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Abstract

The investment income received by a property-casualty company can be a prime
component in its pricing and decision to write some lines of business that generate
underwriting losses. In times of high interest rates it can enable the insurer to write
during soft markets and to gain market share by taking on previously uninsurable risks.

Without the dynamic aspect of doing business the problem of investment income would
reduce to watching a static amount of money, the surplus, accumulate in a savings or
investment fund. The timing of the acquisition of new revenue, the uncertainty of the
reserves and the payment of losses complicate the estimation of future investment income
even if the amount of future written premium were known for a certainty. However a
model that allows for a scenario testing of the random elements would be a useful tool in
Jorecasting investment income.
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A Cash Flow Model for Forecasting Underwriting Investment Income

Louis Spore

1. Introduction

Constructing a cash flow model involves the inevitable use of assumptions. In the
following a deterministic model is created that uses certain simplifications. Among them
is that the investment rate of return is known and does not vary from year to year.
Another is that this rate is the same rate used to discount the reserves and a third is that
the ultimate loss ratio has been accurately forecast. Since the principle impetus for the
research done here is to construct a picture of insurance company financial position at
future times under different operating conditions, these assumptions are simply consistent
with the omniscience implied by a scenario analysis. To avoid too much simplicity the
model is re-worked by allowing the rate of return to vary from year to year, although the
rate used to discount the reserves is assumed to remain constant.

Some of the tricks for handling multiple sums and solving recurrence relations that are
employed in the Appendices can be found in [KN].

2. The Cash Flow Algorithms

The first step in estimating investment income for an insurance company is to identify the
cash that there is available to invest. Setting aside for the moment the cash in surplus and
ongoing cash flow from current investments the source of new available cash has to be in
the written business. We will assume that if the company stopped doing business im-
mediately there would be enough cash and invested assets to pay the liabilities. Surplus
would not be impacted and future investment income would come only from the surplus.
If it does not stop business the increase in investment income will come from the
operating cash flows from business written and not from a more clever investing strategy.

In line with these remarks we will start with a single policy written for at the beginning of
the year net of re-insurance for an amount P. The cash invested from P will be P less the
underwriting expense plus ceded commissions received. We will assume for the moment
that premium is received, expenses are paid and, initially, reinsurance cessions are
consummated and paid at the time the policy is first written. The errors induced by these
timing assumptions can be refined later.

Let C; be the loss fund at time t=j. IfE is the underwriting expense and profit percentage,
R is the ceding commission, W is the original written premium and ¢ is the percentage
ceded, then Co, the initial cash fund , is (1-c)W — EW + ¢WR. . In order for this fund to

be positive the inequality R..1 - (1-E)/c should be true. Companies are shrewd enough
negotiators to guarantee this will be a fact. In the exposition that follows the time j will
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refer to j years although it could be any time interval if the claim settlement pattern
conforms to it. P=(1-c)W will be the retained premium that enters all of the formulas. !

There won’t be a separate return on loss reserves and unearned premium. The entire
reserve at the inception of the policy is LP and this will be reduced as payments are
made. The return on year » will follow the recurrence:

I, =iCp.; — paLPr @.1)

Here i is the rate of return, pj is the percentage of ultimate paid in year j, L is the
projected ultimate loss ratio and r = (1+i)"%-1 under the assumption that the amount paid
in year j averages to the middle of the year. This simply states that the return during the
year is from the cash fund at the beginning of the year less the interest lost from a
payment made during the middle of the year.

The next task is to estimate the size of the fund that supports this policy at a future point
in time, say n. The completion of this task involves first measuring the impact of taxes on
the investments earned so far. We will define a tax variable, T, at time n as the change in
the discounted reserve less the amount paid during the year.

