layer based on the unlimited trend factor

presents several advantages over the standard per claim trending procedures widely

used in practice. First, the aggregate trend method is useful when individual claim

information does not contain policy details such as limit and deductible. In this case

we simply calculate the excess trend factor and apply it to nominal losses in the layer.

Second, when reinsurers receive individual losses greater than a certain amount the

aggregate trend method is useful as it helps us overcome the problem of having to

eliminate all data that falls below a selected threshold. Hence, by using an aggregate

trend instead of the per claim trending method we can experience rate lower layers

that would have been otherwise impossible to do. Third, the aggregate excess trend

methodology brings consistency between unlimited trend factors and trend factors by

layer of loss. Finally, the aggregate trend method helps us to quantify the impact of

frequency and severity trend in excess layers which is useful for measuring the impact

of increased frequency in excess layers even when ground up frequency is stable. The

methodology presented in Section 3.3 helps us to quantify the exposure adjustment

by layer of loss due to shifts in limit profile for the ceding company. Traditional

experience rating methods quantify the exposure change for the underlying book of

business through changes in on-level premium or other measure of exposure. However,

this method assumes that the total limits exposure change is consistent across layers.

Through the example presented in Section 3.3.2 we have seen that using the total

limit exposure change across layers can result in a significant misestimation of the

expected loss cost. The exposure adjustment method is based on the mathematics
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of exposure rating, which are widely used in reinsurance pricing, and data that is

typically available in a standard reinsurance submission, making the method relatively

easy to implement in practice.
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Appendix: Numerical Results

Table 1: Limits Profile and Limited Expected Values

Underwriting Year 2005 2000

Policy Limit (PL) Premium (SP) EY [Y ∧ PL] EX [X ∧ PL]

250,000 2,250,000 48,539 38,900

500,000 5,400,000 64,416 50,191

750,000 2,925,000 74,252 56,947

1,000,000 6,300,000 81,301 61,681

5,000,000 9,000,000 117,221 84,401

Total 25,875,000

3The methods set forth in this paper are the opinion of the authors and they do not necessarily

represent the views of the ACE Group of Insurance and Reinsurance companies or Carvill and any of

its subsidiaries. The worked examples provided in this paper were derived from purely hypothetical

assumptions and any similarity between these examples and any existing insurance company are

coincidental only.
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On Predictive Modeling for Claim Severity 
Glenn Meyers, FCAS, MAAA, Ph.D. 

 
 

             
Abstract: 

Reinsurers typically face two problems when they want to use insurer claim severity experience to 
experience rate their liability excess of loss treaties.  First, the claim severity data has insufficient volume 
to make credible projections of excess layer costs.  Second, the data they do receive is not fully 
developed.  Most claims that pierce the excess layers can take at least a few years to settle.  This paper 
sets forth a methodology for dealing with these problems.  The paper starts with some introductory 
examples that illustrate how to quantify the inherent uncertainty in fitting claim severity distributions. 
Then the paper illustrates a Bayesian methodology to estimate the expected cost of excess layers, and 
shows how to quantify the uncertainty in these estimates.  The Bayesian “prior models” are not derived 
from purely subjective considerations.  Instead they are derived after examining the claim severity data 
of several insurers.  Each “prior model” contains claim severity distributions of immature data that are 
used to calculate the posterior probabilities with comparable immature data submitted by an insurer.  
Each “prior model” also contains a fully developed claim severity distribution.  The estimate of the cost 
of an excess layer is the average of the fully developed excess layer costs weighted by the posterior 
probabilities calculated with the immature data submitted by the insurer. 
 
Keywords: Loss Distributions, Bayesian Estimation, Excess of Loss Reinsurance 

               

1. INTRODUCTION 

One of the many jobs an actuary is asked to do is to predict future claim costs in high 
layers.  It is often the case that there are few claims from past experience.  When this is the 
case, an actuary must resort to either one or both of the following.   

• Try to discern a pattern in the claims that lie below the layer, and use this pattern to 
project claim costs in the layer.  This is usually done by fitting a parametric probability 
distribution to these other claims. 

• Examine claims from other insurers, or from an industry source, in the hope that these 
claims are similar to the claims you are trying to project.  Often an actuary will make use 
of a probability distribution that has been fit to these claims.  

There are difficulties with each of these approaches.  The first approach can have 
credibility problems if there are not enough claims to get a reliable estimate of the 
parameters of the parametric probability distribution.  And identifying the best distribution 
can also be a problem.  The second approach can have relevance problems if the population 
that underlies the “industry” is different than the population that the actuary is addressing.    
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Liability insurance presents yet another problem in fitting claim severity distributions.  It 
can take a considerable amount of time to settle the claims.  A changing legal environment 
will force the actuary to compromise between completeness and relevance of the claim 
information. 

This paper will address each of these problems.  Here is a summary of what is to follow. 

• I will begin with a description of how to construct a classical (non-Bayesian) confidence 
interval of parameters of a claim severity distribution using the likelihood ratio test. 

• Next I will show how to use Bayes’ Theorem to calculate posterior probabilities for a 
series of selected claim severity distributions.  The “selected claim severity distributions” 
can come from different parameterizations of a selected model, such as a Pareto or a 
lognormal model.  Or the “selected claim severity distributions” can come from different 
models.  This allows us to incorporate what we informally call “model uncertainty” as 
well as “parameter uncertainty” into our estimation procedure. 

• It is generally the case that particular claim severity models, or particular 
parameterizations of these models, are not of direct interest.  What are of interest are 
functions of the models and their possible parameterizations.  An example of such a 
function would be the expected cost of a particular layer of loss.  I will show how to 
quantify uncertainty in the expected cost of a layer of loss in terms of the posterior 
probabilities of each of the models and their multiple parameterizations. 

• It is possible to associate claim severity distributions developed to their ultimate value, 
with the immature claim severity distributions representing the data that is currently 
available.  By fitting (i.e., determining the posterior probabilities) the immature data to 
the immature distributions and then applying the posterior weights to the associated fully 
developed distributions, it is possible to get estimates of the expected losses for a layer of 
loss.  Furthermore, one can quantify the uncertainty in this estimate. 

A major theme of this paper will be the importance of the likelihood function.  Loosely 
stated, the likelihood function is the probability of observing a given set of data as a function 
of a parametric probability distribution.  The likelihood function will play a key role in both 
the classical and Bayesian methodologies described below.  
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2.  CONFIDENCE REGIONS FOR PARAMETERS  

I will begin the discussion of confidence regions with a description of hypothesis testing 
using the likelihood ratio test.   

Let: 

• p = (p1, p2, …, pk) be a parameter vector for a given parametric probability distribution; 

• x = (x1, x2, …, xn) be a set of observed losses; 

• pML be the maximum likelihood estimate of the parameter vector given the data x; 

• pT be the “true” parameter vector underlying the population of interest; and 

• p* be a parameter vector for a proposed model for a claim severity distribution. 

Denote likelihood of a parameter vector, p, given the data, x, by L(x;p).  

We want to test the null hypothesis: 

H0: p* = pT; 

against the alternative hypothesis: 

H1: p* � pT. 

Theorem 

If H0 is true, then the statistic: 

( ) ( ) ( )( )MLln 2 ; ; *LR L L≡ ⋅ −x p x p  

has a χ2 distribution with k degrees of freedom. 

This theorem is given in Section 13.4.4 of Klugman, Panjer and Willmot (KPW) [2004]1.   

Informally, this theorem says that one should accept (or fail to reject) the hypothesis that 
p* is the parameter vector for the population if the likelihood of p* is sufficiently “close” to 

                                                 
1 There are a number of technical conditions placed on the probability distribution for this result to hold.  Most 
of the common distributions used by actuaries (such as Pareto, lognormal and gamma distributions) satisfy 
these conditions. 
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the maximum likelihood estimate, pML, of the sample.  More formally, “close” is defined by 
the above statistic and the critical values of the χ2 distribution with k degrees of freedom. 

To illustrate the likelihood ratio test I took a random sample of 1,000 claims from a 
Pareto distribution of the form 

 ( ) 1F x
x

αθ
θ

 = −  + 
, 

with α = 2 and θ = 10,000. 

While it is not convenient to list all 1,000 claims in this random sample, here is a grouped 
summary of these claims. 

 Table 1 

Range Count 

xi ≤ 5,000 562 

5,000 < xi ≤ 10,000 181 

10,000 < xi ≤ 20,000 134 

20,000 < xi 123 

Here is the log-likelihood function for the grouped data. 

 

( ), 562 ln 1 181 ln
5000 5000 10000

134 ln 123 ln
10000 20000 20000

Gl
α α α

α α α

θ θ θθ α
θ θ θ

θ θ θ
θ θ θ

        = ⋅ − + ⋅ −           + + +        
        + ⋅ − + ⋅           + + +        

 

Using a general purpose maximizing tool, Excel Solver, I found the maximum likelihood 
estimate of the Pareto parameters for the grouped data to be equal to 

( ) ( ), 7447.8,1.6041ML ML
G Gθ α = . 
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Here is the log-likelihood function for the detailed data. 

 ( ) ( ) ( )( ) ( ) ( )
1000

1

, 1000 ln ln 1 lnD i
i

l xθ α α α θ α θ
=

= ⋅ + ⋅ − + +∑ . 

Using Excel Solver, I found the maximum likelihood estimate of the Pareto parameters for 
the detailed data to be equal to ( ) ( ), 9626.8,1.8079ML ML

D Dθ α = . 

Note that the parameter estimates in each case are different from the true parameters that 
I used to generate the simulated data.  If I were to generate another simulation, I would get a 
different parameter estimate.  Repeated simulations will yield samples from a bivariate 
distribution of parameter estimates.  There is a formula that describes the bivariate 
distribution of the maximum likelihood estimates in terms of the parameters that are used to 
generate the original distribution.2     

Our problem is different.  In practice, we don’t know the parameters of the underlying 
distribution.3  A question to ask is the following:  What are acceptable parameters for the 
distribution given the data we have?  To answer this question one can invoke the likelihood 
ratio test by defining a p% confidence region of the parameters as the set of all parameters 
that pass the likelihood ratio test at the p% level. 

Figures 1 and 2 are plots of the parameters that pass the likelihood ratio test at the 5% 
level for the grouped and detailed data, respectively.  These plots were generated by 
calculating the likelihood ratio statistic for a grid of (θ,α) points and plotting them if the 
statistic was less than the 5% critical value, 5.99, of the χ2 distribution with two degrees of 
freedom. 

It is worth noting that the confidence region is wider for the grouped likelihood data than 
for the detailed likelihood data.  This illustrates the additional information provided by the 
detailed data.   

                                                 
2 The distribution of the maximum likelihood estimates has an asymptotic normal distribution with parameters 
given by the Fisher Information Matrix. See Section 12.3 of Klugman, Panjer and Willmot [2004]. 
3 In practice, we don’t even know the underlying distribution itself.  I will get to that below. 
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Figure 1
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This definition of a confidence region is somewhat unusual.  The standard technique 
(described in KPW, Section 12.3) is to use the Fisher information matrix, substituting the 
maximum likelihood estimate of the parameters for the “true” parameters.  However, the 
definition of confidence regions of the parameters used here has precedent.  One of these is 
in the first edition of KPW4.     

                                                 
4 See Example 2.69 on page 131 of Klugman, Panjer and Willmot [1998].  I asked Professor Klugman why this 
example was not in the 2nd edition.  He replied that it was an oversight, and made a note to put it back in the 
third edition. 
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3. THE COTOR CHALLENGE 

Last year, the CAS Committee on the Theory of Risk (COTOR) issued a challenge.  The 
committee published a list of 250 claims, and asked contestants to estimate the pure 
premium of a $5 million x $5 million layer.  An additional requirement of the challenge was 
to put a 95% confidence interval around this estimate.  A full description of the COTOR 
Challenge can be found on the CAS web site: 

http://www.casact.org/cotor/round2.htm. 

The “claims” were generated by a simulation from a transformed inverse gamma 
distribution, a fact that was not revealed until after all solutions were submitted.   

The COTOR challenge has some of the elements that reinsurance actuaries face in their 
work.  Most importantly: 

• The underlying loss distribution is unknown, and is very likely not one of the standard 
models that are in the typical actuarial toolbox. 

• There are very few claims in the layer of interest.  Actuaries typically try to project the 
frequency of claims in a high layer by looking at claims in a lower layer. 

My solution, which is posted on the COTOR web site, provides an example that I believe 
to be of educational value as we move toward the ultimate goals stated in the introduction.  I 
will describe it in some detail here. 

The solution makes use on a software package called MATLAB.  The software has tools 
for plotting histograms, calculating maximum likelihood estimates, and supporting statistics.   

The first step one should almost always take when fitting a distribution to data is to plot a 
histogram. 



On Predictive Modeling for Claim Severity 
 

Casualty Actuarial Society Forum, Spring 2005 223 

 

 Figure 3 

0 1 2 3 4 5 6 7

x 10
6

0

50

100

150

200

250

Claim Amount

C
ou

nt

Histogram of Cotor Data

   

Note that there is only one claim in the $5 million x $5 million layer that contestants were 
asked to predict.  The next highest claim was about $600,000.  I did not even attempt to fit a 
distribution to this data. 
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The next step I took was to take the log of that data.  The histogram looked promising so I 
tried to fit a couple of different distributions by maximum likelihood. 

 

Figure 4 

 

None of the selected distributions looked particularly good, with the Weibull providing the 
worst fit.  The distribution was still skewed to the right. 
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In an attempt to reduce the skewness, I plotted a histogram of the double log of the data and 
fit some distributions to the double logged data by maximum likelihood.   

 

Figure 5 

 

Here the fit of the three distributions is closer, but the double log of the data still looks more 
skewed than the distributions I tried. 
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Continuing the above logic, I took the triple log of the data and tried some more maximum 
likelihood fits. 

Figure 6 

 

At this stage, the maximum likelihood fits began to look reasonable.  I examined these fits in 
more detail.  
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Here are some fitting statistics for the three 
distributions.  Some observations: 

• The lognormal distribution has the 
highest loglikelihood and the hence 
the best fit of the three. 

• The loglikelihood of the gamma 
distribution is reasonably close to 
that of the lognormal distribution.  
The loglikelihood of the normal 
distribution is a bit lower, but not 
totally out of the running. 

• Looking at Figure 7 below, we see 
that the maximum likelihood fit of  
all three distributions are nicely 
within the confidence bounds for 
lognormal fit. 

• It is possible to go to a quadruple 
log transform since the triple logs 
of the claim amounts are still 
positive.  But that is as far as we 
can go, since some triple logs are 
less than one.   I stopped at the 
triple log transform since the 
lognormal is equivalent to a normal 
with the quadruple log transform.  

Table 2 

Distribution:  Lognormal 
Log likelihood: 283.496  
Mean: 0.73835  
Variance: 0.00619  
   

Parameter   Estimate    Std. Err.  
µ -0.30898 0.00672 
σ 0.10625 0.00477 

   

Estimated covariance of parameter estimates:
      µ   σ        

µ 4.52E-05 1.31E-19 
σ 1.31E-19 2.27E-05 

  

Distribution:     Gamma 
Log likelihood: 282.621  
Mean: 0.73836  
Variance: 0.00615  
   

Parameter   Estimate     Std. Err.   
a 88.6454 7.91382 
b 0.00833 0.00075 
   

Estimated covariance of parameter estimates:
    a b 

a 62.6286 -0.00588 
b -0.00588 5.56E-07 

   

Distribution:     Normal  
Log likelihood: 279.461  
Mean: 0.738355  
Variance: 0.006285  
   

Parameter Estimate Std. Err. 
µ 0.738355 0.005014 
σ 0.079279 0.003556 

   

Estimated covariance of parameter estimates:
 µ σ         

µ 2.51E-05 -1.14E-19 
σ -1.14E-19 1.26E-05 
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Figure 7 

 

Figure 7 is a plot of the cumulative distribution functions of each of the fits and the data.  
The dotted lines give upper and lower confidence bounds for the best-fitting lognormal 
distribution.  These confidence bounds contain the normal and gamma distributions and so 
we should consider all three of these distributions as potential models for the triple logs of 
the data. 
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Up to now, this analysis has been fairly classical.  A typical classical analysis of the data 
would take the cumulative distribution function, F(x), of the best-fitting model, (in this case 
the quadruple lognormal with the parameters in Table 2) and integrate the following formula 
to estimate the pure premium of the $5 million x $5 million layer. 

 Layer Pure Premium5 = ( )
10,000,000

5,000,000

1 ( )F x dx−∫ . (1)  

Such an estimate of the layer pure premium reflects the uncertainty of the loss given the 
model and the parameters of the model.  It does not reflect the uncertainty of the model and 
the uncertainty in the parameters given the model.   

If we are to reflect these additional uncertainties, we need to get the probability of the 
potential models and parameters.  The only information we have to get these probabilities is 
the data. Now we have the ability to calculate the likelihood function (i.e., the probability of 
the data) for any given model and parameter set.  To carry out this program, I made use of 
Bayes’ Theorem to calculate the probability of each model and parameter set given the data. 

Here is an outline of the methodology underlying my solution. 

• I began by hypothesizing a series of “models” for the data.  I interpret the term “model” 
broadly to include choices of the parametric form of the ‘model’ (in the narrow sense; e.g., 
lognormal or gamma) as well as a choice of parameters for each ‘model.’  I am 
intentionally blurring the distinction between parameter uncertainty and ‘model’ 
uncertainty. 

• For each model, I calculated the likelihood (or probability) of the data given each model.  
Using Bayes’ theorem, the posterior probability of each model, given the data, is 
calculated by the following formula. 

( ) ( ) ( )Posterior model|data Likelihood data|model Prior model∝ ⋅ . 

• For each model, I calculated the cost of the $5 million x $5 million layer using Equation 
1 above.  I then calculated various statistics of the posterior distribution of the layer 
costs using posterior probabilities.  For example: 

                                                 
5 One should distinguish between the layer pure premium and the layer average severity.  The layer average 
severity is the average severity given that the claim has pierced the layer.  The layer pure premium is equal to 
the layer average severity times the probability of piercing the layer. 
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o The posterior expected cost of the layer was the posterior probability-weighted 
average of the layer cost for each model.  Calculations such as this led to the 
mean and standard deviation in my solution. 

o The posterior percentile of a selected layer cost is the sum of the posterior 
probabilities of all the models for which the layer cost is less than the selected 
layer cost.  Calculations such as this led to the median and confidence interval for 
my solution. 

Now let’s look at the details. 

The above analysis identified three potential ‘models’ for the data with the triple log transform 
— the lognormal, the gamma and the normal.  The fitting statistics give an indication of the 
range of possible parameters for each ‘model.’ 

Here are the steps in my calculations. 

1. For each ‘model,’ I calculated the confidence interval at the 0.1% level for both 
parameters. 

2. I divided the confidence interval into 50 intervals and created a 51 by 51 grid of 
possible parameters for each ‘model.’  The three ‘models’ along with the 2,601 
parameters yielded 7,803 “models” from which to do the Bayesian calculations. 

3. I calculated the loglikelihood of each model.   I assumed that the prior probabilities 
for each model were equal.  I then exponentiated the posterior loglikelihoods and 
normalized them so that the posterior probabilities sum to one. 

4. I then calculated the pure premiums for each model using Equation 1 and 
MATLAB’s numerical quadrature function.  

5. Finally I transferred the MATLAB arrays into Excel, sorted the models in 
increasing order of the pure premiums, and calculated the statistics reported in the 
results below.  

The MATLAB code for executing the first four steps along with the spreadsheet for Step 
5 can be downloaded from the COTOR web site. 



On Predictive Modeling for Claim Severity 
 

Casualty Actuarial Society Forum, Spring 2005 231 

I should point out that the ‘model’ uncertainty did not have a significant effect on the final 
answer.  The lognormal models got 95.33% of the posterior probability, the gamma models 
got 2.98% of the posterior probability and the normal models got the remaining 1.69%.  

Here are the results. 

Table 3 

Predictive Statistics for the Layer Pure Premium 

Mean 6,430
Standard Deviation 3,370
Median 5,780

Range 
Low at 2.5% 1,760
High at 97.5% 14,710

 

Here is a histogram for the predictive distribution. 

Figure 8 
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Using Bayes’ Theorem in the solution above is similar to the likelihood ratio approach 
described in Section 2 in that both approaches use the likelihood function to identify 
potential models.  The likelihood ratio test only provides you with a “yes/no” decision.  And 
this “yes/no” decision is only correct if the underlying ‘model’ is correct.   But if you are 
comfortable with assigning prior probabilities to models, Bayes’ Theorem allows you to use 
the likelihood function of the data associated with each model to calculate posterior 
probabilities for each model.  And with probabilities assigned to each model, you can 
calculate any desired statistic of a function (e.g., layer pure premium) of the potential models.  
And the Bayesian approach can deal with ‘model’ uncertainty.  

Using Bayes’ theorem to fit claim severity distributions is not new to the CAS literature.  
Meyers [1994], Klugman [1994], and Kreps [1997] have papers on this subject.   

4. AN EXAMPLE BASED ON INSURANCE DATA 

I believe the Bayesian methodology underlying the COTOR challenge is potentially useful 
for predicting pure premiums for high layers of insurance, but the methodology is far from 
complete.  In this section, I will give an example that uses this Bayesian methodology that 
also addresses two of the more serious shortcomings. 

1. The models that make up the prior information need careful consideration.  In my 
solution to the COTOR Challenge, I developed the prior information using preliminary 
fits to the data and the standard errors of the parameter estimates.  A true Bayesian 
would think hard and develop models that they believe are plausible in the absence of 
any data. 

2. Liability claims can take a long time to settle.  We are often given the task of predicting 
the ultimate claim severity distribution given an incomplete sample of claims.  We do not 
know the ultimate values for many of the claims. 

The fact that reinsurers go through great effort to examine the excess claims experience 
of their prospective contracts indicates that they believe that there are significant differences 
in the excess loss potential between insurers.  Otherwise all reinsurance contracts would be 
priced using claim severity distributions based on industry aggregate experience such as 
those available from my employer, Insurance Services Office, Inc. (ISO). 
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To test this belief, I asked our (ISO’s) increased limits ratemaking division to extract the 
empirical claim severity distributions for a liability coverage by individual insurer6.  We the 
then fit mixed exponential distributions separately to 20 large insurers7.  Each model had 10 
parameters.  Thus I think it is more appropriate to think of the “fitting” as “smoothing,” and 
I do not expect each insurer’s result to be necessarily predictive of future results.   

The mixed exponential models were fit separately by settlement lag.   

The limited average severity, E[X^x], is the average severity of claims subject to a limit of 
x.  Mathematically: 

 [ ] ( )
0

^ 1 ( )
x

E X x F u du= −∫ .   

Figure 9 gives the ultimate limited average severity curves, based on the fitted mixed 
exponential distributions for each of the 20 insurers. 

  

                                                 
6 ISO’s standard increased limits ratemaking procedure also includes data from excess and umbrella claims that 
are reported separately to ISO.  These claims were not included in this study.  
7 See Keatinge [1999] for information and details of fitting the mixed exponential distribution. 
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Figure 9 – Initial Insurer Models 
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If you are looking at Figure 9 in color, it should be apparent that the relationship between 
limited average severities at low loss amounts and high loss amounts is by no means perfect, 
but there does seem to be a general trend.  The lack of correlation can be due to a lack of a 
fundamental relationship between losses at low levels and high levels, or it could be due to a 
lack of credibility of the data (as realized through the smoothing procedure.) 

If there is a fundamental relationship between low-level losses and high-level losses, it 
makes the job of estimating high layer losses more reliable since low-level claims are more 
numerous.  Ultimately this is a judgment call, and it is one that reinsurance actuaries 
routinely make. 

The examples below will consist of estimates of the pure premium for the $500,000 x 
$500,000 layer, and the $1 million x $1 million layer.   Figures 10 and 11 below respectively 
show how probabilities of exceeding $5,000 and $100,000 track with the pure premium for 
the $500,000 x $500,000 layer.  The correspondence appears to be stronger in the latter case.  
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At this point in the analysis, I decided to use only claims that are in excess of $100,000 to 
estimate the cost of these layers. 

Following the methodology of the previous section, the next step is to hypothesize a 
series of models for the data.  Each model should represent the probability distribution of 
claims over $100,000.  In developing this series of models, a good place to start is with 
models that were fit to individual insurer data.  After all, the object is to project future losses 
to individual insurers. 

I first attempted to use the fits directly.  But in spite of the general pattern of higher layer 
losses increasing with lower layer losses observed in Figure 11, the Bayesian methodology 
would assign posterior probabilities to models where this was not the case.  Given the 
general trend observed in Figure 11 and my prior actuarial experience (otherwise known as 
preconceptions) I decided to smooth out the initial set of company models.  The process 
was informal.  Loosely speaking, I dropped company models that did not behave “correctly” 
and replaced them with mixtures of company models that did behave “correctly.”  I was not 
able to reduce the noise entirely.  Before putting this plan into practice, the choice of priors 
needs to be addressed more fully.  I welcome debate on my notion of “correct” models.  
One of the advantages of the Bayesian methodology is that if forces one to make the 
assumptions explicit for all to see and open them to debate.       

Figures 12 and 13 give the limited average severity curves and the layer pure premiums 
for the final set of models.  These should be compared with Figures 9 and 11, respectively.   
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 Figure 10 – Initial Insurer Models 
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 Figure 11 – Initial Insurer Models 
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 Figure 12 – Selected Insurer Models  
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Figure 13 – Selected Insurer Models 
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The insurer models that underlie Figures 12 and 13 have been developed to ultimate.  
The insurer data that is presented for evaluation for an excess of loss treaty usually come 
from years that are too recent to contain all claims at their ultimate value.  To make use of 
the data that reinsurers typically get, we need to have distributions of the data that are 
available for each insurer model. 

Let’s look at some examples.  These examples will consist of three years of settled claim 
data.  This data will be used to calculate the likelihood of each of 20 models.  The prior 
probability for each model will be equal to 1/20.  Then using the Bayesian methodology 
described in the previous section, I will calculate posterior layer pure premiums for the 
$500,000 x $500,000 layer, and for the $1 million x $1 million layer. 

The 20 models used in this section’s example will consist of the following distributions: 

• The claim severity distribution for all claims settled within 1 year – Table 4. 

• The claim severity distribution for all claims settled within 2 years – Table 5. 
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• The claim severity distribution for all claims settled within 3 years – Table 6. 

• The ultimate claim severity distribution for all claims – Table 7. 

• The ultimate limited average severity curve – Table 8. 

