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Abstract: 

Reinsurers typically face two problems when they want to use insurer claim severity experience to 
experience rate their liability excess of loss treaties.  First, the claim severity data has insufficient volume 
to make credible projections of excess layer costs.  Second, the data they do receive is not fully 
developed.  Most claims that pierce the excess layers can take at least a few years to settle.  This paper 
sets forth a methodology for dealing with these problems.  The paper starts with some introductory 
examples that illustrate how to quantify the inherent uncertainty in fitting claim severity distributions. 
Then the paper illustrates a Bayesian methodology to estimate the expected cost of excess layers, and 
shows how to quantify the uncertainty in these estimates.  The Bayesian “prior models” are not derived 
from purely subjective considerations.  Instead they are derived after examining the claim severity data 
of several insurers.  Each “prior model” contains claim severity distributions of immature data that are 
used to calculate the posterior probabilities with comparable immature data submitted by an insurer.  
Each “prior model” also contains a fully developed claim severity distribution.  The estimate of the cost 
of an excess layer is the average of the fully developed excess layer costs weighted by the posterior 
probabilities calculated with the immature data submitted by the insurer. 
 
Keywords: Loss Distributions, Bayesian Estimation, Excess of Loss Reinsurance 

               

1. INTRODUCTION 

One of the many jobs an actuary is asked to do is to predict future claim costs in high 
layers.  It is often the case that there are few claims from past experience.  When this is the 
case, an actuary must resort to either one or both of the following.   

• Try to discern a pattern in the claims that lie below the layer, and use this pattern to 
project claim costs in the layer.  This is usually done by fitting a parametric probability 
distribution to these other claims. 

• Examine claims from other insurers, or from an industry source, in the hope that these 
claims are similar to the claims you are trying to project.  Often an actuary will make use 
of a probability distribution that has been fit to these claims.  

There are difficulties with each of these approaches.  The first approach can have 
credibility problems if there are not enough claims to get a reliable estimate of the 
parameters of the parametric probability distribution.  And identifying the best distribution 
can also be a problem.  The second approach can have relevance problems if the population 
that underlies the “industry” is different than the population that the actuary is addressing.    
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Liability insurance presents yet another problem in fitting claim severity distributions.  It 
can take a considerable amount of time to settle the claims.  A changing legal environment 
will force the actuary to compromise between completeness and relevance of the claim 
information. 

This paper will address each of these problems.  Here is a summary of what is to follow. 

• I will begin with a description of how to construct a classical (non-Bayesian) confidence 
interval of parameters of a claim severity distribution using the likelihood ratio test. 

• Next I will show how to use Bayes’ Theorem to calculate posterior probabilities for a 
series of selected claim severity distributions.  The “selected claim severity distributions” 
can come from different parameterizations of a selected model, such as a Pareto or a 
lognormal model.  Or the “selected claim severity distributions” can come from different 
models.  This allows us to incorporate what we informally call “model uncertainty” as 
well as “parameter uncertainty” into our estimation procedure. 

• It is generally the case that particular claim severity models, or particular 
parameterizations of these models, are not of direct interest.  What are of interest are 
functions of the models and their possible parameterizations.  An example of such a 
function would be the expected cost of a particular layer of loss.  I will show how to 
quantify uncertainty in the expected cost of a layer of loss in terms of the posterior 
probabilities of each of the models and their multiple parameterizations. 

• It is possible to associate claim severity distributions developed to their ultimate value, 
with the immature claim severity distributions representing the data that is currently 
available.  By fitting (i.e., determining the posterior probabilities) the immature data to 
the immature distributions and then applying the posterior weights to the associated fully 
developed distributions, it is possible to get estimates of the expected losses for a layer of 
loss.  Furthermore, one can quantify the uncertainty in this estimate. 

A major theme of this paper will be the importance of the likelihood function.  Loosely 
stated, the likelihood function is the probability of observing a given set of data as a function 
of a parametric probability distribution.  The likelihood function will play a key role in both 
the classical and Bayesian methodologies described below.  
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2.  CONFIDENCE REGIONS FOR PARAMETERS  

I will begin the discussion of confidence regions with a description of hypothesis testing 
using the likelihood ratio test.   

Let: 

• p = (p1, p2, …, pk) be a parameter vector for a given parametric probability distribution; 

• x = (x1, x2, …, xn) be a set of observed losses; 

• pML be the maximum likelihood estimate of the parameter vector given the data x; 

• pT be the “true” parameter vector underlying the population of interest; and 

• p* be a parameter vector for a proposed model for a claim severity distribution. 

Denote likelihood of a parameter vector, p, given the data, x, by L(x;p).  

We want to test the null hypothesis: 

H0: p* = pT; 

against the alternative hypothesis: 

H1: p* � pT. 

Theorem 

If H0 is true, then the statistic: 

( ) ( ) ( )( )MLln 2 ; ; *LR L L≡ ⋅ −x p x p  

has a χ2 distribution with k degrees of freedom. 

This theorem is given in Section 13.4.4 of Klugman, Panjer and Willmot (KPW) [2004]1.   

Informally, this theorem says that one should accept (or fail to reject) the hypothesis that 
p* is the parameter vector for the population if the likelihood of p* is sufficiently “close” to 

                                                 
1 There are a number of technical conditions placed on the probability distribution for this result to hold.  Most 
of the common distributions used by actuaries (such as Pareto, lognormal and gamma distributions) satisfy 
these conditions. 
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the maximum likelihood estimate, pML, of the sample.  More formally, “close” is defined by 
the above statistic and the critical values of the χ2 distribution with k degrees of freedom. 

To illustrate the likelihood ratio test I took a random sample of 1,000 claims from a 
Pareto distribution of the form 

 ( ) 1F x
x

αθ
θ

 = −  + 
, 

with α = 2 and θ = 10,000. 

While it is not convenient to list all 1,000 claims in this random sample, here is a grouped 
summary of these claims. 

