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Abstract 
In classification ratemaking, the multiplicative and additive models derived by actuaries are based on 
two common methods; minimum bias and maximum likelihood. These models are already considered 
as established and standard, particularly in automobile and general liability insurance. This paper aims to 
identify the relationship between both methods by rewriting the equations of both minimum bias and 
maximum likelihood as a weighted equation. The weighted equation is in the form of a weighted 
difference between observed and fitted rates. The advantage of having the weighted equation is that the 
solution can be solved using regression model. Compared to the classical method introduced by Bailey 
and Simon (1960), the regression model provides an improved and simplified programming algorithm. 
In addition, the parameter estimates could also be rewritten as a weighted solution; for multiplicative 
model the solution can be written in the form of a weighted proportion whereas for additive model, the 
form is of a weighted difference. In this paper, the weighted equation will be applied on three types of 
classification ratemaking data; ship damage incidents data of McCullagh and Nelder (1989), data from 
Bailey and Simon (1960) on Canadian private automobile liability insurance and UK private car motor 
insurance data from Coutts (1984). 
 
Keywords: Classification ratemaking; Minimum bias; Maximum likelihood; Multiplicative; Additive. 

1. INTRODUCTION 

 In order to determine pure premium rates in casualty insurance, actuaries have to fulfil 
two requirements. First, they have to ensure that the insurer will receive premiums at a level 
adequate to cover losses and expenses. Next, they have to allocate premiums “fairly” 
between insureds, i.e., high risk insured should pay higher premium. For the first 
requirement, actuaries are required to adjust the overall level of premiums, taking into 
account short-term economic effects such as inflation, and other external factors such as 
government regulation, that can be dealt with minimum statistical analysis. However, for the 
second requirement, the relative premium levels need to be determined. At this stage, 
statistical modelling and actuarial judgement are important and actuaries can achieve this by 
using classification ratemaking. 

 The goal of classification ratemaking is to group homogeneous risks and charge each 
group a premium to commensurate with the expected average loss. Failure to achieve this 
goal may lead to adverse selection to insureds and economic losses to insurers. The risks may 
be categorized according to rating factors; for instance in auto insurance, driver’s gender, 
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claim experience, and location, or vehicle’s make, capacity and year, can be considered as 
rating factors. 

 Among the pioneer studies of classification ratemaking, Bailey and Simon (1960) 
compared the systematic bias of multiplicative and additive models. Following their work, a 
few studies focusing and debating on additive and multiplicative models were published. 
Bailey (1963) compared multiplicative and additive models by producing two statistical 
criteria, namely the minimum chi-squares and the average absolute difference. Freifelder 
(1986) predicted the pattern of over and under estimation of multiplicative and additive 
models if true models are misspecified. Jee (1989) compared the predictive accuracy of 
multiplicative and additive models, and Holler et al. (1999) compared the initial values 
sensitivity of multiplicative and additive models. 

 In addition, researchers of classification ratemaking also suggested various statistical 
procedures to estimate the model parameters. Bailey and Simon (1960) suggested the 
minimum chi-squares, Bailey (1963) used the zero bias, Jung (1968) produced a heuristic 
method for minimum modified chi-squares, Ajne (1975) suggested the method of moments, 
Chamberlain (1980) used the weighted least squares, Coutts (1984) produced the method of 
orthogonal weighted least squares with logit transformation, Harrington (1986) suggested the 
maximum likelihood method for models with functional form, and Brockmann and Wright 
(1992) used the generalized linear models with Poisson error structure for claim frequency 
and Gamma error structure for claim severity. With the development of computing packages 
in the recent years, various statistical packages were also suggested and used, including 
GLIM by Brown (1988) and SAS by Holler et al. (1999) and Mildenhall (1999). 

 Based on the literature review, most researchers studied classification ratemaking in 
terms of two main perspectives; the models of multiplicative vs. additive, and the methods 
of minimum bias vs. maximum likelihood; using a variety of criteria, namely biasness, 
interaction terms, goodness of fit, initial value sensitivity and prediction accuracy. This paper 
differs such that it tries to bridge both methods via a weighted equation. This author believes 
that the weighted equation makes understanding the similarities and differences between 
both methods an easier task. 

 The objective of this paper is to bridge minimum bias and maximum likelihood methods 
by rewriting their equations as a weighted equation. The weighted equation can be written in 
the form of a weighted difference between observed and fitted rates. The advantage of 
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having the weighted equation is that the solution can be solved using regression model. 
Compared to the classical method introduced by Bailey and Simon (1960), the regression 
model provides an improved and simplified programming algorithm. In addition, the 
parameter estimates could also be rewritten as a weighted solution; for multiplicative model 
it is in the form of a weighted proportion whereas for additive model, the form is of a 
weighted difference. In this paper, the weighted equation will be applied on three types of 
classification ratemaking data; ship damage incidents data of McCullagh and Nelder (1989), 
data from Bailey and Simon (1960) on Canadian private automobile liability insurance and 
UK private car motor insurance data from Coutts (1984). 

 Rewriting the equations of minimum bias and maximum likelihood as a weighted 
equation has its own advantages; the mathematical concept of the weighted equation is 
simpler, hence providing an easier understanding, particularly for insurance practitioners; the 
weighted equation allows the usage of regression model as an alternative programming 
algorithm to calculate the parameter estimates; the weighted equation provides a basic step 
to further understand the more complex distributions, primarily the distributions involving 
dispersion parameter; the weights of the parameter solution shows that each of multiplicative 
and additive models has similar solution; and finally, the weights of the parameter solution 
also shows that models with larger sample size and number of parameter have slower 
convergence. 