As mentioned above, the models are a bit noisy, but I think they are good enough to 
illustrate the principles involved in this Bayesian methodology. 
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 Table 4 
  Cumulative Probability for Lag 1 

Claim Prior Model Number 
Amount 1 2 3 4 5 6 7 

100,000 0.998424 0.997549 0.999228 0.999234 0.999241 0.999097 0.998949
200,000 0.999522 0.999158 0.999779 0.999784 0.999789 0.999729 0.999668
300,000 0.999741 0.999563 0.999921 0.999923 0.999925 0.999888 0.999849
400,000 0.999837 0.999737 0.999971 0.999972 0.999973 0.999947 0.999921
500,000 0.999891 0.999827 0.999989 0.999990 0.999990 0.999972 0.999953
750,000 0.999954 0.999924 0.999999 0.999999 0.999999 0.999991 0.999982

1,000,000 0.999979 0.999962 1.000000 1.000000 1.000000 0.999996 0.999992
1,500,000 0.999996 0.999988 1.000000 1.000000 1.000000 0.999999 0.999998
2,000,000 0.999999 0.999995 1.000000 1.000000 1.000000 1.000000 0.999999

        
Claim Prior Model Number 

Amount 8 9 10 11 12 13 14 
100,000 0.998806 0.998725 0.998659 0.998562 0.998122 0.997094 0.996603
200,000 0.999609 0.999610 0.999611 0.999612 0.999422 0.998979 0.998818
300,000 0.999812 0.999817 0.999822 0.999828 0.999727 0.999492 0.999413
400,000 0.999895 0.999899 0.999903 0.999908 0.999848 0.999710 0.999663
500,000 0.999935 0.999938 0.999940 0.999943 0.999905 0.999817 0.999786
750,000 0.999974 0.999974 0.999974 0.999974 0.999960 0.999928 0.999911

1,000,000 0.999987 0.999987 0.999986 0.999985 0.999980 0.999968 0.999957
1,500,000 0.999996 0.999995 0.999994 0.999993 0.999993 0.999994 0.999987
2,000,000 0.999999 0.999998 0.999997 0.999996 0.999997 0.999999 0.999995

        
Claim Prior Model Number 

Amount 15 16 17 18 19 20  
100,000 0.996112 0.995621 0.995130 0.994197 0.995956 0.997715  
200,000 0.998658 0.998498 0.998337 0.997573 0.998259 0.998944  
300,000 0.999335 0.999256 0.999177 0.998684 0.999032 0.999381  
400,000 0.999616 0.999570 0.999523 0.999183 0.999392 0.999601  
500,000 0.999754 0.999722 0.999690 0.999443 0.999585 0.999728  
750,000 0.999893 0.999875 0.999858 0.999730 0.999807 0.999884  

1,000,000 0.999945 0.999933 0.999921 0.999848 0.999898 0.999948  
1,500,000 0.999981 0.999975 0.999969 0.999939 0.999964 0.999989  
2,000,000 0.999992 0.999988 0.999984 0.999969 0.999983 0.999998  
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 Table 5 
 Cumulative Probability for Lags 1-2 

Claim Prior Model Number 
Amount 1 2 3 4 5 6 7 

100,000 0.996249 0.994479 0.996598 0.995650 0.994980 0.994376 0.993730 
200,000 0.998776 0.997967 0.998770 0.998387 0.998117 0.997858 0.997582 
300,000 0.999329 0.998904 0.999393 0.999171 0.999012 0.998860 0.998698 
400,000 0.999579 0.999315 0.999648 0.999499 0.999391 0.999291 0.999184 
500,000 0.999717 0.999529 0.999768 0.999659 0.999579 0.999508 0.999432 
750,000 0.999881 0.999770 0.999886 0.999824 0.999779 0.999744 0.999706 

1,000,000 0.999947 0.999869 0.999931 0.999891 0.999862 0.999842 0.999821 
1,500,000 0.999989 0.999947 0.999968 0.999948 0.999933 0.999926 0.999918 
2,000,000 0.999998 0.999973 0.999983 0.999971 0.999962 0.999959 0.999955 

        
Claim Prior Model Number 

Amount 8 9 10 11 12 13 14 
100,000 0.993080 0.993542 0.993901 0.994418 0.993722 0.992133 0.990703 
200,000 0.997303 0.997541 0.997726 0.997995 0.997530 0.996472 0.995866 
300,000 0.998534 0.998696 0.998821 0.999003 0.998640 0.997820 0.997472 
400,000 0.999075 0.999190 0.999279 0.999407 0.999126 0.998490 0.998252 
500,000 0.999355 0.999437 0.999501 0.999593 0.999375 0.998882 0.998699 
750,000 0.999667 0.999704 0.999733 0.999775 0.999656 0.999388 0.999268 

1,000,000 0.999800 0.999817 0.999830 0.999849 0.999780 0.999625 0.999538 
1,500,000 0.999910 0.999913 0.999916 0.999920 0.999891 0.999827 0.999778 
2,000,000 0.999952 0.999952 0.999953 0.999954 0.999939 0.999907 0.999877 

        
Claim Prior Model Number 

Amount 15 16 17 18 19 20  
100,000 0.989248 0.987769 0.986267 0.983454 0.987292 0.991076 
200,000 0.995249 0.994620 0.993980 0.992118 0.993669 0.995200 
300,000 0.997118 0.996756 0.996388 0.995124 0.995968 0.996801 
400,000 0.998009 0.997762 0.997510 0.996571 0.997128 0.997676 
500,000 0.998513 0.998323 0.998129 0.997388 0.997808 0.998222 
750,000 0.999146 0.999022 0.998895 0.998429 0.998698 0.998964 

1,000,000 0.999449 0.999359 0.999266 0.998945 0.999134 0.999320 
1,500,000 0.999727 0.999675 0.999622 0.999451 0.999539 0.999626 
2,000,000 0.999847 0.999816 0.999784 0.999685 0.999717 0.999749 
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 Table 6 
 Cumulative Probability for Lags 1-3 

Claim Prior Model Number 
Amount 1 2 3 4 5 6 7 

100,000 0.993117 0.991183 0.991960 0.990009 0.988313 0.987309 0.986241
200,000 0.997248 0.996461 0.996618 0.995966 0.995416 0.994950 0.994452
300,000 0.998325 0.997996 0.998083 0.997766 0.997507 0.997228 0.996931
400,000 0.998843 0.998687 0.998752 0.998567 0.998419 0.998233 0.998034
500,000 0.999143 0.999056 0.999110 0.998984 0.998886 0.998753 0.998611
750,000 0.999529 0.999487 0.999527 0.999458 0.999404 0.999337 0.999265

1,000,000 0.999710 0.999680 0.999711 0.999664 0.999627 0.999589 0.999549
1,500,000 0.999865 0.999848 0.999867 0.999841 0.999819 0.999805 0.999790
2,000,000 0.999927 0.999917 0.999928 0.999911 0.999898 0.999891 0.999885

        
Claim Prior Model Number 

Amount 8 9 10 11 12 13 14 
100,000 0.985174 0.986141 0.986900 0.988014 0.987115 0.985052 0.982547
200,000 0.993953 0.994405 0.994760 0.995282 0.994564 0.992851 0.991672
300,000 0.996631 0.996928 0.997161 0.997502 0.996895 0.995426 0.994721
400,000 0.997834 0.998038 0.998197 0.998430 0.997942 0.996754 0.996259
500,000 0.998468 0.998608 0.998718 0.998879 0.998494 0.997557 0.997171
750,000 0.999193 0.999247 0.999289 0.999351 0.999139 0.998625 0.998370

1,000,000 0.999509 0.999526 0.999540 0.999559 0.999437 0.999140 0.998956
1,500,000 0.999774 0.999771 0.999769 0.999765 0.999715 0.999594 0.999488
2,000,000 0.999878 0.999873 0.999870 0.999864 0.999839 0.999777 0.999715

        
Claim Prior Model Number 

Amount 15 16 17 18 19 20  
100,000 0.980077 0.977642 0.975241 0.970705 0.974003 0.977352  
200,000 0.990513 0.989375 0.988255 0.985651 0.986512 0.987325  
300,000 0.994028 0.993349 0.992682 0.990980 0.991195 0.991346  
400,000 0.995774 0.995298 0.994831 0.993577 0.993620 0.993606  
500,000 0.996793 0.996421 0.996058 0.995061 0.995077 0.995047  
750,000 0.998121 0.997876 0.997635 0.996980 0.997026 0.997049  

1,000,000 0.998774 0.998596 0.998421 0.997952 0.997998 0.998030  
1,500,000 0.999385 0.999283 0.999182 0.998920 0.998912 0.998892  
2,000,000 0.999653 0.999592 0.999533 0.999378 0.999321 0.999251  
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 Table 7 
 Ultimate Cumulative Probability 

Claim Prior Model Number 
Amount 1 2 3 4 5 6 7 

100,000 0.986144 0.981451 0.978563 0.975297 0.972292 0.970836 0.969375 
200,000 0.993462 0.991264 0.988893 0.987858 0.986981 0.986135 0.985300 
300,000 0.995749 0.994592 0.992756 0.992349 0.992056 0.991480 0.990917 
400,000 0.996907 0.996197 0.994830 0.994621 0.994495 0.994066 0.993649 
500,000 0.997603 0.997108 0.996110 0.995958 0.995865 0.995527 0.995200 
750,000 0.998547 0.998270 0.997838 0.997697 0.997579 0.997370 0.997172 

1,000,000 0.999030 0.998845 0.998670 0.998530 0.998397 0.998261 0.998132 
1,500,000 0.999499 0.999403 0.999387 0.999273 0.999155 0.999095 0.999039 
2,000,000 0.999714 0.999659 0.999668 0.999582 0.999490 0.999467 0.999445 

        
Claim Prior Model Number 

Amount 8 9 10 11 12 13 14 
100,000 0.967995 0.966848 0.965978 0.964755 0.962971 0.961104 0.957388 
200,000 0.984525 0.983441 0.982566 0.981238 0.979893 0.978100 0.976354 
300,000 0.990400 0.989463 0.988683 0.987462 0.986407 0.984925 0.983884 
400,000 0.993269 0.992457 0.991774 0.990694 0.989877 0.988749 0.988008 
500,000 0.994904 0.994197 0.993601 0.992655 0.992024 0.991202 0.990608 
750,000 0.996993 0.996480 0.996049 0.995368 0.995031 0.994695 0.994273 

1,000,000 0.998018 0.997636 0.997316 0.996813 0.996621 0.996506 0.996183 
1,500,000 0.998990 0.998768 0.998583 0.998294 0.998218 0.998230 0.998036 
2,000,000 0.999427 0.999294 0.999184 0.999012 0.998974 0.998998 0.998881 

        
Claim Prior Model Number 

Amount 15 16 17 18 19 20  
100,000 0.953900 0.950641 0.947611 0.942936 0.940188 0.936834 
200,000 0.974729 0.973226 0.971844 0.969483 0.965947 0.961818 
300,000 0.982924 0.982042 0.981240 0.979667 0.976492 0.972815 
400,000 0.987327 0.986706 0.986145 0.984848 0.982275 0.979308 
500,000 0.990063 0.989568 0.989122 0.987937 0.985918 0.983600 
750,000 0.993887 0.993537 0.993223 0.992192 0.991065 0.989781 

1,000,000 0.995888 0.995620 0.995380 0.994510 0.993768 0.992925 
1,500,000 0.997859 0.997698 0.997554 0.996986 0.996440 0.995814 
2,000,000 0.998774 0.998677 0.998589 0.998237 0.997707 0.997093 
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 Table 8 
 Ultimate Limited Average Severity 

Claim Prior Model Number 
Amount 1 2 3 4 5 6 7 

100,000 6,412 7,021 7,217 8,067 8,835 9,181 9,540
200,000 7,340 8,276 8,735 9,774 10,712 11,168 11,637
300,000 7,864 8,961 9,629 10,735 11,725 12,251 12,788
400,000 8,226 9,413 10,241 11,375 12,385 12,960 13,546
500,000 8,498 9,744 10,689 11,841 12,861 13,474 14,097
750,000 8,964 10,302 11,417 12,604 13,650 14,329 15,016

1,000,000 9,261 10,655 11,842 13,065 14,142 14,864 15,591
1,500,000 9,612 11,073 12,297 13,583 14,725 15,493 16,264
2,000,000 9,802 11,300 12,524 13,860 15,054 15,842 16,631

        
Claim Prior Model Number 

Amount 8 9 10 11 12 13 14 
100,000 9,891 9,977 10,045 10,148 10,337 10,344 11,107
200,000 12,091 12,290 12,448 12,682 13,025 13,217 14,235
300,000 13,306 13,606 13,847 14,209 14,671 15,028 16,180
400,000 14,107 14,495 14,809 15,286 15,841 16,328 17,567
500,000 14,692 15,155 15,533 16,111 16,739 17,323 18,628
750,000 15,668 16,283 16,787 17,567 18,311 19,032 20,461

1,000,000 16,279 17,004 17,602 18,528 19,336 20,110 21,632
1,500,000 16,990 17,863 18,583 19,702 20,571 21,361 23,009
2,000,000 17,374 18,333 19,125 20,356 21,253 22,032 23,756

        
Claim Prior Model Number 

Amount 15 16 17 18 19 20  
100,000 11,832 12,518 13,166 13,884 14,036 14,257  
200,000 15,197 16,105 16,958 18,006 18,489 19,102  
300,000 17,267 18,289 19,246 20,485 21,307 22,315  
400,000 18,735 19,830 20,854 22,234 23,344 24,684  
500,000 19,856 21,006 22,080 23,583 24,922 26,526  
750,000 21,803 23,057 24,223 26,002 27,721 29,758  

1,000,000 23,058 24,388 25,623 27,641 29,585 31,880  
1,500,000 24,550 25,985 27,314 29,688 31,939 34,581  
2,000,000 25,367 26,865 28,251 30,851 33,369 36,320  
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We are now ready to work through our examples in detail.  Exhibits 1-3 below give the 
results of the Bayesian methodology for a small, a medium, and a large insurer.  The exhibits 
take claim severity data from each insurer and provide estimates of the layer pure premium 
for a $500,000 x $500,000 layer and for a $1 million x $1 million layer.  For the record, I note 
that the “data” for each insurer was produced from a simulation taken from a single claim 
severity distribution.  The “true” expected pure premiums for the layers are $1,382 and 
$1,015, respectively. 

Here is a step by step description of the calculations in those exhibits.            

Lags – As mentioned above, the claim severity distributions underlying the models were fit 
by settlement lag.  Claims from the most recent accident year consist of claims that were 
settled in Lag 1.  Claims from the second most recent year consist of claims that were settled 
in Lags 1 and 2.  The designation Lag 1 corresponds to accident year AY=1, Lags 1-2 
corresponds to AY=2 and Lags 1-3 corresponds to AY=3. 

Interval Lower Bound and Claim Count – We summarized the claim amounts in 
intervals, with the lower bound of the interval being specified to the left of the claim count.  
Let ni,AY be the observed claim count in the ith interval for accident year AY.  For example, in 
Exhibit 1, there were 15 claims in the interval (100,000, 200,000] and there were no claims 
more than 2,000,000 in Lag 1.  The underlying exposure was the same for each accident year.  
Note that there are more high severity claims in the earlier accident years. 

Prior Model # – These are the models described in Tables 4-8 above.  Each table gives a 
different part of each model as described above.   

Posterior Probability – This is calculated for each prior model.  Let: 

• ni,AY be the number of claims in the ith interval of the AYth accident year.  

• xi,AY be the lower bound of the ith interval, xi+1,AY be the upper bound of the ith interval.  
Note x10,AY = �. 

• Let Pi,AY,m be the probability that a claim is observed in ith cell given that it is in the AYth 
accident year for model m.  Let xi be the lower bound of the ith interval.  Let FAY,m(xi) be 
the probability that a claim is ≤ xi in accident year AY for model m.  These probabilities 
are given in Tables 4-6 above.  Then: 
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• The likelihood of the data {ni,AY} for model m, lm, is given by: 
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• Let Prior(m) be the prior probability associated with model m.  (In this example, Prior(m) 
= 1/20 for all m.) Then according to Bayes’ theorem: 

Posterior( ) Prior( )mm l m∝ ⋅ . 

As was done in the COTOR Challenge example, you first calculate the product 
lm·Prior(m) and then normalize. 

Layer Pure Premium – The layer pure premium for each model is calculated from the 
limited average severity curves in Table 8.  For example, the layer pure premium for the $500 
thousand x $500 thousand layer is calculated as the difference between the limited average 
severity for $1 million and the limited average severity at $500 thousand8. 

Posterior Mean and Standard Deviation – These quantities are calculated by the 
following formulas. 

20

=1

20
2 2

=1

                      Posterior Mean = Layer Pure Premium( ) Posterior( ).

Posterior Standard Deviation = Layer Pure Premium( ) Posterior( ) Posterior Mean  .

m

m

m m

m m

⋅

⋅ −

∑

∑
 

Note that as we increase the exposure, and hence the number of observations, the 
posterior probability tends to be concentrated on fewer models.   As the posterior standard 
deviations indicate, increasing exposure leads to less uncertainty in the final estimate. 

                                                 
8 It is often the case that the reinsurer will have an independent estimate of the probability that a claim is more 
than $100,000.  To make use of this information, the reinsurer should multiply the layer pure premium times 
the ratio of this probability to each model’s probability that a claim is more than $100,000.  I did not do this in 
these examples. 
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5. CONCLUDING REMARKS  

In this paper, I gave some examples showing how to use the likelihood function and 
Bayes’ theorem to estimate the costs of high layers of reinsurance.  Many of the assumptions 
need to be debated, and regardless of how the debate is resolved, much work is needed to 
complete the job.  I hope this paper provides strong evidence that such an approach can 
succeed and provide a sound methodology for reinsures to use in pricing coverage of high 
layers of reinsurance. 
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Exhibit 1 – Small Insurer 
 Interval    Layer Pure Premium
 Lower  Claim Prior  Posterior $500K x $1M x
Lags Bound Count Model # Probability $500K $1M 

1 100,000 15 1 0.016406 763 541
1 200,000 2 2 0.041658 911 645
1 300,000 1 3 0.089063 1,153 682
1 400,000 2 4 0.130281 1,224 796
1 500,000 0 5 0.157593 1,281 912
1 750,000 0 6 0.110614 1,390 978
1 1,000,000 0 7 0.075702 1,494 1,040
1 1,500,000 0 8 0.053226 1,587 1,095
1 2,000,000 0 9 0.080525 1,849 1,328
   10 0.104056 2,069 1,523
   11 0.129925 2,417 1,828

1-2 100,000 40 12 0.010896 2,598 1,916
1-2 200,000 10 13 0.000007 2,788 1,922
1-2 300,000 1 14 0.000009 3,004 2,124
1-2 400,000 0 15 0.000011 3,202 2,309
1-2 500,000 2 16 0.000013 3,382 2,477
1-2 750,000 0 17 0.000014 3,543 2,628
1-2 1,000,000 2 18 0.000000 4,058 3,211
1-2 1,500,000 0 19 0.000000 4,663 3,784
1-2 2,000,000 0 20 0.000000 5,354 4,440

       
   Posterior Mean 1,572 1,113

1-3 100,000 76 Posterior Std. Dev. 463 385
1-3 200,000 26     
1-3 300,000 11     
1-3 400,000 3     
1-3 500,000 8     
1-3 750,000 0     
1-3 1,000,000 0     
1-3 1,500,000 0     
1-3 2,000,000 0     
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Exhibit 2 – Medium Insurer 
 Interval    Layer Pure Premium 
 Lower  Claim Prior  Posterior $500K x $1M x 
Lags Bound Count Model # Probability $500K $1M 

1 100,000 31 1 0.000973 763 541 
1 200,000 12 2 0.021135 911 645 
1 300,000 4 3 0.221357 1,153 682 
1 400,000 2 4 0.235280 1,224 796 
1 500,000 1 5 0.209597 1,281 912 
1 750,000 0 6 0.123874 1,390 978 
1 1,000,000 0 7 0.059523 1,494 1,040 
1 1,500,000 0 8 0.028986 1,587 1,095 
1 2,000,000 0 9 0.037532 1,849 1,328 
   10 0.037637 2,069 1,523 
   11 0.023539 2,417 1,828 

1-2 100,000 107 12 0.000567 2,598 1,916 
1-2 200,000 33 13 0.000000 2,788 1,922 
1-2 300,000 14 14 0.000000 3,004 2,124 
1-2 400,000 3 15 0.000000 3,202 2,309 
1-2 500,000 7 16 0.000000 3,382 2,477 
1-2 750,000 2 17 0.000000 3,543 2,628 
1-2 1,000,000 0 18 0.000000 4,058 3,211 
1-2 1,500,000 0 19 0.000000 4,663 3,784 
1-2 2,000,000 0 20 0.000000 5,354 4,440 

       
   Posterior Mean 1,344 909 

1-3 100,000 191 Posterior Std. Dev. 278 245 
1-3 200,000 47     
1-3 300,000 31     
1-3 400,000 22     
1-3 500,000 6     
1-3 750,000 5     
1-3 1,000,000 1     
1-3 1,500,000 2     
1-3 2,000,000 1     
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Exhibit 3 - Large Insurer 
 Interval    Layer Pure Premium
 Lower  Claim Prior  Posterior $500K x $1M x
Lags Bound Count Model # Probability $500K $1M 

1 100,000 77 1 0.000000 763 541
1 200,000 20 2 0.000193 911 645
1 300,000 7 3 0.000481 1,153 682
1 400,000 1 4 0.050204 1,224 796
1 500,000 1 5 0.689060 1,281 912
1 750,000 1 6 0.179377 1,390 978
1 1,000,000 0 7 0.015896 1,494 1,040
1 1,500,000 0 8 0.001625 1,587 1,095
1 2,000,000 0 9 0.009032 1,849 1,328
   10 0.022443 2,069 1,523
   11 0.031690 2,417 1,828

1-2 100,000 193 12 0.000000 2,598 1,916
1-2 200,000 60 13 0.000000 2,788 1,922
1-2 300,000 22 14 0.000000 3,004 2,124
1-2 400,000 14 15 0.000000 3,202 2,309
1-2 500,000 10 16 0.000000 3,382 2,477
1-2 750,000 7 17 0.000000 3,543 2,628
1-2 1,000,000 2 18 0.000000 4,058 3,211
1-2 1,500,000 1 19 0.000000 4,663 3,784
1-2 2,000,000 1 20 0.000000 5,354 4,440

       
   Posterior Mean 1,360 966

1-3 100,000 431 Posterior Std. Dev. 234 188
1-3 200,000 117     
1-3 300,000 40     
1-3 400,000 25     
1-3 500,000 24     
1-3 750,000 4     
1-3 1,000,000 5     
1-3 1,500,000 0     
1-3 2,000,000 1     
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Coherent Capital for Treaty ROE Calculations 
 Ira Robbin, Ph.D. and Jesse DeCouto 

 
________________________________________________________________________ 
Abstract: 

This paper explores how a coherent risk measure could be used to determine risk-sensitive capital 
requirements for reinsurance treaties.  The need for a risk-sensitive capital calculation arises in the 
context of estimating the return on equity (ROE) for several treaties or different options on one treaty.  
Looking at the loss random variable alone is insufficient for a complete risk analysis since this would fail 
to incorporate the impact of adjustable premium and ceding commission provisions on the final net 
risk.  The paper presents a framework for systematically reflecting treaty features by viewing capital as a 
function of the distribution of the final net underwriting loss.   To avoid negative values for indicated 
capital, the concept of a risk quantity variable is introduced as a non-negative monotonically increasing 
function of the net underwriting loss variable.  Two risk quantities are discussed: one obtained by 
capping the net underwriting loss from below at zero, and the other by taking the excess of the net 
underwriting loss above its expectation.  A coherent risk measure is then applied to a risk quantity to 
obtain indicated capital.  The approach is demonstrated in simple discrete distribution examples by 
applying a coherent measure, the Tail Value at Risk, to the two risk quantities.  Sensitivity testing on the 
examples is presented showing how the different measures respond to changes in premium adequacy, 
swing rating, sliding scale commission plans, and layering.   In summary, this paper is one attempt to 
bridge the gap between the theoretical results of coherence theory and the practical need for methods to 
set risk-sensitive capital in treaty ROE analysis.    
 
Keywords: Coherence, Reinsurance, Capital Requirements, TVaR  

             

1. INTRODUCTION 

Current financial theory says the theoretically best way to measure risk is with a coherent 
risk measure.  The theory views risk as uncertainty regarding the future net worth of an 
investment portfolio or company at a specified point in time ([1], [2]).  The theory allows the 
net worth to possibly take on negative values.  It measures risk as the additional amount of 
money needed to ensure the future net worth will fall within a predefined set of acceptable 
outcomes, called the acceptance set [2].  The measure could take on a negative value, 
indicating that risk-free assets, such as cash, could be withdrawn while still leaving the 
portfolio in the acceptable range.  The measure and the acceptance set are directly related: 
the acceptance set is the set of all the net worth random variables on which the measure is 
less than or equal to zero.   A coherent risk measure is one that satisfies several desirable 
properties.  Some common measures of risk, such as variance, standard deviation, and the 
Value at Risk (VaR) fail to be coherent.  On the other hand, other measures, including the 
Tail Value at Risk (TVaR) and the Proportional Hazard Transform (PHT), have been proved 
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to be coherent.  Several authors, including Artzner [2], Meyers [8], and Wirch and Hardy 
[14], have recommended using coherent risk measures to determine appropriate capital 
requirements.  Our purpose in this paper is to explore how to apply coherent risk theory in 
order to obtain a coherent capital calculation for reinsurance treaty analysis.    

While risk measures in insurance are often viewed as applying to loss random variables, 
that is insufficient for our purposes.  The problem is that focusing solely on the loss random 
variables fails to capture the essential complexity of various adjustable features of 
reinsurance treaties.  These features may alter the premium or change the ceding 
commission, so that these become functions of the loss outcome.  Some of the features 
seem to reduce risk; others intuitively have no effect.  Our goal is to arrive at a capital 
calculation that reflects the impact treaty features may have on the final net risk.  In order to 
do this in a general and consistent fashion, we believe it is best to start with the final net 
underwriting loss random variable.  Here the underwriting (technical) loss is defined as loss 
plus commission less premium.   

But this raises a problem.  The net underwriting loss random variable should often take 
on negative values, corresponding to underwriting gain scenarios.  Yet, if we allow measures, 
even coherent measures, to operate on random variables that can become negative, we may 
well end up with a negative result.  For an indicated capital algorithm to produce a negative 
answer is, in our view, flatly unacceptable.  It is possible that our insistence on non-negative 
capital requirements is at odds with the basic conceptual structure of coherence theory in 
which it is well possible for the measure to be negative.          

