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Abstract 

This paper addresses the issue of parameter uncertainty in loss ratio distributions and its implications 
for primary and reinsurance ratemaking, underwriting downside risk assessment and analysis of sliding 
scale commission arrangements.  It is in some respects a prequel to Van Kampen’s 2003 CAS Forum 
paper [1], which described a Monte Carlo method for quantifying the effect of parameter uncertainty 
on expected loss ratios. He showed the effect was especially significant in pricing applications 
involving the right tail of the loss ratio distribution.  While Van Kampen focused purely on the 
objective of quantification, this paper develops the functional form of the loss ratio distribution 
incorporating parameter uncertainty that is implicit in his approach.  This paper thus both underpins 
Van Kampen’s work and allows us to apply it more efficiently, because it is easier to work with the 
loss ratio distribution directly than to perform Van Kampen’s simulation. 
 
Suppose we have a set of on-level loss ratios from a stable portfolio of business of substantial enough 
size that it is plausible that the loss ratios can be viewed as a sample arising from an approximately 
normal or lognormal distribution, the parameters of which are unknown.  What is the distribution of 
the prospective loss ratio?  This paper discusses the drawbacks of using the “best fit” normal or 
lognormal distribution to model the loss ratio, particularly for pricing or risk assessment applications 
that depend on the tails of the distribution.  While one fit is “best”, frequently a number of parameter 
sets provide nearly as good a fit.  Choosing only the “best fit” distribution means ignoring the 
information contained in the sample about the other possible distributions.  That information can be 
reflected in the loss ratio distribution by weighting together all the plausible normal or lognormal 
distributions, given the sample, by their relative likelihoods.  In the continuous case, where the 
weighting function is the density function of the parameters, the resulting distribution is the Student’s 
t or log t distribution, respectively.  This distribution, which incorporates the uncertainty about the 
parameters, is preferable to the “best fit” distribution for modeling the prospective loss ratio.   
 
The paper illustrates applications ranging from aggregate excess reinsurance pricing to measurement 
of underwriting downside risk to estimation of the expected cost or benefit of sliding scale 
commissions, in each case comparing the results arising from underlying normal and lognormal 
assumptions and both parameter “certainty” and parameter uncertainty.   
 
Keywords: Parameter uncertainty, aggregate loss, aggregate excess, lognormal, Student’s t, downside 
risk 

1. INTRODUCTION  

This paper addresses the issue of parameter uncertainty1 in loss ratio distributions and its 
implications for actuarial applications.   Very few CAS papers have dealt with the subject of 
parameter uncertainty, notably Van Kampen [1], Meyers [2], [6], Kreps [3], Hayne [4] and 
Major [5].  The number is small compared to the dozens of papers that have discussed 

                                                 
1 Sometimes also referred to as “parameter risk” 
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methods of addressing process risk.  In fact, there may be more papers containing caveats 
saying they do not deal with parameter risk than there are papers that address it!   In the view 
of this author the subject deserves more attention.  As actuaries develop increasingly 
sophisticated models of risk processes, it is critical that we take account of our lack of 
knowledge of the true parameters of these models.  Failure to do so can lead to systematic 
overconfidence and wrong conclusions.  

This paper was inspired by Van Kampen’s 2003 CAS Forum paper, “Estimating the 
Parameter Risk of a Loss Ratio Distribution,”[1] in which he presented a Monte Carlo 
simulation based approach for quantifying the impact of parameter risk in certain 
applications.  Both his presentation of the problem and his solution were refreshingly clear.  
Unfortunately, in practice his simulation approach is a cumbersome one. This paper 
develops the functional form of the loss ratio distribution incorporating parameter 
uncertainty that is implicit in Van Kampen’s approach.  It thus both underpins his work and 
allows us to apply it more efficiently, because is it easier to work with the loss ratio 
distribution directly than to perform the simulations. 

1.1 Organization of Paper 
The paper is organized into six sections.  The first section is the Introduction, where we 

describe the general framework.  In the context of a given set of loss ratio experience that 
has been adjusted to the prospective claim cost and rate levels, we define the prospective 
loss ratio density fx (x)  as the integral of the product of the conditional loss ratio density 
fx (x |θ )  and the joint density function of the parameters fθ (θ ) .   

Section 2 introduces the assumption that the conditional loss ratio distribution is normal, 
which allows us to use results from normal sampling theory to describe the densities of the 
parameters.  We discuss the drawbacks of choosing the “best fit” normal distribution fx

F (x)  
as the model of the loss ratio distribution in light of the uncertainty in the “best fit” 
parameters, especially in the case of small sample sizes.    

In Section 3 we show how to incorporate parameter uncertainty by applying the general 
framework described in Section 1 to the normal scenario introduced in Section 2.  We show 
that the result is a Student’s t density.  We also show how that Student’s t density can be 
approximated as a weighted average of normal densities, where the weights are discrete 
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probabilities associated with the parameters of the plausible normal densities, which we can 
estimate from the information contained in the loss ratio experience.   

In Section 4 we change the assumption about the form of the conditional density to 
lognormal.  Because the lognormal density can be derived from the normal by a simple 
change of variable, we can easily determine the formulas for incorporation of parameter 
uncertainty in the lognormal case from the formulas developed in Section 3.  The resulting 
distribution is a “log t”, which is the Student’s t analogue to the lognormal.  We compare the 
“best fit” lognormal and the log t.   

In Section 5 we illustrate the four models (normal and lognormal under conditions of 
parameter uncertainty and parameter “certainty”) in the context of three applications: 1) 
aggregate excess pricing, 2) downside risk measures, and 3) sliding scale commissions.   

Section 6 contains the Summary and Conclusions, where we recap the main objectives of 
the paper, which are described as:  1) demonstrating how to derive and use the density 
function of the prospective loss ratio fx (x)  in pricing and risk assessment applications, given 
on-level loss ratio experience and a normal or lognormal loss ratio process, and 2) showing, 
mainly by means of examples, that fx (x)  has fatter tails than the “best fit” alternative fx

F (x) , 
which implies greater loss exposure in high aggregate excess layers and greater exposure to 
frequency and severity of underwriting loss than that indicated by fx

F (x) . 

1.2 Framing the Problem 
Suppose we have n accident years of loss ratio experience from a stable portfolio of 

business, where the loss ratios have been adjusted to the projected future claim cost and rate 
levels.  Assuming the “on level” adjustments have been made perfectly and the accident 
years are independent, we can treat the n loss ratio observations as a random sample arising 
from the stochastic process governing the generation of loss ratios from this portfolio.  Let 
x  represent the random variable for the prospective loss ratio and let x1, x2, x3,..., xn denote 

the observed loss ratios.  Then the sample mean is ∑
=

=
n

i
ixx

1

 and the unbiased sample 

variance is s2 =
(xi − x )2

n −1
i=1

n

∑ . 

In the basic actuarial ratemaking application, we need to determine the mean of the 
prospective loss ratio distribution )x(E .   If x  is symmetrically distributed about the mean, 
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then we know x)x(E = .  If all we need is )x(E , then we don’t need to know any more about 

x .  On the other hand, if x  is not symmetrically distributed about the mean, then not only is 
x)x(E ≠ , but to determine its value it is necessary to evaluate x ⋅ fx (x)dx

−∞

∞∫ , which requires 

knowledge of fx (x) .  Likewise, in more advanced ratemaking applications, e.g., pricing 
aggregate excess coverage or structuring a loss-sensitive rating plan, and in cases where x  is 
not symmetrically distributed, we need to know the distribution of  x. 