2. CLASSIFICATION RATEMAKING 

 In casualty insurance, the risk premium, i.e., the premium excluding expenses, is equal to 
the product of claim frequency and severity. Classification ratemaking is the statistical 
procedure that classifies risks in claim frequency and severity models into groups of 
homogeneous risks, categorized by the rating factors. In this study, classification ratemaking 
is used to estimate claim frequency rates, expressed in terms of frequency per unit of 
exposure. For instance, the exposure unit used for auto insurance is based on a car-year unit. 
 Consider a regression model with n  observations of claim frequency rates and p  
explanatory variables inclusive of intercept and dummy variables. Next, consider a data of 
frequency rates involving three rating factors, each respectively with three, two and three 
rating classes. Thus, this data has a total of 18=n  observed rates with 6=p  explanatory 
variables. In addition, let c , e  and r  denote the vectors for claim counts, exposures and 
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observed rates, respectively. Therefore, the observed rate for the ith rating class, 
18,...,2,1=i , is equivalent to 

i

i
i e
cr = . 

 Furthermore, let X  be the matrix of explanatory variables with the ith row equivalent to 
vector T

ix , and β  be the vector of regression parameters. If ijx , 18,...,2,1=i , 6,...,2,1=j , 
is the ijth element of matrix X , the value for ijx  is either one or zero. Table 1 summarize 
the regression model for the data. 

 
Table 1. Data summary 

 
i ci ei  

i

i
i e
cr = xi1  xi2  xi3  xi4  xi5  xi6  

 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
 

 
c1 
c2  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

c18  

 
e1  
e2  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

e18  

 
r1  
r2  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

r18 

 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
 

 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
 

 
0 
0 
0 
1 
1 
1 
0 
0 
0 
1 
1 
1 
0 
0 
0 
1 
1 
1 
 

 
0 
1 
0 
0 
1 
0 
0 
1 
0 
0 
1 
0 
0 
1 
0 
0 
1 
0 
 

 
0 
0 
1 
0 
0 
1 
0 
0 
1 
0 
0 
1 
0 
0 
1 
0 
0 
1 

 

 Moreover, let f , a function of X  and β , denotes the vector for fitted rates. For a 
multiplicative model, the ith fitted rate is equivalent to 

)exp( βxTi=if , 

which can also be written as 

          )exp()( ijjjii xff β−= ,         (1) 

where )( jif −  is the ith multiplicative fitted rate without the jth effect. As for an additive 
model, the ith fitted rate is equal to 
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βxTi=if , 

which can also be written as 

            ijjjii xff β+= − )( ,                   (2) 

where )( jif −  is the ith additive fitted rate without the jth effect. Thus, the objective of 
classification ratemaking is to have the fitted rates, if , be as close as possible to the 
observed rates, ir , for all i. 

3. MINIMUM BIAS 

 Bailey and Simon (1960) were among the pioneer researchers that consider bias in 
classification ratemaking and introduced the minimum bias method. They proposed a 
famous list of four criteria for an acceptable set of classification rates: 

i. It should reproduce experience for each class and overall, i.e., be balanced for each 
class and overall. 

ii. It should reflect the relative credibility of the various classes. 

iii. It should provide minimum amount of departure from the raw data. 

iv. It should produce a rate for each class of risks which is close enough to the 
experience so that the differences could reasonably be caused by chance. 

3.1 Bailey Zero Bias 
 Bailey and Simon (1960) proposed a suitable test for Criterion (i) by calculating, 

           
∑
∑

i
ii

i
ii

re

fe
,         (3) 

for each j and total. A set of rates is balanced, i.e., zero bias, if equation (3) equals 1.00. 
Automatically, zero bias for each class implies zero bias overall. 

 From this test, Bailey (1963) derived a minimum bias model by setting the average 
difference between observed and fitted rates to be equal to zero. The zero bias equation for 
each j can be written in the form of a weighted difference between observed and fitted rates, 

              0)( =−∑
i

iii frw ,         (4) 
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where iw  is equal to iji xe . 

 Substituting (1) into (4), the zero bias equation for multiplicative model become 

∑∑ −=
i

ijijjjii
i

ijii xxfexre )exp()( β . 

Since ijx  is either one or zero, the solution for each j could be obtained and written in the 
form of a weighted proportion of observed over multiplicative fitted rates without the jth 
effect, 

                       ∑
−

=
i ji

i
ij f

r
v

)(

)exp(β ,         (5) 

where iv  is the normalized weight of i

i
i

z

z∑
 and iz  is ( )i i j ije f x− . 

 For additive model, the zero bias equation after substituting (2) into (4) is 

( )( ) ( )i i i j ij i j ij ij
i i

e r f x e x xβ−− =∑ ∑ . 

Again, since ijx  is either one or zero, the solution for each j could be obtained. However, for 
additive model, it is in term of a weighted difference between observed and additive fitted 
rates without the jth effect, 

             jβ ( )( )i i i j
i

v r f −= −∑ ,         (6) 

where iv  is i

i
i

z

z∑
 and iz  is i ije x .  

3.2 Minimum Chi-Squares  
 Bailey and Simon (1960) also suggested the 2χ  statistics as an appropriate test for 
Criterion (iv),  

2 2( )i
i i

i i

e
r f

f
χ = −∑ . 

The same test is also suitable for Criterion (ii) and (iii) as well. 
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 By minimizing the 2χ  statistics, another minimum bias model was derived. For each j, 
the minimum χ2 equation could be written in the form of a weighted difference between 
observed and fitted rates, 

          
2

( ) 0i i i
ij

w r f
χ
β

∂ = − =
∂ ∑ ,        (7) 

where iw  is 
2

( )i i i i

i j

e r f f

f β
+ ∂

∂
. 

 For multiplicative model, 

         iji
j

i xf
f

=
∂
∂
β

,         (8) 

whereas in additive model, 

           ij

j

i x
f

=
∂
∂
β

.          (9) 

 If multiplicative model is chosen, by substituting (1) and (8) into (7), the parameter 
solution is equivalent to 

           
( )

exp( ) i
j i

i i j

r
v
f

β
−

=∑ ,       (10) 

where iv  is i

i
i

z

z∑
 and iz  is ( )i i i ije r f x+ . 