Tn =dn-an-l _ann '—anP (22)
Here d,, refers to a discount factor defined as

ZN:kak—n—IIZ LP zN:kak—n-l/?.

d - k=n+l = k=n+] 2.3
; = 23)

g "

where N is the year of the last payment and v =1/(1+1)

If S; is the contribution made to the loss fund for some year j<n, then the loss fund at time
nis
C, =Cy+).8,-LP> p,

j=1 j=1

where S, = (1-t)[iC,, —rp,LP]-tT, 2.4)
and T; =R;,d;, —R;d; - LPp;

! Also, C, should be reduced by any excess premium ceded and the ultimate loss ratio modified by

the impact that this might have on the retained losses.
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for some tax rate . If we call the first sum in (2.4) Dy, and notice that S, = D, — D,.; we
can use a standard trick for summing a series to get the following equation (see
Appendix 1):

n n -1 n . n )
D, =8 =C,u" ~1)=(@-1LPY u"7 > p, +LP[t~1(1-t)]> " u"’p; -t> AR u"”’
j=1 k=1 j=1 j=1

j=

In this expression u= 1+(1-t)i is the interest factor reduced by the tax rate and AR; = d;R;

— dj1Ry.1. A few more algebraic manipulations (Appendices 1,2 and 3) give a simple
equation for Cy,.

Cp = (Co — LPdg)u” + Ry, (2.5)

Ifn =N, the year of the last payment, then R, = 0. This also gives the break even loss
ratio Ly, = Co/dgP, which, in the absence of reinsurance, simplifies to (l-E*)/do. E" would
be the underwriting expense ratio without a loading for the profit provision. This formula
also gives a stronger expression for the minimum commission that the ceding company
should demand from the re-insurer. At n=N it should be true that Co= (1-c)W-

EW+cRW<«,

doL(1-c)W or that R . 1-[(1-E)-doL(1-c)}/c. Of course if L is too large the required R
becomes too large and it becomes doubtful if there will be any quota share re-insurance.

3. Surplus

A related problem is determining if writing this policy will be profitable. This entails
considering the return on the surplus, the investment return on underwriting and the
underwriting profit. The fundamental equation to consider is:

Z,=Zu"+) 8, -LPY p, +C,
k=1 k=1
= Zu"+C, (3.1)

where Zy, is the surplus at the end of year n. The thing to notice about this formula is
that the surplus increases because of two separate sources: the interest on the original
surplus and the interest on the underwriting account. This can be a source of some
confusion for an ongoing operation. After the first year Zo turns into Z;, and for
accounting purposes, this becomes the original surplus for a new year. It would not be
correct to replace Zy with Z, in (3.1) because it would over-count the interest on the
interest implicit in C,. We must choose a zero year and then add the surplus
contributions from future years by summing the C-contributions for each year from the
zero year to the year n. For the purposes of calculating the income from the surplus Z
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will not grow from underwriting until n=N, the year of the last payment and it is known
for certain if there is a positive or negative contribution. Until that point is reached return
. on surplus for year # is just (u-1)Zou™" and the return on the C, contribution is calculated
with (2.1). The surplus at the end of year N would be Zqu"+Ch.

The exception to this is the issue of capital infusion. For example, capital can be supplied
by a surplus note, private investment or a stock issue. The timing can also be critical. If
the »n-th contribution , CC,, is made at time T,, with initial surplus of Z in year 1, the
surplus for year n willbe Z_ =uZ__, +u'™CC, . Here 1<. T,<. 0 is the fraction of the

year that represents when the contribution is received by the company. Thus a
contribution effective at June 30" of the year would make T, = %. This implies a general

n
expression to use for computing surplus return: Z, =Z,u" + Y u""™*%CC, . The
k=1
income from surplus for year » would then be (u—1)Z__, +(u'™ -1)CC, . Appendix 4
shows the from the equation for Z, takes under the assumptions that the rate of return is
different from year to year but that the rate for discounting reserves remains constant.

It almost goes without saying that if the capital contribution is from a surplus note, the
calculated return should be reduced by the amount of interest payable on the note at the
end of the year.

Exhibit 1 illustrates the flow into future years of a single years written premium. The last
line uses the formula to calculate the cash flow fund as a check on the cash flow lines

above.