In this paper we will discuss how to use on-level loss ratio experience to determine the 
distribution of x , given varying degrees of certainty about the parameters of the underlying 
stochastic process, for the cases where that process is (a) normal, and (b) lognormal2.  
Because parameter uncertainty can have a significant impact on the nature of the loss ratio 
distribution, it is critical to the soundness of the pricing (and reserving) process that such 
uncertainty is taken into account. 

Let θ  refer to the set of parameters of the stochastic process that gives rise to the 
prospective loss ratio.  If fx (x |θ )  is the density function of the loss ratio, given the 
parameter set θ , then the marginal density function of x  is: 

 

∫ ⋅=
θ

θ θθθ d)(f)|x(f)x(f xx                (1.1) 

 
Formula (1.1) shows that fx (x)  can be seen as a weighted average of a set of distributions 

of the form fx (x |θ )  where fθ (θ )  is the weighting function.  If there is no uncertainty about 
the value of the parameter set, fθ (θ )  collapses to a discrete probability function with 

1)(Pr =θob  for θ = θ0 and 0 for all other values of θ .  In that case fx (x) = fx (x |θ0) and for 
notational convenience the θ0  is usually omitted.  However, in cases where the values of the 
parameters are uncertain, care must be taken to maintain the distinction between fx (x)  and 
fx (x |θ ) .  

2. x |θ  NORMALLY DISTRIBUTED 

Assume x |θ  is normally distributed with parameters θ = {µ,σ 2} , these parameters 
representing the population mean and variance, respectively. The values of the parameters 
                                                 
2 The parameter uncertainty regarding the correct distribution family is beyond the scope of this paper. 
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are unknown.  Treating these unknown parameters in Bayesian fashion as random variables, 
in this context formula (1.1) can be rewritten as: 

 

      ∫ ∫ ⋅=
µ σ

µσσµσµ
2

222 dd),(f),|x(f)x(f xx      

   

                      ∫ ∫ ⋅⋅=
µ σ σµ µσσσµσµ

2
2

2222 dd)(f)|(f),|x(fx               (2.1) 

 

where     fx (x | µ,σ 2) =
1

σ 2π
e

−
1

2

x−µ
σ

 

 
 

 

 
 

2

                               (2.2) 

 

is a normal density that depends on µ and σ 2. 

Because x  is the unbiased and maximum likelihood estimator of µ  and s2  is the 
unbiased estimator of σ 2, it is tempting simply to treat µ  and s2  as parameter constants 
instead of as random variables3, and set x=µ  and σ 2 = s2 in formula (2.2), deem 

)x(obPr =µ  and )s(obPr 22 =σ  to be close to 1, and conclude that, for practical purposes, 
the density fx (x)  can be approximated by the normal density: 

 

       fx
F (x) =

1

s 2π
e

−
1

2

x−x 

s

 
 
 

 
 
 

2

               (2.3) 

Figure A is a graph of fx
F (x)  with %.x 7967=  and s2 = 0.07712 .   

 

                                                 
3 The reader might find it confusing that we sometimes treat µ  and 2s  as parameter constants and sometimes 

as parameter random variables.  However, to avoid overly cumbersome notation and discussion that would 
detract from the conceptual development, we will assume the reader can discern from context which form we 
are discussing. 
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FIGURE A 

               Density Function fx
F (x)   

 Given x = 67.79% and s2 = 0.07712  

 

 

 

Figure A and )x(f F
x  represent what is frequently called the “best fit” distribution given 

the sample data.  However, we should be cautious about adopting this distribution as fx (x)  
without first examining the error structure of the sample-based parameters, which we will 
now do.    

Given a random sample of n loss ratio observations, a Bayesian interpretation of results 
from normal sampling theory allows us to specify the densities fσ 2 (σ 2) , fµ (µ |σ 2)  and fµ (µ) .4   

We will use those results to examine the risk in the sample-based parameters, beginning with 
fσ 2 (σ 2) :  

 

        ( ) 








 −
−−

− ⋅
Γ⋅

=
−

−

2

2

2

2

2

12

12

)1(

2

1

2

1
)1(

2

2

)(2

1
)( σ

σσ
σ

σ
snn

sn ef
n

n             (2.4) 

                                                 
4  Strictly speaking, we should refer to    fσ 2 (σ 2 |{ xi }) ,   fµ ( µ |(σ 2 ,{ xi })  and  fµ ( µ |{ xi }) .  However, because 

that notation is cumbersome and the conditionality should be clear from context, we will drop the reference 
to the sample  { xi } . 
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Because yn−1 =
(n −1)

σ 2
⋅ s2  is a chi-square square random variable with n-1 degrees of 

freedom, the density represented by (2.4) is sometimes called the inverse chi-square5. Figure 
B shows fσ 2 (σ 2)  graphically for values of n equal to 5, 10, 25, and 100, respectively, given 

s2 = 0.07712 . The graph for n=5 is the most skewed.  As n increases, both skewness and 
dispersion decreases.  The graph for n=100 appears nearly symmetrical. 

 

              FIGURE B 

     Density Function fσ 2 (σ 2)   

      Given s2 = 0.07712 , n = 5, 10, 25, 100 
 

 
 

The mean of σ 2 is a function of n whose value approaches s2  as n approaches infinity: 

 

E(σ 2) = s2 ⋅ n−1

n−3
          (2.5) 

 

A measure of the confidence we should feel about ascribing to σ 2 a value of s2  is the 

probability that σ 2 falls within a certain tolerance of s2 .  Because we want to be highly 
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confident that σ 2 = s2, let’s set the tolerance at ±1% of s .  Because σ 2 =
(n −1)

yn−1

⋅ s2 , the 

bounds of this interval are (n −1)

yn−1

= (.99)2  and (n −1)

yn−1

= (1.01)2 and thus associated with chi-

square values, yn−1, of (n −1)

(.99)2
 and (n −1)

(1.01)2
, respectively.  The probability associated with this 

interval is Fn−1( n−1

.992 ) − Fn−1( n−1

1.012 ) , where Fn−1 denotes the chi square cdf with n-1 degrees of 

freedom.  The results are tabulated in Table 1, which shows that )s.s(.obPr 22222 01199 ≤≤ σ  

).(.obPr 222 07790763 ≤≤= σ  is only 2% for n=5, rising to 11% for n=100. There is very little 

basis for having much confidence in 222 07710.s ==σ  and no basis for claiming total 

confidence! 

      

TABLE 1 

Probability of σ  within +/- 1% of s  = 7.71% 

Given Sample Size n 

 n  
Degrees  

of  Freedom 
Probability    
σ  < 7.63% 

Probability    
σ  < 7.79% 

        

        Probability         
7.63% < σ  < 7 .79% 

5     4   39.51%    41.68%         2.17% 

10     9   42.06%    45.38%              3.32% 

25    24   43.40%    48.89%         5.49% 

100    99   42.50%    53.67%       11.17% 

 

Let’s now turn to the distribution of µ .  From sampling theory we know that the density 
of µ |σ 2 , given a sample of size n, is: 

 

fµ |σ 2 (µ |σ 2) =
1

σ / n 2π
e

−
1

2

µ−x 

σ / n

 

 
 

 

 
 

2

             (2.6) 

                                                                                                                                                 
5 See Appendix A for derivation from the chi square with a change of variable. 
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which is recognizable as a normal density.  The marginal distribution )(f µµ  is given by: 

 

fµ (µ) =
Γ( n

2
)

s / n (n−1)π ⋅ Γ( n−1

2 )
⋅ 1+ 1

n−1

µ−x 

s / n

 
 
  

 
 

2 

 
 

 

 
 
−

n

2
            (2.7) 

 

which is a Student’s t density with n-1 degrees of freedom.  The mean and variance of µ  are 
given below as formulas (2.8) and (2.9): 

 

 x)(E =µ            (2.8) 

 

Var(µ) =
s2

n
⋅

n −1

n − 3
              (2.9) 