 Table 1 

Range Count 

xi ≤ 5,000 562 

5,000 < xi ≤ 10,000 181 

10,000 < xi ≤ 20,000 134 

20,000 < xi 123 

Here is the log-likelihood function for the grouped data. 

 

( ), 562 ln 1 181 ln
5000 5000 10000

134 ln 123 ln
10000 20000 20000

Gl
α α α

α α α

θ θ θθ α
θ θ θ

θ θ θ
θ θ θ

        = ⋅ − + ⋅ −           + + +        
        + ⋅ − + ⋅           + + +        

 

Using a general purpose maximizing tool, Excel Solver, I found the maximum likelihood 
estimate of the Pareto parameters for the grouped data to be equal to 

( ) ( ), 7447.8,1.6041ML ML
G Gθ α = . 
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Here is the log-likelihood function for the detailed data. 

 ( ) ( ) ( )( ) ( ) ( )
1000

1

, 1000 ln ln 1 lnD i
i

l xθ α α α θ α θ
=

= ⋅ + ⋅ − + +∑ . 

Using Excel Solver, I found the maximum likelihood estimate of the Pareto parameters for 
the detailed data to be equal to ( ) ( ), 9626.8,1.8079ML ML

D Dθ α = . 

Note that the parameter estimates in each case are different from the true parameters that 
I used to generate the simulated data.  If I were to generate another simulation, I would get a 
different parameter estimate.  Repeated simulations will yield samples from a bivariate 
distribution of parameter estimates.  There is a formula that describes the bivariate 
distribution of the maximum likelihood estimates in terms of the parameters that are used to 
generate the original distribution.2     

Our problem is different.  In practice, we don’t know the parameters of the underlying 
distribution.3  A question to ask is the following:  What are acceptable parameters for the 
distribution given the data we have?  To answer this question one can invoke the likelihood 
ratio test by defining a p% confidence region of the parameters as the set of all parameters 
that pass the likelihood ratio test at the p% level. 

Figures 1 and 2 are plots of the parameters that pass the likelihood ratio test at the 5% 
level for the grouped and detailed data, respectively.  These plots were generated by 
calculating the likelihood ratio statistic for a grid of (θ,α) points and plotting them if the 
statistic was less than the 5% critical value, 5.99, of the χ2 distribution with two degrees of 
freedom. 

It is worth noting that the confidence region is wider for the grouped likelihood data than 
for the detailed likelihood data.  This illustrates the additional information provided by the 
detailed data.   

                                                 
2 The distribution of the maximum likelihood estimates has an asymptotic normal distribution with parameters 
given by the Fisher Information Matrix. See Section 12.3 of Klugman, Panjer and Willmot [2004]. 
3 In practice, we don’t even know the underlying distribution itself.  I will get to that below. 
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Figure 1
Confidence Region
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Confidence Region
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This definition of a confidence region is somewhat unusual.  The standard technique 
(described in KPW, Section 12.3) is to use the Fisher information matrix, substituting the 
maximum likelihood estimate of the parameters for the “true” parameters.  However, the 
definition of confidence regions of the parameters used here has precedent.  One of these is 
in the first edition of KPW4.     

                                                 
4 See Example 2.69 on page 131 of Klugman, Panjer and Willmot [1998].  I asked Professor Klugman why this 
example was not in the 2nd edition.  He replied that it was an oversight, and made a note to put it back in the 
third edition. 
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3. THE COTOR CHALLENGE 

Last year, the CAS Committee on the Theory of Risk (COTOR) issued a challenge.  The 
committee published a list of 250 claims, and asked contestants to estimate the pure 
premium of a $5 million x $5 million layer.  An additional requirement of the challenge was 
to put a 95% confidence interval around this estimate.  A full description of the COTOR 
Challenge can be found on the CAS web site: 

http://www.casact.org/cotor/round2.htm. 

The “claims” were generated by a simulation from a transformed inverse gamma 
distribution, a fact that was not revealed until after all solutions were submitted.   

The COTOR challenge has some of the elements that reinsurance actuaries face in their 
work.  Most importantly: 

• The underlying loss distribution is unknown, and is very likely not one of the standard 
models that are in the typical actuarial toolbox. 

• There are very few claims in the layer of interest.  Actuaries typically try to project the 
frequency of claims in a high layer by looking at claims in a lower layer. 

My solution, which is posted on the COTOR web site, provides an example that I believe 
to be of educational value as we move toward the ultimate goals stated in the introduction.  I 
will describe it in some detail here. 

The solution makes use on a software package called MATLAB.  The software has tools 
for plotting histograms, calculating maximum likelihood estimates, and supporting statistics.   

The first step one should almost always take when fitting a distribution to data is to plot a 
histogram. 
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Note that there is only one claim in the $5 million x $5 million layer that contestants were 
asked to predict.  The next highest claim was about $600,000.  I did not even attempt to fit a 
distribution to this data. 
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The next step I took was to take the log of that data.  The histogram looked promising so I 
tried to fit a couple of different distributions by maximum likelihood. 

 

Figure 4 

 

None of the selected distributions looked particularly good, with the Weibull providing the 
worst fit.  The distribution was still skewed to the right. 
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In an attempt to reduce the skewness, I plotted a histogram of the double log of the data and 
fit some distributions to the double logged data by maximum likelihood.   

 

Figure 5 

 

Here the fit of the three distributions is closer, but the double log of the data still looks more 
skewed than the distributions I tried. 
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Continuing the above logic, I took the triple log of the data and tried some more maximum 
likelihood fits. 

Figure 6 

 

At this stage, the maximum likelihood fits began to look reasonable.  I examined these fits in 
more detail.  
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Here are some fitting statistics for the three 
distributions.  Some observations: 

• The lognormal distribution has the 
highest loglikelihood and the hence 
the best fit of the three. 

• The loglikelihood of the gamma 
distribution is reasonably close to 
that of the lognormal distribution.  
The loglikelihood of the normal 
distribution is a bit lower, but not 
totally out of the running. 

• Looking at Figure 7 below, we see 
that the maximum likelihood fit of  
all three distributions are nicely 
within the confidence bounds for 
lognormal fit. 