In any event, to handle the negative values problem in some generality, we introduce the 
concept of a risk quantity variable.  We define a risk quantity variable as any non-negative 
random variable that is a monotonically increasing function of the net underwriting loss.  
Because the risk quantity is non-negative, we can never end up with a negative capital 
indication.  To summarize, our general notion is to compute capital by applying a coherent 
measure such as TVaR or PHT to a risk quantity variable.  We will call this a “coherent 
capital calculation” though our approach may differ in places with some of the basic 
structure of coherent risk measures.   

We have found two plausible risk quantity variables.  Both are based on the net 
underwriting loss random variable after application of all treaty provisions.  The first is 
obtained by capping the underwriting loss from below at zero.   Since underwriting gains 
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correspond to negative underwriting losses, this capping collapses all underwriting gain 
scenarios to zero.   The second approach uses a risk quantity variable obtained by taking the 
amount of underwriting loss in excess of its expected value.   

To illustrate these methods, we will apply a coherent risk measure, TVaR, the Tail Value 
at Risk, to our risk quantity variables and thus obtain two different coherent capital 
formulas.   We will show these coherent capital formulas have different behavior when 
viewed as functions of the loss, expense, and premium.    

To show how these formulas work we will apply them to a hypothetical treaty with losses 
that follow a discrete loss distribution.   We will then conduct sensitivity testing to see how 
indicated capital responds to changes in treaty pricing, treaty features, reinsurer share, and 
layering.   For comparison purposes, we will also compute indicated capital based on a fixed 
leverage ratio against provisional premium and a fixed leverage ratio against initial expected 
layer loss.  We will also run comparisons against the standard deviation of underwriting loss 
and the variance of underwriting loss.  As previously stated, these are non-coherent risk 
measures.   

In the end, we believe we will have shown with concrete examples that fixed leverage 
ratio methods are deficient and that net underwriting loss should be the basis for risk-
sensitive capital calculations.  Our work also casts doubt on the variance of underwriting loss 
and, to a lesser extent, on the standard deviation of underwriting loss.  We will have 
demonstrated two different ways of implementing a coherent capital methodology, without 
concluding which one is best, but shown that they have quite different behavior.     

In this paper our focus is on process risk and how to reflect changes in process risk 
induced by changes in treaty features.  Because parameter risk, correlation, and portfolio 
effects have not been considered, our treatment is incomplete.   Further, our approach to 
implementing coherent capital concepts may not be the only one.  But nonetheless our larger 
conclusion is that at this point the introduction of coherent risk measures has not 
definitively settled the question of how to set capital.  Though progress has been made, 
implementation of coherence concepts remains a topic open to further research in the 
future.         
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2. CAPITAL FOR TREATY ROE CALCULATIONS 

Our interest in determining capital arises when computing the prospective ROE (return 
on equity) for a treaty.  Typically we are asked to determine the ROE for a treaty at several 
premium rates.  In our calculation, we must reflect any contingent commission, 
reinstatement, aggregate loss cap, swing rating, or other such provisions of the treaty.   The 
amount of capital is a critical determinant of our results and so questions about how to set 
the capital become important.  Because various treaty features that impact premiums and 
expenses can change the overall risk of the deal, a risk measure based on loss only is 
inadequate for our purpose.   Our approach to capital requirements is, in this regard, similar 
to Feldblum’s view that risk loads should not be based solely on the loss distribution [6].       

When actually pricing a treaty, we would first model possible loss scenarios and use 
actuarial techniques to estimate the probability of each scenario.  Depending on the terms 
and provisions of the treaty, each scenario leads to its own ultimate combined ratio, cash 
flows, and ROE.   For each of these scenarios, we would hold the same amount of capital in 
our pricing model, because, a priori, we have no way of knowing which scenario will actually 
occur.  We end up with a distribution of ROE values, not just a single point estimate.  Also, 
the capital held in our models would not be a simple fixed block amount posted for one 
year, but would also include amounts varying over time to cover uncertainty in the reserves.  
In this paper, however, we will only consider the distribution of ultimate outcomes and will 
leave for others the question of how capital should be held over time to cover potential 
reserve inadequacy.  Also we will assume in this paper that all values are at present value.  
This simplification will allow us to ignore the time value of money.  In any real application, 
one should of course reflect the time value of money, payout pattern uncertainty, asset risk, 
and other related concerns.        

We should also realize at the outset that use of any theoretically based measure to set 
capital may lead to an implicit leverage ratio on a treaty or block of treaties that is either 
higher or lower than industry rating agency or regulatory norms.  While particular blocks of 
business may be more or less risky than presumed in deriving industry standards, there is a 
great deal of uncertainty and some subjectivity in selecting parameters for any model.  Given 
that uncertainty, we are not suggesting that our estimates of required capital ought to lead to 
any revision of accepted industry capital benchmarks.  Also, we are setting a theoretically 
appropriate level of capital by treaty that when aggregated over all treaties may differ from 
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the actual amount of capital held by a company.  In separating actually held capital from the 
capital used in pricing models, we are recognizing that no pricing penalties or subsidies 
should ensue from pre-existing under-capitalization or over-capitalization. Though in 
principle we should compute a benchmark amount of capital for our whole portfolio and 
then allocate this coherently [5] to individual treaties, our work here is focused on the 
simpler problem of computing benchmark capital for each treaty on a stand-alone basis.  
Our goal is see if coherent capital approaches can be used to appropriately model the impact 
of treaty features on the capital requirement.  Thus we leave as a topic for future research the 
consideration of portfolio effects, parameter risk, and correlation.  To summarize, our 
purpose is to study procedures that should guarantee a logical ordering of the capital 
requirements for alternative treaty structures, and not to resolve questions about overall 
calibration or allocation.     

3. COHERENT RISK MEASURES 

The theory of risk measures took a major step forward with the introduction of the 
concept of coherence by Artzner, Delbaen, Eber and Heath in 1999 [1] and their 
presentation of results on the representation of coherent risk measures.  Their work 
successfully implemented a general program of listing desirable properties for a risk measure 
and then characterizing the types of measures that satisfy those properties.   Before and 
since, others such as Wang [11] and Venter [10], have made critical contributions to the 
theory and understanding of arbitrage-free pricing, power transforms, distortion measures, 
stochastic dominance properties, and other related concepts.  Wirch and Hardy [14] 

explained the relation between concave distortion measures and coherent risk measures.  
Meyers [8], [9] did a great service to the actuarial community by writing an intuitive and 
accessible introduction to the concept.     

In applying the concept to insurance, what is sometimes unclear in the literature is 
whether the risk measure is being viewed as a premium calculation, risk load calculation, or 
required capital formula.    We will defer consideration of this issue till later after we have 
defined coherence in a general setting.                  

To begin the mathematical development of risk measures for insurance capital, we define 
a risk measure, ρ, as a function that maps a non-negative random variable, B, to a non-
negative number, ρ(Β).  The reason we insist on having non-negative variables is to avoid 
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negative values for the risk measure and the resulting capital requirement.   For an example 
of how this could occur, consider an underwriting loss distribution that takes on the value, –
70 with 90% probability, -50 with 9% probability, and +400 with 1% probability.  As we will 
later learn when we consider TVaR in more detail, the TVaR measure associated with the 
90th percentile would be –5.  But we would certainly not want that as a capital requirement.   
Assuming our restriction to non-negative random variables, we define coherence of the risk 
measure as follows:     

Coherence Properties for Risk Measures     (3.1) 

A risk measure, ρ, is said to be coherent if it satisfies:  

1. Zero has No Risk: If B≡0, then ρ(B)=0 

2. Monotonicity: If B1 ≤ B2, then ρ(B1) ≤  ρ(B2) 

3. Scaling:  If λ>0, then  ρ(λΒ) = λ ρ(B) 

4. Subadditivity: ρ(B1+ B2 ) ≤  ρ(B1) + ρ(B2)     

5. Translation Additivity:  If α >0,  ρ(B+ α) =  ρ(B) + α 

6. Bounded from Below:  E[B] ≤ρ(B)  

7. Bounded from Above:  If max(B)<�, then ρ(B) ≤max(B) 

This list was drawn from the lists of coherence properties that are contained in the papers 
by Meyers [8] and Wirch and Hardy [14].  We believe the translation additivity property and 
the bounds describe a coherent premium calculation operating on the loss distribution.      

4. COHERENT CAPITAL 

Our overall goal is to set capital, C, as a function of the loss, expense and premium.  To 
apply the coherence properties in setting capital, we first define underwriting loss, U, as the 
sum of loss, L, plus expense, X, less the premium, P.    

For our first method, we follow the suggestion of Wirch and Hardy [14] and define our 
risk quantity variable as the bounded underwriting loss, B, obtained by capping the 
underwriting loss from below at zero.  Thus, in our notation, we have: 
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 B = max(0, U) = max(0, L+X-P)      (4.1) 

We may sometimes write B(U), B(U(L,X,P)), or B(L,X,P): whatever is most convenient.  
Note, B is a non-negative random variable and that all underwriting gain scenarios collapse 
to the “zero” mass point of B.   We will define capital as Level Sensitive Coherent if it can 
be expressed by applying a coherent risk measure to the bounded underwriting loss.   

 

Level Sensitive Capital Coherence (LSCC) Definition   (4.2) 

A capital function C is called level sensitive coherent if there exists a coherent risk 
measure, ρ, such that C(L,X,P) = ρ(B(L,X,P)) where B=max(0, L+X-P). 

In basing our definition on bounded underwriting loss, we are implicitly saying that all 
contracts with the same distribution of bounded underwriting losses will get the same 
capital, even if different premiums, expenses, and losses are involved.   This is a key strength 
of the approach.   Underwriters and brokers can sometimes fashion two alternatives, say one 
with a swing premium and the other with a larger provisional premium and a profit 
commission that yield the same underwriting loss for any given loss scenario. Neglecting 
some cash flow and security issues, it is hard to argue why theoretically one alternative 
should have a different capital requirement and a different ROE than the other.   

   We will now derive LSCC properties with respect to loss, expense, and premium.  
These will be based on the properties of the coherent risk measure and on the behavior of 
the bounded underwriting loss function.    

Our first coherence property for a risk measure was that the measure is zero on the 
random variable identically equal to zero.  For Level Sensitive Coherent Capital, this implies 
no capital is needed if there are no possible underwriting losses.   This is potentially 
controversial, because it disconnects our risk measure from whatever volatility may exist in 
underwriting gain scenarios.     

Using max(0,L+X-P) ≤ max(0,L+α +X-P) = max(0,L +X-(P+α)) ≤ max(0,L+X-P) + α 
and the monotonicity and translation additivity properties for a coherent risk measure,  we 
can show:      
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  ρ(B(L+α, X, P)) ≤ ρ(B(L, X, P)) +α.     (4.3) 

and 

ρ(B(L, X, P)) - α   ≤   ρ(B(L, X, P+α))      (4.4) 

Note that despite translation additivity of our risk measure, the LSCC amount might go 
up by less than $1 after all losses are increased by $1.  As well for premium, increasing the 
premium by $1 will decrease the required capital, but by an amount that could be, but does 
not have to be, less than $1.   This sensitivity of required capital to fixed increments in 
premium or loss is why we call LSCC, “level sensitive”.  Note that LSCC still depends on the 
volatility of the underwriting losses as long as there is some possibility of an actual net 
underwriting loss.   

Scaling carries over in the obvious way: if all losses, expenses, and premiums are scaled by 
a common factor, then the LSCC coherent capital scales up the same way. 

  With subadditivity of the max operator we can show: 

B(L1+ L2 , X1+ X2, P1 + P2) =max(0,  L1+X1 -P1 +L2+X2 -P2)   ≤   

max(0,  L1+X1 -P1) + max(0,  L2+X2 -P2)      

This, along with monotonicity and subadditivity of a coherent risk measure, implies 

 ρ(B(L1+ L2 , X1+ X2, P1 + P2) ) ≤  ρ(B(L1,X1,P1)) + ρ(B(L2,X2,P2))      (4.5) 

In other words, the LSCC needed for two treaties combined is less than or equal to the 
sum of the LSCC required for each treaty.  Note the inequality is not strict.  According to 
Wang [13], the case for strict inequality is only compelling when the separate underwriting 
losses are not comonotonic.  Comonotonic means each of the random variables can be 
expressed as an increasing function of a third random variable.   Under Wang’s power 
transforms, the risk loads for separate layers sum up to the risk load of the combined layers.  
This suggests required capital ought to be similarly decomposable by layer.  This is a 
question we will study later in our examples.           

The following summarizes the properties of Level Sensitive Coherent Capital:  
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LSCC-Coherent Capital Properties with Respect to L, X, and P  (4.6) 

Let B = max(0, L+X-P) and assume ρ is a Coherent Risk Measure.  Let C=ρ(Β). 
Then:  

1. No Capital Needed if No Risk of Underwriting Loss: If P-L-X >0, then 
C(L,X,P)=0. 

2. Monotonicity: If L1+X1 -P1 ≤ L2 +X2 -P2, then C(L1, X1, P1) ≤ C(L2, X2, P2) 

3. Scaling:  If λ>0, then C(λL, λX, λP))  = λ C(L,X,P) 

4. Subadditivity:   

C(L1+ L2 , X1+ X2, P1 + P2)  ≤ C(L1,X1,P1) + C(L2,X2,P2)   

5. Translation Additivity Inequalities: 

i)  C(L+α, X, P) ≤ C(L, X, P) +α 

ii)  C(L, X+α, P) ≤  C(L, X, P) +α  

iii) C(L, X, P) - α  ≤  C(L, X, P+α)  

Next we define our second notion of coherent capital, Deviation Sensitive Coherent 
Capital (DSCC).  First we define the underwriting loss in excess of expectation, B*, via 

 
  B*= max(0, U-E[U]) where U = L+X-P     (4.7) 

Note that B* is unaffected by adding a fixed amount to the loss or to the premium.  Also 
observe that B* can be strictly positive for scenarios where there are underwriting gains if 
those underwriting gains fall short of expectation.   In defining B*, we are following a logic 
similar to that suggested by Bault [3] in which he discussed generalizing ruin theory for risk 
load calculations so that any adverse deviation from a target might be counted as 
contributing to the probability of ruin.      

We will define capital as Deviation Sensitive Coherent if it can be expressed by applying a 
coherent risk measure to the bounded underwriting loss in excess of expectation.   

 



Coherent Capital for Treaty ROE Calculations 
 

264 Casualty Actuarial Society Forum, Spring 2005 

Deviation Sensitive Capital Coherence (DSCC) Definition (4.8) 

A capital function C is called deviation sensitive coherent if there exists a coherent 

risk measure, ρ, such that C(L,X,P) = ρ(B*(L,X,P)) where B*(L,X,P) = max(0, L+X-

P-E[L+X-P]).   

Using modified versions of the arguments employed in analyzing LSCC properties, we 
obtain the following properties for DSCC with respect to loss, expense, and premium.  

DSCC-Coherent Capital Properties with Respect to L, X, and P (4.8) 

Let B*=max(0, U-E[U]) where U = L+X-P and assume ρ is a Coherent Risk 
Measure.  Let C=ρΒ∗. Then:  

1. No Risk if No Variability in Underwriting Loss: If P-L-X ≡α, then C(L,X,P)=0. 

2. Monotonicity: If L1+X1 -P1 ≤ L2 +X2 -P2,  

then E[U1] + C(L1, X1, P1) ≤ E[U2] + C(L2, X2, P2) 

3. Scaling:  If λ>0, then C(λL, λX, λP))  = λ C(L,X,P) 

4. Subadditivity:  C(L1+ L2 , X1+ X2, P1 + P2)  ≤ C(L1,X1,P1)) + C(L2,X2,P2) 

5. Translation Invariance: 

i)  C(L+α, X, P) = C(L, X, P) 

ii) C(L, X+α, P) =  C(L, X, P) 

iii) C(L, X, P) =  C(L, X, P+α)  

The first major point to be made in comparing the DSCC and LSCC concepts of 
coherence is that they do actually differ: they are not merely different ways of saying the 
same thing.  The difference shows up perhaps most strongly with respect to translation 
properties.  As we saw previously, for LSCC adding $1 of premium decreases capital by an 
amount less than or equal to $1; but for DSCC this does change capital at all.      

Another point of interest is that DSCC and LSCC are equal when the expected 
underwriting loss is zero.  It follows that LSCC will be less than DSCC when there is a 
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negative expected underwriting loss; in other words when there is an expected underwriting 
gain.  Since reinsurers write a treaty expecting to make money, this will typically be true.     

Now that we have defined two concepts of coherent capital and derived their properties, 
we will next demonstrate the concepts using the coherent risk measure, TVaR.   

5. VAR AND TVAR  

A common approach to setting capital is to set it at the 90th, 95th, 99th or other chosen 
percentile.   Borrowing from financial terminology, the percentile is usually called the Value 
at Risk (VaR).   Also, in managing catastrophe books, a similar idea is to control writings so 
as to keep the 100, 250, or 500-year event within acceptable bounds.    

Given ε, we define VaRε as follows: 

 VaRε = inf {x | F(x) ≥ ε}       (5.1) 

Here “inf” stands for infimum and the definition means that VaR is the lower bound of 
the set of all x such that the cumulative distribution at x is greater than or equal to ε.   

While VaR has a great deal of appeal as a measure of risk, it is unfortunately not a 
coherent metric. This is shown by example in Exhibit 1: VaR vs. TVaR.  This exhibit shows 
ten different loss scenarios for two different portfolios.  The example is composed in such a 
way that the two different portfolios have the same loss distribution even though they suffer 
different amounts of loss for any particular event.  In our example, VaR at the 80th percentile 
level for each portfolio is 50, but VaR for the combined portfolio is 110.   So, VaR at the 
80th percentile would indicate it is riskier to combine the two portfolios than it would be to 
double the losses for either portfolio. This fails to make intuitive sense and is in violation of 
the subadditivity property of coherence, 3.1.  

The Tail Value at Risk is defined as the conditional expected value for points strictly 
above the Value at Risk.   

 TVaRε = E[X| X > VaRε]       (5.2) 

TVaR is known to be coherent [9].  Thus, there is no example we can construct that will 
result in the sum of the TVaR for the individual portfolios being less than the TVaR for   the 
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combined portfolio.   Continuing on with our specific numerical example, we see from 
Exhibit 1 that the sum of the TVaR for the individual portfolios exceeds TVaR for the 
combined portfolio (90+90>135).  So, according to the TVaR measure, there is a risk 
benefit in combining the portfolios.    If, on the other hand, the two portfolios in our 
example were 100% correlated, the sum of the TVaR would equal 180 or the sum of the two 
individual portfolios.  This still satisfies the subadditivity property of coherence because the 
inequality in the definition is not strict.  

Now that we have an understanding of TVaR, we will use it for demonstration purposes 
as the coherent measure in the definition of our two coherent capital formulas.  We do not 
wish to suggest that TVaR is the only coherent measure appropriate for treaty pricing 
applications.  One of the Proportional Hazards Transforms defined by Wang [12] would also 
be an excellent choice.   

6. CAPITAL SENSITIVITY COMPARISONS 

We will now study how our coherent capital formulas compare against each other and 
against other methods.   The full list of methods we will examine is: 

Fixed Leverage Ratio Against Provisional Premium 

Fixed Leverage Ration Against Expected Loss 

Standard Deviation of Underwriting Loss 

Variance of Underwriting Loss 

TVaR of Bound Underwriting Loss (LSCC) 

TVaR of Underwriting Loss Excess of Expectation (DSCC) 

First we will consider how the methods respond to a change in premium adequacy.  This 
has practical importance for example in evaluating how much of a rate change is needed in 
order to achieve a target ROE.  Using a fixed leverage ratio against premium effectively 
assigns more capital in response to an increase in rate.   Why more capital is needed is 
unclear from a risk perspective.  The effect is to make the ROE less sensitive to a rate 
change than it would otherwise be.  In contrast, the amount of capital does not change with 
the rate when using either a fixed leverage ratio against expected loss, the standard deviation 
of underwriting loss, the variance of underwriting loss, or the DSCC method.  While the 
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amount of capital does not change, the resulting premium-to-capital leverage ratio will rise 
with a rate increase.  With the LSCC method, the amount of indicated capital declines due to 
a rate increase.  The ROE with LSCC is thus more sensitive to a rate change than the other 
methods as both the numerator and the denominator are affected.   Table 1 summarizes the 
premium adequacy results shown in Exhibit 2.  

Note that we have set our base case so that all the methods yield the same answer except 
for the Level Sensitive Coherent Capital calculation.   This was done because our base case 
has an expected net underwriting profit.  As previously observed, in such a situation we will 
always have LSCC less than DSCC.   Thus we cannot set all the methods equal.  We are free 
to pick constants for the Standard Deviation and Variance methods, but once selected these 
constants are fixed and not allowed to change from scenario to scenario.  

 Next we look at scenarios involving a treaty that is priced by first agreeing on a net rate 
and then arriving at the final rate by grossing up for ceding commission.  This “net rating” is 
not uncommon on excess of loss treaties.  We consider how the methods respond if the 
ceding commission rate changes from a base case of 25% to either 20% or 30%.   Table 2 
summarizes the results from Exhibit 3.  

Table 1 Sensitivity of Capital to Premium Adequacy

Method Premium - 10% Base Case Premium +10%

Fixed Premium Capital 61 68 74

Leverage Premium Leverage 1.48 1.48 1.48

Fixed Loss Capital 68 68 68

Leverage Premium Leverage 1.33 1.48 1.63

Standard Capital 68 68 68

Deviation Premium Leverage 1.33 1.48 1.63

Variance Capital 68 68 68

Premium Leverage 1.33 1.48 1.63

LSCC Capital 70 63 55

Premium Leverage 1.29 1.60 2.00

DSCC Capital 68 68 68

Premium Leverage 1.33 1.48 1.63
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The results are the same as for a change in premium adequacy except for the LSCC 
method.   Because changing the ceding commission percentage on a net rated deal does not 
change the net underwriting loss, the LSCC method now agrees with the DSCC and the 
other underwriting loss based methods in indicating capital should not change between the 
scenarios.    

Next we examine how the methods respond to a sliding scale commission plan.  Results 
are shown in Table 3 for several different slides.  The “Balanced” slide leads to no change in 
expected commission, the “Avg Inc” slide generates a net increase in expected commission, 
and the “Avg Dec” slide produces an average net decrease.   The fixed premium and fixed 
loss leverage methods are of course totally unresponsive to changes in risk induced by any 
adjustable commission plan.    LSCC and DSCC are responsive to the introduction of the 
slide, but then seem oblivious to the different slide options.   The reason is that the 
minimum commission and corresponding loss ratio were picked to be the same for all the 
options. So all the slides yield the same net underwriting loss and risk quantity in the adverse 
scenarios that determine LSCC and DSCC.   This underscores a positive feature of both our 
coherent capital methods: changing the distribution of favorable outcomes does not change 
the required capital.  

 

Table 2

Method Cede = 20% Cede = 25% Cede = 30%

Fixed Premium Capital 63 68 72

Leverage Premium Leverage 1.48 1.48 1.48

Fixed Loss Capital 68 68 68

Leverage Premium Leverage 1.39 1.48 1.59

Standard Capital 68 68 68

Deviation Premium Leverage 1.39 1.48 1.59

Variance Capital 68 68 68

Premium Leverage 1.39 1.48 1.59

LSCC Capital 63 63 63

Premium Leverage 1.50 1.60 1.71

DSCC Capital 68 68 68

Premium Leverage 1.39 1.48 1.59

Sensitivity to Changes in Cede on Net Rated Treaty 
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Now, we examine sensitivity under a Swing Rated Premium plan.  In one scenario, the 
Max and Min are set so the average premium in the plan is balanced back to the premium in 
the Base Case without Swing Rating.   In another, we reduce the Max and, in the other, we 
raise the Max.  The swings we have in our example are more modest than those typically 
found in practice.  Note we set capital under the Fixed Premium Leverage method relative to 
the Provisional Premium and not the expected Swing Premium. The swing in all scenarios 
shortens the tail of the underwriting loss distribution relative to the fixed premium Base 
Case.  It does not change the shape of the tail as much as pull it towards the mean.  
However one would characterize it, the swing reduces volatility and as a result, all the 
methods, both coherent and non-coherent, that are based on the underwriting loss 
distribution indicate that less capital is needed.   This is true even in the Balanced Case where 
there is no change in the expected underwriting loss.  Table 4 summarizes the results found 
in Exhibit 5.   

Table 3 Sensitivity of Capital to Sliding Scale Commission

Method No Slide Balanced Avg Inc Cede Avg Dec Cede

Fixed Premium Capital 68 68 68 68

Leverage Premium Leverage 1.48 1.48 1.48 1.48

Fixed Loss Capital 68 68 68 68

Leverage Premium Leverage 1.48 1.48 1.48 1.48

Standard Capital 68 64 63 63

Deviation Premium Leverage 1.48 1.56 1.59 1.59

Variance Capital 68 61 59 58

Premium Leverage 1.48 1.64 1.70 1.71

LSCC Capital 63 58 58 58

Premium Leverage 1.60 1.74 1.74 1.74

DSCC Capital 68 63 63 63

Premium Leverage 1.48 1.60 1.60 1.60
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Next we examine how the methods respond to changing the share a reinsurer has in a 
deal.  We know that both DSCC and LSCC have the scaling property and so their capital 
requirements scale up and down with the share and their indicated leverage ratios do not 
change.   The Standard Deviation of Underwriting Loss scales as well, yet the Variance of 
Underwriting Loss does not.  Results are shown in Table 5. 

Table 4 Sensitivity of Capital to Swing Rated Premium

Method No Swing Balanced Lower Max Raise Max

Fixed Premium Capital 68 68 68 68

Leverage Premium Leverage 1.48 1.48 1.48 1.48

Fixed Loss Capital 68 68 68 68

Leverage Premium Leverage 1.48 1.48 1.48 1.48

Standard Capital 68 61 64 59

Deviation Premium Leverage 1.48 1.65 1.56 1.70

Variance Capital 68 55 61 51

Premium Leverage 1.48 1.83 1.65 1.95

LSCC Capital 63 52 59 48

Premium Leverage 1.60 1.92 1.70 2.07

DSCC Capital 68 57 64 53

Premium Leverage 1.48 1.75 1.57 1.88

Table 5 Sensitivity of Capital to Changes in Share

Method Base Share 2X Share (1/2) X Share

Fixed Premium Capital 68 135 34
Leverage Premium Leverage 1.48 1.48 1.48

Fixed Loss Capital 68 135 34
Leverage Premium Leverage 1.48 1.48 1.48

Standard Capital 68 135 34
Deviation Premium Leverage 1.48 1.48 1.48

Variance Capital 68 270 17
Premium Leverage 1.48 0.74 2.96

DSCC Capital 63 125 31
Premium Leverage 1.60 1.60 1.60

LSCC Capital 68 135 34
Premium Leverage 1.48 1.48 1.48
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Finally, we consider different layering scenarios.  In one, the reinsurer can take a lower 
per occurrence layer, in another a layer just above it, and in the last scenario it can take both 
layers together.  We examine how the capital on the combined scenario compares with sum 
of the capital on the separate layer scenarios.   Results are shown in Table 6.  