4. Calendar Year Investment Income

This analysis began with the hypothesis that P is written premium and that the loss
experience is policy year loss experience. At the end of a calendar year only half of the
written premium is earned and only half of the losses have been incurred. The tax
treatment of the reserves is on the reserves for losses that have been incurred. The
derivation began with a single policy written at the beginning of the year. There isn’t
anything in the derivation that prevents us from regarding the premium earned during the
year as coming from a single policy written at the beginning of the year for the amount of
the earned premium at its end. The reserves will be accident year reserves, the p; will be
accident year settlement patterns and the tax treatment will be on accident year reserves.
Throughout the assumption will be that the accident year outstanding and IBNR reserves
for all years is accurate and therefore the accident year ultimate losses are equal to the
calendar year incurred losses.

Assuming that premium writings stay constant from year to year, the calendar year
investment income at year » would be the sum of equation (2.1) from one to n.
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n

I, =(1-9Y [iCc,, -, LP]
k=1

n

k=1

S, + tk};ARk ~tLP§ P,

k=1

(Co —LPd )(u™ = 1) + LP(1 -t)ipk ~LP(1 - t)d,
k=1

i

An alternate derivation of this formula and confirmation of its correctness would be to
derive it directly from equation (2.5)

n

2L =2 i(1-9C,, ~tLP(1- ) p,
k=1 k=1

k=l
=i(l~t)i (C, —LPd,)u*"! —rLP(l-t)ipk +i(1-t)§n: R,.d,.,
k=1 k=l k=1
3 (u-1)}(C, =LPd,)(u" ~1)
- (u-1)

n n J )
=(C, —=LPdy)(u" —1)-—1‘LP(1-t)Zpk +LPi(l—t)Z( vk }Vm/zpj
k=l j=1 \ k=1

k=

~tLP(1-)Y p, +LPi(1-03 3 viki2p.
k=l

. k=1 j=k

= (CO "LPdo)(un ~1)”rLP(1"t)Z pk _V’lLP(l_t)Z (1_V~j)vj+l/2pj
k=l i1

):

=(Co —LPdg)(u" =) ~1LP(1-9 p, ~LP(1-1)d, +v™LP(1- ) p,
k=1 k=1
=(C, ~LPdy)(u" -1)+LP(1-)>"p, ~LP(1~t)d,
k=1

This is all very interesting but it is rarely true that premium is written at the same level
each year or that the ultimate loss ratios are the same from year to year. The advantage of
simplified formulas is to provide insight into the process of how investment income is
related to the underwriting process. There is still some practical use for formula (2.5)in
constructing a pro-forma to predict future investment income under different written
premium and re-insurance scenarios. We can find the cash fund in year » to support
different levels of premium, reinsurance, interest rate, ultimate loss ratio and
~.underwriting expense assumptions for all years prior to n. We could then use formula
(2.1) to find the investment contribution each policy year makes to the current calendar
year.
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5. Refinements

A realistic scenario often includes the cession of re-insurance earned premium on a
quarterly basis with the payment of commission based solely on the amounts ceded. This
can result in an increase in the amounts of interest on the delay of premium payments and
a decrease of the return on the commission not yet received. There can be other things
that affect surplus such as capital infusions or surplus notes. If the capital infusion comes
from a surplus note the interest on the note would be a deduction to the rate of return.

Accounting for these things can be simple enough in a spreadsheet format. We can
regard the additional interest or additional outgo as adjustments to surplus. For example
if written premium is ceded quarterly on an earned basis the interest on one dollar of
premium written at the beginning of the year at the end of the year would be equal to:

4 —
P40.5-3 (14+i) 2k-1
k=1 32

This amount would be added to surplus and form part of the next year’s initial surplus.

In practice, the IRS rules for taxes are more complex than the simple allowance for the
change in discounted reserves and the amounts paid shown in the model. For example
there is a credit for 80% of the change in the unearned premium reserve and 70% of the
dividends received are deductible. However it isn’t the purpose of the model to follow the
impact of taxes on income but only the impact that taxes have on investment income that
is derived directly from underwriting. The choice of the rate of return should be based
on the historical patterns of net return and thus would incorporate the special treatment
given to dividends or realized capital gains. The details of the tax treatment for P&C
companies can be found in [AG].