• It is possible to go to a quadruple 
log transform since the triple logs 
of the claim amounts are still 
positive.  But that is as far as we 
can go, since some triple logs are 
less than one.   I stopped at the 
triple log transform since the 
lognormal is equivalent to a normal 
with the quadruple log transform.  

Table 2 

Distribution:  Lognormal 
Log likelihood: 283.496  
Mean: 0.73835  
Variance: 0.00619  
   

Parameter   Estimate    Std. Err.  
µ -0.30898 0.00672 
σ 0.10625 0.00477 

   

Estimated covariance of parameter estimates:
      µ   σ        

µ 4.52E-05 1.31E-19 
σ 1.31E-19 2.27E-05 

  

Distribution:     Gamma 
Log likelihood: 282.621  
Mean: 0.73836  
Variance: 0.00615  
   

Parameter   Estimate     Std. Err.   
a 88.6454 7.91382 
b 0.00833 0.00075 
   

Estimated covariance of parameter estimates:
    a b 

a 62.6286 -0.00588 
b -0.00588 5.56E-07 

   

Distribution:     Normal  
Log likelihood: 279.461  
Mean: 0.738355  
Variance: 0.006285  
   

Parameter Estimate Std. Err. 
µ 0.738355 0.005014 
σ 0.079279 0.003556 

   

Estimated covariance of parameter estimates:
 µ σ         

µ 2.51E-05 -1.14E-19 
σ -1.14E-19 1.26E-05 
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Figure 7 

 

Figure 7 is a plot of the cumulative distribution functions of each of the fits and the data.  
The dotted lines give upper and lower confidence bounds for the best-fitting lognormal 
distribution.  These confidence bounds contain the normal and gamma distributions and so 
we should consider all three of these distributions as potential models for the triple logs of 
the data. 
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Up to now, this analysis has been fairly classical.  A typical classical analysis of the data 
would take the cumulative distribution function, F(x), of the best-fitting model, (in this case 
the quadruple lognormal with the parameters in Table 2) and integrate the following formula 
to estimate the pure premium of the $5 million x $5 million layer. 

 Layer Pure Premium5 = ( )
10,000,000

5,000,000

1 ( )F x dx−∫ . (1)  

Such an estimate of the layer pure premium reflects the uncertainty of the loss given the 
model and the parameters of the model.  It does not reflect the uncertainty of the model and 
the uncertainty in the parameters given the model.   

If we are to reflect these additional uncertainties, we need to get the probability of the 
potential models and parameters.  The only information we have to get these probabilities is 
the data. Now we have the ability to calculate the likelihood function (i.e., the probability of 
the data) for any given model and parameter set.  To carry out this program, I made use of 
Bayes’ Theorem to calculate the probability of each model and parameter set given the data. 

Here is an outline of the methodology underlying my solution. 

• I began by hypothesizing a series of “models” for the data.  I interpret the term “model” 
broadly to include choices of the parametric form of the ‘model’ (in the narrow sense; e.g., 
lognormal or gamma) as well as a choice of parameters for each ‘model.’  I am 
intentionally blurring the distinction between parameter uncertainty and ‘model’ 
uncertainty. 

• For each model, I calculated the likelihood (or probability) of the data given each model.  
Using Bayes’ theorem, the posterior probability of each model, given the data, is 
calculated by the following formula. 

( ) ( ) ( )Posterior model|data Likelihood data|model Prior model∝ ⋅ . 

• For each model, I calculated the cost of the $5 million x $5 million layer using Equation 
1 above.  I then calculated various statistics of the posterior distribution of the layer 
costs using posterior probabilities.  For example: 

                                                 
5 One should distinguish between the layer pure premium and the layer average severity.  The layer average 
severity is the average severity given that the claim has pierced the layer.  The layer pure premium is equal to 
the layer average severity times the probability of piercing the layer. 
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o The posterior expected cost of the layer was the posterior probability-weighted 
average of the layer cost for each model.  Calculations such as this led to the 
mean and standard deviation in my solution. 

o The posterior percentile of a selected layer cost is the sum of the posterior 
probabilities of all the models for which the layer cost is less than the selected 
layer cost.  Calculations such as this led to the median and confidence interval for 
my solution. 

Now let’s look at the details. 

The above analysis identified three potential ‘models’ for the data with the triple log transform 
— the lognormal, the gamma and the normal.  The fitting statistics give an indication of the 
range of possible parameters for each ‘model.’ 

Here are the steps in my calculations. 

1. For each ‘model,’ I calculated the confidence interval at the 0.1% level for both 
parameters. 

2. I divided the confidence interval into 50 intervals and created a 51 by 51 grid of 
possible parameters for each ‘model.’  The three ‘models’ along with the 2,601 
parameters yielded 7,803 “models” from which to do the Bayesian calculations. 

3. I calculated the loglikelihood of each model.   I assumed that the prior probabilities 
for each model were equal.  I then exponentiated the posterior loglikelihoods and 
normalized them so that the posterior probabilities sum to one. 

4. I then calculated the pure premiums for each model using Equation 1 and 
MATLAB’s numerical quadrature function.  

5. Finally I transferred the MATLAB arrays into Excel, sorted the models in 
increasing order of the pure premiums, and calculated the statistics reported in the 
results below.  

The MATLAB code for executing the first four steps along with the spreadsheet for Step 
5 can be downloaded from the COTOR web site. 
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I should point out that the ‘model’ uncertainty did not have a significant effect on the final 
answer.  The lognormal models got 95.33% of the posterior probability, the gamma models 
got 2.98% of the posterior probability and the normal models got the remaining 1.69%.  

Here are the results. 

Table 3 

Predictive Statistics for the Layer Pure Premium 

Mean 6,430
Standard Deviation 3,370
Median 5,780

Range 
Low at 2.5% 1,760
High at 97.5% 14,710

 

Here is a histogram for the predictive distribution. 