The sum of the variance-based capital requirements for the layers is less than the variance 
based capital for the combined layer, whereas the opposite is true for the standard deviation 
based capital requirement.  Coherence would say combining the layers should not increase 
the capital.   For our coherent capital measures, it so happened in our example that the sum 
of capital for the layers equaled the capital for the combined layer.  Whether this is true in 
general, or is an artifact of the way our example was constructed is an issue that awaits 
further study.   In reinsurance circles, many believe “ventilation” is an effective risk 
reduction strategy.  Using a ventilation approach, the reinsurer takes shares of disconnected 
layers.  It would be useful to see what coherence can tell us about such a strategy. 

Table 6 Capital by Layer
Method Layer 1 Layer 2 Sum of Capital Combined
Fixed Premium Capital 47 21 68 68
Leverage Premium Leverage 1.48 1.48 1.48 1.48

Fixed Loss Capital 47 21 68 68
Leverage Premium Leverage 1.48 1.48 1.48 1.48

Standard Capital 19 50 70 68
Deviation Premium Leverage 3.58 0.62 1.44 1.48

Variance Capital 5 38 43 68
Premium Leverage 12.54 0.83 2.32 1.48

DSCC Capital 16 47 63 63
Premium Leverage 4.36 0.67 1.60 1.60

LSCC Capital 19 48 68 68
Premium Leverage 1.60 1.60 1.60 1.48
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7. CONCLUSION 

We have seen that basing a capital calculation on the net underwriting loss handles many 
of the problems that arise in setting capital for reinsurance treaty pricing applications.  We 
have also found that implementation of coherent capital concepts does handle some of the 
problems that remain.  Yet we have no theoretical reason to prefer one of our two coherent 
capital approaches above the other.  So we present the results we have as interim steps taken 
to advance understanding of how to apply coherence concepts to tackle practical problems.   
We believe these initial results on how to implement coherent capital are useful in their own 
right and will provide a solid foundation and some direction for future research on the topic.         
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Abstract
This paper is aimed at the practicing actuary to introduce the theory of extreme values and
a financial framework to price excess-of-loss reinsurance treaties. We introduce the reader to
extreme value theory via the classical central limit theorem. Two key results in extreme value
theory are presented and illustrated with concrete examples. The discussion then moves on to
collective risk models, considerations in modeling tail events, and measures of risk. All these
concepts are brought together with the modeling of actual losses. In the last section of the
paper all previous elements are brought together with a financial framework for the pricing of
a layer of reinsurance. The cash flows between the insurance company and its equity holders
are modeled.

Keywords. Collective Risk Model, Experience Rating, Extreme Event Modeling, Extreme
Values, IRR, Large Loss and Extreme Event Loading, Monte Carlo Valuation, Reinsurance
Excess (Non-Proportional), Risk Pricing and Valuation Models, Simulation, Tail-Value-at-
Risk.

1 Introduction

The main goal of this paper is to give the practicing actuary some tools (such as

extreme value theory, collective risk models, risk measures, and a cash flow model)

for the pricing of excess-of-loss reinsurance treaties. In particular, we have in mind

the pricing of high layers of reinsurance where empirical data is scarce and reliance

on a mathematical model of the tail of the loss distribution is necessary.

We introduce extreme value theory through the central limit theorem. The central

limit theorem tells us that the limiting distribution of the sample mean is a normal

distribution. The analogous result from extreme value theory is that the limiting

distribution of the sample maximum is an extreme value distribution.1 There are three

distinct families of extreme value distributions: the Fréchet, Weibull, and Gumbel

1We are not being very precise but the gist of the result is correct.
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distributions. But these three families can be represented as a one parameter family

of distributions.

The next result in extreme value theory is the key result for pricing excess-of-loss

reinsurance treaties. This result shows that under certain circumstances the limiting

distribution of the excess portion of a loss approaches the generalized Pareto distribu-

tion (as the threshold increases). This result provides the theoretical underpinnings

for using the generalized Pareto distribution in reinsurance excess-of-loss pricing.

At this point we have a good theoretical model. The rest of the paper is a hands-on

approach to pricing an excess-of-loss treaty within a financial framework. In Section 3

we introduce the collective risk model together with the underlying data necessary for

pricing. We guide the reader with the adjustments necessary to get the data ready for

use in modeling the tail of the distribution of losses. We discuss graphical techniques

and the estimation of the parameters for both loss and claim count distributions.

In Section 4 we introduce the collective risk model [4, 26] and various measures to

quantify risk: standard deviation or variance, value at risk, tail value at risk, expected

policyholder deficit, and probability of ruin. We also discuss the concept of rented

capital and incorporate that into our cash flow model.

In the last section we bring everything together to determine the price of a rein-

surance layer. Our methodology revolves around the concept of the implied equity

flows [10]. The equity flows represent the transfer of money between the insurance

company and its equity holders.2 Our cash flow model is comprehensive. It includes

all relevant components of cash flow for an insurance company: underwriting opera-

tions, investment activity, assets (both income and non-income producing), and taxes.

Our model does not take a simplistic view of taxes where most actuaries in the past

have calculated them as a straight percentage applied to the results of each calen-

dar year. Instead we compute the taxable income according to the Internal Revenue

Service tax code.

In Appendix B we provide a full set of exhibits showing all the components of the

cash flows and the implied equity flows.

2One should not interpret this sentence literally. In most situations these transfers do not ac-
tually occur between the equity holders and the company. Rather they occur virtually between
the company’s surplus account and the various business units that require capital to guard against
unexpected events from their operations.
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2 Extreme Value Theory

The investigation of extreme events has a long history. Hydrologists, studying floods,

were probably the first ones to develop methods of analysis and prediction. The book

Statistics of Extremes [13] was the first one devoted exclusively to extreme values and

is considered now a classic. The author stresses the importance of graphical methods

over tedious computations and has illustrated the book with over 90 graphs. Since

its publication in 1958 extreme value theory has grown tremendously and there are

many deep and relevant results, but for our purposes we will mention only two of

them. Both results tell us about the limiting behavior of certain events.

The first result (the Fischer-Tippett theorem) is the analog of the well known

central limit theorem. Here the extreme value distributions play the same fundamen-

tal role as the normal distribution does in the central limit theorem. The second

result (the Pickands and Balkema & de Haan theorem) shows that events above a

high enough threshold behave as if they were sampled from a generalized Pareto

distribution. This result is directly applicable to excess-of-loss reinsurance modeling

and pricing. Two well known modern references with applications in insurance and

finance are the books by Embrechts et. al. [8] and Reiss & Thomas [25].

In this section we also introduce a powerful graphical technique: the quantile-

quantile (or QQ-) plot [5, chapter 6]. In many situations we need to compare two

distributions. For example, is the empirical distribution of losses compatible with the

gamma distribution? A quantile-quantile plot will help us answer that question.

2.1 Distribution of normalized sums

Actuaries are well aware of the central limit theorem [7, 15]; namely, if the random

variables X1, . . . , Xn form a random sample of size n from a unknown distribution

with mean µ and variance σ2 (0 < σ2 < ∞), then the distribution of the statistic

(X1 +X2 + · · ·+Xn)/n will approximately be a normal distribution with mean µ and

variance σ2/n.

An equivalent way to think about the central limit theorem and to introduce ex-

treme value theory is as follows: consider a sequence of random variables X1, X2, X3, . . .

from an unknown distribution with mean µ and finite variance (0 < σ2 < ∞). Let

Sn =
∑n

i=1 Xi (for n = 1, 2, . . . ) be the sequence of partial sums. Then the central
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limit theorem says that if we normalize this sequence of partial sums

Sn − bn

an

with an = n, and bn = nµ, (1)

then the limiting distribution is a normal distribution.

2.1.1 Understanding QQ-plots

Before proceeding with extreme value theory let us introduce a powerful graphical

technique known as a quantile-quantile plot or QQ-plot which will help us assess

whether a data set is consistent with a known distribution. For this graphical display

we will plot the quantiles of one distribution function against the quantiles of another

distribution function.

The quantile function Q is the generalized inverse function3 of the cumulative

distribution function F ;

Q(p) = F�(p) for p ∈ (0, 1) (2)

where the generalized inverse function F� is defined as4 (see [8, page 130])

F�(p) = inf {x ∈ R : F (x) ≥ p} , 0 < p < 1. (3)

The quantity xp = F�(p) defines the pth quantile of the distribution function F .

Suppose that our data set consists of the points x1, x2, . . . , xn. Let x(1) ≤ x(2) ≤
· · · ≤ x(n) denote our data sorted in increasing order.5 We also use the convention [5,

page 11] that x(i) is the pi = (i− 0.5)/n quantile.

To check if the distribution of our empirical data is consistent with the distribution

function F we plot the points (Q(pi), x(i)); that is, the quantiles of F against the

quantiles of our data set.

If the empirical distribution is a good approximation of the theoretical distribu-

tion, then all the points would lie very close to the line y = x; departures form this

line give us information on how the empirical distribution differs from the theoretical

3We denote generalized inverse function with a left arrow as a superscript (F�) instead of the
more traditional −1 superscript (F−1). We cannot use the traditional definition of inverse function
because some of our cumulative distribution functions are not one-to-one mappings.

4Ignoring some technicalities, the operator inf selects the smallest member of a set.
5Some authors would denote this sequence using double subscripts: xn,n ≤ xn−1,n ≤ · · · ≤ x1,n.
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Figure 1: QQ-plot of normal distribution N(0, 1) against N(1, 1). The solid
line is y = x.

distribution. Figure 1 shows the QQ-plot of a normal distribution N(1, 1) with µ = 1

and σ2 = 1 against the standard normal distribution N(0, 1), (µ = 0, σ2 = 1). Note

that the points on the graph do not follow the line y = x. Rather they follow the

line y = x + 1. This configuration tells us that we have mis-specified the location

parameter. In Figure 2 we have the QQ-plot for a normal distribution with variance

equal to 2 against the standard normal distribution. In this case we have mis-specified

the variance. This can be readily seen from the graph because the points follow a

straight line with slope different from one.

2.1.2 Visualizing the central limit theorem

To visualize the central limit theorem consider a sequence of random numbers from an

unknown distribution: X1, X2, X3, . . . . For n = 1, 2, 3, . . . compute the mean statistic

µn of the first n terms; that is,

µn =
1

n

n∑
i=1

Xi. (4)

The central limit theorem tells us that for large enough n the distribution of the

mean statistic µn is very close to a normal distribution. How can we check that the

distribution of µn is indeed very close to a normal distribution? Let us draw many
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Figure 2: QQ-plot of normal distribution N(0, 1) against N(0, 2). The solid
line is y = x.

samples of size n, compute µn, and look at the distribution of the mean µn.

For an example, take n = 25 and calculate 200 means

µ
(1)
25 , µ

(2)
25 , µ

(3)
25 , . . . , µ

(200)
25 (5)

How can we check that the distribution of these sampled means really follows a normal

distribution?

We can calculate various numerical summaries: the mean, variance, skewness,

kurtosis and others. But relying on numerical summaries alone can be misleading.

Rather we should use graphical methods. To assess if our data come from a normal

distribution we will show two graphs (see Figure 3). For the first one we will plot

the cumulative density function of the sample mean µ25 along with the theoretical

cumulative density function for the normal distribution. For the second graph we

will plot the quantiles of the distribution of µ25 against the quantiles of the normal

distribution. In this particular example the choice n = 25 is large enough so that the

central limit theorem applies. Other underlying distributions might require a larger

value of n.

Figure 4 shows how the central limit theorem applies to any underlying distribu-

tion. For this figure we have chosen three underlying distributions: uniform, gamma,

and log-normal. The first row of the display shows the underlying distribution’s prob-
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Figure 3: Cumulative density function and quantile-quantile plots for the dis-
tribution of the mean µ25.
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Uniform Gamma Lognormal

Figure 4: Visualizing the central limit theorem. Top row: underlying density
function. Middle row: CDF-plot. (Only 75 of the 200 points were
plotted.) Bottom row: QQ-plot.

ability density function. The second row shows the cumulative density function of

the mean (dots) along with the cumulative density function for the normal distribu-

tion (solid line). Even though the curve does seem to approximate the normal curve

fairly close on all three displays of the middle row it is hard for our visual system to

distinguish differences from the two curves. The last row of the display shows the

QQ-plots. Here it is much easier for us to see that our data (in all three cases) does

fall fairly close to the line y = x.

Regardless of the underlying distribution (as long it satisfies some mild conditions)

the distribution of the mean of a sample follows a normal distribution.

304 Casualty Actuarial Society Forum, Spring 2005



Stochastic Excess-of-Loss Pricing within a Financial Framework

2.1.3 Does the central limit theorem apply to maxima?

While actuaries are interested in the mean severity of claims, they also want to know

how large an individual loss might be. Hence, the following question arises naturally:

if we replace the mean of a sample with another statistic, say the maximum of the

sample, is the limiting distribution (if it exists) still the normal distribution?

As before, consider a sequence of random numbers from an unknown distribution:

X1, X2, X3, . . . . For n = 1, 2, 3, . . . compute the maximum statistic of the first n

terms:

Mn = max(X1, X2, . . . , Xn). (6)

For n large, does the distribution of Mn converge to a normal distribution?

Using the same experimental procedure as for the mean statistic take n = 25 and

calculate 200 maxima:

M
(1)
25 , M

(2)
25 , M

(3)
25 , . . . ,M

(200)
25 . (7)

In Figure 5 we have displayed the cumulative distribution function of the max-

imum statistic (transformed to have mean zero and unit variance). We have also

plotted the standard normal distribution. While we can see that both sets of data do

not agree it is hard to know if the departures we see are significant. Our eyes have a

hard time distinguishing differences between curved lines. The quantile-quantile plot

provides a more powerful graphical technique because we are looking for discrepancies

between a straight line and the data. Figure 6 shows clearly that the distribution

of the maximum does not follow a normal distribution. If it did the data would fall

approximately on a straight line. Rather the points form a concave line. At the

upper right-hand corner the data are below the straight line. This implies that the

distribution of the maximum is thicker tailed than the normal distribution. The re-

gion below the straight line corresponds to points where Qt(p) > Qe(p); that is, for a

given value of p ∈ (0, 1) the pth quantile of the theoretical distribution (in our case

the normal distribution) is greater than the pth quantile of the distribution. One

could argue that our choice of n = 25 random numbers is not large enough to show

(in our example) that the distribution of the maximum statistic converges to a nor-

mal distribution. We performed the same experiment with n = 100, 1000, and 10000

and we still reached the same conclusion: for our example, the distribution of the

maximum statistic does not converge to the normal distribution.
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Figure 5: CDF-plot of maximum statistic. The solid line is the standard normal
distribution N(0, 1).
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Figure 6: QQ-plot of maximum statistic. The solid line is y = x.
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2.2 Distribution of normalized maxima

The extreme value theory result analogous to the central limit theorem specifies the

form of the limiting distribution for normalized maxima. In place of the partial sums

Sn we have the maximum Mn = max(X1, X2, . . . , Xn).

We know that the distribution of maxima do not follow a normal distribution (see

Figure 6). It turns out that the distribution of maxima converges to one of three

distributions known as the extreme value distributions. The following theorem by

Fischer and Tippett [11] explicitly states these three distributions.

Theorem 1 (Fischer-Tippett). Let Xn be a sequence of independent and identically

distributed random variables and let Mn = max(X1, X2, . . . , Xn) be the maximum of

the first n terms. If there exists constants an > 0 and bn and some non-degenerate

distribution function H such that6

Mn − bn

an

d−→ H, (8)

then H belongs to one of the three standard extreme value distributions:

Fréchet: Φα(x) =

0, x ≤ 0, α > 0,

exp(e−x−α
), x > 0, α > 0,

(9)

Weibull: Ψα(x) =

exp(−(−xα)), if x ≤ 0 and α > 0,

1, if x > 0 and α > 0,
(10)

Gumbel: Λ(x) = exp(−e−x), if x ∈ R. (11)

A distribution F is said to belong to the maximum domain of attraction of the

extreme value distribution H if Mn = max(X1, . . . , Xn) satisfies equation (8), where

the Xi’s are random variables with distribution F .

The Fréchet, Weibull and Gumbel distributions can be written in terms of a one

parameter ξ family:

Hξ(x) =

exp(−(1 + ξ x)−1/ξ), if ξ 6= 0

exp(−e−x), if ξ = 0
(12)

6The notation d−→ refers to convergence in distributions.
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Table 1: Maximum likelihood estimates (and their standard errors) for the gen-
eralized extreme value distribution Hξ([x− µ]/σ).

Parameter Uniform Gamma Log-normal
location (µ) 0.965 (0.003) 9.538 (0.192) 6.521 (0.151)

scale (σ) 0.033 (0.003) 1.707 (0.139) 1.326 (0.111)

shape (ξ) −0.932 (0.005) −0.011 (0.073) 0.028 (0.079)

where x is such that 1 + ξ x > 0. This representation is obtained from the Fréchet

distribution by setting ξ = α−1, from the Weibull distribution by setting ξ = −α−1

and by interpreting the Gumbel distribution as the limit case for ξ = 0.

We visualize the Fischer-Tippett theorem using the same three underlying dis-

tributions (uniform, gamma, log-normal) we used for the central limit theorem. For

each underlying distribution we have collected 100 maxima. Each maximum is taken

over 25 points chosen at random from the distributions. Table 1 shows the maximum

likelihood estimates for each distribution and in Figure 7 we show the corresponding

QQ-plots. Note that the shape parameter for the maxima sampled from the uniform

distribution is negative. This implies that the uniform distribution is in the maxi-

mum domain of attraction of the Weibull distribution. Similarly the shape parameters

for the gamma and log-normal are not statistically different from zero. Hence these

distributions are in the maximum domain of attraction of the Gumbel distribution.

Distributions that belong to the maximum domain of attraction of the Fréchet

distribution include Pareto, Burr, and log-gamma. They are usually categorized as

heavy-tailed distributions. Other distributions that actuaries are familiar with in-

clude the normal, gamma, exponential, log-normal and Benktander type-I and type-

II (see [8, pages 153–7]). These distributions are not as heavy-tailed as the previous

examples. They belong to the maximum domain of attraction of the Gumbel distri-

bution. These are medium-tailed distributions. Examples of distributions belonging

to the maximum domain of attraction of the Weibull distribution include the beta

and uniform distributions. These we shall call thin-tailed distributions.

2.3 Distribution of exceedances

We have seen that the distribution of the maximum does not follow the normal

distribution. Rather it follows one of the extreme value distributions: Fréchet, Weibull

or Gumbel.

While reinsurance actuaries are interested in the maximum single loss over a given
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Figure 7: QQ-plots comparing sampled maxima against the fitted generalized
extreme value distribution Hξ([x− µ]/σ).

time period this information is not the area of focus when pricing a contract. The

excess of loss reinsurance actuary is concerned about any loss that exceeds a pre-

determined threshold (or attachment point). Suppose that X1, X2, . . . , Xn represent

the ground-up losses over a given period. Let u be the predetermined threshold and

let

Y = [X − u|X ≥ u] (13)

be the excess of X over u given that the ground-up loss exceeds the threshold. The

pricing actuary is interested in the distribution of the exceedances; that is, in the

conditional distribution of Y = X − u given that X exceeds the threshold u.

Let F denote the distribution of the random variable X,

F (x) = Prob (X < x) , (14)

and let Fu denote the conditional distribution of the exceedance Y = X − u given

that X exceeds the threshold u:7

Fu(y) =
F (y + u)− F (u)

1− F (u)
. (15)

Just like the mean statistic converges in distribution to the normal distribution

and the maximum statistic converges in distribution to one of the extreme value

7The distribution function Fu is also known as the exceedance distribution function, the condi-
tional distribution function, or in reinsurance the excess-of-loss distribution function.
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distributions, the exceedances converge in distribution to the generalized Pareto dis-

tribution (provided we choose a high enough threshold). The following theorem due

to Pickands [24] and Balkema & de Haan [2] shows the result.

Theorem 2 (Pickands, Balkema & de Haan). For a large class of underlying

distribution functions F the conditional excess distribution function Fu(y), for u large,

is well approximated by the generalized Pareto distribution Gξ,σ(y) where

Gξ,σ(y) =

1−
(
1 + ξ

σ
y
)−1/ξ

if ξ 6= 0

1− exp(−y/σ) if ξ = 0
(16)

for y ∈ [0, (xF − u)] if ξ ≥ 0 and y ∈ [0,−σ/ξ] if ξ < 0.

The point xF denotes the rightmost point of the distribution function F (which

could be finite or infinite).

The class of underlying distribution functions for which the above theorem ap-

plies includes most of the standard distribution functions used by actuaries: Pareto,

gamma, log-normal, and others (see [16]).

2.3.1 Peaks over threshold method

In order to apply the above theorem we have to choose a threshold. But how do we

choose a good threshold? The theorem tells us that if we pick a high enough threshold

our data should behave like data that comes from the generalized Pareto distribution.

The question is, what characteristics does the generalized Pareto distribution have

that we could check against our data? One such characteristic is the mean excess

function. The mean excess function for the generalized Pareto distribution Gσ,ξ(x) is

a straight line with positive slope:

e(u) =
σ + ξu

1− ξ
(17)

where σ + ξu > 0. The mean excess function8 for various standard distributions can

be found on Table 2.

8We use Landau’s notation where o(1) stands for an unspecified function of u whose limit is zero
as u →∞.
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Table 2: Mean excess functions for some standard distributions.

Distribution Mean excess function

Pareto κ+u
α−1

, α > 1

Burr u
ατ−1

(1 + o(1)), ατ > 1

Log-gamma u
α−1

(1 + o(1)), α > 1

Log-normal σ2u
ln u−µ

(1 + o(1))

Benktander-type-I u
α+2β ln u

Benktander-type-II u1−β

α

Weibull u1−τ

cτ
(1 + o(1))

Exponential λ−1

Gamma β−1
(
1 + α−1

βu
+ o

(
1
u

))
Truncated Normal u−1(1 + o(1))

The empirical mean excess function for a sample of data points Xi is given by

en(u) =

∑n
i=1 max(0, Xi − u)∑n

i=1 1Xi>u

(18)

where 1X>u is the indicator function with value 1 if X > u and zero otherwise.

Figure 8 shows a sample of 2860 general liability losses. Note that most of the

losses are very small (say below 500) but there are a few extremely large losses.9

Figure 9 shows the empirical mean excess plot for these data. Since the mean excess

function for the generalized Pareto distribution is a straight line with positive slope,

we are looking for the threshold points from which the mean excess plot follows a

straight line. There are two regions where the plotted points seem to follow a straight

line with positive slope. The first one is from thresholds between 600 and 1000 and

the second is between 1000 and 2500. Of course, the second region has very few data

points. Based on a threshold u = 600 we can fit a generalized Pareto distribution

(GPD) (see Figure 10) and check the goodness-of-fit against the data (see Figure 11

for a QQ-plot).

9The losses have been scaled so that the largest loss has a value of 10,000.
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Figure 8: General liability losses. The losses have been normalized so that the
maximum loss has a value of 10,000.
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Figure 9: Mean excess plot for general liability losses.
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Figure 10: GPD fit (threshold u = 600) to the general liability data. The
maximum likelihood parameter estimates are ξ = 0.7871648 and
σ = 423.0858245
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Figure 11: Quantile-quantile plot for general liability losses. The maximum
likelihood parameters for the GPD fit are: u = 600, ξ = 0.7871648
and σ = 423.0858245.
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2.4 Quantile estimation

Estimates of quantiles are important for the actuary and it is easy to calculate them

with the generalized Pareto distribution function. To estimate the tail above a thresh-

old u start by re-writing the conditional probability function Fu as follows:

F (x) = Prob (X ≤ x) = (1− Prob (X ≤ u)) Fu(x− u) + Prob (X ≤ u) . (19)

From the previous section we know that for large enough threshold u we can approx-

imate Fu(x− u) with the generalized Pareto distribution Gξ,σ(x− u). Also using the

empirical data we can estimate Prob(X ≤ u) with the empirical cumulative density

function Fn(u):

Fn(u) =
n−Nu

n
(20)

where n is the number of points in the sample and Nu is the number of points in the

sample that exceed the threshold u.

If we let F̂ (x) be our approximation to F (x), then for x ≥ u we can estimate the

tail of the distribution F (x) with

F̂ (x) = (1− Fn(u)) Gξ,σ(x− u) + Fn(u). (21)

It is easy to show that F̂ (x) is also a generalized Pareto distribution function with

the same ξ parameter but different σ and u parameters. In fact,

F̂ (x) = Gξ,σ̃(x− ũ) (22)

where σ̃ = σ(1−Fn(u))ξ and ũ = u− [σ(1− (1−Fn(u))ξ)/ξ]. Appendix A shows the

derivation of these new parameters.

From equation (21) we can solve for x to obtain our quantile estimator. Let n be

the total number of data points and Nu be the number of observations that exceed

the threshold u. Then the pth quantile is given by solving the equation

p =

(
1− n−Nu

n

){
1−

(
1 +

ξ

σ
(xp − u)

)−1/ξ
}

+
n−Nu

n
(23)
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in terms of xp. This yields the estimator

x̂p = u +
σ

ξ

[(
n

Nu

(1− p)

)−ξ

− 1

]
. (24)

2.5 Risk Premium

Once we have estimated the generalized Pareto distribution for our data it is easy

to calculate the risk premium (expected losses) in any given layer in excess of our

threshold. Let (r, R) (with R > r > u) denote the excess-of-loss layer (R − r) xs r.

The risk premium in this layer is

P =

∫ R

r

(x− r) fu(x− u) dx + (R− r) (1− Fu(R− u)) (25)

where fu(x−u) is the density of the fitted generalized Pareto model. Notice that the

price for any layer above the threshold depends only on the excess distribution Fu.

Let

Gξ,σ(x− u) =

1−
(
1 + ξ

σ
(x− u)

)−1/ξ
if ξ 6= 0

1− exp
(
−x−u

σ

)
if ξ = 0

(26)

be the generalized Pareto distribution function including a location parameter u.

Using the Pickands and Balkema & de Haan Theorem we can approximate Fu(x−u)

with Gξ,σ(x − u) and so any questions about a particular layer of reinsurance can

be answered by calculating the appropriate moments using the estimated generalized

Pareto distribution function.