We can also generalize the expression for the cash fund, equation (2.5), by assuming that
rates of return differ each year (and is =i, for year n). A separate (constant) rate i is
assumed for discounting reserves. Appendices 5-7 show the derivation of the more
general equation to be

Cy —LPd, )] Ju, +a,R,d, +B, (1+1)LP —LP(1-t)y, (1 +1,)p 5.1)
0 0 m n n n n n
me=1

where u, is the tax adjusted interest factor for yearmand a, =ivt+a, vu

B, =(a, -tp, +B,.u,

- (1+1,.)P0sUn Yoo
(+1,)p,

n

+1 where a, =1, 8, =0, y, =0 and r, =./1+i, 1

n
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This looks dauntingly complicated but the practical computation doesn’t present any
problems.” It will give us another equation for calculation of the breakeven loss ratio

however, because it is not generally true that [, = 0 = «y,. The new formula becomes
Co
x 1
P{do ~[ 7By (+0--yypy <1+rN>]}
m=]

L, = (5.2)

Whether this is an increase or decrease to the breakeven loss ratio calculated earlier
depends on the average size of the rates of return. If they are small from year to year and

less than the discount rate, J,; will be negative and s, positive. The new breakeven ratio
will be smaller. Large rates of return will make ], positive and o\ Close to zero. The

breakeven ratio will be larger. An illustration of the calculation of — ! and -« for
small and large rates of return is shown in Exhibit 2.

Although Appendices 5-7 follow the logic of Appendices 1-3, Appendix 7 differs from
Appendix 3 by proving a formula for -t<R; by induction. Whenever the u’s are the same

from year to year, and use a rate equal to the discount rate, it isn’t to hard to see that the
alphas are all identically equal to 1 and the beta and gamma factors combine to equal
ZEro.

6. Summary

The cash flow equations for a deterministic model of future investment income were
derived from a consideration of an initial cash fund that is derived from the underwriting
process. The recurrence relations were based on the return from this fund and the tax
implications of the change in the discounted reserves and the amounts paid. The term
“reserves” as defined in the model is the premium times the estimated ultimate loss and
loss adjustment expense ratio. At the beginning of the year this would include “policy
reserves” or reserves for claims not yet incurred and the unearned premium reserves.

The analysis begins by following the cash flow to support a policy written at the
beginning of the year by establishing a fund to pay claims from the premium written and
the offsets to it represented by the re-insurance agreements and the underwriting
expenses. The calculation of the investment return follows by applying the expected rate
of return to the formula for the cash fund at the prior year.

The model is first generalized by assuming first that the premium earned during the year
is equivalent to a single policy written at the beginning of the year, and then by assuming
different rates of return to be applicable for different calendar years.

Appendix 8 gives closed form solutions to the alpha , beta and gamma
recurrences
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" Exhibit 3

Calculation of the Reserve Discount Factor

Interest rate = 4%
(1 (@) ©) (4) ) (6) Q) @ ©
Reserve
Discount Incremt'! Cumulative Complement Cumul Comp. Of Discount
Year Factor Payments Payments of Cumul. Product Product Product Factor {da)
1 0.9806 7% 7% 93% 0.0702  0.0702 07780  0.8726
2 0.9429 13% 20% 80% 0.1254  0.1955  0.6536  0.8887
3 0.9068 15% 36% 64% 0.1391 0.3346 05146  0.9014
4 0.8717  15% 51% 48% 0.1312  0.4658 03833 0.9123
5 0.8382 13% 64% 36% 0.1122 05780 0.27T11 0.9222
8 0.8060 11% 75% 25% 0.0892  0.6673 0.1819  0.9319
7 07750 9% 84% 16% 0.0669 0.7342 0.1150 0.9419
8 0.7452 6% 90% 10% 0.0477  0.7819  0.0673  0.9530
9 0.7165 5% 95% 5% 0.0325 0.8144  0.0347 0.9656
10 0.6889 3% 98% 2% 0.0213  0.8357 0.0134 0.9806
1 06624 2% 100% 0% 0.0134  0.8482 0.0000  1.0000
100% 0.8492 =d,

Notes:

Col (2): 1.047[Col (1) - 1/2] Col (6): Col {2) x Col (3)

Col {3): from Exhibit A Col (7): Cumulative of Col (6)

Col (4): Cumulative of Col (3) Col (8): Sum of Col (7) - Col (7)