Figure 8 
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Using Bayes’ Theorem in the solution above is similar to the likelihood ratio approach 
described in Section 2 in that both approaches use the likelihood function to identify 
potential models.  The likelihood ratio test only provides you with a “yes/no” decision.  And 
this “yes/no” decision is only correct if the underlying ‘model’ is correct.   But if you are 
comfortable with assigning prior probabilities to models, Bayes’ Theorem allows you to use 
the likelihood function of the data associated with each model to calculate posterior 
probabilities for each model.  And with probabilities assigned to each model, you can 
calculate any desired statistic of a function (e.g., layer pure premium) of the potential models.  
And the Bayesian approach can deal with ‘model’ uncertainty.  

Using Bayes’ theorem to fit claim severity distributions is not new to the CAS literature.  
Meyers [1994], Klugman [1994], and Kreps [1997] have papers on this subject.   

4. AN EXAMPLE BASED ON INSURANCE DATA 

I believe the Bayesian methodology underlying the COTOR challenge is potentially useful 
for predicting pure premiums for high layers of insurance, but the methodology is far from 
complete.  In this section, I will give an example that uses this Bayesian methodology that 
also addresses two of the more serious shortcomings. 

1. The models that make up the prior information need careful consideration.  In my 
solution to the COTOR Challenge, I developed the prior information using preliminary 
fits to the data and the standard errors of the parameter estimates.  A true Bayesian 
would think hard and develop models that they believe are plausible in the absence of 
any data. 

2. Liability claims can take a long time to settle.  We are often given the task of predicting 
the ultimate claim severity distribution given an incomplete sample of claims.  We do not 
know the ultimate values for many of the claims. 

The fact that reinsurers go through great effort to examine the excess claims experience 
of their prospective contracts indicates that they believe that there are significant differences 
in the excess loss potential between insurers.  Otherwise all reinsurance contracts would be 
priced using claim severity distributions based on industry aggregate experience such as 
those available from my employer, Insurance Services Office, Inc. (ISO). 
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To test this belief, I asked our (ISO’s) increased limits ratemaking division to extract the 
empirical claim severity distributions for a liability coverage by individual insurer6.  We the 
then fit mixed exponential distributions separately to 20 large insurers7.  Each model had 10 
parameters.  Thus I think it is more appropriate to think of the “fitting” as “smoothing,” and 
I do not expect each insurer’s result to be necessarily predictive of future results.   

The mixed exponential models were fit separately by settlement lag.   

The limited average severity, E[X^x], is the average severity of claims subject to a limit of 
x.  Mathematically: 

 [ ] ( )
0

^ 1 ( )
x

E X x F u du= −∫ .   

Figure 9 gives the ultimate limited average severity curves, based on the fitted mixed 
exponential distributions for each of the 20 insurers. 

  

                                                 
6 ISO’s standard increased limits ratemaking procedure also includes data from excess and umbrella claims that 
are reported separately to ISO.  These claims were not included in this study.  
7 See Keatinge [1999] for information and details of fitting the mixed exponential distribution. 
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Figure 9 – Initial Insurer Models 
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If you are looking at Figure 9 in color, it should be apparent that the relationship between 
limited average severities at low loss amounts and high loss amounts is by no means perfect, 
but there does seem to be a general trend.  The lack of correlation can be due to a lack of a 
fundamental relationship between losses at low levels and high levels, or it could be due to a 
lack of credibility of the data (as realized through the smoothing procedure.) 

If there is a fundamental relationship between low-level losses and high-level losses, it 
makes the job of estimating high layer losses more reliable since low-level claims are more 
numerous.  Ultimately this is a judgment call, and it is one that reinsurance actuaries 
routinely make. 

The examples below will consist of estimates of the pure premium for the $500,000 x 
$500,000 layer, and the $1 million x $1 million layer.   Figures 10 and 11 below respectively 
show how probabilities of exceeding $5,000 and $100,000 track with the pure premium for 
the $500,000 x $500,000 layer.  The correspondence appears to be stronger in the latter case.  
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At this point in the analysis, I decided to use only claims that are in excess of $100,000 to 
estimate the cost of these layers. 

Following the methodology of the previous section, the next step is to hypothesize a 
series of models for the data.  Each model should represent the probability distribution of 
claims over $100,000.  In developing this series of models, a good place to start is with 
models that were fit to individual insurer data.  After all, the object is to project future losses 
to individual insurers. 

I first attempted to use the fits directly.  But in spite of the general pattern of higher layer 
losses increasing with lower layer losses observed in Figure 11, the Bayesian methodology 
would assign posterior probabilities to models where this was not the case.  Given the 
general trend observed in Figure 11 and my prior actuarial experience (otherwise known as 
preconceptions) I decided to smooth out the initial set of company models.  The process 
was informal.  Loosely speaking, I dropped company models that did not behave “correctly” 
and replaced them with mixtures of company models that did behave “correctly.”  I was not 
able to reduce the noise entirely.  Before putting this plan into practice, the choice of priors 
needs to be addressed more fully.  I welcome debate on my notion of “correct” models.  
One of the advantages of the Bayesian methodology is that if forces one to make the 
assumptions explicit for all to see and open them to debate.       

Figures 12 and 13 give the limited average severity curves and the layer pure premiums 
for the final set of models.  These should be compared with Figures 9 and 11, respectively.   



On Predictive Modeling for Claim Severity 
 

236 Casualty Actuarial Society Forum, Spring 2005 

 Figure 10 – Initial Insurer Models 
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 Figure 11 – Initial Insurer Models 
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 Figure 12 – Selected Insurer Models  
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Figure 13 – Selected Insurer Models 
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The insurer models that underlie Figures 12 and 13 have been developed to ultimate.  
The insurer data that is presented for evaluation for an excess of loss treaty usually come 
from years that are too recent to contain all claims at their ultimate value.  To make use of 
the data that reinsurers typically get, we need to have distributions of the data that are 
available for each insurer model. 

