
 

115 

Transition Matrix Theory 
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 Individual Claim Loss Development 

John B. Mahon 
________________________________________________________________________ 
Abstract 

Motivation. Individual claim development is important for creating the average severity distributions that 
underlie most increased limits, and reinsurance pricing analyses, but most current methods do not adequately 
represent the true process.   

Method.  Transition Matrix Theory is applied to a large database of reinsurance data.  The data is 
processed to isolate GL data, and the Transition Matrix process is described in detail.   

Results.  Individual claim size development is characterized as a distributional process.  The effect of this 
distributional process on pricing parameters is contrasted with traditional methods.  

Conclusions. Individual Claim Size development is a distributional process, and can be measured and 
introduced into procedures for calculating average severity distributions.  A simple five parameter formula can 
model this process.  The Transition Matrix process may overstate the distribution of the ultimate distribution, 
but this can be measured and corrected.  Pricing parameters are affected by this process and its effect should be 
factored in when possible. 

Keywords. Transition Matrix, Average Severity, Individual Claim Loss Development, Distributional Loss 
Development 

 

1. INTRODUCTION 

Loss development has long been considered to be an aggregate phenomenon, and not 
applicable to individual claims.  Rating procedures require accurate estimates of individual 
claim size development in order to estimate the average severity distribution curves that 
underlie increased limits ratemaking, and reinsurance excess layer pricing.  Current methods 
have limitations based on sparse data at high layers, or are based on assumptions that may 
introduce errors.  This study applies the Transition Matrix Theory approach to a large 
collection of reinsurance individual large losses, and, characterizes individual claim size 
development as a distributional procedure.  It was found that a simple five parameter 
distribution will model the process.   

1.1 Research Context 
Several approaches have been used to apply loss development to individual claims to 

adjust them for increased limits calculations and for pricing reinsurance excess layers.  
Transition matrix theory as applied to losses was introduced at the International Congress of 
Actuaries in 1980 by Charles Hachemeister [1].  A more recent presentation of this method 
can be found in Ole Hesselager’s [2] 1994 paper where he presents a time continuous 
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method for computing transition matrices.  The present research uses a time discrete 
method of computing Markov transition matrices to represent the age to age loss 
development of a large body of reinsurance general liability claims.   

A weakness of the transition matrix approach is that it generates a large number of 
parameters which make it unwieldy, and prone to parameter error.   

1.2 Objective 
This study uses a straightforward interpretation of the transition matrix theory and 

applies it to a large body of reinsurance individual large losses.  This yields vectors which can 
be used to develop individual claims from an arbitrary size and evaluation to ultimate.  The 
behavior of the loss development forecasts suggests a five parameter model that can be used 
to characterize the development of an open claim as a future distribution.  This model is 
modified to reflect the fact that observed variation appears to be smaller than that provided 
by the Transition Matrix process. 

1.3 Outline 
The remainder of the paper proceeds as follows.  Section 2.1 will provide a background 

for individual claim development.  Section 2.2 describes the details of the Transition Matrix 
method as applied here.  Section 2.3 describes the application of the Transition Matrix 
method to aollection of reinsurance data.  Section 2.4 describes a comparison between 
transition matrix results and initial to final transitions.  It discusses an adjustment to the 
Transition Matrix results to reduce excess variation introduced by the Transition Matrix 
method, and, proposes a model for distributional loss development.  Section 2.5 describes an 
effect of the distributional loss development method on pricing parameters.  Section 3 
discusses the applicabililty and limitations of the method used here, and Section 4 collects 
the conclusions. 

2. BACKGROUND AND METHODS 

In this section, the background, method, data and application are described.  

2.1 Background 
Loss development has long been important to both reserving and pricing activities.  Loss 

development for reserving has concentrated on the aggregate behavior of the losses.  
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Triangles of sums of losses or claim counts are subjected to procedures which measure the 
behavior of aggregate losses.  The behavior of individual claims, for the most part, is not 
important.  It only becomes important where large individual claims are near or at limits, and 
further development may distort the result.  Treatment in this situation usually involves 
isolating these claims from the aggregate data, and handling them on an individual and ad 
hoc basis.   

 The rating discipline needs to address individual claim loss development at a more 
detailed level.  Increased limits pricing for primary business, and excess layer pricing for 
reinsurance business require the correct estimate of large size losses.  The issue of individual 
claim loss development becomes a critical factor in determining the correct probability of 
large losses used to determine pricing in these two business applications. 

A variety of solutions been developed to deal with this problem, some, better than others.  
Elimination of the problem by using closed claim data has been successful to the extent that 
the data is available, and, not too stale.  Fitting immature loss size data to severity 
distributions and measuring loss development by counts within empirical intervals of size, or 
changes in the parameters has been successful for creating increased limits factors for 
subline pricing for many years.  It is limited by the fact that it requires large amounts of data 
and many man-hours to complete.  This eliminates it from use in reinsurance pricing 
exercises. 

This most common experience rating method used in reinsurance involves combining 
features of aggregate loss development that can be applied to individual losses.  The losses 
are trended, then layered into the excess layer of rating interest, and then, the appropriate 
excess layer loss development factor is applied.  This method suffers from two problems.  
One is that the excess loss development may be very different from the factors that are used, 
and the other is that there may be no losses in the higher layers after trending.  Both of these 
can lead to significant errors.  

Another method commonly used is to apply trend and average severity development 
factors to individual claims, then use the adjusted claims to fit a theoretical severity 
distribution.  This severity distribution is then used to evaluate excess layers using exposure 
rating techniques.  The first thing to say here is that it is incorrect to apply average severity 
loss development factors to individual losses, and call the result the ultimate value of that 
claim.  This has to do with the nature of loss development of an individual claim.  A claim 
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can have a wide range of outcomes as it matures to ultimate.  To simply say that when it 
matures to ultimate, it will have a value some “X” percent larger than current, misses the 
variability of the loss development process.  

Exhibit 1 shows a typical adjustment for an individual loss to prepare it for fitting  

 

x  Trend
Claim 123 1.17 Ultimate
$125,000 Claim

x  Average $182,813
Severity

Loss
Development

1.25

Exhibit 1 showing a typical trend and development
adjustment to an indivdual claim   

a severity curve.  The reality of the situation is that an open claim has four possible 
outcomes at ultimate, it may stay the same size, it will grow in  

Ultimate
Claim 123

$0

Ultimate
Claim 123
less than

$2,000,000
Claim 123

$2,000,000
Ultimate

Claim 123
equal to

$2,000,000

Ultimate
Claim 123

greater than
$2,000,000

Exhibit 2. The four possible states for the ultimate
settlement of a claim.  

size, it will settle for a lesser amount, or it will close with no payment as shown in exhibit 2.  
Transition matrix theory accommodates the variation of possible outcomes. 
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2.2 The Transition Matrix Approach 

A Markov Transition Matrix is a square matrix that contains the probabilities of moving 
from one state to another state [3].  For our purposes, the states will be the combination of 
open or closed, and size of loss.  Exhibit 3 shows the complete list of states for our example.  
Note that the endpoints of the size intervals are determined exponentially.  They increase by 
a constant factor, two, in this case.  The interval end points can be arbitrary, but selecting 
exponential ones will provide additional insight into the results of this study. 

Open/ Interval Interval
Class Closed bottom top Count

0 Open 0 0 0
1 Open 0 200,000       0
2 Open 200,000       400,000       0
3 Open 400,000       800,000       0
4 Open 800,000       1,600,000    0
5 Open 1,600,000    3,200,000    0
6 Open 3,200,000    6,400,000    1
7 Open 6,400,000    12,800,000  0
8 Open 12,800,000  25,600,000  0
9 Open 25,600,000  51,200,000  0

10 Closed 0 0 0
11 Closed 0 200,000       0
12 Closed 200,000       400,000       0
13 Closed 400,000       800,000       0
14 Closed 800,000       1,600,000    0
15 Closed 1,600,000    3,200,000    0
16 Closed 3,200,000    6,400,000    0
17 Closed 6,400,000    12,800,000  0
18 Closed 12,800,000  25,600,000  0
19 Closed 25,600,000  51,200,000  0

As of 36 months

Exhibit 4. This shows the state of the same claim
shown in exhibit 3, but it is now $3,500,000 
with a maturity of 36 months.  It is now in class 6.  

 

Also shown is an open claim of $2,000,000 as a count of one in class 5. 

We now consider this claim as it matures to the 36 month evaluation, and it changes in 
value to $3,500,000.  Exhibit 4 shows its state as a class 6.   

Open/ Interval Interval
Class Closed bottom top Count

0 Open 0 0 0
1 Open 0 200,000       0
2 Open 200,000       400,000       0
3 Open 400,000       800,000       0
4 Open 800,000       1,600,000    0
5 Open 1,600,000    3,200,000    1
6 Open 3,200,000    6,400,000    0
7 Open 6,400,000    12,800,000  0
8 Open 12,800,000  25,600,000  0
9 Open 25,600,000  51,200,000  0
10 Closed 0 0 0
11 Closed 0 200,000       0
12 Closed 200,000       400,000       0
13 Closed 400,000       800,000       0
14 Closed 800,000       1,600,000    0
15 Closed 1,600,000    3,200,000    0
16 Closed 3,200,000    6,400,000    0
17 Closed 6,400,000    12,800,000  0
18 Closed 12,800,000  25,600,000  0
19 Closed 25,600,000  51,200,000  0

As of 24 months

Exhibit 3.  This shows our claim of $2,000,000
with a maturity of 24 months.  All of the possible
states of size and open or closed are shown. 
These states are labeled with a Class number
which will be used to track them.
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Transition from 24 to 36 months
Final Initial Class
Class 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0
1
2
3
4
5
6 1
7
8
9
10
11
12
13
14
15
16
17
18
19

Exhibit 5.  The transition matrix for the sample claim that is a class 5 at 24 months and a class 6 at 36 months  

We can now construct a transition matrix for the transition from 24 to 36 months for this 
loss as shown in exhibit 5.  Consider if we have 755 class 5 losses at 24 months and they are 
entered into the transition matrix.  This would result in the matrix shown in exhibit 6.  

Transition from 24 to 36 months
Final Initial Class
Class 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 13
1 22
2 35
3 57
4 91
5 146
6 91
7 57
8 35
9 22

10 4
11 7
12 11
13 19
14 30
15 48
16 30
17 19
18 11
19 7

Total 755

Exhibit 6.  The matrix showing all 24 month class 5 claims populated into their final class at 36 months.  

Now we consider a complete collection of fictitious claims, in our example there are 
4,259, of all sizes and open or closed status.  These claims are mapped into this transition 
matrix and this results in the matrix shown in exhibit 7. 
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Transition from 24 to 36 months
Final Initial Class
Class 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Total

0 0 2 3 5 8 13 22 5 1 0 0 0 0 0 0 0 0 0 0 0 59
1 1 3 5 8 13 22 35 8 2 0 0 0 0 0 0 0 0 0 0 0 97
2 2 2 8 13 22 35 57 13 3 0 0 0 0 0 0 0 0 0 0 0 155
3 3 1 5 22 35 57 91 22 5 1 0 0 0 0 0 0 0 0 0 0 242
4 5 0 3 13 57 91 146 35 8 2 0 0 0 0 0 0 0 0 0 0 360
5 9 0 2 8 35 146 234 57 13 3 0 0 0 0 0 0 1 0 0 0 508
6 15 0 1 5 22 91 375 91 22 5 0 0 0 0 0 0 2 0 0 0 629
7 9 0 0 3 13 57 234 146 35 8 0 0 0 0 0 0 1 0 0 0 506
8 5 0 0 2 8 35 146 91 57 13 0 0 0 0 0 0 0 0 0 0 357
9 3 0 0 1 5 22 91 57 35 22 0 0 0 0 0 0 0 0 0 0 236

10 0 0 1 1 2 4 7 1 0 0 0 0 0 0 0 0 0 0 0 0 16
11 0 1 1 2 4 7 11 2 0 0 0 0 0 0 0 0 0 0 0 0 28
12 0 0 2 4 7 11 19 4 1 0 0 0 1 0 0 0 0 0 0 0 49
13 1 0 1 7 11 19 30 7 1 0 0 0 0 2 0 0 0 0 0 0 79
14 1 0 1 4 19 30 48 11 2 0 0 0 0 0 6 0 0 0 0 0 122
15 3 0 0 2 11 48 78 19 4 1 0 0 0 0 0 17 0 0 0 0 183
16 5 0 0 1 7 30 125 30 7 1 0 0 0 0 0 0 45 0 0 0 251
17 3 0 0 1 4 19 78 48 11 2 0 0 0 0 0 0 0 17 0 0 183
18 1 0 0 0 2 11 48 30 19 4 0 0 0 0 0 0 0 0 6 0 121
19 1 0 0 0 1 7 30 19 11 7 0 0 0 0 0 0 0 0 0 2 78

Total 67 9 33 102 286 755 1905 696 237 69 0 0 1 2 6 17 49 17 6 2 4259

Exhibit 7. This is a transition matrix populated with a complete inventory of losses starting at a 24 month maturity,
and ending in a 36 month maturity. The value shown is claim count.  

This matrix can be converted to a Markov transition matrix by dividing each column by 
the total at the bottom of the column.   This normalizes each column so that it sums to one, 
and each value represents the probability that a selected initial class will make the transition 
to the selected final class.  The complete Markov transition matrix is shown in exhibit 8.  