Calculating the integral (25) to determine the risk premium we have the following

explicit formula

P =


σ
ξ

[(
1 + ξ

σ
(R− u)

)1−1/ξ −
(
1 + ξ

σ
(r − u)

)1−1/ξ
]

if ξ 6= 0

σ
[
exp

(
− r−u

σ

)
− exp

(
−R−u

σ

)]
if ξ = 0

(27)

3 Collective Risk Models

We shall look at the aggregate losses from a portfolio of risks. Let Sn denote the sum

of n individual claim amounts (X1, X2, . . . , Xn), where n is a random number and

the claim amounts Xi’s are independent and identically distributed random variables.
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That is, Sn follows a collective risk model

Sn = X1 + X2 + · · ·+ Xn, for n = 0, 1, 2, . . . (28)

with S0 = 0.

In this paper, we focus on experience rating, rather than exposure rating. The

next example will be used throughout the paper to illustrate the concepts.

Illustration

Consider pricing an excess-of-loss reinsurance treaty. The treaty covers a

small auto liability portfolio with a retention of 3 million, a limit of 12

million, and an annual aggregate deductible of 3 million for accident year

2005. The cedant has provided the following data on large losses

Table 3: Large losses by accident year (I).
Accident

Year 1995 1996 1997 1998 1999
Incurred 692,351 902,742 2,314,953 3,183,920 1,168,803
Losses 767,671 2,037,328 702,022 535,590 1,178,212

1,274,118 1,232,477 1,023,062 742,667 3,722,663
1,280,334 822,814 3,579,147 922,728 1,830,560

779,054 684,503 656,957 923,000 509,205
525,584 1,796,454 831,689 930,300

1,101,540 589,947 1,622,289
980,171 530,295 4,291,141

1,268,650 750,693
807,076 531,515

1,624,021
765,879
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Table 4: Large losses by accident year (II).
Accident

Year 2000 2001 2002 2003 2004
Incurred 1,172,325 531,500 870,000 1,297,600 851,259
Losses 1,978,249 630,741 592,600 502,776 1,530,050

512,380 811,327 1,759,111 2,050,000 1,750,000
1,441,546 989,497 1,856,305 2,350,000

925,617 502,603 750,503 9,510,500
774,997 566,382

1,102,500 1,118,255
608,446

2,130,454
526,483

1,600,942
1,547,415

For simplicity, we assume that the loss data are not censored. That is, the

given losses are from ground-up losses without capping at the underlying

policy limits. This assumption is not crucial and we will discuss briefly in

the sections below how one adjusts the modeling procedure when such an

assumption is removed. 2

3.1 Loss severity distributions

Estimates of the loss severity distribution play an important role in high excess-of-

loss reinsurance layers where relevant empirical losses are scarce. It is particularly

important that the selected loss distribution fits well the historical large losses and

less relevant in explaining the small losses. In practice, when looking at the historical

claims one usually ignores the small losses and analyzes only those losses that exceed

a threshold.

Before historical losses can be used in any rating procedure they have to be pro-

jected to their ultimate values. This is often done by applying loss development

factors. Recall that the loss development factors obtained from the usual accident-

year triangle analysis contain two parts: development for known claims and develop-

ment for unreported cases. For loss severity distribution fitting purpose, we need the

development factors for known claims.

In addition, because of the well-recognized differences in development between

large losses and small losses, we recommend using loss development factors on known
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claims derived from large claims only. Depending on the treatment for loss adjust-

ment expenses in the reinsurance treaty one must determine whether to include such

expenses in the loss data. In this paper, we shall assume that expenses are included

in the losses and from this point forward we shall refer to the sum of the two as losses.

In addition to the projection to their ultimate values, losses should also be trended

to reflect the changes between the experience period and the coverage period. For

example loss severity trends may include monetary inflation, increases in jury awards,

and increases in medical expenses.

Illustration

In our auto liability example, assume for simplicity that we have a constant

inflation of 3% (per annum) and the following loss development factors

for known claims:

Table 5: LDF for known claims by accident year.
LDF for

Year known claims
1995 1.001
1996 1.002
1997 1.003
1998 1.009
1999 1.024
2000 1.044
2001 1.050
2002 1.081
2003 1.108
2004 1.172

Losses should be best divided into paid and outstanding and be ad-

justed/inflated accordingly. Our constant inflation assumption simplifies

this process. Depending on the data, certain losses might be closed and

should not be developed further. In our simplified illustration, we shall

assume that all losses are subject to further development. Then, for exam-

ple, the first claim in the amount of 692, 351 in accident year 1995 would

be developed and inflated to its ultimate value of

692, 351 · 1.001 · 1.03(2005−1995) = 931, 392 (29)

318 Casualty Actuarial Society Forum, Spring 2005



Stochastic Excess-of-Loss Pricing within a Financial Framework

In summary, we have the following indexed claim history:

Table 6: Indexed historical large losses.
Accident

Year 1995 1996 1997 1998 1999
Indexed 931,392 1,180,229 2,940,118 3,950,126 1,428,916
Incurred 1,032,717 2,663,567 891,607 664,479 1,440,418
Losses 1,714,020 1,611,319 1,299,345 921,389 4,551,127

1,722,382 1,075,733 4,545,715 1,144,781 2,237,944
1,048,030 894,907 834,372 1,145,119 622,527

707,047 2,281,596 1,031,834 1,137,335
1,481,858 749,265 2,012,690
1,318,585 673,504 5,323,798
1,706,664 953,422
1,085,727 675,053

2,062,597
972,709

Accident
Year 2000 2001 2002 2003 2004

Indexed 1,418,819 628,304 1,027,807 1,525,982 1,027,644
Incurred 2,394,198 745,620 700,090 591,266 1,847,084
Losses 620,114 959,097 2,078,191 2,410,806 2,112,608

1,744,647 1,169,718 2,193,015 2,763,607
1,120,238 594,144 886,635 11,184,378

937,949 669,540
1,334,313 1,321,927

736,378
2,578,405

637,182
1,937,558
1,872,776

2

If the losses are censored at the underlying policy limit, without knowing exactly

how large the ground-up losses are, then one conservative adjustment is to assign

such losses at the appropriate policy limits for the current underwriting standards.

For example, suppose that a risk had a policy limit of one million and it generated

a loss that was capped at the policy limit. Furthermore, assume that the current
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underwriting standards would give this risk a policy limit of 1.5 million. Then the

as-if loss for this risk would be the full policy limit of 1.5 million. On the other

hand, if one knows the exact size of the ground-up loss, then one should index the

ground-up loss as above and limit it at the appropriate policy limit if necessary.

After the historical losses have been adjusted to an as-if basis but before we

start the model fitting, it is important to explore the data further to gain better

understanding. One way to do so is to plot the empirical mean excess function (18).

An upward trend in the mean excess plot suggests a heavy tailed behavior, a horizontal

line would be exponentially distributed, and thin tailed distribution usually gives a

downward trended mean excess plot (see Table 2).

Illustration

In our auto liability data, we have the following mean excess plot:
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Figure 12: Mean excess loss plot.

The plot shows an upward trend, which suggests that the tail is heavier

than an exponentially distributed function. The points above a threshold

of 2,000,000 seem to follow a straight line (ignoring the last couple of

points which are the average of very few observations). This suggests

that a generalized Pareto fit with a threshold of 2 million should provide

a good fit. 2

Commonly used loss severity distributions in reinsurance pricing include Pareto,

log-normal, log-gamma, exponential, gamma, transformed beta, and others. Pareto
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distributions are particularly popular. Actuaries have recently been applying extreme

value theory in estimating the tails of the loss severity distributions [8, 19, 16, 20]. It

is particularly useful in pricing high excess of loss layers. The theory suggests that

the excess losses above a high threshold are asymptotically distributed according to

a generalized Pareto distribution. The loss severity distributions commonly used in

reinsurance pricing belong to the class of functions to which the Pickands and Balkema

& de Haan theorem 2 applies; showing that the excess loss above a high threshold can

be well approximated by the generalized Pareto distribution. This theorem provides

the theoretical underpinnings for the popularity of the Pareto distribution in the

reinsurance industry when pricing high excess-of-loss layers.

There are various methods of estimating the parameters of the loss severity dis-

tributions: method of moments, percentile matching, maximum likelihood, and least

squares are among them. The method of moments and percentile matching are easy

to implement and convenient but lack of the desirable optimality properties of maxi-

mum likelihood and least squares estimators. Maximum likelihood in essence seeks to

find the parameters that give the maximum probability to the observed data. Maxi-

mum likelihood estimators are asymptotically unbiased and have minimum variance.

Unfortunately, it can be heavily biased for small samples. The least squares method

seeks to find the parameters estimates that produce the minimum distance between

the observed data and the fitted data. The least squares method can be applied more

generally than maximum likelihood. However, it is not readily applicable to censored

data and is generally considered to have less desirable optimality properties than

maximum likelihood. In our model, we will estimate our parameters using maximum

likelihood.

Recall that maximum likelihood method selects the parameters θ’s which maxi-

mize the likelihood function:

L(θ) =
n∏

i=1

f(xi|θ) (30)

or equivalently the log-likelihood function:

l(θ) = ln(L(θ)) =
n∑

i=1

ln(f(xi|θ)) (31)

where f(xi|θ) is the probability density function evaluated at xi given θ.

Illustration
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We continue with the auto liability example. To fit a generalized Pareto

distribution to the indexed excess loss data, first recall that generalized

Pareto distribution probability density function is of the form

fξ,σ(x) =
1

σ

(
1 +

ξ

σ
x

)−( 1
ξ
+1)

(32)

and the log-likelihood function is

l(ξ, σ) = n

(
1

ξ
+ 1

)
ln σ −

(
1

ξ
+ 1

) n∑
i=1

ln

(
1 +

ξ

σ
xi

)
. (33)

With the selected threshold of 2, 000, 000, we plug in the excess loss (in-

dexed loss - threshold) values and obtain maximum likelihood estimators

of ξ = 0.66784 and σ = 591, 059.8.

The graph below shows the cumulative density functions for the general-

ized Pareto as well as the adjusted empirical distributions (adjusted for

inflation and loss development).
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Figure 13: Generalized Pareto cumulative density function.

2

In dealing with censored data, one adjusts the probability function by assigning
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a mass density at the censor point c (see [17]):

F̃ (x) =

F (x), if x < c,

1, if x ≥ c,
(34)

3.2 Claim frequency distribution

Similar to the loss severity, the claim frequency also needs to be trended and developed

to ultimate. One needs to estimate for the not yet reported claims and the possible

trends. To estimate the not yet reported claims is easier: one develops the claim

number triangle to ultimate. To estimate the possible trends, on the other hand, is

certainly not an easy task. Court decisions may influence the liability frequencies; an

amendment in the governing law can change the reporting of the WC claims. Both

legal and social factors need to be considered when identifying the trends. One further

adjustment to the historical frequency is to reflect the historical portfolio sizes. This

can be done by comparing the historical exposure sizes to the treaty year exposure

size.

Illustration

Continuing with our auto liability example, suppose that we have the

following exposure information and claim number development factors:

Table 7: Historical exposure size and claim frequency LDF by accident year.
No. of Claim Freq

Year Exposures Dev. Factor
1995 21,157,000 1.007
1996 19,739,000 1.007
1997 19,448,000 1.007
1998 19,696,000 1.022
1999 19,406,000 1.030
2000 19,543,000 1.037
2001 19,379,000 1.073
2002 21,186,000 1.197
2003 24,425,000 1.467
2004 27,990,000 2.379
2005 28,000,000

Then, for example, there is one claim reported in 1996 above the chosen
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threshold of 2, 000, 000, with the adjustment for unreported claims and

exposure sizes, we get

1 · 1.007 · 28, 000, 000/19, 739, 000 = 1.43 (35)

That is, assuming no other trends are necessary, we expect to see 1.43

claims above 2 million if year 1996 experience were to happen again with

the 2005 exposure size. The following table summarizes the combined

adjustments:

Table 8: Indexed claim experience.
No. of No. of

Year claims as-if claims
1995 0 0
1996 1 1.43
1997 4 5.80
1998 3 4.36
1999 2 2.97
2000 2 2.97
2001 0 0
2002 2 3.16
2003 3 5.04
2004 1 2.38

2

To model the claim frequency distribution, we consider three choices of claim

frequency distributions: Poisson, negative binomial, and binomial.

• Poisson

The Poisson distribution is often used in reinsurance pricing for its simplicity.

It has a great advantage: the sum of two independent Poisson variables also

follows a Poisson distribution. Another advantage is that if the number of claims

in a fixed time period follows a Poisson distribution, then

1. the number of claims above a fixed retention is also Poisson distributed.

2. the claim number for a subinterval is also Poisson distributed.
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The first advantage is particularly useful in excess-of-loss reinsurance pricing

because it provides the theoretical background for assuming that loss events are

Poisson distribution while adjusting retentions when fitting the distributions.

The second advantage works well, for example, when one removes certain ben-

efits from the current plan. The assumption of Poisson needs not be changed if

the frequency distribution under the current plan follows a Poisson distribution.

One disadvantage is that the assumption that the rate at which the claims occur

is constant over time. This in particular is not applicable in certain sections

of reinsurance (for example, earthquake) where the probability of another loss

occurring is a lot higher given that one has already occurred.

• Negative binomial

The negative binomial is a generalization of the Poisson distribution by mixing

a Poisson distribution with a gamma mixing distribution. That is, by assum-

ing the parameter λ of the Poisson distribution to be gamma distributed, the

resulting distribution is negative binomial. This is particularly useful when the

practitioner incorporates parameter uncertainly into the Poisson parameteriza-

tion.

The disadvantage of this distribution lies in the difficulty in solving for its

maximum likelihood estimators; there is no closed form for them.

• Binomial

The process of having claims from m independent risks with each risk having

probability q of having a claim follows a binomial distribution with parameters

m and q. This distribution has finite support 0, 1, 2, . . . ,m. That is, at most

m claims can happen in the specific period of time. This makes the Binomial

distribution less popular for reinsurance pricing.

In estimating the parameters of the claim frequency distribution one can use the

same methods as for the loss severity distribution; namely, the method of moments,

maximum likelihood, least squares, etc. as discussed in Section 3.1. In general,

because of the much smaller volatility involved in the claim frequency versus the loss

severity, there is less concern in estimating frequency distribution. In our model, we

use the method of moments—due to its simplicity—to estimate the parameters of the

distribution.
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Illustration

In the auto liability example, the average of the sample frequencies is

2.812 and its variance is 3.821. Since the sample variance is larger than

the sample mean, we select the negative binomial as the claim frequency

distribution. The parameters s, p of a negative binomial distribution are

such that10

µ =
s(1− p)

p
and σ2 =

s(1− p)

p2
(36)

We input the sample mean and sample variance into the equations and

solve for s and p in the system of equations with the restriction that s must

be an integer. The approximate solutions are s = 8 and p = 0.73993. This

approximation is unbiased but slightly underestimates the variance. 2

3.3 Aggregate loss distribution

As stated earlier in this section, we model the aggregate loss distribution from a

collective risk theory point of view. The aggregate loss Sn for a specific period of

time (usually one calendar year) is the sum of n individual claim amounts (from

ground-up):

Sn = X1 + X2 + · · ·+ Xn, n = 0, 1, 2, . . . (37)

with S0 = 0. n is a random number following the selected claim frequency distribution

and the Xis are independent, identically distributed, and follow the selected loss

severity distribution. It is also assumed that n and Xi’s are independent.

For the annual aggregate layer losses under the reinsurance program, we modify

the above formula by applying the reinsurance coverage:

X̄i = min(l, max(Xi − r, 0)), for i = 1, 2, . . . , n (38)

S̄n = min(L, max((X̄1 + X̄2 + · · ·+ X̄n)−D, 0)) (39)

for limit l, retention r, aggregate limit L, and aggregate deductible D.

In general insurance practice, there are four ways in computing the aggregate loss

distribution from the selected claim frequency and the loss severity distributions:

1. Method of moments

10We are using the following parametrization of the negative binomial density function: f(k) =(
s+k−1

k

)
ps(1− p)k.
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This method assumes a selected aggregate loss distribution whose parameters

are estimated by the empirical moments of the aggregate losses. Such moments

are derived algebraically from the moments of the claim frequency and loss

severity distributions:

E(S̄n) = E(n) · E(X̄) (40)

var(S̄n) = E(n) · var(X̄) + E(X̄)2 · var(n) (41)

It has the advantage of simplicity and ease of calculation. However, its main

disadvantage is inaccuracy. In general, the fitted loss distribution does not

model the true aggregate losses well.

2. Monte Carlo simulation

This method calculates the aggregate loss distribution directly from simulating

the claim frequency and loss severity distributions. First, one samples from

the frequency distribution to determine the number of claims n in the period.

Then, we pick n claims from the severity distribution at random. The sum of

the n random claim amounts (adjusted for the reinsurance coverage in place)

gives one outcome for the aggregate losses. We repeat many times this sampling

procedure to estimate the distribution of the aggregate losses.

This method provides easy and accurate aggregate distributions. However, some

argue that it takes considerable computing time. For further details see [12].

3. Recursive method

In general, this method requires a discretization of the loss severity distribution

and a selection of a large enough number of points for the claim frequency

distribution. It involves inverting the Laplace transform of the aggregate loss

distribution (for example, see [14]). Panjer [23] gave a direct recursive formula

for a particular family of claim frequency distributions that does not involve

the Laplace transformation (see also [26])

The recursive method is fast and accurate most of the time. The disadvantage

is the requirement of discretization of the loss severity distribution. There are

two methods for carrying out the discretization of a continuous distribution

function: the midpoint method and the unchanged expectation method. With

both methods one loses information. For further details see [6].
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4. Fast Fourier Transform

The fast Fourier transformation inverts the characteristic function of the ag-

gregate loss distribution, a procedure similar to the recursive method. It also

requires a discretization of the loss severity distribution. See [3, 26] for further

details.

The advantage of this method lies in its efficiency and speed. However, the

computation tends to be complicated.

We use Monte Carlo simulation to compute the aggregate loss distribution in our

model. It is simple and intuitive.

Illustration

Assume that we have fitted a generalized Pareto distribution as our loss

severity distribution with parameters ξ = 0.66784, σ = 591, 059.8, and

threshold of 2, 000, 000 and a negative binomial as our claim frequency

distribution with parameters s = 8 and p = 0.73993. Let’s also assume

that, in one random iteration, the negative binomial distribution produces

4 claims and we generate the following 4 claims from the generalized

Pareto distribution:

Table 9: Sample GPD generated losses.
Loss

(from ground up)
2,590,062
3,107,208
2,874,384
7,800,324

Keep in mind that the generalized Pareto generates excess loss above the

threshold. To convert excess loss to ground up loss one adds back the

threshold.

This represents one possible annual outcome. To evaluate the reinsurance

recovery, we apply the coverage: 12 million excess of 3 million with annual

aggregate deductible of 3 million. The table bellow shows the result.
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Table 10: Sample layer losses.
Loss Layer Loss

2,590,062 0
3,107,208 107,208
2,874,384 0
7,800,324 4,800,324

The sum of all layer losses is 4, 907, 532 and the reinsurance recovery is

1, 907, 532. Thousands of iterations are generated to derive all possible

outcomes and they give us the aggregate loss distribution for the reinsur-

ance coverage. The following graph shows the result of 5, 000 iterations:
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Figure 14: Generated aggregate loss distribution.

The resulting aggregate loss distribution is as expected highly skewed,

with 78.1% probability of no losses and a mean of $1,108,974. 2

4 Risk Loads and Capital Requirements

An essential job of actuaries is to quantify risks. In this section, we will introduce var-

ious risk measures and capital requirements that could be incorporated in our pricing

model. We would like to stress that quantifying risks is a complex undertaking. So far

no single risk measure can fulfill all of the properties that actuaries would like to have.
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For example, the risk measures standard deviation or variance are symmetric. They

do not differentiate between losses and gains. In practice, actuaries and management

teams are concerned with the management of potential losses. Another risk measure,

value at risk, is concerned with potential losses above a threshold. Unfortunately,

this measure does not tell us anything about how severe losses could be if they exceed

the threshold. Probability of ruin is another risk measure that actuaries have spent

considerable time studying. Here the actuary would set the capital requirements of a

company so that the probability of ruin is acceptably small. Similar to value at risk,

this measure provides no information about the severity of ruin.

4.1 Risk Measures

Various risk measures have appeared in the actuarial literature: standard deviation,

variance, probability of ruin, value at risk (VaR), expected policyholder deficit (EPD),

and tail VaR are among them.

• Standard deviation or variance

Standard deviation and variance methods equate more volatility in the loss

distribution with more riskiness. These methods set a risk load directly pro-

portional to the standard deviation or variance. They are popular for their

simplicity and mathematical tractability. However, they ignore the distinction

between the upside and downside risks, which is critical for proper pricing es-

pecially when the loss distribution is highly skewed.

• Probability of ruin

Probability of ruin focuses on the theoretical ruin threshold, the point where

the liabilities are greater than the assets. For a probability ε, it seeks the capital

amount such that

Prob(X ≤ capital + E(X)) = 1− ε (42)

Probability of ruin is easy to understand and to compute. Unfortunately, it

considers only the probability of ruin and lacks the consideration of loss severity

when ruin occurs.

• Value at risk (VaR)
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Value at Risk is generally defined as the capital necessary, in most cases, to

cover the losses from a portfolio over a specified holding period. The VaR is

defined as the smallest value that is greater than a predetermined percentile of

the loss distribution. That is, for a selected probability α,

VaRα = inf {x|Prob(X ≤ x) > α} (43)

Similar to the probability of ruin risk measure, VaR is easy to understand and

to compute but lacks the consideration of loss severity.

• Policyholder deficit (EPD)

Expected Policyholder Deficit is the expected value of the difference between

the amount the insurer is obligated to pay the claimant and the actual amount

paid by the insurer, provided that the former is greater. Mathematically, it is∫ ∞

capital+E(X)

(x− capital− E(X)) · f(x) dx (44)

where E(X) is the expected loss and capital refers to the excess of assets over

liabilities. When considering the EPD as the risk measure, one usually uses the

ratio of the EPD to the expected loss (called the EPD ratio) to adjust to the

scale of different risk element sizes. That is, an EPD ratio of ε would set capital

to be the amount such that∫∞
capital+E(X)

(x− capital− E(X)) · f(x) dx

E(X)
= ε (45)

Expected policyholder deficit considers the severity as well as the probability of

the deficit. However, it is highly sensitive to extreme events.

• Tail value at risk (Tail VaR)

Tail Value at Risk is also called tail conditional expectation or expected shortfall

and it is the conditional expected value of losses:

TailVaRα(X) = E (X|X ≥ VaRα(X)) (46)

That is, for a selected probability α, TailVaR at α is the expected value of

those losses greater than or equal to VaRα(X). Unlike VaR, TailVaR considers
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the loss severity. It is also less sensitive to extreme losses than the expected

policyholder deficit measure.

Among the risk measures stated so far in this section, TailVaR is the only coherent

risk measure in the sense discussed in the paper Coherent Measures of Risk [1]. A risk

measure is said to be coherent if it satisfies four axioms: sub-additivity, monotonicity,

positive homogeneity, and translation invariance.

The sub-additivity axiom ensures that the merging of two portfolios of risks does

not create extra risk. Monotonicity says that if portfolio X always generates losses

smaller than portfolio Y , then the risk measure for X should not be larger than that

of Y . Positive homogeneity tells us that merging two identical portfolios doubles the

risk measure. Finally, translation invariance says that if we add a constant to all

losses of a portfolio, then the risk measure of the portfolio should also increase by the

same constant (see [1, 21]). For our model we have selected Tail VaR at 99% as our

risk measure.

In addition to the risk measures mentioned above, there are many other risk

measures such as CAPM (see [9]), marginal cost of capital with and without the

application of game theory [18, 22], and worse conditional expectation [1] (this is

also a coherent risk measure). One should also take them into consideration when

selecting a risk measure.

4.2 Capital Requirements

For insurance companies operating in the United States, the capital requirements are

heavily regulated by the NAIC risk-based capital standards. Reinsurance companies

(especially non-US reinsurers), on the other hand, are usually not as heavily regulated

as primary insurance companies are with respect to capital requirements. In our

model we will simplify matters and not consider how the NAIC risk based capital

requirements would be affected in the pricing of a single excess-of-loss treaty. Rather

we will take the position that we are evaluating the treaty on a stand-alone-basis.

Moreover, the capital requirements are directly tied to the selected risk measure.

One main reason to purchase reinsurance is to mitigate large losses and to reduce

the volatility of the underwriting results. As a result of the reinsurance purchase, the

amount of capital required to guard against unexpected losses and high volatility is

reduced. We consider the reduction in capital as rented capital from the reinsurer.

That is, the reduction in required capital from before reinsurance to after reinsurance
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is the amount of capital that reinsurer provides. The ceding insurer must pay a fee

for renting this capital from the reinsurer. The amount of rented capital depends on

the reinsurance coverage and can be computed directly from the simulation results.

Illustration

The simulation results from our auto liability example are as follows:

Table 11: Aggregate loss distribution statistics before and after reinsurance.
Percentile Gross Net

5.0 % 0 0
10.0 % 2,034,094 2,034,094
25.0 % 4,105,924 4,105,924
50.0 % 7,578,306 7,459,913
75.0 % 13,198,430 12,000,000
90.0 % 20,148,295 17,003,454
92.0 % 22,175,644 18,257,892
98.0 % 37,985,818 27,054,490
99.0 % 51,212,932 38,456,724
99.5 % 76,985,851 62,732,939
99.8 % 143,818,339 122,821,239
100.0 % 904,128,288 882,361,851

The following graph makes the reinsurance effect clearer:
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Figure 15: Gross versus net loss distributions.
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With the chosen risk measure of Tail VaR at 99%, we first find the VaR

at 99% and then compute the conditional expected value of losses given

that they are larger than or equal to the 99% VaR. In our simulation we

have to take the average of all losses greater than or equal to the 99%

VaR value. The following table shows the VaR values and the Tail VaR

values at 99% on a gross and net bases.

Table 12: Tail VaR calculation.
Gross Net

VaR99% 51, 212, 932 38, 456, 724
TailVaR99% 128, 583, 553 115, 354, 489

Therefore, we have a capital reduction of

128, 583, 553− 115, 354, 489 = 13, 229, 064

and this is the amount of rented capital that will be incorporated in the

premium calculation. 2

5 Reinsurance IRR Pricing Model

Our pricing methodology follows closely the paper Financial Pricing Model for Prop-

erty and Casualty Insurance Products: Modeling the Equity Flows [10]. Readers

interested in the reasoning and intuitions of the details should refer to the paper.

The goal of IRR pricing is to generate the equity flows (net cash flows) associated

with the treaty being priced. The amount of premium is an unknown that must

be solved for so that the IRR on the resulting equity flows is equal to the pricing

target. In theory an iterative process is used to solve for the premium. In practice

the premium is found by running the goal seek algorithm in Excel c©.