 

Figure C shows fµ (µ)  graphically for values of n equal to 5, 10, 25, and 100, given 
%.x 7967=  and s2 = 0.07712 .  All the graphs are symmetrical about x . The graph for n=5 

shows the greatest variance and that of n=100 the least. 
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           FIGURE C 

                                     Density Function fµ (µ)   

                            Given x  = 67.79%, s2 = 0.07712 , n = 5, 10, 25, 100 

 

 

 

By the same reasoning we described for σ 2, a measure of the confidence we should feel 
about ascribing to µ  a value of x  is the probability that µ  falls within a certain tolerance of 
x .  Because we want to be highly confident that µ = x , let’s set the tolerance at ±1% of x .  
Because tn−1 =

µ − x 

s / n
, the bounds of this interval are x.n/stx L

n 991 =⋅+ −  and 

x + tn−1
U ⋅ s / n = 1.01x .  If %.x 7967=  and s2 = 0.07712 , this implies 

tn−1
U = −tn−1

L =
.01x 

s / n
= 0.0879 n .  The cumulative probabilities associated with the upper and 

lower bounds are given by Tn−1(0.0879 n ) and )n.(T)n.(T nn 08790108790 11 −− −=− , 
respectively, where Tn−1 is the Student’s t cdf with n-1 degrees of freedom, which means that 

)x.x(.obPr 01199 ≤≤ µ  1087902 1 −⋅= − )n.(Tn .  The results are tabulated in Table 2, which 
shows that )x.x(.obPr 01199 ≤≤ µ  ).(.obPr 68476711 ≤≤= µ  is 15% for n=5, rising to 62% for 

n=100.  While this is better than the case for σ 2, it still suggests that placing total confidence 
in %.x 7967==µ  is unwise, particularly for small values of n. 
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It should be clear from Figures B and C that the “best fit” parameters are far from the 
only reasonable choice, given the loss ratio experience.  Why not incorporate information 
about those other reasonable parameter choices in our determination of fx (x) ? 

 

      

TABLE 2 

Probability of µ within +/- 1% of x  = 67.79% 

Given Sample Size n 

 

  n  
Degrees     

of Freedom 
  Probability  
µ < 67.11%

  Probability   
µ < 68.47% 

   Probability      
67.11% <µ < 68.47% 

5 4 42.69% 57.31%       14.63% 

10 9 39.36% 60.64%       21.27% 

25 24 33.21% 66.79%       33.59% 

100 99 19.07% 80.93%       61.86% 

 

3. INCORPORATING PARAMETER UNCERTAINTY—NORMAL 
CASE 

3.1 Exact Density 
In the previous section we showed that, especially in small sample cases, it is wrong to 

treat the “fitted distribution” fx
F (x) given by (2.3) as the distribution of x , because there is 

too great a probability of significant variation in the true value of the parameters from the 
“best fit” parameters.  There are too many other good parameter choices to be sure that a 
single set of parameters adequately captures all the important information from that sample.  
In this section, we show how to use the results from sampling theory outlined in the 
previous section together with the information in the sample to obtain the correct 
characterization of fx (x) . 
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We can express the random variables x | µ,σ 2  and µ |σ 2  in formulas (2.2) and (2.6) in 
terms of the standard normal random variable  z  as follows6: 

 

x | µ,σ 2 = µ + z1σ             (3.1) 

 

   µ |σ 2 = x + z2σ / n               (3.2) 

 

The random variable σ 2 described in (2.4) can be expressed as:  

 

 σ 2 =
(n −1)

yn−1

⋅ s2               (3.3) 

 

where yn−1 is chi-square with n-1 degrees of freedom. 

Expanding formula (3.1) by replacing the parameter µ  with the random variable µ |σ 2  
given in formula (3.2), we see that: 

 

         x|σ 2 = ( x + z2σ / n )+ z1σ          (Because   µ |σ 2 = x + z2σ / n ) 

                       = x + ( z1 + z2 / n ) ⋅σ  

                   
    
= x + z ⋅σ ⋅

n+1
n

                  (Because 
  
( z1 + z2 / n ) = z ⋅

n+1
n

)     (3.4) 

 

Formula (3.4) implies the normal density fx (x |σ 2)  given below as formula (3.5), which 
depends on σ 2 but not on µ : 

 

                                                 
6 Subscripts are used to distinguish the separate instances of  z  in formulas (3.1) and (3.2). 
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fx (x |σ 2) =
1

σ n +1

n
2π

e

−
1

2

x−x 

σ n +1

n

 

 

 
 
 
 

 

 

 
 
 
 

2

                    (3.5) 

 

We can alternatively expand (3.1) by replacing the parameter σ 2 with the random variable 
σ 2 given in formula (3.3) to obtain: 

 

                         
    

x|µ = µ +
z1

y
n−1

⋅ s   (Because 
  

z1 ⋅σ =
z1

y
n−1

⋅ s ) 

                  = µ + tn−1 ⋅ s  (Because 
  

z1
y

n−1

= tn−1)       (3.6) 

where tn−1 is the standard Student’s t with n-1 degrees of freedom. 

Formula (3.6) implies the Student’s t density  fx( x|µ ) that depends on µ  but not on σ 2, 
given below as formula (3.7): 

 

    
fx( x|µ ) =

Γ ( n
2 )

s ( n−1)π ⋅ Γ ( n−1
2 )

⋅ 1+ 1
n−1

x−µ
s

 
 
  

 
 

2 

 
 

 

 
 
−

n
2
            (3.7) 

 

Returning to (3.4), if we now expand that formula by replacing the parameter σ 2 with the 
random variable σ 2 described in (3.3), we see that: 

 

    

x = x + z
y

n−1

⋅ s ⋅
n+1

n
  (Because 

  

z ⋅σ =
z
y

n−1

⋅ s )   

         = x + tn−1 ⋅ s
n +1

n
  (Because 

  

z
y

n−1

= tn−1)      (3.8) 

 

Formula (3.8) implies the Student’s t density fx (x)  that depends on neither µ  nor σ 2: 
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      fx (x) =
Γ( n

2
)

s
n +1

n
(n−1)π ⋅ Γ( n−1

2
)

⋅ 1+ 1

n−1

x−x 

s
n +1

n

 

 

 
  

 

 

 
  

2 

 

 
 
 

 

 

 
 
 

−
n

2

       (3.9) 

 

This is a Student’s t with n-1 degrees of freedom, mean of x  and variance of:  

 

      Var(x) = s2 ⋅
n +1

n
⋅

n −1

n − 3
        (3.10) 

 

Figure D shows fx (x)  graphically for values of n equal to 5, 10, 25, and 100, respectively, 
given %.x 7967=  and s2 = 0.07712 .  All the graphs are symmetrical about x . The graph for 
n=5 shows the greatest variance and that of n=100 the least, with n=10 and n=25 in 
between.  The graph corresponding to n=100 is visually indistinguishable from the graph of 
a normal density with mean 67.79% and variance 0.07712  (though the former has a slightly 
larger variance of 0.07832). 