Transition from 24 to 36 months
Final Initial Class
Class 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 0 0.22 0.09 0.05 0.03 0.02 0.01 0.01 0 0 0 0 0 0 0 0 0 0 0 0
1 0.01 0.33 0.15 0.08 0.05 0.03 0.02 0.01 0.01 0 0 0 0 0 0 0 0 0 0 0
2 0.03 0.22 0.24 0.13 0.08 0.05 0.03 0.02 0.01 0 0 0 0 0 0 0 0 0 0 0
3 0.04 0.11 0.15 0.22 0.12 0.08 0.05 0.03 0.02 0.01 0 0 0 0 0 0 0 0 0 0
4 0.07 0 0.09 0.13 0.2 0.12 0.08 0.05 0.03 0.03 0 0 0 0 0 0 0 0 0 0
5 0.13 0 0.06 0.08 0.12 0.19 0.12 0.08 0.05 0.04 0 0 0 0 0 0 0.02 0 0 0
6 0.22 0 0.03 0.05 0.08 0.12 0.2 0.13 0.09 0.07 0 0 0 0 0 0 0.04 0 0 0
7 0.13 0 0 0.03 0.05 0.08 0.12 0.21 0.15 0.12 0 0 0 0 0 0 0.02 0 0 0
8 0.07 0 0 0.02 0.03 0.05 0.08 0.13 0.24 0.19 0 0 0 0 0 0 0 0 0 0
9 0.04 0 0 0.01 0.02 0.03 0.05 0.08 0.15 0.32 0 0 0 0 0 0 0 0 0 0

10 0 0 0.03 0.01 0.01 0.01 0 0 0 0 1 0 0 0 0 0 0 0 0 0
11 0 0.11 0.03 0.02 0.01 0.01 0.01 0 0 0 0 1 0 0 0 0 0 0 0 0
12 0 0 0.06 0.04 0.02 0.01 0.01 0.01 0 0 0 0 1 0 0 0 0 0 0 0
13 0.01 0 0.03 0.07 0.04 0.03 0.02 0.01 0 0 0 0 0 1 0 0 0 0 0 0
14 0.01 0 0.03 0.04 0.07 0.04 0.03 0.02 0.01 0 0 0 0 0 1 0 0 0 0 0
15 0.04 0 0 0.02 0.04 0.06 0.04 0.03 0.02 0.01 0 0 0 0 0 1 0 0 0 0
16 0.07 0 0 0.01 0.02 0.04 0.07 0.04 0.03 0.01 0 0 0 0 0 0 0.92 0 0 0
17 0.04 0 0 0.01 0.01 0.03 0.04 0.07 0.05 0.03 0 0 0 0 0 0 0 1 0 0
18 0.01 0 0 0 0.01 0.01 0.03 0.04 0.08 0.06 0 0 0 0 0 0 0 0 1 0
19 0.01 0 0 0 0 0.01 0.02 0.03 0.05 0.1 0 0 0 0 0 0 0 0 0 1

Total 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Exhibit 8. A Markov transition matrix for the transition from 24 to 36 months.  Note that each column sums to one.  
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With this matrix populated, 
it is possible to observe 
structural details of loss 
development.  To do this, 
we consider four different 
types of transitions, open to 
open, open to closed, closed 
to closed, and closed to 
open. This corresponds to 
the 4 quadrants of the 
transition matrix.  The 
section of the matrix that 
shows open to open is 
shown in exhibit 9.   Here 
we see that transitions with 
no size change (same initial 
and final class) has the 
highest probability.  This 
forms a diagonal ridge 
across the matrix.   Note that the columns do not sum to one because some of the 
probability is carried in the part of the matrix representing the open to closed transitions 
which is shown in Exhibit 10.  This shows a similar diagonal ridge which represents claims 
that close in the same size range that they were open at the beginning of the transition.   

A third type of transition 
to be considered is the 
closed to closed transition as 
shown in exhibit 11.  This 
looks as expected, where, 
the transitions with the same 
initial and final size form a 
100 percent ridge forming a 
diagonal across the page.  
There is one exception in 

Transition from 24 to 36 months
Final Initial Class
Class 0 1 2 3 4 5 6 7 8 9

0 0 0.22 0.09 0.05 0.03 0.02 0.01 0.01 0 0
1 0.01 0.33 0.15 0.08 0.05 0.03 0.02 0.01 0.01 0
2 0.03 0.22 0.24 0.13 0.08 0.05 0.03 0.02 0.01 0
3 0.04 0.11 0.15 0.22 0.12 0.08 0.05 0.03 0.02 0.01
4 0.07 0 0.09 0.13 0.2 0.12 0.08 0.05 0.03 0.03
5 0.13 0 0.06 0.08 0.12 0.19 0.12 0.08 0.05 0.04
6 0.22 0 0.03 0.05 0.08 0.12 0.2 0.13 0.09 0.07
7 0.13 0 0 0.03 0.05 0.08 0.12 0.21 0.15 0.12
8 0.07 0 0 0.02 0.03 0.05 0.08 0.13 0.24 0.19
9 0.04 0 0 0.01 0.02 0.03 0.05 0.08 0.15 0.32

Exhibit 9 Transition Matrix for open to open losses.

Transition from 24 to 36 months
Final Initial Class
Class 10 11 12 13 14 15 16 17 18 19

10 1 0 0 0 0 0 0 0 0 0
11 0 1 0 0 0 0 0 0 0 0
12 0 0 1 0 0 0 0 0 0 0
13 0 0 0 1 0 0 0 0 0 0
14 0 0 0 0 1 0 0 0 0 0
15 0 0 0 0 0 1 0 0 0 0
16 0 0 0 0 0 0 0.92 0 0 0
17 0 0 0 0 0 0 0 1 0 0
18 0 0 0 0 0 0 0 0 1 0
19 0 0 0 0 0 0 0 0 0 1

Exhibit 11 Transition Matrix for close to closed losses

Transition from 24 to 36 months
Initial Final Class
Class 10 11 12 13 14 15 16 17 18 19

0 0 0 0 0.01 0.01 0.04 0.07 0.04 0.01 0.01
1 0 0.11 0 0 0 0 0 0 0 0
2 0.03 0.03 0.06 0.03 0.03 0 0 0 0 0
3 0.01 0.02 0.04 0.07 0.04 0.02 0.01 0.01 0 0
4 0.01 0.01 0.02 0.04 0.07 0.04 0.02 0.01 0.01 0
5 0.01 0.01 0.01 0.03 0.04 0.06 0.04 0.03 0.01 0.01
6 0 0.01 0.01 0.02 0.03 0.04 0.07 0.04 0.03 0.02
7 0 0 0.01 0.01 0.02 0.03 0.04 0.07 0.04 0.03
8 0 0 0 0 0.01 0.02 0.03 0.05 0.08 0.05
9 0 0 0 0 0 0.01 0.01 0.03 0.06 0.1

Exhibit 10 Transition Matrix for open to closed losses.
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our example, in the initial 
class of 16 where the 
probability is less then 100 
percent.  The rest of the 
probability is carried in the 
fourth type of transition the 
closed to open transitions 
shown in exhibit 12.  
Although this type of 
transition is rather rare, they 
are shown to illustrate that 
this portion of the matrix can contain real data and should not be ignored.  This quadrant of 
the matrix must exist in order to accommodate the few claims that may fall into it.  
Otherwise, when coding to process data, errors can appear.               

A second quantity that needs to be 
developed is a vector representing the 
probability of a claim being in a class state at an 
evaluation.  This is performed as follows: One 
selects the evaluation of interest and assigns 
class values to all claims based on size and open 
status at the evaluation.  Then, the count for 
each class is divided by the total number of 
claims in the evaluation.  This will produce a 
vector of probabilities, an example of which, is 
shown in exhibit 13.  

If we take the square Markov transition 
matrix for the transition from 24 to 36 months 
shown in exhibit 8 and multiply it by the 24 
month initial vector shown in exhibit 13, the 
result will be a one dimensional vector that 
contains the final probabilities at 36 months.  
The Markov transition matrix chain is then 

Initial Values Initial
24 month evaluation Vector

Claim for Matrix
Class Count Prob. multiplication

0 67 0.016 0.016
1 9 0.002 0.002
2 33 0.008 0.008
3 102 0.024 0.024
4 286 0.067 0.067
5 755 0.177 0.177
6 1905 0.447 0.447
7 696 0.163 0.163
8 237 0.056 0.056
9 69 0.016 0.016
10 0 0.000 0.000
11 0 0.000 0.000
12 1 0.000 0.000
13 2 0.000 0.000
14 6 0.001 0.001
15 17 0.004 0.004
16 49 0.012 0.012
17 17 0.004 0.004
18 6 0.001 0.001
19 2 0.000 0.000

Total 4259 1.000

Exhibit 13. A vector of initial
probabilities for 24 month 
evaluation. 

Transition from 24 to 36 months
Final Initial Class
Class 10 11 12 13 14 15 16 17 18 19

0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0.02 0 0 0
6 0 0 0 0 0 0 0.04 0 0 0
7 0 0 0 0 0 0 0.02 0 0 0
8 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0

Exhibit 12 Transition Matrix for close to open losses
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Initial Values
24 month evaluation

Claim
Class Count Prob.

0 0 0
1 0 0
2 0 0
3 0 0
4 0 0
5 1 1
6 0 0
7 0 0
8 0 0
9 0 0
10 0 0
11 0 0
12 0 0
13 0 0
14 0 0
15 0 0
16 0 0
17 0 0
18 0 0
19 0 0

Total 1 1

Exhibit 14.  Initial vector for a claim
of $2,000,000 size and a maturity
of 24 months. 

established by using this final at 36 months vector, and using it as the initial vector at 36 
months and multiplying the 36 to 48 month transition matrix by it resulting in the final at 48 
month probability vector.  This process is continued in maturity order until the oldest 
transition matrix is used.  The last transition matrix may have to be judgmentally adjusted so 
that all claims are closed after it is used.  This is accomplished by using a matrix where the 
first and last quadrants, exhibits 9 and 12 contain all zeros, and 100% of the probability is in 
the other two quadrants, exhibits 10 and 11. 

 We now have all the tools necessary to evaluate loss development by transition matrix 
theory.  Let us consider the ultimate loss development of an individual claim.  For an 
example, let us select a $2,000,000 claim that is open at 24 months.  Then, we raise the 
question, what does the ultimate development for this claim look like?  To arrive at the 
answer we simply place this claim in an initial vector, and we multiply this vector by all the 
transition matrices in maturity sequence forming a Markov transition chain.   

 The initial vector for this is a special case where all the 
probability is concentrated in one class, and our example is 
shown in exhibit 14.  When this vector is multiplied by the 
transition matrix for the 24 to 36 month transition, the result 
is a final value vector which 
contains the contents of the 
initial class 5 column of the 
transition matrix, as shown 
in exhibit 15.  

This final at 36 month 
vector serves as the initial 
vector for 36 months to 
multiply with the transition 
matrix for 36 to 48 months 
forming the next step in the 
Markov chain.  This process 
is repeated until all of the 
transition matrices are used.  

The final value vector that results is the ultimate loss 

Final Value
36 Month Maturity

Class Prob.
0 0.017
1 0.029
2 0.046
3 0.075
4 0.121
5 0.193
6 0.121
7 0.075
8 0.046
9 0.029

10 0.005
11 0.009
12 0.015
13 0.025
14 0.040
15 0.064
16 0.040
17 0.025
18 0.015
19 0.009

Total 0.000

Exhibit 15.  Final vector for a claim
of $2,000,000 size and a maturity
of 24 months at 36 months.
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development for the claim in our example.  In order to illustrate this example, artificial data 
in transition matrices is used.  The results of these various transitions are shown in a graph in 
Exhibit 16. One obvious feature of this graph is the two distinct peaks.  The first one is in 
the open claims range, (Classes 0 to 9) and the second one in the closed range, (Classes 10 to 
19)  This shows that as claims mature, the peak decreases on the left, and increases on the 
right, corresponding with a decrease in open claims and an increase in closed claims.  The 
“Final” line, indicated by triangles, shows a peak, centered around class 15 (the same size as 
our starting size class 5) and classes 0 through 9 have zero probability signifying there are no 
open claims.  It is interesting to note that there is about 3% probability in class 10 which is 
the closed, zero size class.  This allows us to make a statement about the potential loss 
development of an open claim.  We can say that its ultimate value will be distributed with the 
probabilities contained in the “Final” line shown on this graph.  It has some probability of 
closing with no payment, and the rest of the probability is distributed with the indicated 
distribution of size. 

 

 

 

 

 

 

  

 

 

 

It is possible to select the points corresponding to the closed with non-zero size on the 
“Final” line and renormalize the probabilities and fit a distribution.  This will be discussed 
further when the process is applied to real data.  

Exhibit 16.  Graph showing intermediate and final results for a initial class 5 claim
at 24 months maturity.
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2.3 Transition Matrix Applied to Real Data 
A very large 

database was 
available for 
testing out this 
procedure.  This 
data consists of all 
the claims that are 
submitted to a very 
large reinsurance 
intermediary for 
claims processing.  
The details of 
processing this 
data is contained in appendix A. 

2.3.1 Data Attributes 

 It is interesting to explore the size of loss distribution of the claims used in this study.  
Exhibit 17 contains the loss size distribution of the 28,000 claims in the study as of 2003.   
The size boundaries in this LSD, at first, appear to be unusual.  They were selected to 
provide 14 intervals between $100,000 and $350,000,000.  They were also selected to 
increase exponentially, and each is 1.79121 times the last one.  Here we see about 3/4 of the 
claims are over $100,000, 
about 43% are over 
$574,702, 1/10 are over 
$3,302,830, and about 1% 
are over $18,981,451.  It 
would appear that there is 
enough population in all the 
size bands to allow a valid 
study.  