 For additive model, the parameter solution after substituting (2) and (9) into (7) is 

           ( )( )j i i i j
i

v r fβ −= −∑ ,      (11) 

where iv  is i

i
i

z

z∑
 and iz  is 

2

( )i i i
ij

i

e r f
x

f

+ .  
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4. MAXIMUM LIKELIHOOD 

 Assume that the ith claim frequency count, i i ic e r= , comes from a distribution whose 
probability density function is ( ; )i ig c f . A maximum likelihood method maximizes the 
likelihood function, 

( ; )i i
i

L g c f= ∏ , 

or equivalently, the log likelihood function, 

( )log log ( ; )i i
i

L g c f= =∑ . 

Thus, the parameter solution can be obtained by setting 0
jβ

∂ =
∂

 for each j. 

4.1 Normal Distribution 
 If i i ic e r=  is assumed to follow Normal distribution with mean i ie f , ( ; )i ig c f  can be 
written as 

( )2

2

1 1
( ; ) exp

22
i i i i i ig c f e r e f

σσ π
 = − − 
 

. 

Hence, the likelihood equation for each j is equivalent to 

     
jβ

∂
∂

= ( ) 0i i i
i

w r f− =∑ ,       (12) 

where iw  is 2 i
i

j

f
e

β
∂
∂

. 

 Assuming multiplicative model, the solution after substituting (1) and (8) into (12) is 

                  exp( )jβ
( )

i
i

i i j

r
v

f −

 
=   

 
∑ ,       (13) 

where iv  is i

i
i

z

z∑
 and iz  is 2 2

( )i i j ije f x− . 

 For additive model, by substituting (2) and (9) into (12), the parameter solution is 
equivalent to 
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         jβ ( )( )i i i j
i

v r f −= −∑ ,       (14) 

where iv  is i

i
i

z

z∑
 and iz  is 2

i ije x . 

4.2 Poisson Distribution 
 The same weighted equation could also be used to show that Poisson multiplicative is 
actually equivalent to zero bias multiplicative, derived by Bailey (1963). If i i ic e r=  is assumed 
to have Poisson distribution with mean i ie f , the probability density function is 

exp( )( )
( ; )

( )!

i ie r
i i i i

i i
i i

e f e f
g c f

e r

−= . 

As a result, for each j, the likelihood equation is equal to 

     
jβ

∂
∂

= ( ) 0i i i
i

w r f− =∑ ,       (15) 

where iw  is i i

i j

e f

f β
∂
∂

. 

 Substituting (1) and (8) into (15) for multiplicative model, the parameter solution can be 
written as 

exp( )jβ
( )

i
i

i i j

r
v
f −

=∑ , 

where iv  is i

i
i

z

z∑
 and iz  is ( )i i j ije f x− . This solution is equivalent to zero bias multiplicative 

shown by (5). 

 If additive model is chosen, by substituting (2) and (9) into (15), the parameter solution 
is equal to 

           ( )( )j i i i j
i

v r fβ −= −∑ ,      (16) 

where iv  is i

i
i

z

z∑
 and iz  is i

ij
i

e
x

f
. 
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4.3 Binomial Distribution 
 Assuming i i ic e r=  comes from Binomial distribution with mean i ie f , ( ; )i ig c f  can be 
written as 

( ; ) (1 )i i ici e c
i i i i

i

e
g c f f f

c
− 

= − 
 

. 

For each j, the likelihood equation is equivalent to 

        
jβ

∂
∂

= ( ) 0i i i
i

w r f− =∑ ,       (17) 

where iw  is 
(1 )

i i

i i j

e f

f f β
∂

− ∂
. 

 Using multiplicative model, the solution after substituting (1) and (8) into (17) is 

        exp( )jβ
( )

i
i

i i j

r
v

f −

 
=   

 
∑ ,                  (18) 

where iv  is i

i
i

z

z∑
 and iz  is ( )

1
i i j

ij
i

e f
x

f
−

−
. 

 If additive model is chosen, by substituting (2) and (9) into (17), the solution can be 
written as 

          ( )( )j i i i j
i

v r fβ −= −∑ ,      (19) 

where iv  is i

i
i

z

z∑
 and iz  is 

(1 )
i

ij
i i

e
x

f f−
. 

4.4 Negative Binomial Distribution 
 The advantage of using the weighted equation is that it can be used as an introductory 
step to understand the fitting procedure of a distribution with dispersion parameter. If the 
dependent variable, iC , is a count with mean ( )i iE C µ= , a standard statistical procedure is 
to fit the data with Poisson distribution using multiplicative model. However, if 
overdispersion is detected in the data, i.e., ( ) ( )i iVar C E C> , the parameter estimates for 
standard Poisson are still consistent, but inefficient. As an alternative, the standard 
overdispersion model is the Negative Binomial distribution with multiplicative model. If iC  
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is distributed as Negative Binomial ( ; )i aµ , the probability density function is (Lawless, 
1987), 

1

1

1

( ) 1
( ; , )

! ( ) 1 1

i ac

i a i
i i

i i ia

c a
g c a

c a a

µµ
µ µ

   Γ +
=    Γ + +   

, 

and the mean and variance are 

( )i iE C µ= , 

( ) (1 )i i iVar C aµ µ= + , 

where a  is the dispersion parameter. Since 0a ≥  and 0iµ ≥  for all i, the distribution allows 
for overdispersion. 

 For our classification ratemaking example, i i ic e r=  and i i ie fµ = . Thus, the likelihood 
equation can also be written as 

       ( ) 0i i i
ij

w r f
β
∂ = − =

∂ ∑ ,       (20) 

where iw  is 
(1 )

i i

i i i j

e f

f ae f β
∂

+ ∂
. Notice that the weight for Poisson (15) is a special case of 

the weight for Negative Binomial (20), when the dispersion parameter, a , is equal to zero. 

 Assuming multiplicative model, by substituting (1) and (8) into (20), the parameter 
solution is 

        exp( )jβ
( )

i
i

i i j

r
v

f −

 
=   

 
∑ ,       (21) 

where iv  is i

i
i

z

z∑
 and iz  is ( )

1
i i j

ij
i i

e f
x

ae f
−

+
. 

 For additive model, the parameter solution after substituting (2) and (9) into (20) is equal 
to 

            ( )( )j i i i j
i

v r fβ −= −∑ ,      (22) 

where iv  is i

i
i

z

z∑
 and iz  is 

(1 )
i

ij
i i i

e
x

f ae f+
. 