 

                FIGURE D 

                             Density Function fx (x)  

                                 Given x  = 67.79%, s2 = 0.07712 , n = 5, 10, 25, 100 
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3.2 Approximate Density 
Note that formula (3.9) is the result of simplifying formula (2.1) by integrating over µ  

and σ 2.  We can achieve a approximation to that integration by replacing the densities 
fµ (µ |σ 2)  and fσ 2 (σ 2)  in (2.1) with discrete probability weights in the following summation: 

 

fx (x) ≈ fx
* (x) = fx (x | µ ij ,σ j

2) ⋅ p(
j

∑
i

∑ µ i |σ j
2) ⋅ p(σ j

2)     

        =
1

σ j 2π
e

−
1

2

x−µ ij

σ j

 

 
  

 

 
  

2

⋅ p(
j

∑
i

∑ µ i |σ j
2) ⋅ p(σ j

2)                   (3.11) 

where   p(µ i |σ j
2)

i

∑ = p(σ j
2)

j

∑ = p(µ i |σ j
2) ⋅ p(σ j

2)
j

∑
i

∑ = 1 

Assuming the analyst has access to software to do numerical or exact integration, for 
most applications it is both easier and more accurate to work directly with fx (x)  as defined 
by formula (3.9) rather than with the approximation fx

* (x)  given by formula (3.11)7.   
However, we believe it is instructive to use formula (3.11) to illustrate how the Student’s t 
density defined by (3.9) can be constructed as a weighted sum of normal densities. 

We will illustrate the case of n=5 with sample mean and variance of %.x 7967=  
and s2 = 0.07712 .  First, let us divide the domains of each of )(f 2

2 σσ  and fµ (µ |σ 2)  into 5 

intervals associated with the following quantiles: 0, 0.04, 0.34667, 0.65333, 0.96 and 1.   This 
results in intervals of length 0.04, 0.30667, 0.30667, 0.30667 and 0.04, which we will use as 
weights for the values of σ 2 and µ |σ 2  associated with each interval.  The midpoints of these 
intervals are 0.02, 0.1933, 0.50, 0.8067 and 0.98.    

We associate a value of 2σ  with each interval such that Fσ 2 (σ j
2) = midpt( j) , which implies: 

 

          σ j
2 = Fσ 2

−1 (midpt( j))  

             =
(n −1)

Y
n−1

−1 (midpt( j))
⋅ s2          (3.12) 

 
                                                 
7 We have used CalculationCenter®2 by Wolfram Research to perform the integral calculations for this paper. 
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where Yn−1

−1

(midpt( j))  represents the chi-square inverse distribution function (with n-1 degrees 

of freedom) evaluated at the midpoint of the j-th interval. 

Similarly, we associate a value of µ |σ 2  with each interval such that Fµ |σ 2 (µ i) = midpt(i) , 

which implies: 

µ i |σ j
2 = Fµ |σ 2

−1 (midpt(i))  

                             = x − N −1(midpt(i)) ⋅σ j / n       (3.13) 

where N −1(midpt (i))  represents the standard normal inverse distribution function evaluated at 
the midpoint of the i-th interval. 

Because µ  is dependent on σ 2, there are five values of µ |σ 2  for each µ -related interval i, 
one for each of the values of σ 2. 

The results are summarized in Table 3, which show the parameters for 25 normal 
distributions and their associated probability weights.  The interval midpoints Fσ 2 (σ j

2)  and 
the corresponding σ j  are shown in the first two columns.8  The interval midpoints Fµ |σ 2 (µ i)  

are displayed across the top of the table with the corresponding µ i |σ j
2  shown in the body of 

the table below them.  The probability weights associated with each row and column are at 
the right and bottom of the table respectively. 

Each value of σ j  in the second column is to be paired with each of the values of µ i |σ j
2  

to its right. These parameter pairs define the normal distributions to be weighted using 
formula (3.11).   For example, σ1

2 = 4.51%2  is paired with each of 63.64%, 66.04%, 67.79%, 
69.54% and 71.94% to form (µ,σ 2)  parameter pairs (4.51%2, 63.64%) , (4.51%2, 66.04%) , 
(4.51%2, 67.79%) , (4.51%2, 69.54%) and (4.51%2, 71.94%) , with associated weights of 4%× 4%, 
4%× 30.67%, 4%× 30.67%, 4%× 30.67% and 4%× 4%, respectively. 

                                                 
8 We display σ j  rather than σ j

2 for presentational reasons. 
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TABLE 3 
        

Parameters and Weights for Normal Densities in )x(f *
x  Approximation  

Example with n=5, x =67.79%, s2=0.07712 
        
   Interval Midpoints F( 2σµ | )     

Interval   0.0200 0.1933 0.5000 0.8067 0.9800 Row 
Midpt F( 2σ )          σ        2σµ |   Weights 

0.0200 4.51% 63.64% 66.04% 67.79% 69.54% 71.94% 4.00%
0.1933 6.25% 62.05% 65.37% 67.79% 70.21% 73.53% 30.67%
0.5000 8.42% 60.06% 64.53% 67.79% 71.05% 75.52% 30.67%
0.8067 12.15% 56.63% 63.09% 67.79% 72.49% 78.95% 30.67%
0.9800 23.53% 46.18% 58.68% 67.79% 76.90% 89.40% 4.00%

          Column  Weights  4.00% 30.67% 30.67% 30.67% 4.00%  
 

Figure E shows this composite density fx
* (x)  based on (3.11) and represented in Table 3 

to be visually identical to the Student’s t density fx (x)  defined by 3.9 for n=5. 

 

FIGURE E 

                                Density Functions fx (x)  and fx
* (x)  

                                        Given x =67.79%, s2 = 0.07712 , n = 5 
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A visual fit is not, of course, adequate for analytical purposes.  Accordingly, if the 
composite density is going to be used for analysis, the number and length of the intervals 
should be chosen in such a way that the mean and variance of fx

* (x)  and fx (x)  match.  
Matching means is a trivial process.  Matching variances is more complicated.  Fortunately, 
there is a relationship between Var (x) , Var (µ) and E(σ 2)  that we can use to facilitate this 
process: 

Var(x) = s2 ⋅
n +1

n
⋅

n −1

n − 3
 

= s2 ⋅ (1+
1

n
) ⋅

n −1

n − 3
 

= s2 ⋅
n −1

n − 3
+ s2 ⋅

1

n
⋅

n −1

n − 3
 

)(Var)(E µσ += 2                      (3.14) 

This means we can test the match between Var(x) and Var(x)*  by separately comparing 
Var(µ) with Var(µ)*  and E(σ 2)  with E(σ 2)* (the asterisks denoting the values of the 
functions based on the discrete approximation). 

 

For n=5, exact calculations give Var(µ) = 0.07712 ⋅ 2

5
= 0.00238  and )(E 2σ  

= 0.07712 ⋅ 2 = 0.01189, yielding a total Var(x) of 0.01427 (or 0.11952).  This compares to 
001630.)(Var * =µ , E(σ 2)* = 0.01019  and 01182.)x(Var * =  (or 210870. ) based on the 

approximation defined in Table 3.  Because Var(x)*  is only about 83% of Var(x) , this 
suggests the approximation could (and should) be improved by increasing the number of 
intervals into which the domains of each of µ |σ 2  and σ 2 are divided.  However, because 
our intent was only to illustrate a simple implementation of the approximation formula 
(3.11), we will not pursue the optimization of that approximation here. 

3.3 Section Summary 
We can summarize about how varying degrees of knowledge about the parameters are 

reflected in the applicable probability distribution as follows: 

• If both µ  and   σ 2  are known, then   fx( x|µ ,σ 2 )  is a normal density with 
  
z =

x− µ
σ

.   
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• If only the value of   σ 2  is known, then   fx( x|σ 2 )  is a normal density with 

    

z =
x− x 

σ n+1
n

. 

• If only µ  is known, then  fx( x|µ ) is a Student’s t density with 
    
tn−1 =

x− µ
s

.  

• If neither µ  nor   σ 2  are known,  fx( x)  is a Student’s t density with 

    

tn−1 =
x− x 

s n+1
n

.    