Exhibit 18. Graph of the distribution of the claim sizes used in the study.
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 Interval Loss Average Interval Cumulative % Exceeding
Class Lower Limit Upper Limit Average in Interval Count Count Percent Upper Limit
001 -                5,423             2,712             1,461             2039 2,039      7.3% 92.7%
002 5,423             9,714             7,569             7,422             528 2,567      9.1% 90.9%
003 9,714             17,400           13,557           13,171           735 3,302      11.8% 88.2%
004 17,400           31,168           24,284           23,963           1009 4,311      15.4% 84.6%
005 31,168           55,828           43,498           42,707           1212 5,523      19.7% 80.3%
006 55,828           100,000         77,914           76,343           1850 7,373      26.3% 73.7%
007 100,000         179,121         139,561         137,018         2366 9,739      34.7% 65.3%
008 179,121         320,845         249,983         246,534         2916 12,655    45.1% 54.9%
009 320,845         574,702         447,774         438,115         3266 15,921    56.7% 43.3%
010 574,702         1,029,416      802,059         772,980         3667 19,588    69.8% 30.2%
011 1,029,416      1,843,905      1,436,661      1,364,345      3273 22,861    81.4% 18.6%
012 1,843,905      3,302,830      2,573,368      2,434,316      2071 24,932    88.8% 11.2%
013 3,302,830      5,916,079      4,609,455      4,382,069      1367 26,299    93.7% 6.3%
014 5,916,079      10,596,969    8,256,524      7,850,304      875 27,174    96.8% 3.2%
015 10,596,969    18,981,451    14,789,210    13,711,652    467 27,641    98.5% 1.5%
016 18,981,451    33,999,861    26,490,656    24,389,644    258 27,899    99.4% 0.6%
017 33,999,861    60,901,062    47,450,462    43,658,304    106 28,005    99.8% 0.2%
018 60,901,062    109,086,897  84,993,980    83,690,124    38 28,043    99.9% 0.1%
019 109,086,897  195,398,091  152,242,494  138,646,237  17 28,060    100.0% 0.0%
020 195,398,091  350,000,000  272,699,046  262,891,307  9 28,069    100.0% 0.0%
021 350,000,000  626,923,500  488,461,750  457,301,309  2 28,071    100.0% 0.0%

Exhibit 17.  This is the size of loss profile of the claims used in this study after trend and at latest evaluation.
Also shown are the interval end-points for defining the size classes.
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2.3.2 Lognormal 
Behavior 

Exhibit 18 shows a 
graph of the size of loss 
profile.  This shows the 
claim count in asize 
interval verses the 
average size of the 
interval (the average of 
the upper and lower 
bound)  This view shows 
a typical heavy tailed 
distribution with a significant skew to the right, but, one can get little other insight from it.  
Exhibit 19 shows the claim count by interval, plotted as a histogram of the intervals.  This 
reveals much more about the distribution of the data.  We see a bell shaped curve with little 
skewing left or right except for the elevated first interval.  This occurs because the 
boundaries of the intervals increase exponentially.  This behavior suggests that the losses are 
log normally distributed.  Exhibit 20 shows the claim count plotted verses the interval 
average on a log scale.  Again, we see the bell shaped curve with little skewing.  The elevated 
first interval is probably due to the fact that it does not follow the exponential pattern of the 
other intervals.  It contains all losses between 0 and $5,000 which would have been 
distributed over several intervals had they been defined with narrower (and exponential) 
boundaries.  We find further support for the hypothesis that these losses are distributed log 
normally when we check the moments of this distribution.  If we use the grouped data and 
take the log of the interval average as the distribution, we get a mean of 12.15, a standard 
deviation of 2.04, a skewness of -.4 and a kurtosis of 2.9.  The last two are of particular 
interest as a distribution with a skewness between -0.5 and 0.5 is considered to be 
symmetrical and a normal distribution has a kurtosis of 3.  This suggests that the lognormal 
distribution is consistent with this data. 

Exhibit 19.  Histogram plot of claim counts by size class for losses in study. 
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Exhibit 20. Log plot of claim counts of losses used in study.
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Final Initial size category ("O" for open, "C" for closed)
Class O000 O001 O002 O003 O004 O005 O006 O007 O008 O009 O010 O011 O012 O013 O014 O015 O016 O017 O018 O019 O020 O021 C000 C001 C002 C003 C004 C005 C006 C007 C008 C009 C010 C011 C012 C013 C014 C015 C016 C017 C018 C019 C020 C021
O000 0.00
O001 0.35 0.01 0.01 0.00
O002 0.01 0.34 0.01 0.00
O003 0.00 0.32 0.01
O004 0.00 0.03 0.04 0.40 0.01 0.01 0.01
O005 0.01 0.01 0.02 0.39 0.00
O006 0.00 0.01 0.02 0.03 0.42 0.01 0.00
O007 0.00 0.02 0.03 0.02 0.05 0.03 0.43 0.01 0.01 0.00
O008 0.02 0.01 0.02 0.02 0.03 0.07 0.46 0.02 0.00 0.01
O009 0.01 0.02 0.02 0.01 0.03 0.06 0.48 0.04 0.01 0.03

O010 0.01 0.03 0.01 0.02 0.03 0.03 0.07 0.51 0.05
O011 0.03 0.00 0.02 0.03 0.03 0.05 0.48 0.08 0.03
O012 0.01 0.00 0.01 0.01 0.00 0.04 0.08 0.54 0.04 0.02
O013 0.00 0.01 0.00 0.00 0.01 0.02 0.05 0.61 0.10
O015 0.00 0.00 0.00 0.00 0.01 0.45 0.15
O016 0.01 0.00 0.00 0.01 0.02 0.41 0.18
O017 0.00 0.01 0.07 0.47
O018 0.06 0.75
O019 0.33
O020 0.67 1.00
O021 1.00
C000 0.41 0.39 0.29 0.31 0.16 0.14 0.12 0.12 0.11 0.09 0.11 0.03 0.07 0.17 0.04 1.00
C001 0.05 0.08 0.09 0.04 0.03 0.02 0.01 0.03 0.01 0.00 0.01 0.01 1.00
C002 0.01 0.02 0.01 0.01 0.01 0.02 0.00 0.00 0.00 1.00
C003 0.00 0.05 0.03 0.02 0.01 0.02 0.01 0.00 1.00
C004 0.00 0.02 0.01 0.02 0.02 0.00 0.01 0.00 1.00
C005 0.00 0.01 0.03 0.09 0.03 0.01 0.01 0.00 0.00 1.00
C006 0.00 0.02 0.02 0.02 0.07 0.10 0.03 0.02 0.01 0.00 1.00
C007 0.01 0.02 0.03 0.02 0.01 0.03 0.13 0.02 0.02 0.00 0.00 1.00
C008 0.01 0.03 0.02 0.01 0.04 0.03 0.12 0.05 0.02 0.00 0.01 1.00
C009 0.01 0.01 0.01 0.01 0.01 0.03 0.04 0.11 0.04 0.02 0.01 1.00
C010 0.01 0.02 0.01 0.01 0.02 0.01 0.02 0.04 0.14 0.02 0.02 1.00
C011 0.00 0.01 0.01 0.00 0.01 0.02 0.03 0.15 0.05 0.01 0.02 1.00
C012 0.02 0.00 0.00 0.01 0.02 0.15 0.03 0.02 1.00
C013 0.00 0.00 0.00 0.01 0.04 0.11 0.02 0.04 0.06 1.00
C014 0.00 0.00 0.01 0.03 0.17 0.15 1.00
C015 0.01 0.07 1.00
C016 0.00 0.00 0.07 0.18 0.17 1.00
C017 0.06 0.25 1.00
C018 0.50 1.00
C019 1.00
C020 0.33 1.00
C021 1.00

Exhibit 21 An example of a transition matrix for GL data for the transition of 24 to 36 months
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Final Initial Size Class
Size 
Class 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021
000 0.00 0.80 0.54 0.45 0.42 0.42 0.41 0.36 0.36 0.35 0.33 0.29 0.29 0.27 0.30 0.19 0.10 0.14 0.17 0.06 0.23
001 0.04 0.10 0.14 0.13 0.09 0.06 0.03 0.02 0.02 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
002 0.00 0.09 0.02 0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
003 0.01 0.03 0.05 0.05 0.03 0.03 0.02 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
004 0.01 0.05 0.07 0.10 0.05 0.04 0.02 0.02 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
005 0.01 0.05 0.08 0.08 0.14 0.05 0.04 0.02 0.02 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
006 0.01 0.03 0.07 0.06 0.08 0.14 0.06 0.04 0.02 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
007 0.01 0.04 0.02 0.04 0.06 0.08 0.19 0.08 0.03 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
008 0.01 0.01 0.03 0.04 0.04 0.06 0.10 0.23 0.08 0.03 0.02 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00
009 0.02 0.01 0.01 0.01 0.03 0.04 0.06 0.10 0.24 0.08 0.04 0.02 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.00
010 0.02 0.01 0.02 0.02 0.01 0.03 0.05 0.07 0.12 0.28 0.11 0.04 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00
011 0.03 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.05 0.13 0.32 0.12 0.05 0.02 0.03 0.00 0.00 0.00 0.00 0.01
012 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.02 0.03 0.09 0.29 0.08 0.04 0.01 0.01 0.01 0.00 0.00 0.01
013 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.04 0.11 0.34 0.11 0.05 0.01 0.02 0.00 0.01 0.05
014 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.05 0.13 0.38 0.10 0.04 0.04 0.00 0.02 0.01
015 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.05 0.09 0.45 0.15 0.06 0.01 0.08 0.01
016 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.11 0.51 0.16 0.02 0.07 0.01
017 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.05 0.15 0.55 0.21 0.72 0.04
018 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.39 0.03 0.01
019 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.00 0.04
020 0.57 0.67
021 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33

Exhibit 22. This is an ultimate matrix for the transition from 24 months maturity to ultimate.  A claim open at 24 months will have
an ultimate size that has a probability distribution described by the probabilities under its initial class size. 
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2.3.3 Transition Matrix Results 

This data was processed through a Markov transition matrix analysis, that produced 
transition matrices which were multiplied together to yield ultimate matrices.  Exhibit 21 
shows an example of a transition matrix from this study.   This one is for the transition from 
24 to 36 months.  Note that the classes indicating size and open status have been modified 
from the earlier example.  Open claims are indicated with a class starting with an “O” and 
closed with a “C”.  Size ranges from 0 to 20 where 0 is a loss size of $0.00. 

2.3.4 Distributional Development 

 An Ultimate Matrix is shown in exhibit 22.   Note that 
the open and closed status has been collapsed into the 
closed status.  This was accomplished by assuming that 
the final status of the last set of transitions was always 
closed.  Since, at 23 years more than 95% of the 
transitions were closed to closed, this is not thought to be 
an unreasonable assumption.  This Ultimate Matrix can be 
thought of a series of one dimensional vectors stacked 
next to each other.  Each vector provides the prediction 
of ultimate size based on the initial size.  This provides a 
critical insight.  This suggests that it is possible to describe 
the loss development of an individual open claim.  This 
vector of final possible outcomes provides some 
probability of closing with no payment, or an array of 
probabilities of closing at various sizes.  We can study the 
conditional probability given that a claim closes with some 
payment by removing the probability of closing with no 
payment into a separate category.  After the zero claims 
are removed, what is left is a probability distribution of final size given an initial size and 
initial maturity.   Exhibit 23 shows the final distribution of a loss that had an initial size 
category 7 at a maturity of 24 months.   

 

Size Probability
Category

000 0.362
001 0.029
002 0.019
003 0.020
004 0.024
005 0.036
006 0.059
007 0.189
008 0.101
009 0.064
010 0.047
011 0.030
012 0.009
013 0.007
014 0.002
015 0.001
016 0.000
017 0.000
018 0.000
019 0.000
020 0.000
021 0.000

Exhibit 23 - Ultimate size vector for
size category 7 at 24 months.
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Size Average Log of avg Probability Normalized
Category Lower Limit Upper Limit Loss size Loss Size (class) Probability

007 x*prob x^2*prob x^3*prob x^4*prob
000 0 0 0.00 0.3617
001 0 5,423 2,712 7.91 0.0294 0.0460 0.36 2.88 22.74 179.73
002 5,423 9,714 7,569 8.93 0.0192 0.0301 0.27 2.40 21.48 191.86
003 9,714 17,400 13,557 9.51 0.0204 0.0320 0.30 2.90 27.59 262.51
004 17,400 31,168 24,284 10.10 0.0244 0.0383 0.39 3.90 39.39 397.78
005 31,168 55,828 43,498 10.68 0.0363 0.0568 0.61 6.48 69.21 739.18
006 55,828 100,000 77,914 11.26 0.0591 0.0927 1.04 11.75 132.39 1,491.19
007 100,000 179,121 139,561 11.85 0.1888 0.2958 3.50 41.51 491.77 5,825.66
008 179,121 320,845 249,983 12.43 0.1005 0.1575 1.96 24.33 302.40 3,758.64
009 320,845 574,702 447,774 13.01 0.0642 0.1005 1.31 17.02 221.52 2,882.39
010 574,702 1,029,416 802,059 13.59 0.0469 0.0735 1.00 13.59 184.77 2,512.00
011 1,029,416 1,843,905 1,436,661 14.18 0.0304 0.0476 0.67 9.57 135.68 1,923.60
012 1,843,905 3,302,830 2,573,368 14.76 0.0085 0.0134 0.20 2.91 42.94 633.78
013 3,302,830 5,916,079 4,609,455 15.34 0.0066 0.0103 0.16 2.42 37.08 568.94
014 5,916,079 10,596,969 8,256,524 15.93 0.0021 0.0033 0.05 0.83 13.28 211.51
015 10,596,969 18,981,451 14,789,210 16.51 0.0010 0.0015 0.02 0.41 6.70 110.69
016 18,981,451 33,999,861 26,490,656 17.09 0.0003 0.0005 0.01 0.14 2.42 41.30
017 33,999,861 60,901,062 47,450,462 17.68 0.0001 0.0001 0.00 0.04 0.72 12.74
018 60,901,062 109,086,897 84,993,980 18.26 0.0000 0.0000 0.00 0.01 0.22 4.02
019 109,086,897 195,398,091 152,242,494 18.84 0.0000 0.0000 0.00 0.00 0.03 0.58
020 195,398,091 350,000,000 272,699,046 19.42 0.0000 0.0000 0.00 0.00 0.00 0.00
021 350,000,000  626,923,500      488,461,750  20.01 0.0000 0.0000 0.00 0.01 0.23 4.59

Total 1.000 mean (mu) E(x^2) E(x^3) E(x^4)
11.86 143.12 1,752.57 21,752.68

initial class 007 variance 3rd moment 4th moment
average size 139,561 2.39 -1.95 21.95

log of avg size 11.85 std dev(sigma) skewness kurtosis
mu 11.86 1.55 -0.53 3.84

sigma 1.55
ratio mu/log(avg) 1.00
ratio sigma/mu 0.13

skewness -0.53
kurtosis 3.84

Exhibit 24 - Moments of ultimate size vector for Category 7 size at 24 months.