Bridging Minimum Bias and Maximum Likelihood Methods through Weighted Equation 
 

378 Casualty Actuarial Society Forum, Spring 2005 

4.5 Generalized Poisson Distribution 

 Another alternative for overdispersion is to use the Generalized Poisson distribution. 
The advantage of using Generalized Poisson distribution is that it can be used for both 
overdispersion, i.e., ( ) ( )i iVar C E C> , as well as underdispersion, i.e., ( ) ( )i iVar C E C< . If 

iC  is assumed to follow Generalized Poisson distribution, ( ; , )i ig c aµ  can be written as 
(Wang and Famoye, 1997), 

1(1 ) (1 )
( ; , ) exp

1 ! 1

i
i

c c
i i i i

i i
i i i

ac ac
g c a

a c a

µ µµ
µ µ

−   + += −   + +   
, 

with mean and variance, 

( )i iE C µ= , 
2( ) (1 )i i iVar C aµ µ= + . 

Since 0a ≥  or 0a ≤ , the distribution allows for either overdispersion or underdispersion. 
Assuming i i ic e r=  and i i ie fµ = , the likelihood equation is 

          ( ) 0i i i
ij

w r f
β
∂ = − =

∂ ∑ ,       (23) 

where iw  is 
2(1 )

i i

i i i j

e f

f ae f β
∂

+ ∂
. Again, the weight for Poisson (15) is a special case of the 

weight for Generalized Poisson (23), when the dispersion parameter, a , is equal to zero. 

 Substituting (1) and (8) into (23) for multiplicative model, the parameter solution is 

         exp( )jβ
( )

i
i

i i j

r
v

f −

 
=   

 
∑ ,       (24) 

where iv  is i

i
i

z

z∑
 and iz  is ( )

2(1 )
i i j

ij
i i

e f
x

ae f
−

+
. 

 For additive model, by substituting (2) and (9) into (23), the parameter solution can be 
written as 

            ( )( )j i i i j
i

v r fβ −= −∑ ,      (25) 
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where iv  is i

i
i

z

z∑
 and iz  is 

2(1 )
i

ij
i i i

e
x

f ae f+
. 

5. OTHER MODELS 

5.1 Least Squares 
 The same weighted equation could also be extended to other error functions as well. 
Define the sum squares error as (Brown, 1988), 

2
2( )

( )i i i i
i i i

i ii

e r e f
S e r f

e

−= = −∑ ∑ . 

So, the least squares equation can be written as 

         
j

S

β
∂
∂

= ( ) 0i i i
i

w r f− =∑ ,       (26) 

where iw  is i
i

j

f
e

β
∂
∂

. 

 Substituting (1) and (8) into (26) for multiplicative model, the parameter solution is 

           
( )

exp( ) i
j i

i i j

r
v
f

β
−

=∑ ,                  (27) 

where iv  is i

i
i

z

z∑
 and iz  is 2

( )i i j ije f x− . 

 Extending this equation to least squares with additive model, it can be shown that least 
squares additive is equivalent to zero bias additive, derived by Bailey (1963). The parameter 
solution after substituting (2) and (9) into (26) is equivalent to 

( )( )j i i j
i

v r fβ −= −∑ , 

where i
i

i
i

z
v

z
=
∑

 and i i ijz e x= . This solution is equivalent to the zero bias additive shown 

by (6). 
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5.2 Minimum Modified Chi-Squares 
 If the function of error is a modified χ2 statistics which is defined as, 

2 2
mod ( )i

i i
i i

e
r f

r
χ = −∑ , 

the equation for minimum modified χ2 is equivalent to 

     
2
mod

j

χ
β

∂
∂

= ( ) 0i i i
i

w r f− =∑ ,       (28) 

where iw  is i i

i j

e f

r β
∂
∂

. 

 For multiplicative model, by substituting (1) and (8) into (28), the parameter solution can 
be written as 

         
( )

exp( ) i
j i

i i j

r
v
f

β
−

=∑ ,       (29) 

where iv  is i

i
i

z

z∑
 and iz  is 

2
( )i i j

i ij
i

e f
z x

r
−= . 

 Substituting (2) and (9) into (28) for additive model, the parameter solution is 

        ( )( )j i i j
i

v r fβ −= −∑ ,       (30) 

where iv  is i

i
i

z

z∑
 and iz  is i

ij
i

e
x

r
. 

 Table 2 summarizes the weighted equations and parameter solutions for all of the 
models discussed above. From the table, the following conclusions can be made: 

i. For additive models, the zero bias and least squares are equivalent. 

ii. For multiplicative models, the zero bias and Poisson are equal. 

iii. The weighted equation, which is in the form of a weighted difference between 
observed and fitted rates, show that all models are similar; each model is 
distinguished only by its weight. 

iv. The weights in the parameter solutions show that each of multiplicative and additive 
models is expected to produce similar parameter estimates. 
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6. MODEL PROGRAMMING 

6.1 Classical Method 
 The classical iterative method for finding parameter solutions was first introduced by 
Bailey and Simon (1960). This method solves the parameter individually for each j. In the 
first iteration, vector of initial values, (0)β , are needed to calculate the vector of next 
parameter estimates, (1)β . The process of iteration is then repeated until all solutions 
converge. 
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Table 2. Summary of weighted equations and parameter solutions 
 

Models 
iw  for 

weighted equation, 
( ) 0i i i

i

w r f− =∑  

iz   for multiplicative 
parameter solutions, 

exp( )jβ
( )

i
i
i ji

r
v
f −

=∑ , 

i
i

i
i

z
v

z
=
∑

 

iz  for additive 
parameter solutions, 

jβ ( )( )i i i j
i

v r f −= −∑ , 

i
i

i
i

z
v

z
=
∑
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 An example for the parameter solution of zero bias multiplicative, 

exp( )jβ
( )

i
i

i i j

r
v
f −

=∑ , where iv  is i

i
i

z

z∑
 and iz  is ( )i i j ije f x− , is discussed here. 