Col (5): 1- Col (4) Col (9): 1.047[Col (1)] x Col (8) / Col (5)
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Exhibit 4

Mathematical Formulation of Exhibit 3

For: I = interest rate
P; = % of ultimate paid in year j

Col (1) : k
Col (2): (1 +i)~*+/2
Col (3): p,

@1(4):2_:,0,

Col (5):1~Col ()= 3" p,

=k 4]

Col (6): (1+i)™**2 p.

k
Col (7): D 1+ NI p,
J=1

Col (8): D> (1+ N2 p
J=k+1

n

Z(l +i)—-j+k+l/2pj

Col (9) : £=*41 -
Z P,

J=k+1
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APPENDIX 1

C, =Cy+2.S;-LP) p; NowdefineT,;=d, R, -d;R,-LPp,

=l =l
N
whereR ; =LP Zpk

k=j+l

where §; = (1- t)[iC 1 1P J-LP]—- tT, LettingD; = kzj;sk we get

D;-D,, = (1-1[iC,, —1p,LP|-1T,

== (l—t)[i(co +Dy, —LPika-rijP} tLPp; -tAR; (where AR ; =d R ;, -d;R;)
k=1

=(u-1)Dy, +4; if we let A, represent all of the terms that do notinvolve D and u =1+ (1-t)i

Henceif we multiply both sides of this equation by u”’ and sum we get

En: (D ju’ =D, u " )=D,u™ = En: A;u™ because D, = 0 by its definition. Thus

j=1 j=1

D,=>S, =2xju"—i =S, -S; +8S; +S;
-

=

S; =-1)C, > u" =C,(u" -1)

J=1

S, =(u—~1)LPZn:u“"'ipk =L nquk(u““k -1))=LPu“An,, --LP“Z.lpk {See Appendix 2}

j=1 k=l P kel

forA, =>pu™
k=l
8, =LP[t-r(1-)]> u"p;, =LP[t~r(1-Ju"A,

j=1

8, =-t) AR;u"™ =(1-LPu"(1+1A, +R d, -LPd, u" {See Appendix 3}
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APPENDIX 1 (Continued)

Adding together these simplified sums we get

3, = Co@” ~1) ~—{LPu A —LP{Z‘pk]Jr LPlt-r1 - phra,)

j= k=1

+(1-LPu "[(1+ A, ~d, ]+ R d, — tLPd ,u”

n-l
=Co@"-D)+LPft-r(1-)+(1-)1 +nfu"A_ ~LPu "A, +LP>' p, ~d,LPu" +R d,
k=1 i

-]
=Co(" -1 +LPu"(A, ~A, ,)+LP) p, ~d,LPu" +R d_
k=i

[since t-r(1-t)+(1-t)(1+1)=1]

n-1
=Co(" - +LPu"(,u™)+LP)Y p, ~d,LPu" +R d,

kni
=Co(u"-1)+LPY p, ~d,LPu” +R d,
k=1

Adding this to the expression for C_ we get
C,=Cou"-d,LPu” +R d,
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APPENDIX 2

Simpliﬁcation of the S," term in the expression for the sum of the surplus contributions

(u- I)LPiu“'jﬁipk
k=1

=t

= (u —I)LPZn:u“’jipk
k=1

=2
n-1 . j n-l n-1 .
=@-DLPS Y p, = @-nLe S p, 3w
= k=1 k=1 jok

=(u-u ""LP:Y:1 p,u’™ i ukd

k=1 j=k

n-1
=(u-Du ""LPZpku"k(
k=1

11—y ®®

n-1
————!——j =LPY pou™ (u" - uk)
k=1

1-u~

S

n-l1
=LPu"A , —L]PZ:pk where A, =» p,u™
k=1

k=1
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APPENDIX 3

Simplification of the S4” term in the expression for the sum of the surplus
contributions

tZR,_ d, u’

j=1

= tLPZu" ’Zp yk-i+n +tLPZu“ - Zp yk-irz

=t jel k=n+]
=t LPZp v"”’zZ(uv)“ +tu"LP Z Dy v“*‘”Z(uv)-J
k=] j=l k=n+l =i
- tLPu“"'v“'Zpk[l (uv )~1 } kein tLPu 'y~ Z [1*(1“’)~l ]vmrz
k= I-(uv V) Kan+i 1“(11V)
= (1+l) LPu [Zp vk+!12 llzzpku—k:} +I) LPu vn-t—l Zp Vk n- 112[ (uv)-n]
k=1 k=l k=n+t