We can apply the same log normal analysis, used previously, to this distribution, and we get 
the results shown on Exhibit 24.  Here we see a mu of 11.86, a sigma of 1.55, a  skewness of 
-0.53, and a kurtosis of 3.84.  The skewness close to zero suggests that the ultimate values 
are lognormally distributed.   

It is instructive to divide the final mu and sigma by the log of the initial value.  Here we 
find that the final mean is very nearly equal to the initial value of the loss.  Also, the standard 
deviation is a small fraction of the initial mean.   This result suggests the remarkable 
conclusion. It seems that the loss development potential of a claim is that its ultimate value 
will be log normally distributed with a mu equal to the natural log of the initial value, and a 
sigma that can be predicted.  Although this seems to be counter intuitive, we must remember 
that the formula for the mean of a lognormal has the following formula: 

 

mean = e^(mu+((sigma^2)/2)) 
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 which leads to an increase in the mean as sigma grows.  So, the resulting average loss at 
ultimate will be greater then the current evaluation.   

2.3.5 Variation Over Initial Size 

 The next question to investigate is how mu and sigma of the ultimate distribution vary 
with initial size and maturity.   Shown in exhibit 25 are the ultimate distributions for three 
initial claims sizes, Classes 6, 7, and 8, initially at 24 months maturity.  This shows a peak of 
25 to 30 percent in the Class 0 (closed with no payment) category.  To the right, each curve 
has a distinctive bell shaped curve that peaks in the final size category that is the same as the 
initial size category.  Each curve looks symmetrical, and, remarkably like each other. 

  

Exhibit 25 Graph of final distribution of 24 month initial open claims with intital sizes of Class 6, Class 7, and Class 8
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The graphical appearance of this data alone suggests a possible behavior where the final size 
is related to the initial size, and the spread of the distribution does not vary with initial size.   

Exhibit 26 is similar to the previous graph with a wider range of initial sizes.  This covers 
size classes 7 to 14. The next exhibit is a graph of all the ultimate distributions for the 
24month to ultimate transition.  Each curve is for a different initial size class.  They all 
demonstrate the bell shaped appearance seen previously, suggesting a lognormal distribution.   
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Exhibit 26 Graph of final distribution of 24 month initial open claims with intital sizes of Class 4 to Class 11.
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The striking aspect of this graph is how much the bell shaped curves resemble each other in 
the range of size class 5 to 10.   At first glance, these appear as identical curves which are 
offset from each other by a constant amount.  Since the boundaries of the classes were 
defined with a multiplicative factor, the constant spacing occurs because of the logarithmic 
nature of the scale, and the fact that the mu of each distribution has a relation to the initial 
loss size.  This relationship 
is that, the mu is nearly the 
same as the logarithm of 
the original loss size.  The 
fact that the shape of the 
curves do not change as 
they progress from left to 
right suggest that the 
spread parameters are very 
similar for all the curves.   

Exhibit 27 shows the mu, sigma, skewness, and kurtosis of all the 24 month to ultimate 
distributions by initial size classification.  Here we see that the mu’s are all very close to the 
log of the initial, and the sigma values are all very similar.  In exhibit 28 we graph the mu’s 

Parms of
average log of ult dists. ratio  ratio  

initial class class size avg size mu sigma Skewness mu/log(avg) sigma/mu
001 2,712 7.91 11.93 2.57 -0.34 1.51 0.22
002 7,569 8.93 10.16 1.95 0.78 1.14 0.19
003 13,557 9.51 10.37 1.97 0.45 1.09 0.19
004 24,284 10.10 10.49 2.00 0.62 1.04 0.19
005 43,498 10.68 10.84 1.84 0.21 1.01 0.17
006 77,914 11.26 11.24 1.77 -0.04 1.00 0.16
007 139,561 11.85 11.86 1.55 -0.53 1.00 0.13
008 249,983 12.43 12.27 1.43 -0.90 0.99 0.12
009 447,774 13.01 12.75 1.45 -1.31 0.98 0.11
010 802,059 13.59 13.28 1.43 -1.76 0.98 0.11
011 1,436,661 14.18 13.81 1.46 -1.94 0.97 0.11
012 2,573,368 14.76 14.54 1.44 -2.16 0.98 0.10
013 4,609,455 15.34 15.25 1.14 -2.07 0.99 0.08
014 8,256,524 15.93 15.75 0.95 -3.14 0.99 0.06

Exhibit 27 - Parameters for ultimate distributions by size class for 24 month initial losses
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and the ratio of mu to the natural log of the average loss in the interval.  This shows a strong 
relationship between these two values.  

 The sigma values shown in 
exhibit 27, and graphed in 
exhibit 29, show a gradual 
decrease as the loss size 
increases.  It may be possible to 
find a relationship between the 
loss size and sigma.  It appears 
that a linear relationship 
between sigma and the natural 
log of the initial loss may 

describe the behavior of sigma.  

The sknewness values shown 
in exhibit 27, and, graphed in 
exhibit 30, are positive for the 
small losses and negative for the 
large losses, and close to zero 
for the mid size losses.  This is a 
relatively complex behavior but 
it can be understood based on 
the nature of the reinsurance 
claims that constitute the data.     

Remember that these are 
only claims that are submitted 
for reinsurance recoveries.  The 
full inventory of claims are not 
represented here.  The positive 
skewing of the smaller claims 
can be understood as being 
caused by the submission of 
small claims that are expected to 

Exhibit 29 - Graph showing the sigma values for the lognormal distributions for the ultimate values 
for claims at 24 months. 
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Exhibit 30 - Graph showing the skewness values for the lognormal distributions for the ultimate values for 
claims at 24 months. 
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Exhibit 28 - This graph shows the natural log of the average loss size, and the mu
of the lognormal distribution of the ultimate loss size distribution for claims with a 
current maturity of 24 months.  
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settle are larger amounts and enjoy a reinsurance recovery.   

The larger claims may skew negatively because they are large enough to feel the effect of 
policy limits.  As large claims settle, they are always free to settle at smaller then currently 
reserved amounts, but, any tendency to settle at higher values may be limited when the 
policy limit is reached. 

Thus, we can understand the appearance of the positive skewing of the small claims and 
the negative skewing of the large claims as being due to data reporting and policy limit 
effects and is not an essential element of the loss development.  The use of a lognormal 
distribution to describe the ultimate development of an individual claim continues to be 
consistent with the observations.   

At this point, there is enough evidence to postulate a model for ultimate loss 
development for open claims at 24 months maturity.  A lognormal distribution with a mu 
equal to the natural log of the open claim size, and a sigma which is described by a linear 
relationship between sigma and the natural log of the open claim size is consistent with the 
current observations.   

One must remember that this is a conditional distribution, based on the condition that 
the claim does not close with no payment.  We must remember that the transition matrix 
process contains an ultimate size category 000 which contains a significant number of claims 
that close with no payment.  One needs only to refer back to exhibit 23, and pick the value 
from the first line under the correct initial loss size, to get the probability that the claim 
closes with no payment.     

Another consideration 
in the use of this model is 
that the primary policy 
limit distribution must be 
applied after the loss 
development is applied. 

2.3.6 Exploration over 
Maturities 

Thus far, we have 
explored loss development 

Size Average Size Ratio of Mu/natural log of average size
Category in Interval Maturity in Months

24 36 48 60 72 84 96 108
001 2,712            1.51 1.52 1.48 1.46 1.44 1.46 1.43 1.44
002 7,569            1.14 1.15 1.14 1.18 1.11 1.10 1.17 0.99
003 13,557          1.09 1.11 1.08 1.06 1.07 1.01 1.05 0.99
004 24,284          1.04 1.02 1.04 1.05 1.06 0.99 0.98 0.96
005 43,498          1.01 1.00 1.00 0.98 0.98 0.95 0.96 0.99
006 77,914          1.00 0.99 0.98 0.99 0.99 0.99 1.00 0.99
007 139,561        1.00 0.98 0.96 0.98 0.98 0.97 0.97 0.97
008 249,983        0.99 0.98 0.98 0.98 0.97 0.97 0.98 0.98
009 447,774        0.98 0.98 0.98 0.97 0.98 0.98 0.98 0.99
010 802,059        0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
011 1,436,661     0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98
012 2,573,368     0.98 0.99 0.99 0.98 0.99 0.99 0.99 0.99

Exhibit 31 - This shows the ratio of the mu of the ultimate distribution divided by
the natural log of average size in the initial size category.
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behavior at one selected initial maturity.  In order to create a system that can accommodate a 
complete selection of real data, we need to be able to describe this process for losses over 
the entire range of maturities.  In order to do this, we first look at the comparison of the 
modeled mu to the natural log of the average loss size in each initial size category.  We are 
looking at the ability of the initial loss size to forecast the mu of the ultimate distribution.   
Shown in exhibit 31 is the ratio of the mu of the ultimate distribution divided by the natural 
log of the average loss within the size category.  If the forecast of mu is perfect, then this 
ratio should be 1.00, according to the postulated model.  What we find is a relative flat 
surface except for the turned edge, as shown in exhibit 32.  

The turned edge may be caused by the origin of the data.  Since it is a collection of claims 

that anticipate a reinsurance collection, it may be biased to develop larger.  A more complete 
collection of claims may not have this bias.  This suggests that the natural log of the current 
value of an open claim is a good predictor of the mu for the lognormal distribution 
describing the ultimate loss size.  

If we conclude that this surface is a plane, and we ignore the first size category (001), all 
the remaining points have an average of 1.005 and a standard deviation of 0.05  Our model 

Exhibit 32 - Surface of ultimate mu / ln(avg loss size) over the range of size categories
and months maturity of initial size observation.
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for estimating mu then becomes mu= 1.005 * ln(x), where x is the current open claim size.  
If one is not satisfied with the accuracy of applying one number over all size, maturity 
combinations, one could interpolate over the surface given in exhibit 31 and apply 
interpolated numbers to individual claims.   

2.3.6 The Sigma Surface 

We can also review the fitted sigma values as they vary by initial loss size and by initial 
maturity to see if a pattern emerges.  These values are shown in exhibit 33, and graphed as a  

surface in exhibit 34.  This data appears to have some structure associated with it.  There is a 
pronounced decrease in sigma as the size of the loss increases, and there is a modest 
decrease as the maturity of the claim increases.  To further understand how sigma varies, it is 
instructive to graph it as one of the other variables change.  First we look as the size changes.  

Initial Sigma at Ultimate
Size Initial Maturity in Months

Class 012 024 036 048 060 072 084 096 108 120
001 2.668 2.572 2.653 2.809 2.803 2.682 2.604 2.512 2.530 2.708
002 2.075 1.950 1.847 1.917 2.414 2.313 2.392 2.714 1.727 1.892
003 2.071 1.973 2.159 2.257 2.423 2.344 2.115 2.367 1.936 1.712
004 2.011 1.997 1.995 2.000 2.223 2.382 2.008 2.048 1.948 2.217
005 1.734 1.844 1.800 1.765 1.867 1.919 1.793 1.849 1.733 1.785
006 1.795 1.766 1.766 1.811 1.866 1.746 1.655 1.632 1.838 1.519
007 1.532 1.547 1.578 1.575 1.510 1.599 1.580 1.338 1.441 1.211
008 1.544 1.430 1.397 1.369 1.353 1.413 1.389 1.353 1.306 1.172
009 1.426 1.452 1.370 1.374 1.317 1.261 1.247 1.161 1.134 1.117
010 1.363 1.435 1.352 1.260 1.230 1.198 1.138 1.195 1.111 1.050
011 1.516 1.460 1.309 1.271 1.207 1.143 1.035 1.019 0.961 0.943
012 1.444 1.444 1.183 1.184 1.105 1.011 1.029 0.984 0.867 0.861
013 1.144 1.144 1.072 1.029 1.027 0.999 1.033 0.896 0.849 0.894
014 0.951 0.951 1.013 1.136 1.222 1.179 1.181 1.125 0.925 0.859
015 0.982 0.982 0.956 1.051 0.968 0.954 0.998 1.056 0.993 1.127

Exhibit 33 - These are the sigma's of the ultimate distributions
by initial size class and by initial maturity
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In exhibit 35, sigma is plotted as the size changes, and, each line represents a different 
maturity.  This shows the decrease over time, which becomes more gradual as time 
progresses.  If we assume that there is no structure in the maturity direction and all the 
variation is noise, we can average each size evaluation and plot the result.  This is shown in 
exhibit 36.  This shows more clearly the slowing of the decrease over time. 

Exhibit 35 - Graph showing the variation of sigma with the size of the claim.
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Exhibit 36 - Sigma's averaged over maturities and plotted verses size class.
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It was found that the inverse of sigma behaves in a more orderly fashion.  This variable 
appears to be linear when plotted against size class.  The plot of the inverse of the average 
sigma is shown in exhibit 37.   Here we see it is increasing at a constant rate.  This variable 
has an additional benefit in 
that it behaves well at its 
extremes.  At very large 
class sizes sigma becomes 
small, which is a believable 
result, and at very small 
class sizes it becomes very 
large, and then undefined.  
This is acceptable because 
there is no interest in 
modeling very, very small 
claims.   