 Let ( )i jf −  denotes the the ith row of (-j)f , the vector of multiplicative fitted rates without 
the jth effect. For multiplicative model, exp( )=(-j) (-j) (-j)f X β , where (-j)X  denotes the matrix 
of explanatory variables without the jth column and (-j)β  the vector of regression parameters 
without the jth row. 

 Moreover, let jx  denotes the vector equivalent to the jth column of matrix X. Thus, ijx  
is equal to the ith row of vector jx . Further, let iz , the ith row of vector z , equal to the 
product of ie , )( jif −  and ijx . Therefore, iv , the ith row of vector v , is equivalent to the 
proportion of iz  over sum of iz  for all i. 

 For multiplicative models, the same programming can be used if iz  is written as 

( ) (1 ) ( ) (1 )b d g h k l
i i i i j i i i i iz e r f f r f ae f−= − + + ijx . 

For example, in zero bias multiplicative, 0,0,1,0,1,0 ====== khgdba , and 0=l . 
Similarly, iz  for additive model is of the form, 

l
ii

k
ii

h
i

g
i

d
i

b
ii faefrffrez )1()()1( ++−= ijx . 

For instance, in zero bias additive, 0,0,0,0,1,0 ====== khgdba , and 0=l .  

 Examples of S-PLUS programming for both multiplicative and additive models are 
shown in Appendix A. The same programming can be used since iz  can be written in a 
functional form of , , , , ,a b d g h k  and l . Note that for minimum modified χ2, both 
multiplicative and additive models contain the observed rate, ir , as the denominator in iz . 
Thus, to avoid a “division by zero”, it is suggested that a small constant is added to ir  in the 
programming. 

 

6.2 Regression Model 
 In regression model, the estimates for , 1, 2,...,j j pβ = ,  can be found by minimizing, 

2( ( ))i i i
i

w r f−∑ β , 

or equivalently, they are the solution of, 



Bridging Minimum Bias and Maximum Likelihood Methods through Weighted Equation 
 

384 Casualty Actuarial Society Forum, Spring 2005 

( )
( ( )) 0i
i i i

i j

f
w r f

β
∂− =
∂∑ ββ , 

for each j. This equation is similar to the weighted equation derived for classification rates 
discussed previously. Hence, the parameter solutions for classification ratemaking are 
allowed to be solved using a regression model. 

 By using Taylor series approximation, it can be shown that (Venables and Ripley, 1997), 
(1) (0)T (0) (0) -1 (0)T (0) (0)β = (Z W Z ) Z W (r - s ) , 

where, 

 Z(0) = ( )n p×  matrix whose  ijth element is equal to ( )i

j

f

β
∂
∂

(0)β=β

β   

 W(0) = ( )n n×  diagonal matrix of weight, evaluated at (0)β = β  

 s(0) = vector where the ith row is equal to (0) (0)

1

( )
p

i j ij
j

f zβ
=

−∑(0)β  

 In the first iteration, the vector of initial values, (0)β , are needed to calculate (1)β . The 
process of iteration is then repeated until the solution converges. Since the parameter 
estimates are represented by vector β , the regression model solves them simultaneously, 
thus providing a faster convergence compared to the classical approach. 

 Consider an additive model where the ijth element of matrix Z(0) is equal to 
( )i

ij
j

f
x

β
∂ =
∂

(0)β=β

β , which is free of (0)β . Since ijx  is the ijth element of matrix X and both 

matrices have the same dimension, (0)Z = X  and (0) (0) (0)s = f(β ) - Xβ = 0 . 

 For example, the weighted equation for least squares (26) is equivalent to 

( ) 0i
i i i

i j

f
e r f

β
∂− =
∂∑ . 

Here, the ith diagonal element of matrix W(0) is ie , which is also free of (0)β . Therefore, for 
additive model, the vector of parameter estimates for least squares is 

(0) T -1 Tβ = β = (X WX) X Wr , 
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which is equivalent to the normal equation in linear regression model, thus allowing the 
solution to be solved without any iteration. 

 However, if multiplicative model is assumed, the ijth element of matrix Z(0) is 
( )

( )i
i ij

j

f
f x

β
∂ =
∂

(0)

(0)

β=β

β β , or equivalently (0) (0)Z = F X , where F(0) is the diagonal matrix 

whose ith diagonal element is ( )if
(0)β . For this reason, vector s(0) can also be written as 

(0) (0) (0) (0)s = f(β ) - F Xβ . 

 For all models discussed previously, the same programming can be used if the ith 
diagonal element of weight matrix is written as, 

l
ii

k
ii

h
i

g
i

d
i

b
i faefrffre )1()()1( ++− . 

The simplest form is the weight for least squares whereby 
0,0,0,0,1,0 ====== khgdba  and 0=l . 

 Examples of S-PLUS programming for both multiplicative and additive models are 
shown in Appendix B. The same programming can be used since the weight can be written 
in a functional form of , , , , ,a b d g h k  and l . Note that for minimum modified χ2, the 
weight, iw , contain the observed rate, ir , as the denominator. Thus, to avoid a “division by 
zero”, it is suggested that a small constant is added to ir  in the programming. 

7. EXAMPLES 

 Consider three types of classification ratemaking data; ship damage incidents data of 
McCullagh and Nelder (1989), data from Bailey and Simon (1960) on Canadian private 
automobile liability insurance, and UK private car motor insurance data from Coutts (1984). 
These data are also available and can be accessed from the Internet in the following websites; 
http://sunsite.univie.ac.at/statlib/datasets/ships for McCullagh and Nelder (1989) data, 
http://www.casact.org/library/astin/vol1no4/192.pdf for the data of Bailey and Simon 
(1960), and http://www.actuaries.org.uk/files/pdf/library/JIA-111/0087-0148.pdf for 
Coutts (1984) data. 

 For ship damage incidents data, the number of damage incidents and exposure for each 
class are available. The risk of damage was associated with three rating factors; ship type, 
year of construction and period of operation, involving a total of 40 classes, including 6 
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classes with zero exposure. For Canadian private automobile liability insurance data, the 
number of claims incurred and exposure for each class are available. Two rating factors are 
considered; class and merit ratings, involving a total of 20 classes. Finally, for UK private car 
motor insurance data, the incurred claim count and exposure for each class are available. 
Four rating factors are considered; coverage, vehicle age, vehicle group and policyholder age, 
involving a total of 120 classes.  