With the objective of generating the equity flow, the model is designed to calculate

the cash flows necessary for the calculation of the equity flow. These cash flows are:

• U/W cash flows

• Investment income cash flows

• Federal income tax flows (“+” denotes a refund; “−” denotes a payment)
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• Asset flows

The equity flow is then calculated via the basic relation:11

Equity Flow = U/W Flow + Investment Income Flow

+ Tax Flow− Asset Flow + DTA Flow. (47)

We use the convention that a positive equity flow denotes a flow of cash from

the insurer to the equityholders, and a minus a payment by the equityholders to the

insurer.

5.1 Illustration

Recall the illustrative excess-of-loss treaty from Section 3. It is assumed to be effective

Jan 1, 2005.

Certain treaty characteristics serve as inputs to the model. These characteristics

consist of the following costs for the layer being priced:

• amount of expected ultimate loss for the layer ($1,108,974 as detailed in Sec-

tion 3),

• brokerage expenses as a percentage of base premium (10%),

• LAE as a percentage of base premium (3%),

and the following collection/payment patterns :

• premium collection pattern (assumed to be 100% at treaty inception)

• loss payment pattern:

Table 13: Loss payment pattern.
Loss Loss

Year payment Year payment
2005 22.2% 2010 4.7%
2006 29.3 2011 4.3
2007 15.9 2012 3.7
2008 7.9 2013 3.5
2009 5.8 2014 2.7

11Properly speaking, the change in the deferred tax asset (DTA) is not a cash flow, if by cash one
means cash equivalents. Since assets include DTA, the change in assets is also not a cash flow. But,
then item (assets−DTA) consists of cash equivalents and hence ∆(assets−DTA) is a cash flow. We
have simply expressed ∆(assets−DTA) as the difference ∆assets minus ∆DTA.
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The model uses annual valuations. With the exception of the written premium and

UEPR which incept on Jan 1, our simplifying assumption is that all accounting and

cash flow activity occur at year end.

The model also requires certain parameter inputs consisting of:

• investment rate of return on invested assets (5.5%),

• effective tax rate for both investments and U/W income (assumed to be 35%

for both),

• surplus assumptions (specifics discussed in Section 4.2 above),

• the target return on capital (12%), and

• IRS loss & LAE reserve discount factors:

Table 14: Internal Revenue Service discount factors.
Discount Discount Discount

Year Factor Year Factor Year Factor
2005 0.7410 2010 0.7583 2015 0.8805
2006 0.7367 2011 0.7554 2016 0.9221
2007 0.7438 2012 0.7823 2017 0.9766
2008 0.7040 2013 0.8117 2018 0.9766
2009 0.7264 2014 0.8441 beyond 0.9766

5.1.1 Assets

Required Surplus

Surplus is held only for the policy term in our illustration. It exists to cover unforeseen

contingencies and is determined to maintain an acceptable level of risk. As discussed

above in section 4.2 we used a rented capital approach using a 99% TVaR level of risk

to give a surplus need of $13,229,064.This surplus we assume is held for the first year

only. This assumption reflects the fact that new business writings pose a greater risk

than business in reserve run-off which has capital embedded in reserves to support

unforeseen contingencies.

Total Reserve

The total reserve at any point in time is the sum of the unearned premium reserve

and the held loss & LAE reserves. We assume no reserve deficiency and so as losses

pay out the held loss reserves are taken down dollar for dollar.
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Required Assets

The amount of assets the insurance company needs to support the policy is equal to

total reserves as defined above, plus the required:

Required Assets = Total Reserves + Required Surplus (48)

Illustration

On Jan 1, 2005 the UEPR is equal to the WP which is $3,044,605. The

contract is yet fully unearned and the loss reserves are $0. With surplus

of $13,229,064 put up at treaty inception the total assets are $16,273,669.

By year end the UEPR is $0, loss reserves are equal to $862,782 (ultimate

losses less paid losses of $246,192), and surplus is $0 for total assets of

$862,782.

Table 15: Asset calculation.
Held Surplus Held

UEPR Reserve Capital Asset
1/ 1/2005 3,044,605 0 13,229,064 16,273,669

12/31/2005 0 862,782 0 862,782
12/31/2006 0 537,964 0 537,964
12/31/2007 0 361,694 0 361,694
12/31/2008 0 274,218 0 274,218
12/31/2009 0 209,898 0 209,898
12/31/2010 0 157,776 0 157,776
12/31/2011 0 110,090 0 110,090
12/31/2012 0 69,058 0 69,058
12/31/2013 0 30,244 0 30,244
12/31/2014 0 0 0 0

2

Income Producing Assets

Not all of the assets held by the company to support the policy generate investment

income. Both the premium receivable (if any) and the deferred tax asset are non-

income producing assets:

Income Producing Assets = Required Assets− Premium Receivable−DTA (49)
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In our formulation weve assumed all premium is collected up front and consequently

the premium receivable asset is zero. The calculation of DTA is discussed below.

Investment Income

The Investment Income earned over the year is simply calculated as the product of

the annual effective investment rate of return times the amount of income producing

assets held at the beginning of the year:

Invest Inc@time T = Annual Invest ROR · Investible Assets@time T−1 (50)

Table 16: Investment income calculation.
Held Non-Income Income Investment

Asset Producing Producing Income
1/ 1/2005 16,273,669 0 16,273,669 0

12/31/2005 862,782 28,656 834,125 895,052
12/31/2006 537,964 17,134 520,830 45,877
12/31/2007 361,694 4,028 357,666 28,646
12/31/2008 274,218 8,307 265,911 19,672
12/31/2009 209,898 6,756 203,142 14,625
12/31/2010 157,776 3,919 153,857 11,173
12/31/2011 110,090 4,163 105,927 8,462
12/31/2012 69,058 3,269 65,789 5,826
12/31/2013 30,244 1,994 28,251 3,618
12/31/2014 0 0 0 1,554

5.1.2 Taxes

IRS Discounted Reserves

The IRS Discounted Reserves are calculated by multiplying the company’s Held Re-

serves by a discount factor. The discount factor varies by line of business, accident

year, and by age of the accident year. Our basic formula for IRS discounted reserves

is thus

IRS Discounted Reserves = IRS Discount Factor · Held Reseves (51)

Taxable U/W Income
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The IRS defines the taxable U/W income earned over an accounting year as

Written Premium− 0.8 ·∆UEPR− Paid Expenses

− [Paid Losses + ∆IRS Disc Reserves] (52)

where all activity is over the relevant accounting year. In our illustration the treaty

is effective Jan 1 and so the change in the UEPR is identically zero. Table 17 shows

the computation of the tax on U/W income.

Tax on Investment Income

This tax is simply calculated as 35% of earned investment income for the year.

Total Tax

The total federal income tax paid each year is equal to the sum of the yearly tax on

U/W income and the yearly tax on investment income.

Table 18: Tax calculation.
Tax on Tax on Tax
UW Inc Inv Inc Total

1/ 1/2005
12/31/2005 617, 167 313, 268 930, 436
12/31/2006 −28, 656 16, 057 −12, 599
12/31/2007 −17, 134 10, 026 −7, 108
12/31/2008 −4, 028 6, 885 2, 857
12/31/2009 −8, 307 5, 119 −3, 188
12/31/2010 −6, 756 3, 910 −2, 845
12/31/2011 −3, 919 2, 962 −957
12/31/2012 −4, 163 2, 039 −2, 124
12/31/2013 −3, 269 1, 266 −2, 003
12/31/2014 −1, 994 544 −1, 450

Deferred Tax Asset

There are two components to the DTA: the portion due to the Revenue Offset; and

the portion due to IRS Discounting of Loss & LAE Reserves.

The DTA due to the Revenue Offset is equal to

35% · 20% · UEPR (53)
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For our illustration the year end UEPR is identically equal to zero.

The DTA due to IRS Discounting at the end of Accounting Year T is equal to

35% · [(Held Loss Reserveat time T − IRS Loss Reserveat time T )

− (Held Loss Reserveat time T+1 − IRS Loss Reserveat time T+1)] (54)

The amount in each square bracket is the amount that reverses in the year (which is

all that is statutorily recognized).

Illustration

At year end 2005 the held loss reserve is $862,782 while the IRS discounted

reserve is $639,279. If the full DTA were recognized it would be (862, 782−
639, 279) · 35% = 78, 226. But only the amount that reverses in one year

is recognized. That is, the fully recognized DTA at year end 2006 would

be (537, 964 − 396, 336) · 35% = 49, 570. Thus the amount that reverses

during 2006 is $28,656 and this is the amount of DTA at year end 2005.

2

Table 19: Deferred tax asset calculation.
Held IRS Disc DTA

Reserve Reserves (Reserve Disc)
1/ 1/2005

12/31/2005 862, 782 639, 279 28, 656
12/31/2006 537, 964 396, 336 17, 134
12/31/2007 361, 694 269, 021 4, 028
12/31/2008 274, 218 193, 054 8, 307
12/31/2009 209, 898 152, 468 6, 756
12/31/2010 157, 776 119, 648 3, 919
12/31/2011 110, 090 83, 160 4, 163
12/31/2012 69, 058 54, 022 3, 269
12/31/2013 30, 244 24, 548 1, 994
12/31/2014 0 0 0

5.1.3 Cash Flows

The relevant cash flows for determining the Equity Flow are described below.

U/W Cash Flow
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This item is defined as

U/W Cash Flow = WP− Paid Expenses− Paid Loss (55)

Investment Income Flow

This item is defined as the yearly investment income earned. The calculation is

described above.

Tax Flow

The Tax Cash Flow is defined at the negative (to denote a flow from the company) of

the federal income taxes paid that year. The calculation of this flow item is described

above.

DTA Flow

The DTA Flow is defined as the change in the DTA asset over a year.

Asset Flow

The asset flow is defined as the change in the required assets. The composition and

calculation of the required assets are described above.

Equity Flow

To compute the Equity Flow at each year we use the cash flow definition:

Equity Flow = −Asset Flow + U/W Flow

+ Investment Income Flow + FIT Flow + DTA Flow (56)

Recall that we use the convention that a positive equity flow denotes a flow of cash

from the insurer to the equityholders, and a negative a payment by the equityholders

to the insurer. The relevant cash flows for our illustration are summarized in Table 20.

The IRR on the resulting equity flows is 12%. The premium of $3,044,605 was

iteratively determined with this goal.
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6 Summary

The pricing of high layers of reinsurance is a difficult task primarily because of the

nature of extreme events. The practicing actuary requires a diverse toolbox to tackle

this pricing problem. As part of the toolbox he needs well grounded statistical meth-

ods for analyzing the data at hand, a good understanding of the modeling techniques

and risk assessment, and a comprehensive pricing model that does not sweep un-

der the rug many of the regulatory, tax, and business constraints of the insurance

company.

In the past very large losses would be labeled as outlier observations, rationalized

as extremely improbable, and sometimes even removed from the data set. For the

reinsurance actuary these observations are likely to be the most important observa-

tions in the data set.

In this paper we have introduced results from a well grounded statistical theory

to deal with extreme events. The first result tells us that the distribution of the

maximum of a sample converges to one of the three extreme value distributions. This

result is analogous to the central limit theorem. The second result shows that the

distribution of excess losses converges to the generalized Pareto distribution as the

threshold increases. This is the key result for pricing very high layers of reinsurance.

We also introduce the peaks over threshold method from extreme value theory and a

powerful graphical technique, the QQ-plot, to assess distributional assumptions.

The paper also provides a hands-on approach to loss modeling. We present the

collective risk model and use it to calculate the aggregate loss distribution for the

example that is carried throughout the paper. We also introduced various measures to

quantify risk and our treatment of capital requirements. Our discussions on collective

risk models and risk measures are by no means complete but the framework we have

laid should provide the practicing actuary with a foundation that can be put to

practice.

Finally, the cash flow model (IRR pricing model) brings everything together to

determine the price of a reinsurance layer. It is designed to calculate the equity flows;

that is, the cash flows between the company and its equity holders. This pricing model

is comprehensive: it includes all relevant components of cash flow for an insurance

company to derive the final price given the risk premium and other parameters.
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Appendix A

In this appendix, we will show that the distribution F̂ (x) in equation (21) in sec-
tion 2.4 is a generalized Pareto distribution by deriving the associate parameters.

F̂ (x) = (1− Fn(u)) Gξ,σ(x− u) + Fn(u)

= (1− Fn(u))

(
1−

(
1 +

ξ

σ
(x− u)

)−1/ξ
)

+ Fn(u)

= 1− (1− Fn(u))

(
1 +

ξ

σ
(x− u)

)−1/ξ

= 1−
(

(1− Fn(u))−ξ

(
1 +

ξ

σ
(x− u)

))−1/ξ

= 1−

(
(1− Fn(u))−ξ +

ξ

(1− Fn(u))ξ · σ
(x− u)

)−1/ξ

= 1−

(
1 +

ξ

(1− Fn(u))ξ σ

(
x−

{
u− σ

ξ

[
1− (1− Fn(u))ξ

]}))−1/ξ

= 1−
(

1 +
ξ

σ̃
(x− ũ)

)−1/ξ

= Gξ,σ̃(x− ũ)

where σ̃ = σ(1− Fn(u))ξ and ũ = u− [σ(1− (1− Fn(u))ξ)/ξ].
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Appendix B IRR cash flow model exhibits

Paid Nominal
WP UEPR LAE Brokerage Loss Reserve
(1) (2) (3) (4) (5) (6)

11/ 1/2005 3, 044, 605 3, 044, 605 91, 338 304, 461
12/31/2005 246, 192 862, 782
12/31/2006 324, 817 537, 964
12/31/2007 176, 270 361, 694
12/31/2008 87, 476 274, 218
12/31/2009 64, 320 209, 898
12/31/2010 52, 122 157, 776
12/31/2011 47, 686 110, 090
12/31/2012 41, 032 69, 058
12/31/2013 38, 814 30, 244
12/31/2014 30, 244 0

(3) = (1) · 3.0%
(4) = (1) · 10.0%

Held Surplus Held Non-Income Income
Reserve Capital Asset Producing Producing

(7) (8) (9) (10) (11)
1/ 1/2005 0 13, 229, 064 16, 273, 669 0 16, 273, 669

12/31/2005 862, 782 0 862, 782 28, 656 834, 125
12/31/2006 537, 964 0 537, 964 17, 134 520, 830
12/31/2007 361, 694 0 361, 694 4, 028 357, 666
12/31/2008 274, 218 0 274, 218 8, 307 265, 911
12/31/2009 209, 898 0 209, 898 6, 756 203, 142
12/31/2010 157, 776 0 157, 776 3, 919 153, 857
12/31/2011 110, 090 0 110, 090 4, 163 105, 927
12/31/2012 69, 058 0 69, 058 3, 269 65, 789
12/31/2013 30, 244 0 30, 244 1, 994 28, 251
12/31/2014 0 0 0 0 0

(7) = 100% · (6)
(9) = (2) + (7) + (8)
(10) = (21)
(11) = (9)− (10)
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Investment IRS Disc Taxable Tax Paid Taxable
Income Factors UW income UW Invest

(12) (13) (14) (15) (16)
1/ 1/2005 0

12/31/2005 895, 052 0.7410 1, 763, 335 617, 167 895, 052
12/31/2006 45, 877 0.7367 −81, 874 −28, 656 45, 877
12/31/2007 28, 646 0.7438 −48, 955 −17, 134 28, 646
12/31/2008 19, 672 0.7040 −11, 508 −4, 028 19, 672
12/31/2009 14, 625 0.7264 −23, 735 −8, 307 14, 625
12/31/2010 11, 173 0.7583 −19, 301 −6, 756 11, 173
12/31/2011 8, 462 0.7554 −11, 198 −3, 919 8, 462
12/31/2012 5, 826 0.7823 −11, 895 −4, 163 5, 826
12/31/2013 3, 618 0.8117 −9, 340 −3, 269 3, 618
12/31/2014 1, 554 0.8441 −5, 696 −1, 994 1, 554

(12)t = (11)t−1 · 5.5%
(14)t = (1)t − 80% · ((2)t − (2)t−1)− (3)t − (4)t − (5)t − ((7)t · (13)t − (7)t−1 · (13)t−1)
(15) = (14) · 35%
(16) = (12)

Tax Paid Total Tax DTA Revenue DTA Reserve Total
Inv Inc Paid Offset Disc DTA

(17) (18) (19) (20) (21)
1/ 1/2005 0 0 0 0

12/31/2005 313, 268 930, 436 0 28, 656 28, 656
12/31/2006 16, 057 −12, 599 0 17, 134 17, 134
12/31/2007 10, 026 −7, 108 0 4, 028 4, 028
12/31/2008 6, 885 2, 857 0 8, 307 8, 307
12/31/2009 5, 119 −3, 188 0 6, 756 6, 756
12/31/2010 3, 910 −2, 845 0 3, 919 3, 919
12/31/2011 2, 962 −957 0 4, 163 4, 163
12/31/2012 2, 039 −2, 124 0 3, 269 3, 269
12/31/2013 1, 266 −2, 003 0 1, 994 1, 994
12/31/2014 544 −1, 450 0 0 0

(17) = (16) · 35%
(18) = (15) + (17)
(19) = 20% · (2) · 35%
(20)t = (((7)t − (7)t−1)− ((7)t · (13)t − (7)t−1 · (13)t−1) · 35%
(21) = (19) + (20)
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Cash Investment Equity
UW Income Asset Tax DTA Flow
(22) (23) (24) (25) (26) (27)

1/ 1/2005 2, 648, 806 0 16, 273, 669 0 0 −13, 624, 863
12/31/2005 −246, 192 895, 052 −15, 410, 887 −930, 436 28, 656 15, 157, 968
12/31/2006 −324, 817 45, 877 −324, 817 12, 599 −11, 522 46, 954
12/31/2007 −176, 270 28, 646 −176, 270 7, 108 −13, 107 22, 648
12/31/2008 −87, 476 19, 672 −87, 476 −2, 857 4, 279 21, 094
12/31/2009 −64, 320 14, 625 −64, 320 3, 188 −1, 552 16, 262
12/31/2010 −52, 122 11, 173 −52, 122 2, 845 −2, 836 11, 182
12/31/2011 −47, 686 8, 462 −47, 686 957 244 9, 663
12/31/2012 −41, 032 5, 826 −41, 032 2, 124 −894 7, 056
12/31/2013 −38, 814 3, 618 −38, 814 2, 003 −1, 275 4, 346
12/31/2014 −30, 244 1, 554 −30, 244 1, 450 −1, 994 1, 010

(22) = (1)− (3)− (4)− (5)
(23) = (16)
(24)t = (9)t − (9)t−1

(25) = −(18)
(26)t = (21)t − (21)t−1.
(27) = −(24) + (22) + (23) + (25) + (26)

Appendix C Distribution Functions

In Table 21 (on the next page) we present some common distribution functions and their
parametrizations.
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Reinsurance Applications for the RMK Framework 
 

David R. Clark 
 
 
Abstract 

Recent work by Ruhm, Mango and Kreps, known as the RMK Framework, has proven to be a great 
advance in the theory of risk.  The RMK Framework is a way of viewing an allocation problem that 
focuses on the scenarios of greatest concern and the probability that those scenarios take place.  This 
paper avoids the mathematical details of the model, but instead gives three applications for the RMK 
Framework, using non-technical language to explain the basic concept. 
 
Keywords. Risk Theory, RMK Framework, Reinsurance 

 

1. INTRODUCTION 

Over the last few years, a significant advance has taken place in the theory of risk.  The 
idea has centered around papers by Ruhm/Mango [4], Mango [3] and Kreps [2], and so is 
becoming known as the RMK Framework.1 

While these papers have given the underlying theory, widespread acceptance is still slow 
in coming.  The purpose of the present paper is to demonstrate the RMK Framework in a 
couple of familiar reinsurance applications to illustrate its appeal to the more general 
audience. 

The RMK Framework is not a single method, but rather a framework for viewing the 
risk/reward problem that gives rise to a family of methods which share consistent 
mathematical properties.  While mathematical elegance and flexibility make RMK very 
appealing to “technical” actuaries, they actually raise suspicion outside actuarial circles – 
aren’t we once again picking the answer we want and then covering our tracks with 
complicated formulas? 

The surprising answer is that RMK is very much in line with the way insurance 
management already thinks about its business, and it can be presented in a very transparent 
fashion. 

The key idea is that we concentrate on the scenarios in which the company as a whole 
could lose money, and then ask which business segments contributed to that loss.  This idea 
will be illustrated using three examples: 

                                                           
1 The spark of the idea can be traced back even earlier to Halliwell [1], especially “Appendix E – The 
Allocation Problem”, pages 346-348. 
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1. Allocation of aggregate stop-loss cost to line of business 

2. Allocation of profit commission to policy year  (the deficit carry forward problem) 

3. Allocation of target profit loads by line of business 

The reader seeking a more rigorous mathematical treatment of the RMK Framework is 
advised to read the original papers.  Here we are just illustrating the approach, with the hope 
that seeing its results in practice will be more convincing than mathematical proofs. 

2.  EXAMPLE #1:  ALLOCATION OF AGGREGATE STOP-LOSS 
COST TO LINE OF BUSINESS 

The first problem that we will review deals with how an insurance company should 
allocate its ceded premium for reinsurance that applies across multiple lines of business. 

In this example, you work for a small insurance company that writes three lines of 
business.  You have purchased reinsurance that protects your overall loss ratio.  The 
reinsurer will cover 20% points of loss ratio in excess of a gross 80% loss ratio (that is, the 
ceding company will be back on the hook for paying losses above a 100% loss ratio).  The 
cost of this cover is 4% of gross premium. 

The profile of the business is as follows: 

   Subject Premium  ELR  Coef. of Variation (CV) 
 
  Line A  1,250  80.0%     .500 
  Line B  1,875  80.0%     .500 
  Line C  2,150  69.8%   1.000 
 
  All Lines 5,275  75.8%     .438 
 

We make the additional simplifying assumption that losses for the three lines of business 
come from independent lognormal distributions, though this is not necessary in practice. 

How should the 4% reinsurance charge be allocated to line of business?  The simplest 
approach would be to charge each line of business the same 4%.  However, the managers for 
each line immediately begin arguing about why their line should get less than the 4% charge. 

The managers for Lines A and B insist that the charge should be proportional to the 
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variance of their loss distributions, leading to something less than 4% for them.  The 
manager for Line C objects, noting that her ELR is well below the 80% attachment point of 
the reinsurance, and therefore should be charged less than the other lines. 

Who is right?  We can answer this question by first posing a different question: What 
would a scenario look like in which the overall 80% attachment point is pierced – which 
line(s) of business would have caused it? 

We can think of several situations in which the reinsurance would be triggered based on 
the 80% attachment point being pierced.  Obviously, any one line could have an extremely 
bad year, causing the overall loss ratio to be above 80% even if the other two lines of 
business were better than expected.  There could also be various combinations in which two 
lines of business were a little worse than expected, but still cause the 80% attachment point 
to be hit. 

As the actuary, we can list out many possible loss scenarios in which the reinsurance is 
triggered.  Further, for each of these scenarios, we can compare each line’s actual loss ratio 
to the 80% attachment point to see how much it contributed to the overall loss.  Given a 
loss distribution for each line of business (and our independence assumption), it is also easy 
to assign relative probabilities to each of these scenarios.  A reasonable allocation scheme 
will simply be a probability-weighted average of all the scenarios. 

This thought process is what we have been calling the “RMK Framework.”  For ease of 
illustration, it is best thought of using a simulation model.  The steps are as follows: 

1. Simulate losses for each line of business. 

2. For each line of business, calculate the difference between the actual loss and the 
80% attachment point. 

3. For all lines combined, calculate the difference between the actual loss and the 80% 
attachment point.  Store this scenario if the answer is positive. 

4. Repeat steps 1-3 many times. 
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5. For each of the scenarios in which overall losses were above 80%, cap the total loss 
at 20% of the total all-lines premium (this is the reinsurer's limit).  Lower the 
contributions from the individual lines proportionately when the cap applies.2 

6. Average all of the simulated scenarios. 

This procedure is shown on Exhibit 1a.  In this example, only twenty scenarios have been 
generated, though a realistic calculation would require many more simulations. 

A great advantage of this method is that we can bring the simulated scenarios back to the 
line of business managers and defend the allocation by pointing to the scenarios that caused 
the reinsurance to be triggered. 

In fact, we can note several advantages of this way of framing the allocation problem: 

• It is easy to explain to the business managers. 

• It works directly with a simulation model that may have been created already for 
other purposes.  In fact, if we had created a dependence or correlation structure 
between the lines of business, the method would still be applied with no changes. 

• The answer does not depend on whether two of the lines of business are grouped 
together or are kept separate.3 

After discussing Exhibit 1a with company management, a number of refinements or 
alternatives could be proposed. 

One reaction may be that under some scenarios we actually allocate a negative dollar 
amount to some lines of business.  This may in fact be very reasonable, since we are then 
saying that a “good” line is subsidizing a “bad” line of business; there is no theoretical 
reason to disallow negatives.  However, that may not be acceptable on a practical basis given 
that it would create potential difficulties in explaining negative ceded premium to external 
audiences.  To illustrate the flexibility in the RMK Framework, we can modify the method 
so that the charge is allocated in proportion to total loss dollars, eliminating the negative 
allocations.  This is shown on Exhibit 1b. 

This flexibility is a strength in viewing RMK as a decision-making framework and not as a 
                                                           
2 In each example, the factor that accomplishes this reduction is labeled L(x), in order to be consistent with 
Kreps’ notation for risk measures. 
3 This characteristic is the “additive” in Kreps’ “Additive Co-Measures” label. 
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rigid allocation method. 

3.  EXAMPLE #2:  ALLOCATION OF PROFIT COMMISSION TO 
POLICY YEAR 

For our second example, we assume that you are now a reinsurance actuary pricing an 
excess-of-loss treaty that includes a profit commission that is calculated on a three-year 
block.  The effective date for the third year is coming up shortly, and you need to know the 
expected profit commission under the proposed terms.  The difficulty is that the first two 
years are still very immature and, while they appear to be profitable, the results are far from 
certain.  The question is how to estimate the value of this uncertain carry forward of results 
from prior years. 

We are faced with the problem of estimating the overall expected profit commission for 
the three-year block and then also the allocation problem of assigning the expected 
commission to the individual policy years. 

The profit commission formula is calculated as follows. 