Exhibit 37 - Plot of 1/(avg. sigma) verses loss size.
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The favorable behavior 
of this variable encourages 
us to explore the behavior of 
this transformed variable 
verses maturity.  Exhibit 38 
shows the plot of the inverse 
of sigma verses maturity, 
where, each line represents a 
size class.  The overall 
impression is there is a bit of 
increase as maturity 
progresses.  We average over 
the sizes and produce one 
value for each maturity and 
check to see if this varies as 
maturity.  These values are 
plotted in exhibit 40.  This 
shows a slight increase with 
maturity.  There is nothing to 
suggest that this increase is 
more complicated than a first order linear effect.  

2.3.7 Fitting the Sigma Surface 

These two 
observations of 
linear behavior 
of 1/sigma 
verses maturity 
and verses loss 
size suggests 
that a linear fit 
to the surface 
will allow use 

 

Exhibit 40 - Plot of 1/sigma verses maturity and size class.  
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Exhibit 38 - Plot of 1/sigma verses maturity.  Each line represents a different size class.
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Exhibit 39 Plot of average of 1/sigma verses maturity.
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to model sigma as a function of size and maturity.  The sigma values in exhibit 33 are 
inverted and are graphed in exhibit 40.  These values are analyzed by general linear 
regression against the dependent variables of, maturity in months, and, natural log of the 
average interval claims size.  This resulted in a fitted regression of: 

Sigma = 1/(maturity *0.001205+ln(loss size)*0.078874-0.34447) 

 A table of fitted sigma values are shown in exhibit 41, and these values are plotted in 
exhibit 42.  

 The error values for this regression are shown in exhibit 43.  These values are the fitted 
sigma values minus the actual sigma values observed at each maturity and size class.  The 
average of all these values is 0.00.  These values are graphed in exhibit 44. 

The only structure revealed in this graph is a sharp rise at early maturities and small size 
classes.  This model tends to overestimate sigma in this region, but, since there is little 
interest in this region, this is an acceptable error.  For those who need high accuracy in this 
area, it would be best to interpolate values directly from exhibit 33.  

 A review of the skewness as size and maturity is varied shows the same tendencies as 
noted earlier, positive skew for small losses and negative skew for large losses.  The 
skewness values are shown in exhibit 45 and the surface is shown in exhibit 46.  It may well 
be that the negative skewness and the  decrease in sigma for large claims is caused by policy 
limit censoring.   It is a long held view that small claims tend to develop larger, and large 
claims tend to develop smaller.  This evidence certainly supports that view.  One might be 
concerned that the proposed model will overdevelop large claims.  One should reexamine 
exhibit 26 and observe that the graphed distributions for the large initial size classes 

initial
size initial maturity
class 012 024 036 048 060 072 084 096 108 120
001 3.41 3.25 3.10 2.97 2.85 2.73 2.63 2.53 2.44 2.36
002 2.67 2.57 2.48 2.39 2.31 2.24 2.17 2.10 2.04 1.98
003 2.38 2.30 2.23 2.16 2.09 2.03 1.97 1.92 1.87 1.82
004 2.14 2.08 2.02 1.96 1.91 1.86 1.81 1.76 1.72 1.68
005 1.95 1.90 1.85 1.80 1.75 1.71 1.67 1.63 1.59 1.56
006 1.79 1.75 1.70 1.66 1.62 1.59 1.55 1.52 1.48 1.45
007 1.65 1.62 1.58 1.54 1.51 1.48 1.45 1.42 1.39 1.36
008 1.54 1.50 1.47 1.44 1.41 1.38 1.36 1.33 1.31 1.28
009 1.44 1.41 1.38 1.35 1.33 1.30 1.28 1.25 1.23 1.21
010 1.35 1.32 1.30 1.27 1.25 1.23 1.21 1.19 1.17 1.15
011 1.27 1.25 1.22 1.20 1.18 1.16 1.14 1.12 1.11 1.09
012 1.18 1.18 1.16 1.14 1.12 1.10 1.09 1.07 1.05 1.04
013 1.12 1.12 1.10 1.08 1.07 1.05 1.03 1.02 1.00 0.99
014 1.06 1.06 1.05 1.03 1.02 1.00 0.99 0.97 0.96 0.95
015 1.01 1.01 1.00 0.98 0.97 0.96 0.94 0.93 0.92 0.91

Exhibit 41 - Table of fitted sigma's. Exhibit 42 - Plot of fitted sigma's. Compare this with exhibit 34.
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demonstrate a high level of symmetry.  It seems that the skewness is resulting from an 
extended negative tail of small values.  The use of a model that does not pick up the negative 
skewness of large initial claims may only be missing a small probability of these small 
ultimates.   

The concern about underdeveloping smaller claims may be unnecessary.  It may be 
observed here because it is a characteristic of the reinsurance nature of the data.  More often, 
this process is applied to “ primary” data which will contain the complete inventory of small 
losses, not just the ones anticipating a reinsurance recovery.  These claims should develop in 
a less skewed manner.  

The Transition Matrix analysis of this data provides us with a  method to model the 
future ultimate distribution of an individual open claim of a given size x, and maturity m.  An 
open claim can be represented at ultimate as a lognormal distribution with:  

Exhibit 46 Graph of skewness values of ultimate distributions verses maturity and size.
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Exhibit 44 Plot of error values of regression for sigma.  Vertical scale is :
(modeled sigma - actual sigma)
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Initial average Skewness
Size size in Initial Maturity in Months
class interval 024 036 048 060 072 084 096 108 120
001 2,712 -0.34 -0.34 -0.15 -0.09 -0.17 -0.30 -0.21 -0.15 -0.07
002 7,569 0.78 0.86 1.05 0.54 1.12 1.29 0.95 2.67 2.46
003 13,557 0.45 0.56 0.61 0.85 0.81 1.27 0.94 1.32 1.70
004 24,284 0.62 0.57 0.65 0.84 0.90 1.23 1.32 1.21 1.13
005 43,498 0.21 0.14 0.23 0.41 0.53 0.65 0.81 0.82 0.85
006 77,914 -0.04 0.03 0.15 0.19 0.27 0.44 0.59 0.76 0.21
007 139,561 -0.53 -0.59 -0.40 -0.32 -0.14 0.08 0.49 0.63 0.09
008 249,983 -0.90 -0.81 -0.74 -0.52 -0.36 -0.54 -0.67 -0.64 0.30
009 447,774 -1.31 -1.34 -1.21 -0.96 -0.99 -0.86 -0.87 -0.67 -0.93
010 802,059 -1.76 -1.68 -1.78 -1.88 -1.88 -1.93 -2.10 -2.17 -2.10
011 1,436,661 -1.94 -2.02 -1.97 -2.05 -2.14 -2.11 -2.26 -2.23 -2.36
012 2,573,368 -2.16 -2.34 -2.27 -2.24 -2.41 -2.60 -2.54 -2.66 -3.18
013 4,609,455 -2.07 -1.51 -2.49 -2.71 -2.92 -3.15 -2.62 -3.42 -3.73
014 8,256,524 -3.14 -3.20 -3.25 -3.57 -3.68 -3.15 -3.61 -2.79 -2.78
015 14,789,210 -2.81 -3.30 -3.02 -3.34 -3.63 -3.76 -4.21 -5.15 -5.11
Exhibit 45 Table of skewness values of ultimate distributions verses maturity and size.

 Error values of sigma regression
size initial maturity
class 012 024 036 048 060 072 084 096 108 120
001 0.74 0.67 0.45 0.16 0.04 0.05 0.03 0.02 -0.09 -0.35
002 0.60 0.62 0.63 0.48 -0.10 -0.07 -0.22 -0.61 0.31 0.09
003 0.31 0.33 0.07 -0.10 -0.33 -0.31 -0.14 -0.45 -0.07 0.10
004 0.13 0.08 0.02 -0.04 -0.32 -0.53 -0.20 -0.29 -0.23 -0.54
005 0.22 0.05 0.05 0.03 -0.11 -0.21 -0.12 -0.22 -0.14 -0.23
006 0.00 -0.02 -0.06 -0.15 -0.24 -0.16 -0.11 -0.12 -0.35 -0.07
007 0.12 0.07 0.00 -0.03 0.00 -0.12 -0.13 0.08 -0.05 0.15
008 -0.01 0.07 0.08 0.07 0.06 -0.03 -0.03 -0.02 0.00 0.11
009 0.01 -0.05 0.01 -0.02 0.01 0.04 0.03 0.09 0.10 0.09
010 -0.02 -0.11 -0.06 0.01 0.02 0.03 0.07 -0.01 0.05 0.10
011 -0.25 -0.21 -0.08 -0.07 -0.02 0.02 0.11 0.11 0.15 0.15
012 -0.27 -0.27 -0.02 -0.04 0.02 0.09 0.06 0.09 0.19 0.18
013 -0.03 -0.03 0.03 0.05 0.04 0.05 0.00 0.12 0.15 0.10
014 0.11 0.11 0.03 -0.10 -0.21 -0.18 -0.19 -0.15 0.03 0.09
015 0.03 0.03 0.04 -0.07 0.00 0.00 -0.05 -0.12 -0.07 -0.22

Exhibit 43 - This table contains the error values of the regression
for sigma.  The values shown are (fitted sigma - actual sigma).
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mu= 1.005 * ln(loss size) 

and, 

Sigma = 1/(maturity *0.001205+ln(loss size)*0.078874-0.34447) 

Where maturity is in months and loss size is in US dollars 

2.3.8 Effect of Policy Limits 

This study assumed that policy limits affected large losses and sought to avoid its effect.  
Due to this, the resulting distribution of ultimate losses, have no policy limit censoring.  It is 
necessary to introduce it to arrive at the correct final ultimate value.  The final distribution 
will be the lognormal distribution, given earlier, which has been censored by the policy limit 
for the claim.  If this is not available, then a reasonable assumed policy limit must be used. 

2.3.9 Effect of Zero Dollar Claims 

The transition matrix process produces an estimate for claims that close with no payment 
at every maturity.  The reader will remember in exhibit 24 all the statistical values are 
calculated using a conditional probability, after the probability of closing with no payment is 
removed.  Any estimate of future development must reflect this.  When taking an open non-
zero claim to ultimate, the exhaustive range of outcomes must include zero value of 
probability P(x=0) and the proposed lognormal with a mu and sigma as previously discussed 
that has a probability of (1-(P(x=0)).  A table of probabilities of closed with no payments is 
not included in this study because of the biased nature of the data.  Since the claims used 
here are only those submitted for a possible reinsurance recovery, it is expected that the 
numbers of CWNP claims will differ from a general population of claims.  

2.4 Comparison with Direct Transitions 

2.4.1 Lack of Memory 

The transition matrix process suffers the possibility of a troublesome error.  This is due 
to the implied independence from transition to transition.  It is as if each transition has no 
memory of earlier transitions.  A claim, at some value x, does not care how it came to have 
this value.  Its future transitions only depend on its current value.  This is clearly not the real 
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world situation.  Each claim has a complete history from occurrence to settlement, and each 
succeeding value has some dependence on earlier values.   

It is easy to imagine a scenario in the transition matrix approach that might be counter 
intuitive.  Say, a $1,000,000 claim that goes through ten transitions where each transition 
happens to reduce the value by half.  This results in the value of the claim reducing to $976.  
Remember that this transition is simply the movement from one class to the adjacent lower 
one.  The transition matrix approach allows this possibility (abet with low probability), but, 
intuition tells us that this doesn’t occur.  One might guess that the dispersion caused by 
future development is exaggerated by the transition matrix approach. 

2.4.2 An Alternative Method 

In order to assess how much distortion might be caused by this, a study involving direct 
observation was conducted.  The previous transition matrix approach involved observing 
each transition from year to year, and multiplying each transition until ultimate matrices were 
created.  This study utilized direct observation of the transition from first report to current 
value which is taken as a proxy for ultimate.  These observations were categorized as to 
initial size class, initial maturity, and final (current) size class at the latest evaluation, which 
allows these observations to be directly compared with the ultimate loss development 
matrices. 

Final Initial Class Grand  
Class 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 Total
000 2162 146 315 396 432 547 702 821 1038 919 722 443 263 134 44 18 8 3 2 9115
001 1478 33 68 84 95 83 59 43 35 31 16 8 3 2 1 2039
002 18 287 9 25 27 46 49 22 21 11 11 1 1 528
003 18 14 448 27 34 44 51 30 38 14 9 3 2 2 1 735
004 22 10 27 590 66 79 70 57 46 19 17 3 2 1 1009
005 18 10 23 41 784 87 84 59 49 33 17 4 2 1 1212
006 18 8 24 45 84 1302 117 99 73 50 19 8 1 2 1850
007 29 13 15 24 49 117 1701 194 117 65 24 13 2 1 1 1 2366
008 35 1 13 20 47 89 199 2058 275 112 41 12 9 3 2 2916
009 43 4 9 7 35 55 130 233 2352 265 91 26 12 2 2 3266
010 57 5 10 11 9 35 71 135 379 2588 293 55 14 3 1 1 3667
011 53 6 10 15 19 20 46 71 160 324 2302 192 37 13 4 1 3273
012 35 2 5 4 4 11 13 23 62 100 227 1434 123 24 1 2 1 2071
013 20 5 2 7 7 10 15 19 44 75 173 878 88 18 5 1 1367
014 10 1 3 4 6 3 7 14 5 27 47 98 588 52 8 1 1 875
015 5 1 4 4 5 3 3 5 9 22 19 28 58 282 16 2 1 467
016 2 1 1 2 2 5 2 6 9 8 19 35 157 5 3 1 258
017 1 1 4 4 7 16 12 55 4 2 106
018 2 1 1 1 2 30 1 38
019 1 3 13 17
020 1 6 2 9
021 1 1 2
Grand Total 4024 541 982 1301 1700 2535 3308 3872 4688 4591 3921 2456 1487 949 461 222 74 44 20 7 3 37186

Exhibit 47 - Counts of claims for initial report to final report (current) classified by
by initial and final size.  All initial maturities are shown here.
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This study used the same data as previously and was adjusted by the same trend.  To 
provide an overview of the outcome of this study, exhibit 47 shows the number of claims 
for all initial maturities when classified by initial and final (current) size.  