Let’s look at some examples.  These examples will consist of three years of settled claim 
data.  This data will be used to calculate the likelihood of each of 20 models.  The prior 
probability for each model will be equal to 1/20.  Then using the Bayesian methodology 
described in the previous section, I will calculate posterior layer pure premiums for the 
$500,000 x $500,000 layer, and for the $1 million x $1 million layer. 

The 20 models used in this section’s example will consist of the following distributions: 

• The claim severity distribution for all claims settled within 1 year – Table 4. 

• The claim severity distribution for all claims settled within 2 years – Table 5. 
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• The claim severity distribution for all claims settled within 3 years – Table 6. 

• The ultimate claim severity distribution for all claims – Table 7. 

• The ultimate limited average severity curve – Table 8. 

As mentioned above, the models are a bit noisy, but I think they are good enough to 
illustrate the principles involved in this Bayesian methodology. 
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 Table 4 
  Cumulative Probability for Lag 1 

Claim Prior Model Number 
Amount 1 2 3 4 5 6 7 

100,000 0.998424 0.997549 0.999228 0.999234 0.999241 0.999097 0.998949
200,000 0.999522 0.999158 0.999779 0.999784 0.999789 0.999729 0.999668
300,000 0.999741 0.999563 0.999921 0.999923 0.999925 0.999888 0.999849
400,000 0.999837 0.999737 0.999971 0.999972 0.999973 0.999947 0.999921
500,000 0.999891 0.999827 0.999989 0.999990 0.999990 0.999972 0.999953
750,000 0.999954 0.999924 0.999999 0.999999 0.999999 0.999991 0.999982

1,000,000 0.999979 0.999962 1.000000 1.000000 1.000000 0.999996 0.999992
1,500,000 0.999996 0.999988 1.000000 1.000000 1.000000 0.999999 0.999998
2,000,000 0.999999 0.999995 1.000000 1.000000 1.000000 1.000000 0.999999

        
Claim Prior Model Number 

Amount 8 9 10 11 12 13 14 
100,000 0.998806 0.998725 0.998659 0.998562 0.998122 0.997094 0.996603
200,000 0.999609 0.999610 0.999611 0.999612 0.999422 0.998979 0.998818
300,000 0.999812 0.999817 0.999822 0.999828 0.999727 0.999492 0.999413
400,000 0.999895 0.999899 0.999903 0.999908 0.999848 0.999710 0.999663
500,000 0.999935 0.999938 0.999940 0.999943 0.999905 0.999817 0.999786
750,000 0.999974 0.999974 0.999974 0.999974 0.999960 0.999928 0.999911

1,000,000 0.999987 0.999987 0.999986 0.999985 0.999980 0.999968 0.999957
1,500,000 0.999996 0.999995 0.999994 0.999993 0.999993 0.999994 0.999987
2,000,000 0.999999 0.999998 0.999997 0.999996 0.999997 0.999999 0.999995

        
Claim Prior Model Number 

Amount 15 16 17 18 19 20  
100,000 0.996112 0.995621 0.995130 0.994197 0.995956 0.997715  
200,000 0.998658 0.998498 0.998337 0.997573 0.998259 0.998944  
300,000 0.999335 0.999256 0.999177 0.998684 0.999032 0.999381  
400,000 0.999616 0.999570 0.999523 0.999183 0.999392 0.999601  
500,000 0.999754 0.999722 0.999690 0.999443 0.999585 0.999728  
750,000 0.999893 0.999875 0.999858 0.999730 0.999807 0.999884  

1,000,000 0.999945 0.999933 0.999921 0.999848 0.999898 0.999948  
1,500,000 0.999981 0.999975 0.999969 0.999939 0.999964 0.999989  
2,000,000 0.999992 0.999988 0.999984 0.999969 0.999983 0.999998  
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 Table 5 
 Cumulative Probability for Lags 1-2 

Claim Prior Model Number 
Amount 1 2 3 4 5 6 7 

100,000 0.996249 0.994479 0.996598 0.995650 0.994980 0.994376 0.993730 
200,000 0.998776 0.997967 0.998770 0.998387 0.998117 0.997858 0.997582 
300,000 0.999329 0.998904 0.999393 0.999171 0.999012 0.998860 0.998698 
400,000 0.999579 0.999315 0.999648 0.999499 0.999391 0.999291 0.999184 
500,000 0.999717 0.999529 0.999768 0.999659 0.999579 0.999508 0.999432 
750,000 0.999881 0.999770 0.999886 0.999824 0.999779 0.999744 0.999706 

1,000,000 0.999947 0.999869 0.999931 0.999891 0.999862 0.999842 0.999821 
1,500,000 0.999989 0.999947 0.999968 0.999948 0.999933 0.999926 0.999918 
2,000,000 0.999998 0.999973 0.999983 0.999971 0.999962 0.999959 0.999955 

        
Claim Prior Model Number 

Amount 8 9 10 11 12 13 14 
100,000 0.993080 0.993542 0.993901 0.994418 0.993722 0.992133 0.990703 
200,000 0.997303 0.997541 0.997726 0.997995 0.997530 0.996472 0.995866 
300,000 0.998534 0.998696 0.998821 0.999003 0.998640 0.997820 0.997472 
400,000 0.999075 0.999190 0.999279 0.999407 0.999126 0.998490 0.998252 
500,000 0.999355 0.999437 0.999501 0.999593 0.999375 0.998882 0.998699 
750,000 0.999667 0.999704 0.999733 0.999775 0.999656 0.999388 0.999268 

1,000,000 0.999800 0.999817 0.999830 0.999849 0.999780 0.999625 0.999538 
1,500,000 0.999910 0.999913 0.999916 0.999920 0.999891 0.999827 0.999778 
2,000,000 0.999952 0.999952 0.999953 0.999954 0.999939 0.999907 0.999877 

        
Claim Prior Model Number 

Amount 15 16 17 18 19 20  
100,000 0.989248 0.987769 0.986267 0.983454 0.987292 0.991076 
200,000 0.995249 0.994620 0.993980 0.992118 0.993669 0.995200 
300,000 0.997118 0.996756 0.996388 0.995124 0.995968 0.996801 
400,000 0.998009 0.997762 0.997510 0.996571 0.997128 0.997676 
500,000 0.998513 0.998323 0.998129 0.997388 0.997808 0.998222 
750,000 0.999146 0.999022 0.998895 0.998429 0.998698 0.998964 