Table 4 shows the 90th percentile loss ratios corresponding to these knowledge scenarios, 
given     x = 67.79%  and     s2 = 0.07712  and sample sizes ranging from 5 to 100.  Several 
observations can be made.  First, from row 1 we see that sample size does not matter if we 
have certainty about both µ  and  σ 2 .  Second, because the loss ratios in row 2 are always less 
than those in row 3, it appears that if only one of µ  or  σ 2  can be known, it is more helpful 
to know   σ 2 .   Third, we can see that as the sample size grows larger, 

    fx
F ( x) = fx( x|µ = x ,σ 2 = s2 ) becomes an increasingly better approximation of   fx( x)  at the 

90th percentile. 

 

 

          TABLE 4 

        90th Percentile of Loss Ratio Distribution* 

                          Given x = 67.79% and s = 7.71% 

     

 

The 90th percentile of the weighted normal approximation  fx
* ( x) illustrated in Table 3 

and Figure F for n=5 is 80.30%, which is close to the true  fx( x)  value of 80.74%.  Further 

    n = 5  n = 10  n = 25 n = 100 

fx (x | µ = x ,σ 2 = s2)  77.67% 77.67% 77.67% 77.67% 

fx (x |σ 2 = s2)  78.61% 78.15% 77.87% 77.72% 

fx (x | µ = x )  79.61% 78.45% 77.95% 77.74% 

fx (x)  80.74% 78.97% 78.15% 77.79% 
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accuracy could be achieved by refining the number and weights of the normal densities used 
in the approximation. 

4. INCORPORATING PARAMETER UNCERTAINTY WHEN x |θ  
IS LOGNORMALLY DISTRIBUTED 

Suppose  x|θ  is lognormally distributed with unknown parameters   θ = { µ ,σ 2 } 9.  Then the 
density of   x|θ  is:  

    
fx( x|µ ,σ 2 ) =

1
xσ 2π

e
−

1
2

lnx−µ
σ

 

 
 

 

 
 

2

                   (4.1) 

The lognormal distribution gets its name from the fact that  w |θ = ln x|θ  is normally 
distributed with mean µ  and variance  σ 2 : 

       
    
fw(w |µ ,σ 2 ) =

1
σ 2π

e
−

1
2

w−µ
σ

 

 
 

 

 
 

2

             (4.2) 

Let     w1 ,w2 ,w3 ,...,wn  denote the natural logarithms of the respective observed loss ratios 

    x1 , x2 , x3 ,..., xn . Then the sample log mean is 
  
w = wi

i=1

n

∑  and the unbiased sample log variance 

is 
    
sw

2
=

(wi − w )2

n−1
i=1

n

∑ . 

We can use formula (3.9) to determine the marginal distribution of  w: 

    

fw(w) =
Γ ( n

2 )

sw
n+1
n

( n−1)π ⋅ Γ ( n−1
2 )

⋅ 1+ 1
n−1

w−w 

sw
n+1
n

 

 

 
 
 

 

 

 
 
 

2 

 

 
 
  

 

 

 
 
  

−
n
2

             (3.9) 

which, with the change of variable   w = ln x, can be restated as a function of  x: 

 

  
fx( x) = fw(w) ⋅

dw
dx

 

                                                 
9 Note these parameters take on different values in the lognormal case from their values in the normal case. 
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=
Γ ( n

2 )

x sw
n+1
n

( n−1)π ⋅ Γ ( n−1
2 )

⋅ 1+ 1
n−1

lnx−w 

sw
n+1
n

 

 

 
  

 

 

 
  

2 

 

 
 
  

 

 

 
 
  

−
n
2

         (4.3) 

 

This “log t” density bears the same relationship to the Student’s t as the lognormal does 
to the normal. 

In the same way, we can use formulas (3.5) and (3.7) together with the change of variable 

  w = ln x to determine the densities   fx( x|σ 2 )  and  fx( x|µ ): 

 

    

fx( x|σ 2 ) =
1

xσ n+1
n

2π
e

−
1
2

ln x−w 

σ n+1
n

 

 

 
 
 
  

 

 

 
 
 
  

2

 (4.4) 

 

    
fx( x|µ ) =

Γ ( n
2 )

x sw ( n−1)π ⋅ Γ ( n−1
2 )

⋅ 1+ 1
n−1

ln x−µ
sw

 
 
  

 
 

2 

 
  

 

 
  

−
n
2
 (4.5) 

 

Formula (4.4) is a lognormal density.  Formula (4.5) is a log t density.  

If we ignore parameter uncertainty, the “best fit” parameters of  µ = w  and     σ
2 = sw

2  imply 
the density: 

 

    
fx

F ( x) =
1

x sw 2π
e

−
1
2

lnx−w 
sw

 

 
 

 

 
 

2

   (4.6) 

 

which is the lognormal analogue to formula (2.3). 
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As we did in the case of the normally distributed  x|θ , we again counsel caution before 
adopting this “best fit” lognormal   fx

F ( x)as the correct characterization of  fx( x) , because it 
does not account for uncertainty in the parameters. 

          

FIGURE F 

                Density Functions )x(f x  and fx
F (x) 

                       Given w = −0.3946 , sw
2 = 0.11442, n = 5 

 

  

 

Figure F is a graph of the log t density )x(f x  defined by formula (4.3) with n=5, plotted 
together with the “best fit” lognormal density )x(f F

x  defined by (4.6).  Values of 
39460.w −=  and 22 11440.sw =  were determined from the same data sample that yielded 

%.x 7967=  and 22 07710.s =  used in the examples of Section 3.  The log t distribution clearly 
has a larger variance and is slightly more skewed than the “best fit” lognormal.  An analyst 
relying on the “best fit” lognormal to draw conclusions about the behavior of   x, especially 
in the tails, will underestimate the likelihood of occurrences of  x in the tails. 

The log t density representing )x(f x  can be approximated as a weighted average of 
lognormal densities by using formula (3.11) with the normal density replaced with the 
analogous lognormal density.  In practice, it is usually easier to numerically integrate the log t 
directly than to construct and then integrate the equivalent composite density. 
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One drawback to formula (4.3) is that )x(E  and )x(Var  are infinite in realistic scenarios 
where n is small and/or s is not small.10  For example, if   w = −0.3946  and     sw

2 = 0.11442, )x(E  

is infinite in the case of n=5.   In practice, this is not as bad as it sounds.   If 

∫
− )(.F

x
x

dx)x(fx
9999

0

1

 is a plausible mean value of  x, we can conclude that the non-convergence 

of ∫ dx)x(fx x  is due to behavior in the extreme right tail of  fx( x) .   For practical purposes it 

is safe to approximate the mean of  x as E( x) = x fx( x)dx
0

Fx
−1 (.9999 )∫ .  For example, in the n=5 

case just cited,     Fx
−1(.9999 ) = 346%  and 

  
x fx( x)dx

0

3.46∫ = 68.43% , which is a plausible value for 

the mean.   

An implication of the assumption that  x|θ  is lognormally distributed that we do not fully 

understand is that the value of ∫
∞

=
0

)()( dxxfxxE x  calculated directly using the density function 

exceeds the sample mean   x .  We find it puzzling because (a)  x  is the unbiased estimator of 
the mean of any distribution and (b)  fx( x)  was parameterized using the unbiased estimators 
w  and 2

ws  for µ  and 2σ , respectively.  It seems both should be correct, and yet they do not 

match. In the example we have been following, where   x = 67.79% , even using the lognormal 
density given in formula (4.6), which implies no parameter uncertainty, we obtain 

%.)x(E 8467= .  When we allow for parameter uncertainty (implying use of the log t density 
given by (4.3)), the underestimation of )x(E  by x  increases. In particular, for n = 5, 10, 25 
and 100, respectively, )x(E  equal to 68.43%11, 68.02%, 67.90% and 67.85%, implying 

differences of 0.64, 0.23, 0.11 and 0.06 loss ratio points, respectively.   The difference is 
particularly noteworthy for n=5. 