When we view any of the initial size class columns, the bell shaped distribution becomes 
obvious.  We can take the counts of initial claims in any column and divide it by the total 
counts in that column, and it represents the probability of a final size outcome given the 
initial size.  This is graphed in exhibit 48.  For clarity only the odd numbered size classes 

Exhibit 48 - Plot of probability for final size class for a selection of initial size classes for
the initial to final transition.
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 are shown.  The graph continues to show the strong “normal distribution like” behavior 
that we have seen previously.  We will look at the distribution statistics for each “ultimate” 
distribution to see if this empirical ultimate transition is similar to the multiplied results from 
the transaction matrix method.  The counts are further classified by initial maturity, and the 
statistics, mean, standard deviation, skewness, and kurtosis are calculated allowing us to 
compare the results directly with those of the transition matrix study. 

2.4.3 Similar Results 
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The mu for these distributions are computed and then divided by the natural log of the 
average size within the interval similarly to what was done earlier for the transition matrix 
results. Exhibit 49 is a table of the mu to ln(x) ratio for the initial to “ultimate” transition 
data. 

This appears very similar to its transition matrix counterpart shown in exhibit 31.  The 
edge towards the small size classes is turned up as it is in the transition matrix study, though 
it doesn’t seem to be any pattern to the differences.  If one accepts this elevated mu’s for 
small initial claims to 
be caused by the 
data collection 
process, then this 
data supports the 
assertion that the mu 
of the distribution 
can be estimated by 
the natural log of the 
loss size.  This 
surface is graphed in 

Size Average Size Ratio of Mu/natural log of average size
Category in Interval Maturity in Months

012 024 036 048 060 072 084 096 108 120 132 144
001 2,712 1.60 1.55 1.57 1.53 1.60 1.45 1.59 1.49 1.42 1.40 1.69 1.43
002 7,569 1.08 1.06 1.10 1.04 1.06 1.10 1.02 1.00 1.07 1.10 1.08 1.16
003 13,557 1.07 1.05 1.04 1.06 1.06 1.09 1.00 1.08 1.04 1.06 1.08 1.03
004 24,284 1.04 1.05 1.05 1.02 1.03 1.03 1.03 1.04 1.00 1.01 1.03 1.06
005 43,498 1.03 1.03 1.03 1.02 1.01 1.00 1.01 1.00 0.99 1.02 1.01 1.02
006 77,914 1.01 1.02 1.01 1.01 1.00 1.00 1.01 1.00 0.99 0.98 0.98 1.00
007 139,561 1.00 1.01 1.00 1.00 1.01 0.99 0.99 0.99 1.00 1.00 1.00 1.00
008 249,983 1.00 1.00 0.99 1.00 0.99 1.00 0.99 1.00 0.98 0.99 0.99 1.00
009 447,774 0.99 1.00 0.99 0.99 0.99 1.00 1.00 1.00 0.99 0.99 1.00 1.00
010 802,059 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.99 1.00 0.99 1.00
011 1,436,661 0.99 0.99 0.99 0.99 0.99 0.99 1.00 0.99 0.99 1.00 0.99 1.00
012 2,573,368 0.98 1.00 0.99 1.00 1.00 0.99 0.98 0.99 0.99 0.99 0.98 0.99
013 4,609,455 0.99 1.00 1.00 1.00 0.99 0.98 0.99 1.00 0.97 1.00 0.99 1.00
014 8,256,524 0.99 1.00 0.99 0.99 0.99 1.00 1.00 0.99 1.00 1.00 1.00 0.96
015 14,789,210 0.99 1.00 0.99 0.97 0.98 1.01 0.99 1.00 1.00 1.00 1.00 1.00

Exhibit 49 - Table of ratio of mu / ln(x) for distributions of initial
 to final transitions.

Exhibit 50 - Graph of ratio of mu / ln(x) for distributions of initial to final transitions.
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Exhibit 50.   

The other important statistical parameter to check is the standard deviation of the log of 
the “ultimate” loss size.  Exhibit 51 shows the sigma’s of the ultimate distributions of the  

 

Initial Sigma at Ultimate
Size Initial Maturity in Months

Class 012 024 036 048 060 072 084 096 108 120 132 144
001 2.40 2.20 2.29 2.15 1.88 2.09 1.99 1.74 1.54 1.09 1.83 2.56
002 1.15 1.25 1.51 0.93 1.18 2.01 0.48 2.16 2.86 1.71
003 1.43 1.23 1.32 1.34 1.98 1.01 0.36 1.55 0.86 1.48 2.12 1.40
004 1.42 1.22 1.18 1.38 1.45 2.24 0.45 1.80 1.57 1.50 1.88 1.59
005 1.18 1.45 1.28 1.14 1.14 1.30 1.08 1.43 1.00 1.25 0.90 1.47
006 1.22 1.24 1.17 1.27 1.02 0.89 1.07 0.89 0.81 1.29 1.46 1.45
007 1.01 1.18 1.17 0.99 1.16 1.01 0.93 1.00 0.86 0.70 0.82 0.85
008 1.10 1.08 1.08 0.92 0.94 0.86 0.89 0.99 0.58 0.72 0.69 1.20
009 1.13 1.07 1.07 1.03 0.96 0.88 1.04 0.96 0.89 0.68 0.59 0.85
010 1.03 1.06 1.01 0.97 0.94 0.92 0.80 0.66 0.79 0.90 0.42 0.48
011 1.16 1.22 1.00 1.01 0.75 0.76 0.95 0.68 0.34 0.52 0.69 0.17
012 1.23 1.21 0.86 0.89 0.77 0.77 0.55 0.48 0.77 0.72 0.40 0.32
013 1.11 1.63 0.94 0.99 0.55 0.47 0.82 0.50 0.37 0.21 0.53 0.34
014 1.08 0.57 1.26 0.63 0.96 0.79 0.47 0.53 1.12 0.62 1.18 0.48
015 1.25 0.54 0.75 0.71 1.30 0.96 1.19 0.30 1.06 0.17 0.42 0.17
Exhibit 51 - These are the sigma's of the ultimate distributions for the
emperical initial to "ultimate" observations by initial size class and by
initial maturity.  

empirically observed initial to “ultimate” transitions, and, these are graphed in exhibit 52.  
Note that two values, initial size class 002, maturity 96 and 108 months, are missing due to 
sparse data. 

Exhibit 52 - Graph of  the sigma's of the ultimate distributions for the
emperical initial to "ultimate" observations by initial size class and by
initial maturity.
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When one compares them 
to the transition matrix 
values in exhibit 33 we see 
that the general shape of the 
surface is similar, but the 
values are somewhat higher.  
On average the transition 
matrix values are 1.4 times 
higher then the empirical 
values.  When we look at the 
surface of the empirical 
sigma’s we see a similar 
structure to that observed 
earlier for the sigma’s of the 
transition matrix study.  
Exhibit 52 shows the plot of 
the values as a surface, and is 
comparable to the plot in 
exhibit 34.  This shows 
higher values and a higher 
volatility in the small size 
classes.   

The “sideways” view of this plot shown in exhibit 53 shows these higher values at small 
size classes, and then a leveling off as initial size class increases 

If we take the average across the maturities and plot these averages verses the initial size 
class, we get a better sense of how sigma changes with initial size.  A plot of this is shown in 
exhibit 54 and we see a gradual decrease with increasing size.  If we take the inverse of this 
average sigma we see an increasing linear relation as shown in exhibit 55.  Again, this is 
consistent with our earlier model for sigma.   

Looking at the other dimension, change in maturity, we find that the sigma values show a 
gradual decrease with increasing maturity.  These values are plotted in exhibit 56, which is 

Exhibit 53 - Plot of emperical sigma's by initial size class. Each line represents
a different initial maturity.
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Exhibit 54 - Plot of emperical sigma's averaged over maturity and plotted by initial size class
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comparable to what was seen in the transition matrix values.  This is confirmed with a 
review of exhibit 39, which shows a gradual increase in 1/sigma.   

 

 

Exhibit 56 - Plot of emperical sigma's by months maturity.  Each line represents
a different initial size class.
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Exhibit 55 - Plot of inverse of average sigma's verses initial class size.
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The empirical sigma data is averaged over all sizes and plotted by maturity to show the 
decreasing trend with maturity as shown in exhibit 57.  The inverse of the average 

Exhibit 57 - Plot of emperical sigma's averaged over initial size class and ploted by maturity
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sigma when plotted verses maturity shows the same increasing trend observed in the 
transition matrix data.  This is plotted in exhibit 58 and can be compared with exhibit 39. 

Exhibit 58 - Plot of inverse of average sigma's verses maturity.
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A review of the skewness statistics from the empirical study shows similar behavior to the 
transition matrix study.  The skewness is positive for small initial sizes and negative for larger 
sizes.  It has no trend as maturity varies.  The average for all observations is    -0.33.  

2.4.4 Sigma Differs 

The overall impression provided by the empirical study is that the lognormal model of 
developed from the transition matrix study does a good job of describing the loss 
development, but it needs adjustment.  The estimates of mu’s from both are very similar, 
and the skewness follows the same pattern.  The estimates of sigma follow a similar pattern 
but the values of the estimates differ.  The transition matrix values are about 1.4 higher than 
the empirical estimates.  If we accept the earlier argument that the transition matrix process 
may generate more variability then is present in reality, then it is necessary to find a way to 
reduce the variability.  We can accept the observed sigma values in the empirical study, but 
this has limited application.  Since the data has only one observation per claim it is limited 
and contains more noise.  Since sigma behaved similarly in both studies, and differed only by 
scale, it is better to accept the aggregate level of the empirical sigmas and to try to adjust the 
fitted sigma surface from the transition matrix study.  To do this we need to take a detailed 
look at the difference between the transition matrix and the empirical sigmas. 

We can measure the difference between these two by dividing the empirical sigmas from 
exhibit 51, by the transition matrix sigmas from exhibit 41, which results in the table and 

Sigma Ratio Surface
Initial Emperical Sigma's divided by TransitionMatrix Sigma's
Size Initial Maturity in Months

Class 012 024 036 048 060 072 084 096 108 120 avg.
001 0.90 0.85 0.86 0.77 0.67 0.78 0.76 0.69 0.61 0.40 0.73
002 0.56 0.64 0.82 0.48 0.49 0.87 0.20 1.14 0.65
003 0.69 0.62 0.61 0.59 0.82 0.43 0.17 0.65 0.44 0.86 0.59
004 0.70 0.61 0.59 0.69 0.65 0.94 0.22 0.88 0.81 0.68 0.68
005 0.68 0.78 0.71 0.65 0.61 0.68 0.60 0.77 0.58 0.70 0.68
006 0.68 0.70 0.66 0.70 0.55 0.51 0.65 0.55 0.44 0.85 0.63
007 0.66 0.76 0.74 0.63 0.77 0.63 0.59 0.74 0.60 0.58 0.67
008 0.71 0.75 0.77 0.67 0.69 0.61 0.64 0.73 0.44 0.61 0.66
009 0.79 0.74 0.78 0.75 0.73 0.70 0.83 0.83 0.79 0.61 0.76
010 0.75 0.74 0.74 0.77 0.77 0.77 0.70 0.56 0.71 0.86 0.74
011 0.76 0.84 0.76 0.80 0.62 0.67 0.92 0.67 0.36 0.55 0.69
012 0.85 0.84 0.72 0.75 0.70 0.77 0.53 0.49 0.88 0.84 0.74
013 0.97 1.42 0.88 0.96 0.54 0.47 0.79 0.56 0.44 0.23 0.73
014 1.14 0.60 1.25 0.55 0.79 0.67 0.39 0.47 1.21 0.72 0.78
015 1.27 0.55 0.79 0.67 1.34 1.00 1.19 0.28 1.06 0.16 0.83
avg. 0.81 0.76 0.78 0.70 0.71 0.70 0.61 0.63 0.67 0.65

Exhibit 59 - This is the ratio of the emperical sigmas in exhibit 52 divided by the transition matrix sigmas in
exhibit 34. A plot of this surface is shown at right.  The average of this surface is 0.704
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graph shown in exhibit 59.  This is the surface of the ratio that is the correction factor to 
take the fitted transition matrix sigma value to the actual empirical sigma value.  In a perfect 
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world, every single value would be equal to each other.  But, since there is noise in the data, 
variation is observed across the surface.   

2.4.5 Correction Factor 

We want to look for structure by taking the average across maturity and the average 
across size, which are displayed in the last column and the bottom row respectively.   First, 
we consider changes with size, and we plot the individual maturity data, and then the 
averages as shown in exhibit 60.  This reveals a slight upward trend with increasing initial 
loss size, however, the fluctuations in this line is well within the noise of the individual data 
points.   Looking at the behavior as maturity varies in exhibit 61, we see a similar result,  a 
slight decreasing trend as maturity increases which is much smaller than the noise of the 
original data.  In interest of parsimony we select this surface to be a level plane with a value 
of its average, 0.704. 

Exhibit 60 - Plot of sigma ratio surface showing how it changes with size. Individual maturities are shown at left, and 

values averaged over maturity is shown at right
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Exhibit 61 - Plot of sigma ratios as maturity varies.  The left shows each size class as an individual line.  The right shows
the values averaged over maturity.
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With this surface 
approximated as a single value, 
we adjust the fitted sigma 
values in exhibit 41, and 
compare them to the empirical 
values.  Exhibit 62 contains the 
revised fitted sigmas and this 
surface is plotted in exhibit 63.  

In order to test how well we 
have approximated the 
empirical sigmas we can 

subtract the two 
surfaces, the adjusted 
fitted sigmas in 
exhibit 62 and the 
empirical sigmas in 
exhibit 51.   