1,000,000 0.999449 0.999359 0.999266 0.998945 0.999134 0.999320 
1,500,000 0.999727 0.999675 0.999622 0.999451 0.999539 0.999626 
2,000,000 0.999847 0.999816 0.999784 0.999685 0.999717 0.999749 
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 Table 6 
 Cumulative Probability for Lags 1-3 

Claim Prior Model Number 
Amount 1 2 3 4 5 6 7 

100,000 0.993117 0.991183 0.991960 0.990009 0.988313 0.987309 0.986241
200,000 0.997248 0.996461 0.996618 0.995966 0.995416 0.994950 0.994452
300,000 0.998325 0.997996 0.998083 0.997766 0.997507 0.997228 0.996931
400,000 0.998843 0.998687 0.998752 0.998567 0.998419 0.998233 0.998034
500,000 0.999143 0.999056 0.999110 0.998984 0.998886 0.998753 0.998611
750,000 0.999529 0.999487 0.999527 0.999458 0.999404 0.999337 0.999265

1,000,000 0.999710 0.999680 0.999711 0.999664 0.999627 0.999589 0.999549
1,500,000 0.999865 0.999848 0.999867 0.999841 0.999819 0.999805 0.999790
2,000,000 0.999927 0.999917 0.999928 0.999911 0.999898 0.999891 0.999885

        
Claim Prior Model Number 

Amount 8 9 10 11 12 13 14 
100,000 0.985174 0.986141 0.986900 0.988014 0.987115 0.985052 0.982547
200,000 0.993953 0.994405 0.994760 0.995282 0.994564 0.992851 0.991672
300,000 0.996631 0.996928 0.997161 0.997502 0.996895 0.995426 0.994721
400,000 0.997834 0.998038 0.998197 0.998430 0.997942 0.996754 0.996259
500,000 0.998468 0.998608 0.998718 0.998879 0.998494 0.997557 0.997171
750,000 0.999193 0.999247 0.999289 0.999351 0.999139 0.998625 0.998370

1,000,000 0.999509 0.999526 0.999540 0.999559 0.999437 0.999140 0.998956
1,500,000 0.999774 0.999771 0.999769 0.999765 0.999715 0.999594 0.999488
2,000,000 0.999878 0.999873 0.999870 0.999864 0.999839 0.999777 0.999715

        
Claim Prior Model Number 

Amount 15 16 17 18 19 20  
100,000 0.980077 0.977642 0.975241 0.970705 0.974003 0.977352  
200,000 0.990513 0.989375 0.988255 0.985651 0.986512 0.987325  
300,000 0.994028 0.993349 0.992682 0.990980 0.991195 0.991346  
400,000 0.995774 0.995298 0.994831 0.993577 0.993620 0.993606  
500,000 0.996793 0.996421 0.996058 0.995061 0.995077 0.995047  
750,000 0.998121 0.997876 0.997635 0.996980 0.997026 0.997049  

1,000,000 0.998774 0.998596 0.998421 0.997952 0.997998 0.998030  
1,500,000 0.999385 0.999283 0.999182 0.998920 0.998912 0.998892  
2,000,000 0.999653 0.999592 0.999533 0.999378 0.999321 0.999251  
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 Table 7 
 Ultimate Cumulative Probability 

Claim Prior Model Number 
Amount 1 2 3 4 5 6 7 

100,000 0.986144 0.981451 0.978563 0.975297 0.972292 0.970836 0.969375 
200,000 0.993462 0.991264 0.988893 0.987858 0.986981 0.986135 0.985300 
300,000 0.995749 0.994592 0.992756 0.992349 0.992056 0.991480 0.990917 
400,000 0.996907 0.996197 0.994830 0.994621 0.994495 0.994066 0.993649 
500,000 0.997603 0.997108 0.996110 0.995958 0.995865 0.995527 0.995200 
750,000 0.998547 0.998270 0.997838 0.997697 0.997579 0.997370 0.997172 

1,000,000 0.999030 0.998845 0.998670 0.998530 0.998397 0.998261 0.998132 
1,500,000 0.999499 0.999403 0.999387 0.999273 0.999155 0.999095 0.999039 
2,000,000 0.999714 0.999659 0.999668 0.999582 0.999490 0.999467 0.999445 

        
Claim Prior Model Number 

Amount 8 9 10 11 12 13 14 
100,000 0.967995 0.966848 0.965978 0.964755 0.962971 0.961104 0.957388 
200,000 0.984525 0.983441 0.982566 0.981238 0.979893 0.978100 0.976354 
300,000 0.990400 0.989463 0.988683 0.987462 0.986407 0.984925 0.983884 
400,000 0.993269 0.992457 0.991774 0.990694 0.989877 0.988749 0.988008 
500,000 0.994904 0.994197 0.993601 0.992655 0.992024 0.991202 0.990608 
750,000 0.996993 0.996480 0.996049 0.995368 0.995031 0.994695 0.994273 

1,000,000 0.998018 0.997636 0.997316 0.996813 0.996621 0.996506 0.996183 
1,500,000 0.998990 0.998768 0.998583 0.998294 0.998218 0.998230 0.998036 
2,000,000 0.999427 0.999294 0.999184 0.999012 0.998974 0.998998 0.998881 

        
Claim Prior Model Number 

Amount 15 16 17 18 19 20  
100,000 0.953900 0.950641 0.947611 0.942936 0.940188 0.936834 
200,000 0.974729 0.973226 0.971844 0.969483 0.965947 0.961818 
300,000 0.982924 0.982042 0.981240 0.979667 0.976492 0.972815 
400,000 0.987327 0.986706 0.986145 0.984848 0.982275 0.979308 
500,000 0.990063 0.989568 0.989122 0.987937 0.985918 0.983600 
750,000 0.993887 0.993537 0.993223 0.992192 0.991065 0.989781 