 Bailey and Simon (1960) also suggested the average absolute difference as a suitable test 
for Criterion (iii), 

i i i
i

i i
i

e r f

e r

−∑
∑

. 

Therefore, the χ2 statistics, a test for Criterion (iv), and the average absolute difference, a test 
for Criterion (iii), will be calculated for all models. Table 3, Table 4 and Table 5 show the 
parameter estimates, χ2 statistics and average absolute difference for the models discussed 
above. 
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Table 3. Parameters, χ2 and absolute difference for ship data 
 

Parameters 
& bias measures 

Multiplicative models 
 

 Zero bias 
/ Poisson 

Least 
squares 

Minimum 
χ2 

Normal Binomial Minimum 
modified χ2 

 
Intercept 
 
 
Ship type B 
Ship type C 
Ship type D 
Ship type E 
 
 
Const. yr 65-69 
Const. yr 70-74 
Const. yr 75-79 
 
 
Operation yr 75-79 
 
χ2 
absolute difference 

 

 
)exp( 1β

 
)exp( 2β
)exp( 3β
)exp( 4β
)exp( 5β

 
)exp( 6β
)exp( 7β
)exp( 8β

 
)exp( 9β

 

 
0.002 

 
 

0.581 
0.503 
0.927 
1.385 

 
 

2.008 
2.267 
1.574 

 
 

1.469 
 

42.275 
0.187 

 
0.002 

 
 

0.563 
0.436 
1.087 
1.384 

 
 

2.071 
2.157 
1.368 

 
 

1.437 
 

45.211 
0.194 

 
0.002 

 
 

0.568 
0.781 
1.113 
1.575 

 
 

2.040 
2.242 
1.584 

 
 

1.443 
 

36.393 
0.209 

 

 
0.002 

 
 

0.588 
0.317 
0.926 
1.123 

 
 

2.038 
2.395 
1.767 

 
 

1.447 
 

59.567 
0.165 

 
0.002 

 
 

0.581 
0.503 
0.927 
1.385 

 
 

2.008 
2.267 
1.573 

 
 

1.469 
 

42.277 
0.187 

 
0.002 

 
 

0.593 
0.231 
0.652 
1.113 

 
 

1.938 
2.242 
1.576 

 
 

1.544 
 

85.18 
0.169 

Parameters (10-3) 
& bias measures 

Additive models 
 

 Zero bias/ 
Least squares 

Poisson Minimum 
χ2 

Normal Binomial Minimum 
Modified χ2

 
Intercept 
 
 
Ship type B 
Ship type C 
Ship type D 
Ship type E 
 
 
Const.  yr 65-69 
Const. yr 70-74 
Const. yr 75-79 
 
 
Operation yr 75-79 
 
χ2 
absolute difference 

 

 
1β  
 
2β  

3β  

4β  

5β  
 
6β  

7β  

8β  
 
9β  

 
2.665 

 
 

-1.821 
-2.149 
-0.376 
1.756 

 
 

1.094 
1.536 
0.453 

 
 

0.837 
 

41.063 
0.168 

 

 
2.430 

 
 

-1.565 
-1.730 
-0.651 
2.019 

 
 

1.055 
1.604 
0.714 

 
 

0.791 
 
40.042 
0.160 

 
2.477 

 
 

-1.619 
-1.026 
0.433 
2.932 

 
 

1.097 
1.661 
0.747 

 
 

0.778 
 

35.591 
0.178 

 
0.962 

 
 

-0.104 
-1.081 
0.868 
2.650 

 
 

1.108 
1.657 
0.968 

 
 

0.770 
 
50.044 
0.179 

 
2.431 

 
 

-1.566 
-1.731 
-0.650 
2.017 

 
 

1.055 
1.603 
0.713 

 
 

0.792 
 

40.040 
0.160 

 
2.472 

 
 

-1.596 
-2.793 
-1.682 
0.849 

 
 

1.003 
1.323 
0.665 

 
 

0.846 
 

71.436 
0.154 
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Table 4. Parameters, χ2 and absolute difference for Canadian data 
 

Parameters 
& bias measures 

Multiplicative models 
 

 Zero bias 
/ Poisson 

Least 
squares 

Minimum 
χ2 

Normal Binomial Minimum 
modified χ2 

 
Intercept 
 
 
Class 2 
Class 3 
Class 4 
Class 5 
 
 
Merit rating X 
Merit rating Y 
Merit rating B 
 
χ2 
absolute difference 

 

 
)exp( 1β

 
)exp( 2β
)exp( 3β
)exp( 4β
)exp( 5β

 
)exp( 6β
)exp( 7β
)exp( 8β

 

 
0.080 

 
 

1.350 
1.599 
1.692 
1.241 

 
 

1.313 
1.427 
1.637 

 
577.826 
0.028 

 
0.081 

 
 

1.330 
1.586 
1.660 
1.223 

 
 

1.307 
1.405 
1.611 

 
625.268 
0.032 

 

 
0.080 

 
 

1.351 
1.598 
1.697 
1.242 

 
 

1.312 
1.428 
1.640 

 
577.037 
0.028 

 

 
0.079 

 
 

1.392 
1.628 
1.742 
1.286 

 
 

1.334 
1.483 
1.705 

 
754.403 
0.020 

 
0.080 

 
 

1.347 
1.597 
1.686 
1.238 

 
 

1.312 
1.423 
1.632 

 
580.754 
0.028 

 
0.080 

 
 

1.347 
1.599 
1.682 
1.238 

 
 

1.314 
1.423 
1.633 

 
583.899 
0.028 

Parameters (10-2) 
& bias measures 

Additive models 
 

 Zero bias/ 
Least squares 

Poisson Minimum 
χ2 

Normal Binomial Minimum 
Modified χ2

 
Intercept 
 
 
Class 2 
Class 3 
Class 4 
Class 5 
 
 
Merit rating X 
Merit rating Y 
Merit rating B 
 
χ2 
absolute difference 

 