LPU [ ~1/2A Zp,vj 1er R,d [ (uv)]

J=1

LPu [H-r)A Zp vz ijv’ '”J}wli-fi—l[ (uv)“]

LPu“ [(Hr)A d,—v" Zp v"""”)}-{-R’{d“ [1-—(uv)"]
jm=n+1 1

LPu (1+r)A ] (uv) 1'R,,d R d [ (uv)}

LP“ [(1+0A, —d, ]+ Rada

i
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APPENDIX 3 (Continued)

But
tZ Rjdju“"j

Jj=l
n+l

=ty R, d, u"
Jj=2
=utd R;d, u™ +R d, ~tR d,u"
J=t

= u{”’“‘ [(1+DA, ~d,,]}+ uR,d, +1R,d, —tLPd u"
1 1

sinceR, =LP
Hence

—tzn:ARju“'j

f

i

= (u-l){LPu [a+pa, -do]}+m+mndn —tLPd,u"
1

=(1-9LPu"[(1+1)A, —d,]+R d, —tLPd,u"
=(1-9LPu”(1+DA, +R,d, ~LPd,u"
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APPENDIX 4

The Derivation of “Interest” Surplus When Interest Rates Vary From Year to Year

LetZ, =u,Z,  +u;™CC,
where u, =1+(1-1)i, is the interest factor for yeark
and T, is the timing of the capital infusion for yeark

k k k
-1 e P -1
le [uj —Zk_,| |uj u, =u, "] luj CC,
j=

j=l j=1

= Z"f]u;’ ~Z, =§;ufn [ﬁ uj' JCCk

J= j=

=Z, =Z°fl“j .,.iu}f*[ﬁu}]][ n uj}CCk
=1

j=1 =1 Jel
T n =T, n
— Tix
“ZOH“1+Zuk H“s CC,
jal k=] j=k+1

where the product in the second term is interpretedas =1if k+1>n
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APPENDIX 5

C, =Cy+2.8;~LP) p;, Now defineT;=d;,R,,~d,R; -LPp,

i=1 j=t
N
where R ; = LP pr
k= j+l
i
where S; = (1- t)[ijCj_, —rjijP]- tT; Letting D ; = ZSk we get

k=1

D;-Dy, =(1-1fi,C,, —1;p,LP]-tT,

i1 ,
=(1~t)[ij(co +D, —Lsz:pk)—rjijP]-i-tLij -tAR (where AR | =d R, -d R )

=l
=(u;-1)Dy, + 4, if we let 4, represent all of the terms that do not involve D and u j =1+ (1-0)i;

j
Hence if we multiply both sides of this equation by H u;! and sum we get
mu=]

n

Z(Djﬁu;’, —-Dj_lf-[ u;f,ujJr-Dnﬁu;,', =i?»jf-[u:, because D, = 0 by its definition. Thus
m=!

j=1 ma=] m=] j=1 m=l
D, =38, =34, [[un =S, -5} +5; +5;
jul j=1 maj+l
: =C0i(uj—1)f-[um =C, y (f}um - ﬁum)=co(num ~1]
j=1 maj+] =1 \_m=j maj+1 mel
n n j-1 8=l n n
S;=LPY ;- [[un.2p = LP[Zpk[ ITu. -1)] =LP(H um)An_,
j=1 m=j+l k=] k=1 mek+l m=1
n- n k
—LPEipk {See Appendix 6} for A, = p, [ un
k=1 k=] m=l
S, =LPti ﬁumpj -LP(l-t)Z I—_[umpjrj
j=1 m=j+l j=1 m=j+l
= LP‘{I-“]:um]An —-LP(l-—t)(ﬁ um)A; [for A =irjp5ﬂ u,‘“‘)
msi m=] j=1 mm=]

n k n n
S =-tZARj(Hu;,‘,):(l-t)LPHum(An +A)+e,R.d, -LPd, [ Ju, +LP(1+1)B,

Jj=1 m=] ms] mm]