1,000,000 0.995888 0.995620 0.995380 0.994510 0.993768 0.992925 
1,500,000 0.997859 0.997698 0.997554 0.996986 0.996440 0.995814 
2,000,000 0.998774 0.998677 0.998589 0.998237 0.997707 0.997093 
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 Table 8 
 Ultimate Limited Average Severity 

Claim Prior Model Number 
Amount 1 2 3 4 5 6 7 

100,000 6,412 7,021 7,217 8,067 8,835 9,181 9,540
200,000 7,340 8,276 8,735 9,774 10,712 11,168 11,637
300,000 7,864 8,961 9,629 10,735 11,725 12,251 12,788
400,000 8,226 9,413 10,241 11,375 12,385 12,960 13,546
500,000 8,498 9,744 10,689 11,841 12,861 13,474 14,097
750,000 8,964 10,302 11,417 12,604 13,650 14,329 15,016

1,000,000 9,261 10,655 11,842 13,065 14,142 14,864 15,591
1,500,000 9,612 11,073 12,297 13,583 14,725 15,493 16,264
2,000,000 9,802 11,300 12,524 13,860 15,054 15,842 16,631

        
Claim Prior Model Number 

Amount 8 9 10 11 12 13 14 
100,000 9,891 9,977 10,045 10,148 10,337 10,344 11,107
200,000 12,091 12,290 12,448 12,682 13,025 13,217 14,235
300,000 13,306 13,606 13,847 14,209 14,671 15,028 16,180
400,000 14,107 14,495 14,809 15,286 15,841 16,328 17,567
500,000 14,692 15,155 15,533 16,111 16,739 17,323 18,628
750,000 15,668 16,283 16,787 17,567 18,311 19,032 20,461

1,000,000 16,279 17,004 17,602 18,528 19,336 20,110 21,632
1,500,000 16,990 17,863 18,583 19,702 20,571 21,361 23,009
2,000,000 17,374 18,333 19,125 20,356 21,253 22,032 23,756

        
Claim Prior Model Number 

Amount 15 16 17 18 19 20  
100,000 11,832 12,518 13,166 13,884 14,036 14,257  
200,000 15,197 16,105 16,958 18,006 18,489 19,102  
300,000 17,267 18,289 19,246 20,485 21,307 22,315  
400,000 18,735 19,830 20,854 22,234 23,344 24,684  
500,000 19,856 21,006 22,080 23,583 24,922 26,526  
750,000 21,803 23,057 24,223 26,002 27,721 29,758  

1,000,000 23,058 24,388 25,623 27,641 29,585 31,880  
1,500,000 24,550 25,985 27,314 29,688 31,939 34,581  
2,000,000 25,367 26,865 28,251 30,851 33,369 36,320  
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We are now ready to work through our examples in detail.  Exhibits 1-3 below give the 
results of the Bayesian methodology for a small, a medium, and a large insurer.  The exhibits 
take claim severity data from each insurer and provide estimates of the layer pure premium 
for a $500,000 x $500,000 layer and for a $1 million x $1 million layer.  For the record, I note 
that the “data” for each insurer was produced from a simulation taken from a single claim 
severity distribution.  The “true” expected pure premiums for the layers are $1,382 and 
$1,015, respectively. 

Here is a step by step description of the calculations in those exhibits.            

Lags – As mentioned above, the claim severity distributions underlying the models were fit 
by settlement lag.  Claims from the most recent accident year consist of claims that were 
settled in Lag 1.  Claims from the second most recent year consist of claims that were settled 
in Lags 1 and 2.  The designation Lag 1 corresponds to accident year AY=1, Lags 1-2 
corresponds to AY=2 and Lags 1-3 corresponds to AY=3. 

Interval Lower Bound and Claim Count – We summarized the claim amounts in 
intervals, with the lower bound of the interval being specified to the left of the claim count.  
Let ni,AY be the observed claim count in the ith interval for accident year AY.  For example, in 
Exhibit 1, there were 15 claims in the interval (100,000, 200,000] and there were no claims 
more than 2,000,000 in Lag 1.  The underlying exposure was the same for each accident year.  
Note that there are more high severity claims in the earlier accident years. 

Prior Model # – These are the models described in Tables 4-8 above.  Each table gives a 
different part of each model as described above.   

Posterior Probability – This is calculated for each prior model.  Let: 

• ni,AY be the number of claims in the ith interval of the AYth accident year.  

• xi,AY be the lower bound of the ith interval, xi+1,AY be the upper bound of the ith interval.  
Note x10,AY = �. 

• Let Pi,AY,m be the probability that a claim is observed in ith cell given that it is in the AYth 
accident year for model m.  Let xi be the lower bound of the ith interval.  Let FAY,m(xi) be 
the probability that a claim is ≤ xi in accident year AY for model m.  These probabilities 
are given in Tables 4-6 above.  Then: 
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• Let Prior(m) be the prior probability associated with model m.  (In this example, Prior(m) 
= 1/20 for all m.) Then according to Bayes’ theorem: 

Posterior( ) Prior( )mm l m∝ ⋅ . 

As was done in the COTOR Challenge example, you first calculate the product 
lm·Prior(m) and then normalize. 

Layer Pure Premium – The layer pure premium for each model is calculated from the 
limited average severity curves in Table 8.  For example, the layer pure premium for the $500 
thousand x $500 thousand layer is calculated as the difference between the limited average 
severity for $1 million and the limited average severity at $500 thousand8. 

Posterior Mean and Standard Deviation – These quantities are calculated by the 
following formulas. 

20

=1

20
2 2

=1

                      Posterior Mean = Layer Pure Premium( ) Posterior( ).

Posterior Standard Deviation = Layer Pure Premium( ) Posterior( ) Posterior Mean  .

m

m

m m

m m

⋅

⋅ −

∑

∑
 

Note that as we increase the exposure, and hence the number of observations, the 
posterior probability tends to be concentrated on fewer models.   As the posterior standard 
deviations indicate, increasing exposure leads to less uncertainty in the final estimate. 