5. APPLICATIONS 

5.1 Experience Loss Ratios 
In this section we illustrate the application of the foregoing to real world problems, in 

particular, to the pricing of aggregate excess reinsurance, the assessment of underwriting 

                                                 
10 We draw that conclusion because our attempt to numerically integrate ∫ dx)x(fx x  did not converge to a 

solution. 
11 Calculated as 

    
x fx( x)dx

0

Fx
−1 (.9999 )∫ , because 

  
x fx( x)dx

0

∞∫  does not converge. 
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downside risk and the determination of expected commissions under sliding scale 
arrangements. 

Suppose we have been given 5 years of on-level loss ratios  xi  and their logs   wi = ln xi, 
which are shown in Table 512.  Exposure has been constant over the experience period. The 
sample means, variances and standard deviations based on equal weighting of the data points 
are shown at the bottom.  We know that the historical portfolio was large enough that it is 
plausible that each year’s loss ratio arises from an approximately normal distribution.  
However, it is also plausible that the loss ratio distribution has some residual skewness, 
which means a lognormal model might be appropriate.  

 
                             TABLE 5 
            On-Level Loss Ratio Experience 

 

  Accident  
  Year     

 

  Weight ix   ixln  

1 20% 66.95% -0.40125 
2         20% 59.68% -0.51623 
3        20% 76.41% -0.26911 
4         20% 72.52% -0.32126 
5 20% 77.79% -0.25118 

 
                     Mean 70.67% -0.35181 

                     Variance* 0.554% 0.01184 
                      St. Dev.* 7.45% 0.10882 

        

        * Unbiased, i.e., E(s2) = σ 2 . 

 

For the applications illustrated in this section we will use four models for   fx( x)  based on: 
(1) normal and (2) lognormal assumptions for  x|θ  under conditions of: (A) parameter 
uncertainty and (B) parameter certainty.   

                                                 
12 The loss ratios in Table 5 were drawn from a lognormal distribution with parameters 36170.−=µ  and 

22 0998.=σ , but let us assume we do not know that. 
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Given the experience in Table 5, if we assume  x|θ  is normally distributed, then  fx( x)  is 
given by formula (3.9) with     x = 70.67%  and   s = 7.45%.  Alternatively, if we assume  x|θ  is 
lognormal, then )x(fx  is given by formula (4.3) with   w = −0.3519  and     sw = 0.1088 .  On the 
other hand, if we assume θ|x  is normal and we believe %.x 6770==µ  and     σ = s = 7.45%  
with certainty, then we must use  fx( x) = fx

F ( x) as given by formula (2.3).  Similarly, if we 
believe θ|x  is lognormally distributed with   µ = w = −0.3518 and   σ = sw = 0.1088 with certainty 
we must use )x(f)x(f F

xx =  as given by formula (4.6).   

These four model choices and their characteristics are summarized in Table 6.  It is worth 
pointing out that the lognormal-based models A2 and B2 again both indicate the density-
based value )(xE to be greater than x .   

 

 TABLE 6 

                       Summary of Models of )x(f x         

     

    * Given the loss ratio experience in Table 5 

5.2 Aggregate Excess Reinsurance 
The pure premium of an aggregate excess layer of L excess of R, where the limit L and 

the retention R are ratios to premiums, is given by:  

 

 
  

( x− R) ⋅ f x( x) dx
R

L+R∫ + L ⋅ f x( x) dx
L+R

∞∫              (5.1) 

 

Model 

 

fx (x |θ)  

 

θ  

 

 fx (x)  

 

Formula 

 

  *)x(E  

 A1 Normal Uncertain  t   3.9 70.67% 

 A2 Lognormal Uncertain Log t   4.3 71.37% 

 B1 Normal “Certain” Normal   2.3 70.67% 

 B2 Lognormal “Certain” Lognormal   4.6 70.76% 
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Suppose we are asked to price 20 points of coverage excess of a 70% loss ratio in four 
layers of 5% each.  

Table 7 summarizes the results of using formula (5.1) with models A1, A2, B1 and B2.  
The models incorporating parameter uncertainty (A1 and A2) indicate larger pure premiums 
in every layer than do the models that assume parameter certainty (B1 and B2).  While the 
difference is modest in the first layer of 5% excess of 70%  (on the order of 3% to 4%), it 
rises rapidly as the retention increases.  The pure premiums for the fourth layer of 5% excess 
of 85% for models A1 and A2 are respectively 300% and 200% higher than from models B1 
and B2!   Unless the parameters really are known with certainty, it is foolhardy to use model 
B1 or B2 to price aggregate excess layers. 

   

TABLE 7 
           Pure Premiums of Aggregate Excess Layers 
                             Given Sample in TABLE 5 

     

Limit   5%   5%   5%    5%   

Model 

 

 fx (x |θ)  

 

     θ  Retention  70%  75%  80%  85% 

 A1 Normal Uncertain  2.09% 1.14% 0.56% 0.28% 

 A2 Lognormal Uncertain  2.04% 1.17% 0.64% 0.36% 

 B1 Normal “Certain”  2.02% 0.92% 0.30% 0.07% 

 B2 Lognormal “Certain”  1.97% 0.95% 0.37% 0.12% 

 

5.3 Downside Risk Measures  
Suppose B represents the insurer’s underwriting breakeven loss ratio.  The expected value 

of the underwriting result UR  is given by:  

 

    
E(UR) = ( B − x) ⋅ fx( x) dx

0

∞∫               (5.2) 
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)UR(E  can be expressed as the expected contribution from underwriting profit scenarios 
0>UP less the expected cost of underwriting loss scenarios 0>UL : 

 

         )UL(E)UP(E)UR(E 00 >−>=          (5.3) 

 

              
  
E(UP > 0 ) = ( B − x) ⋅ fx( x) dx

0

B∫          (5.4) 

 

         
  
E(UL > 0 ) = ( x− B) ⋅ f x( x) dx

B

∞∫          (5.5) 

 

As the pure premium cost of underwriting loss scenarios, )UL(E 0>  is a measure of the 
insurer’s underwriting downside risk. 

The probability or frequency of the insurer incurring an underwriting loss     UL > 0 is given by:  

 

     
    
Freq (UL > 0 ) = Pr ob(UL > 0 ) = f x( x) dx

B

∞∫        (5.6) 

The expected severity of underwriting loss, given   UL > 0 , is:  

 

)UL|UL(E)UL(Sev 00 >=>  

                 

 

=
( x− B) ⋅ fx( x) dx

B

∞∫
fx( x) dx

B

∞∫
 

                        
  
=

E(UL)
Pr ob(UL > 0 )

           (5.7) 

Note that )UL(Sev 0>  is the Tail Value at Risk (for underwriting loss) described by 
Meyers[2] as a coherent measure of risk and by the CAS Valuation, Finance and Investments 
Committee[3] for potential use in risk transfer testing of finite reinsurance contracts.  
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We can use the measures defined by formulas (5.5), (5.6) and (5.7) to describe the 
insurer’s underwriting downside risk.  Given an underwriting breakeven loss ratio of B = 
75%, Table 8 shows the results of using the loss ratio experience contained in Table 5 
together with the )x(fx  models A1, A2, B1 and B2 discussed in our analysis of aggregate 
excess pure premiums.   For example, given the assumption that  x|θ  is normally distributed 
with unknown parameters (model A1), there is a probability of 31.19% that the insurer will 
have an underwriting loss averaging 7.48 points.  This equates to an expected underwriting 
downside cost of 2.33 points.  In contrast, given the assumption that θ|x  is normally 
distributed with “known” parameters based on the loss ratio experience (model B1), there is 
a probability of 28.06% that the insurer will incur an underwriting loss of average severity 
equal to only 4.62 points, which equates to an expected downside pure premium of 1.30 
points.  Similarly, the lognormal model incorporating parameter uncertainty (A2) shows 
much larger measures of frequency, severity and downside pure premium than the lognormal 
model assuming parameter certainty (B2).  It should be clear that ignoring parameter 
uncertainty in characterizing downside underwriting risk has potentially very serious and 
adverse consequences for an insurer’s understanding of the underwriting risk it has assumed. 