 Profit Commission  =  (Reinsurance Premium – Expense – Actual Loss) ⋅ Profit% 

 
  where    Expense = 20% of Reinsurance Premium 
      Profit %  =  35% 
 

As in the example for the aggregate stop-loss reinsurance program, we begin by 
simulating a number of loss scenarios.  For the profit commission problem, however, we are 
simulating losses for the same business but for three different policy periods.  We could 
potentially complicate this model by simulating only unpaid losses for the first two years, and 
also by building in some year-to-year correlation structure.  Such complication would not 
change the way we will be performing the allocation, but it would change the numbers in the 
scenarios that we examine. 

For each of the simulated scenarios, we calculate a profit or loss for each policy year by 
comparing the actual loss with the available funding premium (reinsurance premium net of 
the 20% expense allowance).  For scenarios in which the three-year block produces a profit, 
we multiply each year by the 35% profit-sharing amount.  For scenarios in which the three-
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year block does not produce a profit, we do not include a commission payment. 

By taking an average over all of the simulated scenarios, we then have an expected profit 
commission for the three-year block and also the contribution from each of the three policy 
periods.  Exhibit 2 shows the numbers for a sample of simulated values. 
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4.  EXAMPLE #3:   ALLOCATION OF TARGET PROFIT LOADS BY 
LINE OF BUSINESS 

Finally, we turn to the application that was the basis for developing the RMK Framework 
in its original context: the question of setting profit loads for individual lines of business (or 
product types). 

While it is generally acknowledged that profit loads should be based on the risk inherent 
in the business written, there has not been much of a consensus on how to define that 
“risk.” 

From a stockholders perspective, the risk that matters most is the risk that losses will eat 
into the capital invested in the company (i.e. that capital will be “consumed”).  We will 
therefore begin with this question – in what scenarios do actual losses exceed the pure 
premiums actually collected, such that our company loses value? 

Following the same example used for the basket aggregate application, we will assume 
that our company writes three lines of business with the expected losses given in Exhibit 3a.  
We will also add the information that $2 million of capital is invested in the company.4 

For each loss scenario generated via simulation, we can readily observe how much capital 
is taken, and which line(s) of business are most responsible for causing the loss.  The capital 
consumed by each line of business is simply the difference between its actual loss and its 
expected loss (or pure premium) within a given scenario.  In cases where the total loss 
exceeds the available capital, we simply reduce all lines proportionally.  In Exhibit 3a, the 
factor that accomplishes this reduction is labeled the “Riskiness Leverage Ratio” or L(x), 
following Kreps’ notation. 

By averaging together all of the simulated scenarios, we can produce an “expected” 
amount of capital that is consumed.  This could alternatively be described as the 
stockholder’s expected downside result.  It is reasonable to allocate our target profit loads 
proportionally to each line’s contribution to this amount. 

As stated previously, other risk measures can be used as variations within the RMK 
                                                           
4 It may be noted that the amount of capital in the company acts in a manner similar to the limit that the 
reinsurer provided in the stop-loss example.  Once this amount is exhausted, the stockholder is no longer 
responsible for additional loss payments. 
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Framework.  The stockholders may be interested, for example, in minimizing the variance of 
the company’s results; and setting an overall profit load as a percent of this variance.  The 
allocation scheme then simply changes the Riskiness Leverage Ratio, L(x), to be 
proportional to the difference between actual and expected results for each scenario.  
Exhibit 3b shows the results with this change.  The resulting allocation is equivalent to 
setting profit loads in proportion to the covariances of losses by line of business.5 

5. RESULTS AND DISCUSSION 

The RMK Framework is a very clear way of addressing an allocation problem.  In 
addition to its useful mathematical properties, the chief advantage is that it allows decision 
making to take place with the most significant loss scenarios given the closest consideration. 

This paper has deliberately been restricted to simplified examples, but the framework can 
easily be adapted to larger simulation models and to include risks other than nominal value 
losses.  It should also be clear that the RMK Framework does not itself depend on a 
particular correlation structure among the variables being simulated; it works with the 
simulated output regardless of the complexity of the model generating the simulations. 

All of the examples in this paper have assumed that a simulation model is used to 
generate the loss scenarios being reviewed.  This also does not need to be the case.  The 
same theory can be applied if a finite number of loss scenarios are selected by the business 
managers, with subjective weights assigned to each scenario. 

6. CONCLUSIONS 

The Ruhm/Mango/Kreps (RMK) Framework has been shown to be a very useful way of 
addressing a variety of insurance allocation problems.  This paper has not established any 
new mathematical theory, but has attempted to show that the RMK Framework is intuitive 
and transparent for use by actuarial and non-actuarial decision makers. 

                                                           
5 This is not the only situation in which RMK is equivalent to a covariance allocation.  For example, if the 
losses are modeled using a multivariate normal distribution, then any choice of risk-measure r(x) will equal 
the covariance allocation.  The full theory on necessary conditions for the two methods to produce 
equivalent results has not yet been worked out. 
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Abstract 
In classification ratemaking, the multiplicative and additive models derived by actuaries are based on 
two common methods; minimum bias and maximum likelihood. These models are already considered 
as established and standard, particularly in automobile and general liability insurance. This paper aims to 
identify the relationship between both methods by rewriting the equations of both minimum bias and 
maximum likelihood as a weighted equation. The weighted equation is in the form of a weighted 
difference between observed and fitted rates. The advantage of having the weighted equation is that the 
solution can be solved using regression model. Compared to the classical method introduced by Bailey 
and Simon (1960), the regression model provides an improved and simplified programming algorithm. 
In addition, the parameter estimates could also be rewritten as a weighted solution; for multiplicative 
model the solution can be written in the form of a weighted proportion whereas for additive model, the 
form is of a weighted difference. In this paper, the weighted equation will be applied on three types of 
classification ratemaking data; ship damage incidents data of McCullagh and Nelder (1989), data from 
Bailey and Simon (1960) on Canadian private automobile liability insurance and UK private car motor 
insurance data from Coutts (1984). 
 
Keywords: Classification ratemaking; Minimum bias; Maximum likelihood; Multiplicative; Additive. 

1. INTRODUCTION 

 In order to determine pure premium rates in casualty insurance, actuaries have to fulfil 
two requirements. First, they have to ensure that the insurer will receive premiums at a level 
adequate to cover losses and expenses. Next, they have to allocate premiums “fairly” 
between insureds, i.e., high risk insured should pay higher premium. For the first 
requirement, actuaries are required to adjust the overall level of premiums, taking into 
account short-term economic effects such as inflation, and other external factors such as 
government regulation, that can be dealt with minimum statistical analysis. However, for the 
second requirement, the relative premium levels need to be determined. At this stage, 
statistical modelling and actuarial judgement are important and actuaries can achieve this by 
using classification ratemaking. 

 The goal of classification ratemaking is to group homogeneous risks and charge each 
group a premium to commensurate with the expected average loss. Failure to achieve this 
goal may lead to adverse selection to insureds and economic losses to insurers. The risks may 
be categorized according to rating factors; for instance in auto insurance, driver’s gender, 
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claim experience, and location, or vehicle’s make, capacity and year, can be considered as 
rating factors. 

 Among the pioneer studies of classification ratemaking, Bailey and Simon (1960) 
compared the systematic bias of multiplicative and additive models. Following their work, a 
few studies focusing and debating on additive and multiplicative models were published. 
Bailey (1963) compared multiplicative and additive models by producing two statistical 
criteria, namely the minimum chi-squares and the average absolute difference. Freifelder 
(1986) predicted the pattern of over and under estimation of multiplicative and additive 
models if true models are misspecified. Jee (1989) compared the predictive accuracy of 
multiplicative and additive models, and Holler et al. (1999) compared the initial values 
sensitivity of multiplicative and additive models. 

 In addition, researchers of classification ratemaking also suggested various statistical 
procedures to estimate the model parameters. Bailey and Simon (1960) suggested the 
minimum chi-squares, Bailey (1963) used the zero bias, Jung (1968) produced a heuristic 
method for minimum modified chi-squares, Ajne (1975) suggested the method of moments, 
Chamberlain (1980) used the weighted least squares, Coutts (1984) produced the method of 
orthogonal weighted least squares with logit transformation, Harrington (1986) suggested the 
maximum likelihood method for models with functional form, and Brockmann and Wright 
(1992) used the generalized linear models with Poisson error structure for claim frequency 
and Gamma error structure for claim severity. With the development of computing packages 
in the recent years, various statistical packages were also suggested and used, including 
GLIM by Brown (1988) and SAS by Holler et al. (1999) and Mildenhall (1999). 

 Based on the literature review, most researchers studied classification ratemaking in 
terms of two main perspectives; the models of multiplicative vs. additive, and the methods 
of minimum bias vs. maximum likelihood; using a variety of criteria, namely biasness, 
interaction terms, goodness of fit, initial value sensitivity and prediction accuracy. This paper 
differs such that it tries to bridge both methods via a weighted equation. This author believes 
that the weighted equation makes understanding the similarities and differences between 
both methods an easier task. 

 The objective of this paper is to bridge minimum bias and maximum likelihood methods 
by rewriting their equations as a weighted equation. The weighted equation can be written in 
the form of a weighted difference between observed and fitted rates. The advantage of 
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having the weighted equation is that the solution can be solved using regression model. 
Compared to the classical method introduced by Bailey and Simon (1960), the regression 
model provides an improved and simplified programming algorithm. In addition, the 
parameter estimates could also be rewritten as a weighted solution; for multiplicative model 
it is in the form of a weighted proportion whereas for additive model, the form is of a 
weighted difference. In this paper, the weighted equation will be applied on three types of 
classification ratemaking data; ship damage incidents data of McCullagh and Nelder (1989), 
data from Bailey and Simon (1960) on Canadian private automobile liability insurance and 
UK private car motor insurance data from Coutts (1984). 

 Rewriting the equations of minimum bias and maximum likelihood as a weighted 
equation has its own advantages; the mathematical concept of the weighted equation is 
simpler, hence providing an easier understanding, particularly for insurance practitioners; the 
weighted equation allows the usage of regression model as an alternative programming 
algorithm to calculate the parameter estimates; the weighted equation provides a basic step 
to further understand the more complex distributions, primarily the distributions involving 
dispersion parameter; the weights of the parameter solution shows that each of multiplicative 
and additive models has similar solution; and finally, the weights of the parameter solution 
also shows that models with larger sample size and number of parameter have slower 
convergence. 

2. CLASSIFICATION RATEMAKING 

 In casualty insurance, the risk premium, i.e., the premium excluding expenses, is equal to 
the product of claim frequency and severity. Classification ratemaking is the statistical 
procedure that classifies risks in claim frequency and severity models into groups of 
homogeneous risks, categorized by the rating factors. In this study, classification ratemaking 
is used to estimate claim frequency rates, expressed in terms of frequency per unit of 
exposure. For instance, the exposure unit used for auto insurance is based on a car-year unit. 
 Consider a regression model with n  observations of claim frequency rates and p  
explanatory variables inclusive of intercept and dummy variables. Next, consider a data of 
frequency rates involving three rating factors, each respectively with three, two and three 
rating classes. Thus, this data has a total of 18=n  observed rates with 6=p  explanatory 
variables. In addition, let c , e  and r  denote the vectors for claim counts, exposures and 
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observed rates, respectively. Therefore, the observed rate for the ith rating class, 
18,...,2,1=i , is equivalent to 

i

i
i e
cr = . 

 Furthermore, let X  be the matrix of explanatory variables with the ith row equivalent to 
vector T

ix , and β  be the vector of regression parameters. If ijx , 18,...,2,1=i , 6,...,2,1=j , 
is the ijth element of matrix X , the value for ijx  is either one or zero. Table 1 summarize 
the regression model for the data. 

 
Table 1. Data summary 
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 Moreover, let f , a function of X  and β , denotes the vector for fitted rates. For a 
multiplicative model, the ith fitted rate is equivalent to 

)exp( βxTi=if , 

which can also be written as 

          )exp()( ijjjii xff β−= ,         (1) 

where )( jif −  is the ith multiplicative fitted rate without the jth effect. As for an additive 
model, the ith fitted rate is equal to 
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βxTi=if , 

which can also be written as 

            ijjjii xff β+= − )( ,                   (2) 

where )( jif −  is the ith additive fitted rate without the jth effect. Thus, the objective of 
classification ratemaking is to have the fitted rates, if , be as close as possible to the 
observed rates, ir , for all i. 

3. MINIMUM BIAS 

 Bailey and Simon (1960) were among the pioneer researchers that consider bias in 
classification ratemaking and introduced the minimum bias method. They proposed a 
famous list of four criteria for an acceptable set of classification rates: 

i. It should reproduce experience for each class and overall, i.e., be balanced for each 
class and overall. 

ii. It should reflect the relative credibility of the various classes. 

iii. It should provide minimum amount of departure from the raw data. 

iv. It should produce a rate for each class of risks which is close enough to the 
experience so that the differences could reasonably be caused by chance. 

3.1 Bailey Zero Bias 
 Bailey and Simon (1960) proposed a suitable test for Criterion (i) by calculating, 

           
∑
∑

i
ii

i
ii

re

fe
,         (3) 

for each j and total. A set of rates is balanced, i.e., zero bias, if equation (3) equals 1.00. 
Automatically, zero bias for each class implies zero bias overall. 

 From this test, Bailey (1963) derived a minimum bias model by setting the average 
difference between observed and fitted rates to be equal to zero. The zero bias equation for 
each j can be written in the form of a weighted difference between observed and fitted rates, 

              0)( =−∑
i

iii frw ,         (4) 
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where iw  is equal to iji xe . 

 Substituting (1) into (4), the zero bias equation for multiplicative model become 

∑∑ −=
i

ijijjjii
i

ijii xxfexre )exp()( β . 

Since ijx  is either one or zero, the solution for each j could be obtained and written in the 
form of a weighted proportion of observed over multiplicative fitted rates without the jth 
effect, 

                       ∑
−

=
i ji

i
ij f

r
v

)(

)exp(β ,         (5) 

where iv  is the normalized weight of i

i
i

z

z∑
 and iz  is ( )i i j ije f x− . 

 For additive model, the zero bias equation after substituting (2) into (4) is 

( )( ) ( )i i i j ij i j ij ij
i i

e r f x e x xβ−− =∑ ∑ . 

Again, since ijx  is either one or zero, the solution for each j could be obtained. However, for 
additive model, it is in term of a weighted difference between observed and additive fitted 
rates without the jth effect, 

             jβ ( )( )i i i j
i

v r f −= −∑ ,         (6) 

where iv  is i

i
i

z

z∑
 and iz  is i ije x .  

3.2 Minimum Chi-Squares  
 Bailey and Simon (1960) also suggested the 2χ  statistics as an appropriate test for 
Criterion (iv),  

2 2( )i
i i

i i

e
r f

f
χ = −∑ . 

The same test is also suitable for Criterion (ii) and (iii) as well. 
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 By minimizing the 2χ  statistics, another minimum bias model was derived. For each j, 
the minimum χ2 equation could be written in the form of a weighted difference between 
observed and fitted rates, 

          
2

( ) 0i i i
ij

w r f
χ
β

∂ = − =
∂ ∑ ,        (7) 

where iw  is 
2

( )i i i i

i j

e r f f

f β
+ ∂

∂
. 

 For multiplicative model, 

         iji
j

i xf
f

=
∂
∂
β

,         (8) 

whereas in additive model, 

           ij

j

i x
f

=
∂
∂
β

.          (9) 

 If multiplicative model is chosen, by substituting (1) and (8) into (7), the parameter 
solution is equivalent to 

           
( )

exp( ) i
j i

i i j

r
v
f

β
−

=∑ ,       (10) 

where iv  is i

i
i

z

z∑
 and iz  is ( )i i i ije r f x+ . 

 For additive model, the parameter solution after substituting (2) and (9) into (7) is 

           ( )( )j i i i j
i

v r fβ −= −∑ ,      (11) 

where iv  is i

i
i

z

z∑
 and iz  is 

2

( )i i i
ij

i

e r f
x

f

+ .  
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4. MAXIMUM LIKELIHOOD 

 Assume that the ith claim frequency count, i i ic e r= , comes from a distribution whose 
probability density function is ( ; )i ig c f . A maximum likelihood method maximizes the 
likelihood function, 

( ; )i i
i

L g c f= ∏ , 

or equivalently, the log likelihood function, 

( )log log ( ; )i i
i

L g c f= =∑ . 

Thus, the parameter solution can be obtained by setting 0
jβ

∂ =
∂

 for each j. 

4.1 Normal Distribution 
 If i i ic e r=  is assumed to follow Normal distribution with mean i ie f , ( ; )i ig c f  can be 
written as 

( )2

2

1 1
( ; ) exp

22
i i i i i ig c f e r e f

σσ π
 = − − 
 

. 

Hence, the likelihood equation for each j is equivalent to 

     
jβ

∂
∂

= ( ) 0i i i
i

w r f− =∑ ,       (12) 

where iw  is 2 i
i

j

f
e

β
∂
∂

. 

 Assuming multiplicative model, the solution after substituting (1) and (8) into (12) is 

                  exp( )jβ
( )

i
i

i i j

r
v

f −

 
=   

 
∑ ,       (13) 

where iv  is i

i
i

z

z∑
 and iz  is 2 2

( )i i j ije f x− . 

 For additive model, by substituting (2) and (9) into (12), the parameter solution is 
equivalent to 
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         jβ ( )( )i i i j
i

v r f −= −∑ ,       (14) 

where iv  is i

i
i

z

z∑
 and iz  is 2

i ije x . 

4.2 Poisson Distribution 
 The same weighted equation could also be used to show that Poisson multiplicative is 
actually equivalent to zero bias multiplicative, derived by Bailey (1963). If i i ic e r=  is assumed 
to have Poisson distribution with mean i ie f , the probability density function is 

exp( )( )
( ; )

( )!

i ie r
i i i i

i i
i i

e f e f
g c f

e r

−= . 

As a result, for each j, the likelihood equation is equal to 

     
jβ

∂
∂

= ( ) 0i i i
i

w r f− =∑ ,       (15) 

where iw  is i i

i j

e f

f β
∂
∂

. 

 Substituting (1) and (8) into (15) for multiplicative model, the parameter solution can be 
written as 

exp( )jβ
( )

i
i

i i j

r
v
f −

=∑ , 

where iv  is i

i
i

z

z∑
 and iz  is ( )i i j ije f x− . This solution is equivalent to zero bias multiplicative 

shown by (5). 

 If additive model is chosen, by substituting (2) and (9) into (15), the parameter solution 
is equal to 

           ( )( )j i i i j
i

v r fβ −= −∑ ,      (16) 

where iv  is i

i
i

z

z∑
 and iz  is i

ij
i

e
x

f
. 
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4.3 Binomial Distribution 
 Assuming i i ic e r=  comes from Binomial distribution with mean i ie f , ( ; )i ig c f  can be 
written as 

( ; ) (1 )i i ici e c
i i i i

i

e
g c f f f

c
− 

= − 
 

. 

For each j, the likelihood equation is equivalent to 

        
jβ

∂
∂

= ( ) 0i i i
i

w r f− =∑ ,       (17) 

where iw  is 
(1 )

i i

i i j

e f

f f β
∂

− ∂
. 

 Using multiplicative model, the solution after substituting (1) and (8) into (17) is 

        exp( )jβ
( )

i
i

i i j

r
v

f −

 
=   

 
∑ ,                  (18) 

where iv  is i

i
i

z

z∑
 and iz  is ( )

1
i i j

ij
i

e f
x

f
−

−
. 

 If additive model is chosen, by substituting (2) and (9) into (17), the solution can be 
written as 

          ( )( )j i i i j
i

v r fβ −= −∑ ,      (19) 

where iv  is i

i
i

z

z∑
 and iz  is 

(1 )
i

ij
i i

e
x

f f−
. 

4.4 Negative Binomial Distribution 
 The advantage of using the weighted equation is that it can be used as an introductory 
step to understand the fitting procedure of a distribution with dispersion parameter. If the 
dependent variable, iC , is a count with mean ( )i iE C µ= , a standard statistical procedure is 
to fit the data with Poisson distribution using multiplicative model. However, if 
overdispersion is detected in the data, i.e., ( ) ( )i iVar C E C> , the parameter estimates for 
standard Poisson are still consistent, but inefficient. As an alternative, the standard 
overdispersion model is the Negative Binomial distribution with multiplicative model. If iC  
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is distributed as Negative Binomial ( ; )i aµ , the probability density function is (Lawless, 
1987), 

1

1

1

( ) 1
( ; , )

! ( ) 1 1

i ac

i a i
i i

i i ia

c a
g c a

c a a

µµ
µ µ

   Γ +
=    Γ + +   

, 

and the mean and variance are 

( )i iE C µ= , 

( ) (1 )i i iVar C aµ µ= + , 

where a  is the dispersion parameter. Since 0a ≥  and 0iµ ≥  for all i, the distribution allows 
for overdispersion. 

 For our classification ratemaking example, i i ic e r=  and i i ie fµ = . Thus, the likelihood 
equation can also be written as 

       ( ) 0i i i
ij

w r f
β
∂ = − =

∂ ∑ ,       (20) 

where iw  is 
(1 )

i i

i i i j

e f

f ae f β
∂

+ ∂
. Notice that the weight for Poisson (15) is a special case of 

the weight for Negative Binomial (20), when the dispersion parameter, a , is equal to zero. 

 Assuming multiplicative model, by substituting (1) and (8) into (20), the parameter 
solution is 

        exp( )jβ
( )

i
i

i i j

r
v

f −

 
=   

 
∑ ,       (21) 

where iv  is i

i
i

z

z∑
 and iz  is ( )

1
i i j

ij
i i

e f
x

ae f
−

+
. 

 For additive model, the parameter solution after substituting (2) and (9) into (20) is equal 
to 

            ( )( )j i i i j
i

v r fβ −= −∑ ,      (22) 

where iv  is i

i
i

z

z∑
 and iz  is 

(1 )
i

ij
i i i

e
x

f ae f+
. 
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4.5 Generalized Poisson Distribution 

 Another alternative for overdispersion is to use the Generalized Poisson distribution. 
The advantage of using Generalized Poisson distribution is that it can be used for both 
overdispersion, i.e., ( ) ( )i iVar C E C> , as well as underdispersion, i.e., ( ) ( )i iVar C E C< . If 

iC  is assumed to follow Generalized Poisson distribution, ( ; , )i ig c aµ  can be written as 
(Wang and Famoye, 1997), 

1(1 ) (1 )
( ; , ) exp

1 ! 1

i
i

c c
i i i i

i i
i i i

ac ac
g c a

a c a

µ µµ
µ µ

−   + += −   + +   
, 

with mean and variance, 

( )i iE C µ= , 
2( ) (1 )i i iVar C aµ µ= + . 

Since 0a ≥  or 0a ≤ , the distribution allows for either overdispersion or underdispersion. 
Assuming i i ic e r=  and i i ie fµ = , the likelihood equation is 

          ( ) 0i i i
ij

w r f
β
∂ = − =

∂ ∑ ,       (23) 

where iw  is 
2(1 )

i i

i i i j

e f

f ae f β
∂

+ ∂
. Again, the weight for Poisson (15) is a special case of the 

weight for Generalized Poisson (23), when the dispersion parameter, a , is equal to zero. 

 Substituting (1) and (8) into (23) for multiplicative model, the parameter solution is 

         exp( )jβ
( )

i
i

i i j

r
v

f −

 
=   

 
∑ ,       (24) 

where iv  is i

i
i

z

z∑
 and iz  is ( )

2(1 )
i i j

ij
i i

e f
x

ae f
−

+
. 

 For additive model, by substituting (2) and (9) into (23), the parameter solution can be 
written as 

            ( )( )j i i i j
i

v r fβ −= −∑ ,      (25) 
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where iv  is i

i
i

z

z∑
 and iz  is 

2(1 )
i

ij
i i i

e
x

f ae f+
. 

5. OTHER MODELS 

5.1 Least Squares 
 The same weighted equation could also be extended to other error functions as well. 
Define the sum squares error as (Brown, 1988), 

2
2( )

( )i i i i
i i i

i ii

e r e f
S e r f

e

−= = −∑ ∑ . 

So, the least squares equation can be written as 

         
j

S

β
∂
∂

= ( ) 0i i i
i

w r f− =∑ ,       (26) 

where iw  is i
i

j

f
e

β
∂
∂

. 

 Substituting (1) and (8) into (26) for multiplicative model, the parameter solution is 

           
( )

exp( ) i
j i

i i j

r
v
f

β
−

=∑ ,                  (27) 

where iv  is i

i
i

z

z∑
 and iz  is 2

( )i i j ije f x− . 

 Extending this equation to least squares with additive model, it can be shown that least 
squares additive is equivalent to zero bias additive, derived by Bailey (1963). The parameter 
solution after substituting (2) and (9) into (26) is equivalent to 

( )( )j i i j
i

v r fβ −= −∑ , 

where i
i

i
i

z
v

z
=
∑

 and i i ijz e x= . This solution is equivalent to the zero bias additive shown 

by (6). 

 



Bridging Minimum Bias and Maximum Likelihood Methods through Weighted Equation 
 

380 Casualty Actuarial Society Forum, Spring 2005 

5.2 Minimum Modified Chi-Squares 
 If the function of error is a modified χ2 statistics which is defined as, 

2 2
mod ( )i

i i
i i

e
r f

r
χ = −∑ , 

the equation for minimum modified χ2 is equivalent to 

     
2
mod

j

χ
β

∂
∂

= ( ) 0i i i
i

w r f− =∑ ,       (28) 

where iw  is i i

i j

e f

r β
∂
∂

. 

 For multiplicative model, by substituting (1) and (8) into (28), the parameter solution can 
be written as 

         
( )

exp( ) i
j i

i i j

r
v
f

β
−

=∑ ,       (29) 

where iv  is i

i
i

z

z∑
 and iz  is 

2
( )i i j

i ij
i

e f
z x

r
−= . 

 Substituting (2) and (9) into (28) for additive model, the parameter solution is 

        ( )( )j i i j
i

v r fβ −= −∑ ,       (30) 

where iv  is i

i
i

z

z∑
 and iz  is i

ij
i

e
x

r
. 