                                                 
8 It is often the case that the reinsurer will have an independent estimate of the probability that a claim is more 
than $100,000.  To make use of this information, the reinsurer should multiply the layer pure premium times 
the ratio of this probability to each model’s probability that a claim is more than $100,000.  I did not do this in 
these examples. 
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5. CONCLUDING REMARKS  

In this paper, I gave some examples showing how to use the likelihood function and 
Bayes’ theorem to estimate the costs of high layers of reinsurance.  Many of the assumptions 
need to be debated, and regardless of how the debate is resolved, much work is needed to 
complete the job.  I hope this paper provides strong evidence that such an approach can 
succeed and provide a sound methodology for reinsures to use in pricing coverage of high 
layers of reinsurance. 
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Exhibit 1 – Small Insurer 
 Interval    Layer Pure Premium
 Lower  Claim Prior  Posterior $500K x $1M x
Lags Bound Count Model # Probability $500K $1M 

1 100,000 15 1 0.016406 763 541
1 200,000 2 2 0.041658 911 645
1 300,000 1 3 0.089063 1,153 682
1 400,000 2 4 0.130281 1,224 796
1 500,000 0 5 0.157593 1,281 912
1 750,000 0 6 0.110614 1,390 978
1 1,000,000 0 7 0.075702 1,494 1,040
1 1,500,000 0 8 0.053226 1,587 1,095
1 2,000,000 0 9 0.080525 1,849 1,328
   10 0.104056 2,069 1,523
   11 0.129925 2,417 1,828

1-2 100,000 40 12 0.010896 2,598 1,916
1-2 200,000 10 13 0.000007 2,788 1,922
1-2 300,000 1 14 0.000009 3,004 2,124
1-2 400,000 0 15 0.000011 3,202 2,309
1-2 500,000 2 16 0.000013 3,382 2,477
1-2 750,000 0 17 0.000014 3,543 2,628
1-2 1,000,000 2 18 0.000000 4,058 3,211
1-2 1,500,000 0 19 0.000000 4,663 3,784
1-2 2,000,000 0 20 0.000000 5,354 4,440

       
   Posterior Mean 1,572 1,113

1-3 100,000 76 Posterior Std. Dev. 463 385
1-3 200,000 26     
1-3 300,000 11     
1-3 400,000 3     
1-3 500,000 8     
1-3 750,000 0     
1-3 1,000,000 0     
1-3 1,500,000 0     
1-3 2,000,000 0     
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Exhibit 2 – Medium Insurer 
 Interval    Layer Pure Premium 
 Lower  Claim Prior  Posterior $500K x $1M x 
Lags Bound Count Model # Probability $500K $1M 

1 100,000 31 1 0.000973 763 541 
1 200,000 12 2 0.021135 911 645 
1 300,000 4 3 0.221357 1,153 682 
1 400,000 2 4 0.235280 1,224 796 
1 500,000 1 5 0.209597 1,281 912 
1 750,000 0 6 0.123874 1,390 978 
1 1,000,000 0 7 0.059523 1,494 1,040 
1 1,500,000 0 8 0.028986 1,587 1,095 
1 2,000,000 0 9 0.037532 1,849 1,328 
   10 0.037637 2,069 1,523 
   11 0.023539 2,417 1,828 

1-2 100,000 107 12 0.000567 2,598 1,916 
1-2 200,000 33 13 0.000000 2,788 1,922 
1-2 300,000 14 14 0.000000 3,004 2,124 
1-2 400,000 3 15 0.000000 3,202 2,309 
1-2 500,000 7 16 0.000000 3,382 2,477 
1-2 750,000 2 17 0.000000 3,543 2,628 
1-2 1,000,000 0 18 0.000000 4,058 3,211 
1-2 1,500,000 0 19 0.000000 4,663 3,784 
1-2 2,000,000 0 20 0.000000 5,354 4,440 

       
   Posterior Mean 1,344 909 

1-3 100,000 191 Posterior Std. Dev. 278 245 
1-3 200,000 47     
1-3 300,000 31     
1-3 400,000 22     
1-3 500,000 6     
1-3 750,000 5     
1-3 1,000,000 1     
1-3 1,500,000 2     
1-3 2,000,000 1     
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Exhibit 3 - Large Insurer 
 Interval    Layer Pure Premium
 Lower  Claim Prior  Posterior $500K x $1M x
Lags Bound Count Model # Probability $500K $1M 

1 100,000 77 1 0.000000 763 541
1 200,000 20 2 0.000193 911 645
1 300,000 7 3 0.000481 1,153 682
1 400,000 1 4 0.050204 1,224 796
1 500,000 1 5 0.689060 1,281 912
1 750,000 1 6 0.179377 1,390 978
1 1,000,000 0 7 0.015896 1,494 1,040
1 1,500,000 0 8 0.001625 1,587 1,095
1 2,000,000 0 9 0.009032 1,849 1,328
   10 0.022443 2,069 1,523
   11 0.031690 2,417 1,828

1-2 100,000 193 12 0.000000 2,598 1,916
1-2 200,000 60 13 0.000000 2,788 1,922
1-2 300,000 22 14 0.000000 3,004 2,124
1-2 400,000 14 15 0.000000 3,202 2,309
1-2 500,000 10 16 0.000000 3,382 2,477
1-2 750,000 7 17 0.000000 3,543 2,628
1-2 1,000,000 2 18 0.000000 4,058 3,211
1-2 1,500,000 1 19 0.000000 4,663 3,784
1-2 2,000,000 1 20 0.000000 5,354 4,440

       
   Posterior Mean 1,360 966

1-3 100,000 431 Posterior Std. Dev. 234 188
1-3 200,000 117     
1-3 300,000 40     
1-3 400,000 25     
1-3 500,000 24     
1-3 750,000 4     
1-3 1,000,000 5     
1-3 1,500,000 0     
1-3 2,000,000 1     
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