-LP(1-tyy,(1+r,)p, {See Appendix 7}
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APPENDIX 5 (Continued)

Adding together these simplified sums we get

n n n n-l n n
8= Co(num ~—1)-[LPH u A —Lpzka+{LPtH unA, -(1-9]] umA;}
j=1 ms=] m=l k=1 m=] ms=]

+(1-9LPT Tu, A, + AL) -, ]+ 0,R d, ~tLPd [ T u, + LP(1 + 1),
m=l m=l
~=(1-9LPy,(1+1,)p,

= co(f] u, —1)+ LP[t+ (1 -c)]flumA,, —LPqumA,,,,
m=] m=] m=}

n-1 n
+LPY p, —d,LP[Ju, +a,R,d, +LP(1+ 0B, - (1- LPy, (1 +1,)p,
k=1 m=|

= co[ﬁ u, —1)+LPqum(An ~A )+ Llf'ipk —doLPf[um +o,R d,
m=| m=] k=1

m=1

+ LP(1 +I‘)ﬁn - (1 - t)LP'Yn(l + rn)pn

= Co(ﬁum —1J+LPﬂum(pnﬁu;)+LPnzlpk —-doLPIn_[um +a,R, d,
ms= m= m= k=1 m=l
+ LP(1 ~|~lr)Bn -( —t)LP;n(l + rn)];n
= Co(flum —-1)+LPZn: Py —~dOLPIL‘[um +a,R d, +LP(1+0B, ~(1-t)LPy,(1+1,)p,
m= k= m=|
Adding t‘his to the expres;ion for C, we get
C, = (C0 «-dOLP)ﬁum +a,R . d +LPA+1B, ~(1-t)LPy,(1+1,)p,
m=]

where o, =ivt+va _u and B, =B, u, +(a, —t)p, (¢, =1and By =0)

= 'Yn-l(l +rn-l)unpn-l +_1 (‘YO - 0)
(I+1,)p,

Ta
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APPENDIX 6

Simplification of the S, term in the expression for the sum of the surplus contributions

Letq; = ﬁum

me= j+1

LPZ(u -I)Hu tpk

ms=j+]

—-LPZ(q” - qu S,

_; 9, k=1

n-l n-l n-1 . ~q.
LP (qJ q]+l)i - LPZpk (q) q3+l)

k=l j=k n

= LPE } u,,,)nlpk[f]u;l)*u’ipk
L

k=1 m=]

um) LPZ:pk where A Zpk(ﬁun“)

m=l

318




APPENDIX 7

(See the defintions on the second page)

oW
Assume that there is a closed form for tZ-——-—(R d; ~R;.d,, )that 1s equal to
=t 9y

(1-9LP :" (A, +A))+e,R,d, ~LPd, 2% 4 LP(1 + 1)B, - (1- OLP(1 + 1 P,
q

i} n

(R4, R .d,.,)

((1 t)LP:" (A, +A))+a,R,d, +LP(1+1)B, - LPd, . o _(1-tLP(1+1,)p. yJ

n n

l

Z

n+l

N+

+tq n+l (R

n+l

R,d

n+l n+l— n n)

=(1-9LP 22 (A +A’)+a,u,,R,d_-LPd o2 4 t(R,,,d,, ~R,d,)
n+l n+l

+LP(1+r, Bau,,, - u,,, (1-t)LP(1 + L)P.Y.