 
1β  
 
2β  

3β  

4β  

5β  
 
6β  

7β  

8β  

 
7.878 

 
 

3.080 
5.296 
6.489 
2.100 

 
 

2.793 
3.827 
5.884 

 
97.829 
0.008 

 

 
7.877 

 
 

3.126 
5.242 
6.529 
2.167 

 
 

2.757 
3.858 
5.878 

 
95.926 
0.007 

 
7.876 

 
 

3.129 
5.248 
6.531 
2.174 

 
 

2.760 
3.861 
5.881 

 
95.904 
0.007 

 

 
7.875 

 
 

3.207 
5.081 
6.637 
2.323 

 
 

2.697 
3.938 
5.896 

 
108.302 
0.005 

 
7.877 

 
 

3.120 
5.252 
6.521 
2.158 

 
 

2.762 
3.853 
5.879 

 
95.970 
0.007 

 

 
7.878 

 
 

3.121 
5.232 
6.523 
2.152 

 
 

2.751 
3.850 
5.870 

 
96.100 
0.007 
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Table 5. Parameters, χ2 and absolute difference for UK data 
 

Parameters 
& bias measures 

Multiplicative models 
 

 Zero bias 
/ Poisson 

Least 
squares 

Minimum 
χ2 

Normal Binomial Minimum 
modified χ2 

 
Intercept 
 
Coverage N.Comp 
 
 
Veh. age 4-7 
Veh. age 8+ 
 
 
Veh. group B 
Veh. group C 
Veh. group D 
 
 
P/H age 21-24 
P/H age 25-29 
P/H age 30-34 
P/H age 35+ 
 
χ2 
absolute difference 

 

 
)exp( 1β

 
)exp( 2β

 
)exp( 3β
)exp( 4β

 
)exp( 5β
)exp( 6β
)exp( 7β

 
)exp( 8β
)exp( 9β
)exp( 10β
)exp( 11β

 

 
0.243 

 
0.756 

 
 

0.804 
0.643 

 
 

1.139 
1.238 
1.605 

 
 

0.846 
0.639 
0.574 
0.514 

 
107.049 
0.063 

 
0.241 

 
0.748 

 
 

0.817 
0.649 

 
 

1.123 
1.218 
1.574 

 
 

0.838 
0.647 
0.591 
0.524 

 
109.491 
0.065 

 
0.249 

 
0.759 

 
 

0.803 
0.642 

 
 

1.133 
1.231 
1.600 

 
 

0.841 
0.631 
0.567 
0.505 

 
106.487 
0.063 

 
0.242 

 
0.823 

 
 

0.827 
0.618 

 
 

1.133 
1.268 
1.614 

 
 

0.813 
0.622 
0.563 
0.509 

 
122.232 
0.063 

 
0.242 

 
0.755 

 
 

0.806 
0.645 

 
 

1.137 
1.235 
1.600 

 
 

0.843 
0.641 
0.578 
0.516 

 
107.290 
0.063 

 

 
0.227 

 
0.750 

 
 

0.806 
0.647 

 
 

1.151 
1.251 
1.615 

 
 

0.864 
0.667 
0.596 
0.541 

 
112.873 
0.064 
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Table 5, continued. Parameters, χ2 and absolute difference for UK data 
 

Parameters (10-2) 
& bias measures 

Additive models 
 

 Zero bias/ 
Least squares 

Poisson Minimum 
χ2 

Normal Binomial Minimum 
Modified χ2

 
Intercept 
 
Coverage N.Comp 
 
 
Veh. age 4-7 
Veh. age 8+ 
 
 
Veh. group B 
Veh. group C 
Veh. group D 
 
 
P/H age 21-24 
P/H age 25-29 
P/H age 30-34 
P/H age 35+ 
 
χ2 
absolute difference 

 

 
1β  
 
2β  
 
3β  

4β  
 
5β  

6β  

7β  
 
8β  

9β  

10β  

11β  

 
21.864 

 
-2.878 

 
 

-3.253 
-5.443 

 
1.208 
2.162 
6.241 

 
 
 

-1.883 
-5.767 
-7.096 
-8.437 

 
133.859 
0.072 

 
21.387 

 
-2.500 

 
 

-3.397 
-5.463 

 
1.269 
2.168 
6.193 

 
 
 

-1.736 
-5.528 
-6.937 
-7.968 

 
127.935 
0.072 

 

 
21.732 

 
-2.445 

 
 

-3.393 
-5.504 

 
1.271 
2.167 
6.273 

 
 
 

-1.864 
-5.789 
-7.206 
-8.282 

 
127.252 
0.072 

 

 
14.444 

 
-1.451 

 
 

-2.773 
-5.608 

 
1.144 
2.518 
6.557 

 
 
 

4.035 
0.933 
-0.396 
-1.398 

 
234.493 
0.077 

 

 
21.458 

 
-2.538 

 
 

-3.380 
-5.457 

 
1.261 
2.165 
6.204 

 
 
 

-1.762 
-5.567 
-6.967 
-8.035 

 
127.902 
0.072 

 
20.643 

 
-2.603 

 
 

-3.391 
-5.379 

 
1.266 
2.175 
6.020 

 
 
 

-1.413 
-4.962 
-6.385 
-7.302 

 
133.542 
0.074 

 

 Several conclusions can be made regarding the programming and results of parameter 
estimates from the fitted models: 

i. The classical approach and regression model give equivalent parameter estimates. 

ii. The regression model has faster convergence. 

iii. The additive models are more sensitive to initial values. 

iv. Each of multiplicative and additive models produced similar parameter estimates. 

8. CONCLUSIONS 

 This paper bridged the minimum bias and maximum likelihood methods for both 
additive and multiplicative models via a weighted equation. The equations for both 
minimum bias and maximum likelihood can be rewritten as a weighted equation, in the form 
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of a weighted difference between observed and fitted rates. The parameter estimates could 
also be rewritten as a weighted solution; for multiplicative model it is in the form of a 
weighted proportion whereas for additive model, the form is of a weighted difference.  