 

       TABLE 8 
              Measures of Downside Risk 
                    Given Sample in TABLE 5 

     

 

  

  Model 

   

  fx (x |θ)  

   

θ  

 

Freq(UL)

 

Sev(UL)

 

E(UL) 

 A1 Normal Uncertain   31.19%   7.48% 2.33% 

 A2 Lognormal Uncertain   30.95%   9.26% 2.87% 

 B1 Normal “Certain”   28.06%   4.62% 1.30% 

 B2 Lognormal “Certain”   27.78%   5.34% 1.48% 
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5.4 Sliding Scale Commissions 
Suppose a quota share reinsurance treaty has been negotiated where the ceding 

commission is determined according to a sliding scale.  A minimum commission of 20% is 
payable if the loss ratio is 70% or higher.  The commission slides up at a rate of 0.5 point for 
every point of reduction in the loss ratio below 70%, up to a maximum commission of 25% 
at a loss ratio of 60% or lower.  The expected value of the ceding commission C can be 
expressed by formula (5.8) below:  

 

 
    
E(C ) = 20% fx( x) dx

70%

∞∫ + (20% +
70% − x

2
fx( x))dx

60%

70%∫ + 25% fx( x) dx
0

60%∫           (5.8) 

Given the on-level loss ratio experience in Table 5, what is the expected value of the 
ceding commission?  We have calculated the expected commissions based on normal and 
lognormal assumptions for θ|x  under conditions of parameter uncertainty and certainty 
(models A1, A2, B1 and B2) and have tabulated the results in Table 9.  In all cases the 
modeled ceding commissions are higher than the 20% commission that would be payable at 
a loss ratio of 70.67%.  The differences range from 1.20% to 1.42%.  The commissions 
indicated by all the models are clustered very closely together, ranging between 21.20% and 
21.42%.  Because the ceding commission slides in response to loss ratios that are near )x(E , 
where the model differences are less pronounced, the effect of parameter uncertainty is 
immaterial (at least in this example). 
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      TABLE 9 
                    Expected Ceding Commissions 
                            Given Sample in TABLE 5 

     

 

5.5 Unequal Loss Ratio Weights  
The previous examples were based on the assumption that it is appropriate to weight 

each observed on-level loss ratio in the historical experience equally.  While that is a 
convenient assumption, it is not a realistic one, because exposure tends to change from year 
to year.  Accordingly, in the interest of providing additional examples that are also more 
realistic, we have tabulated another set of on-level loss ratios in Table 10.  These observed 
loss ratios arose from the same distribution as the loss ratios in Table 5.  The sample mean, 
variance and standard deviation statistics have been computed both on a weighted basis and 
on the standard unweighted basis. The formulas for weighted mean and the unbiased 
weighted sample variance     sc

2  are:  

 

      
  
x c =

ci ⋅ xi
c ⋅ n

i=1

n

∑          (5.9) 

 

         
    
sc

2 =
ci ⋅ ( xi − x c )2

c ⋅( n−1)
i=1

n

∑ ,            (5.10) 

where   ci denotes the weight to be used with the i-th observation,  c  is the mean weight and 

  x c  is the weighted mean. 

 

 Model 

  

  fx (x |θ)  

   

     θ  

   C @ 

  70.67% 

 

   E(C) 

 

Diff 

   A1 Normal Uncertain  20.00%   21.37% 1.37% 

   A2 Lognormal Uncertain  20.00%   21.42% 1.42% 

   B1 Normal “Certain”  20.00%   21.20% 1.20% 

   B2 Lognormal “Certain”  20.00%   21.24% 1.24% 
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                              TABLE 10 
              On-Level Loss Ratio Experience
                              2nd Sample 

 

   Accident  
  Year     

 

  Weight ix   ixln  

 
1         

 
16% 53.88% -0.44823 

2         18% 53.15% -0.63203 
3        22% 70.62% -0.34790 
4         23% 73.06% -0.31391 
5 21% 56.55% -0.56998 

 
Unweighted 

Mean 63.45% -0.46241 
Variance* 0.744% 0.01893 
St. Dev.* 8.62% 0.13758 

 
Weighted 

Mean 64.00% -0.45392 
Variance* 0.767% 0.01941 
St. Dev.* 8.76% 0.13309 

 
         * Unbiased, i.e., E(s2) = σ 2 . 
 

Though the loss ratio experience shown in Table 10 emerged from the same underlying 
loss ratio distribution as that in Table 5, its mean and standard deviation are significantly 
different.  On an unweighted basis the loss ratio mean in Table 10 is more than 7 points 
(more than 10%) less than the loss ratio mean in Table 5 (64.00% v. 70.67%).  On the other 
hand, the standard deviation is more than 15% greater (8.62% vs. 7.45%).  The sample 
variation illustrated by those differences is worth remembering when we are tempted to put 
great weight on the credibility of a small sample. 

 We have calculated the aggregate excess pure premiums for the layers defined in Table 7 
using the weighted basis loss ratio experience in Table 10 and displayed the results in Table 
11.  As in the example based on Table 5, the pure premiums for all layers are higher when 
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priced using the models that incorporate parameter uncertainty (A1 and A2) than the models 
assuming the parameters are known with certainty (B1 and B2).  Again the pricing difference 
increases as the retentions increase.  However, it is also worth noting that the differences in 
pure premiums based on Table 10 are far less than the difference between those pure 
premiums and those calculated based on the experience in Table 5.  For example, in Table 
11 we see the indicated model A1 pure premium for 5% excess of 70% is 0.62% compared 
to 2.09% in Table 7.  The indicated pure premiums for all other layers and models are also 
much lower in Table 11 than in Table 7.  Both experience samples arose from the same loss 
ratio distribution, but the two samples indicate dramatically different pure premiums! 

 

            TABLE 11 
               Pure Premiums of Aggregate Excess Layers 
                             Given Sample in TABLE 10 

     

Limit   5%   5%   5%    5%   

Model 

 

fx (x |θ)  

 

θ  Retention  70%  75%  80%  85% 

 A1 Normal Uncertain  0.62% 0.46% 0.34% 0.25% 

 A2 Lognormal Uncertain  0.59% 0.46% 0.35% 0.27% 

 B1 Normal “Certain”  0.51% 0.33% 0.20% 0.12% 

 B2 Lognormal “Certain”  0.49% 0.33% 0.21% 0.13% 

 

 Table 12 shows the downside risk statistics calculated on the basis of the weighted loss 
ratio experience in Table 10.   Because the sample mean Table 10 is much lower than in 
Table 5, the indicated probability of underwriting loss is much reduced from that shown in 
Table 8.  While the severity of underwriting loss is not much affected, due to the large 
reduction in frequency, the expected cost of underwriting losses is much lower in Table 12 
than in Table 8.  The difference is much greater for the parameter certainty models B1 and 
B2 than for models A1 and A2.  Models B1 and B2 now indicate minimal downside risk as 
measured by )UL(E  values of 0.49% and 0.54%.  These compare to values of 1.30% and 
1.48%, respectively, in Table 8, reductions of about two-thirds.  On the other hand models 
A1 and A2 are less sensitive to the sample variation.  Model A1’s )UL(E  of 1.40%  is 40% 
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less than its value in Table 8.  The A2 )UL(E  of 1.87% is about 35% less than its value in 
Table 8.  Even at these reduced values both indicate significant downside risk and both show 
expected underwriting loss costs more than three times as high as B1 and B2. 