The resultant 
table of differences 
is shown in exhibit 
64 and plotted in 
exhibit 65.  Here we 

see the overall average of 0.01 of this surface is very close to zero indicating that the adjusted 
fitted sigmas are a good approximation to the average level of the empirical sigmas. 

initial fitted sigma values after factor adjustment
size initial maturity
class 012 024 036 048 060 072 084 096 108 120
001 2.40 2.29 2.18 2.09 2.00 1.92 1.85 1.78 1.72 1.66
002 1.88 1.81 1.74 1.68 1.63 1.58 1.53 1.48 1.44 1.39
003 1.67 1.62 1.57 1.52 1.47 1.43 1.39 1.35 1.31 1.28
004 1.51 1.46 1.42 1.38 1.34 1.31 1.27 1.24 1.21 1.18
005 1.37 1.34 1.30 1.27 1.23 1.20 1.17 1.15 1.12 1.10
006 1.26 1.23 1.20 1.17 1.14 1.12 1.09 1.07 1.04 1.02
007 1.16 1.14 1.11 1.09 1.06 1.04 1.02 1.00 0.98 0.96
008 1.08 1.06 1.04 1.01 0.99 0.97 0.95 0.94 0.92 0.90
009 1.01 0.99 0.97 0.95 0.93 0.92 0.90 0.88 0.87 0.85
010 0.95 0.93 0.91 0.90 0.88 0.86 0.85 0.83 0.82 0.81
011 0.89 0.88 0.86 0.85 0.83 0.82 0.80 0.79 0.78 0.77
012 0.83 0.83 0.82 0.80 0.79 0.78 0.76 0.75 0.74 0.73
013 0.79 0.79 0.77 0.76 0.75 0.74 0.73 0.72 0.71 0.70
014 0.75 0.75 0.74 0.73 0.72 0.70 0.69 0.69 0.68 0.67
015 0.71 0.71 0.70 0.69 0.68 0.67 0.66 0.66 0.65 0.64

Exhibit 62 - Adjusted fitted sigma surface (exhibit 42) after the
application of the adjustment factor.

Exhibit 63 - Plot of fitted sigma values after adjusting to the level of the emperical sigmas.
This is the data in exhibit 63 and can be compared to plot in exhibit 43. 

00
1

00
4

0
07

0
10

01
301

2

03
6

0
60

0
84

1
08

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

sigma

size class
maturity



Transition Matrix Theory and Individual Claim Loss Development 
 

Casualty Actuarial Society Forum, Spring 2005 155 

 

Exhibit 65 - Plot of Error surface of difference between adjusted, fitted Transition Matrix sigma's
and emperical sigma's.
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Observing the average column and row in exhibit 64 there may be some residual 
behavior, the average difference seems to go from positive to negative with increasing size, 
and from negative to positive with increasing maturity.  These trends are small, and may be 
noise.  We also must consider that the empirical study used the transition from initial to 
current report for a proxy for ultimate development.  By adjusting the variation in transition 
matrix model to the level of the empirical data we have the shape of the transition matrix 
model, but the value levels of the empirically observed data. 

initial Error Surface - Difference between adjusted, fitted TM sigmas and Emperical sigmas (TM - E)
size initial maturity
class 012 024 036 048 060 072 084 096 108 120 avg.
001 0.00 0.09 -0.10 -0.06 0.12 -0.17 -0.14 0.04 0.18 0.57 0.05
002 0.73 0.56 0.24 0.76 0.45 -0.43 1.04 -0.76 0.32
003 0.24 0.39 0.25 0.18 -0.50 0.42 1.03 -0.20 0.46 -0.20 0.21
004 0.09 0.25 0.24 0.00 -0.11 -0.93 0.82 -0.56 -0.36 -0.32 -0.09
005 0.19 -0.11 0.02 0.12 0.10 -0.09 0.09 -0.28 0.12 -0.16 0.00
006 0.04 -0.01 0.03 -0.10 0.12 0.23 0.02 0.17 0.24 -0.27 0.05
007 0.16 -0.04 -0.06 0.10 -0.09 0.03 0.09 0.00 0.12 0.26 0.06
008 -0.02 -0.02 -0.04 0.10 0.06 0.11 0.06 -0.05 0.34 0.18 0.07
009 -0.12 -0.08 -0.10 -0.08 -0.02 0.03 -0.14 -0.08 -0.03 0.17 -0.05
010 -0.08 -0.13 -0.09 -0.07 -0.06 -0.05 0.05 0.17 0.03 -0.09 -0.03
011 -0.27 -0.35 -0.14 -0.17 0.09 0.05 -0.15 0.11 0.44 0.24 -0.01
012 -0.40 -0.38 -0.04 -0.09 0.02 0.00 0.21 0.27 -0.03 0.01 -0.04
013 -0.32 -0.84 -0.17 -0.23 0.20 0.27 -0.09 0.21 0.34 0.49 -0.01
014 -0.34 0.18 -0.53 0.10 -0.24 -0.08 0.23 0.16 -0.44 0.04 -0.09
015 -0.54 0.18 -0.05 -0.02 -0.61 -0.28 -0.53 0.36 -0.41 0.46 -0.14
avg. -0.04 -0.02 -0.04 0.04 -0.03 -0.06 0.17 0.02 0.07 0.04

overall average 0.01

Exhibit 64 - Error Surface of difference between adjusted fitted Transition Matrix sigma's and emperical sigmas.



Transition Matrix Theory and Individual Claim Loss Development 
 

156 Casualty Actuarial Society Forum, Spring 2005 

2.4.6 The Distributional Loss Development Model 

With the sigmas estimated, it is now possible to propose a model that describes the loss 
development of an open claim of a given size at a given maturity. 

An open claim of a given loss size x and a maturity m its ultimate size can be expressed as 
a log normal distribution with: 

Mu = ln( loss size x) * 1.005 

and 

Sigma = 0.701*(1/(maturity *0.001205+ln(loss size)*0.078874-0.34447)) 

Where maturity is in months and loss size is in US dollars 

2.5 Ratemaking Considerations 

2.5.1 Synthetic Data 

It is instructive to explore the 
effect of distributional loss 
development on estimation of 
limited expected values and 
increased limits.  In order to do 
this, a collection of claim values 
were simulated using a lognormal 
distribution with a mu of 13 and a 
sigma of 1.0.  Ten thousand values 
were simulated and 50 were 
selected using stratified sampling.  
This was done by sorting them in 
order and selecting the first 
percentile, and then every second 
percentile thereafter, ending with 
the 99th percentile value.  These 
values are shown in exhibit 66.  
When these values are graphed in 
order on a log scale the lognormal 

42,151   201,660 357,243 595,631 1,059,857  
68,964   215,841 374,978 628,044 1,143,719  
86,054   231,946 393,343 657,576 1,236,435  

104,213 245,987 414,947 689,340 1,353,120  
119,440 260,120 435,752 730,062 1,503,952  
134,623 273,892 457,429 772,238 1,670,692  
148,901 289,921 480,840 818,901 1,916,141  
161,543 305,308 505,404 869,830 2,341,089  
175,838 321,387 535,753 925,229 2,897,278  
189,464 339,692 567,292 993,142 4,564,144  

Exhibit 66 - Simulated loss values, lognormal distribution
mu = 13, sigma = 1.0

Exhibit 67 - Simulated values graphed in order on a log scale.
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distribution becomes obvious as shown in exhibit 67. 

2.5.2 Application of Loss Development 

We select to apply distributional loss development to these claims using the lognormal 
model.  This process is illustrated in exhibit 68 where eight of the fifty claims are shown for 

illustration. The claim value is shown in column 1 and its log is shown in column 2.   

 

posted value dev mu dev sigma ln(dev mean) dev mean dev factor
                 (1)         (2)             (3)                  (4)               (5)             (6)

ln(1) see below (2)+((3)^2)/2 exp(4) (5)/(1)
42,151         10.65  1.37         11.59 108,440     2.57

161,543       11.99  1.14         12.64 308,745     1.91
260,120       12.47  1.07         13.04 462,449     1.78
374,978       12.83  1.03         13.36 635,643     1.70
535,753       13.19  0.99         13.68 871,713     1.63
772,238       13.56  0.95         14.01 1,210,565  1.57

1,236,435    14.03  0.90         14.44 1,858,590  1.50
4,564,144    15.33  0.80         15.65 6,270,935  1.37

formula for (3) =0.701*(1/(12*0.001205+LN(1)*0.078874-0.34447))

Exhibit 68 - Application of distributional loss development to eight of the
50 claim values.  Note that in the formula for column (3), the log value
is of the posted value in column (1).  

 

assume that mu for the loss development model is 1.00 time the log of the loss size.  
Columns four and five are used to calculate the average loss size of the developed loss.  The 
ratio of column 5 divided by column 1 is the implied loss development factor for the 
traditional loss development method.  These will be used to create developed losses to 
compare with the distributional developed losses.  In this way, we will compare losses whose 
averages are the same, and differ only in the change in the shape of the distribution.  This 
process was applied to all fifty selected claims.  When done, we have three lists of losses, the 
original shown in column 1, the traditionally developed losses in column 5 and the 
distributional developed losses represented by mu in column 2 and sigma in column 3. 
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2.5.3 Comparing Cumulative Density Functions  

A good technique to compare the different distributions is to look at the cumulative density 
functions.  Since we have a collection of losses, we can calculate an empirical cumulative 
density function as shown in exhibit 69.  This method involves counting the number of 

Original Claims
Probabliity that the Limit exceeds the Loss

Limit
Loss 25,000 100,000 500,000 1,000,000  5,000,000  
42,151       0 1 1 1 1

161,543     0 0 1 1 1
260,120     0 0 1 1 1
374,978     0 0 1 1 1
535,753     0 0 0 1 1
772,238     0 0 0 1 1

1,236,435  0 0 0 0 1
4,564,144  0 0 0 0 1

Count 0 1 4 6 8
Probability 0.000 0.125 0.500 0.750 1.000
Exhibit 69 - Computation of cumulative probability for original claims.  

claims that exceed a collection of arbitrary selected limits.  The limits run across the top of 
the table, and the claims are in the first column.  A count of one is placed in the field of the 
table for each intersection representing a claim exceeding a limit.  The counts are totaled at 
the bottom and divided by the number of claim to yield the probability.  Again, for display 
purposes we show eight claims, where fifty claims were used in the study.  The final 
cumulative probability is the ordered pair of the limits running across the top of the table, 
and the probability running across the bottom of the table. 

  

Claims with Traditional Loss Developemnt
Probabliity that the Limit exceeds the Loss

Limit
Loss 25,000 100,000 500,000 1,000,000  5,000,000  
108,440     0 0 1 1 1
308,745     0 0 1 1 1
462,449     0 0 1 1 1
635,643     0 0 0 1 1
871,713     0 0 0 1 1

1,210,565  0 0 0 0 1
1,858,590  0 0 0 0 1
6,270,935  0 0 0 0 0

Count 0 0 3 5 7
Probability 0.000 0.000 0.375 0.625 0.875
Exhibit 70 - Computation of cumulative probability for claims with
traditional loss development.  
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 Exhibit 70 shows a similar treatment for the losses with traditional loss development.  
Even with the small sample of eight we see a shift in the distribution.  

2.5.4 CDF for Distributional Development 

 The computation of the cumulative probability distribution for the losses with the 
distributional loss development applied is a bit more complicated.  In this case, each 
developed loss is a distribution.  But, this allows us to estimate a probability that a claim is 
less than a limit.  Exhibit 71 shows the detail of this calculation.  Across the top is the limit,  

Probabliity that the loss is less than the Limit.
Limit, ln of limit

25,000 100,000 500,000 1,000,000  5,000,000  
Loss mu sigma 10.13 11.51 13.12 13.82 15.42
42,151       10.65 1.37 0.35     0.74       0.96       0.99           1.00           

161,543     11.99 1.14 0.05     0.34       0.84       0.95           1.00           
260,120     12.47 1.07 0.01     0.19       0.73       0.90           1.00           
374,978     12.83 1.03 0.00     0.10       0.61       0.83           0.99           
535,753     13.19 0.99 0.00     0.04       0.47       0.74           0.99           
772,238     13.56 0.95 0.00     0.02       0.32       0.61           0.98           

1,236,435  14.03 0.90 0.00     0.00       0.16       0.41           0.94           
4,564,144  15.33 0.80 0.00     0.00       0.00       0.03           0.55           

Sum 0.42     1.42       4.10       5.44           7.44           
Probability 0.05     0.18       0.51       0.68           0.93           
Exhibit 71 - Illustration of method to calculate cumulative probability of claims with 
log normal distributional development applied.  

and also shown is the log of the limit.  We capitalize on the characteristic of the lognormal 
distribution that the 
log of the value is 
normally distributed.  
We can take the mu 
and sigma of the 
lognormal as the 
mean and standard 
deviation of a 
normal, respectively, 
and calculate the 
probability interval 
represented by the 

Exhibit 72 - Plot of cumulative probability curves for original losses, traditionally developed
losses, and distributionally developed losses. 
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log of the limit using a normal distribution table.  By choosing the correct tail of the normal, 
we will get the probability that the developed loss is less than the indicated limit.  These 
probabilities are summed down the column and the total is divided by the total number of 
claims yielding the cumulative probability verses the limit.  

Note that our example 
assumes that all the claims 
are open, and are subject to 
development.  In a real life 
situation the collection of 
claims would be a mixture of 
open and closed claims.  The 
open claims would be 
treated in the manner shown 
in exhibit 71 while the 
closed claims would be 
treated as in exhibit 70 
where a zero or one is 
assigned to the probability in 
the table.  The interesting fact is that, by simply adding the count and the  “sum” values  of 
exhibits 70 and 71 and then dividing by the total number of claims,  one has the probability 
for the open and closed claims.  This provides a method of creating the cumulative 
probability distribution of the mixed claims.  With a cumulative probability available for the 
three types of losses they 
can be compared by plotting 
as shown in exhibit 72.  We 
get a clearer picture of the 
different behaviors of the 
various loss development 
methods when we 
rearranging the horizontal 
scale to a log scale, as shown 
in exhibit 73.  