 Table 2 summarizes the weighted equations and parameter solutions for all of the 
models discussed above. From the table, the following conclusions can be made: 

i. For additive models, the zero bias and least squares are equivalent. 

ii. For multiplicative models, the zero bias and Poisson are equal. 

iii. The weighted equation, which is in the form of a weighted difference between 
observed and fitted rates, show that all models are similar; each model is 
distinguished only by its weight. 

iv. The weights in the parameter solutions show that each of multiplicative and additive 
models is expected to produce similar parameter estimates. 
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6. MODEL PROGRAMMING 

6.1 Classical Method 
 The classical iterative method for finding parameter solutions was first introduced by 
Bailey and Simon (1960). This method solves the parameter individually for each j. In the 
first iteration, vector of initial values, (0)β , are needed to calculate the vector of next 
parameter estimates, (1)β . The process of iteration is then repeated until all solutions 
converge. 
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Table 2. Summary of weighted equations and parameter solutions 
 

Models 
iw  for 

weighted equation, 
( ) 0i i i

i

w r f− =∑  

iz   for multiplicative 
parameter solutions, 

exp( )jβ
( )

i
i
i ji

r
v
f −

=∑ , 

i
i

i
i

z
v

z
=
∑

 

iz  for additive 
parameter solutions, 

jβ ( )( )i i i j
i

v r f −= −∑ , 

i
i

i
i

z
v

z
=
∑

 

 
Zero bias 
 
                                           
Poisson 
 
 
 
Least Squares 
 
 
 
Minimum χ2                       
 
 
Normal                               
 
 
 
Binomial                             
 
 
 
Negative Binomial              
 
 
 
Generalized Poisson           
 
 
Minimum modified χ2        

 

 
i i ijw e x=  

 
i i

i
i j

e f
w

f β
∂

=
∂

 

 
i

i i
j

f
w e

β
∂

=
∂

 

 

2

( )i i i i
i

ji

e r f f
w

f β
+ ∂

=
∂

 

 
2 i

i i
j

f
w e

β
∂

=
∂

 

 

(1 )
i i

i
i i j

e f
w

f f β
∂

=
− ∂

 

 

(1 )
i i

i
i i i j

e f
w

f ae f β
∂

=
+ ∂

 

 

2(1 )
i i

i
ji i i

e f
w

f ae f β
∂

=
∂+

 

 
i i

i
i j

e f
w

r β
∂

=
∂

 

 

 
( )i i i j ijz e f x−=  

 
 

( )i i i j ijz e f x−=  
 

2
( )i i i j ijz e f x−=  

 
 
 

( )i i i i ijz e r f x= +  
 
 

2 2
( )i i i j ijz e f x−=  

 
( )

1
i i j

i ij
i

e f
z x

f
−=

−
 

 
( )

1
i i j

i ij
i i

e f
z x

ae f
−=

+
 

 
( )

2(1 )

i i j
i ij

i i

e f
z x

ae f

−=
+

 

 
2

( )i i j
i ij

i

e f
z x

r
−=  

 

 
i i ijz e x=  

 
i

i ij
i

e
z x

f
=  

 
i i ijz e x=  

 
 

2

( )i i i
i ij

i

e r f
z x

f

+
=  

 
 

2
i i ijz e x=  

 

(1 )
i

i ij
i i

e
z x

f f
=

−
 

 

(1 )
i

i ij
i i i

e
z x

f ae f
=

+
 

 

2(1 )
i

i ij
i i i

e
z x

f ae f
=

+
 

 
i

i ij
i

e
z x

r
=  
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 An example for the parameter solution of zero bias multiplicative, 

exp( )jβ
( )

i
i

i i j

r
v
f −

=∑ , where iv  is i

i
i

z

z∑
 and iz  is ( )i i j ije f x− , is discussed here. 

 Let ( )i jf −  denotes the the ith row of (-j)f , the vector of multiplicative fitted rates without 
the jth effect. For multiplicative model, exp( )=(-j) (-j) (-j)f X β , where (-j)X  denotes the matrix 
of explanatory variables without the jth column and (-j)β  the vector of regression parameters 
without the jth row. 

 Moreover, let jx  denotes the vector equivalent to the jth column of matrix X. Thus, ijx  
is equal to the ith row of vector jx . Further, let iz , the ith row of vector z , equal to the 
product of ie , )( jif −  and ijx . Therefore, iv , the ith row of vector v , is equivalent to the 
proportion of iz  over sum of iz  for all i. 

 For multiplicative models, the same programming can be used if iz  is written as 

( ) (1 ) ( ) (1 )b d g h k l
i i i i j i i i i iz e r f f r f ae f−= − + + ijx . 

For example, in zero bias multiplicative, 0,0,1,0,1,0 ====== khgdba , and 0=l . 
Similarly, iz  for additive model is of the form, 

l
ii

k
ii

h
i

g
i

d
i

b
ii faefrffrez )1()()1( ++−= ijx . 

For instance, in zero bias additive, 0,0,0,0,1,0 ====== khgdba , and 0=l .  

 Examples of S-PLUS programming for both multiplicative and additive models are 
shown in Appendix A. The same programming can be used since iz  can be written in a 
functional form of , , , , ,a b d g h k  and l . Note that for minimum modified χ2, both 
multiplicative and additive models contain the observed rate, ir , as the denominator in iz . 
Thus, to avoid a “division by zero”, it is suggested that a small constant is added to ir  in the 
programming. 

 

6.2 Regression Model 
 In regression model, the estimates for , 1, 2,...,j j pβ = ,  can be found by minimizing, 

2( ( ))i i i
i

w r f−∑ β , 

or equivalently, they are the solution of, 



Bridging Minimum Bias and Maximum Likelihood Methods through Weighted Equation 
 

384 Casualty Actuarial Society Forum, Spring 2005 

( )
( ( )) 0i
i i i

i j

f
w r f

β
∂− =
∂∑ ββ , 

for each j. This equation is similar to the weighted equation derived for classification rates 
discussed previously. Hence, the parameter solutions for classification ratemaking are 
allowed to be solved using a regression model. 

 By using Taylor series approximation, it can be shown that (Venables and Ripley, 1997), 
(1) (0)T (0) (0) -1 (0)T (0) (0)β = (Z W Z ) Z W (r - s ) , 

where, 

 Z(0) = ( )n p×  matrix whose  ijth element is equal to ( )i

j

f

β
∂
∂

(0)β=β

β   

 W(0) = ( )n n×  diagonal matrix of weight, evaluated at (0)β = β  

 s(0) = vector where the ith row is equal to (0) (0)

1

( )
p

i j ij
j

f zβ
=

−∑(0)β  

 In the first iteration, the vector of initial values, (0)β , are needed to calculate (1)β . The 
process of iteration is then repeated until the solution converges. Since the parameter 
estimates are represented by vector β , the regression model solves them simultaneously, 
thus providing a faster convergence compared to the classical approach. 

 Consider an additive model where the ijth element of matrix Z(0) is equal to 
( )i

ij
j

f
x

β
∂ =
∂

(0)β=β

β , which is free of (0)β . Since ijx  is the ijth element of matrix X and both 

matrices have the same dimension, (0)Z = X  and (0) (0) (0)s = f(β ) - Xβ = 0 . 

 For example, the weighted equation for least squares (26) is equivalent to 

( ) 0i
i i i

i j

f
e r f

β
∂− =
∂∑ . 

Here, the ith diagonal element of matrix W(0) is ie , which is also free of (0)β . Therefore, for 
additive model, the vector of parameter estimates for least squares is 

(0) T -1 Tβ = β = (X WX) X Wr , 
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which is equivalent to the normal equation in linear regression model, thus allowing the 
solution to be solved without any iteration. 

 However, if multiplicative model is assumed, the ijth element of matrix Z(0) is 
( )

( )i
i ij

j

f
f x

β
∂ =
∂

(0)

(0)

β=β

β β , or equivalently (0) (0)Z = F X , where F(0) is the diagonal matrix 

whose ith diagonal element is ( )if
(0)β . For this reason, vector s(0) can also be written as 

(0) (0) (0) (0)s = f(β ) - F Xβ . 

 For all models discussed previously, the same programming can be used if the ith 
diagonal element of weight matrix is written as, 

l
ii

k
ii

h
i

g
i

d
i

b
i faefrffre )1()()1( ++− . 

The simplest form is the weight for least squares whereby 
0,0,0,0,1,0 ====== khgdba  and 0=l . 

 Examples of S-PLUS programming for both multiplicative and additive models are 
shown in Appendix B. The same programming can be used since the weight can be written 
in a functional form of , , , , ,a b d g h k  and l . Note that for minimum modified χ2, the 
weight, iw , contain the observed rate, ir , as the denominator. Thus, to avoid a “division by 
zero”, it is suggested that a small constant is added to ir  in the programming. 

7. EXAMPLES 

 Consider three types of classification ratemaking data; ship damage incidents data of 
McCullagh and Nelder (1989), data from Bailey and Simon (1960) on Canadian private 
automobile liability insurance, and UK private car motor insurance data from Coutts (1984). 
These data are also available and can be accessed from the Internet in the following websites; 
http://sunsite.univie.ac.at/statlib/datasets/ships for McCullagh and Nelder (1989) data, 
http://www.casact.org/library/astin/vol1no4/192.pdf for the data of Bailey and Simon 
(1960), and http://www.actuaries.org.uk/files/pdf/library/JIA-111/0087-0148.pdf for 
Coutts (1984) data. 

 For ship damage incidents data, the number of damage incidents and exposure for each 
class are available. The risk of damage was associated with three rating factors; ship type, 
year of construction and period of operation, involving a total of 40 classes, including 6 
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classes with zero exposure. For Canadian private automobile liability insurance data, the 
number of claims incurred and exposure for each class are available. Two rating factors are 
considered; class and merit ratings, involving a total of 20 classes. Finally, for UK private car 
motor insurance data, the incurred claim count and exposure for each class are available. 
Four rating factors are considered; coverage, vehicle age, vehicle group and policyholder age, 
involving a total of 120 classes.  

 Bailey and Simon (1960) also suggested the average absolute difference as a suitable test 
for Criterion (iii), 

i i i
i

i i
i

e r f

e r

−∑
∑

. 

Therefore, the χ2 statistics, a test for Criterion (iv), and the average absolute difference, a test 
for Criterion (iii), will be calculated for all models. Table 3, Table 4 and Table 5 show the 
parameter estimates, χ2 statistics and average absolute difference for the models discussed 
above. 
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Table 3. Parameters, χ2 and absolute difference for ship data 
 

Parameters 
& bias measures 

Multiplicative models 
 

 Zero bias 
/ Poisson 

Least 
squares 

Minimum 
χ2 

Normal Binomial Minimum 
modified χ2 

 
Intercept 
 
 
Ship type B 
Ship type C 
Ship type D 
Ship type E 
 
 
Const. yr 65-69 
Const. yr 70-74 
Const. yr 75-79 
 
 
Operation yr 75-79 
 
χ2 
absolute difference 

 

 
)exp( 1β

 
)exp( 2β
)exp( 3β
)exp( 4β
)exp( 5β

 
)exp( 6β
)exp( 7β
)exp( 8β

 
)exp( 9β

 

 
0.002 

 
 

0.581 
0.503 
0.927 
1.385 

 
 

2.008 
2.267 
1.574 

 
 

1.469 
 

42.275 
0.187 

 
0.002 

 
 

0.563 
0.436 
1.087 
1.384 

 
 

2.071 
2.157 
1.368 

 
 

1.437 
 

45.211 
0.194 

 
0.002 

 
 

0.568 
0.781 
1.113 
1.575 

 
 

2.040 
2.242 
1.584 

 
 

1.443 
 

36.393 
0.209 

 

 
0.002 

 
 

0.588 
0.317 
0.926 
1.123 

 
 

2.038 
2.395 
1.767 

 
 

1.447 
 

59.567 
0.165 

 
0.002 

 
 

0.581 
0.503 
0.927 
1.385 

 
 

2.008 
2.267 
1.573 

 
 

1.469 
 

42.277 
0.187 

 
0.002 

 
 

0.593 
0.231 
0.652 
1.113 

 
 

1.938 
2.242 
1.576 

 
 

1.544 
 

85.18 
0.169 

Parameters (10-3) 
& bias measures 

Additive models 
 

 Zero bias/ 
Least squares 

Poisson Minimum 
χ2 

Normal Binomial Minimum 
Modified χ2

 
Intercept 
 
 
Ship type B 
Ship type C 
Ship type D 
Ship type E 
 
 
Const.  yr 65-69 
Const. yr 70-74 
Const. yr 75-79 
 
 
Operation yr 75-79 
 
χ2 
absolute difference 

 

 
1β  
 
2β  

3β  

4β  

5β  
 
6β  

7β  

8β  
 
9β  

 
2.665 

 
 

-1.821 
-2.149 
-0.376 
1.756 

 
 

1.094 
1.536 
0.453 

 
 

0.837 
 

41.063 
0.168 

 

 
2.430 

 
 

-1.565 
-1.730 
-0.651 
2.019 

 
 

1.055 
1.604 
0.714 

 
 

0.791 
 
40.042 
0.160 

 
2.477 

 
 

-1.619 
-1.026 
0.433 
2.932 

 
 

1.097 
1.661 
0.747 

 
 

0.778 
 

35.591 
0.178 

 
0.962 

 
 

-0.104 
-1.081 
0.868 
2.650 

 
 

1.108 
1.657 
0.968 

 
 

0.770 
 
50.044 
0.179 

 
2.431 

 
 

-1.566 
-1.731 
-0.650 
2.017 

 
 

1.055 
1.603 
0.713 

 
 

0.792 
 

40.040 
0.160 

 
2.472 

 
 

-1.596 
-2.793 
-1.682 
0.849 

 
 

1.003 
1.323 
0.665 

 
 

0.846 
 

71.436 
0.154 
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Table 4. Parameters, χ2 and absolute difference for Canadian data 
 

Parameters 
& bias measures 

Multiplicative models 
 

 Zero bias 
/ Poisson 

Least 
squares 

Minimum 
χ2 

Normal Binomial Minimum 
modified χ2 

 
Intercept 
 
 
Class 2 
Class 3 
Class 4 
Class 5 
 
 
Merit rating X 
Merit rating Y 
Merit rating B 
 
χ2 
absolute difference 

 

 
)exp( 1β

 
)exp( 2β
)exp( 3β
)exp( 4β
)exp( 5β

 
)exp( 6β
)exp( 7β
)exp( 8β

 

 
0.080 

 
 

1.350 
1.599 
1.692 
1.241 

 
 

1.313 
1.427 
1.637 

 
577.826 
0.028 

 
0.081 

 
 

1.330 
1.586 
1.660 
1.223 

 
 

1.307 
1.405 
1.611 

 
625.268 
0.032 

 

 
0.080 

 
 

1.351 
1.598 
1.697 
1.242 

 
 

1.312 
1.428 
1.640 

 
577.037 
0.028 

 

 
0.079 

 
 

1.392 
1.628 
1.742 
1.286 

 
 

1.334 
1.483 
1.705 

 
754.403 
0.020 

 
0.080 

 
 

1.347 
1.597 
1.686 
1.238 

 
 

1.312 
1.423 
1.632 

 
580.754 
0.028 

 
0.080 

 
 

1.347 
1.599 
1.682 
1.238 

 
 

1.314 
1.423 
1.633 

 
583.899 
0.028 

Parameters (10-2) 
& bias measures 

Additive models 
 

 Zero bias/ 
Least squares 

Poisson Minimum 
χ2 

Normal Binomial Minimum 
Modified χ2

 
Intercept 
 
 
Class 2 
Class 3 
Class 4 
Class 5 
 
 
Merit rating X 
Merit rating Y 
Merit rating B 
 
χ2 
absolute difference 

 

 
1β  
 
2β  

3β  

4β  

5β  
 
6β  

7β  

8β  

 
7.878 

 
 

3.080 
5.296 
6.489 
2.100 

 
 

2.793 
3.827 
5.884 

 
97.829 
0.008 

 

 
7.877 

 
 

3.126 
5.242 
6.529 
2.167 

 
 

2.757 
3.858 
5.878 

 
95.926 
0.007 

 
7.876 

 
 

3.129 
5.248 
6.531 
2.174 

 
 

2.760 
3.861 
5.881 

 
95.904 
0.007 

 

 
7.875 

 
 

3.207 
5.081 
6.637 
2.323 

 
 

2.697 
3.938 
5.896 

 
108.302 
0.005 

 
7.877 

 
 

3.120 
5.252 
6.521 
2.158 

 
 

2.762 
3.853 
5.879 

 
95.970 
0.007 

 

 
7.878 

 
 

3.121 
5.232 
6.523 
2.152 

 
 

2.751 
3.850 
5.870 

 
96.100 
0.007 
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Table 5. Parameters, χ2 and absolute difference for UK data 
 

Parameters 
& bias measures 

Multiplicative models 
 

 Zero bias 
/ Poisson 

Least 
squares 

Minimum 
χ2 

Normal Binomial Minimum 
modified χ2 

 
Intercept 
 
Coverage N.Comp 
 
 
Veh. age 4-7 
Veh. age 8+ 
 
 
Veh. group B 
Veh. group C 
Veh. group D 
 
 
P/H age 21-24 
P/H age 25-29 
P/H age 30-34 
P/H age 35+ 
 
χ2 
absolute difference 

 

 
)exp( 1β

 
)exp( 2β

 
)exp( 3β
)exp( 4β

 
)exp( 5β
)exp( 6β
)exp( 7β

 
)exp( 8β
)exp( 9β
)exp( 10β
)exp( 11β

 

 
0.243 

 
0.756 

 
 

0.804 
0.643 

 
 

1.139 
1.238 
1.605 

 
 

0.846 
0.639 
0.574 
0.514 

 
107.049 
0.063 

 
0.241 

 
0.748 

 
 

0.817 
0.649 

 
 

1.123 
1.218 
1.574 

 
 

0.838 
0.647 
0.591 
0.524 

 
109.491 
0.065 

 
0.249 

 
0.759 

 
 

0.803 
0.642 

 
 

1.133 
1.231 
1.600 

 
 

0.841 
0.631 
0.567 
0.505 

 
106.487 
0.063 

 
0.242 

 
0.823 

 
 

0.827 
0.618 

 
 

1.133 
1.268 
1.614 

 
 

0.813 
0.622 
0.563 
0.509 

 
122.232 
0.063 

 
0.242 

 
0.755 

 
 

0.806 
0.645 

 
 

1.137 
1.235 
1.600 

 
 

0.843 
0.641 
0.578 
0.516 

 
107.290 
0.063 

 

 
0.227 

 
0.750 

 
 

0.806 
0.647 

 
 

1.151 
1.251 
1.615 

 
 

0.864 
0.667 
0.596 
0.541 

 
112.873 
0.064 
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Table 5, continued. Parameters, χ2 and absolute difference for UK data 
 

Parameters (10-2) 
& bias measures 

Additive models 
 

 Zero bias/ 
Least squares 

Poisson Minimum 
χ2 

Normal Binomial Minimum 
Modified χ2

 
Intercept 
 
Coverage N.Comp 
 
 
Veh. age 4-7 
Veh. age 8+ 
 
 
Veh. group B 
Veh. group C 
Veh. group D 
 
 
P/H age 21-24 
P/H age 25-29 
P/H age 30-34 
P/H age 35+ 
 
χ2 
absolute difference 

 

 
1β  
 
2β  
 
3β  

4β  
 
5β  

6β  

7β  
 
8β  

9β  

10β  

11β  

 
21.864 

 
-2.878 

 
 

-3.253 
-5.443 

 
1.208 
2.162 
6.241 

 
 
 

-1.883 
-5.767 
-7.096 
-8.437 

 
133.859 
0.072 

 
21.387 

 
-2.500 

 
 

-3.397 
-5.463 

 
1.269 
2.168 
6.193 

 
 
 

-1.736 
-5.528 
-6.937 
-7.968 

 
127.935 
0.072 

 

 
21.732 

 
-2.445 

 
 

-3.393 
-5.504 

 
1.271 
2.167 
6.273 

 
 
 

-1.864 
-5.789 
-7.206 
-8.282 

 
127.252 
0.072 

 

 
14.444 

 
-1.451 

 
 

-2.773 
-5.608 

 
1.144 
2.518 
6.557 

 
 
 

4.035 
0.933 
-0.396 
-1.398 

 
234.493 
0.077 

 

 
21.458 

 
-2.538 

 
 

-3.380 
-5.457 

 
1.261 
2.165 
6.204 

 
 
 

-1.762 
-5.567 
-6.967 
-8.035 

 
127.902 
0.072 

 
20.643 

 
-2.603 

 
 

-3.391 
-5.379 

 
1.266 
2.175 
6.020 

 
 
 

-1.413 
-4.962 
-6.385 
-7.302 

 
133.542 
0.074 

 

 Several conclusions can be made regarding the programming and results of parameter 
estimates from the fitted models: 

i. The classical approach and regression model give equivalent parameter estimates. 

ii. The regression model has faster convergence. 

iii. The additive models are more sensitive to initial values. 

iv. Each of multiplicative and additive models produced similar parameter estimates. 

8. CONCLUSIONS 

 This paper bridged the minimum bias and maximum likelihood methods for both 
additive and multiplicative models via a weighted equation. The equations for both 
minimum bias and maximum likelihood can be rewritten as a weighted equation, in the form 
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of a weighted difference between observed and fitted rates. The parameter estimates could 
also be rewritten as a weighted solution; for multiplicative model it is in the form of a 
weighted proportion whereas for additive model, the form is of a weighted difference.  

 Applying the weighted equation for maximum likelihood and minimum bias equations 
has several advantages; the weighted equation is mathematically and conceptually simpler, 
the weighted equation also allows the usage of regression model, and finally, the weighted 
equation provides an initial understanding of the fitting procedure for distribution with 
overdispersion parameter. In addition, the weights of the parameter solutions for both 
multiplicative and additive models show that they have similar estimates. 
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APPENDIX A 
 
S-Plus classical programming for multiplicative model 
 
Classic.multi <- function(data,b,d,g,h,k,iter=200) 
{ 
 X <- as.matrix(data[,-(1:2)]) 
 count <- as.vector(data[,1]) 
 exposure <- as.vector(data[,2]) 
 rate <- count/exposure 
 parameter <- dim(X)[2] 
 new.beta <- rep(c(0.5), dim(X)[2]) 
 for (i in 1:iter) 
 { 
  for (j in 1:parameter) 
  { 
   beta <- new.beta 
   fitted <- as.vector(exp(X%*%log(beta))) 
   fitted.noj <- as.vector(exp(X[,-j]%*%log(beta[-j]))) 
   z <- as.vector(exposure^b*(rate+0.5/exposure)^d*fitted.noj^g* 
    (1-fitted)^h*(rate+fitted)^k*X[,j]) 
   v <- as.vector(z/sum(z)) 
   new.beta[j] <- as.vector(sum(v*(rate/fitted.noj))) 
  } 
  if (all(abs(new.beta-beta)<0.0000001)) 
   break 
 } 
 fitted <- as.vector(exp(X%*%log(beta))) 
 chi.square <- sum((exposure*(rate-fitted)^2)/fitted) 
 abs.difference <- sum(exposure*abs(rate-fitted))/sum(exposure*rate) 



Bridging Minimum Bias and Maximum Likelihood Methods through Weighted Equation 
 

392 Casualty Actuarial Society Forum, Spring 2005 

 list( beta=round(beta,4), chi.square=round(chi.square,3),  
   absolute.difference=round(abs.difference,3)) 
} 
 
 
S-Plus classical programming for additive model 
 
Classic.add <- function(data,b,d,g,h,k,iter=300) 
{ 
 X <- as.matrix(data[,-(1:2)]) 
 count <- as.vector(data[,1]) 
 exposure <- as.vector(data[,2]) 
 rate <- count/exposure 
 parameter <- dim(X)[2] 
 new.beta <- rep(c(0.000001), dim(X)[2]) 
 for (i in 1:iter) 
 { 
  for (j in 1:parameter) 
  { 
   beta <- new.beta 
   fitted <- as.vector(X%*%beta) 
   fitted.noj <- as.vector(X[,-j]%*%beta[-j]) 
   z <- as.vector(exposure^b*(rate+0.5/exposure)^d*fitted^g* 
    (fitted*(1-fitted))^h*(rate+fitted)^k*X[,j]) 
   v <- as.vector(z/sum(z)) 
   new.beta[j] <- as.vector(sum(v*(rate-fitted.noj))) 
  } 
  if (all(abs(new.beta-beta)<0.0000001)) break 
 } 
 fitted <- as.vector(X%*%beta) 
 chi.square <- sum((exposure*(rate-fitted)^2)/fitted) 
 abs.difference <- sum(exposure*abs(rate-fitted))/sum(exposure*rate) 
 list( beta=round(beta,6), chi.square=round(chi.square,3),  
   absolute.difference=round(abs.difference,3)) 
} 
 
 
APPENDIX B 
 
S-Plus regression programming for multiplicative model 
 
Regression.multi <- function(data,b,d,g,h,k,iter=20) 
{ 
 X <- as.matrix(data[, -(1:2)]) 
 count <- as.vector(data[,1]) 
 exposure <- as.vector(data[,2]) 
 rate <- count/exposure 
 new.beta <- rep(c(1),dim(X)[2]) 
 for (i in 1:iter) 
 { 
  beta <- new.beta 
  fitted <- as.vector(exp(X%*%beta)) 
  Z <- diag(fitted)%*%X 
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  W <-  diag(exposure^b*(rate+0.5/exposure)^d*fitted^g*(1-fitted)^h* 
    (rate+fitted)^k) 
  r.s <- rate-fitted+as.vector(Z%*%beta) 
  new.beta <- as.vector(solve(t(Z)%*%W%*%Z)%*%t(Z)%*%W%*%r.s) 
  if (all(abs(new.beta-beta)<0.0000001)) 
   break 
 } 
 fitted <- as.vector(exp(X%*%beta)) 
 chi.square <- sum((exposure*(rate-fitted)^2)/fitted) 
 abs.difference <- sum(exposure*abs(rate-fitted))/sum(exposure*rate) 
 list( beta=round(exp(beta),4), chi.square=round(chi.square,3),  
   absolute.difference=round(abs.difference,3)) 
} 
 
 
S-Plus regression programming for additive model 
 
Regression.add <- function(data,b,d,g,h,k,iter=20) 
{ 
 X <- as.matrix(data[, -(1:2)]) 
 count <- as.vector(data[,1]) 
 exposure <- as.vector(data[,2]) 
 rate <- count/exposure 
 new.beta <- rep(c(0.000001),dim(X)[2]) 
 for (i in 1:iter) 
 { 
  beta <- new.beta 
  fitted <- as.vector(X%*%beta) 
  W <- diag(exposure^b*(rate+0.5/exposure)^d*fitted^g*(fitted*(1-fitted))^h* 
     (rate+fitted)^k) 
  r.s <- rate-fitted+as.vector(X%*%beta) 
  new.beta <- as.vector(solve(t(X)%*%W%*%X)%*%t(X)%*%W%*%r.s) 
  if (all(abs(new.beta-beta)<0.0000001)) 
   break 
 } 
 fitted <- as.vector(X%*%beta) 
 chi.square <- sum((exposure*(rate-fitted)^2)/fitted) 
 abs.difference <- sum(exposure*abs(rate-fitted))/sum(exposure*rate) 
 list( beta=round(exp(beta),6), chi.square=round(chi.square,3),  
   absolute.difference=round(abs.difference,3)) 
} 
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