 

      TABLE 12 
              Measures of Downside Risk 
                   Given Sample in TABLE 10 

 

 

 
Table 13 shows the expected ceding commissions based on the weighted loss ratio 

experience in Table 10.  As we saw in the commissions based on the loss experience shown 
in Table 5 and displayed in Table 9, there is little variation in the commission estimates based 
on using the different models.  The expected commissions in Table 9 range from 22.65% to 
22.81% compared to a range of 21.20% to 21.42% in Table 13.  The difference due to the 
variation in loss ratio experience is far more important than the difference in models.  
Models A1 and A2 show only about 1.3 points increase in expected ceding commission and 
Models B1 and B2 show only about 1.5 points increase, even though the sample loss ratio is 
more than 7 points lower. 

 

 

 

 Model 

  

 fx (x |θ)  

   

     θ  

 

Freq(UL)

 

Sev(UL) 

 

E(UL) 

   A1 Normal Uncertain   15.78%   8.86%  1.40% 

   A2 Lognormal Uncertain   15.88% 11.75%  1.87% 

   B1 Normal Certain   11.53%   4.27%  0.49% 

   B2 Lognormal Certain   10.59%   5.06%  0.54% 
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  TABLE 13 
              Expected Ceding Commissions 
                    Given Sample in TABLE 11 
 

 

6. SUMMARY AND CONCLUSIONS 

The main objectives of this paper have been to:  1) demonstrate how to derive and use 
the density function )x(fx  of the prospective loss ratio in pricing and risk assessment 
applications, given on-level loss ratio experience and a normal or lognormal loss ratio 
process, and 2) show, mainly by means of examples, that )x(fx  has fatter tails than the “best 
fit” alternative )x(f F

x , which implies greater loss exposure in high excess layers and greater 
exposure to frequency and severity of underwriting loss than that indicated by )x(f F

x . 

In distributional terms, we have shown that if we believe the on-level loss ratios are 
normally distributed, our lack of knowledge of the parameters of that normal distribution 
requires that )x(fx  be characterized as a Student’s t rather than a normal distribution.  We 
may still believe the loss ratio is normally distributed, but we do not have sufficient 
knowledge to safely characterize it as such.  The Student’s t, which does approximate the 
normal for large sample sizes (see Figure D), is the best we can do. 

Similarly, if we believe the on-level loss ratios are lognormally distributed, our lack of 
knowledge of the parameters of that lognormal distribution means that )x(fx  must be 
characterized as a log t rather than a lognormal distribution, for the reasons described above. 

 Model 

  

  fx (x |θ)  

   

     θ  

  C @  

64.00%

 

   E(C) 

 

Diff 

   A1 Normal Uncertain 23.00% 22.65% (0.35%) 

   A2 Lognormal Uncertain 23.00% 22.76% (0.24%) 

   B1 Normal Certain 23.00% 22.72% (0.28%) 

   B2 Lognormal Certain 23.00% 22.81% (0.19%) 
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Two other points also bear repeating.  First, for right-skewed distributions, the sample 
mean x  appears to give a lower estimate of )x(E  than the one determined from the density 
function parameterized with unbiased estimators derived from the sample.  The difference is 
less pronounced for large sample sizes, but for small experience samples it is sizeable.  We 
do not know what to make of this, but it adds to our discomfort about being overconfident 
about conclusions drawn from small samples. Second, small experience samples can exhibit 
significant variation from the characteristics of the population from which they arise, which 
can lead to over-pricing or under-pricing even when using the correct form of )x(fx .  
Actuaries must resist the temptation to be overconfident about the inferences that can safely 
be drawn from small samples.  It is wise to avoid staking too much on the conclusions of a 
pricing analysis based on a small sample. 

Some further caveats apply.  While the methods described in this paper incorporate the 
consequences of our uncertainty about some critical parameters into estimates of the 
projected loss ratio, note that they do not address other important sources of parameter 
uncertainty, and accordingly, are likely to underestimate the total variance of  x.  They 
address only the uncertainty arising from the sample loss ratios, given that those loss ratios 
are themselves certain.  However, those loss ratios are estimates.  Therefore, these methods 
do not reflect parameter uncertainty associated with loss development factors used for the 
projection of reported loss ratios to ultimate, nor do they reflect uncertainty in the on-level 
adjustment parameters.  In addition, we do not know for certain that we have chosen the 
correct model distribution in the normal or the lognormal.  Thus, while this method is an 
improvement over methods that do not incorporate any parameter uncertainty, a certain 
amount of caution remains in order. 
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Appendix A 
 

Derivation of Formula (2.4) 
 

 
Assume     yn−1 is chi square with n-1 degrees of freedom.  That implies 
 

    

f y( yn−1 ) =
1

2
n−1

2 Γ( n−1
2 )

⋅ y
n−1
2

−1
⋅ e

−
1
2

y
 

 

Perform the change of variable 
    
yn−1 =

( n−1)
σ 2

⋅ s2 , where  σ 2  is the new random variable. 

 

Then  
  

dy
dσ 2

=
( n−1)
(σ 2 )2

⋅ s2 and 

 
 

    
fσ 2 (σ 2 ) = f y( yn−1 ) ⋅

dy
dσ 2
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Abbreviations and notations 
CAS, Casualty Actuarial Society 
C, ceding commission rate 
E(UL), expected value cost of underwriting loss scenarios 
Freq(UL), frequency of underwriting loss scenarios 
L, aggregate excess layer limit, in loss ratio points 
R, aggregate excess retention, in loss ratio points 
Sev(UL), mean severity of underwriting loss scenarios  
µ , first parameter of a normal or lognormal distribution, sometimes a random variable 
σ 2 , second parameter of a normal or lognormal distribution, sometimes a random variable 
θ , parameter set 
n , number of years in the loss ratio experience sample 
c i , weight for the i-th observed on-level experience loss ratio 
c , mean of the weights used with observed on-level experience loss ratios  
s2 , variance of the on-level experience loss ratios (unbiased) 
sc

2 , weighted variance of the on-level experience loss ratios (unbiased) 
sw

2 , variance of logs of the on-level experience loss ratios (unbiased)  
tn−1, a Student’s t distribution random variable with n-1 degrees of freedom 
w , random var for the log of prospective loss ratio given uncertainty about underlying distribution parameters 
w |θ , random rs variable for the log of prospective loss ratio given parameters of underlying distribution  
w i , log of  i-th observation of on-level experience loss ratios  
w , mean of the logs of the on-level experience loss ratios 
x , random variable for the prospective loss ratio given uncertainty about parameters of underlying distribution 
x |θ , random variable for the prospective loss ratio given parameters of underlying distribution 
x i , i-th observation of the on-level experience loss ratios 
x , mean of the on-level experience loss ratios 
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x c , weighted mean of the on-level experience loss ratios  
yn−1, a chi square random variable with n-1 degrees of freedom 
z , a standard normal random variable  
 
Biography of the Author 
 Michael Wacek is President of Odyssey America Reinsurance Corporation in Stamford, Connecticut.  A 

Fellow of the CAS and a Member of the American Academy of Actuaries, he is the author of several 
Proceedings and Discussion Program papers.  Before joining Odyssey Re he held various actuarial and 
management positions at St. Paul Fire and Marine Insurance Company (a primary insurer), E.W. Blanch 
Company (a reinsurance broker), St Paul Reinsurance Company Limited (a U.K. reinsurer) and TIG 
Reinsurance Company (a U.S. reinsurer).  He is a graduate of Macalester College, St. Paul, Minnesota. 

 
 
 