= (1 - t)LP qu [(Am-l - n+lpn+l)+ ( n+l T wn+lpn+lrn+) )]

n+l

+Rn+ldn+l[ W+vanun+i]+LP(l+r)pn+x(vanun+l _‘Vt)“LPdO qO +LP(1+Y)Bnun+)

n+l

- LP(l - t)[(l + rn )unﬂpnYn + (1 + rn+l )p nH]

=(1-t)LP qO (An-H +A;+l)+LP(1+r)[pn+l(anvun+l “Vt)+Bnun+l]+

n+l

Rn+ldn+l[lw+vanun+l] LPdO qO -LP(I—t)[(l+rn)un+lpn7n+(1+rn+l)pn+l]

n+l

=(1-OLP (A +A,)+LP(1+DB,,, +a, R, d.. ~LPd, %~ LP(1 +1,,)p,.,(1 - t)y..
n+l n+l n+ n n+) n+l n+l

n+l : n+l

=0, =ivt+vau andf,,, =pn+l(u'nvun+l —Vt)+Bnun+l
) (At
" (1+715,P oy
If weleta,=1,8,=0 and y, =0 then itis easy to verify that this equation holds
for n =1(See below). The algebra above shows by induction
that it is true for all n.

+1
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The proof of the formulaaboveforn=1:
QoW

1

N N
= tLP(z v"’mpj —Zv“’zpjj
=2 j=1

N .
= tLP[v'I (Z vip. —viPp, ] wd(,:!
=

=tLP(1+i)d, ~tLP(1+1)p, —tLPd,
=itLPd, —tLP(1+1)p,
The formulaexpression atn =1 is:

t22L(R,d, -R,d,) = t®,d, R, d,)

APPENDIX 7 (Continued)

(1-DLPI (A, +A})+0,R,d, + LP(1+1)B, ~LPd, 2 L p(1-1y, (1+1,)p,

1

1

= LP(1-t)(1+1,)p, +(ivt+vu,)[LP(1+i)d, - LP(1+1)p, ]~ LP(1- t)y, (1+1,)p, +

LP(1+1)[vu, - vt]p, -LPd,u,

=itLPd, + LP(1+1)[vu, ~vt-ivt—vu, Jp, (since y, =1)

=itLPd, ~tLP(1+1)p,

Definitions used in the derivation above

N
Rn+ldn+l = LP ka—n—3/2pk

k=n+2

N
- k-n--3/2 172
1 v, oy ]

k=n+]

N
= LPV-I [ ka’n—lnpk } _ LPPn+1 v—l/Z

k=n+1
=v'R d, ~LP(l+1)p,,, =
Rn dn = VRn+l dn+l + LPV( 1+ r)pn+1

N j
Letq; = | Ju, andlet w, =] Ju;}
m=j+] m=]
) Wia
9; Ww;

o _ 1

q; W

j::l J:] J:l

n n Jj n
=A, = ijpj( Ay =250 ] Tun =2 wirp,
m=]

J
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APPENDIX 8

Solution to the alpha recurrence:

i j-1 j
-j -t ={j-1) - ~j -1
o;v l lum o,V l lum =1vty l Ium =
1

m=] me=l =
n n Lod
a, v [Tuz —l=ith"”Hu,‘n' =
m=1 j=1 ma=}
n n .
o, =V ] Tu, +it) v ITu.
ms=l j=1 ma=j+l

Solution to the beta recurrence:
B,- =Bj_,u). +(ozj',vuj -vt)pj =

j j=1 j
BjHur.nl —ﬁj-lnu;nl =Hu:(a3 -tp; =

me==} m=]
n n J
ﬁnnu: =Z(aj"t)pj]_—-‘[ur-nl =
mal j=i m=]
n n o i . | j n n i
B, =Hum[2(v’num +ity yi Hum)pjnu,‘,}]-—tnum}:pjnu;‘
ma=1 j= m=1 k=1 m=k+] ms] =] j=t m=]
n n . 3 X k n n
=Hum[2(v’pj +ith"“”iju:H—-thj [Tu.
mu} j=l k=] mas] =1 = j+1
n o & . j n n n
~—--:[_Iu,,,z:v’pj +11:}_:v’pj>:v"“‘l ITun -t p; ITu.
ma=1 j=1 j=i k=1 m=k+ j=t msj+l

Solution to the gamma recurrence:

Leto, =(1+r1,)p, Then
Y@k =YW@y +0, =

K k-1 K
Yk‘PkHu;\l ’"'Yk-l‘PMH“;: =Hu;:¢k =

m=] M| m=l
n n k
9. Jun =X [Tune, or
m=1 k=l mal
Zn:(1+rk)pk Hum
Y - k=] muk+l
’ (I+r,)p,
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