 Applying the weighted equation for maximum likelihood and minimum bias equations 
has several advantages; the weighted equation is mathematically and conceptually simpler, 
the weighted equation also allows the usage of regression model, and finally, the weighted 
equation provides an initial understanding of the fitting procedure for distribution with 
overdispersion parameter. In addition, the weights of the parameter solutions for both 
multiplicative and additive models show that they have similar estimates. 
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APPENDIX A 
 
S-Plus classical programming for multiplicative model 
 
Classic.multi <- function(data,b,d,g,h,k,iter=200) 
{ 
 X <- as.matrix(data[,-(1:2)]) 
 count <- as.vector(data[,1]) 
 exposure <- as.vector(data[,2]) 
 rate <- count/exposure 
 parameter <- dim(X)[2] 
 new.beta <- rep(c(0.5), dim(X)[2]) 
 for (i in 1:iter) 
 { 
  for (j in 1:parameter) 
  { 
   beta <- new.beta 
   fitted <- as.vector(exp(X%*%log(beta))) 
   fitted.noj <- as.vector(exp(X[,-j]%*%log(beta[-j]))) 
   z <- as.vector(exposure^b*(rate+0.5/exposure)^d*fitted.noj^g* 
    (1-fitted)^h*(rate+fitted)^k*X[,j]) 
   v <- as.vector(z/sum(z)) 
   new.beta[j] <- as.vector(sum(v*(rate/fitted.noj))) 
  } 
  if (all(abs(new.beta-beta)<0.0000001)) 
   break 
 } 
 fitted <- as.vector(exp(X%*%log(beta))) 
 chi.square <- sum((exposure*(rate-fitted)^2)/fitted) 
 abs.difference <- sum(exposure*abs(rate-fitted))/sum(exposure*rate) 
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 list( beta=round(beta,4), chi.square=round(chi.square,3),  
   absolute.difference=round(abs.difference,3)) 
} 
 
 
S-Plus classical programming for additive model 
 
Classic.add <- function(data,b,d,g,h,k,iter=300) 
{ 
 X <- as.matrix(data[,-(1:2)]) 
 count <- as.vector(data[,1]) 
 exposure <- as.vector(data[,2]) 
 rate <- count/exposure 
 parameter <- dim(X)[2] 
 new.beta <- rep(c(0.000001), dim(X)[2]) 
 for (i in 1:iter) 
 { 
  for (j in 1:parameter) 
  { 
   beta <- new.beta 
   fitted <- as.vector(X%*%beta) 
   fitted.noj <- as.vector(X[,-j]%*%beta[-j]) 
   z <- as.vector(exposure^b*(rate+0.5/exposure)^d*fitted^g* 
    (fitted*(1-fitted))^h*(rate+fitted)^k*X[,j]) 
   v <- as.vector(z/sum(z)) 
   new.beta[j] <- as.vector(sum(v*(rate-fitted.noj))) 
  } 
  if (all(abs(new.beta-beta)<0.0000001)) break 
 } 
 fitted <- as.vector(X%*%beta) 
 chi.square <- sum((exposure*(rate-fitted)^2)/fitted) 
 abs.difference <- sum(exposure*abs(rate-fitted))/sum(exposure*rate) 
 list( beta=round(beta,6), chi.square=round(chi.square,3),  
   absolute.difference=round(abs.difference,3)) 
} 
 
 
APPENDIX B 
 
S-Plus regression programming for multiplicative model 
 
Regression.multi <- function(data,b,d,g,h,k,iter=20) 
{ 
 X <- as.matrix(data[, -(1:2)]) 
 count <- as.vector(data[,1]) 
 exposure <- as.vector(data[,2]) 
 rate <- count/exposure 
 new.beta <- rep(c(1),dim(X)[2]) 
 for (i in 1:iter) 
 { 
  beta <- new.beta 
  fitted <- as.vector(exp(X%*%beta)) 
  Z <- diag(fitted)%*%X 
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  W <-  diag(exposure^b*(rate+0.5/exposure)^d*fitted^g*(1-fitted)^h* 
    (rate+fitted)^k) 
  r.s <- rate-fitted+as.vector(Z%*%beta) 
  new.beta <- as.vector(solve(t(Z)%*%W%*%Z)%*%t(Z)%*%W%*%r.s) 
  if (all(abs(new.beta-beta)<0.0000001)) 
   break 
 } 
 fitted <- as.vector(exp(X%*%beta)) 
 chi.square <- sum((exposure*(rate-fitted)^2)/fitted) 
 abs.difference <- sum(exposure*abs(rate-fitted))/sum(exposure*rate) 
 list( beta=round(exp(beta),4), chi.square=round(chi.square,3),  
   absolute.difference=round(abs.difference,3)) 
} 
 
 
S-Plus regression programming for additive model 
 
Regression.add <- function(data,b,d,g,h,k,iter=20) 
{ 
 X <- as.matrix(data[, -(1:2)]) 
 count <- as.vector(data[,1]) 
 exposure <- as.vector(data[,2]) 
 rate <- count/exposure 
 new.beta <- rep(c(0.000001),dim(X)[2]) 
 for (i in 1:iter) 
 { 
  beta <- new.beta 
  fitted <- as.vector(X%*%beta) 
  W <- diag(exposure^b*(rate+0.5/exposure)^d*fitted^g*(fitted*(1-fitted))^h* 
     (rate+fitted)^k) 
  r.s <- rate-fitted+as.vector(X%*%beta) 
  new.beta <- as.vector(solve(t(X)%*%W%*%X)%*%t(X)%*%W%*%r.s) 
  if (all(abs(new.beta-beta)<0.0000001)) 
   break 
 } 
 fitted <- as.vector(X%*%beta) 
 chi.square <- sum((exposure*(rate-fitted)^2)/fitted) 
 abs.difference <- sum(exposure*abs(rate-fitted))/sum(exposure*rate) 
 list( beta=round(exp(beta),6), chi.square=round(chi.square,3),  
   absolute.difference=round(abs.difference,3)) 
} 
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