Exhibit 73 - Plot of cumulative probability curves for original losses, traditionally developed
losses, and distributionally developed losses with a log scale for the limit.
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Exhibit 74 - Limited expected value in the range 0 to 1,000,000.
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There are two comparisons in this graph.  The first comparison is between the original 
claim data (diamonds) and the loss development factor data (boxes).  Here, it would appear 
that the original line is shifted to the right, but maintains the same shape.  The distributional 
development line (triangles) crosses the original line at the 50% range, but it shows more 
dispersion at small and large loss sizes.   

2.5.5 Comparing Limited Expected Values 

Limited expected values 
were calculated from the 
empirical cumulative density 
functions to see how they 
would behave relative to 
each other.  Exhibit 74 
shows the LEV for the 
range zero to one million in 
limit.  Here we see similarity 
between the original and the 
distributional developed 
losses, while the LDF 
developed rises quickly. As 
we look at the range to 
$5,000,000 in limit we see 
the distributional rising up 
to meet the LDF adjusted 
data as shown in exhibit 75.  
Looking over the entire 
range up to $30,000,000 in 
limit, as shown in exhibit 76, 
we see that the distributional 
curve rises up and meets the 
LDF adjusted limited 
expected value.  One can conclude that this is an expected conclusion since the values were 
formulated to have an equal mean.  Remember, we selected the loss development factors so 

Exhibit 75 - Limited expected value in the range 0 to 5,000,000.
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Exhibit 76 - Limited expected value in the range 0 to 30,000,000.
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that the average for each individual loss would be the same for the LDF data and the 
distributional data.  We only find this average converging at very high limits where they have 
little impact on the distribution.    

2.5.6 Comparing Increased Limits Factors 

With limited expected 
value curves available we 
can calculate pure loss 
increased limits factors.  
First we select a basic limit 
of $100,000 and compute 
the increased limits.  In 
exhibit 77 we show the 
increased limits for the 
range of $100,000 to 
$1,000,000.  This shows 
that the factor method produces ILFs higher by 20 to 30%   as compared to the 
distributional method.  The undeveloped and distributional adjusted ILF’s are very similar.  
If we look over a wider range, up to $5,000,000, as shown in exhibit 78, we 

Exhibit 78 - Increased Limits Factors up to $5,000,000 where basic limit is $100,000.
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see a change in behavior.  The distributional curve rises from the original curve and begins 
to approach the factor curve.  This is exactly what is seen in the limited expected value 
curves, and, it is no surprise since increased limits are simply ratios of LEV’s with the same 
denominator.  The last range to explore is increased limits factors up to $30,000,000  

Exhibit 77 - Increased Limits Factors up to $1,000,000 where basic limit is $100,000.
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Exhibit 79 - Increased Limits Factors up to $30,000,000 where basic limit is $100,000.
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as shown in exhibit 79.  Here we see that the distributional line has risen up and exceeded 
the factor line.  This is because the denominator for the distributional line is less at the 
$100,000 basic limit. 

 Varying the basic limit will change the behavior of the increased limits factors. Selecting 
$1,000,000 as basic limit and recalculating the increased limits factors produces the results  

Exhibit 80 - Increased Limits Factors up to $5,000,000 where basic limit is $1,000,000.
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shown in exhibit 80.  Here we see that the distributional result is higher than the factor 
result, and this is consistent over this range and over the larger range, up to $30,000,000 as 

Exhibit 81 - Increased Limits Factors up to $30,000,000 where basic limit is $1,000,000.
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shown in exhibit 81.  Here we see a difference that is again in 30 percent range.   

3. RESULTS AND DISCUSSION 

It is well known that individual open claims will develop to an ultimate value that may be 
more, less, or the same as the current value.  The exact nature of this distribution has never 
been clear.  This study shows, with two different approaches, that it is a skewed distribution 
that can be modeled with well known severity distributions.   

The lognormal distribution is particularly suited to modeling the severity distribution of 
the ultimate of an open claim.  One difficulty of exploring loss development of individual 
claims is the excessive parameterization that occurs.  The empirical transition matrix 
approach results in a very large number of parameters that vary by initial maturity, and claim 
size.  Using them in a practical system to apply loss development to individual claims with 
the intention of arriving at an ultimate severity distribution would be cumbersome at the 
least.  Applying the lognormal distribution to the transition matrix approach greatly reduces 
the parameters needed by characterizing the ultimate distribution of an individual loss as a 
lognormal with a mu which is a function of the initial size, and a sigma which a function of 
initial size and maturity.  The math for combining a collection of individual lognormal 
distributions into an aggregate severity distribution is well known.  This results in a practical 
method to apply loss development to individual claims that results in the ultimate severity 
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distribution where the loss development recognizes the potential for claims to increase or 
decrease from the current size.  

The lognormal individual claim loss development model appears to describe behavior in 
the absence of policy limits. It provides ample upward development of even very large 
claims. Policy limits must be applied after the loss development in order to correctly 
represent the potential loss of the developed severity distribution.   

The observed dispersion in development appears to decrease and skewness becomes less 
positive as claim size increases. This is caused by an extended negative tail of small claims 
while the main peak remains symmetrical.  The lognormal model does not capture this 
negative tail.  Some practitioners may be uncomfortable in relying on policy limits to explain 
this and may want to adopt a more complex model that reflects this detail.  A bi-modal 
lognormal treatment of the ultimate distributions may more accurately reflect this.   

A comparison between Transition Matrix ultimate development and empirically observed 
first to last report transitions indicate that the Transition Matrix approach may result in more 
variation than actually present.  This could be due to the independent nature of the 
Transition Matrix approach.  It is reasonable to expect a certain amount of dependency as 
real claims progress to ultimate.  It is interesting to note that the two models have the same 
shape and differ from each other only in the scale of one parameter, sigma.  It is possible to 
adjust the lognormal development model resulting from the Transition Matrix approach so 
that it “balances” to the average values of the empirical loss development model.  Another 
factor to consider is that the empirical loss development may very well underestimate sigma 
since it is missing data, but, does provides a minimum boundary.   Further study is indicated 
to measure how much sigma is underestimated by the initial to final transitions, and, one 
may find that the truth may lay somewhere in between the empirical and the transition 
matrix approaches. 

Both the Transition Matrix model and the empirically derived model exhibit a positive 
skewness for small claims and a negative skewness for larger claims.  This conveniently fits 
with long held opinions in the casualty actuary community that small claims have a tendency 
to develop larger, and large claims have a tendency to develop smaller.  The tendency for 
small claims to develop larger, in this case, may be a characteristic of the data because it is a 
subset that has been submitted for reinsurance recovery.  It is not hard to imagine that the 
process of selecting claims for submission will exclude small simple claims that are not 
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expected to develop.  This results in a collection of claims that is biased towards larger 
development for the smaller claims. 

The larger initial claims exhibit a symmetrical distribution (in the log transform space) 
about the most populated final size interval, with a small percentage of claims filling in the 
lower size intervals.  Typically you see 2 to 4 percent of the claims in lower intervals 

which are more that three size classes lower than the mode.  Though not planned, the width 
of the size classes are about one standard deviation.  So, the mode size class and the four 
adjacent classes account for about 95% of the claims.  So, this 2% to 4% spread evenly in 
the lower size classes causes the negative skew values.  If one ignores the extreme outliers, 
then the lognormal loss development model is a very good fit.  In the future, it may do well 
to revisit the fit of these distributions with a bi-modal lognormal distribution.  One mode 
will pick up the sharp peak around the initial loss size, and the other will be low probability 
with wide dispersion to pick up the claims that develop to much smaller values.  

 It is important to note that the study to measure ratemaking impacts was designed to 
stress the difference in the result between the two methods.  It uses a claim set of all open 
claims.  In most realistic situations, 60 to 75 percent of the claims would be closed and not 
experiencing any additional development.  This would cut down this observed difference 
from the 30 percent range to less than 10 percent.   

 When considering the effect on pricing measures, it is important to point out that this 
study only compares the distributional loss development with single factor development, 
which is a method used in an ad-hoc manner to adjust small datasets for reinsurance rating.  
It does not imply a comparison with published industry standard increased limits factors, 
which are prepared with sophisticated methods that correctly reflect the distributional nature 
of individual loss development.  

 And last, the reader is guarded against a direct comparison of these increased limits 
factors with published increased limits factors since industry factors are prepared with a 
ballasting of a large collection of small losses, and that is clearly not the case in the losses 
used here.   
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4. CONCLUSIONS 

Applying Transition Matrix theory to individual claims allows one to build up a picture of 
individual loss development, which has been seldom seen before.  Using this method, it is 
possible characterize individual claim development as, distributional process where, the 
claim, at a known current and open amount, will, at ultimate, be a value which is forecast by 
a claim distribution.  For general liability claims in the United States, the ultimate loss 
development of an individual claim can be represented as a heavy tailed skewed distribution, 
which closely resembles a log-normal distribution.  It is possible to develop a simple 
functional relationship between the size and maturity of the open claim, and its ultimate 
lognormal distribution using four parameters.   

 The Transition Matrix approach may introduce excessive dispersion into the forecast of 
ultimate loss due to its independence assumption, but, it is possible to measure and adjust 
for it.  This results in a model that allows one to take individual open claims, and adjust for 
development to ultimate, before fitting these claims to a severity curve.  It can be shown that 
the distributional loss development process will change the shape of the ultimate size of loss 
distribution in a way that will affect loss cost estimates in a range of  a few percent to 10 to 
20 percent.   It is important to reflect the distributional nature of loss development when 
evaluating individual loss data in order to avoid these errors. 
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Appendix A 
The following describes the data used in this study,and, its treatment.  This data was 

submitted as first dollar, 100% ground up insured loss.  These claims were entered into the 
initial computer system as incremental transactions.  The critical timing elements captured 
were date of loss, date the claim notice was submitted to the intermediary, and the date the 
claim was entered into the system.  The various money types were maintained separately, 
such as indemnity, expense, subrogation, etc.  A line of business code was entered for each 
claim, which was used for segregation into broad categories.  A description of cause of loss 
field contained a detailed text description of the loss.  This was used to isolate claims into 
sublines.  It was found that simple terse descriptions were used repeatedly, and these were 
useful for identifying sublines.  All the unique descriptions were isolated, and each was 
assigned to sublines.  The goal was to create an Other Liability collection of data by 
identifying and removing Workers Comp, Medical Professional, Lawyers Professional, 
Pollution, and Auto.  Also removed were claims arising from special events or circumstances 
such as the World Trade Center Disaster, toxic waste, environmental clean up, tobacco, 
cancer, etc. The remainder was deemed to be the Other Liability.  

It was possible to isolate claims labeled as “other liability” using the Line of Business 
field.  Inspection of this subset of the data revealed that it contained more than ordinary 
liability losses.  A list of string fragments was assembled to eliminate claims based on the 
likelihood that the claim was another subline.  For these claims, the description of cause of 
loss gave a good indication that the loss might be workers comp, legal liability, medical 
professional liability, auto liability, products etc.  It also allows removal of special incidents, 
such as the World Trade Center disaster, tobacco losses, hazardous waste, environmental 
cleanup etc.  The entire list of string fragments is shown in exhibit 17. 

 



Transition Matrix Theory and Individual Claim Loss Development 
 

Casualty Actuarial Society Forum, Spring 2005 169 

Strings for eliminating Claims
FIRE BREAST IMPLANT LEGAL SURGERY
MOLD CLASH INS RAN LIQUOR SURGICAL
LAWYER CLASS INS REAR M.V. TABACCO
SURETY D & O INS VEH M/ TOBBACL
ASBES D & 0 INS. STRUCK MED MAL TRACTOR
AGG D&O INS.BACKED MED. MAL TRAILER
WASTE D &O INSD BACKED MED PROF TRUCK
ENV D*O COLLIDED MED MAP TYPHOON
CLEAN D+O CROSSED MED NEG VEH
SEX D. & O. INSD DRV MED.MAL VESSEL
CONTAM D. AND O. DRIVER MED/MAL W C
POL D/O INSD DV MOLEST W.C.
SITE DIR & INSD FAIL MOTOR VEH W/C
REMED DIRECTOR INSD HIT MOTOR ACC WC
WTC E & O INSD LOST MOTORCYCLE WORK
TOBAC E&0 INSD R/E MOTORIST WORLD TRADE CENTER
CANCER E&O INSD RAN MOTORVEHICLE CAR CO
MEDICAL CAR AC INSD RE MOTORYCLE CAR CR
ACCOUNT TRUCK INSD REAR MV CAR FL
ACCT VEH. INSD ROLLED NURSE CAR HIT
AIDS VAN INSD RENTED PEDEST CAR IN
ATTNY FEN PHEN INSD SKID PROD CAR R
ATTORNEY FIDELITY INSD STRUCK PROF CAR S
ATTY H.I.V. INSD STUCK REAR END CAR T
AUDIT HIV INSD TRUCK REAR-END CAR/
AUTO HOSPITAL INSD TURN REAREND CAR\
Agg HURRICANE INTERSECTION DRIVING

Exhibit 17  This is a list of string fragments that were used to eliminate claims from the study.  

Claims were eliminated if the string fragment was contained in the “Description of 
Cause of Loss” field. 

The sum of the indemnity and ALAE was used as the loss in this study.    The 
incremental transactions at irregular times were accumulated into year end evaluations for 
each claim.  A claim was deemed to be closed if it’s paid and incurred amounts were the 
same.  The closure event was deemed to have occurred when the claim first arrived at this 
amount, and a flag was entered into the data, for each claim, to mark this.   

The losses were trended using the Masterson trend factors published in Best’s.  The 
General Liability Bodily Injury trend indications were used.  These were available from 1984 
to present.  1980 to 1983 were adjusted by an additional annual trend of 8%.   

Claims from accident years 1979 and earlier were excluded from this study in order to reduce 
the amount of computation.   This left about 37,000 claims, of which, about 28,000 were 
non zero in 2003. 
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